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Abstract

The exact expression for the quantization error as a function of the parameters
defining the quantizer, the error-weighting function, and the amplitude probability den-
sity of the quantizer-input signal is presented. An algorithm is developed that permits
us to determine the specific values of the quantizer parameters that define the optimum
quantizer. This algorithm is then extended so that optimum quantizers can be deter-
mined for the case in which the quantizer-input signal is a message signal contami-
nated by noise. In each of these cases the algorithm is based on a modified form of
dynamic programming and is valid for both convex and nonconvex error-weighting
functions. Examples of optimum quantizers designed with the first of these two algo-
rithms for a representative speech sample are presented. The performance of these
optimum quantizers is compared with that of the uniform quantizers.
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I. INTRODUCTION TO QUANTIZATION

Quantization is the nonlinear, zero-memory operation of converting a continuous sig-

nal into a discrete signal that assumes only a finite number of levels (N). Quantization

occurs whenever physical quantities are represented numerically. In quantization the

x. x2 x3

OUTPUT, y = Q(x)

XN-2 XN- 1

INPUT, x

Y4

Y1

Fig. 1. Input-output relationship of the N-level quantizer.

primary objective is faithful reproduction of the quantizer-input signal at the quantizer

output terminals. Such reproduction will be subject to some fidelity criterion such as

minimum mean-square error between the quantizer-input signal and its corresponding

output. Figure 1 illustrates the input-output characteristic of a N-level quantizer.

1. 1 HISTORY OF QUANTIZATION

W. F. Sheppard is the first person who studied a system of quantization. In 1898,

he published a paper 1 indicating a method by which the most probable values of the

moments of a table of values can be determined from calculations on the members of

the table rounded off to points equidistant on a scale. This rounding-off operation is

equivalent to uniform quantization or, as it is usually called, analog-to-digital conver-

sion. The input-output characteristic of an analog-to-digital converter is shown in Fig. 2.
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Fig. 2. Input-output characteristic of the analog-to-digital converter.

In their separate investigations of analog-to-digital conversion Widrow2 and
3

Kosyakin have been able to show that if the characteristic function corresponding to the

amplitude probability density of the quantizer-input signal is identically zero outside of

some band and if the converter step size "q" is smaller than some critical value related

to this bandwidth, then the amplitude probability density of the error signal, the differ-

ence between the analog-to-digital converter's input and output signals, will be given by

I/qPe(k = 
LO

-q/2 X q/2

elsewhere

This density is pictured in Fig. 3.

With the advent of pulse code modulation4 studies were initiated concerning the appli-

cation of this modulation scheme which involves sampling and quantization to the trans-

mission of telephone signals. One of the first investigators was Bennett. 5 ' 6 In 1948,

he analyzed the power density spectrum of the analog-to-digital converter's error signal.

I P(X )

'/ q

- x
-q/2 q/2

Fig. 3. Analog-to-digital conversion error probability
density as derived by Widrow.
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Similar studies have been performed by Velichkin 7 and Ruchkin 8 for the quantizer. By

assuming that the converter-input signal was a joint Gaussian process with a flat, band-

limited power density spectrum and that the converter contains "more than a few steps,"

Bennett was able to demonstrate that the conversion noise was uniformly distributed

throughout the signal band. Other phases of his investigations led Bennett to conclude

that, in the case of speech, it is advantageous to taper the steps of the quantizer in such

a way that finer steps would be available for weak signals. This implies that for a given

number of steps coarser quantization occurs near the peaks of large signals. Tapered

quantization is equivalent to inserting complementary nonlinear, zero-memory trans-

ducers in the signal path before and after an analog-to-digital converter. Figure 4 pic-

tures this system of quantization which is sometimes called companding. 9

INPUT

TRANSDUCER

OUTPUT

TRANS DUCER

Fig. 4. Model of a tapered quantizer.

Smith,9 using the model of Fig. 4 for the tapered quantizer, derived the input-output

characteristic for the optimum input transducer with respect to the mean-square-error

criterion. In doing this, he assumed that the analog-to-digital converter steps were

sufficiently small and therefore numerous enough to justify the assumption that the input

signal's amplitude probability density is effectively constant within each step, although

it varies from step to step. This characteristic has also been obtained by Lozovoy1 0

for slightly more general conditions. Several forms of nonoptimum companding have

also been investigated and reported. 1 1 1 5

Recently, work in the field of quantization has proceeded basically in two directions.

A number of investigators assume that analog-to-digital conversion takes place and

attempt to reduce the error by various forms of optimum operation on the converter

input and output signals. For example, Katzenelson, 1 6 Ruchkin, 8 and Stifflerl 7 have

developed postconverter filters, Graham,l8 working with television signals, has devel-

oped preconverter and postconverter filters, Spang1 9 ' 20 has developed a linear feedback

filter for use around the analog-to-digital converter, and Kimme and Kuo1 have devel-

oped a filter system (see Fig. 5) based on a patent of Cutler.22 Furman23,24 and

Roberts 2 5 have both approached the problem in a slightly different manner. Furman has

studied the effect of dithering on the analog-to-digital conversion process, while Roberts

has applied a similar technique - that of adding pseudo-random noise before conversion

3
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and subtracting the same noise after conversion - to the analog-to-digital conversion of

television signals,
.0

Fig. 5. Quantization system of Kimme and Kuo.

Other investigators such as Max, 2 6 Lloyd,27 Gamash,28 Bluestein, 2 9 Tou, 3 0 and

Roe31 have attacked the fundamental problem of designing the optimum quantizer of a

specified form. Although some of these investigators have assumed different forms for

the allowable class of quantizers, in each case their efforts, for the most part, have

been concentrated on specific convex error criteria. Essentially, their approach is to

locate all relative extrema of the error surface and select the parameters that define

the relative extremum with smallest error as the defining parameters for the optimum

quantizer.

Recently, interest has developed in the problem of optimally quantizing signals con-
32

sisting of the sum of a message signal and an independent noise signal. Myers has

studied the amplitude probability density of the error signal when the quantizer-input

signal consists of a message signal with flat amplitude density and additive independent

Gaussian noise. Stiglitz33 has determined approximately optimal quantizers for input

signals when both the message and the noise are Gaussian processes and the input sig-.
29,34

nal's signal-to-noise ratio is small. Bluestein has shown that if the input signal

is composed of a message signal that is constrained to assume only the set of discrete

values (yi) i = 1, 2, ... , N plus an independent noise, then the optimum zero-memory

filter (minimum mean-absolute-error criterion) will be a quantizer with output levels

equal to the set (yi), i = 1, 2, ... , N. He also determined asymptotically optimum

mean-absolute-error quantizers for the case in which the message signal is continuous.

This problem of determining the optimum quantizer for a signal consisting of a mes-

sage signal contaminated by additive, independent noise has also been considered by

Kuperman. 3 5 Kuperman makes use of decision-theory concepts to determine the min-

imum mean-square-error quantizer subject to the constraint that the possible quantizer

outputs be uniformly spaced and under the assumption that the quantizer has sufficient

levels to justify the assumption that the input-signal amplitude probability density is

4
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effectively constant within each level, although changing from level to level.

1. 2 BRIEF STATEMENT OF THE PROBLEM

In this report we are primarily concerned with the design of optimum quantizers. We

are interested in two cases: first, in which the quantizer-input signal is a message sig-

nal; and second, in which the quantizer-input signal is a message signal contaminated

(not necessarily additive contamination) by noise. This noise may or may not be statis-

tically independent of the message.

In each of these cases the quantizer will be viewed as a nonlinear, zero-memory

filter. Our objective is to develop an algorithm that can be used to determine the quan-

tizer that minimizes some measure of the error, that is, the difference between the

message signal and the quantizer-output signal. The measure of the error is taken to

be the expected value of some function, called the error-weighting function, of the error.

In general, we shall assume that this function is neither symmetric nor convex.

5



II. QUANTIZATION OF A MESSAGE SIGNAL

2. 1 FORMULATION OF THE QUANTIZATION PROBLEM

We have defined quantization as the nonlinear, zero-memory operation of converting

a continuous signal into a discrete signal that assumes a finite number of levels (N). The

quantizer's input-output characteristic is shown in Fig. 1. We see that the output is Yk

when the input signal x is in the range Xk_ 1 < x < xk . The xk are called the transition

values; that is, xk is the value of the input variable at which there is a transition in the

output from Yk to Yk+l' The k are called the representation values.

In most communication systems it is desired that the quantized signal be an instan-

taneous replica of the input message signal. Therefore, the quantizer's desired output

is its input signal. Now, in specifying a desired output, we acknowledge that we demand

more than the quantizer can accomplish. There will be an error that will be denoted

e = x - Q[x]. (1)

An appropriate mean value of e will be taken as a measure of how well the quantizer

performs with respect to the demands. This measure of the error is given by

Af= g[f-Q(~)] px(Q) d. (2)
-00O

Here, x(,) is the amplitude probability density of the quantizer-input signal x, and
g[-Q(g)] is a function of the error that we call the error-weighting function. No restric-

tions are placed on g(e) or px(a), although usually g(e) is taken to be a non-negative func-

tion of its argument because, in general, it is not desirable for positive and negative

instantaneous errors to cancel each other.

In order to connect the parameters of the quantizer with the error (we call the meas-

ure of the error ' simply the error when there is no chance for confusion), we introduce

into (2) the explicit expression for the characteristic of the quantizer,

Q(t) = Yk Xk-l " < Xk k = 1, 2 ... N. (3)

Thus we obtain for the error

N-1

x i + g[ -Yi+l ] Px ( g) d. (4)
i=O X1

By definition, x will be equal to X., the greatest lower bound to the input signal, and

XN will be equal to Xu , the least upper bound to the input signal. Therefore x and xN

are constants for any input signal.

From Eq. 4 it is clear that the error is a function of the quantizer parameters

(Xl x2. X N-1; Y1ly Z . . YN); that is,

6



(Xl ' x2 ... .XN-l; Yl Y2..... (5)

The problem before us is to determine the particular x. (i= 1,2,...,N-) and y.
1 I

(j = 1,2, ... ,N), the quantities that we call X i and Yj, which minimize the error e, Eq. 4.

Such a minimization is subject to the constraints

Xi = x - xl

X1 < X2

X2 - X3

XN2Z - XN_ 1

XN_1 xN =Xu (6)

which are explicit in Fig. 1 and Eq. 3. These constraints restrict the region of variation

along the error surface ' to a region of that surface so that every point in the region

defines a quantizer characteristic Q(x) that is a single-valued function of the input signal

x. The error surface is defined on the (2N-1) space specified by considering the (2N-1)

quantizer parameters as variables. Such a set of constraints is necessary if the

quantizer-input signal is to specify the quantizer-output signal uniquely.

The problem of determining the optimum quantizer then is equivalent to the problem

of determining the coordinates of the absolute minimum of the error surface defined by

(4) within the region of variation specified by (6).

2. 2 DETERMINING THE OPTIMUM QUANTIZER

We have indicated that the problem of designing the optimum quantizer is equivalent

to the problem of determining the coordinates of the absolute minimum of the error sur-

face within the' region of variation. We know (see, for example, Apostol36) that the

absolute minimum of the error surface will be either within the region of variation, and

therefore at a relative minimum of the error surface, or on the boundary that defines

the region of variation. Therefore, given an arbitrary input signal and an arbitrary

error-weighting function, we do not know whether the absolute minimum is at a relative

minimum or on the boundary. This implies that the technique for determining the opti-

mum quantizer should be a technique that searches for the absolute minimum of the error

surface within (or on the boundary of) the region of variation, rather than searching for

relative extrema. The method of dynamic programming is such a technique. 3 6 39 A

discussion of the mechanics of dynamic programming is presented in Appendix A.

In order to apply the technique of dynamic programming to the problem of selecting

the optimum quantizer (that is, to finding the absolute minimum of the error surface

7



within the region of variation), it is necessary to define three sets of functionals: the

error functionals, {Ei(xi)}; the transition-value decision functionals, {Xi(x)}; and the

representation-value decision functionals, {Yi(x)}. Each set of functionals has members

for i = 1, 2, ... , N. These three sets of functionals are defined in the following manner:

min '
Y 1 di[g(g-yl )Px( ~ ) ]

X=Xo <X 1< --Xu °

min

X <x1 x2 u

min

Xi- 1Yi
Xp Ixi_ 1 iX u

min

XN- 1' YN

X2<XN-1 XN<Xu

l(XI) + 2 dg[g(g-y)px(9)]
1

X. )+
E i( 1) -1

i-1

(N- N-1 ) + SN
XN-1

I}

= X., a constant;

= the value of x in the coordinate pair (x 1, Y2 ) that minimizes

{l(X 1) + X2 d[g(-y)px(), x2 = x;
X1

XN(X) = the value of XN_ 1 in the coordinate pair (XN_ 1 ' YN ) that minimizes

ENl(XN) + x N

XN- 1

Yl(X) = the value of yl that minimiz

) = the value of in the coor)x()] diY2(x) = the value of y2 in the coordi

XN = X.

X1 = X;

nate pair (x 1 , Y2) that minimizes

(X 1 ) + d9[g(-y 2 )px()) ] , x = x;

YN(x) = the value of YN in the coordinate pair (XN_ 1, YN ) that minimizes

E{Nl( XN_1 ) + di[g( -YN)Px(t) ] } XN-1 = X-

(7)

(8)

(9)

8

E (X1 ) =

Ez2 (Xz ) =

Ei(x i ) =

EN(XN) =

Xl(x)

X 2 (x)

I

dg[g(g-yi)px(�)1

dglgdg-y NPpxIo] 
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Consider these three sets of functionals. The key to our understanding of their

meaning lies in understanding the meaning of the separate members of the error func-

tionals (7). The first member of (7) states that for a given range of the input signal x,

or equivalently for a given region of the amplitude probability density of x, x(), spec-

ified by the boundaries x and x1 , we determine the Yl that minimizes the integral

Sx 1 d[g(~-yl)Px(a)]. (10)
o

The mechanics of determining this specific Y1 is discussed below. This Yl is recorded

as Yl(X), x = x1 and the value of the integral (10) for this value of yl is recorded as

E1 (X1 ). This is done for all x in the range X - xl < X . Thus, if we specify a par-

ticular x1 , say, xl = a, we know that the optimum choice for Y1 is Yl(a).

Now consider the second member of Eq. 7. This functional indicates that we are

considering the quantization of the signal in the input interval x - x < x2 , for a vari-

able x2 , into two levels. In order to perform this operation in the optimum manner, we

must minimize the quantity

dg[g(S-Yl)Px(g)] + ,sX2 d[g(-y 2 )px(g)] (11)
xo 1

with respect to the three variables x1 , yl, and Y2 . The first of these two integrals when

minimized with respect to Y1 (and it only contains yl) is simply the first error functional,

El(Xl). Then, for a given x2 , we must determine the x1 and the y 2 minimizing the func-

tion

E1 (xl) + S2 d[g(~-y 2)px(4)]. (12)
1

The x that minimizes (12) is recorded as X2 (x), x = x2; the Y2 that minimizes the

expression is recorded as Y2 (x), x = x 2. The value of the expression is recorded as

E2(x2). These operations are performed for all x2 in the range X£ < x2 -' Xu. There-

fore, if the region xo < x x2 is to be quantized into two levels, we know from the deci-

sion functionals that the optimum transition value is specified by X 1 = X2(x 2 ) and that

the two optimum representation values are given by Y2 = Y2 (x 2 ) and Y1 = Yl(Xl).

Clearly, discussion of this type can be presented for each of the members of (7).

Instead of considering every member in turn, let us skip to the last member of (7). Here,

we are given the input range xo0 < x 4 xN; a variable xN is assumed. We want to quan-

tize this range into N levels in the optimum manner. This requires that we minimize

the quantity

X d[g(i-yl)Px()] + X d[g(a-y 2)Px(Q)] + + S d [g( -yN)Px(g)] (13)

o 1 XN-1

9



with respect to the parameters Y1 , Y2 ... , YN; x x2' .. ' XN. This task is not
as difficult as it may seem. Note that the minimum of the first term with respect to Yl
as a function of xl is given by the first error functional El(x 1). This is the only term
of (13) involving Yl. Thus (13) can be written as the minimization of

x x2 3 XNE (x) + S d6[g(d -y)px(d)] + . + dg[g( -y3))Px()]
1 2 XN- 1

(14) 0

with respect to Y2 ' Y3 , ... , N; x x2 .. XN- 1 But note that the minimization of
the first two terms of Eq. 14 with respect to Y2 and x as a function of x2 is given by
E2 (x2 ). And these are the only terms involving Y2 and x1 . Thus Eq. 14 can be written
equivalently as the minimization of

x x x2(x2) + 3 dS[g(-Y3)Px()] + 4 df[g(i,-ypx (4,)] + dX N d1g"gyN)p(P
~2 ~X3 xN-1

(15)

with respect to y 3 , y4, ... , YN; 2 3' '''' N-
This process can be continued until we obtain as an equivalent for (15) the minimi-

zation of

EN-I(XN-1) + . x N dg[g(g-YN)Px(Q)] (16)
XN-1

with respect to N_ 1 and YN. For a specific XN, the xN_ and N that minimize (16) are
recorded as XN(x) and YN(x), respectively, x = XN. The value of (16) for a specific
XN is recorded as EN(xN). The two decision functionals and the error functional are
evaluated for all xN so that X s xN X .

Appendix B gives an alternative presentation of this explanation of the error and deci-
sion functionals from the point of view of search paths along the error surface.

Now, we are in a position to use the functionals just derived to determine the param-
eters defining the optimum quantizer. Note that when xN = Xu we are considering the
entire input-signal range. Thus, EN(Xu) is the total quantization error for the optimum
N-level quantizer. Then from the definition of XN(x), the (N-i) th transition value is

XN- = XN(XU)

Likewise, from the definition of YN(x), the (N)th representation value is

YN = YN(Xu).

Continuing from our definition of XN_2(x) and YNZ(x), we find that the (N-Z)th tran-
sition value is

10



XN 2 = XN (XN-J)

and the (N-l) t h representation value is

YN- = YN- I(XN-l)

This process can be continued until finally we have

Y1 = Y(Xl ) '

which is the last parameter needed to completely define the optimum quantizer.

2.3 SIMPLIFICATION OF THE ERROR FUNCTIONALS

We have presented a method by which the parameters that define the optimum quan-

tizer can be determined. Now, we want to take a closer look at the error functionals,

Eq. 7, with the hope of reducing the complexity of the minimization operation.

We begin by considering the kt h member of (7), that is,

min C xk }
Ek(Xk) = xk k(Xk-l') +k d kx (17)

X.X-k- 1Xk1 X Xkl 

Since Ek l(xk 1) is not a function of k' the k th member of (17) may be equivalently

written

min min CXk }
Ek(xk) = k)Xk-1 +

XI <Xkk 1 <Xk X Xk- 1

We now limit our consideration to the last term of (18), that is, to

rin rxk
Yk i d5[g(X-Yk)Px( ) ] (19)

xk-1

From the original statement of the quantization problem, Eqs. 4 and 6, we see that the

Yk are unconstrained variables, that is the region of variation for Yk is -a Yk +.
Therefore, the Yk that minimizes

xk-l

must be a relative extremum of

fk(xk 1 xk;yk) = k dS[g( -yk)Px()] (21)

xk-1

with respect to Yk If g is a continuous function of its argument, the Yk minimizing (20)

11



will be a solution of

0 = d d x(4 {) -g( -(Yk )]} (22)

In general (22) will have a multiplicity of solutions, each of which will be a function of

the remaining parameter of minimization, Xk 1. It will be necessary to determine which

of these solutions is the one yielding the absolute minimum of (21) by substitution of the

solutions in the equation. This particular yk will be indicated by yk. (It will be shown

that if g is strictly convex then (22) will have only one solution.) If g is not continuous,

wk will be found by a direct search along the set of possible values for Yk.
Using this result, we may write Eq. 17 as

Ek(xk) (k- l(xk-l=) + i5 dig('* k)p i (23)
X'x~kl' XkjXu Xk-l

This indicates that the number of parameters over which the formal minimization must

be performed can be reduced from (2N-1) in Eq. 7 to (N-I) when the error functionals

are written in the form of (23):

0((X1) = Sx1 d-<I5-yl )PX( l
X =X xx 4 XU

E2 (X2 ) = min (xl) + dx2 g(-y*)px(

X x x 4X 1
X2X12 u

EN(XN) = XN_ 1(xN ) + YN

XI4XN- 1 <XN<XuN- 

(24)

From a practical point of view we cannot determine the error functionals (or for that

matter the decision functionals) in closed form but only at several points that specify a

grid. This result, then, enables us to determine each of the error functionals by a one-

dimensional search for each value of xk, rather than by a two-dimensional search, thus

substantially reducing the complexity and length of the computations.

2. 4 QUANTIZATION - A SECOND POINT OF VIEW

We have defined the quantization error to be

N-1

= E i + l dg[g(g-Yi+l)Px(g)] (25)
i=O Xi

12



Now, we want to derive an alternative expression for the error which will allow us to

interpret the optimum quantizer from a different point of view.

We begin by defining the random variable as

= - Yi+l' (26)

Clearly, X is a random variable corresponding to the amplitude of the error signal. Upon

substitution of (26) in (25) ' becomes

N-1

= 2Xi+l+Yi+l dX[g(X)pX(X+Yi+)]. (27)

i=O i-Yi+ 1

But this equation can be written

N-1

N1 S dk[g(X)p(Xyi+l) )iU-1[-(x i-Yi+ )]-U- l[-(Xi+i-Yi+l) (28)
i=O -0

where ul(a) is defined by

(I a > 0

u- 1(a) = i a<0.

By interchanging the order of summation and integration, Eq. 28 becomes

N-1

&' 2 dX g(X) PX(X+yi+l) {ulb[(xi-yi+l)]-U-1[\-(Xi+l-Yi+l)D (29)
i=O

We want to identify the term of (29) that involves the summation, that is,

N-1

Ip x(+Yi+l)-Ul [k-(Xi-i+l)]-u-l [-(xi+-Yi+)l} (30)
i=O

Consider the kth term of this sum. This term represents the portion of the input signal's

amplitude probability density lying between xk 1 < < xk' This has now been shifted so

that the representation value Yk corresponding to this interval is at the origin. Thus the

term is the contribution to the amplitude probability density of the error by input signals

in the range

k-l < Xk

This permits us to conclude that the sum, Eq. 30, is the amplitude probability density

of the error,

N-1

Pe()= Px(+Yi+l){U-1l[-(xi-Yi+l )]-U-_l[-(Xi+l-Yi+ (31)
i=O

13



and therefore that Eq. 29 may be written

= ' dk[g()pe(k)]. (32)
-00

Now recall that we minimize 9' with respect to the xk and yj when we design the opti-

mum quantizer. With respect to the error given by (32) these parameters xk and yj are

involved in the expression for e(X). Therefore, we conclude that the problem of

designing the optimum quantizer is equivalent to shaping the amplitude probability den-

sity of the error signal so that some property of this density specified by the error-

weighting function g is minimized. This shaping is constrained by the number of levels

permitted in the quantizer (N) and by the input-signal amplitude probability density px(9).

14



III. SOME RESULTS FOR RESTRICTED ERROR-WEIGHTING FUNCTIONS

An alogrithm that allows us to determine the parameters that define the optimum

quantizer has been developed. We now want to examine this solution for a class of error-

weighting functions which we shall call monotonic error-weighting functions. A mono-

tonic error-weighting function g(e) is a function such that for any e ) 0 and any 6 > 0,

g(e+6) > g(e); and for any e < 0 and any 6 < 0, g(e+6) > g(e). That is, g(e) is a mono-

tonically decreasing function for negative error and a monotonically increasing function

for positive error.

In particular, we are interested in examining the possibility that the absolute mini-

mum will be at a relative minimum of the error surface. This will lead to a discussion

of the properties of the relative extremum of the error surface within the region of var-

iation.

3. 1 NATURE OF THE ABSOLUTE MINIMA

Our primary concern is to prove that the absolute minimum of the quantization error

within the region of variation is at a relative extremum, a minimum, of the error sur-

face, rather than on the boundary defining the region of variation, if the error-weighting

function is monotonic and if the quantizer-input signal amplitude probability density is

not entirely discrete.

We begin by assuming that the quantizer-input signal x, a signal that is not entirely

discrete, is quantized into (N) levels by a quantizer with transition values

{Xi}, i= 12,....N-

and representation values

{Yj. j 1,,...,N.

The quantization error for this set of quantizer parameters is

N-1

N= il dg[g(g-Yi+l)Px(t) ]. (33)
i=O xi

We shall construct an (N+1)-level quantizer in the following manner:

1. Select an interval of the N-level quantizer such that the continuous portion of the

input amplitude probability density is not zero everywhere in this interval. The transi-

tion values at the end of this quantization interval will be labeled xk 1l and xk.

2. Select an (N) t h transition value a at a point in this interval where the continuous

portion of the density is nonzero and such that a Yk.

3. If a > Yk select as the representation value for the interval Xk_ 1 - < a the value

Yk' and for the interval a a < xk the value a. If a < Yk select as representation value

15



for the interval Xk 1 -< < a the value a, and for the interval a < xk the value Yk

4. The remaining parameters of the (N+l)-level quantizer are identical to those of

the N-level quantizer.

If we denote by N+1 the error for the (N+1)-level quantizer constructed in this man-

ner, the error difference

A 6N N+ 1

will be

A-' =xk d a[g( -yk)px(g)] d6[g(-yk)px(g)] dg[g(g-a)px(g)]. (34)
Xk-l

In writing Eq. 34 we have assumed a > Yk. A parallel expression can be written for the

case a < Yk-

If we write the first integral of (34) as the sum of two integrals, upon collection of

terms we have

~ ^= ie d[g(9-yk)-g(g-a)] Px(t)}. (35)
a

We observe that since a > Yk' the quantity [g(g-yk)-g(g-a)] will be positive for all values

of in the range a -< g < xk if g is a monotonic error-weighting function. By construc-

tion of the quantizer, x(g) is not zero over the entire interval of integration, Eq. 35,

and therefore

Ad > 0. (36)

(It should be clear that a similar argument can be presented to show that Eq. 36 holds

for a < Yk.)

It then follows that if g is a monotonic error-weighting function and if x(g) is not

entirely discrete, there exists at least one (N+1)-level quantizer with less error than

any N-level quantizer.

In order to use this result, we must consider some properties of boundary solutions.

Solutions on the boundary are in part specified by an equation of the form

Xj= Xj+l

which indicates the parameter on the boundary, since the region of variation is defined by

X = Xo x 1

x1 X2
(37)

N-I XN = Xu

16



The property that we wish to note is that if a quantizer with (N) levels is defined by a

point on the boundary, its error cannot be less than the error for the optimum (N-i)-

level quantizer. This can be easily verified by examination of the equation that defines

the quantization error, Eq. 33. Referring to (33), we realize that a solution on the

boundary requires one of the terms in the sum to be

xj+ d[g(g-yj+ 1)Px ( )]

It is clear that the numerical value of such a term is zero. Thus, this term has the

effect of reducing the number of effective quantizer levels to (N-I). Therefore, the

smallest possible value for the error in this N-level quantizer is the error for the opti-

mum (N-l)-level quantizer.

Now, returning to the particular problem at hand, we recall that we are able to con-

struct at least one (N+l)-level quantizer with less error than any N-level quantizer when

the error-weighting function is monotonic and px(g) is not entirely discrete. Now, since

the error is less for at least one (N+l)-level quantizer, the optimum (N+l)-level quan-

tizer must be defined by a relative minimum of the error surface within the region of

variation, rather than by a point on the boundary. A solution on the boundary is prohib-

ited by the decrease in error. Since this result is independent of N, we conclude that if

g is a monotonic error-weighting function and px(g) is not entirely discrete, then the

optimum quantizer is always defined by a relative minimum of the error surface within

the region of variation.

3.2 LOCATION OF THE RELATIVE EXTREMA

The preceding section suggests that it will be of value to locate the relative extrema

(and in particular the relative minima) of the error surface as an alternative method of

specifying the parameters defining the optimum quantizer. From calculus4 0 we know

that the quantizer error surface ' will attain a relative extremum (or a saddle point)

for those values of the (2N-l)-quantizer parameters that force the (2N-1) first partial

derivatives of g to become zero simultaneously. That is, the surface's relative

extrema are solutions of the set of simultaneous equations

= 0 k = 1, 2 . N

(38)

= 0 i= 1,2 ... , N-1.8x.

Substituting Eq. 4 in Eq. 38 we have

ayk - k 1 a Yk
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ad,
x [g(xi-Yi)-g(xi-Yi+ 1)] P (Xi)= 0, i = 1,2,..., N-I. (40)

i ax. L6'~~~j~j'e'~~jJ i+-1. (401

If px() is nonzero between its greatest lower bound X and its least upper bound XU,

Eq. 40 becomes

g(xi-Y i ) - g(xi-Yi+ 1) = 0, i = 1, 2 ... N- 1. (41 

Therefore, for the case of nonzero px() in the interval X < < X, the relative extreme

are solutions o t3¥) and 4l). n writing Eqs. 3-41 our only assumption concerning g,

is that its first derivative exists; that is, g is continuous.

It is of interest at this point in our discussion to observe that if g is a symmetric,

monotonic error-weighting function, then (41) may be equivalently written

· x Yi+l + Yi
X. i - , i , N-1. (42)"

1 4.

This follows from graphical examination of Eq. 41 and the realization that for symmetric,

monotonic error-weighting functions this equation will always have a unique solution.
26Joel Max 6 has developed an algorithm to determine the relative extrema of , using

Eqs. 39 and 41 for the special case in which the error-weighting function is (.)2 That

is, with ' given by

N-1

fl : ~S ; x i+ l dt[(-yi+1)2px(t)]. (43)

i=O i

I! ~ ~ This algorithm consists of choosing a value for yl and then alternatively applying Eq. 39,

which in this case reduces to

1 -
Yk (44)

xklYk= Xk d[Px(¢)]

ii Xk~~~~-1

and Eq. 42 to determine first approximations to the values of the quantizer parameters ,~

that define relative extrema of the error surface. (The first application of (44) will yield
x1 , as x° ad Y r nw; thfrsppiaonf (42 ilyel Z sx 1adY r

XV as x and y1 are known; the first application of (42) will yield y., as x, and yl are
both known at this stage of the process. The second application of (44) yields x2; the

second application of (42) yields y 3; etc.) When the process has been completed, that

is, when the approximate value of yN is calculated, the last member of (44), which has

not yet been used, is used as a check to see if these approximate parameters actually

define a relative extremum. If the last member of (44) is not satisfied, we select

another value for yl and repeat the process. If it is satisfied, a relative extremum has

been located. The search then continues with the objective of locating any remaining

relative extremum on the surface. The entire surface must be searched.

18
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It is a straightforward matter to extend Max's algorithm to the more general case

for which the error-weighting function is monotonic. This extended algorithm is iden-

tical with the one above, except that the approximate xi are determined by Eq. 39 and

not by its mean-square form Eq. 44.

So much for the case of nonzero px(,) in the interval Xp < < X. Now consider the

case in which Px(t) is zero over one or more subintervals in the interval X2 < < X.

Relative extrema will still exist, but in general they will be more numerous and more

difficult to locate. The additional difficulty encountered in locating the relative extrema

is due to the nature of Eq. 40, that is, to the factor px(xi). No satisfactory algorithm

has been obtained, thus far, for determining the relative extrema in this case.

3.3 EXAMPLE

Our objective here is to apply

determine the optimum two-level

the results just obtained. In particular, we want to

quantizer for a signal having the amplitude probability

5/4

Fig. 6. Amplitude probability density
for the example.

5/16

C
-1 -1/5 1/5 1

density shown in Fig. 6. We choose to optimize in the sense of minimizing the mean-

square error.

Successive application of the algorithm above yields three relative extrema:

1. X1
1
5

3

YZ 5;

2. x =0

7
Y = - 20

7
Y2 = 20'

19



3. xl =
1 5

1
yl = -

3
Y2 = '

If these three relative extrema are examined, we find, first, that the absolute min-

imum of the surface is specified by the second set of parameters, that is, by

X1 =0

7
Y1 = -

7
Y2 2= 20

Second, we find that the two other relative extrema are in reality saddle points.

We shall now consider a modification of the input probability density shown in Fig. 6. '

The density is modified by decreasing the width of the spike to one-half its former value

and increasing its height accordingly. This new density is shown in Fig. 7. If we apply

5/16

10 10

Fig. 7. Modified amplitude probability density.
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the algorithm

extrema:

of section 3. 2, we again find that the error surface has three relative

1. x = 11 5

3
Y1 =

1

2. Xl=0

53
Yl = 163

53
Y2 = 163

3. X l5

1
Y1 = 5-

3
Y2 = 5'

Investigation indicates that relative extrema one and three are relative minima with

identical values for the error. Relative extremum 2 is a saddle point. Its error is

greater than that of the two other relative extrema which are therefore the absolute min-

ima of the error surface.

3. 4 DISCUSSION

The example just given points out the difficulty that is encountered when we attempt

to locate the absolute minima of the error surface by locating all of the relative extrema.

Basically, the difficulty is that we do not know how many relative extrema will be located

in the search until all points in the region of variation have been considered. Since we

expect the number of relative extrema to increase and the search to become more com-

plex as the number of levels in the quantizer is increased, we are forced to conclude that

in general this technique is not practical. To be more specific, the algorithm of sec-

tion 3. 2 is of real value only when we can prove that there is only a single relative extre-

mum, a relative minimum, within the region of variation. In the sequel we shall consider

three special cases in which the error surface has this single extrema property.

3.5 CONSTRAINED TRANSITION VALUES

Other than the general problem of quantization that we have been considering, there

are several quantization schemes of interest. For example, let us assume that the
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transition values of the quantizer are specified. Such a specification might be required

by the quantization equipment, the system containing the quantizer, or some similar

constraint.

For such a quantizer, from Eq. 4, we know that the quantization error will be

N-l

= i+l d[g(g-yi+l)Px(g)]' (45)

i=O i

In (45) the error is a function of the yi only. We also know that since the yi are not con-

strained variables, the absolute minimum of the error surface will be located at a rel-

ative extremum.

The relative extrema of this error surface, Eq. 45, are specified by Eq. 39 with

fixed transition values, that is, by

dPx() y [g(-Yk)]} = ,O k= 1,2.., N. (46)

In writing this equation, we have assumed the error-weighting function g to be contin-

uous. Consider (46) for a moment. Each of the members of this equation contains only

one Yk. Therefore, the members may be solved independently to determine the param-

eters specifying the relative extrema.

In order to satisfy our objectives, we must now determine the error-weighting func-

tions that will yield a single solution (a relative minimum) to Eq. 46. Our method of

attack will be to determine a constraint on the error-weighting function which will force

every relative extremum to be a relative minimum. Forcing all relative extrema (and

saddle points) to be relative minima is sufficient to guarantee that the error surface will

have only one relative extremum (a minimum). This single relative minimum will then

be the absolute minimum of the surface.

In order to prove that a relative extremum is a relative minimum, we must show that

the matrix of second partial derivatives of g' with respect to k, k = 1, 2, .... N, that is,
I~~~~~~~~~~~~~~~~~~~~~t Ik

a2 a

ay, 2 aylay 2 aylay N

a 2 a a2,

2ay 2 ay1 aYZ2 ... ay 2 ay N

2 2
az , a, 2 a9,

ayNayl aYNay2 -... a
YN 

(47)

evaluated at the relative extrema is positive definite. Since the Yk are independent, the
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off-diagonal terms of (47) are zero; therefore, demonstrating that (47) is positive defi-

nite reduces to demonstrating that the N-terms

2a'
2' k = 1, 2,...,N (48)

aYk

are greater than zero. Referring to Eq. 33 as interpreted for constrained transition

values, we have

2 If Xk [ y
a--2 = dgX() Z[g(9-yk) ] k= 1,2,... N, (49)V- · ay
ayk Xk-l ak

Since x(g) is positive, a sufficient condition for the members of (49) evaluated at the

relative extrema to be positive is for

2

a [g(-Yk ) ]' k= 1,2,... N (50)

ay k

to be positive. Functions g for which the members of (50) are greater than zero are

called strictly convex functions. Formally, a function g is strictly convex if and only if

g[aa+(1-a)b]<ag(a)+(-a)g(b), for all b>a and all a such that 0<a<1. (51)

Therefore, we can conclude in the case of constrained transition values and strictly

convex error-weighting functions that the error surface has a single relative extremum

that is a relative minimum. This relative minimum is the absolute minimum of the sur-

face, and is easily located by the method of calculus.

3.6 CONSTRAINED REPRESENTATION VALUES

Another type of quantization that is of interest is the case for which the representa-

tion values are specified under the constraint

Yk < Yk+l' k = 1, 2, N-1. (52)

By making use of Eq. 4 written for constrained representation values, the error is

N-1

= .X i+l d[g(9-Yi +
) p x( 9) ]

i=So i

If Px(g) is nonzero in the interval X l < < X, then the relative extrema are solutions of

[g(xi-Yi)-g(xi-Yi+)] = 0, i = 1,2,.... N-1 (53)

which is Eq. 41 adapted to constrained representation values. Proceeding in a manner

analogous to that in section 3. 5, we can show that if g is a monotonic error-weighting

function (as previously defined), then this error surface will have a single relative extre-

mum that will be a relative minimum and therefore the absolute minimum of the surface.

The optimum transition values in this case are specified by Eq. 53.
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3.7 CONSTRAINED QUANTIZER-INPUT SIGNALS

In sections 3. 5 and 3. 6 the structure of the quantizer was constrained and in each

case sufficient conditions were found on the error-weighting function so that the error
41

surface will have a single relative extremum, a relative minimum. In a recent paper,

P. E. Fleischer has constrained the error-weighting function to be g(e) = e 2 and he has

derived a sufficient condition on the amplitude probability density of the quantizer-input

signal so that, once again, the error surface will have one relative extremum, a relative

minimum. Fleischer's sufficient condition is given by the inequality

a 2 ln[px( ) < 0, (54)
a2 

where px(t) is required to be continuous. His method of proof follows the type of argue-

ment that we used in section 3. 5, differing only in that he used a row-sum condition 4 2

to determine the sufficient condition for the matrix of second partials (see Eq. 47) to be

positive definite.

The form of Fleischer's condition makes it almost impossible to use for experimen-

tally obtained amplitude probability densities. Referring to Eq. 51, however, we see

that (54) is equivalent to requiring that the function

+(g) = -ln[px()] (55)

be strictly convex. Observing that the strictly convex criteria, (51), may be alterna-

tively written

e-4J [ a a + ( 1-a)b] > e - [ a@d(a)+(1 - a) o (b)] (56)

for all b > a and for all a such that 0 < a < 1, we shall write (55)

pX() = e- (t ) (57)

and, by direct substitution of (57) in (56), obtain

px[aa+(l-a)b] > [Px(a)] a [Px(b)](-a) (58)

If this inequality is satisfied for all b > a and all a such that 0 < a < 1, then Fleischer's

condition is satisfied.

Examination of Eq. 58 indicates several properties of the amplitude probability den-

sities which satisfy this condition. First, if we consider the case in which Px(a) = p (b),

we find that (58) can be written

px[aa+(l-a)b] > Px(a) = Px(b) (59)

or

Px(9) > Px(a) = px(b), for a < < b (60)
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This implies that the px(g) satisfying this condition must have only one relative extremum

and that this relative extremum is a relative maximum. Second, if we consider the case

in which Px(b) = px(a), (58) becomes

p () > P p (a). for a < < b. (61)

From a graphical examination of this condition we see that the x(e) that satisfy

Fleischer's condition possess a mild convexity property.

3. 8 CONCLUSION

We have shown that under certain conditions on the error-weighting function and the

probability density of the quantizer-input signal the optimum quantizer is defined by a

relative extremum of the error surface. We then derived equations defining the error

surface's relative extrema. In order to apply this technique of determining the optimum

quantizer, it is necessary to locate all of the relative extrema of the surface and evaluate

the error at each of these points. In most cases, because of the large number of relative

extrema expected, this technique is not a practical method of determining the optimum

quantizer.
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i 1 j1 IV. QUANTIZATION OF A SIGNAL CONTAMINATED BY NOISE

We have considered the problem of designing the optimum quantizer for a specified
.m =.c Qci nl_ Tn mnv rnq.i. hnwuevr. the sinanl f interest is crnntaminnted by nnisce
"lrCi --- rb -- A - t - -- w -- -- ^ - -s -,

before reaching the input terminals of the quantizer. We shall now develop an algorithm

by which the parameters defining the optimum quantizer for this class of quantizer-input'
QCt( l r0 n O o on1oii li+nedl BRaiqlilv. nu r nnrnnh i tn treat the niintier n non-

Uljl.SLIU -_ '------ -rr--- -- -- `__._ ,

linear, fixed-form, zero-memory filter. This implies that our objective will be to

determine the parameters defining the filter of this class with the minimum error.

We shall consider the relationship that exists between the optimum quantizer for this
L.dI IJ4-ULiV L'JA.LUL. _ -i _ J _v&i. _L~IL- YJ1J~

i UI|CLMin A i.:LID cLAU t.1 UA~ JJ. gAAA^A3 ~-1 I',~A vAAUAs'W'Y AAJ- ; WAA A Iea ch A A- -W AA6A41 AcAs Ai-sAA

in each case is

i~~~~~~~~~~~~~ 

g(e) = e 

We shall also demonstrate how the algorithm developed for quantization can be extended

to determine optimum nonlinear, zero-memory filters with other fixed forms.

4.1 FORMULATION OF THE QUANTIZATION PROBLEM

Mathematically, the quantizer-input signal x which consists of the message signal

corrupted by noise may be written

x = s n, (63)

where s is the message signal, n is the noise, and the symbol ) indicates some com-

bination of the two variables, s and n. Two combinations of interest in communication

systems are

x= s +n

and

x= s n.

It will be seen from Eq. 65 that any combination for which a joint probability density

of x and s can be defined is an allowable combination.

Proceeding in a manner analogously to the filtering problem, we select as the desired

quantizer output the message signal, s. That is, we desire that the quantized signal

y = Q(x) = Q(sEn)

be an instantaneous replica of the message portion of the quantizer-input signal. In gen-

eral, we shall demand more than the quantizer can accomplish. There will be an error,

e = s - Q(x). (64)

We shall take an appropriate mean value of e as a measure of how well the quantizer
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performs with respect to the demands. This measure of the error is given by

- $ d, di{g[T1-Q()]Px s(, V,)}. (65)

Px, s ( t ) is the joint amplitude probability density of the quantizer-input signal x and
the message signal (which is also the desired output signal) s. As in the previous case,

YN-1

YN

YN-2
x3

1 X2 X4

I Ix 4
I I
I I I I.I I

y=Q(x)
OUTPUT

XN-2 XN- 1

Y2

Y4

Y3

Y1

I x=s n
I II IIT

Fig. 8. Input-output relationship of the N-level quantizer.

g is the error-weighting function. The error-weighting function is not required to be

either convex or symmetric.

In order to relate the parameters of the quantizer to the error , we introduce into

Eq. 65 the explicit expression for the characteristic of the quantizer (Fig. 8),

Q() = Yk Xk-l < xk' k = 1, 2, ... , N. (66)

(Figure 8 is identical to Fig. 1 except that in Fig. 8 we have made explicit the fact that

Yk-1 is not required to be less than Yk.) Substituting (66) in (65), we have for the quan-
tization error

N-i

= i+ 1d dnIg[ryi+J]P. (67)

i=O 1 0
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Here, x is equal to X, the greatest lower bound to the quantizer-input signal x; and

XN is equal to X u, the least upper bound to the quantizer-input signal.

From Eq. 67 it is clear that the error 4' is a function of the quantizer parameters

(x 1' X2 .. XN-; 1 Y *'Y*' * YN)

rne problem eIore us tnen is iaentlcal m iorm to tne proolem encountered min

Section II. That is, the problem is to determine the particular x. (i= 1,2, .... , N-) and
1

yj (= 1, 2....N), the Xi and Yj that minimize the error , Eq. 67. Such a minimiza-

tion is subiect to the realizabilitv constraints

Xn= X < X,
X o1 1

X1 < X2

I x 2 x3
2 3

XN-2 XN-1

,1 ,! XN-1 XN = Xu
,' r,

*

(68)

ma ||| which are explicit in Fig. 8. This problem is equivalent to that of determining the

coordinates of the absolute minimum of the error surface defined by (67) within the

region of variation specified by (68).

4.2 QUANTIZATION ALGORITHM

Our objective is to present an algorithm that will permit us to determine the param-

eters defining the absolute minimum of Eq. 67, subject to the constraints of Eq. 68.

Before we consider this algorithm we should compare this error with the error in the

case for which the quantizer-input signal is an uncorrupted message signal. The quan-

tization error for an uncorrupted quantizer-input signal is given by Eq. 4. The impor-

tant thing to observe in comparing these two error expressions, Eqs. 4 and 67, is that

they are almost identical in form. Therefore, since the constraints, Eqs. 5 and 68, are

identical, we would expect to be able to use the same technique to determine the optimum

quantizer in this case as we used for an uncorrupted message signal.

In order to apply the technique that we used earlier, that is, the technique of dynamic

programming, it is necessary to define three sets of functionals: error functionals,

{Ei(xi)}; transition-value decision functionals, {Xi(x)}; and representation-value decision

functionals, {Yi(x)}. The (N) members of each of these three sets of functionals are

defined as follows:
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m
y

Xgx6=

in coo

1 d 

1 u

dl[g(rn-y1) Px, S( E 'n)]

min

X1' Y2
X -< X< x2-< X

{El(X1) +$2 d dJ[g(Y 2) Ps(S,91)d9 dn- (ny? 9 1

min
Ei(xi) = Xi-l' Yi

X ,•x. <cx.-<X
Xi-1 1 u

min
EN-l(XN-1) = XN-2 YN- 1

XXN-2 XN-1 < Xu

i- 1(xi- 1 ) +

r

x.i

i- 1

So0d$ dil[g(n-Yi) Px, s( ' 1)]}

N_2(XN_2) +N-

XN-2

min

EN(XN) = XN-l' YN N -1 (xN-1)
XI-< xNI-<XN-<X u

+N-
XN-1 d o

X2 (X) = the value of x l in the coordinate pair (x1 , Y2 ) that minimizes

{ (X1 ) + 
1

dt d'T[g(-'Y2) Px, s ( T1)] > X_ = X;2 

XN(X) = the value of XN_ 1 in the coordinate pair (XN_ 1 ' YN) that
minimizes

{EN _l(xNl)
+ xNN- 1

d d1[g(n-YN) Px, s ( ' n1) 
--00

(70)
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E1 (X1) =

E2(X 2 ) =

dv[g(-YN) Px s(. ')]}

(69)

Xl(X) = X1, a constant;

XN = X.

d-n g('nYN- 1) PX 0s (t,-n) 



Y1 (X) = the value of Y1 that minimizes

{ S1 d9 co drl[g(-Yl) x, s(X 1) ] x1
= x;

Y2 (x) = the value of y2 in the coordinate pair (x 1, Y2 ) that minimizes

E1(X 1 ) + d S{ XI co

YN(X) = the value of YN in the coordinate pair (XN_ 1 YN ) that minimizes

EN- (XN-l) + Sx S
mo

dn[g(-yN) Px s (' I)] XN = X

It follows from Eq. 69 that each of the members of the sets {Xi(x)} and {Yi(x)} is

defined only over the interval X - x XU.

These three sets of functionals are identical in nature and purpose to those defined

in Eqs. 7, 8, and 9. Once they are calculated, the procedure outlined in section 2. 2 is

used to determine the parameters of the quantizer with minimum error.

4.3 SIMPLIFICATION OF THE ERROR FUNCTIONALS

Consider the kth member of the set of functionals {Ei(xi)}, Eq. 69,

min

Ek(Xk) = Xk-l'Yk

X Xk- 1< Xk< Xu

{k- ( k Xk) Xk S
X Xk 1 -c

Referring once again to Eq. 69, we observe that Ek 1(Xk 1) is not a function of the kth

representation value, Yk' By taking this into consideration, (72) may be written alter-

natively

Ek(Xk) =
mnmin m Xk X00

xk- k-1 k-l1) + Yk L , d f
X < Xk - L <XkXu

.~ k-i k u

Thus, for specific values of xk and Xk 1l' the minimization with respect to k can

carried out independently. The specific Yk that minimizes

k dXk

Xk- 1 -0
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(73)

be

(74)

i i I

j 1 j i ji j Ij i
i j(l

i ii
Ij j·j

i ·I

i j i i i

: i Iljj
jl :i(

i; jjjl
Ij i

i; jl
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(71)

(72)

dt[g(--y) p (9 I n) I

d-n19(-nYk) PI S(9, n) -

dtn[g( 71yk) pxI S(9, ?01

d'ng(.n-yk) px,. (tI -q) 



will be a function of xk and Xk_1. Denoting this value of k by yk, we may write (72) as

Ek(Xk) = I Xkl(Xk 1) + Xk1 dr dl[g(i-y) p) (75)

X <Xk_l<Xk4Xu Xk -Xu

Comparing Eqs. 72 and 75, we see that the effect of separating the two minimizations

is to reduce the formal search, which is necessary to obtain the error functionals, from

a two-dimensional to a one-dimensional search.

A very pertinent question now concerns determination of the value of Yk. Recall that

when the quantization problem was originally stated we noted that the k were not con-

strained variables. Thus, the absolute minimum of (74) with respect to Yk must be a

relative extremum. If g is a continuous function, the relative extrema and therefore

Yk must be solutions of the equation

dk di1 s(,' l) y [g(n-Y k) 0. (76)
k-I

It can be shown that if g, as well as being continuous, is a convex error-weighting func-

tion and if Px, s (" ,r ) is nonzero over some subinterval in the interval defined by Xk_l < <

Xk and -o-< no< ,0, then Eq. 76 has only one solution. This solution is a relative minimum

and is therefore the value of Yk which we have called Yk. Thus it should be evident that

in this case the labor involved in obtaining the error functionals is greatly reduced.

For noncontinuous error-weighting functions, yk is determined by a direct search

along the set of possible values for Yk. In this case there is no reduction in the labor

required to determine the error-weighting functionals.

4.4 A SECOND VIEW OF THE QUANTIZATION PROBLEM

Our objective now is to derive an alternative expression for the quantization error

when the quantizer-input signal is a message signal corrupted by noise. In section 4. 1

we found the measure of the quantization error (Eq. 67). Now suppose we let the quanti-

zation error be denoted by the random variable . That is,

X = 11 - Q(9)

=1 -~Y X <x Xi = 1, 2, .... , N. (77)

Solving (77) for tn and substituting this in (67), we obtain

N-1

+= xi+i dY Go dX[g(k) px, ( ' +Yi+l)] (78)

Ithtei=Of a e e i

If the terms of (78) are rearranged by interchanging the order of integration with respect.
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to X with the summation on i and the integration with respect to , we have

N-1l

6= i dX g(%) i= + d px s( +Yi+l). (79)s 0 0(' i+179)
i=O i

From (79) it is apparent that the term

N-1

i=O i

is a function of X and the quantizer parameters. Let us now interpret this term. Con-

sider the kt h term of the sum, Eq. 80. An examination of this k th term indicates that

it represents the contribution to the amplitude probability density of the error signal by

that portion of the quantizer-input signal having amplitudes in the range x,,_, < S < x,L.

Thus, since the amplitude regions Xk_1- < xk k = 1, 2, ... , N, are mutually exclu-

sive, (80) is the amplitude probability density of the error signal. That is,

N-1

P() = I S i+ dt [PX s( X+yi+l)]. (81)
i=O 1i

, I Substituting Eq. 81 in Eq. 79, we have

' 5r dX[g(X) Pe()]. (82)

Equation 82 indicates, as did Eq. 32 for the uncorrupted signal case, that the problem

of designing the optimum quantizer is equivalent to the shaping of the amplitude proba-

bility density of the error signal so that the property indicated by the error-weighting

function g is minimized. This operation of shaping the error density is constrained

by the number of levels (N) and by the joint amplitude probability density of the quantizer-

input signal x and the message signal s.

4.5 THE NATURE OF THE ABSOLUTE MINIMUM

For the case of an uncorrupted quantizer-input signal we were able to prove

(section 3. 1) for rather general conditions that the absolute minimum of the error sur-

face will be located at one of the error surface's relative minima. A similar result has

not been obtained for the case in which the quantizer-input signal is a corrupted mes-

sage signal. The primary reason that such a result cannot be obtained in this case lies

in the additional complexity of the problem, because of the corrupting effect of the noise.

In fact, it is not feasible, because of the nature of the equations specifying the relative

extrema, to define an algorithm that permits us to locate these relative extrema of the

error surface.

11 I
;i /

I, I
I i

i 
i
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There is, however, one case of interest where the error surface has only one relative

extremum, a relative minimum. This relative minimum, which is also the absolute mini-

mum, can be found by using the methods of calculus. We shall consider this special case.

4.6 CONSTRAINED TRANSITION VALUES

When the quantizer-input signal is a message contaminated by noise the quantization

error for constrained transition values is

N-

X+1 d 3 dr{g[-Yi+l] px, s( ) (83)

i=0 1

(Equation 83 is identical to Eq. 67 with fixed transition values.) The error in (83) is a

function of the yi only.

Making use of Eq. 38 in connection with Eq. 83, we find that the representation values

are specified by solutions of the set of simultaneous equations

X -ook d d g k = 1, 2, ... ., N. (84)
i -00 ILyk Yk)]Px, s ( ' )} o

In writing (84), we have assumed the error-weighting function g to be continuous. Since

each of the members of (84) contains but a single Yk' they may be solved independently

to determine the parameters that specify the relative extrema.

Proceeding in a manner identical to that of section 3. 5, we find that Eq. 83 will have

a unique solution if the error-weighting function is strictly convex. This relative mini-

mum is the absolute minimum of the error surface and is easily located by using the

methods of calculus.

4.7 SPECIAL RESULTS FOR g(e) = e2

At this point in our discussion we would like to turn our attention to a problem which,

at first, may seem completely unrelated to the problem that is being considered here.

Fig. 9.

Concerning the optimum nonlin-
e ear zero-memory filter.

Consider the block diagram of Fig. 9. First of all, we want to determine the specific

function f() that minimizes the mean-square value of the error,
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S i S d d n-f(E)] 2p, ) (85)

The specific f() denoted by F(E) which minimizes (85) is given by the con-

ditional mean,

F() =5 dl{IP s X(ll )}. (86)

43
(For a derivation of this result see, for example, Cramer. ) By substitution of Eq. 86

in Eq. 85, we find that the minimum value for the error is

-co= ~ l~lP() - (co(87)

Assume that this optimum filter F(~) is approximated in the minimum mean-squsre-

error sense by an N-step approximation. We want to determine the relationship between

the error resulting from this step approximation to F(t) and the error resulting from

minimum mean-square-error quantization with N-levels.

i:1i In order to obtain the desired relation, we first compare the error between step

'*': , approximation with parameters xi and yj and quantization with the same parameters.

(These parameters are not required to be either the optimum step parameters or the

optimum quantizer parameters.) The error resulting from this step approximation

is

~i~~s

i F si+ [F()-Yi+l ] px) dg (88)
.! ii! ~ i=O xi,, i=O i

ji , Substituting the optimum filter characteristic (86) in (88) and expanding, we obtain

!iiFM E sx i ;od[Ps l ( £) N-i Px(() d2

A X { i+ i [PS Ix(7I)]

·+ E . Yi+P(d ) dS. (89)

i=O i

i:/~ ~ In like manner the quantization error for the same parameters xi and y isIn~~~~~~~~~~~~~~~ liemne3h uniainerrfrtesm aaeesx n ji
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N-1

Q i d d1[(l-Yi+L) px (.i )] (90)

N-i10 F - N-i 00

= E Xi+l d1 2 Px (' )J 2 3 i+ d~t i dn[yXi +lpl ()]

+ Sxis d] Z d Yi+lPx (t ) (91)
i=O 00 xi-

Comparing Eqs. 87, 89, and 91, we see that

6+Q = id + F (92)

Thus, since nmin is a constant, the parameters xi and yj that minimize JQ also mini-
mize F. Therefore, the optimum step approximation to F() is identical to the mini-

mum mean-square-error quantizer. (A result somewhat similar to this has been obtained

by D. A. Chesler. 4 4 )

4.8 OTHER FIXED-FORM, NONLINEAR, ZERO-MEMORY FILTERS

We have considered the problem of designing optimum quantizers when the quantizer-

input signal is a message signal corrupted by noise. In this section we shall demonstrate

that the quantization algorithm can be extended to design other types of fixed-form, non-

linear, zero-memory filters.

Let us consider the problem of designing the optimum piecewise-linear filter, that

is, a filter having an input-output characteristic specified by

y = H(t) = mk + bk Xk_1 4 < Xk k = 1, 2, ... , N. (93)

These linear segments are not required to be connected. The transfer characteristic

of this filter is pictured in Fig. 10.

Proceeding in a manner identical to that of sections 4. 1 and 4. 2, we obtain for the

filter error

N-1

x= 3l d 0i dr{g[-(mi+l +bi+ l) ] Px, s (IT (94)

In order to specify the optimum filter of this form, we must minimize (94) with respect

to the parameters x i , mj, and bk , subject to the constraints (68). The mj and b k are
unconstrained variables.

An algorithm which will permit us to determine the optimum H(t) is easily formulated
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Fig. 10. Input-output characteristic of a piecewise-linear filter.

by using the techniques previously employed in the quantization case. Note, however,

that in this case there will be three sets of decision functionals instead of two as in the

quantization case.

Suppose that we desire that our piecewise-linear filter be continuous. That is, we

want the filter parameters to satisfy

mkxk + bk = mk+lXk + bk+l k= 1, Z, ... , N-1.

In order to determine this optimum filter Eq. 95 must be minimized subject to the con-

straints expressed by Eqs. 68 and 95. In general, a set of additional constraints such

as Eq. 95, will not complicate the application of the algorithm. In this particular prob-

lem the additional constraints will actually simplify the problem, since they establish

a relationship between mk and bk at each level, thereby reducing the dimensionality of

the problem.

A careful examination of the material presented in section 4. 7 for the error-

weighting function g(e) = e, indicates that the result obtained there for the quantizer

is also valid for the piecewise-linear filters just discussed.

It should be clear from our discussion that the type of algorithm obtained for

the quantizer and the piecewise-linear filters can also be obtained for any piecewise-

polynomial filter,

Hp () = aok + alk + ak z + ... + apk P Xkl -< < Xk k= 1, 2, .. , N.

(96)

In addition to the realizability constraints, Eq. 68, which must be applied, up to (p-l)

constraints concerning continuity in value, continuity in slope, etc. may be included in
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the formulation of the algorithm. It can be shown that the result of section 4. 7, as well

as being valid for the quantizer and the piecewise-linear filter, is also valid for the gen-

eral polynomial filter, Eq. 96.
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V. A COMPUTER STUDY

We shall demonstrate the application of the quantization algorithm that was devel-

oped in Section II. In particular, we shall use a version of this algorithm, adapted for

computer use, to determine optimum quantizers for a specific quantizer-input signal.

Several error-weighting functions will be considered. The computer version of the

quantization algorithm is discussed in detail in Appendix C.

0

-10

zI-Z

cL
LL

-20

-30

I I I
20 40 60 100 200 400

FREQUENCY ( CPS )

600

Fig. 11. Power density spectrum of the
input signal.

1000 2000 6000

quantizer-

The specific signal that is used in this study consists of the two spoken sentences,

"Joe took father's shoe bench out. She was waiting at my lawn." 4 5 These two sentences

contain most of the important phonemes and have a frequency spectrum (see Fig. 11)

that is roughly typical of conversational speech. This sample was collected by Ryan4 6

who used it in a preliminary study of the optimum quantization of speech. The central

portion of the amplitude probability density of this sample is shown in Fig. 12. It should

be noted that this short sample (the two-sentence sample was approximately four seconds

in length) amplitude probability density is almost identical to published data4 7 on long-

sample amplitude densities.

After the selection of an input signal for quantization it is necessary to select a

specific error-weighting function. For purposes of this example we shall consider the

following specific situations:

1. Transition values constrained to be uniformly spaced and representation values

chosen to minimize the mean-square error;
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2. Representation and transition values chosen to minimize the mean-square value

of the error;

3. Representation and transition values chosen to minimize the mean-absolute value

of the error;

4. Representation and transition values chosen to minimize the mean-square value

of the percentage error; that is, the Yj and Xi are chosen to minimize

N- 

i=O i

(The last quantization

to other definitions of

d Yi+l Px(t) (97)
te Yi+er e

scheme illustrates the adaptability of the quantization algorithm

the error, e.)

0.2

0.1

I I4 tt t O 9 O 9 . * ~ @ . 9 O ..9 C

-3.0 -2.0 -1 .0 0 1.0 2.0 3.0

Fig. 12. Central portion (-3<~ < 3) of the amplitude probability density of
the speech sample. (The original signal x(t) is so bounded that
-12. 8 < x(t) < 12.8 for all t.)

The quantization algorithm has been programmed on the IBM 7094 digital computer

for these four quantization schemes. Typical of the results that are obtained through

the application of these computer programs are those obtained for eight-level quanti-

zation. Table 1 presents the parameters that define these optimum quantizers, together

with the parameters that define the eight-level uniform quantizer and the eight-level

logarithmatic quantizer ( 100). (See Smith9 for a definition of logarithmetic quanti-

zation.) A comparison of the columns of Table 1 or Fig. 13 illustrates that the optimum
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NUMBER OF BITS IN THE QUANTIZER

Fig. 14. Mean-square error versus the number of levels (in bits). (Zero db is the
mean-square value of the input signal.)

I lI quantizers tend to place more levels in the regions of high probability. The exact nature

of the concentration of the levels depends on the error-weighting function, the amplitude

probability density of the quantizer-input signal, and the quantization scheme. Figure 14
;.ll compares the mean-square value of the quantization error for these six types of quan-

tizers as a function of the number of quantization levels.

In section 2. 4 it was shown that the process of determining the optimum quantizer

is equivalent to shaping the amplitude probability density of the error signal in such a

manner that some property of this density specified by the error-weighting function g is

minimized. This being the case, we expect these error probability densities to present

a good picture of how the optimum quantizers achieve their reduction in error. Figure 15

pictures the error amplitude probability densities of the six eight-level quantizers
pictured in Fig. 13.

In any optimum signal-processing system it is of interest to consider how the error

varies when a signal other than the "designed for" signal is applied to the system input.

Figure 16 is a plot of the normalized quantization error for a number of quantizers

(eight-level quantization) versus an amplitude scaling factor that was used to modify the

original quantizer-input signal. In each case the value of the normalized quantization

error that is plotted is the actual quantization error divided by the mean-square value

of the quantizer-input signal which yielded that error. Each of the curves is normalized
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to zero db independently. Observation of this figure indicates that we can expect more

variation in the value of the normalized mean-square quantization error in the case of

uniform quantization than in any of the optimum quantization cases studied. And, in v

I li i

; j~0Z

i .! u 5

N
i I
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u I
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o
Z

l 1 ;

I h I

* UNIFORM QUANTIZER
o CONSTRAINED TRANSITION VALUE QUANTIZER

(MINIMUM MEAN-SQUARE ERROR)
* MINIMUM MEAN-SQUARE-ERROR QUANTIZER

a -_
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AMPLITUDE FACTOR

Fig. 16. Normalized quantization error versus amplitude scaling factor,
eight-level quantization.

, ' particular, the three cases in which we are at liberty to optimize over both transition

and representation values show the least variation.

Results concerning the power density spectrum of the quantizer-output signal and the

!I? aassociated error signal for the case in which the quantizer-input signal is speech have
beprsneinateibyGCrm 4 8

', :?;been presented in a thesis by G. Crimi.4 8
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VI. CRITIQUE AND EXTENSIONS

In this report we have developed an approach to the problem of designing optimum
quantizers for both signals uncontaminated by noise and signals contaminated by noise.
In both instances the approach was based on the philosophy that the quantizer is a non-
linear, zero-memory filter of a fixed basic form. The algorithms developed here pro-
vide a method of obtaining the parameters that define optimum quantizer, given the
amplitude probability density of the signal (joint amplitude probability density of the
quantizer-input signal and the noise for the contaminated signal case) and a suitably
chosen error-weighting function. Several observations concerning the nature of these
algorithms may be made.

First, because of the nature of the minimization problem, which is due to the possi-
bility of boundary solutions, it is necessary to obtain an algorithm that searches for the
absolute minimum within the region of variation, rather than one that searches for rela-
tive minima. The algorithm thus obtained is applicable for convex and nonconvex error-
weighting functions and for discrete and continuous amplitude probability densities.
Second, one observes from the formulation of the error functionals that after an initial
set of computations the computation time required to calculate the parameters specifying
the N-level optimum quantizer is directly proportional to (N-1).

The work presented in this report also suggests two possible areas of future
research. We have shown that the quantization algorithm can be extended to other types
of fixed-form nonlinear, zero-memory filtering. One interesting area for further study
is the possible extension of this algorithm to the design of optimum nonlinear systems
with finite memory. The second suggestion for further study comes from the alternative
formulation of the quantization error. This alternative formulation suggests that the

49,50problem 4950 of simultaneously designing a discrete signal which will be corrupted by
noise and a nonlinear, zero-memory filter in the form of a quantizer can be approached
by using an algorithm similar to the quantization algorithm.
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APPENDIX A

Dynamic Programming

We shall now investigate on a basic level the technique called "dynamic pro-

gramming." 3 7 3 8 Our purpose is to obtain a working definition of this technique and to

apply this definition to a very simple allocation problem.

A. 1 INTRODUCTION

Basically, dynamic programming is a technique for solving a large class of problems

which either are or can be transformed into multistage decision processes. (Multistage

decision processes are sometimes called "multistage allocation processes.") A problem

is considered a multistage decision process if it can be formulated in such a manner

that the parameter values that define the solution of the problem can be determined one

at a time. (Many of the problems in the calculus of variations can be formulated as

multistage decision processes. 5 1) The decisions in determining this solution are made

according to some well-defined criterion. This criterion is usually expressed as a

maximization or minimization of a function of the parameters defining the process. n 

general these process-defining parameters are subject to some set of constraints. The

set of values of these parameters which satisfies all of the constraints is known as the

region of variation.

In applying the technique of dynamic programming to a particular problem the pri-

mary objective is to imbed the problem of interest in a family of similar problems in

such a manner that a complicated process is decomposed into a number of relatively

simple processes. In order to investigate this technique we shall consider a simple

allocation problem.

A. 2 SIMPLE ALLOCATION PROBLEM

In our allocation problem we assume that a sum of money X is available to be

invested either in part or in full in (N) activities A i , i = 1, 2,..., N. If x i is the

I ai(x)

.- Xi

Fig. A-1. A possible return function.
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allocation to the it h activity the return from this activity will be given by ai(xi). Figure

A-1 pictures a possible return function.

Our objective in this allocation problem is to maximize the return from our invest-

ment. In order to proceed in the mathematical formulation of the problem we make

three assumptions concerning the investment procedure.

(i) The returns from each of the investments can be measured in a common unit.

(ii) The return from any activity is independent of the allocations to the other

activities.

(iii) ai(O) = 0 for all i.

Applying these assumptions to the problem, we have for R, the total return,

N

R(x 1,x2 .... xN) = (X). (A. 1)i 
i=l 

This total return from our investment is subject to the constraint

N

= X, (A. 2)
i=l1

where X is the amount to be invested and the set of constraints

Xi o0 i= 1, 2, . .. ,N. (A. 3)

Equation A. 2 limits the total investment to the amount of resources available. Equation

A. 3 limits each of the allocations to a positive quantity. This set of constraints is

necessary, since the concept of negative investments is not defined.

Specifically, we want to determine the maximum value of the return, A. 2, and the

values of the x i yielding this maximum return for any investment x, 0 x X.

At this point in our discussion a logical question to ask is, Why not use the methods

of calculus to determine the solution? To this, we might reply in the following way.

When we apply calculus to the allocation problem (or to problems of a similar struct-

ture) we find one problem that calculus cannot surmount: The absolute maxima (or

minima when allocations are made on the basis of a functional minimization) will fre-

quently be at a point on the boundary of the region of variation. Generally, this point

will not be a relative extremum. If the boundary solution is not a relative extremum,

the slope at the point will not be zero and cannot be found by using the methods of

calculus.

Since we do not know a priori whether the solution will be at a relative extremum or

on the boundary, a solution obtained by using the methods of calculus may be incorrect.

To insure a correct solution to the allocation problem, we must employ a technique

that searches for the absolute maximum of the surface within the region of variation.

Dynamic programming is such a technique.
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A. 3 A GRAPHICAL SOLUTION TO THE ALLOCATION PROBLEM

Before we formulate the allocation algorithm in

it as a graphical search technique. We shall begin

ities, A 1 and A 2 , which have return functions a1 (x 1)
use of the results of the preceeding section, we find

activities is

equation form we want to consider

by considering the first two activ-

and a2 (x 2 ), respectively. Making

that the total return from these two

R(xl,X2 ) = al(x1 ) + a2 (x 2 )

and is subject to the constraints

(A. 4)

(A. 5)X1 +X 2 = 

and

X1 >_ 0

X2 _ 0 (A. 6)

We want to determine for each x in the range 0 x X the maximum return and the

values of xl and x2 which yield this maximum return.

One method of determining the maximum value of the return for a specific x, say

x = a, is to search the return surface along that portion of the line

X1 +x2 a

contained in

R(x 1 , X2 ) is

the region of variation. This search path is indicated in Fig. A-2, where

plotted along an axis directed out of the page. By examining each of the

X2

xl

xI

A
x,

Fig. A-2. Typical search path in the
two-activity allocation prob-
lem.

Fig. A-3. Typical projection of the absolute
maximum onto the (xl, x2 )-plane

for the two-activity problem.
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points on the search path the absolute maximum of the return surface for this specific

allocation is easily determined. If this process is repeated for all x in the range

0 x X, a curve such as that shown in Fig. A-3 is obtained which indicates the x

and x2 that maximize the return for a specific x.

Now, consider the problem of maximizing the return from the first three activities,

Al, A 2 , and A 3 . The return from the investment of x1 in activity A l , x2 in A 2, and x 3

in A is

PR(X 1 x2 x3 ) = al(x1) + a2(x2) + a3(x3) (A. 7)

and is subject to the constraints

x1 + X2 + x3 = x (A. 8)

and

x a ° (A. 9)

x3 0 .

We want to determine for each x in the range 0 < x < X the maximum return and the

values of xl, x2 , and x3 which yield this maximum return.

Upon first inspection it appears that in this three-activity case we must employ

some type of three-dimensional search technique in order to obtain the desired solution.

Consider such a three-dimensional search. It will be a search along the plane, (A. 8),

for a specific value of x, say x = a. Such a search might be conducted by assuming a

value for x3 consistent with the constraints, and then determining the optimum allo-

cation of the remaining resources between x 1 and x2. This operation would be repeated

for each x 3 satisfying the constraints, that is, for x3 satisfying the inequality

0 < x3 < a.

From an examination of the results of these calculations we obtain the absolute maxi-

mum for this particular value of x, x = a.

We should observe, however, that once a value for x 3 is selected, there remains

the amount x - x 3 (or to use the value of x used previously, a - x 3 ) to be allocated to

the activities A1 and A 2. This is the same problem, however, as the two-activity

allocation problem just considered. The basic difference is that now instead of

investing an amount x in the two activities we invest x - x 3. Since x 3 is posi-

tive or zero we know that

x - x3 x X

and since the optimum two-activity allocation problem has been solved for all invest-

ments in the range 0 x X, we can use the results of this solution without further

search to determine the maximum return for the first two activities in the three-activity
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problem. It is possible to make use of this solution because the two-activity return sur-

face R(xl,x 2 ) is a subsurface of the three ctivity return surface R(xl,x 2 , 3 ). That is,

R(x 1 ,x 2 ) = R(xlx 2 0) (A. 10)

since ai(o) = 0 for i = 1, 2, ... , N. Thus, by making use of our prior knowledge, we are

able to reduce the three-dimensional search to a two-dimensional search. The resulting

)

x3

REGION OF VARIATION

ZE AT THIS POINT IS

[R(x 1 ,x2 )]

(X1 + X2)

Fig. A-4. Typical search path in the three-activity allocation problem.

Fig. A-5.

(X1 + x2)

Typical projection of the absolute maximum
onto the [(x 1+x2), X 3 ]-plane for the three-

activity problem.
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two-dimensional search path is indicated in Fig. A-4. By repeating the process for all

x in the interval 0 x X a curve such as the one shown in Fig. A-5 is obtained.

This curve indicates the division between x3 and (x 1+X2 ) which maximizes R(xl x 2 ,x 3 )

subject to the constraints. The results of the two-activity allocation (pictured in Fig.

A-3) can then be used to determine how the amount of resources represented by the sum

(X1+X2 ) is allocated between the first two activities.

It should be clear that as we continue the allocation problem by adding an additional

activity we can always reduce the search that is necessary to determine the maximum

return to a two-dimensional search by utilizing the results of the previous calculations.

Bellman's technique of dynamic programming has its basic foundation in the type of

search which we have just illustrated.

A. 4 FORMAL STATEMENT OF THE ALGORITHM

Formally, the search procedure outlined graphically in the preceding section is

specified by two sets of functionals; the return functionals ri(x)) and the allocation

or decision functionals Xi(x))}. Both of these sets of functionals have members for

i = 2, 3, ... , N, where N is the number of activities that are of interest. These func-

tionals are defined in the following manner:

max
r 2(X) = X2

0 <X2 <x X

max

r 3 (x) = x3

0 -x 3 <x <)

max
ri(x) = Xi

0 -xi. x QX
1

max
rN(x) = xN

0 -xN -x-

X2 (x) = the value

X3 (x) = the value

XN(x) = the value

[a1 (x-x 2 )+a 2 (x 2 ) ]

[r2(x-x3)+a3 (x3) ]

[ri_ (x-x)+ai(xi)]

[rN- 1 (X-XN)+aN (XN )

X

of X2 that maximizes [a 1 (x-x 2 )+a 2 (x2)]

for the resource x, 0 x X;

of X3 that maximizes [r 2 (x-x3 )+a 3 (x 3 )]

for the resource x, 0 x X;

of xN that maximizes [rN_ 1(x-xN)+aN(xN)]

for the resource x, 0 x X.
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From an examination of these functionals and from our previous discussion it is

clear that rN(x) enumerates the maximum value of the return, R(xl, x2 , ... ,XN), subject

to the constraints for all x in the range 0 x X. The specific allocations to the

activities are determined from the decision functionals. Suppose that we decide to invest

an amount a, 0 - a -< X, in the N-activities. Then we invest an amount

XN = XN(a)

in the Nth activity, an amount

XN_ 1 = XN- 1[a-XN]

in the (N-1) activity, an amount

XN Z2 = XN_ 2[a-XN-XN-_]

in the (N-2)t h activity, and so forth, until

X 1 = a X - XN_ 1 'X 2

remains to be invested in the first activity. These allocations will yield the maximum

return.
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APPENDIX B

The Quantization Algorithm - A Graphical Search Technique

We want to consider the quantization algorithm as a search technique. We recall

from Eq. 4, that the quantization error is given by

N-1

i S:' d [g(-yi+l) Px(I)] (B. 1)
i=O 1

where x = Xt and xN = Xu; X and Xu are constants. It should be clear from the sim-

ilarity between this equation and Eq. A. 1 that the solution to this problem can proceed

in a manner similar to the procedure employed in the allocation problem if the term

1 d[g(-yk+ 1) PX()] (B. 2).
Xk

is regarded as the "return" from an activity. There are, however, two differences

between these problems. First, the operation to be performed in the quantization prob-

lem is minimization rather than maximazation as it was in the allocation problem.

Second, there is a difference in the nature of the surface over which the search is

conducted. In the allocation problem we wanted to obtain the maximum return for every

allocation x in the interval 0 x X. Thus, in each of the searches along the sub-

surfaces of the total return surface it was necessary to search over the entire

region 0 -< x X. In fact, we observe in the allocation problem that even if we

had wanted to obtain the return for a single amount of resources X it would still

have been necessary to perform all of the searches over this same interval 0 - x -< X.

This fact is confirmed by a consideration of the nature of the allocation process,

(see section A. 4).

In the quantization problem the decisions concerning the placement of the quantizer

parameters must be made in exactly the same way as we made the decisions in the allo-

cation problem. Therefore, it will be necessary to permit a variation in the amount of

"resources" available for quantization. That is, instead of requiring xN = Xu we must

permit xN to vary over the region

XI - xN < Xu .

Only by doing this can we obtain the necessary information to make the decisions con-

cerning the optimum parameter placement. Specifically, then, in the quantization prob-

lem we shall search along an extended error surface instead of along the error surface,

(B. 1).

We are now ready to examine the search technique. In order to simplify our dis-

cussion, we make use of the results of section 2. 6 to write Eq. B. 1 as
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N-i

= ES xI+dtg(t-Yi+ 1) Px()
i=O Xi

(B. 3)

The yk are defined in section 2. 6.

Preceeding as we did in the allocation problem, we begin with two activities; that

is, we shall consider two-level quantization. The quantization error for this case is

(X ) = sx d g( -Y*) P () + :zxu d[g (t-y) Px() ]-
0 1 1

(B. 4)

The extended error surface over which the search is conducted is specified by

*(xl'x2) = S x+ =Xs dg ( Y1)p() ] g (t x y1 ) p W) 
0 1

(B. 5)

Clearly,

(xl) =* (X1 , 2 = Xu). (B. 6)

The minimization for the two-level quantizer will be subject to the constraints expressed

by the inequality

XI = X0o x1 < x 2 X u .
(B. 7)

Equation B. 7 defines the region of variation.

XL

X
u

X2

X
xl1

JTH

REGION OF VARIATION

Fig. B-1. A typical search-path in the two-level quantization problem.
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One possible search technique is to select a value for x2, say x2 = a, and search

along that portion of this line within the region of variation. This search path and the

boundaries to the region of variation are indicated in Fig. B-1. 4 *(x 1 ,x 2 ) is plotted

along an axis directed out of the page. By examining each of the points on that portion

of the search path within the region of variation, the absolute minima of the error for

this particular value of x2 = a, is easily obtained. If we repeat this process for all x2

in the region Xf - x2 - X, a curve such as that shown in Fig. B-2. is obtained. This

curve indicates the value of x1 which minimizes the error for any x2 within the range

X2 < xz X2 u

Next we consider the problem of minimizing the error involved in three-level quan-

tization. The extended error surface in this case is given by

*(Xl',xzx 3) = S X d[g(-Y) P )]
02

+ : d [g(a Y2) PX(i))

+ xd g (t-y3 Px(9) (B. 8)
2

The search along this surface will be subject to the usual constraints

X=x o x X x3 -X u (B. 9)

which define the region of variation.

Upon first inspection it appears that a three-dimensional search will be necessary

to determine the parameters that minimize the quantization error. A dimensionality

reduction can be achieved in this case just as it was in the allocation case. We observe

that since

S x0 drg(-Y3) Px()j = O (B. 10)
L

&*(X1,X ) will be a subsurface of 6(xlx 2 x3 ). Specifically,

(XlX2) = (X 1 XX2 x). (B. 11)

This result can be employed to reduce the search from three dimensions to two in the

way that Eq. A. 10 was used similarly in the allocation problem. The two-dimensional

search situation that results upon dimensionality reduction is pictured in Fig. B-3.

If the search indicated in Fig. B-3 is repeated for all x3 in the interval X -< x 3 < Xu,

a curve such as that shown in Fig. B-4 is obtained. This curve indicates the optimum
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x2
IE VALUE & (x )

X1

YPICAL
k CURVE

Typical projection of the absolute minimum onto the
(xl, x2 )-plane for the two-level quantization problem.

x3
OC "l- l "C \.IA I l/"Nl

X2

IFACE AT THIS POINT IS

x,]= MI
t ' -xo ' 2 x' -

xo < x < x2

+ dE[g ( -Y3 ) Px( )]
B

Fig. 3. Typical search path in the three-level quantization problem.
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Xu

Ix3

XI
U

PROJECTION OF A
TYPICAL ABSOLUTE
MAXIMUM CURVE

Fig. B-4. Typical projection of the absolute minimum onto the
(x2 , x 3 )-plane for the three-level quantization problem.

selection for x 2 , given a specific x 3. Once this optimum x 2 is obtained, the results of

the two-level quantizer search (Fig. B-2) are used to determine the optimum xl.

Now that we have seen how the search dimensionality is reduced in the three-level

quantizer case, it should be evident that this same reduction can be accomplished for

each of the remaining levels. Therefore, for the N-level quantizer we have reduced the

problem from one involving a search along an (N-l)-dimensional surface to (N-l)

searches, each of which is along a two-dimensional surface.

57

--------- _I I I I I I

Xk

I-



APPENDIX C

Computational Aspects of the Quantization Algorithm

Our objective is to discuss from a computational point of view the quantization algo-

rithm that was presented in Section II. We shall also present the block diagram of a com-

puter program that determines the error and decision functionals. From the discussion

presented in section 2. 2 we know that the parameters defining the optimum N-level quan-

tizer can be determined from a knowledge of the first N members of these three sets of

functionals. In fact, it follows from the nature of these functionals that the parameters

defining the optimum K-level, K N, quantizer can also be determined from a know-

ledge of the first N members of these three sets of functionals.

In our original presentation of the quantization algorithm we assumed that the prob-

ability density of the input signal x is known for all values of x and that the error and

decision functionals are calculated for all values of x within the region Xp x Xu .

When we begin to consider the algorithm from a computational point of view, however,

we realize that the calculations necessary to determine the error and decision functionals

at every point in the desired interval are too numerous to perform. For this reason,

we shall limit our calculations to the determination of the error and decision functionals

at M equally spaced grid points covering the interval X x Xu . These grid points

will be denoted by the variable k k = 1, 2, ... , M. Figure C-1 pictures a typical grid

structure. We shall assume that these M grid points are sufficiently dense that as far

as the quantizer under design is concerned the error and decision functionals appear to

by calculated at every point in the interval X -< x Xu . The amplitude probability

density of the signal will be defined only at the grid points. The value of the amplitude

probability density at the grid points is given by

p x() = Sk+( p(f) d, k = 1,2,... M. (C. 1)
(tk-1+k)/Z 

Basically, the computational problem is to calculate the error functionals, Eq. 24,

since the decision functionals are obtained as an ancillary result of these calculations.

A careful examination of the members of Eq. 24 is marked by the appearance of a term

of the form

Xk+1 da[g( m yk) P ()J (C. 2)
k

in each member of this set of functionals. Since our method for determining the error

functionals is identical to the search technique demonstrated in Appendix B, it will be

necessary to calculate every term of the form of Eq. C. 2 (N-1) times in order to
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Xu -A
X + u

x
u

X+ 2 X

Fig. C-1. Typical grid structure.

determine the first N error functionals. In our discussion we indicated that the func-
M(M+ 1)

tionals will be calculated only at the M grid points. Therefore, there are 2

terms of the form of (C. 2). In the interest of computational speed, the values of these

M(zM+I) terms will be calculated once, and then stored for later use in determining the

error functionals. The same calculation and storage procedure will be utilized for the

Yk. By definition

TABLE k Y k d9g(3 * Pm
3~dC(- 

I
all i

such that

j gi k

and

Y k = the value of yj k that minimizes

= ti d[g(-Yj,k) Px() ]

= the value of Yj, k that minimizes

I
all i

such that

J i< k

g(i-Yj, k) Px(i),

(C. 3)

(C. 4)

(C. 5)

k= 1,2,...,M (C. 6)
j-k.

We have denoted the variable Yk by Yj, k in Eqs. C. 3 - C. 6 in order to indentify both end

points.
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It is interesting to note that in so far as direct computation is concerned, TABLEj k
j,k

and Yj k are the only terms dependent on g. This implies that only a small portion of

the computer version of the quantization algorithm need be changed in order to change

the error-weighting function under consideration.

Now that we have defined the two sets of values, TABLE and y , we must consider

how they are used to calculate the error and decision functionals. From a comparison

of the first error functional, Eq. 24, and TABLE we see that the value of the first error

functional at the M grid points is given by

E1 ( k) = TABLEk, k k= 1,Z,... ,M. (C. 7)

Similarly,

Y (9k) Y k= k=1, 2, ... , M (C. 8)

and by using Eq. 8,

X1(tk) = X, k= 1,2, .. , M. (C. 9)

Now that we have demonstrated that the first error functional can be determined from

TABLE, we turn our attention to the second error functional, E2. Referring to Appen-

dix B, we observe that in order to determine E2(~k) [and therefore Y2k(k) and X2(tk)]

we must search the modified error surface along that portion of the line x 2 = k which a

is within the region of variation. For x 2 = k this search will consist of examining the

value of the surface at each of the (k) grid points on the line within the region of vari-

ation and the boundary point. In order to illustrate this search, let us examine it for

the case k = 3. Since k = 3 there are three grid points on the line x 2 = 3 within the

region of variation. An examination of the grid structure and the error functionals indi-

cates that the first point on this line represents the allocation of that portion of the signal

represented by the grid points 1' f2' and 3 to the second quantization interval. The

second point on x 2 = 3 represents the allocation of 1 to the first quantization interval

and '2 and t3 to the second quantization interval. The third point represents the allo-

cation of t1 and t2 to the first-quantization interval and the allocation of f3 to the second

interval. The boundary point represents the allocation of 1, 2' 3 to the first quan-

tization interval. From Eqs. 7 and C. 3, the value of the surface at the first point in

TABLE 1 , 3 ; at the second point, E1 (t 1 ) + TABLE 2 , 3 ; at the third point, E1 (' 2 ) +

TABLE 3 3; and on the boundary E1 (f 3 ).

The search along this line consists of selecting the minimum of these four values,

that is, selecting the minimum of

TABLE 1 ,3,

E1 (91 ) + TABLE 2 , 3,
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E2(t2 ) + TABLE 3 ,3 ,

Assume that the minimum value along this line is at the second point. Then

c2( 3 ) = E1 ( 1 ) + TABLEz 3

Y2(g3 ) = Y,3 (C. 10)

2(g 3 ) = t 1 . J
This equation illustrates how each of the points in the error and decision functionals are

obtained, once the minimum value on the line of search (in this case x2 = 3) has been

obtained. This procedure will be used to search along each of the M lines involved in

the determination of the second error and decision functionals, thereby determing

E2(k), YZ(Sk), and Xz(k), k = 1,2,...,M.

Fig. C-2. Block diagram of the computational version of the quantization algorithm.
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There are two special cases of Eq. 42 which should be discussed at this time. First,

consider the case in which the minimum is at the first grid point on the line of search.

As we have previously shown, this first grid point indicates that all of the signal is being

allocated to the second quantization interval. Since by our convention in Eq. 42, X2(~k)

indicates the largest grid point in the first quantization interval, for this special case

X2(gk) will equal X.. Second, we want to consider the boundary point. This point indi-

cates for the line of search x 2 = k that the portion of the signal represented by 1,

1' 2' .'''..' k is all allocated to the first quantization interval. Since there is no allo-

cation to the second quantization interval, Y2(fk) may be defined to be any convenient

value; X2(fk) will equal tk. In each of these two cases the remaining functional members

are determined in the manner indicated by (C. 10).

From Appendix B we recall that the nature of the search necessary to determine

each of the remaining error functionals is identical to the search used to determing E2.

Therefore, the methods discussed in connection with E2 can be applied directly to the

calculation of these remaining error functionals.

A block diagram illustrating the basic features of the computational version of the

quantization algorithm is presented in Fig. C-2.
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