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The Statistical Thermodynamics of Equilibrium*

LASZLo TISZAt AND PAUL AI. QAYt

Department of Physics and Research Laboratory of Electronics, Massachltsetts Institlte
of Technology, Cambridge, Massachtsetts

A statistical thermodynamics is developed in terms of extensive variables
(additive invariants) distributed over a cellular division in space. In general,
this distribution is governed by randomness and by correlations. The present
theory, however, deals explicitly only with randomness, although correlations
are implicit in the so-called fixed variables of the system. Because of this re-
striction, the theory is valid only for the fluctuations of coupled systems that
have reached their equilibrium; hence we call it the statistical thermodynamics
of equilibrium, briefly STE. A set of postulates is advanced, the essence of
which is the requirement that distribution functions (d.f.) exist for two basic
coupling situations. It is implicit that the system has a memnory-loss mnech-
anism; and the d.f. does not depend on past history (ergodic property). Such
qualitative assumptions are sufficient to derive the (libbsian d.f.'s in their
quantitative form. These d.f.'s describe the coupling of finite systems with
infinite environments and can be used to analyze typical situations of measure-
ment by the methods of mathematical statistics. The present point of view
sheds some new light on the ergodic problem and on the role of Nernst's law in
completing the definition of thermodynamic equilibrium. An attempt is made
to clarify the relations between entropy, information, and uncertainty by
advancing a generic notion, the dispersal of a d.f., that subsumes these con-
cepts as special cases.

INTRODUCTION

In 1910, Einstein developed a theory of fluctuations by introducing statistical

concepts into thermodynamics and without making any explicit reference to the
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STATISTICAL THERMODYNAMICS OF EQUIL IBRIIUM

coordinates of the particles constituting the system (1). His point of departure
was the inversion of Boltzmann's relation S = k log I connecting entropy and
probability (2). Instead of reducing the entropy to probabilities defined in micro-
scopic terms (or, rather, to numbers of microstates), Einstein obtained the
relative probabilities of fluctuation states in terms of differences of entropy. He
went beyond the Boltzmann theory, inasmuch as he could consider general
thermodynamic systems rather than only assemblies of weakly interacting
particles. Moreover, he avoided the difficulties connected with the eqcuipartition
law without explicitly invoking the quantum theory. Of course, as a counterpart
to these improvements, Einstein's theory renounced much of the space-time
description that is implicit in Boltzmann's theory and did not provide the
framework for the calculation of the thermodynamic functions from molecular
parameters.

Einstein's work was independent of Gibbs' statistical mechanics, which had
appeared a few years earlier (3) and which constitutes the other major generali-
zation of Boltzmann's theory. Both of the generalized theories account for the
fluctuations of thermodynamic quantities in systems in equilibrium with theil
environment. Gibbs' theory is conceptually the more satisfactory, but the
quantitative discrepancies between the theories vanish asymptotically for large
(macroscopic) systems and the two formalisms are used in the literature inter-
changeably. The two theories differ considerably, however, in their approach to
the foundations. In contrast to Einstein's thermodynamic attitude, Gibbs at-
tempted to derive the statistical theory of equilibrium ensembles from classical
mechanics.

The approach taken by the present paper can be considered as a synthesis of
selected aspects of those of Einstein and Gibbs. We shall follow the former in
choosing a thermodynamic, rather than mechanical point of departure, but we
shall sharpen the argument to arrive at a derivation of the more elaborate Gibb-
sian statistical formalism. This means, of course, that we detach Gibbs' ensemble
theory from its connections with classical mechanics.

It is apparent that Gibbs' theory consists of a statistical and of a mechanical
part which are only loosely connected with each other. The first aspect of this
connection is the simple and important statement that the mechanical phase
space provides the so-called sample space for the probability distribution func-
tion (d.f.) of the statistical theory. A q(uantum-mechanical version of this result
is incorporated into the present theory, and thus contact is established with the
standard calculations of quantum statistics. A second and more deeply reaching
aspect of the connection is the derivation of the d.f.'s from purely mechanical
principles, handled by Gibbs only through the verbal arguments of the famous
Chapter XII. The traditional approach to the foundations required that this
loose connection should be tightened. Although the numerous attempts to carry
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TISZA AND QUAY

out this program led to interesting developments, there is a consensus of opinion
that the problem has not been solved.

Ill view of this situation, several ideas have been recently offered to put the
theory of ensembles on a statistical rather than on a mechanical foundation.
Thus, M\andelbrot showed how important parts of statistical thermodynamics
can be subsumed under standard procedures of mathematical statistics, without
ally reference to micromechanics (). AMoreover, Jaynes and others have pro-
posed the concepts of information and statistical uncertainty as the sole organiz-
ing principles for statistical thermodynamics (5). Probability and entropy are
interpreted in a purely subjective sense and are supposed to reflect our knowledge
of the system only in the sense of information theory (5a).

The present paper has certain elements in common with these latter contribu-
tions, but departs from them in others. Granted the importance of recognizing
the mathematical formalism that is suitable for a physical discipline, it is desir-
able that the latter should be structured around physical organizing principles.
Such an organizing principle is provided by thermodynamics itself if its scope is
extended by the introduction of statistical elements of a physical nature (6).
This is a break with the traditional notion that this discipline is to be strictly
macroscopic. If, however, thermodynamics is considered as a theory of measure-
ment, it is fitting for it to catch up with the extension of experimentation into
the microscopic domain.

The shortcoming of classical thermodynamics is its lack of space-time detail.
This paper is part of a program in which such detail is injected into the theory in
successive stages. The theory here developed is called STE, which is short for
statistical thermodynamics of equilibrium. This paper was preceded by another
(7), in which the macroscopic thermodynamics of e(luilibrium or, briefly, M\TTE
has been developed. We shall refer to (7) as (ITE).

The relation between AITE and STE is very close, and is explained in terms of
their postulational bases in Section I. Both theories deal with the distribution
of additive invariants over disjoint regions of space. In MATE, one considers only
the equilibrium values of these invariallts, collectively denoted by X, as deter-
mined from a phenomenological extremum principle. In the deeper theory, STE,
the X's are considered as random variables whose averages are the equilibrium
values of AMTE.

The central problem confronting statistical theories is the interplay of ran-
domness with correlations stemming, say, from a dynamical law. The simplest
statistical theory, STE, deals only with pure randomness. This formal specifica-
tion leads ill a natural way to the Gibbsian theory of equilibrium ensembles.

lWe adhere to the convention of using capitalized abbreviations to denote theories with
an explicitly formulated postulational basis. Terms such as "thermostatics" or thermo-
dynamics'' are used in a looser, more conventional sense.
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STATISTICAL THERMODYNAMICS OF EQUILIBRIUM

The derivation given in Section II utilizes a fundamental work of Szilard (8)
which, after some adjustments, fits harmoniously into the present context.2 An
extension to several random variables is found in Section III. Although these
results are formally identical to those well known in statistical mechanics,
there is a considerable difference in their scope and conceptual interpretation.
Some of these questions are discussed in the remainder of the paper. Section IV
contains the elements of a theory of measurements based on the concept of
parameter estimation (see ref. 4). This approach yields a reinterpretation of
thermodynamic formalism which is applicable even to very small isolated sys-
tems. Section V deals with asymptotic theories in which the number of degrees
of freedom is allowed to tend to infinity. In Section VI, we discuss the role of the
ergodic property in STE and the relation of entropy and information.

The discussion of the approach to equilibrium (H-theorem) is outside the
scope of STE since such a discussion requires an explicit handling of correlations.
Thus, our approach implies a subdivision of the foundation problem that is
quite similar to the one suggested by Schafroth (9).

I. DEFINITIONS AND POSTULATES

The postulational basis of STE consists of two parts. That which is sum-
marized in Section I,A is held in common with MITE, and for a fuller discussion
we refer to Section I,A of (M\TE). Section I,B contains the statistical postu-
lates that replace the entropy-maximum postulate of AMTE.

A. DEFINITIONS AND POSTULATES FROM MTE

The independent variables of both MTE and STE are additive, conserved
q(uantities, briefly additive invariants, X 1, X2, - - . We shall usually interpret
these variables as: internal energy U, mole numbers of chemical components
N 1 , N2 , -.. , and volume V.3

A thermodynamic simple system is a region in space for which particular

2 Szilard's results were neither developed in nor integrated with the main current of
statistical physics. Indeed, his method appears rather ad hoc in that context. Recently,
however, Mandelbrot showed (4) that the method can be considered as an application of
the concept of "sufficiency" developed in mathematical statistics. Although we believe that
the use of such techniques in statistical thermodynamics is well worth exploring (cf. Section
IV), our adaptation of Szilard's method is self-contained and does not rely on specialized
statistical knowledge.

3 This interpretation raises questions of validity: are these variables indeed additive and
invariant? Thus, the energy is not exactly additive. Moreover, the identification of the
chemical components of the system, hidden innocuously beneath the subscripts of the .\N's,
is not absolute. The identifying properties themselves can vary, depending on the presence
or absence of catalysts or anticatalysts, which act, in this way, as constraints on the
molecular level. For a further discussion, we refer to pp. 21, 22 of (TE).
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TISZA AND QUAY

values X' of the additive invariants are specified within some short interval of
time. Disjoint simple systems can be built up into composite systems or, con-
versely, we may divide a system into subsystems, sometimes referred to as cells.

Thermodynamic processes may be of various sorts, but what we consider
primarily is the passage of some quantity X from one system to another. The
systems are separated by walls that are restrictive of the passage of some of the
q(uantities, say X, , and nonrestrictive of all the others denoted by Xj. Such a
wall is symbolized by I[Xj] on the assumption that the full set of X's has been
given. The restrictions on a system imposed by its walls are referred to as con-
straints.

We consider now the set of all variables X', X", associated with the
various subsystems. By choosing appropriate linear combinations, it is possible
to classify these into 'ee and fired variables: the former are free to change while
the latter are held constant by the existing constraints. We shall distinguish
these types of variables by Roman and Greek subscripts respectively. The dis-
tinctionl between free and fixed variables Xk and XX is fundamental for STE,
and the details of physical interpretation seem sometimes only secondary. Thus,
there is a far-reaching analogy between processes of energy and mass transfer;
nevertheless, the differences between such processes are by no means negligible.
The universal role of the energy manifests itself thermodynamically in the fact
that one can realize in practice a transfer of energy without a transfer of any
other X, a true one-variable process, whereas if any of these other X's are
tlansferred, the process is accompanied by a transfer also of energy and we have
a process described by at least two variables.

We shall emphasize the close connection of our results with quantum me-
chanics, particularly with the fact that the energy may have a mixed discrete-
continuous spectrum. However, we shall ignore those subtler effects for whose
description the density matrix is essential. Accordingly we assume the following
postulates in addition to those listed in I, A (TE):

I' a5. The values of the variables X are precisely measurable except, pos-
sibly, for an arbitrary constant.

Also connected with quantum Inechanics is the following postulate through
which the concept of the ground-state of a system is introduced.

P a6. 1For simple systems contained in a finite volume, the range of variation
of the X's has a lower bound. In particular, the lowest energy of a system is a
function of its fixed variables. In a context in which the latter are held constant,
the lowest energy can be set equal to zero.

We shall not discuss in this paper the thermodynamic processes involving
work, the discussion of which in STE adds little to the results available already
in I\TE. To be sure, the concept of work gives rise to significant statistical prob-
lems (10); but the discussion of these involves the "memory" or "persistence" of

__ __ �
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STATISTICAL THERMODYNAMICS OF EQUILIBRIUM

the previously realized states and belongs to a more subtle theory that deals with
the interplay of randomness and correlations.

B. DEFINITIONS AND) OSTULATES ON STATISTICAL EQUILIBRIUM

We develop now the statistical concept of equilibrium characteristic of STE.
As we have seen, the coupling of thermodynamic systems is effected by the
exchange of additive invariants. We now postulate that this exchange be gov-
erned by statistical laws, the properties of which are expressed in merely quali-
tatile postulates P bl-. Together with those of Section A, these postulates
suffice for the derivation of the quantitative laws of thermodynamic equilibrium,
the effects of fluctuations included. These postulates taken together, then,
implicitly define thermodynamic equilibrium. Contrary to what one might
expect from a superficially critical analysis, this procedure is not circular because
its conclusions are subject to a very exacting experimental verification, as we
shall see in Section I,D.

D bl. Sililar systemls [symbol (- . ,)]: A set of systems describable in
terms of the same selection of variables X, and such that each fixed qcuantity
Xx has the same value xx in each system, while the values of the free variables
XIY take on random values Xk in the various systems. We denote a particular,
instantaneous value of a variable X by x.4

At least one of the X's has to be fixed, or else the system would be undefined.
We shall usually consider the volume as a fixed variable; often also, the total
mass, for one-component systems, preferably expressed in terms of the mole
numbers.

D b2. Enscmible [symbol e(xlk .l), or e(.xx)]: An unllimited set of similar
systems.

Two different interpretations of this abstract definition are useful. In the first,
the similar systems are distinct and independent replicas of some particular
system, all subject to the same constraints as this latter. In the second, called a
temporal enseimble, the similar systems represent simply the results of meas-
urements on the free variables of a single system at discrete instants of time
t,, (n = , 2, .. ).

A quantitative description of the values of the free variables can be given only
in terms of statistical distribution functions (d.f.) the nature of which depends on
the type of physical situation considered, and exhibits, in general, an interplay
of randomness with correlations arising as a consequence of molecular dynamics.

The physical situation considered in STE is thermodynamic equilibrium.

4 Throughout this paper we shall use the vertical bar to separate free and fixed variables

in the symbols of ensembles and in expressions of probability. Since the specification of the
system includes the proper selection of the set of all the variables X, strictly speaking,
similar systems should be designated as (. I X, XX).
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54 TISZA AND QIJAY

The corresponding statistical theory is that of independent random variables.
This means that correlation effects do not explicitly affect the statistical dis-
tribution of the free variables, although molecular correlations are in various
ways implicit in the theory, in particular, in the selection of the fixed variables
which determine the chemical identity of the system. While in (TE) we
assumed that the fixed variables determine the asymptotic eqluilibrium values of
the free variables, we now make the weaker assumption that the fixed variables
enter into the specification only of the d.f. of the free variables. In STE, then,
e(luilibrium is characterized by the existence of a unique d.f., which we shall
postulate in two typical situations: first, for the equilibrium of one finite system
with another; and second, for the equilibrium of a finite system with an infinite
environment called a reservoir.

P bl. Statistical equilibrium: Finite systems. Consider an ensemble c(xx', .rx")
of isolated systems, each of which is composed of a subsystem (x') in contact
with a subsystem (.rx") through a wall W[Xk]. For each member of e, let
(.r _ X < . + dxA.). After a sufficiently long time ("aging"), the ensemble
e is said to be in equilibrium with respect to the distribution of the Xk , and is
then decomposed into e'(.Xl') and e"(xx"). The probability that, under these
conditions, a member of e' should possess values of the X' less than .r' is given
by a unique conditional (cumulative) d.f.

S(Xk - ; XX) - i (rk I ie)
(1.1)

= lPr Xk' < Xk I x' _< X. < Xk d ; , .rx"

where Pr means "probability" and rk = Xr' -+ Ik"

In spite of its qualitative character, this postulate is very strong, since it
states that 5 is uniquely determined by the conditioning parameters to the right
of the vertical bar in the argument. In order to appreciate the meaning of this
requirement, we have to list some of the factors that could be relevant for the
determining of the d.f. but actually are not. First, i is determined by the present
values of the fixed variables and does not depend on their past history. Thus
there is implicitly assumed the existence of a memory-loss mechanism within
systems approaching equilibrium.

Secondly, either of the interpretations of an ensemble given in D b2 may be
used; so far as 5 is concerned, they are wholly equivalent. This equivalence of
the two modes of ensemble-representation of a system is known as the egodic
properlty. We shall discuss this point in more detail in Section VI.

We shall also use the differential d.f.

d (Xk' X) = (Xk' + dk' I .X) - (X' I XAk). (1.2)

For continuous distributions one has

dT (.r I | .r) = 1l'(. k .kr) d.r',

�
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STATISTICAL THERMODYNAMICS OF EQUILIBRIUM

wlhere f' is a probability density. For discrete nonsingular distributions:

d(.xk' l.k) = '(Xkn Xk) = l,(Xk' I Xk), (1.4)

where n is an integer and the intervals of the Xk' have been chosen small enough
so that ~f is the probability of a single "level." The distribution function, dS,
as also the corresponding ensemble. is referred to as microcanonlical.

In P b the systems (xx') and (x") are on an equal footing. We now let the
size of (xx") tend to infinity. In this case P b no longer ensures the existence
of a d.f. for the Xk'; and if such a distribution exists, it is not conditioned by
Xk + x'.", since this is infinite.

Although at first sight the transition to infinite systems or reservoirs seems to
lead to difficulties, in reality this limiting process brings about important simpli-
fications. There are many reservoirs that are equivalent to each other as environ-
ments of finite systems although they differ considerably in their intrinsic
structure. Granted the possibility that the detailed structure of the reservoir
has an effect on an individual observation of the state of a coupled finite system,
still this effect is averaged out over the ensemble, and this is our only concern
in the present theory. The precise definition of the equivalence of reservoirs
constitutes the first element in a generalization of the zeroth law of thermo-
dynamics.

D b3. X-Resen'oi' or, briefly, reservoir [symbol: R]: An infinite thermody-
namic system that can be coupled by X,-exchange to finite systems in such a
way as to make e'(k.r' xx') and e(.rk".l x rx") statistically independent of each
other. Within STE the specification of this exchange will provide an adequate
description of the interaction of the system and reservoir. Two reservoirs are
equivalent if the time-average of Xk transfer between them is zero when they
are coupled to each other by the intermediary of a finite system.

I' b2. The equivalence relationship explained in D b is independent of
the nature of the coupling system, provided that it does not inhibit the x.-
exchange. Moreover, the relation is transitive, that is, if a reservoir R' is equiva-
lent to R" and R" is equivalent to R"', then R' is equivalent to R"'.

As an immediate consequence of this equivalence relationship, we state the
corollary:

C bl. The class of eluivalent XI. reservoirs can be labeled by a set of param-
eters 01, 0., .-- , briefly 0,., in such a way that equivalent reservoirs are
labeled by the same set 0, , while nonequivalent ones differ in at least one of the
0. Reservoirs will be denoted also as R(Xk , 0) or R(0,).

Evidently the labels 0 are closely related to the intensities of M\TE, but they
constitute much more rudimentary qualitative concepts. They lack a definite
scale; they are not necessarily paired with the X ; and they are even unspecified
as to their number. Thus, for example, in the case of thermal coupling we do not
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TISZA AND) QUAY

postulate the existence of a single parameter, the temperature. The intensities,
in their quantitative thermodynamic meaning are to he derived from the theory.

Other immediate consequences of D b3 and P b2 are the following: Equiva-
lent reservoirs can be united to form another reservoir of the same class; the
class of a reservoir remains unaffected if any finite system is joined to it. Two
nonequivalent reservoirs are to be joined only by the intermediary of a finite
system. However, this situation does not lead to equilibrium and is outside the
scope of the present theory.

P b3. Statistical Equilibrium of a Finite System and Resers!oirl. Consider an
ensemble e(x.. .rx) that has been coupled for a sufficiently long time to a reser-
voir R(X1 ., 0s). Then the probability that the X. of a particular member of e be
less than some value .rk is given by a unique, (cumulative) d.f. F(x.. ] .rx, i0)
which is completely determined by the nature of the system, indicated by its
fixed variables .x , and by the class of the reservoir, specified by the 0 . Or in

symbols':

F(x.k x, & ) = Pr fIX. < x., .rx, 0. (1.5)

Expressions analogous to (1.2), (1.3), and (1.4) can be written down in
obvious fashion. The function F is called the (generalized) canonical d.f. \lore
precisely, the d.f., or the corresponding ensemble, is canonical in Xk and micro-
canonical in Xx . The d.f. that is canonical only in and microcanonical in all
others is called canonical in the narrower sense of the word. The d.f. that is
microcanonical in the volume and canonical ill all other X's is called the grand
canonical d.f. A single system whose behavior is represented by a canonical
ensemble is called a canonical system, or, from the experimental point of view,
a system in thermodynamic equilibrium with R( 0).

Finally, we formulate a stability property for the canonical d.f.
P b)4. Consider two ensembles e' and e" with the canonical distributions

F'(.k¥' xx', 0) and F"(.x." x", 0,), respectively, although they need not be in

contact with a reservoir. If the two ensembles are coupled member by member
through walls W1V[X4] and then separated again into e' and e", the reconstituted
ensembles have the same canonical d.f.'s as the original ones.

This postulate might be regarded as a statistical "zeroth law" 6: two ensembles
that have been in statistical equilibrium with a reservoir are in statistical e(qui-
librium with each other, regardless of the presence or absence of the reservoir.

TIn the literature, the vertical bar is used in the arguments of conditional probabilities.
To the right of the bar are those random variables that assume fixed values for the events
considered. Our use is somewhat more general, since ., are not random variables, )ut fixed
properties of the reservoir. See also footnote 4.

6 Cf. Thesis, pp. 37-38. More accurately: as the final element in the statistical general-
ization of the zeroth law begun in D b3. It can be shown that a similar law holds for any
two objects ("object" being a canonical system, ensemble, or reservoir).

_ __
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STATISTICAL THERMODYNAMICS OF EQUILIBRIUM

II. THE CANONICAL FORMALISM: SYSTEMS WITH A SINGLE RANDOM
VARIABLE

A. DERIVATION OF THE DISTRIBUTION FUNCTIONS

The postulates of Section I allow one to derive the functional form of the gener-
alized canonical d.f.: dF(xk [ .x, BS) and of the microcanonical d.f.: d(xk' X ,

x.r', xx"). Although the discussion of the general case offers no formal complica-
tions, the conceptual interpretation of the formalism is greatly facilitated if the
discussion is confined at first to the special case of the ordinary canonical d.f. in
which the internal energy X1 = U is the only random variable of the system.
We shall return in Section III to the general case of many variables.

Apart from a few refinements, we follow Szilard and analyze a simple sequence
of thermodynamic operations on two ensembles and a heat reservoir, establish
a functional equation involving dF and d, and derive those solutions of this
equation which satisfy the physical collditions of the problem.

We consider two ensembles e'(x') and e"(x"), and bring each member of e'
into thermal contact with a member of e" to form an ensemble of pairs of sys-
tems e(.x', x"). This ensemble of composite systems is then brought into thermal
equilibrium with the reservoir R(O). According to P b3 and D b3 the joint
probability that the subsystems of a member of the ensemble e have the energies
u' ad it" is

Pr ' < '" < U' + d, ' t < U" + d' .', , , 0

= dF'(u' .x', 0) dF'" (u" .x", 0.).

This d.f. persists, regardless of whether the contacts between the ensemble
and R, and the contacts between the subensembles are maintained, (P b).
If, then, the ensemble e is decoupled from R, we can describe this same d.f.
from a different aspect: The above joint probability appears as the probability
dF(u I x', x", 6 ) of finding the energy u = u' + u" in a member of the composite
ensemble, multiplied by the conditional probability dS;(u u, x', .r") that this
energy splits in the desired fashion among the subsystems (P bl and P b3).
The comparison of the two expressions yields the basic functional euationl:

dF' ( ' Ix', 0,) dF" (u" .x", 0,) = dF(u .x', .C", 0.) d(u' u, x', x."). (2.1)

This elquation reduces to the well-known Boltzmaln relation if the micro-
canonical d.f. is a -function, i.e., if

d5(u' I u) = (u' - Uo) (2.2)

where iu is the amount of energy that would be trapped in the system (.x') if the
principle of thermostatistic determinism of \ITE were rigorously valid.

To solve (2.1) for the analytic forms of dF and d] we shall need the logarithm

-__ I_ -_liq IIIYUIP__I__I________I___�- --- __I--I--.- -llbI -~~I--- - Pll*l- l~ l~
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TISZA AND QUAY

of these functions. For this reason, we must first examine the nature of the zeros
of the distribution functions. Suppose that the d.f. of e' vanishes for a particular
set of values of the energy and of the parameters: dF'(uo' x', 0,) = 0. There is,
ill general, o reason why dF(u x', x", .,o) should be simultaneously zero.
Therefore, from (2.1), dS(u(,' u,.r', ." ) = 0. Since this relation is 0,-independent,
(2.1) req(uires that dF'(uo' x', 0,) = 0 hold independently of the values of 0, .

Consequenltly, there must be a component in dF'(uo' .r', 0,) which is 0-
independent and which is zero for the entire set of forbidden values of U'. We
may, therefore, exclude this forbidden set from consideration for the present.7

In similar fashion, we exclude the forbidden sets of U" and U and, so, all zero-
values of dF and d.

Taking the logarithm of (2.1) and writing u' + u" for , we have:

lin dF'(u' x', 0,) + llln dF" (u" x", 0,) = lln dF(u' + u" x', x", .,)

+ In di(u' a a + ", .", x). 2)

Let c, be an arbitrary but fixed set of values of the parameters O,, labeling some
heat reservoir. We take, now, the difference betweenl (2.3) for a general 08 and
(2.3) when evaluated at c . Introducing the notation

r(,(u, , , , c,) = ln dF(u x, 0,) - ln dF(a l x, c,), (2.4)

we obtain

rl (u', , , , c) 0+ r,"(u", , , c,) = (u' + u", x, , 6, , c,). (2.5)

We shall now solve this functional equation under the simplifying assumption
that r is a differentiable function of u.8 Differentiating (2.5) with respect to u'
at constant u", and vice versa, we obtain

( '.', ,, c,) _ a(u' + u", ', .r", X,, c,) __O(1t, .', .", 0,, c_ c) __,x,_ _ 0__ cI (2.6a)
d.' d' du.

aq"( (I, ", , , c, d( u -u' + "' , ' , c.,) ar((, x', ", 6,, c,)
(2.6ib)

Expression (2.6a) is evidently independent of x" and (2.6b) of '. Since the

7That such forbidden sets exist is evident from the discrete energy spectra of quantum
mechanics.

8 This assumption may seem incongruous with the fact that the energy is, in general,
defined only n a discontinuous set. However, the continuous solutions of (2.5) can he subse-
q(uently restricted to the allowed energy spectrum and, therefore, our procedure yields
satisfactory solutions of (2.1). On purely mathematical grounds, Eq. (2.5) also has more
general solutions hut these can he excluded hy physical considerations. At any rate, we
shall see in Section II, B that the analytical character of the function 7-((u) is consistent
with the discontinuous aspects of the prohlem.

_
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two expressions are equal, they cannot depend on the nature of the systems
(x') and (x"), but only onl 0 and c,. Denoting this universal function of the
reservoir properties as - B (6 , c8), we obtain after integration

7(ut, , , cs) = -B(S , c)u - A(x, , cs) (2.7)

with similar relations for 7' and 1". Inserting these expressions into (2.5) we see
that the integration constants A are additive

A'(x') + A"(x") = A(.r). (2.8)

From (2.7) and (2.4) e obtain

In dF(u x, 6,) = in dF(u I x, c) - A (x, 08, c) - B( 8, , c)u.

Since the left-hand side is independent of c8 , each term on the right must be
individually separable into a term containing c and one not containing it, in
such a way that the c-dependent terms cancel.9 Designating the portions of
dF, A, and B that are independent of c, as dG, ~, and , respectively, we have
the general solution of (2.1)

dF(u x, ) = dG(u, x)e- (x'' )- °' ° t (2.9)

with

'(.', 0) + ®"(x", s) = 0(., 6). (2.10)

Our derivation holds only for those values of u that have a nonvanishing proba-
bility. But we may now bring back the forbidden values of u, defining dG(uo) _ 0.

The condition on normalization of the probability dF leads to

e~(*' = , e$ (" dG(u, x), (2.11)

where the integration extends over the entire range of u. Evidently this integral,
and hence P(.x, 0,), depends on the set of 08 only through the intermediary of
the single parameter , and the canonical d.f. can be written in the form °

dF(u I ) = dG(u, x)e- ®- = dG(u, .r)e-Z-1(, x), (2.12)

where

In Z(, ) = (, ). (2.13)

We see that the canonical distribution function dF is the product of three
factors. One factor depends only upon the type of system and its energy; a

9 A formal proof of this plausible statement is straightforward but tedious.
10 We shall soon see that i is a satisfactory parameter for labeling reservoirs as stipulated

in C bi. Therefore we shall henceforth use the parameter d without further regard to the 9s.
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second depends upon the type of system and the reservoir parameter 3; the
third is an exponential function that provides the coupling between u and 
in a manner the same for every system.

With these facts established, we may, as a rule, omit explicit reference to the
fixed variables . Ill particular, we rewrite the normalization condition (2.11) as

Z() = e
- dG(u). (2.14)

Mloreover, from (2.10) and (2.13),

z'(O)Z"(O) = Z(3) (2.15)

The function Z(3) is seen to be the Laplace-Stieltjes transform of G(u).
The requirement that the integral (2.14) exist imposes limitations on the ranges
of d and u which we shall consider later. The use of Stieltjes integrals is con-
venient for handling the mixed, discrete-continuous energy spectruln of uan-
tum mechanics. But if G(u) is differentiable or varies in value only discontinu-
ously, one has for sufficiently small energy intervals,

dG(u) = g(u)du, (2.16a)

or

dG(u) = g(un) = g (.1)

and (2.14) reduces to the more usual form of the Laplace (-Rielnann) transform
or to a sum respectively. Corresponding changes are brought about in the d.f.
(2.12).

We shall call G(u) the structure Junction of the system. This use is close to
that of Khinchin (11) who calls g(u) the structure function. Z(O) will be re-
ferred to as the generating function or partition function.

Inserting (2.12) into (2.1) and using (2.15), we obtain the microcanonical
d.f.

dT(u' [ u) = dG'(u')dG"(u - ')/dG(u) (2.17)

which is independent of , as it should be. The normalization of this probability
yields

dG(u) = f dG'(u') dG"(u l- '). (2.18)

Thus the composition of the structure fulnctions of independent systems is ob-
tained by convolution or "faltung." It is well known fromn the theory of the
Laplace transform that this rule is equivalent to the product rule of conlposition
(2.15) for the generating function.

__ __
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B. ORMAL PROPERTIES OF THE CANONICAL DISTRIBUTION

Before turning to the physical interpretation of the functions and param-
eters appearing in the canonical d.f., it is convenient to summarize some of the
mathematical implications of the formalism.

From the theory of the Laplace transform, we know that if Z() converges
for one value of A, it will converge for all larger values of f (12, p. 37). The limit
of convergence depends on the nature of the function G(u). We shall return to
this point below. Within the range of convergence of (2.14) Z(f) is analytic
(12, p. 57); thus it possesses finite derivatives of all orders. Therefore we obtain
the canonical averages

d"Z = (-u)7- t ' dG(u) = (-).'wZ. (2.13)

We shall need the important expressions for the average and the variance of
the energy:

u = -- (2.20)

Var u = ( - u)" = ( - )2) = 2 d24/d"2 > 0. (2.21)

Strictly speaking, the inequality sign in this important convexity relation
should be 0. It is, however, a simple matter to show that the variance of the
canonical d.f. can vanish only in the limiting case in which all members of the
ensemble are in the ground state (P a).

For a given value of a, Eq. (2.20) can be considered as an equation for the
unknown fl. For systems with an unbounded energy spectrum au is itself un-
bounded. It follows from the convexity of + = () that Eq. (2.20) has a single
positive solution, = o , for any positive = uo (11, p. 77). Thus we have
established a one-to-one relation between the average ensemble energy u' and
the reservoir parameter d. Moreover, from (2.20) and (2.21), we have

da /d3 < O. (2.22)

Thus if an ensemble e(X) is brought in contact at first with the reservoir
R(l) and then with R(i 2) where, say, d < f2, then the calonical averages
satisfy the relation

i(t1) > (22) (.23)

Therefore the contacts mentioned will bring about a energy flow from R (03)
to R(32).

Thus we see that is a satisfactory parameter for labeling reservoirs in the
sense of C bl. Of course, in addition, has more specific properties and pro-
vides a numerical measure for the intuitive concept of the temperature, higher
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O's corresponding to lower temperatures. This is not trivial, since our definition
of the reservoir parameters did not specify a direction of the flow for the Xk or
their averages between different reservoirs. Moreover, has an "absolute"
character in the sense that it is uniquely determined once the unit of energy is
fixed and does not depend on the nature of the system chosen as the basis for
the canonical ensemble or on any other arbitrary convention. Nevertheless,
we are still not in a position to establish the connection between and the
thermodynamic temperature. This is possible only through the concept of
entropy which has not yet been defined.

The canonical formalism exhibits an interesting duality. The properties of a
particular ensemble c(x) can be described either in terms of the generating
function Z(3, r) or in terms of the structure function G(u, .r) with the reservoir
parameter 2 specified in addition. Either of these descriptions allows us to arrive
at the other by means of the Iaplace transformation or its inverse. The expo-
nential kernel of this transformation corresponds physically to the coupling of
the system and the reservoir.

Although we have two equivalent representations for canonical ensembles,
these descriptions are far from symmetric, and the functions Z = Z(O, x) and
G = G(u, x) play different roles in the conceptual structure of the theory. As we
shall see in Section II,C, the elaboration of the properties of the former enables
us to establish contact with MLTE, whereas the latter is a connecting link with
quantum mechanics. 5Moreover, the two representations exhibit also a formal
mathematical asymmetry.

The 'moment-generating function" Z(3) is extremely smooth, with continu-
ous derivatives of all orders in its interval of convergence. These derivatives
provide the successive moments of the canonical d.f. as shown in (2.19). In con-
trast, G is usually discontinuous, corresponding to the quantum-mechanical
discrete spectrum of the system. This discontinuous character of the structure
function was taken into account in our solution of the functional equation (2.1).
As a result, the assumption that -q(u, 3) should be differentiable yielded the form

v(u, ) =-uO - n Z(O) (2.26)

which is consistent with the discontinuous character of G(u). We note that
Szilard's method of solution required the differentiability of G(a).

C. STRUCTURE FUNCTION AND ENTROPY

The discussion of Section B is of a purely formal nature. In order to develop
the physical interpretation of the theory, first, we connect the present formalism
with that of quantum mechanics and, thus, pave the way for the microscopic
calculation of the thermodynamic functions; second, we shall derive the formal-
ism of MTE from the present basis and, thus, establish the connection of STE
with experiment.

_
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One simple postulate will do much toward joining STE and quantum me-
chanics.

P c. The structure function G(u, x) is to be interpreted as the number of
linearly independent solutions of the Schr6dinger equation which have an energy
eigenvalue E < u under the condition that x be constant. These solutions are
the possible microstates of the system and have equal a prior'i probabilities.

Accordingly, the canonical d.f. (2.12) can be written in the alternative forms:

.fn = gn(x)e '", (2.27a)

.l'i = e- -li ", (2.27b)

where J;, is the probability of a g,-fold energy level u, and fl is the probability
of a single microstate of energy ui .

It is easy to see that P cl is consistent with the properties of the structure
function, in particular with the composition rule (2.18). Otherwise, this postu-
late is justified only by its success, which is considerable since P cl allows us to
integrate with the present theory most qualltum-statistical calculations of the
structure functions of particular systems.

We are in a position now to specify the physical criteria for the numerical
range of d. The various types of degrees of freedom give rise to two kinds of
structure function, distinguished by their asymptotic behavior for high energies.
Fior translational, rotational, and vibrational degrees of freedom, G(u) - u /'
where OZ is the number of degrees of freedom. For internal angular momentum,
G(u) is bounded. Whence it is evident that Z(0) converges for all positive
values of fi for all physical systems. Moreover, since all physical systems have
at least one kind of degree of freedom with an unbounded spectrum, Z( i)
diverges for < 0.

There are, however, certain physical situations for which it is convenient to
consider a particular degree of freedom as a thermodynamic system in its own
right. For example, one may treat a spin system as a thermodynamic system,
in spite of the fact that it occupies the same space as the crystal lattice, contrary
to the requirement that thermodynamic systems be disjoint regions in space
(D al). For such "systems" G(u) is bounded and f can be negative. We shall
return to the interpretation of this situation in Section IV,B.

We turn nlow to the problem of establishing the connection of STE with
\ITE. The key to this problem is contained in the dualism of the canonical

formalism pointed out in Section II,B. It is evident that the analytic function
Z - Z(0, x) and, hence, log Z = (f0, .r), contains all statistical information
about the system. As seen in (2.15), moreover, is additive for independent
systems and obeys the convexity relation (2.21). This fact allows us to establish
a very smooth julction of the present theory with M\ITE. The latter theory is
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centered around the so-called fundamental equations, which are certain additive
functions each of which contains all thermostatic information about the system.
The various fundamental equations are associated with different physical situa-
tions. The one associated with a system in energy-exchange with a heat reservoir
(the static equivalent of the canonical situation) is described in terms of the
A lassieu function'

T(l/T, .r) = S - U/ T (2.28)

where , U, T are the thermostatic entropy, energy, and temperature. Hence
we have to require that the (/B, x) of the present theory be proportional to the
statistical counterpart of the Alassieu function

I, = 14(f, x). (2.29)

The convexity relation (2.21) ensures the validity of the proper extremal
properties of ; and the postulates of AiTE are satisfied for our construction of
the fundamental equation. Thus the junction of TI\TE and STE is, in principle,
completed for the limited choice of independent variables, and we could build
up \ITE from the basis of STE.

We seek now the formulation of the concept of entropy appropriate to the
present canonical theory. In i\ITE the entropy is defined as that fundamental
equation which is appropriate for isolated systems. Such a definition will he
introduced in Section IV along with a complete and physically meaningful
formalism for isolated systems; here we mlust seek another approach. That
different concepts of entropy are required for canonical and isolated systems is
to be expected in a theoretical structure where such systems are no longer
regarded as equivalent.

Guided by the thermostatic limit, given in (2.28), wve define the canonical
entropy as

.e = k~~ -- k/ a) = = - - kO a(,,,," ~/o)
= 14-i = kt + d) A (2.30)

Since Eq. (2.20) enables us to express u and d in terms of one another, we have
the option of considering as a function of a, corresponding to a fundamental
equation of MITE, or as a function of , as is more natural in the canonical
formalism. The former alternative leads at once, through the Legendre trans-
formation of ., to a number of important thermostatic relations.

11 Systerms coupled with heat reservoirs can be described in terms (of the Helmholtz func-
tion or the Massieu function. In the scheme based on the former, the virtual processes are
(reversible) entropy transfers; in the latter, energy transfers.

2 Thlus, our problem l here is the inverse of that encountered in statistical mechanics;
there one starts with an isolated system, and the problem is that of transition to coupled
and open systems.

_ _ __ � __
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Differentiating (2.30) at constant x, we obtain

ds = k d, + k- d + k d = k0d dudT. (2.31)

Hence,

t~~ (=at4)w k~ ~(2.32)

where T is defined by (2.31). It is evident from our' previous discussion of 0 and
from (2.31) that T has all the properties of the absolute thermodynamic tem-
perature.

.Moreover,

1, = s- u/= = -A/T, (2.33)

where A = A (T, x) is the Helmholtz free energy.
The convexity relation ('2.21) for ~, together with (2.20) and (2.32), yields

the convexity relation for :
2S/a " = 0. (2.34)

Expression (2.30) suggests the definition of a random function

s(u, , ) - k;[t(, ) + MU]. (2.35)

This function figures prominently in Gibbs' discussion of the extremal proper-
ties of the canonical ensemble and was called by him the index of probability;
we shall call it the entropy function. Of course, the entropy proper is not a
random function, but a property of the ensemble. With this fact in mind, there
is no objection to this terminology, the advantages of which will be apparent in
the next section. In case of ambiguity we shall refer to (random) entropy func-
tion and to average entropy, respectively.

From (2.:35) and (2.12) we obtain

= k f dF(u) n [dG(u)/dF(u)] (2.36)

or, in the case of a discrete spectrum, by using (2.27), we have

= -/ 1 1'i . (2.37)

Equations (2.36) and (2.37) are well-known and important relations which
suggest a generalization of the entropy concept.

Let us consider a system the nature of which is specified, either in terms of
the structure function G( u, x) or in terms of its set of microstates. If the system
is not in equilibrium its state might be describable in terms of ensembles other
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than canonical. Suppose in the corresponding d.f. the probability of the micro-
state i is 0i with

C; = 1. (2.38)

It is usual to define the functional

s<¢ > = -I-k iiqw ln¢ (2.39)

as the entropy of the d.f. ¢.
It is easy to show by the method of Lagrange multipliers that, among all

normalized distributions having the same average energy, the average entropy
takes on its maximum value for the canonical d.f.

s(t < S = k(: + t) (2.40)

or from (2.33)

4- s ® T -- > 0, (2.41)

where the equality sign is valid only if s'") is the canonical average entropy.
Relation (2.41) is formally similar to the extremum principle (5.20) in (TE).

Yet the two principles differ essentially because they refer to different comparison
states. The noncanonical d.f.'s are not definable in AITE even as virtual
states. We shall return to this matter in the next section. The fact that the
canonical d.f. maximizes the entropy functional of a class of d.f.'s has also been
used as a particularly direct method of derivation of this d.f. (5). We shall
discuss the relation of this procedure to ours in Section VI.

III. THE CAN()ONICAL F()ORMALISM F()R SEVERAL RANI)()M VARIABLES

A. THE CANONICAL DISTRIBUTION FUNCTION

We proceed now to generalize the developments of Section II to several
random variables.

We consider two ensembles e'(x/ j .x'), e"(.rXk i .x") coupled to a reservoir
by means of the simultaneous exchange of the several quantities Xk . We stipu-
late that the volume be fixed, and the fluctuation confined to that of energy and
mole numbers. The d.f. to be derived is thus the grand canonical d.f. 3

13 Although the theory can be applied without difficulty to the case of simultaneous
random exchanges of volume and energy through diathermic pistons, this case is of slight
importance in comparison with the diffusive coupling leading to the grand canonical d.f.
()n the other hand, an adiabatic piston produces mechanical accelerations and, hence,
dynamic correlations, which cannot be accounted for on the present postulational basis,
since the final equilibrium state depends upon such mechanical detail. The sweeping ex-
elusion of processes involving random volume-clianges saves us the trouble of hedging the
general statements with complicated qualifications.

_ �I
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The simultaneous exchange of several quantities Xi between two systems
(W') and (x") can be represented as a vector {6x', x2 , } that is equal and
opposite to {6Xl", 6xt2", }. In this vector space we can choose a set of linearly
independent vectors or, rather, directed lines (rays):

6ix' # 0, A6x' = 0, k i (3.1)

i= 1,2, ..

the linear combinations of which represent all exchange processes. The basic
processes (3.1) can be physically realized, although not necessarily by a simple
application of walls. 4

The derivation of the canonical d.f. can be carried out in such a step-by-step
analogy to Eqs. (2.1)-(2.12) that we confine ourselves to giving the final answer
w-ith a few explanatory remarks. The crucial point in the argument is that the
many-variable analog of Eq. (2.5) can be independently differentiated with
respect to the xzi of Eq. (3.1). The term "independent" has many meanings and
it may be worth while to point out that our basic processes are not dynamically
independent, since we made no special assumptions on the system; they are not
even statistically independent as will be evident from (3.6). 5 What we mean is
that the virtual-exchange processes form a linear manifold because the Xi are
additive invariants (P al, P a2). Such a manifold can be spanned by linearly
independent basis vectors; this is all that we need for the derivation of the final
result:

dF(xi xx, ri) = dG(xi, xx) exp [-x( r) - E r.ri], (3.2)

where G(xi , xx) is the structure function, and the 7ri are parameters of the

14 Thus, the process 61o' = 0, Ani' 0 cannot be automatically ensured by walls. Mass
transfer is always coupled to energy transfer, and bu' = 0 can be achieved only by carefully
compensating for the energy transferred with the mass by producing heat flow in the op-
posite direction.

15 In the microscopic sense the transfer processes exhibit a definite coupling pattern.
Thus an individual transfer of a particle transfers also a fixed amount of energy. This
coupling of the fluxes plays a central role in irreversible thermodynamics (14). However,
the d.f. (3.2), that ignores the temporal sequence in the variation of the xi , contains this
coupling effect only in a strongly averaged form through the dependence of the function
s4xx on all the r , , . There is one striking exception in which the coupling between
the 5xi essentially affects the equilibrium situation. In liquid helium II, a very thin capillary
acts as an entropy filter; it is restrictive of entropy and of excitation energy, but unrestrict-
ive of mass flow. The energy carried along with the latter is that of the ground state. Thus
in this case we have a perfect coupling between the exchange of volume, mass, and energy.
Two containers of helium coupled by such a capillary may have different temperatures,
provided that they have correspondingly different pressures. The situation can be handled
by thermostatic methods as shown (MTE, p. 38).
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d.f., and the ri are functions of the original 0, which they completely replace.
The canonical d.f. (2.12) is a special case of (3.2); hence, assuming X. = u,
we have rl = .

The iplications of the d.f. (3.2) are so similar to those obtained in the one-
variable case that we shall merely list the most important formulas. The nor-
malization of the probability (3.2) yields

f dG(x, xx) exp [-Qx/(iri) - E irx,] = 1. (3.3)

The partition function is

Z,(7ri) - exp [x(7ri)] = f dG(x.r, xx) exp (- ri) (3.4)
xi

DIifferentiating (3.3) with respect to 7ri , we have

Zi = -/o7ri . (3.5)

A second differentiation yields at once the covariances

A.i . 'j - = ,Ij i, j = 1, , , (3.6)
dari a7rj

where Axi = xIi - i .

The diagonal elements of the matrix [I 4ij 11 of the covariances are obviously
nonnegative:

(.)" = a2/a,7i = -_i/ 7r > 0, ( .7)

where the limiting case of zero variance holds only when the random variable
X,i is actually fixed, and there is no statistical problem-a situation that arises
in the limiting case of absolute zero. The statement embodied in (3.7) can be
immediately sharpened: the matrix ]] bj n must be positive semidefinite, since
otherwise a transformation of the variables would lead to negative diagonal
elements.

Equation (3.7) implies, as in the one-variable case, that, for reservoirs of
different 7ri but with all other 7r, equal, 7ri < 7ri" requires i > .i". Hence Xi
will flow, on the average, from R'(7 , · . 7ri-; , r +, ) to R"(rl, · · ·
7ri-1 i, 7ri+l .. ) when both are coupled to the same finite system. But no
general statements hold for the direction of fluxes between reservoirs differing
in two or more of the 7ri.

We turn to the identification of the thermostatic functions in terms of the
general canonical d.f. The situation continues to parallel the one-variable case.
In analogy to (2.35) we define the random entropy function

S(x , ,Ti , xx) = j4'x,(7ir) -+ Ti.(il8
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The canonical average entropy is

k(D + E riZi) = (D - E rid/air) = s(i, ,) = S. (3.9)

By using Eq. (3.5), we can express the ri by the xi or vice versa. The condition
of solubility is

det ,:. i = a(l, 2, ) #0. (3.10)
a(i, , 2, )

As we have pointed out above, this relation is satisfied except at absolute
zero. Another singularity of the theory arises at critical states, for which the
determinant (3.10) becomes infinite. For a further discussion of these singu-
larities we refer to (ITE). Equation (3.6) contributes the additional informa-
tion that at critical states the fluctuations become infinite. While critical fluctu-
ations are indeed very large, they cannot, of course, be infinite in a finite system.
We return to this point in Section IV,E.

We define now new intensity parameters

Pi = -- T i = 2, :3, .... (3.11)

Comparison with the canonical d.f. yields:

P1 = T = (k 7r1)- 1 (3.12)

By introducing a notation used in (ITE) we have

-kiTI,,(ri) = - T. - E' IPi, - a[T, Pi]. (3.13)

In particular, we obtain for the important grand canonical ensemble,

Q(V, T, uj) -- -kiT,(T, uj) = - T + ]junj (:3.14)

where .,j is the chemical potential of the jth component. If the volume is a
random variable, the corresponding intensity, is, of course, the negative of the
pressure.

The formulas (2.36)-(2.39) remain unchanged in the many-variable case,
provided only that expression (3.2) is used for the d.f. The maximum principle
(2.40) is generalized to

i- (s)T - E' Pii - a[T, Pi] > 0. (3.15)

The equality sign is valid if and only if so is the canonical d.f. (3.2).
We conclude this section with a few remarks concerning the range of the

intensities ri , inferred from the condition that the integral (3.4) be convergent.
Since the structure function increases, at most, algebraically (power law) for
large xi, all positive values are admissible for the ri . Zero and negative values
are admissible as well if the structure function is bounded. Thus, the existence
of a bounded G(v), u = constant, for condensed phases indicates at once the
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possibility of negative pressures. If, as discussed above with reference to energy
and mass transfer, 6.ri cannot be kept zero when bxj 0, this fact must be coIl-
sidered in evaluating the ranges of the ir . Thus, in the case of Fermi statistics,
positive values of the chemical potential are possible because the high-dellsity
states have a sufficiently high energy to ensure the convergence of the integral
(3.4).

B. I'ERFECT GASES

The foregoing developments allow us to derive all of the quantitative informa-
tion about a system that falls within the scope of STE and MTE, provided only
that the structure function is obtained by solution of the Schrddinger equation.
However, for systems of many degrees of freedom, this problem is usually
insoluble. An effective way of overcoming this difficulty is to consider, at least as
a point of departure, particularly simple systems called perfect gases. In sta-
tistical thermodynamics a perfect gas is defined as a system consisting of sta-
tistically independent constituents. As we have seen (Section II) the partition
sum of such a system is the product of the partition sums of its parts. If the latter
are sufficiently simple, the problem is easily manageable.

FIrom the mechanistic point of view statistical independence is traced to dynamic
indcpendcnce: the perfect gas is an assembly of noninteracting particles. This
simple connection was upset by quantum statistics. It became apparent soon
enough that the dynamic independence of particles is no longer sufficient for
statistical independence if the wave function of the system is subject to sym-
metrization (or antisymmetrization). However, it was recognized only gradually,
as perfect-gas methods proved effective beyond all expectations in describing
fluids of strongly coupled particles that dynamic independence is not neccssargy
for statistical independence.

As we have pointed out, the requirement calling for the symmetrization of
their wave functions renders particles unsuited to play the role of statistically
independent elements for the building up of a gas. However, this role may be
taken over by the single-particle states. In a fixed volume surrounded by im-
permeable walls these states will be spatially localized standing waves with
characteristic energies ,.

The total energy of the system is

I = nev (3.16)

where the occupation numbers n are random variables. We have here, obvi-
ously, a transition from particles to fields. There is also a similarity to the defi-
nition of the composite system, only here the states are not spatially disjoint,
but occupy the same volume. That they are, nonetheless, statistically independ-
ent is precisely what distinguishes a perfect gas from other systems. Thus the
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partition sum of the system will be

Z = II Z (3.17)

with

z4 = z ;v (3.18)

and
-- lev--r2 

(
A

- - e
,

) k T

.X = e - (3.19)

The summation is over 0 and 1 for Fermi-Dirac (F-D) statistics and over all
nonnegative values of n,, for Bose-Einstein (B-E) statistics.

Hence, we obtain

v = 111I Z = ( 1 /Y) 111 (1 + yx,),

,with +1 1 F-D. (3.20)
1 B-E

The average occupation number is

V = - )Ik7 (1) (3.21)
o e(,-- )/k T ++ /)

An interesting limiting case is obtained if

- / k T >> 1, (3.22)

where the lowest energy was chosen to be zero. Now the two distributions
degenerate into a common distribution

n = lii z4 -
(3.23)

fly = Xv.

Equation (3.23) can be rewritten as

sP = XI = 111 e = n111 1 + r, + X , + "' (3.24)

and given a verbal formulation which is the well-known correction procedure for
introducing the identity of particles into Boltzmann statistics.

The reason that we survey these well-known results is to show that they
appear in a perspective that is different from the one of historical evolution. In
the present context, Boltzmann statistics is the common degenerate limit of
F-D and B-E statistics. Traditionally, however, the appearance of quantum

I_ I_······�_1-�-_�--·-�_�--__� --_..._._II _ II I_ -- ·. -_11---·1111)-^1-_11I-1·�_·_

71



TISZA AND QUAY

effects is designated as "degeneracy," a usage which conflicts with every other
accepted meaning of this term.

Finally, we note that the chemical potential ill a B-E gas is negative (under
the assumption that the lowest energy is zero). No sign restriction exists for F-D
statistics. This is in agreement with the general rule stated at the end of Section
III,A.

IV. THEI{MODY)NAMIC THE()RY OF MEASUREMENT

A. THE CLASSIFICATION OF THERMOI)YNAMIC EXPERIMENTS

The canonical d.f.'s contain three types of variables and, accordingly, enable
us to consider three types of experimental (luestions.

(i) The response . of a known system (Xx) is studied when in equilibrium
with a reservoir KR(ri) of known intensities (X , ri -xi).

(ii) Information on the properties of an unknown evirolnment is sought
through measurements performed oil a system with which it is in eluilibrium
(Xx, .ri 7Jr .

(iii) The investigation seeks the unknown aspects of the system from its
response whenl it is in euilibrium with a known environment (.ri, ri ---* Xx).

First let us consider briefly the inacroscopic approach of (ITE) to the afore-
mentioned experimental questions. Question type (i) corresponds to the measure-
ment of, say, energy U and volume IT, in environments of given temperature and
pressure. M[easurements of this sort lead to the determination of the equations
of state and of the fuldamental equation, except for the fact that only differences
rather than absolute values of entropy are obtained.

In experiments of type (ii), one measures, say, the energy of a finite system
and infers the temperature of the environment with which it has been in equili-
brium. The finite system can be considered as a thermometer. The "indicator
property," such as the length of a fluid column, can, of course, be calibrated ill
terms of energy differences. Whereas the discussion of diverse indicator proper-
ties is very important from the practical point of view, only the energy measure-
menlt is significant in the present context. Similar types of measurement, in-
volving other variables, are frequent and often of more than routine interest.
Thus the system might be a fossil object, the isotopic composition of which is
used to infer the temperature and the composition of the archaic ocean from
which it was deposited (16).

Fintally, type (iii) experiments belong to chemistry, ill which the responses of
an uknown system to known chemical environments are used for the chemical
analysis of the system.

()Ur problem, now is, to reconsider the three types of experimental questions
fronm the point of view of STE. An experiment of type (i) can be easily interpreted
in probabilistic terms. The intensities r and the Xx determine the d.f. and,
hence, the averages and the higher moments of the random variables xi .
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Within the context of AITE, the principle of thermostatic determinism (TE,
p. 62) asserts that the intensities of the environment uniquely determine the
extensive uantities within the finite system and vice versa, provided that the
system is in equilibrium with the environment. Considering systems at constant
volume, we may say that the intensities of the environment and the densities
of the system are uniquely matched with each other in equilibrium. Of course,
within STE this deterministic connection is weakened into a statistical one.
Whence, in questions of type (ii), we attempt to infer the parameters of the d.f.
from the measured values of the random variables. This inverse of the usual
probabilistic problem is called the problem of parameter estimation, and is dealt
with in mathematical statistics. Alandelbrot () seems to have been the first to
point out that parameter estimation is the proper counterpart to thermilometry.
He called the procedure retrodiction,~7 and identified the method of estimation
that is implicit in the existing techniques of statistical mechanics as the "method
of Inaximum likelihood" (18).

The suggestion that the methods of mathematical statistics be used within the
context of basic theory might produce, at first blush, some apprehension. The
inversion of probability calculus has by no means the uniqueness of, say, the
inversion of differentiation. Hence the problem of retrodiction is beset by
ambiguities and disputes. However, our use of estimation theory is not affected
by these difficulties. We shall show in Section IV,B that the application of the
method of maximum likelihood to the canonical d.f. is very simple and can be
justified also on the basis of physical plausibility.1 8 We refer to the statistical
literature for its additional justification in terms of its desirable mathematical
properties (18).

The results obtained will be used in Section IV,C to develop a statistical
thermodynamics that applies to isolated systems and is the counterpart of the
probabilistic interpretation of the canonical formalism that refers to open sys-
tems.

Questions of type (iii) are outside the scope of classical statistical physics, but
they can be handled successfully within quantum mechanics (6). We shall show

17 This terminology may not be the best; it is to be understood only as a designation of
the procedure to be described, and a number of possible connotations are to be avoided.
Thus, the term was used by Watanabe (17) in the sense of inferring past observations from
present observations, which would make retrodiction the symmetric inverse of prediction.
The symmetry between prediction and retrodiction in analytic dynamics is so cmlplete
that it did not seem worth while even to discuss retrodiction. This may well be the origin
of the widespread but unwarranted belief that science deals only with predictions. In order
to emphasize the asymmetry, one might speak of reconstrction instead of retrodiction.
Thus one reconstructs a sequence of events from a photographic plate taken in a bubble
chamber. Jaynes (5) calls this procedure interpretation.

1' One may note, however, that estimation-theoretical formalisms built on the micro-
canonical d.f. are beset by difficulties (cf. Thesis, p. 110) and, consequently, are of little use.
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in Section IV,D that Nernst's law allows us to draw inferences with respect to
experiments of type (iii). In Section IV,E we shall use the microcanonical
ensemble to describe situations in which the finite size of the environment is
significant.

B. THE MIEASUREMENT OF INTENSITIES AS ARAMETER ESTIMATION

We consider a single finite system that is to represent a thermometer. This
system is brought into equilibrium with a reservoir R(3), the temperature -'
of which is unknown. The measurement consists in separating the system from
R(3) and ascertaining its energy u. Since the system is finite, it represents an
ideal measuring device insofar as its coupling with the infinite reservoir does not
affect the temperature of the latter.

The next step in our procedure is to estimate the value of 3 from the knowledge
of u. The available data are clearly insufficient for certitude in this respect, since
we have no way of knowing whether u is equal to f. In particular, i' b3 precludes
the system from retaining any more memory of the reservoir temperature than
that contained in the energy measurement.

Let us consider a measurement of the set of instantaneous values xi for a
system in contact with a reservoir R(7ri) as the specification of a member of a
canonical ensemble. Then the probability for finding this set of values is the
d.f. (:3.2). We now propose to consider dF as a function of the 7r,- for these fixed
values of the Xi . Of course, the .rx are fixed as well. In this interpretation dF(7ri)
is called the likelihood function. This term expresses the fact that this function
is akin to probability, although we have no basis for speaking of the probability
of a reservoir 3, nor is dF normalized; indeed, dF(ri) dri need not exist."

We proceed to maximize dF with respect to the ri and define the estimated,
or most likely, intensities as the particular values *; for which the likelihood
function becomes a maximum, given the set of measured values .ri . As we have
seen, dF(ri) is an analytic function of the ~ri; thus, this maximization is achieved

19 ()f course, a likelihood function can be defined for any d.f. ()ur problem is simplified
because we have established the fact that the interaction between system and reservoir is
governed by the canonical d.f. We note that this d.f. may have a direct physical meaning,
for example, a system serving as a thermometer in prolonged contact with R?(o). If numerous
energy measurements are performed, their average is the canonical average. Another possi-
bility is, however, that the system acquired its energy by some other means than through
contact with a reservoir R(3). Thus macroscopic work might be dissipated in the system
after thermal isolation had been established. In this case we proceed with the estimation
of d exactly as described above, although the canonical ensemble will have only fictitious,
"virtual" existence. An interesting case is a spin system exhibiting ''negative tempera-
tures" (19), which has been brought into this state by the reversal of a magnetic field. The
negative temperature is that of a fictitious reservoir that could have brought the system into
the same state by contact.

_I _ _ _ �
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by differentiation. Since dF is positive for the set of xi that are at all observable,
we may maximize instead of dF its logarithm. We have

in dF(.ri , ri) = in dG(.xi) - s(xi , ri),'//, (4.1)

whlere

S(.r, 7ri)/ = c4(i) + E rrixi (4.2)

is the random entropy function, or index of probability. For the sake of brevity,
we suppress the fixed variables xx which, in fact, are present in the arguments of
each term of (4.1). Evidently, maximizing in dF with respect to the 7ri at con-
stant xi is identical to minimizing s(xi , 7ri) under the same conditions. Hence
we have

- 1i [ s(:r, r,)]~,= - ± Xi =0 (4.3)

with the stipulation that the matrix with the elements

a - ai- (4.4)
k &ir i ll-k airi Oi'k

be positive semidefinite.
Equation (4.3) can be written

.ri(7i) = i . (4.5)

The most likely values of the intensities 7ri are defined by the requiremlent that
the empirically given values xi be equal to the canonical averages conditioned
by the ri .20 Condition (4.3) is of a form identical to (3.5) and always possesses
a single set of positive solutions. The matrix (4.4) is identical to the matrix of
covariances (3.6) and, accordingly, it is positive semidefinite. However, in the
limiting case of absolute zero we have det i 4ik- = 0. This means that the aver-
ages xi( r) become insensitive to the variation of 7-1r = 1/kT; and while the
estimation of the xi by xi remains good, the inference with respect to ri becomes,
unreliable. This is the expression in our formalism of the well known difficulties
of thermometry near absolute zero, which result from the flattening out of the
temperature dependences of the thermometric indicators.

C. THE STATISTICAL THERMOSTATICS OF ISOLATED SYSTEMS

We shall now develop a thermostatic formalism for isolated systems that is
formally similar to the canonical theory, but, instead of being based on the

20 Although this result is plausible, it is not trivial. Without the above analysis we might

have required that x be equal to the most probable value of the d.f. conditioned by 7r . No
useful formalism results from such a postulate.
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conjugate pairs of fixed intensities 7ri- and average extensive quantities i , is
expressed in terms of fixed extensive quantities xi and most likely intensities ii

In this formalism the role of entropy is played by a function that we call the
estimated entropy and define as

,( xi) = mii {s(x, , r,)}
7ri

= mi/ {ln Z( 1ri) - 7 7,rixi.

Comparison of (4.6) with (4.3) and (4.4) indicates that this nminimum problem
has indeed a unique solution for ri = ii,

Comparing Eq. (4.6) with (3.9) we see that, while the canonical entropy
S(iri) is obtained from the random entropy s(x.i , 7ri) by averaging over the x,
at fixed 7r;, the estimated entropy is obtained from the same function by minimi-
zation with respect to the 7ri at constant .i . Since the minimum is reached for
7ri = i, we can also write

(1 /)8(.i) = D( ) + Z *i.i . (4.7)

Fromn (4.7) and (.9), we have

S(i) = (.(x,.). (4.8)

We see from (4.8) that the variational principle (4.6) can be expressed
formally for the canonical entropy as follows:

(*ii) = min /{ct(pi) + E pi.ri, (4.9)
Pi

where the minimum is taken with respect to the dummy variables pi at constant
X.i. The minimum is reached for pi = ii, and the xi are eliminated by means of
(4.5). This useful variational principle is valid independently of the method of
the Inaximum likelihood estimate and was, indeed, obtained by Fowler (20),
and used extensively by Khlilchin (11). In their interpretation, however, the
extremtum-principle lacks the intuitive meaning provided by the maximum-
likelihood estimate in the formulation given in Eq. (4.6).

We show now that

= (xi) (4.10)

can e considered as the fundamental equation of the system (X) with all the
properties postulated for such equations in ATE. We have from (4.7) and (4.3)

= E d+ .ik + d (-) = i. (4.11)
k 0xp i + = 1 o

In particular, and defining / = 1li , we have for xi = u, 7r = IlkT,

___ ______
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dxi = O (i 1)
d = du/T. (4.12)

Since du is a heat quantity, we see that , T are indeed satisfactory conjugate
variables with some of the main connotations of entropy and temperature.

We shall show now that the relation (4.5) implies the same maximum property
for the entropy that has been postulated in (ITE) (P bl) for the macro-
scopic entropy. 21

Suppose that we have two isolated systems (x') and (x"). The estimated
entropy of the composite system is

1(. + "+) = min + riri}
(4.13)

= min [ + [ +" + " ']},

where xi' + xi" = xi . If the two systems are isolated and united only in a formal
fashion, the two square brackets are to be minimized independently, and they
reach their minima at 7i' and i", respectively. On the other hand, if the systems
are coupled, they must have a common i , with the xi constant rather than the
xr' and xi". The restriction of the set of comparison states cannot decrease the
minimum, hence

, >' + v". (4.14)

The equality sign is valid only if ri = *i"
Relation (4.14) is valid also for the subdividing of a simple system by an

adiabatic wall, an operation leading to an entropy that is less than or equal to
the original value. A decrease of the entropy occurs if the subsystems are found
with ri,' i,". Hence we have to ask ourselves how these results are reconciled
with the irreversible increase of entropy. The answer lies in the interplay of
thermodynaimic operations and processes. The former are manipulations of
constraints, the latter are molecular processes that take place under the given
set of constraints. The importance of this interplay for the description of com-
posite temporal processes has been discussed elsewhere (6). Briefly, it is per-
fectly feasible, through a sequence of thermodynamic operations involving an
expenditure of work, to prepare an initial state for which rii and *i" of the

isolated systems are considerably different from each other. In contrast, the
probability of trapping the system by subdivision in a final state with values
-ii' and ii" is given by the microcanonical d.f. It is intuitively evident, and can
be confirmed by the methods of Section V, that this probability decreases to
negligible values if -i' and *i" are significantly different from each other.

21 This proof is a simple generalization of the one given by Khinchin (11, p. 138) based on
relation (4.9).

I_ ___�� ·1�··1_·11�--··-·11-I- �- - - - -

77



TISZA AND QUAY

Relation (4.14) is identical to the entropy maximum principle P b of
(AITE) and can serve as a point of departure for developing the entire formalisim
of AITE. This connection can be brought out also by rewriting relation (4.6) as

8(xI) < /1(¢ + Z 7ix), (4.15)

where the equality sign is valid if and only if the ri are the estimated intensities
corresponding to the given xi . We shall say that such pairs of .i , ii are ,Itatched.
By using (3.13) we rewrite (4.15) in the energy scheme as

U - ET - 'P [T, P] _> 0. (4.16)

Relation (4.16) is formally similar to (3.15) in the canonical formalism but, in
contrast with the latter, the present relation can be identified with the extremum
principle (5.20) of (TE). The concept of "matching" system quantities and
reservoir intensities has a meaning in AMTE: the variables are matched in equili-
briium. Therefore the comparison states in the variational principle (4.15) or
(4.16) are the same as in AMTE. In contrast, in the canonical formalism the
comparison states are noncanonical distributions which cannot be interpreted
in AITE.

D. EQUILIBRIUM, OBJECTIVE ENTROPY, AND NERNST'S LAW,

Taking stock of the connection between thermodynamnic theory and experi-
ment, we find that, at the present stage of the discussion, the situation is still
beset by a serious limitation. Among the central concepts of thermodynamics
is that of equilibrium. Without this concept we could not even express the first
law of thermodynamics in a meaningful fashion, inasmuch as we could not con-
struct an energy function in terms of macroscopic variables only. Yet there is no
purely operational method for distinguishing a state of thermodynamic equili-
brium from a quiescent nonequilibrium state. Experiment allows us to determine
the entropy difference between any two equilibrium states, provided that they
can be connected by a quasi-static path. The requirement of consistency for
different paths provides a necessary criterion that the actual paths are reasonably
(luasi-static. However, this criterion is not sufficient. This is particularly signifi-
cant if the system has internal degrees of freedom, such as the orientation of
molecular groups, or nuclear or electronic spills. A consistent value for the entropy
difference may mean either that the hidden degrees of freedom are in equilibrium
throughout, or that they are completely frozen. In order to decide which of
these alternatives is relevant one must be able to integrate empirically between
two states of known entropy. It is precisely the knowledge of the entropy in two
reference states that is provided by a sufficiently sharp formulation of Nernst's
law (21). The two reference states are those for which either the temperature or
the density tends to zero. The first limiting case can be handled in STE only by
the same postulational method as that in ITE.

_
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Pc 2. The entropy of every thermodynamic system in equilibrium approaches,
in the limit of vanishing temperature, k In go where go, the degeneracy of the
ground-state, is a small integer whose order of magnitude is independent of the
size of the system.

We may add that this limit is reached sufficiently smoothly so that the entropy
practically vanishes at attainable temperatures.

At the end of this section we shall make a few remarks about the microscopic
meaning of this postulate. Meanwhile, we turn to the case of vanishing density.
Practically every system subject to thermostatic study can be transformed into
a nearly perfect-gas state. Under these conditions, the calculation of the entropy
of the system is reduced to that of a molecule (see Section III, B), and the latter
calculation can, in many cases, be performed from spectroscopic data.

The formalism of MTE and of STE is meaningful only when it is considered
'relativc to the set of chemical reactions used to define the independent com-
ponents (C a) of (ITE).
In view of this situation, we have to compute the entropy in relation to various
plausible assumptions concerning the relevant independent components. (De-
cisions have to be made concerning the inclusion of isotopic constitution, nuclear
spin, and the like.) Once this choice has been made, the entropy has an absolute
meaning in the sense that it depends only on the counting of quantum states
without any arbitrary or conventional constants. 22 By integrating the experi-
mental caloric data from this gaseous state to the vicinity of absolute zero, it is
possible to decide whether the low-temperature system is in equilibrium with
respect to the various intrinsic variables. The method involves more than a
simple routine, and for details we have to refer to the literature. In the hands of
experienced workers it has led to significant detailed insights concerning equi-
librium with a measure of assurance which would have been inconceivable with-
out the careful dovetailing of experimental and theoretical procedures (21).

It is apparent that the procedure described deals with a type (iii) experimental
situation (Section IV, A). P cl is a qualified prediction that can be used to
perform retrodictions concerning the extent of the equilibrium prevailing in the
system. lost of the discussions of Nernst's law within the context of the prin-
ciples of thermodynamics are obscured by the fact that they do not evaluate
this law in terms of its actual use, but are concerned with the fact that it does
not conform to the supposed norm of the laws of physics, not being expressed as
an unqualified prediction. At any rate, the literature on the subject is full of

22 The fact that the entropy is in one sense relative and yet in another sense absolute offers
the possibility of semantic confusion, which beclouds much of the discussion of the subject.
Another misconception is the assumption that the relativity of the entropy concept makes
it also sbjective. While there is, of course, a subjective element in the use of entropy, inas-
much as we may choose to ignore detail, we certainly cannot increase the detail beyond
counting (luantum-mechanical pure states.

_L ___ �yl�__�� ___�__111_1__·_1111)_I-L-�lll-- · -II - I·· P IY-)- - ·I

79



TISZA AND QUAY

reformulations that propose to correct this alleged shortcoming. One of the best
known versions claims that "it is impossible to reach absolute zero." We do not
question the interest inherent in this statement, when considered as a corollary
of P c2. However, this formulation cannot be taken as an adequate replacement
of this postulate since unqualified predictions have no retrodictive power.

F1inally, we make a short remark concerning the microscopic interpretation of
1' c2. Let us consider a composite system consisting of N cell divisions and
make an attempt to describe this system in terms of the present theory, that is,
by assuming statistical independence of the cells even for small cells and large
values of N. Under the assumption that the lowest state of each cell is g-fold
degenerate, the lowest possible value for the entropy is of the order of Nk In .
This is in contradiction with P c2, unless g = 1. It is indeed widely believed
that such an assumption is the proper explanation for Nernst's law (22). How-
ever, this assumption is unwarranted. For instance, a system containing an odd
number of electrons has at least a double spill degeneracy. Yet there is no break-
down of Nernst's law and the system becomes, say, ferromagnetic or antifer-
romagnetic. The responsibility for the difficulty is undoubtedly the breakdown
of the statistical independence of the cells. If the cells are strongly correlated,
the degree of degeneracy of the system of N cells need not he larger than that of
a single cell. The entropy per unit cell is then s, = (k In g),/N, and this quantity
tends to zero as N goes to infinity. Hence Nernst's law is satisfied even in the
presence of degeneracy of the microcells.

E. THE MtICROCANONICAL ORMALISM

Up to this point our whole discussion has centered around the coupling of a
finite system with an infinite reservoir. Although the assumption of infinite
environlments is almost always a reasonable assumption, it is of obvious interest
to consider the coupling of two or more finite systems with each other. The
formalism governing this situation is already implicit in the theory as it has been
developed thus far. The so-called microcanonical d.f. describing the distribution
of the energy of a system carved out of a finite system is given by (2.17). We can
easily generalize that expression for the distribution of any set of .,:

d xi' i) = dG'( .ri' ) dGr"(.ri") (4.1)

The generalization to more than two subsystems is obvious. The rigorous
computation of this function is cumbersome, since the structure function of
composite systems is obtained from that of its parts by convolution, (2.18).
This contrasts with the much more manageable product rule for the generating
function Z(Tri).

Evidently, the complementary system X" can be made into a reservoir by
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means of the limiting process X" -- , X' = constant. Accordingly, the micro-
canonical d.f. tends to the canonical d.f. d(x' l .r) -- dF(xi', 7ri). Since the
latter is easier to handle, the microcanonical d.f. should be used in the present
theory only if there are special reasons for considering this formalism more
adequate for the problem at hand.

Two problems of this sort have been treated in the literature. The first is the
emission of neutrons by heavy nuclei, considered as an evaporation process (23).
Emission of neutrons by an infinite extension of nuclear matter would corre-
spond exactly to the thermodynamic problem to be treated by the grand canonical
method (Section III). The "reservoir" of nuclear matter would remain unaffected
by the loss of one or of any finite number of neutrons. In reality, the original
nucleus is substantially different from the product nucleus, a circumstance which
is, of course, allowed for in the microcanonical separation problem. A second
problem in which the finite size of the reservoir is significant is the calculation
of critical fluctuations. Here the finiteness of the reservoir is essential to ensure
finite fluctuation (241).

In the literature the use of the microcanonical ensemble has a much greater
prominence than the foregoing discussion would suggest. The reason for this is
that in traditional statistical mechanics it is imperative to use isolated systems
as a point of departure, since the use of Liouville's theorem depends on such a
procedure. The aforementioned difficulties of the microcanonical method are
solved or circumvented by means of simplifying assumptions that are not dic-
tated by the nature of the problem. We shall discuss these asymptotic
assumptions in the next section.

V. ASYMPTOTIC THEORIES

It is an important feature of STE that the canonical d.f. is derived for systems
in equilibrium with infinite reservoirs. While this same point of view is taken in
refs. 8, 4, and 5, the most widespread approach in the literature is different: the
point of departure is a large but finite isolated system. In this microcanonical
theory, the canonical d.f. is established approximately for a small subsystem of
the isolated system. This subsystem is the system of interest; the complementary
system plays the role of the reservoir. According to our results, of course, the
canonical d.f. is not rigorously correct in this situation but only in the asymptotic
case for which the complementary system tends to infinity.

Our first problem in this section is to establish asymptotic relations that are
valid for large, but still finite, complementary systems. This is easily achieved
in the present context, since we have the entire canonical formalism at our dis-
posal, this formalism having been established without the asymptotic assump-
tions that are under scrutiny. The situation was much more complicated in the
historical context in which the asymptotic methods were used to establish the
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canonical d.f. The complications produced by the finite size of the complementary
system were solved either by means of conceptual oversimplifications or at the
expense of formal complications and unduly restrictive conditions of validity.
We shall attempt to clarify the nature of these conceptual oversimplifications,
which have been severely criticized (see refs. 20, 11, la, ) but are still quite
widely used.

We start by establishing an approximate expression for the structure function
that plays a central role in the microcanonical theory.2 3 For the sake of simplicity,
we confine ourselves to canonical d.f.'s with a single random variable, the energy.
By usillg (2.12) and (2.35) we obtain

Iln dG(u) = s(u, )/k + - n dF(u I ), (5.1)

where 3 is considered as a fixed numerical parameter. Since the probability dF
is smaller than unity, we have

k ln dG(u) < s(u, 3). (5.2)

The interesting aspect of these relations is that by choosing appropriate values
for u and dut one can guarantee that dF(u I /) - 1. If this condition is satisfied,
the last term in (5.1) becomes negligible and the inequality (5.2) turns into an
approximlate equality. To render this idea more quantitative, we approximate
the canonical d.f. by a Gaussian d.f., the parameters of which are such that the
energy and its variance have their correct canonical values:

dF(u d ) 2 /2,2 (5.3)

where
0- = Var (u) = (nA)". (5.4)

Since moments higher than the second are hardly ever important, the approxi-
mation (5.3) is expected to be satisfactory, at least in the neighborhood of the
peak of the d.f.2 4

Inserting (5.3) into (5.1), we obtain, for u = ,

in dG(g) s(Uf)/i + In du//27ro-, (5.5)

where dG(tu) is the number of quantumn states between u and g + du. (As usual,
/ in s(u, d) can be expressed in terms of u.) We define the function

S(u) ' k In dG(u), (5.6)

23 The idea of this approximation is found in Khinchin (11), although our interpretations
dlifer, as we shall see at the end of this section.

.4 The Gaussian d.f. is justified also by the central limit theorem (11) whenever the svstem
consists of many statistically independent parts.
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and obtain in excellent approximation

S(u) = s(,t). (5.7)

Equation (5.7) holds either if we put

du = /2o a (5.8)

or if we go to the limit of many degrees of freedom, X -s -o while keeping du
constant. Since a, s(u) and va are all proportional to 39, we have

S(u) = s(u)[1 + 0(11ln 9/)]. (5.9)

The function s(u), defined in Eq. (5.6), is the well known Boltzmann entropy. 2
5

Following Boltzmann, the identification of S with the entropy of the system is
usually justified in terms of the relation

dG'(u') dG"(u") = dG(u) (5.10)

where u = u' + u is the energy of the composite system. However, (5.10) is
correct only for isolated systems and, in the case of coupling, we have to use
either (2.17) or (2.18) instead. Thus, for coupled systems, (u) does not have
the additivity properties of the entropy. To be sure, the effects of this dis-
crepancy are numerically negligible whenever relation (5.7) holds. Nevertheless,
this discrepancy is a symptom of a conceptually unsatisfactory situation.

The definition of the canonical entropy given in Section II involves a sequence
of well structured mathematical operations which we can represent symbolically
as follows:

diG ( -- dF -- s() (u). (5.11)

Or, formally, by using (2.30), we have

.(i) = -k 02 [ ln fI e- dG(u) (5.12)

and, finally, 0 is expressed in terms of u by inverting the relation

=~ -a: [l n e- " dG )] (5.13)

These expressions mean that the Legendre transforml of the logarithm of the
Laplace transform leads us back, in virtue of (5.6) and (5.9), very nearly to the
logarithm of the original starting point diG(u). In spite of this fact, the telescoping

25 The entropy definition (5.6) has been used by both Boltzmann and Gibbs. Yet it has
a place in the "neo-Gibbsian" theory of Sections I-IV only in the peripheral microcanonical
formalism (IV,E), though it plays a central role in the theories of Boltzmann (2) and
Einstein (1).
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of the sequenlce of operations symbolized in (5.11) leads to all unwarranted fusion
of the concepts of "structure function," "probability," and the exponential of
the "entropy." Thus the structure function dG(u) is usually called the "thermo-
dynamic probability" of the system; and the entropy, the logarithm of this
probability.

Actually, dG is not a probability, nor can it be normalized in any obvious way.
In principle, the function G(u) is obtained from the time-independent Schr6-
dinger equation and does not have a statistical character, although in practice
it is often computed by approximate statistical methods. Likewise, it is prefer-
able not to call ek a probability but, rather, to associate microstates with proba-
bilities and macrostates with d.f.'s; the entropy is a functional of these d.f.'s.
A theory built upon the aforementioned identifications of concepts appears from
the point of view of STE as a conceptually degenerate system, although, from
the point of view of historical evolution, one should rather speak of a concep-
tually undifferentiated theory.

We may avail ourselves of relations (5.5)-(5.9) without any conceptual
ambiguity wherever the situation warrants the use of such asymptotic relations.
Thus we obtain a connection between entropy and probability by inserting
(5.6) into (2.17):

d5 = exp {[S'(u') + "(u") - (u)]/}. (5.14)

If lwe insert into this relation the quantity s(u) from (5.5), we have the point
of departure of Einstein's fluctuation theory (1) .26

It is instructive to rewrite the canonical d.f. by using (5.1), (5.6), and (2.:3):

(dF(u] ) = exp [ (u) - s(u, )} ] = exp [( u)/k - (]) - lu]

= exp [(u - ) - s() - (u) -- /k] (5.15)

= exp [A(T) - ( - T) /kT].

Each of these expressions implies an inequality based upon the relation dF 1.
Thus,

.(u)//A - u 0 (5.16a)

u(s) - 7' - A(7T) > 0 (5.16b)

where the equality sign is valid only if dF = 1. This relation, of course, cannot
26 It has been argued by Greene and Callen (25) that Einstein's fluctuation theory is

rigorously equivalent to the canonical formalism. Their argument is inconclusive, since it
hinges on the statement that "there is no distinct isothermal and adiabatic thermody-
namics." This is true in MTE, hut in STE it does not have even a precise meaning. The same
functional form for the entropy function describes an isolated system in terms of i(u) and a
diathermally coupled system in terms of S(), provided that we use the formalisms of
Sections IV and II of the present paper. However, the functional form of () is only asymp-
totically equal to the functions just considered. This is not good enough for the argument
of Greene and Callen, who do not neglect the higher powers of Boltzmann's constant. This
criticism does not affect their elegant formalism for the computation of fluctuation moments.
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be exact. However, it is valid to an excellent approximation if the conjugate
variables u and (or and T) are matched with each other, that is, if they are
associated with a system and a reservoir which would be in equilibrium with
each other according to AITE.

It is worthwhile to add a remark concerning the width du associated with the
d.f. dF. The latter approaches unity for matched variables only if du is at least
of the order of the standard deviation of dF. If the width of the d.f. is set to be
much sharper, dF may become much smaller than unity. Yet, for macroscopic
systems, the equality sign in (5.16) is still reached to a very good approximation.
The excess over zero of the left-hand side is of the order of ki in 1, which is to be
compared with the order of k;P in the case of nonmatching variables. This is
again an instance of the insensitivity of the functions of MTE to statistical
assumptions.

Consequently for matching variables, relation (5.7) is valid and S = s(u)
becomes identical to the entropy of MITE. In contrast to the superficially similar
inequality (2.41), the relation (5.16b) is identical with the extrenmum principle
(5.20) of (TIS). The statistical interpretation is particularly simple for (5.1Ga),
that is, in the entropy scheme rather than in the energy scheme: for a reservoir
of given 3, the matching energy is that of maximum probability (most probable
energy). For given energy, the matching is that obtained from the maximiza-
tion of likelihood.

We shall discuss now somewhat more closely the approximate handling of
the microcanonical distributions. Let us consider the partition of the energy u
of an isolated system between two subsystems. The probability da(u' u) of a
particular division u' + u" = u is given by Eq. (2.17). The approximate pro-
cedure is to select those values Uu, u0" for which the probability is maximum. "

It is apparent from the above discussion and, in particular, from (5.9) and
(5.14) that the probability dlT can be made practically unlity for the correct
value of the energy and of the width of the distribution. The correct choice of
the energy is the main part of the procedure and is sufficiently obvious. How-
ever, the proper choice of the width du' of the distribution, i.e., according to
(5.8), is usually achieved in a rather hidden form by omitting the last term illn
the Stirling approximation

In N! l N In (N/le) + of in (27rN). (5.17)

27 This is usually expressed by saying that the distribution is "the most probable" one.
There are several difficulties with this expression. It was pointed out by T. A. Ehrenfest
(26) that there is no reason to expect that only the most probable values of a
random variable should be observed. Moreover, we are justified in speaking of the prob-
ability of microstates, but the probability of a d.f. has no obvious meaning. However, as
Mandelbrot points out (4), we may rationalize the traditional procedure by speaking of the
maximization of d5 considered as "likelihood" (see Section IV). The maximization is carried
out by means of Lagrange multipliers. These are the parameters estimated by the procedure.
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The effect of this term is negligible if N is very large. This term is neglected,
however, also under conditions ill which the distribution is over many micro-
states and N is quite small. If this term were kept, the method of the most
probable distributions would lead to wrong results; the probability of the most
probable state, taken in an exact sense, would be much smaller than one. Thus,
the use of the most probable distributions and the truncation of the Stirling
formula are compensating mistakes. That the compensation is as perfect as it is
seems fortuitous ad, also, unfortunate, inasmuch as it has encouraged con-
ceptually unsound practices.

We conclude this section with a short discussion of the work of Khinchin
(11, hla), which occupies a special position among the theories that derive the
canonical d.f. from the microcanonical d.f. This theory is conceptually correct;
it was Khinchin, in fact, who introduced the concept of the structure function and
contributed considerably to the clarification of the situation brought about by
the degeneracy of the asymptotic theories. However, Khinchinl's idea is that the
mathematical basis of statistical mechanics is the central limit theorem (11);
in the case of quantum statistics sharper limit theorems are used (la). l'hysi-
cally, this means that Khinchin assumes that even the "small" subsystem con-
sists of a large number of statistically independent parts. The use of this assump-
tion, necessary ill a rigorously mechanical theory, leads to considerable formal
complications. Onl the other hand, in STE there is no need to use either this
assumption or the corresponding limit theorems. One should compare, conse-
quently, the simple and rigorous derivation of the quantum distribution laws
in Section III, B with hinchin's complicated approximate derivation (la).
iMoreover, the door is left open ill STE for further microscopic extensions of the
theory.

VI. IISCUSSION

The canonical formalism developed in STE seems not unlike the one used in
statistical mechanics. Nevertheless, the thermodynamic interpretation has
aspects without a mechanical analog. A case in point is the theory of measure-
ment of Section IV. In this theory the distinction between free and fixed variables
plays an important role. The same distinction has also some bearing on the
ergodic problem28 and oil the relation of entropy and information.

We have noted in Section I that our statistical postulates imply an ergodic
property. We state now somewhat more precisely that this property is identical
to that of the mathematical ergodic theorem (11). Curiously, in the literature
this theorem is considered to be either insufficient or irrelevant for the purposes

28 Unfortunately, the term "ergodic" is used to mean many things. It is not within the
scope of this paper to deal with this question either with great precision or from many
different angles. We shall outline only the particular point to the clarification of which we
hope to contribute.
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of statistical physics. In the texts of statistical mechanics the ergodic hypothesis
is usually formulated in essence as follows: the time average of a phase function
of a dynamical system is equal to the average of the function taken over the
cntire energy surface. This is attributed to the underlying dynamics according
to which the phase point representing the system covers the energy surface
sufficiently densely. This statement implies that, except for the volume and the
number of invariant particles, the only fixed variable of the system is the energy.
We shall call this the "strong" form of the ergodic hypothesis.

The mathematical ergodic theorem is a weaker statement, inasmuch as the
proof is subject to the condition that the system be metrically transitive or,
equivalently, that its phase space be metrically indecomposable. This restriction
guards against the possibility that the system might be trapped in one of several
domains of the energy srface which are invariant under the transformation
representing the dynamical law. If such domains exist, the averaging is to be
performed only over the domain in which the system happens to be trapped.
This state of affairs is quite in keeping with the phenomenological situation

described in STE. Since we have not committed ourselves in advance concerning

the full listing of the fixed variables, we can introduce an appropriate set to be
associated with each domain.

The diversity of situations that may arise can be illustrated by two typical
examples. There are realizable experimental conditions in which the number of
ortho- and para-hydrogen molecules are separately conserved. The methods of
STE are still applicable provided that additional fixed variables are admitted.
Another case is furnished by a system such as glass. Here we have a huge number
of fixed variables distributed at random which cannot be explicitly managed; and
the methods of STE do not strictly apply. We have a frozen-in nonequilibrium,
also called a false equilibrium.

Since the tendency to form stable configurations is a basic property of matter,
we cannot hope to provide a proof of the strong version of the ergodic hypothesis,
because that would be contrary to fact. Of course, it is legitimate to explore the
problem of the validity of the strong ergodic hypothesis for special systems con-
sisting of inert particles. However, this problem is of no basic importance for
STE.

The distinction between free and fixed variables allows us to throw some light
on the interpretation of expression (2.37). This expression for the entropy con-
veys, as well, the notion of statistical uncertainty; it arises also as a quantitative
measure of information (5a). Accordingly, there have been many suggestions
that entropy be considered as a measure of subjective ignorance and that in-
formation be related to negative entropy. Although there is undoubtedly some
value in these suggestions, the conceptual unification they tend towards is
bought at the price of losing important shades of meaning.

To avoid this difficulty, we propose the introduction of a generic term, desig-
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ating (2.36) or (2.37), with I = 1, as the dispersal t' othe distribution. Of course,
this term is to be distinguished from the dispersion o a random lvariable, a syn-
onym for its variance or relative quadratic moment. Thus in a uniform distribu-
tion over g degenerate states the dispersion of the energy vanishes whereas the
dispersal of the distribution is In g.

We consider now three typical situations in which the dispersal of the d.f.
assumes the character of entropy, information, and uncertainty, respectively.
However, these cases are by no means exhaustive. In particular, the concept of
information has many ramifications which are outside the scope of the present
discussion.

(i) The first case is that of an ergodic system in thermodynamic equilibrium,
identified by invariant fixed variables. The system makes incessant transitions
among states specified by free variables. The entropy is the dispersal of the d.f.
over these transient states. The fact that we calculate the properties of the system
by averaging over the free variables is not because of our ignorancc, but because
we know that the system actually exhibits a behavior that is the average of that
of the transient states. The microscopic dynamics responsible for these transitions
and, hence, for ergodicity, brings about the adjustment of the system to new
external conditions, a prerequisite for the possibility of extracting the maximum
amount of work out of it. Thus ergodicity is a prerequisite for the entropy's
having the standard thermodynamic meaning.

(ii) We consider now a distribution of molecules that belong to a finite number
of classes that are isomers or other well defined variants of each other. In polymer
chemistry one speaks of poly-dispersivity. The situation is described in terms of
d.f.'s which, ill our terminology, are taken over the fixed variables that distinguish
the above mentioned classes. These d.f.'s are noiergodic and their dispersal
provides a numerical measure of poly-dispersivity.

In the case of genetic material the "poly-dispersivity" of the DNA molecule
stores genetic information. If a subensemble of molecules is selected, that are all
in identical configurations described by the same set of fixed variables (a "pure
strain"), the dispersal of the new d.f. is zero. The difference between the dispersals
of the original d.f. and the new one is taken as the measure of information stored
up by the selection of the subenlsemble.

Of course, the macromolecules partake also in thermal agitation (internal
vibration and rotation). The dispersal of the d.f. over these states is their entropy,
an entirely different quantity. The present point of view also disposes of the
difficulties that arise if negative entropy is taken as a measure of the degree of
organization. The paradoxical character of this alleged connection has been
demonstrated in terms of a simple numerical example by Klein (27).

(iii) Systems in false equilibrium, such as a glass, are characterized by a huge
number of quasi-fixed variables distributed at random. These variables are
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practically constant compared, say, with the free variables specifying the phonon
states. Nevertheless they are subject to a slow drift.

The dispersal of the free-variable distribution could be used as an entropy.
However the usefulness of this quantity is impaired by the fact that we cannot
precisely identify the system to which it belongs. It is possible, in principle, to
consider a virtual ensemble of glasses described by a d.f. over the quasi-fixed
variables distributed at random over a continuum. The dispersal of this d.f.
would be, indeed, a measure of our ignorance. The usefulness of this quantity
has not yet been demonstrated, however, and we bring up the case only as a
contrast with cases (i) and (ii).

We conclude with a few remarks concerning the relation of STE to AITE.
Evidently, the former reduces to the latter as Boltzmann's constant tends to
zero. Using a terminology introduced before (6), STE is "dominant" to MITE.
An interesting aspect of this relation is that the fundamental equation of ITE
remains valid in STE and has even the same functional form. The difference is in
the conceptual interpretation of the conjugate couples of variables, X and r, of
AITE. In STE there are two alternative interpretations: we have either and
7r, that is, the actual intensities of reservoirs and averages of the additive in-
variants of systems, or x and -, fixed values of the invariants coupled with
estimated reservoir intensities. The transition to AITE means that these two
interpretations coalesce.

In view of this situation the following possibility arises for the presentation of
lITE. Instead of introducing the entropy postulationally as an undefined con-
cept, as was done in Section I, B of (TE), we could start, with some adjust-
ments, from the present postulational basis and develop in this fashion the entire
material contained in (ITE). We do not propose actually to do this, however,
since we believe that STE is no more than a stepping stone toward another
dominant theory that should be an even more satisfactory starting point for the
structuring of thermodynamics. In such a future theory, correlations and time-
dependent processes and operations should be handled explicitly. There is, of
course, an extensive literature devoted to these problems. It seems however,
that these always involve procedures that are, in one way or another, analogous
to the asymptotic procedures discussed in Section V. The development of a
theory that can be considered as a generalization of the formalism contained ill
Sections I-IV still has major difficulties to overcome.
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