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Abstract

An efficient, digital technique for the measurement of the autocorrelation function
and power spectrum of Gaussian random signals is described. As is well known, the
power spectrum of a signal can be obtained by a Fourier transformation of its autocor-
relation function. This report presents an indirect method of computing the autocorre-
lation function of a signal having Gaussian statistics which greatly reduces the amount
of digital processing that is required.

The signal, x(t), is first "infinitely clipped"; that is, a signal, y(t), where y(t) =1
when x(t) > 0, and y(t) = ~1 when x(t) < 0, is produced. The normalized autocorrelation
function, py(‘r), of the clipped signal is then calculated digitally. Since y(t) can be coded

into one-bit samples, the autocorrelation processing (delay, storage, multiplication,
-and summation) can be easily performed in real time by a special-purpose digital
machine — a one-bit correlator. The resulting py(-r) can then be corrected to give the

normalized autocorrelation function, px(-r), of the original signal. The relation is due
to Van Vleck and is p_(7) = sin [Tfpy(‘r)/Z].

A review of the measurement of power spectra through the autocorrelation function
method is given. The one-bit technique of computing the autocorrelation function is
presented; in particular, the mean and variance of the resulting spectral estimate have
been investigated.

These results are then applied to the problem of the measurement of spectral lines
in radio astronomy. A complete radio-astronomy system is described. The advantages
of this system are: 1) It is a multichannel system; that is, many points are determined
on the spectrum during one time interval; and 2) since digital techniques are used, the
system is very accurate and highly versatile. This system was built for the purpose of
attempting to detect the galactic deuterium line. Results of tests of this system, the
attempt to detect the deuterium line, and an attempt to measure Zeeman splitting of the
21 -cm hydrogen line are described.
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GLOSSARY
Symbol Definition

Time Functions

x(t) A stationary, ergodic, random time function having Gaussian
statistics.
y(t) The function formed by infinite clipping of x(t). That is, y(t)=1

when x(t) > 0, and y(t) = -1 when x(t) < 0.

Frequency and Time

Because of their standard usage in both communication theory and radio astronomy,
the symbols T and 7 symbolize different quantities in different sections of this report.
In Sections I-III, T is a time interval and r is the autocorrelation function delay var-
iable. In Sections IV-VIII, T is temperature, and T is either optical depth or obser-

vation time. Some other frequency and time variables are the following:

At kK, ft The time function sampling interval is At. A sample of the
time function x(t) is x(kAt), where k is an integer. The
total number of samples is K. The sampling frequency is
f, = 1/at. In most cases At and f, will be chosen equal to
AT and fs’ respectively.

AT,n, N,fS The autocorrelation function sampling interval is A+v. The
samples of the autocorrelation function are R(nAT), where
n is an integer going from 0 to N-1. The reciprocal of AT
is fs'

Af The frequency resolution of a spectral measurement (see sec-
tion 1.3). It is approximately equal to 1/NA-T.

B.,B The 1-db and 20-db bandwidths of a radiometer. The spectrum
is analyzed with resolution Af in the band Bl‘ The sampling

frequencies ft and fs are often chosen equal to ZBZO.

f A known combination of local oscillator frequencies.

Autocorrelation Functions

R(7) The true autocorrelation function of x(t).

R"(T) A statistical estimate of R{7) based upon unquantized or many-
bit samples of x(t).
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Symbol

p(r) or p_(7)

p"(7)

p'(r) or p.(7)
Py('T)

P}',(T)

GLOSSARY (continued)

Definition

The true normalized autocorrelation function; p(7) = R(7)/R(0).

A statistical estimate of p(r) based upon unquantized or many-

bit samples of x(t).
A statistical estimate of p(r) based upon one-bit samples of y(t).
The true normalized autocorrelation function of y(t).

A statistical estimate of py(-r) based upon one-bit samples of
y(t).

Power Spectra

The power spectrum is defined in section 1.2.

P(f)
P(f)

P(f)
p(f)
pl'(f)

p'(£)
p(f)
(D)

pyf)

&p'(f)

The true power spectrum of x(t).

A statistical estimate of P(f) based upon unquantized or many-
bit samples of x(t).

The expected value of P™f).
The true normalized power spectrum; p(f) = P(f)/R(0).

A statistical estimate of p(f) based upon many-bit or unquan-
tized samples of x(t).

A statistical estimate of p(f) based upon one-bit samples of y(t).
The expected value of pf) and p"(f).

The normalized spectral estimate produced by a one-bit auto-
correlation radiometer when its input is connected to a com-

parison noise source.

A normalized estimate of the receiver power transfer function,
G(f). It is the spectral estimate produced by a one-bit auto-
correlation radiometer when the input spectrum and receiver

noise spectrum are white.

The estimate of the difference spectrum that is determined by
a switched radiometer; 6p'(f) = p'(f) - p/(f)-
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GLOSSARY (continued)

Symbol Definition
Temperature
Ta(f) The power spectrum available at the antenna terminals
expressed in degrees Kelvin.
Tr(f) The receiver noise-temperature spectrum.
T(f) The total temperature spectrum referred to the receiver input.
T(f) = Ta(f) + Tr(f).
Tc(f) The spectrum of the comparison noise source.
Tav The frequency-averaged value of T{f). The average is weighted
with respect to the receiver power-~transfer function, G(f).
a av The frequency-averaged value of Ta(f)’
c av The frequency-averaged value of Tc(f) + Tr(f).
rav The frequency-averaged value of Tr(f).
8T The unbalance temperature; 6T __=T_ - T .
av av av c av

RMS Deviations

A o with two subscripts will be used to denote an rms deviation of a statistical esti-

mate. The first subscript will be a P, R, p or p, and indicates the variable to which

the rms deviation pertains. The second subscript will be a 1 or an m, and indicates
whether the statistical estimate is based upon one-bit or many-bit samples. Thus, for

example, o_, is the rms deviation of p'{f), the one-bit estimate of p(f). Statistical esti-

pl
mates of rms deviations will have a single subscript and a prime or double prime to
indicate whether one-bit or many-bit samples are referred to. For example, o-I')(f) is

a statistical estimate of o-pl(f).

Other Functions

wi(T) The function that is used to weight the autocorrelation function

(see section 2.2).

W(f) The spectral scanning or smoothing function. It is the Fourier
transform of w(7) (see Fig. 9).

G(f+fo) The receiver power-transfer function. The spectrum at the
clipper input, P(f), is equal to G(f+fo) times the input temper -
ature spectrum, T(f+fo).
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GLOSSARY (continued)
Symbol Definition

Special Symbols

x(t) A line over a variable indicates that the statistical average is
taken (see Eq. 1).

%
P (f) An asterisk on a spectrum indicates that it has been smoothed
and is repeated about integer multiples of the sampling fre-

quency. This operation is discussed in section 2.2.

TT(f) The one-bit autocorrelation radiometer produces a statistical
estimate of an input temperature spectrum such as T(f). The
statistical average or expected value of this estimate is equal
to TT(f). The relationship between T(f) and TT(f) is discussed
in section 4.2a. Under proper conditions such as a sufficiently

fast sampling rate, TT(f) is simply a smoothed version of T(f).
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I. INTRODUCTION

This report has three main divisions which will be outlined briefly.

1. In Sections I-III, a technique for the measurement of the power gpectrum and
autocorrelation function of a Gaussian random process is presented. This technique,
which will be referred to as "the one-bit autocorrelation method," has the property
that it is easily performed digitally; hence the accuracy and flexibility associated with
digital instrumentation is achieved. The technique is a multichannel one; that is,
many points on the spectrum and autocorrelation function can be determined at one time.
A limitation is that the analyzed bandwidth must be less than 10 mc for operation with
present-day digital logic elements.

2. The above-mentioned technique is applied, in Sections IV and V, to the problem
of the measurement of spectral lines in radio astronomy. In Section IV the composition
and theoretical performance of a practical radio astronomy system utilizing the one-bit
digital autocorrelation technique is presented. The design of components of this system
is discussed in Section V.

3. The system was constructed and extensive experimental results are given in
Sections VI-VIII. These results are from laboratory tests of the system, an attempt
to detect the galactic deuterium line, and an attempt to measure Zeeman splitting of
the 21-cm hydrogen line.

The reader who is interested in the radio astronomy aspects of this report may wish
to skip Sections II and III; the results are summarized in radio astronomy terms in Sec-
tion IV.

We shall now give some background material, a comparison of filter and autocorre-
lation methods of spectral measurement, a classification of spectral measurement prob-

lems, and finally, a brief description of the one-bit autocorrelation method.
1.1 STATISTICAL PRELIMINARIES

A brief presentation of some of the statistical techniques and terminology used in
this report will now be given. Some assumptions will be stated regarding the statis-
tical nature of the signals of interest. For an introduction to statistical communication
theory techniques, the reader is referred to Davenport and Root,1 or Bendai:.2

The type of signal that is of interest here is the random time function; that is, a
signal whose sources are so numerous, complicated, and unknown that exact prediction
or description of the time function is impossible. Our interest is in the study of aver-
ages of functions of the signal, in particular, the power spectrum, which is defined in
section 1.2.

A random variable, x, is the outcome of an experiment that (at least theoretically)

can be repeated many times and has a result that cannot be exactly predicted. The
flipping of a coin or the measurement of a noise signal at a given time are two such
experiments. The outcome of a particular experiment is called a sample of the random




variable; it is implied that there is a large number of samples (although many samples
may have the same value).

The random variable is described by a probability density function, p(x). The
statistical average (this will sometimes be called the "mean") of a random variable is

denoted by a bar over the quantity that is being averaged such as X. In terms of the

probability density function, the statistical average of x is given by

[+ e}
%= S x plx) dx. (1)
=00
In most signal-analysis cases the random variable is a function of a parameter,
such as frequency or time. Thus, there is an infinite number of random variables, one
for each value of the parameter. For each random variable there is a large number of
samples. This two-dimensional array of sample functions is called a random process.

The concept of a random process with time as the parameter is shown in Fig. 1.

For each value of time a random variable, x is defined. FEach random var-

to’ )
M, 0, e,

o] 1:0 o

ess can also be described as having an infinite number of sample functions, x(l)(t),

iable has an infinite number of samples, x The random proc-

x(z)(t), e x(°°)(t). (The superscripts will be dropped when they are not needed
for clarity.)

Statistical averages, such as X, » are taken vertically through the random-process
o

array, and may or may not be a function of time. Time averages such as

T
1
x(t) dt
T So

x(])(f) —

x(2) ) N

x (@) ()

Fig. 1. A random process.




are taken across the array, and may or may not depend on the sample function chosen.

It will be assumed that signals whose power spectra we wish to measure are

—

stationary and ergodic. By this it is meant that statistical averages such as )? ) x% ,
. o o

and 3(',:;}?,(;"; are independent of the time, to and are equal to the infinite time aver-
ages, which, in turn, are independent of the particular sample function. That is,
— .. a2 (T
xto = %‘1-{1; 3T S—T x(t) dt (2)
;‘? = lim 3= T 20 at (3)
0 T-w -T
— . a1 (T
Xtoxto+T = r}-lf; >T T x(t) x(t+7) dt. (4)

These assumptions imply that the power spectrum does not vary with time (at least over
the period of time during which measurements are made). This is the usual situation
in radio astronomy except in the case of solar noise.

Under the stationary and ergodic assumptions, the sample functions of the random
process have a convenient interpretation, each sample function is a "record" or length
of data obtained during different time intervals. The statistical average then is inter-

preted as the average result of an operation repeated on many records.

The quantity, X X4 is called the autocorrelation function of the signal. From
o

Eq. 4 we see that under the stationary and ergodic assumption the autocorrelation func-
tion can also be expressed as an infinite time average. Because of the stationary
assumption, X X, is not a function of to’ and the notation Rx(-r) or R(7) will be
oo
used to signify the autocorrelation function.
In greater detail, the autocorrelation function is the (statistical or infinite time)

average of the signal multiplied by a delayed replica of itself. RX(O) is simply the

mean square, xz, of the signal, while Rx(oo) is equal to the square of the mean, ?{'2.
It is easily shown that Rx(O) = Rx(-r) = Rx(—-r). The normalized autocorrelation function,

px(-r), is equal to R (-r)/Rx(O) and is always less than or equal to unity.

[\" ]

The variance, o_, of a random variable is a measure of its dispersion from its

»

mean. It is defined as

(x-%)° (5)

Q
i}

%% - 22, (6)

The positive square root of the variance is the rms deviation, LA The statistical




uncertainty, Ax' of a random variable is the rms deviation divided by the mean,

[+
a, ==X (7
X

X

As is often the case in the analysis of random signals, it will be assumed that the
signal has Gaussian statistics in the sense that the joint probability density function,
p(xt,xt+_r), is the bivariate Gaussian distribution,

2

2
1 X~ pr('r) tht+-r + xt+T

plxp,x ) = exp
27 R_(0) [1-p2(7)]1/2
X X

(8)
~2R,(0) [1—p;’;<ﬂ]

This assumption is often justified by the central limit theorem (see Bendatz) which
states that a random variable will have a Gaussian distribution if it is formed as the
sum of a large number of random variables of arbitrary probability distribution. This
is usually true in the mechanism that gives rise to the signals observed in radio astron-

omy.

1.2 DEFINITION OF THE POWER SPECTRUM

The power spectrum is defined in many ways that are dependent on: (a) the mathe-
matical rigor necessary in the context of the literature and application in which it is
discussed; (b) whether one wishes to have a single-~sided or double-sided power spec-
trum (positive and negative frequencies, with P(-f) = P(f}); (c) whether one wishes
P(f) Af or 2P(f) Af to be the power in the narrow bandwidth, Af.

In this report, the double-sided power spectrum will be used because it simplifies
some of the mathematical equations that are involved. The negative-frequency side of
the power spectrum is the mirror irhage of the positive-frequency side; in most cases
it need not be considered. In accordance with common use by radio astronomers and
physicists, P(f) Af (or P(-f) Af) will be taken to be the time-average power in the band-
width, Af, in the limit Af — 0 and the averaging time, T = . Thus, the total average
power, PT’ is given by

o0
PT = S‘o P(f) df (9)
or

1 oo}
PT =?§—w P(f) df. (10)

(If an impulse occurs at f = 0, half of its area should be considered to be at f > 0 for
evaluation of Eq. 9.)
The statements above are not a sufficiently precise definition of the power spectrum

because: (a) the relationship of P(f) to the time function, x(t), is not clear; (b) the two




limiting processes (Af- 0, T =) cause difficulty, for example, What happens in the
limit to the product, TAf?

A more precise definition of the power spectrum is obtained by defining P(f) as
twice the Fourier transform of the autocorrelation function, R(T), defined in the previous
section. Thus we have

[¢] »
P(f) = 2 S R(7) e 3277 g, (11)
—~00
R(r) = lim LST x(t) x(t+7) dT (12)
T=00 2T -T

The inverse Fourier transform relation gives

0
R(v) = SO P(f) cos 2w f~r df (13)

R(7) =-%- Sw p(f) eI 27T 41, (14)
-0

This definition of the power spectrum gives no intuitive feeling about the relation of
P(f) to power. We must prove, then, that this definition has the properties stated
above. Equations 9 and 10 are easily proved by setting v = 0 in Egs. 12, 13, and 14.
We find

R(0) = lim == T x%(t) at (15)
T=>c0 2T -T
o0
R(0)=S P(f) df. (16)
0

The right-hand side of Eq. 15 is identified as PT’ the total average power. Power is
used in a loose sense of the word; PT is the total average power dissipated in a 1-ohm
resistor if x(t) is the voltage across its terminals; otherwise a constant multiplier is
needed.

The proof that P(f) Af is the time-average power in the band Af, Af = 0and T - o
is not as direct. Suppose that x(t) is applied to a filter having a power transfer function,
G(f). It can be shown by using only Eqs. 11 and 12 that the output-power spectrum, Po(f),
is given by (see Davenport and Rootl)

P (f) = G(f) P(f). (17)

If G(f) is taken to be equal to unity for narrow bandwidths Af, centered at +f and -f,
and zero everywhere else, we find




o0
S‘ Po(f) df = P(f) Af, (18)
0

Af - 0. The left-hand side of Eq. 18 is simply the average power out of the
filter (with the use of Eqs. 15 and 16), and hence P(f) Af must be the power in
the bandwidth Af.

1.3 GENERAL FORM OF ESTIMATES OF THE POWER SPECTRUM

The power spectrum of a random signal cannot be exactly measured by any means
(even if the measurement apparatus has a perfect accuracy); the signal would have to
be available for infinite time. Thus, when the term "measurement of the power spec-
trum" is used, what is really meant is that a statistical estimate, P'(f), is measured.

The measured quantity, P'(f), is a sample function of a random process; its value

depends on the particular time segment of the random signal that is used for the meas-

urement. It is an estimate of P(f) in the sense that its statistical average, P'(f), is
equal to a function, P*(f), which approximates P(f). The statistical uncertainty of P'(f)
and the manner in which P*(f) approximates P(f) appear to be invariant to the partic-
ular spectral-measurement technique, and will now be briefly discussed.

The function, P*(f), approximates P(f) in the sense that it is a smoothed version of
P(f). It is approximately equal to the average value of P{f) in a bandwidth Af, centered
at f, ‘

] f+Af/2

P*(f)"'Ktv at)s P(f) df. (19)

The statistical uncertainty, Ap, of P'(f), will be given by an equation of the form

/ [po-p*0)
P () © NTAT

where T is the time interval during which the signal is used for the measurement, and

e is a numerical factor of nearly unity, the factor being dependent on the details of the

(20)

H

Ap(f) =

measurement.

Equations 19 and 20 are the basic uncertainty relations of spectral-measurement
theory, and appear to represent the best performance that can be obtained with any
measurement technique (see Grenander and Rosenblatt3). Note that as the frequency
resolution, Af, becomes small and thus makes P*(f) a better approximation of P(f),
the statistical uncertainty becomes higher [P!(f) is a worse estimate of P*(f)]. Opti-
mum values of Af, with the criterion of minimum mean-square error between P'(f)
and P(f) are given by Grenander and Rosenblatt.3al In practice, Af is usually chosen
somewhat narrower than the spectral features one wishes to examine and T is chosen,

if possible, to give the desired accuracy.




1.4 COMPARISON OF FILTER AND AUTOCORRELATION METHODS OF
SPECTRAL ANALYSIS

Two general methods have been used in the past to measure the power spectrum.
These are the filter method, illustrated in Fig. 2a and the autocorrelation method, illus-
trated in Fig. 2b. First, these two methods will be briefly discussed. Then, a filter-
method system that is equivalent to a general autocorrelation-method system will be
found.

This procedure serves two purposes: it helps to answer the question, "Which method
is best?"; and it makes it possible to achieve an intuitive understanding of the filter-
method system, which is not easily done for the autocorrelation-method system. There-
fore, it is often helpful to think of the autocorrelation-method system in terms of the
equivalent filter-method system.

The filter-method system of Fig. 2a is quite straightforward. The input sig-
nal is applied in parallel to a bank of N bandpass filters that have center fre-
quencies spaced by 6&f. The power transfer function of the ith bandpass filter
{(i=0 to N-1) is Gi(f) [impulse response, hi(t)], which has passbands centered
at =+iéf.
numbers, P'F(iéf), i =0 to N-1, which are estimates of the power spectrum, P(f),
at f = i6f.

The relation of the filter -method spectral estimate, P'F(i6f), to the input signal,

The N outputs of the filter bank are squared and averaged to give N

x(t), is given by

N BANDPASS | y: (1 v2 (1) N »
x () ——af FILTERS ' > N : 3 AVERAGERS =>PF('8F)
G: (f) - —?| SQUARERS | ? i=0, N-1
i i=0, N-1 i=0, N-1
i=0, N-1 T
T ey
v ()= [x(@)h, (-2 dz P;:(iSF)=Tfyi(f)dt
0 0
(a)
R' (nAZ)w (nAZ)
. n=0, N-1
N CHANNEL | R (nA®) | MULTIPLY BY SAMPLED P (i6f)
D — WEIGHTING ) DATA ke 0
x ) CORRELATOR ?_N_;_? FUNCTION FOURIER i=0, N-1
T n=t w (7) TRANSFORM

T
R' (hAD) = % fx(t)x(tJrnAt)df
0

Fig. 2.

(b)

P, (i6f) = 2A7R" (0) w (0)

N-1

+4A7 T R' (nADw (nA7) cos 2miSfnAz

n=1

Methods of spectral measurement.




L eTleT 2
P'F(iaf)=71,—S.o SO x(t) b, (At) dt| X (21)

which is the time average of the square of the convolution integral expression for the
filter output in terms of the input. It is assumed that x(t) is available for only a finite
interval, T, and that the filter input is zero outside of this interval. The relation of
P‘F(iéf) to the true spectrum is of the form of Egs. 19 and 20, where Af is simply the
filter bandwidth. )

The autocorrelation method of spectral analysis is based upon the expression (called
the Wiener -Khintchin theorem) giving the power spectrum as a Fourier transform of the
autocorrelation function, R(+). Indeed, this is the way we defined the power spectrum
in section 1.2 (Eq. 11). The autocorrelation function can be expressed as a time aver-
age of the signal multiplied by a delayed replica of itself,

R(7) = lim L‘YT x(t) x(t+7) dt (22)
T=rc0 2T -T

The operations indicated in Eqgs. 11 and 22 cannot be performed in practice; an infi-
nite segment of x(t) and an infinite amount of apparatus would be required. An estimate
of R(r) at a finite number of points, v = nA+, can be determined by a correlator that
computes

1 T
R'(nAT) =Tg0 x(t) x(t+na~) dt. (23)

A spectral estimate, Pk(iéf), can then be calculated as a modified Fourier transform
of R'(nAT).

N-1
P'A(iéf) = 2AT R'(0) w(0) + 4A~ Z R'(nAT) w(nAT) cos (2wisfnAT). (24)
n=1

The numbers, w(nA<s), which appear in Eq. 24 are samples of a weighting function,
w(71), which must be chosen; the choice is discussed in Section II. The weighting func-
tion must be even and have w(t) = 0 for v = NA~; its significance will soon become
apparent. In order to use all of the information contained in R!'(nA<T), & should be
chosen equal to 1/ [Z(N—I)A-r]. This follows from application of the Nyquist sampling
theorem; P'A(iSf) is a Fourier transform of a function bandlimited to (N-1)A~.

The relation of P'F(iaf) to the true power spectrum will again be of the form of
Egs. 19 and 20, where Af, the frequency resolution, is approximately equal to
1/[(N-1)A+]. The calculation of the exact relation between Pl.(i6f) and P(f) will be the
major topic of Section II. Our major concern now is to relate P'F(i6f) and Pk(iaf).

It is shown in Appendix A that P'A(iSf) will be equal to P'F(iéf) for any common input,




x(t), provided that the filter responses and the autocorrelation weighting function, w(r),
are related in a certain way. The only significant assumption that was required for this
proof is that the duration of the data, T, be much longer than the filter time constants
(or equivalently, NAT). This requirement must be satisfied in practice in order to obtain
a meaningful spectral estimate, and thus it is not an important restriction.

The required relation between the filter response and the autocorrelation weighting
function can be most easily stated in terms of Gi(f)' the power transfer function of the

ith filter and W(f), the Fourier transform of the weighting function.

o0
W(f) =2 SO w(7) cos 2nwiT dT. (25)

The relation is

o0
Gi(f) = z W(f—iﬁf—k‘fs) + W(f+i§f+kfs), (26)

k=-c0

where fs = l/A-r. This result is illustrated in Fig. 3; Gi(f) consists of narrow band-
pass regions, each having the shape of W(f), centered at +iéf, fs + i6f, Zfs + 18f, and
so forth.

It is thus obvious that the autocorrelation spectral measurement system has many
spurious responses. It can be seen that these spurious responses will have no effect

if the input-power spectrum is restricted (by prefiltering) so that

[+o}
g P(f') W({-f') df' = 0 for Ifl > fs/z. (27)

=00

G; ()
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TO BE ZERO QUTSIDE OF THIS INTERVAL

Fig. 3. Filter-array equivalent of the autocorrelation system.




This requirement, a necessary consequence of sampling of the autocorrelation function,
is, of course, not required with the filter -method system, since filters without spurious
response are easily constructed.

If the requirement of Eq. 27 is met, the terms in which k # 0 in Eq. 26 have no

effect, and an equivalent set of filter power transfer functions is given by

Gi(f) = W(f-isf) + W(f+isf). (28)

Furthermore, if we consider only positive frequencies not close to zero, we obtain

G,(f) ~ W(f-i5f). (29)

To summarize, we have shown that the estimation of N points on the autocorrela-
tion function (Eq. 23) followed by a modified Fourier transform (Eq. 24) is equivalent
to an N-filter array spectral measurement system if Eq. 26 is satisfied. Each method
estimates the spectrum over a range of frequencies, B = (N-1)6f = fS/Z, with 6f spacing
between points. If the autocorrelation method is used, the spectrum must be zero out-
side of this range.

Note that the Gi(f) that can be realized with practical filters is quite different from
the equivalent Gi(f) of an autocorrelation system (to the advantage of the filter system).
The restriction on W(f) is that it be the Fourier transform of a function, w(r), which
must be zero for v 2 NA~¥. This restriction makes it difficult to realize an equivalent
Gi(f) having half-power bandwidth, Af, narrower than 2/(NAT) = 28f (high spurious
lobes result). No such restriction between the bandwidth, Af, and the spacing, &f,
exists for the filter system.

In most filter-array spectrum analyzers, &f is equal to Af; that is, adjacent filters
overlap at the half-power points. This cannot be done with the autocorrelation method;
&f will be from 0.4 to 0.8 times Af, the value being dependent upon the spurious lobes
that can be tolerated. This closer spacing gives a more accurate representation of the
spectrum, but is wasteful in terms of the bandwidth analyzed, B = (N-1)6f, with a given
resolution, Af. For this reason, it appears that 2 autocorrelation points per equivalent

filter is a fairer comparison.

1.5 CHOICE OF THE SPECTRAL-MEASUREMENT TECHNIQUE

We have compared the filter and autocorrelation methods of spectral analysis on a
theoretical basis. The major result is that if we desire to estimate N points on the
spectrum during one time interval, we may use either an N filter array as in Fig. 2a
or a 2N point autocorrelation system as in Fig. 2b. The estimates of the power spec-
trum obtained by the two methods are equivalent; there is no theoretical advantage of
one method over the other.

Both methods of spectral analysis can be performed with both analog and
digital instrumentation as is indicated in Figs. 4 and 5. In addition, if digital

instrumentation is chosen, a choice must be made between performing the calculations
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Fig. 4. Analog and digital autocorrelation methods of spectral measurement.

in a general-purpose digital computer or in a special-purpose digital spectrum analyzer
or correlator.

The digital filter method4b shown in Fig. 5 deserves special mention because it is
not too well known. The procedure indicated in the block diagram simulates a single-
tuned circuit; the center frequency and Q are determined by e and B. The digital
simulation of any analog filter network is discussed by Tou.4 The digital filter method
will be compared with the digital autocorrelation method below.

A way of classifying spectral measurement problems into ranges where various
techniques are applicable is indicated in Fig. 6. The ordinate of the graph is N, the
number of significant points that are determined on the spectrum, and the abcissa is
the percentage error that can be tolerated in the measurement.

The error in a spectral measurement has two causes: (1) the unavoidable statistical
fluctuation resulting from finite duration of data; and (2) the error caused by equipment
inaccuracy and drift. The statistical fluctuation depends, through Eq. 20, on the
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frequency resolution-observation time product, TAf. The value of TAf that is required
for a given accuracy is plotted on the abscissa of Fig. 6.

The error caused by equipment inaccuracy and drift limits the range of application
of analog techniques, as is indicated in Fig. 6. These ranges are by no means rigidly
fixed; exceptions can be found. However, the line indicates the error level where the
analog instrumentation becomes exceedingly difficult.

The range of application of digital-computer spectral analysis is limited by the
amount of computer time that is required. The line that is drawn represents one hour
of computer time on a high-speed digital computer performing 104 multiplications and
104 additions in 1 second. It is interesting that the required computer time is not highly
dependent on whether the autocorrelation method or the filter method is programmed on
the computer. This will now be shown.

Examination of Fig. 4 reveals that one multiplication and one addition are required
per sample per point on the autocorrelation function. The sampling rate is 2B, and 2N
autocorrelation points are required for N spectrum points; thus 4NB multiplications
and additions per second of data are required. A similar analysis of the digital-filter
method illustrated in Fig. 5 indicates that three multiplications and three additions per
sample per point on the spectrum are required. This gives 6NB multiplications per
second of data. The number of seconds of data that is required is given by solving
Eq. 20 for T in terms of the statistical uncertainty, A_, and the resolution, Af. This
gives T = 4/(A;Af) in which the numerical factor e« has been assumed to be equal to 2.

We then find 16N2/ AIZ) and 24N2/ A}z) to be the total number of multiplications and addi-
tions required with the autocorrelation method and filter method, respectively. Because
of the square dependence on N and Ap’ the computer time increases very rapidly to the
left of the 1-hour line in Fig. 6.

Some other considerations concerning the choice of a spectral-analysis technique
are the following.

1. If analog instrumentation is used, the filter method is the one that can be more
easily instrumented, and, of course, it does not require the Fourier transform. The
bandpass filter, squarer, and averager can be realized with less cost and complexity
than the delay, multiplier, and averager required for the autocorrelation system. Ana-
log correlation may be applicable to direct computation of autocorrelation functions and
crosscorrelation functions, but not to spectral analysis.

2. Analog instrumentation is not suited for spectral analysis at very low frequencies
(say, below 1 cps), although magnetic tape speed-up techniques can sometimes be used
to advantage.

3. Digital instrumentation cannot be used if very large bandwidths are involved. At
the present time, it is very difficult to digitally process signals having greater than
10-mc bandwidth.

4. If digital instrumentation, or a computer, is used for the spectral analysis, there
seems to be little difference between the autocorrelation and the filter methods if the
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Fig. 7. The 1-bit autocorrelation method of spectral analysis.
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same degree of quantization (the number of bits per sample) can be used. This is
evident from the computation of the required number of multiplications and additions.
If the autocorrelation method is used, however, only 1 bit per sample is necessary, and
the multiplications and additions can be performed very easily. This method will now

be discussed.

1.6 THE ONE-BIT AUTOCORRELATION METHOD OF SPECTRAL ANALYSIS

The one-bit autocorrelation method of spectral analysis as used here is presented
with explanatory notes in Fig. 7. Most of the rest of this report will be concerned with the
analysis of this system, its application to radio astronomy, and the experimental results
obtained with this system.

The key "clipping correction" equation given in Fig. 7 was derived by Van Vleck,5
in 1943. At that time, before the era of digital data processing, the present use of this
relation was not foreseen; it was then simply a means of finding the correlation function
at the output of a clipper when the input was Gaussian noise. Its use for the measure-
ment of correlation functions has been noted by Faran and Hills,6 Kaiser and Angell,7
and Greene.8 The principal contributions of the present report are: the investigation
of the mean and statistical uncertainty (Eq. 20) of a spectral estimate formed as indi-
cated in Fig. 7, and the application of this technique to the measurement of spectral
lines in radio astronomy.

It should be understood that the spectral-measurement technique as outlined in Fig. 7

Table I. Comparison of two one-bit methods of autocorrelation-function

measurement.
A1B Method E1B Method
(Fig. 7) (Appendix B)
Restrictions on Must have Gaussian Must be bounded by
signal, x(t) statistics +A
Differences in 1) Clipping level, 1) Clipping level is ran-
procedure 0 volt domly varied from
-A to +A
2) SIN correction of 2) No correction

one-bit autocor-
relation function

Mean of result Normalized autocor - Unnormalized autocor -
relation function relation function

RMS deviation Increased by less than A preliminary analysis

of result com- n/2 indicates that increase

pared with rms depends on

deviation of 2,73

many -bit A°/ x

autocorrelation
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applies only to time functions with Gaussian statistics (as defined by Eq. 8). Further-
more, only a normalized autocorrelation function and a normalized (to have unit area)
power spectrum are determined. The normalization can be removed by the measure-
ment of an additional scale factor (such as [ 8° P(f) df). These restrictions do not ham-
per the use of the system for the measurement of spectral lines in radio astronomy.

Recently, some remarkable work, which removes both of the above-mentioned
restrictions, has been done in Europe by Veltmann and Kwackernaak,9 and by Jespers,
Chu, and Fet:tweis.10 These authors prove a theorem that allows a 1-bit correlator to
measure the (unnormalized) autocorrelation function of any bounded time function. The
proof of the theorem and the measurement procedure are summarized in Appendix B.
A comparison of this procedure with that illustrated in Fig. 7 is outlined in Table I.

It is suggested (not too seriously) that the above-mentioned method of measurement
of autocorrelation functions be referred to as the E1B (European 1-bit) method, and the
procedure in Fig. 7 as the A1B (American 1-bit) method. Any hybrid of the two pro-
cedures could be called the MA1B (mid-Atlantic 1-bit or modified American 1-bit)
method.
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II. THE AUTOCORRELATION FUNCTION METHOD OF
MEASURING POWER SPECTRA

2.1 INTRODUCTION

The theory of measuring the power spectrum through the use of the autocorrelation
function will now be presented. We shall start with the defining equations of the power
spectrum, P(f), of a time function, x(t):

o0 .
P(f) = 2 51 R(r) e 277 4, (31)
—00
1 T
R(T) = lim 2T x(t) x(t+v) dt (32)
T=+00 -

If these equations are examined with the thought of measuring P(f) by directly per-
forming the indicated operations, we reach the following conclusions.

1. In practice, the time function is available for only a finite time interval, and thus
the limits on v and t cannot be infinite as in Eqé. 31 and 32. Both the time function and
the autocorrelation function must be truncated.

2. If the operation of Eq. 32 is performed by a finite number of multipliers and inte-
grators, then v cannot assume a continuous range of values. The autocorrelation funé-
tion, R(T), must be sampled; that is, it will be measured only for T = nA+, where n is
an integer between 0 and N-1.

3. If digital processing is used, two more modifications must be made. The time
function will be sampled periodically and will give samples x(kAt), where k is an integer
between 1 and (K+N), the total number of samples. Each of these samples must be
quantized. If its amplitude falls in a certain interval (say, from X~ A/f2 to Xt A/2)
a discrete value (xm) is assigned to it. It will be shown in Section III that the quantiza-
tion can be done extremely coarsely; just two intervals, x(kAt) < 0 and x(kAt) > 0, can
be used with little effect on the spectral measurement.

These considerations lead us to define the following estimates of the power spectrum
and autocorrelation function,

00

P"(f) = 2A7T z R"(nA7) wnArt) e 2T nAT (33)
n=-oo

R"(nAT) slfi x(kAt) x(kAt+]|n| A7) (34)
k=1

The function, w(nAT), is an even function of n, chosen by the observer, which is zero
for Inl = N, and has w(0) = 1. It is included in the definition as a convenient method

of handling the truncation of the autocorrelation function measurement; R"(nA7) need
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not be known for |nl = N. The choice of w(nAT) will be discussed in section 2.2b.

The estimates given by Egs. 33 and 34 contain all of the modifications (sampling and
truncation of the time function and autocorrelation function) discussed above except for
quantization of samples which will be discussed in Section III. We shall call these esti-
mates the many-bit estimates (denoted by a double prime) as contrasted with the one-
bit estimates (denoted by a single prime) in Section III.

The main objective now will be to relate the many-bit estimates, P"(f) and R"(nAT),
to the true values, P(f) and R(nAT). Many of the results will be applicable to the dis-
cussion of the one-bit estimates; other results were found for the sake of comparison
with the one-bit results.

It is assumed that x(t) is a random signal having Gaussian statistics. The estimates
P"(f) and R"(nA7) are therefore random variables, since they are based on time aver-
ages (over a finite interval) of functions of x(t). The particular values of P"(f) and
R(nA7+) depend on the particular finite-time segment of x(t) on which they are based.

The mean and variance of P"(f) and R"(f), for our purposes, describe their prop-
erties as estimates of P(f) and R(nAv). The mean, R"(nAT), of R"(nAT), is easily
found to be

R" (nA-r =

m‘[H

K
Z x(kAt) x(kAt+in]| AT) (35)

R"(nAT) = R(nAT). (36)

Here we have made use of the fact that the statistical average of x(kAt) x(kAt+Inl|A7T) is
simply R(nAr). R"(nAr) is called an unbiased estimate of R(nAr).
The mean of P"(f) is also easily found by taking the statistical average of both sides
of Eq. 33 and using Eq. 36. Defining P*(f) as the mean of P"(f), we find
P¥(f) = PP(D) = 247 Z R(nAT) w(naT) e d 2TIRAT,

n=-oo

(37)

If it were not for the sampling and truncation of R(71), P*(f) would simply be equal to
P(f), and hence P"(f) would be an unbiased estimate of P(f). The relationship of P*(f)
to P(f) is discussed below. The variances of P"(f) and R"(nA7t) will also be found.

Much of the material presented here is contained in a different form in a book by
Blackman and Tukey. 11 For the sake of completeness this material has been included
here. An extensive bibliography of past work in this field is listed in this book.

2.2 MEAN OF THE SPECTRAL ESTIMATE
a. Relation of P*(f) to P(f)

3
It has been shown that the mean, P (f), of the many-bit spectral estimate is given

(Eq. 37) as the Fourier transform of the truncated and sampled autocorrelation function.
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In Section III we shall find that the mean of the one-bit spectral estimate is equal to
P*(f) divided by a normalization factor. It is thus quite important that the relationship
between P*(f), the quantity that we estimate, and P{f), the true power spectrum, be well
understood.

This relationship is found by substituting the following Fourier transform relations
for R(nAr) and w(nA+) in Eq. 37.

00 .
Rman =1 {7 p(a) I 2T0PAT 4, (38)
—00

o0 .
w(nAT) = S W(p) &) 2TRDAT 45 (39)
-0

The result is

o0
o0
P = z S P(a) W(t-a-if ) de, (40)
—00

i=-oc0
where fS = 1/A7, and we have made use of the relation

0 o0
AT z el ZmnaT(atp-D) 2 Blatp-THf ).

n=-o i=-o00

Equation 40 not only specifies P*(f) in terms of P({f), but it should also be con-
sidered as the general definition of the * operator which will be used in this report.
This operation is described in Fig. 8. Two modifications of P(f) are involved; the first
is a consequence of truncation of the autocorrelation function and the second is a conse-
quence of sampling of the autocorrelation function:

1. The spectrum is convolved with W(f), a narrow-spike function of bandwidth,
Af = fs/N. This convolution should be considered as a smoothing or scanning operation.
Features in the spectrum narrower than Af are smoothed out.

2. The smoothed spectrum is repeated periodically about integer multiples of fs'

If the convolution of P(f) and W(f) is zero for If| > fs/z, then Eq. 40 simplifies to

* 00
P (f) = g P(a) W(a-f) da Ifl <f /2.. (41)

In practice fs will be chosen to be twice the frequency at which the smoothed spectrum
is 20 db below its midband value. In this case, little error (<1 per cent in the midband
region) occurs because of sampling, and P*(f) can be considered as a smoothed version
of P(f). If P(f) does not change much in a band of width Af, then

P(f) = P(f). (42)
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E 3
function. The quantity P (f) is the mean of a spectral
measurement performed with an autocorrelation system.

£
The relationship between P (f) and P(f) should be quite familiar to those versed in

the theory of antenna arrays (or multiple-slit diffraction theory). The function
e ]

z W(f—ifs) is analogous to the antenna field pattern of a line array of N point sources
i=—o0

with amplitudes weighted by w(nAr).

b. The Weighting Function, w(nAT)

The shape of the spectral scanning function, W(f), is determined by the choice of
its Fourier transform, the autocorrelation weighting function, w(nA~). The weighting
function can be arbitrarily chosen except for the following restrictions:

w(0) = 1= S'w wi(f) df (43)
w(nAT) = w(-nA7T) (44)
w(nAT) = 0 for Inl = N. (45)

The choice of w(nAT) is usually a compromise between obtaining a W(f) with a narrow
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Fig. 9. Three scanning functions that result from the uniform and

cosine weighting functions (after Blackman and Tukey1 l).

The broken lines indicate that W(f) is negative. See also
Table II.

main lobe and high spurious lobes, or a W(f) with a broadened main lobe and low spu-
rious lobes.

This problem is a common one in antenna theory and optics. The "optimum" w(nA+)
obviously depends on some exact specification of the performance of W(f). This crite-
rion will usually depend on the particular measurement that is being made. Some
weighting functions that appear to be optimum in some sense are: the uniform weighting
function (to be discussed below) which gives a narrow main lobe; the binomial weighting
function (Krauslz) which gives no spurious lobes; and the Tchebycheff weighting function
(see Dolph13) which gives equal spurious lobes.

It appears that little can be gained by making a very careful choice of w(nArT).
Blackman and Tukey11 describe five weighting functions; three of these should
be adequate for most applications and are given in Table II and Fig. 9. The
cos weighting function appears to be a good compromise for most spectral-line
observations in radio astronomy; the uniform weighting function gives sharper
resolution, whereas the Blackman weighting function gives low (-29 db) spurious
lobes.
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c. Some Useful Properties of P*(f)

3
Some useful relations between P (f) and R(nAT) can be obtained by using conven-

tional Fourier techniques. These relations are all derived from Eq. 37:

00
PH() = 21 Z R(nAT) w(naT) e 3 2T RAT,

n=-oo

This equation, with P*(f) and R(nA~r) replaced by different quantities, will often occur,
and hence, the results of this section will also apply to the following quantities which
replace P*(f) and R(nAr):

P"(f) and R"(nAt) The many-bit estimates of P*(f) and R(nAT)

p"(f) and p"(nAT) Normalized many-bit estimates that will be discussed below

p*(f) and p(nAT) Normalized quantities analogous to P*(f) and R(nAT)

p'(f) and p'(nAT) Normalized one-bit estimates that will be defined in Section III.

If Eq. 37 is multiplied by e’ 2 kAT and the result is integrated from zero to fs/z,
we find
fs/z «
R(nAT) w(nAT) = g P (f) cos 2nfnAT d. (46)
0

This is analogous to the inverse transform relationship (Eq. 14) between R(T1) and P(f).
Setting n =0 in Eq. 46 and T =0 in Eq. 14 gives

£ /2
R(0) = S " p¥ey at (47)
0
and

0
R(0) = S‘o P(f) df, (48)

where R(0) is the total time average power.

The Parseval theorem for P*(f) can be derived by substituting Eq. 37 for one P*(f)

f /2
in the quantity fos P*(f) . P*(f) df. The result is easily recognized if Eq. 46 is used.

The result is

£./2 %, 12 N 2 2
S\ s [PT()]° df = 2a~ Z R™(nAT) w (nAT) (49)
0

n=-oo

which is sometimes useful.

2.3 COVARIANCES OF MANY-BIT ESTIMATES OF THE AUTOCORRELATION
FUNCTION AND POWER SPECTRUM

We shall examine the covariances tr%,m(fl,fz) and cam(n,m) of estimates P"(f) and
R"(nA~) (defined in Egs. 33 and 34), of the power spectrum and autocorrelation function,
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respectively. These estimates are based on many-bit (or unquantized) samples of the
time function as opposed to estimates based on one-bit samples that are the major topic
of this report. The calculations of the covariances in the many-bit case are included
for the sake of comparison. The following discussion applies to both many-bit and one-
bit cases.

a. Definitions: Relation of the Spectral Covariance to the Autocorrelation
Covariance

The covariance of the power spectrum estimate is defined as

o5 (£).8,) = [Pr())-P (£ ][Pn(c,)-P¥(£,)] (50)
62 (£..£,) = P"(f,) P"(f,) - P (f,) P (f.). (51)
Pm'172 1 2 1 2

A special case arises when f = f = f and the covariance becomes the variance, cri;m(f).
The positive square root of the varlance is the rms deviation, ¢ “pm (f). The variance
and rms deviation specify the way in which P"(f) is likely to vary from its mean, P (f).
The covariance also specifies how the statistical error at one frequency, fl’ is corre-
lated with the statistical error at another frequency, fz’

The definition of the autocorrelation covariance is quite similar.

o'sz(n,m) = [R"(nA7)-R(naT)][R" (nAT)-R(naT)] (52)

] In(n,m) = R"(nAT) R"(nAT) - R(nAT) R(nAT) (53)

and the meaning of the autocorrelation variance and rms deviation follow accordingly.
The spectral covariance or variance can be expressed in terms of the autocorrelation
covariance by substitution of Eqs. 33 and 37 in Eq. 51. This gives

-j2w At(nf,+mf,)
o2, (££,) = 4a7° Z Z _(n,m) winaT) wimar) e 12 (54)

n=-oc0 n=-oo

Our first step will be to calculate the autocorrelation covariance. This is not only
needed for the calculation of the spectral covariance, but is also of interest on its own
accord.

Note that the autocorrelation covariance is required to calculate the spectral vari-
ance or covariance; the autocorrelation variance is not sufficient. The integrated (over
frequency) spectral variance can be expressed in terms of the autocorrelation variance
summed over the time index, n. This relation is found by integrating both sides of
Eq. 54 (with f, =f,) from 0 to fs/z. The result is
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£ /2
SOS af,m(fl) df, = 247 Z cém(n) w2 (nAT). (55)

=-00

b. Results of the Autocorrelation Covariance Calculation

The covariance, o-sz(n,m), of the many-bit autocorrelation function estimate is cal-
culated in Appendix C; the results will be discussed here.

The covariance, expressed in terms of the autocorrelation function, is found to be

K
cgm(n,m) =—Il<— Z [R(iAt+ InlAT-Im|AT) R(iAt) + R(iAt+ Inl A7) R(iAt-Im | AT)]. (56)
i=-K

A plot of a typical autocorrelation function and its rms deviation, o'Rm(n), is given in
Fig. 10. '

It is informative to investigate the autocorrelation variance (n=m) in two limiting
cases:
Case 1

Suppose that At is large enough so that

R(iAt) = 0 for i #0. (57)

Equation 56 then reduces to

) R%(0) + R%(nAT)
"Rm{?) = K

(58)

The condition of Eq. 57 implies that successive products, x(kAt) x(kAt+InATl), which
go into the estimate of the autocorrelation function, are linearly independent. There
are K such products and the form of Eq. 58 is a familiar one in statistical estimation
problems.

In order to minimize the variance, K should be made as large as possible. If the
duration, T, of the data is fixed, then the only recourse is to reduce At = T/K. As At
is reduced, a point will be reached where Eq. 57 is not satisfied. The minimum value
of At which satisfies Eq. 57 is equal to 1/2B if x(t) has a rectangular power spectrum
extending from -B to B, and if AT is set equal to 1/2B. The variance at this value of
At is

) R2(0) + R%(naT)
"Rm" = 2BT , (59)

where R(nATt) = 0, n # 0 for the rectangular spectrum with ATt = 1/2B.
The next example will illustrate the point that the variance cannot be reduced further
by reduction of At beyond the point required by Eq. 57.
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R(T) = R(0) ¢°¥BT
----- R(T) % 6, (T)

(aram(o) = 2, R(0)

R(0) = BR,W/2

20a(T) = _R(0)

JTET
T>>1/2¥B
172'“3 - _“"_“T --------------- T
P(f) = Po/[1+ (f/B)l]
~=--- P(f)% Tpy(r)
20p5(0) = 2°/2 By 20pn(f) = 2 P(f)  £>>4f

I_ Taf l JTar

-
S« ——— =y - -
-—————- -

AL b

Fig. 10. An autocorrelation function and its transform, the power

spectrum. The form of the rms deviation is indicated.
Note that apm(f) is proportional to P(f) (except near

f = 0), whereas R m(-r) is nearly constant.

Case 2

Suppose that At - 0 and K = « in such a manner that KAt = T is constant. The
case of continuous data (analog correlation) is approached and Eq. 56 (with n = m)
becomes

2 1 (T .2
rm® =F o [R°(t)+R(t+nAT) R(t-nAT)] dt. (60)
If again we take the case of a rectangular spectrum between -B and B, Eq. 60

gives
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) R2(0) + R2(0) (sin 47BnAT)/(47BnAr)
"R BT : (61)

This result, with At = 1/2B, agrees exactly with Eq. 59. Thus, reducing the time-
function sampling interval At from 1/2B to 0 has had no effect on o";m(n) for the case
of a rectangular spectrum.

Examinations of Egs. C.8 and C. 11 in Appendix C give more general results. These
equations show that both the autocorrelation variance and the spectral variance do not
change for values of At less than 1/2B if P(f) = 0 for f = B.

c. Results of the Spectral Covariance Calculation

The spectral covariance, cr%,m(fl,fz), is calculated in Appendix C with the following
result.

o5 (1,8, =~%—§: P2(f) Wt+,) [W(E+,) + W(E-£,)] df. (62)
It has been assumed that: (a) the signal has Gaussian statistics; (b) both P{f)
and W(f) are smooth over frequency bands of width 1/T; (c) the spectrum smoothed
by [or convolved with] W(f) is zero for frequencies greater than B; (d) both the
time-function sampling interval, At, and the autocorrelation-function sampling inter-
val, Ar, have been chosen equal to 1/2B; and (e) Eq. 62 is valid only for lfll
and Ile less than B.

The manner in which the spectral estimate covaries is observed in Eq. 62. If f 1 and
f2 are such that W(f+f1) and W(f;tfz) do not overlap, then U%’m(fl’fz) = 0. In other
words, the statistical errors at two frequencies separated by more than Af, the band-
width of W(f), are uncorrelated. This result might have been expected from the analogy
with the filter-array spectrum analyzer discussed in Section I.

The spectral variance (f 1 =fz) can be put in a simpler form if some further approxi-

mations are made. It can be seen that at fl = f2 = 0 the variance becomes

o0
ai’;mw) = % g P2(f) W2(6) daf, (63)

—00

while, for f1 = f2 » Af, we obtain
o2 (£ )=—1—§°° P2(f) Wo(f+£,) df | (64)
Pt T ) 1) ot

In the following discussion we shall assume that fl is positive and not close to zero so
that Eq. 64 applies.

If the spectrum is smooth over bands of width Af, then P{(f) can be taken out from
under the integral sign in Eq. 64 to give
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P2(t))

o0
u-;m(fl)= - S w2(e") af, (65)
~00

where a change of variable, f' = f +f 1’ has been made. The integral depends only on
the weighting function w(r) and has dimensions of a reciprocal bandwidth. It is, there-~

fore, convenient to define a dimensionless parameter, e, with the property that

o0 >}
L= g wa(e) af' = g w?(7) dr, (66)
—00 -0
where Af is the half-power bandwidth of W(f). The equality in Eq. 66 follows from
Parseval's theorem for Fourier transforms. It should be remembered that W(f) must
have unit area as specified by Eq. 43. '
The numerical factor, e, will be of the order of unity and is specified for various

weighting functions in Table II. If W(f) is a rectangular function of width Af and height
1/Af, then @ = 1. The rms deviation of the spectral measurement can now be put in the

familiar form,

a

TAf

P(f). (67)

aPm(f) =

The appearances of a typical spectrum and its rms deviation are sketched in Fig. 10.

2.4 NORMALIZED, MANY-BIT ESTIMATES OF THE SPECTRUM AND
AUTOCORRELATION FUNCTION

[Reminder concerning notation: A p denotes a normalized autocorrelation function; a

lower-case p denotes a normalized power spectrum; a double prime or subscript m
denotes a quantity determined from many-bit samples; a single prime or subscript 1
denotes a quantity obtained from one-bit samples.]

The one-~bit method of spectral analysis produces a spectral estimate, p'(f), and an
autocorrelation function estimate, p'(nAT), which are (unavoidably) normalized so that

p'(0) = 1 (68)

and
£ /2
g ST prf) df = 1. (69)
0

In order to compare the many-bit results here with the one-bit results in Section III, the
many-bit estimates must be similarly normalized. A computer-simulated, experimental
comparison of normalized many-bit estimates with one-bit estimates is given in
Section VI, and the results in Section II will be used there.

It is important to note that p'(0) has no statistical fluctuation; it is constrained to
equal unity. (This is more stringent than having F(Tn = 1.} The variance, o-ﬁl(O), must
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be zero. A quantity derived from many-bit samples that has the same property is

R"(nAT)

p"(nAT) = “R"(0) (70)

where R"(nAt) is defined in Eq. 34. Note that R"(nAT) has been divided by R"(0), a
random variable, and not by R(0), which is constant (but unknown). If p"(nAT) had been
defined as R"(nAT)/R(0), only trivial modifications of previous results would be required.
However, this definition does not give a p"(nAT) that is analogous to p'(nAT).

The normalized many-bit power -spectrum estimate, p"(f), is similarly defined as
P"(f)/R"(0). The definition of P"(f) (Eq. 33) may be used to give

[ee]

p"(f) = 2A7 Z p"(nAT) winaT) e I 2TEDAT (71)
n=-o
This definition will give (see section 2.2c)
fs/z
S‘ p"(f) df = 1 (72)
0

analogously with Eq. 69.

Our main purpose now is to find the mean and variance of p"(nATt) and p"(f). The
calculation of the mean or variance of the quotient of two dependent random variables
is a difficult problem. A drastic simplification results, however, if the denominator
random variable R"(0) has a random fluctuation that is small compared with its mean.
This simplification will now be used.

a. Mean and Variance of the Normalized Autocorrelation Estimate

The mean and variance of p"(nAt) = R"(nA1)/R"(0) can be found by expanding R"(nAT)
and R"(0) as

R*(nAT) = R(nAT) + R(0) €(n), (73)

where €(n) is a small [e(n)« 1] random variable. It can be seen by solving Eq. 73 for
€(n) that

€(n) = 0 (74)
2

—_— T {n,m)

€(n) €(m) = Rm_~ = (75)

r2(0)

The requirement €(n)« 1 is met by ensuring that the observation time, T, is long enough
so that o’Rm(n) is much less than R(0). This must be true in practice if the estimate of
R"(nAT) is to be at all accurate.

The normalized autocorrelation function estimate, p"(nAT), can then be written
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R(nAT) + R(0) €(n)
p"(nAT) = . (76)
R(0) + R(0) €(0)

Since €(n) « 1 (including n=0), Eq. 76 can be expanded, and terms of higher order than
first in €(n) or €(0) be dropped to give

p"(nAT) = p(nAT) - p{nAT) €(0) + €(n). (77)

The mean can now be found:

p"(nAT) = p(nAT), (78)
and the covariance, o'im(n,m), can be expressed as
crim(n,m) = [p"(na7)-p(naT)][p"(mAT)-p(mAT)] (79)

= €(n) €(m) + GZ(O) p(naT) p(mAT) - €(n) €(0) p(mAT) - €(m) €(0) p(naT)
(80)

The terms €(n) €(m) (in which n or m may be zero) in Eq. 80 are expressed in
terms of o-%{m(n,m) by Eq. 75. This quantity is given by Eq. 56 and substitution in
Eq. 75 gives

K
€(n) e(m)=—11-<— Z [p(iat+inlAr-ImlAT) p(iaT) + pliat+ Inl AT) p(iat-ImlAT)]. (81)
i=—K

Equations 80 and 81 specify the covariance of the normalized, many-bit estimate of
the autocorrelation function. A feeling for this result can be obtained by substitution in
Eq. 80 of an approximate form of Eq. 81. This approximate form is valid for At large
enough so that successive samples are independent (as discussed in connection with
Eq. 58) and is

p(InlAT-1m| A7) + p(nAT) p(mAT)
€n) €(m) = = :

Substitution of Eq. 81 in Eq. 80 gives a simple result for the variance (n=m).

) 1 - pZ(na)
vpm(n) ="Kk (82)

This result should be compared with Eq. 58; this gives u'sz(n) with the same approxi-
mations. The major result has been the reduction of the variance near n = 0, as would
be expected.

b. Mean and Variance of the Normalized Spectral Estimate

The mean of the spectral estimate is found by taking the mean of both sides of Eq. 71
and using Eq. 78. This mean will be denoted p (f), and is given by
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00

R(nAT) .
p (f) = p"() = 2AT z T naq) emi2minAT (83)
= R(0)
n=-oo
P*(f)
= (84)
R(0)
P () P(£)
_ / i} , (85)
f /2 00
S " p¥g) ar g P(f) df
0 0

Here, Eq. 37 has been used to give Eq. 84 and Eqs. 47 and 48 have been used to give
Eq. 85. P*(f) is the smoothed spectrum discussed in section 2.2. The mean of p"(f)
thus is the smoothed spectrum normalized to have unit area in the range O-fs /2.

The spectral variance or covariance can be calculated in a straightforward manner
through the use of Eq. 54 which relates the spectral variance or covariance to the auto-
correlation covariance. The autocorrelation covariance for the normalized estimate is
given by Eqs. 80 and 81. Combination of these equations gives a very long expression
for the spectral variance. This will not be presented in this report, in view of its com-
plexity and minor importance. A heuristic argument that gives an approximate, but
simple, expression for the spectral variance will be given below.

Suppose that we consider the normalized spectrum to be of uniform height, 1/b, over
a bandwidth, b. The effect of constraining the spectral estimate to have unit area is then
equivalent to requiring that the average height of the spectrum be 1/b, its true value.
This is analogous to correcting a set of measured points so that their average value is
equal to the true value. In this case (see Kenney and Keeping,14 Sec. 8.7) the variance
is reduced by 1 - 1/N, where N is the number of independent points. In section 2.2 it
was shown that points on the spectrum spaced Af apart are independent; thus N = b/Af.
The rms deviation, cpm(f 1), of the normalized spectral estimate then becomes

o’pm(fl) = ;Af -p(f) - N1 = Af/b. (86)

Here, Eq. 67 has been used for the rms deviation before normalization. This result
approximates the result of a formal derivation by using Eqgs. 54, 80, and 81.
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III. THE ONE-BIT METHOD OF COMPUTING
AUTOCORRELATION FUNCTIONS

3.1 INTRODUCTION

The theory of estimating the power spectrum through the use of a finite number of
samples, K, of the input signal x(t) was presented in Section II. This theory would be
sufficient if analog techniques or very finely quantized digital techniques were used to
compute an estimate of the autocorrelation function. The analog techniques are not usable
for high-sensitivity spectral-line analysis in radio astronomy, because of the lack of
accuracy. (As stated in section 1.5, if accuracy requirements permit the use of analog
instrumentation, then the conventional bandpass-filter method of spectral analysis is
preferable.)

Many-bit digital techniques are unwieldy for most radio-astronomy applications,
because of the large number of operations that must be performed. In section 1.5 it was
shown that 16N2 /Apz is the total number of multiplications required for the estimation
of N points on the spectrum with an accuracy of 100 Ap per cent. For the deuterium-

5 and N = 8 which results in 10'% multiplications. A typical

line experiment, Ap =3 X 10~
high-speed digital computer performs 104 many-bit multiplications per second, and thus
approximately four years of computer time would be required. If one-bit multiplications
could be used, this computer time could be reduced by a factor of 10. Of greater sig-
nificance is the fact that a special-purpose one-bit digital-correlation computer can be
built for approximately 1/10 the cost of a similar many-bit machine. The cost of a one-
bit digital correlator is roughly $1000 per point on the autocorrelation function (or,
according to the discussion in section 1.4, $2000 per point on the spectrum). A one-bit
digital correlator, capable of measuring 21 points on the autocorrelation function was
built for the deuterium-line experiment; the experimental results will be discussed in
this report.

The term, "many-bit autocorrelation," needs further explanation. By this, we mean
that the quantization levels are so small that the quantization error can be disregarded.
This is usually the case in digital computers in which the usual word lengths of 20 bits,

or more, allow the quantization error to be 10—6

or less of the maximum value of the
signal.

A general relationship between quantization error and the error in a spectrum meas-
urement does not seem to be known. At first thought, one might think that to measure
the power spectrum with an accuracy of X per cent, a quantization error of less than
X per cent is required. This is not true because the spectral estimate is based on an
average computed from many samples, and the quantization error tends to average out.
Kaiser and Ang;ell7 have measured autocorrelation functions with 8, 3, and 1 bits per
sample with surprisingly little difference in the results.

The main spectral analysis procedure discussed in this report is one in which quan-
tization is performed with one bit per sample, and a correction is applied to the resulting
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autocorrelation function estimate; the procedure is illustrated in Fig. 7. This method
is based on a theorem of Van Vleck. The theorem is stated as follows:

Suppose that x(t) is a sample function of a Gaussian random process with zero mean,
and y(t) is the function formed by infinite clipping of x(t). That is,

y(t) =1 when x(t) > 0
(87)
y(t) = -1 when x(t)< 0.
Then the normalized autocorrelation functions of x(t) and y(t) are related by
(t) = sin| Zp_() (88)
Px\Th = 2Py ’

For completeness, a derivation of this equation will be given in section 3.2; some of
the steps in the derivation will also be useful for other work.

Equation 88 is valid for the true normalized autocorrelation functions, px(-r) and
py(-r), which cannot be measured from a finite number of samples of x(t) or y(t). An
estimate of py(-r) can be defined as P;’(T)’ with

K
pL (™) ETI{— Z y(kAt) y(kAt+T). (89)
k=1

Equation 89 describes the function performed by a one-bit digital correlator. An esti-
mate of px(-r) is defined as

pLl7) = sin[% Pl T)]. (90)

The problem now is to find the mean and variance of p}'{(‘r). This is not easily
computed, because of the complicated manner in which p)'{(-r) is related to x(t) through
Egs. 87, 89, and 90. It has only been possible to calculate the mean and variance in
the case in which successive products, y(kAt) y(kAt+T), in the summation of Eq. 89 are
statistically independent. In practice, this will be approximately the case. If At is
chosen so small that successive products are dependent, then some of the data proc-
essing is redundant. The case of independent successive products is analogous to the
special case examined in Section II concerning many-bit samples (see Egs. 55 and 56).

An estimate of the normalized power spectrum will be defined as a weighted Fourier
transform of samples of p;{('r) in a manner similar to that used in Eq. 33. This esti-
mate will be discussed here.

It should be remembered that Eq. 88 is true only for certain classes of functions.
The Gaussian random process is the example of interest. The relation is also true for
a single sine wave, and McFadden15 has shown that it is approximately true for a weak

sine wave in Gaussian noise.

33




3.2 THE VAN VLECK RELATION

The derivation of Eq. 88 is based on the definition of the autocorrelation function
as a statistical average,
y(t) y(t+)
pA(T) = —0mM8 — . (91)
Y p)
yo(t)

Due to the fact that y(t) is defined as +1 or -1, the term yz(t) is equal to unity, and the
term y(t) y(t+T) may be expressed as follows:

y(t) y(t+7) = (1) (B +#P_) + (-1) (P, +P_,), (92)

where P++ is the joint probability that y(t) = +1 and y(t+T) = +1, and the other P's are
similarly defined. These probabilities can be written in terms of the joint Gaussian
probability density of x(t) by making use of the definition of y(t). For example, P + is
equal to the joint probability that x(t) > 0 and x(t+1) > 0,

o0 00
P, =g0 SO p[x(t), x(t+)] dx(t) dx(t+7). (93)

The term p[x(t), x(t+7)] is the joint Gaussian probability density function, and is given
by Eq. 8.

Equations entirely similar to Eq. 93 exist for P__, P, _and P_ + and are identical

+
except for the obvious changes in the limits of integration. Because of the evenness and
symmetry of p[x(t), x(t+7)], it can be seen that

P_=P,, (94)

P+_ = P_+. (95)

Additional inspection of p[x(t), x(t+T)] reveals that P +-or P_, canbe obtained from P_,

by reversing the sign of px('r) after Eq. 93 has been integrat:d.

Equation 8 is substituted in Eq. 93, and the remaining task is the integration of this
equation. Fortunately, this can be done and a simple result is obtained. The integra-
tion is performed by a transformation to cylindrical coordinates, that is, =x(t) =
r cos 0 and x(t+7) = r sin @, with 8 going from 0 to /2, and r going from 0 to infinity.

The integral is thus transformed to

1 S‘H/Z Svoo rz(l-pX sin 20)
P, =77 exp r dr de. (96)
o oon uz(l-pi) 0 0 20'2(1~p}2{)

The integral in r is of the form e du, and the resulting integral in 0 has been tabulated
by Dwight16 (p. 93, Integral #436.00). The result is
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P, =1/4+(1/2m) tan™’

()

(97)
= 1/4 + (1/2m) sin™" p_
and, according to the previous discussion, the other probabilities are given by
_ _ . -1
P_=P_ = 1/4 + (1/2m) sin Py (98)
_ _ _ . -1
P _=P_ = 1/4 - (1/27) sin " p_. (99)
Substitution of these terms in Eq. 92 gives
_ -1
py(T) = (2/m) sin ~ p () (100)

which can be solved for px(-r) to give Eq. 88.

3.3 MEAN AND VARIANCE OF THE ONE-BIT AUTOCORRELATION
FUNCTION ESTIMATE

The mean and variance of the one-bit autocorrelation function estimate, p}'{(-r), will
now be calculated. The equations defining p;((-r) are

pl(T) = sin[%psf(-r):l (101)
K
p! (1) = = z y(kAt) y(kAt+T). (102)
y K
k=1

It will be necessary to assume that the terms y(kAt) y(kAt+T) in the summation of Eq. 94
are independent of each other as discussed above. An approach in which characteristic
1 pp. 50-55) will be used.

The mean of p;(‘r) can be shown to be py(-r); however, the mean of p);(-r) is not so

functions are utilized (see Davenport and Root,

easily found. (Since the sine is a nonlinear operation, one cannot say, in general, "sin x =
sin X".) The mean and mean square of p}'( can be expressed in terms of p(p:'y), the proba-
bility density function of pé,:

— o0
Pl = S_w sin (rrpy/z) plp}) dey (103)
— o0
p1? = f_m sin® (np!/2) pip}) dpl. (104)

The probability density function p(p&) is the Fourier transform of My(v), the
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characteristic function of p‘y.

1 00 —jvp'y
] —-
p(py =5 S My(v) e dv. (105)
et <]

Through application of Fourier-transform properties (or directly by substitution of

Eq. 105 in Egs. 103 and 104), the mean and mean square of p;{ can be expressed in terms
of M_(v);
v )

Py = (1/2)) [My(n/2)-M (-n/2)] non

2
! - - . -— . . N
p!"=0.5M_(0) -0.25 M_(w) —0.25 M_(-m) (107)

Since the characteristic function of a sum of statistically independent random vari-
ables is the product of the characteristic functions of the individual terms (see Davenport
and Root,l p. 54), My(v) can be expressed as

K
M_(v) = M, (v), (108)
y = I m

where Mk(v) is the characteristic function of a term, (1/K) - y(kAt) - y(kAt+T), in the
summation of Eq. 92.

Each of the terms (1/K) y(kAt) y(kAt+T) can assume either of two values, plus or
minus 1/K, with probabilities 2P ++ and 2P 4 respectively. The probability density
function of (1/K) y(kAt) y(kAt+r) then consists of an impulse of area 2P at 1/K, and
an impulse of area 2P+__ at -1/K. The probabilities, 2P++ and 2P+_, are given by Eqs. 98
and 99. A Fourier transformation gives the characteristic function, Mk’

- v/K -jv/K
M, =2P _ e +2P _e . (109)

The mean and mean square of p;{ are now given as follows by combining Eqs. 109,
108, 107, 106, 99, and 98.

- - L a2 in) -LK_( T2 T g _Tr_)K
p;( = 2] [(cos 2K+Jw sin “p sinog= cos s ~j~sin "p  sin 5y~ ] (110)
p;cz =15— —}4—[ (cos %Jrj%sin—l Px sin %)K + (cos —%—j%sin_lpx sin-I—z—)K] (111)

Thus expressions giving the mean and mean square of p}'{(-r) have been found in
terms of px('r), the true normalized autocorrelation function, and K, the number of
statistically independent one-bit products used in the estimate.

Fortunately, the case of interest is for K very large compared with w; in this case
Egs. 110 and 111 are greatly simplified. Terms of higher order than w/K are dropped
in the final result. The approximations, in order of their application, are (a and b are
constants of the order of =):
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2
1) cosa/k~1 - _a_z
2K

2) sina/k ~a/k

a b K a a2 b
3) (I+I—<-+—K—2') ~ e (l _ﬁ"'—f{\)

The validity of approximation 3) can be demonstrated by taking the logarithm of both sides
of the equation and then expanding the logarithm.

Through the use of these approximations the following results are obtained for the

mean and variance 0_2 = p'z - p! 2:
pl X X
— .n-z 2
L — — -—
Py = Py 1+8K py 1) (112)
2
Upl = IK 1 Py 1 py . (113)

Equation 112 reveals that the mean of the estimate is biased by an amount
pxwz(l—p;) /8K from the desired value, Py This bias will be approximately NK times
smaller than the rms deviation o'pl’ and hence can be neglected in most casezs.

The variance, given by Eq. 113, should be compared with the variance o-pm, given
by Eq. 82 for an estimate of the normalized autocorrelation function computed from
unquantized or many-bit samples. This variance relation also contains the assumption

of independent successive products and is repeated here.

. 1 (114)

Our conclusion is that the rms deviation of an autocorrelation-function estimate
based on K statistically independent products is increased by (v/2) l—p;(-r):l zn/z when
the samples are quantized to one-bit. In the unquantized case we were able to show that
decreasing the time between samples so that successive products become dependent did
not decrease the rms deviation. We have not shown that this is true in the one-bit case.
It may be possible to reduce the rms deviation by increasing the sampling rate. But this
is doubtful, and seems hardly worth the factor of w/2 which might be gained.

A comparison of one-bit and many-bit autocorrelation function estimates performed

as a simulation experiment on a digital computer is given in section 6. 2.

3.4 MEAN AND VARIANCE OF THE ONE-BIT POWER SPECTRUM ESTIMATE

An estimate of the power spectrum, p'(f), can be determined from the one-bit
autocorrelation-function estimate p)'((-r) in a manner similar to that used in Eq. 33. This

relation is
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o0
p'(f) = 247 2 p! (nAT) w(nAT) ¢ TJzminAT (115)

n=-oo

It is assumed that p'x(nA-r) = p;{(-nAT) defines p}'{(nA-r) for negative n, and that the
weighting function w(nAr) is zero for In[ =2N. Thus p'(f) requires that p)‘{(-r) be com-
puted for N equally spaced values of T going from T = 0 to v = (N-1) Ar. The estimate

p'(f) is a normalized spectral estimate; that is, Eq. 47 may be used to show that

fs/z

SI p'(f) df = p'(0) = 1, (116)
0

where f_ = 1/Ar.

It has been shown that the mean of p}'{(nA’r) is equal to the true normalized autocor-
relation function plus a small bias term. This bias term will be neglected, since it is
approximately NK times smaller than the rms deviation of p.(nAT). Thus, by taking the
mean of both sides of Eq. 115, we find

[£]

p'(f) = 2AT z p(nAT) w(nAT) e-jZ"anT. (117)

n=-oo

%
The right-hand side of Eq. 117 can be recognized as p (f), the smoothed and nor-
malized power spectrum defined by Eq. 83:

p'(f) = p (f). (118)

The properties of p*(f) are fully discussed in sections 2.2 and 2.4b; they will not be
discussed further in this section.

A calculation of the variance of p'(f) is quite difficult and was not performed. The
spectral variance calculation requires that the covariance of the autocorrelation function
estimate be known (see section 2.3a). In section 3.3 the autocorrelation variance was
computed through the characteristic-function method. An attempt to extend this method
to computation of the autocorrelation covariance leads to difficulty because integrals
similar to that for P + (Eq. 96) must be carried out over the trivariate or quadvariate
Gaussian probability density functions. The trivariate integral arises if statistically
independent products are assumed, and the quadvariate integral arises if this assumption
is not made. In neither case was a closed-form evaluation of the integrals found.

It is possible, of course, to evaluate these integrals numerically on a computer for
a specific autocorrelation function or power spectrum. Some expansions of the quad-
variate normal integral by McFadden1 7 may be helpful in this fegard. Instead of doing
this, we decided to simulate one-bit spectral analysis on a computer and hence determine
"experimentally" the spectral variance. This work is presented in section 6.2. An
experimental value of the spectral variance as computed from data taken in the
deuterium-line experiment is given in section 6.5.
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A value for the spectral variance integrated over frequency can be obtained from a
mere knowledge of the autocorrelation variance. The following relation is easily derived
from the Parseval relation (Eq. 49).

o0

f /2
s 2 _ 2 2
go o-pl(f) df = 2AT Z o-Pl(n) w (nAT), (119)

n=-o0

where o-sl(f) and o-sl(n) are the spectral and autocorrelation variances, respectively.
The results of the previous section show that, in the case of statistically independent
products, o-pl is increased by less than w/2 because of the one-bit quantization. Thus
we can say that the integrated spectral variance is increased by less than 112/4 on account
of one-bit quantization. If it were known that the frequency distribution of the one-bit
spectral variance is the same as that of the many-bit spectral variance (this is approxi-
mately the case), then it could be said that the spectral variance is increased by less
than w/2 because of one-bit quantization.

It appears safe to postulate that crpl(f) will have the same dependence on the obser-
vation time T and resolution Af as in the many-bit case. Thus we shall express o-pl(f)
in the form of the many-bit spectral rms deviation o-pm(f), given by Eq. 86, multiplied

by a numerical factor, B.

“p1(f) = ©plf) N1 - Af/p. (120)

NTAf
Here, e is a dimensionless parameter discussed in section 2. 3c, p(f) is the true nor-
malized power spectrum, and b is the total bandwidth of the spectrum being analyzed.
The numerical factor, g, depends somewhat on the particular p(f) that is being ana-
lyzed. The experimental results of sections 6.2 and 6.5 indicate that § is equal to 1.39
in the constant bandpass region of a spectrum similar to that shown in Fig. 22. Most
spectra analyzed in radio astronomy will have the same gross appearance as the spec-
trum shown in Fig. 22. This is true because the input spectrum is nearly constant, and
thus the gross shape of the measured spectrum is determined primarily by the receiver-
bandpass function. At the edges of the receiver bandpass, B increases (see Fig. 22 and
Eq. 162), and measurements at frequencies beyond the half-power points have markedly

increased statistical uncertainty.
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IVv. THE RADIO ASTRONOMY SYSTEM

4.1 SYSTEM INPUT-OUTPUT EQUATION

A technique for the measurement of the power spectrum P(f) of a time function x(t)
has been presented; the procedure is illustrated in Fig. 7. A spectral estimate, p'(f),
is produced. The mean and variance of this estimate are discussed in section 3.4 and
reference was made there to sections 2.2 and 2. 4b; these results will be briefly sum-
marized here.

It has been assumed that x(t) is a signal in the video-frequency portion of the spec-
trum; P(f) is zero for f above an upper cutaff frequency, BZO' Thus the spectra that
we wish to measure in radio astronomy must be restricted (by filtering) to a bandwidth
BZO’ and then must be shifted (by heterodyning) down to the frequency range O-BZO.
For practical reasons, the heterodyning and filtering will usually be performed in a few
steps with the utilization of intermediate frequencies.

The spectrum that we wish to measure in radio astronomy is Ta(f), the power spec-
trum, expressed in degrees Kelvin, which is available at the antenna terminals. A
receiver noise term, Tr(f), must unavoidably be added to Ta(f)' According to this
statement and that in the preceding paragraph, the function of the radio-frequency por-
tion of the receiver (that is, everything between the antenna and the clipper input) is
described by the following equation:

P(f) = [Ta(f+fo) + Tr(f+fo)] G(f+f0) f>o0. (121)

(P(f) = P(-f) defines P(f) for f <0.)

In Eq. 121, f is a frequency in the video-frequency range, fo is a frequency that is
BZO/Z below the center frequency of the observed frequency range, and G(f+fo) is the
power transfer function of the receiver. G(f+fo) should be zero outside of the band
extending from fo to fo+ BZO' The frequency fo is determined by local oscillator fre-
quencies. These may be chosen so that fo lies above f; in this case fo-f should
replace f+ fo wherever it occurs.

Equation 121 describes the modifications of the antenna temperature spectrum, Ta(f),
by the radio-frequency portion of the receiver. These modifications can be removed,
since Tr(f+f0) and G(f+fo) can be measured; this topic will be discussed in section 4. 2.
The modifications resulting from other operations indicated in Fig. 7 are as follows:

1. The clipping of the time function removes the amplitude scale from the measured
spectrum; only the shape of the spectrum is determined. All of the measured spectra
are necessarily normalized to have unit area. A scale factor can be determined by some
other means if it is needed. The measured spectra are thus independent of receiver
gain to a high degree.

2. The fact that the autocorrelation function is determined only at discrete points
spaced AT apart limits the bandwidth that may be analyzed to 1/2AT = fs/Z = B,,. The

power spectrum must be forced (by filtering) to be zero outside of this band, or spurious
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results will occur. The sampling frequency fs must be at least twice the bandwidth
analyzed.

3. The truncation of the autocorrelation function to N points ((N-1)AT is the max-
imum lag time) limits the frequency resolution Af of the spectral measurement to
approximately 1/(NAT) = fs/N = ZBZO/N' The parameter N is the number of correlation
channels provided in the digital correlator. The number of significant points determined
on the spectrum, Bzo/Af, thus is equal to N/2.

4. The power spectrum of a random time function cannot be exactly measured by
any means, since an infinite duration of data is required; this topic was discussed in
section 1.3. The quantity that we measure, p'(f), is a statistical estimate of the power
spectrum. Its properties are described, for our purposes, by its mean or expected
value, p'(f), and its variance, o-Fz)l(f).

The modifications stated above are contained in the equations given below which,
together with Eq. 121, relate the measured quantity, p'(f), to the antenna power spec-
trum, Ta(f):

*
p'(f) = P @ (122)
S\fs/z * ‘
P (f) af
0
P*(f) = z S ® P(a) W(f-a-if ) da. (123)

Equation 122 expresses the normalization of the spectral estimate; I)_Tf—) (and also p'(f))
has unit area between 0 and fs/Z.

Equation 123 expresses the effects of sampling and truncation of the autocorrelation
function. The quantity P*(f) is related to the true power spectrum P(f) by Eq. 123.
This equation is discussed in section 2.2a, and is described in Fig. 8. If sampling is
performed at a fast enough rate, all terms in the summation of Eq. 123 are zero,
except for the i=0 term, and P*(f) becomes simply the convolution (or smoothing) of
P(f) by W(f). The function W(f) is determined by the choice of the weighting function,
w(t); this topic is discussed in section 2.2b. In general, W(f) is a narrow, spike-~type
function of bandwidth Af = fs/N. Thus features in the spectrum narrower then Af are
smoothed out. If P(f) does not change appreciably over bands of width Af, then
P*(f) ~ P(f), for 0 <f< £/2.

Equation 123 should also be considered as the definition of the star operator which
will be used here. A starred quantity is related to the unstarred quantity in the same
manner as P*(f) and P(f) are related. For example,

[T(t+,) G(f+fo)]* = Z S‘ ® T(atf ) Glatf ) W(f-a-if ) da. (124)

i= —-00
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Through the use of the star operator, it is possible to combine Eqs. 121-123 into
one compact equation relating the measured quantity, p'(f), to the true power spectrum
referred to the receiver input, T(f) = Ta(f) + Tr(f);

- T(e+£ ) G(E+£ )]
=0 - [(+o) (+o)] . (125)

Nz
So s/ [T(f+5,) G(f+fo)]* af

4.2 SPECIFICATION OF ANTENNA TEMPERATURE

The noise-power spectrum available at the antenna terminals, Ta(f+fo)’ can be
estimated if some auxiliary calibration measurements are made in addition to the
measurement of p'(f). These auxiliary measurements are of the receiver bandpass
G(f+f0); the average (over frequency) noise temperature referred to the receiver input

Tav; and the receiver noise power spectrum Tr(f+fo).

a. Correction of the Effect of Receiver Bandpass

The receiver bandpass can be accurately measured by observing the system output,
pé)(f), when the input, T(f+f0), is white noise (uniform spectrum over the frequency

range G(f+f0) is nonzero). In this case, Eq. 125 gives the system output
G (f+f)
p'(f) = . (126)

° £ /2
5 ST G¥ e+ ) af
0 (o]

Before discussing the manner in which p(')(f) is applied, the problem of obtaining a
white T(f+fo) = Ta(f+f0) + Tr(f+fo) will be discussed. This problem is simplified if
Tr(f+f0) is white, as is often the case when the receiver front-end is broadband com-
pared with B,,. If this is the case, a white T(f+f,) can be produced by any of three
methods:

1. Pointing the antenna at a region where no spectral line is expected.

2. Connecting a white-noise generator (such as a match load at 300° K) to the
receiver input in place of the antenna.

3. By detuning the first local oscillator, if the receiver is broadband between the
input and the first converter.

Each of these methods has special problems that must be considered. It should be
pointed out that the receiver bandpass need not be determined too accurately once the
large receiver noise term is subtracted off (see section 4. 2c).

If the receiver noise is not white, a T(f+fo) that is nearly white can still be obtained
by application of a white T a that is much greater than T r(f+f 0). This may be accom-
plished with method 2 or with method 1 if a large enough T  can be obtained from a
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strong radio source. Attenuation should be inserted into the receiver so that the
clippers are operating at approximately the normal signal level.

The measurement of p'(f) is applied by dividing p'(f) by p'(f) to give
o) Y o

(00 [Tleve ) Glere )

- * > (127)

Lpg(f) T,, - G (f+f)

where Tav is a measured quantity that will be discussed below and is given by
fs/z "
[T(f+f0) G(f+fo)] df

av ° . (128)

fs/z *

g G (f+f ) df
0 o

An approximation has been used in Eq. 127, in that p'(f)/pé)(f) has been assumed
equal to ETf—)/;T'O(—f) This is quite valid, since the random part of p(')(f) is small com-
pared with its mean.

The quantity [T(f+fo) G(f+f0)]*/G*(f+f0) has an important interpretation, and it is
therefore convenient to assign a special dagger symbol for this operation on T(f+f0).
Thus TT(f+fo) is defined as

%
[T(f+f0) G(f+fo)]

Tl(ess ) = (129)

*
G (f+fo)

with identical relations between TT(f+fo) and Ta(f+fo) and between Tl(f+fo) and Tr(f-l-fo).

The mathematical relationship between TT(f+f0) and T(f+fo) is quite complicated; how-
ever, the relationship greatly simplifies when a restriction is applied to the shape of
G(f+f0). The restriction is that G(f+fo) must be smooth over frequency bands of width
Af for values of f in the passband region (say, between 1-db points). Stated another

way,

G¥(£+,) ~ Glt+f ) (130)

for f in the passband region. This condition is easily met in practice.
Under this condition, TT(f+fo) becomes simply the convolution or smoothing of
T(f+fo) by W(f); that is,

TT(f+fO) = S‘w T(a+fo) W(f-a) da (131)

—00

for values of f in the bandpass region. (The requirement that G(f+fo) be bandlimited
to half the sampling frequency has also been used in Eq. 131.) Thus a dagger superscript
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on T(f+fo), Ta(f+fo) or Tr(f+f0) should be considered as a smoothing operation on these
spectra. If f is outside the 1-db receiver bandwidth, or if the condition of Eq. 130 is
not true, then the dagger operator must be interpreted by Eq. 129. Note that one cannot
say "[G(t+f ) T(e+ )" = G™(£+8 ) T (£+f )"
Through the use of the dagger operator, then, Eq. 127 becomes
pel] i)

(132)
pp(0]  Tav

1]

Tl(f+f0) + TI(f+fo)

= . (133)
Tav

The smoothed antenna temperature TZ(f+fo) is thus expressed in terms of measurable

quantities by Eq. 133.

b. Measurement of Tav

The quantity Tav defined by Eq. 128 can be expressed in a more usable form through
the use of a property of the star operator given by Eqs. 47 and 48. These equations
show that the integral of a starred variable between limits 0 and fs/Z is equal to the

integral of the unstarred variable between limits of 0 and «. Thus Tav becomes

Sm T(f+f o) G(f+f ) d

Ta_V = B (134)
g G(f+f

and is recognized to be the average input noise temperature weighted by the receiver

bandpass. It is the temperature that is determined if the receiver is used for continuum

(broadband) measurements.

Tav is proportional to the power in the signal at the clipper input and is easily
determined by conventional means. Note that T__ includes both the antenna temper-
ature and the receiver-noise temperature, Tav = Ta av T Tr av’ All temperature
measurements performed with the one-bit autocorrelation system are normalized to

Tav’ as expressed in Eq. 133.

c. Measurement of TI(f+f )

The spectral-measurement system determines the sum, TT(f+f ), of the smoothed
antenna- temperature spectrum, TT(f+f ), and the smoothed receiver noise-temperature
spectrum, T (f+f ) Thus, we w1sh to determine TT(f+f ) and subtract this from
TT(f+f ). The measurement of TT(f+f ) is accomplished by applying a signal with a
known, white, comparison spectrum, Tc’ to the antenna terminals. The system out-
put, p;:(f), divided by pé)(f), then gives
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@] T+ Tl (s£)
TC av

- , (135)
py(f)

where Tc av - Tc + Tr av is the measured average input temperature with the compar-
ison source connected. Egquation 135 thus determines Tr(f+f0) in terms of measured
quantities.

It should be noted that if Tr is white, the measurements of p;:(f) and pb(f) are iden-
tical and p'c(f) = p(')(f). In this case, T is completely determined by the measurement

of Tc av'

d. Summary

The smoothed antenna-temperature spectrum, Tl(f+fo), is specified by the meas-
urement of two frequency-averaged antenna temperatures, TaV and Tc av’ and three
normalized power spectra, p'(f), p'c(f), and p;)(f). Both T_, and p'(f) are signal meas-
urements; they are performed with the antenna connected to the receiver input and
pointed in the desired direction. The three other quantities are auxiliary measurements
used to specify the receiver noise-temperature spectrum Tr(f+fo) and the receiver
response G(f+fo). They are determined with a known comparison spectrum applied to
the receiver input at some time before or after the signal measurements are performed.
Equations 133 and 135 can be combined to specify TZ(f+fo) in terms of these five meas-
ured quantities:

pif) | T pr(f)

TZ(f+fo) =T

T . 136
e “2¥ (@) "l (13¢)

Here, Tc is the temperature of a known, white, comparison spectrum, and fo is known
from the local-oscillator frequencies.

If the receiver noise-temperature spectrum is equal to a constant value, Tr’ over
the frequency band under observation, B,,, then p::(f) = p:)(f), and Eq. 136 reduces to

i p'(f)
Ta(f+fo) = Tav r - (Tcav—Tc), (137)
py(f)
where Tc av "~ Tc = Tr'

4.3 THE SWITCHED MODE OF OPERATION
a. Motivation and Description

We have seen that the measurement of the antenna temperature depends on auxiliary
measurements performed before or after the actual observation. The problem of error
resulting from changes in the receiver characteristics [Tr(f+f0) and G(f+f0)] between

the time the observation is made and the time the auxiliary measurements are made then
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arises. These changes may be made small (of the order of a few tenths of a per cent in
a 10-minute interval) by careful circuitry, but are important in view of the high accuracy
needed in spectral measurements in radio astronomy. The high accuracy is required
because the spectrum that we wish to measure, Ta(f+fo), is superimposed on a receiver-
noise spectrum, Tr(f+fo), which may be many times Ta(f+fo). The problem is aggra-
vated by the fact that the time duration, T, that is required for a spectral measurement
increases as higher accuracy is desired (Eq. 20).

An approach to this problem is to periodically switch between the actual signal
measurement and the calibration measurement. The switching is accomplished with a
mechanical, ferrite or diode switch which alternately connects the receiver input to the
antenna terminals, or to a noise source generating a uniform comparison spectrum,
Tc' Switching rates between 10 cps and 400 cps are usual. While the switch is at the
antenna position, the signal measurements p'(f) and Tav are being performed (that is,
a segment of integration time is accumulated); with the switch at the noise source posi-
tion, the comparison measurements p;:(f) and TC ay are performed. At the output end
of the receiver, a second switch (usually of the diode type) is used either to separately
totalize signal and comparison variables or, more commonly, to totalize the difference
between signal and comparison variables. The switching technique has been extensively
used in radio astronomy; the Dicke radiometer is based on this principle.

The switching technique, as it is used with the digital autocorrelation system, is dia-
grammed in Figs. 11 and 12. The digital correlator is gated in phase with the front-end
switch to add the products y(kAt) y(kAt+nAT), which occur when the switch is at the
antenna position, and subtract the products that occur when the switch is at the noise-
source position. The quantity that is determined by the digital correlator is Bp&(nA-r) =
p&(nA-r) - p&c(nA-r), the difference between the estimates of the one-bit autocorrelation
functions of the antenna signal (plus receiver noise) and the noise-source signal (plus
receiver noise). When &p! (nAT) is properly corrected and Fourier transformed, the
difference spectrum &p'(f) = p'(f) - pé(f) is determined.

The correction of 8p!(nAT) to give the difference of the unclipped autocorrelation
function estimates, ép)'((nA-r) = py(naT) - p;cc(nAT)’ is not straightforward. Application
of the usual correction, Eq. 101, gives

5p;((nm) = sin [np:'),(nA-r)/z] - sin ['n'psfc(nA'r) /2]. (138)

This relation is not usable as it stands because p&(nAT) and p&c(nAT) are not sep-
arately determined in the digital correlator; only their difference, BpJ'I(nA-r), is avail-
able. This is due to an economic consideration in the design of the digital correlator.
But ps,c(nA-r) can be determined at some time, before or after the actual observation
time, and the correction equation can be put in the usable form

1r6p3,(nA‘r) v[Zp&c(nA'r) + 6p§(nA'r)]
6p;((nAT) =2sin——p—* cos

) (139)

Small errors in the measurement of p&c(nA‘r) are not important, since p'yc(nA-r) is used
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11. The switched one-bit autocorrelation radiometer system. The detailed
receiver and correlator block diagrams are given in Figs. 13 and 17.

RECEIVER INPUT CONNECTED TO ANTENNA

SWITCH THROWS AT
—-E.— ANY TIME DURING
THIS INTERVAL

TIME ALLOWED FOR
SYSTEM TRANSIENTS
TOC DISSIPATE

N
N

N
N
N

RECEIVER INPUT CONNECTED TO
COMPARISON NOISE SOURCE

le— NAT

BLANK

le— OBSERVATION ALWAYS
— STARTS AND STOPS AT
THIS TIME

FRONT-END SWITCHING CYCLE

BLANK

ADD PRODUCTS, y(kAf)y (kAt + nAT),
TO AUTOCORRELATION SUM

SUBTRACT PRODUCTS, y(kAt)y (kAt +nAz),
FROM AUTOCORRELATION SUM

CORRELATOR SWITCHING CYCLE

Fig. 12. Illustrating the timing of the front-end switch and correlator
operations in a switched autocorrelation radiometer. The
timing of operations is best controlled by precise counts

of the correlator sampling pulses.

For example, in the

deuterium-line correlator the blanking interval is 256 counts
long, and the add and subtract intervals are each 768 counts
long. This gives 2048 counts for a complete cycle, and thus
the switching rate is 37.4 cps for the 75-kc sampling rate.
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here only to modify a difference of autocorrelation functions.

It should be noted that the analysis of the switched system is being treated on a static
basis. We are neglecting the fact that the system "remembers" the signal from the pre-
vious switch position. If the system time constants (the longest is of the order of 1/Af)
are short compared with the switching period, the static approximation is good. If, how-
ever, a blanking interval is inserted after each switch throw (see Fig. 12), the static
approximation is almost exact. During the blanking interval, the correlator samples,
delays, and multiplies as usual; however, the products y(kat) y(kAt+naArT) that occur
are not added into the sum that forms the autocorrelation-function estimate. The
blanking interval simplifies the analysis, eliminates possible error arising from the
switching transient, and removes the problem of fluctuations in a switch dwell time or

"jitter" in a mechanical switch.

b. Antenna-Temperature Equation

The antenna temperature can be expressed in terms of the difference quantities &p'(f)
o e - .
and 8T _ by substitution of p (f) = p.(f) + &p'(f) and Ty = Togy T 8T,y in Eq. 136.
The result is
i 8p'(f) pL(f)
Ta(f+fo) = (T +8T__) + 6T + T . (140)

cav av p,o(f) av Pz)(f) C

The quantities T (f), and p'(f) must still be measured at some time before or
c

1
cav’ Po
after the signal measurements. But they have only a weak effect upon the spectral meas-
urement, since they only modify the difference quantities 6p'(f) and 6Tav'

If the receiver-noise spectrum is white, p;: = p'o, and Eq. 140 can be put in the con-

venient form

Tl ) - T, ) 6p'(f)]
‘:p;)(f) ’

2 = (141)
av

in which the relations Tav = Tc av + éTaV and Ta av = Tc + aTav have been used. This
same result arises, even if Tr is not white, if the radiometer is balanced so that
6Tav =0 and TC = Taav'

The antenna temperature equation can be put in many other forms that may have
special value or interpretation for specific experiments. A form that was used in the

deuterium-line and Zeeman experiments is

TT(f+fo)—Tav_ 8p'(£) (142)
Tov pé)(f) ,

which is easily derived from Eq. 140 under the assumption of a white receiver-noise
spectrum.
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4.4 SYSTEM SENSITIVITY

The sensitivity of a radiometer is specified by the rms deviation, AT(f+f o), of the
antenna-temperature measurement from its mean value, TZ(f+fo). The minimum detect-
able antenna temperature depends on the desired confidence limits; a value of a few
times AT(f+fo) is usually adopted.

The rms deviation, crpl(f), of a normalized spectral estimate, p'(f), obtained by the
one-bit autocorrelation method is given by Eq. 120 as

“p1() ap
= - N1-aAf/b, (143)
p(f) TAf

where

T is the duration of the signal observation;

Af  is the frequency resolution (it is the half-power bandwidth of W(f));

a is a dimensionless parameter of the order of unity; it depends on the exact
shape of W(f), and is given in section 2. 2c.

B is the increase in rms deviation caused by the clipping or one-bit operation; it
is discussed in sections 3.4, 6.2, and 6.5. It has the value 1.39 in the midband region
(say, between 1-db points) of the receiver bandpass, and increases according to Eq. 160
on the edges of the receiver bandpass.

b is the total noise bandwidth of the measured spectrum; it is approximately
equal to the half-power receiver bandwidth.

The specification of the antenna temperature depends, through Eq. 156, on three
normalized spectral measurements, p'(f), pé(f), and p:)(f), and two frequency-averaged
antenna température measurements, T__ and T

av cav’
temperature can be expressed in terms of the rms deviations of each of these measure-

The rms deviation of the antenna

ments. This is accomplished by expanding each of these quantities in Eq. 136 as its
mean plus a small random part. The random part is then squared, a statistical aver-
age is taken, and higher order terms are dropped. The result of these operations is

that AT(f+fo) is equal to the square root of the sum of the squares of the following terms:

(o-p l)s (o-p l)c Py
T , , —AT
av. p, cav  p, Po av
Pe (p1)o
_p_(:ATC av’ and (Ta TC) po

in which (Upl)s’ (o-pl)
respectively.

o and (crpl)0 refer to the rms deviations of p'(f), p'c(f), and pz)(f),

We now make two assumptions: (a) the radiometer is near balance, so that

T,y ~ Toqays and (b) the amplitude of the observed spectral line is small compared with
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white receiver noise, so that p(f) ~ pc(f) ~ po(f). The expression for the rms deviation

then becomes

2 2 2
2 (og)s  (og)e  Ar2 AT? (it )2 (o)
AT _ av cav a _“c
= 53—+ 5+ + + 5 (144)
2 b b T2 2 T2 D
av av cav av

The first two terms of Eq. 144 are the largest, and represent the variances of the
measurements of the normalized signal and comparison spectra, p'(f) and pé(f), respec-
tively. These variances are given by Eq. 143 with the observation time T equal to TS
in the signal case, and to To in the comparison case. The third and fourth terms repre-
sent the variance of the measurements of Tav and Tc av’ Their exact values depend
on the manner in which Tav and Tc ay are measured. Since they are approximately

b/Af times smaller than the first two terms, they are given with sufficient accuracy
by

ATzv azﬁz
2 10D (145)

T s
av

and

ATi av azﬁz

— = ch . (146)
cav

The final term in Eq. 144 is very small if the radiometer is near balance, or equiv-
alently if (TZ—TC)/Tav «1l. If (TZ-TC)/Tav is equal to €, then the observation time
for the measurement of p(‘)(f) can be as short as 10€2TS before the final term becomes
0.1 of the first term. This final term will be neglected in further equations.

Accordingly, then, the rms deviation can be expressed as

AT _ 1 1

T - ® /7att Tar (147)
s c

where TS and T, are the signal and comparison observation times. If T is the total

observation time (not including time spent in blanking), TS 0.51 and To = 0.5T1, so

that Eq. 147 becomes

2a¢B
£T - ) (148)
av NTaf
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V. SYSTEM COMPONENTS

A brief discussion of the design parameters and design approaches of the
major components of a switched one-bit autocorrelation radiometer (see Fig. 11)
will be presented here. The deuterium-line detection system will be used as an
example. The discussion is presented in sections concerning the radio-frequency
part of the system, the clipping and sampling operation, and the one-bit digital

correlator.
5.1 RADIO-FREQUENCY PART OF THE SYSTEM

This section is concerned with the part of the system that lies between the antenna
terminals and the input to the clipper. The material in Section IV is drawn upon heavily
in this section. The block diagram of the radio-frequency portion of the deuterium-line

detection system is shown in Fig. 13.
a. Front-End Switch and Noise Source

Two highly important components in any switched radiometer are the switch and the
comparison noise source. The quantity that is directly measured by the radiometer is
the difference between the comparison noise-source spectrum, Tc’ transferred through
the switch, and the antenna temperature spectrum, Ta’ transferred through the other
arm of the switch. The comparison spectrum and switch-transfer characteristics must
either be measured or assumed to be linear functions of frequency. The first of these
alternatives can be achieved by using a celestial radio source of known spectrum as a
"primary" standard to measure Tc’ which then becomes a "secondary" standard.

The frequency variations of the switch and noise source have little effect if they can
be assumed to be linear with frequency and if the linear component of the true spectrum
is known or is not needed. The linear-with-frequency assumption is justified when the
analyzed bandwidth, Bl’ is narrow compared with the frequency scale of changes in the
characteristics of the switch and noise source. The linear component of the true spec-
trum is known when the analyzed bandwidth is somewhat greater than the bandwidth of
the spectral line so that the background spectrum at frequencies above and below the
spectral line can be established.

In the deuterium-line experiment B, = 30 kc at a center frequency of 327 mc. The

switch and noise source are by no mear:s high-Q devices, and thus their characteristics
change appreciably only over a scale of tens of megacycles. The measured spectra had
slopes of approximately 0. 05 per cent/30 ke which were removed in a computer so that
the final result had zero slope. This slope correction did not disturb the results of the
experiment because the spectrum should have nearly zero slope whether or not the deu-

terium line is present.
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b. Balance Requirements

The antenna-temperature equation (120) contains a term, 5Tav p‘c(f)/p(‘)(f), which
represents the effect of unbalance (6Tav#0) in the radiometer. This term should be kept
small in order to avoid errors arising from time variations in the receiver-noise spec-
rum, Tr(f+f°). The magnitude of this term is placed in evidence by application of Eq. 115

. i i i i
and expansion of Tr(f+fo) as Tr av + 6Tr(f+f0), and Tc(f+f0) as (Tc)av + 6Tc(f+fo). The

terms STI'(Hfo) and 6TZ(f+fo) thus represent the frequency variations of the receiver-
noise spectrum about their frequency-averaged values. The result is

p.(f) 6T T ¥
av b' D =T—c;[TC av+6Tr(f+fo)+6Tc(f+fo):l (149)
[0}

6T

which is small if the radiometer is near balance; and is nearly constant if the receiver-
noise spectrum and the comparison spectrum are nearly constant with frequency.

In the deuterium-line experiment a servo loop was used to hold 5Tav/Tc av to less
than 0. 3 per cent, and 6TI(f+fo) and 8T1(f+fo) were each estimated to be less than 1°
(they are small because of the narrow bandwidth Bl)' The term given by Eq. 149 is
equal to a constant (<6°) and a frequency-varying component that is less than 0.006°. The
constant term has negligible effect and the small frequency-varying term will be linear
to first order, and will be removed by the previously mentioned linear correction.
Therefore, in the deuterium-line experiment, the unbalance term {":Tav pé(f)/pé)(f) could
be neglected. In other applications it may be necessary to determine pé(f) and STav (pé(f)
is needed anyway) and include the unbalance term in the antenna-temperature equation.

There are two more reasons for operating the radiometer near balance. The first
is due to the fact that the clippers have different characteristics when operated at dif-
ferent signal levels (see section 5.2 and Fig. 14). If the signal and comparison power
levels differ appreciably, a resulting error may occur in the difference spectrum 6p'(f).
This error should be negligible with proper clipper design, and if 6Ta v/ Tav is kept below
a few per cent. A final reason for operating the radiometer near the balanced condition
is that Tav must be measured by conventional Dicke radiometer techniques. It is well
known that the error owing to gain fluctuations in this measurement will be small if the
radiometer is near balance.

c. Shape of the Receiver Bandpass, G(f+f°)

The function of the radio-frequency part of the system is described by the equation

P(f) = G(f+f°) T(f+fo) £f>0, (150)

where P(f) is the power spectrum at the input of the clipper, G(f+fo) is the power trans-
fer function of the receiver, T(f+fo) is the power spectrum referred to the receiver input,
and fo is determined by local-oscillator frequencies (P(f) = P(-f) defines P(f) for £<0).
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Fig. 14. Clipping circuitry for the deuterium-line receiver. The IN659 silicon diodes
conduct heavily when their forward-bias voltage exceeds 0.5 volt; thus the
voltage at point P is approximately a 1-volt peak-to-peak square wave. The
gain of the amplifier stage is approximately 30.

The requirements concerning the shape of G(f+fo) will be presented here; in section 5.1c
the frequency-conversion problem will be discussed.

A major requirement of G(f+fo) is that it be very small for f greater than half the
sampling frequency, fs' This is necessary in order to avoid spurious responses caused
by sampling (see Figs. 3 and 8). For the deuterium-line receiver, G(f+fo) was designed
to be 20 db down at half the sampling frequency.

A second requirement for G(f+fo) is that it have a fairly uniform passband. This is
necessary because the statistical uncertainty (rms deviation divided by the mean) of the
spectiral measurement increases at frequencies when G(f+f0) decreases (see Fig. 22 and
Eq. 162). Experimental results presented in section 6.2 indicate that the statistical
uncertainty will increase less than 10 per cent in regions where G(f+fo) is within 1 db
(26 per cent) of its maximum value. A criterion of a passband flat within +0. 5 db was
chosen for the deuterium-line receiver.

A third requirement for G(f+fo) is that it become very small for f near zero fre-
quency. This requirement arises because of several practical considerations such as
difficulty in constructing DC coupled amplifiers and clippers, difficulty in obtaining
image rejection in the final frequency converter for frequencies near zero, and errors
resulting from DC offset in the clipping operation. If a spectrum containing low-
frequency components is fed into AC coupled clipper stages, the spectral measurement
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at higher frequencies may be upset. Thus, these low-frequency components should be
removed by highpass filtering previous to the clipping operation. The spectrum that is
within 1 or 2Af of zero frequency should be disregarded, as it may contain an error

caused by DC offset in the clippers (although the switching technique removes most of

this error).

Assuming that the 20-db bandwidth B20 is set equal to half the sampling frequency
and that the 1-db bandwidth B1 is the region where a good spectral measurement is
obtained, the ratio r = Bl/BZO becomes an important parameter describing G(f+fo). The
frequency resolution Af is proportional to the sampling frequency (Af~ fs/N~ ZBZO/N);
and thus the ratio of the usable bandwidth analyzed, Bl’ to the frequency resolution, Af,
is proportional to r (Bl/Af"‘ rN/2). For efficient use of N, the number of correlator
channels, r, should be as close to unity as possible with practical filter designs. A
value r=0.67 was used in the deuterium-line receiver; other parameters were fs =75 ke,

B 0=37.5kc, B, = 25 ke, N =21, and Af = 3. 75 kc.

2 1

d. Frequency Conversion and Filtering

There are a few approaches to the frequency-conversion problem. If a crystal filter
with the desired bandwidth is available, it may be used in the IF amplifier (usually
10. 7 mc or 30 mc center frequency) to give the desired response. A second mixer then
shifts the spectrum down to O-B20 cps. This technique was not used in the deuterium-
line experiment because it was feared that the ripples in the crystal-filter bandpass
might cause a false deuterium-line result. Of course, a correction is made for the
receiver response (by division by p(')(f), see section 4. 2a) but some error may result
in this correction. This is another reason why it is desirable to have a uniform pass-
band.

In the deuterium-line receiver, a phase-shift technique used in single-sideband
receivers18 was applied to give a G(f+fo) with a sharp cutoff and a uniform passband. By
conventional means, a wideband portion of the input spectrum is converted to a center
frequency of 10,700 kc. This signal is then heterodyned with a 10, 681-kc local
oscillator and passed through a lowpass filter having BZO = 37.5 kc. The output
of the lowpass filter contains the desired spectrum (which was between 10, 681 kc
and 10, 718. 5 kc) but also contains the image spectrum (which was between 10,643.5 kc
and 10, 681 kc). A method utilizing 90° phase-shift networks (see Fig. 13) is utilized
to cancel this image.

The advantage of the phase-shift method is that the bandpass is primarily determined
by a stable lowpass filter that is more easily realized (requiring lower Q elements, less
affected by variations in the elements, little or no adjustments necessary) than a band-
pass filter. The disadvantage is that it is difficult to obtain constant phase shift over a
wide range of frequencies; a phase-shift error results in incomplete cancellation of the
image. In the deuterium-line receiver, phase-shift networks giving 25-db image rejec-
tion for frequencies between 3. 75 kc and 37. 5 kc were designed according to information
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given by Luck. 19

The band of frequencies below 3. 75 kc was eliminated by a highpass
filter. The final result was a usable, uniform passband between 5 k¢ and 30 kec.

A third method of performing the filtering and frequency conversion is to utilize L-C
bandpass filters with multiple-stage frequency conversion to reduce Q problems and
image-rejection problems. (It is difficult to realize bandpass filters having good skirt
selectivity unless the center frequency to bandwidth ratio is not too large, say, less than
15. Furthermore, if this ratio is large, the shape of the response is very critical to
small changes in the L and C values.) For example, suppose it is desired to select a
30-kc band out of a 2-mc wide IF bandpass centered at 30 mc. A reasonable conversion
process would be to place a second IF bandpass, 200 kc wide, centered at 2000 kc and
a third IF bandpass, 30 kc wide, centered at 200 ke. A fourth mixer would then shift
this band down between 0 and 30 kc. The obvious disadvantage of this method is the com-
plexity.

5.2 CLIPPERS AND SAMPLERS

It is quite easy to describe the ideal clipper and ideal sampler. The clipper output
y(t) equals 1 when the input x(t) is greater than 0, and y(t) = 1 when x(t) < 0. The sam-
pler output y(kAt) is the instantaneous value of y(t) at t = kAat. (The clipper output is not
actually 1 or -1, but is either of two voltage levels that are interpreted to mean 1 and
-1 by the sampler and digital correlator.)

Real clippers and samplers can come close to this ideal behavior. They are very
difficult to describe and analyze, and, most important, it is difficult to calculate the
error in the spectral measurement that is caused by nonideal sampling and clipping.
The areas in which this nonideal behavior exists and the approaches used in the
deuterium-line receiver are as follows:

1. Real clippers are more accurately characterized by an output y(t), which is equal

to +1 when x(t) is greater than a small voltage € and y(t) = -1 when x(t) is smaller than

€_. When x(t) is between €_ and €,, the outp:.t may be +1 or -1 or some value in
between. Furthermore, €_and € + may depend on the past history of x(t) and may them-
selves be functions of time (caused by noise fluctuations, 60-cps hum, or slow drifts
caused by temperature changes).

Fortunately, the effect of nonzero clipping levels can be reduced to any degree sim-
ply by increasing the amplitude of the signal before clipping. The clippers used in the

deuterium-line receiver (see Fig. 14) had values € and €_ of less than 20 mv. A sig-

nal level 40 db above this (2 volts rms) was used wIth satisfactory results.

2. The ideal clipper response is independent of the frequency of the input signal.
The real clipper is affected at high frequencies by stray capacities, and at low frequen-
cies by coupling capacitors (if successive stages are AC coupled). In the deuterium-
line receiver, the time constants were arranged so that each stage had half-power points
of 50 cps and 2 mc, while the spectrum under analysis extended from 5 kc to 30 kec.

3. In the deuterium-line experiment, sampling was accomplished by the arrangement
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Fig. 15. Sampling configuration for the deuterium-line receiver.

shown in Fig. 15. The flip-flop is set [y(kAt)=1] or reset [y(kAt)=-1] according as the
input signal was 1 or -1 during the duration t s of the sampling pulse. If the signal is
making a transition during ts’ the flip-flop will be set, reset or will stay in its previ-
ous state according to the result of a weighted average of the signal during ts. The flip-
flop is randomly set or réset between samples so that the error is random if the flip-
flop refers to its previous state. This precaution was taken (it is not known if it is
necessary) in order to prevent a false high correlation between successive samples; this
would lead to false features in the spectrum (again, the switching technique would cancel
most of these errors anyway). o

The duration ts of the sampling pulse was 1 psec which is 1/30 of the period of the
highest frequency component of the signal. This gave satisfactory performance. In the
case of many-bit or unquantized samples, it is possible to show that if the sampling pulse
has the shape p(t), the effect is to multiply the spectrum by the square of the magnitude
of the Fourier transform of p(t). Thus, if 1/‘cS is much larger than the highest compo-
nent in the power spectrum, little change occurs.

The experimental results of Section VI indicate satisfactory performance of the clip-
pers and samplers used in the deuterium-line receiver. Of particular importance toward
evaluating the samplers and clippers was the comparison of a spectrum measured by the
system (not using switched operation) with that measured by another means (see sec-
tion 6. 3). The agreement was within 1.5 per cent and the error is most likely due to
the error of the "other" measurement method.

The results of another test, which is useful for evaluating the clipping circuitry in
the deuterium-line receiver, are presented in Fig. 16. A spectrum is measured (not
using switched operation), and then the signal level is changed by large amounts. If the
clipper were ideal, no change would occur in the measured spectrum. The results indi-
cate that gain changes of approximately 100 per cent cause a few per cent change in the
measured spectrum. The spectral error probably decreases more than linearly with
the gain change; in other words, a 1 per cent gain change would cause less than a few
hundredths of a per cent change in the measured spectrum. Of course, in actual oper-
ation the switching technique cancels most of this error.
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Fig. 16. Effect of large gain changes upon a spectral measurement performed with the
one-bit autocorrelation system; this effect is the result of nonideal clipper
operation. The measurements were repeated with the gain varied by different
means and identical results were obtained. In actual operation these large
gain changes would not occur and the switched mode of operation greatly
reduces the effect of the small gain changes that do occur.

5.3 DIGITAL CORRELATOR

The basic block diagram of a one-bit digital correlator is presented in Fig. 17. The
function of each block should be understood from its title, the logical equations on the
diagram, and the definition of symbols given at the right of the diagram. Although the
individual blocks can be realized in many ways, only two major variations of the block
diagram come to mind. These are

1. The set of N counters, each having a capacity of M bits (usually M>20), may be
replaced by an N * M bit memory (ferrite core, delay line or other) and a high-speed
serial adder. The sums Vn of the Fn pulses would be stored in memory and would be
periodically brought out to be increased by the new Fn pulse. The N - M bit memory
will be cheaper and have less components than the N - M flip-flops required by the count-
ers; however, speed will be a problem. A combination of counters and memory may
be optimum. If a computer is available, it may provide the memory and the adder. A
straight counter system was used in the deuterium-line correlator.

2. The sum of K simultaneously computed autocorrelation functions can be calcu-
lated by providing K sets of all elements in the block diagram except the counters, for
which only one set capable of counting K times faster is needed. The outputs of K one-
bit multipliers are OR'ed (with proper timing) into a common counter. Since the cost
of counters is an appreciable part of the total cost, the cost of the correlator is not pro-
portional to K. One cost study has indicated that the cost increases by 1. 25 for K = 2,
and by 1. 75 for K = 4. This technique is useful if one wishes to gain factors of 2 or 4
in effective observation time by observing simultaneously the orthogonal component of
polarization and/or using an additional receiver switched 180° out of phase with the first.
Both of these steps were taken in the deuterium-line attempt so that K = 4 for the
deuterium-line correlator.

The correlator, as it is shown in the block diagram, is connected for the switched

58




+107e191109 TR1ISIp 11q-2uo ® jo weaderp yoolq oiseg 11 ‘S1d

Iy  OvEY Dovng dwins
¥ 5
- e - BN [ U T
r '
! 1
] —l!& 4 % i
" vsum A 1 | Fone
4 AN = > t
*gasind Yg jo zaqamnu ayy u 1 d 2 [Fay oy LD | IYPNMNYND
£IUNOD YITYM IIUNOD Y3, U Y} JO 81UAQUOD Y} € A _ T y VHLL.W\UVQ f—— \
£ u_ x u HS
("v'v + W'widL = Vs | Lnoovey '
tuoyienba ueatooqg e |
w pessaadxg -Y5 sw aum; awes ay; je sandd0 R AU I N I I |
1 (1 = Yg) sanoo0 asind ayy JI *IITe J0U AIw i P H E
Oy pue Uy 1 1 = Uz uey ‘o m O pue | =g pue
tae axe Oy pue Yy j1 1 m Ug uayy ‘1 = D pue
tT=gpn ¢sandvo asindou) g m Yguayy ‘omgp r hd + -~ .ﬁ -
«x911dninw 3:q-auo Y3, u ayy jo asind indino ay; st ug R B S Rl Bt Il
+sansoo Sy sum ) _
a3 Bulanp anado prnoys D pue g ur safueyd I
ny Y1 wos; poraad %2010 2/1 £q payiye 81 St I “u 'y |
*38IMIAYI0 ‘g m mm. txa1:1893 11ys 3yl 1148 0y | Y3114 W)
awyy 81 31 uaym 1 = 41 casind Buiwmy xayjoue 91 m,h YIuNro> Yy <& -INO i r
. ! ry | armewara | PIamms
*1eudis ayy ajdwes o) pasn oste 81 3] *°j ) (g YILSIOIY je——dq
‘a1eg e je A[1ed1porrad ganado ¥y rasimaayio v dFINS |
‘0 = d3 saardninw 31q-3uc ayy ajedoxaawy ! —~noQowry !
01 2wy S1 3y uaym [ = ¥y cagind Surwn v 81 M.H |
o o IS o T Iy
(O°v +0%d = v T I B D I Il
'
(2% + 0°vig = Xy _ _
x tguolienba :wuﬂoomhs ‘o= m< pue ! “ . e..\k i
0 =Xy ‘0 m g usym pue {Oy = Ay pue n Xy 1 IV 14T0
‘o= o pue | =g uym Oy w by ucuw«-x< Yysmned g 19 - Ino ! o
‘“I= W pue | m g uayp (Y3 jo uornnyuryap aas) h< | wacbr\.wﬂw | YPAAerD>
X I45193y
v yoea A1diinuw yorym salgeldea ay) age v ] T 345193 ,
*uoyjr1sod uosixedwod 3y3 uy 1 YoIms I ORIy \
pua-juOI} ay) usym o = O ‘uolIsod suualjue |
ayj u] 81 YOJImME pua-jucdj ayj uaym | fenbs o) Lo - e - /U OO U (|
Wy dy oYy ¥ a Y
sasimaayio [ m g °paddois sy Jojelat ( Yy v ) 2L . =4 >
-J00 2y} Jo pajldde 81 Juijuelq uaym o sjenba q 2L u( ry < .
H osmvIwo)d A h..v!;ﬁ.ttb
Uy jo juawaldwod ay 81 Yy Lut&u?ﬂ» - oo Yowwrr>
127
*31dwes juaIINI 3y} jo anjea ~oyumo> Yyormo = Yoyd3:30 %y -tm
ayy 0 oN *juamald 131813aI-4J1Yy8 Y3, u ay; uy dUS —, YoUVIINID SNONOYHINAS - Y3 s (8}
palois 81 Yy *1- sem ajdwes s1y) j1 o = Uy pue -AYWLS | FoNFYII2Y 5 Il DO - PP
1 sem a1dwes s1uy3 ;1 T = Uy caam uy yoeq snun u 4 v

u patxnooo yorym ardwes indur ayy sjudsaadad v « QN\Q.\(,MWRWQ 3 . p
’ °
NO2diMS ONI ~d MOy \uu v+ ulf\b L4

Yoy TwmnDIS TodiAo> (2% +2°%)® a”y

59



mode of operation. The difference autocorrelation function 6p§(nA-r) is computed, and
after proper correction (Eq. 121) and Fourier transformation (Eq. 116), the difference,
8p'(f), between the signal spectrum p'(f) and comparison spectrum pé(f) is computed.
These spectra (and also p‘[)(f)) may be individually measured by locking the control sig-
nal C at 1, and locking the front-end switch in the antenna position or comparison posi-
tion. The correlator is stopped (that is, counting stops, the counters may be read out
and cleared) by locking the blanking control signal B at zero.

An interesting test of the correlator is provided by locking the front-end switch in
one position, or the other, and operating the correlator in switched mode so that prod-
ucts are added (C=1) during half the switching cycle, and subtracted (C=0) during the
other half-cycle. The resulting autocorrelation function and power spectrum should be
zero within a few rms deviations. A more sensitive and easily interpreted test is pro-
vided by feeding a periodic square wave (derived from the reference-generator divider)
into the sampler input and locking C at 1. The resulting autocorrelation function should
be an exactly known triangular function. A single error in millions of operations can
be detected in this way. A constant can also be fed into the sampler input; the resulting
autocorrelation function should be exactly constant. Controls for inserting these test
signals, along with controls for B, C, and the front-end switch, should be provided on
the correlator front panel.

The contents of the N counters vy n= 0 to N-1, must be either visually or electron-
ically read out, recorded, and prepared for entry into a computer. In the deuterium-
line experiment the counter contents were visually indicated, written down, and then
manually punched on cards. Automatic readout and recording on a medium suitable for
computer entry is obviously desirable. The counters' contents are not directly equal
to values of points on the autocorrelation function, as this would require more costly
add-subtract types of counters. The autocorrelation function is given in terms of the
counters' contents by

2v_-2v
6p§(nA'r) ==

. n=0, N-1 (151)
[o]

for the switched mode of operation, and

2v._ - v
n

v
o

p&(nA-r) = n=0, N-1 (152)
for the unswitched (C=1) mode of operation.

There are four major parameters that specify the capability of a one-bit digital cor-
relator. The first and most obvious is N, the number of channels or points on the auto-
correlation function. This determines the ratio of the analyzed bandwidth B1 to the
frequency resolution Af. The value of this ratio depends on the choice of the weighting
function w(r) and the shape of the receiver bandpass G(f+fo). In the practical case, Bl/Af
will be between N/1.5 and N/3. The second parameter K, the number of signals
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autocorrelated at one time, has already been discussed.
A third major parameter is the maximum sampling frequency, (fs)max’ which is
limited by the repetition rate of the digital logic elements. The value (fs)max deter-

mines the maximum bandwidth that can be analyzed, (Bl)max ~ 0.4(f ) For pres-

ent transistor logic circuits, the cost of the correlator will increasesb;nzgproximately
a factor of 2 if (fs)max is increased from 500 kc to 10 mc. Above 10 mec, the price will
rapidly increase, although future developments may change this picture.

The final parameter is M, the bit capacity of the counters. This determines the max-
imum time, Tmax’ which may elapse before the counter is full and readout must occur.
The maximum number of counts chat a counter may receive is one for each sample; thus

Tmax is specified by fsTmax =27 - 1.

All M bits in the counters need not be read out, as some bits at the input end will be

M-L  Tpe number

insignificant and L bits at the slow end will always be zero if fST <2
of insignificant bits is also a function of fST. The rms deviation of Vo {(n#0) is approxi-
mately '\Es—T for either the switched or unswitched mode of operation. (This follows from
application of Eq. 114 which gives the rms deviation of an autocorrelation function esti-
mate.) Thus, a round-off error that is much less than '\E;f can be neglected. If fsT =

2 O, then it is safe to discard the MO/Z - 3 most insignificant bits. Since fST will
rarely be less than 106 ~ 220 in radio astronomy applications, the 7 bits at the high-
speed end of the counter need not be read out.

The digital correlator that was used for the deuterium-line and Zeeman experiments
is pictured in Fig. 18. This machine has 21 channels, can simultaneously autocorrelate
4 signals, has a maximum sampling rate of 300 kc, and contains counters with a capac-
ity of 36 bits. The slowest 20 bits of each counter are provided inexpensively by a 6-
digit electromechanical counter with visual readout; the remaining 16 bits are
transistorized counters with neon-bulb indicators. With the exception of the counters,
the machine was built by Control Equipment Corporation at a cost of $14, 000. The count-
ers were designed by the author and constructed by an outside vendor for an additional
$5,000. The machine uses 2100 transistors and has operated for its first 4500 hours
without failure, except for some minor difficulties with the electromechanical counters.

A schematic diagram of shift-register and one-bit multiplier circuitry designed for
a high-speed correlator channel is given in Fig. 19. This circuitry was developed by
Control Equipment Corporation for the National Radio Astronomy Observatory. The
design parameters of this machine are: N = 100 channels, K = 2 receivers, (fs)max=
10 mc, and a counter capacity M of 30 bits. Electronic readout (to a computer or paper
tape punch) is provided on the slowest 24 bits of the counter. An expected cost of this

machine is from $400 to $700 per channel.
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VI. SYSTEM TESTS

6.1 SUMMARY OF TESTS

A series of experiments, designed to test various aspects of the digital autocorrela-
tion spectral-analysis system, are described here. The objectives of these tests are

also discussed.

Computer Simulation of the Signal and the Signal-Processing System

Samples of a time function having Gaussian statistics and known power spectrum are
generated in a computer. This time series is analyzed in the computer through the use
of both many-bit and one-bit autocorrelation processing. One-hundred such time series
(1050 samples each) were analyzed in order to give statistical information concerning
the mean and variance of both one-bit and many-bit estimates of the autocorrelation
function and power spectrum. The main objective was to find the variance of the one-
bit power spectrum estimate; this is difficult to calculate theoretically and is needed
to specify the sensitivity of the radio-astronomy system for which the one-bit
autocorrelation-function method is used.

Measurement of a Known Noise-Power Spectrum

A noise-power spectrum that is "known" within 1 per cent is produced by passing
white noise through a filter whose power transfer function is measured by conventional
sinusoidal techniques. This signal is in the video-frequency range and is analyzed by
using the same clippers, one-bit correlator, and computer program that were used in
the deuterium-line attempt. This was the first measurement performed with the system

and served mainly as an equipment check.

Measurements of Artificial Deuterium Lines

A small signal having a spectrum similar to the deuterium line (except that it is a
"bump" instead of the deuterium-absorption "dip") was produced and injected into the
deuterium-line receiver input (at 327 mc). A second large, broadband noise signal,
simulating the radio source Casseopeia was also injected into the receiver input. A
means of calibrating the artificial deuterium-line signal in relation to the noise was
provided. Artificial lines of various magnitudes were detected, the weakest being
37 db (0. 02 per cent) below the noise level.

Analysis of the rms Deviation of the Deuterium-Line Data

A major advantage that is expected of the digital autocorrelation system is that the
theoretical sensitivity (which increases as the square root of the observation time) is

achieved when observations are carried out for long periods of time. This is often not
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the case with analog equipment, because of nonstationariness or drift in the apparatus.
The realization of this advantage is demonstrated by an analysis of the rms deviation
of 68 days of deuterium-line data.

Before discussing these tests, it should be mentioned that the digital correlator itself
can be checked by the application of a few simple test signals. Two such test signals are
a constant, which gives a constant autocorrelation function, and a square wave (derived
from the correlator clock circuitry) which gives a triangular autocorrelation function.
These tests were built into the digital correlator that was used for the deuterium exper-
iment and were periodically performed. The only errors that were ever found were
missed counts in electromechanical counters used in this machine. The tests are very
sensitive; with a 10-second run at 300-kc sampling rate, a single error in 3 X 106 oper-
ations can be detected.

6.2 COMPUTER SIMULATION OF THE SIGNAL AND THE SIGNAL-PROCESSING
SYSTEM

The procedure and objective discussed in this section have already been summarized.
Computer-generated estimates of the mean and variance of both one-bit and many-bit
estimates of the autocorrelation function and power spectrum will be discussed. (The
reader should not be confused by the fact that we are considering statistical estimates
of the mean and variance of another statistical estimate.) Many terms must be defined
and this will be our first task. After this has been done, a large portion of the experi-
mental procedure and results can be understood by referring to Figs. 20-22. A dis-
cussion of the procedure and results will be given below.

a. Definitions and Terminology

The notation of this section is the same as that used in Sections II and III, with one
minor exception. The time intervals At and At will be assumed to be equal, and kAt
and nAT will be replaced simply by k and n. As usual, p refers to normalized auto-
correlation functions; p refers to normalized power spectra; a single prime, or a
subscript 1 refers to one-bit samples; a double prime, or a subscript m refers to
many-bit samples; and a sigma with appropriate subscripts refers to rms deviation of
the variable indicated by the subscript.

An example is crpl(f) which is the rms deviation of the spectral estimate computed
from one-bit samples. A statistical estimate of crpl(f) is o‘}')(f). In a similar manner,
the meaning of crpm(f) and Gl':;(f), o-Pl(n) and o';J(n), and o'Pm(n) and o"(n) should be clear.
The many-bit rms deviations, o-pm(n) and «pm(f), were discussed in Section II, and the
one-bit rms deviations, apl(n) and o-pl(f), were computed in Section III. The statistical
estimates of these quantities will be defined below.

The quantity x(k) denotes a sample of a time function having Gaussian statistics.
These samples will be generated in the computer by a method described below. As in
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earlier work, y(k) is the one-bit sample corresponding to x(k); y(k) = 1 when x(k) > 0,
and y(k) = =1 when x(k) < 0. The time between samples, At = AT, will always be assumed
to be equal to 1/75 ke so that the time and frequency scale of our computer-generated
results will be the same in the deuterium-line results.

Following the procedure already used, we define the one-bit and many-bit autocor-

relation function estimates as:

K

pi(n) = sin [T . Z y(k) y(k+[n) (153)
k=1

and

x(k) x(k+n|)

N

pi(n) = z ) (154)

Z x% (k)

k=1

The subscript i, with i going from 1 to 100, is used to denote each of 100 independent,
but statistically alike, estimates of p(n). Each p i'(n) is determined from a different group
of K+n randomly generated samples; however, each group is generated under the same
conditions. The sample size K is fixed at 1050. The values of p{(n) and pi"(n) are cal-
culated for n = 0 to 20 which is analogous to the deuterium-line processing.

The one-bit and many-bit estimates of the power spectrum, p{(f) and p{'(f), respec-
tively, are computed from p{(n) and p{'(n) in the same manner as previously (Eq. 33).

For example,

20

pi'(f) = 2AT Z p{(n) w(nAT) e
n=-20

-j2nfnaT (155)

Here, the cos weighting function is used analogously with the deuterium-line data proc-
essing. According to the theory presented in Sections II and III, the mean or expected
value of p{(f) and p{'(f) is the smoothed spectrum, p*(f), which is discussed in sec-
tions 2. 4b and 2. 2.

p'_(f) =p"(f) = p*(f)- (156)

The arithmetic averages of pi'(n), pi"(n), p{(f), and pi'(f) are denoted p;w(n), pgv(n),

péw(f)’ and pgv(f), respectively, for which, for example,
100
1
ph () = -1—032 p(D). (157)
i=1

Similarly, estimates of the rms deviations of p{(n), p{'(n), p{(f), and p{'(f) are denoted
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o-;)(n), a;)'(n), o-i)(f), and “S‘f)’ respectively, for which, for example,

100
ol (f) = 1},—02 [p2(0-p* (0], (158)
i=1

It can be shown (see Burington and May,zo p. 149) that if 1 functions are used to
estimate the rms deviation of a function (as in Eq. 158 where I = 100), then the rms

error of the estimate is 100/~2I per cent. For example,

ﬁa;)(f)—cm(f)]z 1
=—. (159)

p1(d) N2

—

Since I = 100 in our case, the true rms deviations, o-pl(f), upm(f), cpl(n), and (rpm(n),
are estimated by (rI')(f), crI';(f), (r:)(n), and cg(n), respectively, with an rms error of

approximately 7 per cent.

b. Computer Method

A block diagram of the computer program used to generate the one-bit and many-bit
estimates of the autocorrelation function and power spectrum is shown in Fig. 20. This
program was run 100 times with a different (but statistically alike) sequence of random
numbers each time. The results which will be presented are the arithmetic averages
and rms deviation estimates defined in the previous section.

A complete listing of the computer program is given in Appendix D and should be
referred to for details. The main steps in the program should be fairly obvious from
Fig. 20 and the previous definitions. The generation of the Gaussian time series x(k),
with known spectrum, will be briefly discussed here. The generation of this time series
occurs in three steps.

Step 1

Random numbers with uniform probability density are generated by taking the last
4 digits of a nonconvergent, iterative, arithmetic operation (see program, statements 67
to 73).

Step 2

A sum of 5 uniform random numbers is used to form a new random number which
has an approximate Gaussian probability density function (see Davenport and Root,1
pp. 81-84, "The Central Limit Theorem™"). The probability density function of this sum
consists of the uniform density function convolved with itself 5 times; this will closely

approximate a Gaussian distribution.
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GENERATE
RANDOM NUMBER
UNIFORM
DISTRIBUTION
SUM 5 UNIFORM
RANDOM NUMBERS
TO APPROXIMATE
GAUSSIAN ]
DISTRIBUTION :
>
w (k) X(k) 20
STIMULATES
CONVOLUTION CLIPPER
OPERATION e
STIMULATES
FILTER
AUTOCORRELATE
X (k) USING ONE - BIT
SAMPLES
AUTOCORRELATE
USING 25 BIT
SAMPLES
VAN VLECK
CORRECTION
o fli ()] —— vP} (n)
FOURIER FOURIER
TRANSFORM TRANSFORM
TO GIVE TO GIVE
POWER SPECTRUM POWER SPECTRUM

L P (1) L. Pl ()

Fig. 20. Block diagram of the computer program used to simulate
the signal and the signal-processing system.

Step 3

The Gaussianly distributed random numbers are statistically independent, and thus
they have the character of samples of Gaussian noise with uniform spectrum (white
noise). These samples must then be passed through a sampled-data filter to give the
desired spectrum. This is accomplished by convolving the white-noise samples with
a filter impulse response. The output samples x(k) are then Gaussian with a spectrum
equal to the square of the magnitude of the Fourier transform of the impulse response.
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c. Results and Conclusions

All of the results of the computer-simulation experiment are given in Tables III and
1V; the more important results are also plotted in Figs. 21 and 22.

The arithmetic averages p;V(n), p;;xv(n)’ p;v(f), and p;w(f) should be within a few

1. — p(n), TRUE AUTGCORRELATION FUNCTION
-8r ® phv(n), AVERAGE OF 100 ONE-BIT
. AUTOCORRELATION FUNCTION ESTIMATES
.6F
b

RMS DEVIATION OF AUTOCORRELATION FUNCTION ESTIMATES

P R Mg /--- B 3.27
Lo}

L . m. 2,50
o3t N N B, 2,52

T4(n), ONE-BIT RESULT

02k ——— c';,(n), 25-BIT RESULT

—_— EXACT THEORY
.01

----- APPROXIMATE THEORY

A 'y 1 2 2 s N (] n A i 2 1 Py A 2 I 1

5 10 15 20

Fig. 21. Results of the computer-simulated autocorrelation-
function measurements.

times o’/*JlOO of the true mean, where the respective ¢ of a single estimate is used.
The N100 term arises because the arithmetic averages are taken over 100 independ-
ent estimates. The agreement of the averages of the estimates with the true mean

is quite as expected, and is not too illuminating because the theoretical work for
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this result is quite clear.
Our major interest is in the estimates of the rms deviations ag(n), o' (n), o-g(f), and
al;)(f). It should be kept in mind that these quantities are statistical estimates of the true

values u'pm(n), crpl(n), u-pm(f), and crpl(f), and will have an rms error of 1/N200 ~ 7 per
cent of the true value as is indicated by Eq. 159.

/k"g i TRUE AND MEASURED POWER SPECTRA
mw,
0 O aq 000 0g
32 b
o4 p*(f), TRUE MEAN
o b

© p!_(f), AVERAGE OF 100 ONE-BIT
a SPECTRAL ESTIMATES

16

o A A ' ' i A A 9

RMS DEVIATICN OF SPECTRAL ESTIMATES

-6~ vr'a(”' ONE-BIT SAMPLES
—— c-;(r), 25-BIT SAMPLES

o A A A A A Ao A

RMS DEVIATION DIVIDED BY MEAN
-o—e- o} (f)/pe(1)
——— ¢;(f)/p'(t)

FREQUENCY, XC

Fig. 22. Results of the computer-simulated spectral measurements.

The many-bit and one-bit rms deviations ag(n) and ¢'(n), respectively, will be dis-
cussed first. Examination of wg(n) in Fig. 22 indicates that it is in good agreement with
the "exact" theory (the approximations are well justified) given by Eq. 80. Equation 82,

in which linearly independent products of many-bit samples are assumed, gives a value
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Table III.

Results of computer-simulation experiment autocorrelation functions.

pln) Payin) Pay®) o (n) 0 (n)
n = 10,000 = 10,000 | = 10,000 = 10,000 x 10,000
True Many-Bit | Ome-Bit | Many-Bit One-Bit
Function | Estimate | Estimate | RMS Dev. | RMS Dev,

0 10000. 0 10000.0 10000. 0 0.0 0.0
1 -0.3 24.7 43. 6 269.8 393.5
2 -3094.2 -3177.1 ~3188.3 273 % 389.7
3 -0.4 -9.2 -42.0 338.1 466.9
4 -1801.3 -1702. 9 -1766. 4 375.8 467.2
s -0.7 -21.8 44.2 322.3 460.0
6 -%01.7 -476.9 ~-462.3 349.9 502.9
7 -3.0 19.3 41.1 319.2 $13.8
8 210.7 194. 53 228.1 346. 8 486. 1
9 -5.8 -9.0 -28.7 3%0. 4 517.8
10 242.8 233.9 285. 4 345. 8 531.3
11 16. 4 -21.0 -36.7 317.17 498.5
12 29.2 31.8 -31.0 343. 4 $75.0
13 3.9 43.9 107. 4 340.0 §82.1
14 -74. 3 -85.9 -42, 4 314.1 493.8
13 -3.3 -40. 5 -31.9 357.3 $00. 1
16 -50.7 ~75.8 -92.8 383 8 $33.3
17 -10. 4 -16. 6 1.2 331.9 486.3
18 T.4 38,0 20.3 326.5 475.8
19 8.8 26.8 34.3 324. 6 462.7
20 9.1 -32. 4 -55.0 372.3 570.7
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Table IV. Results of computer-simulation experiment power spectra.

a (1) o (1)
f - . P £
pHe) P i) Pa 0 oo (0
{ x 5000 = 5000 x 5000
% | <Trwe | Many-Bit| One-Bit | Many-Bit | One-Bit
Mean Estimate | Estimate | RMS Dev. RMS Dev.
0 4.9 5.2 6.4 0. 237 2.882
| 8.1 8.5 9.2 0.181 1. 547
2 17.7 18.3 17.9 0. 145 0, 628
3 34.1 34. 4 33.0 0. 128 0.37%
4 57.9% 57.0 5.3 0.122 0.258
] 86.8 8%. 4 83.9 0.118 0.187
6 118. 4 116.3 115.1 0.122 0. 166
7 146. 8 144.3 143.7 0. 126 0. 166
8 167.1 164.7 168.1 0.11% 0.157
9 178. 1 176.1 178.1 0. 099 0. 144
10 182.1 181.2 184. 5% 0. 096 0. 144
11 182.5 183.1 186. 6 0.110 0. 160
12 182.1 183.6 186.3 0.119 0. 167
13 181.8 183.2 185.0 0.109 0. 151
14 181.7 182.7 184. 5 0. 098 0.136
15 181. 7 183.2 185.3 0.103 0. 139
16 181.7 184.6 186. 5 0.108 0. 145
17 181.7 185.8 186.3 0.112 0. 149
18 181. 8 186.1 184. 5 0.115 0. 154
19 182.0 185.7 182, 7 0.112 0.156
20 182.2 185. 4 182. 6 0. 103 0. 155
21 182.1 185.58 183.9 0. 106 0. 1558
22 181.8 185. 5 184.8 0.116 0. 155%
23 18). ¢ 184.9 183.7 0.127 0. 157
24 181.3 183. 4 181.1 0.127 0.163
25 181. 6 181. 6 178.8 0.116 0. 162
26 182.3 180. 3 178. 6 0.105% 0.151
27 183.0 179. 5 180.2 0.104 0. 149
28 181. 4 177. 4 180.2 0.111 0. 160
29 174.0 170.1 17%.8 0.115 0.161
30 187.9 154. 1 157.2 0.117 0.16}1
L} 132.8 129. 4 130.8 0.123 0. 177
32 102,.2 99.5 99.2 0. 126 0.199
33 71.6 69.6 68.3 0.126 0. 236
34 45,2 44. ) 42, 6 0.131 0.314
35 25.3 24. 23.3 0. 145 0.470
36 12.2 12.2 10. 4 0. 160 0. 941
37 5.7 5.8 3.7 0.190 2. 323
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for o-pm(n) that is somewhat low. Similarly, Eq. 114, in which statistically independent

products of one-bit samples are assumed, gives a o’pl(n) that is somewhat lower than

o"')(n).

A closer and more compact comparison of the autocorrelation rms deviations can be

obtained by averaging along n.

o':)(n) .

For example,

(160)

Since o! is the average of 18 approximately independent points, its rms error is reduced

by N18 to a value of 1. 65 per cent.

deviations are summarized in Table V.

The results concerning autocorrelation-function rms

Table V. Autocorrelation-function rms deviation (average value in interval 3 <n < 20).

One-Bit Many-Bit Ratio
Results of Approx. Results of Approx. Exact Increase
Computer Theory Computer Theory Theory Caused by
Simulation Eq. 114 Simulation Eq. 82 Eq, 80 Clipping
1 n 1 "
o 71 o °om °om v p/o-p
.0500 .0485 .0338 .0309 .0346 1.48
+.0008 +.0006 +.04

The results concerning the rms deviations of the many-bit and one-bit spectral esti-
mates, o-}';(f) and aI'D(f), are indicated in Fig. 22. These results indicate that cl')(f) is

slightly greater than o-I';(f) in the constant passband region of p*(f). But at the edges of

the band, where p*(f) becomes small, o-I'D(f) becomes much greater than c;(f)° In the

many-bit case, o'l';(f)/p*(f) is fairly constant (except for small increases near f = 0 and

f= fs/ 2), and hence a measurement of p*(f) at a frequency for which p*(f) is small is

just as accurate as at a frequency for which p*(f) is large. This is not true in the one-
bit case; tr}')(f)/p*(f) becomes large when p*(f) becomes small. This is the most valu-

able result of the computer-simulation experiment.

Experimental results on actual

spectra indicated the same phenomenon; however, it was thought that the increase of

apl(f)/p*(f) at the edge of the band may have been due to nonideal operation of the sam-

pler and clipper.

In actual radio-astronomy measurements, the observations were con-

fined to the constant passband region such as that between 5 kc and 30 kc in Fig. 22,

It is convenient to define B as the ratio of the one-bit spectral rms deviation to the

many-bit spectral rms deviation; p is estimated by o-i)(f)/ o'}g(f). Strictly speaking, p is
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some unknown function of f and depends on p(f) and W(f). Since the spectra that we shall
measure in most radio-astronomy applications have the same gross shape as the spec-
trum of Fig. 22, the estimate of B given by o’}')(f)/o-l';(f) has more general application.

In the midband region where p*(f) is constant, p appears to be constant. An accurate
value can be obtained by averaging the spectral rms deviations in the interval 10 ke <f <
29 kc; that is,

29
_ 1
O'I') =55 Z cr}')(f). (161)
f=10

There are approximately 10 independent points in this interval; thus the rms error is
reduced by N10 to give a value of 2. 4 per cent. The results are given in Table VI.

Table VI. Spectral rms deviation (average value in interval 10 ke <f <29 kc).

One-Bit Many -Bit Ratio
Results of Results of Exact Increase
Computer Computer Theory Caused by
Simulation Simulation Eq. 86 Clipping

ﬁ =
% % H
! n 1 n
op/P on/P % om/P /o8
.1534 .1107 .1150 1.39
+.0036 +.0025 +0.04

The most important result here is the value, p = 1.39 + .04, which applies in the con-
stant region of a spectrum similar to that illustrated in Fig. 22. Examination of al')(f)
and o"(f) indicates that the increase in B at the edges of the band follows an empirical

law of the form
1/2
B =1 39[p’;/p*(f)] : (162)

where pz is the value of p*(f) in the constant midband region. This equation holds only

for pz/p*(f) < 4; the increase in B is greater for pz/p*(f) > 4. Thus, at 1-db points,
p =1.56; at 3-db points, B = 1.95; and at 6-db points, p = 2. 78.

The increase of § for small p*(f), in radio-astronomy measurements, implies that
the observed frequency band should be in the constant midband region of the receiver
power-transfer function G(f+fo). A correction, of course, is made for the multiplication
of the receiver input spectrum T(f+fo) by G(f+fo) (see section 4. 2a). The uncertainty of
the T(f+fo) measurement will increase, however, at the edges of the band in a manner
indicated above.
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The spectral rms deviation results discussed in this section will be compared in
section 6.5 with the rms deviation of the data taken in the deuterium-line experiment;

the results are in excellent agreement.

6.3 MEASUREMENT OF A KNOWN NOISE-POWER SPECTRUM

a. Procedure

The goal of this test was to compare, as accurately as possible, a spectral measure-
ment made by the one-bit digital autocorrelation method with a spectral measurement
performed by some other method. The limitation on the accuracy of the comparison
lies in the question of how accurately the spectrum can be determined by the "other
method." The basic limitation on the accuracy of the autocorrelation method is the
statistical uncertainty arising from the finite duration of data; this uncertainty can

easily be made less than 0.1 per cent.

POWER SPECTRUM

N 2
P(f) = [H (f)] TO COMPUTER
GENERAL RADIO BANDPASS D
MOD. 13908 FILTER LA | cometar
o 12 e CORRELATOR
GENERATOR

UNIFORM SPECTRUM
100 CPS - 500 KC

Fig. 23. Procedure for producing the "known" power spectrum.

BANDPASS
GENERATOR H ()
FREQUENCY H.P. 400D H.P. 400D
COUNTER VTVM VTVM

Fig. 24. Procedure for measuring |H(f)|.
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A spectrum that is "known!" with an accuracy of approximately 1 per cent can be pro-
duced by passing white noise (uniform spectrum) through a filter whose power transfer
function IH(f)[2 is measured (see Figs. 23 and 24). The power spectrum P(f) at the out-
put of the filter is given in terms of the input spectrum Po(f) by

P(i) = [H®] P (D). (163)

Thus if Po(f) is constant over the region and H(f) is nonzero, then P(f) is proportional to
().

The one-bit autocorrelation-function method of spectral measurement produces a
spectral estimate pi(f), whose mean is the smoothed and normalized spectrum p*(f). Ten
such estimates (i = 1 to 10) were obtained with the same equipment that was utilized in
the deuterium-line experiment; this was one of the early tests of the equipment. A
75-kc sampling rate and 1-hour integration time were used; 21 points on the autocor-
relation were determined; and a uniform weighting function was applied in the Fourier
transformation. According to Table II and Eq. 121, the frequency resolution Af is

2.16 kc, and the statistical uncertainty cpl/p(f) is 0. 053 per cent.

The arithmetic average of the 10 estimates is defined as p;'w(f)’ where
10
1
Piy(D) =15/ Ppith). (164)
i=1

The rms deviation of the spectral estimate o-pl(f) is estimated by cl')(f) which is defined

as follows:

10
o1 (0) = I%Z [p}(t)-py,, (). (165)
i=1

The object of the experiment, then, is to compare p;v(f) or p{(f) with the IH(f)[?‘ meas-

urement. We shall also compare o}‘)(f) with the theoretical value o-pl(f).

The measured value of |H(f)|2, which we shall call IHm(f)?‘, cannot be compared

directly with p;v(f) or p{(f), since these spectra have been normalized and smoothed.

Therefore IHm(f)l2 was also smoothed and normalized to give pm(f), where

(6" * W)
Pplf) = = : (166)

/2
S‘OS (0] * W) a

(Here, the asterisk denotes convolution.) Note that even if le(f){2 were perfectly meas-

ured, pm(f) would not quite be equal to p*(f) because p*(f) also contains a modification,
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because of sampling (see Eq. 40). As a result, a difference between p*(f) and P, (f)

should occur for frequencies near half the sampling frequency.

b. Results

The results of the experiment are presented in Fig. 25. In general, the agreement of
the spectrum determined by the measurement of IH(f)l and the spectrum measured by the

MW/AKC
THIS CURVE REPRESENTS THE
40 FOLLOWING QUANTITIES
WHICH ARE IDENTICAL ON
X A PLOT OF THIS SCALE:

32 Pm = SPECTRUM
DETERMINED FROM FILTER
- BANDPASS MEASUREMENTS
2% | Pys Pas--+Pig= 10

MEASUREMENTS OF THE
- SPECTRUM WITH THE AUTO-
CORRELATION SYSTEM

16 1= p' = AVERAGE OF
av
B P17 Ppr-++Pyp
8 |-
! R R N S
2 THIS CURVE 1S
[ THE ERROR
0 ! R J

B T U 100 Pav ™ Pm pER cENT
-2 |- Pav

THIS CURVE IS THE
RMS DEVIATION OF
THE 10 SPECTRAL
MEASUREMENTS

PER CENT

0.2 |

0 1 i 1 1 1 l
5 10 15 20 25 30 35

OI
100 —B PER CENT
FREQUENCY (KC) Pav

Fig. 25. Results of measurement of known noise-power spectrum.

one-bit autocorrelation system is excellent. Within the region (6-32 kc¢) between the
filter half-power points, the largest error is 1.5 per cent which is probably the result
of error in the measurement of ]H(f)l. The large increase in error for f > 32 kc is due
to spectral foldover (an effect of sampling). The increase in the error at very low fre-
quencies may be due to the fact that the noise generator does not have a flat spectrum
at these frequencies. The error may also be due to increased rms deviation for small

p*(f) as was discussed in section 6. 2c.
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The estimate of the rms deviation, crI')(f), is also shown in Fig. 25, and is of the order
of a few tenths per cent. This is higher than the theoretical value of 0.053 per cent
(which applies only in the midband region between 6 kc and 32 kc). The reason for the
higher experimental value apparently lies in variations in the filter characteristics during
the measurement time. The temperature coefficients of the capacitors and inductors
used in the filter are of the order of 200 ppm per degree Centigrade. The measure-
ments of the 10 spectra took two days, and it is estimated that the temperature varied
+5°C, thereby causing a +0. 1 per cent change in inductor and capacitor values. This
would tend to shift the filter center frequency; this effect can be observed upon exami-
nation of the 10 spectra, and is evident both in the shape and magnitude of the experi-
mental rms deviation curve. Subsequent experiments indicate that the system does

realize the theoretical rms deviation.

6.4 MEASUREMENT OF ARTIFICIAL DEUTERIUM LINES

The goal of the deuterium-line experiment was to detect the 327-mc deuterium line
if the galactic and terrestrial deuterium-to-hydrogen ratios were equal. The search
was made for the line in absorption from the Casseopeia A radio source. The spec-
trum that is expected in this case can be predicted from hydrogen-line observations in
this same direction and is shown in Fig. 31. Essentially, 0. 01 per cent dip in the noise
spectrum, 3 kc wide, near 327 mc must be measured. The receiver noise temperature
is approximately 1000°; the background source, Casseopeia A, supplies another 1000°;
and the peak deuterium absorption would be approximately 0. 2° if the galactic and ter-
restrial abundance ratios were equal.

A spectrum that is similar to this (a "bump" is produced instead of a "dip") can be
generated with the apparatus shown in Fig. 26. A noise spectrum, 3 kc wide, centered
at 18 ke, is generated by the noise generator-filter method discussed in section 6. 3.
This spectrum is heterodyned up to 327 mc through the use of the receiver local oscil-
lators. Care was taken to prevent the generation of spurious signals. The signal is
passed through a calibrated (+.5 db) high-frequency attenuator and then coupled through
the -20 db ports of two-directional couplers to give two outputs. The radio source,
Casseopeia A, is simulated by high-frequency broadband noise generators attenuated
to a proper level.

Two sources of the signal are needed, since both polarizations are observed by the
deuterium-line equipment. In the acutal experiment, each polarization gives an inde-
pendent but statistically alike signal; this doubles the effective observation time and,
hence, increases the sensitivity by N2. In our artificial experiment, two separate high-
frequency noise generators (each simulating a component of the random polarization of
Casseopeia A) were used, and hence the 1000° broadband noise signals are independent.
In contrast to this, the weak, 3 kc-wide, artificial deuterium-line signals arise in a
common source, and therefore are not independent. As long as these signals are
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small (¢« 1000°), there will not be an increase in rms fluctuation, because of the coher-
ence of the two artificial signals.

The ratio of the artificial signal power to the broadband noise power can be deter-
mined by observing (on a meter) the change in total receiver output power as the arti-
ficial signal is increased by varying the calibrated attenuator. By knowing the shape
of the artificial line and the shape of the receiver bandpass, the peak artificial signal
temperature can be found. The attenuator then provides a means of adjusting the
strength of the artificial deuterium line.

The results of some artificial deuterium-line observations are shown in Fig. 27.
Two observations of an artificial line, which is 1 per cent of the total noise tempera-
ture (2000°), are shown in the top part of Fig. 27. The two observations were performed
two weeks apart and illustrate the repeatability of the measurement.

The lower part of Fig. 27 shows the results of an observation of a 0. 02 per cent,

S/N
—— 1 PER CENT SIGNAL | THEORETICAL
2 RMS DEVIATION
---- REPEAT 2
0.75 = WEEKS LATER V(T =1.1x 10%ec) T 15°
\
\\
0.50 - 100
0.25 — 5°
&
| 2
0 o &
N o
- &
z N, s
3 ] i
o -0.25 1.5
&
S/N | —— 0.02 PER CENT SIGNAL
----- NO SIGNAL THEORETICAL
0.02 |- RMS DEVIATION —0-4°
5
0.01 |- T=1.5x10%ec) —0.2°
NV Sl
\"" “\ 1/ -
-0.01 - 9.0
1 ] | | ]
-10 0 -10
~327.4 MC

FREQUENCY (KC)

Fig. 27. Artificial deuterium-line results. Ordinates are
expressed as a temperature difference from Tav’

the total noise temperature (~2000°) averaged over
the receiver bandpass.
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0. 4°, artificial line and, for comparison, an observation with no line. The 0. 02 per cent
line is just at the borderline of detectability, being just twice the theoretical rms devia-
tion for the integration time of 1.5 X 105 seconds.

6.5 ANALYSIS OF THE RMS DEVIATION OF THE DEUTERIUM-LINE DATA

a. Theoretical RMS Deviation

The deuterium-line data were processed slightly differently from the procedure used
to specify antenna temperature (see Section IV), and thus an rms deviation equation
slightly different from that given by Eq. 148 results. The quantity that was examined is
the measured difference spectrum §p'(f) = p'(f) - p(':(f) divided by the measured receiver
bandpass function p(')(f). This dimensionless quantity, 5p'(f)/p(‘)(f), will be designated s(f),
and has physical significance in that it is simply related to the deuterium optical depth.

Under the assumption (discussed in section 5. 1b) that the receiver is balanced
(aTav = 0), the mean of s(f) is given by Eq. 142 as

T
- sp'(f) T'(f+f )~ T
s(f) = l‘:p:)(f)} = rI? av, (167)

av

where TT(f+fO) is the smoothed input temperature spectrum, and Tav is TT(f+fo) averaged
in frequency over the receiver bandpass. TT(f+fo) is the sum of the smoothed antenna
temperature spectrum TZ(f-&-fo) and the receiver noise temperature Tr' (All of these
terms were defined and discussed in Section IV.) If Eq. 167 is solved for TT(f+fo),

Eq. 140 (with GTav = 0) results. The rms deviation of Tl(f+fo) is then given by Eq. 148.
The rms deviation of s(f) is found upon application of Eq. 143; this gives the rms
deviation of a normalized spectral estimate, such as p'(f), p'c(f) or p})(f). As explained
in section 4. 4, the rms deviation of p:)(f) can be neglected. The rms deviation of §p'(f) =
p'(f) - pé(f) is twice that of p'(f) or p::(f) (a factor of N2 arises because §p'(f) is the dif-
ference of two random quantities; another factor of N2 arises because only half the total

observation.time T is spent on each measurement). The result is

2af
As(f) =

- N1 - Af/b (168)

TAf

where e, B, Af, and b are defined after Eq. 143. The numerical values that apply in
the deuterium-line experiment are ¢ = 0.866, p = 1.39, Af =3.75 ke, and b = 30 kc.
The time v in Eq. 168 is equal to the actual observation time only if a single
switched receiver is used, and if no blanking time is allowed in the switching cycle. As
previously explained, four switched receivers, each monitoring an independent signal,
were used in the deuterium-line experiment. The time T then becomes the observation
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time per receiver and, except for blanking, would be equal to 4 times the actual obser-
vation time. The blanking time is 1/4 of the total time; thus 7 is equal to 3 times the
actual deuterium-line observation time T In the course of the experiment, v was
recorded (it is proportional to the number of counts accumulated in the first counter of
the correlator), and whenever observation times are quoted, T (and not Ta) is meant.
In the deuterium-line experiment a v of 76.5 days was achieved, even though the antenna
was in use only 68 days and the source was observable only 12 hours a day.

One further step was taken in the processing of the deuterium-line data. A linear
(with frequency) correction was applied to the measured spectrum to remove any slope
that was present (typical slope correction, 1.5 X 10_5/kc). In other words, the slope-
corrected function c(f) is given by

c(f) = s(f) - (a+bf), (169)

where a and b are chosen to minimize the mean-square value of ¢c(f). The reason that
this correction is needed is that there are imperfections in the front-end switch and noise
source (see section 5. la).

Some of the statistical error is removed by the slope correction, and the theoretical
rms deviation of c(f) is lower than that of s{f). It can be shown (Kenney and Keeping,21
Section 8. 7) that the reduction is a factor of N1 - 2/N, where N is the number of inde-
pendent points on the curve. Assuming that points Af/2 = 1. 87 kc apart are independent,
N = 13. 4 for the 25-kc bandwidth that was analyzed. Thus the rms deviation should be
reduced by a factor of 0.92. The result of applying this correction and substituting

numerical values for e, g, and b is

2.05
NTAf

Ac(f) = (170)
It is convenient at times to give a temperature scale to s(f) and c(f) by multiplying
them by Tav which was approximately 2000°. The quantity AT = TaVAc(f) then can be

interpreted as the rms deviation of the measurement of TT(f+fo) - T__, and is given by

av

ar=E2r, | (171)
T
=10 (172)
V(*)4Rs

b. Experimental Results

The deuterium-line data consist of 169 spectral estimates, each accumulated with
an average observation time, T, of 10. 8 hours. These estimates will be labeled ci(f)
(i goes from 1 to 169). The mean of each estimate is given by Eq. 167 (with a slope
correction), and the rms deviation is given by Eqgs. 170, 171 or 172. The computer
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program that was used to produce each ci(f) from the output of the digital correlator is
listed in Appendix D.

Each spectral estimate was plotted and examined for interference. A few spectra
were discarded because of their unusual appearance. The remaining 169 spectra were
averaged into weekly averages, three-week averages, and a final, over-all, nine-week
average. The results of the three-week and nine-week averages are shown in Fig. 31.

An experimental estimate of the frequency-averaged rms deviation of each ci(f) is
given by Aci, computed as follows:

(173)

(It is assumed in this computation that the mean of each ci(f) is zero, which means that
the deuterium line is not present. Unfortunately, this proved to be the case.) The rms
error of an estimate of the rms deviation computed in this manner is equal to 100/N2T
per cent (Burington and May,20 p. 149), where I is the number of independent points on
the spectrum. Assuming that points Af/2 = 1. 87 kc apart are independent, I = 13. 4, and
the error is approximately 19 per cent. If the Aci from L, different records are aver-
aged together, the rms error will be 19/NL per cent.

In addition to computing the Aci for each 10. 8-hour record, the frequency-averaged
rms deviation was also computed for longer records formed by averaging the 10. 8-hour
records. The results are presented in Table VII and, in somewhat different form, in
Fig. 28.

Table VII. Analysis of rms deviation of the deuterium-line data.

Average Number Theoretical Experimental
Record of rms rms
Length Records Deviation Deviation
T L TavAc TavAci
10.8 hrs 169 0.340° 0.340°+0.010°
229 hrs 8 0.073°, 0.087°+0.012°
612 hrs 3 0.045° 0.066°+0.014°
1835 hrs 1 0.026° 0.042°+0.016°

These results indicate that the departure from the theoretical sensitivity is not large,
even for integration times of the order of 106-107 seconds. This result should be com-
pared with those from the conventional Dicke radiometer, for which the theoretical rms

3

deviation is usually not achieved for integration times longer than from 102 to 10” seconds.
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Fig. 28. Experimental and theoretical sensitivity of a conventional
Dicke radiometer compared with a one-bit autocorrelation
radiometer. (The measurements on the Dicke radiometer

were made by Cohen and Orhaug.zz)

The stability advantage of the one-bit autocorrelation system is clearly in evidence in
Fig. 28.
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VII. THE DEUTERIUM-LINE EXPERIMENT
7.1 INTRODUCTION

At present, only one spectral line has been observed in radio astronomy. This is
the 1420-mc (21-cm) hydrogen line, detected by Ewen and Purcell, in 1951. This line
is caused by hyperfine splitting of the ground state of cold, neutral, atomic hydrogen
that is in the interstellar space of a galaxy. During the past 11 years, extensive studies
of the hydrogen line have been made (see Shklovsky,23 Chapter 4), and valuable phys-
ical characteristics of the interstellar medium, such as density, temperature, and line-
of-sight velocity, have been measured. Indeed, it has been found that a large fraction of
the total mass of our galaxy consists of this neutral atomic hydrogen, which, at present,
is not observable by any other means.

Deuterium, an isotope of hydrogen (sometimes called "heavy hydrogen") exhibits a
similar hyperfine transition occurring at approximately 327 mc. In 1952, Shklovsky24
predicted that it might be possible to detect this line. Since 1952, there have been at
least four attempts to detect the deuterium line, and all have given negative results.z’r"28
In the most recent of these attempts, by Adgie at Jodrell Bank, the experimental sensi-
tivity was not quite sufficient to detect the line if the interstellar deuterium -to-hydrogen
ratio, ND/NH, was equal to the terrestrial value 1/6600. Consequently, the goal of our
experiment was to detect the deuterium line if the interstellar and terrestrial deuterium-
to-hydrogen ratios were equal.

The interstellar deuterium-to-hydrogen ratio is of astrophysical importance because
it gives information concerning the nucleogenesis of the interstellar rnedium.29’ 30 The
role that ND/NH plays in nucleogenesis will be very briefly outlined here.

The relative abundances of elements formed by the nuclear burning in a star can be
predicted by stellar nuclear theory. For most of the elements, these abundances agree
remarkably well with the abundances found on earth and in meteorites. But, an out-
standing anomaly exists for deuterium. The predicted value of ND/NH is 10-17, which
is approximately 1013 times less than the measured terrestrial ratio.

Fowler, Greenstein, and Hoyle31 have attempted to explain the high terrestrial
ND/NH ratio in terms of nuclear processes that occurred on the primordial earth.
According to this theory, the ND/NH ratio 1/6600 would appear to be a purely terrestrial
phenomenon, and there would be no reason to expect this value to be true in interstellar
space. If the interstellar medium consists primarily of the debris of stars, an inter-
stellar ND/NH of 1017 would be expected. An interstellar ND/NH of 1/6600 would tend
to imply that both the earth and the interstellar medium were formed from material
which had never been through the stellar -burning process.

Some background material concerning the deuterium-line experiment was presented
in the author's Bachelor's 1:hesis.32 The major topics discussed there are:

1. The bandwidth and magnitude of the expected deuterium line are derived in terms
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of ND/NH. (This will be discussed in this report.)

2. The choice of a direction of observation is discussed. Under the assumption that
ND/NH is constant in the interstellar medium, a prediction of the best signal-to-noise
ratio for an attempt to detect the line in absorption from the Cas A radio source is made.

The deuterium-line observations were performed with the 85-ft Howard Tatel Radio
Telescope at the National Radio Astronomy Observatory, Green Bank, West Virginia.
The receiving system has already been discussed in this report. The basic steps in the
signal-processing system are given in Figs. 7 and 11. A detailed block diagram of the
deuterium-line receiver is given in Fig. 13, and the components of the system are dis-
cussed in Section V. The treatment of the data and the theoretical and experimental sen-

sitivities are discussed in section 6. 5.

7.2 PHYSICAL THEORY AND ASSUMPTIONS

The relation between the antenna temperature spectrum, Ta(f), and the interstellar
deuterium-~to-hydrogen ratio, ND/NH, will be discussed now. This relationship can be
written very simply if some very important assumptions are made. These assumptions
have been made, but not stated, by past researchers who were looking for the deuterium
line. Indeed, these same assumptions are included in the basic statement of the results
of our work — The galactic deuterium-to-hydrogen ratio is less than 1/2 the terrestrial
value. A few of these assumptions are not well justified and a reinterpretation of our
measurements, based upon future theoretical and experimental work in astrophysics, may
be necessary.

In light of the statements above, the three basic steps relating the antenna tempera-
ture to ND/NH will be briefly reviewed. The simple relation between Ta(f) and ND/NH
will then be stated, and the important assumptions included in this statement will be
listed.

Step 1

The antenna temperature, Ta(f), is equal to a weighted spatial average of the sky
brightness temperature, Tb(f, 9, ¢).

=24 {1000 g6 0 a0 (174)
4w

where g(0, ¢) is the antenna gain function, and dQ = sin 6 d6d¢ is the solid-angle incre-
ment.
Step 2

The sky brightness temperature, Tb(f, 6, ¢), is related by the classical equation of
transfer (see Chandrasekhar33) to the optical depth of the gas (deuterium or hydrogen),
7(f, 0, ¢), the spin temperature of the gas, Tg (assumed to be constant in space and
frequency), and the background brightness temperature, Tbg(e, ¢) (assumed to be
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independent of frequency). The relation is

- —T(f’ ei ¢) - _T(f: e: ¢)
T, (£, 6, 0¢) = Tbg(e,¢) e + Tg[l e 1. (175)
Step 3

The optical depth of the gas is related to n(9, ¢), the number of gas atoms (in both of
the hyperfine states) in a column of unit cross section extending from the observer to
infinity in the direction of 6 and ¢. The relation32 is

o2 g
T(£,0.¢) = g5 - Tng < g1+‘g - u(f) - n(o, ¢), (176)

where hc2/81rk is a constant, A is the spontaneous emission probability, Tg is the spin
temperature, fo is the line frequency, Af is the Doppler-broadened linewidth, g, and g
are the statistical weights of the upper and lower states, and u(f) is the line -shape func-
tion [u(fo)=l].

The problem is to apply these equations to the physical situation shown in Fig. 29,

and to interpret a deuterium-to-hydrogen ratio from our deuterium results, previous

Q,

Ty, 2(f,0, )

DEUTERIUM

GAS CAS A

RADIC SOURCE

Fig. 29. Configuration for the deuterium-line experiment.

hydrogen-line observations made in the same direction, and measurements and calcu-
lations of the physical properties of deuterium and hydrogen.

In the configuration of Fig. 29, the background brightness temperature distribution,
Tbg(e, b)), consvists of a term, To’ which is constant within the antenna beam and a term,
T (9 ¢), representing the contribution of the discrete source. It is convenient to

descmbe the antenna temperature in terms of measurable spat1a1 averages of T (6 ¢)and

e T 0.8 Thege spatial averages are TI'3’ e ™0, and 7" M) defined as fOllOWS
=L
T =ap ) Tpl@:¢) g0, 0) do (177)
4
0 t.0.0) T,(8,¢)
“'T _ 4 - T\, ’¢ YV —————
4w P
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e__..rll(f) = _4% S e_T(f, 9) ¢) . g(e, 4)) dsa. (179)

4

In words, TI|3 is the contribution to antenna temperature from the discrete source; T'(f)

~7(£, 8, ¢) taken over the solid angle subtended

is minus the logarithm of the average of e
by the discrete source; and 7"(f) is minus the logarithm of the average of e_T(f’ 0, ¢)
taken over the entire antenna beam. It is important to note that v'(f) and v"(f) are not
just simple averages of =(f).

Equations 174 and 175 can be combined to specify the antenna temperature in terms

of the quantities defined above,
_ -7'(f) -1"(f) _—T"(f)
T(f) = Te +T.e + Tg[l e J- (180)

The first term in this equation represents the contribution to antenna temperature from
the discrete source attenuated by the gas, the second represents the background contri-
bution attenuated by the gas, and the last represents emission by the gas.

For the deuterium-line case, T'(f) = -rb(f) and T"(f) = T]'{)(f) are much less than one.
The exponentials can be expanded to give

T (f) = T, - () T, + T, + TH{E) [T-T . (181)

In the direction of the Cas A radio source, the last term can be neglected, since -ri')(f)
will be of the same order as -r]')(f) and TII> ~ 1000° (with an 84 -ft telescope) is much larger
than Tg - To ~ 45° (under the assumption that Tg for deuterium is the same as Tg for
hydrogen, ~125°K). Thus the final result for the antenna temperature is

Ta(f) = TI') + T0 - -rb(f) TI'). (182)

The relation between the peak optical depth -rb(fD) and ND/NH can be calculated

with the aid of Eq. 176 evaluated for both deuterium and hydrogen. We find

———=10.30 N_- (183)

The following assumptions, listed in order of increasing degree of justification, are
included in Eq. 183.

1. The value of ND/NH that is interpreted from the measurement of Tb(fD)/Ti-I(fH)
really depends on the angular distribution of hydrogen, nH(e, ¢), within the solid angle,
Qp, subtended by the discrete source. It also depends on the discrete source tempera-
ture distribution, T (6, ¢). These statements are illustrated in Fig. 30.

The ratio -rD(fD, 0, ¢)/-rH(fH, 6, ¢) does not depend on nH(e, ¢) if the deuterium spatial
distribution is the same as that of hydrogen (that is, nD(e, ¢) = (ND/NH) nH(O. ¢)). Even
if the distributions are the same, the measured ratio T]".)(fD)/Ti-I(fH) depends on nH(e, ).

This results from the peculiar way in which -rh(fH) depends on -rH(f ,0,9)in Eq. 178,

88



Ty(Fy, 0, ®) = 4 OVER ALL Q
7 (Fly, 8, ) = 400 OVER 0.982Q

7y(fy, 0, 9) = 0 OVER 0.018Q,

Fig. 30. Two extremes of the possible distributions of hydrogen optical depth in front
of the Cas A radio source are shown. Both configurations would give the same
measured, spatially averaged, hydrogen optical depth, 1-'H(fH), defined by

Eq. 183, The distribution at right, however, would give a measured, spatially
averaged, deuterium optical depth, -rb(fD), which would be 100 times greater

than that given by the uniform distribution with the same ND/ NH ratio. The

major point is that the assumption of uniform hydrogen optical depth is the
most conservative distribution that can be chosen as far as setting an upper
limit on the ND/N ratio is concerned.

H
If Ti—l(fH) were a simple spatial average of -rH(fH, 0, ¢), then -r'D(fD)/T‘H(fH) would be
directly related to ND/NH in a manner independent of nH(G, ¢) [assumed to be proportional
to nD(G, $)]-

Because of the high resolution that is required, neither nH(e, ¢) nor T (0, ¢) were
measured. The assumption in Eq. 183 is that both np(8, ¢) [and hence Tt @ ¢)] and
Tp((—), ¢) are constant over Qp. It appears (see Fig. 30) that this is the most conserva-
tive distribution that can be assumed. In other words, any other distribution would allow
a lower upper limit of ND/NH to be interpreted from our results. Future measurements
of nH(e, ¢) and Tp(e, ¢) for the Cas A radio source will allow a more sensitive interpre-
tation of our results.

2. The spin temperatures for deuterium and hydrogen are assumed to be equal. Jus-
tification of this assumption is uncertain, since it depends on estimates of the intensity
and detailed profile of the interstellar radiation field at the frequency of deuterium
Lyman «¢ radiation. This problem has been discussed by Field.34

3. The ratio of the Doppler-broadened linewidths of deuterium and hydrogen,
AfD/AfH, would be equal to the ratio of the line frequencies, fD/fH, if the atoms had the
same rms velocity. A portion of the rms velocity, however, is due to thermal motion
in which the deuterium atoms, having twice the mass, would have 1/N2 of the rms ther-
mal velocity of the hydrogen atoms. The other component of rms velocity is believed
to result from random cloud motion that would give the same velocity to deuterium and
hydrogen atoms. These velocities are independent, and hence the total rms velocity is
the square root of the sum of the squares of the rms thermal and random velocities.
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Approximately 0.5 AfH is due to thermal motion, and thus 0. 866 AfH must be due to ran-
dom cloud motion. These numbers give AfD/Af =0.935f_ /f .
H D''H -17 -1

4. The value of the deuterium transition probability, AD =4.65X10 sec ~ (given

by Fie1d34) is correct. (This same value was computed independently by Alan H. Barrett
-17 .
D=6.6><10 , given by
Shklovsky,23 is incorrect (Eqs. 14-6, 15-4, 18-3, and 18-4 appear to be incorrect). The
-15 -1

value of AH =2.85X10 sec is not in doubt.

5. The value of the peak hydrogen optical depth, Th(fH), in the Cas A radio source

is also the subject of some controversy, its large value being difficult to measure. The

of the Massachusetts Institute of Technology.) The value, A

first observers, Hagen, Lilley, and McCla.in,35 using a 50~ft paraboloid, report Ti—I(fH)=
2.6. Muller,36 using an 83-ft reflector, gives 4.0, and observers at California Insti-
tute of Technology,37 using a single 90-ft telescope, report -r'H(fH) > 4.7, and 3.4+.4
when using two 90-ft telescopes as an interferometer. We shall assume that a value,
Th(fH) = 4.0, is correct, and thus Eq. 183 gives

-4
THifp) = 1.8 X 10 (184)
for ND/NH = 1/6600.

7.3 RESULTS AND CONCLUSION

The final result of the deuterium-line data analysis described in section 6. 5 is the

normalized spectral function, c(f). The mean or expected value of this function is given

by

_ ol e -1
c(f) = T , (185)
av

where TZ(f+fO) is the smoothed (by an equivalent scanning filter of 3. 75-kc bandwidth)
antenna-temperature spectrum, Tr is the receiver noise temperature, and Tav is the
frequency-averaged value of Tz(f+fo) + Tr (see Eq. 134).

The antenna temperature spectrum is specified by Eq. 182 in terms of the deuterium
optical depth -rb(f), the sky background temperature To’ and the contribution to antenna
temperature from the discrete source Ti). The substitution of Eq. 182 in Eq. 185 gives

Tl

c(f) = T'_+_T£+—’I_‘_ : [TaV’T.]r)(f)], (186)
P o r
where Tav is the frequency-averaged value of 'rb(f), and TTD(f) is the smoothed version
of Tb(f)' (A term, —-ravTI’), has been neglected in the denominator of Eq. 186.) The
ratio T;')/(Tl':>+To+Tr) was measured directly each day by noting the change in total power
as the antenna was moved on and off Cas A; its value is 0.46%.02. (The individual tem-
peratures were TI') ~ 920°, To ~ 80°, and Tr ~ 1000°.)

90



ol EXPECTED PROFILE IF Ny/N, =1/6600 —
0‘_ 1 1 L 1 L 1 ]
B \/ ~— -
o’k —
ok AVERAGE OF ALL DATA j
ol L T N L
— 7 N
R | ]
.o’k GWEEKAV. 9 WEEK AV 6 WEEK AV, ]
THEORETICAL RMS
W o FIRST 3 WEEKS DEVIATION
e t ]
2 1 ! 1//P#T‘\\\QL | | ]
et 0
< L N Z ]
w -0.°F =
Q.
s
w
- . SECOND 3 WEEKS
oI’ i
ol /\ﬂ L | L]
-off\/ \ i
. THIRD 3 WEEKS
o’ _
0 | S /ﬂ\\l/ | 1 —
-0.° \/Y
1 | | 1 { |

]
60KC S50KC 40KC

FREQUENCY ABOVE 327,384 .3 KC REFERRED
TO THE LOCAL STANDARD OF REST

Fig. 31. Results of the deuterium-line search in the Cas A radio source. The temper-
ature on the ordinate is with respect to the total noise temperature (~2000°)
averaged over the receiver bandpass. The quantity c(f) is defined by Eq. 185.
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The value of ﬁ that is expected if ND/NH = 1/6600 is shown at the top of Fig. 31,
and the measured results are shown beneath it. The shape of -rb(f) can be predicted from
the measured hydrogen profile, Th(f)'32 The value of the peak deuterium absorption dip,
Tb(fD)’ is given by Eq. 189. A reduction by a factor of 0. 9 was allowed because of the
smoothing effect of the spectral measurement system (that is, -rTD(fD) =0.9 -rb(fD)).

The theoretical rms deviations of the measurement are given by Eqgs. 170, 171 or
172, and are indicated in Fig. 31. The theoretical rms deviation of the average of all
data equals the peak spectral dip expected from an ND/NH of 1/36,000. If a detection
criterion of twice the theoretical rms deviation (97. 7 per cent confidence) is used, the
minimum detectable ND/NH is 1/18,000. Examination of the data in section 6. 5b indi-
cates that the experimental rms deviation is approximately 1.4 times the theoretical
value; thus the minimum detectable ND/NH should be raised to 1/13, 000.

Our conclusion is that the deuterium-to-hydrogen ratio in the region examined, with
probability 0. 977 and within the stated assumptions, is less than half the terrestrial

value.
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VIII. AN ATTEMPT TO MEASURE ZEEMAN SPLITTING OF
THE 21-cm HYDROGEN LINE

8.1 INTRODUCTION

The existence of a galactic magnetic field is presupposed from theories concerning
the polarization of starlight, the emission of galactic radio noise, and the behavior of
cosmic rays. The magnitude of the field cannot be measured directly from these effects,
although estimates of from 10-5 gauss to 10-6 gauss are common. These facts have been
38,39 that describe
previous attempts to measure the field by measuring the Zeeman splitting of the 21-cm

discussed and referenced by Shklovsky, 23 and also in two papers

hydrogen line. The experiment was first suggested by Bolton and Wild.40

A brief description of the Zeeman effect on hydrogen-line radiation will now be given.
The line-of-sight component of the galactic magnetic field causes a splitting of the radi-
ation into left-hand and right-hand circularly polarized waves with a difference in fre-
quency of 2.8 cps per 1()_6 gauss. The sharpest hydrogen lines found in absorption of
the strong discrete sources are ~10-20 kc wide, and thus the expected splitting of
3-30 cps is quite difficult to measure. The procedure consists of measuring alternately
the hydrogen profile with feeds that are receptive to circular polarization of opposite
sense and recording the difference profile. This difference profile, AT(f), is related
to the observed (either polarization) profile, T(f), by the following relation, which holds
if the frequency splitting, Af, is small compared with the width of the observed line:

AT() = Af - T'(f) = 2.8 x10° 1 - TV(), (187)

where H is the magnetic field, and the prime denotes derivative with respect to fre-
quency. The observed profile and the expected difference profile for the two observed
sources, Cas A and Taurus A, are shown in Figs. 32 and 33.

8.2 EXPERIMENTAL PROCEDURE

Observations of Cas A and Taurus A were performed with the use of the 85-ft
Howard Tatel Radio Telescope at the National Radio Astronomy Observatory, Green
Bank, West Virginia, in conjunction with a dual circular-polarization feed built by
Jasik Laboratories. The receiving system that was used and the treatment of data were
the same as in the deuterium-line experiment except for the following changes:

1. Instead of switching between the antenna feed and a comparison noise source,
switching was performed between an antenna feed receptive to right-hand circular polar-
ization and another feed receptive to left-hand circular polarization. Thus, a measure
of the difference spectrum, AT(f), given by Eq. 187, is obtained. Switching between
polarizations at a 1/14 cps rate was performed by using a mechanical coaxial switch.
Double stub tuners were inserted between each arm of the switch and the feed, and were
adjusted so that the standing-wave ratio of each polarization feed was less than 1.01

when measured through the switch.
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Fig. 32. Results of the attempt to measure Zeeman splitting of the 21-cm galactic
hydrogen line of the Cas A radio source observed in absorption.
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2. Of course, it was necessary to change the receiver front-end and first local oscil-
lator. An electron-beam, traveling-wave, parametric amplifier was used for all obser-
vations except for those of Taurus, data B, for which a crystal mixer was used. The
single-channel noise temperature, including switch and stub losses, was 600° for the
parametric amplifier, and 1080° for the crystal mixer.

3. The filter and phase-shift networks (items 20, 18, and 17 in the block diagram
of Fig. 13) were changed so that the receiver bandwidth was doubled. The 1-db band-
width became 50 k¢, and the 20-db bandwidth became 75 kc. The correlator clock fre-
quency was changed so that the sampling frequency became 150 kc. The frequency
resolution, Af, is therefore 7.5 kc.

The observational procedure consisted, first, of inaking a 10-minute observation
of the absorption profile, with the use of the right-hand circular polarization feed. Typical
results are the top curves in Figs. 32 and 33. A loss in sensitivity, or a frequency
error, could be found in this manner. After this run, a 5-hour run was made for meas-
uring the difference profile. The local oscillator was reset every half hour to correct
for Doppler shift resulting from the earth's motion. One or two 5-hour runs were made

on Cas A and Taurus A each day for approximately 35 days.

8.3 RESULTS AND CONCLUSION

A difficulty that arises in performing the Zeeman experiment is due to small differ-
ences in gain between the right-hand and left-hand circular polarization feeds. If the
gain of one feed is 1 + e times the gain of the other feed, then the difference profile,
AT(f), will contain a term e ‘- T(f); the absorption profile will appear in the data. Since
the absorption profile is known, it may be removed from the difference profile. Care
must be taken, however, to see that the correction is not shifted in frequency, for this
would cause a false Zeeman effect. If an unbalance signal, e * T(f), is corrected by
subtraction of a profile, a * T(f+5f), then the result is the same as would be found for
a Zeeman splitting of value «a - 6f.

Approximately 20 per cent of the data that were taken showed values of e less than
0.003 (data A); 40 per cent had a between 0.003 and 0.03 (data B); and the rest had
e greater than 0.03 and were not used. The variations in e« are probably due to temper-
ature effects on the feed, stubs, and switch, and to tracking errors and flexure of the
telescope. The largest error in the local oscillators was less than 100 cps; thus, even
with @ = 0.03, the largest spurious Zeeman effect would be 3 cps, or ~10-6 gauss.

The averages of the data A and data B runs for Cas A and Taurus A are plotted
in Figs. 32 and 33. The data A runs require no correction for feed unbalance, while
the data B runs have been corrected as indicated in Table VIII. Our conclusion is that
the line-of-sight component of the magnetic field is less than 3 X 10—6 gauss for Cas A,
and less than 5 X 10_(J for Taurus A. This result includes the important assumption
that the line-of-sight component of the magnetic field is constant within the absorbing
hydrogen gas.
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APPENDIX A

EQUIVALENCE OF THE FILTER METHOD AND THE
AUTOCORRELATION METHOD OF SPECTRAL ANALYSIS

Two methods of measuring the power spectrum are presented in Fig. 2, the filter
method having output P'F(iﬁf), and the autocorrelation method having output PA(iéf).
Each of these outputs is a set of N numbers (i=0, N-1) which estimate the power spectrum
at N frequencies spaced 6f apart. It will be shown here that the two methods are equiv-
alent if the filter impulse responses, hi(t)’ are related to the autocorrelation weighting
function, w(r), in a certain manner. The equivalence of the two systems simply means
that for any common input, x(t), the outputs are equal, P'F(iéf) = PA(i&f).

The input-output relations of the two systems are,

N-1
R 1 T 2 .
PA(16f) = 2AT w(0) T x(t) dt + 4AT w(nAT) cos (2w i5f nAT)
LY O —d
n=1
T
L g x(t) x(t +nAT) dt (A.1)
T Jg
. LeTfeT 2
PF(16f) =~T—-§0 -Yo x(t) hi()\—t) dt dn. (A.2)

We shall manipulate Eq. A.2 so that it takes the form of Eq. A.1. In order to do so,
we must make approximations that are quite valid, provided that the observation time,

T, is much greater than the filter time constants. In other words,

T»T_, (A.3)
m

where hi(T) = 0 for T T This condition is necessary in practice in order to give
a meaningful spectral estimate.

After expanding the square of the integral in Eq. A.2 and interchanging the order of
integration, we obtain

1 T T T
PL(i8f) = Y g‘ x(t) x(s) S\ h.(\-t) - h,(x-s) d\ ds dt. (A.4)
F T. . . i i
0 0 0
A change of variable, T = s-t, gives
1 T T-t T
P! (i5f) = g' Sﬁ x(t) x(t+7) g‘ h.(A-t) * h (A=t=T) d\ dT dt. (A.5)
F T Jg J4 Jo 1 i
If the condition of Eq. A. 3 is used, the integral on A\ can be very closely approximated by
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00
g;(7) = _§0 h; (\) h; (A-7) d\ (A.6)
to give

1 T T-t
P'F(iﬁf) =5 S.O S‘_t x(t) x(t+7) gi('r) dr dt. (A.7)

Upon examination of Egs. A.l1 and A.7 we notice that they will be similar if we
require
N-1
gi('r) = 2AT ;; w(nAT) cos (2w i6f nAT) §(T-nAT). (A.8)
n=—(N-1)

If Eq. A.8 is substituted in Eq. A.7, the integral on T becomes

T-t
§ x(t+7) 6 (T-nAT) dt = x(t+nAT). (A.9)
-t
An approximation based on condition (A. 3) has again been used in Eq. A.9; the argument
of the impulse function will be between the limits of integration for the range of interest,
—(N-1) AT < nAT < (N-1) AT, if (A. 3) is valid.
The result, then, of the substitution of Eq. A.8 in Eq. A.7 is

P'F(iﬁf) = PA(iSf) (A.10)

which is what we wished to prove.

The equality required by Eq. A.8 can be more easily understood if Fourier trans-
forms are taken of both sides of the equation. The quantity gi(-r) is the autocorrelation
of the filter impulse response, hi(t); its Fourier transform is simply the power transfer
function of the filter, Gi(f)° The Fourier transform of the right-hand side of Eq. A.8 can
be expressed in terms of the Fourier transform, W(f), of the autocorrelation weighting
function, w(r). We obtain, then,

o]

G,(f) = 2 [W(f—iﬁf—kfs)+W(f+i§f+kfs)]. (A.11)

k==~c0
This resultis illustrated in Fig. 3. Gi(f) consists of narrow lobes centered at +ibf, fs +
isf, 2f £ idf, ... . If the true power spectrum is zero for I fl > fs/z (in practice we
shall force this to be the case), then only the lobes of Gi(f) at +isf are of any importance,
and an equivalent filter bandpass is given by

Gi(f) = W(f-i5f) + W(f+i5f). (A.12)

Finally, if we only consider positive frequencies that are not close to dc (see Fig. 3),
then,
Gi(f) = W(f-i8f1). (A.13)
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APPENDIX B
THE E1B METHOD OF AUTOCORRELATION FUNCTION MEASUREMENT

The material presented here is based on papers by Veltmann and Kwackernaa\k,9

19 The first paper is in German and not readily avail-

and Jespers, Chu, and Fettweis.
able. The second paper was presented at a conference in Belgium, and only the con-
ference abstracts are available. For these reasons, and in view of the importance of
these papers to spectral measurements, a summary of the results is given here. See
Table I for a comparison of the method presented in this section with that (A1B) of most
of this report.

Suppose we wish to measure the crosscorrelation functions of xl(t) and xz(t), sta-
tionary, ergodic, random signals bounded by :i:A1 and :tAz, respectively. [For auto-
correlation, xl(t) = xz(t).] Two auxiliary functions, zl(t) and zz(t), having uniform
probability density of 1/(2A1) and 1/(2A2) between :i:A1 and :cAz, respectively, must be
introduced. These auxiliary functions must be stationary, ergodic, and statistically
independent of each other, xl(t) and xz(t); that is, the joint probability density function

factors are

P(X), X5, 2, Z,) = P(X],X,) P(2;) P(2,) (B.1)
p(xl, xz) Iz1l < Al
“2A - 2A
1 2 |zz| <A,
|z1| > A,
=0
|z2| > A, (B. 2)

for all arguments of X1y Xy, 24, and Zy-
The auxiliary functions are used as variable clipping levels for xl(t) and xz(t). The

outputs of these "variable clippers" are yl(t) and yz(t), where

yl(t) =1 when xl(t) > zl(t)

(B. 3)
yl(t) =-1 when xl(t) < zl(t)

with identical equations for Yor %o and Zy.
Since yl(t) and yz(t) are either one of two values, their crosscorrelation functions

are easily calculated with a one-bit digital correlator which computes

K
Pl (naT) ='1!<“ Z v, (kAt) y, (kAt+naT) (B. 4)
k=1

for n = 0 to N-1. An estimate, R'lz(nA-r), of a point on the true crosscorrelation
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function, Rlz(—r), is then given as

R},(nAT) = A A, pl(nAT). (B. 5)

We shall now prove that R'1 Z(nA~r) is an unbiased estimate of a point on the true
crosscorrelation function, that is,

R'lz(nA"r) = Rlz(nA’r). (B.6)

Thus, a method is provided for estimating the crosscorrelation or autocorrelation
functions of bounded signals through the use of a one-bit digital correlator.

The proof follows from simple manipulations of probability density functions. For
convenience, we set yl(kAt) =¥y yz(kAt+nA-r) =Yy and do likewise for xl(kAt),
xz(kAt+nA1'), zl(kAt), and zz(kAt+nA-r). Equation B. 4 can be substituted in Eq. B.5

which, in turn, is substituted in Eq. B. 6 to give

R'lz(nA'r) = AIAZ ¥1Yoo (B.7)
where the stationariness of yl(kAt) and ¥, (kAtinAT) has been used.

The product, Y1Yos is either +1 or -1, and thus ¥1Y, can be written

Y7z = (1) Ply;y,=1] + (-1) Ply,y,=-1] (B. 8)
= 2P[y,y,=1] - 1 (B.9)
= 2P[y,=1,y,=1] + 2P[y,=-1,y,=-1] - 1 (B. 10)
= 2P[z <x}, 2,<x,] + 2P[z>x,, 2,>%,] - 1 (B. 11)

(P[y1y2=1] means "probability y,y, = 1"). The term P[z1<x1, z,<x,] can be written as
an integral over the joint probability density function p(xl, Xo,2)5 Z,).

[+ ] [} Xl Xz
Plz,<x,, z,<x,] = S‘ S‘ S g p(x), %y, 2, 2,) dz dz,dx dx,. (B. 12)
—00 -o0 —00 —o0

Substitution of Eq. B.2 in Eq. B. 12 and the use of the boundedness of Xy and X, yields

Plz,<x <x,] S — Al b2 (%1 *2 (x ) dz.dz_dx,dx (B. 13)
1<¥1° 22<%21 " Z2A A Pix,, X,) dz,dz,dx,dX, :
172 J-A, Y-A, Y-A, J-a,

1 Ay 0By
T4AA, SA A (x+A ) (x,+A,) © plx), x,) dx,dx, (B. 14)
T2
S N S — _
= IAA, [R5, 1%, A, 85,4 A A,]. (B. 15)
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A similar manipulation of p[z1>x1, z2>x2] gives
- % -xA %
P[zl>x1,zz>x2] = 4A1A2[X1X2 XA, x2A1+A1A2]. (B. 16)

Equations B. 15 and B. 16 can be substituted in Eqs. B. 11 and B. 7 to give the desired

result,

R'lz(nAT) = XIXZ (B.17)

=R, ,(nA7). (B. 18)
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APPENDIX C

CALCULATION OF THE COVARIANCES OF MANY-BIT ESTIMATES
OF THE AUTOCORRELATION FUNCTION AND
POWER SPECTRUM

. 2 2 . . .
The covariances ‘TPm(fl’ fz) and cRm(n, m), defined in section 2. 3a, are calculated
here. The results have been discussed in section 2. 3b.
Calculation of G%{m(n’ m) proceeds by substituting the definition of R"(nAT) (Eq. 34)
in Eq. 53 to give

K K
o‘sz(n, m) = .KLZ z z x(kat) x(kAt+ [n|AT) x(gAt)
k=1 g=1
- x(gAt+ |m |AT) - R(nAT) R(mAT). (C.1)

Fortunately, for a Gaussian random process, the joint fourth moment of the process can

be expressed in terms of products of autocorrelation functions (see Davenport and
42
Root  7):

x(kAt) x(kAt+|n|AT) x(gAt) x(gAt+ |m]AT) = R(nAT) R(mAT)

+ R(iat+ |n|AT-|m|AT) R(iat)
+ R{iat+|n|AT) R(iat-|m |AT). (C.2)

Here, we have seti=k - g.

Substitution of Eq. C.2 in Eq. C.1 gives

K
oZ (n,m) = Elg Z (K- ]i|)[R(iAt+ |n|AT=|m |AT) R{iat)
i=-K

+ R(iat+ |n]AaT) R(iAt- |m|aT)]. (C.3)

Here, a change of variable (i=k-g) has eliminated one summation. Thus we have found
the autocorrelation covariance in terms of the autocorrelation function.
Equation C. 3 can be simplified if it is assumed that R(iAt) = 0 for i > imax’ where

imax « K. This will be true in the practical case of interest, and we obtain

K
c'gm(n, m) :—1—2— z [R(iat+|n|AaT~|m|AT) R(iAt)
i=-K
+ R(iat+ |n|a7) R(iat-|m|aT)]. (C.4)

Equation C. 4 will be used to calculate the spectral variance. For this purpose, it
is convenient to express «ém(n, m) in terms of P(f) instead of R(r). This is done by
substituting the inverse transform relation (Eq. 14) in Eq. C.4. The result is
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K
cém(n,m) '—‘& z S._oo S‘_ P(f) P(a) ejZTT(f+a) iAt
i=K o

. gl2ninaT | ~jenfmAT -jZremAry g (C.5)

The summation on i can be expressed in closed form as (see Reference Data for
. . 43
Radio Engineers )

K .
. . sin [w{f+a)(2K+1)At
z eJZTr(f+a)1At - [ ] (C.6)
i=K sin [ﬂ(f+a)At]

u

o0
Alt z 6 (f+a-kf,), (.7

k=-c0

where ft = 1/At. The approximation is wvalid for the purpose of carrying out the
integration on e¢ in Eq. C.5, since the other terms in Eq. C.5 can be considered
constant over regions of width 1/KAt. The result of this operation is

00
2 I S % _q d2nfin|ar

k=~

. . -jzm(kf,~f) |m|aT
'[e jenflm|ar t ]df (C.8)
. 2 . R . 2
The spectral covariance, o-Pm(fl, fz), is given in terms of o-Pm(n, m) by Eq. 54.
Before making this substitution, a great deal of complexity can be avoided by making
an assumption that removes the absolute-value signs in Eq. C.8. The absolute-value
signs arose in the definition of R"(nAT) in Eq. 34. They can be removed if lnl can be

replaced by —n in Eq. 34 without a change; that is, we must show that

K
R"(nAT) =—II(— z x(kAt) x(kAt-nAT). (C.9)
k=

This can be done if we assume AT = hAt, where h is an integer, and K » nh. This
assumption applies in the practical case of interest (the correlator is more complex if
h is not an integer and the statistical uncertainty is large if K is not much greater than
nh), and the substitution k' = k — nh leads to the proof.

Equation C. 8 (with absolute-value signs removed) can now be substituted in Eq. 54
along with the following Fourier transform relations for w(nAT) w(mAT):
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o0 .
w(nAt) w(mar) =S Sw W(B) Wly) - el2TAT(IR+mMY) 454, (C.10)
-0 Q0

The resulting expression for o-%,m(fl, fz) is rather long, as it involves three summations
(indices: k, n, and m) and three integrations (variables: f, B, and y). However, two
of the summations (n and m) can be expressed in terms of sums of impulses (new indices:
i and v); this operation allows the integrations on f and y to be performed. The result

of these operations is

& & & o d]
oo 1) = AT Z z z S_w P(f) Plkf,~f)

k=~00 p=—c0 v=-o0

WU —uf ) [W(E-f,+vE ) +W(f+f2—vfs—kft)] df. (C.11)

In order to obtain minimum variance, f ¢ should be chosen high enough so that

P(f) = 0 for |t] > f,/2. (C.12)

In this case, only the k=0 term is nonzero in the summation on k in Eq. C.11. The
p and v summations can be reduced similarly if fs is chosen large enough to avoid the
spurious responses that are due to sampling of the autocorrelation function. The exact

requirement is that fs be chosen large enough so that

o0
g P2(f) W(f+a) W(f+b) df = 0 for |a| and |b| > f_/2. (C.13)
-0
If the requirements of Eqs. C.12 and C.13 are met, and we consider only lfl | and
lle < fS/Z, then Eq. C.11 can be simplified.

2 1
“pmlfys f2) = Kax

o0
S P2(f) W(t+f) [W(EH,) + W(E=£,)] of. (C.14)
“~o0
In practice, ft and fS should both be chosen equal to 2B, which is twice the highest
frequency of a component in the power spectrum. This choice gives minimum variance
and no spurious responses arise from sampling. In this case conditions (C.12) and
(C.13) are approximately obeyed and Eq. C.14 gives an accurate description of the spec-

tral variance.
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APPENDIX D

COMPUTER PROGRAMS

Some of the computer programs developed for this work are given here. The pro-
grams may be helpful to a reader concerned with some specific detail of the Zeeman,
deuterium -line or computer-simulation experiments, and may also be of some aid to
people who wish to write similar programs in the future. The programs are written
in the Fortran language for use with the IBM 1620 computer.

D.1 DOPPLER CALCULATION PROGRAM

The frequency of a spectral line received from galactic sources is Doppler shifted
from the rest frequency of the line because of the following motions:

1) Rotation of the earth about its axis.

2) The orbital motion of the earth around the sun.

3) The motion of the sun with respect to a group of nearer stars which form a veloc -
ity reference point called the local standard of rest.

4) The motion of the sources of the spectral line with respect to the local standard
of rest.

The program presented below calculates the line-of-sight component of the first three
of these velocities. The line-of-sight component of the fourth velocity is specified as
data (VLSR) to the program which then gives the observed frequency, F, for a given
rest frequency, FO. The calculation method is that given by MacRae and Westerhout.41
For convenience in setting local oscillators, the program will calculate two linear func-
tions of F. These are, Fl1=F - Y1 + Zl and F2 =F - Y2 + Z2, where Y1, Z1, Y2, and
Z2 are constants that are specified as data to the program. The following additional
data must also be supplied to the program:

1) The right ascension (RA HR, RA MIN, RA SEC) and declination (D DEG, D MIN)
of the observed direction.

2) The date in units of sidereal days from November 5, 1961. The program will
then calculate the number of mean solar days from November 5, 1961, and will specify
the Eastern Standard Time when the source is at transit (right ascension equals sidereal
time). The frequency correction will then be calculated for hour angles of -6 to +6 in
increments of HT hours, where HT is supplied as data.

3) The program assumes that the observation point is Green Bank, West Virginia.

If a different observation point is used, the correct latitude must be used in the state-
ment specifying CAT, and the correct relation between local time and sidereal time must
be used in the statement specifying EST1.

A sample of the Doppler Calculation program follows.
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C  DUPPLER CALCULATION PROGRAM

ClL=2.998c+>

CAT= Bei4lovZ2o%(3cetine/c0etlle/5600e)/ 1600
Cl=(Z223et26e/600et4e0YY/30UUs )/ dite

C2=(21e+40¢/60e+32e2/36006} /240
C3=3e1410926%(280e+6e/60e+35e¢9/3600)/180s

E=40167268
P=3elalovio*(cvcde+13e/60e+2e/3000e) /180

5 READ 1009 RAHRs RAMINs RASECs VLUZGY UMIN
PRINT 105s RAHRs RAMINs RAScCs wLEGs DMIN

READ 101ls FOs VWLSRs Ts mTs Y1ls £1s Y29 22 FOL1
PRINT 100s FOs V0LOSRe T tHilse YLs Zly Yz L2y FOL

KT=6¢/HT
Kl=KT+1

R2=2%KT+1
RAL= (RAHKHRAMIN/60e +KASEC/36004) /44

RAZ2e%341415926%RA1
DEC=341415926%(DDEG/L180e+UMIN/10800)

CC=COSF(DEC)*CUSF (RA)
CS=COSF (DEC)#SINF (RA)

S=SINF(DEC)
PRINT 1079 CCs» CSs S
PAUSE

1 RAT=T+RAl

EST1=19e/24e+C1l¥*(RAT=C2)
ND=EST1

D=ND
NH=(EST1=D) %24,

H=NH
NM= (EST1-D=H/2&4s) %1440,

DM=NM
NS=(EST1=D=~H/24e¢=DM/ 14404 )%8640Q

PRINT 102 NDs NHs NMs NS
PRINT 108s RAHRs RAMINy RASEC

PRINT»s DDEGs DMIN
PRINTs FOs VLSR

PRINT»
PRINT»

DO 4 K=11yK2
XK=K=K1

XK=HT*XK
EST2=Cl* (T+RAL+XK/24e=C2)

XL=(2e%3e1415926/562e2504)%(E5TL2+14054)+(3
XLAM=XL+2¢ ¥E¥SINF (XL=P)+1le20%e*e*SINF(2a* (XL=P))

==29e804%SINF (XLAM)+e319
B=27e344%COSF(XLAM)+174417

C=11858%COSF(XLAM])=9e958
V=A¥CC+BHCS+C*S

VE=+e465%COSF (CAT ) ¥COSF(DEC)I*SINF(3e614159%XK/ 124 )
Vi=V+VLSR+VE

DELF=-(FO/CL) %V1
F=FO1+DELF

FI=Y1¥F+Z1
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C  DOPPLER CALCULATIUN PRUGRAM CunTInUcv
F2=y2%F+22
IF (SENSE SWITCH 1) 293
2 PRINT 103y XKs Fls V1s VEs V
GO TO ¢4
3 PRINT 104y XKy Fly F2
4 CONTINUE
PRINT s
PRINT>
IF (SENSE SWITCH 2) 536
6 T=T+1le
GC TO 1
END
C DATA CARDS
C NEXT TWO CARDS FOR CAS A
23e¢ Zle_ 38e 58 3562
1420405473 =48 33 o> 1o 1400000 el Qe 20405473
C NEXT TwWO CARDS FOR TAURUS A
De 32 G 22 0061

1420405673 10el 228 o5 1le 1400000e o1 Qe 20405673

C  NEXT TWO CARLS FOR SAG &
17 43 22 =28 5762
142040573 60 27 «5 le 1400000 ol Qo 20405673

TOTAL
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D.2 DEUTERIUM AND ZEEMAN DATA ANALYSIS PROGRAM

The program that is now to be described takes in as data the output of the one-bit
digital correlator and produces the spectral estimate, c(f), which was described in
section 6. 5a. The program is broken up into five steps.

1. The cos weighting function described in section 2. 2b is generated.

2. The computer reads in the digital correlator output on punch cards. The cor-
relator output consists of 21 numbers that have accumulated in a combination of binary
and decimal counters. After read-in, these numbers are converted to the computer's
binary-coded-decimal number system.

3. The correlator output is normalized according to Eq. 153 when the radiometer
is operated in the switched mode of operation (MODE = 2 in the program), or according
to Eq. 154 when operated in the unswitched mode of operation (MODE = 1 in the pro-
gram). The switched mode of operation was used for the actual data, while the
unswitched mode was used to determine the receiver bandpass function, pé)(f). The
autocorrelation function correction (for the effect of clipping) is programmed according
to Eq. 148 for the switched mode and Eq. 115 for the unswitched mode.

4. The sampled-data Fourier transform is performed as indicated by Eq. 129.

5. The resulting difference spectrum, 6p'(f), is divided by the receiver bandpass
function, p(‘)(f) [SBP(I) in the program], to give the normalized spectral estimate, s(f).
The slope of this spectrum is adjusted to be zero as was discussed in section 6.5a. The
final output spectrum is then typed out and punched on cards.

A sample of the Deuterium and Zeeman Data Analysis program follows.

C DEUTERIUM = ZEEMAN DATA ANALYSLS PRUGRAWM

C SENSE SWITCH 1 ON FOR PUNCH OUUTPUT
C  SENSE SWITCH 2 ON FUR PRINT OUTPUT
DIMENSION W(21)sA(21)9B8(21)sRBP(21)sR(21)25(38)s5BP(38)sD(21)

C GENERATION OF WEIGHTING FUNCTION,W(K)

DO 1 K=1s21
FLO=K=-]
1 WIK)=eD+eO¥CUSF(3414159£60%#FL0O/214a)

C DATA INPUT ANV OCTAL = FRACTIUN CONVERSION

5 READs NRUN»MUDE 9 STGN

DO 6 K=1y21

6 READsA(K)9b(K)

PHUNCH sNRUN s MODEs A(1) s STGN
PRINT oNRUN sMODESsA(1) o SIGN
PRINT

7 DO 14 K=1921

0C1=0s

0C2=0a

OC3=0e

8 IF(B(K)=100s)105999
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9 0C1=0C1l+1.
B(K)=8(K)=100s

GO TO 8
10 TF(3(K)=10e)1ldsllsll

11 vCZ=0C2+1l.
BiK)I=B{K)=10.

GO TO 10
12 TF(B(K)~1le)l4913513

13 0C3=0C3+1,
B(K)=B(K)=1s

GO TO 12
14 D(KN)=0C1/8e+0C2/644+0C3/512e+A(K)

C  NURMALIZATIUN Anv CORRECTIun

Leb707963

C=
IF(MOUE=1)15915417
C MODE 1

15 DO 16 K=1y21
RBP(K)=(2.%D(K)=D(1))/D(1)

16 R(K)=SINF(C*¥RBP(K))
GO TO 19

¢ MODE 2
17 D1=D(1)

DO 18 K=1y21
18 R(K)=24*SINF(CH*({D(K)=D1)}/D1)*COSF(C*RBP(K) )*SIGN

19 IF(SENSE SWITCH 2) 20,220
20 DO 21 K=1921,3

21 PRINTSR(K)aR(K+1)sR{K+2)
PRINT

C DEUTERIUM - ZecMAN VATA ANALYSIS PRUGRAM CUNT INUED

220 IF (SENSE SWITCH 1) 2224
22 DO 25 K=1921e3

23 PUNCHsR(K) 9 R{K+1) sR(K+2)

C FOURIER TRANSFORM S I OF W K R K

24 T=1e/75e
DF=140

AA=2.*T
BB=642831853%#T*DF

DO 25 K=1y2l
25 RIK)=R({K)*W(K)

CC=R(1)*T
J=0

DO 30 I=1,38
S(I)=CC

DO 26 K=2421
DD=(K=1)%(I=-1)

26 S(I1)=S({I)+AA%*¥R(K)*COSF(BB*DD)
$1=100004%5(1)

IF (SENSE SWITCH 2) 289290
28 PRINT»sJsS1
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290 IF (SENSE SWITCH 1) 29930
29 PUNCHsJsS1

PRINT s

C FINISHING OPERATIUNS

IF(MOVE=1)31931953
C MODE 1

31 DO 32 I1=1,38
32 SBP(I)=S(I)

GO TO 5
C MODE 2
33 J=0

DO 39 I=1,38

34 S(I}=100e%S(1)/SBP(I)
IF {StNSc SWITCH 2) 36,5380

36 PRINTsJsS(I)
380 IF (SENSE OSWITCH 1) 38,39

38 PUNCH»J»S(I)
39 J=J+1

PRINT s
IF (SENSE SWITCH 3) 1415140

141 READsClsC2
Bl=C1/60.

Al=C2-344%31
PRINTsC1sC2

GO TO 142
140 U=0

V=0
W1l=0s




C DEUTERIUM = ZEcMAN DATA

ANALYSIS PRUGRAM CUNTInNUED

X=Oo
Y=Qe

2=0s
DO 35 1=6431

G=1
U=U+s(l)

V=V+G*S (1)
Wl=Wl+1le

X=X+G
Y=Y+G*G

35 Z=7Z+S(1)#S(1)
D1=Wl*Yy=x%*X

Al= (U*Y=X#V) /D1
Bl=(ViWl=x*U) /D1

RMS1=5QRF(Z/W1l)}

H=Z=ALl#*AL¥W1=381l%B1l¥Y=2 ¢ ¥AL%B1¥*X

RMS2=SQRF (H/W1)
Cl=604%B1

C2=Alr34s%B1

40 IF (SENSE SWITCH 2) 415420

41 PRINTsRMS1sRMS29ClsC2
PRINT

420 IF (SENSE SWITCH 1) 429142

42 PUNCHyRMS19RMS2,ClyC2

142 J=0
43 DO 48 I=1y38

G=1
44 S(1)=5({I)=Al=B1*G

IF (SENSE SWITCH 2) 4545147

45 PRINTsJsS(I)

147 IF (SENSE SWITCH &) 47448

47 PUNCH»sJsS(I)

48 J=J+1
DO 2 K=1ly4

2 PRINTS
GO 70 5

END

TOTAL




D.3 COMPUTER SIMULATION PROGRAM

The program listed in this section was used to simulate the signal and the signal-
processing system. (See section 6.2.) A block diagram of the program is given in
Fig. 20.

The time required to run this program on the IBM 1620 computer was approximately
100 hours; however, this time did not have to be continuous. If Sense Switch 1 was
turned on, the computer would punch out cards containing all of the useful results that
had been computed up to that time. These cards could then be fed back into the machine
at a later time. In this way, the 100 hours computing time was accumulated, for the
most part, at night and on week ends.

A sample of the Computer Simulation program follows.

C COMPUTER SIMULATION PROURAM

DIMENSION H{40) 90 AR(Z1)sAS (38 ) oow (3892t ) snRX{ZL)aVRX{ 21 ) owRY (21
DIMENSION VRY(21)2A2XK(38)sVoX(38)sA0Y(38)svoY(38)swl40)esX(21)
ODIMENSION Y(21)aRX(21)sRY(21)s5X(38)95Y(38)
IM=40
NM=21
LM=38
KM=21
DC 9 I=1s1IM
9 READSIHI(I)
DO 11 N=1lsnNM
11 READSAR (N
DO 13 L=1lsLM
13 READSAS(L)
READsF9F29T2
READs L1942 9K
IF(F)L17917928
17 DO 21 N=1eNM

ARX(N)=0s
VRX({N)}=Q4
ARY{N)=0s

21 VRY(N)=0s
DO 26 L=1lsLM

ASX(1L)=Q04
VSXI{L)=0s
ASY(L)=0e
26 VSY(L)=0o
GO TQ 32

28 DO 29 N=1lshNM

29 READIARXIN) o ARY {iN) o VRXIN) s VIRY (N)
DO 31 L=1lsLM

31 READSASX(L) s ASY (L) s VOXI(L)sVSY (L)

32 FKZ=KZ
V=SQRF (333265635 7%rKZ)
U=4999 ¢ D*FKZ
IMl=1M+1
NM1=NM+1
PI=361415926
PIl=Pl%*e5
PIlz2=Pl/2]1a
PI3=2e%P1/75,
DO 46 L =1sLM
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DO 45 K=1sKiH
SwK=K=1

SWiLK=(L=1)*(K=-1)
45 SWI(L aK1=(a5+¢5%¥COSF(PI2*SWK) ) *¥CUSF(PI3%SWIK)

46 CONTINUEZ
T1=IM+NM+Q

T3=T2+T1
A=433

B=e59
49 F=F+1ls

JF=F
PRINT s JF . _

C COMPUTzR SIMULATION PROGRAM CONTINUZD

DO 53 I=1s1#

53 W(I)=Qo
DO 58 N=1sNM
X(N)=Q,
Y(N)=0o
RX{N)=0,

58 RY(N)=0e
T=1a

60 DO 61 1=2sIM
61 W(T=1)=W(T)

DO 64 N=ZyNM
X(N=1)=X{N)

64 Y(N=1)=Y(N)
21=0.

DO 74 K=1sKZ
Z=21%#22

IF(Z-3)695s70+70
69 Z=74+A

70 21=22
722=7

NZ=Z%#1e£8
Z=N7

T4 ZT=2T+2
W{IM)I={LT=J)/V

X{NM)=0s
DO 78 I=1leIM

IMg=IM1=-I
78 X(NMI=X(NMI+H (T ) *in(Im2)

IF(X(NM))IB3983985
83 Y(NM)==1e

GO TO 86
85 Y(NM)I=]1a

86 IF(T-T1)88s8080
80 DO 81 N=1sNM

NMZ=NH1=N
RY(N)=RY(N)+Y (Ni4)*Y (N¥2 )

81 RX(N)=RX(NJ)+X (NM) %X (NM2)
88 T=T+1le

IF (SENSE SWITCH 3) 82,84
82 JI=T

PRINTs JT
84 CONTINUE

IF(T=-T3)60960990
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Q0 RX1=RX(1})%,00Q01

RY1=RY (1)
DO 98 N=1eNM

RXINI=RX(N)/RX1
ARX(N)=ARX (NI +RX{N])

VRXIN) =VRX (N)+ (RXIN)=AR (N} ) *%2
RY{(N)=SINF(PTIX*XRY(N)/RY1}#*31000Qa

ARY (N)=ARY{N)+RY (i)
98 VRY(N)I=VRY(NI+{RY(N)=AR(y) %%

COMPUTER SIMULATION PROGRAM CONTINUED

DO 101 L=1sLM
SX{lL])=0s

101 SY{(L)=0»
DO 111 L=1slj¥

DO 105 K=2sKM
SX(L)=SX{L)+RX(KI*SW(L oK)

105 SY(L)=SY(L)+RY (K)*SW{LsK)
SX(L}=(10000s+2¢#SX(L)})/75,

ASX (L) =ASX(L)+SX(L)
_VOX(L)=VSX(L)I+(SX{L)=AS(L]))%**2

SY(L)=(10000e+2e*SY(L))/750
ASY (L)=ASY(L}+SY (L)

111 VEY(L)=VoY(L)+{SY(L})=AS(L ) )*%2
IF(SENSE SWITCH 2)1135120Q

113 PRINTs»RX1sRY1
DO 116 N=1gNM

NTAB=N=~1
116 PRINTeNTABSRX(N) oRY [N

DO 119 L=1lsLM
1LTAB=l -7

119 PRINTsLTABsSX{L)»SY (L)
120 IF(F=F2)127141314313]

121 IF(SENSE SWITCH 11122449
122 PUNCHeFebF2aT2

PUNCH®Z1sZ22sKZ
DO 125 N=1sNM

125 PUNCHSARX(N) s ARY (iN) s VRXTIN) o VRY (IN)
DO 127 L=l K

127 PUNCHSASXIL) sASY (L) sVSXIL)sVSY(L)
_PRINTS

PRINTsFsF2+72
GO TO 135

131 PUNCHs0a9F2,T2
PUNCH3Z1s22sK7

PRINTS
PRINTsOQesF2+72

135 PRINTsZ1lsZ24KZ
PRINT

DO 144 N=1sNM
ARX=ARX(N)/F

ARY=ARY(N)/F
VRX=SQRF (VRX(N)/F)

VRY=SQRF (VRY(N)/F)
IF({F=F2)143+1429143

142 PUNCHARX s ARY s VRX s VRY
143 NTAR=N=1]

144 PRINTSNTABsARXsARYsVRXsVRY
PRINT
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DO 153 L=1yLM

ASX=ASX(L)/F

ASY=ASYTUTT/F
VEX=SQRF(VSX(L)/F)/AS(L)

C COMPUTER SIMULATION PROGRAM CONTINUED

VSY=SQRF(VSY(L)/F}/AS(L)
IF(F=F2)152+1519152

151 PUNCH9YASXsASYsVSXsVSY
152 LTAB=L-1

153 PRINTPLTABSASXsASYsVSAVOY

FVSX=0a

FVSY=0.

DO 154 L=11+30

FVSX=FVSX+e05%¥SQRF (VSX(L)/F)/AS(L)
154 FVSY=FVSY+e05%SQRF(VSY(L)/F)/AS(L)

PRINT
PRINT

FVSXs FVSY

STOP
END

C DATA FOR COMPUTER SIMULATION PROGRAM

C H(I) NZXT TEN CARDS

4e0463063E-02 -21109917

2e4B860613E~07 -e52083049

-¢40434399 -¢46204016 ~e 77802933 ~51404096E-07
-e54630318 ¢1395560Y ¢17048281 =e99998148
4¢6108997E=07 =343561187 =32113635 ~447972268
=1lleb75174 =led47¢0131E=06 =32¢1L0496 6le544267
616544267 —324110496 =1e4725131E-06 —-11e575174
=4e7972268 ~342113635 ~343561187 446108997E-07
=179958148 ¢17048281 213955609 -e54650318
=541404096E=07 =-477802933 ~e46204016 ~e40434399
—-¢52083049 20¢4860613E=07 =21109917 440463063E-02
C AR({N) NEXT TEN CARDS
10000.000 -e2552140¢ -309441603 ~e356289696
=1801e3094 ~e72864Y53 =501e72699 —29739641
21065958 =5¢8024740 242476102 16e444171
294214253 348847207 ~T4elt78626 =3e3146357
=504744705 =10.362919 743988346 ~8e8327196
90940293 leb463153 ce2638795 le1505103
029097677 eH7754945 ~1e1877550E-02 27485701
023565760 e16557374 29605178 012468219
015563592 B8e3742613E=02 247678368E~-02 38857877E=-02
=8e¢7503395E=03 9¢2514949L=03 =3e5466145E-03 343990395E=04

C AS(L) IN TABLE 642

C Z1ly 229 KZ ON NEXT CARD

e 715326499

«90037117 5

TOTAL 23
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