
*O;CTh -ih'ENT Kt1 iM, 5.2 I

R. RESEARCH LABORATORY OF E£CTRONICS

L. IASSACHUSETTS ISTIX'UTE OF TECHNOLOGT
E. -

T
E
C

N
I

C
A
L

SOME MEMORY ASPECTS OF FINITE AUTOMATA

CHUNG LAUNG LIU

R
E
P

0
R
T

4 TECHNICAL REPORT 411

MAY 31, 1963

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS
CAMBRIDGE, MASSACHUSETTS

-3

Coi3'pto�

The Research Laboratory of Electronics is an interdepartmental
laboratory an which faculty members and graduate students from
numerous academic departments conduct research.

The research reported in this document was made possible in
part by support extended the Massachusetts Institute of Technol-
ogy, Research Laboratory of Electronics, jointly by the U.S. Army,
the U.S. Navy (Office of Naval Research), and the U.S. Air Force
(Office of Scientific Research) under Contract DA36-039-sc-78108,
Department of the Army Task 3-99-25-001-08; and in part by
Grant No. DA-SIG-36-039-61-G14.

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS

Technical Report 411 May 31, 1963

SOME MEMORY ASPECTS OF FINITE AUTOMATA

Chung Laung Liu

This report is based on a thesis submitted to the Department of Elec-
trical Engineering, M.I. T., August 20, 1962, in partial fulfillment of
the requirements for the degree of Doctor of Science.

(Manuscript received February 27, 1963)

Abstract

The most important characteristic of a finite automaton is that it has a "memory."

By this we mean that the behavior of an automaton is dependent upon its past history.

In this report several special cases are studied in which the unique determination of the

behavior of an automaton is possible, even when a portion of its past history is unknown.

-Al

I

I

TABLE OF CONTENTS

I. INTRODUCTION 1

II. PRODUCT AUTOMATA 3

2.1 Notation 3

2.2 Automata AP and A{P } 3

2. 3 Automaton Homomorphism 3

2.4 The nth-Power Automaton 5

2.5 Transition Matrices 6

III. MEMORY SPAN OF AUTOMATA 8

3.1 Memory Span with Respect to the Input 8

3.2 Memory Span with Respect to the Input-Output Sequence 27

3.3 Memory Span with Respect to the Output 32

3. 4 Extension to Input and Output Sequences of Unequal Length 38

IV. SYNCHRONIZATION OF AUTOMATA 42

4.1 Introduction 42

4. 2 Relation to the AP or A{P} Automaton 42

4. 3 A Simpler Way to Check the Synchronizability of an Automaton 44

4.4 Absolutely Synchronizable Automata 46

4. 5 Bounds on the Length of the Synchronizing Sequence 46

4.6 Combined Automata 48

4.7 Some Applications 52

4.8 Synchronization of Different Automata 53

V. MEMORY ORDER OF STATES 55

5. 1 Memory Order of States with Respect to the Input 55

5. 2 Memory Order of States with Respect to the Input-Output Sequence 59

5.3 Memory Order with Respect to the Output 64

VI. CONCLUSION 67

APPENDIX Definitions of Mathematical Terms 69

Acknowledgment 70

References 71

iii

L

I. INTRODUCTION

The theory of finite automata was first developed by Huffman,l Kleene,2 and Moore 3

in the years 1954-1956. Since then, a significant amount of effort has gone into further

investigation and exploration in this area. This report is the result of a study of some

special characteristics of a finite deterministic automaton.

A finite automaton is described by a quintuple A = {Z, Z, S, M, N}. Z = {1, 02... is

the finite set of all possible input symbols to the automaton; Z = {zl, zZ ... } is the finite

set of all possible output symbols from the automaton, and S = {s 1, s 2 . .. } is the finite

set of the internal states of the automaton. M, which specifies the next internal state

of the automaton, is a function whose domain is the Cartesian product S X Z and whose

range is S. N, which specifies the present output of the automaton, is a function whose

domain is S X Z: and whose range is Z. The mappings of the functions M and N are

usually exhibited as the "flow table." The definitions of both M and N can be extended

recursively from the domain S X Z to S X T, where T is the set of all sequences of the

input symbols from the set . That is,

M(s, a-t) = M(M(s, a), t)

N(s, t) = N(M(s, -c), t),

where s E S, E C, and t T.

For a deterministic finite automaton, both of the functions M and N are single-

valued. When the present state of the automaton and the present input symbol to the

automaton are known, the present output symbol and the next state of the automaton can

be determined uniquely. Furthermore, if the initial state of the automaton and the input

sequence to the automaton are known, the corresponding final state and the sequence

of output symbols of the automaton also can be determined uniquely. On the other hand,

in order to determine the final state and the sequence of output symbols of the automaton,

it is necessary, in general, to have the initial state of the automaton and the input

sequence to the automaton specified unambiguously. This, indeed, is the most impor-

tant characteristic of an automaton, that an automaton has a "memory" and thus its

behavior is dependent upon its past history. However, there are special conditions under

which only a portion of the past history affects the behavior of the automaton; these are

the conditions that we shall investigate here. In particular, we would like to know

whether it is possible to determine the final behavior of an automaton if

(a) The initial state is unknown, and only the input sequence to the automaton is

given.

(b) The initial state is unknown, and the input sequence and the corresponding output

sequence are given.

(c) Both the initial state and the input sequence are unknown, and only the output

sequence is given.

1

(d) The initial state is known, but only a portion of the input sequence is given.

(e) The initial state is known, but only portions of both the input sequence and the

corresponding output sequence are given.

(f) Both the initial state and the input sequence are unknown, and only a portion of

the output sequence is given.

We investigate this problem under the first three conditions in Sections III and IV; the

rest, in Section V.

In a broader sense, the automata for all of these conditions can be categorized as

"information lossy automata." Since portions of the past history are not needed in the

specification of the final behavior of the automaton or, in other words, the final behavior

of the automaton is independent of these portions of the past history, information about

them is lost if only the final behavior of the automaton is known.

2

II. PRODUCT AUTOMATA

2.1 NOTATION

Let A = {Z, Z, S, M, N} and B = {Z, Z', S', M'; N'} be two finite automata having the

same set of input symbols. We define their product as A X B = {Z, ZXZ', SXS', MXM',

NXN'}, where Z X Z' and S X S' are Cartesian products of sets, M X M' is a function

that maps (SXS') X into S X S', namely

M X M'((s, s'),) = (M(s,), M'(s',)),

and N X N' is a function that maps (SXS') X into Z X Z', namely,

N X N'((s,s'),) = (N(s, cr), N'(s',r)),

with (s, s') E (S, S'), and E . Obviously, A X B is an automaton itself. Moreover, for

automata A, B, C ... having the same set of input symbols, we can define AX BX C ... ,

which is also an automaton.

2.2 AUTOMATA A AND A{p }

Let A = {Z, Z, S, M, N} be an automaton. We denote the product of p copies of A by

AP = {, ZP , SP , MP , NP} and call AP the pth-power automaton of A, where ZP is the set

of all ordered p-tuples of Z, SP is the set of all ordered p-tuples of S, and

MP((s1, s 2 . .. sp), a) = (M(sl a), M(s) , .. M(s2 , M(p,))

NP((slV s 2 . p), r) =(N(sl, a),N(s2,)... N(sp, -))

We then can define AP } = {Z, Z{P}, S{P}, M{p }, N{P}} as the unordered pth-power

automaton of A. Here, Z{p } is a subset of the set of all the subsets of Z which contains

at least one output symbol and, at most, p output symbols; S p } is the set of all the sub-

sets of S which contains at least one state and, at most, p states, and

MIP({sl, s 2 .. sp, a) = M(s lr), M(s 2 ,) .. M(s ,)}

NP}({sl, s 2 ... sp},) = {N(s1 , i, N(s(2 ,).. N(s, a)},

where the elements in the braces are elements of a set and are, therefore, not neces-

sarily distinct. Figure 1 is an example of the automata AP and A{P}.

2.3 AUTOMATON HOMOMORPHISM

When we are interested only in the structural characteristics of an automaton, we

are not concerned with its outputs. Thus an automaton can be described by a triple A =

{E, S, M} with the set of the output symbols Z and the output function N disregarded.

We have

3

, O 1 52 :

2' 52, a (51 52)

s2 ,a S a (51 53)

(52,5s1)

A (52'5 2)

(52 '53)

(531 1)

(53'52)

(53'53)

0 1

(s 1 ,Sl), (a,a) (s3,s3), (P) {sl}

(s '5s2), (aP) (53,52), (,a) [s2}

(51 s52) (a,) (53's 1) (pa) s3 }

(s2 s),(P 3) (s2,a), (aI) IS 51 2}

(5s2's2) , (P1) (52,52), (a, a) { s 1,s 3}

(5252) (ssa) () { 52'5 3}

0 1

{s1 } , {a} {s3} {} I

s52} , I {} {2} , al

s2} f {a} {IS1} , fal

s 1 s2 }, {a,13} {s2 s3 ,f a,3}

{s 1,s 3}, {a} {s1 ts 3 }, a,3}

{s2} , {a,3} {515 2 },' {a}

A2

Figure 1

DEFINITION 1: f is an automaton homomorphism of A onto B if and only if (a) A =

{;, S, M} and B = {;, S', M'} are automata having the same set of input symbols, (b) f is

a mapping that maps S into S', that is, f: S --S'; and (c) for all s E S and for all cr E Z,

f(M(s, r-)) = M'(f(s), a).

THEOREM 1: An automaton A = {z, S, M} is a homomorphic image of its pth-power

automaton AP for any positive integer p.

PROOF 1: (a) A = {Z, S, M} and AP = {Z, SP , MP} are automata having the same set

of input symbols.

(b) Let f be a mapping for all ordered p-tuples of states which maps each ordered

p-tuple into its first element, i.e., f: (s, s 2 , .. Sp) -s 1 .

(c) For all (sl, s 2. . . sp) E SP and for all a E , f(MP(s, a)) = f(M(sl,C),M(s, O). ...

M(sp,)) = M(sl, a-) and M(f(sP), tr) = M(f(sl, s 2 . . . Sp),) = M(s 1 ,).

Therefore, f(MP(s P , a)) = M(f(sP), r). Q.E. D.

THEOREM 2: Given an automaton A = {z, S, M}, AP } is a homomorphic image of

AP for any positive integer p.

PROOF 2: (a) A} = {z S{p}, M{P}}and AP = {Z, SP, MP} are automata having the

same set of input symbols.

(b) Let f be a mapping for all ordered p-tuples of states which maps each ordered

p-tuple into the set that consists of all distinct elements of the p-tuple, i.e., f:

(S 1 ' S2... Sp)-{S1 S2 ... Sp}.
(c) For all (s l , 2 . . . s p) e SP and for all a- e T, f(MP(sP , -)) = f(M(s1 ,), M(s 2 , -)...

M(sp ,I)) = M(s(s, a-),M(s2 ,a).. .M(s ,)}, and M{P}(f(SP)) = M{P}(f(sl, S. .. s),)=

{M(sl, -r), M(s2 , -). . M(s, a-)}.

Therefore, f(MP(s, ar)) = M{P}(f(sP),). Q. E. D.

4

S1

52

S3

(s I S1) () (s s3) (a'P)12

(s2's2) (a'P) (1 's2) (a, a)A

(s2' s2), (aa) (s,,sl), (a,a)

2.4 THE nth-POWER AUTOMATON

For any automaton A = {Z, S, M} consisting of n internal states, let n copies of A be

connected in "parallel." That is, they accept identical input sequences, but are not inter-

related otherwise, as shown in Fig. 2. Considering the parallel-connected system as a

- -- v

INPUT

SEQUENCE
N COPIES OF A

1LJ
Figure 2

whole, we have an automaton whose input symbols are the set Z and whose internal states

are characterized by the total states of the n copies of A. This is exactly the An

automaton.

When we are not concerned with the output from the automaton, an automaton

is solely characterized by its ability to partition all input sequences into congruence

classes. In algebraic language (see the appendix for full definitions), the set of all input

sequences is a free monoid generated by the set of all input symbols. An automaton then

defines a monoid homomorphism that maps the free monoid into the finite monoid of all

congruence classes, as shown in Fig. 3. An automaton consisting of n internal states,

in general, may partition the set of all input sequences into nn congruence classes. If

we designate the n internal states by s, s2, ... sn, for any input sequence t we have

M(s 1 ,t) = s i , M(s 2 ,t) = sj ... M(s n ,t) = sr, where the indices i, j ... r are among 1,

2 ... n. We can consider the input sequence t as one that defines a mapping that maps

s 1 into s i , s2 into sj ... and so on, or just a mapping that maps the ordered n-tuple

(s 1, s2.. .sn) into another ordered n-tuple (si, j, ... sr). The congruence relation -
can then be defined as t -- t2 if and only if for all s E S, M(s,tl) = M(s,t 2), or t - t 2

if and only if Mn((sl, s2.. . n), tl) = Mn((sl, s 2. ... Sn) t2). Since there are, in general,

nn ordered n-tuples that (, s 2 ... sn) can be mapped into, there may be, in general, nn

congruence classes of input sequences. Thus it is clear that the An automaton provides

a complete picture of the behavior of A. The initial state of An is always set to

5

(sl, s 2 . .. Sn). At any subsequent instant, the state of An corresponds to the congruence

class to which the input sequence belongs. Conventionally, when we specify the behavior

of an automaton we have to specify the initial state of A. This specification is equiva-

lent to choosing a particular copy of A among the n copies of A in A n .

FREE MONOID

OF ALL INPUT

SEQUENCES T

JOID

OMORPHISM

Figure 3

2.5 TRANSITION MATRICES

Since every input sequence t maps the ordered n-tuple (sl, s 2. .. sn) into another

ordered n-tuple, we can consider the mapping as a linear transformation that transforms

an n-dimensional vector into another n-dimensional vector. Following Seshu, Miller,

and Metze, 4 we represent the initial state of A n by the column matrix

S 1

S2

n

and the linear transformation by an n X n matrix [T], called the transition matrix. We

then have

6

INPUT

SYMBOLS

^

[T]

SI

S2

Sn

SiSi

S
r

corresponding to Mn((sl, s 2 . .. Sn), t) = (s i , Sj... Sr). For every input symbol a there
is a corresponding transition matrix Ta . For any input sequence t = 'aab c ... the

corresponding transition matrix is T = TaTb T ... As we can see, this matrix repre-

sentation follows exactly the model of the nth-power automaton.

Some of the properties of the transition matrix are stated here for future reference.

(a) Every row contains exactly one nonzero entry, 1. All of the other entries are
zeros.

(b) Property (a) is invariant under multiplication of transition matrices.

(c) An identity transformation corresponds to a unit matrix.

(d) The number of columns for which all entries are zero will not decrease under
postmultiplication of transition matrices.

Property (d) is not as obvious as the other properties, and it can be shown as follows.

Because of property (a), property (d) can be restated: If r of the n nonzero entries in

the transition matrix are in columns containing more than one nonzero entry, then the

number r will not decrease under postmultiplication of transition matrices. Let TaTb =

T, and let aij, bij, and cij denote the entries in Ta Tb, and T. Suppose that the
th

p column of Ta contains u nonzero entries, 1, i.e., a p = a = ... a p = 1. Since the

pth row of Tb contains exactly one nonzero entry 1, suppose that bpk = 1. From matrix

multiplication,

n

Cik = aihbhk = aipbk = aip;
h=l

therefore, Ci k = = * Ci k = 1. Thus property (d) follows.
1 k 2 -'' U

7

I

III. MEMORY SPAN OF AUTOMATA

3.1 MEMORY SPAN WITH RESPECT TO THE INPUT

An automaton is said to have a "memory" because its behavior depends on its past

history. Except for the degenerate case of automata consisting of only one state, this

statement is generally true. However, the behavior of some automata depends on remote

history, while the behavior of others depends only on recent history. In other words,

in the former case we say that the automata have a longer memory span, while in the

latter case, a shorter one. We shall define these precisely.

DEFINITION 2: An automaton A = {Z, S, M}has a finite memory span m if and only if

(a) for all s i , s E S and all t E T with L(t) > m + 1 (L(t) means the length of t), M(s i ,t) =

M(sj, t), and (b) there exist s i , s E S and t E T with L(t) = m, which are such that

M(s i , t) * M(sj, t).

Figure 4 is an example of an automaton having a finite memory span 2.

S\

S1

52

s3

s4

0 1

s1 s2S1 S

3 S2
53 52

Figure 4

S\ 0

s 2 Figure 5

S1

DEFINITION 3: An

if for any given integer

that M(si , t) M(sj, t).

Figure 5 is an example

automaton A =

N, there exist

{Z, S, M} has an infinite memory span if and only

s i , sj E S and t E T with L(t) > N, which are such

of an automaton having an infinite memory span.

a. Bounds on the Memory Span

It is not true that an automaton with a given number of states might have a finite

memory span equal to any positive integer. We shall obtain an upper bound and a lower

bound on the values of memory span.

DEFINITION 4: In the square automaton (second-power automaton) A 2 and the

8

�

1

S1

s 2

unordered square automaton A 2 } , the states (s i , j) in A2 and {s, sj} in A{2 }, where s i

sj, are called "compound" states; the states (si, si) in A2 and si} in A 2 I are called

"simple" states.

Consider A2 and A{2Z corresponding to two copies of A running in parallel. A com-

pound state signifies that the two copies of A are in different states, while a simple

state signifies that the two copies of A are in the same state.

DEFINITION 5: There is a loop around a state s i in A = , S, M} if there exists a

nonempty input sequence t, that is, L(t) > 1, which is such that M(s i , t) = s i.

LEMMA 1: If there is a loop around a compound state (si , Sj} in A{2}, there is a loop

around (s i , Sj) and a loop around (sj, s i) in A 2 .

PROOF OF LEMMA 1: There exists a nonempty input sequence t that is such that

M{2}({si, Sj}, t) = {s i , j}, that is, {M(si , t), M(sj, t)} = {si , sj}. Since s i s and the function

M is single-valued, we have either

CASE I. M(s i , t) = s i and M(sj, t) = sj, or

CASE II. M(si , t) = sj and M(sj, t) = s i .

For Case I, M2((si, s), t) = (M(s., t), M(sj, t)) = (s i , sj).

For Case II, M ((si, sj), tt) = (M(M(si, t), t), M(M(sj, t), t)) = (M(sj, t), M(s i , t)) = (s i, sj).

Q. E.D.

DEFINITION 6: In an automaton A = { S, SM}, a set of states s i , s ... E S is

"structurally indistinguishable," if for all a E , M(si,) = M(sj, -) =

Obviously, any state is structurally indistinguishable from itself. In this report,

we shall abbreviate the term "structurally indistinguishable" to "indistinguishable."

DEFINITION 7: In an automaton A = {, S, M}, a (homomorphic) mapping c, called

"combining," is defined as: c(si) = c) = = ... = s i for the states of an indistinguishable

set si , sj In other words, c maps a set of indistinguishable states into an arbi-

trarily chosen representative state in that set.

DEFINITION 8: Given an automaton A = {, S, M}, we define the combined automaton

Ac = z, ScM c l}, where (a) c(s) E S for all s E S, and (b) Mcl(Si,) = c(M(c -l(si),r))C c1'Cl 1 cl

for all a- E and all s i E Scl. Here, c l (s
i) means the inverse image of s i under c.

Although c 1(s i) is not unique, M(c-1 (s), S) is unique (by the definition of indistinguish-

able states).

In general, there may be indistinguishable sets in Acl which can be combined further.

We adopt the notation Ac2, Ac3 ... for successively combined automata.

LEMMA 2: If there is a loop around a compound state {s i, Sj} in A} then there

exists a loop around one of the compound states {c-1 (si), c l(sj)} in A{2}. (Since c 1 (s i)

and c 1 (sj) are not unique, {c- 1 (s), c- (sj)} denotes all possible pairs of states from

c (s) and c (s).)

PROOF OF LEMMA 2: Let il, Si2...* Siul and {Sjl Sj2..* jv4 denote the sets of

9

indistinguishable states in A which are mapped into s i and sj in Acl, respectively. There

exists a nonempty input sequence t so that M!2L} ({si, sj, t) = Mc (s i , t), Mcl (sj, t)}

{s i , s}. Correspondingly, M2}({il, jl}, t) = sip, jq, where Sip E fSili, s2... iu } and

Sjq E {sjl Sj2.. Sjv } , since c(sip) = si, c(sjq) = sj. Because {sil, i2... Siu) and (Sjl,

sj2 . . Sjv are sets of indistinguishable states and t is nonempty, it follows that

M{Z}({sil,sjl},t) = M{}({sil, j 2}, t) = ... M{}({il, jv}, t) ...

= M{Z}({siu, SjV}, t) = {sip, Sjq}.

Among all of these u · v equalities, there must be one that reads

M{2}({sip, Sjq}, t) = {sip, Sjq} Q. E. D.

Lemma 2 can be extended to: If there is a loop around a compound state in Acr' where

Acr is any one of the series of automata Al, Ac2, A3 ... , then there is a loop around

a corresponding compound state in A.

LEMMA 3: If A = {T, S, M} contains two or more internal states, and if for all s i ,

sj E S, there exists a E Z that is such that M(si , r) M(sj, -), then there is a loop around

some compound state in A

PROOF OF LEMMA 3: Starting with any compound state {sa, Sb} in A{2}, we find

that there exists , E that is such that M{2}({sa, Sb}, 1) = {M(sa, 1) M(sb' '1)} with

M(sa, 1)a M(sb '1) . Also, there exists 2 E Z that is such that M{2}({M(sa, ¢1) ' M(sb'

-1)}' 0-2) = {M(salcg), M(b' * 1l2)} with M(Sa, 0'1¢ 2) M(sb, -' 1 ¢ 2).
We can repeat this argument for as many input symbols as we wish and still end with

a compound state. For an automaton A containing n internal states there are n(n-1)/2

compound states in its unordered square automaton A{2}. If we repeat this argument

for more than n(n-1)/2 steps, at least one compound state is visited more than once.

Thus there is a loop around that compound state. Q.E.D.

We are now able to prove the following theorem.

THEOREM 3: An automaton consisting of n internal states has a memory span either

equal to infinity or equal to n-2 or less.

PROOF 3: Suppose that an automaton A = {Z, S, M} has a finite memory span larger

than n-2; that is, there exist states si, sj and an input sequence t of length n-l which

are such that M(s i , t) M(sj, t). We claim that the automaton then must have an infinite

memory span. We have to show that there is a loop around a compound state in A .

However, from Lemma , we have only to show that there is a loop around a compound

state in A{2}. The portion of the transition diagram of A{2} that corresponds to the

input sequence t = aIa2 ... n-1 is shown in Fig. 6. If within the n-l steps of transition

10

a I a 2 an-i

n COMPOUND STATES

S Sb' S Sc Sf S ' ' S s /sz

Figure 6

S1 2 15,, S ~ ~--F--(ISC S ~ I SeI Sf} {S, S}I y' 5)

(n-l) COMPOUND STATES SIMPLE
STATE

Figure 7

]a 2 an

TWO COMPOUND STATES (n-2) SIMPLE STATES

Figure 8

any compound state is visited more than once, there is certainly a loop around

that state; if not, we repeatedly combine all sets of indistinguishable states to

form Acr (the rth-combined automaton) either until no further combination is pos-
sible or until sy and s z become two indistinguishable states in Acr. (Notice

that the n compound states in Fig. 6 are still compound states in A 2} because none of

the n pairs of states would become indistinguishable before sy and s are combined.)

We can now examine two possibilities: (a) No further combination is possible in A
cr

Because Acr contains at least two states, sy and s z , by Lemma 3 there is a loop around

a compound state in A 2} . (b) The pairs sy and s are indistinguishable in A r. Com-

bine s and s to form Ac(r+l). The portion of the transition diagram of Ac(+l) that

corresponds to the input sequence t is shown in Fig. 7. If s and s x are distinguishable,

we return to the argument of possibility (a). If s w and s x are indistinguishable, we com-

bine them to form Ac(r+2) and repeat the argument above. The procedure of combiningc(r+2)

11

indistinguishable states can go on, at most, to A (r+n-Z) since the portion of the transi-

tion diagram of Ac(r+n-2) corresponding to the input sequence t is that which is shown

in Fig. 8. Since after (n-2) steps of combining indistinguishable states, A (r+n-) would

have only two states, {sa, b} = {Sc' Sd} in Fig. 8. There is still an input symbol 1

however, that will lead a compound state to a compound state. Therefore, there is a

loop around a compound state in A }

c(r+n-2)'
By Lemmas 1 and 2, we then prove Theorem 3. Q.E. D.

The proof of this theorem brings up an interesting point. For an automaton A =

{z, S, M} consisting of n states, even when the function M is only partially specified

(that is, the flow table is partially specified),

as long as the specified values of M ensure

S 0 1 the existence of an input sequence of length

Sl s2 - n-l which will bring any two different states

into different states, the automaton has an
2 s3 M1 001)= s4 infinite memory span no matter how the rest

s3 s2 S4 M(s 2 , 001)=sl of the values of M are specified. As an

s4 _ example, no matter which values are assigned

for the bars in the flow table in Fig. 9, the

Figure 9 automaton will have an infinite memory span.
THEOREM 4: If a strongly connected

automaton 3 consisting of n states has a finite memory span m, then a + l > n, where

a is the number of possible input symbols.
m+l

PROOF 4: There are a different input sequences of length m+l. Starting from
m+l

any arbitrary state s i , the automaton can enter, at most, a different final states
m+l

after m+l steps of transition. Suppose that n > a . There then must be a state (or
m+l

states), say s k, that is not included in these a final states. However, there exist

an input sequence t of length m+l and an initial state s which are such that M(sj, t) = sk.

Then M(sj, t) M(si, t) is a contradiction of the statement that the memory span equals m.

Q. E. D.
b. Canonical Form of an Automaton Having a Finite Memory Span

Let us define a series of relations R o, R 1 , R 2 ... Rk-l Rk ... as follows:

Ro: s i R o sj if and only if M(s i , A) = M(sj, A), where A denotes the empty input

sequence. (Since we assume that all states in the automaton are distinct,

only s i Ro s i is true.)

R: s i R 1 sj if and only if M(s i ,) R M(sj, a-) for any input symbol .

Rk: Si Rk sj if and only if M(s i , -) Rk_ M(sj,) for any input symbol ar. In other

words, s i Rk sj if and only if M(s i , t) = M(sj, t) for any input sequence t of

length k.

It is obvious that all of the R's are equivalence relations, and thus they define a series

of partitions P o P1 ... Pk-l' Pk .' on the set of internal states.

12

We claim that Pk-1 is a refinement of Pk' that is, for any pair of states s i and sj,

if s i Rk_ 1 sj, then s i Rk sj. s i Rk-1 sj means that for any input sequence t of length

k-l, M(si , t) = M(sj, t). Thus M(si , t) = M(sj, to) for any input symbol ar. Therefore,

s i Rk sj. The procedure for forming these successive partitions will terminate when-

ever Pjl is identical with Pj. Therefore, this procedure will terminate, at most, at

Pn-1 because Pn-1 will consist of only one block. (n is the number of internal states.)

Thus we have the following theorems.

THEOREM 5: An automaton will have an infinite memory span if the procedure for

forming successive partitions Po, P1 ... terminates at a partition P that consists of

more than one block.

PROOF 5: If the partition terminates at Pj, then for any two states s i and s that

are not in the same block of Pj, there is an input symbol a-r1 that is such that M(s i, 1)

and M(sj,l-1) are not in the same block in Pj. (Otherwise, Pj+l # Pj.) Repeating this

argument for the states M(si, 1) and M(sj, -1), we have an input symbol a- that is such

that M(si, 0-12) and M(sj, laI2) are not in the same block in Pj. Repeating again, we

can have an input sequence t of any arbitrary length so that M(si, t) and M(sj, t) are not

in the same block. Therefore, M(si, t) M(sj, t) because Pj is a partition (blocks in Pj

are disjoint). Q. E. D.

THEOREM 6: An automaton will have a finite memory span j-1 if the series of par-

titions Po, P1 ... terminates at a Pj that consists of only one block.

PROOF 6: s i Rj sj means that for any input sequence of length j, M(si , t) = M(sj, t).

Since Pj consists of only one block, this equality holds true for any pair of states. On

the other hand, since Pj1 consists of two or more blocks, there exist a pair of states

s i and s and an input sequence t of length j-1 which are such that M(s i , t) M(sj, t).

Q. E. D.

Theorem 3 can be proved alternatively as follows. Since the series of partitions

Po, P 1 '''... will terminate, at most, at Pn-l' then M(si, t) = M(sj, t) for any input sequence

t of length n-l and any pair of states s and s.
1 j'

54
s 1

S2

s3

0 1

S1 S2

S3 S2

S s1

SI1 1

S1 s2

A A

A A Ac 2 Ac 3

Figure 10

13

0 1 S

s3 s 2 s 253 S2 S2

s1 54 s3

0 1 S

s3 s2 s1

s3 s2 s3

s1 S2

S3 s2

B BCI Bc2

Figure 1

This series of partitions Po, P 1 ...'' corresponds exactly to the step-by-step com-

binations of indistinguishable states. A set of states that are in the same block in Pk

is indistinguishable after k steps of combination. Therefore, the canonical form of an

automaton having a finite memory span is one that can be reduced to an automaton con-

sisting on only one internal state after repeated combinations of indistinguishable states.

(See Fig. 10 for an automaton with a finite memory span and Fig. 11 for one with an infi-

nite memory span.)

c. Essential Part of A{n}

Suppose that we do not know the initial state of an automaton but do know the input

sequence to the automaton and would like to determine the present state of the automaton.

In general, with such limited knowledge, it is impossible to determine the present state.

If, however, the automaton has a finite memory span, say equal to m, the present state

can be determined when (m+l) or more of the most recent input symbols are known. From

the definition of an automaton having a finite memory span m, the automaton will termi-

nate at the same state for a given input sequence of length that is equal to or larger than

(m+l) no matter what the initial state is. In other words, although there is initially com-

plete ambiguity about the state of the automaton (the automaton can be in any initial state),

this ambiguity will eventually be removed after m+l steps of transition. If we look at

the unordered nth-power automaton A{n} we can see the manner in which the ambiguity

is narrowed down step by step. From the initial set of states {s, s z . .. sn} (any state

could be the initial state), a transition will lead to another set of states {si,sj ... sr} which

are the possible states that the automaton will be in after that transition. As we can see,

the number of states in the set {si , sj... Sr} indicates the amount of ambiguity that exists,

as far as the state that the automaton may be in is concerned. From property (d) of the

transition matrices (see Sec. II) we know that this ambiguity will never increase. Further

transitions may further decrease the ambiguity. If no ambiguity exists after any (m+l)

steps of transition, the automaton is said to have a finite memory span. In order to deter-

mine the memory span of an automaton it is not necessary to examine the complete A{n}.

14

S1

52

s3

s4

0 1

s3 1

s1 s

We can look at only a portion of A{n} which consists of all states that can be reached from

{s, s2. .. Sn}. This part of A{n} carries all of the information that we need, and is called

the essential part of A{n}. (See Fig. 12.) In the example in Fig. 12 after, at most, three

transitions, no ambiguity about the state of the automaton will exist. The diagram of the

essential part of A{n} can be illustrated in a more explicit fashion, called the tree

of the essential part of A{n}; the tree of the essential part of A{n} of Fig. 12 is illustrated

in Fig. 13. Notice that we stop extending any branch of the tree once ambiguity no

S1

s2

s3

s4

0 1

S1 s2

s3 s2

SI S4s1 s4

53 s2
0

Figure 12

LEVEL n- I

LEVEL n- 2

LEVEL n- 3

LEVEL n- 4

Figure 13

15

x Yr

I

I

-S\\

S1

S2

s3

s4

0 1

S3 S4

S3 s2

S S4s1 4s

53 s2

Figure 14

longer exists along the branch.

Therefore the tree of the essential part of A{n} can be employed to check the memory

span of an automaton. As indicated above, after n-l steps of transition (n is the number
of internal states of the automaton), no ambiguity will exist for an automaton having a
finite memory span. On the other hand, a certain ambiguity after (n-l) steps of transi-
tion or a loop around any set containing more than one state indicates that the automaton
has an infinite memory span. The automaton in Fig. 14 has an infinite memory span

because of the loop around {s 1 , 31.

d. A Series of Partitions Related to the Tree of Essential Part of An}

We define a series of relations Tnl, T n_ 2 , T ... as follows:

Tn- 1:

Tn- 2:

Si Tn_l sj for any pair of states s i and sj.

If s i Tn_1 sj, then M(s i , a-) Tn-2 M(sj,) for any a E I.

(If there exists a state st that is such that no state s i and input will give

M(si, ur) = st, we define st Tn_2 s t . The same definition is applied in the

successive relations.)

Tn k: If s i Tnk+l sj, then M(s i , a) Tn- k M(sj,) for any 0 E .

Moreover, all of the T's are defined as transitive relations. In other words, if s i Tn k Sj

and sj Tn_k sm we then have s i Tn- k Sm by definition. We can show that the T's are
equivalence relations:

(a) Reflexivity: Proved by induction. Tn_ 1 is reflexive because by assumption s i

Tn 1 sj for any s i , Sj. Assume that Tn k+1 is reflexive. For any s i , if there exist
Sk and a that are such that M(sk,) = s i , then s i Tn k s. because s k T sk; if there

does not exist sk and that are such that M(sk, a) = i , then s i Tnk Si by definition.

16

(b) Transitivity: By assumption.

(c) Symmetry: Proved by induction. T 1 is obviously symmetric. Assume that

Tn-k+1 is symmetric. Let s i Tn- k Sj
CASE I: There exist q, s m, and input symbol that are such that M(sq,) = s i and

M(sm, -) = sj, where sq Tnk+ sm. By assumption, sq Tn-k+l s m gives sm Tn-k+l sq,

and thus M(s m , -) Tn_k M(q, a). Therefore, sj T - k Si

CASE II: There exists a chain relation s i Tn k Sa Tn-k Sb Tn- k Sc ... Tn- k sj and

exist q, s t , Su, sv, sw, sx, Sy ... and -1' 02' 3' 4 '''. that are such that q Tnk+1

St' u Tn-k+l v w Tn-k+l Xsy Tn-k+l sm and

M(s q, 1) = Si

M(s u , 0. 2) = Sa

M(s w , ' 3) = s b

M(sy, 4) = C

M(st, -l) = Sa

M(sv , 2) = s b

M(sx , a 3) = S c

M(s m , -4) = sj,

or pictorially as shown in Fig. 15.

s a c Tn-k sb' sj Tn-k c - Thus,

As proved in Case I, we have s a Tn k s i , s b Tn k

s T s.. Therefore, the relations T Tn_2n-k 1 n-l' n-

s. s SbI a b S S.
c

Sq St SU S s S S
c u v w x y m

Figure 15

Tn- k ... define a series of partitions Qn-l'Qn-2' ' ' Qn-k

We claim that Qn-k is a refinement of Qn-k+l This can be proved by induction.

Qn-2 is obviously a refinement of Qn-1 Assume that Qn-k+l is a refinement of Qn-k+2.

Let s i Tn k Sj, and we have two cases that are identical with the last two

cases.

CASE I: There exist sq, s m, and input symbol a- that are such that M(sq, a-) = Si

17

and M(s m, ar) = sj, where sq Tn-k+l sm. By assumption, sq Tn-k+2 Sm and thus M(sq, C)
Tn-k+ M(sm,). Therefore, s i Tnk+l sj

CASE II: There exists a chain relation as shown in Fig. 15. By assumption, sq

Tn-k+2 t , s u Tnk+2 v Sw Tnk+2 Sx , sy Tnk+2 s m . Thus, si Tn-k+l a ' a Tn-k+1

Sb' sb Tn-k+l Sc' Sc Tnk+l sj. Therefore, s i Tnk+l s.j
For any s i that is in a block consisting of more than one state in Qn-k' there exist

a state sj in the same block as s i , a pair of states sq and s m, and an input sequence t

of length k-l, which are such that M(sq, t) = si and M(s m, t) = sj. This statement is not

quite obvious and can be shown as follows. The partition Qn-k is closely related to sets

of states at level n-k of the tree of the essential part of A{n}. As a matter of fact, from

the tree of the essential part of A{n}, if we put the unions of all sets of states that are

chain-connected into blocks and put all states that are not reachable at level n-k into

separate individual blocks, we shall have Qn-k' This fact can be proved by induction.

It is certainly true for Qn-1 and Qn-2 by the definition of Qn-l and Qn-2' Suppose that

this is true for Qn-k+l' Let {I1}, {I2}, {I3} {J 1}' {J 2 }· {J3 } ... {K1}, {K 2 }, {K3 } ...

denote sets of states at level n-k+l in the tree of the essential part of A{n}, where the

I's, as well as the J's and K's, are chain-connected. The sets of states at level n-k

can be denoted by M{n}({Il},'l 1), M{n}({I 2 }, 1), M{n}({I 3},)l) ' M{n}({I 1}, 2) On

the other hand, Qn-k+l consists of blocks {{I1}U{I 2}U{ 3 }}, {{J 1 } U{Jz}UJ 3 }} ... V

{V2}, where {V1 } and {V2 } are states that are not reachable at level n-k+l. Then Qn-k

would consist of M{n}({{I1 }U{ 2} {I3}},) M{n}({{I 1}U{2 }{I 3}} 2a-) M{n}({{J1 } U{J } U

{J 3 }},' 1), M{n}({{J1 } U{J 2 } U{J 3}}, 2) ... M{n}({Vl}, -1), M{n}({V1 }, 2), with the chain-

connected sets combined into blocks and also would consist of states that are not reach-

able at level n-k. Since {I1}, {I2}, {I3} are chain-connected, Mn}({I}, -l), M{n}({I 2}, -1)

Mn}(fI3}, a-1) are chain-connected. Therefore, M{n}({Il) U M{n}({I2 }, -) U Mn}(I3} ,

T1) = Mfn}({{I 1 }U{I2 }U{I3}},l-1). Since V1 consists of only a single state, M{n}(Vl},Ti)

either is a state that is not reachable at level n-k or is included in some other set. This

completes the proof that Qn-k is formed by the unions of connecting sets plus individual

blocks for states that are not reachable at level n-k. Therefore, if s i is in a block con-

sisting of more than one state in Qn-k' there must be a set of states consisting of s i

and s at level n-k of the tree of the essential part of A{n}.

Theorems 7 and 8 will then follow immediately.

THEOREM 7: An automaton will have an infinite memory span if the procedure for

forming successive partitions Qn-l' Qn-2 ..'''. terminates at Qn-j' a partition that con-

sists of fewer than n blocks (that is, there is a block consisting of more than one state).

PROOF 7: The termination of the series of partitions means that if we continue to

form partitions for successive steps, they will all be identical with Qn-j' This result

18

implies that for all input sequences of any length there is at least one subset consisting

of more than one state at that level of the tree of the essential part of A{n}. Q. E. D.

THEOREM 8: An automaton will have a finite memory span j - 2 if the series of suc-

cessive partitions terminates at Qn-j' a partition that consists of n blocks.

PROOF 8: The proof of this theorem is obvious.

Moreover, Theorem 3 can be proved immediately by observing that the series of Q's

are refinements of the previous Q's.

Another interesting point comes up from the examination of this series of partitions.

We can tell that an automaton has an infinite memory span, even when the function M is

St

S2

s3

s4

s5

s6

0 1

S2

- s4 Q { s s 2,s3"4"5" 6 }

Qn-2 = S 1'52'53'54'5'S6 }
S6 s1

- s3

s5 -

Figure 16

partially specified, if the specified values of M ensure that the series of partitions Qn-l'

Qn-2 '''. terminates at one consisting of less than n blocks. (See Fig. 16.) Since

Qn-1 = Qn-Z in Fig. 16, the automaton will have an infinite memory span regardless of
the values assigned to the barred entries in the flow table.

e. Partial Information from Input Sequences

For an automaton having a finite memory span m, any input sequence of

length (m+l) will furnish complete information about the present state of the

automaton. On the other hand, for an automaton having an infinite memory span,

there always exists at least one input sequence of any arbitrary length which

does not supply enough information to enable the unique specification of the state

of the automaton. Although the complete information about the state of the autom-

aton will not be furnished by some input sequences, there may be some partial

information available. In other words, although the input sequences cannot com-

pletely remove the ambiguity about the present state of the automaton when the

initial state is unknown, they can at least narrow down the ambiguity to a certain

19

extent, as can be seen from the tree of the essential part of A n) For example, let us

look at the automaton in Fig. 14. If the input sequence is a string of zeros, then we

never can tell exactly whether the automaton is in s or s 3, regardless of the number

of zeros that we may observe. Knowing that the input is a "0" (a "1"), however, enables

us to determine that the state of the automaton is either s1 or s 3 (either s 2 or s 4) and

reduces the ambiguity from four possible states to two possible states. Therefore, if

we know the previous input symbols (0 or 1), we only need the extra information to dis-

tinguish s1 from s 3 or s 2 from s 4 in order to specify uniquely the present state of

the automaton. For this purpose, we can extend the tree of the essential part of

A{n} to a certain level and determine the ambiguity, corresponding to each input sequence,

about the state of the automaton at that level. As we have indicated, whenever there is

a loop around any set containing more than one state, further extension of the tree will

not reduce the ambiguity within that set of states.

f. New Model of an Automaton

As indicated in Section I, a finite automaton is characterized by a quintuple A =

{E, Z, S, M, N}. The functions M and N can be written more explicitly as

t t t+l
M(s ,) = s

t t t
N(s t , ,) = s,

where the superscript t is the index of successive time periods. From our discussion,

we see that the past input sequence plus some extra information will specify uniquely

the state of the automaton. This extra information is needed whenever the automaton

does not have a finite memory span. Suppose that k of the latest input symbols to the

automaton are known. The set of states corresponding to this input sequence at level

n - k - 1 in the tree of the essential part of A{n} will be the set of possible present states

of the automaton. For all possible input sequences of length k, the set that contains

the largest number of states at level n - k - 1 displays the largest possible ambiguity

about the present state of the automaton that k of the latest input symbols are not capable

of removing. We now define a new variable, called the "substate" of the automaton,

which will assume the values r, r 2, r 3 When k of the latest input symbols are

known, the number of substates will be equal to the number of states in the largest set

at level n - k - 1 in the tree of the essential part of A{n}. We shall then assign different

substates to denote different states in the same set, so that knowing the past input

sequence and the substate will be sufficient to determine the state of the automaton. We

may then write

t t-l t-2 t-k ts H(,a' ,...0 ,r),

where H is the functional relation between s t and t a . .. r Since M t)
t+l

s , we have

20

M(H(a- , a- ...- ,r),) = H(- ,cr ...- ,r).I- rIo

In general, changing the value of any argument of the function M changes the value of
t+l t+ls , which, in turn, would change the value of r t Therefore, we can express explicitly

t+l t t-1r = F(o-, ,... t-k+l at-k rt), r ,r).

We propose now that an automaton can be described by a quintuple A = {Z, Z, R, F, G}.

Z = {- 1 , -2... .} and Z = {z1 , z 2 .. .} are the finite set of input symbols and output symbols;
R = {r1 , r 2 . ..} is the set of substates; F is a function that maps all ordered (k+2)-tuples

(at ,t-. . 0 t- k , rt) into R, as expressed above; G is a function that maps all of these

ordered (k+2)-tuples into Z, namely

t t t-l t-k+1 t-k tz =G(.. * ,, ,).

Therefore, given an

we can have another

S\

S1

52

s3

s4

s5

S6

automaton represented in the conventional way A = {, Z, S, M, N},

equivalent representation A = {Y, Z, R, F, G}, where the set R and

0

52' 1

s20

Si4 '

s41 0

s5 1

S3 1

56' 1

s3 0

s3 , 0

Figure 17

the functions F and G are different for different values of k, the number of known past

input symbols. The function H defined above will then indicate the relations between

00 01 10 11

rlO

r2

r2

r2 , 1 r1 , 1

r2 , 1 r 1

r3 , 1 r3 0

rl, 1

rl,0rltO

Figure 18

21

t-l t

-

1

the two representations. For the automaton illustrated in Fig. 17 we construct the func-

tion H for k = 1 and k = 2, as shown in Figs. 18 and 19, respectively.

For k = 1, we define

H(O, r1) = 1

H(1,r l) = s 3

H(0, r2) = s 2

H(1, r2) = s5

H(0, r3) = s 4

H(1, r3) = S6

and obtain the table illustrated in Fig. 18. For example,

M(H(O, r 1), O0) = M(s 1, 0) = s 1 = H(O, r 1)

N(H(O, r), 0) = N(s 1 ,0) = 0

M(H(0O, r 1), 1) = M(s l , 1) = 5 = H(1, r2)

N(H(O,rl), 1) = N(sl, 1) = 1, etc.

For k = 2, we define

H(00, r 1) = s 1

H(01,rl) = s 5

H(10,rl) = sl

H(ll,rl) = s 3

H(OO, r 2) = s 2

H(01, r 2) = s 6

H(10, r 2) = s 4

H(ll,r 2) = s 3

and obtain the table illustrated in Fig. 19. Notice that H can have the same value for

different arguments, for example, H(OO, r) = SI, H(10, rl) = sl, because s has appeared

it -2 It -1 t

Rt 000 001 010 011 100 101 110 111

r1 ,0 r, 1 r1, 1 or r2 ' 0 r 1 ,0 r1, 1

r2 1 1 or r2 0 r 2orr 0 r2 1

rl, 1 r1 orr 2 , 1

r, 1 r or r2, 1

Figure 19

in more than one set of states at level n-3 of the tree. Another point that is worth

noticing is the fact that because the set s 3 consists of only one state, both substates

r l and r are assigned to s 3 . This is the reason that there are optional entries in the

flow table shown in Fig. 19. Suppose that we define H as

22

H(00,rl) = s 1

H(01, r1) = s 5

H(10, rl) = s 4

H(ll11,r) = s 3

H(00, r 2) = s 2

H(01, r 2) = s 6

H(10, r 2) = s 1

H(llr 2) = s 3

Some of the entries in the flow table will be as shown in Fig. 20. Notice that all four

entries in Fig. 20 correspond to a transition to s. Since H(00, rl) = H(10, r 2) = sl,

whether the next substate should be r 1 or r 2 depends on the past input symbols. From

t-2 I t-1 t

Rt 000 001 010 011 100 101 110 111

r 1 ,0

Figure 20

t-l t t t+ t-
H(r ,a ,r) = s , we see that since T

t+l
the function H will yield the correct s

and rt are given, we would choose r t so that

g. Transient States

DEFINITION 9: In an automaton A = {T, S M}, a state s i E S is a transient state if

(a) there exists an input symbol that is such that for every input sequence t, M(M(s i ,

r), t) # s i , or (b) there exists an input sequence t that is such that M(si, t) is a transient

state.

DEFINITION 10: In an automaton A = {I, S, M}, a state s i E S is atransient state of

finite duration d if (a) si is a transient state, (b) for any state sj and for any input

sequence t with L(t) > d, M(sj,t) # si, and (c) there exist a state sj and an input

sequence t, L(t) = d, which are such that M(sj, t) = s i..

DEFINITION 11: In an automaton A = {Z, S, M}, a state s i E S is a transient state

of infinite duration if (a) s i is a transient state, and (b) for any positive integer N,

there exist a state sj and an input sequence t, L(t) > N, which are such that M(sj, t) =

S1i

DEFINITION 12: In an automaton A = z, S, M}, a state s i E S is a persistent state

if it is not a transient state.

For example, for the automaton shown in Fig. 21, s is a transient state of duration

0; s 2 , a transient state of duration 1; s3, a transient state of infinite duration, and s 4 ,

23

r21 1

r21 1

s

52

s3

s4

s5

56

0 1

S2 S5 0

s4 s3

s3 s4

s5 s5

s5 s6

s 4 s5

0

Figure 21

LEVEL n- 1

LEVEL n- 2

LEVEL n- 3

A

Figure 22

s 5 , and s 6 are persistent states.

When an automaton consists of transient states of finite duration, extra steps are

needed if we want to represent the automaton by the new model discussed above. In

this new representation, suppose that k of the latest input symbols are known; since

any transient state of finite duration less than k will not appear in any subset of states

at level n - k - 1 of the tree of the essential part of A{n}, no substate will be assigned

to that state and the representation is not complete. Figure 22 is an example illustrating

a procedure that will complete the assignment. Suppose that k = 2. Since s 2 is a tran-

sient state of duration 0, s 2 does not appear in any subset of states at level n-3 of the

tree of the essential part of A{n}. In order to have a substate assignment for s 2 as well,

we augment the automaton by adding two more transient states as in Fig. 23 so that s2

becomes a transient state of duration 2. Other than this requirement, these two transient

24

S1

52

s3

s4

s5

56

0 1

s51 0 54 1

51, 1 s 1 , 1

51' 1 s4,0

s3, 0 s3 , 1

s6,0 s1I0

S2 , 0 1, 0

Figure 23

states can be added arbitrarily. If we look at the tree of the essential part of A{n},

however, we discover that for k = 2 there will be two substates. If the transitions from

the two added transient states are such that s2 is put into the set s 1 or S4 at level n-3,

there still will be only two substates for the augmented automaton. Here, we choose

to put s2 into the set s. Therefore, for the transient states S5 and s 6, M(s 5, 00) =

M(s6, 0) = sZ. The other entries of the transitions of 5 and s 6 can be any of sl, s,

s 3 , s 4 . A simple rule to follow is to choose entries that already appear in the same

column. Here, we arbitrarily choose M(s 5 , 1) = M(s 6, 1) = s. The output symbols of

the transition from s 5 and s 6 are completely arbitrary. As long as the automaton in

Fig. 23 does not have s 5 or s 6 as the initial state, the augmented automaton is equiv-

alent to the original automaton.

For the duration of a transient state we have the following theorem.

THEOREM 9: In an automaton consisting of n states, any transient state of finite

duration would have a duration equal to or less than n-2.

PROOF 9: We claim that any automaton has at least one persistent state. Suppose

that there is an automaton whose states are all transient states. Pick any arbitrary

state s i . Since s i is a transient state, by definition we have

CASE I: There exists an input symbol x, with M(s i , ax) = s k ' that is such that no

input sequence will lead sk to s i again.

CASE II: There exist an input sequence t = 1r23 ... , with M(si,t) = sj, and

an input symbol x with M(sj, x) = Sk ' which are such that no input sequence

will lead sk to s again. No input sequence will lead s k to any of s i , M(si,l),

M(si, a'l 2) .. . either; otherwise it would be possible to lead sk to sj, which is

a contradiction.

In both cases, because sk is again a transient state, this argument can be repeated.

Under the conclusion that once a state has been visited, it will never be visited again,

after a finite number of repetitions of the above argument, there will be a state s u and

25

an input symbol oy which are such that M(s u , y) can go nowhere. This is obviously

impossible.

Suppose that there is a transient state sj and an input sequence t = 01'203 '''. n-

which are such that M(sj, t) = s i . The states sj, M(sj, l) , M(sj, ol2), . .. s i , are all

transient states. Since there are, at most, n-l transient states, at least one of them

is visited more than once. Therefore, for any positive integer N there exists an input

sequence t' with L(t') N, which is such that M(sj, t') = s. si is then a transient state

of infinite duration. Q.E.D.

h. Minimum Feedback-Loop Realization of an Automaton

Figure 24 illustrates the general physical model of an automaton. Notice that feed-

back loops are needed to carry the information about the present state of the automaton.

t {

at-l

t -k

r {

}

}

t
z

t+l
S

Figure 24

I z t

}t+l

Figure 25

26

Thus the number of feedback loops depends on the number of states. Suppose that every

feedback loop carries one bit of information (0 or 1); then the number of feedback loops

is equal to Flog 2 (total number of states)l. (This means the smallest integer that is

greater than or equal to log2 (total number of states).)

Suppose that storage devices are available to store the past input symbols. We can

have a realization based on the new model of the automaton with the number of feedback

loops equal to log 2 (total number of substates)l, as shown in Fig. 25. If we extend the

tree of the essential part of A{n} to such a level that no further reduction of the number

of substates is possible, the realization will be a minimum feedback-loop realization.

Thus, the realization of an automaton having a finite memory span m can be realized

with no feedback loops but requires m storage devices to store the past input symbols.

3.2 MEMORY SPAN WITH RESPECT TO THE INPUT-OUTPUT SEQUENCE

Thus far, we have discussed the memory span of an automaton with only the input

sequences known. This will be called the memory span with respect to the input. We

now want to investigate the memory span with both the input sequence and its corre-

sponding output sequence available. For an automaton A = {, Z, S, M, N}, we define a

function R that is such that for all s S, and for all (r, z) E X Z

M(s, r) if N(s, ar) z
R(s, (, z)) =

undefined if N(s, o) a z.

Since the flow table of the automaton explicitly exhibits the functional relations of M

and N, we can generate a table of the function R from the flow table, as illustrated in

Fig. 26, in which the bar entries are undefined. We then can consider the table of the

function R as the flow table of an automaton A r = { X Z, S, R}. The input symbols to

Ar are ordered pairs (, z); some of the transitions of A r are impossible, and the output

0 1 5S

s 3 ,0 s 2 10 sI

s3 , 1 s5 , 1 S2

s5 , 1 S4 , 0 s3

s1'0 S4 , 0 s4

s 3 ' 0 s2' 1 s5

0,0 0,1 1,0 1,1

s3 - s2

- S3 - s5

"5 54

S -s 5s4

S3 - s2

A Ar

Figure 26

27

S1

S2

s3

s4

s5

symbols are not of interest. If we want to form the product automata of Ar , we shall

write a state like (S i ,-, Sjj-,-) as (s i , sj) by simply omitting all bar entries, and shall

disregard a state with all undefined entries like (-,-, -, -,-).

An input-output sequence w is a sequence of ordered pairs (-, z) E X Z. The length

of an input-output sequence is the number of ordered pairs in the sequence. Thus we

can extend the definition of R as follows

rR(R (S (a-, Z)), W) if R(s, (r, z)) is defined
R(s, (, z)w) =w)

[undefined if R(s, (-, z)) is undefined.

DEFINITION 13: R(si w1) and R(sj, w2) are compatible and will be denoted by

R(s i W1) * R(sj, w2), if (a) both R(si , w1) and R(sj, w2) are defined and have the same

final state, or (b) either one or both of R(s i , w1) and R(sj, w2) are undefined.

It follows that R(s i , w1) and R(sj, w2) are incompatible if both R(s i, wl) and R(sj, w2)

are defined and are different.

DEFINITION 14: An automaton A = {, Z, S, M, N} has a finite memory span m with

respect to the input-output sequence if and only if (a) R(si , w) * R(sj, w) for all s i , s in

S and for any w with L(w) m + 1, and (b) there exist si, sj E S, and w with L(w) = m

which are such that R(s i , w) and R(sj, w) are incompatible.

DEFINITION 15: An automaton A = {, Z, S, M, N} has an infinite memory span with

respect to the input-output sequence if and only if for any given integer N there exist

s i , Sj E S and w with L(w) a N which are such that R(si, w) and R(sj, w) are incompat-

ible.

a. Test for the Memory Span with Respect to the Input-Output Sequence

DEFINITION 16: Two states si and s. have a unique final state with respect to the

input-output sequence if R(s i , w) * R(sj, w) for any input-output sequence w with L(w) a

K, where K is a specific constant for the automaton.

From Definition 16, it follows that two states s and s will not have a unique final

state with respect to the input-output sequence if, for any integer N, there exists an

input-output sequence w, with L(w) > N, which is such that R(s i , w) and R(sj, w) are

incompatible .

THEOREM 10: An automaton will have a finite memory span with respect to the

input-output sequence if and only if every pair of its internal states has a unique final

state with respect to the input-output sequence.

PROOF 10: First, we prove the necessity. Suppose that there are two states si

and s that do not have a unique final state with respect to the input-output sequence.

That is, there exists (, z) E Z X Zthat is such that R(s i , (, z)) and R(sj, (a-, z)) are

defined and do not have a unique final state with respect to the input-output sequence.

By repeating this argument on R(s i , (r, z)) and R(sj, (a-, z)), and so on, it can be shown

that for any given integer N there exists w with L(w) > N that is such that R(si, w) and

R(sj, w) are incompatible. The automaton will then have an infinite memory span with

28

respect to the input-output sequence.

Second, we prove the sufficiency. We claim that if two states si and s have a unique

final state with respect to the input-output sequence, then R(s i , w) * R(sj, w) for any w

with L(w) > n(n-1)/2. This fact can be seen by forming A(2}. If the automaton starts

from {s i , sj} and terminates at any compound state after n(n-1)/2 steps of transition,

then there must be a loop around a certain compound state, since AW2 } consists of only
r

n(n-1)/2 compound states. This is a contradiction to the assumption that s and s. have

a unique final state. Therefore, for any w with L(w) > n(n-1)/2, each of R(s i , w),

R(s 2 , w), ... , R(s n, w) will either be undefined or equal to the same final state. Q. E. D.

COROLLARY 1: If an automaton has a finite memory span m with respect to the

input-output sequence, then m [n(n-l)/2] - 1.

From Theorem 10, we can test whether or not an automaton has a finite memory

span with respect to the input-output sequence by checking whether or not all pairs of

states have a unique final state with respect to the input-output sequence. Notice that

the compatibility relation of the function R is not transitive. That is, if R(si,w)* R(sj,w)

and R(sj, w) * R(s k, w), it is not necessary that R(s i , w) * R(sk, w) because R(sj, w) may

be undefined. A systematic procedure to carry out this test is illustrated in Fig. 27.

First, we generate the table of the function R, and then form a "checking table" like

that shown in Fig. 28a. A cross is entered if a state s i (in the row) and a state s (in

the column) have a unique final state with respect to the input-output sequence. The

diagonal entries will be crossed off at the beginning, as shown in Fig. 28a, because R(s i ,

(er, z)) * R(s i , (, z)) for all (, z) E X Z. We then go through all pairs of states and

examine them one by one. For example, we start with s, s . Because R(s 1 , (0, 0)) =

s4 and R(s 2, (0, 0)) = s 1 and 4 and sl still have not been shown to have a unique final

state with respect to the input-output sequence (no cross mark in the sl, S4 entry), s 1

and s 2 might not have a unique final state with respect to the input-output sequence.

0,0 0,1 1,0 1,1 S

s4 -3 S1

S1 - S5 -s 2

- 3 5 - 53

- 3 - s 3 54

s2 5- s 2 S5

0 1

s4, 0 s31 1

s1'0 55'0

53, s 5 , 0

s3, 1 s3, 1

s2, 0 S2 , 1

Ar A

Figure 27

29

I

S2

s3

s4

s5

sI

s2

s3

s4

s 1

S2

s3

s4

X

X

X

X

X

X

x

sI

52

X

X

x

53

X. s4

XX
I s5

s1 S2 s3 s 5 SI 2 S3 4s 5 SI S2s3 s 4 S5

(a) (b) (c)

Figure 28

Examination of the pair s and s 3 shows that the entry corresponding to s l , s3 in the

table should be crossed off. So should the entries corresponding to sl, s4; s 2, s 3 ; s 2,

s4 After the first pass, we have the entries shown in Fig. 28b. We then start to

test again those pairs whose corresponding entries in the table are still unchecked. The

pair s and s 2 now should be checked off as having a unique final state with respect to

the input-output sequence because s l , S4 has been checked already. So should the pairs

s l , s 5 and s 2 , s 5 . We finally have the table in Fig. 28c. Since all entries in the checking

table are checked, we know that the automaton has a finite memory span with respect

to the input-output sequence; otherwise, the automaton would have an infinite memory

span with respect to the input-output sequence.

b. Bounds on the Memory Span

Corollary 1 places an upper bound on the values of the memory span with respect

to the input-output sequence. Theorem 11 provides a lower bound.

THEOREM 11: If a strongly connected automaton consisting of n states has a finite

memory span m with respect to the input-output sequence, then (a) m + l _ n, where a

is the number of input symbols and is the number of output symbols.

PROOF 11: Since the automaton has a finite memory span m with respect to the

input-output sequence, for all s in S and any input-output sequence w of length m+l,

R(s, w) would either be undefined or would have the same final state. There are (ap)m+l

different input-output sequences of length m+l. Therefore, at most, (ap) m + l states

could be the possible final state after m+l steps of transition from all n possible initial

states. Suppose that (ap) m + l < n. There must be at least one state, say s k, that is not
m+k

included in these (a) m + final states. Because the automaton is assumed to be

strongly connected, however, there exist an input sequence t of length m+l and an

initial state sj which are such that M(sj, t) = s k. These imply that there exists w

that is such that R(sj, w) = s k, a contradiction to our assumption.

Q. E. D.

30

-

Is5 s5

c. Procedures to Determine the Value of the Memory Span

After an automaton is found to have a finite memory span with respect to the input-

output sequence, the value of the memory span can be found by constructing the tree of

the essential part of A n }. For example, the memory span with respect to the input-

output sequence of the automaton in Fig. 27 can be found to be 2. The tree of the essen-

tial part of A{n} is shown in Fig. 29.r

(0,0)

(0,0)

(0

Figure 29

The memory span can also be found by slightly

(1,1)

(1, 1)

s3

54

55

s1 S2 s3 s4 s5

(a)

0

1 1 0 53

54

'In1
s1 s2 s3 s4 s5

(b)

0

2

1

2

0

1

3

0

2II
sI1 2 s3 s4 s5

(c)

Figure 30

modifying the construction of the checking table. Instead of checking off pairs of states

having a unique final state with a cross, we shall enter the numerals 1, 2 ... to indicate

that they are checked off in the first, second, or subsequent pass. (Zeros indicate

entries checked off by definition.) For example, the checking table in Fig. 28 is recon-

structed and shown in Fig. 30. In Fig. 30a, O's are entered in the diagonal boxes. In

Fig. 30b pairs of states are checked off in the first pass. Figure 30c shows the final

31

s 1

53

S4

s5
r 7 1 1

S1 S1

s2

1 1 1 1 1 1

s5

form of the checking table. Since the highest count is 3 in the table, the memory span

is 3 - 1 = 2. (The memory span always equals the highest count minus one.) Notice

that the box corresponding to s4, s5 is crossed off in the second pass instead of the first

because the pair s4 and s 5 cannot be crossed off until the pair s 2 and s 3 is crossed off.

However, the pair s 2 and s 3 is crossed off in the first pass. A slight reflection on the

basic idea of the construction of the checking table will indicate that this procedure

always works.

d. Extension of the Discussions of the Input to the Input-Output Sequence

As we can realize immediately, complete or partial information about the present

state of an automaton can be obtained from the past input and output sequences. The

discussions on the ambiguity of the present state, the tree of the essential part of A{n },

and a new model for the automaton in the case of the memory span with respect to the

input can be extended to the case of the memory span with respect to the input-output

sequence and will not be repeated here.

3.3 MEMORY SPAN WITH RESPECT TO THE OUTPUT

It seems natural to ask about the memory span of an automaton with respect to its

output sequences. Although some of the ideas developed thus far can be extended, there

are some peculiar differences that must be taken into account. For an automaton A =

{E, Z, S, M, N}, we define a function Q. For all s E S and all z E Z,

(M(s, U.), for all a- that are such that N(s, a-) = z
Q(s, z) =u

lundefined, if there is no ra that is such that N(s, cr) = z.

Q(s, z) may be multivalued because when Q(s, z) is defined there may exist more than

one a- that is such that N(s, a-) = z. Let y = Z1 z2 3 ... denote a sequence of output sym-

bols. The definition of the function Q can be extended to

Q(Q(s, z), y), if Q(s, z) is defined and is single-valued

Q(Q(s, z), y) = {Q(M(s, 1) , y), Q(M(s, 2), y) ... },

Q(s, zy) = if Q(s, z) is defined and is multivalued, i.e.,
Q(s, z) = {M(s, .1) M(s, 2) ...

undefined, if Q(s, z) is undefined.

DEFINITION 17: Q(s i , Y1) and Q(sj, y 2) are compatible and will be denoted by Q(s i,

Y1) * Q(sj, y 2), if (a) both Q(s i , Y1
) and Q(sj, y 2) are single-valued and equal to the same

next state or (b) either Q(si, Y1) or Q(sj, y2) is undefined and the other is single-

valued or (c) both Q(s i , Y1) and Q(sj, y 2) are undefined.

Notice that Q(s i , Y1) * Q(si, Y1) is not necessarily true because Q(s i , Y1) may be multi-

valued, and by Definition 17 all multiple values are automatically incompatible.

32

As an example, for the table of the function Q shown in Fig. 31, we have

Q(s 1 , 1) * Q(S2 , 1)

Q(s 1 , 1) * Q(s 4 , 1)

and the fact that

Q(s1 , 1) and Q(s 3 , 1)i

are incompatible.
Q(sl, 0) and Q(s 2 , 0)J

If the function Q of an automaton is always defined and is single-valued, it can be con-

sidered the function M of some other automaton, and all of our previous discussions

of the memory span with respect to the input can be applied. If the function Q is always

single-valued when defined, it can be considered the function R of some other automaton,

and all of our previous discussions of the memory span with respect to the input-output

sequence can be applied. For an example, see Fig. 32.

In general, the function Q might be multivalued. We shall now study this general

case.

DEFINITION 18: For an output sequence y, a set of states si, sj, s k ... has a unique

intermediate state if Q(s U, Y1) * Q(s v, Y1) for all s and s v in the set and a prefix por-

tion of y, say Y1 (Y=YlY 2).

DEFINITION 19: An automaton A = {E, Z, S, M, N} has a finite memory span m with

respect to the output if and only if (a) for any output sequence whose length is equal to

or larger than m+l, the set of all states sl, s 2 , ... s n has a unique intermediate state,

and (b) there exist a pair of states si and s and an output sequence whose length is equal

to m, for which si and s do not have a unique intermediate state.

The reason that we have to suggest such a definition, which is somewhat different

from that for the memory spans with respect to the input and with respect to the input-

output sequence, is the fact that the function Q might be multivalued. Thus Q(s i , Y1) *

Q(s2 , y 1) does not guarantee that Q(si, y 1 z) * Q(s 2 , ylz). We can say, however, that for

an automaton having a finite memory span m with respect to the output, within m+l steps

of transition corresponding to any output sequence y, there must be at least one time

period during which the automaton is unambiguously in a certain state, regardless of

the possible initial state.

DEFINITION 20: An automaton A = {Z, Z, S, M, N} has an infinite memory span with

respect to the output if and only if for any given integer N, there exist a pair of states

Si and sj and an output sequence whose length is equal to or larger than N, for which

Si and s do not have a unique intermediate state.

a. Test for the Memory Span with Respect to the Output

DEFINITION 21: Two states s i and s have a unique next state with respect to

the output if for all z E Z (a) Q(s i, z) * Q(sj, z), or (b) both Q(s i , z) and Q(sj, z) are

33

S 0 1

s1 s3 ' 1 s5 , 0

S2 s 1 ,0 s4 0

s3 s3 ' 1 52, 1

s4 s3 , 1 s3, 1

s5 s2' 1 5s3 1

st 0 1

1 s5 s3

s 2 Sl1,S4 -

S3 - "3

s4 - s3

s5 - 52 s3

A
Aq

Figure 31

sX l 0 1

51 s 1 0 52' 1

52 53 , 1 54, 0

s3 54, 0 s 3, 1

s4 52' 1 51,0

A

z
SX l 0 1

s2 54 53

s3 54 53

s4 S1 s2

A
q

(a)

0 1

s53'0 3 , 0

S4 , 1 s1 ,0

S3 , 1 s2' 0

s4, 1 s4, 1

A

z
Sg l 0 1

s1 s3 -

S2 s 1 s4

s3 S2 s3

s4 - s4

A
q

(b)

Figure 32

34

S2

51

s3

s4

single-valued and have a unique next state with respect to the output, or (c) when either

or both of Q(s i , z) and Q(sj, z) are multivalued, any pair of the possible next states will

have a unique next state with respect to the output. (For example, if Q(s i , z) = s k , s m

and Q(sj, z) is undefined, then sk and s m should have a unique next state with respect

to the output. If Q(s i ,) = sk sm' Q(sj, z) = Sp, q, then any pair of s k sm; sk' sp;

Sk , Sq Sp; m Sqp; s p, sq should have a unique next state with respect to the out-

put .)

DEFINITION 22: A state si has a unique next state with respect to the output, if, for

all z E Z, (a) Q(s i , z) is undefined or is single-valued, or (b) when Q(s i , z) is defined

and is multivalued, any pair of the possible next states will have a unique next state with

respect to the output.

Our test is based on a theorem that, in turn, is based on the following lemmas.

LEMMA 4: For a set of states s i , sj, k, sm ... and for an output sequence y, if

all pairs of states in this set have a unique intermediate state, that is, if Q(s i , yl)*Q(sj, y1),

Q(si) *Q('Y) ... Q(sk, Y) Q(sjk'Y3) ... , where = Y = Y2Y' =Y Y' =

then Q(su, Yx) * Q(sv, Yx) for all sU and sv in the set, where Yx is the longest sequence

among y l , Y2 ' Y3 ...

PROOF OF LEMMA 4: Suppose that the pair sk and s m corresponds to the sequence

Yx that is such that Q(s k , yx) * Q(s m , Yx) . If both Q(s k Yx) and Q(sm, Yx) are undefined,

we can pick the pair s' and sm corresponding to the next longest sequence y' and use the
k tm

argument that follows. Assume that at least one of Q(s k , yx) and Q(sm, yx) is defined

and is equal to sw. For any state s i , we have Q(s i , y a
) * Q(s k ' Ya) and Q(s i, Yb

) *

Q(sm, Yb), where Ya and Yb are prefix portions of y. Either one or both of Q(sk, Ya)

and Q(s m, Yb) must be defined; otherwise, Q(s k Yx) and Q(sm, yx) will be undefined.

Assume that Q(sk ya) = s u . (The case that Q(s k ya) is undefined while Q(s m, Yb) is

defined or the case that both Q(s k Ya) and Q(sm, Yb) are defined can be proved in a simi-

lar manner.) If Q(s i , Ya) is undefined, we immediately have Q(s i , yx) * Q(s k, yx) and

Q(si, yx) * Q(sm, Yx) because Ya is a prefix portion of Yx. If Q(s i . Ya) = , and since

,) su, Ya) =Q(smy x
) = s. There-

we can write yx = aY', then) Q(Q(sk , yx) = Q(Q(sk , aYa There-

fore Q(si , yx) is either undefined or equal to s w , and we have Q(s i , yx) * Q(s k , yx) and

Q(si. Yx) * Q(sm, Yx). Similar argument can be applied to all states in the set. Q. E.D.

LEMMA 5: In an automaton consisting of n states, if any pair of states has a unique

next state with respect to the output, then the set of all n states will have a unique inter-

mediate state for any output sequence of a length that is equal to or larger than n(n-1)/2.

PROOF OF LEMMA 5: By Lemma 4, we have only to prove that any pair of states

s. and s. will have a unique intermediate state for any output sequence of a length that

is equal to or larger than n(n-l)/2. Let {Q(s i , z) UQ(sj, z)} denote the set of all possible

values of Q(si, z) and Q(s., z). By the definition of two states having a unique next state,

we see that if {Q(si , z) UQ(sj, z)} consists of only one state, the lemma holds. If, how-

ever, {Q(s i , z) UQ(sj, z)} consists of two or more states, say s u, s v, sWI s x ... we can

group su, sv, s w , Sx ... into all possible pairs, say {su , S{s u , s w } . . .{ s v , s w }

35

S

S2

53

s4

s5

S6

zS0 1

s2 0

s4 , 0

s6 0 1

s6 , 1

s2 0

s1i 1

s3 0

s5, 1

s4 , 0

S6 1

s 2 i O

s1' 1

S1

S2

s3

s4

s5

S6

A

S1

s2

x ~ ~ s3

Ix s4f l] - I S5
I I f x s6

x

s1 S2 s3 s4 s5 s6

(a)

XX X

XX
X iX

S1

s 2

s3

s4

s5

s6

0 1

s2' s3

s4

s4

Figure 33

Aq

x

x

x

x

s1

S2
x s3

X X X
4

x s5

. D D~~~S

s1 S2 s3 s4 s5 s6

(b) (c)

x

x

x

x

x

X

x

x

x

X
X

X

X X

Z IX X
LLIu

sI1 2 s3 s4 s5 s6

(d)

Figure 34

Figure 35

36

S1

S2

s3

s4

s5

56

- z-
I

- --

-

s5

s6

s6

s2

s 1

sI s2 S3 S4 5

I

These pairs of states must also have a unique next state, and we can repeat the above-

given argument to examine the value of {Q(s u , z) UQ(s v , z), {Q(su , z) UQ(sw , z)} ... {Q(SV ,

z) UQ(s w , z)}.... Since there are n(n-1)/2 pairs of states, s i and S. should terminate

at a unique intermediate state after, at most, n(n-l)/2 steps of transition. Otherwise,

s and s will not have a unique next state with respect to the output, in contradiction
1 j

to the assumption. Q.E.D.

THEOREM 12: An automaton will have a finite memory span with respect to the out-

put if and only if all pairs of states have a unique next state with respect to the output.

PROOF 12: Theorem 12 follows immediately from Lemmas 4 and 5.

COROLLARY 2: If an automaton has a finite memory span m with respect to the

output, m 4 [n(n-1)/2] - 1.

From Theorem 12, we have a means for checking the memory span of an automaton

with respect to the output. The procedure is very similar to the one employed to check

the memoryspan with respect to the input-output sequence. As an example, the test

procedure, applied to the automaton shown in Fig. 33, is shown in Fig. 34. From the

functions M and N of A we form the table of the function Q. We check each individual

state to see whether or not it has a unique next state. States s 2 , S 3, S4 , S5 , s6 do, and

we do not know whether s1 does or not at this moment because Q(s1 , 0) = s 2 , s 3, as

shown in Fig. 34a. Then we check all pairs of states to determine whether or not they

have a unique next state. We have the table shown in Fig. 34b after the first pass and

that of Fig. 34c after the second pass. Because the pair s 2 and s3 has been checked, s

now can be checked as having a unique next state with respect to the output. The pairs

(s, 2) , (, S3) ... (1 s 6) can then be checked as shown in Fig. 34d. Another pass

will fill up all of the entries in the checking table, and we know that the automaton has a

finite memory span with respect to the output.

We can form the tree of the essential part of A{n}, as shown in Fig. 35. We see that
q

the automaton has a finite memory span 3 with respect to the output. Notice that, in

forming the tree, we stop at any branch if a set

containing a single state is encountered along that
s 1 3 branch. Also, notice that our definition of finite

s2 3 0 memory span with respect to the output (Defini-
tion 18) guarantees that there is a unique inter-

s3 3 2 0 mediate state for any output sequence of length 4,

s4 3 2 1 0 but not necessarily a unique final state. For
example, an output sequence 0110 will not give a

55 3 3 3 1 0 unique final state (both s 2 and s are possible).
2 3

56 3 4 4 4 1 0 The value of the memory span with respect to
the output can also be found by entering numerals

s1 s2 s3 S4 S5 s6 instead of crosses in the checking table. This

procedure is identical with that shown for finding

Figure 36 the value of the memory span with respect to the

37

input-output sequence. (See Fig. 30.) The checking table of the automaton in Fig. 33,

which has a memory span of 3 with respect to the output, is shown in Fig. 36.

3.4 EXTENSION TO INPUT AND OUTPUT SEQUENCES OF UNEQUAL LENGTH

We shall investigate the determination of the present state of an automaton with p

of the past input symbols and q of the past output symbols known, for p * q (for p = q,

see the memory span with respect to the input-output sequence). We find that for a given

automaton, p and q do not have fixed values. The techniques developed thus far can be

employed to find the possible p-q values.

We use the automaton of Fig. 37 as an example and form the checking table for Ar

as shown in Fig. 38a. To find the possible p-q values with p larger than q, we form

the tree of the essential part of A{n}, as shown in Fig. 38b. For p = q, we examine the

set of states at level n-l in the tree of the essential part of A{n}. The value of q will

be equal to the largest number in the checking table which corresponds to pairs of states

that are in this set. In Fig. 38, q = 4 because of the pair s and s 2 . (We can consider

any unchecked box in the checking table as having an entry that is equal to infinity.) For

p = q + 1, we examine all sets of states at level n-2. Because of the pair of states sl

and s4 in the subset {s 1, S3, S4}, q = 3, that is, the present state of the automaton can be

determined uniquely when four of the latest input symbols and three of the latest output

symbols are known. For p = q + 2, we examine all of the sets of states at level n-3. It

turns out that q = 2. Because the subset {(3, 4} will occur in all subsequent levels of

the tree, the value of q will be 2 at all subsequent levels of 'the tree.

To find the possible q-p values with q larger than p, we shall go through the same

procedure as above, except that we shall form the tree of the essential part of

A{n}. The tree is shown in Fig. 39. For q = p, p = 3. For q = p + 1, p = 3 because
q

of the subset s1s 2, s 3}. For q = p + 2, p = 2 because of the subsets {s2, S3} and {sl, s 3 }.

In general, we shall never extend the tree of the essential part of A{n} or of Afn}q

X Z

0 1 S5

s2 ,0 s4 1 51

s3 , 1 S1'1 52

s2' 0 s3 0 s3

53' 0 s3 ' 1 54

0,0 0,1 1,0 1,1 S

2 - - s4 51

- S3 - 52

s2 - s3 - s3

s3 - - s3 s4

A Ar Aq

Figure 37

38

S1

52

s3

s4

0 1

s2 s4

s253 3

s3 s3

_Q

ca

0L)
fh

o*_q

0I

CD -

C

CN

c0

cO

C,-

vl

C14cu

39

C

- CN CO
v) t , U "I

|- I

beyond n(n-1)/2 levels, where n is the number of states of the automaton. Because a

branch of length n(n-1)/2 will certainly include all possible pairs of states in the n(n-1)/2

subsets of states along that branch, further extension of that branch will never decrease

the value of q (for p > q) or p (for q > p).

a. Relation between the Value of p - q and q (or q - p and p)

We want to show that the value of q is nonincreasing as we increase the value of p - q

by extending the branches of the tree of the essential part of A{n} for p > q. The same

result is true for q > p, where p is nonincreasing for increasing value of q - p. We

prove this by induction. Figure 40 shows the top levels of the tree of the essential part

of A{ n } . S is the set of all of the states of the automaton. {a}, {b}, {c}, {d}, {e}, and

{f} are subsets of states. Of course, {a} and {b} are subsets of {S}. Since M{n}({S}, 0) =

{a},and M{n}({a}, 0) = {c}, and since {a} is a subset of {S}, {c} is a subset of {a}. Similarly

{d} is a subset of {b}, {e} is a subset of {a} and {f} is a subset of {b}. For levels n-k,

n - k - 1, and n - k - 2 as shown in Fig. 41, suppose that every subset of states in level

LEVEL n-

LEVEL n- 2 Figure 40

LEVEL n- 3

LEVEL n- k

LEVEL n - k- 1

LEVEL n-k-2

Figure 41

40

1O

n - k - 1 is a subset of some subset of states in level n-k. For any subset of states in

level n - k - 2, say {z}, M{n}({t, 1) = {z}. By assumption, {t} is a subset of a subset of

states in level n-k, say {m). Since M{n}({m}, 1) = {v}, then {z} is a subset of {v}. The

result is the fact that all subsets of states in level n - k - 2 of the tree of the essential

part of A{n} are subsets of subsets of states in level n - k - 1. This immediately leads

to the conclusion that the value of q corresponding to subsets of states in level n - k - 2

will not be larger than that corresponding to subsets of states in level n - k - 1.

41

IV. SYNCHRONIZATION OF AUTOMATA

4.1 INTRODUCTION

In an automaton A = {, S, M}, a set of states s i , sj, s k ... is said to be synchro-

nizable with a state su if there exists an input sequence t of finite length which is such

that M(s i ,t) = M(sj, t) = M(s k t) = . .. = s u . The input sequence t is called the synchro-

nizing sequence that synchronizes this set of states with su or, briefly, the synchro-

nizing sequence with s u. More generally, a set of states s i , sj, sk ... is said to be

synchronizable if there exists an input sequence t of finite length which is such that

M(s i ,t) = M(sj,t) = M(s k, t) = The input sequence t is called the synchronizing

sequence that synchronizes this set of states or, briefly, the synchronizing sequence.

THEOREM 13: In a strongly connected automaton, a set of synchronizable states

is synchronizable with any specific state s u -

PROOF 13: Let s i , sj, s k ... be the set of states which is synchronizable by the

input sequence t. It follows that M(s i ,t) = M(sj,t) = M(sk ,t) = ... = sv, where s is

some state of the automaton. Since the automaton is strongly connected, there exists

an input sequence t' that is such that M(sv, t') = su. Input sequence tt' is, then, the

synchronizing sequence that synchronizes this set of states with s . Q. E. D.

Furthermore, we say that an automaton is synchronizable (with a state su) if the set

of all states is synchronizable (with s). We have the following theorem.

THEOREM 14: An automaton cannot be synchronized with a transient state.

PROOF 14: No input sequence will lead a persistent state to a transient state. By

Theorem 9, however, any automaton has at least one persistent state. Q. E. D.

4.2 RELATION TO THE AP OR A P} AUTOMATON

To investigate the synchronizability of a set of p states in an automaton A, we investi-

gate the AP or the A{P} automaton. It is rather obvious that a set of p states s i , sj, sk

... is synchronizable with a state sU if and only if in AP there exists an input sequence

t that is such that MP((si , Sk. ..),t) = (Su, u, Su. . .), or in A{ } , M{P}({si, s', sk. . .}, t) =

{su}. Thus we have a way to check the synchronizability of a set of states and to find
the corresponding synchronizing sequence. As an example, for the automaton shown in

Fig. 42, 010 is a synchronizing sequence that will synchronize s and s 3 with s 2 ; but

there is no synchronizing sequence that will synchronize s 1 and s 3 with s or with s 3.

We have the following procedure to check systematically the synchronizability of a

set of p states and, at the same time, to find the shortest possible synchronizing

sequence:

(a) Form the flow table of the automaton A } .

(b) Put the state {s i , Sj... } corresponding to the set of states to be synchronized at

the top of a tree. Cross off all appearances of the state {s i , sj...} in the flow table.

(c) Extend the tree by listing all of the states that still have not been crossed off in

42

Sx

S2

s2

s 3

I

s 1

s2

s3

0 1

s1 s3

S2 S1

s2 s2

0
0 1

s1 S3

S2 s 2

S2 S1

0,1
0

Figure 42

2

{s1}

{s2]

{ s3}

{sI s3

{s2 , s3}

0

{sl }

{ s2]

{ s2}

IS ' 2}

{ S2 }

{ S1

0
{ s3 }

{5s2 }

{S1' S2}

{ s2}

J1

IS3}A

Figure 43

the flow table and that can be reached from states already in the tree through one step

of transition. Then cross off all appearances of these states in the flow table.

(d) Repeat step (c), either until a specific simple state {su} (or any simple state

{Sv} in the case of synchronizing a set of states) is reached or until no further repetition

is possible (that is, until all of the states have been crossed off which can be reached

from states already in the tree through one step of transition).

Figure 43 illustrates this test procedure. In order to check the synchronizability

of s and s 3 , we form the flow table of A{2} and grow a tree, starting from {sl, S3}

All appearances of {s, 1'3} in the flow table are crossed off first (single underline in

Fig. 43). Since one step of transition from {sI',3} will lead to {sls2} and {s2, s3},
their appearances in the flow table are crossed off accordingly (double underline in

Fig. 43). Repeating the procedure, we have the tree shown in Fig. 43. Notice the ter-

mination of the left branch at {s1 , s2} because all states that can be reached through

one step of transition from {sl, s2 have been crossed off in the flow table. Therefore,

the shortest synchronizing sequence that synchronizes s and s 3 in Fig. 43 is 10, while

43

1

{S1 ,

A{ 2}

the shortest synchronizing sequence that synchronizes s and s3 with s 3 is 1011.

4.3 A SIMPLER WAY TO CHECK THE SYNCHRONIZABILITY OF

AN AUTOMATON

Although the synchronizability of sets of states can always be checked by the method

described above, the fact that the number of states in A P} increases very rapidly with

increasing number of states in A makes the procedure laborious when A contains a

large number of states. The following theorem leads to a simpler procedure to check

the synchronizability of an automaton.

THEOREM 15: An automaton is synchronizable if and only if every pair of its states

is synchronizable.

PROOF 15: First, we prove the necessity. Suppose that there is a pair of states

Si and sj that are not synchronizable, that is, for every input sequence t, M(si,t)

M(sj,t). Obviously, this is a contradiction to the fact that there is an input sequence t'

that is such that M(sl,t') = M(s 2 ,t') = ... M(si, t') = . . . M(sj,t') = ... M(su,t').

Second, we prove the sufficiency. By assumption,

3tl: M(Slt l) = M(s2'tl)

3t 2: M(M(s 1 ,t l)t 2) = M(M(s3 , t 1),t 2)

M(Slt l t 2) = M(sZ2 , t l t2) = M(s 3 ,tlt2)

3t 3: M(M(sl,t1 t 2),t 3) = M(M(s 4 ,t l t 2),t 3)

M(s 1,t 1 t 2 t3) = M(s 2 tl1t 2 t 3) = M(s3 ,t 1t 2 t 3) = M(s 4 ,t t 2 t 3)

3tn-l: M(M(s 1, tt 2t 3 .tn_ 2), tn_l) = M(M(sn, tt 2t 3 . .t 2), tn 1)

M(s' tlt2t 3 .t tnt l) = M(S 2 tt 2t 3. 't 2 t 1) -

M(sn, tlt 2t3 . tn-2tn-) Q. E. D.

COROLLARY 3: A sufficient condition for a set of p states in an automaton to be

synchronizable is that every pair of states of the automaton is synchronizable.

On the basis of Theorem 15, we can employ the following procedures to check the

synchronizability of an automaton.

(a) Form the flow table of the A{2} automaton.

(b) List all simple states and cross them off in the column S(2} of the flow table.

(c) Add to the list all compound states that have not yet been crossed off in the flow

table and can reach some of the states in the list in one step of transition, and cross off

these compound states.

44

0

{s3 } Is 2 }

1541 151I

S551 1531{S6} {S1 }{s5 } {s3 }
{s6 } {s4 }

{s3 , s4 } {s, s2}

15 s 3 ,s 5 } 1{s 2 }

{S3, s6 } {Sl 'S2}

{s3 , s 5} { s2 , s 3}

{s3, s6} {s2 , s4}

S4 , S5} {S1 s, s2}

{s4 , s6 } S1 }

{s4 , s5} {Sl, s3}

{s4 , s6 } {s1 s4 }

{S5 , s6 } {Sl s 2 }

{s5 } {s2, s 3

{s5 , s 6 { 2 , s 4 }

{s5 , s6} {Sls3}

{s6 } {Sl,s 4 }

{i 5, S6 } {S3 s 4 }

Figure 44

{s,1} { 2 } {s3} [S 4 } {s5} {s6 }

{S1 , S3 1} {2' s 4 } {53 , s5 } {S4 6 }

{ 2 , s5 } {54 ,' s5 } {1 sS 6 } s53 S6 }

{sI ,5} {S2 , s 6 }

Is2, 53 s51 5s4

(d) Repeat step (c) until no further repetition is possible. If all of the states of A{2}
are crossed off, A is synchronizable; otherwise, not.

Figure 44 illustrates this test procedure. States in the first row of the list

are underlined once in the column S{2} those in the second row of the list are

underlined twice. The list terminates before all states in A{2 } are crossed off,

45

S\

S1

S2

s3

s4

s5

s6

0 1

s3 s2

s4 s1

s5 s 2

s6 S1

S5 s3

S6 s4

A

st2}

s }11

5{s3

{ s4 }

51152

S S2 }

s 1's5}
S 151,561

s2, s3 }

s 2,' s4 }

{s2, s 5 }

{ s2, s6

153, s4 }

{s3, 5153,551

s3 , s6}

s4 , s 5}

{ S4 , s6 }

[5 , s6 }

1.

I

and the automaton A is thus not synchronizable.

4.4 ABSOLUTELY SYNCHRONIZABLE AUTOMATA

In an automaton A = {,S M}, a set of states si, sj, s k ... is said to be absolutely

synchronizable with state su if, for any input sequence t whose length is equal to or

larger than a constant m, M(s i , t) = M(sj, t) = M(sk , t) = .. = s. The set is said to be

absolutely synchronizable if M(si , t) = M(sj, t) = M(sk, t) = Similarly, an automaton

is said to be absolutely synchronizable (with a state s u) if the set of all states is abso-

lutely synchronizable (with su). Obviously, an automaton having a finite memory span

with respect to the input is absolutely synchronizable and vice versa.

4.5 BOUNDS ON THE LENGTH OF THE SYNCHRONIZING SEQUENCE

THEOREM 16: If a set of p states s i , sj, s k ... in an automaton A is synchro-

nizable with a state s u , an upper bound on the length of the shortest synchronizing

p
sequence with s is Cn - 1, where n is the total number of states in A.

nPROOF 16: The automaton A P} consists of C. states. If there exists an input
·=I J

sequence t that is such that M{P}({si, j, sk... }, t) {su}, then there exists an input

sequence L(t') -< Z C- 1 that is such that M{P}({si sj, sk...}t') =s. u}. E.D.
j=l .

COROLLARY 4: If a set of p states si' , s k ... in an automaton A is synchro-

nizable, the upper bound on the length of the shortest synchronizing sequence is

P C.
j=2 J

PROOF OF COROLLARY 4: There are n simple states in A P } . If we consider

these n states to be combined as a single state, the resulting automaton will have
P p n
Z C. -n+ 1 = C. + 1 states. Any sequence that leads {s i , S j , S k . . . } to this com-

j=l J j=2
bined state is a synchronizing sequence. Q. E. D.

Better bounds on the length of the synchronizing sequence can be obtained for some

special automata.

THEOREM 17: In a synchronizable automaton, an upper bound on the length of the

shortest synchronizing sequence that synchronizes any set of p states is (p-l) C 2.

PROOF 17: Let s, s 2... sp be the set of states to be synchronized. By the argument

of necessity in Proof 15, every pair of states in this set is synchronizable. We then have

3tl: L(tl) < C2 M(s ,t1) = M(s 2 tl)

3t: L(tz) C2 M(s t l t) = M(S 2 ,t lt 2) = M(s3 ,t l t2)

3t: L(t-1) C2n M(s ltlt Z .tp-l) = M(s2,tltz.t) = ... = M(sp, tlt . tp-l).~~~~~''p- p- 1 . .

46

4

Here, L(tt 2 .. .tp_) • (p-l) Cn, and tlt 2 ... tp 1 is certainly a synchronizing sequence.
L'tl), L(t2 . a ... P- 1

Lt Lt . . . L(tp_) are all less than or equal to C 2 , since there are n(n-1)/Z = C 2

compound states in the automaton A{Z} and the length of the shortest input sequence that

will synchronize a compound state should be less than or equal to C 2. Q. E. D.

We want to prove the following lemmas.

LEMMA 6: If s is a persistent state and there exists an input sequence t that is

such that M(s x , t) = Sy, then there exists an input sequence t' that is such that M(sy, t')=

sx yX
PROOF OF LEMMA 6: Write t = 1a- 2 3 ... p qa-r By the definition of a per-

sistent state (Definition 12), M(s x, l 1), M(s x, a 1 2), .. . M(sx , 1 -2 a'3 . a'paq), M(sxP

a1a'2a3 ... apaqqr) are all persistent states. Moreover, there exists an input sequence

t 1 that is such that M(M(M(s x, 1 2-a3 ... paq -), M(s x, 2 3 . p q). That is,

3tl: M(syt l) = M(sx ' Pl 23 . . . ap q)

Similarly,

3 t2 M(M(M(s x, 1a-Ir2 3.. .p)' ,q),t 2) = M(sx,c10-2 0%. . .ap)

3trl: M(M(M(sx, a1)I 2),trl) = M(sx, a1)

3tr: M(M(s x, Il),tr) s x .

Therefore, M(s tlt2 ... tr-1) = s x. Q. E. D.

DEFINITION 23: Two states s x , sy are connected if there exist input sequences t,t 2

that are such that M(sx,tI) = sy and M(sy t 2) = s x .

LEMMA 7: If two persistent states sX and sy are synchronizable, they are con-

nected.

PROOF OF LEMMA 7:

CASE I: There exists an input sequence t that is such that M(sx, t) = M(sy t) = s

(or s y). By Lemma 6, there exists an input sequence t' that is such that M(sx, t') = sy

(or M(syt') = sx).

CASE II: There exists an input sequence t that is such that M(s x , t) = M(sy, t) = s z

By Lemma 6 there exist t' that is such that M(sz,t') = s x, and t" that is such that

M(sz,t") = sy Therefore M(sx,tt") = s and M(sy, tt') = s . Q.E.D.

We now have the following theorem:

THEOREM 18: In a synchronizable automaton, if a set of p states s i , sj, sk ...

is synchronizable with a persistent state s u, an upper bound on the length of the shortest

synchronizing sequence that synchronizes this set of states with sU is (p-1) C 2 + (n-1).
n

PROOF 18: By Theorem 16, there exists an input sequence t with L(t) - (p-1) C2

that will synchronize the set of states s i , j, s k ... with an arbitrary state s v . su and

Sv are synchronizable because the automaton A is synchronizable. If s v is a persistent

47

state, by Lemma 7, s and s are connected. There exists an input sequence t' that

is such that M(sv, t') = s u . tt' will then be the synchronizing sequence that synchro-

nizes s i , sj, sk ... with s u. If s v is a transient state, there exists an input sequence

t" that is such that M(s v ,t") = Sy' where sy is a persistent state. However, s and su

are connected; thus there exists an input sequence t" that is such that M(sy, t"') = s .

That is, M(sv , t"t"') = s u , and tt"t"' is then the synchronizing sequence. Since both

L(t') and L(t"t'") are less than or equal to n-i, we have proved the theorem. Q. E. D.

We finally can establish the bounds for absolutely synchronizable automata.

THEOREM 19: In an absolutely synchronizable automaton, an upper bound on the

length of the shortest synchronizing sequence is n-1.

PROOF 19: This bound is obvious because an absolutely synchronizable automaton

has a finite memory span. Q. E. D.

THEOREM 20: In an absolutely synchronizable automaton, an upper bound on the

length of the shortest synchronizing sequence with a specific state su is n-1.

PROOF 20: By Theorem 14, we know that s must be a persistent state. By the

definition of a persistent state (Definition 12), we know that there exists an input sequence

t' with L(t') < n - 1 that is such that M(M(s u , cr),t') = s . Because the automaton has a

finite memory span, t' is a synchronizing sequence that synchronizes the automaton with

s . E.D.
u

4.6 COMBINED AUTOMATA

We shall introduce here some ideas that should help to reduce the labor in checking

the synchronizability of sets of states in an automaton and may give a better bound on

the length of the shortest synchronizing sequence. In Section III we defined a series of

combined automata A ' Ac2 , Ac3 ... for an automaton A, where Al is derived from

A by combining all structurally indistinguishable states in A, and AcZ is derived from

ACl by combining all structurally indistinguishable states in AC, and so forth. We

called Acx the exhaustively combined automaton of A, if A is the last member of
cx cx

the series Acl, Ac2 , Ac3 ... so that there will be no more combinable sets of indis-

tinguishable states. In other words, for any pair of states s i and sj in Acx, there

exists an input symbol that is such that Mcx(S i, r) • Mcx(Sj , a-). Notice that in the

series of automata A, Acl, Ac2 , Ac3 ... ACx every automaton is a homomorphic

image of each of the previous automata. In particular, A is an homomorphic image

of A. Let cx denote the mapping that maps the states in S of A into the states in Sx
-1

of Acx. From the previously adopted notations, for a state s in Scx of Acx, (sj)

denotes the set of states in A which are mapped into sj by cx. We then have the fol-

lowing theorem:

THEOREM 21: For any state s in Acx, the set of states cxl(s) in A is absolutely

synchronizable by any input sequence of a length equal to or larger than a constant x.

Moreover, x n - 1, where n is the number of states in A.

PROOF 21: Recalling the series of partitions Po, P ' '' defined in Section III, we

48

see that c (sj) is a set of states in the same block in the partition Px. After x steps

of transition, all states of this set will enter the same state, that is, they are abso-

lutely synchronizable by input sequences of length x. It was shown in Section III that

x < n - 1; thus the proof of the theorem is completed. Q. E. D.

THEOREM 22: If a set of states s i , s, Sk. .. } in Acx is synchronizable, then the

set of states {cl(s),cl(sj),cxl(k)...} in A is synchronizable.

PROOF 22: By assumption, there exists an input sequence t that is such that

Mcx(Si ', t)= Mcx(Sj , (Sk't) - = S,- Let Cx (si) = Sil, Si2 cx(sj) = S jl,M (s., t) = M (s.,t) M (s = .. . = s . Let c I(s) 1(s.) = scx 1 x cx k . u x 1 il Sk, Sx ji.
sj2 ... , Cx (Sk)= ski s .. Because c is an automaton homomorphism, cx(M(silt)) =

Mcx(cx(sil),t) = Mcx(Si t) = , or M(il.t) E X (su). Similarly,

M(si. t) E x (sU)

M(Sjl,t) E CX (Su) M(sj2,t) E cx (s u)

M(Sklt) E cx (Su) M(Skz,t) E cx (Su)

By Theorem 21, there exists an input sequence t' that is such that M(s il,tt') = M(si2 ,tt')=

.. M(sj, tt') = M(sj2, tt') = ... M(sk 1 , tt') = M(sk2, tt') = ... = ulE.D.

COROLLARY 5: If il, jl, kl ... in A are synchronizable, then s i , sj, sk ...

in A are synchronizable.cx
COROLLARY 6: If si and s. in Aex are not synchronizable, then no pair of states

from cx (s) and cx (sj) is synchronizable, and vice versa.

PROOF OF COROLLARY 6: Assume that there is a pair of synchronizable states
-1 -1from c-x (s) and c- (sj). By Corollary 5, s. and s. are synchronizable, a contradic-
x x 1

tion of the conditions of Corollary 6.

Conversely, assume that s and s are synchronizable. By Theorem 22 any pair of

states from c-l (s) and c-1(sj) is synchronizable, also an obvious contradiction.
1 x

Q. E. D.

From Corollaries 5 and 6, we see that the synchronizability of sets of states in A

can be tested in Acx$ which consists of fewer states. Moreover, the bounds proposed

in Theorems 16-18 can be improved too, as Figs. 45-48 illustrate. (Note that in Fig. 45

the states in A are primed for clarity.) To check the synchronizability of A, we onlyex
have to check the synchronizability of A x. Since Acx is synchronizable, A is synchro-

nizable. Applying Theorem 17 directly to the automaton A, we have (9-1) C 9 = 288 as

an upper bound on the length of the shortest synchronizing sequence. Applying Theo-
n' 4

rem 17 to AcxP however, we have, for an upper bound, (n'-l) C 2 + (n-l) = (4-1) C 2 +

(9-1) = 26, where n' is the number of states in Ax. Our reasoning is as follows. Inex
A there is a synchronizing sequence of length (n'-l) C 2 or less. From Proof 22, we

see that this sequence will also lead the set of all states in A to a set of states that is

49

13D,t

bO
.,-I

O

O

O

.CO -- -CN -M'
U) U) U) U

- N -v) 't
In In vf

-.--- m m OD

o 11 11 11 11

_-- CN _ T
.A I In

Ix Ix Ix Ix
o o u u

Ll

cw

) NI CN4 ' - C C 0- -"
n U) v) In In U) n U) U

00 o 0 - Ul ' oo N -
u w v In) In U) U) U)

- " m It to 0 N wco
_ U U r) In U I o U)

e 0 0 Uf 0 VX VS Xq

50

O

uWU
L/,

O

I

J

-"t - CN - , - -
"I w VI "

absolutely synchronizable. Thus by Theorem 21 any sequence of length n-1 will syn-

chronize this set of states. Moreover, we can actually find a synchronizing sequence

for A by finding one for Acx first. Construct the essential part of A4 } as shown infirst. Construcx ti
Fig. 46. We see that the shortest synchronizing sequence for Acx is 01011010, which

will synchronize all states to s. Since cl(s~) -- {4, s8 s9}, we want to find a syn-

chronizing sequence to synchronize s4, s 8, s9 in A. A portion of the essential part

of A{9} is shown in Fig. 47. From Fig. 47, 0101101000, 0101101001, 0101101010, and

0101101011 are synchronizing sequences for A. Notice that, in some cases, the syn-

chronizing sequence obtained in this manner is not necessarily the shortest possible

synchronizing sequence. For example, in Fig. 46, the sequence 01011011 leads all

states in Acx to {sI, s}. It might be possible (but not in this example) that the set of

states {cxl (s2), cx 1 (s)} = {sz, s, 53} has a synchronizing sequence shorter than that

of the set {S4 , s8, S9}. Then there would be synchronizing sequences for A which are

shorter than those found above. In this example, however, the sequences that we found

are really the shortest synchronizing sequences.

Furthermore, we can tell immediately that s l, s 6, s7 in A are synchronizable by

a synchronizing sequence of a length equal to or less than 9 - 1 = 8 (compared with the

bound (3-1) C = 72 given by Theorem 17). The set of states s 1, 3, s 6, s7 is syn-

chronizable, and any input sequence of length 3 is one of the shortest synchronizing

sequences (s~ and s in Acx are synchronized with s by the input sequence 0, and the

states of the set cx (s4) are, in turn, synchronized by 00, 01, 10, 11).

In Fig. 48, A is not synchronizable because Acx is not synchronizable. Moreover,

none of the sets of states {s 1 , s2}, {s 1 , S4 , 5}, {, 5} ... are synchronizable because

Figure 47

51

S

S1

52

s3

s4

s5

s5 s40 1 s3 C

1 3 s 2

53 s2 53

0 1

SI 51

s3 Sj

s3 s~

S5 54
Acx

s4 s3

CX (s) =s s4A

Cx (s) S, S5

x'(5$)= '3cX (sd) = s3

Figure 48

{s-,s } is not synchronizable.

4.7 SOME APPLICATIONS

Suppose that there is an automaton that is in an unknown initial state and we want to

reset the automaton to a preselected state si, but there is no resetting switch available.

If the automaton is synchronizable with s i , we need only apply an appropriate synchro-

nizing sequence. As another example, suppose that several copies of identical automata

in different unknown initial states are connected in parallel (they are accepting identical

input sequences) and we want to reset them to the same initial state or to a certain spe-

cific initial state. The principles of synchronization can be applied immediately.

Synchronization also can be applied to an automaton used as a decoder. The autom-

aton starts from a certain initial state s, receives an input code word, decodes it,

gives the corresponding outputs, returns to sl, and waits for the next input code word.

If t 1 , t 2 , t 3 ... are code words, it is certainly true that M(s 1 ,t) = s 1' M(Sl1 t 2) = s 1

M(sl,t 3) = s .. .' However, if some errors occur during the transmission of a string

of code words, for example, some input symbols are received incorrectly or some input

symbols are erased, then the normal decoding procedure would be disturbed. If the

automaton does not return to s after decoding a certain code word because of some

error occurring in that code word, the subsequent code word will not be decoded cor-

rectly. This effect might propagate, and the automaton thus would give many succes-

sive meaningless output symbols. We naturally ask the question: How can we prevent

the normal decoding procedure from being disturbed, although errors may occur during

the transmission? The answer is that the code words t, t 2 , t 3 . .. must be synchro-

nizing sequences that will synchronize the automaton with sl. Suppose that a string of

52

_ .

code words titjtk ... is transmitted and some error occurs during the transmission of

t i. tltjtk ... is then received. t' will not be decoded correctly. Since M(sl, t) is not
1 lj k 1L

necessarily equal to s l , the code word tj may be decoded incorrectly too. However,

M(s1 ,tj) = M(M(s 1, t),tj) = s 1 because tj is a synchronizing sequence with sl. There-

fore, tk and the subsequent code words will be decoded correctly. We see that in this

example the effect of errors will never propagate beyond a correctly received code word.

4.8 SYNCHRONIZATION OF DIFFERENT AUTOMATA

In two automata A = {, S, M} and B = {, S', M'}, a pair of states s and s is said

to be synchronizable simultaneously with another pair of states su and s' if there exists

an input sequence t of finite length which is such that M(s i ,t) = s and M'(s i ,t) = s u,

where s i , sU E S and s, E S'. By extending this definition, a set of states s i , sj,

.. E S and a set of states s, s! ... E S' are said to be synchronizable simultaneously

(with s u and su) if there exists an input sequence t that is such that M(s i , t) = M(sj,t) =

.(= and M(st) and M'(s,t)= M t) = ... (=su). Furthermore, A and B are said to be

synchronizable simultaneously (with sU and su) if the set of all states in S and the set

of all states in S' are synchronizable simultaneously (with sU and su). To investigate

the synchronizability of sets of states in different automata, we, again, can employ the

idea of product automata which we developed before. In general, for the synchronization

of a set of p states in A and a set of q states in B, we can study the automaton

A{P} X B{ q }. With respect to the length of the synchronizing sequence, we have the fol-

lowing bounds.

THEOREM 23: If a set of p states in A and a set of q states in B are simulta-

neously synchronizable with sU and s, the upper bound on the length of the shortest

synchronizing sequence is

P q

C X E CJ - 1,

i=l j=1

where n and n' are the number of internal states in A and B, respectively.

PROOF 23: A{p } has] sasn d B {q} q n'
PROOF 23: AP} has E Cn states and B has Cn states; therefore, AP } X

i=l1 j=1

B{q } has C X C states. Q.E.D.
i=l 1 j=l J

COROLLARY 7: If a set of p states ih A and a set of q states in B are synchro-

nizable simultaneously, the upper bound on the length of the shortest synchronizing

sequence is

P q

Cn X C' - n X n' + 1.

i=l j=l

53

PROOF OF COROLLARY 7: In A P} X B, there are n X n' states that are

ordered pairs like ({su},{s}). Q.E.D.

THEOREM 24: If A is synchronizable and B is synchronizable, then A and B are

synchroniz able simultaneously.

PROOF 24:

3t: M(s 1 ,t) = M(s 2 ,t) = ... M(s n ,t) = s V

3t': M'(s l , t') = M'(t') = .. . M'(s n t') = s'v

Then,

M(s1 ,tt') = M(s 2 , tt') = ... M(s n , tt') = M(sv,t')

tM'(stt')= .. M'(sn,tt') s'. Q.E. D.

COROLLARY 8: If A and B are synchronizable simultaneously, the upper bound

on the length of the shortest synchronizing sequence is (n-l) C2n + (n-l) C 2n .

PROOF OF COROLLARY 8: By Theorem 17, the bounds on the lengths of the short-
n n

l

est possible t and t' are (n-l)C 2 and (n'-1)C 2 , respectively. Q. E.D.

THEOREM 25: If A is absolutely synchronizable by any sequence of length equal

to or larger than m+1 and B is absolutely synchronizable by any sequence of length

equal to or larger than m'+l, then any set of states in A and any set of states in B can

be synchronized simultaneously by any sequence of length equal to or larger than m+l

or m'+l, whichever is the larger.

PROOF 25: Suppose that m > m' (the proof for m ' > m is identical). For any sets

of states i, s. .. E S and s, s ... E S', and for any t with L(t) m + 1, by the def-

inition of absolute synchronizability

M(s i ,t) = M(sj, t) = ...

M'(s i,t)= M'(sj,t)= Q.E.D.

In order to reduce the labor of checking the synchronizability and to obtain a better

estimation of the bounds on the length of the shortest synchronous sequences, we can

combine indistinguishable states in each individual automaton as we did in section 4.6.

The ideas introduced previously can be applied directly to the synchronization of two

different automata.

The synchronization of more than two different automata is a direct extension of the

synchronization of two different automata.

54

V. MEMORY ORDER OF STATES

5.1 MEMORY ORDER OF STATES WITH RESPECT TO THE INPUT

In Sections III and IV we discussed the cases in which the input sequence to an autom-

aton is known but the initial state of the automaton is unknown. In this section we shall

investigate the case in which a portion of the input sequence to the automaton is unknown

although the initial state is known. We start with the following definitions.

DEFINITION 24: In an automaton A = {Z, S, M}, a state s i has a memory order equal

to p, if M(si, tI t) = M(s i , t 2t) for any input sequences t, t 2 with L(tl) = L(t 2) = p and t

with L(t) K, where K is a constant for this specific automaton, and if there exist input

sequences t 3, t 4 with L(t 3) = L(t4) = p + 1, and t' of any arbitrary length which is such

that M(s i , t 3 t') * M(si, t4 t').

Definition 24 means that if an automaton is in a state having a memory order equal

to p, then p successive unknown input symbols can be applied without jeopardizing our

ability to discover eventually the state of the automaton by observing the next K input

symbols. From this definition, we see that if a state s i does not have a memory order

p, it will not have memory order larger than p.

DEFINITION 25: In an automaton A = {Z, S, M}, a state s i has an infinite memory

order, if M(si , tlt) = M(s i , t 2t) for any input sequences t, t 2 with L(tl) = L(t 2) and t

with L(t) K, where K is a constant for this specific automaton.

a. Memory Order of States in Exhaustively Combined Automata

From Definitions 24 and 25, the memory order of a state in a given automaton may

be found by enumerating all possible input sequences and examining every possible value

of p. This method is obviously very tedious. Furthermore, we shall not know whether

or not we should stop testing if this state has an infinite memory order. An effective

method to determine the memory order of a state will be introduced, but the simpler

case of an exhaustively combined automaton is studied first. As defined previously, an

exhaustively combined automaton Acx = {, Sx, Mcx } is one in which for all s i , s E Scx

there exists an input symbol that is such that Mcx(si,) Mcx(j , a).

THEOREM 26: In an exhaustively combined automaton Acx = {, Scx, Mcx}, a state

Si has a memory order equal to p if and only if (a) Mcx(Si , tl) = Mcx(S i , t) for all tl

and t 2 whose lengths are equal to p and (b) there exist t 3 and t 4 whose lengths are equal

to p + 1 which are such that Mcx(Si, t 3) Mcx(Si, t 4).

PROOF 26: First, we prove the necessity. Suppose that there exist t and t whose

lengths are equal to p so that Mcx(s i ,t) $ Mcx(i t). Because Acx is exhaustively

combined, there exists a that is such that Mcx (Mcx(s i , t), a) ¢ Mcx(Mcx(i, t a)

Similarly, there exists b that is such that Mcx(Mcx(Si, t'l a),' b) $ Mcx(Mcx(Si, t a)', b)

Repeating this argument, we can have an input sequence t = a b ... of any arbitrary

length so that Mcx(Si, tt) Mcx(si, tIt). Therefore s i has a memory order smaller thanix'i 1 2 5

55

p. Suppose that for all t and t4 whose lengths are equal to p + 1, M (Si, t) =3)· For any t, NI · ex iMcx(s i , t). For any t, Mx(Si, tt) = Mcx(si, tt). Therefore, si has a memory order
larger than p.

Second, we prove the sufficiency. Since Mcx(Si, tl) = Mcx(Si, t 2) for all t 1 and t 2whose lengths are equal to p, Mcx(Si, tt) = Mcx (Si, t 2 t) for any t. Since there exist t 3and t 4 whose lengths are equal to p + 1 so that Mcx(Si, t3) M(si, t4), by the same argu-
ment used above there exists an input sequence t of any arbitrary length which is such
that M x(si, t 3 t) M(si, t 4 t). Q.E.D.

COROLLARY 9: In an exhaustively combined automaton Acx = {Z, Sx, Mcx}, a state
has an infinite memory order if and only if for all t1 and t 2 whose lengths are equal,
Mcx(Si t) = M(Si, t2)

By Theorem 26, we can easily recognize a state having a zero memory order in an
exhaustively combined automaton. If a state s i has a memory order equal to zero, there
exist input symbols 1rl and a-2 that are such that Mcx(Si, -1) M Mcx(si, a-2) On the other
hand, if a state si has a nonzero memory order, we shall have Mcx(Si, 0s1) = Mx(Si' , 2)
for any input symbols a-1 and a-2 . The following theorem will be helpful in determining
the memory orders of states.

THEOREM 27: In an exhaustively combined automaton Acx = {, Sx, Mcx}, if a state
Si has a nonzero finite memory order equal to p, that is, oo > p > 0, then for any input
symbol -1l M(si, a1) has a memory order equal to p-I).

PROOF 27: (a) For any input sequences t and t 2 of length p - 1, Mx(Mcx(si, al),tl) =
Mcx(Mcx(S i , -1), t 2), since a- lt 1 and a-lt 2 are input sequences of length p.

(b) There exist t 3 and t 4 of length p + 1 so that Mcx(Si, t 3) Mcx(Si,' t 4). Writing
t = a- t and t = bt, we ha v e Mcx(Mx(sia)t) M(Mcx(Sib)). Since (sicxi
Mcx(Si, a) = Mcx(Si, -b) then Mcx(Mcx(Si, 1) t) Mcx(M (s i, 1) t). Q.E.D.

COROLLARY 10: For any state s i having a finite memory order equal to p in
an exhaustively combined automaton Acx = {, Scx Mcx} consisting of n states, p
n - 1.

COROLLARY 11: In an exhaustively combined automaton Acx = { S, Mcx}, if a
state s i has an infinite memory order, then Mcx(si, -1) has an infinite memory order
for any input symbol a-1.

To determine the memory order of a certain state si, we shall trace the step-
by-step transitions from s i . If a state having a memory order equal to zero is
entered, we know that s i has a finite memory order. If a state having a memory
order equal to zero has not been entered after n-1 steps of transition, s i has an
infinite memory order. Figure 49 illustrates the manner in which we find the mem-
ory orders of the states of an exhaustively combined automaton. In Acx, s 4 has a
memory order equal to zero. Since Mcx(s 2 , 0) = Mcx(S2 1) = S4 s2 has a memory
order equal to 1; then s 3 has a memory order equal to 2; s 1 and s 5 have infinite
memory orders. If we draw the transition diagram as that shown in Fig. 49b, the
memory order of each state is evident.

56

0,1

0 1

s5 s5

s4 s4

s2 52

51 s 3

S1 S1

MEMORY ORDER EQUAL TO D

MEMORY ORDER EQUAL TO 2

MEMORY ORDER EQUAL TO 1

MEMORY ORDER EQUAL TO 0

(a) (b)

Figure 49

b. The General Case of All Automata

The result obtained above can be extended immediately to all automata. We have

the following theorems:

THEOREM 28: Let Acx = {Z, Scx, Mcx} be the exhaustively combined automaton of

A ={ , S, M}. Any state s i in S has the same memory order as cx(Si) in Scx.

PROOF 28: (a) Suppose that c (si) has a memory order p. That is, for any input

sequences t and t 2 of length p, Mcx(x(si) t) =M ((s) = .Mcx(x(Because A isi1 2 u

a homomorphic image of A, M(si,tl) E cxl(su) and M(si,tZ) E cxl(su). But by Theo-

rem 21 M(si,tl) and M(s i , t2) are absolutely synchronizable by any input sequence t of

length equal to or larger than n-l, where n is the number of states in A. Therefore,

M(s i , t 1 t) = M(s i , t 2 t).
(b) Since the state cx(Si) has a memory order p, there exist input sequences

t 3 and t 4 of length p + 1, so that Mcx(cx(si),t 3) Mcx(cx(si),t 4). Also, as shown

in Proof 26, there exists an input sequence t of arbitrary length so that Mc(cxx(si), t 3t) $

Mcx(cx(si), t4 t). Therefore, M(si, t 3 t) * M(s i , t 4 t). Q.E.D.

COROLLARY 12: In Definitions 24 and 25 K < n - 1, where n is the number of states

of the automaton A.

Figure 50 shows the manner in which we find the memory order of each state of a

given automaton. From the state diagram of Acx in Fig. 50, we see that s' has a mem-

ory order equal to 3, s has a memory order equal to 2, sI has a memory order equal

to 1, and s has a memory order equal to zero. In A, sl has a memory order equal

57

cx

S1

s2

s3

s4

S 1

ACX

I
S

S1

52

s3

s4

s5

S6

s7

s8

s9

Z
0 1 S

Scx x

s2 55

s4 s8 2

S1 54 5S

s3 s7 S4

0 1

S2 S2

S S

S' S

s3 S3

s9 s4 A 0

s1 58

-1

51 "x s2'~(X) = 2
s7 s7 C- 1 2) = 255

56 53 _-1 I \=
C;X '31 - 53 56' 7

,.-1ll (~ ~...
Ix 4 '4 81 9

Figure 50

to 3; s and s 5 have memory orders equal to 2; s4, s8, and s 9 have memory orders

equal to 1, and s 3, s 6, and s 7 have memory orders equal to zero.

Theorem 27 and Corollaries 10 and 11 can be extended as follows:

THEOREM 29: In an automaton A = {, S, M}, if a state s i has a nonzero finite mem-

ory order equal to p, then M(s i , a-) has a memory order equal to (p-l) for any input sym-

bol ar.

PROOF 29: By Theorems 27 and 28. Q. E. D.

COROLLARY 13: For any state si having a finite memory order equal to p in an

automaton A consisting of n states, p n - 1.

PROOF OF COROLLARY 13: The number of states of the exhaustively combined

automaton A cxis less than or equal to the number of states of A. Q. E. D.

COROLLARY 14: In an automaton A = {, S, M}, if a state s i has an infinite memory

order, then for any input symbol a-, M(si, r-) has an infinite memory order.
Notice that in an automaton having a finite memory span with respect to the input,

every state has an infinite memory order. This fact follows from the discussion in Sec-

tion III that the exhaustively combined automaton of an automaton having a finite memory

span with respect to the input consists of only one state. However, the converse of this

statement is not necessarily true. That is, an automaton does not necessarily have a

finite memory span if each of its states has an infinite memory order.

From Theorem 29, we can develop a very illustrative pictorial representation of

the memory order of a state in an automaton, as illustrated in Fig. 51. Consider a

58

I

staircase of p steps. An initial state having a memory order equal to p will correspond

to a ball sitting on the pth step of the staircase (see Fig. 51a). For any input symbol,

known or unknown, the transition will lead to a state having a memory order equal to

p - 1. This corresponds to moving the ball one step down to the (p-l)th step of the

staircase. For an automaton in a state having an infinite memory order, the corre-

spondence is to a ball sitting on a platform of infinite length on which the ball rolls with

no change of its height (Fig. 51b). For an automaton in a state having a zero memory

order, the correspondence is to a ball sitting at the end of a staircase. For a known

input symbol, the ball will be moved to some state having a memory order equal to o0,

p or 0. For an unknown input symbol, the ball will drop to minus infinity (Fig. 51c).

This indicates that if the automaton is in a state having a memory order equal to zero

and the next input is unknown, we shall lose track of the final state of the automaton.

If the initial state of the automaton in Fig. 49 is s 2 , then Fig. 52a illustrates the

effect of an input sequence - 1 - - 0 - -, and Fig. 52b illustrates the effect of an input

sequence - 1 -- - (the - are unknown input symbols). We can see that, for an initial

state s i , if we want to find M(s i , t), all that we have to know about the input sequence

t are the last n-i input symbols and those "critical input symbols" that specify the

transitions from states having a memory order equal to zero. For the example in

Fig. 52a, among the symbols in the sequence - 1 - - 0 - -, only 1 and 0 are critical

input symbols. In other words, if an automaton starts from a certain initial state and

if the critical input symbols and the last n-l input symbols of two input sequences to

the automaton are identical, the final state of the automaton must be the same for both

sequences.

In a practical situation, when the input symbols are sent through a binary erasure

channel to an automaton, all of the symbols other than the critical input symbols and

the last n-l symbols of the sequence can be erased as long as we are concerned with

only the final state of the automaton (Fig. 53). Furthermore, if the transmission chan-

nel is a binary symmetric channel, then all input symbols other than the critical ones

and the last n-1 can tolerate an error.

5.2 MEMORY ORDER OF STATES WITH RESPECT TO THE

INPUT-OUTPUT SEQUENCE

We can now extend our discussion to the case in which we have access to both the

input and the output symbols. Similar to the definitions for the case of the memory

orders of states with respect to the input symbols are Definitions 26 and 27.

DEFINITION 26: In an automaton A = {E, Z, S, M, N}, a state s i has a memory order

equal to p with respect to the input-output sequence, if (a) R(s i , w1 w) * R(sj, w2 w) for

any input-output sequences w1 and w2 with L(wl) = L(w2) = p and w with L(w) K, where

K is a constant for this specific automaton, and (b) there exist input-output sequences

w3 and w4 with L(w 3) = L(w4) = p + 1, and exists input-output sequence w of any arbi-

trary length, so that R(s i , w 3w) and R(sj, w4w) are incompatible.

59

INPUT SYMBOL

INPUT SYMBOL

(KNOWN OR UNKNOWN)
_ _ *

I(DI0 (

(C
Figure 51

f \

0

I/
~~~~1 2 1'. - if I " - "

I I I-I

f0 0 "I \
I

I

(b) -

INP

0101 10... 0-- 1-- ."

BINARY ERASURE

CHANNEL

Figure 53

AUTOMATON

60

JNKNOWN)

p

p-1

p-2

p- 3

(a)

i *
I

(b)

KNOWN
I INPUT
, SYMBOL

UNKNOWN
INPUT
SYMBOL

I

i

,/

(a)

Figure 52

:)

1



DEFINITION 27: In an automaton A = {, Z, S, M, N}, a state s i has an infinite mem-

ory order with respect to the input-output sequence, if R(s i , wiw) * R(sj, w2 w) for any

input-output sequences wl and w2 with L(wl) = L(wZ ) and w with L(w) K, where K is

a constant for this specific automaton.

As we can see, the method developed above to find the memory order with respect

to the input of the states of an automaton does not apply in the present case, since the

compatibility relation of the function R is not transitive. (See discussion following Cor-

ollary 1.) We have another method to check the memory order of a state with respect

to the input-output sequence. Following the notations and definitions in Section III, we

have

DEFINITION 28: A set of states s i , sj, s k ... in an automaton A = {E, Z, S, M, N} has

a unique final state with respect to the input-output sequence if, for all su and sv in the

set and for all input-output sequences w of length equal to or larger than a constant K,

R(s u , w) * R(sv, w).

THEOREM 30: A set of states si, si, sk ... in an automaton A = {E, Z, S, M, N} will

have a unique final state with respect to the input-output sequence if and only if every

pair of states in this set has a unique final state with respect to the input-output

sequence. (Theorem 30 is a slightly more general form of Theorem 10.)

PROOF 30: First, we prove the necessity. Suppose that there is a pair of states

Si and sj which does not have a unique final state with respect to the input-output
sequence, that is, there exists an input-output sequence w of length equal to or larger

than any constant K, so that R(si, w) and R(sj, w) are incompatible. It is obvious that

this set of states does not satisfy Definition 28 as a set having a unique final state with

respect to the input-output sequence.

Second, we prove the sufficiency. For any pair of states s i and sj, and for any (, z)

in Z X Z, if R(s i , (r-, z)) * R(sj, (o-, z)), then s i and sj obviously have a unique final state

with respect to the input-output sequence. If the values of R(s i , (r, z)) and R(sj, (0, z))

are not equal, they must, in turn, have a unique final state with respect to the input-

output sequence. We can repeat this argument. The. repetition, however, will not go

beyond n(n-1)/Z steps, since there are a total of n(n-1)/2 distinct pairs of states in A.

Otherwise, si and sj will not have a unique final state with respect to the input-output

sequence. Such a result would be a contradiction to the conditions of the theorem.

Therefore, for any input-output sequence w with L(w) n(n-1)/2, R(su, w) * R(s v , w)

for all sU and sv in the set.

COROLLARY 15: In Definitions 26-28 K < n(n-1)/2.

THEOREM 31: Let Uk denote a set of states {s i sj, k . ..} and Uk+l denote the set

of states {R(si, (l' Z1 ))' R(si (1' Z2)) ... R(sj, ( 1, zl)). ..} for all s in Uk and all (, z)
in Z. X Z which are such that R(s, (r, z)) is defined. (a) If Uk does not have a unique final

state with respect to the input-output sequence, then Uk+l will not have a unique final

state with respect to the input-output sequence. (b) If Uk+l has a unique final state with

respect to the input-output sequence, then Uk has a unique final state with respect

61



to the input-output sequence.

PROOF 31: (a) Suppose that there is a pair of states s i and sj in the set Uk and an

input-output sequence (1' z 1)w of any arbitrary length which are such that R(s i , (a-1 Zl)W)

and R(sj, (<r1 Zl)W) are incompatible. That is, R(R(s i , (i' Z1 ))' w) and R(R(sj, (01I Zl))' w)

are incompatible. R(si, (l' zl)) and R(sk, (1' Z1 )) must be defined; otherwise they will

be compatible. R(si, (- 1 Zl)) and R(sj, ('1' Zl)) are in Uk+l . Therefore, Uk+l does not

have a unique final state with respect to the input-output sequence.

(b) Suppose that Uk+l has a unique final state with respect to the input-output

sequence. If Uk does not have a unique final state with respect to the input-output

sequence, by the argument in the preceding paragraph, Uk+l will not have a unique final

state with respect to the input-output sequence. This result would be a contradiction

to our assumption. Q. E. D.

THEOREM 32: For any state s i having a finite memory order equal to p with respect

to the input-output sequence in an automaton A consisting of n states, p is less than

or equal to n + [n(n-1)/2] - 2.

PROOF 32: Let U denote the set {si}. Let U1 denote the set of states

{R(si (l Zl)) R(si' (al' 2 )) . . for all (a-, z) in E X Z which are such that R(s i (, z)) is

defined. Recursively, let Uk+ 1 denote the set of states {R(sx, (-1' z 1 )),R(sx, (1' Z2 )) ...

R(sy, (r1 , zl)), R(sy, (r1 , Z2) ) . .} for all s x .and sy in Uk and for all (r, z) in X Z which

are such that the function R is defined.

First, we claim that, at most, n sets of states, from UO up to Un , would consist

of only one state in each set, for if there are n+l or more sets consisting of only one

state in each set, two or more such sets would be identical. That is, there are loops

around these sets, and s i will have an infinite memory order with respect to the input-

output sequence.

Second, we claim that if Uk+l has a unique final state with respect to the input-output

sequence (that is, if each of Uo , U 1 ... Uk, Uk+l has a unique final state with respect to

the input-output sequence by Theorem 31), then there must be a pair of states in Uk+l

which have not occurred in the same set of the collection Uo, U 1 ... Uk. Suppose that the

converse is true. For a pair of states s x and sy in Uk+l, any pair of states from the

set {R(s x , (- 1' Z1 )), R(Sx' (-1' Z2 ))' ... R(sy (a-1, Z1 )), R(sy, (- 1 , z 2 )) . .} must have a unique
final state with respect to the input-output sequence because s and sy have appeared

in previous sets. Moreover, this relationship is true for all pairs of states in Uk+l.

Thus Uk+2 will have a unique final state with respect to the input-output sequence. How-

ever, every pair of states in Uk+2 must have appeared, in pair, in the previous sets

U0 , U1 ... Uk+l. This argument can be repeated, and s i has an infinite memory order

with respect to the input-output sequence. Since the sufficient condition for every state

in an automaton to have an infinite memory order with respect to the input-output

sequence is that every pair of states has a unique final state (see Theorem 10), if si has

a finite memory order, then there must be at least one pair of states that does not have

a unique final state. That is, there are at most [n(n-1)/2] - 1 sets among Uo, U1, U2... Uk

62



that will consist of two or more states and will have a unique final state with respect

to the input-output sequence because there are n(n-1)/2 different pairs of states alto-

gether.

Therefore, we can conclude that if si has a finite memory order p with respect to

the input-output sequence, then p < (n-l) + [n(n-l)/2] - 1; otherwise, s i would have an

infinite memory order. Q. E. D.

Now we are able to determine the memory order of a state s i with respect to the

0,0 0,1 1,0 1,1

S2

- s3

s4

s3

s- - 54

S2 S1

Ar

(b)

X

X x

s1 s2 s3 s4

(c)

(d)

Figure 54

63

0
xZS

52' 0

Si3 1

3,'

s2,0

s3, 1

s 4 , 0

s2, 1

A

(a)

s 2

s3

s4

S

s1

S2

53

s4

51

53

s 4

X

X

x

X

X

-

- -

- -

1

- s2

-

I



input-output sequence. If the automaton starts from UO = {si} and if the present input

and output symbols are unknown, U1 will be the set of all possible next states. If U1

does not have a unique final state with respect to the input-output

Qiilpncr. thpn ._ ha a 7.prn mPmnnrv nrdpr with rnprt tn the innut-

output sequence. If U1 does have a unique final state with respect

) to the input-output sequence, we can determine whether or not U2

has a unique final state with respect to the input-output sequence.

If not, s i has a memory order equal to 1 with respect to the input-

1) output sequence; if so, we shall continue to repeat this procedure.

From Theorem 32 we know that this procedure will terminate after,

at most, n + [n(n-l)/2] - 2 repetitions. Figure 54 illustrates this

procedure. To find the memory order of s 1 with respect to the input-

output sequence, we start from s and step by step list the possible

next states for unknown input and output symbols (Fig. 54d). This

procedure terminates when we come to the set {sl, s2, S4}, which

does not have a uniaue final state with respect to the inDut-output

sequence (Fig. 54c). Therefore, sl has a memory order equal to
Figure 55

6. In general, we have to follow the same procedure to find the mem-

ory orders of s 2 , s 3, and s 4. However, it happens that the memory

orders of s Z , s 3 , and s 4 can be observed immediately to be 5, 4, and 3, respectively,

from Fig. 54d. Therefore, no further repetition of this procedure for each state is

needed.

Suppose that we start from s1 and have an input-output sequence: (-,-) (-,-) (-,-)

(-,-) (-,-) (-,-) (0, 1) (1, 1) (1, 1) (1, 0), where the first six input-output symbol pairs

are unknown. We can determine the final state by constructing a portion of A{ 3 } asr
shown in Fig. 55.

5.3 MEMORY ORDER WITH RESPECT TO THE OUTPUT

As pointed out in Section III, when we study the memory aspects of an automaton

with respect to the output symbols, under certain special conditions we can apply the

results from the study of the memory aspects of an automaton with respect to the input

symbols or with respect to the input and output symbols. Here, we shall study the mem-

ory order of states with respect to the output for all automata.

DEFINITION 29: In an automaton A = {z, Z, S. M, N}, a state s i has a memory

order equal to p with respect to the output if, for any output sequence y with L(y)

greater than or equal to a specific constant K for the automaton A, the set of states

{Q(si, Y1)' Q(si, Y2 ). .} (where 1, Y2 .'''. are all output sequences of length p so that
the function Q is defined), has a unique intermediate state with respect to the out-

put. Moreover, for some output sequence y' of any arbitrary length the set of states

{Q(s i , y1), Q(s i , y )... } (where y and y... are output sequences of length p + 1 so that

64

__



the function Q is defined), does not have a unique intermediate state with respect to

the output.

DEFINITION 30: In an automaton A = {Z, Z, S, M, N}, a state s i has an infinite mem-

ory order with respect to the output, if for any output sequence y, with L(y) greater

than or equal to a specific constant K for the automaton A, the set of states

{Q(si, Y1 ), Q(si, Y2)... (where Y1l Y2 . . are all output sequences of the same length so

that the function Q is defined), has a unique intermediate state with respect to the out-

put.

DEFINITION 31: In an automaton A = {Z, S, M, N}, a state s i has a minus infinity

memory order with respect to the output if there exists a nonempty output sequence

y that is such that for some output sequence y' of any arbitrary length Q(s i , y) does

S X

s1

s2

s3

s4

s5

zS0

s2 , 1 s1 0

s 5, 1 51

s4 ' 0 s3, 0

sI 0 s3 , 1

s5, 1 s1 10

(a)

s 1

s2

s3

s4

s5

0 1

s 1 s2

- s5

s 3 , s4 -

s1 s3

s 1 s5

(b)

C D
s1

S2

s3

s 4

s5

X

X X

X iiX
s 1 S2 53 54 S5

(c) (d)

Figure 56

65

� . - I

-

1



not have a unique intermediate state.

THEOREM 33: For any output sequence y with L(y) > n(n-1)/2, a set of states

s i , sj, s k ... in an automaton A = {E, Z, S. M, N} will have a unique intermediate state

with respect to the output if every pair of states in this set has a unique next state with

respect to the output.

COROLLARY 16: In Definition 29 K < n(n-1)/2.

The proof of Theorem 33 follows immediately from Lemmas 4 and 5.

THEOREM 34: Let Vk denote the set of states {s i , s Sk. .},. and Vk+ 1 denote the

set of states Q(s i , Zl), Q(S i,' 2) ... Q(s, Z), Q(j, z2) . } for all s in Vk and all z

in Z so that the function Q is defined. If Vk does not have a unique intermediate state

for some output sequence y' of any arbitrary length, then neither does Vk+l. If Vk+l

has a unique intermediate state for any output sequence y with L(y) larger than or equal

to a specific constant K for the automaton A, then so does Vk.

THEOREM 35: For any state s i having a finite memory order equal to p with

respect to the output in an automaton A consisting of n states, p [n(n-l)/2] - 2.

The proofs of Theorems 34 and 35 are similar to those of Theorems 31 and 32 and

will not be repeated here.

Figure 56 illustrates the procedure for finding the memory order of a state with

respect to the output. From Fig. 56, we know that s has a memory order equal to

zero with respect to the output, s 2 has a memory order equal to infinity, and s3 has

a memory order equal to minus infinity. A state having a memory order equal to minus

infinity is detected easily in the checking table by the unchecked diagonal box.

66



VI. CONCLUSION

We have discussed several classes of finite automata whose final behaviors can be

determined uniquely, even if their initial states or input sequences are not completely

known. In Section III we studied the dependence of the final states of finite automata

upon their initial states. For an automaton having a finite memory span m with respect

to the input, its final state can be determined uniquely whenever the last m+l input sym-

bols are known. That is, after more than m+l input symbols are received, the behavior

of an automaton having a finite memory span m is affected neither by the initial state

of the automaton nor by any input symbol preceding the most recent m+l symbols.

Our investigation of an automaton having a finite memory span with respect to the

input was extended to include an automaton having a finite memory span with respect

to the input-output sequence, where the final state of an automaton can be determined

when the last (m+l) input symbols to the automaton and their corresponding (m+l) output

symbols are known. However, although the information about the initial state of the

automaton is not explicitly needed in the determination of the final state, the output

sequence corresponding to the input sequence does provide some information about the

initial state of the automaton. The output sequence provides this information because

for a given input sequence, only the states in a certain subset are the possible initial

states that will generate that given output sequence.

A further extension is to automata having a finite memory span with respect to the

output. Since knowing the present state of an automaton and the output symbol from the

automaton is not always sufficient to determine the next state of the automaton if the

input symbol is unknown, the memory span of an automaton with respect to the output

is defined somewhat differently.

In Section IV, the dependence of the final states of finite automata upon their initial

states is studied from another point of view. In this section, we are interested in the

existence of one or more input sequences, called synchronizing sequences, that will

lead an automaton to the same final state for a set of different initial states. An autom-

aton having a finite memory span with respect to the input which is discussed in

Section III is obviously a special case in which all input sequences of length m+l or more

are synchronizing sequences for the set of all states of the automaton (m is the value

of the memory span with respect to the input).

In Section V, we studied the dependence of the final state of an automaton upon the
input sequence. We found that for a special class of automata, their final states can

be determined uniquely when their initial states are known but some of the input symbols

are unknown. The possibility of determining the final state of an automaton when some

input symbols are unknown depends upon the initial state of the automaton, as well as

the number of unknown input symbols. For a given initial state, the unique determination

of the final state is possible only when the number of consecutive unknown input symbols

does not exceed a certain constant p. The constant p is defined as the memory order

67

_ _



of the initial state with respect to the input and is different, in general, for different

states. Also, an automaton having a finite memory span with respect to the input is a

special case in which every state has an infinite memory order. The notion of the mem-

ory order of a state with respect to the input has also been extended to the notion of the

memory order of a state with respect to the input-output sequence and with respect to

the output. We investigated the possibility of determining the final state of an automaton

when some input symbols are unknown but the subsequent input symbols and/or the cor-

responding subsequent output symbols are known.

The study of the possibility of determining the final behavior of an automaton when

some of its past history is unknown is by no means completed with this report. There

are interesting cases about which we still have not been able to reach a general con-

clusion, for example, the determination of the final state of an automaton when only a

portion of the input sequence and some other portion of the output sequence (not the

portion corresponding to the known portion of the input sequence) are known. Another

investigation may enable us to understand more about these, and it is believed that the

techniques developed here will be useful in the study of related topics.

68

__



APPENDIX

DEFINITIONS OF MATHEMATICAL TERMS

Definition

A well-defined collection of objects.

Cartesian product of sets

Relation between two
sets A and B

Function

The Cartesian product A X B of two sets A and B are all
ordered pairs in the form of (a,b) where a is in the set A
and b is in the set B. If A has m elements and B has
n elements, A X B will have mn ordered pairs.

A subset S of the ordered pairs in A X B. For a E A and
b E B, a R b (a is related to b) if and only if (a,b) S.

A relation between two sets A
domain of the function; B, the
also say that a function defines
elements in its domain into the

Simple Algebra

Semigroup

and B. A is called the
range of the function. We
a mapping that maps the
elements in its range.

A system consists of (i) a set A, and (ii) a mapping of
(AX A) into A. (Such a mapping is also called a binary
composition in the set A.)

A simple algebra with an associative binary composition.
A binary composition, o, is associative if (aob) o c =
a o (boc).

Monoid A semigroup with a neutral element. An element e in the
set A is called a neutral element for a binary composition
- in the set A, if e a = a e = a for all a A.

Monoid Homomorphism

Free Monoid

A mapping f from a monoid A into another monoid B so
that

(i) f maps the neutral element eA of A into the neutral

elements eB of B.

(ii) If a 1 , a 2 are elements in A, then f(aloa 2 ) =

f(al) f(a 2 ), where o is the binary composition in A and

. is the binary composition in B.

Let Z be any set. Assume that we are given a monoid F
and a mapping of into F. We shall say that F
(together with 4) is a free monoid on the set , if for any
mapping of into any monoid A, there exists a unique
monoid homomorphism f of F into A which is such that
f(4i(s)) = (s). (See Fig. 57.)

'L

f Figure 57

A

69

Term

Set

_�__��



Definition

Equivalence Relation

Equivalence Class

Congruence Relation

Congruence Class

Partition of a set

A relation R in A X A which is such that for all al, a, a 3

in A
(i) a R a l (reflexive property)

(ii) al1 R a2 implies that a R a (symmetric property)

(iii) a R a 2 and a 2 R a 3 implies that a R a 3 (transi-

tive property).

Let R be an equivalence relation in the set A and al be

any element in A. The equivalence class of a under R

is the largest subset of elements a2 , a 3 ... in A which

are such that a1 R a 2 , al R a 3 ....

Let A be a simple algebra. Let denote its binary com-
position. An equivalence relation R in the set of elements
of A is called a congruence relation if, for any a, x, y in
the set of elements of A,

(i) x R y implies that a o x R a o y (left invariance)
(ii) x R y implies that x a R y o a (right invariance).

An equivalence class of elements under a congruence rela-
tion over a simple algebra.

Subdivision of a set into subsets that are disjoint and
exhaustive.

Acknowledgment

The author wishes to thank his supervisor, Professor Dean N. Arden, for many

helpful discussions and constant encouragement. Thanks are also due to Professor

David A. Huffman and Professor Frederick C. Hennie III for their suggestions and

criticisms.

70

.

Term



References

1. D. A. Huffman, The Synthesis of Sequential Switching Circuits, Technical Report 274,
Research Laboratory of Electronics, M.I.T., January 10, 1954.

2. S. C. Kleene, Representation of events in nerve nets and finite automata, Automata
* Studies, edited by C. E. Shannon and J. McCarthy (Princeton University Press,

1956), pp. 3-41.

3. E. F. Moore, Gedanken-experiments on sequential machines, Automata Studies,
edited by C. E. Shannon and J. McCarthy (Princeton University Press, 1956), pp. 129-
153.

4. S. Seshu, R. E. Miller, and G. Metze, Transition matrices of sequential machines,
IRE Transactions on Circuit Theory, Vol. CT-6, No. 1, pp. 5-12, March 1959.

71

= | --__



a

_

t


