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Abstract

General adaptive processes are described. In these processes a measure of per-
formance is increased as the experimenter gathers more information; the actions taken
by the experimenter determine both the profit and the type of information gathered.

In particular, the adaptive decision process is a two-person, zero-sum, m X n game
with some unknown payoffs. This game is played repeatedly. The true values of the
unknown payoffs are learned only during those plays of the game at which the unknown
payoffs are received. The players are given a priori probability distributions for the
values of the unknown payoffs. A measure of performance is defined for the players of
adaptive decision processes.

An optimum strategy for one player is derived for the case in which the opponent
uses one mixed strategy, known to the player, repeatedly. Optimum minimax strategies
for both players are derived for the case in which the players are given the same infor-
mation about the unknown payoffs. An optimum strategy, from a restricted class of
strategies, is derived for one player when he is playing against nature, which is assumed
to be an opponent whose strategy is unknown but is unfavorable to the player.
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I. ADAPTIVE SYSTEMS

Ever since the advent of large stored-program digital computers, engineers have

been concerned with the problem of how to exploit fully the capabilities of these machines.

Much thought has been directed toward using the basic assets of digital computers - the

ability to store large amounts of data and perform arithmetical and logical operations

very rapidly - to enable computers to gather data during the performance of some tasks

and use the gathered information to improve the performance of the tasks. This type of

self-improvement process has been called "adaptive behavior." If the nature of the envi-

ronment in which a computing system is to operate is known to the system designer, and

if the computing system is to operate only in that environment, then the designer can

often plan an optimum system. However, if the nature of the environment is unknown,

if it changes with time or if a single computer must be designed to work well in a variety

of environments, then it may be practical to design the system to gather data about its

environment and use that data to change its mode of operation. The goal of the change

is a more nearly optimum mode of operation, according to some measure of performance.

During the past ten years much work has been done in the field of adaptive systems.

Recently, great interest has been shown in randomly connected networks of logical ele-

ments. Two of the important contributions in this field are those of Farley and Clarkl' 2

and of Rosenblatt. 3 In these systems, both of which are simulated by digital computers,

inputs are applied to the networks, and outputs are received. If the outputs are judged

to be correct by the experimenter, the weights of those logical elements that contributed

to the output are increased; if the outputs are not correct, the weights of those logical

elements that contributed to the output are decreased. The systems are said to adapt if

the ratio of the number of correct outputs to the number of incorrect outputs increases

as the system gathers data about the desired performance. Experimental results demon-

strate the adaptive behavior of these schemes.

The study of random networks is only one phase of the research in adaptive systems.

Other interesting work has been done by Oettinger,4 Bellman and Kalaba, 5 Widrow, 6

White, 7 Mattson, 8 Widrow and Hoff, 9 and others. Aseltine, Mancini, and Sarture 1 0 have

written a fine summary of the work in the field of adaptive control systems.

The common features of the systems just mentioned are the utilization of data

gathered in order to increase the expected return, and the independence of the type of

data gathered from the actions of the adaptive systems. A less restricted class of adap-

tive systems is characterized by a dependence of the type of data gathered upon the action

of the system. (To distinguish the more general class from the class just described, the

respective adjectives "general" and "special" will be used when necessary.) The behav-

ior of a general adaptive system has a twofold result: it determines what type of data

will be gathered, and it determines the present return. The data gathered now generally

enable the system to improve its future return.

The problem of forming the research policy for an industrial concern is in the class
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of general adaptive problems. The company's net profit is a function both of its present

technical knowledge and the amount of money funded to research. Each year the policy

of the company affects the net profit for that year and also the amount of technical knowl-

edge gained through research. The last quantity should help the company to increase

its future net profits. The game of Kriegspiel is another example of a general adaptive

process. Kriegspiel is a modified game of chess in which neither player is allowed to

see his opponent's moves. A referee watches both playing boards and informs players

when pieces are captured, or when a player attempts to make a move that is illegal

because the path is blocked by a piece of his opponent. A player can learn much about

the disposition of his opponent's pieces by attempting to make an illegal move. As a

result, both the amount of information a player gathers about the arrangement of pieces

and the amount by which the strength of his position changes depend upon his move.

Bush and Mosteller 1 1have developed one of the most widely known general adaptive

systems. They made no claims for their "stochastic models for learning" other than

that the models are good representations for the outcomes of certain experiments with

animals and perhaps can be applied to human behavior. The Bush-Mosteller model sup-

poses that the behavior of an organism can be represented at any time by a probability

distribution over the courses of action available to the organism. At each trial the

response of the organism and the outcome selected by the experimenter determine what

event has occurred. Each possible event is associated with a Markov operator that oper-

ates on the probability distribution. This produces a new probability distribution that

represents the behavior of the system at the next trial. Some organisms that become

better at performing certain tasks as they gain experience can be simulated by Bush-

Mosteller models. Furthermore, these models can be classified as general adaptive

systems (although this was not the intent of their authors' work) because both the data

gathered and the reward received at each trial are dependent upon the system's response

at that trial. If the parameters are properly chosen, the ratio of the number of success-

ful to unsuccessful events increases as the system gathers more data.

Robbins 1 2 has posed an interesting problem: "An experimenter has two coins, coin 1

and coin 2, of respective probabilities of coming up heads equal to P = 1 - q and p 2

1 - q2 the values of which are unknown to him. He wishes to carry out an infinite

sequence of tosses, at each toss using either coin 1 or coin 2, in such a way as to maxi-

mize the long-run proportion of heads obtained." (In this paper Robbins gave a good-

but not optimum - rule for selecting the coin at each toss. A better rule was suggested

by Isbell. 1 3 ) A system (experimenter) that performs this maximization is a general

adaptive system. The outcome of a toss is dependent upon which coin is tossed,

and this outcome determines both the payoff and the data available to the sys-

tem.

Several authors have made other excellent contributions to the field of general adap-

tive systems: Robbins,14 Flood,15 Bradt, Johnson, and Karlin,16 Kochen and Galanter,17

and Friedberg. 18,19
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II. ADAPTIVE DECISION PROCESSES

The mathematical systems that we call adaptive decision processes are general adap-

tive systems. They are more restricted than the sequential decision problems posed

by Robbins 4; but they represent a fairly broad class of general adaptive systems. It

is hoped that the solutions derived for these processes will be a step toward the solution

of more general types of sequential decision problems.

The following warfare situation is a simple example of the type of "realistic n activity

represented by adaptive decision processes. The aggressor, called player B, sends

missiles toward the defender, called player A. Two indistinguishable types of missile

can be sent by B - an armed rocket or a decoy. Player A can use a thoroughly reliable

and accurate antimissile missile if he wishes; furthermore, A can tell whether or not

a missile sent by B was armed after it has been destroyed or after it has landed in A's

territory. The only unknown quantity is the destructive power of B's armed missile when

it is allowed to reach its target. Player A has information from two equally reliable

spies. One asserts that A will lose one unit (the units may be megabucks) if he allows

a warhead to reach his shores; the other spy says the loss will be four units. Player A

assigns probability 1/2 to each of these values. However, once A allows an armed mis-

sile to land, he will know from then on whether the true destructiveness is 1 or 4. The

only other significant loss occurs if A sends an antimissile missile to destroy an

unarmed enemy rocket; the loss for this event is 2 units, because of the needless expense.

Since A faces the prospect of enduring B's bombardment for a long time, he considers

the advisability of learning, by sad experience, the loss that is due to a live missile that

is allowed to reach its target. After A has that information, he can decide upon the

desirability of using antimissile missiles. In order to make a scientific decision, A

constructs the 2 X 2 payoff matrix shown in Fig. 1. The entry in row i and column j,

B

armed decoy
Pr(all=4) = 1/2

no defense a 0
A11 I ~Pr(a1ll=-l) = 1/2

A

defense 0 -2

Fig. 1. Payoff matrix for warfare example.

aij, represents the expected return to A and the expected loss to B is a selects the

alternative corresponding to row i and B selects the alternative corresponding to col-

umn j. For example, a 1 2 equals 0 because A receives no return when he sends no anti-

missile missile against a decoy; however, a 2 2 equals -2 because A gains -2 units

(loses 2 units) and B loses -2 units (gains 2 units) when A sends an antimissile

3



missile to destroy a decoy.

In this report we present derivations for optimum strategies for player A, based

upon certain assumptions about player B. Decision processes in which the payoff matrix

is only partially specified at the beginning of an infinite sequence of decisions are

studied.

A brief introduction to the theory of games is given in Appendix I. A reader who

has no knowledge of the subject will find this introduction adequate to carry him through

all but the most detailed of the following arguments. Other references are also sug-

gested. 2 1 - 5

2. 1 Definition of Adaptive Decision Processes

An adaptive decision process consists of an m X n, two-person, zero-sum game that

is to be played an infinite number of times. After each step ("Step" implies a single

play of the m X n game.) the payoff is made and each player is told what alternative has

been selected by his opponent. The payoff matrix is not completely specified in advance.

The nature of the uncertain specification of the matrix and the process by which the

uncertainty can be resolved are the heart of adaptive decision processes. Unknown pay-

offs are selected initially according to a priori probability distributions, and the players

are told only these probability distributions. If a.. is one of the unknown payoffs, the

players do not learn the true value of a.. until, at some step of the infinite process,

player A (the maximizing player) uses alternative i and player B (the minimizing

player) uses alternative j. At this step both players are told the true value of aij, so

that it is no longer unknown; A receives aij and B loses aij. Of course, when all of

the unknown payoffs have been received, the process is reduced to the repeated play

of a conventional m X n, two-person, zero-sum game.

One can visualize a large stack of matrices, each with all of its payoffs permanently

recorded. Some of these payoffs are hidden by opaque covers on each matrix. A proba-

bility is assigned to each matrix in the stack. The players know this probability dis-

tribution. One of the matrices is chosen, according to the probability distribution, by

a neutral referee, and that matrix is shown to the players with the opaque covers in

place. The game is played repeatedly until the pair of alternatives corresponding to

one of the covered payoffs is used. The cover is then removed, and the play resumes

until the next cover must be removed, and so on. This process continues until no cover

remains. The completely specified game is then repeated indefinitely.

Three basic types of adaptive decision process are discussed in this report. Adaptive

Bayes decision is covered in Section III. This case is the situation in which player B is

nature, and the probabilities of occurrence of the n states of nature are known and are

the same at each step of the process. For example, in the problem illustrated by Fig. 1

if player B announced that half of his missiles were duds, and that there was no corre-

lation between the alternatives that he had selected from one step to the next, then A

could use the results given in Section III of this report to determine an optimum strategy.

4



Adaptive decision under uncertainty is discussed in Section V. In this case player A

knows nothing about B's strategy. The analysis is based upon the assumption that A

uses the same probability distribution over his alternatives at each step of the process

until he receives one of the unknown payoffs, after which he changes to another repeated

distribution, and so on. Furthermore, A is assumed to adopt the conservative attitude

that he should use the strategy that maximizes his return when B selects a strategy that

minimizes A's return. Referring to the problem associated with Fig. 1, we see that

adaptive decision under uncertainty implies that aggressor B knows both the true loss

associated with a hit by an armed missile and also what repeated probability distribution

defender A will use. If B always uses this information to minimize A's expected return,

then A must select a distribution to maximize the minimum return. Other ways of

approaching the problem of adaptive decision under uncertainty are discussed.

A third case, considered in Section IV, covers adaptive competitive decision. Player

B is assumed to be an intelligent player attempting to minimize the return to player A.

There are two subclasses of adaptive competitive decision: the equal information case,

in which A and B are given the same a priori knowledge about the unknown payoffs; and

the unequal information case, in which the a priori data are different. The former sub-

class corresponds to the situation shown in Fig. 1 when both players make the same

evaluation of the probabilities for payoff a 1 1; one example of the latter subclass is the

situation in which B knows the true value of all, but A does not.

2.2 Measure of Performance

The phrase "maximize the return" is not precise enough to form a basis for further

analysis. It is certainly true that A should play so as to receive a large payoff, learn

the payoffs that are unknown to him, and prevent B from learning the payoffs that are

unknown to B. Also, A should extract what information he can about the payoffs unknown

to him by observing the alternatives that B has chosen during previous steps, and not

divulging to B, by the alternatives A chooses, any information about the payoffs unknown

to B. It is necessary to find a quantitative measure of performance that will incorporate

all of these aims and then to select a strategy for A that optimizes this measure.

The measure that first occurs to us is the expected sum of the payoffs at each step

of the game. Player A should attempt to maximize this sum, and player B to minimize

it. However, since this measure is generally infinite, the maximization or minimization

of the infinite quantity would be meaningless. The difficulty of having to deal with an

infinite quantity can be solved by dividing the expected sum of the payoffs for the first

N steps by N in order to get the expected payoff per step. The limit of the expected

payoff per step can be taken as N approaches infinity. The difficulty with this measure

of performance is illustrated by a simple example. Consider two different strategies

of player A for which all of the unknown payoffs are learned before the thousandth step

of the game and the appropriate minimax strategy of conventional game theory is repeated

from the thousandth step on. Both strategies will have the same limit of expected payoff

5



per step, which is equal to the minimax value of the payoff matrix. Essentially, this

is true because in the limit the contribution of the first thousand payoffs is negligible.

This measure of performance was rejected because it neglects the effects of the data-

gathering process. A measure of performance that does not discriminate among the

many strategies for which all the unknown payoffs are learned in a finite number of steps

is not useful.

A more useful measure of performance is the expected sum of the discounted payoffs

at each step. This measure of performance has been used successfully by Arrow, Harris '

and Marschak, 2 6 and by Gillette 2 7 for handling infinite processes. The discounted pay-

off is especially pertinent to economic situations. For example, if the steps of an adap-

tive decision process are made annually and the payoff is invested at 3 per cent interest

(compounded annually), then $100 payoff received now will be worth $103 one year from

now. Also $100 received a year from now is equivalent to $100/1.03 invested now.

Therefore the present worth of all of the discounted payoffs is the expected sum of the

current payoff plus 1/1. 03 times the payoff that will be received a year from now, plus

(1/1. 03) 2 times the payoff that will be received two years hence, and so on. The expected

sum of the discounted payoffs converges. This measure of performance places more

emphasis upon present return than future return. Therefore it overcomes the objection

raised against the limit of expected payoff per step. Nevertheless, the possibility exists

that with one of two strategies all the unknown payoffs are learned within a finite number

of steps, while with the other they are not. Yet the expected sum of the discounted pay-

offs for the former strategy may exceed the sum for the latter strategy for some values

of the discounting factor and may be less for other values. This is a reasonable objec-

tion to the use of the expected sum of discounted payoffs.

Before some notation is introduced for the purpose of defining the mean loss measure

of performance, a basic theorem will be stated explicitly. This theorem states that the

players of adaptive decision processes lose no flexibility by restricting their strategies

to a class called behavior strategies. A player is said to be using a behavior strategy

if, at each step in an adaptive decision process, he selects a probability distribution

over his m (or n) alternatives and uses that distribution to select an alternative. The

distribution that he chooses may be dependent upon his knowledge of the history of the

process (alternatives selected by both players and payoffs received at all preceding

steps). Since behavior strategies are completely general for adaptive decision proc-

esses, in the following discussions it will be assumed that players do use behavior strat-

egies. This theorem is an obvious extension of Kuhn's results.2 8

Some notation can be introduced. The probability distribution used by player A at

the kth step is denoted pk pk k .. Pm), where pk is the probability that A selects

alternative i at the kth step. Hence

m

i=l

6

__ I



k k kSimilarly, the probability distribution used by B at the kth step is denoted q (ql qk
k\ k k "' 

., ). Note that k is a superscript -not a power. In general, pk and qk depend upon
the past history of the process. The value of the payoff matrix is denoted v; it rep-

resents the maximum expected return that A could guarantee himself (by an appropriate

selection of a probability distribution) at one step, if all of the unknown payoffs were

uncovered. Of course, v is a function of the values of the unknown payoffs. The precise

meaning of the value of v for the three cases of adaptive decision processes will be dis-

cussed in the appropriate sections of this report. The expected return to player A at

the k th step, when A uses pk and B uses qk, is denoted r k

m n

rk _ E X piiqj aij.

i=l j=l

Since some of the quantities ai. represent unknown payoffs, rk is a function of pk qk

and of the values of the unknown payoffs. The term Lk = v - r is called the single-step

loss at the kt h step; it is the difference between the expected payoff that A could guaran-

tee himself if the values of the unknown payoffs were known and the expected payoff A

does receive. If the limit as N approaches infinity of the sum of single step losses for

the first k steps exists, it is called the total loss L. The values +oo and -0o are allowable

limits.

00

L= Lk

k=l

The expected value of the total loss L, with respect to the probability distributions for

the unknown payoffs, is called the mean loss. It is denoted

L= L(unknown payoffs) dP(unknown payoffs),

where P(unknown payoffs) denotes the cumulative probability distribution function for the

unknown payoffs. The derivations of the mean loss for the three cases of adaptive deci-

sion will also be covered.

The single-step loss, Lk , represents the expected loss to A at the kt h step because

of his lack of data for the unknown payoffs. L k is similar to the "regret" or "loss" func-

tion defined by Savage, 2 9 except that regret is defined as the difference between what

a player could receive if he knew his opponent's choice of alternative, and what he does

receive. Lk is the loss for a single step of the game. When the losses for all of the

steps are summed, the total is L, which is a function of the values of the unknown pay-
offs and p , q p , q2 L is the total loss that A sustains because of his igno-

rance of the true values of the unknown payoffs. L, the expected value of L (with respect

to the probability distributions for the unknown payoffs), is the measure of performance

used in this report.

7
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Player A should play so as to minimize the mean loss L; whereas, B should play

to maximize this quantity. If A plays wisely, Lk will be smaller, in general, than if

he plays foolishly, and as a result L will also be smaller. Two other factors suggest

that the mean loss is a good measure of performance. First, it will be demonstrated

that there exist strategies for the players that make finite. Second, if we consider

the definitions for L and L applied to an N-truncated adaptive decision process (a proc-

ess that terminates after N steps), we arrive at conclusions that seem reasonable. The

following relationships are clearly true:

N

LN Nv - rk

k= 1

N

LNv Nv- rk,
k=l 

kk 1
where LN is the total loss, and LN v, and r k are the mean values of LN, v, and rk

respectively. Since V is not dependent upon the strategies used, the mean N-truncated

loss, LN, is minimized when player A maximizes the expected sum of his returns at

the first N steps, and L N is maximized when B minimizes that sum. Hence, by using

the mean N-truncated loss measure of performance, we arrive at the same optimum

strategies for A and B as we would when we apply the measure of performance that was

suggested first to the truncated process (the expected sum of the payoff at each step).

Note that assumptions of linear utility preference, independence of utility with time

and absence of intrapersonal variations in utility, have been tacitly made. They enter

implicitly into the definition of the mean loss.

2. 3 Summary of Results

Through adaptive Bayes decision it has been demonstrated that an optimum strategy

for player A consists of the repeated use of one probability distribution over A's alter-

natives until one of the unknown payoffs is received, and then the use of another distribu-

tion until another payoff is received, and so on, until all of the payoffs are known. Then

A must repeat another probability distribution indefinitely. Such a procedure is called

a piecewise-stationary strategy. The probability distributions in the optimum piecewise-

stationary strategy assign probability 1 to one of A's alternatives and 0 to the others.

In general, A should attempt to learn the unknown payoffs as soon as possible. A tech-

nique is presented for reducing the computational effort required to determine the opti-

mum piecewise-stationary strategy. This simple method eliminates a large amount of

computation.

The analysis of adaptive decision under uncertainty is based upon the assumption that

player A uses a piecewise-stationary strategy. The significant result is that A can

guarantee that the mean loss is finite if he selects a probability distribution that lies

8



inside a certain linear constraint space, That is, if the components, P1 , p 2 , ... , P

of the p vector satisfy a given set of linear inequalities, then L must be finite. When

only one payoff is unknown, the optimum p vector is calculated by a simple algorithm.

No simple rule has been derived for the case in which there are two or more unknown

payoffs.

The principal results for adaptive competitive decision are: (a) a minimax solution

exists for the case in which there is equal information, and piecewise-stationary strate-

gies are optimum for both players; and (b) in general, piecewise-stationary strategies

are not optimum for unequal information. A straightforward technique for computing

the minimax strategies in problems of equal information will be developed in Section V,

but no solution is available for the unequal information case. Another result demon-

strates that competitive processes with unequal information can be given meaning as

infinite game theory problems.

9
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III. ADAPTIVE BAYES DECISION

If player B uses the same probability distribution at each step of the decision proc-

ess, and if the alternatives are selected independently at each step, then B is said to

be using a stationary strategy. In the adaptive Bayes decision process player B is

assumed to use a stationary strategy, which is known to player A. This corresponds

to situations in which the alternatives of player B represent possible states of nature,

the probability distribution over the states of nature is known, and the state of nature is

independently determined at each step of the process. The payoff a.. represents the
1J

award to player A when he uses alternative i and state of nature j occurs. An example

of the situation illustrated by Fig. 1 would be a problem of adaptive Bayes decision if

the defender (player A) learned through his spies that the aggressor intended to send a

certain fraction, ql, of his missiles with warheads and q2 = 1 - ql without warheads.

It is also assumed that none of B's alternatives occurs with zero probability:

qj> 0 for j = 1,...,n.

This eliminates from consideration extraneous columns of the payoff matrix.

It is demonstrated in Appendix II that the piecewise-stationary strategy for which the

mean loss is smallest is actually the optimum strategy

min L(S') = min L(S),

where S' represents the class of all piecewise-stationary strategies, and S is the class

of all possible strategies. This result is the one that intuition leads us to expect. Since

no new data are gathered until one of the unknown payoffs is received, it does not seem

likely that the probability distribution for each step of the optimum strategy should

change between the times when unknown payoffs are learned. The reader is advised to

defer the reading of Appendix II until he has read section 3. 1. The result given in Appen-

dix II, however, is used hereafter.

3. 1 Single Unknown Payoff

The value, v, of the payoff matrix in the adaptive Bayes decision process represents

the largest expected return that A could guarantee himself, for a single step of the proc-

ess, if he knew the true values of the unknown payoffs

m n m n

v max( I piqjai) max Pi qi (1)
P i=l j=1 P i=l j=l

where p represents the set of all probability distributions over the alternatives of A.

The expected return when alternative i is used will be denoted

n

E(row i) = E qjaij .

j=l

10



When the notation E(row i) is used in Eq. 1, we have

m

v = max Pi E(row i) = max E(row i) (i= 1).
P i=l i

The case for a single unknown payoff is considered first. It is completely general,

in order to let a11 be the unknown payoff. The single-step loss at the first step and
1at each succeeding step, until a1 is received, is L = v - r. Because of the stationari-

ness of the strategies of A and B, it is true that

1 2 3
P=P =P =p =...

1 2 3
q=q =q q =

until al11 is received. Therefore, no superscript is applied to the expected return, r.

After a11 is received, A is assumed to use an optimum strategy for the succeeding

steps of the process. This is a fundamental assumption that will be used many times

in this report. In general, for the purpose of calculating optimum strategies at any step

of an adaptive process, the assumption is made that the players use optimum strategies

for the process that remains after the next unknown is discovered. This assumption

may be made only for situations in which the techniques of finding the optimum strategies

have been developed. Once a11 is discovered, A has all the data available to determine

the alternative(s) for which the expected return equals the value of the payoff matrix.

As a result, by repeatedly using an optimum alternative, A can play so that the single -

step loss is zero after a1 is received.

It follows that

Lk (1Plql)k- L1

because the single-step loss at the kt h step equals the probability that a l l is not dis-

covered before the kth step [(l-plql)k- l ] times the single-step loss when all is not

known [L1 ] (plus the probability that all is discovered before the kth step times the

single-step loss when a11 is known, which equals zero). Therefore, the total loss is

oo o00

L= L k= (-plq I)k- lL,

k=l k=l

and the mean loss is

oo

L = (1-plql)k 1 L 1, (2)

k= 1

where L 1 is the mean value of Ll(all) with respect to the unknown payoff. If P(all) is
the cumulative probability distribution function of unknown payoff all' then

11



Lo SLl(all ) dP(a I1 ).

The single-step loss L1 is non-negative for all possible values of all and all distribu-

tions P because the value v of the payoff matrix represents the maximum value of r.

Consequently, L is always non-negative. As a result, L exists and is a non-negative

number or +oo.

It may be possible to select a distribution, p, for which L equals zero. This is

true if r = v for all possible values of all; that is, if

m

Pi E(row i) = max E(row i)
i

for all possible values of a 11 ' This is equivalent to stating that there exists an alter-

native i for which E(row io) > E(row i) for all possible values of al 1 and all i i i o .

This is true if either of these cases holds:

(a) Emin(row 1) > E(row i) for all i 1.

(b) E(row io) > Emax(row 1), and E(row io) >E(row i) for all i 1 or i o.

E max(row 1) and Emin (row 1) denote, respectively, the maximum and minimum possible

values of E(row 1):

n

Emax(row 1)= qlall max + qja 1j
j=2

n

Emin(row 1)= qal1 min + qjalj,
j=2

where a11 max and a1 mi are, respectively, the maximum and minimum possible val-

ues of all . If we introduce the following notation, the results just derived can be

expressed more concisely:

n

E(row 1) ql SalldP(all) + qjalj

j=z

If case (a) holds, V = E(row 1). Thus L equals zero if A uses alternative 1 repeatedly.

If case (b) holds, = E(row io), so L equals zero if A uses alternative i repeatedly.

Case (a) implies that the expected return for alternative 1 is at least as large as the

expected return for any other alternative, irrespective of the true value of a 1 1; case

(b) implies that the expected return for alternative i is at least as large as the expected

return for any other alternative, irrespective of the true value of a 1'

12
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Once the cases for which = have been dealt with, it is possible to con-

sider the remaining cases, for which > . (The quantity T is the mean value of r:

= f r(a ll) dP(all ) plql fa 11 dP(all ) + Z piq.a..) Equation 2 implies that

v-r M (3)
p 1 q1

It is demonstrated in Appendix III that r assumes its minimum value for some
P 1q 1

distribution, p, with one component equal to 1 and the remaining components equal to 0;

therefore, Eq. 4 follows from Eq. 3.

-min minv - r min - E(row 1) - E(row 2) - E(row m)
P p q p q1 0 0

(4)

Because V > T for all distributions p and because ql > 0, it follows that

L V - E(row 1)
min q1

The optimum strategy for A is to use alternative 1 repeatedly.

All of the preceding results can be summarized by saying that

0 if V = E(row io) for any io 2, . .,m

Lmin =
V - E(row 1)q otherwise.

Therefore, the minimum mean loss, Lmin, is bounded if all positive payoffs are boun-

ded. If a distribution, p, with its it h component, Pi, equal to one is denoted by ei , then

we can say

ei0 if V = E(row io) for any io = 2,...,m

Popt =

el otherwise.

The meaning of this result is clear. The logic behind the cases in which V = E(row i)

or V = E(row 1) has been discussed already. The mean loss is 0, for in these cases player

A has no reason to wish to know a1 1 , since no matter what value the unknown assumes,

alternative i dominates all others. Therefore, A's strategy involves no attempt to learn

the true value of a 1 1' However, in the case for which there is no uniformly best alter-

native, A's optimum strategy is to use alternative 1 repeatedly (in order to discover the

true value of unknown payoff all as soon as possible), and after a1 has been received

to use an optimum alternative repeatedly for the conventional Bayes decision process

that results. In this case the mean loss equals the mean single-step loss,

13
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I
L = V- E(row 1) > 0,

times the expected number of steps before all is discovered, which is 1/q 1 .

If q = (1/2, 1/2) for the missile defense problem of Fig. 1, the following quantities

are easily calculated:

-2 if -4 -1 if a -4

E(row 1) /2 if a -1, v(a 1 ) 
-1/2 if all -1,/2 if a

E(row 2) = -1.

The preceding analysis indicates that Lmin equals +1:

-3/4 - (-5/4)

mm 1/2

A's optimum strategy is to use alternative 1 repeatedly until all is received, after which

he should use alternative repeatedly if all = { -14

3.2 Multiple Unknown Payoffs

The following discussion is for the purpose of determining the optimum probability

distribution, Popt' for the first segment of A's optimum piecewise-stationary strategy

when two payoffs, a 1 1 and a 2 2 , are unknown. The special cases in which both unknown

payoffs are in the same row or column of the payoff matrix will also be mentioned. After

one step of the process has occurred, either a 1 has been received (with probability

p 1 ql), a 2 2 has been received (with probability p2 q2) or neither has been received (with

probability (1-p 1 q l-p 2q 2 )). Player A can play in an optimum fashion after he has dis-

covered a 1 or a22' since the optimum strategy for cases with a single unknown payoff

has been derived. Let the total loss sustained by A if he uses the optimum strategy for

the process with a single unknown payoff, a2 2 , be denoted Lmin all. The optimum

strategy is a function of the value of a1 ; therefore Lmin a 1 1 is a function of both all

and a 2 2. Lmin la 2 2 is defined analogously.

Since player A uses a piecewise-stationary strategy, the single-step loss at each

step is L 1 until all or a22 is received, after which the loss is Lmin lall or Lminla22.

Therefore, the total loss is

+ ( 1-P1q 1 -P 2 q2 ) [ L +PlqLmin la 1l +P 2 q2 Lmin la 2 2

+ (l-pll-P 2 q2)[L 1 + ... ]]

(L +plqlminlal +p2q2Lmin a22) (1 -p1q1P2q2)k; (5)
k=O

14
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and the mean loss is

00

L Z(iO~p q L 1,111p~q'2)E (\ -k (6)
k=O

where

L~mla~ -(a ) dP(a )Lmin I a 1 Lmin(a 1 1 

Lmin(all) is the minimum mean loss for the process with a single unknown payoff a2 2 ,

as a function of a11 ' Lmin la22 is defined similarly.

It may be possible to select a distribution, p, for which the mean loss, L, equals

zero. Because L Lmin al, and Lmin a 2 2 are non-negative for all possible values

of the unknown payoffs and for all distributions, Eq. 6 implies that the mean loss is zero

if and only if L 1 la Lmin la22 = 0. The mean single-step loss, L1, equals

zero when r = v for all possible values of (al 1' a 2 2 ); that restriction also implies that

both Lmin all and Lmin la 2 2 equal zero. Conditions (similar to cases (a) and (b) for

the single unknown payoff process) that must be satisfied if the preceding restriction is

to hold, are easily derived. These are cases in which V equals E(row i ), E(row 1),

or E(row 2). Player A has no need to learn the true values of the unknown payoffs. If

these cases are eliminated first, then the situation in which L1 is positive may be

handled. Equation 6 leads to the following expression for the mean loss.

L 1 + PlqLmin lall + p 2qLminla 2 2
L

Plql + P2 q2

A result of Appendix III implies that L assumes its minimum value for some distribution

= ei

Lm .< - E (r w 1) + qminl V(row 2) + q2Lminla 2 2
mm ql q2

V - E(row 3) v - E(row m)
0(rw ) 0qlminla

If V > F for all p, the following relation is true:

min[V-E(row 1)+qmini la V-E(row 2)+ qzLmin az]min q1 q2

where the definition of E(row 2) is similar to that of E(row 1). All of the preceding

results can be summarized in the following form:

15
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0 if = E(row i ) for any io = 3 . .. ,m

minv -E(row 1) + qLminal v - E(row 2) + q2Lminla2 otherwise
mn ' q2 otherwise

(Lmin is bounded if all possible payoffs are bounded.)

ei if v = E(row i) for any i = 3...,m 
0

P - v - E(row 1) + qlLmin all <V - E(row 2) + q2Lmin a 2 2opt e1 otherwise, if 1 q2

e2 otherwise.

Once again, the solution shows that the optimum strategy for player A is to use

alternative 1 or 2 repeatedly in order to find out unknown payoff a 1 or a22 as soon as

possible, unless the expected return of row i is greater than the expected returns for

all of the other rows, irrespective of the true values of a11 and a22. (In the last case,

A is not interested in learning the true values of a l l and a 2 2 , so he uses alternative

i repeatedly.) After A learns the value of a11 or a22, he should use the optimum strat-

egy for the process with a single unknown payoff that remains.

We may ask the questions: If player A must learn both a11 and a22 eventually, what

difference does it make which he tries to learn first? Why should there be any difference

between the mean losses when we use p = e or p = e 2 ? These questions are answered

with the help of the mathematical manipulation included in Appendix IV. The results in

Appendix IV may enable player A to determine his optimum strategy by means of very

simple calculations. This method of determining Pp t is called the abbreviated method,

and is valid when a11 and a22 are statistically independent. Three possible situations

can arise:

(i) E max(row 1) > E max(row 2)

(ii) Emax(row 1) < E max(row 2)

(iii) Emax(row 1) = Emax(row 2).

In the first case, the optimum strategy for A is to use p = e 1 . The reason is that when

player A uses e and discovers the true value of all, it is possible that E(row 1) 

E max(row 2). (The expected return for alternative 1 is at least as large as the expected

return for alternative 2 - irrespective of the true value of a 2 2.) Thus, after discovering

all, A may never wish to learn the true value of a22. On the other hand, if player A

starts the two-unknown payoff process by using e 2, he must always learn a l l after he

discovers the true value of unknown payoff a 2 2 because it is impossible, by the definition

16
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of case (i), to find that E(row 2) > Emax(row 1) for any value of a22. Therefore, if A
must always use e 1 at some part of his piecewise-stationary strategy until he discovers

al 1 his optimum strategy is to do this first and then use e 2 only if it is necessary. In
case (i) it is not true that A "must" learn both all and a22 eventually. In case (ii) Popt

e2 ; analogous reasoning demonstrates the validity of this result.

There are four subcases of case (iii)

(a) Pr(a11=all max = 0, and Pr(a22 a22 ma x 0,

(b) Pr(a1 1= a l l max) > 0, and Pr(a 2 2 a 2 2 max) 0

(c) Pr(all a l l max) 0, and Pr(a 2 2=a 2 2 max) > 0'

(d) Pr(a1 1= a l11 max) > 0, and Pr(a 2 2=a 2 2 max)> 0.

Subcase (a) is the situation in which the random variables a1 1 and a 2 2 have probability

distribution functions with probability zero of actually attaining the maximum values,

or else they have infinite maxima. The solution for subcase (a), according to the results

of Appendix IV, is that the mean losses resulting from the use of distribution e1 or e 2

first are the same, so both strategies are equally optimum. The reason is that after

learning all, it will be necessary with probability one for A to learn a22 in order to

discover the optimum strategy for the payoff matrix, and vice versa. The solution for

subcase (b) states that Popt = el', since if e 2 is used first, it will be necessary with
probability one to use p = e1 to discover al; however, if e1 is used first, it will be

necessary only with probability Pr(al 1 < all max ) to use e 2 in order to discover a2.

Subcase (c) is the converse of subcase (b): Popt = e2' Subcase (d) is not as simple as

the others, and involves the comparison of the following expressions:

E (row 1) - E(row 1)max
ql Pr(a22=a22 max)'

E (row 2) - E(row 2)

mx q2 Pr(al l=al 1 max)

If the former is smaller, Popt = e; if the latter is smaller, Popt = e 2 ; if the two terms are
equal, both e 1 and e 2 are optimum. It is difficult to read any significance into this result.

Because of the abbreviated method it is possible to derive the optimum strategy from

a few easily calculated quantities. An example is worked out in Appendix V by both the

regular and abbreviated methods, to illustrate the concepts just derived. This example

is a dramatic demonstration of the power of the abbreviated method.

The special cases in which the two unknown payoffs are in the same row or column

must be considered now. If the unknown payoffs are in the same column, the preceding

results apply with extremely minor modifications. It is obvious that the preceding

results can also be specialized to handle the case in which both unknown payoffs are in

17
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the same row. Assume that al and a12 are not known. Some simple manipulations
lead to the following conclusions:

0 if = E(row io) for any i = 2, ... ,m

min
V - E(row 1) + qLminlall + qLminla12 otherwise

otherwise
q + q2

and

Sei if V = E(row io) for any io = 2, ... ,m

Popt =

He 1 otherwise.

The case with three unknown payoffs, all, a 2 2 , and a3 3 , is handled just as the case
of two unknown payoffs:

O if = E(row i) for any i = 4,...,m

Lmin V - E(row i) + qiLmin aii
i=, 2, 3 qi 1t min qi 1 otherwise.

Here, for example, L min = in(all ) dP(all), and Lmi (all) is the minimum

mean loss for the case with the two unknown payoffs a22 and a33 as a function of a 11

The reader will appreciate the difficulties in notation that arise when an attempt is
made to write a general expression for cases of more than two unknown payoffs with all
possible locations of the unknown payoffs taken into account. Nevertheless, the prin-
ciples that have been described are still valid for more than two unknown payoffs. A
general principle that deserves attention is that Lmin is bounded whenever all possible
payoffs are bounded.

Algorithms that take into account all possible situations that arise can be constructed
for the purpose of machine computation of optimum strategies. The computations for
k unknown payoffs depend upon computations for the k cases of k-I unknown payoffs,
each of which, in turn, depends upon the k-i calculations for processes with k-2 unknown
payoffs, and so on. The reader who has ventured into Appendix V will realize how very
rapidly the magnitude of the computational effort grows with the number of unknown pay-
off s.

It is regrettable that the complexity of the calculations for three or more statistically
independent unknown payoffs prevents an extension of the type of analysis for the abbre-
viated method which was performed in Appendix IV with two statistically independent
unknown payoffs. Nevertheless, the arguments presented above in support of the
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analytic results are valid, so the abbreviated method can be extended to the cases in

which there are more than two independent unknown payoffs. The essence of the method

is, first, to check for the cases in which V = E(row i) or V = E(row i) and for the cases

in which the minimum expected return for some alternative exceeds the maximum

expected return for another alternative. After these situations are dealt with in the

appropriate manners (if V = E(row i) or V = E(row i), Popt = ei; if alternative i is domi-

nated, eliminate it from consideration), a comparison is made of E max(row i) for all

alternatives associated with unknown payoffs. If there is a single maximum term, then

Popt = ei' where i is the index of the maximum alternative. If the maximum is assumed
for two or more alternatives but the probability is zero that the expected return for any

of these alternatives assumes its maximum value, then Popt = ei' where i corresponds

to any one of the maximum alternatives. The case in which several alternatives have

the same maximum value of expected return but only one has a finite probability of

assuming the maximum implies that Popt = ei i corresponding to the unique row.

Because the few remaining cases have proved too complex to understand, it is necessary

to return to the standard method in order to calculate the optimum strategies when sev-

eral alternatives have positive probability of assuming the same maximum value of

expected return.
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IV. ADAPTIVE DECISION UNDER UNCERTAINTY

4. 1 The Meaning of Adaptive Decision Under Uncertainty

When player A is making decisions in the face of uncertainty, he knows that at any

step of the decision process one of n states of nature exists. The uncertainty about

which one exists, and the uncertainty about the process that selects the state of nature

are the problems player A must face. If the probability distribution of the states of

nature is stationary, and if A knows what this distribution is, he should use the optimum

strategies developed in Section III for adaptive Bayes decision processes. Under other

circumstances he must resort to different techniques.

If nature uses a stationary strategy but A does not know the repeated distribution,

he is forced to make some assumption that will make the problem amenable to solution.

The validity of the assumption depends upon the nature of the process. For example,

A may assume the existence of an a priori probability distribution over the possible

probability distributions of nature 's stationary strategy. (A common a priori distribu-

tion is the one for which all of nature's distributions are equally likely.) After each step

of the process player A can derive an a posteriori probability distribution of nature's

distributions, which is a function of the a priori distribution and the alternative used

by nature. When A has learned all of the unknown payoffs, his problem is not com-

pletely solved. Because he does not know B's strategy, he does not know which of his

own strategies is optimum. The problem A faces when all of the payoffs are known is

an example of a special adaptive process, since the information gathered about B's strat-

egy is independent of A's strategy. The problem is a generalization of a problem dis-

cussed by White.7 The optimum strategy for player A is to use, at each step, the

alternative for which the expected return, at that step, is maximized. The correct

alternative is easily determined. The problem that A faces before he knows the entire

payoff matrix is a general adaptive process, since the information that he gains about

the unknown payoffs depends upon the alternative he selects, so the interesting question

is, How should A play when some payoffs are unknown? The mean-loss measure of

performance can be applied to this form of the adaptive decision under uncertainty prob-

lem. A reasonable definition for v, the value of the payoff matrix, is the expected

return player A could guarantee himself if he knew both the true values of the unknown

payoffs and the distribution used by nature. In this case the single-step loss does not

equal zero when all of the payoffs are known, as it does in the adaptive Bayes decision

process. Since it is not known whether the mean loss can be finite for any strategy of

A, it may be necessary to use a different measure of performance.

Player A faces a more difficult task when it is not reasonable to assume an a priori

distribution for the distribution of nature's stationary strategy. It must be realized

that the simpler problem of how to play a game against nature when nature 's strategy

is unknown - but all the payoffs are known - has not been solved yet. One conservative

20

__



approach advises player A to use the minimax distribution for the payoff matrix

repeatedly. This strategy guarantees A an expected return of at least v at each step.

Another approach advises A to make use of his knowledge of the alternatives selected

by nature at preceding steps in order to estimate nature's strategy. A paper by Hannon 3 0

deals with this technique. However, there is no generally accepted solution to the prob-

lem. Because of the difficulty in finding a satisfactory solution for the special adaptive

process under uncertainty when all of the payoffs are known, the general adaptive proc-

ess of repeated decision under uncertainty when some payoffs are unknown appears to

be a monumental problem.

When the assumption that nature uses a stationary strategy is not valid, the problem

is even more difficult. A very cautious approach suggests that A assume that nature's

strategy is chosen to maximize A's loss. That is, whatever strategy A uses, nature

selects the worst (from A's viewpoint) possible strategy. Therefore, A should select

a strategy that will minimize the maximum loss. Then he can guarantee that his loss

never exceeds the minimax value, irrespective of the actual strategy used by nature.

(Because this is an infinite process, the minimax loss does not necessarily equal the

maximin loss.) The problem handled in sections 4. 2 and 4. 3 is closely related to the

minimax formulation. The true minimax problem is a problem of adaptive competitive

decision with unequal information - the case in which player B knows all the payoffs.

The general solution for this problem has not been found; the problem discussed in sec-

tions 4. 2 and 4. 3 is the minimax solution when player A is restricted to the use of

piecewise-stationary strategies. Player B is assumed to use the strategy that maxi-

mizes the total loss; this maximizing strategy is a function of both the true values of

the unknown payoffs and A's strategy. Player A's optimum piecewise-stationary strat-

egy is the one that minimizes the mean value of the maximum total loss.

The calculation of minimum mean loss to be given presently is an upper bound to

the loss sustained by player A in problems of adaptive competitive decision with unequal

information. If A uses a better strategy than the optimum piecewise-stationary strategy,

the mean loss will be smaller than the quantity calculated here; however, the strategy

derived below will be a fairly good mode of play for both the problem of competitive

decision and adaptive decision under uncertainty. Furthermore, some very interesting

concepts are brought to light by this study.

The problem of Fig. 1 represents a case of decision under uncertainty if it is known

that the aggressor sends only live missiles, but the warheads are unreliable and may or

may not explode. Player B is assumed to be a capricious gremlin who determines

whether each missile will explode. The first alternative of B represents explosion; the

second alternative, nonexplosion. (The payoffs in Fig. 1 ought to be modified in order

to take into account the cost to B of armed missiles that fail; however, the purposes

of this exposition will not be furthered by a change in Fig. 1.) Player A, being very

cautious, assumes that the gremlin knows both the piecewise-stationary strategy that

A will use and the true value of all, and will use this information to maximize A's total
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loss. Therefore, A should select a strategy that minimizes the mean value of the max-

imum total loss.

4. 2 Single Unknown Payoff

The value of the payoff matrix, v, represents the largest expected return player A

can guarantee for one step of the process when the payoff matrix is completely known.

Since it is assumed that B selects a strategy to minimize the return, v equals the mini-

max value of the payoff matrix, which is a function of the unknown payoffs:

m n m n

v max m pi qiaij = in max 7 piqjaij

p q =l j=l P i=lj=

Assume that only payoff al 11 is not known. Because A is assumed to use a piecewise-

stationary strategy known to B, it can be shown that player B maximizes the total loss

by using his optimum piecewise-stationary strategy. The arguments of Appendix II apply

almost directly to this case. Because both players are assumed to use the minimax dis-

tributions repeatedly after payoff a 11 has been received, the single-step loss equals zero

after that step. This result allows us to prove that to every nonstationary strategy of

B there corresponds a memoryless sequence of distributions for which the total loss

to player A is no smaller than the loss for the nonstationary strategy. The total loss

can be written

00 k-1

L= 7 (v-r) ( I-Plqtl),

k= t=O

where 1 - plql is defined to be equal to one. No matter what probability distribution

A uses, B can select a distribution for which the single-step loss is non-negative; there-

fore, the least upper bound to the total loss, with respect to B's strategies, is non-

negative. Let the least upper bound of L be denoted L o. If Lo = 0, player B can attain

a total loss of zero by using a stationary strategy. If 0 < Lo < +oo, the logic of Appen-

dix II can be used to show that the optimum piecewise-stationary strategy for B ensures

a total loss of Lo. It is easily shown that if Lo = +oo, B can attain a total loss of +oo by

using a stationary strategy.

It is possible, therefore, to write an expression for the total loss as a function of

the piecewise-stationary strategies of A and B (and of all):

oo

L = (1-plql)k-l(v-r). (7)
k= 1

Three cases can arise:

(a) the maximum value of v-r (with respect to q) equals zero;

(b) the maximum value of v-r is positive, and P1
= 0; and
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(c) the maximum value of v - r is positive, and P > 0.

In case (a), L = when B sets q = ej for any j for which E(col j) = v. At least one such

alternative j exists. Then the maximum total loss equals zero. The quantity E(col j)

represents the expected return when B selects alternative j:

m

E(col j) A Piaij.

i=l

In case (b), L = +oo if B sets q = e for any j for which v > E(col j). There must be at

least one such alternative. The maximum total loss for case (c) must be positive. This

expression for the total loss follows from Eq. 7:

v-r [vr- if v r

L= pq Pif (8)

0 if v = r.

In Appendix III it is shown that an expression of the form (v-r)/p l ql assumes its maxi-

mum value with respect to q when q = e for some j = 1, ... , n. If the largest of the n

terms equals a positive number c and occurs for q = e with j 1, and if v = E(col j),

then

v-r 0max v = 
q Plql 

But Eq. 8 implies that L = 0 when v = r. This difficulty can be avoided if B chooses q

close - but not equal - to e., so that L is as close to c as desired. Therefore, it is
J

possible to write

L max L max v-E(col 1) v-E(col 2) v-E(col n)
Lmax axL max P ' 0 

q L

(This expression is admittedly meaningless and is to be accepted only as a convenient

notation for the preceding description of the quantity L ma.) Notice that cases a and bmax

are also included in the notation of Eq. 9 for Lmax'

Because Lmax is non-negative for all possible values of p and all ' the mean loss,

L(p) -- Lmax(p, al 1 ) dP(al 1)'

is infinite if Lmax = +oo for any values of a 1 that have finite probability. In order to

ensure that L(p) is finite, A must select p so that the following relations are satisfied

for all possible values of all:

E(col 1) >-v if P1
= 0

E(col j) >-v for j = 2, ... ,n.
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These inequalities follow from Eq. 9. If they are satisfied for the largest possible value

of v, they are satisfied for all other possible values. Since v is a monotonic, non-

decreasing function of a1 1 , it assumes its maximum possible value, vmax, when the

unknown payoff assumes its maximum possible value, all vmax ' (all max

Therefore, A guarantees that L(p) is finite if he selects a probability distribution, p,

that satisfies these inequalities:

m

a) Piaij > vmax for j = 2, .. ,n,

i=l

m

b) Piail >1 vmax if P1
= (10)

i=1

m

C) Pi = 1
i=l

d) Pi > 0 for all i = 1, ... ,m.

This is an important result. No matter what piecewise-stationary strategy A selects,

and no matter what value the unknown payoff assumes, player B can select a piecewise-

stationary strategy (that depends upon p and a 1 ) for which the total loss is non-negative.
If A uses a distribution p that does not satisfy inequalities (10a), then the expected

return for some alternative j 1 of player B is less than the value of the payoff matrix

for some possible value(s) of al 1 ' B's optimum strategy for that value(s) is to select

alternative j repeatedly. In this case the single step loss is positive at each step:

L =v - E(col j) > 0 for k = 1, 2, ....

Because j 1, player A never learns the true value of the unknown payoff. As a result,

the total loss is infinite, so the mean loss is infinite also. If inequality (10b) is not
satisfied, then for some possible value(s) of a1 1

Lk =v - E(col 1) > 0 for k = 1,2,....

if B selects alternative 1 repeatedly. Because A never receives a11 when P1 = 0, the

total loss and the mean loss are infinite. Relationships (10c) and (10d) are the restric-

tions imposed by the fact that p is a probability distribution.

Inequalities (10a), (10c) and (10d) describe a closed convex polyhedron in m space.

The coordinates of this m space are P 1, ... , m. (Actually, the inequalities determine

a closed convex polygon in one hyperplane of m space.) This polyhedron will be called

a constraint space for player A.

There exists at least one distribution that lies in the constraint space. Let a 11 max
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be substituted for all in the payoff matrix. A minimax strategy of player A for one

play of this game is a probability distribution that satisfies inequalities (10a), (10c) and

(10d), as well as (10b). Therefore, there exists at least one distribution, p, inside the

constraint space for which L(p) is finite. This is a major conclusion. It demonstrates

that L(popt ) is always finite.

The next step in the solution is the selection of a distribution that lies inside the con-

straint space and for which the mean loss is minimized. The case in which the proba-

bility equals zero that v actually attains its maximum value is considered before the

more involved cases: Pr(v=vmax ) = 0. This condition means that a11 attains its maxi-

mum value with probability zero (the cumulative probability distribution function P(a 1 1)

is continuous at all 1 max) and that v(a 1 ) has a positive derivative at a1 max' In this

case when p lies in the constraint space, the following relationship is true with proba-

bility 1:

m

; Piaij Vmax
i=l

for j = 2, ... ,n.

By the definition of v, it is impossible that

m

piai > v
i=l

therefore,

m

E(col 1) =

i=l

with probability 1. As a result, B

mize the total loss for all possible

v - E(col 1)

L 
max

must use

values of

alternative 1 repeatedly in order to maxi-

al1' Equation 11 follows immediately.

if v > E(col 1)

(11)

if v = E(col 1),

and

- E(col 1)

P1

if V > E(col 1)V

L(p) =

0 if V = E(col 1)

where E(col 1) represents the mean value of the expected return for alternative 1 with

respect to unknown payoff a 1 1 . Note again that when A selects p inside the constraint

space, he forces B to use alternative 1 repeatedly, with probability 1.
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According to a result given in Appendix III, the quantity (-E(col 1))/p 1 , assumes

its minimum value at one of the vertices of the convex polyhedron described by inequal-

ities (10). Also the case in which V = E(col 1) occurs at a vertex, if it occurs at all.

Because the polyhedron has a finite number of vertices, L(p) can be calculated for each

of the vertices. The smallest of these numbers is Lmin:

Lmin - min L(p) = L(pt)

The techniques for finding the vertices of a polyhedron in m space should be familiar

to those who are acquainted with the linear programming problem. It is admitted that

finding all of the vertices and calculating L(p) for each of them can be a lengthy process.

The following example illustrates the procedure outlined above for finding Lmin and

Popt'

B

1 2 3

1 aif all <-2

A 2 + all if -2 - all <-1

3 0 0 -1 if a1 1
> -1

Here, P(a 1 1) is the cumulative distribution function for a 11 , corresponding to a flat

probability density between -2 and -1, and probability 0 elsewhere. The following quan-

tities are easily calculated:

a 1

11

V(a 11 )=

0 if all > 0, vmax = -1/3.

The constraint space is defined by these relationships:

Op - 1P2 + Op3 a -1/3,

0Pl - P2 + P3 >- -1/3, corresponding to (10a)

0p1 + Op2 - lp3 > -1/3,

p1 + P2 + P3 = 1, corresponding to (10c)

p1 _ 0, P2 > 0, P3 > O0, corresponding to (10d).

The four vertices of this polyhedron can be easily derived:

Pa = (1/3, 1/3, 1/3), Pc = (2/3, 1/3, 0),
(13)

Pb = (2/3, 0, 1/3), Pd = ( 1, 0, 0).
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The following quantities are needed to evaluate L(p):

*- 21 al da 1 1 = -. 372,
Therefo 2 l 11

Therefore, if p lies in the constraint space

-. 372 - (-1.5Pl+Op2 +OP 3 ) 1. 5P 1 - 372

L(p)= p1 P

0

if 1. 5 - .372 > O

if 1. 5p - .372 = O.

Thus

Lmin = L(Pa) = .384, Popt = (1/3, 1/3, 1/3).

This example has illustrated the straightforward procedure that is followed for finding

Lmin in case v attains its maximum value with zero probability. There are two other

cases that can occur. The possible situations that arise are illustrated graphically in

Appendix VI. When there is a finite probability that v attains its maximum value, the

problem becomes more complicated. Let P(a 1 1 ) for the preceding example be changed

from the function already given to

Pl(all) (2+al 1)

if a1 1 < -2

if -2 all < -1

if all -1

This means that the random variable a l l has a flat probability density of magnitude 1/4

from -2 to -1; the probability that all equals -1 is 3/4; and all has probability 0 else-

where. It is easily established that vmax = -1/3, and Pr(v=v max) = 3/4. Another case

in which Pr(v=vmax) > 0 occurs for the following cumulative distribution function:max

P 2 (all) 4(2+al 1 )

if al < -2

if -2 < all < +2

if a 1
> +2

Here a11 has a flat probability density from -2 to +2 and has probability 0 elsewhere.

Because v = 0 for all a 11 greater than zero, it follows that vm = and Pr(v=vmax =

1/2. The example will be solved for both P1 and P2.

Consider the case in which v = vmax, which was not encountered in the preceding

discussion. It is possible that p lies in the constraint space and that E(col 1) > v = vmax.

If this is so, E(col j) > v = va for all j = 1, ... , n. Then case (a) is true, because

the maximum value of v - r equals zero, Lmax = 0, and Eq. 11 is not a valid
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expression for Lma x However, if E(col 1) = v = vmax then Lma 0, but Eq. 11 is

still valid. In order to test whether or not E(col 1) > vmax for any distribution in the

constraint space and any value of al ' it is simply necessary to test whether or not

E max(col 1) > v at any of the vertices.
max max

(Emax(cOl 1) - la 1 1 max + Piai 
i=2

When cumulative distribution function P 1 (all) is applied to the preceding example,

Eq. 11 is valid. This can be seen very easily. The constraint space for P1 is the same

as for the original probability distribution, because vmax = -1/3 for both distributions.

Therefore, the vertices of the constraint space are given by Eq. 13. In particular,

P1
> 1/3. Furthermore, E(col 1) = -P 1 . Therefore, E(col 1) - vmax for all possible

values of a 1 and for all points in the constraint space. As a result, Eq. 11 is valid

when v = Vmax, and Eq. 12 is valid. Since

I ~~1 a 1 3 -1
-2 - 2a dal + 4 3 343 and a1 = -1. 125,

- l1al 1 -. 343 - (-1. 125pl )
L(p) = =

and

Lmin = L(Pa) = . 096.

The problem of Fig. 1, when viewed as a problem of adaptive decision under uncer-

tainty, falls into this category in which Pr(v=vmax) > 0, but E max(col 1) < v for allmax max max
p in the constraint space. The reader should be able to verify the fact that Lmin = 1 and

Popt = (2/3, 1/3).

The situation becomes more complicated if P 2 (a 11 ) is assumed for the preceding

example. Since vmax equals zero, the constraints are:

Op1 - lP2 + Op3 > 0

Op + Op2 - lp3 > 0

P1 + P2 + P3 = 1

P > 0, P 2 > 0, P3
> 0.

There is only one p vector that satisfies this set of constraints: p = (1, 0, 0). There-

fore, this unique vector must be the optimum distribution for player A. But E(col 1) =

plall > O = vmax when all is greater than zero. Equation 11 is valid only for a 1 1 0,
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since Lmax = 0 for all1 > 0. Therefore, the mean loss is

L() = 0
2

v - E(col 1) dP(all) +

P1 0al )
0 dP(a 1 1 )

= 1/4 1- 2a al 1 ) dal = 351.

The preceding discussion can be summarized easily. In order to calculate L when

Pr(v=v max ) =0, use the expressionmax

V - E(col 1)

P1

(14)

If Pr(v=v ma x ) > 0 and a unique p vector satisfies the constraints, that vector is optimum,

and

al1 =ao

L(p) = -o
v - E(col 1) dP

P(al 1

where a is a critical value of a 1 l. If all< a o , it is true that E(col 1) < vmax; and if

all > ao, then E(col 1)> vmax. The critical value ao is defined by the equation

m

plao + Pail = Vmax
i=2

If there is more than one p vector in the constraint space, then a check must be made

to see whether or not Emax(col 1) < vmax for all p in the constraint space. If this is

true, then Eq. 14 should be used.

The remaining possibility is that Pr(v=v max ) > 0; there are several p vectors in

the constraint polyhedron; and E max(col 1) > vmax for at least one of the vertices; then

it is said that an unstable condition occurs. The following example illustrates this insta-

bility.

B

1 2

1 2

A
2 I Z 2

P(all) = a11/3

1

(a 11 has a flat probability density function of

bility 0 elsewhere.)

if all < 

if 0 all < 3

if all > 3

magnitude 1/3 from 0 to 3, and has proba-

29



if all 1

if 1 all < 2

if all 2,

v = 2max

Pr(v=vmax) = 1/3.max

The constraint equations become

2pl + 2 2 > 2

P1+ P2= 1

P > 0, P2 > 0.

As a result, P1 can lie anywhere between 0 and 1. The two vertices of the constraint

space are

Pa = (1, ), Pb = (0, 1).

The check to see if E max(col 1) > vmax yields a positive answer when p = pa, since

E max(col 1) = 3 > v = 2. Because of the relative simplicity of the problem, the cal-maVx max
culation of "min is feasible. This rather tedious solution is not given here. The end

product of the calculation is that Lmin = 1/6, and Popt = (1, 0).

Now let the payoff matrix be modified slightly:

a: 1

Li 2+E 

where E > 0.

V/= all

a 11l(2+E) - 2

a -1+E11

if all 1,

if 1 a l l < 2, 4 + 3E
vmax 2 +E

if all > 2,

This is now a problem in which Pr(v=v ma x ) = 0. The solution ismax

Lmin 0. 5,mmn

for 0 < E << 1.

The significant point brought out by the example is that an infinitesimal perturbation

of the payoff matrix has caused a large change in both the optimum strategy, Popt' and

the minimum mean loss, Lmin . The solutions given for both matrices are correct; how-

ever, when such an instability exists, the validity of the problem itself should be ques-

tioned. The fact that the entries of the payoff matrix are not accurately known in many

practical situations would render worthless a problem statement for which the solution
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was critically dependent upon the precise values of the entries. Furthermore, since

numbers are not stored in digital computers without roundoff, the actual values of pay-

offs are subject to small perturbations when adaptive processes are solved by digital

computers. The solutions found in unstable cases would depend strongly upon the rule

used to round off the numbers. This is obviously an undesirable situation.

The solution of unstable cases has not been investigated. The preceding problem

illustrated both the difficulty of finding a solution when Pr(v=vmax ) > 0 and E max(col 1) >

vmax for several points in the constraint space, and how the payoff matrix can be per-

turbed to change the problem into one for which Pr(v=v max) = 0. The matrix can also

be modified by adding E to a1 2 ; this changes the problem to one for which Pr(v=vmax) > 0

and Emax(col 1) > vmax, but for which there is a single point in the constraint space

(Popt = (1, 0)). The discussion in Appendix VI shows the relationships among the three

cases just mentioned. It points out that the unstable case is the boundary case between

the other two situations.

The fundamental result that has been obtained here, aside from complete techniques

for finding optimum strategies for all but the unstable cases, is the demonstration that

if p is located inside the constraint space, L(p) is bounded (unless, perhaps p 1=0), and

tmin is always bounded if all possible payoffs are bounded.

4.3 Multiple Unknown Payoffs

Let a11 and a22 be the unknown payoffs in a problem of adaptive decision under uncer-

tainty. Players A and B are assumed to select the optimum strategies for the problem

of adaptive decision with a single unknown payoff that remains after one of the two

unknown payoffs is received. Lmin al 1 represents a loss function for the decision proc-

ess that remains after all has been received. It is a function of both a l l and a22. Player

A is assumed to select the optimum piecewise-stationary strategy for the problem with

the single unknown payoff a 2 2 ; that is, A selects Popt' the value of p that minimizes

L(p) for this problem. Popt is a function of a 1 1. Player B selects q to maximize

L(o p t ). Therefore, the loss function Lmin Ia 1 1 is identical to the quantity that was

denoted Lmax(Popt) in section 4. Z2. The quantity Lmin la 2 2 is defined in an analogous

fashion.

Arguments similar to those employed in section 4. 2 can be used to demonstrate that

B's optimum strategy is piecewise-stationary. If it is possible for A to select p so

that r = v for all possible values of (a 1 1 a 2 2 ), then Lmax = 0. Otherwise, Lmax > 0,

and it is necessary to proceed with the following analysis. It is not difficult to show that

the total loss can be written

v - r + plqLLminla1 1 + P 2 q2 Lminlumerator 22
if the numerator ~ 0

L = Plq 1 + P2q2

t0 if the numerator = 0.
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A result of Appendix III leads to this expression for the maximum value of the total

loss:

L = maxmax [ v - E(col 1) + plLminlal1 v- E(col ) + PLminla22

P1

v - E(col 3)
0

v - E(col n)t
0 

where the same meaning is given to this expression as was given to Eq. 9. In order to

guarantee that the mean value of Lmax is finite, player A must select a p vector that

satisfies the following inequalities:

m

a) 3
i=l

m

b) A

i=l

m

i=l
m

d) 
i=l

Piail > Vmax

Piai 2 Vmax

for j = 3,.

if p = 0,

(15)

if P2
= O,

Pi = 1,

e) pi > 0 for i = 1,...,m ,

where vmax = max v(a 11,a 2 2). Inequalities (15a), (15d), and (15e) describe the con-
al 1, a 2 2

straint space for this problem. There exists at least one p vector in the constraint

space for which Lmax is finite for all possible payoffs. Thus the mean value of Lmax
is finite for some point in the constraint space. If p lies in the constraint space and

if Pr(v=vmax) = 0 or Pr(v=vmax) > 0 but either vmax E(col 1) or vmax a E(col 2), then

L = maxmax

·v- E(col 1) + plLminlall v-E(colZ) + PLmin Ia22

P1 P2

for all possible values of (a lla 2 2 ). The mean value of Lmax, with respect to a 1 1 and

a 2 2 , is the mean loss:

L(p) - Lmax dP(a 1 a 2 2 )

This cannot be expressed in a neat form like that of Eq. 12. The minimum value of L
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with respect to p is denoted Lmin:

Lminin in L(p) - L(Popt)
P

When Pr(v=v ) = 0 or Pr(v=v a) > 0 but either v ma x E(col 1) or v max E(col 2)

at all vertices of the constraint space and for all (a 1 1' a 22 ) for which v(a1 1' a 2 2 ) = Vmax'

then Eq. 16 may be used to calculate L(p). The example worked out in Appendix VII is

a situation for which Pr(v=v ma x ) > 0, but Eq. 16 can be used; it also illustrates some

concepts mentioned briefly in this section.

This example is for a case in which the mean loss is smaller at some point inside

the constraint space than it is at any of the vertices of the space; therefore, the mini-

mum mean loss occurs for some vector Popt that does not lie at one of the vertices.

Because it is not possible to find Popt and Lmi n by calculating L(p) at the vertices of

the constraint polyhedron, it may not be possible to find Popt and Lmin by means of a

finite number of computations, as it was in the case of a single unknown payoff. Because

of the relatively complex form of the expression for Lmax in Eq. 16, it is still not

possible to find a simple algorithm that can be used to locate Popt with two unknown pay-

offs. It is always possible to follow some minimum-seeking technique and search the

constraint space, calculating E(p) at each examined point. However, the lengthy com-

putation required to find L(p) for one point may condemn a minimum-hunting method that

involves a large number of trial calculations. One means of compromise is to select

any point in the constraint space (for which inequalities (15b) and (15c) are also satisfied)

until a 1 or a22 is received and to use the optimum strategy for the process with a single

unknown payoff from then on. This, of course, is not optimum, but it guarantees a finite

loss with a reasonable amount of computation.

The cases for which Eq. 16 may not be a valid expression for Lmax have not been

considered. These are cases in which Pr(v=vmax) > 0. When v = vmax it is possible

that vmax is less than both E(col 1) and E(col 2) at some vertex of the constraint space.

Then Lmax = 0, and Eq. 16 is invalid. Nevertheless, computation of L(p) in these cases

is not much more difficult than for those cases in which Eq. 16 can be used.

The preceding discussion concerned unknown payoffs in different columns of the pay-

off matrix. In the following analysis of several unknown payoffs in the same column,

many details have been omitted in order to present an interesting sidelight in compact

form. If a1 1 and a21 are the unknown payoffs, it can be shown that

v - r + pqLmin a1 1 + P2 q 1 Lm i n la2 1L=
(pl+P2 ) ql

max v-E(col 1) + P 1 Lminal + P2LminJa21 v-E(col 2) v - E(col n)

maxmax p i (Pl+P2 )q1 0 0

If p lies in the constraint space defined by
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m

piaij > Vmax for j = 2, .. ,n,
i=l

m

Pi = ,
i=l

Pi a1 ° for i 1,.....,m,

then

v - E(col 1) + p 1 Lminlall + P 2 Lminla 21

max P1 + P2

Furthermore, the mean loss is the average of Lmax with respect to all and a2 1 :

V-E(col 1)+ PLnall + pLmin aa21
~L= ~ ~ ~ + , (17)

where

Lminail = SLminlail dP(all,a 21 ).

Equation 17 indicates that L assumes its minimum value at one of the vertices of the

constraint space. Therefore, this case is not essentially different from the case with

a single unknown payoff, and Popt and Lmin can be found by using the techniques de-

scribed before. Furthermore, this situation generalizes to any number of unknown pay-

offs in one column of the payoff matrix. If the unknown payoffs are all in the same row,

then the problem does not differ essentially from the case with two unknown payoffs in

different rows and different columns. In the case of three or more unknown payoffs there

exists a constraint space of the same form as that for two unknown payoffs, except that

inequalities (15a) are applied only to the columns of the payoff matrix in which no

unknown payoffs are located. If A selects a p vector that lies inside the constraint

space and that satisfies inequalities analogous to (15b) and (15c), then he guarantees that

the mean loss is finite. When all columns contain an unknown payoff, the constraint space

consists of all legitimate probability vectors.

An essential result of this work is the concept of a constraint space. This space is

a function of the maximum values of the unknown payoffs. If player A selects a piecewise-

stationary strategy corresponding to a point in the constraint space, he guarantees that

his mean loss will be finite. (Other minor constraints must also be satisfied.) That is,

he guarantees that either he learns one of the unknown payoffs in a finite number of steps,

or his total loss is less than or equal to zero. If player B were an intelligent player

and A promised to select a p vector in the constraint space, then, in general, B's
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optimum strategy would be to select repeatedly the alternative corresponding to one of

the columns of the payoff matrix that contain unknown payoffs. As a result, the minimum

mean loss Lmin found for a problem of decision under uncertainty represents an upper

bound to the loss that player A must sustain. It has been assumed for this problem that

nature knows all of the unknown quantities and selects her strategy to maximize A's total

loss. If A is opposed by an intelligent opponent who knows all of the payoffs, then Lmi n

for the adaptive decision under uncertainty problem is an upper bound to the mean loss

that player A sustains if he plays intelligently; and if A is opposed by a player who does

not know all of the payoffs, Lmin is an upper bound to A's mean loss.
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V. ADAPTIVE COMPETITIVE DECISION

There are two subclasses of the adaptive competitive decision problem: equal infor-

mation, and unequal information. Two players playing the game illustrated in Fig. 1

with equal information would both be given the same probability distribution for the value

of the unknown payoff. This case could arise if the aggressor had an untested warhead

about which the defender knew as much as the aggressor. The equal-information case

also applies to situations involving several payoffs unknown to both players. In the

unequal-information case the players are given different probability distributions for

the values of the unknown payoffs, or else the sets of payoffs unknown to the two players

are different. (The latter condition is actually a special case of the former condition.)

When the aggressor knows the true value of all ' the process in Fig. 1 is an unequal-

information situation. The meaning of unequal-information situations and a discussion

of how they can arise are considered in section 5. 2. The problem of adaptive competi-

tive decision with equal information is solved first.

5. 1 Equal Information

It will be demonstrated that by using an optimum piecewise-stationary strategy player

A can guarantee that no matter how B plays, A's mean loss is no greater than a finite

number Lopt; and B has an optimum piecewise-stationary strategy, the use of which

ensures that no matter what strategy A uses, A's mean loss is at least Lopt. (The pre-

ceding statement is not rigorously true; nevertheless, the detailed proof that follows

demonstrates that the statement is essentially correct.) That is,

min max L = max min L = L

SA SB SB SA opt'

where SA and S B represent all possible mixed strategies (not necessarily stationary) of

A and B, respectively. Lopt may be negative as well as positive or zero.

That a minimax strategy exists for adaptive competitive decision processes with

equal information, although not unexpected, is significant. Any adaptive competitive

decision process can be formulated as an infinite, two-person, zero-sum game, begun

with a random move by the referee and continued with moves by players A and B alter-

nated ad infinitum. This aspect of the problem is discussed in section 5. 2. Infinite

games, however, do not always possess minimax solutions. (See, for example, the

infinite game discussed in Appendix I.) Nevertheless, there exists a group of problems

involving the repeated play of certain game matrices; these problems are infinite games,

and they have minimax solutions. 2 0 ' 27, 32 Adaptive competitive decision processes are

related to these infinite games.

The definition of the single-step loss function at the kt h step is

Lk - v - r k ,L v-r
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where v is the minimax value of the payoff matrix. The loss for N steps of the decision

process, L N, is

N

LN E L,

k=l

and the mean loss for N steps is

LN- = LN(unknown payoffs) dP(unknown payoffs).

The limit of LN as N approaches infinity, if it exists, is the measure of performance

that player A attempts to minimize and B to maximize. This measure, called the mean

loss, is slightly different from the measures of performance used in Sections III and IV.

The fundamental reason for this departure is that the mean loss defined there may not

exist in the competitive process. The total loss is normally defined as

00

L = Lk; (18)

k= 1

however, because Lk may be positive or negative in competitive situations, the sum in

Eq. 18 may not converge to a finite number or to infinity. Thus, the mean value of L

may not exist. (L k is non-negative in adaptive Bayes decision or adaptive decision under

uncertainty, so in these cases L always converges to a non-negative number or +oo.)

However, it is shown in Appendix VIII that the limit of LN is a useful measure of per-

formance. The results of Appendix VIII will be discussed after the following intuitive

argument, which presents the essence of that material.

Consider, again, the matrix of Fig. 1. In this situation V = -1, and ll = -2. 5.

Consider the auxiliary game defined by the matrix

-ll V - a12 + L 1.5 L - 1 

a : =]1 (19)
V-a21 + L v a22 + L L L+ 1

What relationship does this matrix have to the original process? Let L be the mean

loss associated with the competitive decision process, if a mean loss exists. When one

step of the process is played, the mean loss for that step is V - all if all is received,

and V - aij if a11 is not received. In the former case, the process terminates with no

further loss to player A because both players should use optimum strategies from the

second step on. If all is not received, the mean loss from the second step on is L

because the situation faced by the players is identical to the situation faced by them

before the first step. This reasoning leads to matrix (19). Player A should use a mixed

strategy (which is a function of L) that minimizes the expected payoff from matrix (19),
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and B should maximize the expected payoff because the payoff represents a loss to A

and a gain to B. The minimax value for matrix (19) when A is the minimizing player

and B the maximizing player is

if L 2.5
-L + 4. 5

v(L) - (20)

L- 1 if L 2.5

If (19) truly represents the infinite process, then the minimax value of that matrix should

equal the mean loss for the process:

v(L) = L. (21)

In other words, players A and B should be as willing to make one play of the game

specified by (19) as they are to participate in the original decision process, if the value

of L that satisfies Eq. 21 is used for L in matrix (19). That value is called the opti-

mum mean loss, Lopt . For the value function of Eq. 20, Lopt = 0. 5. When 0.5 is
substituted for L in matrix (19), the minimax strategies are found to be

pO = (1/2, 1/2),

qo = (1/2, 1/2).

Because neither player's information about the game changes from one play to the next,

it seems reasonable that the optimum strategies for both players are piecewise station-

ary. Assume that A uses the piecewise-stationary strategy that begins with distribution

PO and continues with the optimum distribution after a 1 has been received. The argu-
ments of Appendix II can be applied to this situation in order to demonstrate that B's

optimum piecewise-stationary strategy yields the maximum mean loss. The mean loss

for a piecewise-stationary strategy of B that begins with distribution q is written

v - (Ploqla 1 + Pioqjaij

1 .(i, j(lI 1) if the numerator 0
L -< Ploql1

0 if the numerator = 0

-1 - (-1.25q 1 1q2 )
· <t * 5q 1 if the numerator .5 if ql ~ 0

if the numerator = 0 0 if ql = 0.

Therefore max L = 0. 5. This result agrees with the preceding analysis. Now the
q

same procedure is followed for q when A uses a piecewise-stationary strategy:
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V - (Plqloll +

L= ( P1

0

-1 - (-1. 25P -P2 )

.5P 1

p

Piqjoai) 

if the numerator 0

if the numerator = 0

if the numerator 0

if the numerator = 0

. 5

0

if P1 * 0

if P = 0.

Therefore min L = 0. This is a surprising result, since it was expected that player B
P

could guarantee that the mean loss to player A would equal at least .5, by using q.

suppose B's piecewise-stationary strategy begins with a small perturbation of qo:

q = (1/2-E, 1/2+E),

where 0 < E << 1. In this case the mean loss is

But

( -1 - [-2. 5(. 5-E)pl-2(. 5+E)p 2 ]

0

if the numerator 0

if the numerator = 0.

It can be shown that the numerator is always positive, and

min L = .5 -4E.
.5 - .E

P

Therefore, player B can guarantee that the mean loss is as near .5 as he desires, but

he cannot actually guarantee a loss of 0. 5.

It is now time to state the complete results of Appendix VIII. The proof is modeled

after a proof by H. Everett. 3 3

All points on the real axis can be divided into two sets on the basis of the value of

the auxiliary game matrix:

V(L) < L and L < O, or

L is in Set 1 if

v(L) L and L > 0;

L is in Set 2 if

V(L) > L

v(L) > L

and L > 0, or

and L 0.
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(In the preceding example - see Eq. 20 - Set 1 = [. 5, +oo], and Set 2 = [-oo, .5).) If a quan-

tity L lies in Set 1 and a minimax strategy for player A is found when that value of L

is substituted in the auxiliary matrix, then by using the minimax distribution repeatedly,

player A can guarantee that no matter what strategy B uses, either

lim LN L
N-o

if the limit exists, or there is an integer No that is such that L N < L if N > No . If a

value of L is in Set 2 and the minimax strategy for B is found when that value of L is

substituted in the auxiliary matrix, then by using the minimax distribution repeatedly,

Player B can guarantee that no matter what strategy A uses, either

lim L N > L
N-oo

if the limit exists, or there is an integer N o that is such that L N > L if N >No. The

essence of this result is that A can guarantee that his loss is no greater than L if L is

in Set 1, and B can guarantee that A's loss is no less than L if L is in Set 2. (In the

preceding example, A can guarantee that his mean loss is no greater than L for any L

greater than or equal to . 5, and B can guarantee that A's loss is no less than L for any

L less than 0. 5. In order to minimize his mean loss, A should choose the minimax dis-

tribution corresponding to L = . 5, and B should choose a minimax distribution for some

L arbitrarily close to (but less than) 0. 5. This agrees with the preceding analysis.)

A further result of Appendix VIII is that there always exists a unique value of Lopt

that is such that all points greater than Lopt are in Set 1 and all points less than Lopt

are in Set 2. Furthermore, v(Lopt) = Lopt , although there may be more than one value

of L that satisfies Eq. 21. Figure 2 illustrates a case in which v(L) = L for all values

of L between La and Lb. In Fig. 2, Set 1 = [a, +oo], and Set 2 = [-oo, a ) because

L > 0; therefore, L = La

.. .

Fig. 2. Typical curve for v(L) vs L.

,Lb

SET 2 SET I
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Machine computation of Lopt is a reasonably straightforward process. Because of

the general shape of the curve v(L), an iterative technique can always be used to find

Lp t . For example, in Fig. 2 if some initial point, L > Lb, is chosen, then L' = v(L)

lies between L and Lb. Also L" = v(L') lies between andand L b, and so on. The point
A(n) .e

L() converges to Lb. Furthermore, if L < La , then L' = v(L) lies between L and La,
a (n )

and L converges to La. Once the points La and Lb have been determined, we know

that v(L) = L for all L between L a and Lb; therefore, it is an easy matter to apply Eq. 22

to find what point Lopt lies on the boundary between Sets 1 and 2. This latter part of

the analysis is unnecessary if there is a single point that satisfies Eq. 21, as there was

in the preceding example.

The fact that Lop t is finite follows from the proof that Lmin is finite in the problem

of adaptive decision under uncertainty. That is, there exists a piecewise-stationary

strategy for player A which guarantees that his mean loss is finite. As a result, L < +0o.

Similarly, if B is the player of an adaptive decision under uncertainty process, by using

the optimum piecewise-stationary strategy, he can guarantee that L > -o. Therefore,

-co < Lopt < +o. This result is based upon the assumption that the possible values of

the unknown payoffs are bounded above and below.

In the case of two unknown payoffs, it is assumed that once one of them is received

both players play in an optimum fashion; therefore, the remaining mean loss to player

A is Lopt for the resultant adaptive competitive decision problem with a single unknown

payoff. The following auxiliary matrix is used to find the optimum mean loss, Lop t , for

the two unknown payoff case (in a 3 X 3 process with unknown payoffs a 1 and a 2 2 ):

- 11 + Lopt al V- a +L - al3 +L

v -a 21 + L v - 22 + L opt a22 V- a23 +

- a31 + L - a3 2 + L a33 + L

L'opt a ll denotes the optimum mean loss for the case of a single unknown payoff, a 22 ,

when all is known; Loptlall denotes the mean value of Lopt all, with respect to the

probability distribution of al:

Lopt all 1 = Lopt all 1 dP(all).

Lopt la 22 is defined similarly. Sets 1 and 2 can be defined by Eq. 22. Then there is an

optimum mean loss, Lopt , which is the greatest lower bound of Set 1 and the least upper

bound of Set 2. For any value of L in Set 1, player A can use a piecewise-stationary

strategy to guarantee that no matter how B plays, either

lim L N - L
N-oo
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if this limit exists, or else there is an integer No that is such that LN < LE if N > N o .

An analogous statement can be made about values of in Set 2. In other words, all of

the conclusions drawn about the single unknown payoff case are true for the two unknown

payoff case. The derivation of these results is not given, but it is a very simple exten-

tion of Appendix VIII.

When r payoffs are unknown (r > 1), an auxiliary matrix is used with entries v - a.. +

Lopt aij corresponding to the r unknown payoffs, and V - aij + L as the remaining

entries. Lopt I ij, which is a function of aij, is the optimum mean loss for the problem

with the r - 1 other unknown payoffs when aij is known, and Lopt ai. is the mean value

of L0 pt aij with respect to the probability distribution for aij.

The labor involved in the computation of the optimum mean loss and the optimum

strategies becomes forbidding rapidly as r increases. This is also true with adaptive

Bayes decision (except when the abbreviated method can be used to eliminate much of

the labor) and adaptive decision under uncertainty.

5. 2 Unequal Information

The concept of competitive decision with unequal information requires some expla-

nation. It seems reasonable that situations can occur in which some payoffs are unknown

to one player, other payoffs are unknown to the other player, and some payoffs are

unknown to both players with the same probability distributions given to both. However,

cases in which the players are given different probability distributions for the same

unknown payoffs may appear unrealistic. The example that follows demonstrates how

such a situation can logically arise.

Two biased coins are flipped by the referee. The first has probability p of landing

heads up; the second, q. Unknown payoff a1 1 has value +a if both coins land with the

same side up and -a if the coins land with different sides up. Player A is shown the

outcome of the toss of the first coin, and player B that of the second coin. The com-

plete process may be tabulated as follows:

Outcome Probability a 1 PrA(al 1 =+a) PrB(al 1 +a)

HH pq +a q p

HT p(1-q) -a q 1- p

TH (1-p)q -a 1- q p

TT (1-p)(1-q) +a 1 - q 1 - p,

where PrA(al l=+a) denotes A's a posteriori probability that all = +a after he is told

about the outcome of the toss of the first coin. PrB(all=+a) has a similar meaning.

Notice that the quantities PrA(all=+a) and PrB(all=+a) can be different from each other

for all four outcomes.
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Fig. 3. Part of tree for coin-tossing game with unequal information.

Figure 3 illustrates the first part of the game tree for an adaptive competitive deci-

sion process based upon this example. It is assumed, for convenience, that the payoff

matrix is 2 X 2 with a single unknown payoff a 1 1 ' Roman numerals denote information

sets; all nodes indexed by the same Roman numeral are indistinguishable. For example,

if the second coin lands heads up, player B does not know from which of the four nodes

labeled III he is making his choice at his first move. These four nodes are all in the

same information set, although in Fig. 3 they are separated into two groups for the sake

of appearance. The four terminal nodes represent cases in which the unknown payoff

is received and no further loss is sustained. The quantities written beneath these nodes

are the total losses sustained by A.

Now consider a four-outcome process that is more general than the coin experiment.

Each outcome i = 1, 2, 3 or 4 has an associated probability ai. Let one of the values +a

or -a be associated with each outcome. The outcomes may be divided into more general

information sets for A and B than were the information sets of the coin-tossing problem.

For every information set x of player A there exists an a posteriori probability

PrA(al l=+a Ix); similarly, PrB(al l=+a y) exists for each information set y of player B.

These quantities are all interrelated: Pr(all=+a); a. for i = 1, 2, 3, and 4;

PrA(all=+a Ix) for all information sets x; and PrB(a l=+aly) for all information sets y.

We may ask whether Pr(al l=+a); a i' and information sets for both players can be adjus-

ted so that it is possible to arbitrarily pick four pairs of a posteriori probabilities

PrA(all=+ali) and PrB(all=+aJi) for the four outcomes i. (PrA(all=+ali) is A's a post-

eriori probability that a1 1
= +a after A is told of what information set, x, the outcome

i that has occurred is a member.) The answer to our question is no; this cannot be done

in general. Notice that the following relationship must be satisfied:

4 4

aiPrA(all=+a i) = aiPrB(all=+a i) = Pr(all=+a). (23)
i=l i=l
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This restricts the assignment of distribution pairs. In particular, assume that it is

desired to make PrA(all +a Ix) = q for all information sets and PrB(al l=+a y) = P for

all information sets. Then Eq. 23 implies

4 4

aEiq aip = Pr(all=+a).
i=l i=l

In other words, p must equal q. The case in which each player has the same a posteriori

probability distribution for all information sets, but the distributions of the two players

are different is impossible. The only case in which each player can have the same

a posteriori distribution for all information sets is the equal information case. The

principles discussed in this paragraph can be generalized to apply to referee moves more

general than the four-outcome process used for illustration.

The problem of adaptive competitive decision with unequal information is an infinite

two-person, zero-sum game, since a game tree can be constructed. At the first move,

made by the referee, the unknown payoffs are selected according to some initial proba-

bility distribution. If the number of possible outcomes for the referee's move is finite,

then a finite number of branches leaves the first node; otherwise, an infinite number

leaves. (The question of whether the continuous case can be approximated by an appro-

priately selected discrete case is not germane to the present discussion.) Let the second

move be that of player A. (The choice is arbitrary.) If the payoff matrix for the process

is m X n, player A has m alternatives from all information sets. There is one infor-

mation set for every possible outcome of the referee's random move about which A is

informed. The next move belongs to B, and his information sets correspond similarly

to the possible outcomes of the random move about which he is told. The game has a

terminating node after B's move if all the unknown payoffs have been received, and the

payoff equals the total loss that A sustains for the sequence of moves leading to that

node. When the game does not terminate, each player has at least one more move. The

information sets for A at the first move are subdivided to form the information sets for

A's second move. Each subdivision corresponds to one of the m n possible pairs of

alternatives used by A and B at the previous two moves. (Some of these subdivisions

are terminating nodes.) Player B's information sets at his first move are similarly sub-

divided. The construction of the game tree continues indefinitely in the same manner,

with moves by A and B alternated.

Although infinite games do not necessarily possess minimax solutions, it was demon-

strated in section 5. 1 that adaptive competitive decision processes with equal information

do have minimax solutions. Equal information situations are special cases of unequal

information situations in which the a posteriori probability distributions of the unknown

payoffs for both players are identical for all possible outcomes of the referee's move.

The solution to the following example represents the present extent of our knowledge

about adaptive competitive decision with unequal information. The details of the solution
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are contained in Appendix IX. Only the results are presented here. Consider the fol-

lowing matrix in which payoff al 1 is unknown to player A but known to B:

B 0 if a < -1

1 2

a °1 P(all) 2 if -1 all < +1

2[L° -1 iJt1 aif all > +1.

(al assumes values +1 and -1 with probability 1/2 each.)

Cumulative probability distribution function P(a 1 1 ) is known to both players, but B also

knows the true value of payoff a 1 1 .

An optimum strategy for player A is to use alternative 1 repeatedly until all is

received and thereafter to use the correct minimax distribution repeatedly. An optimum

strategy for player B is at the first step to use alternative 1 if a 1 1 equals -1 or alter-

native 2 if a l l equals +1, and from the second step on to use the correct minimax dis-

tribution repeatedly. These are minimax strategies for the competitive process. This

means that if A uses the strategy given above, the mean loss that he sustains is guaran-

teed to be no greater than 1/4 (the minimax mean loss). Similarly, if B uses the strat-

egy given above, the mean loss sustained by A is no less than 1/4, no matter what

strategy A uses.

The minimax strategy given for player B is not piecewise-stationary. A further

result of Appendix IX is that there exists no piecewise-stationary strategy for B, the

use of which guarantees that the mean loss is at least as large as 1/4.

The significant conclusions that can be drawn from this example are: (i) there exist

examples of unequal information processes for which minimax solutions exist; and (ii)

piecewise-stationary strategies may not be optimum when minimax solutions exist.

Nothing more has been learned about the general existence of minimax strategies.

The following discussion is based upon pure hypothesis, with neither proofs to sub-

stantiate it nor counterexamples to contradict it. It seems reasonable in the case

in which player B knows all of the payoffs unknown to A and their a priori probability dis-

tributions that B's optimum distribution at the first step should be a function of both the

true values of the unknown payoffs and also their a priori probability distribution, and

player A's optimum strategy should be a function of the a priori distributions. Because

A knows the functional form of B's optimum strategy, A can calculate an a posteriori

probability distribution for the unknown payoffs, based upon the knowledge of the alter-

native B used at the first step. He assumes that B always uses his optimum strategy.

The a posteriori probability distribution may serve as the a priori distribution for the

next step of the process. This procedure could be repeated until all of the unknown pay-

offs have been received. Note that if the optimum strategies are truly determined in the

fashion just described, player A's distributions are dependent upon only the sequence
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of alternatives used by B in the past; and B's distributions are dependent upon only the

true values of the unknown payoffs and the past history of his own choices. Neither

player's distributions are influenced by the past history of A's choices. We hope that

the preceding hypothesis will be verified soon. Once the problem of unequal information

in which one player knows all of the unknown payoffs is solved, it should be possible to

attack more general unequal information situations.

For want of a better strategy, the player of an unequal information process can use

the optimum strategy derived in the section on adaptive decision under uncertainty

(Section IV). This strategy may not be optimum for the problem of competitive decision;

however, it is a strategy that guarantees a finite loss for the player, irrespective of

his opponent's strategy.
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VI. TOPICS FOR FURTHER STUDY

Several questions that have been raised in this report have not been answered, and

there are related topics that have not been discussed which merit study. Because these

questions have been discussed at some length, they will be mentioned very briefly

here. First, there is the problem of adaptive decision under uncertainty with more than

one unknown payoff. No simple algorithm has been found for determining the optimum

strategies in these cases. We doubt that a neat method exists. The second unanswered

question concerns adaptive competitive decision with unequal information. There appears

to be a good chance that this problem can be solved completely. One problem confronting

the investigator is the difficulty of working out examples. For instance, the simple

example handled in Appendix IX was solved by taking a wild guess in extrapolating the

solution of a two-step process to an infinite process. In order to calculate the optimum

strategies for the two-step process, it was necessary to solve a 6 X 36 payoff matrix.

This, in itself, was a huge task.

Three major problems to which the theory developed in this report should be extended

are: (i) adaptive decision when nature is assumed to use an unknown stationary strategy;

(ii) the processes in which the unknown payoffs are stochastic variables with unknown

mean values; and (iii) the relationship between infinite processes and truncated proc-

esses.

Ways of viewing the problem of adaptive decision when nature uses an unknown sta-

tionary strategy were discussed in section 4. 1. A paper by Hannan 3 0 attacks the prob-

lem of repeated decision-making when nothing at all is assumed about nature 's strategy

and all of the payoffs are known. There may be some merit in applying this approach

to problems with unknown payoffs. The question of how to define a good measure of per-

formance arises in many formulations of the problem of adaptive decision under uncer-

tainty. Some suggestions to this effect were given in section 4. 1.

The second suggestion - that processes in which the unknown payoffs are stochastic

variables with unknown mean values be investigated - is a very significant one. Many

of the problems of adaptive decision which arise in practice are of this type. For

example, the unknown payoff in the problem of Fig. 1 may be a stochastc variable with

unknown mean value. Payoff all represents the mean value of the gain to A if he allows

an armed missile to reach his territory. If the warheads are not uniform, player A

still does not know the mean value of the destructiveness after one armed missile has

been allowed to explode. The more missiles he allows to explode, the more samples

he will have from the distribution of the unknown payoff, and the better estimate he will

have of the average value of the distribution, all The coin-tossing problem of Robbins

is a case in which the payoffs are stochastic variables with unknown mean values.

Figure 4 is the payoff matrix for this problem, which is really a one-person game. The

payoff for alternative 1 may be either 1, with probability Pi, or zero, with probability

1 - pi' A similar statement can be made about the payoff for alternative 2. The true
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1P

A
2 P2

Fig. 4. Payoff matrix for Robbins' problem.

values of P1 and P2 are never actually learned by A.

The basic difference between the adaptive processes discussed in Sections III-V and

processes in which the unknown payoff is a stochastic variable lies in the fact that there

it was assumed that once an unknown payoff is received, the value of that payoff is known

to both players from then on. If x is a stochastic variable, its mean value will never

be truly known by the decision-makers; however, after many receipts of x, a good

approximate mean value will be known. This situation is similar to the case in which

repeated decisions are made when nature uses an unknown stationary strategy. After

many steps of the process, nature's true probability distribution can be approximated

very closely. Because the player can never be certain of the true mean value of an

unknown payoff, he can never guarantee that his single-step loss is zero. Thus, if we

apply the mean-loss measure of performance to stochastic problems, we may find that

there exists no strategy for the player for which the mean loss is finite. In this case a

better measure of performance must be found.

Since truly infinite processes rarely occur in practice, it is worth while to consider

the relationship between the infinite processes discussed here and processes that last

a finite number of steps. It would be valuable to know if the optimum strategies for the

infinite processes yield "almost optimum" returns when applied to truncated processes

of length N, where N is large. Since, in general, optimum strategies are more easily

calculated for infinite processes than for truncated processes, it may be useful to apply

the optimum strategies for infinite processes to truncated processes. An area of

research that deserves attention is the study of how large N must be before the dis-

crepancy (between the optimum loss and the loss when infinite process strategies are

used) exceeds allowable limits. Appendix X is a small sample of the kind of work sug-

gested. The optimum strategy is derived for an N-truncated adaptive Bayes decision

process with a single unknown payoff. The essence of the result is that if N is large

enough, the optimum strategy for the N-truncated process is the same as the optimum

strategy for the infinite process.
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VII. CONCLUDING REMARKS

In Sections I and II the adaptive decision process was introduced and the mean-loss

measure of performance was defined. The concept of behavior strategy was shown to

be useful, and it was demonstrated that the players of adaptive decision processes could

be assumed to use behavior strategies, without destroying the generality of the problem.

Adaptive Bayes decision was discussed in Section III. Aside from the complete solu-

tion of the problem, a major result in that section is that the player's optimum

piecewise-stationary strategy is the best of all possible strategies. An abbreviated tech-

nique for solving Bayes problems sheds much light on the meaning of the optimum solu-

tions.

In Section IV a method of attack was proposed for the problem of adaptive decision

under uncertainty. This approach was also found to be useful for problems of competi-

tive decision with unequal information. The optimum strategy was derived for the case

of a single unknown payoff, but no simple rule was found for determining optimum strat-

egies in cases of more than one unknown payoff.

In Section V we demonstrated that a minimax solution exists for adaptive competitive

decision problems with equal information. Optimum piecewise-stationary strategies

were shown to be the best of all possible strategies. A technique was derived for the

complete solution of this problem. The results of section 5.2 demonstrated that

piecewise-stationary strategies are not necessarily optimum for adaptive competitive

decision with unequal information. Furthermore, a formalization of the problem of

unequal information was presented.

It must be admitted that the theory developed in this report does not enable the reader

to solve a large class of practical problems. Nevertheless, it is hoped that this work

has paved the way for further developments in the area of adaptive decision processes,

which will be more generally applicable to practical problems. The ideas introduced

here of how to tackle repetitive decision processes when the rewards are not completely

known in advance and how to set up a reasonable measure of performance are basic to

general adaptive processes, and should provide a foundation for future work.
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APPENDIX I

A BRIEF INTRODUCTION TO THE THEORY OF GAMES

In general, any game can be represented by a tree. The tree in Fig. A-i is drawn

for a finite, two-person, zero-sum game. The game is finite because the tree is finite.

It is a two-person game for two players and a referee. In this game player A will be

considered to be a two-man team. The game is zero-sum because the payoffs at the

terminal nodes represent a gain to player A and a loss to player B. For example, the

payoff at the rightmost terminal node represents a gain of -2 units (a loss of 2 units) for

A and a loss of -2 units (a gain of 2 units) for B. In a nonzero-sum, two-person game

a payoff might be written (1, -2), which would mean a gain of one unit for A and a loss of

2 units for B, with the remaining unit absorbed by some neutral agent.

Drrr-rr- C lr

PLAYER
MOVE

AYER'A s
MOVE

Fig. A- 1. Tree for example game.

The play of the game of Fig. A- 1 begins when the referee tosses an unbiased coin.

The two branches leaving the top node represent this event. The first man of team A

must then select alternative a or b. The line which encloses the two nodes that result

from the coin toss indicates the fact that the first man of team A is not told about the

outcome of the coin toss. Such a group of nodes that cannot be differentiated by a member

of team A is called an information set of A; the set labeled I in the diagram is an infor-

mation set of player A. After the first man of team A makes his choice, either the

referee announces to player B that it is his turn to select alternative c or d, or else

he tells the second man of team A that he must select alternative e or f. The referee's

instructions correspond to the outcome of the coin toss. Information set II implies that

B is not told about the outcome of A's preceding choice. Information set III implies

that the second man of team A is not allowed to know the outcome of his teammate's

preceding choice. The game then terminates, and team A is paid by B the amount indi-

cated at the terminal node.
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There are four possible courses of action that team A can take. These correspond

to the four possible ways of assigning choices to information sets I and III: (a, e), (a, f),

(b, e), and (b, f). These couples are called pure strategies of player A. Strategy (a, f),

for example, represents the first man choosing a and the second man choosing f if he

is given the opportunity to make a choice. B has two strategies: (c) and (d). A matrix

that has an entry for every pair consisting of a pure strategy for A and a pure strategy

for B is shown below. Each entry is the expected payoff to A and loss to B if the players

B

(c) (d)

(a, e)

(a, f)
A

(b,e)

(b, f)

-1/2 0

1/2 1

1 1/2

-1/2 -1

use the corresponding pair of pure strategies. (Player A is by convention the maximizing

player, and B the minimizing player.) For example, the entry at (a, e), (c) is -1/2,

because if the coin lands head up then choices a and c result in a payoff of 0, and if the

coin lands tail up the choices a and e result in payoff -1. Because the coin is unbiased,

the expected payoff is -1/2. This 4 X 2 matrix is called the payoff matrix for the game

of Fig. A- 1. A finite payoff matrix can be constructed for any finite game. The tree

formulation is called the extensive form of the game, while the equivalent matrix is called

the normalized form.

If A decides to use either strategy (a, f) or (b, e), the actual strategy being chosen

by a random process which assigns probability 1/2 to each strategy, then he is said to

be using a mixed strategy with p = (0, 1/2, 1/2, 0). The p vector represents the proba-

bilities that he assigns to the four pure strategies. Similarly, the mixed strategy that

selects pure strategy (c) or (d) with equal likelihood is denoted by q = (1/2, 1/2).

When B uses mixed strategy q = (1/2, 1/2), the expected payoff to A is no greater

than 3/4, irrespective of which pure strategy A uses. If A uses p = (0, 1/2, 1/2, 0), his

expected return is no less than 3/4 for both pure strategies of B. (The expected payoff

actually equals 3/4 for both of B's strategies.) This example illustrates a general theo-

rem for finite, zero-sum, two-person, m X n games:

m n m n

ax min Piqjaij = min max Piqjaij = v, (A- 1)
P q i= j=l p i= j=

where p is a mixed strategy (p 1, p2 . .. m) for A, q is a mixed strategy (q 1, q2

. . ., qn) for B, and aij is the entry in the payoff matrix for pure strategy pair i and j.
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Equation A-i represents the minimax theorem. The meaning of this theorem is straight-

forward. If A assumes, when he selects his mixed strategy p, that B knows his selec-

tion and will use a mixed strategy q to minimize A's expected return, then the largest

expected return A can guarantee is

V1 = max
P

Similarly, if B assumes that A knows the mixed strategy that B will use and maximizes

the expected payoff for this strategy, then B can guarantee that A's expected return is

no greater than

V2 = in ax Pi qjaij
q P ji=l I

The minimax theorem states that v 1 = v2 . This common quantity is called v, the value

of the game. Because A and B are assumed to be intelligent players, the assumption

that each knows the optimum strategy of his opponent is valid. Therefore, a reasonable

strategy for each player is the one that guarantees the minimax value of the payoff matrix.

The optimum minimax strategies are accepted by most workers in the area of game

theory as good strategies in competitive situations between two intelligent opponents.

Note that in the game of Fig. A-i player A should never use strategy (a, e), because

no matter what strategy B uses, A can do better by using strategy (a, f). This is

reflected in the associated payoff matrix by the fact that both payoffs in the row of strat-

egy (a, e) are smaller than the corresponding payoffs of row (a, f). Strategy (a, f) is said to

dominate strategy (a, e). Strategy (b, e) dominates strategy (b, f), so A should never use

strategy (b, f). There can also be column domination: if all of the payoffs in one column

of a matrix are no less than the corresponding payoffs in another column, then the latter

column dominates the former, and the strategy associated with the former column should

never be used.

In general, infinite games do not have minimax solutions. Consider the game in which

each of two players independently selects an integer. The player who selects the larger

integer receives one unit of payoff from the player who selects the smaller integer. In

case of a tie, the payoff is zero. The game is infinite because each player has an infi-

nite number of pure strategies. There is no minimax value for this game. For any mixed

strategy that A uses, there is a strategy for B that causes the expected payoff to be as

close to -1 as desired, so v equals -1; and for any mixed strategy used by B there

exists a strategy for A that causes the payoff to be as near +1 as desired, so v 2 = +1.

(In order to state precisely the idea of nonexistence of a minimax solution it is necessary

to introduce infinums to replace the minimums in Eq. A-1 and supremums to replace the

maximums. This formality has been omitted for the sake of brevity.)
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APPENDIX II

PROOF THAT IN THE PROBLEM OF ADAPTIVE BAYES DECISION THE OPTIMUM

PIECEWISE-STATIONARY STRATEGY IS THE OPTIMUM STRATEGY

Consider first the case of a single unknown payoff all ' Let player A use a nonsta-

tionary behavior strategy. This means that A's sequence of probability distributions
1 2 3 2

can be written p , p , p3, ... , where distribution p is a function of the alternatives

used by A and B at the first step, p3 is a function of the alternatives used by A and

B at the first and second steps, and so on. The mean loss to player A can be written

= (V-r) + PilqjL(i, j). (A-2)

(i, )3( , 1)

The first term on the right-hand side of (A-2) represents the mean loss for the first step

of the process. The second term represents the mean loss from the second step on.

The quantity L(i, j) will be defined below. Equation A-2 is based upon the assumption

that after he has received payoff a1 1 , player A will use an optimum strategy (which is

stationary), so that there is no further loss. The second quantity on the right in (A-2)

is the sum of mn-l terms, each of which is the probability of occurrence of one particular

pair of alternatives for players A and B at the first step times the mean loss from the

second step on. L(i, j) represents the mean loss from the second step on for the sequence
2 3

of probability distributions p2 , p3, ... , which is a function of (i, j), the pair of alterna-

tives that has been used at the first step by A and B.

The first stage in this proof is to find

L (1) = min L(i,j).
(i, j)( 1, 1)

The pair of alternatives, (io, Jo) for which the minimum of L(i, j) occurs leads to a

Z 3sequence of distributions p , p3, .... In general, a different pair would lead to a dif-

ferent sequence. Suppose that after the first step player A assumes, for the purpose

of calculating the sequence from the second step on, that the pair of alternatives, (io, jo),

has been used at the first step, no matter what pair actually has been chosen. Then the
2 3

sequence of distributions, p , p ... , will be used after the first step that would have

been used if the pair (io , jo ) had actually occurred. What will be the mean loss from the

second step on? If B's distributions depended upon the outcomes of past steps, then the
2 3mean loss from the second step on resulting from distributions p , p, ... would be a

function of the true alternative pair, (i, j), used at the first step. However, because B's

strategy is stationary, the mean loss from the second step on is L (1). Therefore, A

can select a sequence of distributions from the second step on for which p2 is independ-
3. are dependent only upon the alternatives used after4ent of past history and p , p , are dependent only upon the alternatives used after
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the first step, and for which the mean loss is no greater than the mean loss, L, for A's

original nonstationary strategy. To repeat: For any sequence of distributions for A

there is an equally good or better sequence in which the second and later distributions

are independent of the alternative pair used at the first step.

The next stage in the proof is to assume that A uses a sequence in which the distribu-

tions used at the first N steps are independent of past history and in which the distribu-

tions used at later steps are dependent only upon the alternatives actually chosen at the

Nt step and later. It will then be proved that A can do as well or better by using a

sequence in which the first N + 1 distributions are independent of the past history, and

the later distributions are dependent upon only the alternatives actually chosen at the

N+l t h step and later. Since this has been proved already for N = 1, it will follow by

induction that the conclusion is true for all N. Thus, in general, A can do as well or

better than he can with a general nonstationary strategy by using a distribution sequence

in which the probability distribution at any step is independent of past history. Such a

sequence is called memoryless.

Note that under the assumption made in the preceding paragraph, the following is an

expression of the mean loss:

N
t NL = E (v-r) fI (1-p lq 1 ) + E Pij L(j), (A-3)

k=l t=O (i, j)( 1, 1)

where I - plql is defined to be equal to 1. The first term on the right-hand side of (A-3)

represents the mean loss for the first N steps, and the second term represents the mean

loss from the N+l t h step on when al has not yet been received and alternative pair (i, j)
th 1 1 N+l N+2

was chosen at the Nt h step. Pair (i,j) determines sequence p N+, p , .... The
following term is introduced:

L (N) - min E(i, j).
(i, j)( 1, 1)

The arguments employed previously can be used to show that the mean loss sustained

after the Nt h step, if all has not been received, need not be greater than L (N). It

follows that A can do as well or better than he could by using the original nonstationary

sequence, by using a sequence in which all distributions at the first N + 1 steps are inde-

pendent of past history, and the remaining distributions depend upon only the alternatives

chosen at and after the N+1 t h step. This concludes the proof that to any general nonsta-

tionary strategy there corresponds a memoryless strategy for which the mean loss is no

greater than the loss for the nonstationary strategy. The mean loss for a memoryless

strategy can be written

00 - t

L = E(-r k ) II (-pql ) (A-4)
t=0k=l
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Now consider the class of all possible memoryless strategies. Because the mean

loss can never be less than zero, there exists a greatest lower bound for L over the set

of all possible strategies. Call this bound L o . Therefore, given any E > 0, there exists

a strategy for which the mean loss is less than Lo + E. L is bounded if all possible pay-

offs are bounded; this fact is a result of the boundedness of L for the optimum stationary

strategy, which was demonstrated in section 3. 1. Either (a) Lo equals zero, or (b) Lo

is greater than zero.

Case (a) is easily disposed of. The fact that the mean single-step loss is never less

than zero and the assumption that the greatest lower bound of the mean loss is zero imply

that the greatest lower bound of the mean single-step loss at the first step is zero. But

the mean single-step loss is a continuous function of probability distribution p , and the

set of all probability distributions is a compact set. Therefore there is some distribution

for which the single-step loss is zero. If a stationary strategy that repeats this distri-

bution is used, the mean loss for the infinite process is zero.

Case (b), (Lo>0), is now considered. Given any E > 0, there exists a memoryless

1 2
sequence p, p , ... for which the mean loss is less than Lo + E, and not less than Lo:

L +E>L>L .
o o

It will now be shown that the optimum piecewise-stationary strategy is at least as good
1 2

as strategy sequence p , p .... It was shown in section 3. 1 that the optimum station-

ary strategy, Popt' satisfies the relationship

v - (Popt) v - r(p)
(A-5)

Plopt ql Plql

for all distributions p. The case in which it is possible to make r = v has also been

covered. If inequality (A-5) is substituted in Eq. A-4, the following inequality results:

k
0c Plql1 k-l

LaE(v-(p ) II (1-pt q

k=l

- (popt) co k-i

k -Pl opt 1 1 t 
stationary strategy Popt' The expression plql II (1-plql) equals the probability of

reevnk th 00 k k-receiving all at the k th step; therefore, the expression I pq ( t q) is the
k=l1 t=0
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probability of receiving all eventually. If it can be shown that the probability of receiving

V - (Popt)

all eventually equals one, then L p q Because E can be made as small as
Plopt 

desired, it follows that the mean loss sustained by A if he uses the optimum piecewise-

stationary strategy equals L o .

The one unanswered question is, Does the probability equal one that a l l is received

eventually, or is there a positive probability that all is never received? Note that the

expected loss per step when a11 is unknown must be positive - otherwise Lo would be

zero. Therefore, if the probability is positive that a11 is never known, the mean loss

is infinite. But in section 3. 1 it was shown that player A can attain a finite mean loss

by using the optimum stationary strategy. Therefore, L o , the greatest lower bound to

L, is finite, and there is a contradiction to the assumption that L is within E of Lo.

This theorem that the mean loss corresponding to the optimum piecewise-stationary

strategy is no greater than the mean loss for any nonstationary strategy must now be

generalized to the case of several unknown payoffs. The outline of the solution for the

case with the two unknown payoffs a l l and a 2 2 will illustrate the technique that can be

used for the general proof. It is assumed that in order to minimize his loss, player A

will always select the optimum piecewise-stationary strategy for the process that exists

when only one unknown payoff remains. The mean losses Lminla ll and Lminia 2 2 are

defined in section 3.2. Then if any general nonstationary strategy is used by A, the

mean loss can be written

- 1 1 1 1-
L =v-r +P lq1 minlall + 2q2 Lminla22 + PiL(i,j),

where the summation of the last term is understood to be over all pairs of alternatives

(i, j), except (1, 1) and (2, 2). The reasoning used previously leads to the conclusion that

there is a sequence in which distribution p does not depend upon the outcome of the first

step, and for which the mean loss is no greater than L for the original nonstationary

strategy. Then the inductive argument is applied to the expression

+ ( Plql Lmina 1 1 +Pq 2 Linla 2 2 ) (ltplq tq) + pq.Q(ij),

k= 

o o
where I - plql - P2q 2 is defined equal to 1. The reasoning does not differ from the

reasoning for a single unknown payoff, and the conclusion follows that for every non-

stationary strategy with loss L there exists a memoryless sequence of probability dis-

tributions with loss no greater than L. The mean loss for any memoryless strategy

can be expressed as

L E (v -r +P lqlLmin a ll+pq 2Lminla 22 Ii (1-p 1 -pq 2 (A-6)
~~k=l~ I ~t=Ok= 1

56



Next, we note that L o , the greatest lower bound to L over the set of all memoryless

sequences, is non-negative. If Lo equals zero, A can attain zero mean loss by using

a stationary strategy; if L o is positive, then there is some memoryless strategy that is

such that Lo + E > L L o , for any > O. The following inequality is true for the optimum

stationary strategy, Popt:

v -r(Popt) +Plopt qI Lmin lal + p 2 o p t q2 Lmina22

Plopt ql + P2 opt q2

(p) + p lq1 Lmin all + P2 q2 Lmin a 2 2-. < q +P (A-7)
P1 q 1 + P 2q 2

for all distributions p. If inequality (A-7) is substituted in (A-6), the following inequality

results:

V - (Popt) opt q 1 Lmin lall + P2 opt q2 Lmin I a22
L>a

Plopt q + P2 opt q2

X E (p q+Pq 11 (l-pt qlP q2 (A-8)

k=l

The summation in inequality (A-8) equals the probability that at least one of the two

unknown payoffs is received eventually. The proof that this probability equals one is the

same as the proof for the case with a single unknown payoff, and it follows that L is no

less than the mean loss for the optimum stationary strategy. A brief final argument

completes the proof of the theorem for unknown payoffs a l l and a2 2 .

The proof for more than two unknown payoffs or any two payoffs in the same row or

column differs only in minor details from the preceding argument.
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APPENDIX III

DETERMINING THE EXTREMA OF CERTAIN LOSS FUNCTIONS

Consider the following function of k variables to be maximized (or minimized) over

the domain of a convex polyhedron in k space:

k

a.x. + b
i 1

f(xl ... xk) + =f()

Z c.x. +d

i=l

Here, a and c are k-dimensional vectors and b and d are constants. Two possibilities

exist: either f() assumes its maximum (minimum) value at one of the vertices of the

convex polyhedron, or f(-x) does not take on its maximum (minimum) value at any one

of the vertices. Assume that the last is true. Select any point in the polyhedron, x0 ,

for which f(x) assumes its maximum (minimum) value. Consider the set of points 3o +

aW, where a is a variable parameter and w is a k-dimensional, non-null vector. This

set of points lies on a straight line that passes through Xo in the direction of vector W.

Because o is not a vertex, there exists some vector W for which the line passes through

points of the polyhedron on both sides of Ro. For any point of this line, f(-) can be

written

a. (o+aW)+ b aa- W+ -'3o + b ae + f
f(x) = ==

(x+aw) + d aT . + . x3 + d ag + h
0 0

where e, f, g, and h are constants independent of x. If the derivative of f(x) is taken

along this line through xo , the following result is obtained:

df(i) _ eh - fg

ds (ag+h)2 w

The numerator of this expression is independent of x, so the sign of the derivative is

the same along the entire line. As a result, f(I) is a monotonic function of the position

along the entire line (unless the denominator of f(-) becomes zero somewhere along the

line). Therefore, f(x o ) cannot be larger (smaller) than f(-) for all of the other points

of the line that lie in the polyhedron. In particular, there exists a point, x , at one of

the two intersections of the line through 3o and a face of the polyhedron, which is such

that f(xa) is at least as large (small) as f(R o).

Now the entire process may be repeated by drawing a line through point 3a that lies

in one face of the polyhedron. (The face of the polyhedron is actually a hyperplane of
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dimension k - 1.) Since the dimension of the problem is reduced by one each time a new

line is chosen, it can eventually be shown that f(x) at one of the vertices is at least as

large (small) as f( 0o) (unless the denominator of f(i) becomes zero somewhere along

one of the auxiliary lines). This contradicts the initial assumption of case (2) that f(x)

does not take on its maximum (minimum) value at any of the vertices. Therefore, f(R)

does assume its maximum and minimum values at vertices of the convex polyhedron.

The cases in which the denominator of f(x) can become zero will be handled separately.

For adaptive Bayes decision, is equivalent to p, and the dimension is m. The

convex polyhedron is defined as

m

pi=l,
i=l

Pi 0 for i = 1, ... , m.

The vertices are the m points e.. The function to be minimized is
1

m

- lE(rw 1) - PiE(row i)
~~f ~i=2

for one unknown payoff, a 11 ' Because this expression is used only when the numerator

is known to be positive, and because the denominator is zero only on one of the faces

of the polyhedron (where f = +oo) and not at an interior point, the preceding argument

demonstrates that f assumes its minimum value at one of the vertices of the polyhedron.

The reasoning for cases of more than one unknown payoff is very similar, and the con-

clusion is the same.

In the maximizing part of the decision under uncertainty problem, x is equivalent

to q, and the dimension is n. The convex polyhedron is defined as

n

qj=l

j=l

qj O for j = 1, ... , n.

The vertices are the n points e.. The function to be maximized is

n

v- qjE(col j)

j=1
f =

p 1for a single unknown payoff. The cases of interest in section 4.

for a single unknown payoff. The cases of interest in section 4. 2 are those for which
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P1 > 0. The denominator of f can become zero only on one of the faces of the polyhedron

and not at an interior point. In the plane ql = 0, the numerator of f is linear, and so

f is a monotonic function of the position along any line in that plane. Consequently, f

assumes its maximum value at one of the vertices of the polyhedron. The same con-

clusion is reached in cases of two or more unknown payoffs.

In the minimizing part of the problem of decision under uncertainty, x is equivalent

to p, with dimension m. The polyhedron is defined as

mZ paij > vmax for j = 2, ..... n

i=l

m

Pi=l

Pi 1 for i = 1, .... m.

The function to be minimized is

v- al + i Piai)

i=2f=
Pl

where 11 = all dP(all). The denominator of f is zero only on one boundary plane

(P 1
= 0) but not at an interior point of the polyhedron. As a result, the function assumes

its minimum value at one of the vertices.
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APPENDIX IV

AN ABBREVIATED METHOD FOR FINDING THE OPTIMUM STRATEGY IN AN

ADAPTIVE BAYES DECISION PROCESS WITH TWO STATISTICALLY

INDEPENDENT UNKNOWN PAYOFFS, all 1 AND a 2 2

Some assumptions must be made initially to eliminate from consideration the trivial

cases in which V = E(row i), or E(row 1) or E(row 2) is smaller than the expected return

of another row for all possible values of a 1 1 and a22 (in which case the dominated alter-

native should be eliminated):

Emax (row 1)> E(row i)

Emax (row 2)> E(row i)max

E (row 1) > E min (row 2)

Emax (row 2) > Emin (row 1).

Then the results of section 3. 2 indicate that

-min min[v - E(row 1)+ L lal V-E(row 2 )L 
min q1 min 11' qi Lmin 22-

Because all and a22 are statistically independent, it follows that

(A-9)

V(a1 1 ) - E(row 2)

Lmin(a 11
) =

0

if E(row 1) < Emax(row 2) (all <all)

(A-10)

otherwise

where

V(a1 ) S(al ) = (al 1' a 2 2 ) dP(a 22 )

The quantity a 1 is defined as

n

1qa1 + qjalj = E (row 2).
j=2

Here, a 1 represents a critical value of unknown payoff a 11 . Therefore the mean value

of Eq. A-10 is written
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V(al ) - E(row 2)

q2
L min a1

=

v2 
q2

dP(al 1 )S
al l<a 1 

_1 Y

q2 o
E(row 1) dP(a 1 1)

E(row 2)

q2

Pr (al 1< a a l)')
and similarly

ii.2 1
Lmina 22 

q1 q1

E(row 2) dP(a2 2 ) - E(row 1)
ql

Pr (a 2 2 <a2 ),
22 ] 'S 2 2 2

a22>a22

owhere a22 is defined as22

n

q la21 + q2 a 2 2 + qja2j Emax (row 1).

Three possible cases arise:

(1) E max(row 1)> Emax (row 2),

(2) E max(row 1) < Emax (row 2),max max

(3) E (row 1) = Emax max
(row 2).

In case (1) a22> a 2 2 max' so it is simple

substituted in Eq. A-9, we find

to find L
min When Eqs. A-11i and A-12 are

Lmin = minmm~V E(row 1)

ql ql

v 1 
q2 q2 o

E(row 1) dP(all)

E(row 2)

q2
Pr(a 1< all) q2 E(row 2).+

q2

E(row 1)
ql ql

The first term is smaller if

E(row 1) dP(all)> E(row 2) Pr(a1 1 I

This is true, since E(row 1) > E(row 2) for all all al.11 11' Therefore, in case (1), Popt =

el; similarly, in case (2), Popt = e2 . For case (3), al max a2 = a22 max

so
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E(row 1) Emax(row 1)

min ql q2 q2 Pr(al 1 =a 1 1 max

E(row 2) Pr(a a 1

qZ max )q Pr(a1 < a1 1 max)'

Vr E(row 2) 2 E (row 2)
Pr(a 2 2 =a 2 max)

q2 q2 q1 q

E(row 1) Pr(a 22 <a 2 m
q 1Pr(a a22 max

The first term is smaller if

E max(row 1) - E(row 1)

q Pra2 =a 22 max)

Emax(row 2) - E(row 2)
< a (A-13)

q2 Pr(all=al 1max

Four subcases arise:

(a) Pr(a1 1 =a ll max) = 0, Pr(a2 2 =a 2 2 max) = 0

(b) Pr(a 1 1 = a max) > 0, Pr(a2 2zz=a 2 2 max ) = 0

(c) Pr(a1 1= a ll max) = 0, Pr(a2 2 =a 2 2 max) > 0

(d) Pr(a1 1 =a ll max) > 0, Pr(a2 2zz=a 2 2 max ) > 0

For subcase (a) both terms of inequality (A-13) are equal, so opt el or e 2 . In sub-

case (b) the first term is smaller, so Popt = el. Similarly, in subcase (c) Popt = e.

In subcase (d) it is necessary to use the inequality (A-13) as it stands to find Popt'

It is not difficult to find a counterexample that demonstrates that the preceding

results do not necessarily hold when a11 and a22 are statistically dependent.
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APPENDIX V

EXAMPLE OF ADAPTIVE BAYES DECISION WITH TWO UNKNOWN PAYOFFS

q = (1/3, 1/3, 1/3)

B

1 2 3

a12 -1

O a23

-1 0

P(a 1 2 ) = (a1+3)

P(a23 ) = 14a 23

if a1 2 < -3

if -3 - a12 < 0

if 0 a1 2

if a23 < 0

if 0 -< a23 < 3

if 3 a2 3

Unknown payoffs a 1 2 and a 2 3 are assumed to be statistically independent random

variables. P(a 1 2 ) and P(a2 3 ) are cumulative distribution functions, corresponding to

flat density functions between -3 and 0, and 0 and 3, respectively.

This example will be solved by the standard method, and the results will be checked

by the abbreviated method.

The following terms are easily calculated:

2 1 2 1
E(row 1) E(row 1) E (row 1) E (row 1)~3 6' max 3 min 3

-2 + a3 
E(row 2) ,E(row 2) E (row ) E (row 2)--3 max 3' min 3

E(row 3) = 0.

First, the process with the single unknown payoff a12 is solved, as a function of a 2 3.

The preliminary checks are made to see whether V = E(row io) for io 1, or = E(row 1):

Emax(rowmax

E(row 3)

1)>

E(row 2) for all possible values of a 2 3 , and

E(row 3) E min(row 1).

Therefore, Popt = el and

Lmin(a 23) =
V(a23) - E(row 1)

q2
>0 (A-14)
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for all possible values of a23. The value of the payoff matrix can be calculated:

0

E(row 1)
v(a23) 

E(row 2)

E(row 1)

if E(row 1) - 0

if E(row 1) > O

if E(row 1) E(row 2)

if E(row 1) E(row 2)

}
}

if E(row 2) < 0 (a 23 2)

if E(row 2) 0 (a2 3 > 2),

0 + a 1 2. 0 + -(Z-+a) da2 

T (a23-1) 3 4
23 - 4

1(2
' a 23a +418 23- 23 /

if a23 < 2

+ a12) 1
3 ' da12

if a23 > 2.

Therefore, Eq. A-14 yields

Lmin(a2 3) 

6a223-2a 23 +1)

if a23 2

if a23 2,

2 1 23 1 damin 23 6 T2 23 d 23

Now the case for which a23 is the single unknown will be considered. The prelimi-

nary checks are made to see whether = E(row io) for io 2, or = E(row 2):
if a1 2 > -1, then E(row 1) ¢ Emax(row 2) > E(row 3), which implies that Lmin al2 = 0

and Popt = e 1;

E(row 3)
if a 12 < -1, then Emax(row 2)> E(row 1)

mxE(row 1)

Lminla1 2 > 0, and Popt = e 2.

These results can be summarized as follows:

e 1

Popt 

e2

for all a 1 2 < -1, in which case

if a1 2 -1

if a12 < -1,

and
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0

V(al2) - E(row 2)

q3

if a1 2 -1

(A-15)

if a1 2 < -1

The quantity V(a 12 ) can be calculated without excessive difficulty:

18

1 (aZ2+8a 1 3)

a2 1 12
3+ 3-

if a12 < -2

if -2 -< a1 < -112

if a1 2 -1.

If the expressions for (a 12 ) are substituted in Eq. A-15, the following expressions are

obtained:

Lmin(a1 2 ) =

2
3

1 (a2 2 +8a 2 +16)

0

if a12 - -2

if -2 - a1 2 <-1

if a1 2 > -1,

Lmin a 1 2 54

V is easily calculated from (a 12 ) or V(a 23 ): = 20/81. Because v > E(row 1) > E(row 2),

20 1 + 1 31 20 1 1 13
mi n 81 6 3 54 81 6 1 3 54 22

min 1 1' 127
3 3

and Popt = el. This completes the solution by the standard method.

Now let us apply the abbreviated method. It is easily determined that V > F for all

p. Because E max(row 1) > E max(row 2), case (1) applies; therefore, P = el'. Notice

the saving in labor! Of course, this method does not yield the value of Lmin; however,

the labor involved in the calculation of Lmi n is considerably reduced when Popt is known.minop
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APPENDIX VI

ILLUSTRATIONS OF THE POSSIBLE SITUATIONS THAT ARISE IN ADAPTIVE

DECISION UNDER UNCERTAINTY WITH A SINGLE UNKNOWN PAYOFF

The technique of converting a game problem into a linear programming problem,

which is used here, has been given by Luce and Raiffa. 3 4

Consider a 2 X 3 payoff matrix in which a1 1 represents the unknown payoff. All pay-

offs are assumed to be positive; this is reasonable, since the addition of the same large

positive constant to each payoff of any matrix causes all terms to be positive yet does

(a)

XI

B D C

(b)

XI

D B C

B+ E

A

(c)

XI

D C

Fig. A-2. Graphical illustration of 2 X 3 decision under uncertainty problem.
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not change the optimum strategies. Figure A-2 is used to illustrate the possible signifi-

cant situations that arise. The following equations are represented by lines in all parts

of this figure.

al 2 xl + a22 x2 = 1 (A) al minx + a2 1 x 1 (C)

a 1 3 x1 + a 2 3 x2 = 1 (B) al maXxl+ a 2 1 2 1 (D).

The dashed lines E represent this equation: x1 + x2 = 1/vma x . The following argument

demonstrates why this is so. Make the substitutions x i = Pi/y, where y > 0, in equa-

tions D, A, and B. In this case the regions on or above the shaded lines correspond

to points satisfying the inequalities

all maxP + a21P2 >Y (D)

a 1 2pl + a 2 2P 2 > y (A) (A-16)

a 1 3 p 1 + a 2 3P2 >_y (B)

with P1
> 0, P2

> 0. The further restriction that P + P2 = 1 implies that

Pi +P2 1
X1 + X2 = - (A-17)

Y Y

Equation A-17 is the equation of a line with slope -1 that intersects both axes at dis-

tance 1/y from the origin. The largest possible value of y that satisfies Eqs. A-16 and

A-17 equals vmax. These equations can be satisfied and y can be maximized at a point

lying on or above the shaded lines and on the line with slope -1 that intersects the axes

at the smallest possible distance from the origin. Because lines E in all parts of the

figure are closest to the origin, they intersect the axes at length /vmax from the origin.

All points on lines E can be described by the equation

X1 + X =v (E) 
max

This leads to the conclusion that points that lie on or above lines A and B, on or above

the x1 axis, on or to the right of the x 2 axis, and on line E satisfy the inequalities

a 12 P1 + a 2 2 P 2 >Vmax P 1
> 0, P2 0,

a13Pl + a 2 3 P 2 Vmax' Pl + P2 = 1.

These inequalities define the constraint polyhedron for the payoff matrix.

The case in which Pr(v=vmax ) = 0 is illustrated in Fig. A-2a. As a11 increases

from a 1 1 min to a 1 1 max' the line a 1 1 X1 + a 2 1x = 1 moves from line C to line D, piv-
oting at the x2 axis, and the line E moves closer to the origin. If the probability that

all equals all max is zero, then Pr(v=vmax) = 0. The constraint polyhedron is the heavy
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segment of line E in Fig. A-2a. Although the figure does not demonstrate that

E(col 1) < v whenever v < vmax' a fact that has already been proved does illustrate the

situation when v = vmax. Because the heavy segment of line E lies on or below line D,

all points in the constraint polyhedron satisfy the relationship a1l maxP1 + a 2 1 p2 Q Vmax'

or

Ema (col 1) v (A-18)max max

Figure A-2a also illustrates a case in which Pr(v=vma x ) > 0. This is true if a 1 has

a positive probability of assuming the value a11 max' Inequality (A-18) is valid in this

case also.

Figure A-2b illustrates another case in which Pr(v=v max) > 0. Here the constraint

polyhedron consists of the single point on line E at the intersection of lines A and B.

Naturally, this point represents Popt' Because the point lies above line D, the following

relation is true:

Emax max

In fact, E(col 1) > vmax = v for all values of al from a critical value a (that causes

the line for equation allx + a 2 1 x2 = 1 to pass through the unique point on line E) to

all max'
The unstable situation is illustrated in Fig. A-2c. The constraint space corresponds

to the heavy segment of line E; however,

Ema (Col 1) > Vmax

for those points in the constraint space that lie above line D. The reason for the desig-

nation "unstable" has to do with the fact that if line B were rotated an infinitesimal

amount clockwise, this problem would become one of the type illustrated in Fig. A-2a,

and if line B were rotated an infinitesimal amount counterclockwise, the problem would

become one of the type illustrated in Fig. A-2a. In general, the two solutions for the

perturbed matrices will be considerably different.

Note that although the figures have been drawn, of necessity, for a 2 X 3 matrix, the

principles illustrated by these drawings are valid for any m X n payoff matrix.
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APPENDIX VII

EXAMPLE OF ADAPTIVE DECISION UNDER UNCERTAINTY WITH TWO UNKNOWN

PAYOFFS IN WHICH THE MEAN LOSS IS SMALLER AT SOME POINT INSIDE

THE CONSTRAINT SPACE THAN AT ANY OF THE VERTICES

B

2 3

-1 0

a 2 2 -

O o

Pr(all= -2) = 1/2

Pr(a 1
= +1) 1/2

Pr(a 2 = -1) = 1/2

Pr(a 2 2 =0)= 1/2

with a11 and a22 statistically independent.

al 1' a2 2

-2 , -1

-2 , 0

+1 , -1

+1 , 0

The following quantities are easily calculated:

v(a ll'a 2 2 )

-2/5

-2/5

-2/5

-1/4.

Since v ax = -1/4, the constraint space is defined bySic ma x

Piai3 > Vma x

i=l

Pi = 1,

Pi > 0 for i = 1, 2, 3

P2 < 1/4

or Pl + P2 +

Pi > 0, 

The four vertices of the space are

Pa = (0, 0, 1),

Pb = (1,0, 0),

Pc = (3/4, 1/4, 0),

Pd = (0, 1/4, 3/4).

The following results have been obtained for Lmin Ial. When all = -2, Popt 

(0, 2/5, 3/5) for the problem with the single unknown payoff a22. It is true that

Lmin all = 0 (all=-2)for both possible values of a 2 2. When all =+1, Popt = (1/4, 1/4, 1/2),

and
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A 2 2

3 -2

3

i=l
P 3

=1,

P2 > O, P3 > 0.

(A-19)
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L 2/5
Lmi n ]a 11 =0

if a22 -1

if a22 = 0
(a 1 = +1).

The calculations for Lmin la2 2 have produced the following results. When a 2 2 = -1, Popt =

(0, 2/5, 3/5), and

Lminja 22 = O (a22 = -1)

for both possible values of all. When a22 = 0, Popt = (1/4, 1/4, 1/2), and

12/5

Lmin a22 0

if a = -2
11

if a 1 = +1
(a 2 2 0).

These results can be checked by using the techniques learned from section 4. 2.

If p lies inside the constraint space, Lmax can be written as Eq. 16. The reader

can easily confirm the fact that Eq. 16 is valid when v = vmax at all four vertices (A-19).

max

max

L =
max

max

max

-2/5 - (-2pl+2p 2 -2P 3 ) + 0

-L/ P1

-2/5 - (- 2 pl+2 p2 -2P 3 ) + 0

~- P1

-2/5 - (pl+2P 2 -2p 3 ) +

P1

-1/4 - (p 1 +2P 2 -2P3 ) + 0 -1/4 - (-pI) + 0

P1 P 2

-2/5 - (-P 1 -P 2 ) + 0

P2

-2/5 - (-P 1 ) + 12/5P 2]

P 2/5

Pl -2/5 - (-p l-p2) + 0

i

]

if (all, a2 2 ) = (-2, -1)

if (al, ' a2 2 ) = (-2, 0)

if (al 1' a2 2 ) = (+1,-1)

if (all' a2 2 ) = (+1, 0)

L(p) is calculated for the four vertices of the constraint polyhedron:

L(pa) = 1/4[(+oo)+(+oo)+(+oo)+(+oo)] = +co

(pb) = 1/4[(+oo)+(+oo)+(+oo)+(+oo)] = +oo

L(Pc) = 1/4[(12/5)+(19/5)+(12/5)+(2)] = 53/20 = 2. 65

L(pd) = 1/4[(+oo)+(+oo)+(+oo)+(+0o)] = +00o.

Now consider some other point not at a vertex of the polyhedron:

e (6/20, 5/20, 9/20).

L(pe) = 1/4[(2)+(2)+(3/5)+(1/5)] = 1.2 < 2. 65 = L(pc).

(Fairly thorough trial-and-error calculations indicate that probably Popt = Pe ) Although

Pe lies on one of the surfaces of the constraint polyhedron, it is not a vertex.
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APPENDIX VIII

PROOF THAT THERE EXISTS A MINIMAX SOLUTION FOR THE

PROBLEM OF ADAPTIVE COMPETITIVE DECISION WITH

EQUAL INFORMATION - SINGLE UNKNOWN PAYOFF

First consider an auxiliary decision process with a loss matrix that is related to

the payoff matrix of the original problem of adaptive competitive decision in the following

manner. The (1, 1) entry is - 1 1, and all other (i, j) entries are - aij + x. Then

the expected loss for a single play of the auxiliary process is

L = 1q(V-- 1 1) + Piqi(V-a ij+x)

(i, j)~(1, 1)

= - F + (1-plq )x. (A-20)

If player A is the minimizing player and B is the maximizing player, this single-step

process has a minimax solution with value y(x) and optimum strategies Px and qx. The

value and minimax strategies are functions of the variable x.

Two sets of points are defined on the real axis:

(y(x)< x and x < 0, or

x is in Set 1 ify(x)

(y(x x and x 0;
(A-21)

y(x) > x and x> 0, or

x is in Set 2 if x

[y(x) > x and x < 0.

Note that every real number is either in one or the other of the two sets; however, the

point x = 0 may be in both sets. If x is in Set 1 and player A uses strategy x' then

the following inequality is true for any mixed strategy 9 of player B:

< x if x < 0

v - + (1-Plxql)x y(x)<

x if x 0

or

p 1 xq x - c if x < 0

v - < (A-22)

PlxqlX if x 0,

where c is some positive constant, and Plx is the first component of px

It will be shown that if x is in Set 1 and if player A uses the piecewise-stationary

strategy that begins with the repeated use of probability distribution x for the original
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competitive decision process, then the mean loss is no greater than x. Likewise, if

x is in Set 2 and if player B uses the piecewise-stationary strategy that begins with the

repeated use of distribution qx, then the mean loss is no less than x. Finally, it will

be shown that there is a unique value x = Lopt which is such that points exist in both Sets

1 and 2 which are within an arbitrarily small distance of Lop t . Thus, Lop t is a minimax

(more precisely, a "supinf") value for the adaptive competitive decision process.

The total loss for N steps of the competitive decision process is

N k-l

k= 1 t=O

and the mean value of the total loss for N steps is

N k-i

=X (V-r E ) F -(1- ptqt) (A-23)

k= 1 t=O

0 0.
where plql is equal to zero. The derivation of these expressions is based upon the

assumption that once all is received the loss will equal zero from that point on. Although
1 N 1

Eq. A-23 is valid only for memoryless sequences of distributions, p ... , p and q
N

., q , the use of (A-23) will be restricted to cases in which one may assume, with

complete generality, that the sequences are memoryless (see Appendix II).

If x is in Set 1, if N steps of the adaptive competitive process are played, and if

A uses distribution Px repeatedly until all is received or until the number of steps

reaches N, then an upper bound to LN can be found by substituting inequalities (A-22)

in (A-23).

N k-l

E (Plxqxc) (1-lxqt) if x < 0
k= t=O

LN -< (A-24)

N k-i

(Plxqkx)TT (-Plxqtl) if x 0.
k= 1 t=O

1 N
This is true no matter what sequence of distributions, q ... , q , player B uses. It

is easily shown that

N k-l N

(Plx q
x ) 7 (1-Plxql) x - x] (1-Plxq ).

k=l t=O k=O

When this identity is substituted in inequality (A-24), the following inequality

results:

73

·_



N N k-1

x - x (-Pqk) - E c - (1-Plxql) if x < 0
k=O k= 1 t=

LN (A-25)

N

(x - x (i-plxq) if x 0.

k=O

Clearly, when x is non-negative, LN < x for all N. It is now desired to prove LN < x

if x is negative. The following expression is taken from the right-hand side of inequal-

ity (A-25):

N k-l N
c (l-plxq) - lxi 17 (-plxq k (A-26)

k=I t=O k=O

where c is positive. All elements of the first term are non-negative. The sum con-

verges as N approaches infinity only if the individual elements of the sum approach zero.

But the individual elements approach zero only if the second term in expression (A-26)

approaches zero. The conclusion is that expression (A-26) either converges to a non-

positive quantity or approaches -oo, as N grows large. In the former case

lim LN x;
N-oo

in the latter case there exists an integer No that is such that if N is greater than No,

LN x. In other words, by using distribution Px repeatedly until a 11 is received and

then playing optimally, player A can guarantee either that his mean loss converges to

a quantity no greater than x, or after a sufficient number of plays his mean loss is no

greater than x.

An analogous derivation leads to the conclusion that if x is in Set 2 and if player B

uses a piecewise-stationary strategy beginning with distribution qx, then either

lim L N x,
N-oo

or there is an integer No that is such that L N > x for all N > N o , no matter what strategy

player A uses.

The point x = +oo is in Set 1, and the point x = -co is in Set 2; therefore, there is at

least one point x = Lopt, in any epsilon neighborhood of which there is a point in Set 1

and a point in Set 2. It can be shown that the point Lopt is unique. The assumption that

Lopt is not unique, implies that there must exist two points, x and x2 , in Sets 1 and 2,

respectively, which are such that x2 > x l . The fact that x1 and x2 are in Sets 1 and 2,

respectively, implies that y(xl) C x1 and y(x 2 ) Ž x2 , or that

Y(X2 ) -Y(x 1 ) a x 2 - x1 . (A-27)
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Because y(x) is the minimax value of a particular matrix in which x is added to all but

one of the entries of the matrix, if x changes by an amount d, y(x) cannot change by

more than d. (If A uses strategy Px in the auxiliary game, the mean loss is no greater

than y(x); therefore, if A uses px when d is added to all but one of the entries of the

matrix, the loss is no greater than y(x) + d.) As a result,

Y(X2) - (X1) < x 2 -x 1

This inequality contradicts inequality (A-27), unless y(xl) = x1 and y(x 2 ) = x 2 . But if

Y(xl) = x1 , the definition of Set 1 implies that xl > 0. Also, y(x 2 ) = x2 implies that x2 < 0.

Thus x1 > x2. But because Lopt was assumed to be non-unique, we were allowed initially

to choose x2 > x l . The contradiction leads to the conclusion that Lopt is unique. This

concludes the proof of the theorem.

The continuity of y(x), which has just been proved, and the fact that in any epsilon

neighborhood of Lopt there exist points in both Sets 1 and 2 lead to the conclusion that

Y(Lopt)= Lopt
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APPENDIX IX

PROOF THAT AN EXAMPLE OF ADAPTIVE COMPETITIVE DECISION WITH

UNEQUAL INFORMATION HAS A MINIMAX SOLUTION AND THAT

PLAYER B CANNOT ATTAIN THE MINIMAX VALUE BY USING

A PIECEWISE-STATIONARY STRATEGY

B

1 2 Pr(all=-l1) = 1/2

(A : 1 [a 1 3 Pr(all=+l) = 1/2

2 0 -1

Assume that A uses alternative 1 repeatedly until a1 is received. What strategy

can B use that will maximize the loss to player A? If all = +1, then v = 0, so B's opti-

mum strategy is to use alternative 2 repeatedly. If all = -1, then v = -1/2. In this case

the single-step loss is -1/2 for each step at which player B uses alternative 2, and the

single step loss is +1/2 for the first step at which B uses alternative 1 and 0 thereafter.

Therefore, B's optimum strategy is to use alternative 1 at the first step and anything

thereafter, since A uses p = (1/2, 1/2) repeatedly after he learns that all = -1. If B

uses these strategies, the mean loss is

L= lim LN = 1/4.
N-co N

Assume that B uses the appropriate minimax distribution repeatedly from the second

step on (q = (0, 1) if all = +1; q = (1/2, 1/2) if all = -1), but at the first step uses alter-

native 2 if a 1 1
= +1 and alternative 1 if a 11

= -1. If player A plays in an optimum fashion,

he sustains no loss after the first step because B's choice of alternative at the first step

"spills the beans" about the true value of all, and A can use this information to play

in an optimum fashion from the second step on. If A uses alternative 1 at step 1, his

single-step loss is zero if all = +1 and +1/2 if all = -1; if A uses alternative 2 at step

1, his single-step loss is 1 if all = +1 and -1/2 if all = -1. Therefore, no matter what

A does at the first step, L = 1/4. This proves that the given strategies are minimax

strategies.

Does a piecewise-stationary strategy exist for player B which is such that EL 1/4

for all strategies of A? Assume that B uses distribution (q+, -q+) if all = +1 and dis-

tribution (q, -q_) if all = -1. These represent probability distributions used repeat-

edly until all is received. This is as general a piecewise-stationary strategy as

B can use. Suppose that A uses alternative 1 repeatedly until all is received. Then

if all = +1,
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0- q

L= =gt Oif q+ O-1 if q+ O0

0 if q+ 0 0 if q = 0,

and if a -1,

-1/2 + q
if q_ 1/2

q_

1
L= = 1

2q_

0 if q = 1/2

It follows that

-2-+ (1-2-) 2 if q+ 0 0c + 4q-

L=

1 1 1 1
if q+ = 0

q2 2 4q_'

In order that L be no less than 1/4, q+ must equal zero, and q_ must equal 1. So, in

order to ensure that L > 1/4 when A uses alternative 1 repeatedly, B must use alter-

native 2 repeatedly when all = +1 and alternative 1 repeatedly when all = -1, until all

is received. Using this strategy, B divulges his knowledge of the true value of all at

the first step. Player A can use this information to ruin B. Suppose that A uses alter-

native 2 at the first step. Then if all = +1 he sustains a loss of 1 at the first step but

no further loss because he will use alternative 1 repeatedly from the second step on.

But if a11 = -1, A sustains a loss of -1/Z at the first step and should select alternative

2 repeatedly thereafter. Thus he never receives a1 1 , but sustains a loss of -1/2 at

each step. As a result L = -oo. Therefore, there is no piecewise-stationary strategy

that B can use to guarantee that L > 1/4, irrespective of A's strategy. Player B's

minimax strategy must be nonstationary.
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APPENDIX X

SOLUTION TO AN N-TRUNCATED PROBLEM OF ADAPTIVE

BAYES DECISION WITH A SINGLE UNKNOWN PAYOFF

Assume that payoff a1 1 is unknown in an m X n matrix. Notation used in Section III

is employed here. It can be demonstrated that only a 2 X n payoff matrix need be con-

sidered.

Assume that E(row 2) > E(row i) for i = 3, ... , m. (The rows can be relabeled so

that this inequality is satisfied.) In this case player A should never use any alternatives

except 1 and/or 2. Therefore, all rows of the matrix but the first two may be eliminated

from consideration without affecting the generality of the solution. Furthermore, if

V = E(row 1) or = E(row 2), then A can make the total loss zero by using, respectively,

alternative 1 or 2 at all N steps. This is because v E(row 1) implies

n n

v = qjalj qjaj

j=1 j=l

for all possible values of all ' and v = E(row 2) implies

n n

V qja2 j I qjal

j=l j=l

for all possible values of a 1 1 ' In the remaining cases the following definitions can be

used:

d - V- E(row 1)> 

d 2 = - E(row 2)> 0.

The mean loss for a -truncated process when A uses distribution (P1, P 2 ) is1 =

pldl + P 2 d2 . Subscripts of L represent the number of steps in the truncated process,

and the minimum value of the mean loss can be written

L1 opt = min [d, d 2].

The minimum mean loss for a 2-truncated process is written

L2 opt = min [d +(1-ql)L opt, d2+L opt].(A-8)

An expression that equals zero has been omitted from the first term in the brackets of

Eq. A-28. The complete expression is

d l + (-ql)(minimum mean loss for 1-truncated process when a is unknown)

+ ql(minimum mean loss for -truncated process when a l is known).
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The last term equals zero. The general expression for the minimum mean loss of an

N-truncated process is

LN opt - min [dl+(-ql)_ 1 opt' d2+N- opt].

Assume that

Lk opt = d1 + (-q 1)Lk_-1 opt d2 + Lk-1 opt' (A-29)

This assumption means that the mean loss for a k-truncated process can be minimized

only if alternative 1 is used at the first step.

Lk+l opt min [d1+(1-q 1)(dl+(1-ql)k 1 opt),d2+(dl+(l-ql)Ek- opt ) ]

= min [dl+(1-ql)(dl+(1-ql)E_ 1 opt),d1 +qld+(1-q1 )(dz2+- 1 opt

(A -3 0)

If relationships (A-31) and (A-29) are applied to Eq. A-30, then Eq. A-32 results.

d1 < d1 + qd 2 (A-31)

Lk+ opt = d + t d2 kopt + (A-32)

Thus, if the mean loss for a k-truncated process can be minimized only if alternative 1

is used at the first step, then the mean loss for an n-truncated process can be minimized

only if alternative 1 is used at the first step when n k.

Next, assume that L 1 opt = d2 d.l' This assumption means that the mean loss for

a 1-truncated process can be minimized by using alternative 2 at the single step.

L2 opt min [d+(1-q 2 )d2, 2d2 ]. (A-33)

If the second term in the brackets of (A-33) is no greater than the first, then L

min [d1+(l-ql)2d2 , 3d 2]-

In general, if Lk can be optimized by using alternative 2 at the first step, then

Lk+1 opt min [d1+(l-ql)kd 2 , (k+)d 2]. (A-34)

The second expression in the brackets of (A-34) is no larger than the first if d2

dl/(l+kql ) , or

k _< (d 1 -d 2 )/qld2 No - 1. (A-35)

In other words, if d2 < d1 , the optimum strategy for an N-truncated process is to use

alternative 2 at all N steps if N No . But if No < N < No + 1, then the optimum strat-

egy is to use alternative 1 at the first step and alternative 2 at the remaining N-1 steps.

The results just stated lead to the conclusion that the optimum alternative for A to

use at the first step of an N-truncated process is 1 if N > No and 2 if N _< N o . This state-

ment also includes the conditions V = E(row 1) or V = E(row 2). In other words, the

79

I - - I . -



optimum strategy is to use alternative 1 repeatedly until the number of steps remaining

is no more than No (defined in Eq. A-35), and then use alternative 2 repeatedly until

the process terminates.

a
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