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Computational Structure Analysis of Multicomponent Oxides 

by 

Yoyo Hinuma 
 

Submitted to the Department of Materials Science and Engineering 
 on April 10 in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Materials Science and Engineering 
 
Abstract  
First principles density functional theory (DFT) energy calculations combined with the 
cluster expansion and Monte Carlo techniques are used to understand the cation ordering 
patterns of multicomponent oxides. Specifically, the lithium ion battery cation material 
LiNi0.5Mn0.5O2 and the thermoelectric material P2-NaxCoO2 (0.5 ≤ x ≤ 1) are investigated 
in the course of this research. It is found that at low temperature the thermodynamically 
stable state of LiNi0.5Mn0.5O2 has almost no Li/Ni disorder between the Li-rich and 
transition metal-rich (TM) layer, making it most suitable for battery applications. Heating 
the material above ~600oC causes an irreversible transformation, which yields a phase 
with 10~12% Li/Ni disorder and partial disorder of cations in the TM layer. Phase 
diagrams for the NaxCoO2 system were derived from the results of calculations making 
use of both the Generalized Gradient Approximation (GGA) to DFT and GGA with 
Hubbard U correction (GGA+U). This enabled us to study how hole localization, or 
delocalization, on Co affects the ground states and order-disorder transition temperatures 
of the system. Comparison of ground states, c lattice parameter and Na1/Na2 ratio with 
experimental observations suggest that results from the GGA, in which the holes are 
delocalized, matches the experimental results better for 0.5 ≤ x ≤ 0.8. We also present 
several methodological improvements to the cluster expansions. An approach to limit 
phase space and methods to deal with multicomponent charge balance constrained open 
systems while including both weak, long-range electrostatic interactions and strong, 
short-range interactions in a single cluster expansion. 
 
Thesis Supervisor: Gerbrand Ceder 
Title: R. P. Simmons Professor of Materials Science and Engineering 



 4

Acknowledgments    

 

First of all, I would like to thank my advisor Prof. Gerbrand Ceder for funding, 

research advice and all the other nice things. I also thank my thesis committee, Prof. Yang 

Shao-Horn and Prof. Yet-Ming Chiang for helping me improve this thesis, and to Dr. 

Robert Doe for proofreading the thesis document. 

 My computational work was greatly helped by cluster expansion and Monte 

Carlo code by Dr. Anton van der Ven and Dr. Tim Mueller. Dr. Ying Shirley Meng helped 

me with scientific discussion and improvement of my paper writing and survival skills. I 

also appreciate my past and present lab mates and other people at MIT who made my life 

here a great experience. 

 Finally, I would like to thank my daughter Sumika for being a nice kid while 

daddy was working on his thesis, and my wife Junko for supporting and encouraging me. 



 5
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Chapter 1  Introduction         

 

Altering the properties of materials always requires a change in the local 

environment of the atoms within the material. For example, doping creates some atomic 

environments that include the dopant as neighbors, while annealing enables more 

frequent atomic diffusion that results in new, energetically favorable atomic environments 

at the annealing temperature. Quenching differs from slow cooling because atomic 

environments favored in high temperature are more likely to remain after cooling. These 

examples illustrate how many different local structures can be obtained during the 

experimental process, some being more energetically favorable than others. 

 

It should be possible to make materials with ideal properties if the optimum 

atomic environments and corresponding processing conditions are known. The primary 

problem is that an understanding of the atomic environments cannot be easily obtained or 

measured except in the simplest systems; thus atomic scale engineering is not commonly 

utilized as a means of property improvement or control. Currently, a variety of 

experimental methods such as X-ray diffraction (XRD), nuclear magnetic resonance 

(NMR), transmission electron microscopy (TEM) and X-ray absorption fine structure 

spectroscopy (XAFS) are utilized to probe different length scales, yielding some idea of 

the environments. Computational methods such as first principles density functional 

theory (DFT) are being utilized to conduct total energy calculations with full structural 
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relaxation from an arbitrary initial configuration. However due to computational 

restrictions the unit cell size is limited, in turn limiting the description of long range order 

in a system.  

 

Some systems with structural disorder may be very difficult to understand using 

experimental techniques. Lithium transition metal oxides such as LiNi0.5Mn0.5O2 or 

LiNi1/3Co1/3Mn1/3O2 are one example: XRD or electron diffraction cannot distinguish the 

transition metals in these materials because they have a similar number of electrons. 

However, structural disorder can be precisely controlled in computation, where arbitrary 

unit cells can be used as input. 

 

In this thesis, a computational “atomic engineering” approach is used to gain 

insight into the optimal material (phase) for a specific use of a system in consideration. 

Figure 1-1 shows a schematic flow chart of this approach. First, energies (EFP) of various 

atomic configurations (σ) are obtained using first principles methods. Next, the cluster 

expansion formalism is used to fit the first principles energies to a simple polynomial of 

occupation variables on sites within a lattice model. It is also possible to understand the 

relevant interactions between atoms of the system in consideration from the cluster 

expansion. Afterward, Monte Carlo simulation is conducted to quickly sample energies of 

large unit cells using relatively accurate energies (ECE) from the cluster expansion 

approximation. The goal of the Monte Carlo simulation is to compile a phase diagram in 
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temperature (T) - composition (x) space. Finally, physical intuition of the system is used 

to gain insight into processing conditions or composition ranges for possible property 

improvements. This method should allow us to overcome the unit cell size restriction in 

DFT while retaining a useful degree of accuracy.  

 

 

Figure 1-1. Schematic flow chart of properties optimization based on an atomic 
engineering approach.  

 

This work is composed of explicit application of computational atomic 

engineering in two systems relevant from both engineering and science viewpoints: in the 

lithium ion battery cathode material, LiNi0.5Mn0.5O2, and in the thermoelectric material, 
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NaxCoO2. This is also the first work to address cluster expansion in restricted phase space 

(penalized cluster expansion). Specifically, some atomic configurations were not allowed 

in each system studied because of too high energy results from the repulsion or overlap of 

atoms. This restriction was resolved by introducing a penalty to discourage sampling in 

restricted phase space during the Monte Carlo simulations.  

 

The outline of this thesis is as follows: Chapter 2 covers the general methodology 

of phase diagram generation while the atomic engineering approach is applied to 

LiNi0.5Mn0.5O2 and NaxCoO2 in Chapter 3 and Chapter 4 respectively. The 

methodological details specific to each system (semi-canonical binary-ternary coupled 

penalized cluster expansion for LiNi0.5Mn0.5O2, and charge constrained grand canonical 

binary or binary-binary coupled penalized cluster expansion for NaxCoO2) are described 

in Chapters 3 and 4. The main objective of Chapters 3 and 4 is to understand the relevant 

physics and obtain a phase diagram showing the thermodynamically stable phases for 

each of these systems. Finally, Chapter 5 includes concluding remarks, and ideas 

regarding the direction of future work are presented in Chapter 6. 
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Chapter 2  Computational phase diagram generation   

 

2.1  Overview 

 

A temperature-composition (T-x) phase diagram is a key component in the atomic 

engineering approach because it is used to show what phases, or structures, are 

thermodynamically stable at a given temperature and composition. First principles 

calculations (Density Functional Theory: DFT) is a very powerful method of obtaining 

accurate ground state energies. However, one drawback previously mentioned is 

computing power limiting the size of the unit cell to roughly ~102 atoms, while another 

detriment is the inability of DFT to predict accurate energy at finite temperature. Cluster 

expansion (1) is one possible method of gaining insight into partially disordered states at 

finite temperatures. Its use has been demonstrated in alloy systems (1-9) as well as 

Li-vacancy ordering studies in lithium transition metal oxide systems (10-13). In general, 

the process of cluster expansion involves fitting DFT energies to a simple polynomial 

(cluster expansion) in order to quickly obtain energies of large cells on the order of ~105 

atoms. Additionally, finite temperature behavior can be investigated by combining Monte 

Carlo simulations with cluster expansion. 

 

It is necessary to conduct the following steps, summarized as a schematic flow chart 

in Figure 2-1, in order to generate a phase diagram: 
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1) First, parameterize the degrees of freedom and obtain the configurational information 

regarding the structures, then coarse grain out vibrational, electronic and magnetic 

information (14). The exception to this rule occurs when a single element must be 

configured with different valences (e.g. ordering of Co3+ and Co4+) or different 

magnetic spin (e.g. ordering of Ni2+ with up-spin and down-spin). Although the 

element is the same, if this is an issue that cannot be neglected, then these have to be 

treated as different species.  

2) Decide which structures (ordering patterns) will be considered in fitting the cluster 

expansion. 

3) Obtain first principles energies for each of the structures. The lattice parameters and 

atomic coordinates will be relaxed in the first principles calculations.  

4) Construct a cluster expansion. 

5) Complete Monte Carlo simulations with the Metropolis algorithm. 

6) If the cluster expansion does not seem to be a good model of the system, then iterate 

again from step 1. 

7) Obtain phase transition temperatures from the simulated energy and/or heat capacity 

as a function of temperature. As described in detail later, this step may require free 

energy integration. 

8) If grand canonical calculations are conducted, then stable phases for a given 

temperature may be obtained by observing discontinuities in composition as a 

function of chemical potential. 
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Figure 2-1. Schematic flow chart of phase diagram generation. 

 

The key assumption is that configurational entropy causes the most significant 

energetic difference between various phases, while the contribution to free energy from 

other sources of entropy (e.g. vibrational, magnetic and electronic) is insignificant 

between phases and can be ignored (coarse grained out) (14). However, it should be noted 

that the fully relaxed energy for a given configuration is used as the energy for a 

configuration of species in ideal sites on the lattice model. It is possible to extend this 

formalism to incorporate other entropy sources. For instance, the formalism where 

vibrational entropy is also taken into consideration is shown in Garbulsky and Ceder (15).  
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Details of the cluster expansion construction, Monte Carlo simulation and free 

energy integration are discussed in the following section 2.2. 

 

2.2  Cluster expansion  

2.2.1  Formalism (1) 

 

We consider a lattice model system with N sites where m species can occupy each 

site. There are mN possible configurations (σ), and we assume the energy (Eσ) is known 

for each σ. An mN-dimensional vector (φ(σ)) is defined where the components are all 

possible combinations of one out of (1, σi, σi
2 … σi

m-1) multiplied over all i. Here, i is the 

label of a site, and σi is the occupation variable of site i. For example, if N = 2 and m = 3, 

i can be either 1 or 2, and one definition of φ(σ) is  

φ(σ) = (1, σ1, σ2, σ1
2, σ1σ2, σ2

2, σ1
2σ2, σ1σ2

2, σ1
2σ2

2).                  (2.1) 

Occupation variables can take m different values depending on what species is occupying 

the site i (one example for values of the occupation variables are integers 0, 1, 2 … m−1). 

An mN-dimensional vector (V) exists such that Eσ is obtained by  

Eσ = V•φ(σ).                                                  (2.2) 

Going back to the N = 2 and m = 3 example, if the occupation variables for site i are 

defined as σi  = 0 if species A is occupying site i, 1 if species B is occupying and 2 if 

species C is occupying, three out of nine possible relations for φ(σ) are the following: 
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φ(AA) = (1, 0, 0, 0, 0, 0, 0, 0, 0) 

φ(AB) = (1, 0, 1, 0, 0, 1, 0, 0, 0) 

φ(BC) = (1, 1, 2, 1, 2, 4, 2, 4, 4).                                    (2.3) 

For 

V = (V00, V10, V01, V20, V11, V02, V21, V12, V22)                           (2.4) 

examples of relations obtained by combining equation 2.2 with equations 2.3 and 2.4 are: 

EAA = V00  

EAB = V00 + V01+ V02  

EBC = V00 + V10 + 2V01 + V20 + 2 V11 + 4 V02 + 2 V21 + 4 V12 + 4V22          (2.5) 

It is possible to uniquely calculate the explicit value of V by solving the full set of 

equations such as those in equation 2.5. It is important to note that values of V do not 

have any meaning unless the corresponding occupation variables are specified. 

 

In the case of a coupled system with two sublattices, where there is an additional 

sublattice with N’ sites and m’ species, m’N’ possible configurations (τ) exist. Defining j 

as the sites and τj as the occupation variables on the additional sublattice as, φ(σ,τ) is 

defined as a mNm’N’-dimensional vector where the components are all possible 

combinations of products of (1, σi, σi
2 … σi

m-1) over all i and (1, τj, τj
 2 …τj

 m’-1) over all i. 

Eστ is obtained by  

Eστ= V•φ(σ,τ).                                                  (2.6) 
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It is possible to expand this formalism to systems with three or more sublattices in a 

similar way.  

 

Now we attempt to simplify the cluster expansion using symmetry of the lattice. 

For simplicity, we can assume a system with one sublattice and m = 2, which is the case 

for a binary system. This enables equation 2.2 to be rearranged based on the total number 

of σi in each term: 

L++++= ∑∑∑
ijk

kjiijk
ij

jiij
i

ii VVVVE σσσσσσ0                      (2.7) 

where i, j, k indicate different sites. As seen in the previous example, when m > 2, terms 

with squares and higher powers of σi will appear (equation 2.1) (16). Also note that in a 

coupled system some terms include products of both σi and τj (17). When sites are 

symmetrically equivalent, for example if the sites are on a simple hexagonal lattice, 

equation 2.7 can be greatly simplified. If all the sites are symmetrically equivalent, Vi no 

longer depends on the site i, thus the index can be dropped. The set of coefficients V, 

named effective cluster interactions (ECI), may be regarded as a function of the relevant 

cluster, or configuration of sites. Similarly, the number of independent coefficients for 

pair clusters (clusters involving two sites) or triplet clusters (clusters with three sites) may 

be drastically reduced. 
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2.2.2 Cluster expansion approximation for energy prediction 

 

The cluster expansion formalism in section 2.2.1 is exact, and in principle the 

cluster expansion (e.g. equation 2.7) has to be summed over all pairs, triplets, quadruplets, 

and larger clusters of sites. However, in practice the cluster expansion can be used to 

approximate the energy of a complicated system with very few coefficients. The ECI can 

be regarded as the effect of interactions in the cluster on the total energy. Therefore 

irrelevant clusters, such as those that include long-distance pairs, or contain too many 

sites, can be removed from the cluster expansion (ECI set to zero).  

 

The main difficulty in making a good cluster expansion approximation is 

choosing which clusters to include in the cluster expansion and in choosing which 

structures to include when fitting (training) the cluster expansion. Relevant clusters are 

selected on the basis of how well they minimize the weighted cross-validation (CV) score. 

This is a means of describing how good the cluster expansion is at predicting the energy 

of a structure not included in the fit (18). A large number of structures close to the convex 

hull, or the line connecting the minimum energy possible in a given composition, should 

be calculated since it is crucial to obtain the correct ground states, and an accurate energy 

scale of the low energy excitations, to compile an accurate phase diagram. These low 

energy structures should also be weighed heavily when obtaining the CV score. Some 

structures with large excitation energies are also necessary to “pin” at high energy 



 19

structures in the cluster expansion so the local environments of high energy structures do 

not form in the Monte Carlo simulations. These high energy structures may be weighed 

lightly since it is not necessary to accurately predict the energy of these structures as 

compared to structures with lower energy. 

 

It is crucial to have some insight into the physics of the system when determining 

the form of the cluster expansion. For example, if there are noticeably strong interactions, 

the ECI for clusters that represent such interactions should have larger magnitude. In 

general, larger clusters should have ECI of less magnitude than the ECI for smaller 

clusters, as well as a small ECI for clusters near the truncation cutoff. There are some 

cases, such as NaxCoO2 discussed in Chapter 4, where there are long-range electrostatic 

interactions that cannot be truncated to a short distance, necessitating a large number of 

pair clusters. To capture the physics of these systems, the energy from “background” 

ECIs representing the electrostatic interactions is removed prior to fitting the DFT 

energies to the cluster expansion, and then added back to the fitted cluster expansion. 

 

When parts of the phase space are inaccessible or accurate energies are hard to 

obtain (e.g. if the simultaneous occupancy of nearest-neighbor pair is prohibited), it is 

possible to remove affected clusters thus removing any resulting linear dependencies in 

the fitting. Then, a penalty on the cluster expansion is added to increase the energy of the 

system in the restricted phase space. The penalized cluster expansion is applied to the 
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LiNi0.5Mn0.5O2 system and NaxCoO2 system in Chapters 3 and 4 respectively, and there 

the actual forms of the cluster expansions are shown. 

 

2.3  Monte Carlo simulation 

 

Monte Carlo simulation is an efficient method to understand finite temperature 

behavior. The most common algorithm is the Metropolis algorithm (19) where 

perturbations to the system are accepted or denied according to the following criteria: 

1) If Hold ≥ Hnew, then accept the perturbation 

2) If Hold < Hnew and ( )1,0exp rand
kT

HH oldnew <





 −
− , then accept the perturbation 

3) Else, deny the perturbation. 

Here, Hold and Hnew are the Hamiltonian values of the original (old) and perturbed (new) 

systems, k is a coefficient (Boltzmann constant), T is the temperature and rand (0,1) is a 

random number between 0 and 1 (0 and 1 exclusive) that is generated every time a 

perturbation is considered.  

 

The perturbation is always accepted when it lowers the Hamiltonian (energy) and 

is sometimes accepted when the perturbation increases the energy; the likelihood 

exponentially decreasing with increase in energy. When implementing this method, it is 

crucial to not allow 0 as the random number to prevent any perturbation from being 

accepted. 
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If a grand canonical Monte Carlo simulation is being conducted, the Hamiltonian 

is the thermodynamic potential defined as  

NE µ−=Ω .                                                   (2.8) 

Here, E is the energy, and µ is the chemical potential for the relevant composition N. 

Although a variety of perturbations are allowed to be used (e.g. simultaneously changing 

multiple occupation variables that conserve charge balance), the simplest perturbation is 

changing the occupation variable of one site. Such grand canonical simulation is the 

preferred method when composition is allowed to change because no two-phase regions 

appear in a temperature-chemical potential (T-µ) phase diagram. Two-phase regions do 

appear in the T-x phase diagram because discontinuity of composition is allowed at 

first-order phase transition boundaries. 

 

Monte Carlo simulations are typically conducted with either fixed temperature or 

fixed chemical potential to scan T-µ phase space. The correlation length and correlation 

time of the system diverges close to phase transitions (20). Finite size effects are 

observed near transitions because the correlation length is limited to the Monte Carlo cell 

dimensions. For example, the magnitude of peaks in the thermodynamic potential 

fluctuation (e.g. heat capacity) changes with system size. First order transitions, such as 

some order-disorder transitions, are detected when E or the slope of Ω is discontinuous. 

The heat capacity cannot be defined at the transition point, however a peak is often 

observed. Second-order transitions, such as some order-order transitions, have continuous 
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E at the transition point and are characterized by the peak in the fluctuation that changes 

with the system size.  

 

Free energy integration is needed when the phase transition temperature cannot be 

simply be obtained from the energy and/or heat capacity calculated during Monte Carlo 

simulations. One example occurs when there is a significant hysterisis between grand 

canonical heating and cooling runs at the same chemical potential, as seen in the next 

section. 

 

2.4  Free energy integration 

 

In thermodynamics, the free energy of a system with one compositional degree of 

freedom F (T, N) is defined as  

QkTF ln−=                                                    (2.9) 

where k is the Boltzmann constant. The partition function  

( )∑ −=
σ

σβEQ exp                                              (2.10) 

 is summed over all configurations (σ). Here, β is equal to (kT) 1. 

 

The Legendre transformation is used to obtain the free energy  

( ) NFT µ−=µΦ ,                                               (2.11) 

for Ω. Φ is given by: 
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ZkT ln−=Φ                                                   (2.12) 

using the (grand canonical) partition function: 

( ) ( )( ) ( )∑∑
σ

σ
σ

σσ Ωβ−=µ−β−=µβ expexp, NEZ .                    (2.13) 

 

Free energy integration can be conducted when the free energy (Φ0) is known for 

a given temperature (T0) and chemical potential (µ0). The free energy F (Φ) is equivalent 

to the energy E (Ω) when there are no excitations (T = 0 or entropy S = 0), and these 

points are useful as primary reference points. The following integration methods can be 

used to obtain the free energy for other points: 

 

1) Along a fixed temperature trajectory, 
( )( )

( )( ) N
NE

NEN
kTZkT

TT

−=
µ−β−

µ−β−β
−=








µ∂

∂
−=








µ∂
Φ∂

∑
∑

σ
σσ

σ
σσσ

exp

exp
ln        (2.14) 

where N  is the grand canonical thermodynamical average of N. 

Integrating equation 2.14 leads to: 

( ) ( ) ( ) µµ−µΦ=µΦ ∫
µ

µ
dTNTT

0

,,, 0000 .                              (2.15) 

 

2) Along a fixed chemical potential trajectory, 

( ) ( )

( ) Ω=
Ωβ−

Ωβ−Φ
=








β∂

∂
−=








β∂
βΦ∂

∑
∑

σ
σ

σ
σσ

µµ exp

exp
ln Z                    (2.16) 

Integrating equation 2.16 yields: 
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( ) ( ) ( ) βµΩ+
µΦ

=
µΦ

∫ dT
kT
T

kT
T T

T0
0

0

000 ,
,,

.                             (2.17) 

 

These integrations are typically conducted numerically by trapezoidal summation, 

represented as: 

( ) ( ) ( ) ( )1
1

1

20
−

=

− −⋅
+

= ∑∫ ii

k

i

iix

x
xx

xfxf
dxxfk .                           (2.18) 

  

Figure 2-2 depicts two representative phase diagrams with the free energy 

integration trajectories shown as bold lines in the T-µ phase diagram in Figure 2-2a. The 

phase transition point is where F (for canonical calculations) or Φ (for grand canonical 

calculations) of the low temperature phase and high temperature phase equal. For the low 

temperature phase, method 2 is used to obtain Φ by integrating Ω of a fixed chemical 

potential heating simulation from a low enough temperature (equation 2.17). For the high 

temperature phase, method 1 is used to obtain a reference free energy at Thigh with a fixed 

temperature calculation (equation 2.15). Afterward, method 2 can be utilized to integrate 

Ω of a fixed chemical potential cooling simulation (equation 2.17). Figure 2-2b shows the 

trajectories in T-x space, and how the discontinuity in concentration at the phase 

transition point leads to a two-phase region. 
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Figure 2-2. Schematic phase diagram in (a) temperature-chemical potential space and (b) 
temperature-composition space. Free energy integration trajectories are shown with 
arrows.  

 

Figure 2-3 shows an actual simulation result demonstrating phase transition 

temperature determination from free energy integration in NaxCoO2. The grand canonical 

energy (Ω) as a function of temperature obtained from Monte Carlo simulation are shown 

in Figure 2-3a. The phase transition temperature is between 430K (transition observed 

from cooling simulation) and 480K (transition observed from heating simulation), but 

cannot be obtained with higher precision unless there is other information. In contrast, the 

phase temperature is determined accurately as 450K from the free energy (Φ) as a 

function of temperature in Figure 2-3b because the free energies of cooling and heating 

simulations intersect at this point. 
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Figure 2-3. Demonstration of phase transition temperature from free energy integration. 
(a) Grand canonical energy (Ω) from Monte Carlo simulation. (b) Free energy (Φ) 
obtained from the energies in (a). 
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Chapter 3 The lithium battery material LixNi0.5Mn0.5O2   

 

3.1  Introduction to lithium ion batteries  

 

Batteries are charge storage devices in which electrical energy can be extracted 

from a chemical reaction known as discharging. In the case of a secondary, or 

rechargeable, battery the reaction chemistry is reversible and the charge can also be 

restored (charged). When a battery is charged or discharged electrons move from one 

electrode to the other through an external circuit in order to store or release energy. The 

two electrodes, referred to as the cathode and anode, are electronically separated by a 

separator (e.g. polypropylene sheets) in the battery. Electron transfer through the external 

circuit of the cell is compensated by ionic transfer through the electrolyte between the 

electrodes.  

 

Figure 3-1 shows the dependency of energy density on the various battery 

chemistries. Among these, lithium ion (Li-ion) batteries exhibit the highest theoretical 

energy density (1). For this reason, Li-ion batteries are an attractive choice for 

applications where space and weight constraints are stringent, such as in portable 

electronics and space applications. In Li-ion batteries, this charge transfer is done by Li+ 

diffusion. The first commercialized rechargeable Li-ion battery was released by Sony in 

June 1991. The cell chemistry consisted of graphite anode combined with a high 
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temperature phase of lithium cobalt oxide (HT-LiCoO2, or simply LiCoO2) as the cathode 

(2). 

 

 

Figure 3-1. Comparison of the different battery technologies in terms of volumetric and 
gravimetric energy density (1). 

 

HT-LiCoO2 has a layered O3 structure (3) as shown in Figure 3-2. If all the 

cations consist of the same element, then this is equivalent to the rocksalt structure. 

However, LiCoO2 consists of alternating Li and transition metal layers that form along 

the hexagonal axis. In a perfect crystal there is no disorder, in turn yielding the R-3m 

space group. 
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Figure 3-2. Lithium transition metal oxide (LiTMO2) in the O3 structure. In LiCoO2, all 
transition metals are Co. 

 

The most important feature of the O3 lithium transition metal oxide family is 

that the Li layer acts as a two-dimensional Li+ diffusion channel, allowing Li+ to be 
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inserted and removed with relative ease. The activation barrier to Li+ diffusion within this 

channel is reported to be about 200meV, or about 8kBT at room temperature from first 

principles calculations (4).  

 

One major drawback of LiCoO2 is that the usable capacity is ~150mAh/g, 

roughly half of its theoretical capacity. This is because discharge above this threshold, or 

overdelithiation, causes a sudden decrease in the c lattice parameter (5, 6) due to a phase 

transition from the O3 phase to the H1-3 phase (6, 7). Upon further discharge, there is 

another phase transition to the O1 phase (6, 7). There are also safety issues with LiCoO2, 

since Li0.4CoO2 has been shown to release oxygen upon heating to ~200oC (8). This 

oxygen can combust the organic electrolyte and lead to a rapid battery fire. 

 

During the search for next-generation Li-ion battery cathode materials, Co was 

replaced by other transition metals including Ni or Mn. When compared with LiCoO2, 

LiNiO2 shows less thermal stability as a cathode material (8). The thermodynamically 

stable phase of LiMnO2 is not the O3 rocksalt structure, and Li+ removal causes 

irreversible structural transformation, forming a less electrochemically active phase (9). 

To circumvent problems like these, a combination of transition metals has been used to 

substitute Co. Two promising materials that have exhibited significantly better stability 

are LiNi1/3Co1/3Mn1/3O2 and LiNi0.5Mn0.5O2. LiNi1/3Co1/3Mn1/3O2 has capacity of 

150mAh/g in the 3.5V-4.2V range, which increases to 200mAh/g by charging to 5.0V 
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versus Li+/Li (10). LiNi0.5Mn0.5O2 also has higher reversible capacity of about 200mAh/g 

by charging to 4.5V (11-14). 

 

3.2  Characteristics of LiNi0.5Mn0.5O2 

 

LiNi0.5Mn0.5O2 (11-16) is an interesting material for both its engineering and 

scientific aspects. As mentioned in the previous section, the theoretical capacity of 

LiNi0.5Mn0.5O2 is about 280 mAh/g, of which 200 mAh/g can now routinely be achieved 

at low rates such as C/20 (11-14, 16). Moreover, since LiNi0.5Mn0.5O2 does not contain 

the rather expensive cobalt, a reduction of cost for Li batteries may be realized with this 

material. Other properties of the material, such as thermal stability and safety, have also 

been demonstrated to be better than LiCoO2 (11, 13). 

 

Though the rate capability of the material has generally been shown to be poor, 

recent efforts indicate that it may be possible to overcome this issue by structural 

modifications (16), keeping this an attractive electrode material. Much of the desirable 

properties are derived from the synergetic combination of Mn4+ and Ni2+. Mn4+ is one of 

the most stable octahedral ions, maintaining the structural integrity when Li is extracted, 

while Ni2+ can be fully oxidized to Ni4+, thereby compensating for the fact that Mn4+ 

cannot be oxidized further (17-19).  
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On average, the cation positions of LiNi0.5Mn0.5O2 are characterized as the 

O3-type layered structure (20) similar to LiCoO2, however elucidating the details of the 

cation ordering has been difficult (12, 21-27). In addition, there is a significant 

correlation between structure and electrochemical performance, which becomes clear 

when comparing different synthesis conditions. For instance a small amount of Ni in the 

Li layers is always observed in materials synthesized at temperatures around 900~1000oC 

with conventional solid state processes. In general, there is about 8~11% of this type of 

Li/Ni disorder (11, 13, 21, 23, 24, 28-32). Some literature suggests that Li/Ni disorder 

will increase slightly as annealing temperature is decreased (13, 28).  

 

Li/Ni disorder has negative effects on deintercalation of Li+ (16) because Ni 

atoms positioned in the Li layer reduce the region of space in which Li+ diffuses, 

resulting in an increased Li+ diffusion activation barrier and reduced rate capability (16). 

As a result, there is an incentive to find methods to move these Ni into the TM layer and 

to investigate whether Ni is mobile during delithiation. Earlier XAFS results from a study 

by Arachi et al (21) suggest migration of Ni into tetrahedral sites, though the details of 

the mechanism are not known. Van der Ven and Ceder (25) succeeded in developing a 

reasonable first principles model of the delithiation voltage, however, in their model, a 

perfect “flower” ordering was assumed for transition metals, and no transition metal 

movement was allowed during delithiation (25). 
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The valence states of Ni and Mn are observed to be +2 and +4 respectively in 

both first principles computation (32) and X-ray absorption spectroscopy (33, 34). Thus, 

electrostatic interactions are likely to have a strong effect on the ordering of Ni and Mn in 

the Transition Metal-rich layer (TM layer). Four different structural models of the TM 

layer in LiNi0.5Mn0.5O2 have been proposed by various theoretical and experimental 

investigations: 1) The zigzag structure (30) in which Mn and Ni are ordered in zigzag 

lines without any significant amount of Li present in the TM layer (Figure 3-3a); 2) the 

flower structure with a 2√3 × 2√3 unit cell, which consists of concentric hexagons of Mn 

and Ni around a central Li (Figure 3-3b) (25); 3) the partially disordered honeycomb 

structure with √3 × √3 unit cell (23) in which the symmetry is broken between a Mn-rich 

and a Li-rich sublattice (Figure 3-3c) (35); and 4) a disordered model without any 

particular ordering between Mn and Ni (28). The honeycomb model seems to agree best 

with the available experimental evidence. Experiment suggests that two types of sites, 

denoted α and β, compose the TM layer (23). The α sites are generally occupied by either 

Li or Ni, while the β sites are preferred by Ni or Mn. The α sites are always the nearest 

neighbors to a β site. The flower structure is commensurate with the honeycomb model, 

but it displays a higher degree of long-range order, and can be considered a special case 

of the honeycomb model. Understanding cationic arrangement in this material is 

important as the electrochemical lithiation/delithiation process and the subsequent 

structural stability depends on the initial structure as suggested from Nuclear Magnetic 

Resonance (NMR) and first principles studies (25, 31). 



 35

This chapter first shows how Li/Ni disorder limits technologically important 

factors such as rate capability and capacity. Second, computational evidence of a 

complex thermal disordering process is presented to show how the system undergoes a 

phase transition from a low temperature zigzag-like state with no Li/Ni exchange to a 

partially disordered flower structure with increased temperature. The initial phase change 

is followed by further disordering which creates a honeycomb superstructure at higher 

temperature.  
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Figure 3-3 (a) Transition Metal layer (TM layer) ordering of the zigzag structure. There is 
no Li in the TM layer. (b) TM layer ordering of the flower structure. There is 8.3% Li/Ni 
disorder, or 8.3% Li in the TM layer. Legend: black: Mn, white: Ni, gray: Li. (c) TM 
layer ordering of the honeycomb pattern. Legend: dark gray: α sites that can be occupied 
by Li or Ni, light gray: β sites that can be occupied by Ni or Mn. 
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3.3  Methodology  

 

Calculations were performed on various ordered arrangements (7, 25, 36-38) 

utilizing the Generalized Gradient Approximation and Hubbard U correction within 

Density Functional Theory (GGA+U). Core electron states were represented by the 

Projector Augmented-Wave method (39) as implemented in the Vienna Ab Initio 

Simulation Package (VASP) (40). The Purdew-Burke-Ernzenhof (PBE) exchange 

correlation (41) and a plane wave representation for the wavefunction with a cutoff of 

370 eV were used. The Brillouin zone was sampled with a mesh including the gamma 

point. A 3 x 3 x 3 mesh was used for the flower configuration unit cell with 48 atoms, and 

for cells with different sizes a mesh with similar density was used. The charge density 

was spin polarized, with Mn spins aligned ferromagnetically with other Mn, and 

antiferromagnetically with Ni in the transition metal layer. The moment of Ni in the Li 

layer was aligned ferromagnetically with Mn. These spin configurations are similar to 

those suggested in the flower structure (25). The Hubbard U values applied to the 

Hamiltonian were needed to correct for the self-interaction error that occurs with 

transition metals with DFT (42, 43). These values have been calculated elsewhere to be 

5eV per Mn atom and 5.96eV per Ni atom (42).  

 

A binary-ternary coupled cluster expansion (44) was used to model partially 

disordered states at finite temperatures. Li and Ni were allowed to occupy sites in the Li 



 38

layer creating binary disorder, whereas ternary disorder was modeled by allowing Li, Ni 

and Mn to occupy sites in the TM layer. The site variables are designated as τ = 0 for Li 

and τ = 1 for Ni in the Li layer, and σ = –1 for Mn, σ = 0 for Ni, and σ = 1 for Li in the 

TM layer. The Hamiltonian becomes:  

(3.1) 

Here, V are the Effective Cluster Interactions (ECI), and V0 specifically acts as a site 

energy of the Li layer sites. The ECI VLi, Vint and VTM represent respectively Li layer 

clusters, clusters that contain both Li and TM layer sites, and TM layer clusters 

respectively. The indices i, j, and k are labels of sites in the cluster. The dummy indices s, 

t, and u are used to distinguish different ECI on the same cluster and are either 1 or 2. The 

cluster expansion was fitted to the energies of 183 different configurations of Li, Ni and 

Mn. 

 

Canonical Monte Carlo simulations were conducted with this cluster expansion 

in cells of 2592 formula units (2592 Li layer sites, 2592 TM layer sites). In general, 

50,000 equilibrium passes and 100,000 sampling passes were used at every temperature 

between 200K and 1500K. In the range near the phase transitions (700-990K), 100,000 
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equilibrium passes were used to allow better equilibration. Note that one sampling pass 

amounts to one possible perturbation of each site on the lattice.  

 

3.4  Results 

3.4.1  Comparison of GGA and GGA+U 

 

The energy of the flower (25) and zigzag (30) structures were calculated with 

both the GGA and GGA+U approximations to investigate the energy difference between 

structures with and without Li/Ni disorder. These structures are representative of the 

limiting states with (flower) and without (zigzag) Li/Ni disorder. Table 3-1 shows the 

energy differences between the two structures. Note that the energy difference in the two 

structures is an order of magnitude smaller in GGA than in GGA+U. This is consistent 

with prior work suggesting that the flower and zigzag structures are almost degenerate in 

the GGA approximation (25). Though further discussion will follow, all energies used for 

the cluster expansion fit were calculated with the GGA+U approximation because this 

method is believed to be a more accurate description of the system. 
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Table 3-1. Difference in energy in meV/FU between GGA and GGA+U approximations 
for flower and zigzag structures. 
 
 

 
 

 

 

 

3.4.2  Delithiation behavior of LixNi0.5Mn0.5O2 

 

First principles energy calculations were conducted on LixNi0.5Mn0.5O2 for 

structures with TM layer cations in the flower ordering and zigzag ordering in an effort to 

understand the difference in delithiation behavior. The energies pertaining to the two 

scenarios of the flower ordering with 8.3% Li/Ni exchange were calculated, one where 

diffusion of the Ni in the Li layer to the TM layer was allowed, and another where it was 

not allowed. 

 

Figure 3-4 shows the convex hull resulting from formation energies of partially 

delithiated LixNi0.5Mn0.5O2. Formation energies are the energy difference between the 

mixed state and a compositionally averaged combination of lowest energy states of 

Li1Ni0.5Mn0.5O2 and Ni0.5Mn0.5O2. Delithiation of the flower structure causes the Li+ in 

the TM layer, and one Li+ in the Li layer, to move into the tetrahedral sites adjacent to the 
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octahedral site that was previously occupied by Li+ in the TM layer. This forms a 

dumbbell-like pattern that vacates all Li in octahedral sites adjacent to the two tetrahedral 

Li+. These pairs of Li+ in the tetrahedral sites are the last Li to be removed during 

delithiation (25, 45). Ni in the Li layer will not diffuse to the TM layer until the end of 

delithiation, which is also when tetrahedral Li is removed, even when the diffusion of Ni 

in the Li layer of flower ordering is allowed. Our findings indicate that TM cation 

migration is never energetically favorable during delithiation of zigzag ordered 

LixNi0.5Mn0.5O2. 
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Figure 3-4. Formation energies from first principles calculations of partially delithiated 
LixNi0.5Mn0.5O2. When cations in the TM layer was arranged in the flower ordering, 
energies were calculated in the two scenarios where diffusion of the Ni in the Li layer to 
the TM layer upon delithiation was allowed (with Ni diffusion) or not allowed (no Ni 
diffusion). One FU contains one transition metal atom. 

 

 

Initial ordering and different scenarios of Ni migration have dramatic effects on 

the Li deintercalation potential, because the potential is the derivative of the total energy 

with respect to concentration at zero Kelvin. Figure 3-5 is a plot of the voltage from one 

concentration to the next upon Li deintercalation of the three different structural 
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evolution scenarios discussed in Figure 3-4. The voltage is calculated as the average in 

small concentration intervals. Most steps are artificial because the average voltage 

switches from one concentration to the next. This simple plot gives insight into the 

evolution of the voltage as a function of composition under different structural 

assumptions and does not require a complete chemical potential computation, though a 

more defined voltage profile can be obtained by computing many Li-vacancy 

configurations and using the cluster expansion and Monte Carlo simulation technique. 

The experimentally observed potential between x = 1 and x ∼ 0.67 for the flower 

structure corresponds to the simultaneous removal of Li from the TM layer and the Li 

layer, and the formation of tetrahedrally coordinated Li as discussed previously (25, 45). 

There is only one significant voltage difference between the two structural models 

occurring near the end of charge at x < 0.33. If the last 16.7% of Li is to be removed from 

the tetrahedral sites without any other configurational changes, then a potential as high as 

5.2V is required. In contrast, a significantly lower charge voltage is required if the 

oxidized Ni ions can migrate from the Li layer into the TM layer. The potential predicted 

for this reaction is 4.5V, remarkably close to the rest potentials in the open circuit voltage 

for cells charged up to 5.2V (26). These calculations suggest that at the end of charge Li 

removal is possible through two different processes: a fast process at very high potential 

that involves direct extraction of Li from tetrahedral sites, and a lower voltage process 

that can only occur when the structure can relax through the migration of Ni ions. The 

latter process does allow for removal of all Li from the material in “normal” voltage 
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windows, which seems to be in agreement with the fact that the capacity in the first 

charge of most experiments approaches the theoretical limit. In stark contrast, 

examination of the delithiation pathway of the zigzag structures shows that it is possible 

for all Li atoms to migrate out in “normal” voltage windows with no required diffusion of 

Ni into the Li layer. In conclusion, Li/Ni disorder is shown to limit capacity in battery 

applications through formation of tetrahedral Li that are difficult to extract. 

 

Figure 3-5. Voltage curves for different delithiation scenarios. 
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3.4.3  Cluster expansion 

 

In the cluster expansion presented here, clusters were selected from a pool 

including all pair interactions up to 7th cation-cation Nearest Neighbor (NN) distance, 

and triplets with a maximum pair subcluster up to 3rd NN distance. Any pairs that span 

over three or more cation layers and triplets that include only sites in the Li layer were 

removed. There is 1 empty cluster, 1 point cluster, 22 pair clusters and 28 triplet clusters 

in the pool. From this pool, a set of relevant clusters and ECI were obtained with a 

weighted average cross validation (CV) score of 6.94 meV/FU and weighted root mean 

square error of 3.43 meV/FU. The CV score may be thought as the prediction error. A 

CV score of about 7meV can be considered to be small enough for this study because the 

energy difference between flower and zigzag structures is 26meV/FU (see Table 3-1). 

Table 3-2 shows the ECI obtained from this fit, and the clusters defining the interactions 

are shown in Figure 3-6. Note that clusters including sites that can be occupied by three 

species (TM layer sites) need multiple ECI per cluster to independently represent the 

energy contribution of each possible configuration on that cluster. For more detailed 

discussions of ternary and higher component representations in the cluster expansion, the 

reader is referred to references (46-48). 

 

The set of ECI in Table 3-2 is used in the Monte Carlo calculations. It should be 

noted that an additional penalty of 1eV per pair is added to Ni-Ni pairs in the Li layer to 
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avoid Li / Ni segregation in the Li layer, because it is well known from experiment that 

there are no Ni clusters in the Li layer. The addition of this penalty was required because 

it was not possible to accurately sample first principles energies of structures that include 

NN Ni-Ni pairs in the Li layer. Doing so would result in strong electrostatic repulsion 

because spin density integration of these structures reveals that electrons do not localize 

properly on Ni. This is an indication that such configurations are very high in energy. The 

exact magnitude of the penalty is not important because these configurations are not 

allowed to appear in the simulation so they do not affect the value of the average energy. 
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Figure 3-6. Clusters used in the cluster expansion. 
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Table 3-2.  Values of ECI used in Monte Carlo calculations. Clusters corresponding to 
each number are shown in Figure 8. 

 

Point cluster: V0= −452.6 meV 

 

Pairs [meV] 

Li layer pairs Interlayer pairs TM layer pairs 

Cluster VLi
11 Cluster Vint

11 Vint
21 Cluster VTM

11 VTM
21=VTM

12 VTM
22

2 107.5 5 −90.8 22.2 9 434.8 73.0 656.7
3 −6.1 6 −101.8 52.4 10 -24.6 7.2 1.2 
4 −32.3 7 18.7 11.0 11 15.5 14.2 31.0 

  8 −13.1 −1.2 12 71.3 −15.1 8.7 

 

Triplets [meV] 

Li-Li-TM triplets TM-TM-TM triplets 

Cluster Vint1
1 V int1

2 Cluster VTM
111 VTM

112=VTM
121=VTM

211 VTM
122=VTM

212=VTM
221 VTM

222

13 17.8 −21.5 15 −25.0 25.8 −13.1 −61.3

14 30.8 −90.1 16 113.7 12.3 −45.1 −378.7
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3.4.4  Monte Carlo simulation 

 

Figure 3-7a shows the thermally averaged energy as a function of increasing 

temperature in Monte Carlo calculations starting from either a zigzag structure or a 

flower structure. Even though the flower structure has higher energy at low temperature, 

it does not transform to the zigzag configuration, indicating that the flower configuration 

is metastable. In addition, low temperature Monte Carlo calculations reveal that the 

energy of the partially disordered flower structure (about 10 meV/FU) is significantly 

lower than the energy of the perfect flower structure (about 26 meV/FU). This indicates 

that some change takes place in the structure with essentially no kinetic barrier. The 

driving force of such a change will be discussed later in section 3.5.1. Monte Carlo 

simulations show that the zigzag structure undergoes a phase transition close to T1 ~ 

810K, but above this temperature its energy is equal to that of the flower structure. This is 

indicative of the two initial phases becoming the same phase. Furthermore, an additional 

phase transition occurs is found at T2 ~ 870K in both sets of calculations.  

 

Figure 3-7b shows the thermally averaged heat capacity from the calculations. 

This heat capacity only includes the effect of configurational entropy. The result of the 

zigzag structure simulation show two heat capacity peaks at T1 and T2, which are 

consistent with the two phase transitions observed in the energy in Figure 3-7a. The heat 



 50

capacity peak in the simulation starting from the flower structure only shows a single 

peak at T2.  

 

Figure 3-8 shows the Li/Ni disorder, measured as the concentration of Ni in the 

Li layer and averaged over 50 snapshots of structures at each temperature. The snapshots 

of the structures were taken at regular intervals (every 2000 passes) during the sampling 

calculations. The Li/Ni disorder of the zigzag phase is close to zero at the start of the 

simulation, however, it increases to 8~9% at the first phase transition at T = T1. Above T 

> T1, the Li/Ni disorder amount seems to be independent of the starting configuration of 

the simulation, consistent with the results of the energy and heat capacity calculations.  
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Figure 3-7. (a) Monte Carlo energy as a function of temperature. (b) Monte Carlo heat 
capacity as a function of temperature. 
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Figure 3-8. Calculated Li/Ni exchange between the Li and TM layers as a function of 
temperature. 

 

Figure 3-9 is a snapshot of the structure at 850K, which is just above the first 

phase transition. Figure 3-9a is a good representation of cation arrangement in the TM 

layer at this temperature range regardless of the starting configuration. There are 

well-formed "flower" rings consisting of a Li ion surrounded by six Mn ions, which in 

turn are surrounded by a larger Ni ring. However, substantial disorder, such as LiMn5Ni 

rings, Ni-Mn zigzag domains, and even a few MnNi6 rings are present. The presence of 

Li surrounded by five Mn and one Ni (as in a LiMn5Ni ring) was also observed in NMR 

(30). The ordering in the TM layer discussed further below seems to correlate clearly 

with the ionic occupation and ordering in the adjacent Li layers.  
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The cation ordering patterns observed in the Monte Carlo simulations shows 

significant local charge imbalance in structures below T2. When flower patterns exist, as 

shown in Figure 3-9a, there is a corresponding 2 × 2 ordering pattern of Ni and Li in the 

Li layer as seen in Figure 3-9b, making this specific region excess in Ni. Although the 

Monte Carlo cell as a whole is charge balanced, the Monte Carlo snapshot of the Li layer 

in Figure 3-9b shows concentration of Ni that is a few percent higher than the average 

Li/Ni disorder value in Figure 3-8.  

 

Above T2, the Ni present in the Li layer disorders and no longer arranges in 2 × 2 

patterns. This can be observed in a snapshot of the structure at 1200K in Figure 3-10. 

Although the TM layer shown in Figure 3-10a appears completely disordered, the 

average site occupations correspond to the honeycomb scheme mentioned in section 3.2 

(30, 31). Li and Ni positions seem to be uncorrelated in the Li layer as shown in Figure 

3-10b. 
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Figure 3-9. Monte Carlo snapshot at T = 850K of (a) transition metal-rich layer; (b) 
Li-rich layer. Legend: black: Mn, white: Ni, gray: Li. 
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Figure 3-10. Monte Carlo snapshot at T = 1200K of (a) transition metal-rich layer; (b) 
Li-rich layer. Legend: black: Mn, white: Ni, gray: Li. 
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3.5  Discussion 

3.5.1  Driving force for the order-disorder transformation in the flower structure 

 

The Monte Carlo simulation shows the most energetically stable cation ordering 

in the LiNi0.5Mn0.5O2 system as a function of temperature as well as revealing some of the 

physics that drive the ordering. The flower pattern can be considered to be a 

superstructure of the honeycomb structure. In the flower ordering, Li orders in 2√3 × 2√3 

patterns in the TM layer. This pattern can be mapped perfectly onto the α sites of the 

honeycomb pattern, which has √3 × √3 ordering. The central Li atoms in the flower 

structure occupy 1/4 of the α sites, with Ni occupying the remaining α sites. Mn ions, 

which occupy the six sites surrounding Li, are all located on β sites. Hence the 

transformation from the partially ordered flower structure to honeycomb ordering is an 

order-order transformation whereby Li and Ni disorder on the α sites. Several physical 

interactions seem to contribute to the ordering into a flower-like arrangement. First, 

flower ordering was previously shown (49) to be the electrostatically favored 

configuration of +1, +2 and +4 cations on a two-dimensional triangular lattice describing 

the TM layer. However, this alone does not seem to fully capture the energetics of the 

flower structure. The difference between the GGA and GGA+U computation also helps 

to elucidate the order mechanism. These results point to NiTM - O - NiLi superexchange 

between the Li and TM layers which as driving the honeycomb pattern to further order 

into the flower arrangement (25). Finally when the spins on the Ni in the TM layer and Li 
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layer are aligned antiferromagnetically, the Ni 3d orbitals can each hybridize with the 

same spatial (but different spin) oxygen 2p orbital and delocalize onto the oxygen. This 

interaction is consistent with the Goodenough-Kanamori rules (50). We have some 

evidence that this antiferromagnetic interaction is crucial for the stability of the flower. 

When Ni spins are forced to be ferromagnetic in GGA calculations the flower structure is 

not the most stable state (25). Furthermore, flower patterns do not form without Li in the 

TM layer, or in other words, without including Ni in the Li layer (30). A similar case in 

which interactions that bridge an oxygen are an important factor in the structural stability 

is the LiA-O-Ni3+-O-LiB 180-degree interaction in LiNiO2 (51, 52). 

 

As seen in Figure 3-9, the flower pattern is accompanied by a 2 × 2 ordering of 

Ni in the Li layer. The stability of the 2 × 2 pattern can be rationalized by looking at the 

flower structure in three dimensions (Figure 3-11a). The top and bottom layers show the 

flower patterns in the TM layer. There are three sites for each flower unit in the Li layer 

between the two layers (shown in dark gray) that can have the maximum of four NiTM - O 

- NiLi bonds. Occupation of all these sites by Ni results in 2 × 2 ordering of Ni in the Li 

layer, as is observed in the Monte Carlo calculations. 

 

The competition between the NiTM - O - NiLi bonding and local charge neutrality 

leads to frustration in the flower ordered LiNi0.5Mn0.5O2 system. Complete 2 × 2 ordering 

of Ni in the Li layer would lead to a local charge imbalance in regions that have perfect 
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flower ordered in the TM layer. The solution to these competitive forces seems to be to 

create somewhat higher Li/Ni disorder than the 8.3% (1/12) of the perfectly ordered 

flower structure. This additional Li/Ni exchange creates more (less) Ni in the Li (TM) 

layer and as such increases the number of NiTM - O - NiLi bonds that can be formed. This 

is why more Li/Ni disorder is created (about 11%) in the Monte Carlo simulations as 

soon as the temperature is above 0K (Figure 3-8). However, increasing Li/Ni exchange 

leads to more Li in the TM layer other than the core site of the flower. The Li in sites 

other than the core site have higher site energy, as they are only coordinated by three or 

four Mn. Therefore, a Li/Ni exchange of 8 ~ 11 % is observed as a balance of creating 

favorable NiTM - O - NiLi bonds and unfavorable Li sites in the TM layer. This may also 

explain why the Li/Ni disorder decreases with temperature: As the flower structure 

partially disorders, the frustration between the local charge balance and the NiTM - O - 

NiLi bonding can be more easily resolved and requires less additional Li/Ni exchange. 

Note in particular how the Li/Ni disorder rapidly decreases in our simulation as the 

partially disordered flower further disorders into the honeycomb structure at about 620oC 

(see Figure 3-8).  

 

3.5.2  Partially disordered flower structure 

 

One way to understand the partially disordered flower structure is to look at the 

structure in both the layered R-3m and the spinel Fd-3m space group settings. In 
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LT-LiCoO2, an example of a lithiated spinel-like material, Li occupies 16c sites and Co 

occupies 16d sites (13). The relations between the flower structure in the layered and 

spinel space group settings are similar and depicted in Figure 3-11. Figure 3-11b shows 

the layered flower structure, but with the sites marked in the spinel setting: the Li layer is 

composed of 75% 16c sites and 25% 16d sites, and the TM layer is composed of 25% 16c 

sites and 75% 16d sites. The Ni sites in the Li layer that are likely to create more NiTM - 

O - NiLi superexchange bonds are labeled as Li/Ni sites in Figure 3-11a. Note that these 

Li/Ni sites correspond to the Li layer 16d sites in Figure 3-11b. The 16c sites in the Li 

layer are unlikely to contain Ni because these sites do not have the maximum possible 

number of NiTM - O - NiLi superexchange bonds when the TM layer has a perfect flower 

ordering. The 16c sites in the TM layer (top and bottom layers of Figure 3-11b) 

correspond to the “core” of the flower (the site surrounded by a Mn ring) and the six 

“corners” of the flower. Each corner is simultaneously a corner of three flower motifs, so 

there are two corner sites for each core site. The core is Li and the corners are Ni in the 

perfect flower structure shown in Figure 3-11c. This means that about 2/3 (66.7%) of the 

16c sites in the TM layer, which amount to 25% of all 16c sites, are occupied by Ni. 

Therefore, Ni occupies 1/6 (16.7%) of the total 16c sites in the spinel setting of the flower 

model because there is no Ni in the 16c sites of the Li layer. On the other hand, Li 

occupies 2/3 of the 16d sites in the Li layer in the flower structure. In fact, full occupation 

of all 16d sites in the Li layer by Ni can happen with relatively low energy penalty if the 

additional Li created in the TM layer only occupies the 16d sites in the TM layer (“edge” 
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sites). This exchange leads to the extreme case of a partially disordered flower structure 

as shown in Figure 3-11d: an ordered structure with all Li/Ni sites (16d) in the Li layer 

occupied by Ni. In the TM layer, Li occupies some flower “edge” sites (16d), maintaining 

charge balance of the system as a whole. This configuration has lower energy than the 

perfect flower structure in GGA+U calculations, but still higher energy than the zigzag 

structure due to unfavorable Li site occupation in the TM layer. Interestingly, the Li 

occupancy on the TM-rich 16d sites, or the Ni occupancy on the Li-rich 16c sites is 1/6, 

although in this scenario, the Li/Ni disorder has increased from 8.3% to 25%. It can be 

clearly seen that the partially disordered flower structure has the characteristics of both 

layered (with 3a/3b disorder) and spinel (with 16c/16d disorder) features. One example of 

such case is in the LiNi0.5Mn0.5O2 sample annealed at 600oC by Lu et al (13). Rietveld 

refinement showed 16.1% Li/Ni disorder between the Li and TM layers in the layered 

setting, and 17.4% Li/Ni disorder between Li-rich 16c sites and TM-rich 16d sites in the 

spinel setting (13). 
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Figure 3-11. (a) Flower structure with emphasis on interaction across layers. Of the 12 
sites in the Li layer per flower unit, there are three sites that have four Ni-Ni second 
nearest neighbors. The Ni in the Li layer prefers these sites. Legend: black: Mn, white: Ni, 
light gray: Li, dark gray: Li/Ni sites. (b) The flower unit viewed in the spinel setting. 
Legend: light gray: Li-rich 16c sites, dark gray: Li-poor 16d sites. (c) Perfect flower 
structure. (d) Partially disordered flower structure with lower first principles energy than 
the flower shown in (c). Legend: black: Mn, white: Ni, gray: Li. 
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3.5.3  Phase transitions 

 

As seen in Figures 3-7 and 3-8, the Monte Carlo simulation clearly shows that 

upon heating the zigzag structure, at a certain critical temperature (T1) a phase transition 

occurs to the flower phase. The perfect flower structure must have achieved higher 

entropy than the zigzag structure at T1 because it has higher energy at 0K. The entropy 

difference can be rationalized through the excitations available for both phases. The 

zigzag phase has fewer low-energy excitation states than the flower phase. The 

excitations observed in snapshots of the Monte Carlo simulation from the zigzag phase 

are simple exchanges of Li and Ni between the Li and TM layers. However, Li in the TM 

layer prefers to be surrounded by all Mn, which is not possible when it occupies a Ni 

position in the zigzag structure. Breaking the zigzag ordering in the TM layer requires 

relocation of a large number of cations, which is difficult in Monte Carlo simulations at 

low temperatures. Therefore, putting Li in the TM layer of the zigzag phase carries a 

heavy energy penalty since Li can at best be surrounded by four Mn. In contrast, the 

majority of Li are surrounded by six Mn in the flower phase. In addition, the flower 

patterns can form and disintegrate relatively easily in the honeycomb framework in the 

TM layer (30, 31). The honeycomb ordering guarantees that no Li-Li nearest-neighbor 

pairs occur in the TM layer, which would come with a strong electrostatic energy penalty. 

Also the flower phase becomes stable above a certain temperature where the zigzag phase 

cannot tolerate much Li/Ni disorder because of the difference in excitations.  
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Such a phase transition from a low Li/Ni disorder phase to a high disorder phase 

is indeed experimentally observed using both XRD and DSC/TEM (53), and together 

with the simulation results paint a consistent picture of the phase evolution of 

LiNi0.5Mn0.5O2. Based on to the simulation results, IE-LiNi0.5Mn0.5O2, a representative 

material with little or no Li/Ni site disorder (53), is probably the stable phase at low 

temperature, and transforms to a partially disordered flower arrangement near 810K. The 

phase transition temperature obtained from DSC measurement (53) is about 873K. The 

latent enthalpy obtained from DSC peak integration of the phase transition is about 1.2 

kJ/mol for IE-LiNi0.5Mn0.5O2, however could not be accurately determined due to the fact 

that the phase transition is unfinished at 873K due to partial transformation of some large 

particles (53). The latent heat for this transformation obtained from Monte Carlo 

simulations is about 1 kJ/mol, consistent with the DSC result. 

 

It was also found in our Monte Carlo simulations that the phase transition from 

zigzag to flower is not reversible upon cooling. The values of the energy, heat capacity, 

and Li/Ni disorder for cooling track closely the values obtained during heating of the 

flower structure. This can only be explained by a kinetic limitation because zigzag, not 

flower, is the thermodynamic ground state at low-enough temperature. One possible 

reason for the irreversibility may lie in the extreme stability of the Li in the transition 

metal layer. Those Li ions are typically surrounded by five or six Mn ions and this 

configuration is very difficult to break up due to its favorable short-range electrostatic 



 64

interactions. This keeps the Li ions in the transition metal layer and prevents the 

formation of zigzag configurations. Such kinetic limitations observed in our 

first-principles Monte Carlo simulations may be a representation of reality, since even 

slow cooling of LiNi0.5Mn0.5O2 samples never leads to low Li/Ni disorder.  

 

The Monte Carlo simulation indicates that the partially disordered flower 

structure undergoes a phase transition to the honeycomb structure upon heating above 

temperature T2 (~620oC). The well-defined heat capacity peak in Figure 3-7b indicates 

that this is a phase transition, rather than a gradual disordering of the flower structure. We 

were not able to study this transition in our DSC experiment because of the limited 

temperature range and resolution of the instrument. However, this phase transition 

implies the existence of a possible intermediate phase between the ground state and the 

high temperature disordered state of LiNi0.5Mn0.5O2, and may be a reason why some of 

the literature shows that the electrochemical behavior of LiNi0.5Mn0.5O2 strongly depends 

on the processing temperature (13, 28).  

 

The combined simulation and DSC data (53) lead us to propose the phase 

diagram in Figure 3-12. The temperatures included are derived from the simulations. At 

low temperature, a structure with little or no Li/Ni exchange is the ground state. Above 

~810K, this structure transform to a partially disordered flower structure with regions of 

substantial Li/Ni mixing. At slightly higher temperature around 620oC, the flower 
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structures disintegrate and partially disorder becoming the honeycomb structure. 

However, only the flower structure can be obtained upon cooling.  

 

Figure 3-12. Schematic phase diagram of LiNi0.5Mn0.5O2. The temperatures were are 
based on simulations results. 
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3.5.4  Limitation of the simulation 

 

Finally, the limitations of our approach should be noted. Locally 

non-charge-balanced structures appear easily in Monte Carlo simulations of 

LiNi0.5Mn0.5O2, for example in Figure 3-7. The electrostatic repulsion of locally charged 

regions is underestimated due to the use of short-range cluster expansion. If the structure 

is locally charge balanced, then electrostatic forces from relatively small regions decay 

rapidly, because the net charge of that small region is close to zero and multipole (dipole, 

quadrupole, and higher) terms dominate at longer ranges (54). These multipole terms 

decay very quickly, making the cluster expansion applicable to such systems. In reality, 

the electrostatic forces extend to long range for locally non-charge-balanced systems. 

While the short-range term of the electrostatics is captured in the ECI, the long-range part 

is not.  

 

3.6  Conclusion 

 

The cation ordering in LiNi0.5Mn0.5O2 is a complex function of the temperature 

and the heating/cooling history. The zigzag model, which has very little Li/Ni disorder, is 

the ground state of LiNi0.5Mn0.5O2 in the GGA+U approach. A model that points out the 

phase transition upon heating in the LiNi0.5Mn0.5O2 system is discussed with underlying 

physics, and a phase diagram is proposed as shown in Figure 3-12. Zigzag ordering first 
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transforms to a partially disordered flower structure, which upon further heating, 

transforms to a disordered honeycomb structure. The cluster expansion and Monte Carlo 

simulation of GGA+U energies match TEM, DSC, and XRD results (53) along with 

previous NMR studies (35). Once cation exchange between Li and TM layers occurs, and 

Mn rings form around the Li in the TM layer, it is very difficult to break up the ring, 

explaining why states with low Li/Ni disorder cannot be obtained by cooling from high 

temperature. The unusual ordering of this material with temperature is due to the 

competition between electrostatics and NiTM - O - NiLi hybridization. Li / Ni disorder in 

LiNi0.5Mn0.5O2 leads to Li in tetrahedral sites during delithiation that negatively impacts 

battery properties and requires high voltage to remove. Therefore, it is crucial not to heat 

low Li/Ni disorder materials above a critical temperature where Li/Ni exchange would 

occur, which is around 810K. 
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Chapter 4  The thermoelectric material NaxCoO2     

 

4.1  Introduction to thermoelectric materials (1) 

 

Electric and thermal currents are two related phenomena because both can involve 

electrons or holes. Seebeck noted that when a temperature gradient (∆T) exists between 

two sides of a material or between two dissimilar materials, there is a corresponding 

voltage difference (∆V) between these two sides (Seebeck effect). The Seebeck 

coefficient, or thermopower (S), is defined as 

TSV ∆=∆ .                                                        (4.1) 

Peltier discovered that heat transfer happens between two sides of a material, or between 

two dissimilar materials, if there is a voltage difference between the sides (Peltier effect). 

This effect is the opposite of the Seebeck effect. Lord Kelvin realized that if temperature 

gradients exist on a conductor carrying electric current, heat generation or absorption 

occurs (Thompson effect). These three effects are different from Joule heating, where 

heat is irreversibly dissipated with flow of electric current. 

 

 The Seebeck and Peltier effects can be used to convert electricity directly into 

heat and vice versa, and materials that do this efficiently (i.e. have a high Seebeck 

coefficient) are called thermoelectric materials. The Seebeck effect can be used to 

generate electric current. One application is deep space probes, where the heat source is a 
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nuclear reactor and the heat sink is outer space. The Peltier effect can be used to make 

coolers without any mechanical parts, which minimizes noise and reduces the need for 

maintenance, and is useful for supercomputing.  

 

The efficiency of thermoelectric materials are measured by the figure of merit 

(Z) defined as 

κσ2SZ =                                                         (4.2) 

where σ is the electric conductivity and κ is the thermal conductivity. Thermal 

conductivity can be separated into contributions from electrons and phonons, and both 

have to be taken into account. The dimensionless figure of merit (ZT), which is the 

product of Z and the temperature (T), is also used frequently. A good thermoelectric 

material should have high Seebeck coefficient, high electric conductivity but low thermal 

conductivity. 

 

In metals, the Wiedemann-Franz-Lorenz law states that  

LT =σκ ,                                                         (4.3) 

where the Lorenz number (L) is empirically determined as approximately 2.45×10−8 

V2K−2 (Sommerfeld value). This is because at high temperature heat and electrical 

transport are both primarily governed by the free electrons in the metal. The Seebeck 

coefficient Strong ground states occur only at concentrations where the Co ordering 

pattern is commensurate with the symmetry of the Na lattice (27). Co orders with a 



 72

supercell of hexhex aa 3× , hexhex aa 33 × , and hexhex aa 22 ×  at x = 0.5, 0.67, and 0.75 

respectively. The Na layer ordering for these structures is hexhex aa 32 × , 

hexhex aa 3232 ×  and hexhex aa 3232 ×  respectively. 

 
 
Figure 4-2. Two perspectives of the layered P2-NaxCoO2 structure. (a) View 
perpendicular to the layers to show the oxygen stacking. (b) Top view to show relative 
positions of Na1, Na2, Co and oxygens. 

 

Despite the enormous interest in P2-NaxCoO2, its structure as a function of Na 

concentration is not fully characterized. Experimental (19-23) and theoretical (20, 24-26) 

work has led to proposed structures for several Na-vacancy ordered states. The ground 

state ordering of Na0.5CoO2 has been determined experimentally with electron diffraction 

(21, 23) and is in agreement with results from first principles calculations (24, 25). Three 

ordering schemes are proposed at the composition Na0.75CoO2 based on experiments. The 
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first, referred to as the “droplet” phase by Roger et al. from neutron diffraction (20) with 

hexhex aa 3232 ×  ordering and formation of isolated three-Na1 droplet motifs. The 

second, known as the “stripe” phase, found by Geck et al. from high energy X-ray 

diffraction (22) with hexhex aa 322 ×  ordering and formation of three-Na1 and three-Na2 

droplet motifs that are connected by two corners each to droplets of the same type. 

Thirdly, the “diamond” phase by Zandbergen et al. from electron diffraction (21) with 

hexhex aa 34 ×  ordering and formation of connected diamond-like Na1 and Na2 motifs. 

The “diamond” phase is also computationally suggested as a ground state by Zhang et al. 

(25), however detailed first principles calculations by Meng et al. (26) show that a 

different “zigzag” structure with hexhex aa 34 ×  ordering where Na1 orders in a zigzag 

pattern has lower energy. At x > 0.85, six-Na1 droplet patterns (24, 27), analogous to the 

three-Na1 droplet motifs by Roger et al. (20), are suggested by computation.  

 

Understanding and predicting the Na-vacancy ordering is complicated by the fact 

that the Co ions have an average valence +(4−x), and the nature of this mixed valence 

state is under considerable dispute. Whether or not charge localizes on Co and forms 

distinct Co3+ and Co4+ ions is an important issue that will affect Na-vacancy ordering. 

Bond length analysis from neutron diffraction shows delocalization of Co charge in 

Na0.5CoO2 (16), however magnetic susceptibility and conductivity measurements suggest 

that at low temperatures Na0.5CoO2 is a charge-ordered insulator (28). Magnetic 
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susceptibility and conductivity measurements also suggest that NaxCoO2 is a Curie-Weiss 

metal between 0.5 < x < 0.75 and is in a weak-moment magnetically ordered state at x ≥ 

0.75, possibly because of spin density waves. Specifically, at x = 0.65 (29) and ~ 2/3 (28) 

these measurements imply delocalization of Co charge. In contrast, partial localization of 

Co charge is suggested at x = 0.75 by observation of a magnetic transition (30), and from 

results of muon spin rotation and relaxation (31) and neutron scattering (32) 

measurements. The presence of superstructures with antiferromagnetic ordering at x = 

0.82 observed during neutron scattering measurements also suggests partial localization 

of charge on Co (33). Another possibility that should not be excluded is that both 

delocalized and localized Co4+ holes exist depending on the local Na arrangement. Some 

evidence exists for a strong coupling between the Na positions and charge on the Co ion. 

For example, Marianetti and Kotliar proposed a computational model within the Dynamic 

Mean Field Theory (DMFT) in which a Co4+ hole that is nearest neighbor to a Na1 is 

penalized by 400 meV (17). Hence occupancy of the Na1 sites in this model reduces the 

number of Co ions over which holes can delocalize and encourages Co4+ localization. 

Comparing results from the GGA and GGA+U methods, Meng et al. (26) showed that the 

Na-vacancy ordering is strongly coupled with Co3+/Co4+ charge ordering in Na0.75CoO2. 

 

Phase transition temperatures of NaxCoO2 have been experimentally measured at 

key compositions. Electronic and magnetic transitions have been observed at 87K, 53K, 

and 20K for one such composition, x = 0.5 (23). Additional structural transitions at 210K 
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and 410 ~ 470K have been observed by electron diffraction (34), and incipient 

localization of holes are reported to be evident at 300K (28). A magnetic ordering is 

found below 22K (35), and resistivity transitions are observed at approximately 285K and 

315K at x = 0.75 (20), while no magnetic transition has been found down to 2K for x = 

0.65 (35). 

 

The cause of high Seebeck coefficient in NaxCoO2 is debated because there are 

many sources of entropy that contribute to the thermopower, and different types of 

entropy may dominate at different temperatures. There is a configurational degree of 

freedom of what Na sites to occupy. It is possible that there is partial charge localization 

on Co, therefore there may be an electronic degree of freedom. Co3+ has no spin, but Co4+ 

has non-zero spin, meaning that there is spin (magnetic) degree of freedom on Co4+. The 

asymptoted spin contribution to the thermopower is two-thirds of the total thermopower 

from experimental results by Wang et al (36). Koshibae et al. theoretically deduced that 

electronic entropy causes high thermopower in Na0.5CoO2 (37, 38). However, evaluation 

of the Na configurational entropy contribution to the total thermopower is difficult, and 

there are few detailed investigations. 

 

It is necessary to note that it is difficult to experimentally obtain the exact 

stoichiometry. Chou et al. (39) point out the possibility of oxygen non-stoichiometry in 

NaxCoO2 on single crystals prepared with the floating zone method. Na0.75CoO2 prepared 
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with the floating zone method was observed to cross two tie lines upon heating close to 

1020oC. An oxygen deficiency level of δ ~ 0.073 was observed in Na0.7CoO2-δ prepared 

in air (40) while δ ~ 0.08 was observed in Na0.75CoO2-δ prepared in an oxygen 

atmosphere (39). Oxygen deficiency is important as it modifies the relation between the 

Na content and the average Co-valence. Additional error in the stoichiometry may result 

for impurities such as CoOx formation, as been suggested both by magnetic susceptibility 

measurement (41) and differential thermal analysis (39) of samples prepared with the 

floating zone method. Finally, samples with Na concentration lower than x = 0.7 are 

usually prepared by removal of Na with I2 from Na0.75CoO2 (16, 18) though composition 

control of the final product is very difficult. Electrochemical methods to alter the Na 

content (8, 19) offer better control provided that the composition of the initial compound 

is accurately determined.  

 

First principles methods are used to study the temperature-composition phase 

diagram of P2-NaxCoO2 for 0.5 ≤ x ≤ 1 in this work. The dependence of the energy on 

Na-vacancy configuration (or Co3+/Co4+ configuration) is accounted for using the cluster 

expansion technique, so that Monte Carlo simulations can be used to equilibrate the 

system at non-zero temperature. Both the GGA and GGA+U methods are used to 

construct the phase diagram, allowing us to understand how charge localization on Co 

affects the Na-vacancy ordering. The objective of this work is to computationally 

determine the significant interactions in this material, the ordered states and their 
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transition temperatures as a function of Na concentration, and to gain an understanding of 

the role that possible Co3+/4+ charge localization plays on the phase diagram. 

 

4.3  Methodology 

4.3.1  First principles calculations 

 

First principles calculations were performed on various ordered arrangements in 

the spin-polarized GGA and GGA+U method. Core electron states were represented by 

the Projector Augmented-Wave method (42) as implemented in the Vienna Ab Initio 

Simulation Package (VASP) (43). All Co4+ spins were initialized ferromagnetically while 

Co3+ has no net spin because it is low spin in these materials. The Perdew-Burke- 

Ernzerhof (PBE) exchange correlation (44) and a plane wave representation for the 

wavefunction with a cutoff of 450 eV were used. Both internal coordinates and unit cell 

lattice parameters were fully relaxed, unlike in previous work (22, 24, 25) where the unit 

cell lattice parameters were fixed. Full relaxation has been reported to be crucial in 

identifying the correct order of phase stability (27). The Brillouin zones were sampled 

with a mesh including the gamma point. The density of the mesh for all calculations is 

approximately one point per 0.01 Å-3. The Hubbard U value in the Hamiltonian (Ueff = U 

− J, or afterwards simply U) is taken to be 5eV for Co in the GGA+U calculations. This 

U value is between the values of U = 4.91eV for Co3+ and U = 5.37eV for Co4+ obtained 

with first principles perturbation theory in LixCoO2 (45). It was previously shown that 
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removal of the self-interaction leads to strong charge localization and significant changes 

in the ground state structures in related systems (45, 46). A value of U = 5eV is sufficient 

to cause hole localization in Na0.5CoO2 (47) and is consistent with our previous work on 

Na0.75CoO2 (26), but slightly higher than the value in the work by Wang et al. (24) (U = 

4eV). The rotationally invariant approach to GGA+U by Liechtenstein et al. (48) was 

used for calculations in this work for consistency with previous work (26), but different 

from the rotationally invariant approach by Dudarev et al. (49) used by Wang et al. (24). 

 

4.3.2  Cluster expansion 

 

The Na sites can be described by a lattice model, with variables describing 

whether Na, or a vacancy, sits on each site. The essential idea is to expand the energy of 

the system in terms of these variables. For the GGA approximation, using the occupation 

variables σ = 1 for Na, and σ = −1 for vacancies for Na sites, the Hamiltonian becomes: 

(4.4) 

Here, Eν
predict is the predicted energy for structure ν, C is a constant, and V represents the 

Effective Cluster Interactions (ECI). The point terms are broken out explicitly in 

Na1-type and Na2-type sites in equation 4.4. The energy difference between Na on a Na1 

and a Na2 site, averaged over all possible occupations surrounding the sites is given by 

( )212 NaNa VV − . The indices i, j and k are labels of sites in the interaction cluster. The 
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final GGA cluster expansion was fitted to the energies of 211 different Na-vacancy 

configurations in the concentration range 0.5 ≤ x ≤ 1.   

 

An additional problem of organizing charge occupancy on Co3+/Co4+ appears in 

the GGA+U approximation. This is complicated by the interaction between the Na / 

vacancy and Co3+ / Co4+ sublattices. Such a system, with two partially disordered 

sublattices that interact with each other, can be studied with a coupled cluster expansion 

(50-52). The GGA+U cluster expansion Hamiltonian becomes: 

(4.5) 

where the occupation variables are σ = 1 for Na, and σ = −1 for vacancies for Na sites, 

and τ = 1 for Co3+, and τ = −1 for Co4+ at Co sites. Note that due to the charge balance 

constraint,  

,                                  (4.6) 

one interaction term for a point variable must be removed. The ECI for the Na1 point 

term was removed in our cluster expansion. Hence the point ECI for Na2 and Co3+ / Co4+ 

are taken with respect to this term. The final GGA+U cluster expansion was fitted to the 

energies of 131 different Na-vacancy and Co3+/Co4+configurations in the concentration 

range 0.5 ≤ x ≤ 1.   

It was necessary to subtract a “background cluster expansion” prior to fitting the 
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first principles energies to the cluster expansion to capture the slowly decaying 

long-range electrostatic interactions in the Na layers in the GGA cluster expansion. The 

background cluster expansion is defined as 

                                                 (4.7) 

with 

( )
ij

ij
ij r

rerfc
AV

α

α
=′ .                                                   (4.8) 

Here, rij is the distance in angstroms between two sites i and j that form the pair cluster. A 

(magnitude) and α (decay length) are constants that are manually chosen. The 

background interaction Vij’ has the same form as the real-space term in an Ewald 

summation, which was shown to reproduce well low energy structures in ionic systems 

governed by unscreened electrostatic interactions (53). The cluster expansion in equation 

4.4 is fitted to energies EGGA,ν − E’ν instead of directly fitting to first principles energies 

EGGA,ν.  

 

The phase space for which first principles energies can be obtained is limited 

because Na1-Na2 nearest neighbor (NN) simultaneous occupancy cannot be stabilized in 

both GGA and GGA+U approximations due to overlapping of ions. Furthermore, 

Na1-Co4+ NN simultaneous occupancy drastically increases the energy in the GGA+U 

approximation due to strong electrostatic repulsion. Therefore clusters that include the 

Na1-Na2 NN pair cluster, or Na1-Co NN pair cluster in the GGA+U cluster expansion, as 



 81

a subcluster were not included in the cluster expansion. A penalty of 1eV per Na1-Na2 

NN simultaneous occupancy and 400meV per Na1-Co4+ NN simultaneous occupancy 

was added to discourage formation of such pairs in the Monte Carlo simulations. The 

exact magnitude of the Na1-Na2 NN pair penalty is not important, because these 

configurations do not affect the value of the average energy as long as they do not appear 

in the simulation. However, since there is no overlap of ions involved, there is no reason 

to prohibit Na1-Co4+ NN simultaneous occupancy in Monte Carlo simulations at high 

enough temperatures, and the magnitude of this penalty is chosen to be the same as the 

value in Marianetti and Kotliar (17).  

 

4.3.3  Monte Carlo simulations 

 

Grand Canonical Monte Carlo simulations were conducted within the Metropolis 

algorithm (54) for both the GGA and GGA+U based cluster expansion in order to 

determine ground states and subsequently derive the phase diagrams. Monte Carlo cells 

with up to approximately 30,000 Na sites, or 15,000 formula units (FU) containing one 

Co per FU, were used.  

 

The cluster expansion based on GGA utilized 80,000 equilibrium passes and 

120,000 sampling passes at 10K intervals for calculations at fixed chemical potential, and 

at least half the number of passes were used when the chemical potential was scanned at 
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650K for integration of free energy. The perturbation in the Metropolis algorithm was a 

sign inversion of the occupation variable in one site and one sampling pass amounts to 

one possible perturbation for each site on the lattice. 

  

The GGA+U calculations utilized 40,000 equilibrium passes and 60,000 sampling 

passes at 10K intervals for temperature scans at fixed chemical potential, and half this 

number of passes for a chemical potential scan at 750K. The perturbation for the 

Metropolis algorithm was chosen with the following algorithm to ensure charge balance: 

1) Choose a first site randomly. 

2) Choose a second site randomly. 

3) If inverting the occupation variables in both sites changes the charge balance, discard 

the choice of the second site and go to 2). 

4)  Else, the perturbation is inverting the occupation variables in both sites. 

One sampling pass amounts to one possible selection as the first candidate site for 

inversion per site on the lattice. Some phase transition temperatures are obtained by free 

energy integration because of large hysterisis near the phase transition point between 

heating and cooling calculations.  
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4.4  Results   

4.4.1  GGA 

4.4.1.1  Formation energies and ground states 

 

Figure 4-3a shows the GGA formation energy per FU, which is the energy of a 

structure compared to phase separation into the lowest energy structures with P2 stacking 

at x = 0.5 and x = 1. The dotted line in Figure 4-3a shows the convex hull when 

O3-NaCoO2 (shown with the gray diamond) is considered as an end member. The ground 

state for NaCoO2 is O3-NaCoO2 (55). When oxygen ions are stacked as ABCABC and 

Na and Co occupy octahedral sites in alternating layers; its energy is 45meV/FU lower 

than that of P2-NaCoO2. This is why it is difficult to obtain single phase P2-NaxCoO2 

with Na concentrations above x > 0.8 during electrochemical experiments, as in Delmas 

et al (8). Two ground states at x ~ 0.84 and 0.86 are removed from the convex hull when 

O3-NaCoO2 is added on the convex hull. 

 

Figure 4-3b-j shows in-plane Na ordering patterns of the ground state structures, 

which can be grouped into three types of ordering patterns (27). One is the “row” pattern 

of x = 0.5 (= 2/4, Figure 4-3b) (21, 23), 0.56 (= 5/9, Figure 4-3c) and 0.6 (= 3/5, Figure 

4-3d), in which Na1 sites order in rows parallel to the a1+2a2 direction with single or 

double Na2 rows interdispersed. Another is the “large zigzag” pattern for x = 0.67 (= 4/6, 

Figure 4-3e) and 0.71 (= 5/7, Figure 4-3f), where Na1 sites form a zigzag pattern with 
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distance 2|a1| between nearest Na1 sites. The third is the “droplet” pattern for x = 0.77 (= 

10/13, Figure 4-3g), 0.81 (= 13/16, Figure 4-3h), 0.84 (= 16/19, Figure 4-3i) and 0.86 (= 

18/21, Figure 4-3j), where three Na1 form droplet motifs.  

 

Na orders in rows either on Na1 or on Na2 sites at x = 0.5, 0.56, and 0.6 (Figure 

4-3b-d). The previously proposed structure at x = 0.5 (18, 21) has equal occupancy of 

Na1 and Na2 which serves to minimize the electrostatic energy by eliminating Na1-Na1 

or Na2-Na2 nearest neighbor interactions. The ordered state, in which all Na atoms form 

zigzag lines on Na2 sites while no Na1 sites are occupied, has 23meV/FU higher energy. 

Hence, the ground state gains stability by minimizing the electrostatic repulsions among 

Na ions even though half of its Na are ordered on less favorable sites (i.e. Na1). The 

ground state structure at 0.6 (Figure 4-3d) is obtained from the one at x = 0.5 by inserting 

an additional row of Na2 ions between the Na1 rows, thus creating some Na2-Na2 

nearest neighbors. We can assume that these row motifs also occur at compositions 0.5 < 

x < 0.6 because the common characteristic of the ground states at x = 0.5 and x = 0.6 is 

the formation of rows of Na1 and Na2 ions. This assumption reduces the ground state 

problem, for that concentration range, to finding how the Na1 and Na2 rows alternate 

along the direction perpendicular to them. The ground states of such one-dimensional 

models are well known because of the seminal work of Hubbard who found the ground 

states for arranging electrons and vacant sites on a one-dimensional lattice (56). A similar 

analysis has been applied to explain the oxygen ordering in yttrium barium copper oxides 
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(57). In the NaxCoO2 system, a unit consisting of a row of Na1 ions with a vacant row on 

each side are denoted by <‘1’>, while <2> represents a row of Na2 ions. For example, the 

ground states at x = 0.5 and x = 0.6 can be denoted as <‘1’2> and <‘1’22> respectively. 

Repulsive convex decaying interactions are typical of electrostatically interacting systems. 

In general, these interactions exhibit an infinite branching tree of ground states generated 

by a continued-fraction algorithm, which is equivalent to a structure combination 

branching mechanism (58). For example, a new ground state would be expected at 

9
5

54
32
=

+
+

=x  (0.56) with Na ordering <‘1’2‘1’22>. Indeed, the first principles energy of 

this structure (Figure 4-3c) is lower than the compositionally weighted average of <‘1’2> 

and <‘1’22> structures. It is likely that the continued fraction algorithm leads to 

additional ground state structures as is the case in YBa2Cu3O7-δ (e.g. for 
13
7

94
52
=

+
+

=x  

and 
14
8

59
35
=

+
+

=x ) (57), but the very large size of the unit cell precludes their energy 

calculations with DFT. While one could extend the ordering scheme for x > 0.6, the local 

environment of the “large zigzag” pattern is favored within this concentration range 

because Na can be separated more evenly.  

 

4.4.1.2  Cluster Expansion 

 

The clusters included in the GGA cluster expansion are shown in Figure 4-4, 

however in-plane pair clusters that only contribute to the background are not shown. The 

circles at the intersections of the lines correspond to Na1 sites, and circles inside triangles 
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represent Na2 sites. Na2 sites are either all at the center of up-pointing triangles or all at 

the center of down-pointing triangles in one Na layer. These two occupancy patterns 

alternate as a result of P2 stacking. The circles in black correspond to sites in one layer, 

and circles in gray represent sites in an adjacent layer. The weighted CV score of this 

cluster expansion is 4.37meV/FU, while the root mean square (RMS) error was 

3.29meV/FU. In-plane ordering of the cluster expansion ground state structures matches 

the ordering of the first principles ground states within the set of calculated structures. 

 

Figure 4-5 shows the total ECI (including background) for the GGA cluster 

expansion. Although all clusters are not shown, the non-zero background, shown as the 

curve in Figure 4-5, is applied to in-plane pair clusters up to 18Å (the Na1-Na1 NN 

distance is 2.93Å). The background ECI used here is: 

( )
ij

ij
ij r

rerfc
V

095.0
095.0

12=′  [meV].                                         (4.9) 
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Figure 4-3. (a) First principles GGA formation energy per formula unit. The bold solid 
line shows the convex hull. The convex hull changes to the dotted line when formation of 
O3-NaCoO2 (gray diamond) is allowed. (b-j) In-plane ordering of the GGA ground states 
at x = (b) 0.5, (c) 0.56 (5/9), (d) 0.6, (e) 0.67 (4/6), (f) 0.71 (5/7), (g) 0.77 (10/13), (h) 
0.81 (13/16), (i) 0.84 (16/19) and (j) 0.86 (18/21) respectively. Legend: Gray circles: Na1, 
black circles: Na2. Bold lines indicate unit cell. The symbols α and β in (b) indicate the 
distinction of α and β sites for order parameter calculation on the Na1 sublattice. 



 88

 

Figure 4-4. Clusters with ECI different from the background included in the GGA cluster 
expansion. The circles at the intersections of the lines correspond to Na1 sites, and circles 
inside triangles represent Na2 sites. Circles in black correspond to sites in one layer, and 
circles in gray represent sites in an adjacent layer. (a) Point and pair clusters. (b) Triplet 
clusters. 

 

 

We can clearly observe that both in-plane and out-of-plane interactions are 

repulsive and convex decaying, and that the out-of-plane interactions decay much faster 

than the in-plane interactions. This work presents the treatment of out-of-plane 

interactions as weaker, but not negligible, interactions as compared to in-plane 

interactions. This treatment is different from previous computational studies, in which 

electrostatic interactions out-of-plane and in-plane were not distinguished (20, 25). 

Furthermore, the magnitude of the pair interactions seems insensitive to whether the sites 
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in the pair are Na1 or Na2 sites. Table 4-1 shows the sum of the background ECIs and the 

fitted ECIs for clusters with non-zero value of the fitted ECIs. Note that the cluster 

numbers in Table 4-1 correspond to the numbers in Figure 4-4. The Na1-Na2 site energy 

difference ( )212 NaNa VV −  obtained from Table 4-1 is 61meV per Na. This value 

determined in this work compares well to previous calculations by Zhang et al., which 

obtained a value of 67meV for Na1-Na2 site energy difference (25).  

 

The fundamental interactions in NaxCoO2 were previously considered to be 

electrostatic in-plane (20, 25) or short-range pair interactions (24). Contrary to these 

speculations, we find that there are three different types of interactions, namely strong 

long-range in-plane electrostatic interactions, strong relaxation effects, and weak 

short-range out-of-plane interactions. The in-plane screening mechanism is weak since 

they are less screened by the oxygen ions compared to out-of-plane interactions that 

extend over oxygen layers. We find that, in addition to electrostatic interactions, 

relaxation effects are necessary to accurately capture the energetics of the system, 

therefore many triplet clusters had to be included in the cluster expansion. There is 

“empty space” between Na1 and patches of Na2 because simultaneous Na1-Na2 NN 

occupancy is not possible. Relaxation of the structure during first principles calculations 

reduces this empty space. For example, the average relaxed Na1-Na2 second nearest 

neighbor distance (corresponding to cluster 9 in Figure 4-4) was consistently about 0.15 

Å; about 5% shorter than the distance on an ideal hexagonal lattice with the same cell 
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volume in the ground state structures for x = 0.67, 0.71 and 0.76 (Figures 4-3e-g). These 

relaxation effects can only be correctly captured by including triplets, or higher order 

clusters, in the cluster expansion. The importance of capturing Na1-Na2 distances is 

shown by the fact that most significant triplets include a Na1-Na2 pair cluster as a 

subcluster (see Figure 4-4). 

 

 
 

Figure 4-5. Pair ECI for the GGA cluster expansion. Although all clusters are not shown, 

the non-zero background shown as the curve 
( )

ij

ij
ij r

rerfc
V

095.0
095.0

12=′  is applied to 

in-plane pair clusters up to 18Å (the Na1-Na1 NN cluster distance is 2.93Å). The ECI 
shown are the sum of the background ECIs and the fitted ECIs. IP: in-plane, OP: out of 
plane.
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Table 4-1. Effective Cluster Interactions (ECI) per meV in the cluster expansion for the 
GGA. 

 
 
 
 
 

 

Pairs (excluding clusters with background contribution only) 

Na1-Na1 Na1-Na2 Na2-Na2 

Cluster ECI Cluster ECI Cluster ECI 

3 58.72 8 250.00 14 56.99 
4 34.20 9 45.09 15 39.15 
5 23.73 10 31.72 16 21.75 
6 9.21 11 20.31 17 8.25 
7 7.56 12 2.16   
  13 5.09   

18 5.45 20 1.03 23 1.12 
19 −0.88 21 −1.03 24 −1.46 
  22 −0.43   

 

Triplets 

Cluster ECI Cluster ECI Cluster ECI 

25 −20.48 31 −2.67 37 −10.31 
26 −11.56 32 11.60 38 5.35 
27 −11.56 33 3.63 39 4.41 
28 −27.02 34 4.56 40 −4.69 
29 2.32 35 8.04 41 7.94 
30 9.59 36 −0.89   

 
 
 
 

Points 

Cluster ECI 

1 939.65 
2 908.94 
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4.4.1.3  Phase Diagram  

 

Figure 4-6 shows the phase diagram obtained with the GGA cluster expansion. 

The in-plane ordering of the ground states at x = 0.5, 0.6, 0.67, 0.71, 0.77 and 0.81 are 

those shown in Figure 4-3. Somewhat surprisingly, all the ordered phases are line 

compounds, which tolerate very little off-stoichiometry. The phase transition 

temperatures were obtained by free energy integration. The transition temperatures shown 

as dotted lines in the phase diagram in Figure 4-6 are a lower bound. 

 
Figure 4-6. GGA phase diagram obtained by Monte Carlo simulation from the cluster 
expansion in Table 4-1. 
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Monte Carlo cooling simulations suggest short-range ordered structures with 

lower energy than the two-phase coexistence between known ordered patterns at x = 0.5, 

0.56 (5/9) and 0.6 in the region 0.5 < x < 0.6. One example of such a short-range ordered 

structure is shown in Figure 4-7, which consists of a snapshot of a Monte Carlo cooling 

simulation at 100K and x ~ 0.56. We could not identify any regular pattern in these 

simulations. The energy of the first principles ground state at x = 0.56 monotonically 

increases during heating until T ~ 230K, above which the energy decreases and the 

structure disorders. In principle, the energy cannot decrease with temperature along an 

equilibrium path, thus further indicating that a lower energy configuration, other than the 

one we identified, must exist. Detailed discussion of the short-range ordered structures is 

given later in section 4.5.1. For compositions 0.6 ≤ x ≤ 0.81, the only ordered phase that 

persists to room temperature (300K) is x = 0.67. Ground states have six-Na1 droplet 

motifs (24, 27) analogous to the three-Na1 droplet motifs in Figure 4-3 within the 

composition range 0.85 < x < 1. These six-Na1 droplet motifs are predicted to be ground 

states using the cluster expansion, however we were unable to obtain a structure with 

six-Na1 droplet motifs as a ground state in first principles calculations, possibly due to 

the fact that the optimum stacking of the in-plane ordered Na layers along the chex axis 

was not identified.  

 



 94

 

Figure 4-7. Snapshot of a Na layer in a Monte Carlo cooling simulation at 100K, 
concentration x ~ 0.56, GGA approximation. Legend: Gray circles: Na1, black circles: 
Na2. 

 

Figure 4-8a shows the Na concentration, Na1/Na2 ratio, and Na1 order parameter 

in a Monte Carlo simulation where the system is heated at fixed chemical potential 

corresponding to x ~ 0.5. The Na concentration does not change much with temperature, 

however the Na1/Na2 ratio drops sharply at around 300K. The “order parameter” is a 
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measure of disorder, and 1 signifies a fully ordered structure while 0 denotes a fully 

disordered structure. Na1 sites are split into α and β sites for Na0.5CoO2. Figure 4-3b 

shows the positions of α and β sites within this compound. Na1 (large gray circles in 

Figure 4-3b) may occupy α sites, but not β sites, at 0K. By defining the concentration of 

Na1 on α and β sites as cα and cβ respectively, the concentration of Na1 on α sites in the 

fully ordered state is cα0 = 0.5, while the concentration of Na1 on β sites in the fully 

ordered state is cβ0 = 0, and the order parameter is given by:  

( )βα
βα

βα −=
−
−

cc
cc
cc

2
00

.                                               (4.10) 

The order parameter drops from approximately 1 to around 0 at about 300K in Figure 

4-8a, exactly where the change in Na1/Na2 ratio is observed. It is clear from the snapshot 

of a Na layer at 320K, shown in Figure 4-8b, that the Na arrangement is disordered at this 

temperature. 
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Figure 4-8. (a) Na concentration, Na1/Na2 ratio and Na1 order parameter for a Monte 
Carlo heating simulation near x = 0.5 (GGA approximation). (b) Snapshot of a Monte 
Carlo cell at 320K, after transition. Legend: Gray circles: Na1, black circles: Na2. 
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The order-disorder temperature in the heating simulation of Figure 4-8a is 

approximately 300K, higher than the 220K shown in the phase diagram in Figure 4-6. 

This difference reflects the strong first order character of the transition. Phase transitions 

desired for Monte Carlo simulations require that intermediate states between old and new 

states are accessible. If the energy levels of the intermediate states are high, then 

increased temperature is necessary to bring the system from the metastable state to the 

stable state. There are no low-energy excitations accessible to bring the system to the 

disordered state in perfectly ordered states at higher Na concentrations, such as above x ≥ 

0.5. The system can disorder only by first making space through removing some Na, and 

then filling back the space by adding Na. The high energy required to overcome this 

excitation step is feasible only at elevated temperatures compared to the true transition 

temperature. 

 

The change in phase transition temperature when the formation energy of the 

ground state is shifted by 1meV/FU is also calculated to obtain a sense of the reliability 

of the computed transition temperatures. This energy is added/subtracted to the ground 

state energy, but no change is made to the ECI. As a result, a lower/higher transition 

entropy is required at the transition. The extent of change can characterize the effect of 

inaccuracy in the cluster expansion on the phase transition temperature. The sensitivity, or 

change in phase transition temperature, with +1meV shift in ground state energy 

( shiftc ET ∆∆ ) for major phases were –70K, –40K, –40K, and –70K at x = 0.5, 0.67, 0.77 
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and 0.87 (six-Na1 droplet) respectively. In general, transition temperatures are more 

reliable for high transition temperatures because the free energy drops more steeply with 

change in temperature, however the transition temperature for six-Na1 droplet phases are 

less reliable compared to those of x ~ 0.67 and 0.77. 

 

Note that if the ordered structures are line-compounds, then the shift in transition 

temperature can be estimated from the entropy of the disordered state:  

disordershiftc SET ∆=∆ .                                            (4.11) 

The large shift (∆Tc) in the transition temperature (Tc) with a small shift in formation 

energy (∆Eshift) implies small entropies in the disordered states (Sdisorder). One reason is 

that the restriction of Na1-Na2 NN simultaneous occupancy severely limits the number of 

possible Na ordering patterns, therefore the Na layer is not totally disordered and the 

entropy of the “disorder” phase is decreased. 

 

4.4.2  GGA+U 

4.4.2.1  Formation energies and ground states 

 

Figure 4-9a shows the GGA+U formation energy per FU. In contrast to the GGA 

result, the number of ground states obtained with the GGA+U approximation is very 

small (five including the two end members), although calculations have been conducted 

at 14 concentrations. The dotted line in Figure 4-9a shows the convex hull when 
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O3-NaCoO2 (shown with the gray diamond) is considered as an end member. The 

GGA+U energy of O3-NaCoO2 is 44 meV/FU lower than that of P2-NaCoO2.  

 

Figures 4-9b-e shows the ground state structures at x = 0.5 (= 2/4, Figure 4-9b), 

0.6 (= 3/5, Figure 4-9c), 0.67 (= 4/6, Figure 4-9d) and 0.75 (= 9/12, Figure 4-9e). The Na 

layer ordering patterns for x = 0.5 and 0.67 is the same as these in the GGA calculations, 

however at x = 0.75 the droplet ordering found in GGA+U is not a ground state in GGA. 

The stacking in the c-axis direction is such that Na1 between adjacent layers are 

positioned as far away from each other as possible and Co4+ stack on top of each other for 

each ground state.  

Strong ground states occur only at concentrations where the Co ordering pattern is 

commensurate with the symmetry of the Na lattice (27). Co orders with a supercell of 

hexhex aa 3× , hexhex aa 33 × , and hexhex aa 22 ×  at x = 0.5, 0.67, and 0.75 respectively. 

The Na layer ordering for these structures is hexhex aa 32 × , hexhex aa 3232 ×  and 

hexhex aa 3232 ×  respectively. 
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Figure 4-9. (a) First principles GGA+U formation energy per formula unit. The bold solid 
line shows the convex hull. The convex hull changes to the dotted line when formation of 
O3-NaCoO2 (gray diamond) is allowed. (b-e) Ground states of first principles GGA+U 
formation energy at x = (b) 0.5, (c) 0.6, (d) 0.67 (2/3) and (e) 0.75. Legend: Large dark 
gray circles: Na, small light gray circles: Co3+, small black circles: Co4+. Na1 sites are 
small light gray circles superimposed on dark gray circles. 
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4.4.2.2  Cluster Expansion 

 

Figure 4-10 shows the clusters included in the GGA+U cluster expansion. The 

empty circles at the intersections of the lines correspond to Na1 sites and the empty 

circles inside triangles represent Na2 sites as in the GGA while the filled circles 

correspond to Co sites. The weighted CV score of this cluster expansion was 9.33 

meV/FU and the RMS error was 3.12 meV/FU. In-plane ordering of cluster expansion 

ground state structures matches the ordering of ground states within the structures 

calculated by first principles. Figure 4-11 shows the ECI for the GGA+U cluster 

expansion, in which the Na1-Na2 NN and Na1-Co4+ NN simultaneous occupancy 

penalties have been added. The Na-Co ECI in the Figure 4-11 have been multiplied by −1 

to show interactions between more electrostatically repulsive species with a positive 

value. The Co NN pair is the strongest interaction, being almost four times higher in 

magnitude than the second strongest pair interaction. The strength of the Co NN 

interaction causes ground states in Figure 4-9 to all have a well-ordered Co3+/Co4+ layer 

(x = 0.67 with hexhex aa 33 ×  ordering, x = 0.75 with hexhex aa 22 ×  ordering). The 

values utilized for the ECI are shown in Table 4-2 and it should be noted that these values 

correspond to the numbers in Figure 4-10. Contrary to the GGA, insight on the Na1 and 

Na2 site energy difference cannot be obtained from the ECI in Table 4-2 because the 

magnitude of the Na1-Co4+ NN penalty affects the Na2 point term ECI. It could be 

argued that the Co interactions are represented too strongly in the cluster expansion, as a 
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consequence of a too large U value. Though U = 5eV per Co gives the right average 

electrochemical potential between 0.5 ≤ x ≤ 0.8 (8) (details in section 4.5.3.2.1), however 

it may not be the optimum value of U for modeling the partial charge localization that is 

often observed in this material. Therefore our phase diagram results can be taken as a 

representation of the extreme scenario of complete charge localization. 

 

 

Figure 4-10. Clusters included in the GGA+U cluster expansion. (a) Clusters of Na layer 
sites. (b) Clusters including both Na layer and Co layer sites. (c) Clusters of Co layer sites. 
The empty circles at the intersections of the lines correspond to Na1 sites, and empty 
circles inside triangles represent Na2 sites. Filled circles correspond to Co sites. Circles in 
black correspond to sites in one layer, and circles in gray represent sites in an adjacent 
layer.  
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Figure 4-11. Pair and triplet ECI for the GGA+U cluster expansion. The Na-Co ECI have 
been multiplied by −1 to show interactions between more electrostatically repulsive 
species with a positive value. 
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Table 4-2. Effective Cluster Interactions (ECI) per meV for the cluster expansion in the 
GGA+U. 

 
Points 

Cluster ECI 
1 −154.40 
2 324.55 

 
Pairs 

Na1-Na1 Na1-Na2 Na2-Na2 
Cluster ECI Cluster ECI Cluster ECI 

3 13.17 8 250.00 16 17.28 
4 0.36 9 6.73 17 0.65 
5 10.60 10 −2.70 18 7.77 
6 −17.19 11 5.88 19 −3.08 
7 −15.24 12 −10.23 20 −6.04 

13 −13.58 21 −2.89 
  14 −7.87   
  15 −1.96   

 
Pairs 

Na1-Co Na2-Co Co-Co 
Cluster ECI Cluster ECI Cluster ECI 

22 −100.00 26 −3.64 29 65.86 
23 3.17 27 −5.64 30 13.09 
24 2.89 28 −1.48 31 7.11 
25 −3.89   32 0.82 
    33 −13.42 
    34 −5.88 
    35 −0.62 

 
Triplets 

Cluster ECI 
36 −18.98 
37 −2.64 
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4.4.2.3  Phase diagram  

 

Figure 4-12 shows the phase diagram obtained from the GGA+U cluster 

expansion. The ground states at x = 0.5, 0.67 (2/3), and 0.75 are shown in Figures 4-9b, 

4-9d, and 4-9e respectively. The order-disorder temperatures are typically higher than 

those in the GGA phase diagram, and the three ordered states are all stable at room 

temperature. The Monte Carlo simulations again suggest structures with short range order 

in the region 0.5 < x < 0.67 that have lower energy than phase coexistence between 

known ordered patterns at x = 0.5, 0.6 and 0.67. We could not identify any regular 

ordering patterns at zero Kelvin, closely resembling the short-range order region in the 

GGA result. There are two order-disorder transitions at x = 0.67. The Na layer initially 

disorders at approximately 370K, followed by charge disorder in the Co layer at about 

670K. Contrary to the GGA phase diagram in Figure 4-6, the six-Na1 droplet patterns are 

not stable in GGA+U because there is no high symmetry Co3+/Co4+ ordering pattern 

commensurate with the six-Na1 droplet pattern. Instead there is a strong eutectic where 

the disordered phase is stable down to ~30K near x ~ 0.86. 
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Figure 4-12. GGA+U phase diagram obtained by Monte Carlo simulation from the cluster 
expansion in Table 4-2. 

 

4.5.  Discussion 

4.5.1  GGA phase diagram  

 

Ground state structures are found at x = 0.5, 0.6, 0.67, 0.71, 0.77, and 0.81 in the 

GGA. In addition, the Monte Carlo simulations indicate that other structures are likely to 

be present around x = 0.56 though we could not identify these structures. In general, the 

lowest energy stacking is the one with the minimum amount of short adjacent-plane 

Na1-Na1 neighbors. This manner of stacking often reduces the symmetry of the unit cell. 
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For example, both the ground state structure of Na0.67CoO2 and structures with three-Na1 

droplet motifs display that stacking destroys the in-plane three-fold rotation symmetry. 

while mirror symmetry perpendicular to the Na layers is retained in stronger ground 

states such as Na0.50CoO2 and Na0.67CoO2.  

 

The following information can be deduced from comparison of the ground states 

with available experimental information: Clear evidence exists for the presence of a 

stable ordered state at x = 0.5 both experimentally (16, 18) and from computational 

suggestions (24, 25). A structural transition at x = 0.5 is observed experimentally at 210K 

(34), which is close to our GGA transition temperature at 220K.   

 

The low temperature electron diffraction conducted by Zandbergen et al. shows 

no superstructure at x = 0.56 (21), however a few crystals display the diffraction pattern 

indicative of the x = 0.5 compound (21). This is in fair agreement with our calculations, 

where some x = 0.5 ground state motifs is seen in Figure 4-7. The Warren-Cowley short 

range order parameters (59) of the three shortest Na1-Na1 and Na2-Na2 bonds were 

calculated and summarized in Table 4-3 in order to understand the origin of the structures 

observed in the Monte Carlo cooling simulation between 0.5 < x < 0.6. Included are 

values for the x = 0.56 first principles ground state (Figure 4-3c), a short-range ordered 

structure from Monte Carlo simulation (Figure 4-7, T = 100K), and a disordered structure 

from Monte Carlo simulation (T = 650K). The Warren-Cowley parameter (αn) is defined 
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for the nth nearest neighbor on a binary sublattice with species A and B as:  

rand
AB

n
AB

n p
p

−=α 1 .                                                    (4.12) 

 

Warren-Cowley parameters are calculated on both the Na1/vacancy and the 

Na2/vacancy sublattice. The two species, A and B, are chosen as Na1 and vacancies in the 

Na1 sublattice, or Na2 and vacancies in the Na2 sublattice. Here, pn
AB is the probability of 

A-B (Na1-vacancy or Na2-vacancy in this work) pairs with nth nearest neighbor distance 

in the system in consideration, and BA
rand
AB ccp =  is the probability of A-B pairs if A and 

B were randomly distributed (60). The Warren-Cowley parameter is > 0 when the two 

species have an ordering tendency, < 0 when the species have a phase separating tendency, 

and 0 when fully random. In this paper, the two species are chosen as Na1 and vacancies 

in the Na1 sublattice, or Na2 and vacancies in the Na2 sublattice. 

 

 
Table 4-3. The Warren-Cowley short-range order parameters (59) for competing phases 
at x ~ 0.56. The Warren-Cowley parameter is > 0 when the Na and vacancies have a 
phase separating tendency, < 0 when there is a phase separating tendency, and 0 when 
fully random. NN: nearest neighbor bond, FPGS: first principles ground state, SRO: short 
range order structure: DIS: disordered structure. 
 
Bond type 

 
Na1-Na1 

NN 
Na2-Na2 

NN 
Na1-Na1 
2nd NN 

Na2-Na2 
2nd NN 

Na1-Na1 
3rd NN 

Na2-Na2 
3rd NN 

FPGS -0.286 -0.167 0.143 0.000 -0.071 -0.167 
SRO -0.216 -0.172 0.000 -0.121 0.003 0.038 
DIS -0.130 -0.113 -0.028 -0.082 -0.035 -0.036 
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It is clear from these Warren-Cowley parameters that the Monte Carlo simulation 

at 100K is not simply in a state between the ordered ground state and the random solution. 

While the NN Na1-Na1 Warren-Cowley parameter indicates lower order than the ground 

state, the NN and 2nd NN Na2-Na2 Warren-Cowley parameters indicate stronger ordering 

than in the ground state. This would indicate that there might be a lower energy ground 

state possible. 

 

The ground state for x = 0.6 is the state predicted by previous computational work 

(24, 25), however this ground state has not been observed experimentally. 

 

The electron diffraction results by Zandbergen et al. (21) for Na0.64CoO2 show no 

superstructure, but this does not contradict our result. Depending on the exact 

composition of the phase boundaries and the sample, our phase diagram (Figure 4-6) 

shows a two-phase region with mostly a disordered phase and possibly a small amount of 

x = 0.67 compound for Na0.64CoO2 at room temperature,  

 

New ground states are found at 0.67 (2/3) and 0.714 (5/7), which exhibit a larger 

unit cell than thought in previous computational work (24, 25), perhaps the ground state 

ordering pattern was overlooked in those studies. We are not aware of experimental 

papers suggesting our ground state ordering patterns. Chou et al. (61) suggest a ground 

state at x = 0.708 (17/24) with hexhex aa 3232 ×  ordering that has 3-Na1 droplet motifs 
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with trivacancies (Na concentration x = 9/12) in half of the layers and 3-Na1 droplet 

motifs with quadrivacancies (Na concentration x = 8/12) in the other half of the layers. 

However the GGA energy of that structure is 15meV/FU higher than two-phase 

coexistence of our x = 0.67 and 0.714 ground states.  

 

Contrary to previous computational work (24, 25), no ground state is observed in 

the GGA approximation at x = 0.75, and the lowest energy state at this composition is two 

phase coexistence between x = 0.71 and 0.77. This is in excellent agreement with neutron 

diffraction results on powdered crystals by Huang et al. (18). Electron diffraction at low 

temperature by Zandbergen et al. (21) suggests a complicated and weak superstructure at 

x = 0.75, but it should be noted that the superstructure pattern was quickly modified by 

the electron beam during experiment. Therefore it is plausible that no stable ordering 

patterns exist at x = 0.75. During resistivity measurements two transitions are 

experimentally observed for the x = 0.75 system at around 285K and 315K (20). We also 

see two transitions for this Na concentration in the GGA phase diagram: a eutectic 

transition around 200K, and an order-disorder transition around 230K. Although the 

calculated temperatures are lower than what is observed, the temperature difference 

between the two transitions is strikingly similar. Hence, the simulation results may 

explain these transitions as two consecutive first order transitions towards the disordered 

state. 
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At the high concentration end we find the three-droplet phases first suggested by 

Roger et al. (20) and also identified in previous computational work (24, 27). The 

stacking in the c-axis direction is such that Na1 between adjacent layers are positioned as 

far away from each other as possible. Although ground states of the three-Na1 motifs 

seem to appear at random compositions, but in fact such ground states appear only at 

compositions 
N

Nx 3−
=  where N is an integer and the unit cell has hexhex aNaN ×  

ordering in-plane. The only exception is x = 13/16, where the structure with hexhex aa 44 ×  

ordering has 1.6meV/FU higher energy than the ground state with hexhex aa 134 ×  

ordering. This fact implies that in principle three-Na1 droplet motifs want to spread apart 

as far away as possible from each other without destroying the in-plane three-fold 

rotation symmetry. The four ground states shown in Figures 2g-j are part of an infinite 

series of ground states with hexhex aNaN ×  ordering in-plane, so it is possible that 

more ground states with 3-Na1 motifs may exist.  

 

Six-Na1 droplets, although suggested computationally as ground states (24, 27), 

have not been observed experimentally. However, structures with six-Na1 droplets that 

was stable compared to phase separation between the three-Na1 droplet phase with P2 

stacking at x = 0.86 and P2-NaCoO2 were not found in first principles calculations. 

Furthermore, the six-Na1 droplet motifs would become metastable with regard to this 

two-phase formation if two phase formation between P2 three-Na1 droplet phase and 

O3-NaCoO2 is allowed.  
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4.5.2  GGA+U phase diagram 

 

We find ground state structures at x = 0.5, 0.67 and 0.75 in the GGA+U derived 

phase diagram, however additional stable structures are likely present around x = 0.60 

though these structures could not be identified. The Na layer ordering patterns of x = 0.5 

and 0.67 ground states are the same as in the GGA phase diagram. The 0.75 ground state, 

with three-Na1 droplet motifs, is the ordering proposed by Roger et al. (20), and did not 

appear in the GGA phase diagram. Figure 4-13 shows a snapshot of the Na layer from a 

Monte Carlo cooling simulation at 430K and composition x ~ 0.76. We also observe 

connected three-Na1 droplet motifs other than the x = 0.75 ground state patterns. The 

connected three-Na1 droplet motifs and Na2 show the “stripe” pattern proposed by Geck 

et al. (22) based on observations with high-energy XRD near x = 0.75. The concentration 

range 0.75 ≤ x ≤ 0.82 is exactly where partial charge localization is experimentally 

observed (30-33).  
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Figure 4-13. Snapshot of a Monte Carlo cooling simulation at 430K, concentration x ~ 
0.76, GGA+U approximation. The “stripe” motif proposed by Geck et al. (22) (shown in 
rectangles) and the ground state motif for x = 0.75 (circled) are visible. Legend: Large 
dark gray circles: Na, small light gray circles: Co3+, small black circles: Co4+. Na1 sites 
are small light gray circles superimposed on dark gray circles. 

 

There are very few stable ordered structures in the GGA+U phase diagram 

because charge localization to Co3+ and Co4+ is “complete”, causing the dominant 

interactions to be between Co. Furthermore, ground states must have stable Na layer 
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ordering that is commensurate with the Co layer ordering, so that there is no Na1-Co4+ 

NN simultaneous occupancy. Only partial charge localization has been experimentally 

observed, therefore interactions between Co are expected to be weaker than observed 

with GGA+U approximation. Weaker interactions would allow more Co layer disorder to 

occur at lower temperature, so real Co layer order-disorder transition temperatures should 

be lower than those in the theoretical phase diagram. In fact, the calculated transition 

temperature at x = 0.75 is substantially overestimated in comparison with measurements 

by Roger et al. (20). 

 

4.5.3  Comparison of GGA and GGA+U 

4.5.3.1  Interactions  

 

The GGA and GGA+U phase diagrams are considerably different, only at x = 0.5 

and x = 0.67 do they give the same ground states. Additionally, the transition 

temperatures in the GGA+U phase diagram are considerably higher than in the GGA 

diagram. This difference between the results from the two electronic structure 

approximations should not be surprising. The mixed valence on Co is metallic and 

delocalized in GGA such that only interactions between Na+ exist. The Na+-Na+ repulsion 

is strongly screened by the charge in the hybridized Co-O orbitals leading to weak 

effective interactions and low order-disorder transition temperatures. This situation is 

reminiscent of the related compound LixCoO2 in which similar strong screening of the Li+ 
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by a Co-O rehybridization (62-64) also leads to rather low order-disorder transition 

temperatures (65). 

 

Application of the GGA+U leads to completely different physics. The value of U 

is strong enough to cause charge localization and the phase diagram is largely governed 

by the strong Co3+/Co4+ interaction. The Co3+/Co4+ effective interaction is much stronger 

than the Na+-vacancy interaction resulting in maximal separation of Co4+ in the ground 

states shown in Figures 4-9b-e. In addition, there are restrictions on how the Na layers 

and Co layers can stack because GGA+U imposes the constraint that Na1 and Co4+ 

cannot be adjacent. This results in strong ground states at x = 0.5, 0.67, and 0.75, which 

are able to retain mirror symmetry perpendicular to Na layers. Alternatively, Na1 have to 

stack on top of each other to retain mirror symmetry at a composition such as x = 0.6, 

which is energetically unfavorable and hence there is no ground state. 

 

When two ordered states on different sublattices are coupled they can go through 

separate or single order-disorder transition. This depends mainly on the symmetry 

relation between the two sublattices (66). Co charge ordering does not break the 

symmetry on the Na2 sublattice, but reduces the number of available Na1 sites in the 

ground state structure at x = 0.67. In this case we see a distinct Na disorder transition 

before the Co charge state disorders. The Na disorder transition temperature at x = 0.67 is 

almost the same (T ~ 370K) as that obtained with GGA, indicating that both descriptions 
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are somewhat consistent for the Na configurational energy. At all other compositions the 

Na/vacancy and Co3+/Co4+ sublattices disorder simultaneously, reflecting the fact that the 

Na ordering is determined by the break in symmetry arising from the charge ordering on 

the Co sublattice.  

 

It is important to understand the limitations of the GGA+U cluster expansion and 

Monte Carlo simulation at elevated temperature. The Co4+ is fully localized and therefore 

contributes significant configurational-like electronic entropy to the system in our model. 

If the electronic hole were to delocalize (as in a metal-insulator transition), then this 

description would become invalid and a metallic Fermi-Dirac like entropy should be used 

to model the electrons.  

 

4.5.3.2  Comparison to experimental Na potential, lattice parameter, and Na1/Na2 

ratio 

 

The Na intercalation voltage, c lattice parameter, and Na1/Na2 ratio from our 

Monte Carlo simulation results are compared with experimental observations to further 

assess the merits of the GGA and GGA+U methods to this system. 

 

 

 



 117

4.5.3.2.1  Na potential 

 

Electrochemical cells have been constructed with a NaxCoO2 working electrode to 

examine Na removal in a controlled manner (8, 19). The voltage against an anode is 

measured as a function of Na+ concentration in NaxCoO2. This represents the Na 

chemical potential in the material, and can accurately show the concentration at which 

stable phases exist and their relative energy differences. Plateaus in the voltage curve 

indicate two-phase regions while slopes are an indication of single phase formation. 

Figure 4-14a shows the Na intercalation / deintercalation voltage for GGA and GGA+U 

at 200K and 300K as a function of Na concentration. The computed voltage is the 

difference between the Na chemical potential at the cathode (NaxCoO2) and anode (pure 

Na), and can be obtained directly from the Monte Carlo simulations. The relatively 

different shape of the GGA and GGA+U voltage curves is reflective of the different 

physics in the two approximations. We were not able to point out the exact compositions 

of the ground states in the GGA above x > 0.8, therefore an accurate voltage curve cannot 

be obtained in this composition range. The GGA voltage curve has a larger average 

voltage drop of ~1V between x = 0.5 and 0.8. There is a stable phase at x = 0.75 in 

GGA+U that is not seen in GGA. Stable phases are observed at x = 0.71 and x = 0.77 in 

the GGA voltage curve at 200K, but these features are lost in the GGA 300K voltage 

curve.  
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Matching and comparing the experimental and computed voltage curves requires 

several adjustments. From work on the related Li materials, it is well known that in GGA 

the redox potential can be underestimated by 0.5 ~ 1V (45) due to the spurious 

self-interaction that the electron sees in the 3d orbital of Co. In addition, electrochemical 

measurements are highly accurate at measuring relative changes in Na content, but they 

often start with stoichiometry of the compound that is in doubt due to the volatility of Na 

during synthesis (39, 40). Hence, we mainly compare the shape of the computed and 

experimentally measured voltage curve in Figure 4-14b. The experimental data is from 

electrochemical measurements at room temperature by Delmas et al. (8). The 

computational data is the GGA voltage curve at 200K, with the voltage shifted upwards 

by 0.9V. Out of the voltage curves in Figure 4-14a, the GGA 200K curve shown in Figure 

4-14b most closely matches the experimental curve in three aspects. First, the magnitude 

of the voltage drop between x = 0.5 and x = 0.8 is ~1V. Second, the  magnitude of the 

stable voltage region at x ~ 0.67. Third, the existence of several stable phases at x ~ 0.71 

and 0.77.  

 

Electrochemical studies conducted by Shu et al. (19) suggest stable phases at x = 

0.5, 0.55, 0.71, and 0.75. In addition, susceptibility measurements on samples with x = 

0.55 are clearly different from those with x = 0.5, indicating that these two compositions 

may be distinct phases (19). No stable (or very weak) phase is reported for x = 0.67 in 

Shu et al.’s work (19), which is contradictory to previous electrochemical measurements 
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by Delmas et al. (8) that suggested a stable phase close to x = 0.67.  

 

It is possible that at 0.7 < x < 0.8 there is a consistent underestimation of the 

transition temperatures because stable phases do not exist in the GGA 300K voltage curve. 

Previous computational phase diagrams based on GGA approximations in LixCoO2 (65) 

and LixNiO2 (67) have overpredicted phase transition temperatures. The overestimation is 

not thought to be due to intrinsic errors of the GGA approximation, but rather to 

considering too few interactions in the in LixCoO2 (65) and LixNiO2 (67) cluster 

expansions, resulting in some overestimated short-range interactions. An alternative 

possibility considers that no direct Na-Co coupling was treated in the NaxCoO2 GGA 

cluster expansion. The Co sublattice affects interactions on the Na sublattice in NaxCoO2 

(i.e. high site energies on Na1 sites), but in LixCoO2 and LixNiO2 there is little or no effect 

on Li from the Co (Ni) sublattice. Another explanation is that temporal Co charge 

localization occurs in the real system, causing errors in phase transition temperatures, 

because this is not captured with GGA. Experimental observation of Curie-Weiss 

behavior implies existence of some extent of charge localization (19). 
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Figure 4-14. (a) Na intercalation / deintercalation voltage of NaxCoO2 when used as a 
cathode against pure Na anode which is derived from Monte Carlo simulations in the 
GGA and the GGA+U at 200 and 300K. (b) Comparison of experimental electrochemical 
voltage measurements from Delmas et al. (8) at room temperature (bold line) with GGA 
200K voltage curve (dotted line). The concentration of the experimental curve is shifted 
by +0.05, and the voltage of the GGA 200K curve is shifted by +0.9V. 
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While the GGA+U voltage curves match the absolute average experimental 

voltage better than GGA, its shape does not reflect experimental information. 

Observation of the experimentally observed stable phases at 0.7 < x < 0.8 is inhibited by 

the x = 0.75 stable phase in GGA+U. The stability of the x = 0.75 phase in GGA+U 

results solely from the overestimated strength of Co3+/Co4+ interactions in GGA+U, 

leading to a very stable Co3+/Co4+ ordering pattern at x = 0.75. 

 

4.5.3.2.2  c lattice parameter 

 

The c lattice parameter is a good measure of Na concentration because increasing 

Na concentration in the Na layer is proportional to decreasing space between adjacent 

oxygen layers. This relation may be used as a simple method of estimating the Na 

composition from diffraction data. Figure 4-15 compares the c lattice parameters of the 

ground states (Figures 4-3, 4-9) obtained from first principles GGA and GGA+U 

calculations at zero Kelvin against neutron powder diffraction data of polycrystalline 

NaxCoO2 by Huang et al. (18). The GGA c lattice parameter matches well with the 

experimental results for polycrystalline samples (27). The GGA c lattice parameter is well 

fit in quadratic form as  

c = 11.79412 – 1.15505 x – 0.18785 x2.                                (4.13) 

The c lattice parameter is systematically overestimated in GGA+U. 
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Figure 4-15. c lattice parameter as a function of Na concentration computed from GGA 
and GGA+U first principles calculations at zero Kelvin and from neutron powder 
diffraction results by Huang et al. (18). The lines show a parabolic fit to the calculated c 
lattice parameter values in the GGA and GGA+U approximations. 
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4.5.3.2.3  Na1/Na2 ratio 

 

The Na1/Na2 ratio is a more detailed measure of the accuracy of our calculations 

than the c lattice parameter because errors in the Na1 and Na2 site energy difference are 

exposed that are not necessarily accounted for by evaluating the c lattice parameter. 

Figure 4-16 compares the Na1/Na2 ratio from Monte Carlo simulations at 200K and 

300K in the GGA, and at 200K in the GGA+U, to values obtained from neutron 

diffraction (18, 20, 23, 68, 69). The Na1/Na2 ratio for GGA at 200K is shown because its 

corresponding voltage curve better matches with the experimental voltage curve taken at 

300K than the GGA voltage profile at 300K. The Na1/Na2 ratio for 200K and 300K 

almost overlaps in GGA+U, therefore the latter is not shown in Figure 4-16. Huang et 

al.’s measurements (18) at x ~ 0.56 and 0.63 are very close to the GGA simulation results 

at 200K. When x < 0.7, the GGA results compare with the experimental Na1/Na2 ratio 

better; however neither approximation clearly matches the experimentally observed ratio 

when x > 0.7.  
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Figure 4-16. Na1/Na2 ratio from Monte Carlo simulations at 200K and 300K in GGA and 
200K in GGA+U approximations, and from neutron diffraction results (18, 20, 23, 68, 
69). Filled symbols show computational results, and open symbols represent 
experimental results. 

 

4.5.3.3  General comments 

 

At high Na concentrations, the Co4+ hole concentration is small and the holes are 

likely to be localized, leading to charge density variation in the Co layer. Slight charge 

localization is observed experimentally at x = 0.75 (30-32) and x = 0.82 (33), so GGA+U 

may be a relevant approximation in this case. However, even in this limit GGA+U results 

do require serious interpretation because it is a static method and dynamic fluctuations 
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may be needed to properly describe the electronic structure (62). Furthermore, the 

thermodynamically stable state in the high composition range x > 0.82 is two-phase 

separation into P2-NaxCoO2 and O3-NaCoO2 (Figures 4-3, 4-9). Whether this occurs may 

depend on sample preparation and experimental conditions, further complicating a 

comparison between experiments and computation. 

 

There are more holes in the Co layer of the system at lower Na concentrations, 

and when x < 0.8 the hole concentration is well above the critical concentration at which 

a Mott transition to a metallic state can occur (62). This is what occurs between x = 0.75 

and x = 0.95 in the related system, LixCoO2 (14, 62). The Co-Co separation in NaxCoO2 is 

larger because Na+ is larger than Li+, so a complete transition to a metallic state may not 

occur because the orbital overlap between neighboring Co is reduced. This effect is more 

evident at higher Na (Li) concentration when the Co-Co distance becomes ~2.89Å in 

O3-NaCoO2 (70) and ~2.81Å in O3-LiCoO2 (71). The Co-Co distance shortens to 

approximately 2.81Å when the Na content is reduced from NaCoO2 to P2-Na0.5CoO2 (16). 

Even if the holes have tendency to localize, conductivity measurements indicate that they 

are mobile and can hop fairly quickly. As a result, the spatial distribution of holes would 

overlap when time-averaged, and the charge density becomes constant in the Co layer. 

Therefore, the GGA approximation may be appropriate at lower Na concentrations. 

Furthermore, the analysis of Na intercalation voltage, c lattice parameter, and ground 

states suggests that between 0.5 ≤ x ≤ 0.8, GGA is a better approximation than GGA+U.  
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4.5.4  Relation to thermoelectricity 

 

When attempting to improve thermoelectric properties, it is reasonable to choose 

a composition where the disordered phase is favored at low temperature. Disordered 

phases have low barriers for hole diffusion because holes are not trapped in very stable 

sites, and are expected to have high electronic entropy that contribute to increased 

thermopower (37, 38). 

 

There exists a disordered phase between 0.75 < x < 0.8 that is known to be a good 

thermoelectric material (11). Although this is the region where GGA is a good description 

of the system, it is difficult to analyze whether disorder in the Na layer leads to high ZT. 

Above x > 0.8, where charge localization may prevail, x ~ 0.86 is possibly a good 

candidate because the GGA+U phase diagram indicates that this is the eutectic 

composition with very low order-disorder transition temperature. In fact, high ZT is 

observed at x ~ 0.85 at 80K (11). It is also necessary to analyze three-layer NaxCoO2 at x 

> 0.8 because O3-NaCoO2 is 40 meV/FU more stable than P2-NaCoO2, so it is possible 

that P2-NaxCoO2 is metastable at x > 0.8 when compared to two phase formation of 

P2-NaxCoO2 and O3-NaCoO2, or a stable three-layer NaxCoO2 phase. 
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4.5.5  Limitations to this work 

 

It is important to note that it is impossible to observe metal-insulator transitions, 

or a Curie-Weiss metal to spin density wave metal transition (28) in both GGA and 

GGA+U methods, if any occur. Furthermore, magnetic transitions cannot be observed in 

the phase diagrams because the spins on Co were only allowed to be ferromagnetically 

aligned in this work. Partial Co charge localization cannot be achieved for itinerant 

electrons because GGA+U is a static method. Methods such as DMFT (17) could be 

attempted to incorporate effects of partial charge localization, but would be very 

computationally intensive for phase diagram constructions due to the large number of 

total energies required.  

 

4.6  Conclusion  

 

The cluster expansion technique and Monte Carlo simulations have been 

successfully applied to obtain temperature-composition phase diagrams of P2-NaxCoO2 

in both GGA and GGA+U approximations. A new cluster expansion formalism 

incorporating long-range electrostatic interactions was used for the first time. The 

governing interactions between Na+ are long-range electrostatics in-plane and relaxation 

effects in the GGA, while Co layer interactions dominate all other interactions such as Na 

layer interactions in the GGA+U. There are at least ten ground states in the concentration 
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range 0.5 ≤ x ≤ 1 including the two end members in the GGA, compared to only five in 

the GGA+U. Most order-disorder transition temperatures for ground states are below 

room temperature in GGA, whereas transition temperatures of ground states are above 

room temperature in GGA+U. Comparison of Monte Carlo simulation results with 

experimental data, such as structural transition temperature, Na intercalation/ 

deintercalation voltage, c lattice parameter, and Na1/Na2 ratio, consistently suggest that 

GGA is a better approximation in the composition range 0.5 ≤ x < 0.8.  
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Chapter 5  Conclusion   

 

 The atomic engineering approach has been applied to the two systems 

LiNi0.5Mn0.5O2 and NaxCoO2 in this research. Monte Carlo simulations, based on a cluster 

expansion fitted to first principles energies, enabled us to properly determine the 

thermodynamically stable phases as a function of temperature, and also as a function of 

Na concentration in NaxCoO2. 

 

A binary-ternary cluster expansion, fitted to GGA+U energies, was used to 

model the cation disorder of LiNi0.5Mn0.5O2. The phase with low (<3%) Li/Ni disorder 

between the Li-rich and transition metal-rich layers was found to be the 

thermodynamically stable state below ~600oC. Upon heating above this temperature, the 

low-temperature phase irreversibly transforms into a phase with high (10~12%) Li/Ni 

disorder. Monte Carlo simulations has showed why the perfect “flower” ordering with 

8.3% Li/Ni disorder has been never observed in experiment by revealing that partial 

disorder is a central component of the high-temperature phase. 

 

NaxCoO2 phase diagrams were constructed based on GGA and GGA+U energies 

in the concentration range 0.5 ≤ x ≤ 1. Holes are delocalized over the Co layer in GGA 

while the charges on the Co layer are completely localized in GGA+U, forming distinct 

Co3+ and Co4+ cations. The most significant interactions in GGA were found to be 
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long-range in-plane electrostatics and relaxation effects, whereas Co-Co interactions are 

found to dominate in GGA+U. The ordered structures were all line compounds in GGA, 

and most ground states had order-disorder transition temperatures below room 

temperature. In contrast, the ordered phases tolerate some disorder in GGA+U, enabling 

the transition temperatures to occur above room temperature. Comparison of theoretical 

ground states, c-lattice parameter, and Na1/Na2 ratio with those obtained from 

experiment consistently suggests that GGA is a better approximation in the range 0.5 ≤ x 

≤ 0.8. NaxCoO2 at the high concentration end (x > 0.75) is probably most suitable for 

thermoelectric applications because of low order-disorder transition temperature, 

although it is difficult to analyze to what extent disorder in the Na layer leads to high 

figure of merit in this system. 

 

This research presents three new theoretical advances in the cluster expansion 

and Monte Carlo technique. First, a cluster expansion in limited phase space was 

successfully implemented by adding penalties to some ECI. This methodology requires 

minimum modifications to existing cluster expansion or Monte Carlo codes since only 

the table of ECIs needs to be changed. Second, an investigation of charge balance in 

constrained open systems was conducted by removing one point cluster in the coupled 

cluster expansion, and appropriately selecting the perturbation in the Monte Carlo 

simulations. Thirdly, long-range electrostatic interactions were successfully accounted for 

in the NaxCoO2 cluster expansion for GGA energies. The first principles energies were 
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separated into contributions from long-range interactions and short-range interactions. 

The energies associated with long-range interactions were obtained by using pair ECI, 

which correspond to electrostatic interactions that are defined beforehand. The remaining 

energies were fit in a manner that allowed us to obtain ECI of a cluster expansion, which 

includes only short-range clusters. The two sets of ECI are then added together to recover 

the ECI for the first principles energies. 
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Chapter 6  Ideas for future work   

 

6.1  General ideas 

 

 The atomic engineering approach is limited to systems where cluster expansion 

is feasible. These systems must have few symmetrically non-equivalent disorder sites 

such as relatively high symmetry crystalline materials. Second, systems with too large a 

unit cell size (>200 atoms per unit cell) consume an inordinate amount of computation 

time (at the time of writing this thesis, a 150-atom unit cell calculation takes about 4 days 

with 12 to 16 CPUs). Thirdly, to ensure that the ground states are accurately reproduced 

in the cluster expansion, systems with many ground states in a small concentration range 

(e.g. “devil’s staircase” situations) and systems with near-degenerate ground states should 

be avoided. These restrictions may become less stringent with further improvement in 

cluster expansion methodology. 

 

 Obtaining accurate energies in a timely manner is quite difficult to do for some 

systems. In addition, difficulties arise because DFT methods are static and cannot 

correctly treat systems where correlated electron dynamics is important. Furthermore, 

partial charge localization cannot be exactly treated with GGA or GGA+U because the 

electron distribution is overdelocalized in the former and overlocalized in the latter. 
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Improvement to techniques that implement DFT, or more generally to total energy 

calculation theory is necessary in these cases. 

 

 The time necessary to compile a phase diagram should decrease with 

improvement in cluster expansion methodology and expertise. Currently, the majority of 

time is taken up by repeated need for first principles energy computation of relevant 

structures suggested by the cluster expansion. Therefore finding a more efficient way to 

choose structures, and/or weights to converge the cluster expansion with fewer number of 

iterations. would greatly reduce the time it takes to create an accurate cluster expansion. 

 

 The possibility of automated atomic engineering should be discussed as a means 

to improve speed and understanding of this methodology. Currently, ideas for ground 

state candidates and necessary interactions are based on physical intuition, however 

automated comparison with a database containing results of many applications of atomic 

engineering may be possible. Implementing automatic detection of new ground state 

candidates and relevant excitations from snapshots of Monte Carlo simulation is a 

difficult task at this time, but this could be realized with advances in image recognition 

technology. 
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6.2  System specific ideas 

 

Successful development of experimental processing techniques to form the low 

temperature phase of LiNi0.5Mn0.5O2 quickly, cheaply, and in large batches will have 

tremendous impact. Currently the low temperature phase is being formed by ion 

exchange from NaNi0.5Mn0.5O2, however this takes time and is currently successful in 

only batches of ~1g.  

 

 Obtaining a cluster expansion of LixNi0.5Mn0.5O2 (0 ≤ x ≤ 1) to compile a phase 

diagram may seem like a natural improvement over the LiNi0.5Mn0.5O2 cluster expansion. 

However, the simplest form of a cluster expansion in LixNi0.5Mn0.5O2 is a 

ternary-ternary-quaternary cluster expansion. The Li layer has ternary disorder (Li, Ni, 

vacancies) and the TM layer has quaternary disorder (Li, Ni, Mn and vacancies). 

Furthermore, upon delithiation from LiNi0.5Mn0.5O2 some tetrahedral sites are occupied 

that have ternary disorder (Li, Ni, vacancies), which result in a large number of structures 

that need to be fit to this cluster expansion. In addition, it may be necessary to treat Ni 

with different valences (Ni2+, Ni3+, and Ni4+) as different species. In order for such a 

cluster expansion to be possible, significant, substantial, or even drastic increase in 

computational speed would be necessary for the project to finish within a reasonable 

period of time. A related system of interest would be LiNi1/3Co1/3Mn1/3O2, however this 
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system is difficult to computationally analyze because GGA+U more accurately 

approximates Ni and Mn oxide systems, but GGA describes Co oxide systems better. 

 

 There are two main ideas for future work in NaxCoO2. First, the phase diagram 

for the remaining concentration range in P2-NaxCoO2 (0 ≤ x ≤ 0.5) should be obtained. At 

the low Na concentration end, it is expected that no Na1 sites be occupied at low 

temperatures because the distance between Na are large enough such that there is no 

energetic incentive to situate Na in high-energy Na1 sites because electrostatic repulsion 

is minimal. Second, obtaining the phase diagram of O3-NaxCoO2 is necessary to 

determine the optimum Na content for a thermoelectric material. Construction of the 

cluster expansion should be simpler than compared to P2-NaxCoO2 because there is only 

one symmetrically different Na site in O3-NaxCoO2 compared to two in P2-NaxCoO2. 

However, since the primitive cell of O3-NaxCoO2 is 1.5 times larger than in P2-NaxCoO2, 

computation time to obtain first principles energies will be significantly longer. 
 


