PRELIMINARY EVALUATION FOR ROAD NETWORK IMPROVEMENT ALTERNATIVES IN LESS DEVELOPED COUNTRIES

by

DIMITRIOS ANDREOU TSAMBOULAS

Dipl., National Technical University of Athens
(1973)

Submitted in partial fulfillment of the requirements for the Degree of Master of Science

at the

Massachusetts Institute of Technology
August, 1975

Signature of Author
-
Department of Civil-Engfneering, August 22,1975

Certified by
Thesis Co-Supervisor
\wedge

Accepted by
Chairman, Departmental Conmittee on Graduate Students of the Department of Civil Engineering.

INST UH TECHINOLOQ
HOV 71975

PRELIMINARY EVALUATION FOR ROAD NETWORK IMPROVEMENT ALTERNATIVES IN LESS DEVELOPED COUNTRIES

By

DIMITRIOS ANDREOU TSAMBOULAS

Submitted to the Department of Civil Engineering on August 22, 1975, in partial fulfillment of the requirements for the degree of Master of Sciences.

ABSTRACT

An approach is developed to provide the decision makers in a Less Development Country with a tool for selecting an investment program and operating policy best suited to its development criteria and the existing Economic and political conditions. Using the Highway Cost Model, which provides a detailed, accurate framework for assessing the costs and benefits associated with the operation and development of links in a low volume highway network, it generates and presents the consequences of potential investment alternatives in a concise form, based on the input of Highway Cost Model link strategies. The choice and relative timing of these link strategies may vary within bounds, and patterns of network strategies, which do not satisfy the investment constraints are eliminated. For those remaining, year by year benefits may be determined considering the users' consumer surplus, maintenance and construction costs. The net present value is computed for these network strategies, and used to rank them.

```
Thesis Co-Supervisors:
```

Robert D. Logcher
Fred Moavenzadeh

ACKNOWLEDGEMENTS

The research reported in this thesis was funded by the Office of Science and Technology, Agency for International Development, U.S. Department of State,

I would like to express my gratitute and appreciation to Professors Robert D. Logcher and Fred Moavenzadeh for their supervision of this thesis, for their interest and most helpful encouragement at various points in this work and during my studies at M.I.T. In addition, I wish to express my appreciation to Professor Paul 0. Roberts for his interest, guidance and support.

Also, I would like to thank Yves Lasage for his contribution in developing the network strategies generator, under the constructive supervision of Professor Robert D. Logcher.

In addition, I thank the many individuals for the many discussions and comments at various points in this effort. In particular Bob Wyatt, who has provided helpful comments and suggestions at all stages of this work.

Many thanks to Ms. Fifa Monserrate for her typing of the thesis under extreme time constraints.

Finally, I would like to express my deepest appreciation to those, who by their love and devotion helped me to achieve what I have achieved, and to whom I wish to dedicate this thesis, my beloved parents.
Page
TITLE PAGE 1
ABSTRACT 2
ACKNOWLEDGMENTS 3
TABLE OF CONTENTS 4
LIST OF FIGURES 10
LIST OF TABLES 12
LIST OF MAPS 13
CHAPTER 1 INTRODUCTION: 14
1.1 Objectives for Planning a Transport Networks
1.2 The Planning Process 16
1.3 Role of an Evaluation Model 18
CHAPTER 2 BACKGROUND 20
2.1 Evaluation Measures and Objectives 20
2.2 State of the Art 25
2.2.1 Link Evaluation Models 25
2.2.2 Network Evaluation Models 27
2.2.2.1 Capital Budgeting Models 28
2.2.2.2 Network Flow Models 30
2.2.2.3 Stochastic Models 34
2.2.3 Traffic Assignment Approaches 34
2.3 Conclusions 37

-5-
 TABLE OF CONTENTS (Cont'd)

Page
CHAPTER 3 THE APPROACH: PROBLEMS FACDD AND THEIR 39 SOLUTION
3.1 The Approach 39
3.1.1 Definitions 39
3.1.2 Overview of the Logic 40
3.2 Constraints for the Feasibility 41 of an Alternative
3.3 The Costs 45
3.3.1 The Cost of Construction and 45 Maintenance Activities
3.3.2 Vehicle Operating Costs 46
3.4 Definition of Demand and the Generated 47 Traffic
3.5 Impacts of the Improvements on Demands 48 and Traffic
3.6 The Assignment of Traffic on the Links 51
3.6.1 The Routing Algorithm 51
3.6.2 Congestion 54
3.6.2.1 Measuring the Traffic 55 in Passenger Car Units (PCU)
3.6.2.2 Determining the 58 Congestions Speeds
3.6.2.3 Costs of Congestions 59
3.7 Benefits Resulting from the Improvements 61
3.8 Evaluation Criterion 69
Appendix 1 Example about assignment 70
Appendix 2 Example about congestion 76

-6-
 TABLE OF CONTENTS ((Cont'd)

Page
CHAPTER 4 THE NETWORK SIMULATION MODEL 80
4.1 Overview 80
4.2 Link Simulation (HCM) 83
4.3 Network Strategies Generation 83
4.4 Network Strategies Evaluation 86
4.4.1 Base Network Strategy 86
4.4.2 Demand Adjustments 87
4.4.3 Network Simulation 88
4.4.4 Network Strategies Evaluation 90
CHAPTER 5 APPLICATION OF THE MODEL ETHIOPIA 93
5.1 Ethiopia 93
5.2 Ethiopia's Transport Network 95
5.3 Asela-Dodola Road and the 96Surrounding Region
5.4 Feasibility Analysis of the Road 99 by SAUTI Consultants
5.4.1 Construction and Maintenance 99
5.4.2 Traffic and Vehicle Operating 101
5.4.3 Conclusions 102
5.5. Application of the Model 105
5.5.1 Inputs 105
5.5.1.1 Network Configuration 105
5.5.1.2 Link Characteristics and 105 Strategies5.5.1.3 Demand113
5.5.2 Network Strategies Generation 115

TABLE OF CONTENTS (Cont'd)
age
5.5.3 Network Strategies 115
Evaluation
5.5.4 Conclusions 115
5.6 Comparison wit the SAUTI Study 123
CHAPTER 6 CONCLUSIONS: RECOMMENDATIONS 125
APPENDIX A: DRAFT USER'S MANUAL 127

1. Language Conventions for the Model's Input 127
2. Language Description for the Model's Input 130 Instructions for its Application
2.1 Data Input Processor 130
2.1.1 Systems Commands 130
2.1.2 Network Information 131
2.1.3 Link Characteristics 132
2.1.4 Demand 134
2.1.5 Budget Constraints 135
2.1.6 Additional Minor Data 136
2.2 Network Strategies Generator 136
2.3 Network Strategies Evaluator 138
2.3.1 Data Input Commands 138
2.3.2 Operational Commands 139
3. Job Control Language Words 140
APPENDIX B: SYSTEM DOCUMENTATION 141
4. System Structure and File Usage 141
1.1 File 10 141
1.2 File 11 145
-8-
TABLE OF CONTENTS (Cont'd)
Page

147
1.3 File 12 147
2. HCM Modifications and Interface 148 with the System
3. The Input Data Processor 149
3.1 MATCH Subroutine 150
3.2 Input Data 150
4. Network Strategies Generator 156
4.1 The Approach 158
4.2 Description of Subroutines 159
4.2.1 SUBROUTINE ADDCOM 159
4.2.3 SUBROUTINE ADDCO1 159
4.2.3 SUBROUTINE CALCUL 159
4.2.4 SUBROUTINE REMEMB 163
4.2.5 SUBROUTINE REINIT 163
4.2.6 SUBROUTINE RECAL 163
4.2.7 SUBROUTINE CRITIC 163
4.2.8 SUBROUTINE VERCAL 163
4.2.9 MAIN 163
4.2.10 SUBROUTINE BUDGET 164
4.2.11 SUBROUTINE INITIA 164
4.2.12 SUBROUTINE ECRIRE 164
5. Network Strategies Evaluator 164
5.1 Description of SUBROUTINES 165
5.1.1 SUBROUTINE BASENE 165
5.1.2 SUBROUTINE ROUTE 165

-9-
 TABLE OF CONTENTS (Cont'd)

Page
5.1.3 SUBROUTINE COST 179
5.1.4 MAIN 179

APPENDIX C: COMPUTER LISTINGS 180
REFERENCES 290

LIST OF FIGURES

Figure		Page
1.1.	Transport network Planning Process	17
2.1.	Consumers' surplus	22
3.1	Flow Diagram of the Approach	42
3.2.	Schematic model for forecasting passenger and freight demand	49
3.3.	Minimum Cost Route Algorithm	53
3.4.	Comparison of Artificial Traffic Distribution and Binomial Distribution.	60
3.5.	Transport Demand Function	63
3.6.	The Market for a transported commodity in node A (consumption)	64
3.7.	The Market for a transported commodity in node B (production)	65
3.8	The Netowrk of roads	71
3.9.	The traffic distributions	77
4.1.	Network simulation sẏstem flow	81
5.1.	Representation of Asela-Dodola Region's network	106
B.1.	Network simulation system flow	142
B.2.	Input Data Processor - Flow chart (partial)	151
B.3.	Network Strategies Generator. Flow chart of subroutine CRITIC	160
B.4.	Network Strategies Generator. Flow chart of subroutine VERCAL	161
B.5.	Network Strategies Generator. Flow chart of MAIN	162
B.6.	Network Strategies Evaluator-Flor chart of subroutine BASENE	166
B.7.	Network Strategies Evaluator. Flow chart of subroutine ROUTE	168

-11-
LIST OF FIGURES (Cont'd)

Figure	Page	
B.8.	Network Strategies Evaluator. Flow chart of subroutine COST	171
B.9.	Network Strategies Evaluator. Flow chart of MAIN	174

LIST OF TABLES.

Table		Page
5.1	Road Design standards	100
5.2.a.	Baze network. Links characteristics	103
5.2.b.	Base network. Vehicle Operation on Links	104
5.3.a.	Link \#3 characteristics according to strategy followed	107
5.3.b.	Vehicles operation on Link \#3 according to strategy followed	109
5.4.a.	Link \#3 characteristics according to strategy followed	110
5.4.b.	Vehicles operation on Link \#4 according to strategy followed	112
5.5.	Demand between O-D pairs	114
5.6.	Network strategies	116
5.7.	The 4 best network strategies: 1, 24, 25, 26 Discount rate: 8\%	119
5.8.	The 4 best network strategies: $1,24,25,26$ Discount rate: 10\%	120
5.9.	The 4 best network strategies: 1, 24, 25,26 Discount rate: 12\%	121
5.10.	Average daily traffic on Links	122

-13-

LIST OF MAPS
Page
1.

Ehiopia
2.

Existing Network of Asela-Dodola Region

-14-

CHAPTER ONE
INTRODUCTION

111 Objectives for Planning a Transport Network

The planning of a transport network is fundamental, not only for the transport of goods and people, but for the country's economy as well. As stated by the Harvard Transport Research Program (1):" any change in the Country's transportation network has obvious repercussions throughout the entire economy". The goal of transport network planning is to achieve balanced and sustained economic growth. In numerous developing and less developed countries, the expected impact for transportation investment is so significant that the investments on network improvements have accounted for over 25 percent of the total public investments (2)。

Planning of transport network improvement is usually undertaken in a hierarchical fashion. Regional economic goals are identified, then transport needs. Projects or sets of projects may be identified to satisfy these needs and then strategies consisting of their implementation sequences in specific years are generated. Project improvements to the network are then made following a chosen strategy, and projects designed in more detail.

The objectives of the transport network planning are the economic growth of the country and the improvement of the existing social conditions (i.e. education, way of life). These are accomplished with the increase of mobility throughout the country, resulting from the improvement of the transport network's level of service. These objectives are: i. To decrease the transport costs and travel time between the production and consumption centers;
-15-
ii. To create access roads to remote areas or potential production centers;
iii. To enable the free movements of men and material resources all over the country.
iv. Finally, since all improvements must be accomplished by allocating resources (material, manpower, capital) to projects, improvements should be undertaken so as to attain the most effective consumption of resources.

In achieving the above objectives, carefull planning of links improvement is of great importance including their engineering and design characteristics and the choices among alternatives.

The output of transport planning are: (1) The proposal of the improvements and their consequences, (2) which links it is worth improving, when and by which strategy. (3) What are the resulting benefits and the costs, (4) Appraisal of the proposed alternative in comparison with others.

Lansing (3) has summarized these objectives even more broadly by writing:
"Among these goals (of economic policy) are economic efficiency, economic growth, a high level of employment and freedom from pronounced cyclical flunctuations, and a degree of equity in the distribution of the products of economic activity which avoids the juxtaposition of extreme poverty and extreme wealth. Transportation (network) planning is directly involved in the attainment of these objectives"。

The transport network planning process consists of the following phases: (1) Definition of objectives, (2) Generation of alternatives for the accomplishment of the objectives, (3) Feasibility of the alternatives and/or screening, (4) Network analysis, (5) Determination of impacts, (6) Evaluation of alternatives, (7) Choice and (8) Implementation (The whole process is represented in figure 1.1).

The definition of objectives is undertaken by the government as part. of a proposed Development Plan for the country. They must contribute to the attainment of the broad objective "economic and social development".

The generation of alternatives is done by a transportation planner. He considers all the possible alternatives, that might accomplish the objectives. During the generation, two broad classes of variables are recognized:
(i) options related to transportation itself, and (ii) activity system options .

Transportation options are those items that can be controlled directly by the analyst or the agency for which he works. They are the decision variables, which range from such broad items as alternative technologies and modes to specific items such as vehicle types, links (to be improved), type of improvement (at this point either detailed engineering studies about each improvement strategy or models that simulate the activities of construction and maintenance as needed). Activity system variables are the social, political and economic variables

[^0]which determine the demand for the transportation options. They include variables such as spatial patterns of population, economic activity, agricultural and industrial policy and the like, all of which can influence in one way or another the demand for transport services. In most instances these options are taken as major exogenously specified factors, non-maniputable in the direct sense.

The feasibility of each alternative will be examined in the next phase: To be feasible, all the constraints introduced by the analyst must be verified. (Only the feasible alternatives will be considered in the next phases). For each feasible alternative, the analysis of the resulting transport network is done. The analysis may be performed by simulation of all network activities or using direct mathematical procedures. With the analysis, the impacts of each alternative to different groups (users of transport network, producers, consumers, government) will be found. Then, the evaluation of the alternatives will be done.

The next phase is the choice: The alternative that contributes more to the accomplishment of the set objectives is chosen as the one to be implemented. In some cases, the analyst through the screening process may eliminate some alternatives without a detailed evaluation。 This will make the task of evaluation easier and faster. The screening is based on criteria set by the analyst and derived from the objectives.

The final phase is the implementation of the best alternative on a proposed time schedule.
1.3. Role of an evaluation model

The role of an evaluation model is to develop the impacts of alternative plans and compare and rank them with each other and the do-nothing
-19-
alternative. Most of the evaluation models introduce formulae which enable the analyst to compare the different and often irregular, series of benefits and costs that are associated with alternative plans. The evaluation model can be compared with other types of network programming tools (e.g. screening): It can rank plans by productivity, by returns, and the like, it enables the analyst to consider numerous alternatives, it gives him a more accurate picture of the impact of each alternative and it takes into consideration the goals and objectives directly and realistically in the evaluation.

Thus, the evaluation model broadens the horizons of the transportation planner during the process of planning transport network improvements.

BACKGROUND

2.1 Evaluation measures and objectives

Several measures for evaluating the consequences of the implementation of an alternative may be identify. The consequences may be measurable in monetary terms (costs, users savings) or non-monetary terms (level of service, environmental impacts). Most studies are concerned only with monetary impacts, using economic or financial costbenefit analysis exclusively.

The benefits of transport network improvements (or planning in other sectors of the country's economy), will result from a reduction in the consumption of resources. It will impact the economy by altering the interactions between resources, production and transport in such a way as to improve (or deteriorate) the welfare of inhabitants. If an evaluation measure is based on economic analysis, it seeks that alternative which consumes the minimum resources while providing significant economic growth. A number of planning models have been developed which employ the economic analysis in the evaluation of alternative plans. Among them are the Harvard-Brookings Macroeconomic model for evaluation of network alternatives in Colombia (4) and Taborga's work with the Chilean Transport Network (5). (Explained in § 2.2.2). If financial analysis is employed, this would imply that the value of a plan is specified independent of any detailed study about how it may alter the economy, and focuses instead in the investments' consumption of resources; its purpose is to determine the best way to allocate resources to
projects of presumed known value. That is, it is primarily concerned with budget constraints, and not with the economic relationships, which determine an investment's impacts.

The evaluation measures may be classified into four types of analysis according to their objectives. (Based on a classification system introduced by R. de Neufuille and D. Marks (6)).
i. Type I: Standard Benefits Cost Analysis

This is the simplest case. The future costs and benefits are discounted to a common point in time (usually the present) and compared. Several criteria exist to the comparison: (1) Benefit-cost criterion, computing the ratio of the present value of all benefits to the present value of all costs, (2) the internal rate of return criterion, that is the discount rate at which the net present value of the benefits equals to the net present value of the costs, (2) net present value criterion, that is the difference between the present value of all benefits and present value of all costs. The underlying assumptions are: (i) the value of a benefit or cost, increases linearly with the amount of benefits or costs at any time.
(ii) As long as values are linear in the amount of benefits, uncertainty can be introduced with the use of expected values.
(iii) Money is taken to be the measure of all things. If it is not feasible or practical to qualify a benefit or cost, such as an aesthetic one, it does not get considered.
(iv) All parties interesting in the investment must agree upon a single criterion of evaluation. This assumption is reasonable so long as groups accept that it is meaningful to measure all benefits and costs,

Figure 2.1: Consumer's Surplus
such as loss of life on a common basis and with the same weight on each kind of benefit and cost.

The objective of this type of measure is to maximize the monetary profits (benefits minus costs) over the time horizon.

ii. Type II: Consumer's Surplus

It recognizes the non-linearity of the values in terms of benefits and costs. The real value of any benefit is known as its utility, and the utility function describes the real value of the benefits. The nonlinearity of the utility function, which contradicts the first assumption on which the standard benefit-cost is based, is a pervasive phenomenon. As a general rule, both individuals and the public have a diminishing marginal utility for benefits. As it appears in figure 2.1, someone would be likely to demand more of a good until, at the margin, was equal to its costs. This would occur at Q^{*} in the figure. It follows that someone's utility or value for less than Q^{*} of a good is greater than its price. The sum of the utilities over all quantities used will result in the willingness to pay for the good. The difference between the willingness to pay and what actually has been paid to a certain price is the consumer's surplus. This type of analysis attempts to incorporate consumer's surplus into the measurement of benefits. It employs the benefit-cost analysis to accomplish its objective, the maximization of profits. Basically, it recognizes that benefits often have a real value much greater than their price.

iii. Type III: Decision Analysis

This approach includes procedures to quantify any individual's own
utility over risk, usually nonlinear functions. Unlike the utility functions over quantity, however, the utility functions over risk are not expressed in terms of common units, such as money, which different groups might be willing to pay for any specified number of goods.

The process of decision analysis consists of the following steps: (i) all possible sequences of decisions and their consequences are laid out. This is represented as a decision tree, since there can be several choices at any stage and since each choice may branch into several consequences. (ii) All possible outcomes are indicated together with the a priori probability of occurrence. (iii) The utility function of the decision maker is assessed and the utility or real value of each outcome is calculated. Finally, (iv) the optimal choice at each choice at each stage, and thus the optimal sequence of choices, is calculated on the basis of maximizing the expected value of utility.

The objective of the Decision Analysis is to find the optimal sequence of choices of alternatives over time aimed at maximizing the expected value of utility, since uncertainty is incorporated.

Pecknold (7) employ Decision analysis measuring all consequences in monetary terms, as profits or losses.
iv. Type IV. Multiattribute Analysis

This approach attempts to account for the non-linear, nonadditive nature of any individual or group's utility function over several attributes. Once the multiattribute utility function is encoded, it can be used in the evaluation just like a utility function of type I.

Therefore the objectives are the ${ }^{-25-}$ same as of type I.
v. Type V: Multiobjective Evaluation Analysis

So far we have had only one objective. This analysis attempts to lay out explicitly the preferences of the different groups concerned with a project for the set of possible consequences. In this way, it intends to allow the analyst to estimate those choices which are preferable to the several groups, according to their objectives and how these differences might be resolved. It does not define the best alternative, but rather leaves the selection to judgement.

It is important to note that the existing procedures of multiobjective evaluation do not propose clear, analytic methods for determining the preferences of any group. The most cogent descriptions of the theory and proposed practice have been presented under the auspices of the United States Water Resource Council. It has not yet been applied to transport network planning. However, it would be interesting, if it could be applied, since transport network planning implementation affects several groups: the users of the network, the producers and consumers of goods, industry and the government itself.

2.2. State of the art

2.2.1. Link evaluation models

These models deal with the evaluation of the several alternatives for link improvements. It is assumed that (1) the alternatives are mutually exclusive, (2) any improvement of one or more links in the network does not affect the others and (3) the budget allocated to each
-26-
link-for its improvement- is fixed; thus, links to be improved are not competing for the same funds.

Wohl and Martin (8) deal with the evaluation of link improvements taking into account present and future impacts of the improvement. Tarplay and Drake (9), Thygeson (10) and Marglin (11), all develope fairly simple evaluation models, incorporating the timing (the improvements to be done in stages, and may be postponed for one or more years). They showed that substantial benefits can be achieved with the appropriate timing. Winfrey (12) is concerned with the optimal staging of an improvement (namely an expansion of a 2-lane highway to a 4-lane one, given that some increased capacity is needed now), and not when the improvement should start. Thus, he ignores the impacts of delaying the starting time and the supply-demand dependencies. Cole (13) develops a model with a probabilistic demand structure but, once the sequences of improvements is decided it would remain unchanged over the economic life of the link, no matter what changes in demand might occur. Howard and Nemhauser (14) introduce dynamic programming for the evaluation of alternative link improvements considering supply-demand dependencies in a fairly theoretical work. Other models simulate the activities which take place on the link during a development and operating time horizon, considering construction, maintenance and vehicle operation. The Highway Cost Model (15) and, the Project Analyzer of the Harvard Brookings Transport Moäel (16) are such models, calculating economic consequences with a sequential simulation of events over time for the evaluation.
-27-
The main characteristics of the above mentioned models are the following:
(1) demand is exogenuously given and independent of the alternative selected,
(2) link capacity is merely additive; to meet increasing demands, we need only to widen the link to carry the new volume,
(3) costs are very simple in structure: fixed and variable ones, with the only exception the ones simulated by the $H C M$,
(4) the problem is one of minimizing total costs only, and simple techniques are used to produce the optimal sequence of the improvements.

2.2.2. Network Evaluation Models

The network evaluation models can be divided into four categories (expanding Pecknold's (7) classification) which become progressively more complex:
(1) capital budgeting models
(2) Network flow models
(3) Stochastic Models
(4) Activity growth models.

The latter are the most complex, introducing the constraints of long-run supply-demand dependencies in addition to normally using a complicated network flow simulation procedure. Surprisingly enough, little work has been done on the use of such models. The reason is their complexity. The most significant studies which employ macroeconomic model in conjunction with a transport model are Taborga (5) work
with the optimal transportation policy in Chile, the Northeast Corridor Study (NEC) (17) and the Harvard Brookings study on Colombia (4).
2.2.2.1. Capital budgeting models

Capital budgeting models generally assume all benefits are exogenously specified, single valued and independent of the sequence chosen. They incorporate the combinatorial mathematics to select the best sequence of improvement activities subject to capital (budget) constraints. Marglin (ll) deals with the network problem in finding the optimal strategy of network improvement, although, he deals with dependencies caused by budget constraints only. The optimal strategy is one that allocates the budget among the links in such way as to maximize the sum of the net present values of the alternative and the net present value of slack, subject to the condition that the sum of alternative outlays in each period not exceed the period's budget. Weingartner (18) uses mathematical programming to solve the capital budgeting problem. Consad (19) proposes several models to find the optimal sequence of improvements of a transport network, still in terms of abstract projects (i.e. projects, although intended to be transport projects, are represented solely by a set of costs and benefits). One of the proposed models for the Northeast corridor project was a quadratic programming model, which can handle project dependent costs and benefits quite easily.

Mori (20) uses dynamic programming for the selection of these link improvement strategies to produce the optimal network improvement alternative subject to capital budget constraints. The optimal alternative
is the one that maximizes the benefits (B_{i}) from all link improvements in each period, for P periods.

$$
\begin{array}{ll}
\operatorname{maximize} & z=\sum_{i=1}^{P} \sum_{j=L}^{N} g_{i j}\left(x_{i j}\right)=\sum_{i=1}^{P} B_{i} \\
\text { s.t. } & x_{i} \geq \sum_{j}\left(x_{i j}\right)
\end{array}
$$

where:
$x_{i j}$: the amount allocated for each link j in period i
X_{i} : the budget available in period i
$g_{i j}\left(x_{i j}\right):$ the benefits of each link (j) improvement
$\mathrm{N}: \quad$ number of improved links.

The technique permits: (i) Examination of many stages for each link alternative proposed as an addition to the road network, however, this technique can handle only two or three stages; (ii) analysis over multiple time periods; (iii) inclusion of budget limitations; and (4) consideration of situations where system costs, and benefits change over time.

Meyer and Straszheim (21) present a fairly concise and clear treatment of the dual problem of the capital budgeting primal problem, the shadow prices and internal (vs. external) opportunity costs of the alternatives.

2.2.2.2: Network flow models

The network flow models are an extension of the capital budgeting models. The cost and benefits are not exogenously specified, fixed quantities, but depend on some prediction mechanism. In some cases, it can be internal (as in linear flow models) and in others, it is a completely separate model. They all deal with a deterministic and fixed demand structure. They have been generally limited to linear flow models, however. Additionally, they usually ignore the dependancy of supply- demand. Recently, developments in branch and bound techniques have placed fewer constraints on the form of the flow model. Hershdorfer (22) applied a branch and bound algorithm- developed by Land and Doigto the single period, link addition problem developing a linear programming flow model to determine the measure of effectiveness of network changes. He sets up a general network with nodes $i=1,2, \ldots, N$ and directed arcs. Demands are specified between groups of origin-destination pairs. Each "commodity" may be the flow from a single origin to several destinations or from several origins to one destination. There are the flow constraints and capacity constraints for existing links and additional ones. The objective function searches for the minimum additional construction necessary to reduce travel costs.

Roberts (23), at the same time, although independently, was using the same branch and bound algorithm coupled with heuristic backward stepping, time-sequencing algorithm for the multiperiod problem.

Bergendahl (24), in a similar approach to Roberts, used a linear programming flow pattern of any improvement plan at each period, but
-31-
employed dynamic programming to search for the optimal sequence of improvements in time. Roberts in Meyer and Straszheim (21) developed a model which minimize the sum of costs for both constructing link additions and operating vehicles over the entire system, subject to the following constraints: (i) all supplies and demands of each commodity type must be met by flow over the network, in which the sum of flows into each node must equal to flows out; (2) if a link is not built, then there can be no flow over it; (3) the amount of funds committed to building new links must not exceed the available budget; and (4) the partial construction or improvement of a link is not permitted. He comesup with the optimal improvements and their timing. It is assumed that the network in any given stage n is a subset of the network which will exist at the next stage $n+1$. Therefore a dynamic programming approach was introduced. However, there is a shortcomming in the approach "traffic patterns in the last planning period are the only ones that affect the selection of the highly important final or Nth-stage plan. Today's volumes merely determine. which links of this final plan to build early. There is, therefore, an element of commitment to the Nth-stage plan, once it is determined. Morlok (25) has proposed a dynamic programming procedure to define the optimal timing and strategies in the Northeast corridor context, ignoring the network effects of multiple and overlapping paths.

Another interesting approach to find the optimal time-staged sequence of improvements is to solve the combinatorial problem using the
discrete optimization technique of branch and bound programming. Ochoa and Silva (26) apply a branch and bound algorithm and a branch backtrack algorithm to the network improvement (single period) problem, using a traditional assignment model as a flow prediction mechanism.

Also, there are a number of heuristic approaches for the network improvements, which concentrate mainly on the link addition or capacity expansion, only in one period, using a simulation model。 Barbier (27), Stairs (28), Spenser (29) and Bhatt (30), all propose ways to select improvement plans for testing in a simulation model, which corresponds to a form of direct search procedure. Allman (31), Fisco (32) and others have developed simulation models mainly serving the needs of the railroad in North America.

Carter and Stowers (33) develop a model to find the optimal allocation of funds for network improvements. A general transportation network is specified with n nodes and m arcs with arbitrarily chosen directions. Associated with each arc is a capacity $b_{i j} \geq 0$ and a travel cost $c_{i j} \geq 0$. Each distinct flow or "commodity" is defined as the flow from a single source with supply r_{k} to various destinations. The nonlinear relation between link volumes and construction costs is handled by means of a piecewise approximation- one constant user cost is associated with relatively free flow conditions and another constant user cost is charged to all vehicles volumes above a critical "practical capacity". This is easily incorporated into the model by representing each link by two "artificial links", with respectively low and high user costs.
-33-
The low cost link will have a capacity equal to the "practical capacity" of the link. The other higher cost link will have a capacity equal to the difference between the possible and practical capacity of the actual link. The optimization algorithm will load the low cost branch first and if its capacity is exceeded the high cost branch will then be loaded. In this way an actual link with nonlinear travel costs will be simulated. The introduced objective function aims at minimizing the sum of transport costs and cost of improvements, keeping them within the budget limits. The program developed can use a standard linear programming procedure for its solution, but for a relatively large network this might overcome the computer capacity.

Quandt (34) has developed a model having as objective the minimization of user costs. This model is based upon the classic HitchockKoopmans transportation network problem: There are N sources and M destinations and all sources are initially connected to all destinations. Each source has a fixed supply k_{i} and each destination a fixed requirement R_{j}. He equals the total supplies with the total requirements. Also, he introduces as constraints, the total outflow from source i to be less or equal to its supply k_{i} and the total inflow to destination j to be greater or equal to its requirement R_{j}. The objective function aims to minimize the total transport costs, provided that the cost of improvements does not exceed the available budget. He associates with each link ij the decision variable $k_{i j}$, the amount of capacity to be added. This variable is continuous and a small positive increase in its value may
well correspond to the widening of a road or the installation of a better signal system; a large value of $k_{i j}$ may well be indicative of the need for provision of an additional link. Though $k_{i j}$ will be restricted to values greater than or equal to zero, links may be taken entirely out of the network or added if their initial capacities $b_{i j}$ are set to zero. Therefore the total traffic flow on the link must be less or equal to the sum of the initial capacity and the capacity to be added.

2.2.2.3 Stochastic Models

Pecknold's (7) work is the most important in this area. He recognizes that improvements are usually implemented as a series of staged sequential improvements to a fairly extensive existing system and that there is substantial uncertainty over the future demands. He has developed a basic stochastic time-staying model, which is capable of handling supply-demand interdependencies, network connectedness, budget constraints and system dependencies on the type of improvements. The use of a descriptive non-analytic simulation model for transport. flows, which recognizes both uncertainty and the multi-stage nature of investment alternatives results in an extensive multi-stage decision tree of extreme dimensions. He introduces approximating procedures, called pruning rules and terminal evaluation functions to heuristically reduce the computations and make application of his sequential decision model feasible forlarge networks.
2.2.3. Traffic assignment approaches

Numerous approaches have been developed for the assignment of the
traffic on the links of the network. Here we will mention the ones more relevant to our work.

Beckman (35) considers a transport network consisting of N nodes and directed arcs, with a single type of homogenous traffic flowing on it. He solves the problem using an algorithm which:
(1) starts with an initial demand $D_{\ell, k}$, on each origin-destination pair ℓ, k and the flows $x_{i j}$ over the links ij;
(2) computes the travel costs or time $c_{i j}$ associated with using the link and the flow $x_{i j}$:

$$
c_{i j}=a+b \cdot x_{i j} \text { where: } a, b \text { constants }
$$

(3) finds out the minimum path for each origin-destination piar ℓ, k with the help of the expression:

$$
c_{l, k}^{*}=\min -\operatorname{path} \sum_{i j} c_{i j}
$$

which gives the minimum travel time between ℓ, k,
(4) now, a new demand is generated:

$$
D_{l, k}^{\prime}=f-g c_{l, k}^{*} \text {, where: } f, g \text { are constants }
$$

(5) a weight sum of the new and the old demand is generated:

$$
\text { a. } \cdot D_{l, k}^{\prime}+(1-a) D_{l, k} \quad \text {, where } 0 \text { a } 1
$$

(6) the assignment of the flows on the links is done through the imposed conservation conditions:

$$
\sum_{j=1}^{N} x_{i j}-x_{j i}= \begin{cases}D_{l, k}: & \text { (at origin) } \\ -D_{l, k}: & \text { (at destination) } \\ 0 & \text { (elsewhere) }\end{cases}
$$

the same calculations are repeated,
(8) the flows between each $0-D$ pair will oscillate within a. $D_{l, k}^{\prime}$ and if a is progressively decreased during the iterations, convergence will be satisfactory.

Manheim and Martin (36) propose an algorithm, which requires as inputs: interzonal transfers, network description, volume- delay characteristics and a specification giving a volume increment and a generation rate characteristic. The algorithm works in five basic phases:
(i) The random selection of a zone pair,
(ii) The determination of the minimum time path between the zone pair,
(iii) The use of a generation rate characteristic to determine the potential volume to be assigned between the zone pair, (iv) The addition of a small increment of the potential volume to the minimum path,
(v) The use of volume- delay characteristic to update the travel times of the links in the minimum path due to the increase in volume. The produced output consist of link volumes out travel times, interzonal potential volumes. Isard (37) develops a model handling aggregatively the shipment of commodities between regions; shipments are considered to be direct between origins and destinations; rerouting and transhipment possibilities as well as capacity constraints on the links are not considered. The model defines the shipment of commodities
is such a way as to maximize the regional income subject to the conservation rule of supply and demand。

Tomlin (38) develops a model defining the flows over the links according to the minimum costs of transport. A network is specified with nodes $1,2, \ldots, N$ and directed $\operatorname{arcs} 1,2, \ldots, M$. Associated with each arc is a capacity $b_{i j} \geq 0$ and an average user cost $c_{i j}$. The objective function is the one minimizing the overall user costs:
minimize

$$
z=\sum_{k=1}^{q} c_{k} \cdot x_{k}
$$

where:
c_{k} : the vector of the transport costs of the $k^{\text {th }}$ commodity over each link.
x_{k} : the flow vector for the $k^{\text {th }}$ commodity over each link. The introduced constraint is the one of flow conservation at node i:

$$
\sum_{j=1}^{N} x_{i j}^{k}-x_{j i}^{k}=\left\{\begin{array}{cl}
r_{k} & \text { (origin) } \\
-r_{k} & \text { (destination) } \\
0 & \text { (elsewhere) }
\end{array}\right.
$$

The arc-node formulation leads to a basis of large size. The program can be handled by means of the decomposition principle developed by Dantzig (39).

2.3. Conclusions

After reviewing a number of models, we can conclude the following: - The evaluation of alternative network improvements and the choice of the optimal one is a problem which is complex in theory and depends largley on whose point of view we are concerned with;

- the problem has been approached from a variety of different pexspectives, each emphasizing a certain commitment to a profession, to a mode, or a philosophy which emphasizes some aspects and largely ignores others;
- a number of computational techniques have been used to solve the problem, not recognizing the non-linear status of the problem, or introducing assumptions to transform the non-linearity to linearity; - none of these techniques or algorithms can be used satisfactorially in all of these basic problems of transport investment planning.

Furthermore, reviewing the models with the perspective of being applied in a less developed country we may find some that are inappropriate for couple of reasons:

- They are too sophisticated, thus they need large computer facilities (usually unavailable in a less developed country) to be implemented, - the data requirements are such that it is impossible to meet them with the available resources and facilities in a LDC. (most of the data does not even exist, thus making those models which are highly sensitive to accurate data obsolete).

Summing up our conclusions for the type of evaluation model needed for the improvements of the transport network in a LDC we may recommend: a model which is easily applied, straightforward, with few data requirements. Finally, it must be able to serve in the best possible way the needs of a LDC for better transport.

THE APPROACH: PROBLEEMS FACED AND THEIR SOLUTIONS

3.1. The approach
3.1.1. Definitions

Before describing the approach itself, the definition of the words, expressions and concepts employed should be done. A transport network is composed of links and nodes. It is assumed that all economic activity takes place within nodes, cities or villages, rather than being continuously distributed over space and that transport is confined to links, routes between these nodes. A point where two or more links join must also be a node, even if not a point of economic activity. Each commodity is produced at one or more supply nodes. Demands for these commodities exist at other nodes within the network. Commodities are shipped from supply nodes (origin) to demand nodes (destination) over the links of the network. Similarly, people are moving from the origin node for the destination node over the links. A transport network is composed by links of several modal types: highway, rail, waterway and air. In this study only the case of the highway mode is considered.

Network improvements denote the construction of new links, the upgrading or widening of parts of others, or better maintenance for the road surface, aimed at lowering the vehicle operating costs. Network improvements are executed according to a proposed plan called a network improvement strategy. Network improvement strategy, or network strategy (N.S), is composed of one improvement strategy for one or more linksthe link improvement strategy, which is a time sequence of projects or
-40-
changes on the link, is chosen from among alternatives. It is obvious that the number of network strategies possibly considered depends on the number of links to be improved and the number of tentative link improvement strategies. With the timing of a link strategy left as a variable, one network strategy may be identical to another except for the time when one link strategy is implemented.

A link improvement strategy, or link strategy (L.S.), may denote one or more of the following: (i) the timing of the construction projects for a new link, staged or not; (ii) the maintenance of policy to be followed overtime; (iii) the time-sequence of the upgrading (e.g. the year that an earth road will be improved to a gravel one, and, possibly, to a paved road) to part or all of the link; (iv) the time-sequence of widening the road or adding a new lane; or (v) no improvement at all. It should be pointed out a link strategy is a sequence of activities with a fixed relative timing. The entire sequence may be shifted in time. 3.1.2. Overview of the logic

The approach, advanced here, generates alternatives network strategies from proposed link strategies, simulates the network performance over the time horizon for each feasible network strategy, and finally, evaluates it.

The consequences of a network strategy are evaluated as follows: First, the alternative is checked to see whether it satisfies the imposed constraints on budget, foreign exchange and skilled labor. Then, during the simulation of the network, the annual costs and benefits are computed.

The cost are those associated with construction and maintenance activities. The benefits are defined as the difference between the price a user is willing to pay or was paying before the implementation of an incremental cost change due to a change in transport cost and the price actually paid. To estimate the transport cost for each trip from its oxigin to its destination, the routes of the vehicles must be determined and the cost of time and congestion added to the operating costs. The evaluation of the alternative is based on the net present values of these incremental costs and benefits produced by the simulation for each alternative when compared to a base network solution. The approach proposes as the optimal network strategy for implementation the one with the highest net present value. The figure 3.1 shows the several steps of the approach.

3.2. Constraints on the feasibility of an alternative

The constraints imposed to each network strategy are of three types: 1) those related to the costs of improvements, 2) those related to the timing of each strategy and 3) those economic weightings associated with each strategy which determine its importance in the economic improvement of the country. The feasibility of a network improvement strategy is based on whether it satisfies constraints introduced to prune the generated network strategies. An annual budget is allocated for highway construction and maintenance, and distributed among the regions of the country. Each network strategy may not have costs of construction and maintenance activities for each region higher than the

Figure 3.1.: Flow viagxä on hie thploach

Figure 3.1.: (continuer) Blow Diagram of the Approach

Figure 3.1 (continued) Flow Diagram of the Approach
annual regional budget.

Two other constraints are closely related to the economic conditions: Most of the money available for initial construction comes from abroad either as direct aid in foreign exchange or low interest, long term loans. The balance of payments usually constraints the growth of the country; therefore the available money for purchases of machinery, materials, etc. is limited to the aid or loan money or to specific allocations to the transport sector as a whole. Therefore the model allows foreign exchange allocations in each region to be constraint. Similarly, there is often a scarcity in skilled labor. This may be a deterant to development or imply the use of labor instead of capital intensive techniques, the latter using mostly skilled labor. It may be specified as a regional constraint.

3.3 The Costs

3.3.1. The cost of construction and maintenance activities

An improvement may be any continuation of upgrading or construction of part or all of a link. The costs are those resulting from the construction or upgrading that occur during the improvement phase as well as those associated with the maintenance of the link.

The cost may be specified exogenously or computed by the Highway Cost Model (HCM) after simulation of the activities of improvement. Construction costs may be computed directly and accurately by the HCM; maintenance costs can only be approximated because they vary with the traffic on the link, which is not known until the entire network is simulated. Maintenance costs are computed for an approximate expected
-46-
volume. Although fairly insensitive to volume, these costs could be adjusted if the volume turns to be significantly different.

The cost of construction and maintenance activities may be distinguished as financial and economic costs, the economic costs being those obtained by deducting from the financial costs the percentage resulting from indirect taxes and import duties. This is an estimate of the "cost of the improvement" to the country's economy net of the payments of taxes. It is this cost that is used to measure national objectives. The financial costs, perceived by the user, as the costs that influence his behavior. Budgets are stated in these terms. Similarly, budget constraints may also be stated in terms of other critical resources, such as foreign exchange and skilled labor, since their allocation to other sectors of the economy than in the transport sector, could influence the country's economic growth.
3.3.2. Vehicle operating costs

Since the model will be integrated with the HCM, it adopts some of its characteristics and constraints. One of these is that, seven vehicles types may be handled. They are usually designated as: passenger car, bus, pick-up truck, 5-ton truck, 10-ton truck and two types of tractor-trailers.:

Vehicle operating costs are dependent on the design and the surface as well as on the traffic volume on the road. The operating costs resulting from the road conditions can be exogeneously specified or computed by the HCM through the simulation process. The costs due to the introduced monetary value of the travel time are computed by the
evaluation model. The vehicle operating costs are computed as both financial and economic costs. Economic costs are these derived from fuel and lubricants consumption, tires usage, vehicle depreciation and interest on capital, maintenance and repairs and wages (in the case of trucks and busses). The financial costs are the economic costs plus the costs of insurance and taxes. The financial costs are used to determine the routing of the traffic between Origin and Destination ($O-D$) and changes in demand due to operating costs, and the economic costs used to compute the benefits resulting from the improvement.

3.4. Definition of demand and the generated traffic

The traffic on the network originates from the supply nodes, its destination being the demand nodes. The demand is given by O-D pairs (origin-destination nodes). A supply (origin) node represents a production region, where one or many crops are produced, a mine, a place where animals are raised, or a city or industrial area, where manufactured goods are produced, ready to be consumed locally or shipped to other places. A demand (destination) node represents a city, a town or a village where the goods are consumed.

The annual based demand is a function of the population and its growth rate, the average income and its increase, the price of the commodity etc. The changes in transport costs will shift the demand up or down due to price elasticity. The number of vehicles moving on the links of the network is based on such demand of the commodities between each O-D pair.

The model handles seven different vehicles types, each with different capacities. It is assumed that for one O-D pair, one vehicle type carries one commodity type or at least ones with similar handing and transporting characteristics. Thus, the model limits the number of substantially different commodities which can be transport between each O-D pair to five, not including passengers. Demand can be measured in two ways: in number of vehicles per day (according to vehicle type) for each $0-D$ pair; or in tons per day. (From the volume of commodities in the vehicle capacities and the load factors, the number of vehicles for each O-D pair is easily computed). Each vehicle type will follow that sequence of links which connect the O-D pair and minimize its total operating costs. As the network characteristics change, so may be the routing.
3.5. Impacts of the Improvement on Demands and Traffic

Any change in the operating characteristics of a link in the network will affect the distribution of traffic on the links. Changes may induce greater demands, divert traffic from other links, or create congestion on the link due to the traffic increase.

The demand of commodities and passengers between origin and destination pairs is influenced by changes in the transport costs. This sensitivity to demand is denoted as the price elasticity. Price elasticity is the percentage change in demand that results when the transport costs have changed by one percent. Elasticity may vary from O-D (inelastic demand, i.e. no change in demand) to values as high as 0.1 to

0.4 (elastic demand). -50-

Several approaches have been developed to estimate the demands of the O-D pairs. Their general scheme is protrayed in the flow chart in figure 3.2 It begins with land use or spatial location characteristics, derive trip demands and trip destinations and then follo this with an assignment or allocation of these trips to a network. When the demand is elastic any change in the transport costs, resulting from the route assignment, will change the demand.

Route assignment provides specific estimates of demand placed on various links in a network summed from the individual O-D demands. Since there may be a number of alternatives paths that can be used for connecting the $0-D$ pairs, the assignment selects the least costly route. These costs vary with travel time, which varies with link (not O-D) volume. If links capacities were infinite, and the travel time therefore did not vary, the assignment would be relatively simple. However, as flows on a transportation network change, the cost-performance characteristics on the network also change. Real world users adapt their behavior to local capacity shortages. If a shorter, faster route becomes congested (and thereby slower), users will shift to a less congested and formerly slower alternative route. The result is a complex equilibrating process of travel demands, travel speeds and link volumes. There are numerous solution approaches and assumptions introduced to solve such problem. For LDC's, where alternatives are fewer, we will assume away this problem by assuming that congestion costs do not alter the routing, determined ignoring congestion.

3.6 The Assignment of Traffic on the Links

The assignment of traffic follows the assumption that each vehicle will travel the sequence of links that connect the $0-D$ pair and minimize its total operating costs. No reassignment of the traffic on the links is considered for changes in transport costs due to the increased travel times caused by congestion. This limitation is not considered to be significant since most links in LDC's are uncongested and usually there is only one reasonably feasible route connecting most O-D pairs, which the vehicles must follow regardless of congestion. Congestion, however, it it exists, is considered by computing the costs resulting from the time value of the commodities and the passengers.

Initially the assignment is done for the first year of the simulation. It is then repeated during the time horizon if any change occurs in the network (identified by changes in user costs in any link) or if specified by the analyst.

3.6.1. The Routing Algorithm

Numerous algorithms have been developed which search a sequence of links to find minimum cost routes.

The Algorithm developed by Floyd (40), which can treat efficiently a general network and multiple O-D pairs, ahs been applied.

The Floyd procedure builds optional paths (routes) by inserting nodes, when appropriate into more direct paths. The algorithm starts with a NXN matrix C of transport costs, and N matrices are constructed sequentially, where N is the number of nodes. The $K^{\text {th }}$ such matrix can be interpreted as giving the minimum transport costs of all possible routes between all node pairs ($\mathrm{i} j$), where only routes with intermediate nodes
-52-
belonging to the set of nodes 1 through k are allowed. The ($k+1$)st matrix is constructed from the $K^{\text {th }}$ using the formula:
$C_{i j}^{(k+1)}=\min \left(C_{i j}^{(k)}, C_{i, k+1}^{(k)}+C_{k+1, j}^{(k)}\right), C_{i j}^{(0)}=\operatorname{cij} \quad(3-1)$
Here, K, which is initially zero, is incremented by l after i and j have ranged over the values $1, \ldots, n$; and $K=N-1$ at termination. If two nodes are not connected directly by a link, the assigned transport costs for this link is a large number. Also a time matrix T is introduced being the same as, C, but with travel times on the links as its elements. The label matrix has as elements in the initial stage the nodes denoting the beginning of each link; i.e. the element aij is i, if i is the beginning node of link ij. Note that all matrices have elements defined by node pairs, not by O-D pairs.

The algorithm proceeds as follows: It pivotes on every node of the network, i.e. it obliges all traffic between $O-D$ pairs to pass through this pivot-note for each O-D pair, it compares the resulting transport costs with the previous ones and saves the leasts ones as the transport costs of the $0-D$ pair under consideration.

If the traffic has to pass through the pivot node, the algorithm updates the label matrix and the time matrix as well. The pivoting had ended, for each $0-D$ pair the cost matrix C would come up with the minimum transport costs the time matrix T with the resulting travel time and the label matrix L with the previous node of any node, both nodes defining a link of the minimum costs route.

Finally, the set of links of which the route is made up may be found.

Figure 3.3.: Minimum Cost Route Algorithm
-54-
The steps of the algorithm are shown in figure 3.3. An example of the algorithm application is presented in Appendix 1 of this chapter.

Using the routing so determined, the transport costs by O-D pair may be computed. To the total operating costs found by the algorithm, we add the costs associated with the time lost in travelling, determined without taking in to consideration any costs resulting from possible congestion.

3.6.2. Congestion

If congestion occurs during anytime period, it will cause vehicles to lower their speeds, thus increase the travel times and transport cost. If the average traffic volumes on a link are given on a daily basis, which is usually the case, we must translate them to a distribution of volume levels, but on an hourly basis to determine whether congestion will occur or not. If one sampled the hourly volumes at many points in time, the result would be a distribution of hourly volume levels for the whole day. If speeds are determined at each volume level and the resultant ravel times weighted by the number of vehicles traveling at that volume level, the estimate of "average" conditions is much improved. The distribution of hourly volumes varies for different types of roads. In general, heavily traveled roads tend to have distributions in which the "peak volume" is skewed towards the higher volume levels, while the distributions of volumes on less traveled roads are heavily skewed toward very low volume levels. Roberts (16), introduced a probability mass function, which is analogous to the one resulting from the "binomial distribution". There are 4 Bernouilli trials, the
sucess Y_{k} being whether the hourly volume will fall in the $k^{\text {th }}$ volume level. Therefore, he measures the probability of each hourly volume level to be the same as the hourly volume on the link-which is unknown, the volume given on a daily basis. Thus without knowing the hourly volumes on a link, he comes up with an approximation of them, sufficient to help solving the congestion problem. His approach has been applied, as described belows.
3.6.2.1. Measuring the Traffic in Passenger Car units (PCU)

The traffic on the links is given in numbers of vehicles by vehicle type (cars, busses, trucks). A common unit of measure for traffic is needed in order to represent.it. This is taken as one passenger car, all other vehicles are represented by passenger car units (CU). Factors are introduced for each vehicle type for this transformation.

The Fighway Capacity Manual (41) considers a truck or a bus displacing several passenger cars in the flow on the road. The number of passenger cars that each truck or bus represents under specific conditions is termed the "passenger car equivalent" (PCE) for those conditions. Note that the passenger car units (PCU) for a truck is equal to its PCE. (Passenger Car Equivalents) In level terrain where trucks can maintain speeds that equal or approach the speed of passenger cars, it has been found that the average truck is equivalent, in a capacity sense, to between 2 and 3 passengers cars on 2-lane highways depending on the level of service. These values are appropriate for most downgrades as well. On upgrades, the passenger car equivalent of trucks may vary widely, depending on steepness and length of grade and number

$$
-56-
$$

of lanes. For approximate analyses of operations on a given road, section it may be sufficient to apply an overall approximate equivalency factor to the road as a whole.

According to Hịghway Capacity Manual, for the case of two-lane roads, the difference, between truck speeds and passenger car speeds on grades, is what causes trucks to reduce the traffic volume carried by a road at any given level of service. The greater the speed difference, the greater is the reduction in any given volume, with corresponding increase in the passenger car units. Roberts (26) developed a formula to compute the PCE, for each vehicle type.
PCE (IV) $=\frac{\text { ROC } \times \operatorname{SPEED} \text { (1) }-\operatorname{SPEED~(IV)}}{10}+2, \quad$ (3-2)
Where:
IV: the vehicle type
SPEED (I), SPEED (IV): the speeds of passenger car and vehicle type IV respectively (in $\mathrm{km} / \mathrm{hr}$)

ROC: is the increase in PCE for each kilometer per hour difference in speed

Roberts computes ROC taking into account factors such as the number of lanes (LANES), the type of surface (SURF), and the sight distance, using the rise and fall, in $m / 100 \mathrm{~m}$, (RFF) as a surrogate: Thus: ROC $=\frac{\text { SURF } \times \text { RFF }}{\text { LANES-1 }}$
and for the case of a two-lane road, it turns out to be:
ROC $=$ SURF \times RFF
For the surface types, Roberts uses indices from 1 to 3 ; 1 being paved or surface treated road, 2 being gravel and 3 being earth road.
-57-
Considering only the surface type and the rise and fall of the road, this does not take into account the impact of the design standards of the road. Since, the other important factors in the road design standards are, besides the surface type and the sight distance, the horizontal alignment and the width of the road, it would be appropriate the introduce these as factors to determine the ROC. This is done with a road design index, RDI, taking values from 1 to 3 , combining the roads surface type, the road width and the horizontal alignment. Since all these factors may be reflected in the design speed of the road, the RDI may be calculated if the design speed of the road is known. In our approach a formula is developed according to which RDI equals to 1 , when the design speed is $100 \mathrm{~km} / \mathrm{hr}$ and to 3 if it is $25 \mathrm{~km} / \mathrm{hr}$. Other values may be found through interpolation or applying the developed formula:

$$
\begin{equation*}
\mathrm{RDI}=3.67-0.027 \times \mathrm{V} \tag{3-5}
\end{equation*}
$$

where:
V : the design speed of the road.
and, thus:
$\mathrm{ROC}=\mathrm{RDI} \times \mathrm{RFF}=(3.67-0.027 \times \mathrm{V}) \times \mathrm{RFF}(3-6)$
Thus the RFF and the design speed of the road or the RDI must be inputs. In case that RDI is given, the design speed may be computed applying the equation:

$$
\begin{equation*}
\mathrm{V}=137.5-37.5 \times \mathrm{RDI} \tag{3-7}
\end{equation*}
$$

-58-
Thus, using the above approach the traffic (ADT) is measured in PCU/day. Given is also the capacity of the road (CAP) in PCU/hr both directions. Assuming the movement will take place only 16 hours per day the daily capacity of the road is computed:
$D C A P=16 \times C A P$

3.6.2.2. Determining the Congestion Speeds

The ratio of the daily traffic volume and the road daily capacity VOLCAP $=\frac{A D T}{D C A P}$
may be used as a measure of conqestion. According to Roberts (16), if VOLCAP turns out to be less than 0.1 , no congestion is likely to occur in any hour of the day. Otherwise the variable RVOL is computed as a function of VOLCAP:

RVOL $=1.25 \times($ VOLCAP -0.10$)(3-10)$
Where, RVOL represents the probability in the Bernoulli trials of and hourly volume level to be equal to the hourly volume on the link. It is assumed that the probability is the same for all volume levels. The proposed probability mass function will be applied for 4 Bernoulli trials. The levels of hourly volumes are.5, represented by VOL (IP) (IP taking values from 1 to 5).

Each volume level is defined as a percentage of the hourly capacity of the road (CAP). Thus:
-59-
VOL (I) $=0.10 \times \mathrm{CAP}$
VOL (2) $=0.30 \times \mathrm{CAP}$
$\operatorname{VOL}(3)=0.50 \times \mathrm{CAP}$
VOL (4) $=0.70 \times \mathrm{CAP}$
VOL (5) $=0.90 \times \mathrm{CAP}$
The proposed probability mass function of the hourly volume level IP to be equal to the actual hourly volume on the link is given by:

$$
\begin{equation*}
\operatorname{VOL}(\operatorname{IP})=\left(\frac{4}{4}\right) \text { RVOL }^{x} \cdot(1-\text { RVOL })^{4-x} \tag{3-12}
\end{equation*}
$$

where:
$X=$ IP-1, the index numbers for the hourly volute levels, as used in the probability mass function.

I
The $f(I P)$ is represented in figure (3-4)
The resulting frequency distribution $f(I P)$, is used to determine the equivalent number of vehicles VEHNO (IP), travelling at each volume level, (IP), according to the following equation:

$$
\begin{equation*}
\text { VEHNO (IP) }=\frac{2 * I P-1}{10} \quad *_{f}(I P) * \text { DCAP } \tag{3-13}
\end{equation*}
$$

The speeds of vehicles traveling in each volume level can now be determined by the relationship (a simplified linear version of the volumespeed curves so frequent in the literature):

$$
\begin{equation*}
V E L=V^{*}\left(1-\frac{V O L(I P)}{C A P}\right) \tag{3-14}
\end{equation*}
$$

where: V is design speed of the road.
3.6.2.3. Costs of Congestion

Having defined the VEL for each vehicle type IV, the weighted additional travel time is computed by the equation for each type IV:

$$
-60-
$$

Figure 3.4: Comparison of Artificial Traffic Distribution and Binomial Distribution

$$
\begin{equation*}
\operatorname{AAT}(I V)=\frac{\sum_{\text {IP }=1}^{5}((\operatorname{AT}(I P) * V E H N O(I P))}{A D T} \tag{3-15}
\end{equation*}
$$

where:

AAT (IV) = weighted additional travel time of vehicle type IV $A T(I P)=$ the additional travel time of vehicle type IV, if it was in volume level $I P$, given by the equation: (T being the travel time on the link without congestion) :

$$
\begin{equation*}
A T \quad(I P)=\frac{V-V E L(I P)}{V} * T \tag{3-16}
\end{equation*}
$$

TRAF (IV) = number of vehicles of type IV

ADI = average daily traffic in PCU/day

VEHNO (IP): equivalent daily volume of level IP, in PCU/day

The additional travel time is multiplied by the value of the time, to give the costs of congestion for each vehicle type.

An example of the approach is presented in Appendix 2 of this chapter。

3.7. Benefits resulting from the Improvement

Using total transport costs for the vehicle movement form origin to destination, the benefits attributable to changes in the network can be defined. They are computed by comparing the transport costs of each O-D pair after the improvement and before. The benefits are the savings, in transports costs, accruing to the network users underneath the demand curve. If the demand curve is unavailable an approximation that can be made is given by the equation:

$$
\begin{equation*}
\mathrm{BEN}=\Delta \Theta \cdot T^{\circ}+0.5 \cdot \Delta \Theta \cdot \Delta T \tag{3-17}
\end{equation*}
$$

where:
$\Delta \Theta \cdot T^{0}$: benefits to normal traffic (T°), after unit transport cost reduction,
$0.5 \cdot \Delta 0 \cdot \Delta T$: benefits from the induced traffic ($\Delta \mathrm{T}$) ; after the unit transport cost reduction, $\Delta \theta$

This equation is another expression of the "consumer surplus" resulting from the improvement. The induced traffic, $\boldsymbol{\Delta T}$, is the difference between the traffic before the improvement (T°) and the traffic after (T^{\prime}).

$$
\begin{equation*}
\Delta T=T^{\prime}-T^{\circ} \tag{3-18}
\end{equation*}
$$

and thus equation $3-17$ will be transformed to:

$$
\begin{equation*}
\text { BEN }=0.5 *\left(T^{\prime}+T^{0}\right) * \Delta O \tag{3-17a}
\end{equation*}
$$

the familiar form of the "consumer surplus". The increase in O-D traffic will result if the demand is elastic with respect to ransport costs. Thus, if ELA is the elasticity of demand with respect to costs and $\boldsymbol{\theta}^{\circ}$, 0^{\prime}, the transport costs before and after the improvement:

$$
\begin{equation*}
T^{\prime}=T^{0} \cdot\left(\frac{\theta^{\prime}}{\theta^{\circ}}\right)^{-E L A} \tag{3-19}
\end{equation*}
$$

This is resulting from the definition of the demand function:

$$
\begin{equation*}
T_{1}=A \cdot O_{1}^{-E L A} \tag{3-20}
\end{equation*}
$$

where:
T_{1} : the traffic (demand) at unit transport cost
$\boldsymbol{\theta}_{1}$: the unit transport costs
ELA: elasticity of demand with respect to costs (positive)
A: a constant

Figure 3.5: Transport Demand Function

Figure 3.6: The Market for a Transported Commodity
in node A (consumption)

Figure 3.7: The Market for a Transport Commodity in node B (production)

Figure 3.5 represents the benefits by the shaded area.
It will be proved that these benefits are equal to the benefits accruing to the consumers and producers of the transported commodites, considering an one commodity transport between two regions (represented by the O-D pair), with no other transport made to share the transport. Another assumption is the indifference with respect to benefit distributions between the two regions and between producers and consumers. Furthermore, it is assumed that the commodity is produced in region B and consumed in region A .

The two regions are connected by a single road and due to the assumed abscence of competitive transport, all the volume of the commodity has to use the road-therefore the transport costs are common for each alternative improvement strategy of the road. The equilibrium between supply and demand (see figures $3.6,3.7$) before any improvement sets the per unit price of commodity in A equal to the per unit cost of production in B plus the unit transport costs (which in this case is assumed to be invariant with respect to the volume of transport measured in units of commodity). Similarly, the equilibrium between A and B equal the difference between the per unit price of the commodity in region A and the per unit cost of production of the commodity in region B. (Again the transport costs are assumed to be invariant). Thus,

$$
\begin{equation*}
\text { (2) }=P_{A}-P_{B} \tag{3-21}
\end{equation*}
$$

Where:
© : the unit transport costs between A and B
P_{A} : unit price of commodity in A
P_{B} : unit cost of production of commodity in B
Denoting by (') the case before the improvement, and by (') the case after the improvement, we have:

$$
\begin{align*}
& \theta^{0}=P_{A}-P_{A}^{0} \\
& \theta^{\prime}=P_{A}-P_{B} \tag{3-22}
\end{align*}
$$

The change in unit price of commodity is A due to the improvement is:

$$
\begin{equation*}
\Delta P_{A}=P_{A}-P_{A}^{0} \tag{3-23a}
\end{equation*}
$$

since P_{A}^{O} a greater than P_{A}^{\prime} (price reduction after the improvement), $\boldsymbol{\Delta} \boldsymbol{P}_{A}$ is negative.

The change of the unit costs of commodity in B is:

$$
\begin{equation*}
\Delta P_{B}=P_{B}-P_{B}^{0} \tag{3-23b}
\end{equation*}
$$

Since P_{B}^{\prime} greater than P_{B}^{o} (cost increase), ΔP_{B} is positive.
Then change in unit costs of transport are:

$$
\begin{equation*}
\Delta \theta=\theta^{\circ}-\theta^{\prime} \tag{3-24}
\end{equation*}
$$

since θ° less than θ° (trnasport cost reduction), $\Delta \theta$ is positive. Substituting the θ^{\prime} and θ° in the equation $3-24$ from equations $3-22$ the outcome is: $\quad \boldsymbol{\Delta} \boldsymbol{\theta}=\Delta P_{\mathbf{s}}-\Delta P_{\Delta}$

To prove that equation 3-17 gives the benefits to the consumers and producers of the two regions, figures 3.6 and 3.7 are required as reference. The price of commodity in an A falls but the cost in B
rised when the transport costs fall. At the same time the volume of traffic increases from T° to T. The increase equals the excess demand in A plus the excess supply in B. In region A, the consumers surplus $\left[\frac{T^{0}+T^{\prime}}{2} \Delta Q_{A}\right]^{\text {is }}$ offset by the producers losses $\left[-\Delta P_{R} \cdot\left(T^{0}+T^{\prime}\right)\right]$ Therefore the benefits of region A (shown in the shaded area of Figure 3.6) are: $B E N_{A}=-\Delta P_{A} \cdot \frac{T^{0}+T^{\prime}}{2}$

Similarly, in region B, a part of the producers surplus $\left[\Delta P_{B}\left(T^{0}+T^{\prime}\right)\right]$ is offset by the consumers losses: $\left[-\Delta P_{B} \cdot \frac{P^{0}+T^{\prime}}{2}\right]$ Therefore the benefits of region B (shown in the shaded area of Fig. 3.7) are:
$B E N_{B}=\Delta P_{B} \cdot \frac{T^{0}+T^{\prime}}{2}$
The toal benefits for both regions are:
$B E N=0.5 \cdot \Delta \theta \cdot\left(T^{0}+T^{\prime}\right)$
which is the same expression as in the one in 3-17.
These are the benefits observed when we improve a route connecting two regions. What about constructing a new road that will connect two regions, previously unconnected? It is obvious that before the construction no demand of the commodity was existed. However, a potential demand would be up to a maximum of T° units of commodity; where $T=A \cdot\left(\theta^{0}\right)^{-E L A}$ θ° being the difference between the price of commodity in region A (consuming region) and the cost of production in region B (producing region). That is: $\theta^{0}=P_{A}^{0}-P_{B}^{0} \quad(3-21 a)$

The new road will reduce the transport costs to and the new prices will be P_{A}^{\prime} and P_{B}^{\prime} as a result the new volume would be $T^{\prime} \cong A \cdot\left(\mathcal{O}^{\prime}\right)^{-E L A}$ and the benefits will be measured as previously.

3.8 Evaluation Criterion

Using the costs and benefits computed for every alternative improvement strategy, they must be ranked as the next step is the evaluation process. There are four principal economic evaluation criteria: annual costs, benefit cost ratio, rate of return, and net present value. It must be stressed that each of these techniques has associated with it, in one way or another, an interest rate and a period of analysis, or time horizon. The net present value criterion has been introduced to the model as the evaluation criterion. With this method, present and future costs and benefits are discounted to the present and summed and the difference between the two sums in computed. Strategies having a net present value less than zero is unacceptable and that strategy with the highest net present value will be most desirable, when chossing among mutually exclusive alternatives. The reasons why the net present value is chosen as criterion instead of another, due: (i) the NPV method will always give single valued results; (ii) allows inflation costs to be considered as a component of the discount rate; (iii) provides good relative ranking among alternatives with similar cash flows. It requires, however, a reasonable choice of a discount rate, being the critical issue of the evaluation.

-70
 APPENDIX 1: Example about Assignment

The following example will illustrate the effectiveness and the simplicity of the minimum cost route algorithm (3.6.1). In the figure 3.8 a network is represented with the associated vehicle operating costs on the links (it is assumed: vehicle type i) and travel times. We construct the matrices C, T, L, as follows for the different itterations.

	1	2	T 3	4	5
1	-	20	10^{7}	60	30
2	20	-	40	10^{7}	10^{7}
3	10^{7}	40	-	25	10^{7}
4	60	10^{7}	25	-	25
5	30	10^{7}	10^{7}	25	-

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 |
| 2 | 1 1 1 1 1
 2 2 2 2 2
 3 3 3 3 3
 4 4 4 4 4
 5 5 5 5 5 | | | |

$C=$ Vehicle operating costs (in $\$$)
$T=$ Travel time (in min.)

Figure 3.8: The Network of Roads

	1	2	3	4			1	2	3	4	5
1	-	4.5	10^{7}	12	7	1		20	10^{7}	60	30
2	4.5	-	8.0	16.5	11.5	2	20	-	40	80	50
3	10^{7}	8.0	-	5.0	10^{7}	3	10^{7}	40	-	25	10^{7}
4	12.	16.5	5.0	-	5.0	4	60	80	25	-	25
5	7.0	11.5	10^{7}	5.0	$-$	5	30	50	10^{7}	25	-

I_{1}

	1	2	3	4	5
1	1	1	1	1	1
2	2	2	2	1	1
3	3	3	3	3	3
4	4	1	4	4	4
5	5	1	5	5	5

$\xrightarrow{2^{\text {nd }} \text { iteration: }} C^{\text {Pivot on node } 2}$

	C						T				
	1	2	3	4	5		1	2	3	4	5
1	-	4.5	125	12.0	7.0	1	-	20	60	60	30
2	4.5	-	8.0	16.5	11.5	2	20	-	40	80	50
3	12.5	8.0	-	5.0	10^{7}	3	60	40	-	25	10^{7}
4	12	16.5	5.0	-	5.0	4	60	80	25	-	25
5	7.0	11.5	10^{7}	5.0	-	5	30	50	10^{7}	25	-

(Cont. $2^{\text {nd }}$ iteration)

1	2	3	4	5	
1	1 1 2 1 1 2 2 2 2 1	1			
3	2	2	3	3	2
4	4	1	4	4	4
5	1	5	5	5	

$3^{\text {rd }}$ iteration: Pivot on node 3

	C						T				
	1	2	3	4	5		1	2	3	4	5
1	-	4.5	12.5	12.0	7.0	1	-	20	60	60	30
2	4.5	-	8.0	13.0	11.5	2	20	-	40	65	50
3	12.5	8.0	-	5.0	10^{7}	3	60	40	-	25	10^{7}
4	12	13.0	5.0	-	5.0	4	60	65	25	-	25
5	7.0	11.5	10^{7}	5.0	-	5	30	50	10^{7}	25	-

L

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | 4 | 5 |
| | 1 1 2 1 1
 2 2 2 3 1
 3 2 2 3 3 | 2 | | |
| 4 | 3 | 4 | 4 | 4 |
| 4 | 1 | 2 | 5 | 5 |

$4^{\text {th }}$ iteration: Pivot on node 4^{-74-}
C T

	1	2	3	4	5		1	2	3	4	5
1	-	4.5	12.5	12.0	7.0	1	-	20	60	60	30
2	4.5	-	8.0	13.0	11.5	2	20	-	40	65	50
3	12.5	8.0	-	5.0	10.0	3	60	40	-	25	50
4	12	13.0	5.0	-	5.0	4	60	65	25	-	25
5	7.0	11.5	10	5	-	5	20	50	50	25	-

	L				
	1.	2.	3	4	5
1	1	1	2	1	1
2	2	2	2	3	1
3	2	2	3	3	4
4	4	3	4	4	4
5	5	1	4	5	5

$5^{\text {th }}$ iteration: Pivot on node 5

C

	1	2	3	4	5
1	-	4.5	12.5	12.0	7.0
2	4.5	-	8.0	13.0	11.5
3	12.5	8.0	-	5.0	10.0
4	12	13.0	5.0	-	5.0
5	7.0	11.5	10.0	5.0	-

T											
1											
2											
3											
4											
4							1	2	3	4	5
:---:	:---:	:---:	:---:	:---:							
-	20	60	60	30							
20	-	40	65	50							
60	40	-	25	50							
60	65	25	-	25							
30	50	50	25	-							

(cont. $5^{\text {th }}$ iteration) -75-

			L		
	1	2	3	4	5
1	1	1	2	1	1
2	2	2	2	3	1
3	2	2	3	3	4
4	4	3	4	4	4
5	5	1	4	5	5

Therefore the minimum cost route for each $O-D$ pair has been found. e.g For the (2-5) pair, the vehicle operating costs are $\$ 11.5$, the travel time 50 minutes, and the route is (2-1), (1-5).

-76-
 APPENDIX 2: Example about Congestion

This is an example to show how the approach of computing congestion costs can be applied. The following data is assumed for the example:

CAP (road capacity) : $2000 \mathrm{PCU} / \mathrm{hr}$ and DIS (Length): 100kms; Road Design speed: $95 \mathrm{~km} / \mathrm{hr}$; rise and fall: $3.0 \mathrm{~m} / 100 \mathrm{~m}$; The number of vehicles per vehicle type and their speeds are:

	1	VEHICLE TYPES		
Medium volume road traffice	800	400	500	400
Low volume road traffice	100	100	50	80
Speed (in km/hr)	70	60	55	50

a. Road design index (RDI) and road condition factor (ROC)

$$
\begin{aligned}
& \mathrm{RDI}=3.67-0.027 * 95=1.1 \\
& \mathrm{ROC}=3 * 1.10=3.3
\end{aligned}
$$

b. Vehicles Equivalent factors is given by (3-2) So:
$\operatorname{PCE}(1)=1 ., \operatorname{PCE}(2)=5.3, \operatorname{PCE}(3)=6.95, \operatorname{PCE}(4)=8.6$
C.l Average daily traffic: (low volume road)

ADT $=1565 \mathrm{PCu} /$ day
d. Daily link capacity: DCAP= 16 *CAP=32000 PCU/day
e. 1 Volume to capacity Vatio:

VOLCAP $=\frac{1565}{32000}=0.05$ less than 0.10. $\begin{aligned} & \text { Therefore no congestion will } \\ & \text { occur. }\end{aligned}$
c.2. Average daily traffic (Medium volume road)

ADT $=9250 \mathrm{PCU} /$ day

Figure 3.9: The Traffic Distribution
e. 2 Volume to capacity vatio:

$$
\text { VOLCAP }=\frac{9280}{32000}=0.29
$$

£. Probability mass function (represented infigure 3.9)

$$
\text { RVOL }=1.25 *(\text { VOLCAP }-0.10)=0.2375
$$

$f(1)=1 . *(1-\text { RVOL })^{4}=0.338$
$\mathrm{f}(2)=4 *$ RVOL $x(1-\text { RVOL })^{3}=0.421$
f (3) $=6 *^{\text {RVOL }^{2} x(1-\text { RVOL })^{2}=0.197}$
$\mathrm{f}(4)=4 *$ RVOL $^{3} \mathrm{x}(1-$ RVOL $)=0.041$
E (5) $=1 *$ RVOL $^{4}=0.003$
g. Equivalent number of vehicles

VEHNO (1) $=0.338 * 3,200=1,081.6$
VEHNO (2) $=0.421 * 9,600=4,041.6$
VEHNO (3) $=0.197 * 16,000=3,152$.

VEHNO (4) $=0.041 * 22,400=918.4$
VEHNO (5) $=0,003 * 28,800=86.4$
h. Vehicle speeds on each volume level

Road design speed: $V=95$.
$\operatorname{VEL}(1)=95 *\left(1-\frac{200}{2000}\right)=84.6$
VEL (2) $=95 * 0.7=65.8$
VEL (3) $=95 * 0.5=47$.
$\operatorname{VEL}(4)=95 * 0.3=28.2$
VEL $(5)=95 * 0.1=9.5$
j. Additional travel time for the vehicles of type I

Additional travel times if it was at volume levels $1, \ldots, 5$
AT $(1)=0$. (VEL (L)) speed of vehicle type I)
AT $(2)=\frac{100}{65.8}-\frac{100}{70}=1.52-1.43=0.09 \mathrm{hrs}$.
$\operatorname{AT}(3)=2.13-1.43=0.70 \mathrm{hrs}$.

THE NETWORK SIMULAATION MODEL

4.1 Overview

The developed model generates, screens and evaluates network development strategies for a rural road networks. Given actual road network demand on an origin-destination basis, and potential demand, if road service were provided, and data on the cost and value of potential investments on network links, the model generates sequences of link investments, screens them for overall value and satisfaction of economic constraints, and allows cost-benefit analysis of the most interesting strategies. The model is integrated with the Highway Cost Model which carries out a simulation and evaluation of the investment strategies for a single link. It may deal with the individual link with the accuracy of the HCM or use more aggregate costs. Its final output may be a ranked list of network strategies, with their evaluation, and the timing of each of the link investments.

The model consists of four computer packages and their data files. The data files store network configuration and strategy data, link strategy data, and origin-destination demand data. The packages are an input data processor, the Highway Cost Model (HCM), a network strategy generator, and an evaluator which simulates the operation of the network over the analysis time span. The model simulates the construction and maintenance activities of each link by using government costs, segregated by local and foreign currency etc., developed by the

Figure 4.1.: Network simulation system flow
-82-
HCM or elsewhere. Simulation of the network operation includes the routing of traffic, based on vehicle operating costs, using a minimum cost path criterion. The flow of information in the model is shown on figure 4.1.

The generation of network strategies, to be evaluated and ranked later, is based upon two types of constraints and a single criterion. The first constraints are limits on the timing of link strategies, the amount by which such a strategy can slip in time from its initial sequencing with the HCM. The second are constraints on the capacity for constructing and maintaining the network. Initially we included financial and skilled manpower constraints by regions of the road network. To limit and choose among the large number of remaining potential combinations of link strategies, the model, allows the analyst to assign a social criticality index for each link strategy. The criteria for choice of strategies is to maximize the cumulative criticality indices for included strategies. Only a small number of strategies are kept and evaluated at the analyst's request.

The evaluation of the network strategies follows the simulation of network performance over the time horizon during which: it finds the route of the vehicles from an origin to a distination, computes the total transport costs, compares them with those of the base strategyi.e., the network to be changed or remain the same according to a present plan-, performs the demand adjustments and computes the benefits, i.e. the savings in transport costs.
4.2 Link simulation (HCM)

The link is simulated by the HCM over the time horizon of interest. All the activities of construction and maintenance are simulated and therefore the financial and economic costs are computed, giving the total expenditures for the road link in each year over the time horizon. Also, the HCM simulates the vehicle operation of a link according to the road conditions but not considering the presence of other vehicles on the link. The network simulation model takes the information about the vehicle operation costs and simulates the vehicle operation according to the traffic calculated to be on the link. Any delays due to possible congestion are computed and the total transport costs on the link for each vehicle type are calculated as the operation costs plus the time loss costs.

It is useful to point out that a link is composed of different segments. Each one may have different surface type, alignment etc. Each project is redated to one segment and consists of upgrating or changing the surface type, applying a certain maintenance policy. The HCM simulates the different projects on the link over time, simulates the vehicles operations on the link, then computes the resulting financial and economic costs. Note that a link strategy to be used as a term later is a series of projects over time on the link.

4.3 Network strategies generation

The purpose of each network strategy is to specify a feasible program to improve the existing network over the time horizon. The
existing network, or base network, consists of the links, in the condition they are in the beginning of the time horizon plus any link improvements or additions, which are fully fixed and have been decided in advance by the decision makers, and not to be changed or delayed. To be feasible, it must satisfy regional budget, foreign exchange and skilled labor constraints in each year. The network strategies are generated from the link strategies introduced by the decision maker. Two types of link strategies are considered; mandatory strategies, with no restriction of when they will be implemented and optional strategies. In using these terms, we are naming the link upgrading strategies as link strategies. For a link multiple strategies may be proposed for implementation and it is up to the model to choose the one to be part of the network strategy.

The generation is coordinated with a branch and bound technique. Because of large calculation requirements, it is not looking for the best feasible solution but for a reasonable set of feasible solutions.

A network strategy is generated as follows: All obligatory links are to have one of their strategies included in the network strategy. The sum of the critical indices of the obligatory link strategies is compared with the network minimal index. If the sum is less, links from the optional set are included until either the minimum critical index is reached or there is no link left to be included. A link strategy critical index is an arbritary number set by the decision maker. It may reflect the priorities for the link strategies set by the
decision makers. The higher it is, the more likely for the link strategy to be included in a feasible network strategy. It may merely reflect the importance of a link according to decision maker's intution, it may be set high to include a specific link and its importance of connecting remote areas, or it may reflect the importance of a link to the economic activities of an area. The network strategies minimal critical index is very important, since it prunes all network strategies with lower critical indices than it.

When the preliminary network strategy has been generated, it is tested to see that it verifies the constraints (regional budget, skilled labor and foreign exchange) for each year. If it does, then the generated preliminary network strategy is feasible, and one the strategies of the optional links will be included, but the link will be different than the ones, the network strategy consists of. If one of the constraints is not verified then the model tries to slip the last included link strategy by a number of years (not exceeding the specified maximum slippage for each link strategy) to have the constraints verified. If this can be accomplished the generated network strategy is feasible and it proceeds to generate another one. If the verification of constraints is impossible, it tries to include another link strategy, if available, of the same link, and it tests if the constraints are verified. If they are not, it slips it by a number of years (less than the allowable slippage). If the constraints are verified, it proceeds to generate another one, otherwise it tries to include
another link strategy of the same link. If there is one, the same procedure will be repeated, otherwise it drops the link from the network strategy and tries to fit another one, repeating the same. If none of the remaining links can be fitted in the network strategy, it generates the network strategy as it is. If a link strategy is included, it searches for one from another link to be added. It repeats the same procedure until either no more links are available or no more link strategies can be included in the network strategy. Had the number of feasible network strategies equaled the number of strategies to be generated, as specified by the decision maker, the algorithm keeps the ones with the highest critical indices. However, it keeps only a specified percentage of the generated ones. These are the ones to be evaluated by the network strategies evaluator and be ranked according to their computed NPV's.

4.4. Network strategies evaluation

4.4.1 Base network strategy

The base network strategy establishes the basis for evaluation, since it is to if that strategy against which other network strategies are compared. The base network is the existing network in the beginning of the time horizon; plus link improvements or additions, which are fully fixed, decided in advance by the decision makers, not to be changed or delayed.

The base network is simulated to the same detail as other network strategies. The demand for each O-D pair may change over the years of
the time horizon, as specified by input. This input is based on 1 st year transport costs; thus, the input demand for other than the 1 st year is computed from the first year applying the annual growth factors, not taking into account any change in transport costs.

4.4.2 Demand adjustments

For the base network transport demand may change over the years, if the transport costs have changed. This is the result of the demand function: (equation 3.20).

$$
\begin{equation*}
T=A \cdot \theta^{-E L A} \tag{4-1}
\end{equation*}
$$

if θ changes, so will T ; (since the demand is sensitive to transport price changes if the price elasticity is not zero). Therefore the new demand will be:

$$
\begin{equation*}
T^{\prime}=A \cdot\left(\theta^{\prime}\right)^{-E L A} \tag{4-2}
\end{equation*}
$$

Since the initial demand is known, as well as the transport costs, dividing the two expressions:

$$
\begin{equation*}
T^{\prime}=T \cdot\left(\frac{\theta^{\prime}}{\theta}\right) E L A \tag{4-3}
\end{equation*}
$$

Where:

ELA: elasticity of demand with respect to price
T,T': traffic demands before and after the improvement
θ, θ^{\prime} : unit transport costs before and after the improvement.
Demand adjustment will happen also when a network strategy is considered. However, this will be the outcome of change in transport costs those of base network as opposed to those of the network under
consideration. In this case θ is the transport cost of the base network and θ^{\prime} the transport costs of the new network. The transport costs may increase if congestion occurs. Thus, the model checks if congestion exists at any link and if it does the transport cost are updated properly and the demands are adjusted.

4.4.3 Network simulation

For every network strategy the network is simulated through the time horizon having the specified characteristics and road conditions by the network strategy under evaluation. The simulation is done for these years of the time horizon, during which an improvement has been terminated or the demand at least for one $0-D$ pair has changed. At the analyst's request the simulation may be done for any year specified by him. The benefits and the costs from one year to the other will remain the same, if no improvement has been undertaken or any change in demand structure has been noticed:

The simulation is done as follows:
a. For each link the passenger car equivalents, $P C E$ for every vehicle type are computed according to the road conditions, applying equations 3-2 and 3-3. .
b. 1 For an Origin-Destination pair the minimum transport cost route is found for every vehicle type, and the corresponding economic and financial transport costs are computed. (The process is described in § 3.6.1).
b. 2 If the economic transport costs are greater than the price, the user is willing or could afford to pay for the transport, no traffic will be generated from the origin.
b. 3 Otherwise, the traffic generated is assigned to the links that belong to the $0-D$ pair minimum cost route. The traffic is computed in number of vehicles per vehicle type and in passenger car units, PCU, applying the computed PCE
c. The steps (b.1), (b.2) and (b.3) are repeated for all O-D pairs for which demand exists.
d. 1 For each link the possibility of congestion is checked. If it is not congested, no change in the already computed transport cost will be made. In case it is congested, the congestion costs, due to the additional travel time are computed, and added to the already calculated transport costs. (The process is described in § 3.6.2).
d. 2 The step 1.1 is done for all links of the network, thus the total transport costs for all vehicle types are calculated.
e. For each O-D pair the demands are adjusted for the new transport costs applying the equation:4-3:

$$
T^{\prime}=T \cdot\left(\frac{\theta^{\prime}}{\theta}\right)^{-E L A}
$$

where:
T^{\prime} : the new demand
T : the demand as it would be,if the base network strategy was applied
θ^{\prime} : the new transport costs
θ : the transport costs, if the base network strategy was applied.

ELA: the elasticity of demand with respect to transport costs. The demand is measured in number of vehicles (in case that it is given in tons for the commodities, dividing the tons by the vehicle capacity times the load factor, we come out with the number of vehicles). If no route existed before the improvement connecting the two nodes, (O-D), θ is set to be the maximum transport costs the user is willing to pay for the transport. In the case of a commodity this maximum cost is the difference of the selling price at destination and the production costs at the origin. Having the simulation done, we may proceed to evaluate the network strategy comparing it with the base network strategy.

4.4.4 Network strategies evaluation

To do the evaluation the benefits and the cost of the network strategy must be calculated. The network strategy costs, are the economic costs associated with the activities of construction and maintenance proposed by the strategy, less those costs of the base network strategy. They are calculated for each year of simulation, remaining the same until the next simulation.

The benefits are computed for each year of the simulation, and for each 0-D pair generally applying the equation 3-17 :

$$
\begin{equation*}
\mathrm{BEN}=\frac{1}{2}\left(\mathrm{~T}+\mathrm{T}^{\prime}\right) \cdot \Delta \theta \tag{4-4}
\end{equation*}
$$

for every vehicle type. (The variables are as specified in page. The total benefits of the year are the sum of the benefits al all 0-D pairs. They remain the same until the next simulation. There are some
special cases to be considered in calculating the benefits:
i. If no traffic exists between an origin-destination pair, although there is potential demand, the benefits are zero.
ii. If no route existed before the improvement connecting an origin to destination, although there is potentional demand, the benefits are computed applying equation (4-3) . However, instead of θ being the transport costs of the base network strategy- which in this case would be infinity since no route exists-, θ equals to the maximum price the user could affort to pay for the transport between oriqin to destination.

Having computed both costs and benefits the calculation of the net benefits is done:

$$
\begin{equation*}
\text { NETBEN }=\text { BEN-COSTS } \tag{4-5}
\end{equation*}
$$

Finally, the net present value of benefits and costs is calculated discounting the net benefits to the present and adding them for all years:

$$
\operatorname{NPV}=\sum_{I=1}^{N} \operatorname{NETBEN}^{*}(1+r)^{-(I-1)}
$$

where:
r : the discount rate and I: the year number.
Thus, the network strategy has been evaluated. It will be compared with the others and finally a ranking of the generated network strategies will be undertaken, the first being the one with the greater net present value. This will be the strategy recommended by our approach for implementation.
-92-
The following application of the model in Ethiopia's regional network of Asela-Dodola will show its capabilities and possible limitations from the introduced assumptions.

CHAPTER FIVE

APPLICATION OF THE MODEL IN ETHIOPIA

5.1 Ethiopia

Ethiopia lies in the Horn of Africa, the north-east of the continent bordered by the Indian Ocean and the Gulf of Aden. The country is situated just north of the Equator, and is bounded to the east by Somalia and the French Territory of Afars and Issas, so that its own costline of about $1,000 \mathrm{kms}$ lies on the Red Sea. Ethiopia's other neighbors are Kenya, to the south, and Sudan, to the west. (A map is provided in the next pages).

Its area is $1,220,000$ square kilometres, mainly high plateaux and mountains. The official population is $26,000,000$ people, and the annual growth rate ranges 2.0% to 2.6%. In terms of urban areas, there are only two cities of significant size: They are Addis Ababa, the capital with a population of $1,000,000$ and Asmara with a population approaching 300,000. All other towns, including the provincial capitals, have a population of less than 50,000 . With 90% of its population living in the countryside, Ethiopia is basically an agricultural country. Ethiopia's economy is to a large extent dependent on farming and cattle raising. At present, Ethiopia's main crops are teff (staple food of the Central Highlands), maize, sorghum, wheat, barley, soybeans, coffee, oil, seeds, pulses, cotton and sugar cane.

Ethiopia's major industry is construction followed by textile, food and beverage processing and marketing. Most of the industries are located in or near the three largest cities, Addis Ababa, Smora and

* Map 1 - Ethiopia

Diredawa. The handful of major industries not located in these cities are widely scattered and include a refinery, a cement factory, a textile mill and two sugar factories. The country's only sea ports are at Assab and Massawa.

Ethiopia's main imports are machinery, vehicles, spare parts, crude oil, rubber, electrical supplies and building materials.

5.2. Ethiopia's transport network

Ethiopia's development has been hindered by the slow improvement and growth of its transportation network. In a country that covers 1,300,00 square kilometers, the total length of its transport network of roads and railroads is limited to $30,000 \mathrm{kms}$. The country has two lines of railroad, one from Massawa to Asmara and from Djibouti to Addis Ababa. The Ethiopian Highway Authority (EHA) is responsible for the maintenance of $7,000-8,000 \mathrm{kms}$ of existing all weather roads and some $16,000-20,000 \mathrm{kms}$ of dry weather roads including trails made "servicable" by the provincial authorities. The EHA is responsible for the planning, supervision and maintenance of the most additions to the road system. Domestic air transportation is minimal although about 50 towns over the country are serviced. Freight movement by air is limited to coffee shipments from a few regions that lack adequate surface transportation. The bulk of air traffic is passenger.

In regard to road transportation, the majority of roads have been built to connect the provincial capitals to Addis Ababa. The country has a severe lack of penetration and farm to market roads. This is
the result of inadequate budget and the difficult terrain as well the weather conditions prevailing in the central, west and Southwestern regions.

The Fourth Highway Program, with a planned level of investment in road construction during the second Five Year Plan of $E \$ 140,100,000$, had actual expenditures of $E \$ 130,100,000$, or 93% of the target. This tends, however, to mask the fact that the mileage of new roads actually constructed was under implemented by 40\%. The Third Five Year Plan proposes an investment in road construction amounting to $\mathrm{E} \$ 250,000,000$. According to the Plan provisions, the constructions of the AselaDodola road was to be undertaken. Our analysis and evaluation is concerned with this construction and its effect on the regions transport network.

5.3 Asela-Dodola road and the surrounding region

The Asela-Dodola project was envisioned primarily as a service road to be used by farmers in the area to deliver their products to large population center. The region the road is currently engaged in an agricultural development program which is expected to produce (or increase) surpluses in several crops. The region is now served by dirt tracks, which make it both difficult and expensive to deliver products to the markets. The EHA planned to make these markets accessible and thus spur development of the region.

For the purpose of describing the regions traffic characteristics, the area primarily affected by the road can be divided into two zones.

Map 2 - Existing Network of Asela-Dodola Region

The first zone is about 20 kms . wide and 70 kms long stretching from Asela to Meraro. The second zone is 20 kms wide and 51 kms long, beginning at Meraro and ending at Dodola. (see Map 2).

The region which encompasses the two zones is served by a network of five roads. They are: Mojo-Shashemane, Shashemane-Dodola, DodolaAsela, Asela-Nazreth, and Nazreth-Mojo. The Shashemane-Dodola road (76 kms) is a gravel road in good condition. The Mojo-Nazreth road (24.7 kms) and the first 16 kms. of the Nazreth-Asela road are highly designed, bituminous in good condition. The other 62 kms . of the Nazreth-Asela road is gravel and in good condition. The Mojo-Shashemane road (182 kms) is bituminous surfaced and in fair condition. The road we are primarily concerned with, Asela-Dodola, is an earth track, most of which is washed out during the rainy season. While the section from Asela to Meraro is in fair shape, the section from Meraro to Dodola is passable only with 4-wheel drive vehicles even during the dry season. It is almost impossible to travel the length of the road during the wet season; as such there is no through traffic during that part of the year. On the network, the majority of the vehicles using the link is through traffic having neither its origin nor destination within the region served. The purpose of the planned road is to provide a shorter, faster route for through traffic and provide an access to markets for the agricultural surpluses of zones one and two. The agricultural development proqram now in proqress is expected to increase the freight traffic originating in the two zones. Also, an increase in personal income is likely to encourage more passenger traffic. The road improvement is also
seen as part of Ethiopia's continuing effort to upgrade its transportation network.

5.4 Feasibility analysis of the road by Sauti consultants

The feasibility analysis of the Asela-Dodola road's potential for upgrading was conducted by Sauti (42) in 1969 and 1970. The road had earlier been investigated by the Ethiopian Highway Authority (EHA) to determine the feasibility of upgrading the road to a gravel, secondary road (see EHA road standards, table \#5.). The information from this investigation was combined with information from the General Road Study (43) and their own investigation served as a data base for the study. The options that were to be investigated were: optimal size (feeder, secondary or primary standard), gravel vs. surface treated, optimal timing of the project and labor intensive vs. capital intensive construction. Several assumptions were made to facilitate the study. Among the assumptions were: complete information for traffic forecasts are certain, inelastic transport demand, and inclusion of only direct benefits (user savings and maintenance savings). The investigation was to cover a twenty year life of the project.

5.4.1 Construction and maintenance

As previously noted the EHA had evaluated the feasibility of upgrading the Asela-Dodola road to a gravel, secondary road. The Sauti team had this information available when their study began. After reviewing the EHA's calculation for accuracy, it was determined that these calculations could be used as a basis for estimation of earthwork. The EHA's calculations were based on a secondary road so it was necessary

Table 5.1 Road Design Standards

Toporraphy	Flat			Rolling			Mountainous		
Secondary	$\begin{aligned} & \text { Pri- } \\ & \text { mary } \end{aligned}$	Secondary	Feeder	$\begin{aligned} & \text { Pri- } \\ & \text { mary } \end{aligned}$	Secon- dary	Feeder	Pri-	Secon- dary	Feeder
Design speed (km / h)	100	90	80	80	70	60	50	40	30
Width of pavement	7	6	5	7	6	5	7	6	5
Potal width (m)	8	7	6	8	7	6	8	7	6
Radius: minimum (m)	500	300	250	300	175	125	175	100	60
Radius: mirimum (exceptional	300	175	125	175	100	60	100	60	40
Maximum gradient	4	4	5	4	5	6	5	6	7
Maximum exceptional gradient	6	8	8	7	9	9	8	9	10

to determine the variance in earthwork quantities between primary, secondary and feeder standards roads. The variance in earthwork quantities could then be applied to determine quantities for feeder and primary roads. Investigations were made by the Sauti team to determine the unit cost of different construction operations (for gravel and for surface treatment), was also determined. These costs with that of the clearing effort gave the costs for the entire operation.

In terms of road maintenance, the Sauti team used a, estimation technique to determine the costs. The technique is an application of the conclusions of the Highway Research Board Bulletin 155, January 1956. The procedure takes into account the type of pavement, traffic intensity and the road width in determining the annual average maintenance costs on a per kilometer basis. The "basic maintenance costs" (minimum maintenance costs for a certain type surface encountered up to a certain traffic level) was determined through investigations with the EHA; this basic maintenance cost with adjustment factors for road width and traffic above a certain level produces an annual cost per kilometer for routine and periodic maintenance.

5.4.2 Traffic and vehicle operating costs

The Sauti team estimated traffic based on the traffic data of the General Road Study and the expected traffic due to an agricultural development program in the area. The increased level of production expected in the area was determined from yield/hectare estimates. The surplus was determined by subtracting from this figure, the local consumption and the loss due to spoilage and re-utilization. The surplus
was then allocated to deficit zones in ten ton trucks to determine the increased traffic from agricultural activity. The investigating team also considered diversion of traffic from other roads in the network in their estimation of traffic. The traffic growth was presented in the form of projected average daily traffic (according to three vehicle types) for 1970, 1980, and 1990. The calculation of vehicle operating cost was through the use of "virtual lengths" of road. Information was already available for the costs of operating each vehicle type.

5.4.3 Conclusions

The Sauti team investigators concluded that the best alternative was a primary road with bituminous surface treatment for the first seventy kilometers, Asela to Meraro, and a secondary road with bituminous surface treatment for the last fifty kilometers, Meraro and Dodola. The optional opening year would be 1981 if the road was constructed with capital intensive technique and 1977 if constructed with labor intensive technique. The investigators concluded that staged construction does not improve the solution because of the slow growth of traffic and the major benefits accruing after the second stage of construction. In determining the net benefits, the benefit/cost ratio, the cost of construction and savings in user cost and maintenance were discounted to the opening year of the road. The results of the calculations using a 10% discount rate are shown below.

Table 5.2.a Base network Links characteristics

Link	Length (kms)	$\begin{aligned} & \text { Capa- } \\ & \text { city } \\ & \text { (PCU/hr) } \end{aligned}$	Design speed (Kms/hr)	Rise and fall ($\mathrm{m} / 100 \mathrm{~m}$)	Costs (inE			
					Financial	Economic	Foreign Exchange	Skilled Labor
1: Moijo-Nazreth	25.0	2000	95	1.7	50,000	40,000	20,000	1,000
2: Nazreth-Asela	73	1550	75	4.8	58,000	48,000	20,000	3,000
3: Asela-Meraro	71	900	45	6.9	46,000	35,500	1,000	500
4: Meraro-Dodola	49	900	45	6.9	32,000	24,500	1,000	500
5: Dodola-Shashmere	73	1370	80	4.0	58,000	47,000	20,000	1,000
6: Shashmene-Moijo	182	1750	95	1.7	364,000	291,000	70,000	5,000

Table 5.2.b Base Network Vehicle Operation on Links

	Link	CAR			BUS			TRUCK		
No.		Travel Time (in hrs。	Finan- cial cost (inES)	Economic costs (infs)	Travel Time (in hrs)	Finan- cial cost (inES)	$\begin{aligned} & \text { Econo- } \\ & \text { mic } \\ & \text { cost } \\ & \text { (inE } \$ \end{aligned}$	$\begin{aligned} & \text { Travel } \\ & \text { Time } \\ & \text { (in } \\ & \text { hrs) } \end{aligned}$	Financosts (inE\$)	
1	MoijoNazreth	0.40	4.30	2.20	0.45	26,90	18,70	0.45	18.0	13.50
2	NazrethAsela	1.20	15.0	7.60	1.40	61.50	42.60	1.40	42.0	30.10
3	AselaMeraro	1.80	23.30	14.40	2.0	104.40	79.50	2.0	68.30	56.70
4	MeraroDodola	1.6	16.0	9.0	1.9	69.0	56.0	1.9	47.0	40.0
5	DodolaShashmene	1.40	19.50	11.20	1.80	68.0	62.0	1.80	48.0	45.0
6	ShashmeneMoijo	3.10	35	22	3.50	130	113	3.50	93	84

Capital Intensive
Net Benefit (E $)$

Benefit/Cost Ratio

Cost of Construction

(financial)	$6,020,000$	$7,139,000$
(economic)	$4,174,000$	$5,015,000$

5.5 Applications of the Model

5.5.1 Inputs

5.5.1.1 Network configuration

The network considered is the one consisting of the links MojoShashemane, Shashemane-Dodola, Dodola-Meraro, Meraro-Asela, AselaNazreth and Nazreth-Mojo. Only links Dodola-Meraro and Meraro-Asela are to improved. The fiqure 5.1 represents the network with its links and nodes numbers. The network confiquration inputs are handled by the Input Data Processor.

5.5.1.2 Links characteristics and strateqies

Also, the link characteristics and the link strateqies are handled by the Input Data Processor; however, some of the data will be provided by the HCM performing the link simulation, when its modification will be done.

Table 5.2 presents the link characteristics if the base network strategy will be applied. The characteristics, being the same for all years of the time horizon, are being presented only for year 1.
-106-

Figure 5.1: Representation of the Asela-Dodola Region's Network

Table 5.3.a. Link \#3 Characteristics, according to strategy followed

Strategy Followed	Year (s)	Capacity (PCU/hr)	Design speed (kms/hr)	Length (kms)	Rise and Fall (m/ 100m)	Cost (inE \$)			
						Financial	Economic	Foreign Exchange	Skilled Labor
1: No change	1.20	900	45	72	6.9	46,000	35,500	1,000	500
2: Capital intensive techniques, Primary Road Standards	1	2000	85	72	4.5	9,640,000	6,560,000	6,508,000	1,000,000
	2-20	2000	85	72	4.5	142,000	113,6000	40,000	3,500
3: Capital Intensive tech., sec. road stand.	1	1750	75	71	4.5	8,000,000	5,400,000	6,110,000	900,000
	2.20	1750	75	71	4.5	122,000	103,000	35,000	3,000
	1	1550	60	71	4.5	6,600,000	4,400,000	4,600,000	800,000
	2-20	1550	60	71	4.5	100,000	195,000	28,000	2,500
5: Labor intensive tech.,: primary road stand.	1	2000	85	71	4.5	7,630,000	5,300,000	3,800,000	500,000
	2-20	2000	85	71	4.5	130,000	105,000	30,000	1,000

Continuation of Table 5.3.a

Strategy Followed	Years(s)	Capacity (PUC/hr)	Design Speed (kms/hr)	$\begin{gathered} \text { Length } \\ (\mathrm{kms}) \end{gathered}$	Rise and Fall (m/ 100m)	Cost (inE\$)			
						Financial	$\begin{gathered} \text { Econo- } \\ \text { mic } \end{gathered}$	Foreign Exchange	Skilled Labor
6: Labor Intensive	1	1,750	75	71	4.5	6,400,000	4,400,000	3,170,000	400,000
Road Standards	2-20	1,750	75	71	4.5	113,000	93,000	25,000	800
7: Labor Intensive	1	1,550	60	71	4.5	5,3000,000	3,600,000	2,600,000	300,000
Feeder Road Standards	2-20	1,550	60	71	4.5	100,000	85,000	20,000	600

Table 5.3.b Vehiclesoperation on link \#3 according to strategy followed

	CAR			BUS			TRUCK		
Link Strategies	Travel Time (in hrs.)		Economic costs (inE\$)	Travel Time (in hrs)	Financial costs (inE\$)	$\begin{gathered} \text { Economic } \\ \text { cost } \\ \text { (inE } \$ \text {) } \end{gathered}$	Travel Time (in hrs)	$\begin{aligned} & \text { Financial } \\ & \text { costs } \\ & \text { (inE\$) } \end{aligned}$	Economic costs (inE\$)
1	1.80	23.30	14.40	2.0	104.40	79.50	2.0	68.30	56.70
2,5	0.95	13.50	7.00	1.10	57.0	40.0	1.10	39.0	29.00
3,6	1.01	14.40	7.50	1.16	60.0	4r. 50	1.16	41.0	30.0
4,7	1.30	19.0	10.15	1.50	80.0	55.7	1.50	54.0	40.0

Table 5.4.a Link \#4 Characteristics according to strategy followed

Strategy Followed	Years(s)	Capacity (PCU/hr)	Design Speed (kms/hr)	Length (kms)	$\begin{aligned} & \text { Rise and } \\ & \text { Fall } \\ & (\mathrm{m} / 100 \mathrm{~m}) \end{aligned}$	Cost (inE\$)			
						Financial	Economic	Foreign Exchange	skilled Labor
1: No change	1-20	900	45	49	6.9	32,000	24,500	1,000	500
```2: Capital intensive technique: Primary Rd. Standards```	1	2000	85	49	4.5	6,650,000	4,500,000	4,850,000	700,000
	2-20	2000	85	49	4.5	98,000	78,000	25,000	2,500
3: Capital   Intensive Techniques: Secondary Road Standards	1	1,750	75	49	4.5	5,500,000	3,730,000	4,200,000	500,000
	2-20	1,750	75	49	4.5	90,000	72,000	20,000	2,000
4: Capital   Intensive   Technique:   Feeder Rd.   Standards	1	1,550	60	49	4.5	4,550,000	3,000,000	1,900,000	300,000
	2-20	1,550	60	49	4.5	83,000	67,000	15,000	1,500
5: Labor intensive tech., Primary Rd. Standards	1	2,000	85	49	4.5	5,260,000	3,640,000	2,650,000	200,000
	2-20	2,000	85	49	4.5	90,000	73,000	20,000	600

Continuation of Table 5.4.a

Strategy Followed	Years(s)	Capa-   city   (PCU/hr)	Design Speed (kms/hr)	Length   (kms)	$\begin{aligned} & \text { Rise and } \\ & \text { Fall (m/ } \\ & 100 \mathrm{~m}) \end{aligned}$	Cost (inE\$)			
						Financial	Econo-   mic	Foreign Exchange	Skilled Labor
6: Labor   Intensive   Tech., Secondary Road Standars	1	1,750	75	49	4.5	4,400,000	3,000,000	2,200,000	200,000
	2-20	1,750	75	49	4.5	82,000	67,000	17,000	500
7: Labor   Intensive Technique Feeder Rd Standards	1	1,550	60	49	4.5	3,600,000	2,500,000	1,800,000	100,000
	2-20	1,550	60	49	4.5	75,000	61,000	14,000	400

Table 5.4.b Vehicles operation on Link\#4 according to strategy followed

	CAR			BUS			TRUCK		
Link Strategies	Travel   Time   (in hrs)	Finan-   cial   costs   (inE\$)	Econo-   mic   costs   (inE\$)	Travel Time (in hrs)	Finan-   cial   costs   (ine\$)	Econo-   mic   costs   (inE \$)	Travel   Time   (in hrs )	Finan-   cial   costs   (inE\$)	$\begin{aligned} & \text { Economic } \\ & \text { costs } \\ & \text { (inE\$) } \end{aligned}$
1	1.6	16.0	9.0	1.9	69.0	56.0	1.9	47.0	40.0
2,5	0.65	9.0	4.70	0.75	38.0	27.0	0.75	25.50	19.00
3,6	0.70	10.0	5.10	0.80	41.0	28.70	0.80	28.0	20.0
4,7	0.90	13.0	7.0	1.02	55.0	38.50	1.02	38.0	27.30

Tables 5.3 and 5.4 present the characteristics of links 3 (AselaMeraro) and 4 (Meraro-Dodola) respectively, according to the proposed link strategies. The data used in the application of the model is the same with what the Sauti consultants used,with some differences in vehicle operating costs.
5.5.1.3 Demand

The demand is given on a $0-\mathrm{D}$ pair basis in number of vehicles, Three types of vehicles have been considered: a 5-passengers car, a 45-50 passengers bus and a 7.0 ton-truck. The load factors, common for all O-D pairs demands, are $50 \%$ for passenger cars and $75 \%$ for bus and trucks. Also, common are: the elasticity of demand, being $1 \%$ for all vehicles types and the value of travel time being:E $\$ 0.24 /$ pass-hr for cars and bus and ES. $001 /$ ton-hr for the trucks.

Table 5.5 presents the demand in vehicle numbers for each O-D pair and the maximum price the user is willing to pay for transport in ES/vehicle.

It should be noticed that the demand although shown as originating from Moijo, it is actually originating from Addis Ababa, the link Addis-Ababa-Moijo being omitted for simplicity. Furthermore, it is assumed that the traffic, having destinations at intermediate points on the links, it is not considered. The data about the data has been derived from the information provided by the Sauti report. It is qiven for the opening year 1977 and it is updated every 5 years. The assumptions that the demand will remair constant over the 5 year period,

Table 55.. Demand Between O-D Pairs

	Number of cars				Number of Busses				Number of Trucks				Maximum price to be paid for transport (inE\$/veh)		
O-D Pair	Years				Years				Years				Cars	Busses	Trucks
	$1-4$	5-9	10-14	15-20	1-4	5-9	10-14	15-20	1-4	5-9	10-14	15-20			
1-2	8	11	15	20	4	6	9	11	7	9	13	15	8.	35.	25.
1-3	42	60	75	90	20	30	45	60	30	45	60	80	30.	110.	70.
1-4	9	12	17	22	4	6	8	10	4	6	8	10	50.	230.	135.
1-5	7	10	15	20	15	20	30	40	28	35	50	65	60.	250.	150.
1-6	12	20	30	40	7	10	15	20	4	5	7	10	40.	160.	100.
2-3	25	30	40	50	15	20	30	40	15	20	30	40	20.	80.	50.
3-4	8	12	15	18	6	8	10	14	7	10	13	18	25.	125.	70.
3-5	11	15	20	26	5	6	8	10	20	28	32	40	24.	166.	95.
4-5	11	15	20	28	3	4	6	8	15	20	28	35	9.	70.	39.
5-6	3	4	6	8	6	8	10	12	6	7	9	11	25.	90.	55.

made by the Sauti study will prevail in our study too. All inputs are handled by the Input Data Processor, i.e., they are provided exogeneously, since the interface of the system with the HCM has not yet been accomplished.

### 5.5.2. Network strategies generation

From the provided 7 strategies for the two links: Asela-Meraro and Meraro-Dodola and the 5 years allowable delay in implementing a strategy, the network strateqies generator, comes out with 29 feasible network strategies. Each network strategy is composed of link strategies and the corresponding opening year. They are presented in Table 5.6.

### 5.5.3. The network strategies evaluation

Table 5. 6 presents the results of the evaluation of the 29 network strategies. They are ranked according to their net present value of their costs and benefits. The NPV is given for discount rate $10 \%$ and considering as present the openinq year 1977.

### 5.5.4. Conclusions

Our approach proposes as the best alternative, the network strategy applying labor intensive techniques for the construction of both links. When the discount rates are $10 \%$ and $12 \%$ the optimal is the one that proposes the two roads to be constructed to a secondary road design standards. However, when the discount rate is $8 \%$ the optimal alternative turns out to be the one that proposes the Asela-Meraro road to

Table 5.6. Network Strategies

Rank	$\begin{aligned} & \text { N.S.\# (as } \\ & \text { Generated) } \end{aligned}$	$\begin{aligned} & \text { NPV (inES) } \\ & \text { (Dis- } \\ & \text { count rate } \\ & 10 \% \text { ) } \end{aligned}$	Description of N.S.			
			Link 3		Link 4	
			L.S. \#	Opening year	L.S. \#	$\begin{gathered} \text { Opening } \\ \text { year } \end{gathered}$
1	29	14,438,980.	6	1977	6	1977
2	25	14,358,145.	6	1977	5	1977
3	24	14, 117,486	5	1977	6	1977
4	1	14,036,645	5	1977	5	1977
5	28	13,667,174	6	1977	3	1977
6	27	13,283,984	6	1977	2	1977
7	22	13,223,532	5	1977	3	1977
8	19	13,143,983	3	1977	5	1977
9	21	13,062,926	5	1977	2	1977
10	16	12,693,551	2	1977	6	1977
11	14	12,662,880	2	1977	5	1977
12	18	12,283,983	3	1977	2	1977
13	6	11,963,551	2	1977	3	1977
14	2	11,802,898	2	1977	2	1977
15	15	10,038,860	2	1977	5	1982
16	9	9,576,466	2	1982	3	1982
17	8	9,544,378	2	1982	3	1977
18	7	9,525,780	2	1977	3	1982
19	5	9,502,151	2	1982	2	1982
20	3	9,451,621	2	1977	2	1982
21	4	9,307,841	2	1982	2	1977
22	26	7,038,169	5	1977	7	1977
23	23	6,538,165	5	1977	4	1977
24	17	5,778,170	2	1977	7	1977
25	10	5,278,158	2	1977	4	1977
26	13	4,536,436	2	1982	4	1982
27	11	4,485,769	2	1977	4	1982
28	12	4,199,106	2	1982	4	1977
29	20	2,779,301	5	1977	1	-

Explanation of symbols in page

Continuation of Table 5.6:
Explanations of symbols:
L.S. = Link Strategy ; N.S. = Network Strategy
L.S. \#l: No improvement
L.S. \#2: Construction to primary road with capital intensive techniques
L.S. \#3: Construction to secondary road with capital intensive techniques
L.S. \#4: Construction to feeder road with capital intensive techniques L.S. \#5: Construction to primary road with labor intensive techniques
L.S. \#6: Construction to secondary road with labor intensive techniques
L.S. \#7: Construction to feeder road with labor intensive techniques.
be constructed according to secondary road design standards and the Meraro-Dodola road according to primary road design standards. In all cases the opening year turns out to be 1977, i.e., no delay in initial construction.

Since the first 4 best alternative network strategies have resulted close NPV's all four are included in Tables 5.7, 5.8, and 5.9, where the NPV'sare computed for 3 discount rates $8 \%, 10 \%$ and $12 \%$ and possible delays in initial construction are considered as new alternatives network strategies. Tables 5.7. 5.8 and 5.9 give the total discounted costs, total discounted benefits and the NPV for each network strategy.

We conclude that the optimal network strategy will propose opening year 1977 and the roads to be constructed according to secondary road desiqn standards, since the $10 \%$ discount rate is the one more frequently applied in the evaluation of transport investment. Table 5.10 presents the traffic on the links of the network if the above network strategy is implemented.

The conclusions derived from the analysis are:
(1) The low demand for almost all O-D pairs, suggests that any change in the elasticity of demand will not increase the demand significantly. e.g. From Table 5.5., between Mojo and Asela the average daily traffic consists of 7 cars, 15 buses and 28 trucks. Considering the demand for trucks, the transport costs before the improvement were $129 \mathrm{E} / \mathrm{V} / \mathrm{vicle}$. If the optimal network strategy is implemented the new transport costs will be 93.60: E\$/vehicle.

TABLE 5.7 The 4 Best Network Strategies $=1,24,25,29$ Discount rate: $8 \%$

N.S. \#   Gas   Generated	Ope-   ning   Year	Total Discounted costs (inEs)	Total Discount Benefits (inE $)$	```Net Pre- sent Value (inES)```	Rank
1	1977	10,013,272	27,892,953	17,879,681	3
24	1977	9,142,776	27,008,457	17,865,681	4
25	1977	8,825,152	26,927,463	18,102,311	1
29	1977	8,127,528	26,215,814	18,088,286	2
1	1982	7,156,000	21,525,996	14,369,996	
24	1982	7,239,296	20,976,266	13,736,970	
25	1982	6,418,996	20,912,823	14,493,827	
29	1982	5,910,844	20,363,115	14,452,271	

Table 5.8 The 4 Best Network Strategies: 1,24,25,29
Discount rate $10 \%$

N.S. \#   (as Gene-   rated)	Opening year	Total Discounted costs (inE\$)	Total   Discounted   costs (inE \$)	Net Present value (E\$)	Rank
1	1977	9,716,500	23,753,145	14,036,645	4
24	1977	9,026,310	23,143,796	14,117,486	3
25	1977	8,716,120	23,074,265	14,358,145	2
29	1977	8,025,930	22,464,910	14,438,980	1
1	1982	6,584,540	17,699,021	11,114,481	
24	1982.	6,116,250	17,247,462	11,131,212	
25	1982	5,907,500	17,195,010	11,287,510	
29	1982	5,439,210	16,743,396	11,304,186	

Table 5.9 The 4 Best Network Strategies: 1,24,25,29 Discount rate: 12\%

$\begin{aligned} & \text { N.S. \# } \\ & \text { (as Gene- } \\ & \text { rated) } \end{aligned}$	Opening year	Total discounted costs (inE \$)	Total discounted benefits (ine $\$$ )	Net present value (ine $\$$ )	Rank
1	1977	9,616,600	20,619,080	11,002,480	4
24	1977	8,932,404	20,090,481	11,1.58,077	3
25	1977	8,628,208	20,029,991	11,401,783	2
29	1977	7,944,012	19,634,130	11,690,118	1
1	1982	6,080,580	14,696,591	8,616,011	
24	1982	5,647,566	14,321,924	8,674,358	
25	1982	5,456,232	14,278,199.	8,821,967	
29	1982	5,023,218	13,903,539	8,880,321	

$$
-122-
$$

Table 5.10 Average daily traffic on links
(Simulated by the model for the optimal network strategy 29)

Links	Vehicle   Type	Years			
		1977	1982	1987	1992
MoijoNazreth	cars	66	93	122	152
	bus	43	62	92	121
	trucks	69	95	131	170
	in PCU's	431	612	849	1100
Nazreth-   Asela	cars	83	112	147	182
	bus	54	76	113	150
	trucks	77	106	148	195
	in $\mathrm{PCU}^{\prime} \mathrm{s}$	1183	1725	2339	3079
AselaMeraro	cars	35	49	67	86
	bus	30	40	56	74
	trucks	59	79	103	133
	in P.C.U.'s	658	1037	1180	1535
MeraroDodola	cars	29	40	55	74
	bus	23	30	44	58
	trucks	63	83	110	140
	in P.C.U.'	631	969	1133	1460
DodolaShashemane	cars	3	4	6	8
	bus	6	8	10	12
	trucks	6	7	9	11
	in P.C.U.'s	113	139	181	219
ShashemaneMoijo	cars	12	20	30	40
	bus	7	10	15	20
	trucks	4	5	7	10
	in P.C.U. ${ }^{\text {'S }}$	46	69	98	132

Applying the equation 3.19 about the new demand due to decrease in transport costs, we have:

$$
T^{\prime}=28 *\left(\frac{93.6}{129}\right)^{-E L A}
$$

The new demand is changing as the elasticity changes:

$$
\begin{aligned}
& \text { ELA }=0 . \text { (inelastic demand) }: T=28 \text { (no change) } \\
& \text { ELA }=0.1 \text { (elastic demand) } T=28.9 \text { (3.2\% increase) } \\
& \text { ELA }=0.01 \text { (approaching inelastic demand) }
\end{aligned}
$$

$$
T=28.09 \text { (.32\% increase) }
$$

(2) Any postponement of the initial construction is not worth it, since the traffic is at such high level that it pays to improve the road immediately.
(3) The case of constructing the road according to feeder road design standards does not have to be considered in any further analysis, since it comes up with low NPV.
(4) Congestion did not occur at any link. (It may be seen also in Table 5.10 how low the traffic is on the links).
5.6 Comparison with the Sauti study

The Sauti investigators concluded that the best alternative was a primary road for Asela to Meraro and a secondary road from Meraro to Dodola. They set opening year 1977 if the road is constructed using labor intensive techniques and 1981, if capital intensive techniques are used. Our approach concluded that the best alternative was a secondary road for both Asela-Meraro and Meraro-Dododla. This results
from: (i) not considering any maintenance costs over the years in the Sauti study for the improved road; however ours takes them into account,
(ii) Our approach considers the demand on a O-D pair basis and computes the benefits attributed to each O-D pair; they consider demand on a link-basis and they compute the benefits resulting from the travel on the each link,
(iii) As an evaluation criterion the Sauti Consultants have used the Benefit/cost ratio; our approach uses the net present value criterion. According to our model the alternative that the Sauti study proposes as the optimal has a NPV by $E \$ 321,500$ less than the one of the best alternative proposed by our approach. Therefore, we may conclude that both alternatives are acceptable for implementation, and it is up to the decision maker, to choose the one proposed by the approach he thinks best.

## CONCLUSIONS, RECOMMENDATIONS

The development model has found to be a very useful tool for the network strategies evaluation. It is capable of generating the 29 most interesting network strategies, to simulate the network activities to evaluate them and to rank them. Work that may require in a consultant firm months of computation and analysis by engineers, it may be done in few minutes and with minimal expenses applying the developed model.

The presented case study showed the model's capabilities efficiency. The comparison with the Sauti study found it in a better position.

Although the model, as it has been developed, is appropriate for less developed countries, some additions would be useful. The issue of demand generation is an important one. A model may be developed to generate the demand not only according to transport costs flunctuations, but according to population growth, the per capital income changes, etc. The issue of other modes competing for the same O-D pair may be considered. As a result the demand for the $0-D$ pair will be distributed to different modes according to the offered transport prices.

The issue of multi-regional distribution of the same commodity will complicate the model, but it would be very useful. The nature of this is that a truck may not follow the minimum cost route for each $0-D$ pair having to distribute a payload of a commodity to more than one distribution points. It will follow the route that will maximize the revenues of the shipper (how much he is going to get selling the commodity minus the costs of transport).

Another issue to be addressed in the possible redistribution of traffic after the first assiqnment if congestion occurs to some links.

However if all these are included in a model, it will become very complicated, sophisticated and hard to be applied in a less developed country, since it would require disaggregate data, sophisticated computer facilities and a lot of planning.

## APPENDIX A

DRAFT USER'S MANUAL

The Network Evaluation Model consists of four computer packages: the Highway Cost Model, the Input Data Processor, the Network Strategies Generator and the Network Strategies Evaluator. A description of each and its subroutines appear in Chapter 4 and Appendix $B$ of this document. A listing of the computer programs is presented in Appendix $C$.

The Network Evaluation Model (NEM) allows a user to investigate, in a searching, probing manner, the behavior of a rural highway network to the consequences of investment criteria and constraints. It is a data base system, thus allowing the user to reuse prior information and results, to change small amounts of information for sensitivity analysis, and to direct the evaluation process himself. Each processor may be applied numerous times. Constraints on this probing an minimal, and logical. Network strategies must be generated prior to evaluation, the base network against which alternative strategies are compared must be evaluated first. Demand and user cost data must be input prior to evaluation and link strategy data provided for generation. Whenever a process is executed the most recent and existing data and intermediate results are used.

1. Ianguage Conventions for the Model's Input

The language used for the Input to NEM is a flexible problem oriented language. It allows great freedom in the ordering and presentation of input. Each communication to the computer program is given through a statement called a command. Each of these commands either supplies some data to the program or instructs it to perform some calculations on the
data already specified, or both.
There are three basic elements that are used to make up the various commands. They are:
(a) Integers: These are numbers that do not contain a decimal point. Examples: 1, 38, +999, -108. Possible errors (nonintegers): 6.0 - This contains a decimal point 10,000 - This contains a comma. If a sign is omitted, it is assumed to be plus ( + ). The notation used for the integers is: $i_{1}, i_{2}, \ldots$, or $n_{1}, n_{2}, \ldots$ in the language description.
(b) Real numbers: These must contain a decimal point. Only normal decimais are accepted in the commands. They consist of digits only, a decimal point, and optionally a sign.

Example: 6.03 .14 -2. . 003
If a sign is omitted, it is assumed to be plus(+). The notation used for the real numbers for the language description is $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$ or $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots$ or $\mathrm{z}_{1}, z_{2}, \ldots I_{\mathrm{n}}$ some commands integers may be used where real numbers are expected.
c) words: Various words and single letters have specific meaning as input to the models. These words may be used in commands and are not chosen by the user. They are symbols that are recognized by the processors. Words are shown in the language description in capital letters. If a word in the language description is in parenthesis, this means that the word may be omitted or included. Unless its inclusion is
merely cosmetic, the consequences of including or omitting a word is explained in the description of the command. A word may be consisted of letters and numbers. Since the processors read only the three first character of each word, any additional characters may be omitted. Words are also used in special ways as data labels, identifying the meaning of the data value immediately following the label. For convenience, data labels may be ommitted if the standard order (given in the command description) is used. If only selected data values are given or the data is given in a different sequences, labels are needed. The one exception is that labels are not needed, if the standard order is used, but proceeds through only part of the potential input. Note: non-inputted data in a command remains unchanged from its prior value, unless otherwise stated in the command description. Labels are identified with brackets, [ ], in the command descriptions.

The input commands for the processors must be punched onto cards and submitted as program data. In doing so, all 80 columns of the card may be utilized, in free format. A blank and/or comma must separate each field in a command. If more than 80 columns are needed for any command, the user will use the continuation symbol $\$$ at the $80^{\text {th }}$ column of the card and continue on the next. If the user desives to insert comments into the input data, he may punch in the column 1 of any card the $\$$. This card is taken as a comment card, echo printed on the output listing,
and its contents,
2. Language Description for the Model's Input. Instructions for its Application
2.1 Data Input Processor

The commands are divided into six categories:
(1) System commands, (2) Network configuration, (3) Link Characteristics, (4) Demand Input, (5) Budget input and (6) Additional minor data input commands.

### 2.1.1 System commands

At the beginning of a run, the user must indicate whether he wants to start accumulating data, or supplement or modifying prior data. He does so using one of the following two commands:

INITIALIZE: performs initialization of the files and the zeroing of any previously stored data. The data input node is then assumed to be ADD.

UPDATE: initializes without zeroing data, in preparation for new input which will add to, change or delete prior data. The ADD mode is also assumed initially. Data may be input not only to add new information to the data base, but also to change or delete prior input. An input mode is therefore identified with one of the following commands, and all subsequent input so treated until the mode is changed. CHANGE: part or all of some existing data is to be changed. If data to be changed does not exist, a warning message is given and the data added as new.

DELETE; used when the stored data is to delected. PRINT: used to print all the data stored on the files. FINISHED: used to terminate execution.

STORE: used to store the basic data on the files.

These commands are one-word commands; each must appear on a separate card.

### 2.1.2 Network Information

The network configuration is input with the NETWORK and LINK DATA commands :

NETWORK [LINKS] $i_{1}$ [NODES] $i_{2}$ [REGIONS] $i_{3}$
where:
$i_{1}$ : the number of links in the network
$i_{2}$ : the number of nodes in the network
$i_{3}$ : the number of regions.
Note that the words and their corresponding numbers may change order. LINK DATA [LINK] $i_{1}$ [BEGINS] $i_{2}$ [CONCLUDES] $i_{3}$ [REGION] $i_{4}$ [FEASIBLE STRATEGITSI END
where:
$i_{1}=$ link number
$i_{2}=$ node, where link begins
$i_{3}=$ node, where link concludes
$i_{4}=$ region, where link belongs
$i_{5}=$ total number of link strategies.

The data for the link characteristics must begin with the word LINK or its number. If the user wants to change the order of the other numbers or ommit one of them, he must use, in front of all numbers, the corresponding word. Otherwise, he may onmit the words, but keep the numbers in the specified order.

END denotes the end of the command, i.e. the data about links connectivity.
2.1.3 Link Characteristics

Following is the way to input the data about: the travel time, the financial and economic costs of the vehicles travelling on the links, the costs resulting from any construction and maintenance activities on the links and the link characteristics, such as capacity, design speed and rise and fall.

$$
\begin{aligned}
& \text { LINK } i_{1} \text { [STRATEGY] } i_{2} \text { [INDEX] } i_{3} \text { [SLIPPAGE] } i_{4} \\
& \left(\eta_{i}\right) \text { ATT [V1] } x_{1}[\mathrm{~V} 2] \mathrm{x}_{2} \text { [V3] } \mathrm{x}_{3} \text { [V4] } \mathrm{x}_{4} \text { [V5] } \mathrm{x}_{5} \text { [V6] } \mathrm{x}_{6} \text { [V7] } \mathrm{x}_{7} \\
& \left(\eta_{i}\right) \text { EOC [v1] } x_{1}[v 2] x_{2}[v 3] x_{3} \text { [V4] } x_{4} \text { [V5] } x_{5} \text { [v6] } x_{6}[v 7] x_{7} \\
& \left(\eta_{i}\right) \text { FOC [V1] } x_{1}\left[\text { [V2] } x_{2}[v 3] x_{3} \text { [V4] } x_{4} \text { [V5] } x_{5} \text { [V6] } x_{6}[V 7] x_{7}\right. \\
& \left(\eta_{i}\right) \quad[\mathrm{ETC}] \mathrm{y}_{1} \text { [FTC] } \mathrm{y}_{2} \text { [FOR] } \mathrm{y}_{3} \text { [SKL] } \mathrm{y}_{4} \\
& \left(\eta_{i}\right) \text { [LEN] } z_{1}[C A P] z_{2}[\operatorname{RAF}] z_{3}[D S P] z_{4}
\end{aligned}
$$

END
where:
$i_{1}=$ link number
$i_{2}=$ link strategy number
$i_{3}=$ critical index of the link strategy
$i_{4}=$ maximum allowable delay indicative of the strategy
If not given, $i_{2}$ is assumed equal to $I_{1} i_{3}$ and $i_{4}$ equal to zero.
$\eta_{i}=$ the year number. Data need be given in the ADD mode only for years when values change. Intermediate years up to the time horizon are automatically inserted with prior year values.

ATT = average travel time over the link in hours, for each vehicle type.
$[V N]_{n}=$ denotes the average travel time $x_{n}$ in hours of vehicle type vn. Up to 7 vehicle types may be used. EOC $=$ economic costs of vehicle operation over the link, with $x_{n}$ in \$/vehicle. FOC $=$ financial costs of vehicle operation over the link, with $x_{n}$ in \$/vehicle.
$y_{1}=$ economic costs of construction and maintenance activities on the link in given year (in \$).
$y_{2}=$ financial costs for the same.
$y_{3}=$ foreign exchange costs for the same.
$y_{4}=$ skilled labor costs for the same.
$z_{1}=$ link's length (in kms).
$z_{2}=$ link's capacity (in PCU/hr)
$z_{3}=$ link's rise and fall (in $m / 100 \mathrm{~m}$ )
$z_{4}=$ link's design speed (in kms/hr).

It should be pointed out that only the first data card for a year must contain the year. The order of the cards for a year may be altered, and not all cards given for a year. Labels must be used on the construction and maintenance cost and link characteristics cards. In the ADD mode, years must be given in accending order. Except for the header data and the years, both integer and real numbers are acceptable for the data.

### 2.1.4 Demand

The data about demand is given by O-D pair using the multi-statement DEMAND command.

DEMAND (0) $\mathrm{i}_{1}$ (D) $\mathrm{i}_{2}$
$n_{i} \quad$ VOLUME [V1] $x_{1}$ [V2] $x_{2}$ [V3] $x_{3}$ [V4] $x_{4}$ [V5] $x_{5}$ [V6] $x_{6}$ [V7] $x_{7}$

ELASTICITY $\quad \therefore \quad[v 1] x_{1}[v 2] x_{2}$ [V3] $x_{3}[v 4] x_{4}$ [v5] $x_{5}$ [v6] $x_{6}$ [V7] $x_{7}$

COMMODITY PRICE, [V1] $x_{1}$ [V2] $x_{2}$ [V3] $x_{3}[V 4] x_{4}$ [V5] $x_{5}$ [V6] $x_{6}$ [V7] $x_{7}$
tIME VALUE
[v1] $x_{1}$ [V2] $x_{2}$ [V3] $x_{3}$ [V4] $x_{4}$ [V5] $x_{5}$ [V6] $x_{6}$ [V7] $x_{7}$

LOAD FACTOR
[v1] $x_{1}[V 2] x_{2}$ [v3] $x_{3}$ [V4] $x_{4}$ [v5] $x_{5}$ [V6] $x_{6}$ [v7] $x_{7}$
END
where:

$$
\begin{aligned}
& i_{1}=\text { origin node } \\
& i_{2}=\text { destination node } \\
& \eta_{i}=\text { the year number for the volume data. }
\end{aligned}
$$

Volume data may be given for each vehicle type either in vehicles per day or, for truck types, in tons per day. This latter form is designated by the user by issuing a command to this effect prior to demand input. This is currently an OPTION 1 command. In the ADD node, demand volumes must be given for assending years, and after the first only for those years when values change from the previous year.

The remaining data is considered to be year independent. The elasticity is given in terms of the percentage change in demand due to a percentage change is user costs over the links. The commodity price is the maximum transportation cost that would result in any shipment between O-D pair, given in demand units. These values are used to determine whether or not a demand is likely to be fulfilled, and the consumers surplus for newly generated demands. Similarly, the time value of the transported goods, given in \$/passenger-hour and for V1 and V2, and \$/ton-hour for trucks is used for benefit calculation. Load factor are given as decimal fractions of load.

### 2.1.5 Budget constraints

The following command used input of budget constraints: BEDGET CONSTRAINTS REGION $i_{1}$ $\eta_{i} \quad[T B] x_{1}[F E] x_{2}[S L] x_{3}$ END
where:

$$
\begin{aligned}
i_{1}= & \text { region number. All budget constraints are input separa- } \\
& \text { tely for every region, and therefore must proceed regional } \\
& \text { budget data. }
\end{aligned}
$$

$$
\begin{aligned}
& \eta_{i}=\text { year number } \\
& x_{1}=\text { Total budget available in } \$ \text {, for year } \\
& x_{2}=\text { Foreign exchange available in } \$ ; \text { for year } \\
& x_{3}=\text { Skilled labor available is } \$, \text { for year }
\end{aligned}
$$

In the ADD mode, years, after the first, unchanged from the prior year for a region need not be repeated in input.

### 2.1.6 Additional minor data

The user must input the following data:
i. The vehicle capacities, their input to be handled by the command:

VEHICLE CAPACITIES [V1] $x_{1}$ [V2] $x_{2}$ [V3] $x_{3}$ [V4] $x_{4}$ [V5] $x_{5}$ [V6] $x_{6}$ [V7] $x_{7}$
where $\mathrm{x}_{\mathrm{i}}$ will be given in pass./vehicle for vehicle types 1 and 2 and in tons/vehicle for the rest vehicle types.
ii. The interest rate, to be given by the command: INTEREST RATE $\mathbf{x}_{1}$
where $x_{1}$ is a percentage number (e.g. 10, for 10\%)
and
iii. The time horizon, which is stated with the command: TIME HORIZON $i_{1}$
where $i_{l}$ the total number of years.

### 2.2 Network Strategies Generator

The network strategy generator takes link strategy and budget constraint data and generates interesting and feasible alternatives.

It considers three types of links, unchanged links in the base network, for which a single defined strategy is taken, obligatory links, for which one among alternate strategies must be taken (the difference might merely represent slippage), and optional links, for which one alternative strategy may be taken, or the link left unalterel. The later two links are specified with the commands

OBLIGATORY (IINKS) $n_{1}, n_{2}, \ldots$
OPTIONAL (LINKS) $n_{1}, n_{2}, \ldots$
where $n_{i}$ are link numbers. For all links, the strategy 1 is assumed to be the base network.

Four data input commands are given to allow more efficient generation of alternatives. The command

SLIPPAGE (INCREMENT) i
provides an alternative to considering year by year slippage combinationso The command

MINIMUM CRITICALITY INDEX $i$
provides an additional pruning rule. Until the sum of the link CI's for all included links exceeds the value $i$, other constraints need not be checked. If, when it does exceed i, it also, exceed busget constraints, the branch in the search, may be terminated.

For efficiency, this processor generated a block of feasible network strategies at one time, rank orders these, and discards the worst. These are then replaced with more and the process repeated. The size of the block is specified with the command

> NETWORK (STRATEGIES) n
taken usually to be about 100. The percentage retained after ranking is specified with

PERCENTAGE (OR) (NETWORK) (STRATEGIES) $x$
x being a decimal number.
Generation is performed with a command GENERATE at the $n * x$ best strategies identified in the data use for evaluation.

### 2.3 Network Strategies Evaluator

With the network strategies generated, the user looks at the output, chooses those he wants to evaluate further. He does so with a series of simple, directive commands. These commands are of two types, those which cause an operation, such as the evaluation of a strategy to take place, and those which provide data for the operations.

### 2.3.1 Data Input Commands

The simulate command, in the form:
SIMULATE $n_{1}, n_{2}, \ldots$ (YEARS)
is used to define to the evaluation operations the year for which, at a minimum, the network must be analyzed. Results from one year will be used in subsequent years up to the next analysis year or the end of the time horizon. Intermediate analysis years will be inserted by the processor. In any year user or government costs change on any link.

The PRINT command, similarly, in the form
PRINT $n_{1}, \mathrm{n}_{2}, \ldots$ (YEARS)
is used to state years for which detailed output is to be provided. This output consists of:

1. The routing of the traffic
2. The traffic yolumes or the links,
3. The economic and financial transport costs for O-D pair.

### 2.3.2 Operational commands

For a particular network configuration, the user compares alternatives against a base network strategy. He may do so by selectively requesting the evaluation of specific generated strategies, and even going back to the generator and, by changing some input, generating new strategies for evaluation. Prior to such evaluations, the base network must be analyzed and, if any of its conditions changed, reanalyzed. To analyze the base network the user uses the command:

ANALYZE (BASE) (NETWORK)
He may then evaluate alternatives using the command:

$$
\text { EVALUATE (N.S.) } n_{i}
$$

or
EVALUATE ALL ( $\mathrm{n}_{\mathrm{j}}$ ) ( $\mathrm{N} . \mathrm{S}$. )
where $\quad n_{i}$ is a strategy number and
$n_{j}$ is the number of strategies, 1 to $n_{j}$, evaluated.
Any number of EVALUATE commands may be given, and the results stred in the data base. If $n_{j}$ is omitted, all saved generated strategies are evaluated. Evaluation go to the point of determining the net present value of the total costs and benefits of the alternative relative to the base network.

The RANK command, with no arguments, provides a ranked list of network strategies ordered on decreasing NPV. It considers all alter-
alternatives for which evaluation results have been stred in the data base.
3. Job Control Language Cards

The Network Evaluation Model needs the following Job Control Cards to be operational in the IPC Computer facility of MIT。

In the beginning of each one of the computer programs the JCL cards are:

```
 //' name of the user', REGION=200K
 /* MITID (problem no, programmers no, passeword)
 /* MAIN LINES=15
 // EXEC FORCGO
 // ..SYSIN DD.*, DCB=BLKSIZE=2000
 At the end of the main program and before
 the data cards the JCL cards are:
//G.FTIOFOO1 DD DSNAME=U.M11943. 12404. BASIC DATA
// DISP=(OLD, KEEP)
// UNIT=STORAGE, SPACE=(3600,(6))
//G.FTllFOO1 DD DSNAME=U.Ml1943. 12404. LINK. DATA,
 DISP=(OLD-KEEP),
// UNIT = STORAGE, SPACE=(2332,(300))
//G.FTl2FOO1 DD DSNAME=U.M11943. 12404. DEMAND DATA,
 DISP=(OLD,KEEP),
// UNIT=STORAGE, SPACE=(1792,(30))
/*
// G.SYSIN DD*, DCB=BLKSIZE=2000
```


## APPENDIX B

## SYSTEMS DOCUMENTATIONS

1. System structure and file usage

The system consists of four computer packages: the HCM, the Input Data Processor, the Network Strategies Generator, and the Network Strategies Evaluator. It allows flow of input-output from one computer package to the other with the use of files, independent runs of each computer package, changes in the inputs. The system is presented in the figure B.I. All the computer packages are written in FORTRAN language and with the DEFINE FILE command, and the READ - WRITE statements for the access to the files.

There are three files with the identification numbers 10 , 11 and 12 , as they have been initialized in the IPC Computer facility of MIT.

### 1.1 File 10

File 10 stores data provided by the Input Data Processor and the Network Strategies Generator. It consists of 6 records each of 900 words length.
a. Record 1

The following variables are stored with the WRITE statement from the Input Data Processor (with the only exception of NRANK which is stored from the Network Strateqies Evaluator):


Figure B.l: Network simulation system flow

VARIABLES	WORDS	COMMENTS
NLINK	1	Number of links in the network
NODE	1	Number of nodes in the network
NREG	1	Number of regions
IHORIZ	1	Time Horizon
JIM	1	Number of O-D pairs
RATE	1	Interest rate
VCAP	7	Vehicle capacities for the 7 types (in pass. for 1,2 and tons for the rest)
LBEG	30	Node where a link ( x ) begins
LEND	30	Node where a link (x) ends
LST	30	Number of strategies per link
MDIS	30	Region where a link ( x ) belongs
IOPT	1	Index number for option of demand data units (tons or vehicles)
COSTMA	200	A $(10,20)$ array about annual reregional budget constraints
FOCAMA	200	A $(10,20)$ array about annual reregional foreign exchanqe constraints
SKLAMA	200	A $(10,20)$ array about annual regional skilled labor constraints
NRANK	30	Rank of the N.S. according to their NPV.

Total length of the record (actual): 794 words.
b. Record 2

It stores only one array $\operatorname{LLA}(30,30)$ provided by the Input Data Processor. LLA is the link incidence matrix, giving for each node pair the corresponding link number, if it exists.

Total length of the record (actual): 900 words.

## c. Record 3

It stores the array $\operatorname{LOD}(30,30)$ provided by the Input Data Processor. Since the Input Data Processor arbritrary assigns a number to each O-D pair, LOD facilitates to found the $O-D$ pair qiven this number.

Total length of the record (actual): 900 words.
d. Record 4

It stores NWSTR $(30,30)$ provided by the Network Strateqies Generator. NWSTR stores the link strategy to be implemented given the specified network strategy and the link number.

Total length of the record (actual): 900 words.
e. Record 5

It stores NWSL $(30,30)$ provided by the Network Strategies Generator. NWSL stores the link strategy slippage to be implemented given the specified network strategy and the link number. Total length of the record (actual): 900 words.
f. Record 6

It stores $\operatorname{TCOST}(30,20), \operatorname{BCOST}(20)$, IAA $(30)$ provided by the Network Strategies Generator.

TCOST Stores the annual total costs for each network strateqy.
BCOST Stores the annual total costs for the base network strategy. IAA Stores the correspondance between the actual link number, as specified in Record 1 and the number given to each link by the Network Strategies Generator.

Total length of the record (actual): 650 words.

### 1.2.File 11

File 11 includes identical records of total length of 583 words. Each record stores information for each link strategy. Only ten strategies per link are permitted. The number is given to each record as follow: Assuming a link has the number: $x$. (Note that $x$ should be at the most 30 ), and the specified link strategy is $y(1 \leq y \leq 10)$. The record number is then: $10 \cdot(x-1)+y$. Therefore no matter how the data of the links is provided, the record number is specified. The total number of records are 300 ( 30 links times 10 strategies). The data is provided partially by the HCM and by the Input Data Processor. The variables stored are:

VARIABLES	WORDS	COMMENTS
ATT	140	A $(20,7)$ array about average travel time on the link (assumed uncongested) per vehicle type, per year.
EOC	140	A $(20,7)$ array about vehicle economic costs of operation on the link per vehicle type, per year.


VARIABLES	WORDS	COMMENTS
FOC	140	A $(20,7)$ array about vehicle financial costs of operation on the link per vehicle type, per year.
ETC	20	Array about annual economic costs of link construction and maintenance according to the specific link strategy.
FTC	20	Array about annual financial costs of link construction and maintenance according to the specified link strateg $\cdot$
SKL	20	Array about annual skilled labor costs of link construction and maintenance according to the specified link strategy.
FOR	20	Array about annual foreign exchange of link construction and maintenance according to the specified link strategy for every year.
DIS	20	Array about link length according to the specified link strategy.
CP	20	Array about link capacity according to the specified link strategy for every year.


VARIABLES COMMENTS		
RAF	WORDS   DSP   Array about rise and fall of the   road surface according to the   specified link strategy for every   year.	
ISTR	20	Array about the design speed of the   road surface according to the speci-   fied link strategy for every year.
NCRIT	1	Link strategy number
NSLIM	1	Critical Index for the link strategy.

The variables CP, ISTR, NCRIT and NSLIM are provided only by the Input Data Processor. The others may be provided by the HCM.

### 1.3 File 12

It includes identical records of total length of 448. The data is provided by the Input Data Processor, except of the BVEC, BVFC variables provided by the Network Strategies Evaluator. The record number is assigned arbritrary to each $0-D$ pair, however once it is set, it remains the same. The variables are:

VARIABLES

DEMAND

WORDS

140

COMMENTS

A $(20,7)$ array about the daily demand per commodity type for the O-D pair. For types 1 , and 2 it gives in vehicles, for the rest it depends on the options (either tons or vehicles).

VARIABLES	WORDS	COMMENTS
ELA	7	Elasticity of demand with respect to transport costs for each commodity type.
PRICE	7	maximum transport cost per unit of commodity, per commodity type, to be worthing the production. (\$/unit of comm.).
VALT	7	Value of loss of time for each commodity type (\$/hr.unit).
FLoAd	7	Load factor of each vehicle type.
BVEC	140	A $(20,7)$ array about the transport economic costs of each commodity type.
BVFC	140	A $(20,7)$ array about the transport financial costs of each commodity type, if the base network strategy was to be implemented.

## 2. HCM modification and interface with the system

The HCM is designed to simulate the costs of various investments strategies on a road link. It simulates: (i) the construction and maintenance activities over the time horizon of each alternative link strategy and (ii) the vehicles operation on the link.

The HCM simulates one link at a time. However, it may simulate alternative link strategies in each run. The role of the HCM in the system is the following: For each link, that either no data about costs (for construction or maintenance activities or vehicle operation)
exists; or the link will be improved; or the link was not existed before and it will be constructed, the HCM will simulate the activities and provide (1) the financial and economic costs of the construction and maintenance activities over the time horizon, as well the skilled labor costs and the foreign exchange; (2) the vehicle operation costs (financial and economic) and the average travel time for the whole link over the time horizon according to the link strategy followed. Note that it always simulates the link for the'base strategy', i.e., no activity different than the existing one up to date would take place. This data is stored on disk according to the number the link has in the network and the strategy followed. This data complemented by the data provided by the Data Processor will be input data to the Network Strategies Generator and Evaluator.

## 3. The Input Data Processor

The purpose of this computer package is to read the data required for the function of the system and to store it into disks for further use.

It has the capability to read from the same card words and numbers. This simplified the input of the data, minimize possible errors and allows the change of any part of the data stored. This is accomplished with the use of the SUBROUTINE MATCH, developed originally by R.D. Logcher et.al.
3.1 MATCH subroutine

MATCH is designed to be usable with FORTRAN for operations on logical input fields. The translation of a field identifies its form and meaning. MATCH reads a card into a alphanumeric array, converts each column to an integer code in a numeric array and decodes each logical field on the card. Each code number represents a character and is formed into list words by combining the code times some power of 100. Therefore each words need to be read has to be included in an integer array (to be called dictionnary) with its corresponding integer numbers. Although MATCH provides a general input capability, versatile translation requires extensive logical programming. Branching on translated words is accomplished with the "computed GO TO" statement, with the control variable determined from the position of the translated word in the dictionary. The subroutine MATCH is used by the Data Processor program, the card to be read and the dictionnary to be utilized have been specified. The MATCH gives back the word read, for the branching, or the number read.

Virtually any type of input can be performed. Even if a word is read from the card but not found in the dictionnary, and it is not neccesary to be translated, it is possible with the appropriate logic in programming for this case to makeMATCH to skip it.

### 3.2 Input data

Input to the Data Processor can be separated into the following types:
(i) Systems commands: The processor may handle the cases of updating


End of s:atement


Number or word not in dictionary


Word in dictionary



Figure B.2: (Continued) Input Data Processor - Flow Chart


Figure B. 2: ((Continued) Input Data Processor - Flow Chart


Integer number


Word in dictionary



1


Figure B.2: (Continued) Input Data Processor - Flow Chart
already existed data; changing parts of it; delete portions or add others. The format is simple. One-word commands, i.e., INITIATE, UPDATE, DELETE, CHANGE, ADD.
(ii) Network Information: This data type describes the network, assigning numbers on the nodes and links; specifies the regions to be examined and the links they belong to each of them.
(iii) Budget Information: For each year the available budget, the skilled labor and the foreign exchange for each region is provided. (iv) Demand Information: Two options of demands are provided. Option 1 gives the demand in vehicle numbers. Seven types of vehicles are possible. Option 2 gives the demand in vehicle numbers for the passenger cars and buses but in tons for the rest 5 types, assuming a commodity will be transported by its corresponding vehicle (i.e. commodity, its demand given by type 3, will be transported by vehicle type 3). Demand for both options is given on an average daily basis, for each year, for each supply-demand nodes pair. (to be called origin destination pair). Also for each O-D pair the following data is provided: the elasticity of demand with respect to transport costs; the maximum transport price the operator is willing to pay (where costs equal to revenues for the vehicle's operator); the value of travel time (in \$/hr/passenger for the passenger cars and buses and in $\$ / \mathrm{hr}$ 。/ton for the trucks); the load factor of the vehicles. Also the capacities of the vehicles used are specified: In passengers for cars and buses and in tons for trucks.
(v) Link Information: Portion of this data may be provided from the HCM. This portion includes: the average travel time on the link, the link length, the design speed of the link, the rise and fall, the vehicle operating costs (financial and economic), costs of construction and/or maintenance (financial and economic). If a link have not been stimulated by the HCM this data should be provided here. The portion that has to be inputed here includes the link capacity in PCU/hour, the critical index for each link strategy (to be specified in the Network Strategies Generator) and the maximum allowable slippage in years of a link strategy.

This is the data required as input to the Network Strategies Generator and Network Strategies Evaluator. The presented flow chart of the part of the Data Processor handling the instructions about the System gives a feeling of how the computer package works: It is a branching mechanism. (Branch on each key-word). The Data Processor has the option of printing the data stored on files.
4. Network Strategies Generator. (Developed originally by Y. Lasage)

The objective of this computer package is the generation of feasible network strategies for the improvement of a given network of roads over the time horizon. A network strategy will be feasible if it verifies the following regional constraints per year:
(i) budget (ii) skilled labor (iii) foreign exchange.

It is assumed that four kinds of links exist:
(i) link with maintenance activities (maybe no maintenance at all)
(ii) link with activities of either initial construction or improvement; however according to a fixed strategy. (they belong to the socalled "base network").
(iii) link with mandatory activities of either initial construction or improvement; however the timing of the strategy may change (obligatory link).
(iv) link with optional activities of initial construction or improvement (optional link).

The Generator deals with (iii) and (iv) kinds of links. Base network is the original network as it is up to date to which the links of kinds (i) and (ii) are added.

The inputs to the Generator are (1) the data stored on files by the HCM and the Data Processor and (2) the desired feasible network strategies to be generated; the optional and obligatory links; a minimal network strategy critical index. The inputs (2) are read with the use of SUBROUTINE MATCH, the input formats being words and numbers.

The output is stored on files for further use by the Network Strategies Evaluator. The output consists of two matrices: matrix NWSTR will give the links and their corresponding link strategies included in each generated feasible network strategy. Matrix NWSL will give the links, and the corresponding slippage in years of their defined link strategy in matrix NWSTR,for each generated feasible network strategy.

### 4.1 The approach

In order to clarify the approach we describe the treatment of link (iv). (Note that the treatment of link type (iii) is quite similar)

## Definitions:

i: number of the link I considered
$\bar{i}: \quad$ maximum number of links
$\ell: \quad$ number of strategy L considered
$\bar{\ell}: \quad$ maximum number of strategies
$j:$ number of N.S.

The algorithm is the following:
STEP 1: Initialization: $i=1, j=1, \ell=1, k^{\prime}=1$
STEP 2: Consider the N.S. j
STEP 3: Add the L.S. (link strategy) $(i, l)$ to $N_{j}$
-If NS ${ }_{j}$ verifies the constraints set $k=i$ Go To 4
-If NS ${ }_{j}$ does not verify the constraints Go To 6
STEP 4: Set: $i=i+2$

If $i$ is greater than $\bar{i}$ Go To 5
If $i$ is not greater than $\bar{i}$, make $\ell=1$ and Go To 2
STEP 5: Set $j=j+i$ and $i=k$
Include in $\mathrm{NS}_{\mathrm{j}}$ all LS of $\mathrm{NS}(\mathrm{j}-1)[\mathrm{LS}(\mathrm{i}, \ell)]$ Go To 6
STEP 6: Substract LS (i, $\ell$ ) from $\mathrm{NS}_{j}$.
Slippage of LS (i,l) possible?
Yes: slip it and Go To 3
No: Go To 7

```
STEP 7: Is there another strategy available for link i?
```

    Yes: \(\ell=\ell+1 \quad\) Go To 3
    No: Go To 8
    STEP 8: Is $\mathrm{k}^{\prime}=\mathrm{k}$ ?
No: Set $k^{\prime}=\mathrm{k} \quad$ Go To 4
Yes: Go To 9
STEP 9: Is $\mathrm{k}^{\prime}=1$ ?
No: $k=k-1, k^{\prime}=k$ and $i=k$ Go To 4
Yes: END
4.2 Description of SUBROUTINES
4.2.1 SUBROUTINE ADDCOM ( $\mathrm{N} ; \mathrm{VBAR}, \mathrm{V1}, \mathrm{~V} 2, \mathrm{~V}$ )

Objectives: This subroutine computes the sum of two vectors V2 and V , taking in account a slippage of N components between the two vectors. Then it compares the sum to a vector VBAR.

If Vl > VBAR INDEX=1

$$
\mathrm{VI} \leq \mathrm{VBAR} \quad \text { INDEX }=0
$$

N.B. $\quad \mathrm{VI}>\mathrm{VBAR}$ if one of the components of Vl at least is greater than its corresponding component of VBAR.
4.2 .2 SUBROUTINE ADDCO1 ( $\mathrm{N}, \mathrm{ABAR}, \mathrm{Al}, \mathrm{A} 2, \mathrm{~V}$ )

Objectives: This subroutine is similar to ADDCOM for the arrays.

### 4.2.3. SUBROUTINE CALCUL

Objectives: This subroutine uses $\operatorname{ADDCOM}$ and $A D D C O 1$ to verify that a N.S. verifies all the constraints.


Figure B.3: Network Strategies Generator Flow Chart of Subroutine CRITIC



Figure B.5: Network strategies generator Flow chart of MAIN
4.2:4 SUBROUTINE REMEMB

Objective: This subroutine reinitializes matrices, when a N.S. does not verify the constraints.
4.2.5: SUBROUTINE REINIT

Objective: This subroutine reinitializes matrices, when a N.S. verifies the constraints.
4.2.6 SUBROUTINE RECAL

Objective: This subroutine, as REMEMB, reinitializes matrices but when the reinitalization does not concern the same number of L.S. in a N.S.
4.2 .7 SUBROUTINE CRITIC

Objective: This subroutine computes
a. the number of L.S. in each N.S.
b. the N.S. critical index from L.S. critical indices

Then it prunes the feasible N.S. with a low number of L.S. and with a low critical index.

### 4.2.8 SUBROUTINE VERCAL

Objective: This subroutine generates N.S. from the L.S. It operates on links.

A link may be either a link the inclusion of which is obligatory: Ll,or a link the inclusion of which is facultative: L2.

Ll have only one strategy which may be slipped by a variable number of years, L2 have as many strategies as the Decision Maker asks.

### 4.2.9 MAIN

Objective: The main program defines the set of obliqatory and links for VERCAL. In order to do this selection, it uses a minimal critical index, and a minimal number of strategies.

Objective: This subroutine computes the economic costs of base network strategy construction and maintenance activities. It substracts the financial costs from the available budget and if the resulting budget turns out to be less or equal to zero the task of generation is abadonned. It updates also the available foreign exchange and the skilled labor.

## 4.2:11 SUBROUTINE INITIA

Objective: Reads the data from the files and from the input cards.
4.2.12 SUBROUTINE ECRIRE

Objective: Writes the NWSTR and NWSL arrays to the records 5 and 6 of file 10 and prints out the results.
5. Network strategies evaluator

This computer package evaluate each network strategy applying the NPV criterion for the economic costs of the construction and maintenance activities proposed by the strategy and the resulting benefits.

It needs only as Input data the desired network strategies to be evaluated, chosen from the generated ones the years to be simullated and the years for which the detail results will be printed. The rest of the data is read from the files. In the event the base network has been analysed previously, it is not necessary to be analysed again, if no change has been occurred to it. The results of the analysis may be read from the file and used directly for the evaluation. Also, there is the option of keeping the ranking of previously evaluated N.S.

The provided output for each network strategy consists of:
(1) The net present value, (2) the annual be.refits and costs, (3)
the average daily traffic on links every year of the time horizon,
(4) for each origin-destination pair the minimum cost route. Finally,
a ranking of all network strategies according to their NPV is provided.
5.1 Description of SUBROUTINES
5.1.1: SUBROUTINE BASENE

Objective: It simulates each year of the base network. If no change occurs the same data of the previous year is saved for this year.

If changes occur, then it computes the new transport costs between the O-D pairs and updates the demand according to the elasticity of demand with respect to price, as follows:

DEMAND' $=\operatorname{DEMAND*}\left(\frac{\operatorname{BVFV}(I)}{\operatorname{BVFV}(I-1)}\right)^{\text {-ELA }}$, where:
DEMAND: old demand
DEMAND': new demand
$\operatorname{BVFV}(I)$ : transport costs of year I
$\operatorname{BVFV}(I-1)$ : transport costs of previous year (I-1)。

Finally it saves the results into file 12 according to the $0-D$ pair
number.

### 5.1.2. SUBROUTINE ROUTE

Objective: It finds the minimum cost route of each vehicle type, computes the transport costs (both economic and financial) as a sum of the vehicle operation costs and the loss of time costs. Then it assigns the traffic on the links. The algorithm that computes the minimum cost route is described in Chapter 3.


Figure B.6: Network strategies evaluator - Flow Chart of Suproutine BASENE


Figure B.6:(Continued) Network strategies evaluator Flow Chart of Subroutine BASENE


Figure B. 7: Network strategies evaluator Flow Chart of Subroutine ROUTE


Figure B.7: Network strategies evaluator. Flow Chart of Subroutine ROUTE


Figure B. \%: Network strategies evaluator. Flow Chart of Subroutine ROUTE


Figure B. 8 Network Strategies Evaluator. Flow chart of subroutine COST.


Figure B. 8 (Continued) Network Strategies Evaluator. Flow chart of subroutine COST.


Figure B. 8 (Continued) Network Strategies Evaluator. Flow chart of subroutine COST

$$
-174-
$$

Figure B.9: Network strategies evaluator. Flow chart of MAIN


Figure B.9. Network strategies evaluator. Flow chart of MAIN


Figure B.9. Network strategies evaluator. Flow chart of MAIN


Figure 3.9. Network strategies evaluator. Flow chart of MAIN

$$
-178-
$$



Figure B.9. Network strategies evaluator. Flow chart of MAIN
5.1.3. SUBROUTINE COST

Objective: It checks if congestion occurs. If it does, it computes the congestion costs. (The method is described in Chapter 3). Finally, it computes the total transport costs for each O-D pair.
5.1.4 MAIN

Objective: It reads the data from the cards and the files. For each network strategy it does the evaluation. It computes for each $0-D$ pair the minimum cost routes calling ROUTE, it computes the vehicle equivalent factors and it calls COST to do the congestion computations. It computes the benefits, applying the formula (in general form):
$C S=\frac{1}{2}\left(T+T^{\prime}\right)\left(C-C^{\prime}\right)$, where:
TrC: the demand and the costs of the base network
$T^{\prime}=T \cdot\left(\frac{C^{\prime}}{C}\right)^{-E L A}$ the new demand and, $C^{\prime}=$ the new costs。
Next it computes the net benefits of the year
NETBENEFITS $=$ (TOTAL BENEFITS-TOTAL COSTS) 。
It discounds them to the present and it computes the NPV for all years of the time horizon.

If desired, it ranks the alternative network strategies according to their computed NPV.

$$
-180-
$$

APPENDIX $C:$ COMPUTER LISTINGS
-181-

```
C MATN PROGPAM TO PEAD INPUT DATA FOR NETHORK EVALUATION PGM1OOO1
 DEFINE FILE 10 (6,900,II,INF)
 DEFINE FILE 11(300,583,N,LATJ)
 DPFINE FIIE 12(30,448,N,JIMC)
 DIMENSION F1O(900),F11(583),F12(168),VCAP(7),LBEG(30), LEND(30),
 1IST (30),LREG(30),RAF(20), TB (10, 20), FF(10,20), SL (10, 20), LLA(30, 30
 2), LOD(30,30), ATT (20,7), EOC (20,7), FOC (20,7), ETC (20), FTC (20),SKL (20)
 3,FOR (20), CAP (20),DEMAND (20,7),FLA(7), PRICE(7),VALT(7),FLOAD(7).
 5IDICT1 (19).IDICT2(5),IDICT3(9).IDICT4(7).IDICT5(14),IDICT6(8).
 6IDTCT7(11),IW(10),L(10),RL(11),IDICT8(8), DSP(20)
 TNTEGER UED,RG
 REAI LEN(20)
C NORDS IN IDICT1: INTTTALIZE,UPDATE,ADD,DELETE,CHANGF,STOP,NETWORK,TIME,LINK,
C WORDS IN IDICT2: LINKS,NCDES,REGIONS
C WORLS IN IDICT3: STRATEGY,DATA,O,D,END,INDEX,SLTPPAGE
C WORDS IN IDICT4: TB,FE,SI,FRD,REGICN
C WORDS IN IDICT5: ATT,EOC,POC,ETC,PTC,SKI,FOR,LEN,CAP,RAF,DSP,END
C WORDS IN IDICT6: VOLUME,ELASTICITY,COMMODITY,TIME,LOAD,END
C WORDS IN IDICT7: V1,V2,V3,V4,V5,V6,V7,VOLUME,CAPACITIES
C KORDS IN TDICT8: LINK,RFGINS,CONCLUDES,REGION,FEASIBLF,STRAPRGTES
 DATA IDICT1/3,17,283328,403523,202323,232431,222720.
 1383934,332439,392832,312833,214023,232432,283339,412427,243323.353
 2728.252833.343539/
 DATA IDICT2/3,3,312833,333423,372426/
 DATA ID ICT 3/3,7,383937,232039,341414,231414,243323,283323,383128/
 DATA IDICT4/3,5,392114,252414,383114,243323,372426/
 DATA IDICT5/3,12,203939,24 3422, 25 3422,24 3922, 253922,383031,253437,
 1312433.222035.372025,233835.243323/
 DATA IDICT6/3,6,413431,243120,223432,392832,313420.243323/
 DATA IDICT7/3,9,410114,410214,410314,410414,410514,410614,410714.
 1413431,222035/
 DATA IDICT8/3,6,312833.212426,223433.372426,252420.383937/
 JIM=?
 IOPT=0
 DATA F1C/900*0.1
PGM 10001
PGM10002
PGM 10003
PGM10004
PgM10005
PGM10006
PGM 10007
PGM10008
PGM10009
PGM 10010
PGM10011
PGM 10012
PGM10013
PGH 10014
PGM10015
PGM 10016
PGM10017
PGM 10018
PGM10019
PGM 10020
PGM10021
PGM 10022
PGM10023
PGM10024
PGM 10025
PGM10026
PGM 10027
PGM10028
PGM10029
PGM10030
PGM10031
PGM10032
PGM10033
PGM 10034
PGM1J035
PGM10036
```

        DATA F11/583*0./
        DATA F12/158*0./
        DATA VCAP/7*O./
        DATA L,BEG/30*0/
        DATA LEND/30*?/
        DATA IST/30*0/
        DATA LREG/30*O/
        DATA LIA/900*O/
        DATA TOD/900*0/
        DATA TB/200*@./
        DATA FE/200*0./
        DATA ST/20C*O./
    C EXECUTTON BEGINS.
C FIND THE FIRST WORD OF THE CAR\
LARG=1
CALL MATCH(ITYPE,IDICT1,K,RR,LARG)
GC TO (10,11,11,11,12,45).ITYDE
11 GO TO 2001
42 IK1=K
GO T0 115,50,100,105,110,3000,150,200,250,400,500,800,850,10.40,45
1.900),IK1
C INITIATE CCMMAND. ZERO ALI PECOPDS.
15 リPD=0
DO 20 INF=1,3
WPITP(10'INP) P10
20 CONTTNUP
DO 30 JIMC=1,30
WRITE (12'JIMC) F12
30 CONTINUP
GC TO 101
4. CALL GRACHE
GO TO 10
OCS LAEG=?
CALI. MATCH(TTYPE,TDTCT2,K,RK,LARG)
GC TO (10.911,910,900.900).ITYPE
910 K=8K

```

PGM10037
PGM 10038
PGM10039
PGM 10040
PGM10041
PGM10042
PGM10043
PG M 10044
PGM10045
PG M10046
PGM 10047
PGM10048
PGM 10049
-GM10050
PGM1005:
PGM1005?
PGM10053
PGM10054
PGM10055
PGM 10056
PGM10057
PGM 10058
PGM10059
PGM10060
PGM10061
PGM19062
PGM10063
PGM1)064
PGM 10065
PGM10065
PGM 10067
PGM10068
PGM10069
PGM1)070
PGM10071
pgM10072
```

    911 ICET=K
        GO TO 10
    C IF UPEATF OCCURS: PUT IN CORE ALL BASE DATA
50 UPD=1
INF=1
READ (1O'1)NLINK,NODE,NREG,THORIZ, JTM, RATE,VCAP,LQEG,LEND,LST,LREG,
1TB,FE,SL,IOPT
READ(10'2)LLA
RFAD (10.3) LOD
GO TO 10
CCC CEPCK FOR TYPE OP UPDATP
102 MOD=?
go TO 10
OO5 MOD=2
104 DO 25 IAU=1,300
WRTTE(11'LAU)P11
25 CONTINTM
gO TO 10
110 MOD=1
GO TO 10
C RXECUTION RERMINATPD
300C WRITR(10'1)NLINK,NODE,NPEG,THOPIZ,TTM,RATE,VCAP,LBEG,LEND,LST,LREG
1,TB,PB.SI,IOPT
WRTTE(10'2)LIA
HRTTE(10'3)LOD
GO TO 10
45 CONTINUE
CALI EXIT
C INPOPMATION AEOUT THF NDTHOEK
150 KK=0
L(1)=?
L(2)=?
L(3)=?
IN(1)=1
IW(2)=2

```

PGM 10073
PGM10074
PGM10075
PGM10076
PGM10077
PGM10078
PGM10079
PGM10080
PGM10081
PGM10082
PGM10083
PGM10084
PGM10085
PGM10086
PGM10087
PGM10088
PGM10089
PGM10090
PGM 10091
PGM10092
PGM10093
PGM10094
PGM10095
PGM10096
PGM1J097
PGM10098
PGM 10099
PGM1010?
PGM12101
PGM10102.
PGM1O103
PGM10104
PGM10105
PGM10105
PGM 10107
PGM10109

TK \((3)=3\)
150 CATL MATCH (ITYPE, IDTCT2,K, RK,)
GO TO \((165,185,2005,2005,190)\), ITYPE
165 TF (KK.PO.O) GO TO 2005
TF(UPD.FQ.O) ©O TO 180
DO \(175 \quad \mathrm{I}=1,3\)
IF(L (1). EC.O) GO TO 171
NIINK=I (1)
171 IF (L (2). पO.C) GO TO 172
NODE \(=\mathrm{L}(2)\)
172 IF (I (3).EO.O) GO TO 175
\(\mathrm{NREG}=\mathrm{L}\) (B\()\)
175 CONTINUF
GO TO 1 ?
180 NITNK=L(1)
NODE=L (2)
NPFG=L(3)
GO TO 10
\(185 K K=K K+1\)
\(\mathrm{I}(\mathrm{I} W(K K))=K\)
GO TO 16 ?
190 IW \((K K+1)=K\)
GC TO 160
- TNFORMATTON ABOUT THE TIME

2CO CALL MATCH (ITYPE, IDICT2,K,PK, O)
GO TO (10,205,2010,200,200), ITYPP
205 IHORTZ \(=K\)
GO To 10
- INFORMATION ABOUT THZ IINRS CONSTRDCTTON OF MATPICES INDICATING OF

C WHICA NODES A LINK IS BOUNDED.
250 CALT MATCH (ITYPE,IDICTB,K, RK, O)
GO TO (260,1000. 2015,2015.255). ITYDF
255 TF (K.NP.2) GO TO 2015
\(26)\) LAFG \(=1\)
\(K K=0\)
\(L(1)=?\)

PGM10109
PGM10110
PGM10111
PGM10112
PGM10113
PGM10114
PGM10115
PGM10115
pGM 10117
PGM10118
PGM10119
PGM 10120
PGM10121
PGM10122
PGM10123
PGM10124
DGM10125
PGM10125 ©
PGM10127
PGM10128
PGM10129
PGM10130
PGM 10131
PGM10132
PGM 10133
PGM10134
PGM10135
PGM 10136
PGM10137
PGM10138
PGM10139
PGM 10140
PGM10141
PGM10142
PGM19143
PG M 10144
```

    L(2)=?
    L(3)=0
    L}(4)=
    L(5)=1
    265 CALL MATCH(ITYPE,IDICT 3,K,RK,LARG)
    GO TO (300,270,2020,275,280).ITYEE
    270 KR=KK+1
    L(KK)=K
    275 LAFG=?
    GO m? 265
    280 IF(K.NE.5) GO TO 275
    GO m) 10
    300 IE (KK.EO.O) GO TO 2020
    IF(UP).NF.C) GO TO 34,
    301 IF(T(1).FO.O .OR.L(2).EO.O.OR. L(3).EQ.O) GO TO 2020
    305 LINK=L(1)
    KO=L (2)
    KL=L (3)
    LLA(KO,KD)=LINK
    LLA (KD,RC) = ITNK
    LFPG(ITNK)=KO
    LEND (LINK) = KD
    LFEG(IINK)=L(4)
    LST(LINK)=L(5)
    GO TO 250
    340 IF(MOD.EO.0) GO TO 301
    IF(L(1).EQ.O.OR. L(2).EQ.O.OR. L(3).FO.O) GO TO 2020
    LTNK=L (1)
    KO=I (2)
    KD=I, (3)
    KLINK=ILA(KO,KD)
    MLINK=ILA (KD,KO)
    IF(KLINK.EQ.LINK.OR.MLINK.EQ.LINK) GO TO 350
    C LINK TS A DIFPRRENT THAN WHICH CUGHT TO BF. ERASE PECOZDS OF KLINK
I= 10= (KITNK-1) +1
DO 34? J=1,583

```

PGM40145
PGM10146
PGM10147
PGM10148
PGM10149
pGM10150
PGM10151
PGM10152
PGM 10153
PGM10154
PGM 10155
PGM 10156
PGM10157
PGM10158
PGM10159
PGM10169
PGM10161
PGM10162
PGM10163
PGM10164
PGM10165
PGM10166
PGM 10167
PGM10168
PGM10159
pgM10170
PGM10171
PGM10172
PGM10173
PGM10174
PGM10175
PGM10176
PGM 10177
PGM10178
PGM10179
PGM10180
```

        F11(J)=0.
    342 CONTINJE
        IT=T+9
        DO 345 IAU=T,II
        WRITE(11'LAT)P11
    345 CONTINUE
    35) IF(L(4).NE.0) GO TO 355
    L(4)=LREG(LINK)
    355 IF(I.(5).NF.O) GO TO 305
    L(5)=LST(LINK)
    gC TO 305
    C INPORMATTON AEOUT BJDGET CONSTGAINTS (TOTAL BUDGET, forEtGN
C EXCFANGE, SKTILED LABOR)
400 KK=0
RL(1)=0.
RI (2) =0.
RL(3)=0.
IV (1)=1
IW(2)=2
IF(3)=3
CALT MATCH (ITYPE,IDICT4,K,RK,1)
GO TO (2025,410,2025,2025,405),ITYPE
4.5 IF(K.EO.4) GO TO 10
IE(K.NE.5) GO TO 2027
CALI MATCH(ITYPF,IDICT4,K,RK,0)
gO TO (2027,4)6,2027,2027,2027).ITYPE
496 RG=K
GO TO 400
410 IYR=K
415 CALE MATCH(ITYPE,IDICT4,K,RK,0)
GO T2 (420,450,452,2025,460).ITYPF
420 IF(KK.EQ.0) GO TO 2025
DO 44C KKK=1,KK
T=T日(KKK)
GC TO (425.430,435).I
425 TB (RG,TYR)=RL(1)

```

PGM10181
PGM10182
PGM10183
PGM10184
PGM 10185
PGM10185
PGM 10187
PGM10188
PGM10189
PGM10190
pgm10191
PGM10192
PGM10193
PGM 10194
PGM10195
PGM10196
PGM10197 Ь
PGM \(10198{ }^{\circ}\)
PGM10199
pgm10200
PG M 10201
PGM 10202
PGM10203
PGM10204
PGM10205
PGM 10206
PGM10207
PGM 10208
PGM10209
PGM10210
DGM 10211
PG M10212
PGM10213
PGM10214
PGM 10215
PGM10216

6070440
430 PE (RG, IYR) \(=\) RL (2)
GO TO 440
435 SI (RG,IYR)=RI (3)
44. CONTINUE

IF (UPD.EO.0) GO TO 470
IF (MDD.NT.0) GO TO 400
470 CONTTNDE
\(I I=I Y R+1\)
DO \(480 \mathrm{~T}=\mathrm{II}, 20\)
\(T B(R G, T)=T B(R G, I Y R)\)
FR(FG, I) \(=\) FE (EG, IYP)
SL (RG, I) \(=S L(R G, I Y R)\)
480 CONTTNUE
GO TO 400
450 QR \(=K\)
\(452 \mathrm{KK}=\mathrm{KK}+1\)
RL (TW (KK)) = PK
GO TO 415
\(450 \operatorname{IW}(K K+1)=K\)
GC To 415
C INPORMATICN ABOUT THE DRMAND
\(530 \mathrm{kK}=0\)
C ZERO THE ARRAYS IN CORP
DO \(700 \quad I=1.20\)
DO \(690 \quad \mathrm{y}=1.7\)
DEMAND (I, T) \(=0\).
690 CONTTNUE
70 CONTINIE
DO \(710 \mathrm{I}=1\), 7
ELA (I) \(=0\).
PRTCE(I) \(=\) -
\(\operatorname{\nabla ALT}(I)=\).
FIOAD (I) \(=0\).
\(71)\) conttuit
505 CAIL MATCH(ITYDF,TDICT3, K, RK, 0)

PGM10217
PGM10218
PGM 10219
PGM10220
PGM 10221
PGM10222
PGM10223
PGM10224
PGM10225
PGM10226
PGM10227
PGM10228
PGM10229
PGM 10230
PGM10231
PGM10232
pGM10233
PG M10234
PGM 10235
PGM10236
PGM10237
PGM10238
PGM 10239
PGM10240
PGM10241
PGM10242
PGM10243
DGM 10244
PGM10245
PGM 10246
PGM10247
PGM 10248
PGM10249
PGM10250
pGM 10251
PGM10252


```

            y=4\I gug
    ```

```

    ZaxLI'(OLG*SEOZ*SEOZ*SOG*SEOZ) CL OD
    ```

```

                            E\capNLLNJD 8OY
                        C=(I)MI
                            - O=(I) T&
                L'L=I 809 00
                            =xy 009
    ```

```

                            OL Cむ OD
        でa(DNIf!てん)AGIaM
                            GONIUNON GtS
                            •0=(I)てい年
        894*4=I StS OC
                            EONLINOS UTS
        Suscu OS
        x=OX.SES
        GOG CJ OS
        y=0y
        SES OL OS (L.Oa(xy)aI
        b+xx=4y U&S
        009 0L OL
    ```

```

                                    JWLC=LDNIC
        OHS OL OD (Z*OE'OOW)AI S&
            NWIP=(OX'OX) UCT
                                    WIR=DWIC
                                    L+WIC=NIC
    ylS OLO5 (O*aN*OWIC)aI
            (CM*OY) OOT= OWIC
        009 0W 05 (0.OT.Gan)EI
        OEOZOWOD (0.OG* AX) aI OGS
    IdXü*(SOS*UEOZ*O&uて'OES*OLS) OLOS
    ```
```

    620 IF(KK.TO.O) GO TO 2040
    DO 625 KKK=1,KK
    IK=IN(KRR)
    DEMAND(IYE,IK)=RL(IK)
    625 CONTINIF
    628 IF(IIPD.EO.0) GO TO 630
    IF(MOD.EQ. 1) GO TO 600
    63) IT=TYR+1
        DO 540 I=II,20
        DO 635 <K=1.7
        IF(PL(KK).EO.O.) GO TC 535
        DEMAND (I,KK)=DRMAND (IYA,KK)
    635 CONTTNUF
    640 CONTINUE
    GC TO 600
    65 RK=K
    F5? KK=KK+1
    IP(IW(KK).NE.O) GO TO 655
    TW(KK)=KK
    655 RL(IW(KK)) = DK
    GO TO 610
    550 IF(K.FO.8) GOTO 610
    IK(KK+1)=K
    G0 T0 610
    C BRANCH ON WORD TYPE IN DATA SFT.
C END OF DATA EOR O-D PAIR.
670 TK 1=K
G0 T0 (2040.72?,750,780.760,675).TK1
C JDDATE THE DECORD NUMBFR. STORF IN THE RPCODD THE DATA
675 TF(JPD.NE.0) GO TO 680
JTM=,TIM+1
JTMC=JIM
ICD(RO,KL)=JIMC
co T0 685
5QQ JIMC=,TIMC*
695 NDITE(12'JTMC) DEMAND,FLA,PRICE,VALT,FLOAD

```

PGM10239
PGM10290
PGM10291
PGM10292
PGM10293
PG M10294
PGM10295
PGM10296
PGM10297
PGM10298
PGM 10299
PGM10300
PGM 10301
PGM10302
PGM10303
PGM10304
PGM10305
PGM 10306
pgM10307
PGM 10308
PGM1 1399
PGM10310
PGM12311
PGM10312
PGM10313
PGM10314
PGM 10315
PGM10315
PGM 10317
PGM10318
PGM10310
DGM10320
PGM 10321
PGM10322
PGM10323
PGM 10324

GO TO 10
\(C\) DATA ABOUT ELASTICITY OF DEMAND
720 CALL MATCH (ITYPE,IDICTT,K,RK.0)
GO TO \((725,740,742,2045,748)\). \(\operatorname{ITYPE}\)
725 TF (KK.EQ.O) GOTO 2045
DO 730 KKK \(=1, \mathrm{KK}\)
\(I K=I W(K R K)\)
ELA (IK) = EL (IK)
730 CONTINIT
GO TO 600
\(740 \mathrm{DR}=\mathrm{K}\)
\(742 K K=K K+1\)
IF (TW (KK).NE.0) GO TO 745 TW (KK) \(=K K\)
\(745 \mathrm{RL}(\mathrm{IW}(K K))=\mathrm{DK}\) GOTつ 720
\(748 \quad \mathrm{IW}(K K+1)=K\)
GO TO 720
\(C\) DATA ABOUT COMMODITY DRICE
750 CALL MATCH (ITYDE, IDICT7,K, EK, 2) GO TO (755,770,772,750,778).ITYPE
755 TF (KK. EQ.O) GO TO 2050
DO \(758 \quad \mathrm{KKK}=1, \mathrm{KK}\)
\(I K=T W(K K K)\) \(\operatorname{PRIC}(I K)=R L(I K)\)
758 CONTINUE
GO TO 600
770 \(7 \mathrm{~K}=\mathrm{K}\)
\(772 \mathrm{KK}=\mathrm{KK}+1\)
TF (IW (KK).NP.C) GO TO 775
\(I W(K K)=K K\)
\(775 \mathrm{RL}(\mathrm{IN}(\mathrm{KK}))=\mathrm{RK}\)
GC 5750
778 IW \((K K+1)=K\)
G0TO750
C DATY ABOUT VALUF OP TTMP

PGM10325
PGM 10326
PGM10327
PGM10328
PGM10329
PGM10330
PGM103?1
PGM 10332
PGM10333
PGM10334
PGM10335
PGM10336
PGM10337
PGM10338
PGM 10339
PGM10340
PGM10341
PGM10342
PGM10343
PGM10344
PGM10345
PGM10346
PGM10347
PGM 10348
PGM10349
PGM 10350
PGM10351
PGM10352
PGM19353
DGM10354
PGM10355
PGM10356
PGM 10357
DGM10358
PGM10359
PGM10360
```

    ll a!*a
    96&0LWSd
    G6EOLWDd
    #6EOLWSd
    &6EOLW5a
    て6801W9d
    l680lk9d
    06&01W9a
    6880LmSd
    88EOLWDd
    L8EOLWDd
    98EOLW5d
    S8EOLW5a
    #8&0LW5d
    &8&0LWDa
    て8\varepsilon0LWSd
    18&CLWDa
    08&0LW5d
    ~
6LEOLWDd
8LEOLWSd
LL\&OLWDd
9LEOLW9d
SLEOLWSd
TLEOLWりa
\&LとOLW!d
てLEOLW\d
LLEOLmDa
OLEOLWSd
6980しん5d
89\&しLWNa
L9\varepsilon0LW殒
99\&OLW5d
S980LW5d
\#980LWSd
\varepsilon9\varepsilonOL W卫d
<980LW9d
L9EOLWOd

```
```

    adxuI'(038'008*SL&'GL8*OL) OL ON
    ```

```

                                    duzd wSacinMi
                                    O3L OL OS
                            x=(L+xy)MI % % 
                            09 OL ON
                            y&=((yX)NI) T安 LSL
                            Hy=(yx):yI
        L9L OI OL (O.aN* (yy)AI)aI
                                    L+MY=YX 99L
                                    x=x& yyL
            009 0w 05
                        E|NIUNOD #TL
            (XI) TG= (XI) UHOIA
                            (\forallXY)MI=YI
        KY*L= XXX #YL O|
        LSUC OU OD (0.0n•XX)AI L9L
    \#dxII*(89L'U9L'99L*S9L*L9L) 0山 05
(0*X\&*N'LUNIGI'\&dA|I)HDUWW TTVO O9L
SaOIrDVE UVOT j\capOO\&Z QIVC a
C\&L OU 25
y=(L+yL)M186L
08L C3 05
Ya=((yy)eI) T\& S6L
yy=(XX)MI
G6L OU OD (0.4N'(yy)AI)aI
L+XX=Yy C6L
x=xy <6L
O29 OL OD
IONIWNONS8L
(XI) IA= (XI) WTVA
(XYY)MI=YI
XX'L=MXX S8L OG
G5OC OL OS (O.0A.yN)A1 L8L
5dA山I"(86L'08L'CGL'06L'L8L) OL OS

```

```

```
 81? RK=K
```

```
 81? RK=K
 815 RATE=RK
 815 RATE=RK
 GO TO 10
 GO TO 10
C VEHTCIE CAPACTTTES
C VEHTCIE CAPACTTTES
 850 KK=0
 850 KK=0
 DC 850 I= 1.7
 DC 850 I= 1.7
 RI(I)=0.
 RI(I)=0.
 IW(I)=0
 IW(I)=0
 850 CONTINUP
 850 CONTINUP
 865 CALL MATCH(ITYPE,TDICT7,K,RK,0)
 865 CALL MATCH(ITYPE,TDICT7,K,RK,0)
 GO TO (870,880,885,2060.890). ITYPE
 GO TO (870,880,885,2060.890). ITYPE
 870 IF(KK.EO.C) GO TO 20GO
 870 IF(KK.EO.C) GO TO 20GO
 DO 875 KKK=1.KK
 DO 875 KKK=1.KK
 TK=IN (KRK)
 TK=IN (KRK)
 VCAP(IK)=PL(IK)
 VCAP(IK)=PL(IK)
 875 CONTINUF
 875 CONTINUF
 GO TO 10
 GO TO 10
 880 RK=K
 880 RK=K
 295 KK=KK+1
 295 KK=KK+1
 IF(TH(KK).NT.O) GO TD 8&8
 IF(TH(KK).NT.O) GO TD 8&8
 IW (RK)=RK
 IW (RK)=RK
 888 FI(IW(KK))=8K
 888 FI(IW(KK))=8K
 GC TO 865
 GC TO 865
 890 IF(K.EO.9) GO TO 865
 890 IF(K.EO.9) GO TO 865
 IN(KR+1) = K
 IN(KR+1) = K
 GC TO 265
 GC TO 265
C DATA ABOUT LINK CHARACTERISTICS.
C DATA ABOUT LINK CHARACTERISTICS.
C EIND LINK NUMBER AND STRATEGY NOMBEE.
C EIND LINK NUMBER AND STRATEGY NOMBEE.
1007 LINK=K
1007 LINK=K
 LC 1088 I=1.20
 LC 1088 I=1.20
 DO 1095,J=1,7
 DO 1095,J=1,7
 ATT (T,J)=C.
 ATT (T,J)=C.
 BCC}(I,J)=0
 BCC}(I,J)=0
 POC(I,J)=0.
 POC(I,J)=0.
10R5 CCNTINUE
10R5 CCNTINUE
1089 CONTINOE
```

```
1089 CONTINOE
```

```
PGM10397
PGM10398
PGM10399
PGM10400
PGM10401
PGM 10402
PGM10403
PGM 10404
PGM10435
PGM10406
PGM10407
PGM 10408
PGM 10409
PGM104 10
PGM 10411
PGM10412
PGM10413
PGM10414
PGM10415
PGM10416
PGM10417
PGM 10419
PGM10419
PGM 10420
PGM10421
PGM10422
PGM 10423
PGM10424
PGM10425
PGM10426
DGM17427
PGM10428
DGM10429
pgM10430
PGM10431
PGM10432
PAGF 12

とし 59 a
8970 LWD
L9HOLWSd
99tOLWDd
G970LW9d
H970LWSad
と970LW Sd
て97CLWSd
1970LWDd
－97OLW 9 C
6StIOLWSa
8STOLW9d
LSTOLWDd
9Stulwsd
SStOLW9d
カSカClW9d
とらカ01W9a
CGカOLHSd
1Stolw 9d
f USカOLWS
\(\stackrel{\text { O}}{-1} 6 \pi 701\) WSd
8ttrolw 5d
\(\angle \pi\) カロLW5d
9trolw 9 d
Stitcthod

をカカロロWD

しカカロしWSd
0カガロLWSa
6と to LWうd 8とカべんうの LとわOLWDa 9とゅuLWSd SETOLW9a teカリLmSa ととカロル
```

                            \varepsilon8G*L=1 0عOL OC
            OHOL OL OD (Z.EN•OOW)aI
            LTOL OU CS (O.OE•Gdn)aI
                            \squareVI= \nVT
            &USI+(L-YNLT) *OL = O甘T S己OL
    ```

```

                                    L=(L)T
                                    L=ごSI LCOL
                            SZul OL OS
            (i) T=&ISI
    LこOL OU OS (O.OI•(L)T) EM OCOL
SOOL OL ON OL=(L+HX)MI SLUL
SOOL OL ON OL=(L+HX)MI SLUL
SOOL OL OS
x=((YX)MI) I
L+KY=yy CFOL

```


```

                                    dHN14NOS lOOL
                                    O=(I)MI
                                    v=(I)T
                                    L'L=I LJOL OL
                                    v=yy
                                    O=过むSI
                                    0=WI'ISN
                                    U=WI4DN
                            IONTWNOS 00OL
                            -0=(I)dSa
                            -O=(I)ava
                            * U= (I) dVO
                            0-0(I)NET
                            00=(I) 4OE
                            -0=(I) TXS
                            -0=(I) DLa
    -0=(1) DIE
    0Z*L=I 060L 00
                            - (I) N
                            - (II)
                            - (I) DS
    ```
```

        F11(I)=0.
    1030 CONTINOE
        WRITE(11'IAU)F11
        GO TO 10
    OUO READ(11'LAU)ATT,FOC,POC, RTC,PTC,SKL, ROR,IEN,CAP,RAP,DSP,ISTP,NCPIT
    1.NSLIM
        IF(L(6).NE.0) GO TC 1042
        L (6) =NCRIT
    1942 IF(L(7).NF.0) GO TO 1043
    L(7)=NSLIM
    1041 CONTINUR
    1043 NCRIT=L (6)
        N SLTM=I (7)
        ISTR=L (1)
    C EBAD EATA ARCUT THE LINK
1045 LARG=1
1050 CALL MATCH(ITYPE.IDICT5.K,RK,LARG)
GO TO (1045,1060,2070,2070,1080).ITYPE
1(6) IYP=K
KK=0
DC 1065 I=1.7
RL(T)=0.
IV(I)=0
1065 CCNTINOF
1070 CALL MATCH(ITYPF,IDICT5,K,RK,9)
GO TO (2070.2070.2070.2070.1100). ITYPE
1080 TF(K.NE.12) GO TO 1095
LAU=LAU2
WRITE(11:LAO) ATT, EOC,FOC,FTC,PTC,SKL,FOR,LEN,CAP,RAF,DSP,ISTR,NCRI
1T,NSLIN
GC TO 10
1695 KK=0
no 1098 I=1.7
RI (I)=0.
IN(I)=0
1008 CONTINIP

```

PGM 10469
PGM10470
PGM10471
PGM 10472
PG 10473
PGM 10474
PGM1 0475
PGM 10476
PGM10477
PGM 10478
PGM 10479
PG M 10480
PGM 10481
PGM10482
PGM 10483
PGM10484
PGM 10485
PGM1 0486
PGM10487
PGM10488
PGM10489
PGM10490
PGM10491
PGM 10492
PGM10493
PGM 10494
PGM10495
PGM 10496
PGM10497
PGM 10498
PGM10499
PGM 10500
PGM10501
PGM10502
PGM 10503
PGM10504
```

```
 11才\ IK 1=K _
```

```
 11才\ IK 1=K _
 11才\ IK 1=K _
 11才\ IK 1=K _
 11才\ IK 1=K (1, 1105,1200,1300,1400,1400,1400,1400,1500,1500,1500,1500).I
 11才\ IK 1=K (1, 1105,1200,1300,1400,1400,1400,1400,1500,1500,1500,1500).I
C DATA ABODT AVERAGE TPAVEL TIME.
C DATA ABODT AVERAGE TPAVEL TIME.
 1105 CALL MATCH(ITYPE,IDICT7,R,RK, O)
 1105 CALL MATCH(ITYPE,IDICT7,R,RK, O)
 GO TO (1150.1110,1112,2075,1120).ITYPF
 GO TO (1150.1110,1112,2075,1120).ITYPF
 1110 RK=K
 1110 RK=K
 1112 KK=KK+1
 1112 KK=KK+1
 IF(IT(KK).NF.O) GO TO 1115
 IF(IT(KK).NF.O) GO TO 1115
 IW(KK)=KK
 IW(KK)=KK
 11.5 RL(TW(KK))=RK
 11.5 RL(TW(KK))=RK
 GO T0 1175
 GO T0 1175
 1120 IW (KK+1)=K
 1120 IW (KK+1)=K
 GC TO 1105
 GC TO 1105
 1150 IF(KK.EQ.0) GO TO 2075
 1150 IF(KK.EQ.0) GO TO 2075
 D0 1155 KKK=1,KK
 D0 1155 KKK=1,KK
 IK=IN(KKK)
 IK=IN(KKK)
 ATT(IYP,IK)=RI(IK)
 ATT(IYP,IK)=RI(IK)
 1155 CONTINOR
 1155 CONTINOR
 1160 TF(UPD.FQ.O) GO TO 1165
 1160 TF(UPD.FQ.O) GO TO 1165
 IF(MOD.RQ.1) GO TO 1045
 IF(MOD.RQ.1) GO TO 1045
 1165 II=IYR+1
 1165 II=IYR+1
 DC 1170 I=II,20
 DC 1170 I=II,20
 DO 1168 KR=1,7
 DO 1168 KR=1,7
 IF (RL (KK).EQ.O.) GO TO 1168
 IF (RL (KK).EQ.O.) GO TO 1168
 ATT (I,KK)=ATT(IYR,KK)
 ATT (I,KK)=ATT(IYR,KK)
 1168 CONTINUF
 1168 CONTINUF
 1 1 7 0 ~ C C N W T N U E
 1 1 7 0 ~ C C N W T N U E
 GO TO 1045
 GO TO 1045
C DATA ABOUT ECONOMIC COSTS OF VEHTCLE ORERATION
C DATA ABOUT ECONOMIC COSTS OF VEHTCLE ORERATION
 120? CALL MATCH(ITYPF,IDICT7,K,RK,O)
 120? CALL MATCH(ITYPF,IDICT7,K,RK,O)
 GO TO (1250,1210,1212,2080,1220), ITYPE
 GO TO (1250,1210,1212,2080,1220), ITYPE
 1219 RK=K
 1219 RK=K
 12:2 KK=KR+1
 12:2 KK=KR+1
 IF(IT(KK).NF.0) GO TO 1215
 IF(IT(KK).NF.0) GO TO 1215
 IT(RK)=RK
```

        IT(RK)=RK
    ```
```

        C(KK 11N-0
    ```
```

        C(KK 11N-0
    ```

PGM10535 PGM 10506 gMM 10507
PGM10508
g GM 10509
PGM1 0510
PGM10511
PGM10512
pgM10513
DGM10514
PGM10515
PGM10515
PGM10517
PGM10518
PGM10519
PGM10520
PGM10521
PG M 10522
PGM10523
PG M1 0524
PGM 10525
pGM10526
pgM12527
PGM10528
PGM10529
PGM10530
PGM10531
PGM10532
PGM10533
PGM10534
PGM10535
PGM10536
PGM10537
PGM10538
PGM10539
PGM10540
```

    1215 RI (IM(KK))=RK
        GC To 1200
    122: IW(KK+1)=K
    GC TO 120%
    1250 TF(KK.EC.O) GO TO 2080
        DO 1255 KKR=1,KK
        IR=IW(KKK)
        EOC (TYR,IK)=RL(IK)
    1255 CONTINUE
    1250 TF (OPD.EQ.0) GO TO 1265
        IF(MOD.EQ.1) GO TO 1045
    1255 II=IYR+1
        DO 1270 I=II,20
        DC 1268 KK=1.7
        TF (RL (KK).EQ.0.) GO TC 1268
        EOC (I,KK) = ROC (IYR,KK)
    1268 CONTINUE
    127C CONTINIF
        GC TO 1045
    C DATA AbOUT financial costs cF vehicle operation
1300 CALL MATCH(ITYPE.IDICT7,K,FK,0)
GO TO (1350,1310,1312,2085,1320),ITYPE
1310 RK=K
1312 KK=KK+1
IF(IN (KK).NE.O) GO TO 1315
TH(KK)=KR
1315 RI (TW (RK))=RK
go To 1300
1320 IN (RK+1) =K
GC TO 1300
135.3 TF(KK.FO.^) GOTO 2085
DC 1355 KKK=1,KK
IK=TV(KKK)
FOC (IYP,IK) =RL (IK)
1355 CONTINOP
1360 IF(HPD.FQ.0) GO TO 1365

```

PGM10541 PGM10542 PGM1 1543
PG M 10544 PGM 10545 PGM1 0546 PGM 10547 PGM10548
PGM 10549
PGM10550
PGM10551
PGM10552
PGM10553
PGM 10554
PGM10555
PGM10556
PGM10557
PGM10558 PGM 10559
PGM1 0560
P GM 10561
PGM10562
PGM10563
PGM 10564
PGM10565
PGM 10566
DGM10567
PGM 10568
PGM10569
PGM10570
PGM10571
PGM10572
PGM10573
PGM10574
PGM 10575
PG M10575
```

```
 IF(MOD.EQ. 1) GO TO 1045
```

```
 IF(MOD.EQ. 1) GO TO 1045
4365
4365
 DO 1370 I=IT,20
 DO 1370 I=IT,20
 DO 1368 KK=1,7
 DO 1368 KK=1,7
 IF(RL(KK).EQ.O.) GO TO 1368
 IF(RL(KK).EQ.O.) GO TO 1368
 POC(I,KK)=POC (IYR,KK)
 POC(I,KK)=POC (IYR,KK)
 1368 CCNTINUE
 1368 CCNTINUE
 1370 CONTINIIE
 1370 CONTINIIE
 GO TO 1045
 GO TO 1045
C DATA ABOUT COSTS ASSOCIATED GITH LINK IMPROVEMENT, IF ANY.
C DATA ABOUT COSTS ASSOCIATED GITH LINK IMPROVEMENT, IF ANY.
 1400 IK (KK+1)=TK1
 1400 IK (KK+1)=TK1
 1405 CALL MATCH(ITYPE,IDICT5,K,RK,0)
 1405 CALL MATCH(ITYPE,IDICT5,K,RK,0)
 GO TO (1430,1410,1412,2090,1420),ITYPE
 GO TO (1430,1410,1412,2090,1420),ITYPE
 1410 RK=K
 1410 RK=K
 1412 KK=KK+1
 1412 KK=KK+1
 RL (TH(KK)) = PK
 RL (TH(KK)) = PK
 GO TO 1405
 GO TO 1405
 1420 IM (KK+1)=K
 1420 IM (KK+1)=K
 GO TO 1405
 GO TO 1405
 1430 CONTINUT
 1430 CONTINUT
 DC 1445 KKK=1,KK
 DC 1445 KKK=1,KK
 IK=IW(KRK)
 IK=IW(KRK)
 IKK=IK-3
 IKK=IK-3
 GO TO (1431,1435,1440.1444),TKK
 GO TO (1431,1435,1440.1444),TKK
 1431 ETC (IYR)=RL(4)
 1431 ETC (IYR)=RL(4)
 GO TO 1445
 GO TO 1445
 1435 FTC (IYR)=FL(5)
 1435 FTC (IYR)=FL(5)
 GO TO 1445
 GO TO 1445
 144) SKI (IYR)=EI(5)
 144) SKI (IYR)=EI(5)
 GO TO 1445
 GO TO 1445
 1444 FOR(TYR)=RL(7)
 1444 FOR(TYR)=RL(7)
 1445 CONTTNUE
 1445 CONTTNUE
 1456 TE(UPD.EQ.9) GO TO 1455
 1456 TE(UPD.EQ.9) GO TO 1455
 IF(MOD.FC.T) GO T? }104
 IF(MOD.FC.T) GO T? }104
 1455 CONTTNUE
 1455 CONTTNUE
 I I=TYP+1
```

        I I=TYP+1
    ```
```

    T=IYR+1
    ```
 T=IYR+1
 IKK=IK-3
```

        IKK=IK-3
    ```

PGM 10577
PGM10578
PGM 10579
PGM10580
PGM10581
DGM10582 PGM 10583 PGM10584 PGM10585 PGM 10586 PGM10587 PGM10588 PGM10589 DGM10590 PGM10591 PGM 10592 PGM10593 PGM10594 PGM 10595 PGM10595 PGM 10597 PGM10598 PGM 10599 PGM10600 PGM10601 PGM10602 PGM10603 PGM10604 PGM19605 2GM10606 PGM13607 prM106) 8 PGM10609 PGM10610 PGM19611 PGM10612
```

        DC 1490 I=TT.20
        IP(PL(4).EO.O.) GO TO 1460
    ETC (I) = FTC (IYR)
    1460 JF(RL(5).FO.O.) GO TO 1465
        FTC (I)=FTC (IYR)
    1465 IF(PL(6).EO.O.) SO TO 1470
    SKL (I) = SKL (TYR)
    1470 IF(RL(7).EO.O.) GO TO 1490
        FOR(I)=FOR (TYR)
    1430 CCNTTNUE
        LARG=0
        GO TO 1050
    C DATA ABOHT LINK LENGTH, CAPACITY, RISE AND FALL, DESIGN SPEED
1500 IF(KK+1)=IK1
1505 CALI MATCH(ITYPE,IDICT5,K,PK,O)
GO TO (1530.1510,1512,20 95,1520).ITYPF
1510 RK=K
1512 KK=KK+1
RL(IW (KK))=RK
GO TO 1505
1520 IW (KK+1)=K
GC TO 1505
1530 CONTINUT
DO 1545 KKK=1,KK
IK=IW(KKK)
IKK=IK-7
GO T0 (1535,1540,157C,1590),TKK
1535 LFN(IYP)=RI (8)
GC TO 1545
154 ( CAP(IYP)=RI(9)
GO TO 1545
157% SAF (TYA) =RL(1?)
GO TO 1545
150. DSP(IYG)=PI. (11)
1545 CONTINIE
155C TF(UPD.EO.O) GO TO 1555

```

PGM10613 PGM10614
PGM10615
PGM 10616
PGM10617
PGM10618
PGM10619
PGM10620
PGM 10621
PGM10622
PGM 10623
PGM10624
PGM 10625
PGM19626
PGM10627
PGM10628
PGM10629
PGM10630
PGM10631
PGM 10632
PGM10633
PGM10634
PGM10635
PGM 10635
PGM10637
PG M 10638
PGM10639
PGM10640
PGM12641
PGM10642
PGM10643
PGM10644
PGM10645
DGM11946
PGM10647
PGM 10648
```

    IF(MOD.FO.T) GO TO 1045
    1555
        CONTINUE
        II=TYR+1
        DO 159) T=IT,20
    IE(RL(8).EQ.O.) GO TO 1560
    LEN(T)=I, पN(TYP)
    156% IF(RL(9).EQ.O.) GO TO 1575
CAE(I)=CAP(TYP)
1575 IF(RL(10).RQ.O.) GO TC 1585
PAF(I) = FAF(IYP)
1585 TE(RL(11). BQ.0.) GO TO 1590
DSE(I)=CSE (IYR)
1599 CONTINTE
IARG=?
GO T0 1050
C ERRORS FJPMATS
2001 WPTTP(6,2002)
2O2 FCRMAT(/,'FORMAT EEROR IN FIRST COMMAND CARD')
GO TO 10
2,05 WPITE (6.2006)
20G5 FOFMAT (/, FORMAT FROOR IN NETWORK COMMAND OR DATA CAPDS')
gO TO 10
2010 NEITV(6.2011)
2011 FORMAT(/,'PORMAT FRROR IN TIMF HORTZON COMMAND CARD')
GO TO 1?
2015 NEITP(6,2016)
2OF FODMAT(/.'FODMAT ERROR IN LINK DATA OR STRATEGY COMMAND CARD')
GO TO 10
2020 WQITF(6.2n21)
2021 FOFMAZ(/, FORMAT TRROE IN LTNK DATA CARDS')
GO TO 10
2225 WRITE(6.2026)
2O26 POPMAT (/, 'FCRMAT ERROR IN BUDGPT DATA CAEDS')
GO TO 400
2027 NPITE(5,2C28)
2C28 FORMMT(/," FORMAT ERROR IN BUOGET CARDS')

```

PGM10649
PGM10650
PGM10651
PGM10652
FGM10653
PGM 10654
PGM10655
PGM 10656
PGM10657
PGM10658
PGM1)559
PGM10660
PGM10561
PG M 10662
PGM10663
PGM 10664
PGM 10665 PGM10666
PGM10667
PGM10668
PGM10669
PGM10572
PGM10671
PGM10672
DGM10673
PGM10674
PG M 10675
PGM10676
PGM 10677
PGM10678
PGM10579
PGM1 2680
PGM10681
PGM10682
PGM10683 PGM1才684
```

    GO TO 10
    2030 GRITP(6,2031)
2C31 FORMAT(/, 'ORMAT ERROD IN DEMANE O-D CARD')
GO TO }1
20 35 WRTTE(6,2036)
2036 PORMAT(/,'DORMAT RRROR IN DATA CARDS OP O-D DRMAND')
GCTO 1?
2,40 WRITP(6,2041)
2.4 FORMAT(/,FORMAT ERQOR IN DATA CADD OF VOLUMP*)
GO TO 60?
2045 WEITT(6,2046)
2046 RORMAT(/, PORMAT ERFOR TN DATA CARD DE EIASTICITY')
GC TO 600
2050 WRTTP (6.2051)
2051 POPMAT (/, FODMAT EPROP IN DATA CAPD OP COMMODITY DRICE')
GO TO 60?
2055 HFITE(6.2C56)
2C55 PORMAT(/, FORMAT EREOR IN DATA CARD OF VALTE OF TIME')
GC TO 600
2057 HRITE(6,2058)
2O5, FCFMAT(/' FOPMAT PRPOR IN DATA CAPD OF LOAD PACTOR')
GO TO 500
2060 WRITE(6.2061)
2O1 TOFMAT(/.'PORMAT ERROR IN DATA OF VEHICTE CAPACITTPS')
GO TO 10
2065 WRITE (6,2066)
2056 FOZMAT (/,'FOPMAT EPPOR IN LTNK-STRATRGY CARD')
GO TO 10
2970 W\&TTE(6,2071)
2071 POFMAT (/, FCRMAT ERROE IN LINK CHARACTERISTICS DATA CARD')
GO TO 1045
2075 WPTTE(6,2076)
2075 PCOMAT (/, 'RORMAT EPROE IN AVFYAGE MRAYEI TIMB DATA CARD')
GO TO 1045
2080 NETTF(6,2(81)
2O1 POEMAT(/, PORMAT ZRROR IN DCCNOMIC COSTS OE VEHICLE OPERATION DATA

```

PGM10585 PGM10586 PGM19687 PGM10688 pGM 10589 PGM1)690 PGM10691 PGM10692 PGM10693 pgM13694 PGM10595 PGM10696 PGM12597 PGM10698 PGM10599 PGM1070) PGM 10701 PGM10702 PGM 10703 PGM10734 PGM10705 PGM10726 PGM10707 pGM10708 pgM12709 PGM1071. PGM10711 pgm19712 PGM 10713 PGM10714 pgM10715 PGM10716 DGM10717 PGM10718 PGY19719 PGM1072?
```

    1CADD')
    GC TO 1045
    2785 WRITE (6,2086)
2086 FORMAT (/, FORMAT ERROR IN FINANCIAL COSTS OF VEHICLE OPERATION DAT
1A CABD')
GC TO 1045
2090 WRITE(6.2091)
2091 FORMAT(/, FORMAT ERROR IN COST DATA ABOUT THE LINK')
GO TO 1045
2095 WRITE(6,2096)
2096 FCPMAT (/, FORMAT FRPOR IN LINK LENGTH AND CAPACTTY DATA')
GC TO 1045
9999 STOD
END

```

PGM19721
PGM10722
pgM10723
PGM 10724
PGM10725
PGM10726
PGM10727
DGM10728
PGM1C729
PGM10730
PGM10731
PGM19732
PGM10733
PGM10734
```

```
 SURPOUTINE GPAPAR
```

```
 SURPOUTINE GPAPAR
C DEOGRAM TO TEST IP DATA IS WRTTTEN ACCURATETY IN THE DISK
C DEOGRAM TO TEST IP DATA IS WRTTTEN ACCURATETY IN THE DISK
 DIMENSION VCAP(7),LBFG(30),LEND (30), LST (30),LREG (30),TB(10,20), FP(
 DIMENSION VCAP(7),LBFG(30),LEND (30), LST (30),LREG (30),TB(10,20), FP(
 110,20),SL(10,20),LLA (30,30),LOD(30,30), ATT (20,7), FOC (20,7).
 110,20),SL(10,20),LLA (30,30),LOD(30,30), ATT (20,7), FOC (20,7).
 2FOC (20,7), ETC (20),FTC (2C),SKL (20),FOR (20),CAD(20).
 2FOC (20,7), ETC (20),FTC (2C),SKL (20),FOR (20),CAD(20).
 3DEMAND (20,7), FLA (7),PRICE(7), VALT (7), FLOAD (7),RAE (20),DSP(20)
 3DEMAND (20,7), FLA (7),PRICE(7), VALT (7), FLOAD (7),RAE (20),DSP(20)
 RFAL LFN(2O)
 RFAL LFN(2O)
C ERAD THP BASTC DATA
C ERAD THP BASTC DATA
 READ(10:1) NLINK,NODI,NRFG,IHOSTZ,JIM,RATE,VCAP,LBEG,IEND,LST,I,REG,
 READ(10:1) NLINK,NODI,NRFG,IHOSTZ,JIM,RATE,VCAP,LBEG,IEND,LST,I,REG,
 1TE,PE,SL,TODT
 1TE,PE,SL,TODT
 READ(10'2) LLA
 READ(10'2) LLA
 PEAD(1(13)LOD
 PEAD(1(13)LOD
C DRTNT THE BASIC DATA
C DRTNT THE BASIC DATA
 WFITE(6,10) NLINK,NODE,IHOEIZ,RATE,NQEG
 WFITE(6,10) NLINK,NODE,IHOEIZ,RATE,NQEG
 10 FORMAT (/,' THE NHMBER OF LINKS IN THE NFTWORK ARE:*,
 10 FORMAT (/,' THE NHMBER OF LINKS IN THE NFTWORK ARE:*,
 1I5,/,' THF NUMBED OF NODES IN THE NFTWORK ARE:'.I5,/.
 1I5,/,' THF NUMBED OF NODES IN THE NFTWORK ARE:'.I5,/.
 2' THE TIMR HORIZON TOF THE BVALUATION IS:',I5./.
 2' THE TIMR HORIZON TOF THE BVALUATION IS:',I5./.
 3' THE DISCOUNT RATP IS:',10.5./.' THE NUMBER OF REGTONS
 3' THE DISCOUNT RATP IS:',10.5./.' THE NUMBER OF REGTONS
 4 ARE: (, I3)
 4 ARE: (, I3)
 DC 90 I=1,NRPG
 DC 90 I=1,NRPG
 WRITE (6.85) I
 WRITE (6.85) I
 95 ROFMAT(/,25X,'FOQ BEGION',I3)
 95 ROFMAT(/,25X,'FOQ BEGION',I3)
 WRTTE (6,70)
 WRTTE (6,70)
 7O PCPMAT (/.3X, YEAR',5X.'TOTAL BJDGET,.10X,
 7O PCPMAT (/.3X, YEAR',5X.'TOTAL BJDGET,.10X,
 1' FOREIGN EXCHANGF',7X,' SKTLLRD LABOR')
 1' FOREIGN EXCHANGF',7X,' SKTLLRD LABOR')
 DO 75 J=1,IHORIZ
 DO 75 J=1,IHORIZ
 WRITE (6,60) J,TR (I,J),PR (I,J),SL(T,J)
 WRITE (6,60) J,TR (I,J),PR (I,J),SL(T,J)
 60 PCBMAT(3X,I3.7X,F15.5.9X,F15.5,9X,F15.5)
 60 PCBMAT(3X,I3.7X,F15.5.9X,F15.5,9X,F15.5)
 75 CONTINUF
 75 CONTINUF
 OO CCNTINUE
 OO CCNTINUE
 WRITE (6,12) (I, I=1,7)
 WRITE (6,12) (I, I=1,7)
 , POPMAT(/,25X,VQHICLE CAPACITIFS',/,5X,'TYPES',13X,7(I2,12X))
 , POPMAT(/,25X,VQHICLE CAPACITIFS',/,5X,'TYPES',13X,7(I2,12X))
 WKTTF(6,14) (VCAP (I), I=1,7)
 WKTTF(6,14) (VCAP (I), I=1,7)
 14 FORMAT(2OX,F5.O.'PASS.',5X,FS.O.'PASS.',4Y,5(2X,F8.2,'TONS'))
 14 FORMAT(2OX,F5.O.'PASS.',5X,FS.O.'PASS.',4Y,5(2X,F8.2,'TONS'))
 15 CONTINUS
 15 CONTINUS
 LAO=?
```

        LAO=?
    ```
```

PGM20001

```
PGM20001
pGM20002
pGM20002
PGM 20003
PGM 20003
PGM20004
PGM20004
PGM20005
PGM20005
pGM20006
pGM20006
PGM200r7
PGM200r7
GGM200n:
GGM200n:
PGM20009
PGM20009
PGM2)010
PGM2)010
PG M2 2011
PG M2 2011
GM 20012
GM 20012
pGM2)013
pGM2)013
PGM20014
PGM20014
PGM20\cap45
PGM20\cap45
PGM20016
PGM20016
PGM20017
PGM20017
gGM20018
gGM20018
GGM2)}11
GGM2)}11
GM20020
GM20020
pgM20021
pgM20021
PGM20022
PGM20022
GM20^23
GM20^23
GM20\cap24
GM20\cap24
PGM29025
PGM29025
PGM20C26
PGM20C26
OGM20027
OGM20027
pgm20028
pgm20028
PGM20029
PGM20029
PGM20030
PGM20030
OGM23031
OGM23031
PGM2)032
PGM2)032
PGM20033
PGM20033
pGM20034
pGM20034
PM20035
PM20035
PGM20036
```

PGM20036

```
```

    DC 300 I=1,NLINK PGM20037
    LAUC=10*(T-1)
    KK=LST(I)
    DO 290 J=1,KK
    LAU= LAJC +J
    READ(11'LAD) ATT, ROC,FOC,ETC,FTC,SKL,FOE,LEN,CAP,RAF,DSP,ISTR,NCRIT
    1.NSIIM
    WBITE(6,195) T
    195 FORMAT(///' LTNK',I5./.13X,'STARTS',2X,'ENDS',2X,'REGION'.2X,'STR
1ATEGY \#',2X, 'CPITICAL INDRX', 2X, "MAX STIPPAGE')
WRTTE(6,20) LBEG(I).IEND(I),LREG (I),ISTR,NCPIT,NSLTM
20 FOEMAT(15X,I2,5X,I2,5X,I2,11X,I2,11X,I2,12X,I2)
K又TTE (6,215)
235 PORMAT (//4OX, VEHICLF INFORMATION')
URITY(6,217)
24 PORMAT (/15X, TRAVRI TIME ON THE LINK IN HOURS')
GRITE(6,218)
218 FORMAT (/20X,'VEHICLE TYEE:',8X,'V1',10X,'V2',10X,'V3',10X.'V4',10X
1,'V5',10x,'VG',10x, V7',/,10x.'YEAP')
DO 220 IK=1.IHORI7
WBITE(6,225) IK,(ATT(IK,IV),IV=1,7)
225 FORMAT(11X,T2, 22X,7(2X,F8.3.2X))
220 CONTINUE
WRTTE (6,227)
227 FORMAT (/15X, 'VEHICIE ECONOMIC COSTS IN \$ POR THE WHOLF LINR')
WRITT(5,228)
228 FORMAT (/2OX,'VEHICIE TYEE:',8X,'V1',10X,'V2',10X,'V.3',10X,'V4',10X
1,'V5',10X,'V6',10X,'V7',/,10X,'YeAR')
DC 230 IK=1,THOPTZ
WPITE (6,235)IK, (FOC (IK,IV),IV=1,7)
235 FOPMAT(11X,I2,22X,7(2X,59.3,2X))
230 CONTIVUE
WRTTE (6,237)
237 FORMAT (/15X, VEHTCLE FTNANCIAL COSTS IN \$ FOR THF UHOLE LINK')
WQTTE (6,228)
23A FORMAT(/2CX,'VPHICLE TYCF:',8X,'V1',10X,'V2',10X,'V3',10X,'V4',10X

```

```

    DC 240 IK=1,IHOPI%
        NRITE (6,245) TK, (FOC(IK,IV),IV=1.7)
    245 FORMAT (11X,I2,22X,7(2X,F8.3,2X))
249 CONTINUE
\#RTTE(6,250)
250 FORMAT(//40X,'IINK INFCRMATION')
GRITP(6,301)
301 FORMAT(/1X,'YFAR'.2X,'FINANCTAL COST', 2X,'ECONOMIC COST', 2X, 'FOEEI
IGN FXCHANGP', 2X,'SKIILPD LABOR', 2X,'LINK TENGTH', 2X,'LINK CAPACTTY
2',2X,'RTSE-FALL', 2X,'DESIGN SPEED',/.12X,'($)',13X,'($)', 15X,'($)'
    3.14X,'($)',10X,'(KMS)', 8X.'(PCO/HR)',4X,'(M/100M)',5X.'(KMS/HR)')
DO 310 IK=1.IHORTZ
WRITE(6,315) IK,FTC(IK),PTC(TK),FOR(IK),SKL(IK),LEN(IK),CAP(IK),RA
1P(IK), ISE(IK)
315 FORMAT (/, I3,1X,F15.3,1X,F14.3,3X,F15,3,1X,F14,3,1X,F13.3,1X,F15.3
1,1X,F9.4,2X,F12.4)
310 CONTTNTF
DO 260 IK=1,THORI%
ETC (IK)=0.
FTC (IK)=0.
SKL(TK)=9.
FOR (IK)=0.
LFN(IK)=0.
CAP (IK)=?.
RAF(IK)=0.
DSP (TK)=0
DO 255 IV=1,7
ATT(IK,IV)=0.
ECC(IK,IV)=0.
FOC(IK,IV)=0.
255 CONTINUS
250 CCNTTNUF
290 CONTINOE
3CC CCNTTNUF
DO 201 KO=1,NODE

```

EGM20073
PGM20074
PGM20075
PGM20076
PGM20077
PGM20078
DGM 20079
PG M20080
PGM20081
PGM20082
PGM 20083
PGM20084
PGM20085
PGM20086
PGM 20087
PGM2)088 PGM 20089 T
PGM2009)
PGM20091
PGM 20092
PGM20093
PGM 20094
PGM20095
PGM 20096
PGM20007
PGM20098
PGM20099
PGM20101
PGM20101
PGM20102
PGM20103
PGM20104
pgM 20105
PGM20106
PG M20107
PGM20108
```

    DO 190 KD=1,NODE
    TF(LOD(KO,KD). ZO.0) GO TO 19C
    WEITE(6,100)KO,KD,IOD (KO,KD)
    10 EORMAT(///,' DATA FOR O-D PNTR:',T2,:-1,I2,' (STCRED IN
1 EECOBO',T2,')')
JIMC= TOD (KO,KD)
RFAD(12'JIMC) DEMAND, DLA,PRICE,VALT,FTOAD
WRTTE (5,10?)
1O2 FORMAT(/3OX,'DRMAND')
GRITE(6.105)
105 FORMAT(/5X,'YEAR',5X,'TYPR:',5X,'V1',10X,'V2',10X,*V 3',10X,'V4', 10
1X,'V5',10X,'V6',10X,'V7')
IF (IOPT.EO.1) GO TO 500
WPITE (5,106)
TO6 FORMAT(21X,'VEHICLES',4X,'VEHICLES', 2X,5 (4X,'TONS',4X))
GC TO 55?
500 WFITE (6,510)
510 EORMAT(19X,7(2X,VEHTCIES', 2X))
55C LO 14, I=1, IHORIZ
WRITR (6,115)I, (DEMAND (I,J),J=1,7)
115 PCRMAT (5X,I2,10X,7(2X,FQ.2,2X))
140 CONTINIF
DC 143 I=1.IHORIT
DO 142 I= 1,7
DEMAND (I,J)=0.
142 CONTINUE
143 CONTINUF
WETTE(6,145)
145 FOEMAT(/10X, TYEE:', 33X,V1',10X,'V2', 10X,'V3',10X,'V4',10X,'V5',1
10x,'V6',10x,'V7')
NRITG(6,150) (ELA (I),I=1,7)
*50 PORMAT(/' ELASTTCITY KITH ZPSPPCT TO TEANSPORT COSTS',7(2X,F8.4,
12X))
NRTTP(5,152) (PRTCE(I),T=1,7)
152 FORMAT(' COST OF TRANSPORT (S/VFH,), 14X,7(2X,F8.3,2X))
MEITE(5,153) (VALT(I),T=1,7)

```

PGM20109
PGM2C110
PGM20111
PGM20112
PGM 20113
PGM20114
PGM20115
PGM20116
PGM20117
PGM20118
PGM20119
PGM2012?
PGM20121
PGM20122
PGM20123
PGM20124
PGM20 125
PGM20126 i
PGM20127
PGM20129
PGM20 129
PGM2013)
PGM20131
PGM20132
PGM20133
PGM20134
PGM2C135
PGM 20136
PGM20137
PGM 20138
PGM20139
PGM20140
PGM20141
PGM20142
PGM20143
PGM20144
```

{53 FORMAT(" VALUE OF TIMP-PASSENGEPS ($/PASS-HR)',5X,2(2X,F8.3.2X)
    1./,16X,'COMMODITIES ($/TON-HR)'.31X,5(2X,F8.5.2X))
WRITE (6,154) (FLOAD(I),I=1,7)
154 FOPMAT('LOADFACTOP.,31X,7(2X,P8.4,2X))
DO 151 IV=1.7
ELA (TV)=0.
PLCAD(TV)=0.
PRICE TV)=0.
VALT (TV)=0.
151 CONTINJF
10^ CONTTNUE
20 CONTINUF
EETURN
END

```

PGM20145 PGM 20146
PGM20147
PGM 20149
PGM20149
PGM 20150
PGM20151
PGM20152
PGM 20153
PGM20154
PGM 20155
DGM20156
PGM 20157
PGM20158
```

STRROUTINE MATCH (NATCH,LIST,K,RK, IARG)

```
```

MAMCH READS A CARD in boal format tNTO JBOf, CONVERTS FACH
COLUMN TO AN INTEGER CODE IN IbOF, AND DECODES EACH LOGICAL
FIEID ON THF CARD. THE IAST USFABLE COLUMN IS INDICATED BY THE
DATA SPECIFICATION FCR 'lASTCC'.
EACH CODE NUMBER REPPESENTS A CHABACTER AND IS FORMED
INTO ITST WORDS BY CCMBINING THE CODF TIMES SOME
RCRER OF 100. THUS TF A mORD MAy CONTAIN 4 CHARACTERS,
(IIST(1)=4), AND THE WORD 'THE' IS TO RE REPRESENTED, THE CODED
YORD IS 39272414, BLANK PADDED (14) ON THE RIGHT
LIST=DICTIONARY ADDRFSS (INTEGER ARRAY)
IIST(1) =NOMBER OF CHARACTERS/WORD
IIST(2)=NUMBER OF IIST WOFDS IN DICTICNARY
LIST(?)....fO LIST(N) ARE CODED WORDS
TOTAL LENGTH=L IST (2)+2 INTEGER WORDS

```
NATCH=
 1. End of Statement
 2.INTEGFR NUMBER
 3. ReAL Number
 4, WOPD NOT IN DICTIONARY
 5, WORD IN DICTIONAFY
CODE IS INTEGFR DECIMAL, CO TO 45, AS INDICATRD BELOW.
the codfs are as follons...
 CODF CHARACTER REPRESENTED
 00
 \(1 \quad 1\)
 2 2
 \(3 \quad 3\)
 \(5 \quad 5\)
 7 6
 \(8 \quad 7\)
 \(9 \quad 9\)

00000010 PGM 30001 00000060 PGM30022 00000070 PGM30C0 3 00000080 PG 130004 00000090 PGM30025 00000100 PGM3)006 00000110 PGM 30007 00000120 PGM3000R 00000130 PGM30009 00000140 PGM30C10 00000150 PGM 30011 00000160 PGM30012 00000170 PGM30013 00000180 PGM 30014 00000190 PGM30015 00000200 PGM 30016 00000210 PGM30017 00000220 PGM33018 00000230 PGM30019 00000240 PGM 39020 00000250 PGM31021 00000250 PGM30022 00000270 PGM 30023 00000280 PGM30024 00000290 PGM 30025 00000300 PGM30025 00000310 PGM30027 00000320 PGM30028 00000330 PGM 30029 00000340 PGM 30030 00000350 PGM3)031 00000360 PGM 30032 00000370 PGM3 0033 00000380 PGM30034 00000390 PGM30035 00000400 PGM30036

```

00000440 DGM30037
00000420 pGM30039
00000430 pGM30039
00000440 PGM30042
00000450 PGM 30041
00000460 PGM30042
00000470 PGM30043
00000480 PGM3)044
00000490 PGM30045
00000500 PGM30046
00000510 PGM?0^47
00000520 PGM30048
00000530 PGM30049
00000540 PGM3)050
00000550 PGM30051
00000560 PGM30052
00000570 PGM3)053
00000580 PGM30054
00000590 PGM30055
00000609 PGM3)056
00000610 PGM30057
00000620 PGM30058
00000630 PGM30059
00000640 PGM 30060
00000650 PGM30061
00000650 PGM30062
00000670 PGM30063
00000680 PGM30064
00000690 PGM3)065
00000700 PGM30066
00000710 PGM 30C67
00000720 pgm30058
0000C730 PGM30059
00000740 PGM30070
00000750 EGM30071
00090760 PGM33072
PAGF 2R

```
```

    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OP MORDIN DICTTONAPY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OP MORD IN DTCTTONAPY(EXCLUSIVE OF FIPST 2 CONTPOL 
    K=POSITION OP MORDIN DICTTONAPY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF LORDIN DTCTIONARY (EXCLISIVE OF FIPST 2 CONTROL 
    K=POSITION OF RORDIN DTCTIONARY (EXCLISIVE OF FIRST 2 CONTROL 
    ```
00000770
00000780
00000790 DGM30075
00000800 PGM30076
00000810 PGM30077
00000820 PGM30078
0000 C 830 PGM30079
00900840 PGM3008?
00000850 PGM30081
00000850 pGM30082
00000870 PGM30083
00000880 FGM30084
00000890 PGM30085
00000900 PGM 30086
00000910 PGM30C87
00000920 PGM30089
00000930 PGM30CR9
00000940 PGM30090 \(\stackrel{\text { PG }}{\sim}\)
00000950 PGM30091i
00000960 PG M 30092
00000970 PGM30093
00000980 PGM30094
00000990 DGM 30095
 DGM30096
 PGM30097
 PGM30098
 pgM30099
00001010 DGM 30100
00001020 PGM 30101
00001030 PGM30102
00001040 PGM 30103
03001050 PGM30104
00001060 PGM30105
00001070 PGM30106
00001080 PGM 30117
00001090 PGM30408
PAGE 29
```

C TO FIRST NON-BLANK CEAR.
DO 800 ISS=1,R?
TAUF(ISS)=IFT(15)
800 CONmINUE
PEAD(THEAC,1COO, ERF=801, END=802) TEUF
10NO FORMAT (BNA1)
GO TO 801
8)2 NATCH=6
GO T0 200
301 DO 101 T= 1,30
DO 1.2 J=1.46
IF(IBUP(I) -LET(T)) 102,103,102
102 CONTINUF

* NO MATCH-TLLPGAL CHAPACTEP,SET=50 IN TBUP
IBDF(T)=5?
GO TO 1 11
C MATCHED
IC3 IBUF(T)=J-1
1O1 CONTINUD
C SET TC AS EIRST NON-BLANK COTUMN
DO 114 I=1. LASTC
TF(IBUF(I) - BLANK)105,104.,05
1 0 4 ~ C C N T T N U Z ~
105 IC= I
C
c
C FECOGNIZAELE COLUMN,IASTCC
110 ICAR=IRUF (TC)
IF(IC-IASTC)115,115.12C
C END OF STATEMRNT
120 NATCH=1
280 3ETUPN
C
C OK-CHECK IF NEN PIELD IS A NUMMER,O-9,+,-OR.
195 TP(IDAR-12)125,125,300

```

FIRST NON CANK CEAR.
DO 800 ISS=1, R?
CONTINUE
(AC, \(1 . \mathrm{ERF}=801, \mathrm{ND}=802\)) TBUE
GC TO 801
822 NATCH=6
go To 280
3C1 DO \(101 \mathrm{~T}=1,30\) 50 \(102 \mathrm{~J}=1.46\)
\(\operatorname{IF}(\operatorname{TBU} \mathrm{P}(\mathrm{I})-\mathrm{LE}\) (I)) \(102,103,102\)
102 CONTINIP
- NC MATCH-TLIPGAL CHAPACTEF,SFT=50 TN TBHP \(\operatorname{IBDF}(T)=59\)
GO To in?
C MATCHED
(TBUF T) \(=\mathrm{J}-1\)
C SET TC AS EIRST NON-BLANK COIUMN
DO \(114 \mathrm{I}=1\). LASTC
T. IBNF (I)-BLANK) 105,104.705

104 CCNTTNUE
\(I C=I\)
POINTPE IS ALWAYS SET TC FIRST CHARACTFR OF NEW RIELD ON LEAVING MATCH OE BY RTADING A NEW CARD-IT MAY BE LPFT PAST THF LAST

ICAR=IRTP (TC)
BND OF STATEMTNT
\(120 \mathrm{NATCH}=1\)
28. 3ETUPN
, \(19-C H E C K\) IF NEN PIELD IS A NUMMER, \(-9,+,-\) OR. \(195 \operatorname{TP}(I D A R-12) 125,125,300\)

00001100 PGM301109
00001110 PGM30112
00001120 PGM30111
00001130 FGM30112
PGM 30113
00001150 PGM30114
DGM30115
PGM3C115
PGM30117
00001160 PGM30118
00001170 PGM30119
00001190 PGM 30120
00001190 PGM30129
00001200 PGM 30122
00001210 PGM30123
00001220 FGM30124
00001230 PGM30125
C0001240 PGM30126
00001250 PGM30127
00001260 PG M30128
00001270 PGM30129
00001280 PGM30130
00001290 PGM 30131
00001300 PGM 30132
00001310 PGM30133
00001320 PGM30134
00001330 TGM30135
00001340 PGM 30135
00001350 PGM30137
09001360 PGM30138 0000137 C PGM30139 00001380 PGM 30140
00001390 PGM 30141
00001400 PGM30142
00001410 PGM 39143
00001420 PGM 30144
PAGR 32
```

C
NHMBEP FCUND-SET INTTIAL PABAMPTFES
DECTMAI POTNT=NO
125 TDP=?
NEGATTVP=NO
ISGN=?
C NO GIGNIPICANT DIGIT YET
TSIG=?
C NUMFPTCAL VATUE OF NUMBEP(PEAL OQ INTEGTE)
NUMB=?
C SAVFSTAPT OF NUMBFR
ICSTR = IC
C IS PTRST CRAR A PLIS SIGN-TGNORF TF YOS
TP(TCAF-DLUS) 126,130,126
CHFCK TP MINUS STGN-SET TSIGN=1 IT YOS
126 IF(ICAR-MINUS) 135,127.135
127 ISGN=1
C LFADING PLUS OP MINUS SIGN-BUMP CARD COLUMN POINTEP-CHECK
C IF BND OF FTELD
C THIS IS GENERAL CC BUMPFR SECTTON OP CODE
13-}TC=IC+
ICAR=IRIJ (IC)
IF(IC-TASTC) 135,135,140
C CHWCX TE CC IS BLANK OR COMMA
135 IF(ICAP-BIANK) 145,140,145
145 IF (ICAR-COMMA) 150,14O,150
C NOT END OF EIELD-IS IT A DIGTT...
150 IF(ICAD-9) 155,155,160
C DIGTT C-9,DECTANI POTNT YET...
155 TF(IDP-1)165,170,165
C ATPFADY HAVP DP,N IS THIS NBGATIVF,NIMBDE IN ANUMB
17- ANUMB=ANUMB+PLOAT (TCAR)* (1O*N)
N}=\textrm{N}-
GC mo 130
C NO DP YET,IS DIGTT A 7MFO...
165 IF(ICND)175,183,175

```

00001430 pgm 30145 00001440 PGM30145 00001450 PGM 30147 00001460 PGM30148 00001470 PGM30149 00001480 PGM30150 00001490 PGM 30151 00001500 PGM30152 00001510 PGM30 153 00001520 PGM 30154 00001530 PGM 30155 00001540 PGM30156 00001550 PGM30157 00001560 PGM 30158 00001570 PG 930159 00001580 PGM 30160 00001590 PGM30161 00001600 PGM 30162 00001610 PGM30163 00001620 PGM 30154 00001630 PGM 30165 00001640 PGM30156 00001650 PGM30167 00001660 PG M30168 00001670 PGM 30169 00001680 PGM3017? 00001690 pGM30 171 00091700 PGM30172 00001710 PGM 30173 00001720 PGM30174 00001730 PGM30175 20001740 PGM30176 00001750 pGM30177 00001760 DGM30178 00001770 PGM30179 0000178 pGM30180 PAG" 31
```

C NOT ZRRO,THUS IT TS SIGMIFTCANT
175 ISIG=1
G0 T? 185
ZESO-CHECK IF SIGNIFICANT,IE NOT SKIP
180 TF(ISIG-1)130,185,130
|85 NUMB=10*NUMB+ICAE
GO TO 130
C
C CHARACTOR NOT DIGTT TS IN DP...
160 IF (ICAR-DP) 195.190.195
C
190
YES,WAS ONE GIVEN DREVICUSIY...
190 IF(TDP-1)200,99,200
20. N=-1
IDP=1
A NUMB=NIMB
gO TO 130
C
C NOT DIGIT OR DP,IS IT E...IF NOT,ERROR(99)
\$95 IF(ICAB-24)99,205,99
C F FODM-E(PLTS OR MTNOS)N1,(N2)
205 IF(IDP-1) 210,214,210
C
NO DD YET,FIOAT NUMBFR
210 ANUMB=NUMR
TrP=1
214 I=1
C SIGN OF EXPONENT=PLIS
IEP=+1
C VALUE OF EXPONENT=0
TEX=?
C NEXT CCTIMN
215 TC=IC+1
ICAP=IEUF(TC)
IF(IC-LASTC ) 216,216,99
216 IF(TCAR-BIANK)217,09.217
217 IF(ICMR-CCMMA)218.99.218
218 GO T? (22?,225),I

```
```

C CHARACTER APTRR E,IS IT PLUS,MTMUS,OR DIGIT...
220 IF(ICAR-PIUS)226,230,235
235 IF(ICAR-MINUS) 99.240.99
C MINUS SIGN
24\cap TEP=-1
C HFOE DOF DLUS SIGN ALSO
C RESET STITCH AND GFT NEXT COLUMN
23^ I=2
GO TO 215
C FIFST OF ONE OR TWO FXFONPNT DIGITS
225 IF(TCAR-9)226,226,09
225 IFX=TCAR
T=1
22? IC=IC+1
ICAR=IBUD (IC)
TP(IC-IASTC ) 231,231,250
231 IF(ICAE-BLANK) 227,250,227
227 IP(TCAR-COMMA)228.250.228
229 GO TO (224,99),I
224 IF(ICAE-9)229.229.99
229 T=2
IEX=1C=IEX+ICAR
GC TO 223
END OF E POPM-MULTIPIY NUMBFP BY EXPONEMT
ANUMR=ANUMB*(10.**(IEP*IEX))
C FND OF NUMBER, POINTER AT FLANK,COMMA,OR FOC
140 TF(TSCN-1)144,141,144
C NEGATE-CHFCK IP INTFGRE OP RRAL
141 IP(TDP) 142,143,142
C PFAL
142 ANUMB=-ANUMB
GO T? 144
O INTFGP=
143 N[IME=-NHMB

```

00022150 DGM 30217 00002160 PGM30218 00002170 PGM 30210 00002180 PGM 30220 00002190 PGM30221 00002200 PGM 30222 00002210 PGM30223 00002220 PGM 30224 00002230 PGM30225 00002240 PGM30226 00002250 PGM30227 00002260 PGM3C228 00002270 PGM30229 00002280 PGM30230 00002290 PGM 30231 00002390 PGM30232 00002310 PGM 30233
00002320 PGM30234
00002330 PGM 30235 N
00002340 PGM \(30236 \stackrel{\text { ® }}{\text { ® }}\)
00002350 FGM30237
00002360 PGM30238
00002370 PGM30239
00902380 PGM 30240
00002390 PGM30241
00002400 PGM 30242
00002410 PGM30243
00002420 PGM30244
00002430 PGM 30245
00002440 PGM30246
00002450 PGM 30247
00002460 PGM30248
00002470 PGM 30249
00002480 PGM30250 000 C 249 C PGM 3 C 251
00002500 DGM 30252 PAGE 33
```

    カ\varepsilon {0va
    88C0EWりd 098Z0000
    L8ZCEWDd 0S&Z0000
    98Z0Ewgd On& Z0000
    G8Z0EW5a O&8Z0000
    #8ZUEWりd 0Z8Z0000
    &&Z0&Wりa 01820000
    Z8Z0EW9d 00820000
    18Z0EWUd 06LZ0000
    0&て0&wまa 08LZ0060
    6LZOEWSG OLLZOOOO
    8LZ0EW9d 09LZ0000
    llzuewga oslzO000
    gLZOEW)d OHLZO000
    glzuEW9a OELZ0000
    mLZCEW9d 0ZLZ0000
    zLZOENDd OLLZOOOO
    ZLZCEWSa 00LZ0000
    1 LLZOEWけa 069Z0000
N OLZOEW9む 089Z0000
69ZOEW5d 0L9Z0000
8920EW9a 09920000
L9ZuEWDd 05920000
99Z0EwSd On9Z0000
s9Z0EWEJ OE9Z0000
\#9Z0EWDa 0Z9Z0000
E9Z0EWSd 069Z0000
ZyZOEWDS 00920000
19Z0EWDd 065Z00c0
09Z0Eh5d 08GZ0000
6SZ0EW9d OLSZ0000
8SZUEW5d 09SZ0000
LSZOEW9d OSSZ0000
gSZ0EwSd 0カSZ0000
sszo\&Wリa 0\&5z0000
\#SZOEwSd 0ZsZ0000
\&\varsigmaZUEWSa OLSZ0000

```

20 CuI

adSOL－+ UNGi \(=M D N\)

（1） \(3 S+1=O \mathrm{~N}\)
WSELE ESIT BSO
CTEIS aC and

SO力＇OZ力＇GOt（vwWOD－cVOI）AI GL力

（DI） \(4 \cap 日 I=\varepsilon Q D I\)
\(\downarrow+2 I=د I \quad \cup \eta\)
МI＝どらSI 0とと

08でてLて＇こんて（ OJSVT－2I）aI
\(\downarrow+\) JI＝JI \(\llcorner\angle Z\)
つもでレLでしLて（ DJS甘T－コI）aI ULて

QNAN：\(=\mathrm{ME}\)
をWh \(\mathrm{N}=\mathrm{y}\)
CtIGI＝HDL甘N \(\quad \pi 力 L\)

2
2
\[
\approx
\]
```

C CHECK TV FTRLDS IS SHORTFR THAN DICT. DORDS
IF(NCW-NC)440.455.455
C SHORTRR-ELANK PAD
440 DO 445 I=1,NCW
IJK=ICST: +I-1
445 TWD=100*IWD +IBUF (ITK)
DC 450 T=NCW1,NC
450 IKD=100*TDD+BIANK
GC TO 465
C NCV,GF,NC
455 DC 460 I=1,NC
IJK=ICSTQ +I-1
460 IMD=100*IWD+IBIT (ITK)
C
C NOW THD CONTATNS NC CHAEACTRRS TO COMPARE
C TO DICTIONARY WOPDS
465 NWDS=IIST (2)
DC 475 T=1,NWDS
IF(IND-LTST (T+2))475,480,475
475 CCNTTNUE
C WORD NOT FOTND IN DICTICNARY
NATCH=4
K=ICST?
GO TO 270
C GORD POUND IN DICTIONARY
400 K=T
NATCH=5
GO TO 27?
C
C EREOR IN NUMEPR FTPTD
9 9
WOITR(TRANT, 9.9)
K=ICSTP
NATCH}=
GO TO 27?
999 FCEMAT(25H FEPOP IN NJMPEIC PIRLD.)

```

00003230 EGM20325
00003240 PGM 30326
EETURN
PGM30327
END
00003250 PGM 30328
\[
\text { - }-218-
\]

NETWORK STRATEGIES GENERATOR
```

    DEFINE FILE 10(6,900,O,INF) PGM10CO1
    DEFINE FILE 11(300,583,U,LAU)
    THIS PROGRAM GENERATES NETWCEK SRTATEGIES PRCM LINK-STRATEGIES
COMMCN/AMR/ IDICA(32).NGENE(32).IDILIM
CCMMON/CRI/ PERCE,NCRITI(100)
COMMON /MIN/ MINCRI,MINSTR
COMMON/NUM/ NUMCUM(32).NUMMM
COMMON /PER/ IMP.LEC
COMMCN/SII/ NSLIP,MC,NUMSTE,IDIC,NSTR
COMMON/LYS/NSLIMA(100).NOMBER (30),MEIS (30)
COMMON/FIIE/ NLINK,NFEG,IST(30),IAA(30)
CCMMCN /SIB/ ILIM,JMAX,NUMLIM,NADD
INTEGFR*2 IAA
DIMENSICN NGRCRI(32)
CALL INITIA
IDICA (J BAX+1) = JMAX+1
NOMSTR=1
ILIMFO= ILIM
MINSTF=ILIMFO
NOMMM=1
DC 1 I=1,JMAX
IDICA(I) = I
NGFNE (I) =0
1 CCNTINUE
IDIR=1
ICIL=1
NGENE(1)=1
NCPIGE=NCFITI(1)
NGFCRI (1)=0
NGECRI(2)=NCRIGE
4 ~ T D T L = T D I L + 1
IF(IDIL.GT.JNAX) GOTC 2
PGM10001
PGM10002
PGM 10003
PG M10004
PGM 10005
PGM10006
PGM 10007
PGM10008
PGM10009
PGM1C010
PG M10011
PGM 10012
PGM10013
PGM 10014
PGM10015
FGM10016
PGM10017
PG M10018
PGM 10019
PGM10020
PGM 10021
PGM10022
PGM 10023
PGM 10024
PGM 10025
PGM 10026
PGM10027
PGM10028
PGM10029
PGM 10030
PGM10031
PGM 10032
PGM10033
PGM10034
PGM 10035
PGM10036

```
```

11 IF(NGENE(IDTL).LT.NUNEEE(IDIL)) GC TC 3

```
```

11 IF(NGENE(IDTL).LT.NUNEEE(IDIL)) GC TC 3
NGENE(IIII)=0
NGENE(IIII)=0
IF(IDIL.LE.ILTMFO) GO TC 8
IF(IDIL.LE.ILTMFO) GO TC 8
GO TO 4
GO TO 4
8 IF(IDIL.EQ.1) GO TO 9
8 IF(IDIL.EQ.1) GO TO 9
IDIL=IDIL-2
IDIL=IDIL-2
IDIR=IDIE-1
IDIR=IDIE-1
GO TO }
GO TO }
9 IF(NJMSTF.NE.1) GO TO 16
9 IF(NJMSTF.NE.1) GO TO 16
WRITE(IMP,502)

```
```

        WRITE(IMP,502)
    ```
```




```
```

    1LODES ALL OBLIGATORY IINK-STRATEGIES'/'1')
    ```
```

    1LODES ALL OBLIGATORY IINK-STRATEGIES'/'1')
        STOP
        STOP
    16 NUMMM=0
16 NUMMM=0
CALL CRITIC
CALL CRITIC
CALL ECRIEE
CALL ECRIEE
STOP
STOP
3 ILIR=IDIE+1
3 ILIR=IDIE+1
IDICA(IDIR)=IDIL
IDICA(IDIR)=IDIL
NGENP(IDII) = NGENE(IDII) +1
NGENP(IDII) = NGENE(IDII) +1
MC=NUMCUM(IDIL) +NGENE (IIIL) -1
MC=NUMCUM(IDIL) +NGENE (IIIL) -1
NCRIGE=NCRIGE+NCRITI (MC)
NCRIGE=NCRIGE+NCRITI (MC)
NGECRI(IDIL+1) =NCRIGE
NGECRI(IDIL+1) =NCRIGE
IF(NCRIGE.LT.MINCRI) GC TO 4
IF(NCRIGE.LT.MINCRI) GC TO 4
IF(IDIR.LT.MINSTE) GO IO 4
IF(IDIR.LT.MINSTE) GO IO 4
IDILIM=IDIR
IDILIM=IDIR
ILIM=IDII
ILIM=IDII
CALL VERCAL
CALL VERCAL
IDIR=IDIIIM-1
IDIR=IDIIIM-1
IDIL=ILIM
IDIL=ILIM
I1=IDIL+1
I1=IDIL+1
IF(I1.GT.JMAX) GO TO 19
IF(I1.GT.JMAX) GO TO 19
DC 12 I=I1.JMAX
DC 12 I=I1.JMAX
NGENE(I)=0
NGENE(I)=0
12 CONTINUE
12 CONTINUE
19 CCNTINIE

```
```

19 CCNTINIE

```
```

PGM100.37
PGM10038
PGM10039
PGM10040
PGM 10041
PGM10042
PGM 10043
PGM10044
FGM10045
PGM10046
PGM10047
PGM 10048
FGM1004 9
PGM 10050
PGM10051
PGM10052
PGM10053
PGM10054
PGM 10055
PGM10056
PGM 10057
PG M1 0058
PGM 10059
PGM10060
PGM10061
PGM 10062
PGH10063
PGM 10064
PGM10C65
PGM 10066
PGM10067
PGM 10068
PGM10069
PGM 10070
PGM 10071
PGM10072
$M C=\operatorname{NUMCOM}(I D I L)+\operatorname{NGENE}(I D I L)-1$
PGM10073
$\mathrm{NCRIGE}=\mathrm{NGECRI}(I D I L+1)-\mathrm{NCRITI}(\mathrm{MC})$
GC TO 11
7 ILIM=IDIL+1
MC=NUMCUM (ILIM) + NGENE (IIIM) - 1
PGM 10074
P GM10075

NCEIGE=NGECRI (TLIM+1)-NCRITI (MC)
PGM10077
$I 1=I L I M+1$
PGM 10078
DC $10 \quad I=I 1, J$ MAX
NGENE $(I)=0$
10 CONTINUE
GC TO 4
2 DO $5 \mathrm{I}=1$. JMAX
I $1=\mathrm{JMAX}-\mathrm{I}+1$
IF (NGENE (I1).EQ.O) GC TC 5
ICIL=I1-1
$\operatorname{IDIR}=0$
DC $6 \mathrm{~J}=1$. TDIL
IF (NGENE (J). NE.O) IDIR=ICIR+1
6 CCNTINUE
GO TO 7
5 CONTINUE
NUMMM=0
CALL CRITIC
CALL ECBIER
PGM10079
PGM 10080
PGM10081
PG M 10082
PGM 10083
PGM10084
PGM 10085
PGM10086
PGM 10087
PGM10088
PGM10089
PGM10090
FGM100911
PGM 10092
PGM10093
PGM 10094
PGM10095
PGM 10096
PGM10097
PGM1C098

SUEROUTINE VERCAL
C
COMMON /AME/ IDICA(32), NGENE(32). IDIIIM
CCMMON/CCM/ KOMPTE,KCMIIM
CCMMCN/IND/ INDEX
CCMMON /IDR/ IDIR
CCMMON/LYS/NSLIMA(100), NOMBER (30), MDIS (30)
CCMMON/NUM/ NOMCDM(32). NUMMM
CCMMCN /EES/ NHSTRA $(102,20)$, NWSLIP (102,20)
COMMON /EER/ IMP,LEC
CCMMON /SLI/ NSLIP, MC, NUMSTR,IDIC,NSTP
COMMON /STA/ ILIM,JMAX, NUHIIM, NADD
CCMMON/YEA/ NY, NUMDIS
COMMON/FILE/ NLINK,NREG.LST (30), TAA(30)
COMMON/VB/LL
C
INTEGER*2 IAA
DIMENSICN IONVER(31)
C
$C$ FIPST FABT OF THF PROGRAM SEARCH OF A NETWORK STRATEGY WHICH INCLUDE
C OBLIGATORY IINK-STRATEGIES
C
$\mathrm{LI}=1$
CAII ZEEC
DC $27 \mathrm{I}=1 . \mathrm{JMAX}$
IONVER $(I)=0$
27 CCNTINUE
NUMST2=NUMSTR
ICIR=1
NSTR=0
IND EX=0
IDIC=IDICA(1)
IF (IIIM.EQ.O) GO TC 1
2 NSLIE $=-N A D D$
NUMDIS=MDIS (IDIC)
3 NSIR=NGENE (IDIC)

PGM20001 PG M 20002
PGM 20003
PG M20004
PGM 20005
PG 20006
PGM 20007
PGM20008
PGM 20009
PGH20010
PGM20011
PGM 20012
PG M20013
PGM 20014
PG M20015
PGM 20016
PGM20017
PGM20018
PGM20019
PGM20020
PGM20021
PG M20022
PGM20023
PG M2 0024
PGM 20025
PG 120026
PGM 20027
PGM20028
PGM20029
PGM 20030
PGH20031
PGM 20032
PGM20033
PGM 20034
PGM20035
PGM20036

```
 MC=NUMCUM(IDIC) +NSTR-1
 4 NSLIF=NSLIP+NADD
 cali calcul
 IF(INDEX.EQ.1) GO TO 5
 IONVER(IDIR)=1
 CALL BEINIT
 IF(IDIC.LE.ILIM) GO TC 2
 IF(JMAX.GT.ILIM) GO TO 1
 GO TO 19
 5 CALL REMEMB
 6 IF(LL.EC.C) GO TO 26
 IF(NSIIP.LT.NSLIMA (MC)) GO TC 4
 IF(IDIF.EQ.1) GO TO 7
 NWSTRA(NOMSTR,IDIC)=0
 ILIR=IDIE-1
 IDIC=IDICA(IDIR)
 CAIL RECAL
 GO TO 6
C
SECCND fART CF the program SEARCH OF LINK-Steategies which might fit
C the NETWORK-Stratggy almeady found
 1 continde
 8 ~ N S L I P = - N A D D ~
 NUMDIS=MDIS (IDIC)
 9 NSTR=NSTR+1
 MC=NUMCUM(IDIC) +NSTR-1
 10 NSLIP=NSIIP+NADD
 Call calcul
 IF(INDEX.EQ.1) GO TO 11
 CALL ERINIT
 15 IF(IDIC.LE.JMAX) GO TO &
19 NUMSTR=NUMSTR+1
 DO 13 I= 1.JMAX
 NWSTRA (NUMSTR,I) =NGSTEA (NUMSTR-1.I)
 NKSIIP(NOMSTR,I)=NKSIIP(NUMSTR-1,I)
```

PG M20037
PGM 20038
PGM20039
PGM 20040
PGM20041
PGM20042
PGM 20043
PG M20044
PGM 20045
PGM2004 6
PGM 20047
PGM2 0048
PGM 20049
PGM20050
PGM20051
PGM20052
PG M20053
PGM 20054
PGM20055
PGM 20056
PG M20057
PGM 20058
PGM20059
PGM20060
PGM20061
PGM20062
PGM 20063
PGM20064
PGM 20065
PGM20066
PGM 20067
PGM20068
PGM20069
PGM20070
PGM20071
PGM 20072

```
13 ccNTINUE
 CALL CRITIC
 IF(NUMSTE.LT.NUMLIM) GO TO 12
 NOMST2=?
12 CCNTINOE
 Do 20 I=1.JMAX
 I1= JmAX+1-I
 IF(NMSTRA(NOMSTR.I1).EQ.C) GO TC 20
 MC=NUMCUN(I1) +NWSTRA(NUNSTR,I1) -1
 IF(NWSLIE(NUMSTR,I1).LT.NSLIMA (MC)) GO TO 21
 IF(I1.IE.ILIM) GOTO 28
 IF(NGSTFA(NUMSTR,I1).LT.NUMBER(I1)) GO TO 21
23 NKSTRA(NUMSTE,I1)=0
20 CCNTINUE
 GO To 26
21 IDIC=11
 call gecal
 IF(IDIC.GT.ILIM) GO TC 14
 IDIR=0
 DO 25 I=1,IDIC
 IF(NWSTRA (NUMSTR,I).NE.O) IDIR=IDIR+1
25 CONTINOE
 IEIR=IDIR+1
 GO TO 6
11 CALL REMRMB
14 IF(NSLIE.LT.NSIIMA(MC)) GO TO 10
 NSIIP=-NADD
 IF(NSIE.LT.NUMBER(IDIC)) GO TO 9
 IDIC=IDIC+1
 NSTR=0
 GO TO 15
7 IF(NUMSTR.LE.NUMST2) GO TO 16
 go T) 26
16 DO 23 J=1, IDILIM
 I=IDILIM+1-J
 IF(IONVER(I).EQ.0) GC IC 23
```

PGM 20073 PGM20074 PG M20075 PGM20076 PG M20077 PGM20078 PGM20079 FGM 20080 PGM20081 PGM 20082 PGM20083 PGM20084 PGM 20085 PGM20086 PGM20087
PG M20088
PGM 20089
PGM20090
PGM20091
PGM20092
PG M20093
PGM20094
PGM20095
PGM20096
PGM20097
PGM 20098
PGM20099
PGM 20100
pGM20101
pgM20102
PGM20103
PGM20104
PGM 20105
PGM20106
PGM 20107
PGM20108

ILIM=IDICA(I) PGM20109
IEIIIM $=$ I
GO TO 26
23 CONTINUF
RETURN
PG M 20110
PGM 20111
PG M20112

26 CONTINUE
PGM 20113
DC $24 \quad I=1 . J M A X$
NKSTRA(NUMSTE, I) $=0$
PGM20114

CONTINUE
PGM 20115
PGM 20116

RETURN
PGM20117
PGM 20118
END

```
 SUBROUTINE ADDCOM(CBAE,C1,C2,C) EGM30001
C THIS SUBPOCTINE MAKES C1=C2+C TAKING INTO ACCOUNT A SLIPPAGE OF N YPARS PGM 3OOO2
C , AND COMEARES THF C1 TC CBAF. INDEX=1 TF ONE OF THE ELEMENTSS PGM3OCOS
C OP C1 IS GFEATER THAN THE CORRESFCNDING FLENENT IN CBAP. INDEX=2 PGM3OOO4
C OTEERKISE
DIMENSICN CBAE(10,20),C1(10,20),C2(10,20),C(20)
 CCMMON /IND/ INDEX
 COMMON/SLI/ NSLIP,MC,NUMSTP,IDIC,NSTR
 CCMMON/YEA/ NY,NUMDIS
 CCMMON/FILE/ NLINK,NPEG,LST (30),IAA(30)
 INTEGER*2 IAA
C
 N1=NSLIE+1
 IF(N1.LE.NY) GO TO }
 NEITE(6,5C1) SOMFTHING STRANGE ONE SLIPPAGE EQUALS NY OR MORE'/'
 SO1 FORMAT('1', SOMFTHING STRANGE ONE SLIPPAGE EQUALS NY OR MORE'/', PC', PGM 30015
 11')
 STOP
 3 LC 4 I=N1,NY
 C1(NJMDIS,I)=C2(NTMDIS,I) +C (I-NSLIP)
 IF(C1 (NUMCIS,I).LE.CBAR (NDMDIS,I)) GO TO 4
 INDEX=1
 RETURN
 4 CONTINUE
 RETURN
 END
 PGM30005
 PGM 30006
 PGM30007
 PGM 30008
 PGM30009
 PGM30010
 PGM30011
 PGM30012
 PGM30013
 PGM30014
 PGM30015
501 FORMAT('1','SOMFTHING STRANGE ONE SLIPPAGE EQUALS NY OR MORE'/'/ PGM3OO16
 PGM30016
 PGM30018
 PGM30018 '
 PGM30019N
 PGM30020 i
 PGM30021
 pGM30022
 PGM30023
 PGM 30024
 PGM30025
 PGM30026
```

```
 SUBROUTINE CALCUL
C
 COMMON/AVE/ GECO1(10,20),GECO2(10,20),GEFO1(10,20),GEFO2(10,20).
 1GESK1(10,20),GESK2(10,2C)
 COMMON/CCM/ KOMPTE,KCMIIM
 CCMMON /IND/ INDEX
 COMMON/LIM/ COSTMA (1C,20), FOCAMA (10,20), SKLAMA (10,20)
 CCMMON/PAF/ COST(20,100),FOREIG(20,100),SKILLE(20,100)
 COMMON/SLI/ NSLIP,MC,NHMSTR,ILIC,NSTR
C
C FOR REGIONAL EUDGET CONSTRAINTS
 CALL ADDCCM(COSTMA,GEC(2, GECO1,CCST(1,MC))
 IF(INDEX.EQ.1) RETUPN
C FOE REGIONAL FCREIGN EXCHANGP
 CALL ALECOM(FOCAMA,GEFC2,GEFO1,FOREIG (1,MC))
 TF(INDEX.EQ.1) RFTURN
C FOR REGICNAL SKILLED LABOR
 CALL AEDCOM(SKLAMA,GESK2,GESK1,SKILLE(1,MC))
 RETURN
 END
```

PGM40001
PGM 40002
PGM40003
PGM40004
GM40005
PG M 40006
PGM40007
PGM40008
PGM40009
PGM40010
GGM40011
PGM40012
PGM40013
PGM40014
PGM40015
PGM40016
PGM 40017
PGM40018
PG M 40019
PGM40020

```
 SUBROUTINE REMEME
C
C THIS SUBROUTINE GIVES BACK TFE CLD VALUES TO THE VFCTORS USED IN PRUNI
 CCMMON/AVE/GECO1(10,2C),GECO2(10,20),GEFO1 (10,20),GEPO2(10,20),
 1GESK1(10,20),GESK2 (10, 20)
 CCMMON /IND/ INDEX
 COMMON /SLI/ NSLIP,MC,NEMSTR,IDIC,NSTR
 CCMMON/YEA/ NY,NTJMDIS
 N1=NSIIE+1
 IF(N1.GT.NY) RETURN
 DO I I=N1,NY
 GECO2(NUMEIS,I)=GECO1 (NUMEIS.I)
 GEFC2(NUMDIS,I)=GEFC1(NOMDIS,I)
 GESK2(NOMDIS,I)=GESK1(NUMDIS,I)
 1 CCNTINUE
 INDEX=0
 RETURN
 END
```

PGM 50001
PG M50002
PGM50003
PGM50004
PGM 50005
PGM50006
PGM50007
PGM50008
PGM50009
PGM500 10
PG M 50011
PGM50012
PGM50013
PGM50014
PGM50015
PGM 50016
p GM50017
PGM50018
PGM50019
PG M 50020

```
 SURROUTINE RECAL
C
C THES SUBROUTINE INITIALIZES SCME MATEICES AFTEE GOING BACK TO A LINK
C STRATEGY wITH A LOWER NUNBEE OF ERFERENCE
COMMON/AME/ IDICA (32),NGENE(32), IDILIM
CCMMON/AVE/ GECO1 (10,20),GECO2 (10,20),GEFO1 (10,20),GEFO2(10,20),
1GESK1 (10, 20),GESK2 (10,20)
CCMMON /ILR/ IDIR
COMMON/LYS/NSLIMA (100).NUMBER(30),MDIS (30)
COMMON /NUM/ NUMCUM(32),NUMMM
COMMON/RAP/ RECOST (30,10,2C),REFCRE(30,10,20), RESKIL (30,10,20)
CCMMON/EES/ NWSTRA (102,20),NWSLIP (102,20)
COMMON /SLI/ NSLIP,MC,NUMSTR,IEIC,NSTR
COMMON /STR/ ILIM, JMAX, NOMLIM,NADD
COMMON/YEA/ NY,NUMDIS
CCMMON/FILR/ NLINK,NREG,LST(30).IAA(30)
INTEGER*2 IAA
C
NSTR=NHSTEA(NUMSTR,ICIC)
NSIIP=NWSIIP(NUMSTR,IDIC)
 NUMDIS=MDIS (IDIC)
MC=NUMCUM(IDIC) +NSTR-1
IF(IDIC.EC.1) GO TO &
I 1=IDIC-1
LO 3 I=1,NREG
DO 4 J=1,I1
J1=IDIC - J
IF(NWSTFA(NUMSTR.J1).EO.O) GO TO 4
IP(I.NE.MDIS(J1)) GC IC 4
DC 5 K=1,NY
GECO2(I,K)=RECOST (J1,I,K)
GFCO1 (I,K)=GECO2 (I,K)
GFEO2(I,K)=REFORE(J1,I,K)
GEFO1(I,K)=GEFO2(I,K)
GESK2(I,K)=RESKIL(J1,I,K)
```

PGM70001 PGM70002 PGM 70003 PGM70004 PGM70005 PGM70006 PGM 70007 PGM70008 PGM 70009 PGM700 10 PGM70011 EGM70012 PGM70013
PGM70014
PGM70015
PGM 70016
PGM70017
PGM 70018
PGM70019
PGM 70020
PGM70021
PGM 70022
PGM70023
PG M 70024
PGM73025
PG M 70026
PGM70027
PGM70028
PGM70029
PGM70030
pgM70031
PGM70032
PGM70033
PGM70034
PGM70035
PGM70036

```
 SUBROUTINE REINIT
c
THIS SUBROUTINE INITIALIZES SOME MATRICES APTER A LINK STRATEGY IS FOU
TO FIT INTO A NETWORK STRATFGY
 COMMON /AME/ IDICA(32),NGENE(32).IDIIIM
 COMMON/AVE/ GECO1(10,20),GECO2(10,20),GEFO1(10,20),GEFO2 (10,20),
 1GESK1(10,20),GESK2(10,2C)
 COMMON/IDR/ IDIR
 CCMMON/EAF/ FECOST(30,10,20),REPCRE(30.10,20),RESKIL (30.10.20)
 CCMMON /EES/ NW STRA(102,20),NWSLIP(102,20)
 CCMMON /SLI/ NSLIP,MC,NOMSTR,IDIC,NSTR
 COMMON/YEA/ NY,NUMDIS
 NGSTRA(NUMSTR,IDIC)=NSTE
 NWSLIE (NUMSTR,IDIC)=NSLIF
 DC 1 I= 1,NY
 RECOST(ILIC,NOMDIS,I)=GECO2 (NUMDIS,I)
 REFORE (IDIC,NUMDIS,I)=GEFO2 (NUMLIS,I)
 RESKIL (IDIC,NUMDIS,I)=GESK2(NUMDIS,I)
 GFCO1(NUMLIS,I)=GECO2(NOMDIS,I)
 GEFO1 (NUMDIS,I) =GEFO2 (NUMDIS,I)
 GESK1(NOMDIS,I)=GESK2(NUMIIS,I)
 1 CONTINUE
 NSTR=0
 IF(IDIR.GF.IDILIM) GCTC 2
 IIIR=IDIF+1
 IDIC=IDICA(IDIR)
 GO TO 3
 2 IDIC=IDIC+1
 3 CCNTINUE
 BFTURN
 END
```

PGM 6000
PGM60002
PGM60003
PGM60004
PGM60005
PGM60006
PGM60007
PGM 60008
PGM60009
PGM60010
PGM6 9011
PGM 60012
PGM60013
PGM 60014
PGM60015
PG M 60016
PGM60017
PGM60018 N
PGM60019 :
PGM60020
PGM 60021
PGM60022
PGM60023
PG M60024
P GM60025
PGM60026
PGM60027
PGM60028
PGM60029
PGM60030
PGM60031
PGM60032
PGM60033

GESK 1 (I,K)=GESK2(I,K)
5 CONTINUE GC TO 3
4 CONTINUE
3 CCNTINUE GO TO 11
3 continue
CALI ZRFC
11 CONTINOS
DC 2 I=IIIC, JMAX
NGSTRA (NOMSTR,I) $=0$
2 CCNTINUE
geturn
END

PGM70037
PGM70038
PGM70039
PGM70040
PGM70041
PGM 70042
PG M 70043
pgm70044
PGM70045
PGM 70046
PGM70047
PGM70048
PGM70049
PGM70050

```
 SUEROUTINE CRITIC
THIS SUBROUTINE COMPUTES CEITICAL INDICES FOR NETWORK-STRATEGIES AND
gEUNE STRATEGIES WITH LOW INDEX
 CCMMON /CRI/ PRRCE,NCRITI(100)
 COMMON /RES/ NUSTRA (102.20),NWSIIP(102,20)
 CCMMON /MIN/ UINCRI,MINSIR
 COMMON/NUM/ NUMCUM(32),NUMMM
 COMMON /SII/ NSLIP,MC,NUMSTE,IDIC,NSTR
 COMMON /STR/ ILIM,JMAX,NUMLIM,NALD
 COMMCN /TRA/ NUMAX
 CCMMON/FILE/ NLINK,NEEG,IST (30). IAA (30)
 CCMMON /YEA/ NY,NUMDIS
 CCMMON/LYS/NSLIMA(10C),NUMBER (30),MDIS (30)
 COMMON/EAR/ COST (20.100),FOFFIG (20,100), SKILLE (20,100)
 CCMMON/VB/LI.
 INTEGEF*2 IAA
 IIMENSION NWCRIT(102)
 DIMENSION NBSTRA(102)
 NUMST1=NUMSTR-1
 IF(NUMST1.GE.NUMAX) GO TO 2&
 IF(NUMMM.NE.O) RRTURN
 NUMST1= NUMSTE
 NOMAX=NUMST1
 28 CCNTINUE
)O 21 I=1,NUMST1
 J=0
 DC 22 K=1,JMAX
 IF(NNSTRA(I,K).EQ.O) GC TO 22
 J=J +1
22 CONTINUE
 NBST&A (I) =J
 21 CONTTNUF
 DO 23 I=1,NUNAX
 J=0
000
C
```

PG M80001
PGM80002
PGM 80003
PGM 80004
PGM80005
PGM80006
PGM80007
PG M 800 C 8
PGM 80009
PG M 80010
PGM 80011
PGM80012
PGM 80013
PG M 80014
PGM80015
PGM 80016
PGM 80017
PGM80018
PGM80019
PGM80020
PGM80021
PGM 80022
PGM80023
PGM 80024
PGM80025
PGM 80026
PGM80027
PGM89028
PGM80029
PG M 80030
PGM80031
PGM80032
PGM80033
PGM80034
PGM80C35
PGM80036

```
 DC 24 K=1,NUMST1 PGM80037
 JJ=NBSTRA(K) PGM80038
 IE(JJ.LE.J) GO TO 24
 J=JJ
 R1=R
24 CONTINUE
 NBSTRA (R1)=-\
23 CCNTINUE
 JJ=-NBSTRA(K1)
 J=0
 DO 25 I=1,NUMST1
 IF (NBSTRA(I).IT.0) GC TC 26
 IF(NBSTRA(I).LT.JJ) GO TO 25
26 J=J+1
 IF(I.EQ.J) GO TO 25
 DO 27 K=1.JMAX
 NWSTRA(J,K)=NWSTRA (I,K)
2 7 \text { CONTINOE}
25 CONTINUE
 NUMST 1=J
 IF (NUMST1. LT. NUMAX) NUM\subseteqIT=NUMAX
 MINSTR=JJ
 DO 1 I=1,NUMST1
 J=0
 DO 2 R=1,JMAX
 IF(NWSTAA (I,K).EO.O) GO TO 2
 MC=NUMCUM(K) +NWSTRA (I,K)-1
 J=J+NCRITI(MC)
2 CONTINUP
NWCRIT(I)=\
1 CCNTINUE
LI=0
 DC }5\textrm{I}=1,\textrm{NOMAX
J=O
DC }5\textrm{K}=1,N|MST
JJ=NWCEIT(K)
```

3
PGM80038
PGM 80039
PGM80040
PGM80041
PGM 80042
PGM80043
PGM80044
PGM80045
PGM 80046
PGM80047
PG M80048
PGM80049
PGM80050
PGM 80051
PGM80052
PGM80053
PGM80054 N PGM $80055 \omega$
PGM80056
FGM 80057
PGM80058
EGM83059
PGM 80060
PGM 80061
PGM80062
PGM80063
PG M 80064
PGM80065
FGM80066
PGM 80067
PGM80068
PGM80069
PGM80070
PGM80071
PGM80072

```
 IF(JJ.LE.J) GO TO 6
 J= JJ
 K 1=K
6 \text { CONTINOE}
 NWCRIT(R1)=-J
 5 continde
 g=1
 JJ=-100000
 DO 7 I=1,NUMST1
 IF(NSCRIT(I).GE.0) GO TC 7
 IF(NWCRIT(I).GT.JJ) JJ=NWCRIT (I)
 DC 8 J=1,JMAX
 IF(K.NE.I) IL=1
 NHSTRA (R,J) = NGSTRA (I,J)
 NWSLIP(K,J)=NWSLIP (I,J)
 8 CONTINUP
 K=K+1
 IF(K.GT.NUMAX) GO TC 9
 CCNTINUE
 9 NOMSTR=NOMAX+1
 MINCRI=-JJ
 IF (NOMMM.NE.1) GO TO 11
 DO 10 I=1,JMAX
 NWSTRA(NUMSTF,I)=NWSTEA(NUMITM,I)
 NFSLIP(NUMSTR,I)=NHSIIE(NUMLIM.I)
10 CCNTINUE
 RETURN
11 K=NUMAX-1
 DO 12 I= 1,K
 I1=I
JJ=I+1
K1=NHCRIT(I)
cc 13 J=JJ,Numax
IF(K1.IT.NWCRIT(J)) GO TO 13
K1=NWCRIT(J)
I 1=J
PGM80073
PGM80074
PGM80075
PGM80076
PGM80077
PGM80078
PGM80079
PGM80080
pgm80081
PGM80082
PGM80083
PGM80084
PGM80085
PGM80086
PGM80087
PGM80088
PGM80089
 PGM80090
 PGM80091
 PGM80C92
 PGM80093
 PGM80094
 PGM80095
 PGM80096
 PGM80097
 PGM80098
 PGM80099
 PGM801C0
 PGM80101
 PGM80102
 PGM80103
 PGM80104
 PGM80105
 PGM80106
 PG M80107
 PGM80108
PAGE 16
```

13 CCNIINUF	PGM 80109
IF (I1.EC.I) GO TO 12	PGM80110
DC $14 \mathrm{~J}=1 . \mathrm{JMAX}$	EGM80111
N $1=$ NWSTRA (IT, J)	PGM80112
N2 = NHSLIP (I1, 3)	PGM80113
NWSTRA $(11, J)=$ NWSTKA $(1, J)$	PGM 80114
NWSLIP (I1, J) = NHSIIP (I, J)	PGM80115
NWSTRA (I, J) $=$ N1	PGM80116
$\operatorname{NWSLIP}(\mathrm{I}, \mathrm{J})=\mathrm{N} 2$	PGM80117
14 CCNTINUE	PGM80118
12 CONTINUE	PGM80119
Return	PGM 80120
END	PGM 80121

## SUBROUTINE ECRIRE

```
 COMMON/PAR/ COST(20,10C),FORFIG(20,100),SKILLE (20,100)
 CCMMON/EER/ IMP,LEC
 CCMMON /EES/ NWSTRA (102,20),NWSLIP(102,20)
 COMMON /STR/ ILIM,JMAX,NUMLIM,NADE
 CCMMON /TRA/ NUMAX
 CCMMCN/LYS/NSLIMA(100),NUMBER (30),MDIS (30)
 COMMON/NUM/ NUMCUM(32), NUMMM
 CCMMON /CRI/ PERCE,NCRIII (100)
 COMMON/EXE/TCOST (30,20),BCOST (20)
 CCMMON /YEA/ NY,NUMEIS
 COMMON/PILE/ NLINK,NREG,LST(30),IAA(30)
 INTEGER*2 IAA
 INTEGER*2 LET(52),MNSTEA(30,30),MWSLIP (30,30), IN (30,30)
 DIMENSION NWSTR(30,30),NWSL (30,30), LUM(420), ETC (20), ETCB(20)
```

    DATA LFT/ \(2 \mathrm{H} \quad 0,2 \mathrm{H} \quad 1,2 \mathrm{H} 2,2 \mathrm{H} \quad 3,2 \mathrm{H} \quad 4,2 \mathrm{H} 5,2 \mathrm{H} 5,2 \mathrm{H} \quad 7,2 \mathrm{H} \quad 8,2 \mathrm{H} \quad 9,2 \mathrm{H} 10.2\)
    1H11, 2H12, 2H13, 2H \(14,2 \mathrm{H} 15,2 \mathrm{H} 16,2 \mathrm{H} 17,2 \mathrm{H} 18,2 \mathrm{H} 19,2 \mathrm{H} 20,2 \mathrm{H} 21,2 \mathrm{H} 22,2 \mathrm{H} 23,2 \mathrm{H}\)
    

$4.2 \mathrm{H} /$
DATA NWSTR/900*0/
DATA NWSL/900*0/
DO $1 I=1$, NJMAX
DC $50 \quad \mathrm{JJ}=1,16$
MWSTRA (I.JJ) $=\mathrm{LET}(52)$
明SSIP (I,JJ) $=\operatorname{IET}(52)$
IN $(\mathrm{T}, \mathrm{JJ})=\mathrm{LET}(52)$
50 CONTINUP
$K K K=J M A X+1$
IF (KKK.GT.16) GO TC 53
EC $52 \mathrm{KJ}=\mathrm{KKK}, 16$
IAA(KJ) $=\mathrm{LET}(52)$
52 CCNTINIE

PGM 90001
PGM90002
PGM90003
PGM90004
PG M90005
PGM 90006
PG M90007
PGM90008
PGM90C09
PGM 90010
PGM90011
PGM90012
PGM90013
PGM90014
PGM90015
PGM90016
PGM90017
PG M90018 PGM 90019
PGM9)020
PGM90021
PGM9)022
PGM90023
PGM90024
PGM90025
PGM90026
PGM90027
PGM90028
PG M99029
PGM90030
PGM90C31
PGM90032
PGM90033
PGM90034
PGM90035
PGM90036

```
```

53 DO 2 K=1,JMAX

```
```

53 DO 2 K=1,JMAX
IF(NWSTFA(I,K).EQ.O) GO TO 2
IF(NWSTFA(I,K).EQ.O) GO TO 2
DO 4 I= 1.16
DO 4 I= 1.16
IF(NWSTFA(I,K).EQ.L) GO TO 5
IF(NWSTFA(I,K).EQ.L) GO TO 5
4 CONTINUE
4 CONTINUE
5 MWSTRA(I,K)=LET (I, +1)
5 MWSTRA(I,K)=LET (I, +1)
DO 5 L=1,17
DO 5 L=1,17
L1= L-1
L1= L-1
IF(NWSLIE(I,K).EQ.L1) GC TO 7
IF(NWSLIE(I,K).EQ.L1) GC TO 7
5 CONTINUE
5 CONTINUE
7MNSIE(I,K)=LET(I)
7MNSIE(I,K)=LET(I)
2 CONTINOB
2 CONTINOB
1 CCNTINUF
1 CCNTINUF
DC 30 I=1.NUMAX
DC 30 I=1.NUMAX
DO 25 R=1.NLI NK
DO 25 R=1.NLI NK
DO 26 IF=1.20
DO 26 IF=1.20
ETC (IE) =0.
ETC (IE) =0.
26 CCNTINUF
26 CCNTINUF
DO 41 KK=1,JMAX
DO 41 KK=1,JMAX
IF(K.NE.IAA(KK)) GO TO 4
IF(K.NE.IAA(KK)) GO TO 4
IK=NWSTRA(I,KK)
IK=NWSTRA(I,KK)
IF(IK.EQ.C) GO TO 51
IF(IK.EQ.C) GO TO 51
GO TO 6<
GO TO 6<
41 CCNTINUE
41 CCNTINUE
IY=0
IY=0
5) LAU=10* (K-1) +1
5) LAU=10* (K-1) +1
GC TC 71
GC TC 71
62 LAD=10*(K-1)+IK
62 LAD=10*(K-1)+IK
IY=NWSLIE(I,KK)
IY=NWSLIE(I,KK)
71 KEAD(11'IAU)DUM, PTC
71 KEAD(11'IAU)DUM, PTC
DC 81 N=1.NY
DC 81 N=1.NY
IF(N.EQ.1) GO TO 325
IF(N.EQ.1) GO TO 325
IF(N.GT.IY) GO TO 330
IF(N.GT.IY) GO TO 330
325 IF(IY.EQ.O) GO TO 326
325 IF(IY.EQ.O) GO TO 326
IF(ETC(1).GT.FTC(2)) GC TO 310
IF(ETC(1).GT.FTC(2)) GC TO 310
326 TCOST(T,N)=TCOST (I,N)+ETC(1)

```
```

326 TCOST(T,N)=TCOST (I,N)+ETC(1)

```
```

```
 GC TO 81
310 LAU=10* (K-1) +1
 DC 315 IE=1,20
 ATCP(IE)=0.
315 CCNTINUE
 READ(11:LAU)DUM, ETCB
 TcosT (I,N)=TCOST (I,N) +ETCB(1)
 GC TO E1
330 NN=N-IY
 TCOST}(I,N)=T\operatorname{CosT}(T,N)+ETC(NN
 81 CONTINUE
 25 CCNTINUE
 30 CONTINUE
 WRITE(IMP,500)
500 FORMAT('1')
 WFITE(6,501) (IAA(K), K=1,16)
```



```
 1X,I2,2X,'*')/:*',13X,'*',16(6X,**')/1X,127(***))
 DC 8 I= 1,NUMAX
 DO 10 K=1,JMAX
 IF(NWSTEA (I,K).EO.O) GC TO 10
 II=NOMCUM (K) - 1+NWSTRA(I,K)
 DO 20 L=1.52
 L 1=L-1
 IF(NCRITI(II).EQ.L1) GC TC 2.7
 20 CCNTINUE
 2.7 IN(I,K)=IFT(I)
 10 CCNTINUE
 KK=JMAX+1
 TF(KK.GF.15) GO TO 4C
 40 MRITP(6,502)I,(MWSTRA(I,K),K=1,15),(MGSLIE(I,K),K=1,16),(IN(I,K),K
 i=1.16)
502 PCRMAT('*',13X,'*',16(6X,'*')/' * N.S. ', 13,', *', 16(2X,A2,2X,'
 1*')/'*', 13X,**,16(6X,**'!'* SLACK',7X,'*',16(2X,A2,2X,**!)/1**
```



```
 3))
```

PGM90073
PGM90074
PGM90075
PGM90076
PG M90077
PGM90078
PGM 90079
PGM90080
PG M9J081
PGM90082
PGM90083
PGM 90084
PGM90085
PG M90086
PGM90087
PGM90088 PGM90089 PG M90090 PGM 90091
PGM90092
PGM90093
PGM90094
PGM90095
PGM90096
PG M90097
PGM90098
PGM90099
PGM90 100
PGM90101
PG M90102
PGM90103
PGM90104
PGM90 105
PG M90106
PGM90 107
pgM90108

```
 8 CONTINUE
 DO 150 I=1, NUMAX
 DC 140 K=1.JMAX
 I J=IAA(k)
 NHSTR(I,LJ) = NWSTRA(I,R)
 NESL (I,LJ)=NWSLIP(I,K)
140 CCNTINUE
150 CONTINUS
 WRITE(10'4) NWSTR
 WRITE (10'5) NWSL
 WRITE (1C.6) TCOST,BCCST, IAA
 DO 190 I=1,NUMAX,5
 K K=I
 II=I+4
 #RITE (6,85) (K,K=KK,II)
 85 FCEMAT('1',20X,'TOTAL EXPENDITURES ($)',/,20X,23('*')./.2X,*YEAR'
 1,5X,5 (6 X,'N.S.',I3,9X))
 DC 200 J=1.NY
 NRITE (6,87) J,(TCOST (K,J),K=KK,II)
 &7 FOBMAT(3X,I2,6X,5(F20.0,2X))
200 CONTINUE
190 CONTINUE
 WRITE (6,100)
100 PCRMAT(//.20X,'BASE NETSCRK',/.20X,12('*')./.5X,'YEAR'.5X,'TOTAL
 1EXEENDITUFES ($)')
 DO 210 J=1.NY
 WITE(6,102) J, BCOST(J)
102 FORMAT (6X,I2,8X,F2O.3)
210 CCNTINUE
 QETURN
 FND
```

P GM 90109
PGM90110
PGM90111
PGM90112
PGM90113
PGM90114
PGM 90115
PGM90116
PGM90117
pGM90118
PG M90119
PGM 90120
PGM90121
PGM90122
PGM90123
PGM90124
PGM90125
P GM 90126
PGM90127
PG M90128
PGM90129
PGM90130
PGM90131
PGM90132
PGM90133
PGM90134
PGM90135
PG M90136
PGM90137
PGM90138
PGM90139

```
 SUBROUTINE MATCH (NATCH,LISI,K,EK,LAPG) PGM10001
 INTEGER EIANK,COMMA, ELUS,MINUS,DE 00000980 PGM10002
 INTFGEE LIST(8) PGM10003
 DIMENSION LET (46),IBUF(80)
```





```
C
00001010 PGM10008
 DATA LASTC,IREAD,IPRNT, BLANK,CCMMA, FLUS,MINOS,DP/80,5,6,14,13,10,00001020 PGM10009
 $11,12/ 00001030 PGM10010
 ENTRY PCINT-CHECK CP CODE
 ANUMB=0.0
 L=IARG
 IF(L.EQ.O) GO TO 110
C L=1,READ NEW CARD,CCNVEET TO DECIMAL CODE,SET BUFPRR POINTRE IC
C TC FIBST NON-BLANK CHAF.
 DC 800 ISS=1.80
 IBUF(ISS)=LET (15)
 800 CONTINOE
 READ(IREAD,10CO,ERR=801,END=802) IBUF
 1000 POEMAT (80A1)
 GC TO 801
 802 NATCH=6
 GO TO 280
 8C1 DC 101 I=1.80
 DO 102 J=1,46
 IF(IBIF (I)-LET(J))102,103,102
 102 contINUE
 NC MATCH-ILLEGAL CHARACTER,SET=50 IN IBUP
 IEUF(I) =50
 GO TO 101
C MATCHFD
103 IBUP(I)=J-1
 IC1 CONTINUE
 SET IC AS PIRST NON-EIAAR CCLUMN
 PGM10004
 PGM10005
 PGM10006
 PGM10007
00001040 PGM10011
00001050 PGM10012
00001060 PGM10013
00001070 PGM10014
00001080 PGM10015
00001090 PGM10016
00001100 PGM10017
00001110 PGM10018
00001120 PGM10019
00001130 PGM10020
PGM10021
00001150 PGM10022
PGM10023
PGM10024
PGM10025
C0001160 PGM10026
00001170 PGM10027
00001180 PGM10028
00001190 pGM10029
00001200 PGM10030
00001210 PGM10031
00001220 PGM10032
00001230 PGM10033
00001240 PGM10034
00001250 PGM10035
00001260 PGM10036
EAGE
22
```

```
\begin{tabular}{|c|c|}
\hline 00001270 & PGM10037 \\
\hline 00001280 & PGM10038 \\
\hline 00001290 & PGM10039 \\
\hline 00001300 & PGM10040 \\
\hline 00001310 & PGM 10041 \\
\hline 00001320 & PGM 10042 \\
\hline 00001330 & PG M1004 3 \\
\hline 00001340 & PGM 10044 \\
\hline 00001350 & PGM1J045 \\
\hline 00001360 & PGM 10046 \\
\hline 00001370 & PGM10047 \\
\hline 00001380 & PGM 10048 \\
\hline 00001390 & PGM10049 \\
\hline 00001400 & PGM10050 \\
\hline 00001410 & PGM 10051 \\
\hline 00001420 & PGM10052 \\
\hline 00001430 & PGM1005 3 \\
\hline 00001440 & PGM10054 \\
\hline 00001450 & PGM 10055 \\
\hline 00001460 & PGM10056 \\
\hline 00001470 & PGM 10057 \\
\hline 00001480 & PGM10058 \\
\hline 00001490 & PGM 10059 \\
\hline 00001500 & PGM10060 \\
\hline 00001510 & PGM 10061 \\
\hline 00001520 & PGM10062 \\
\hline 00001530 & PGM 10063 \\
\hline 00001540 & PGM 10064 \\
\hline 00001550 & PGM10065 \\
\hline 00001560 & PGM 10066 \\
\hline 00001570 & PGM10067 \\
\hline 00001580 & PGM 10068 \\
\hline 00001590 & PGM10069 \\
\hline 00001600 & PGM 10070 \\
\hline 00001610 & PGM10071 \\
\hline 00001620 & PGM 10072 \\
\hline
\end{tabular}
page
2 3
```

```
 130 IC= IC +1
 ICAB=IBUF(IC)
 IF (IC-LASTC) 135,135,140
C
 135 IF (ICAR-ELANK) 145,140,145
 CHECK IF CC IS BIANK OP COMMA
 145 IF (ICAR-CCMMA) 150,140,150
 NOT END OF FIELD-IS IT A DIGIT...
 150 IF (ICAR-9)155.155.160
 DIGIT O-C,DECIAML POINT YET...
 155 IF (IDP-1)165,170,165
C ALFEADY HAVE DP,N IS THCS NEGATIVE,NUMBER IN ANUMB
 170 ANUMB=ANOMB+FIOAT (ICAR)* (10.**N)
 N=N-1
 GC TO 130
C NC DP YET,IS DIGIT A ZEFO...
 165 IF (ICAR) 175,180,175
` NOT ZERC,THUS IT IS SIGNIFICANT
 175 ISIG=1
 GO TO 185
 ZERO-CHECK IF SIGNIFICANT,IE NCT SKIP
 180 IR(ISIG-1)130.185.130
1Q5 NUMB=10*NOMB+ICAP
 GO TO 130
C
C CHARACTER NOT DIGIT IS IT DE...
 160 IF (ICAR-DP)195,190,195
C YES,WAS ONE GIVEN PREVICISIY...
 190 IF (IDP-1)200.99.200
200 N=-1
 IDP=1
 ANUME=NUME
 gO TO 130
C
C NOT DIGTT OR DP,IS IT P....IE NOT,RRGOR(99)
195 IF(ICAR-24)99,205,99
C B FOFM-E (PLUS DR MINUS)N1.(N2)
```

00001630 PGM10073
00001640 PGM 10074 00001650 PGM10075 00001650 PGM10076 00001670 PGM 10077 00001680 PGM10078 00001690 PGM10079 00001700 EGM10080 00001710 PGM 10081 00001720 PGM10082 00001730 PGM10083 00001740 PGM10084 00001750 PGM 10085 00001760 PGM10086 00001770 PGM10087 00001780 PGM10088 00001790 PG M 10089 00001800 PGM10090 00001810 PGM10091 00001820 PGM10092 00001830 PG 110093 00001840 PGM 10094 00001850 PGM10095 00001860 PGM10096 00001870 PGM 10097 00001880 PGM10098 00001890 PGM10099 00001900 PGM10100 00001910 PGM10101 00001920 PGM10102 00001930 PGM 10103 00001940 PGM10104 00001950 PGM 10105 00001960 PGM10106 00001970 PGM 10107 00001980 PGM10108

```
```

    205 IF(IDE-1)210,214,210
    ```
```

    205 IF(IDE-1)210,214,210
    NO DP YET,FLCAT NUMBEE
    NO DP YET,FLCAT NUMBEE
    210 ANUMB=NUMB
    210 ANUMB=NUMB
        IDP=1
        IDP=1
    214 I=1
    214 I=1
        SIGN OF EXPONENT=PLUS
        SIGN OF EXPONENT=PLUS
        IFP=+1
        IFP=+1
    C VALUE OF EXPONENT=0
C VALUE OF EXPONENT=0
IEX=0
IEX=0
NEXT COLUMN
NEXT COLUMN
215 IC=IC+1
215 IC=IC+1
ICAR=IBUF (IC)
ICAR=IBUF (IC)
IF(IC-LASTC ) 216,216.G9
IF(IC-LASTC ) 216,216.G9
216 IF (ICAR-BLANK) 217.99,217
216 IF (ICAR-BLANK) 217.99,217
217 IF(ICAR-COMMA) 218.99,21\varepsilon
217 IF(ICAR-COMMA) 218.99,21\varepsilon
218 GO TO (220,225).I
218 GO TO (220,225).I
C CHARACTER AFIBR E,IS IT PLUS,MIMUS,OE DIGIT...
C CHARACTER AFIBR E,IS IT PLUS,MIMUS,OE DIGIT...
220 IF (ICAR-PIUS) 226,230,235
220 IF (ICAR-PIUS) 226,230,235
235 IF(ICAR-MINUS) 99,240.99
235 IF(ICAR-MINUS) 99,240.99
C MINUS SIGN
C MINUS SIGN
240 IEP=-1
240 IEP=-1
HERE FOR PLUS SIGN ALSO
HERE FOR PLUS SIGN ALSO
C RESET SNITCH AND GET NEXT COLUMN
C RESET SNITCH AND GET NEXT COLUMN
230 I=2
230 I=2
GO TO 215
GO TO 215
FIRST OP CNE OR TWO EXPCNENT DIGITS
FIRST OP CNE OR TWO EXPCNENT DIGITS
2.25 IF (ICAR-9)226.226.99
2.25 IF (ICAR-9)226.226.99
226 IFX=ICAR
226 IFX=ICAR
I=1
I=1
223 IC=IC+1
223 IC=IC+1
ICAR=IBUF(IC)
ICAR=IBUF(IC)
IF(IC-LASTC ) 231.231.250
IF(IC-LASTC ) 231.231.250
231 IF (ICAE-BLANK) 227,250,227
231 IF (ICAE-BLANK) 227,250,227
227 IF(ICAR-CCMMA) 228,250.228
227 IF(ICAR-CCMMA) 228,250.228
228 GO TO (224,99).I
228 GO TO (224,99).I
224 IF(ICAR-G)229.229.99

```
```

224 IF(ICAR-G)229.229.99

```
```

00001990 PGM 10109 00002000 PGM10110 00002010 PGM10111 00002020 PGM 10112 C0002030 PGM10113 00002040 PGM10114 00002050 PGM10115 00002060 PGM 10116 00002070 PGM10117 00002080 PGM10118 00002090 PGM10119 00002100 PGM10120 00002110 PGM 10121 00002120 PGM10122 00002130 PGM 10123 00002140 PGM10124 00002150 PGM 10125 00002160 PGM10126 00002170 PGM 10127 00002180 PGM10128 00002190 PGM10129 00002200 PGM 10130 00002210 PGM10131 00002220 PGM10132 30002230 PGM10133 00002240 PGM 10134 00002250 PGM10135 00002260 PGM10136 00002270 PGM10137 00002280 PGM10138 00002290 PGM10139 00002300 PGM10140 00002310 PGM10141 00002320 PGM10142 00002330 PGM10143 COOO2340 PGM10144 PAGE

25

```
 229 I=2
 IEX=10*IEX+ICAR
 GO TO 223
C
 250 ANUMB=ANUMB* (10.**(IEP*IEX))
C
C END OF NUMBER,POINTER AT BLANK,CCMMA,OR ECC
140 IF(ISGN-1)144,141,144
C ILP=O,INTEGER IN NUMB-ILP=1,READ IN ANUMB
C NEGATE-CEFCK IF INTPGEF CR EEAL
 141 IF(IDE) 142,143,142
 REAI
142 ANUMB =-ANUMB
 GO TO 144
 INTEGER
 14.3 NUMB=-NUME
 144 NATCH=IDP+2
 K=NUMB
 RK=ANUMB
C
 POINTEF AT BIANK,COMMA,CE EOC-BUMF TO A NON-BLANK,NON-COMMA
 CHARACTEG OR LEAVE AT ECC-THIS SECTION OF CODE IS USED
 BEFORE RETURNING
 270 IF(IC-LASTC) 271,271,280
 271 IC=IC+1
 IF(IC-LASTC) 272,272,280
 272 IF (IBUF (IC) - BLANK) 273,271,273
 273 IF(IBUF (IC) -COMMA) 280,271,280
 FIRST CHAR IS NOT FOC,NUMRER-IS IT $...
 IF(ICAR-17)330,120.330
 BY ELIMINATION,THE FIEID IS A WOGD-SAVE IC AND GET END OF WOPD.
 FCEM FACKED WORD IN IFCIMAL CODE TO CCMPARE AGAINST LIST-NEED
00002350 PGM10145
00002360 PGM10146
00002370 PGM10147
00002380 PGM10148
00002390 PGM10149
00002400 PGM10150
00002410 PGM10151
OOC02430 PGM10152
00002420 PGM10153
00002440 PGM10154
00002450 PGM10155
00002460 PGM10156
00002470 PGM10157
00002480 PGM10158
00002490 PGM10159
00002500 PGM10160
00002510 PGM10161
00002520 PGM10162
00002530 PGM10163
00002540 PGM10164
00002550 PGM10165
00002560 PGM10166
00002570 PGM10167
00002580 PGM10168
00002590 PGM10169
00002600 PGM10170
00002610 PGM10171
00002620 PGM10172
00002630 PGM10173
00002640 PGM10174
00002650 PGM10175
00002660 PGM10176
00002670 PGM10177
00002680 PGM10178
00002690 PGM10179
00002700 PGM10180
 PAGE 26
```

```
C FIBST WORE IN LIST AS NUMBEA OF CHARS IN WORD.
C BLANK PAD ON RIGHT.
 330 ICSTR =IC
 410 IC=IC+1
 ICAR=IBUF(IC)
 IF(IC-LASTC) 415,415,42C
 415 IF (ICAR-CCMMA) 405,420,405
 405 IF (ICAR-BLANK) 410,420.410
 END OE FIELD
 420 IEND=IC-1
 DSE LIST FIRST
 NC=LIST (1)
GET CHARACTERS IN WORD
 NCW=IEND+1-ICSTR
 NCN1=NCW+1
 I }h\textrm{D}=
 CHECK IF FIELDS IS SHORTEM THAN DICT. WORDS
 IF (NCN-NC)440.455.455
 SHORTER-3LANK PAD
 440 DO 445 I= 1.NCV
 IJK=ICSTR +I-1
445 IKD=100*IWD+IBUF (IJK)
 DO 450 I=NCWT,NC
 GC TO 4ES
450 IWD=100*IWD + BLANK
C NCW,GE,NC
 455 DC 460 I=1,NC
 IJK=ICSTE +I-1
 460 IKD=100*IND+IEUF(IJK)
C NOW IWD CONTAINS NC CEAFACTERS TO CCNPARE
C NOW IWD CONTAINS NC
465 NWDS=IIST(2)
 DC 475 I=1,NजDDS
 IF(IWD-LIST (I+2))475,480,475
 475 CONTINUE
```

00002710 PGM10181 00002720 PGM 10182 00002730 PGM10183 00002740 PGM 10184 00002750 FGM10185 00002760 PGM 10186 00002770 PGM10187 00002780 PGM 10188 09002790 PGM10189 00002800 PGH10190 00002810 PGM 10191 00002820 PGM10192 00002830 PGM 10193 00002840 PGM 10194 00002850 PGM 10195 00002860 PGM10196 00002870 PGM 10197 00002880 PGM1 19198 00002890 PGM 10199 00002900 PGM 10200 00002910 PGM10201 00002920 PGM10202 00002930 PGM10203
00002950 PGM10204 00002940 PGM10205 00002960 PGM 10206 00002970 PGM10207 00002980 PGM10208 00002990 PGM 10209 00003000 PGM10210 00003010 PGM 10211 00003020 PGM10212 00003030 PGM 10213 00003040 PGM10214 00003050 PGM 10215 00003060 PGM10216

EAGE

```
C WOED NOT FOUND IN DICTICNAEY
 NATCH=4
 K=ICSTR
 GO TO 270
C
 NORD FOUNE IN DICTTONAEY
 480 K=I
 NATCH=5
 GO TO 270
C
C
 WFITE(IEENT, 999)
 K=ICSTR
 NATCH}=
 GO TO 270
 FCRMAT(25H ERRCR IN NUMEFIC FIELD.)
C
c
 RETURN
 END
```

00003070 PGM 10217 00003080 PGM10218 00003090 PGM 10219 00003100 PGM10220 00003110 PGM10221
00003120 PGM10222
00003130 PGM10223
00003140 PGM10224
C0003150 PGM10225
00003160 PGM10226
00003170 PGM10227
00003180 PGM 10228
00003190 PGM10229
00003200 PGM10230
00003210 PGM10231
00003220 PGM 10232
00003230 PGM10233
00003240 PGM10234
PGM 10235
00003250 PGM10236

```
 SUBROUTINE INITIA PGM10001
 COMMON/ADE/ GECO1(10,20),GECO2 (10,20),GEFO1 (10,20),GEFC2 (10, 20).
 1GESK1 (10,20),GESK2 (10,20)
 CCMMON/CCM/KOMPTE,KOMIIM
 COMMON /CRI/ PERCE,NCEITI (100)
 COMMON/LIM/ COSTMA (10,20),FOCAMA (10,20),SKLAMA (10,20)
 COMMCN/LYS/NSLIMA(100),NUMBER (30),MDIS (30)
 CCMMON/NIN/ NINCRI,MINCTE
 COMMON/NOM/ NUMCUM(32).NUMMM
 CCMMON/FAR/ COST(20,100), FOREIG(20,100), SKILLE (20,100)
 CCMMON /EER/ IMP,LEC
 COMMON/EXE/TCOST (30,20), BCOST (20)
 CCMMON/FAE/ FECOST(30,10,20).EEFCRE (30,10,20),RESKIL (30, 10, 20)
 CCMMON/FES/ NWSTRA (102,20),NWSLIP(102,20)
 CCMMON /STR/ ILIM,JMAX,NUMLIM,NADD
 COMMON /TEA/ NUMAX
 CCMMON /YEA/ NY,NUMDIS
 COMMON/FILE/ NLINK,NREG.IST (30),IAA(30)
 INTEGER*2 IAA
 DIMZNSION VCAP(7), LDUM (6C), DUMMY (420), ETC (20), FTC (20), SKL (20),FOR
1(20).IDICT (9).F10(900). IUM (80)
C
C GORIS IN IDICT: NETWORK, CBIIGATCRY,OFTICNAL, PFRCENTAGE,MINIMUM,SLIPPAGE,GENERA
C TE
 DATA IDICT/3,7.332439.342131,343539.352437,322833.383128.262433/
 IMc=6
 LEC=5
 NUMMM=0
 KOMDTE=0
 KOMIIM=1
 DATA F10/900*0.1
 WRITE (1014)F10
 WFITE(10.5) F10
 #EITE (10.6) F10
 ILIM=0
 JMAX=?
```

PG M10001 PGM 10002 PGM10003 PGM 10004
PGM10005
PG M 10006
PGM 10007
PG M 10008
PGM 10009
PG M10010
PGM 10011
PGM10012
PGM 10013
PGM10014
PGM 10015
PGM10016
PGM 10017
PGM 10018
PGM 10019
PGM 10020
PGM10021
PGM10022
PGM10023
PGM 10024
PG M1 0025
PGM 10026
PGM10027
PGM10028
PGM10029
PGM10030
PGM 10031
PGM10032
PGM 10033
PGM10034
PGM10035
PGM10036

```
 DC 51 I=1.30
 IAS(I)=0
 5) CONTINUE
 DO 61 I 1=1,30
 LC 62 N=1,20
 TCCST(I1,N)=0.
 62 CCNTINIE
 6
C ASSIGN DATA TO THE VARIABLES
C BEAD THE BASIC FILE
 READ (10, 1)NITNK,NODE,NREG,NY,JIM,RATE,VCAR,LCUM,LST,MDIS,COSTMA,FO
 1CAMA,SKLAMA
 10 CALJ MATCH(ITYPE,IDICT,K,RK,1)
 GC TO (100,100,100,100,18,95), ITYPE
 18 IK1=K
 GO TO (20,30,50,70,80,40,90).IK1
C NETMCEK STEATEGIES
 20 (ALL MATCH(ITYPE,IDICT,K,RK,O)
 GO TO (10,25,110,20,20).ITYPE
 25 NUMLIM=K
 GC TO 10
C OBLIGATORY IINKS
 30 KK=0
 35 CALL MAICH(ITYPE,IDICT,K,RK,O)
 GO TO (39,38,120,35,35),ITYPE
 38 KK=KK+1
 IAA (KK)=K
 GC TO 35
 39 ILIM=KK
 JMAX=ILIN
 GO TO 10
C INCREMENTAI SLIPPAGE
 40 CALL MATCH(ITYPE,IDICT,K,RK,O)
 GO TO (10,48,45,40,40).ITYPE
45 K=EK
48 NADD=K
```

PGM 10037 PGM10038
PGM10039 PGM10040 PG M10041 PGM 10042 PGM10043 PGM 10044 PGM10045
PGM10046 PGM 10047
PGM10048
PGM 10049
PGM10050
PGM 10051
PGM10052
PGM 10053 N
PGM10054
PGM 10055
PGM10056
PGM10057
PGM 10058
PGM 10059
PGM 10060
PG M10061
PGM 10062
PGM10063
PGM 10064
PGM10065
PGM10066
PGM 10067
PG M10068
PGM 10069
PGM10070
PGM 10071
PGM10072

```
 GO TO 10
C OPTIONAL IINKS
 50 KK=0
 55 CALL MATCH(ITYPE.IDICT,R,RK,O)
 GC TO (60,58,130,55,55),ITYPE
 58 RR=KK+1
 J=ILIM+KR
 IAA(J)=K
 GC TO 55
 60 JMAX=ILIM+KK
 GO TO 10
C fefcemtage cF N.S.
 70 (all Match(ITYPE,IDICT,K,RK,0)
 GC TC (10,140,75,7C,7C),ITYPE
 75 Perce=Rr
 GC TO 10
 80 CALL MATCH(ITYPE,IDICT,K,BK.0)
 GO TO (10,85,150,80,8C).ITYPE
 85 MINCRI=K
 gC TC 10
 100 जRITE (6,105)
 105 FOFMAT (/,' ERROR IN CCMEAND CARD')
 GC To 10
 110 WRITE (6,115)
 115 FCRMAT(/'' ERROR IN NETMORK CARD')
 GC TC 10
 120 MFITE(6, 125)
 125 FORMAT(/,' ERROR IN CBLIGATORY LINKS CARD')
 GC TO 10
 130 WRITE (6,135)
 135 FORMAT(/'' ERROR IN OPTIONAL LINKS CARD')
 GO TO 10
 140 WEITE (6,145)
 145 FOBMAT(/,' ERROR IN EERCFNTAGE CARD')
 go TO 10
 150 WFITE (5,155)
```

PGM10073
PGM10074
PGM 10075
PGM10076
PGM 10077
PGM10078
PGM 10079
PGM10080
PGM 10081
PGM10082
PGM10083
PGM 10084
PG 110085
PGM 10086
PGM10087
PGM 10088
PGM 10089
PGM10090
PGM10091
PG M10092
PGM10093
PG 110094
PGM 10095
PGM10096
PGM 10097
PGM1 0098
PGM 10099
PGM10100
PGM 10101
PGM10102
PGM 10103
PGM10104
PGM 10105
PGM10 106
PGM 10107
pGM10108

```
```

155 EOEMAT(/,' ERROR IN CETTICAL INEEX CAFD') PGM10109

```
```

155 EOEMAT(/,' ERROR IN CETTICAL INEEX CAFD') PGM10109
GO TO 10
GO TO 10
9 5 CALL EXI?
9 5 CALL EXI?
90 CONTIUUE
90 CONTIUUE
CALL BUEGET (JMAX)
CALL BUEGET (JMAX)
NUMCUM (1)=1
NUMCUM (1)=1
DO 250 I=1.JMAX
DO 250 I=1.JMAX
LINK=IAA(I)
LINK=IAA(I)
NUMBER(I)=LST(LINK)
NUMBER(I)=LST(LINK)
NN=NOMBEE(I)
NN=NOMBEE(I)
NUMCUM(I+1)=NUMCUM(I)+NA
NUMCUM(I+1)=NUMCUM(I)+NA
LAUC=10*(LINK-1)
LAUC=10*(LINK-1)
DC 246 TI=1.NN
DC 246 TI=1.NN
LAU=LAJC+II
LAU=LAJC+II
READ(11'LAU) DUMMY,ETC,FTC,SKL,FCR,DUM,ISTR,NCRIT,NSLIM
READ(11'LAU) DUMMY,ETC,FTC,SKL,FCR,DUM,ISTR,NCRIT,NSLIM
J=NUMCUN(I) -1+II
J=NUMCUN(I) -1+II
DO 230 K=1,NY
DO 230 K=1,NY
CCST(K, 堷 = PTC (K)
CCST(K, 堷 = PTC (K)
FCFEIG(K,J)=FOR(K)
FCFEIG(K,J)=FOR(K)
SKILLE (R,J)=SKL (K)
SKILLE (R,J)=SKL (K)
230 CCNTINUE
230 CCNTINUE
NSLIMA (J) =NSIIM
NSLIMA (J) =NSIIM
NCSITI(J)=NCRIT
NCSITI(J)=NCRIT
NSLIM=0
NSLIM=0
NCRIT=0
NCRIT=0
DO 225 K=1,NY
DO 225 K=1,NY
FTC (K)=0.
FTC (K)=0.
FCR(K)=C.
FCR(K)=C.
SKI (K)=0.
SKI (K)=0.
225 CCNTINUE
225 CCNTINUE
240 CONTINUE
240 CONTINUE
250 CONTINUE
250 CONTINUE
N 1=NJMCUM (JMAX+1)-1
N 1=NJMCUM (JMAX+1)-1
DO 2 J=1,NREG
DO 2 J=1,NREG
DO }3\textrm{I}=1,N
DO }3\textrm{I}=1,N
GECO1(J,I)=0.

```
 GECO1(J,I)=0.
```

```
PGM10110
```

PGM10110
PGM10111
PGM10111
PGM101112
PGM101112
PGM10113
PGM10113
PGM10114
PGM10114
PGM10115
PGM10115
PGM10116
PGM10116
PGM10117
PGM10117
PGM10118
PGM10118
PGM10119
PGM10119
PGM10120
PGM10120
PGM10121
PGM10121
PGM10122
PGM10122
PGM10123
PGM10123
PGM10124
PGM10124
PGM10125%
PGM10125%
PGM10126
PGM10126
PGM10127
PGM10127
PGM10128
PGM10128
PGM 10129
PGM 10129
PGM10130
PGM10130
PGM10131
PGM10131
PGM10132
PGM10132
PGM10133
PGM10133
pGM10134
pGM10134
PGM10135
PGM10135
PGM 10 1.36
PGM 10 1.36
PGM10137
PGM10137
PGM 10138
PGM 10138
RGM10139
RGM10139
PGM10140
PGM10140
PGM10141
PGM10141
PGM10142
PGM10142
PGM10143
PGM10143
PGM10144

```
PGM10144
```

```
 GEFO1(J,I)=0.
 GESK1 (J,I)=0.
 RECosT}(1,J,I)=0
 REFORE (1,J,I)=0.
 RESKIL (1,J,I)=0.
3 CONTINUE
2 CCNTINUE
 DC 6 I=1,JMAX
 CC 5 J =1.NUMLIM
 NHSTRA (J,I)=0
5 CONTINUE
6 \text { CONTINOF}
 NOMAX=NUNIIN*ERRCE
 RETURN
END
```

PGM 10145
PG M 10146
PGM 10147
PGM10148
PGM 10149
PG M10150
PGM 10151
PGM10152
PGM 10153
PGM10154
PG M 10155
PGM10156
PGM10157
PGM 10158
PGM10159

```
 SUBROUTTNE ZERO PGM10001
 CCMMON/AVE/ GECC1(10,20),GECO2(10,20),GEFO1(10,20),GEFO2(10,20), PGM10002
 1GESK1(10,20),GESK2(10,2C) PGM10003
 CCMMON/EEG/ NREG
 CCMMON/YEA/ NY,NUMLIS
 DC 20 K=1,NRPG
 DC 19 I=1,NY
 GECO1 (K,I)=0.
 GECO2(K,I)=0.
 GEFO1(K,I)=0.
 GEFO2 (K,I) =0.
 GESK 1 (K,I) =0.
 GFSK2(K,I)=0.
CCNTINOE
20 CONTINOF
 RETUEN
END
PGM10004
PGM10005
PGM10006
PGM 10007
PGM10008
PGM10009
PGM10010
PGM10011
PGM10012
PGM10013
PGM10014
PGM10015
PGM10016
PGM10017
```

```
COMMON/IIM/ CCSTMA (10,20), FOCAMA (10, 20), SKLAMA (10, 20)
COMMON/LYS/NSLIMA(1OC).NUMBER (30),MDIS (30)
COMMON/FILE/ NLINK,NREG,LST(30).IAA(30)
CCMMON /YEA/ NY,NUMDIS
COMMON/EXE/TCOST (30,20), BCOST(20)
INTEGER*2 IAA
DIMENSION DUMMY(420), FTC(20),FTC(20),SKL(20),FCR(20),DUM(80)
DO 10 I=1,NY
BCCST(I)=0.
10 CCNTINUE
DC 100 I=1,NLINK
LAUC=10*(I-1)
LAJ=LAUC +1
DC 30 K=1,20
SKI (K)=0
FCP(K)=C.
FTC(K)=0.
EIC (I) =0.
30 CONTINUE
READ(11,IAU) DUMMY,ETC,FTC,SKL,FOR,DUM,ISTR,NCRIT,NSLTM
L=MDIS (I)
DC 50 KK=1,NY
BCOST (KK) = BCOST (KK) +ETC (KK)
A=\operatorname{cosTMA (I,KK)}
A1=A-FTC(KK)
IF(A1.LE.O.) GC TO 200
COSTMA (L,KK)=A1
B=FOCAMA (L,KK)
31=3-FOR (KK)
TE(B1.LE.0.) GO TO 210
ECCAMA(I,KK)=B1
[=SKLAMA(L,KK)
D1=D-SKI(RK)
IF(D1.LE.O.) GO TO 220
SKLAMA (L,KK)=D1
PGM10001
PGM10002
PGM10003
PGM10004
PGM10005
PGM10006
PGM10007
pGM10008
PGM10C09
PGM10010
PGM10011
PGM10012
PGM10013
PGM10014
PGM10015
PGM10016
PGM 10017
PGM10018
PGM10019
PGM10020
PGM10021
PGM10022
fgM10023
PGM10024
PGM10025
PGM10026
PGM10027
PGM10028
PGM10029
PGM10030
PGM10031
PGM10032
PGM10033
PGM10034
PGM10035
PGM10036
```

5 0 ~ C O N T I N U E ~
100 CONTINU
GO TO 250
200 GRITE (6,205) L,KK
205 FCRMAT(/," THE AVAILAELE BUDGET FOR REGION ', I2, AND THE YEAR
1',I2,' HAS BEEN EXHAUSTFD')
GO TO 240
220 WRITE (6,225) L,KK
225 FCRMAT(/,' THE AVAILABLE SKILLED LABOR FOR REGION 'I2.' AND YE
1AR '.I2.' HAS BEEN EXHAUSTED')
GC TO 240
210 WEITE(6,215) I,KK
215 FORMAT(/,' THF AVAILABLE FOREIGN EXCHANGE FOR REGION , I2, AN
1D YEAR ',I2,' HAS BEEA EXHAUSTED')
240 CCNTINUE
CALI EXIT
250 CONTINUF
RPTURN
END

```
pGM10037 PGM10038 PGM10039 PGM10040 PGM 10041 PGM10042 PGM 10043 PGM10044 PGM10045 PGM10046 PGM 10047 PGM10048 PGM10049 PGM10050 PGM 10051 PGM 10052 N PGM10053 G PGM 10054 i PGM 10055
-255-

NETWROK STRATEGIES EVALUATOR
```

C THIS PROGFAM EVALUATES NETWORK STRATEGIES
DEFINE FIIE 10(6,900,U,INF)
DEFINE FILE 11(300.583,C,LAU)
DEFINE FILE 12(30,448,U,JIMC)
CCMMON/GEN/NLINK,NODE.JIM,NS,VTIME(30.7),FALOD(30.7),BCOST (2O),LBE
1G(30), LEND(30), LOD (30,3C),LLA (3C,3C),VCAP(7),ICPT,IVF,ISTM(2O),IG
2 \&AF(20)
COMMON/CD/IPATH (7,30,15),VEC (30,7),VFC (30,7)
COMMON/INK/TT (30,7), CFC (30,7), EOFC (3C,7), CAP (30),SPD (30,7),RLEN (30
1), TRAFF(30),TEP(30,7), RAFF(30), VEHTRA (30,7), DSPR(30)
COMMON/ZEL/ATT (20,7), EOC (20,7),FOC (20,7),FTC(20),DTS (20),CP(20), ET
1C(20), RAF (20), DSP(20)
COMMON/ZED/DEMAND (20.7), ELA (7), PRICP(7),VALT (7),BVEC (20,7), BVFC (20
1,7)
DIMENSION IDICT (9),LST (30),MDIS (30), COSTMA (10,20). FOCAMA (10, 20),SK
1LAMA (1C,2C),NETS(30)
DIMENSION NRANK(30),NWSTR (30,30),NWSL (30,30),TCOST (30,20):IAA(30
2),SPEED (7),TCTBEN(30),FLOAD (7), POR (20),SKL(20),DUM (420), ETCB (20)
INTEGER*2 IAA
GORDS IN IDICT: ANALYSIS,EVALUATE,ALL,SIMULATION,DELETE,RANK,PRINT
DATA IDICT/3,7,203320,244120,203131,382832,232431.372033,353728/
DATA NETS/30*0/
DC 10 I=1,30
DO 8 K=1,7
VTIME(I,K)=0.
FALOD (I,K)=0.
8 CONTINUE
10 CCNTINOE
DC 11 I=1,20
ISIM(I) =0
IGRAF(I)=?
11 CONTINUE
READ(10:1)NLINK,NODE,NREG,NY,JIM,RATE,VCAP,LBEG,LEND,LST,MDIS,COST
IMA,FOCAMA, SKLAMA,IOPT,NFANK
READ(10'2)LLA
REA[(10'3) LOD

```

PGM 10001 PGM10002 PGM 10003 PGM10004 PGM10005 PGM 10006 PGM 10007 PGM 10008 PGM10009 PGM 10010 PGM10011 PGM 10012 PGM10013 PGM 10014 PGM10015 PG M 10016 PGM 10017 PGM10018 PGM10019 PGM10020 PGM10021 PGM10022 PGM10023 PGM10024 PGM 10025 PGM 10026 PGM10027 PGM10028 PGM10029 PGM 10030 PGM10031 PGM10032 PGM 10033 PG M 10034 PGM10035 PGM10036
```

    READ(10.4)NGSTR
    READ(10.5)NWSL
    READ(10.6)TCCST,BCOSI,IAA
    ZRTE=RATE/100.
    MI=0
    I FANK=0
    IEASE=C
    LASTNS=0
    DO 17 I=1,7
    IF(VCAP(I).EQ.O) GO IC 16
    17 CCNTINUE
    go To 20
    16 IVF=I-1
    20 Call Match(itype,IDICT, k,RK,1)
    go to (100,100,100,10C,22,150),ITYPE
    22 TK 1=K
GC TO (25,30,30,70,50,60,150),IK1
C ANALYSIS OF EASE NETWOEK
25 IBASE=1
go ro 20
30 CALL MATCE(ITYPE,IDICT, R,RK,O)
GO TO (38.37,35,30.4C),ITYPE
C N.S. TO EE EVALUATED
35 K=RK
37MI=MI+1
NFTS(MI) =K
LASTNS=MI
go TO 20
38 IF(I.EQ.C) GO TO 110
GO TO 20
C Evaluatr ail strategifs generated
40 CALL MATCH(ITYPE,IDICT,K,RR,O)
GO TO (20,47,45,40,40).ITYPE
45 K=RK
47 LASTNS=K
DC 48 IK=1.LASTNS

```

PG M10037 PGM10038
pgM10039
PGM 10040
pgM10041
PGM10042
PGM10043
PG M10044
PGM 10045
PG M1 10046
PGM10047
PGM10048
PG M10049
PGM 10050
PG M10051
PGM 10052
PG M10053
PGM 10054
PGM1 0055
PGM10056
PGM10057
PGM10058
PGM10059
PGM 10060
PGM 10061
PG M1 10062
PGM10063
PGM10064
PG M 10065
PGM10066
PG M10057
PGM10068
PGM1 1069
PGM 10070
PGM10071
PGM10072
```

        NETS(IK)=IK
    48 CONTINUE
        GO TO 20
    C YEARS OF SIMULATION
70 KK=0
79 CALL MATCH (ITYPE,IDICT,K,RK,0)
GO TO (20,77,75,71,71),ITYPE
75 K=RK
77KK=KK+1
ISIM (KK)=R
GC TO 71
C DELRTE THE STORED RANKING OF N.S.
50 DC 55 II=1,30
NRANK (II)=0
55 CCNTINUF
GO TO 20
60 IRANK=1
GO TO 50
C ERROR FORNATS
100 WEITF(6,105)
105 FORMAT(/' ERROR IN FCEMATS')
GO TC 20
110 FRITR (6,115)
115 PCPMAT(', NONE N.S. NUMBER')
GC TO 20
C YEARS TO BE PRINTED
150 KK=0
152 CALL MATCH (ITYEE,IDICT,K,RK,0)
GO TO (151,157,155,152,152). ITYPE
155 K=RK
157 KK=KK+1
IGRAF(KK)=K
GO TO 15?
151 CONTINUE
LO 180 I=1,JIM
D0 165 IV =1,7

```

PG M10073
PGM 10074
PGM10075
PGM 10076
PGM10077
PGM 10078
PGM 10079
PGM10080
PGM 10081
PGM10082
PGM10083
PGM 10084
PG 110085
PGM 10086
PGM10087
PGM 10088
PGM10089
PGM 10090
PG M10091
PGM 10092
PGM10093
PGM 10094
PGM10095
PGM10096
PGM10097
PGM 10098
PGM10099
PGM10100
PGM 10101
PGM10102
PGM 10103
PGM10104
PGM10105
PGM10106
PGM10107
pgM10108
```

```
 VALT(IV)=0.
```

```
 VALT(IV)=0.
 FLOAD (IV)=0.
 FLOAD (IV)=0.
 705 CONTINUE
 705 CONTINUE
 JIMC=I
 JIMC=I
 REA[(12.JIMC) DEMAND,ELA, ERICE,VALT,FLOAD
 REA[(12.JIMC) DEMAND,ELA, ERICE,VALT,FLOAD
 DO 170 IV=1,7
 DO 170 IV=1,7
 FALCD(I,IV) = FLOAD(IV)
 FALCD(I,IV) = FLOAD(IV)
 VTIME(I,IV)=VALT(IV)
 VTIME(I,IV)=VALT(IV)
 170 CONTINUF
 170 CONTINUF
 180 CCNTINOE
 180 CCNTINOE
C START ANALYSIS OF THE EASE NETWORK
C START ANALYSIS OF THE EASE NETWORK
 IF(IBASE.FQ.0) GO TO 200
 IF(IBASE.FQ.0) GO TO 200
 CALL EASENE(NY)
 CALL EASENE(NY)
C START anaiySIS OF EACH N.S.
C START anaiySIS OF EACH N.S.
 200 contInUE
 200 contInUE
 DO 1000 lu=1, lastes
 DO 1000 lu=1, lastes
 I=NETS(LJ)
 I=NETS(LJ)
 GRITE (6,600)I
 GRITE (6,600)I
 600 ECEMAT(///.30X,'NETWORK STPATEGY',I2./.30X,18('*'))
 600 ECEMAT(///.30X,'NETWORK STPATEGY',I2./.30X,18('*'))
 ISTR=0
 ISTR=0
 ACBEN=0.
 ACBEN=0.
 DO 800 IYR=1,NY
 DO 800 IYR=1,NY
 EXP=0.
 EXP=0.
 BENEF=0.
 BENEF=0.
 ARITE (6,566) IYR
 ARITE (6,566) IYR
 666 FCRMAT(/,3X,'YEAR',I5,/.3X,9('-'))
 666 FCRMAT(/,3X,'YEAR',I5,/.3X,9('-'))
 DO 995 IL=1,30
 DO 995 IL=1,30
 DC }994 LK=1.
 DC }994 LK=1.
 VEHTEA(LL,LK)=0.
 VEHTEA(LL,LK)=0.
 994 CCNTINUE
 994 CCNTINUE
 995 continue
 995 continue
 IF(IYR.PQ.1) GC TO 205
 IF(IYR.PQ.1) GC TO 205
 II=IYE-1
 II=IYE-1
 DIF=TCOST (I,IYR)-TCOST(I,II)
 DIF=TCOST (I,IYR)-TCOST(I,II)
 IE(DIF.GE.10CO.) GO TO 205
 IE(DIF.GE.10CO.) GO TO 205
 IF(DIF.IF.-1000.) GO TO 205
```

    IF(DIF.IF.-1000.) GO TO 205
    ```
```

        ACBEN=0
    ```
 ACBEN=0
 MFHTPA(LL, LK)=0.
```

        MFHTPA(LL, LK)=0.
    ```

PGM10109 PGM10110
PG M10111
pgM10112
PGM10113
PGM10114
PGM 10115
PGM 10116
PG M10117 PGM 10118 PGM10119 PGM10120 PGM 10121 PGM10122 PGM 10123 PG M10124 PGM 10125 PG M10126 PGM 10127 PGM10128 PGM10129 PGM10130 PGM10131 PGM 10132 PG M10133 PGM 10134 PGM10135 PGM10136 PGM10 137 PG M10138 PGM10139 PG M10140 PGM10141 PG M1 0142 PGM10143 PGM10144
```

        DO 166 JJ=1,20
        IF(ISIM(UJ).EQ.IYR) GC TO 205
    IF(IGFAF(JJ).EQ.IYR) GC TO 205
    166 CCNTINUE
    GC TO 400
    205 CONTINUQ
    C ZbEO ADRAYS OF vehiclig cosis
DO 215 J=1,30
DO 210 IV=1,7
VEC(J,IV)=0.
VFC (J,IV) =0.
210 continue
215 CONTINUE
DO 216 IV =1,7
DO 217 J=1,30
DC 218 J, T=1,15
IPATH(IV,J,JJ)=0
218 continue
217 CONTINUE
215 CCNTINUE
C ZEFO ARRAYS
DC 230 J=1,30
RLEN(J)=C.
RAFF(J)=0.
DSER (J)=0.
TRAFF(J)=0.
CAP (J)=0.
DO 235 IV=1,7
TEF(J,IV) =0.
TT(J,IV)=0.
ECPC}(J,TV)=0
OFC (J,I V) =0.
SPD (J,IV)=0.
235 CCNTINUE
230 continus
DO 300 KK=1,NLINK

```

PGM10145
PGM10145
PGM10147
PG M 10148
PGM 10149
PGM10150
PGM 10151
PGM10152
PGM10153
PGM10154
PGM10155
PGM 10156
PG M10157
PGM 10158
PGM10159
PGM 10160
PGM10161
PGM10162
PGM10163
PGM10164
PGM 10165
PGM10166
PGM 10167
PGM10168
PGM10169
PGM 10170
PG M 10171
PGM10172
PGM10173
PGM 10174
PG M1 0175
PGM 10176
PGM10177
PG M10178
PGM10179
PG M10180
PAGE 5
```

    CALL ZEIINK
    DC 240 JJ=1,30
    IB=IAA(JJ)
    IF(IB.EC.KK) GO TO 245
    240 CONTINUE
IK=IYR
242 LAUC=10*(KK-1)
LAJ= LAUC+1
READ(11'LAU) ATT,EOC,FOC,ETC,FTC,SKL,FOR,DIS,CP,RAF,DSE
GO TO 260
245 ISIR=NWSTE(I,KK)
LAUC=10*(KK-1)
LAU=LAUC+ISTR
READ(11.LAU) ATT, EOC,FOC,ETC,PTC,SKL,FCR,DIS,CE,RAF,DSP
IF(NWSL(I.KK).NE.O) GO TO 250
IK=IY?
GO TO 260
250 ISL=NWSL(I,KK)
IF(IYR.GT.ISI) GO TC 255
K1=FTC(1)
K2=PTC(2)
IF(K1.GT.K2) GO TO 248
IK=1
GC TC 260
248 IK=1
GO TO 242
255 IK=IYR-ISL
260 CONTINUE
DC 265 IJ=1.7
SPEED(IJ)=0.
265 CCNTINUE
DO 270 IV=1,IVF
TT(KK,IV)=ATT(IK,IV)
OPC(KK,IV)=FOC(IK,IV)
EOPC (KK,IV) = %CC (IK,IV)
TF(ATT(IK,IV).EQ.O.) GC TO 270

```

PGM10181 PGM 10182 PGM10183 PGM10184 PGM 10185 PG M10186 PGM 10187 PGM10188 PGM 10189 PGM10190 PGM 10191
PGM10192
PGM10193
PGM10194
PGM10195
PGM10196
PG M 10197
PGM 10198
PGM10199
PGM 10200
PGM10201
PGM10202
PGM10203
PGM10204
PGM 10205
PGM 10206
PGM 10207
PGM10208
PGM 10209
PGM10210
PGM10211
PGM 10212
PGM10213
PGM10214
PG M10215
PGM10216
```

    SPEED(IV)=DIS(IK)/ATT(IK,IV) PGM10217
    SPD(KK,IV)=SPRED (IV)
    270 CONTINUF
        CAP(KK)=CP(IK)
        RAFF(KK)=RAF(IK)
        LSPE(KK)=DSP(IK)
        RLEN(KK)=DIS (IK)
    290 CCNTINUE
        RDI=3.67-0.027*DSP (IK)
        RCC=EDI* SAF(IK)
        RK1=SPEED(1)
        DC 425 IV=2,IVF
        IF(SPEED(IV).EQ.O.) GO TO 425
        RK2=SPERD(IV)
        TEF(KK,IV)=(BOC* (RK1-RK2)/10.) +2.
    425 CONTINUE
    TEF(KK,1)=1.
    300 CONTINUE
    C CCMPUTE TEANSPORT COSTS
NS=I
DO 320 IV=1.IVF
CALL ROUTE(IYR,IV)
320 CONTINUE
325 CALL COST(IYR)
400 CS=0.
IF(IOPT.EC.1) GO TO 2000
DO 500 J=1.JIM
J IMC = J
CALL ZEDEM
READ(12'JIMC) DENAND,ELA, ERICF,VALT,FLOAD,BVEC,BVFC
IF(BVEC(IYR,1).GE.PRICE(1)) GO TO 480
DC 450 IV =1, IVF
DIF=BVEC(IYP,IV)-VEC(J,IV)
IF(DIF.GT.O.O.OR. DIF.IE.-.9J) GO TO 451
CS=CS+0.
GO TO 450
PGM10217
PGM 10218
PGM10219
PGM 10220
PGM10221
PGM 10222
PGM10223
PGM 10224
PGM10225
FGM10226
PGM10227
PGM10228
PGM10229
PGM10230
PGM10231
PGM10232
PGM10233
PGM10234
PGM10235
PGM10236
PGM10237
PGM10238
PG M10239
PGM10240
PGM10241
PGM 10242
PGM10243
PGM10244
PGM10245
PG M10246
PGM 10247
PGM10248
PGM 10249
PGM10250
PGM10251
PGM10252

```
```

451 DEM=0.

```
```

451 DEM=0.
IF (DEMAND (IYR.IV).EQ.O.) GC TC 450
IF (DEMAND (IYR.IV).EQ.O.) GC TC 450
DEM=DEMAND(IYR,IV)* ((VFC (J,IV)/BVFC(IYR,IV))**(-ELA (IV)))
DEM=DEMAND(IYR,IV)* ((VFC (J,IV)/BVFC(IYR,IV))**(-ELA (IV)))
IF(IV.GT.2) GO TO 455
IF(IV.GT.2) GO TO 455
A=365.*0.5* (DEM+DEMANC(IYR,IV))*(BVEC(IYR,IV)-VEC (J,IV))
A=365.*0.5* (DEM+DEMANC(IYR,IV))*(BVEC(IYR,IV)-VEC (J,IV))
CS=CS+A
CS=CS+A
GC TO 450
GC TO 450
455 A=365.*(0.5*(DEM+DEMAND (IYR,IV))*(BVEC(IYR,IV)-VEC (J,IV)))/(VCAP(I
455 A=365.*(0.5*(DEM+DEMAND (IYR,IV))*(BVEC(IYR,IV)-VEC (J,IV)))/(VCAP(I
1V) *FALOL (J.IV))
1V) *FALOL (J.IV))
CS=CS+A
CS=CS+A
450 CCNTINUE
450 CCNTINUE
GO TC 500
GO TC 500
480 DC 485 IV=1.IVF
480 DC 485 IV=1.IVF
IF(VEC(J,IV).GE.PRICE(IV)) GO TO 500
IF(VEC(J,IV).GE.PRICE(IV)) GO TO 500
481 DEM=0.
481 DEM=0.
IF(IEMANL(IYE,IV).EQ.O.) GO TO 485
IF(IEMANL(IYE,IV).EQ.O.) GO TO 485
DEM=DEMAND(IYR,IV)* ((VEC (J,IV)/PRICE (IV))**(-ELA (IV)))
DEM=DEMAND(IYR,IV)* ((VEC (J,IV)/PRICE (IV))**(-ELA (IV)))
IF(IV.GI.2) GO TO 482
IF(IV.GI.2) GO TO 482
A=365.*0.5* (DEMAND(IYR,IV) + CEM)* (PRICE(IV) -VEC(J,IV))
A=365.*0.5* (DEMAND(IYR,IV) + CEM)* (PRICE(IV) -VEC(J,IV))
CS=CS+A
CS=CS+A
GO TO 485
GO TO 485
482 A=365.* (0.5*((DEMAND (IYE,IV)+DEM)/(VCAP(IV)*FALOD(J,IV)))*(PRICE(I
482 A=365.* (0.5*((DEMAND (IYE,IV)+DEM)/(VCAP(IV)*FALOD(J,IV)))*(PRICE(I
1V)-VEC(J,IV)))
1V)-VEC(J,IV)))
CS=CS+A
CS=CS+A
485 CCNTINUE
485 CCNTINUE
500 CONTINUE
500 CONTINUE
GC TC 599
GC TC 599
2000 CONTINUE
2000 CONTINUE
DO 2500 J=1.JIM
DO 2500 J=1.JIM
JIMC=J
JIMC=J
CALI ZEDEM
CALI ZEDEM
BEAD(12'JIMC) DRMAND,ELA,PRICE,VALT,FLCAD,BVEC,BVFC
BEAD(12'JIMC) DRMAND,ELA,PRICE,VALT,FLCAD,BVEC,BVFC
IE(BVEC(IYR,1).GE.PRICE(1)) GC TC 2480
IE(BVEC(IYR,1).GE.PRICE(1)) GC TC 2480
DO 2450 IV=1.IVF
DO 2450 IV=1.IVF
DIF=BVEC (IYR,IV)-VFC (T,IV)
DIF=BVEC (IYR,IV)-VFC (T,IV)
IF(LIF.GT.0.0 .OR.DIF.LF.-0.9) GO TO 2451

```
```

    IF(LIF.GT.0.0 .OR.DIF.LF.-0.9) GO TO 2451
    ```
```

PGM 10253
PGM10254
PGM 10255
PGM1 0256
PGM 10257
PGM10258
PG M 10259
PGM 10260
PG M10261
PGM 10262
PG M 10263
P GM 10264
PGM10265
PGM 10266
PGM10267
PGM 10268
PGM10269
PG M 10270
PGM 10271
PGM 10272
PGM10273
PGM 10274
PGM 10275
PGM1 0276
PGM 10277
PGM10278
PGM10279
PGM 10280
PG M10281
PGM 10282
PG M10283
PGM 10284
PGM10285
PGM 10286
PGM10287
PGM10288

```
 CS=CS+0.
 GC TO 2450
 2451 DEM=0.
 IF(DRMAND(IYR,IV).EO.O.) GO TO 2450
 DEM=DEMAND(IYR,IV)* ({VFC (J,IV)/RVEC (IYR,IV))**(-ELA (IV)))
 A=365.*C.5*(DEM+DEMAND(IYR,IV))* (BVEC(IYR,IV)-VEC(J,IV))
 CS=CS+A
2450 CCNTINUE
 GO TO 2500
2480 DO 2485 IV=1.IVF
 IF(VEC(J,IV).GE.PRICE(IV)) GO TO 2500
2491 DEM=0.
 IF(DEMAND(IYF,IV).EQ.O.) GO TO 2485
 DEM=DEMAND (IYR,IV)*((VEC(J,IV)/ERICE (IV))** (-ELA(IV)))
 A=365.*O.5* (DEMAND (IPR,IV) +DEM)* (PRICE (IV)-VEC (J.IV))
 CS=CS+A
2485 CCNTINUE
2500 CONTINUR
 599 IT=IYR-1
 EXP=TCOST (I,IYR)-BCOST (IYR)
 EENEF=CS-FXP
 ACBEN=ACEEN+BENEF*((1.+FRTE)**(-IT))
 603 WRITE (6,601)
 601 FCFMAT(8X,'BENEEITS',15X,'EXPENDITOEES',13X,'NET BENBFITS'.9X,'ACC
 1UMOLATED NET BENEFITS (NEV)')
 MAITE(6,602) CS,EXP,BENEF,ACBEN
 602 FCRMAT (2X.3(F20.5.5X),9X,F20.5)
 8CC CONTINUE
 TOTBEN (I)=ACEEN
 WRITE (6,622) TCTBEN(I)
 622 FOFMAT(/2X, "THE TOTAL NFT BENEFITS(NPV) ARE:',F20.5)
1000 CONTINUE
C BANK
 IF(IRANK.EQ.U) GO TC 1300
 NN=0
 K K=1
```

    PGM10289
    PGM 10290
    PGM10291
    PGM 10292
    PGM10293
    PGM 10294
    PGM10295
    PGM10296
    PGM10297
    PGR10298
    PGM 10299
    PGM10300
    PGM 10301
PG:10302
PGM 10303
PGM10304
PGM10305
PGM10306
PGM10307 i
PGM 10308
PGM10309
PGM 10310
PGM10311
PGM 10312
PGM10313
PGM10314
PGM10315
PGM 10316
PGM10317
PGM10318
PGM 10319
PGM10320
PGM10321
PG M10322
PGM 10323
PGM10324

```
 R1=-1000000000.
1150 DO 1200 MM=1. LASTNS
 II=NEIS (MM)
 DO 1450 K=1,KK
 IF(NRANR(K).EQ.II) GO TO 1200
1450 CONTINUE
 B2=TOTEEN(II)
 IF(R1.GE.F2) GO TO 12CO
 IMAX=II
 31=TOTBEN(II)
 GO TO 1200
1200 CCNTINUE
1100 CONTINUE
 NN=NN+1
 KK=NN
 NRANK (KR)= IMAX
 IF(KK.EQ.LASTNS) GO IC 1250
 R1=-1000000000.
 GC TO 1150
1250 WRITE (6,605)
 605 RORMAT (///40X, "RANK OE THE NETWOAK STRATEGIES*,/,10X, 'RANK",5X.*N.
 15.'.5X,'TCTAL NET BENEFITS(NPV)')
 DO 1230 LJ=1,LASTNS
 IN=NRANK(LJ)
 WBITE(6.610) LJ,IN,TOTBEN(IN)
 610 FORMAT (11X,T2,7X,I2, EX,F15.5)
1230 CCNTINUE
1300 CONTINUE
 WRITE(10.1) NLINK,NODE,NEEG,NY,JIM, FATE,VCAP,LEEG,LEND,LST,MDIS,COS
 1TMA,FOCAMA, SKLAMA, IORT,NRANK
 CAII EXIT
9999 STCF
 END
```

PGM 10325
PGM10326
PGM10327
PGM10328
PGM10329
PGM 10330
PG M10.331
PGM 10332
PGM10333
PGM 10334
PGM10335
PG M 10336
PGM 10337
PGM10338
PGM 10339
PGM10340 PGM 10341
PGM10342 PGM 10343
PGM10344
PGM10345
PGM10346 PGM 10347 PGM10348 PGM10349 PGM10350 PGM10351 PGM 10352 PGM10353 PGM 10354 PGM10355 PGM 10356 PGM10357

```
 SUBROUTINE EASENE (NY)
```

- ANAIYZE BASE NETWORK
COMMON/GEN/NLINK,NODE,JIM,NS, VTIME $(30,7), \operatorname{FALCD}(30,7), B C O S T(20)$, LBE
IG (30), IEND (30), LOD $(30,30), \operatorname{LLA}(30,30), V C A P(7), I O P T, I V E, I S I M(20), I G$
2RAF(20)
COMMON/LNK/TT $(30,7), \operatorname{CEC}(30,7), \operatorname{ZOPC}(30,7), \operatorname{CAP}(30), \operatorname{SPD}(30,7), \operatorname{RLEN}(30$

1) $\operatorname{TRAPF}(30), \operatorname{TEF}(30,7), \operatorname{RAPE}(30), \operatorname{VEHTRA}(30,7), \operatorname{DSPR}(30)$
COMMON/CD/IPATH $(7,30,15), V \operatorname{VC}(30,7), V E C(30,7)$
$\operatorname{CCMMON/ZEL/ATT}(20,7), \operatorname{EOC}(20,7), \operatorname{FOC}(20,7), \operatorname{FTC}(20), D I S(20), C P(20), E T$
1C (20), RAF (20), DSP (20)
CCMMON/ZED/DEMAND (20.7), ELA (7), PRICE(7), VALT (7), BVEC (20,7), BVFC (20
1.7)
DIMENSICN SEEED(7), SKL (20), FOR (20), FLOAD (7)
WRITE (6.400)
400 EORMAT (///3OX, BASE NETWCRK ANALYSIS', /.30X,21(**'))
$\mathrm{N} S=0$
DO 300 IYR=1, NY
DC $992 \mathrm{LL}=1,30$
DO 991 LK=1.7
VEHTBA (LL,LK) $=0$.
DO 991 LK=1.7
VEHTEA (LL.LK) $=0$.
991 CONTINUE
992 CONTINUF
IF (IYR.EQ.1) GO TO 40
$I I=I Y R-1$
$D I F=B C O S T(I Y R)-B \operatorname{COST}(I I)$
IF (DIF.GE.1000.) GO TC 40
IF(DIF.LE.-100).) GO TO 40
DO $166 \quad \mathrm{JJ}=1,20$
IF (ISIM (JJ) . FQ.IYR) GO TO 40
166 CONTINUE
GO TO 150
40 CONTINUF

167 CONPINUT
GC TO 42

PGM 20001
PGM20002
PGM 20003
PGM20004
PGM 20005
PGM20006
PGM 20007
PGM20008
PGM 20009
PGM20010
PGM20011
PGM20012
PGM2)013
PGM20014
PG M20015
PGM 20016
PGM20017
PGM 20018
PGM20019
PGM20020
PGM20021
PGM20022
PGM2)023
PGM20024
PGM 200.25
PGM20026
PGM20027
PGM20028
PGM 20029
PGM20030
PGM20031
PGM20032
PGM20033
PGM20034
DGM20035
PGM 20036
PAGF 11

```
 41 NRITE (6.666) IYG
 666 FCFMAT(/.3X.'YEAR'.I5./.3X.9('-'))
 ZERO ARRAYS
 42 DO 45 J=1,30
 DO 48 IV=1,7
 VEC (J,IV) =0.
 VFC(J,IV)=0.
 48 CCNTINOF
 4 5 \text { CCNTINUE}
 DO 50 IV =1,7
 no 55 J=1.30
 DO 60 JJ=1,15
 IEATH(IV,J,JJ)=0
 6 3 \text { CONTINUE}
 55 CONTINUE
 50 continue
 DC 70 J=1.30
 RLEN(J) =c.
 RAFF}(\textrm{J})=0
 DSPR (J) =0.
 TRAFF (J)=0.
 CAP (J)=C.
 nO 65 IV=1.7
 SPD (J,IV)=0.
 TEF(J,IV)=0.
 TT(J,IV)=0.
 EOPC (J,IV)=0.
 OPC (J,IV)=0.
 6 5 \text { CONTINUF}
 7 0 \text { continue}
 DO 100 KK=1,NLINK
 CALL ZELINK
 DO 105 IV =1.?
 SPEED(IV)=0.
105 continIte
 LAU=10* (KK-1) +1
```

PGM20037
PGM 20038
PGM20039
PGM 20040
pGM20041
PGM20042
PGM 20043
PGM20044
PGM 20045
PG M20046
PGM20047
PGM20048
PG M20049
PGM20050
PGM2005 1
PGM20052
PGM20053
PGM 20054 介
PGM20055
PG M20056
PGM20057
PG M20058
PGM20059
PGM20060
PGM20061
PGM20062
PGM 20063
PGM20064
PGM20065
PGM20066
PGM20067
PGM20068
PG M2 3069
PGM 20070
PGM20071
PGM 20072

```
 READ(11'IAU)ATT,FOC,FOC,ETC,FTC,SKL,FOR,DIS,CP,RAF,DSP
 DO 110 IV=1,IVF
 TT(KK,IV)=ATT(IYR,IV)
 OFC (KK,IV)=FOC (IYR,IV)
 ZOPC (KK,IV)=EOC (IYR,IV)
 IF(ATT(IYF.IV).EQ.C.) GO TO 110
 AT=ATT (IYR,IV)
 SPEEL(IV)=DIS(IYR)/AT
 SPD(KK,IV)=SPEPD(IV)
110 CONTINOE
 RAFF(KK)= RAF(IYR)
 DSPE (KK)=DSP(IYR)
 CAF(KK)=CE(IYR)
 RIEN (KK)=DIS (IYR)
 RLI=3.67-0.027*DSP (IYR)
 ROC=RDI*RAF(IYR)
 RK1=SPEED(1)
 DC 425 IV=2,IVF
 IF(SPEED(IV).EQ.O.) GO TO 425
 RK2=SFEEI(IV)
 TPF(KK,IV)=(ROC* (RK1-RK 2)/10.) +2.
425
CONTINUF
TEF(KK,1)=1.
1 0 0
DO 120 IV=1,IVF
CALI ECUTE(IYR.IV)
120 CCNTINUE
125 CAIL CCST (IXR)
 GC TC 200
150 CCNTINUE
DO 190 I=1,JIM
JIMC=I
CALI ZE[EM
READ(12'JIMC) DENAND,FIA, PRICE,VAIT,FIOAD,BVEC,BVFC
II= IYR-1
DC 170 IV=1.IVF
```

    PG M20073
    PGM 20074
    PG M20075
    PGM 20076
    PGM20077
    PGM20078
    PGM 20079
    PG M 20080
    PGM20081
    PGM20082
    PGM20083
    PGM2 0084
    PGM20085
    PGM20086
    PGM20087
    PGM20088
    PG M20089 \({ }^{\text {N }}\)
    PGM \(200900^{\circ}\)
    PG M2 0091
    PGM 20092
    PGM20093
    PG M20094
    PGM20095
    PG M20096
    PGM20097
    PG M20098
    PGM20099
    PG M20100
    PGM 20101
    PGM20102
    PG M20 103
    PGM20 104
    PG M20105
    PGM 20106
    PGM20107
    PGM 20108
    PAGE

```
 R1=0.
 R1=0.
 R1=0.
 R1=0.
 R1=0.
 R1=0.
170 CONTINUE
 JIMC=I
 WEITE(12'JIMC) DEMAND,ELA,PRICE,VALT,FLOAD,BVEC,BVEC
190 CONTINUE
 GC TO 3CO
200 CONTINUE
 DC 290 I=1.JIM
 JIMC=I
 CAIL ZELFM
 READ(12:JIMC) DEMAND,ELA,PRICE,VAIT,FICAD,BVEC,BVFC
 II=IYR-1
 DC 280 IV=1,IVF
 BVEC (IYR,IV)=VEC (I,IV)
 BVFC}(IYE,IV)=VFC (I,IV
 IF(IYR.EQ.1) GO TO 2&O
 DEMANL(IYF,IV)=DEMAND(IYR,IV)* ((BVFC(IYR,IV)/BVFC (II,IV))**(-EIA(I
 1v)))
290 CONTINUE
281 JIMC=I
 WRITE (12'JIMC)DEMAND,ELA, PRICF,VALT,FLOAD,BYEC,BVFC
 IF(IYR.RQ.1) GO TO 290
 DO 32C KO=1,NODZ
 DC 310 KD=1,NODE
 IF(LOD (KO,KD).ZQ.I) GC To 33C
310 CCNTINUE
320 CONTINUP
 GO TO 290
330 WRITE (6,335) KO,KD, (IV,IV=1,IVF)
335 PORMAT(/, 10X, 'THE DEMANL OP O-D',T2,','I2,' HAS CHANGED'.//,30X,
 1'VEHICLE TYEFS',/.10X.7(5X,I2,8X))
```

    PG M20109
    PGM 20110
    PGM20111
    PGM20112
    PGM 20113
    PGM20114
    PGM 20115
    PGM20116
    PGM 20117
    PG M20118
    PGM 20119
    PGM20120
    PGM20121
    PGM 20122
    PGM20123
    PGM 20124
    PGM20125
    PGM 20126
    PGM20127
    PG M 20128
    PGM20129
    PG M20130
    PGM 20131
    PG M 20132
    PGM 20133
    PGM20134
    PGM 20135
    PGM20136
    PGM20 137
    PGM20 138
PG M 20139
PGM 20140
PGM20141
PGM 20142
PGM20143
PGM 20144

```
 SUBROUTINE ROUTE(IYG,IV)
C IHIS SUBFOUTINF SEARCHES FOR THE MINIMUM CCST ROUTE
 COMMON/GEN/NITNK,NODR,JIN,NS, VTIME(30,7),FALOD(30,7),BCOST (20),LBE
 1G(30). LENL(3C), LOD(30.3C),LLA (30,30),VCAP(7),IOPT,IVF.ISTM(20),IG
 2RAF (20)
 CCMMON/OL/IPATH (7,30,15),VQC (30,7),VEC (30,7)
 COMMON/LNK/TTT (30,7),OPC (30,7). EOPC (30,7),CAP(30), SED (30,7), RLEN (30
 1),TRAFP(30),TEP(30,7), RAFF(30), VEHTPA (30,7), DSPR (30)
 COMMON/ZED/DEMAND(20,7). ELA(7), PRICE(7),VALT (7), BVEC (20,7), BVFC(20
 1,7)
 DIMENSICN CROUTE(30,30),TROUTE (30.30), LROUTE (30.30)
C CONSTRUCT IFE COST AND IABEL MATEICES
 DC 10 KO=1.30
 DO 8 KD=1.30
 CROUTE (KO,KD) =10000000.
 TROUTE (KO,KD)=10000000.
 8 CONTINUE
 10 CCNTINUE
 DC 20 I=1,NLINK
 KC=LBFG (I)
 KD=LEND (I)
 IF(OFC(I.IV).RO.O.) GO TO 20
 CROUTE (KC,KD)=OPC (I,IV)
 CROUTE (KL,KC) =OPC (I,IV)
 TROUTE (RO,KD) =TT(I,IV)
 TROUTE (RD,KO)=TT(I,IV)
 2) CCNTINUE
 DC 40 KC=1,NODE
 DC 30 KL=1,NODE
 LROUTE (KC,KD)=KO
 30 CCNTINUE
 4 0 ~ C O N T T N U E ~
C START SJARCH OF MINIMIMM PATH
 DO 100 IP=1,NODE
 DO 90 kC=1,NODF
 IF(KO.FC.IP) GO TO 9C
 GM30001
 PGM30002
 PG M30CO3
 PGM30004
 PGM30005
 PGM30006
 PGM30007
 PGM30008
 pGM 30009
 PGM30010
 PGM30011
 PGM30012
 PGM 30013
 PGM30014
 PGM30015
 PGM30016
 PGM30017
 PGM 30018
 PGM30019
 PGM 30020 I
 PGM30021
 PGM30022
 PGM3002.3
 PGM30024
 PGM30025
 PGM30026
 PGM 30027
 PG M30028
 PGM 30029
 pgM30030
 PGM30031
 PGM30032
 FGM3)C33
 pgM30034
 PGM30035
 PGM3)036
PAGE 16
```

```
 DO 8C KL=1,NODE PGM30037
 DO BC KL=1,NODE TO EC
 TF(KD.EQ.KO) GO TO 80
 C1=CROUTE (KC.IP) + CROUTE (IP,KI)
 C2=CROUTE (KC.KD)
 IF(C1.GE.C2) GO TO &C
 CROUTE (KC,KD)=C1
 LRCUTE (KO,KD) =IP
 TROUTE(KO,KD)=TROUTE (KC,IP) +TROUTE (IP,KD)
 80 Continus
 90 CONTINUE
100 CONTINUE
 DO 200 KO=1,NODE
 DO 190 KD=1,NODZ
 I=LCD(KC,KD)
 IF(I.EQ.O) GO TC 190
 K=16
 IO = KO
 II=RD
180 J=LROUTE(IO.ID)
186 continue
 IK=LLA(ID,J)
 IF(IK.NE.O) GO TO 185
 J 1=J
 J2=ID
 J=LgouTE (J1,J2)
 GO TO 186
185 k=k-1
 IFATH(IV,I,K)=IK
 VEC(T,IV)=VEC (I,IV) +ECFC (IK,IV)
 VFC (I,IV)=VFC (I,IV) +OPC (IK,IV)
 IF(J.EQ.KC) GO TO 170
 I[=J
 G0 TO 1&0
170 A=TROUTE(RC,KD)*VTIME(I,IV)*VCAP (IV)*FALOD (I,IV)
 VZC(I,IV)=VEC(T,IV)+A
```

PGM30037 PGM30038 PGM30039 PGM30040
PG M30041
PGM 30042
PG M30043
PGM 30044
PGM30045
PGM30046
PGM30047
PG M30048
PGM30049
PG M30050
PGM30051
PGM30052
PGM30053
PGM30054 $\stackrel{\text { N }}{ }$
pGM30055 N
PGM30056
PGM30057
pGM30058
PG M30059
PGM 30060
PGM30061
PGM30062
PGM30063
PGM30064
PGM 30065
PGM30066
PGM 30067
PGM30068
PGM 30069
PGM30070
PGM30071
PGM 30072

```
 VFC(I,IV)=VFC (I,IV)+A
 190 CONTINUE
 200 CONTINUE
C ASSIGN TRAFFIC ON LINKS
 DO 300 I=1,JIM
 DO 310 II=1,20
 DO 305 JJ=1,7
 DEMAND(II,JJ)=0.
305 CONTINUE
310 CCNTINUE
 JIMC=I
 RFAD(12'JIMC)DEMAND,ELA,PRICF
 IF(VEC(I,IV).GT.PRICE (IV)) GO TO 300
 IF(IOPT.EQ.1) GO TO 275
 IF(IV.GT.2) Go To 270
275 TRAF=CEMAND(IYR,IV)
285 DO 280 KK=1,15
 K=16-KK
 IF(IPATH(IV,I,K).EQ.0) GC TO 300
 LINK=IPATH(TV,I,K)
 TEAFP(LINK)=TRAFF(LINK) +TRAF*TEF(LINK,IV)
 vEHTRA(IINK,IV)=VEHTRA(IINK,IV) +TRAF
23) CCNTINUE
 GO TO 300
270 ITRAF=(LENAND(IYR,IV)/(VCAP(IV)*FALOD(I,IV))) +1
 TRAF=ITRAF
 GC TC 285
300 CCNTINUE
 RETURN
 ZND
```

PGM33073
PGM30074
PGM30075
PGM 30076
PG M30077
pgM 30078
PGM30079
PGM 33080
PGM30081
PGM 30 ( 82
PGM30083
PG M 30084
PGM30085
PGM30086
PGM30087
PG M 30088
PGM30089
PGM30090
PGM 30031
PGM30092
PGM 30093
PGM30094
PGM 30095
PGM30096
PGM30097
PGM 30098
PGM30099
PGM 30100
PGM30101
pgm 30102

```
 SUBROUTINE COST (IYR)
CCMPUTES THF NEW CCST IF CONGESTION OCCURS IN A LINK
 COMMON/GEN/NLINK,NODF,JIM,NS,VTIME (30,7), FALCL(30,7), BCOST(20),LBE
 1G(30), LEND(30), LOD (30,3C), LLA (30,30),VCAP(7),IOPT,IVP,ISIM(20), IG
 2AAF(20)
 COMMON/CD/IPATH (7,30,15),VEC(30,7),VFC (30,7)
 COMMON/LNK/TTT(30,7),OPC (30,7), EOPC (30,7), CAP (30), SPD (30,7), RLEN(30
 1),TRAPF (30), TEF(30,7), FAFP(30), VEHTRA(30,7),DSPR(30)
 DIMENSION VOL (5), VEHNO (5), PCVEH (5), AAT (30.7), IROUTE (30), AT (5)
 DATA AAT/210*O./
 DC 200 I=1,NLINK
 IF(TRAFF(I).EQ.O.) GO TO 200
 TOTCAP=CAF(I)*16.
 VCL(1) =. 10*CAE(I)
 VOI(2)=.30*CAE (I)
 VCL (3) =.50*CAE(I)
 VOL (4) =.70*CAP(I)
 VCI (5) =.90*CAP(I)
 VOLCAP=TRAFE (I)/TOTCAP
 IF(VOLCAP.GE..90) GC IC 90
 IF(VOLCAP.LE..10) GO TO &O
 A=.10*TCTCAP
 RVCL=1.25*(VOLCAE-.10)
 VEHNO (1) =A* ((1-RVOL)**4)
 VEHNO(2)=12.*A*RVOL*((1-RVOL)**3)
 VEHNO(3)=30.*A* (RVOL**2)*((1-RVCL)**2)
 VEHNO(4)=28.*A*(RVOL**3)*(1-RVOL)
 VEHNO (5) =9.*A* (RVOL**4)
 GO TO 95
90 DC 91 TE=1.4
 VEHNO(IE)=0.
91 CCNTINUE
 VEHNO(5)=TRAFE(I)
 VCL (5) =TEAFF(I)/16.
 GO TO 05
80 DC 81 IE=2.5
```

PGM40001
PG M 40002
PGM40003
PGM40004
PGM 40005
PGM40006
PGM 40007
PGM40008
PGM40009
PGM40010
PGM40011
PGM40012
PG M4 0013
PGM40014
PGM40015
PGM40016
PGM40017
PGM40018
PGM40019 か
PGM40020
PGM40021
PGM40022
PGM40023
PGM40024
PGM 40025
PGM40026
PGM40027
PGM40028
PG M 40029
PGM40030
PGM40031
PGM40032
PGM40033
PGM40034
PGM40035
PG M40036

```
 VEHNO(IF)=0.
 81 CONTINOE
 VEHNO (1)=TRAFE (I)
 VCL (1) =TFAFF(I)/16.
 95 CONTINUE
 DO 150 IV =1. IVF
 DO 100 IP=1,5
 PCVEH(IP)=VEHNO(IP)/TFAFF(I)
 V=DSPR(I)
 VEL=V-V*VCL(IP)/CAP(I)
 IF(VEL.LT.O.10*V) VEL=C.10*V
 IF(VEL.GT.SPD(I,IV)) GC TC 150
 AT(IP)=(ELEN(I)/VEL)-(BLEN(I)/SPD(I,IV))
 VEHNO(IE)=VEHTRA (I,IV)*ECVEH (IP)
100 CONTINUE
 TOTT=0.
 LO 120 IP=1,5
 TOTT=TOTT+VEHNO(IP)*AT(IP)
120 CONTTNUP
 AAT (I,IV)=TOTT/VEHTRA(I,IV)
150 CONTINUE
20? CCNTINUE
 DO 300 IV=1.IVF
 DO 166 JJ=1,20
 IF(IGRAF(JJ).EQ.IYE) GC TO 604
166 CONTINUE
 GO TO ESO
604 WEITE (6,600) IV
600 FOEMAT(/20X,'MINIMUM COST ROUTES OF VEHICLE TYPE:',I5./.17X,O-D P
 1AIR #', 10X, 'RODTE (LINKS NUMBERS)')
650 DO 290 I=1.JIM
 DC 220 IO=1,NODE
 DO 210 LD=1,NODE
 IF(I.EQ.LCD(LC.LD)) GO TO 215
210 CONTINOE
220 CONTINUP
```

PG M40037 PGM 40038
PGM40039
PGM40040
PGM40041
PGM40042
PGM40043
PGM40044
PGM40045
PG 140046
PGM 40047
PGM40048
PGM40049
PGM40050
PGM40051
PGM40052
PG M40053
PGM40054
PGM40055
PGM 40056
PGM40057
PGM 40058
PGM40059
PGM40060
PGM40061
PGM40062
PGM4005.3
PGM40064
PGM40065
PGM40066
PGM40067
PGM40068
PGM40069
PG M40070
PGM40071
FGM40072

```
```

Z15 DO 270 L=1,30

```
```

Z15 DO 270 L=1,30
IROIJTE(I)=0
IROIJTE(I)=0
270 CCNTINUE
270 CCNTINUE
K K=0
K K=0
DC 280 K=1,15
DC 280 K=1,15
IF(IPATH(IV,I,K).RQ.O) GO TO 280
IF(IPATH(IV,I,K).RQ.O) GO TO 280
KK=KK+1
KK=KK+1
IROUTE (KK)=IPATH(IV,I,K)
IROUTE (KK)=IPATH(IV,I,K)
IINR=IPATH(IV,I,K)
IINR=IPATH(IV,I,K)
IF(AAT(LTNK,IV).FQ.0.) GO TO 280
IF(AAT(LTNK,IV).FQ.0.) GO TO 280
A=AAT (LINK,IV)*VTIME (I,IV)*VCAE(IV)*FALOD (I,IV)
A=AAT (LINK,IV)*VTIME (I,IV)*VCAE(IV)*FALOD (I,IV)
\nablaEC (I,IV) = VEC (I,IV) +A
\nablaEC (I,IV) = VEC (I,IV) +A
VFC(I,IV)=VFC(I,IV)+A
VFC(I,IV)=VFC(I,IV)+A
280 CCNTINUE
280 CCNTINUE
DO 167 JJ=1.20
DO 167 JJ=1.20
IF(IGRAF(JJ).EQ.IVR) GC TO 605
IF(IGRAF(JJ).EQ.IVR) GC TO 605
167 CONTINUE
167 CONTINUE
GO TO 290
GO TO 290
605 MRITE(6,610) IV,LO,LD, (1EOIITE (K),K=1,KK)
605 MRITE(6,610) IV,LO,LD, (1EOIITE (K),K=1,KK)
610 FORMAT (EX,I2,9X,I2,-1,I2,13X,15I2)
610 FORMAT (EX,I2,9X,I2,-1,I2,13X,15I2)
290 CONTINUE
290 CONTINUE
300 CONTINUE
300 CONTINUE
DO 168 JJ=1,20
DO 168 JJ=1,20
IF(IGRAF(JJ).EQ.IYR) GC TO 301
IF(IGRAF(JJ).EQ.IYR) GC TO 301
168 CONTINUE
168 CONTINUE
GO TO 500
GO TO 500
301 %RITE(6,615) (IV,IV=1,IVE)
301 %RITE(6,615) (IV,IV=1,IVE)
615 PORMAT(/20X, ECONOMIC VEFICLE CPERATING CCSTS'./. 2OX, VRHICLE TYPE
615 PORMAT(/20X, ECONOMIC VEFICLE CPERATING CCSTS'./. 2OX, VRHICLE TYPE
15',/.4X,'0-D \#',6X,7(4X.I2.4X))
15',/.4X,'0-D \#',6X,7(4X.I2.4X))
DC 410 IO=1,NODE
DC 410 IO=1,NODE
DC 420 LD=1,NODE
DC 420 LD=1,NODE
I=LOD(LO,ID)
I=LOD(LO,ID)
IF(I.EQ.C) GC TO 420
IF(I.EQ.C) GC TO 420
WEITE(6,620) LO,LD, (VEC(I,IV),IV=1,IVF)
WEITE(6,620) LO,LD, (VEC(I,IV),IV=1,IVF)
620 ECRMAT (4X,I2,'-1,I2,6X,7 (F10.4))
620 ECRMAT (4X,I2,'-1,I2,6X,7 (F10.4))
420 CCNTINUE

```
```

420 CCNTINUE

```
```

PGM40073
PG M40074
PGM40075
PGM40076
PGM40077
PGM40078
PGM40079
PGM40080
PGM40081
PGM40082
PGM40083
PGM40084
PGM40085
PGM40086
PGM40087
PG M40088
PGM40089
PGM40090
PGM40091
PGM40092
PGM 40093
PGM40094
PGM40095
PGM40096
PGM40097
PGM40098
PG M 40099
PGM40100
PGM40101
PGM40102
PGM40103
PGM40104
PGM40105
PGM40106
PGM40107
FGM40108
PAGE 21

```
410 CCNTTNUF
 WRITE (6,625) (IV,IV=1,1VF)
625 POPMAT (/2OX.'FINANCIAL VEHICLE OPERATING COSTS*./.20X, VEHICLE TYP
 1ES',/.4X,'0-D #',6X.7(4X,I2,4X))
 DO 450 IO=1.NODE
 DC 460 ID=1,NODE
 I=LCD (LO,ID)
 IF(I.EQ.O) GC TO 460
 WRTTE (6,630) LO,LD, (VFC(I,IV),IV=1,IVF)
630 PORMAT (4X,I2,-',I2,6X,7 (F10.4))
460 CCNTINOF
450 CONTINUE
 WRITE(6,640) (I,L=1,IVF)
640 FORMAT (/30X,'TOTAL TRAPEIC ON LINKS',/, 2X,'LINK',5X,'IN PCU',5X,7(
 1'CF TYPF:',I2,3X))
 DC 500 I=1.NLINK
 WFITF(6,645) I,TRAFF(I), (VEHTRA (I,IV),IV=1,IVF)
645 PORMAT(3X,I2,3X,F10.3.4X,7(F8.0.5X))
500 CCNTINUE
 RETORN
 END
PGM40109
PGM40110
PG M 40 111
PGM40112
PGM40113
PGM40114
PGM40115
PGM40116
PGM40117
PGM40118
PGM40119
PGM40120
PGM40121
PGM40122
PGM40123
PGM40124
```

    subroutine zelink
    COMMON/ZEL/ATT (20,7), RCC (20,7),FOC (20,7), FTC (20),DIS (20),CP (20), ZT
    1C (20),RAF(20),DSP(20)
    DO 50 I=1,20
    FTC (I)=0.
    ETC (I) =0.
    D IS (I) =0.
    AFP(I)=0.
    DSP(I)=0.
    CE(I)=0.
    DO 20 J=1.7
    AIT(I,J)=0.
    ZOC (I,J)=0.
    FCC (I,J) =0.
    2) CONTINUE
50 CONTINUP
REtuRN
8ND
```

PGM5000 1
PGM53002
EG M50003
PGM50004
PGM50005
PGM50006
PGM50007
PGM5000 8
PG M50009
PGM 50010
PGM5001 1
PGM50012
PGM500 13
PGM50014
PGM50015
PGM50016
PGM5J017
PGM50018
```

    SUBEOUTINE REDEM
    COMMON/ZED/DEMAND (20,7), EIA (7), ERICE (7),VALT (7), BVEC (20,7), BVFC (20
    1.7)
    DO 50 I=1,20
    DC 30 J=1,7
    DEMAND (I,J)=0.
    EVEC (I,J)=0.
    BVFC(I,J)=0.
    3) CONTINUP
4) CCNTINUE
DO 20 I=1.7
ELA(I)=0.
VALT (I) =0.
PRICE(I)=0.
2J CCNTINUE
RETURN
END
```

PGM60001
PGM60002
PGM 60003
PGM60004
PGM60005
PGM60006
PGM60007
PGM 60008
PGM60009
PGM60010
PGM60011
PGM60012
PGM60013
PGM60014
PGM60015
PG M60016
PGM60017

SUBROUTINE MATCH (NATCH,IIST,K,RK,LARG)
MATCH READS A CARD IN 8OA1 FORMAT INTO JBUF, CONVERTS EACH COLUMN TC AN INTEGEP COLF IN IBUF, AND DECODES EACH LOGICAL FIELD CN THE CARD. THE IAST USEABLE COLUMN IS INDICATED BY TAE LATA SPFCIFICATION FOR 'LASTCC'.
RACH CODE NUMBER REPEESENTS A CHARACTER AND IS FORMED INTO LIST WOPDS BY COMBINING THE CODE TIMES SOME POWRR OF 100. THUS IF A WORE MAY CCNTAIN 4 CHAFACTERS (LIST \((1)=4)\), AND THE WORD THE' IS TO BE REPRESENTED, THE CODED WORD IS 39272414 , BLA 1 K PADDED (14) ON THE RIGHT LIST=EICIIONARY ADDRESS (INTEGRR ARRAY)
\(\operatorname{LIST}(1)=\) NUMBER OF CHARACTERS/WCRD
LIST (2) \(=\) NUMBER OF LIST HORDS TN DICTIONARY
LIST (3)....TO LIST(N) ARECCEEL WCRDS
TOTAL LENGTH=LIST (2) +2 INTEGER WORDS

NATCH=
1. FND OF STATEMENT
2. INTEGER NIIMBRR
3. FFAL NUMBER
4. WORD NOT IN EICTICNARY
5. NCRD IN DICTICNAEY

CODE IS INTEGER DECIMAL, OO TO 45. AS INLICATED BELOH.
THE CODES ARE AS FCLICWS...
CCDE CHARACTER REPRESENTED
0
0
1
1
2
3
3
4
5
6
7
8
9

00000010 PGM70001 00000060 PGM70002 00000070 PGM70003 00000080 PGM70004 00000090 PGM70005 00000100 PGM70006 00000110 PGM70007 00000120 PGM 70008 00000130 PGM70009 00000140 PGM70010 00000150 PGM70011 00000160 PGM70012 00000170 PGM70013 00000180 PGM70014 00000190 PGM70015 00000200 PGM70016 00000210 PGM 70017 00000220 PGM70018 00000230 PGM 70019 00000240 PGM70020 00000250 PGM70021 00000260 PGM70022 00000270 PGM70023 00000280 PGM70024 00000290 PGM70025 00000300 PGM 70026 OC000310 PGM70027 00000320 PGM73028 00000330 PGM70029 00000340 PGM70030 00000350 PGM70031 00000360 PGM 70032 00000370 PGM70033 00000380 PGM70034 00000390 PGM70035 00000400 PGM70036
page 25
\begin{tabular}{|c|c|c|}
\hline C & 10 & + \\
\hline C & 11 & - \\
\hline C & 12 & - \\
\hline C & 13 & - \\
\hline C & 14 & BLANK \\
\hline C & 15 & * \\
\hline \(c\) & 16 & / \\
\hline C & 17 & \$ \\
\hline C & 18 & \(=\) \\
\hline C & 19 & " \\
\hline C & 20 & A \\
\hline C & 21 & B \\
\hline C & 22 & C \\
\hline C & 23 & D \\
\hline 0 & 24 & E \\
\hline C & 25 & F \\
\hline C & 26 & G \\
\hline C & 27 & H \\
\hline C & 28 & \(I\) \\
\hline C & 29 & J \\
\hline C & 30 & \(K\) \\
\hline C & 31 & L \\
\hline C & 32 & M \\
\hline C & 33 & N \\
\hline C & 34 & \(\bigcirc\) \\
\hline c & 35 & P \\
\hline C & 36 & 0 \\
\hline C & 37 & R \\
\hline \(\checkmark\) & 38 & 5 \\
\hline C & 39 & T \\
\hline C & 40 & U \\
\hline C & 41 & V \\
\hline C & 42 & 1 \\
\hline C & 43 & X \\
\hline \(C\) & 44 & V \\
\hline C & 45 & Z \\
\hline
\end{tabular}
```

00000410 PGM70037
C0000420 PGM70038
00000430 PGM70039
00000440 PGM70040
00000450 PGM70041
00000460 PGM70042
00000470 PGM70043
00000480 PGM70044
00000490 PGM70045
00000500 PGM70046
00000510 PGM70047
00000520 PGM70048
00000530 PGM70049
00000540 PGM70050
00000550 PGM70051
00000560 PGM70052
00000570 PGM70053
00000580 PGM70054
00000590 PGM70055
00000600 PGM70056
00000610 PGM70057
00000620 PGM70058
00000630 PGM70059
00000640 PGM70060
00000650 PGM70061
00000660 PGM70062
00000670 PGM70063
00000680 PGM70064
00000690 PGM70065
00000700 PGM70066
00000710 PGM70067
00000720 PGM70068
00000730 PGM70069
00000740 PGM70070
00000750 EGM70071
00000760 PGM70072
PAGE 26

```
```

    K=EOSITION OF WORD IN DICTICNAEY (EXCLUSIVE OF FIRST 2 CONTROL
        WCEDS) IF MATCH=5
        =NUMEPR IF MATCH=2
    =SUBSCFIET IN JBUF OF FIRST CHARACTER OF UNRECOGNIZED WORD
        IF MATCH=4
    {K=REAL NUMBER IF NATCH=3
    LARG=O, READ NEXT FIELD CN CARD
        =1,READ NEW CARD-FIEST FIELD
    - $ IS CONTINUATION CAED MARK
    $ IN CC1 IS A COMMENT CAED
    THF MAXIMUM NUMBER OF CHARACTERS EER WORD DEPENDS ON THE
    AILOHABLE NUMBER OF DECIMAL DIGITS PER INTEGER HORD.
    IN SUEROUTINE CODES
    THE ABOVE CODES ARE SET BY A DATA SPFCIFICATION FOR LET (1-46)
    LET(I) HAS THE CHARACTER RFPRESENTATICN (1H) CF THE CHARACTER
    WITH CODE I-1. THUS LET (21)=1HA.
    INTEGER ITST(7)
    INTEGEG BLANK,COMMA, PLUS,MINUS,DP
    DIMENSICN LET (46),IBUF(80)
    ```



```

    00000770 PGM70073
    C
C
C
C
C
C
C
C
C
C
c
C
c
DATA LASTC,IREAD,IPRNT, BIANK,CCMMA, ELUS,MINUS,DP/80,5,6,14,13,10,00001020 PGM70101
\$11,12/
ENTEY ECINT-CHECK OP CODE
ANUMB=0.0
L=LARG
IF(L.EO.O) GO TO 110
L=1,READ NRN CARD,CONVPEI TO DECIMAL CODE,SET BJPFER POINTRR IC

00000770	PGM70073
00000780	PGM 70074
00000790	EGM 70075
00000800	PGM70076
00000810	PGM 70077
00000820	PGM 70078
00000830	PGM70079
00000840	PGM 70080
00000850	PGM70081
00000860	PGM 70082
00000870	PGM70083
00000880	PGM 70084
00000890	PGM 70085
00000900	PGM 70086
00000910	PGM 70087
00000920	PGM70088
00000930	P GM70089
00000940	PG M70090
00000950	PGM 70091
00000960	PGM70092
00000970	PGM70093
	PGM70094
00000980	PGM 70095
	PGM70096
	PGM70097
	PGM 70098
	PGM70099
00001010	PGM 70100
. 00001020	PGM70101
00001030	PGM70102
00001040	PGM70103
00001050	PG M 70104
00001060	PGM70105
00001070	PG 970106
30001080	PGM 70107
00001090	PGM 70108

```
```

C TO FIRST NON-BLANK CFAF.
[O 800 ISS=1,80
IEUF(ISS)=LET (15)
800 CCNTINUE
READ(IPEAC, 1000, ERR=801.END=802)IBUF
1000 FCRMAT (80A1)
GC TC EO1
8O2 NATCH=6
GC TO 280
901 DO 101 I=1.80
DO 102 J=1,46
IF(IBUF (I) -LET(J)) 102,103,102
102 CONTINUE
C
03 IBUF(I)=J-1
101 CONTINUE
C
SET IC AS FIEST NON-BLANK CCLUMN
DO 104 I=1,LASTC
IP(IBUF (I)-BLANK) 105,104,105
104 CCNTINUE
105 IC=I
C
C POINTER IS ALWAYS SET TC FIRST CHAFACTER OF NEW FIELD CN LEAVING
C MATCH OB SY READING A NEO CARD-IT MAY BE LEFT PAST THE LAST
C SFCOGNIZAELE COLUMN,IASTCC
110 ICAR=IRUF(IC)
IF(IC-LASTC) 115,115.120
END OF STATEMENT
120 NATCH=1
29 FETURN
C
C OK-CHECK IF NEM FIELI IS A NUMMER,O-9,+,-,OR.
115 IF (IOAR-12)125,125,300

```
```

C
C NUMBER FCUND-SET INITIAL FAGAMEIERS
DECIMAL FCINT=NO
125 ILP=0
NEGATIVE=NO
ISGN=0
NC gIGNIPICANT DIGIT YEt
IS IG=0
NOMERICAL valuE Of NUMber (feal or INTEGER)
NUME=0
Save start of number
ICSTR =IC
IS first char a pluS SIGN-IGNORE IF yES
IF(ICAR-PLUS) 126,130,126
CHECK If MINUS SIGN-SET ISIGN=1 IF YES
126 IF(ICAF-MINUS) 135.127.135
ISGN=1
LEADING pLUS OR MINUS SIGN-BUMP CARD COLUMN POINTER-CHECK
IF END OE FIELD
this IS general CC bumper SECtion OF CODE
130 IC=IC+1
ICAR=IBUF(IC)
IF(IC-LASTC )135,135,140
CHECK IF CC IS BLANK CR CCMMA
135 IF(ICAR-ELANK) 145,140,145
145 IF (ICAR-CCMMA) 150,140,150
NCT END OF FIBLD-IS IT A [IGIT...
150 IF (ICAR-9) 155,155,160
[IGIT 0-9,DECIAML POINT YET...
155 IF(IDP-1)165,170,165
ALEEADY HAVE DP,N IS THGS NEGATIVE,NOMBEQ IN ANUMB
170 ANUMB=ANUMB+FLOAT (ICAR)*(10.**N)
N=N-1
gC TO 130
NO DP YET,IS DIGIT A ZEEC...
165 IF(ICAF) 175,180,175

```
```

```
C NOT ZEEO,THDS IT IS SIGMIFICANT
```

```
C NOT ZEEO,THDS IT IS SIGMIFICANT
 175 ISIG=1
 175 ISIG=1
 GO TO 185
 GO TO 185
C ZERO-CHECK IF SIGNIFICANT,IF NOT SKTP
C ZERO-CHECK IF SIGNIFICANT,IF NOT SKTP
 180 IF(ISIG-1)130,185,130
 180 IF(ISIG-1)130,185,130
185 NUMB=10*NUMB+ICAR
185 NUMB=10*NUMB+ICAR
 GO TO 1ミ0
 GO TO 1ミ0
C
C
C CHARACTER NOT DIGIT IS IT DP...
C CHARACTER NOT DIGIT IS IT DP...
160 IF (ICAR-DP) 195,190,195 11 DP...
160 IF (ICAR-DP) 195,190,195 11 DP...
C
C
 190 IF (IDP-1) 200,99,200
 190 IF (IDP-1) 200,99,200
200
200
 N=-1
 N=-1
 ID P=1
 ID P=1
 ANUMB=NUMB
 ANUMB=NUMB
 GO TO 130
 GO TO 130
C
C
C NOT DIGIT OR DP,IS IT E....IF NOT,FRROR(99)
C NOT DIGIT OR DP,IS IT E....IF NOT,FRROR(99)
195 IF (ICAR-24)99.205.99
195 IF (ICAR-24)99.205.99
C E FORM-E(ELUS OR MINOS)N1. (N2)
C E FORM-E(ELUS OR MINOS)N1. (N2)
 205 IF(IDP-1)210,214,210
 205 IF(IDP-1)210,214,210
C
C
 210 ANUMB=NDMB
 210 ANUMB=NDMB
 IIP=1
 IIP=1
 214 I=1
 214 I=1
C SIGN OF EXPCNENT=PLOS
C SIGN OF EXPCNENT=PLOS
 IEP=+1
 IEP=+1
C VALUE OF EXPONENT=O
C VALUE OF EXPONENT=O
 IEX=0
 IEX=0
C NEXT COIUNN
C NEXT COIUNN
 215 IC=IC+1
 215 IC=IC+1
 ICAR=IBUF (IC)
 ICAR=IBUF (IC)
 IF(IC-LASTC) 216,216,99
 IF(IC-LASTC) 216,216,99
 216 IF (ICAR-ELANK) 217.99,217
 216 IF (ICAR-ELANK) 217.99,217
 217 IE(ICAR-CCMMA)218,99.218
 217 IE(ICAR-CCMMA)218,99.218
 218 GOTO (22C,225),I
```

    218 GOTO (22C,225),I
    ```
```

    IF(IDP 1) 210.214,210
    ```
```

    IF(IDP 1) 210.214,210
    ```
00001790 PGM70181
00001800 PGM70182
00001810 PGM70183
00001820 PGM70 184
00001830 PGM70185
00001840 PGM70186
00001850 PGM70187
00001860 PGM70188
00001870 PGM70189
00001880 PGM70190
00001890 PGM70191
00001900 PGM70192
00001910 PGM70193
00001920 PGM70194
00001930 PGM70195
00001940 PGM70196
00001950 PGM70197
00001960 PGM70198
00001970 PGM70199
00001980 PGM 70200
00001990 PGM70201
00002000 PGM70 202
00002010 PGM70203
00002020 PGM70204
00002030 PGM70205
00002040 PGM70206
00002050 PGM70207
00002060 PG M70208
00002070 PGM70209
00002080 PGM70210
00002090 PGM70211
00002100 PGM70212
00002110 PGM70213
00002120 PGM70214
00002130 PGM70215
00002140 PGM70216
 fage 30
```

C CHARACTER APTER EIS IT ELUS,MIMOS,OR DIGIT...
220 IF (ICAR-PIUS) 226,230,235
235 IF(ICAE-MINUS) 99.240.99
C MINUS SIGN
240 IEP=-1
C HERE FOS ELOS SIGN ALSO
C RESET SWITCH AND GET NEXT CCLUMN
230 I=2
GO TO 215
C FIRST OF CNE OR THO FXPCNENT DIGITS
225 IF(ICAR-9) 226,226,99
226 IFX=ICAR
I=1
223 IC=IC+1
ICAR=IBUF(IC)
IF(IC-IASTC ) 231,231,250
2.31 IF (ICAE-BLANK) 227,250,227
227 IF (ICAR-CCMMA) 228.250.228
228 GO TO (224,99),I
224 IF(ICAR-9)229.229.99
229 I=2
IEX=10*IEX+ICAR
GC TO 2?3
C END OF E FORM-MULTIPIY NOMBER BY EXPCNENT
250) ANUMB=ANUMB*(10.**(IEP*IEX))
C
C END OF NUMBER,POINTER AT BLANK, COMMA,OR EOC
C ILF=O,INTFGEE IN NUMB-IEP=1,READ IN ANUMB
140 IF(ISGN-1) 144,141,144
C NEGA2E-CHECK IF INTEGER OR REAL
141 IF (IDP) 142.143.142
C REAL
142 ANUMB=-ANUMB
GO TO 144
C INTEGER
143 NUMB=-NUMB

```
```

    144 NATCH=TCE+2
        K=NUMB
        RK=ANUMB
    C
C
C
270 IF(IC-LASTC) 271,271,280
271 IC=IC+1
IF(IC-LASTC ) 272.272.280
272 IF (IBOF (IC) - BLANK) 273.271.273
273 IF (IBUF (IC) -COMMA) 280,271,280
C
C
C
C
C
C
C
230 ICSTR RAD ON RIGRI.
330 ICSTR = IC
410 IC=IC+1
ICAR=IBUF(IC)
IF(IC-LASTC ) 415,415,42C
415 IF (ICAR-COMMA) 405,420,405
405 IF(ICAE-BLANK)410.420.410
C
420 IENC=IC-1
C USF LIST EIEST
NC=LIST(1)
GET CHARACTERS IN GORD
NCW=IEND+1-ICSTR
NCW1=NCW+1
IFD=0

```

00002510 PGM 70253 00002520 PGM70254 00002530 PGM70255 00002540 PGM70256 00002550 PG M70257 00002560 PGM70258 00002570 PG M 70259 00002580 PGM70260 00002590 PGM70261 00002600 PGM 70262 00002610 PGM70263 00002620 PGM70264 00002630 PGM70265 00002640 PGM 70266 00002650 PGM70267 00002660 PG M70268 00002670 PGM 70269 00002680 PGM70270 00002690 PGM70271 00002700 PGM 70272 00002710 PGM70273 00002720 PGM70274 00002730 PGM70275 00002740 PGM70276 PGM 70277 00002760 PGM70278 00002770 PGM70279 00002780 PGM70280 00002790 PGM 70281 00002800 PGM 70282 00002810 PGM70283 00 C 02820 PGM70284 00002830 PGM70285 00002840 PGM70286 00002850 PGM70287 00002860 PGM70288 PAGE 32
```

C CHECK IF FIELDS IS SHORIER THAN DICT. WORDS
IF (NCW-NC)440,455,455
C SHORTER-ELANK PAD
440 DO 445 I=1.NCW
IJK=ICSIF +I-1
445 IND=100*IWD +IBUF (IJK)
DC 459 I=NCW1.NC
450 IWD=100*TWD+BIANK
GC TO 465
C NCO,GE,NC
455 DO 460 I=1,NC
IJK=ICSTR +I-1
460 IWD=100*IWD+IBUF(IJK)
C
C NOW THD CONTAINS NC CHAFACTERS TO COMPARE
C TC DICTICNARY WORDS
465 NKDS=LIST (2)
DC 475 I=1.NWDS
IF(IWD-LIST(I+2))475,48C,475
475 CCNTINUE
WORD NOT FOUND IN DICTICNARY
NATCH=4
K=ICSTR
GC TO 270
C WCRD FOUND IN DICTIONARY
480 K= I
NATCH=5
GO TO 270
C
C
C ERROR IN NUMEER FIELD
99 WFITE(IEENT, 999)
K=ICSTE
NATCH = 4
GO TO 27)
FOSMAT(25H EEQOE IN NOMERIC FIELD.)

```

00002870 PGM70289
00002880 PGM70290
00002890 PGM70291
00002900 PGM70292
00002910 PGM 70293
00002920 PGM70294
00002930 PGM70295
00002940 PGM70296
00002950 PGM70297
00002960 PGM70298
00002970 PGM70299 00002980 PGM70300 00002990 PGM70301 00003000 PGM70302 00003010 PGM 70303 00003020 PGM70304 00003030 PGM70305 00003040 PGM70306 00003050 FGM 70307 00003060 PGM70308 00003070 PGM70309 00003080 FGM70310 00003090 PGM70311 00003100 PGM70312 00003110 PGM70313
00003120 PGM70314
00003130 PGM70315
00003140 PGM70316
00003150 PGM70317
00003160 PGM70318
00003170 PG M70319
00003180 PGM70320
0000319 C PGM70321
00003200 pGM70322
00003210 PGM70323
00003220 PG M 70324
PAGE 33

\section*{-290- \\ REFERENCES}
1. Roberts, Paul O., Davit T. Kresge, John R. Meyer: "An Analysis of Investment Alternatives in the Colombian Transport System", Final Report, Transport Reasearch Program, Harvard University, Cambridge, Mass.-(September 1968), p. 34
2. Sadove, A. Robert and Gary Fromm, "Financing Transport Investment", in Gary From (ed.), "Transport Investment and Economic Development", The Brookings Institution, Washington, D.C. (1965), p. 25
3. Lansing, John B. "Transportation and Economic Policy", The Free Press, New York, (1966) p. 3
4. Roberts, Paul O., and David T. Kresge, "Techniques of Transport Planning Volume II: Systems Analysis and Simulation Models", John R. Meyer (ed.), The Brookings Institution, Washington, D.C. (1971).
5. Taboroga, P.N., "A Model to Study Optional Transportation Policy in Chile", Research Report, R66-8 Department of Civil Engineering, M.I.T. Cambridge, Mass. (1966)
6. Richard de Neufville and David Marks (ed.), "System Planning and Design: Case Studies in Modeing, Optimization and Evaluation", Prentice Hall, Inc., Englewood Cliffs, N.J. (1974)
7. Pecknold, W.M., "The Evolution of Transport Systems: An Analysis of Time-Staged Investment Strategies under Uncertainty", Cambridge, Ma. Unpublished Ph. D. Thesis, Department of Civil Engineering, (1970)
8. Wohl, Martin, and Brian V. Martin, "Traffic System Analysis for Engineers and Planners", McGraw-Hill, New York (1967)
9. Tarplay, Fred A., and J.L. Drake, "The Timing Dimension of Urban Transport Decisions", Papers Ninth Annual Meeting, Transportation Reasearch Forum 1968.
10. Thygeson, Inge, "Long Term Planning and Timing the Implementation of Transport Investments", in J.R. Lawrence (ed.), Operational Research and Social Sciences, London (1966)
11. Marglin, Stephen A., "Public Investment Criteria", The MIT Press, Cambridge, Mass. (1967)
12. Winfrey, R., "Cost Comparison of Four Lane vs. Stage Construction on Interstate Highways", Highway Research Board Bulletin No. 306, Highway Research Board- Washington, D.C. (1961)
13. Cole, Leon M., "Optional Capacity Planning and Staging Decisions under Uncertainty", Discussion Papare No. 43, Harvard Transport Research Program, Cambridge, Mass. (June 1966)
14. Howard, G.T. and G.L. Nemhauser, "Optional Timing of Investments in Transportation Links", Department of Operations Research and Industrial Engineering, The John Hopkins University, Baltimore, Maryland (November 1966)
15. Moavenzadeh, F. "Investment Strategies for Developing Areas: Analytic Model for Choice of Strategies in Highway Transportation", Research Report R72-67, Department of Civil Engineering, M.I.T. Cambridge, Mass. (1972)
16. Roberts P.O. and Dewess R.N., "Economic Analysis for Transport Choice" A Charles River Associates Research Study, Heath-Lexington Books, Lex., Mass. (1971)
17. Putman, Stephen H. "Models of Determining Indirect Impacts of High Speed Ground Transportation Systems: Northeast Corridor", Papers Eighth Annual Meeting, Transportation Research Forum (1967)
18. Weingartner, H. Martin, "Mathematical Programming and the Analysis of Capital Budgeting Problems", Markham Dub. Co., Chicago, Illinois (1967)
19. CONSAD Research Corporation, Third Quarterly Progress Report, May 18, 1966 to August 18, 1966, "Design for Impact Studies: Northeast Corridor Transportation Project", (Prepared for the U.S. Department of Commerce, Office of Transportation Research), Pittsburgh, Penn. (August 23, 1966)
20. Mori, Yasuo, "A Highway Investment Planning Model: An Application of Dynamic Programming", Unpublished S.M. Thesis, Department of Civil Engineering, M.I.T., Cambridge, Mass. (1968)
21. Meyer, J.R., and M.R. Straszheim, "Techniques of Transport Planning Volume I: Princing and Project Evaluation, J.R. Meyer (ed.), Transport Research Program, The Brookings Institution, Washington, D.C. (1971)
22. Hershdorfer, A.M., "Optional Routing of Urban Traffic", Unpublished Ph. D. Thesis, Department of City and Regional Planning, M.I.T. Cambridge, Mass. (1965)
23. Roberts, P.O. "Transport Planning: Models for Developing Countries" Unpublished Ph. D. Thesis, Department of Civil Engineering, Northwestern University, Evanston, Illinois (1966)
24. Bergendahl, G., "Models for Investments in a Road Network", National Road Administration Stockholm, Sweden, (1968)
25. Morlok, Edward K., "A Goal-Directed Transportation Planning Model" Discussion Paper, Nortwestern University, Evanston, Illinois (1969)
26. Ochoa-Rosso, F. and A. Silva, "Optimum Project Addition in Urban Transportation Networks Via Descriptive Traffic Assignment Models", Research Report R68-44, Department of Civil Engineering, M.I.T. Cambridge, Mass. (1968) Volume \(V\) of a series.
27. Barbier, M., "Le Futur Reseau de transports en region de Paris", Cahiers de L'Institut D'Amenagement et d'Urbanizme de la region Parisienne, Volume IV-V, No. 4 (1966)
28. Stairs, S., "Selecting an Optional Traffic Network", Journal of Transport Economics and Policy (May 1968)
29. Spencer, J.W., "An Approach to Planning and Programming Local Road Improvements Based on a Network-wide Assessment of Economic Consequences", Highway Research Record, No. 224, Highway Research Board, Washington, D.C. (1968)
30. Bhatt,K.U., "Fundamental Explorations in the Comparative Analysis of Transportation Technology", Ph. D. Thesis, Department of Civil Engineering, M.I.T., Cambridge, Mass. (1971)
31. Allman, W.P., "A Network-Simulation Approach to the Railroad Freight Train Scheduling and Car Sorting Problem", Ph.. D. Dissertation, Northwestern University, Evanston, Illinois (1966)
32. Folk, J.F., "A Brief Review of Various Network Models", Research Report R72-42, Department of Civil Engineering, M.I.T., Cambridge Mass., (1972)
33. Carter, E.C., and Stowers, J.R., "Model for Funds Allocation for Urban Highway System Capacity Improvements", Highway Research Record, No. 20 (1963)
34. Quandt, R.E., "Models of Transportation and Optimal Network Construction", Jcurnal of Regional Science- Vol. 2, (1960)
35. Beckman, M.J., "On the Theory of Traffic Flow in Networks ", Traffic Quarterly, (Jan. 1967)
36. Manheim, M.L., "Notes on Transport Systems Analysis: The Equilibrium Problem", Discussion paper T-14, Department of Civil Engineering, M.I.T., Cambridge, Mass.
-293-
37. Isard, W., "Interregional Linear Programming: An Elementary Presentation and a General Model", Journal of Regional Science, Vol. I (1958)
38. Towlin, J.A., "Minimum-Cost Multi-Commodity Network Flow", Operations Research, Vol 14, No. 1 (1966)
39. Dantzig, and Worfe, P., "The Decomposition Algorithm for Linear Programs", Econometrica, Vol. 29 (1961)
40. Floyd, Robert, W., "Shortest Path", Algorithm 97, Communications of the Association for Computing Machinery, (1962)
41. Highway Capacity Manual, Highway Research Board, Special Report 87, (1965)
42. SAUTI Consulting Engineers, "Asela-Dodola Road, Feasibility Study", Imperial Ethiopian Government, Imperial Highway Authority (1971)
43. U.N. Development Program,"Ethiopia General Road Study. Final Report, Volume 2: The Ethiopian Economy of the Transport Sector" (United Nations (1972)```

[^0]: Figure lol。
 Transport Network Planning Process

