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ABSTRACT

ANALYSIS OF HEAT TRANSFER IN SILICATE SLAGS

by

JOHN DANA NAUMAN

Submitted to the Department of Materials Science and Engineering
on August 9, 1976 in partial fulfillment of the requirements for the
degree of Doctor of Science.

The heat transfer in ferrous silicate slags was studied by
measuring the rise in the temperature of a cold metal sphere which
was immersed in the liquid slag. Several liquid silicates at iron
saturation were studied. These oilicates included synthetic iron
refining and copper smelting slags. The experimental variables were
the initial temperature of the sphere, the size of the sphere, the
composition and density of the sphere, the temperature of the liquid
slag, and the convection of the liquid slag around the sphere. The
types of convection were natural convection, forced convection by
spinning the sphere, and forced convection by bubbling gas into the
slag.

To provide a general understanding of the heat transfer from the
liquid slag to the cold metal sphere, a mathematical model of the flow
of heat was developed and tested. The model was used to calculate the
temperature distribution in the metal sphere and the solid slag shell
which froze on the sphere using the known properties of the slag and
metal. The rates of heating of the sphere in the slag were calculated
with this model and compared to the rates observed in the experiments.
It was shown that the most critical properties which determine the
heating of the sphere are the temperature at the surface of the solid
slag shell and the thermal conductivity of this solid slag. Most of
the slags in this study solidified and melted with a smooth or planar
solid-liquid interface which was at the solidus temperature of the
slag. It was also shown that convection in the liquid slag had a
large effect on the heating of the metal sphere.

The mathematical model was also used to simulate conditions of an
electric furnace-pellet feeding operation. This simulation predicted the
melting times of various iron pellets in the slag of an electric furnace.
It was shown that the most critical factors controlling the melting of
the pellets in the furnace were the density of the pellets and the heat
transfer coefficient in the liquid slag.

Thesis Supervisor: John F. Elliott

Title: Professor of Metallurgy
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I. INTRODUCTION

Silicate slags are important as heat transfer media in pyrometal-

lurgical operations and fossil fuel fired boilers and turbines. Liquid

slag transfers heat to particles of metal, flux, and oxides which are

normally added during the refining in pyrometallurgical operations.

The slag becomes the sole source for heating and melting of the particles,

when they become entrapped in the slag layer. Also, solid and liquid

slag which collect in boilers and turbines form barriers to the trans-

fer of heat to the tubes and walls and provide a corrosive environment.

Several factors are important in the determination of heat transfer

in silicate slags. The thermal conductivity of the slag is the most

important of these factors. It depends upon the slag composition,

temperature, and even the structure of the solid slag. The melting

temperature of the slag, the convection in the liquid, and the proper-

ties of other materials present in the immediate environment are also

factors in the heat transfer in silicate slags.

The purpose of the present investigation is to analyze the heat

transfer from a liquid slag to a cold metal particle. The investiga-

tion is divided into two stages. First, in a specially designed

laboratory experiment, the effects of the slag composition, the liquid

slag temperature, the convection in the liquid, and the composition in

the metal sphere are measured. Then a mathematical model is developed

which simulates the heat transfer to a cold metal particle immersed in

a liquid slag. This mathematical model uses the available data on the



23.

thermal properties of the silicate slags and various boundary conditions

for the solidification and melting of the slag on the metal particle.

The experimental results and the mathematical model are compared

to analyze the effects of the thermal conductivity of the slag, the

convection in the liquid slag, the solidification and melting of the

slag, and the properties of the metal particle. The mathematical model

is also modified to simulate the melting of prereduced iron particles

in an electric furnace slag.
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II. LITERATURE SURVEY

There are three general areas which are essential for this study of

heat transfer in silicate slags: 1) measurements of the thermal conduc-

tivity and thermal diffusivity of liquid and solid slag, 2) practical

heat transfer problems encountered in the use of silicate slags for

metallurgical refining and coal combustion, and 3) mathematical models

of heat transfer associated with a moving boundary.

II.A. Thermal Properties of Slag

Relatively few measurements of thermal conductivity and bulk radia-

tion transport for silicate slags are available. These measurements

indicate the factors which control heat transfer and directly apply

to heat transfer in the slags in which the measurements were made.

Radiation transport may be especially important for silicate slags

because they are semi-transparent and allow substantial heat transfer by

photons in the liquid and glassy states.

Fine and Elliott (1, 3) measured the thermal diffusivity and radia-

tion transport of several liquid synthetic steelmaking slags. Using

a cylindrical slag sample, the thermal diffusivity was obtained by

measuring the phase shift between a periodic current impressed on a wire

at the center of the sample and the temperature response at the outer

wall. They measured the thermal diffusivity at various concentrations of

iron oxide and various lime to silica ratios. Most of these slags were

prepared at iron saturation and had very low concentrations of ferric

(III) iron. The results of these measurements of liquid slags containing
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between 11.9 wt.% FeO and 20.9 wt.% FeO, with a lime to silica ratio, B,

equal to 1.0 and 1.5 were represented by the Equation (1)

(T/1500)aeff = 0.001 (1.5-0.5B) + 0.018 (T/.500) 0.8 (1)

wt.% CaO
B = T < 1750 0 K

wt.% SiO 2

with an error of 10%. Apparently the thermal diffusivity decreases with

increasing wt.% FeO because of decreasing radiation transport in the bulk

of the slag. The effect of lime to silica ratio, B, on the effective

thermal diffusivity was traced to the probable increase in the mean free

path, L, for photon and phonon conduction as the viscosity of the slag

was reduced by the addition of lime.

Fine and Elliott (1, 3) suggested that the radiation contribution

to transport in these iron oxide slags was of the same order as the con-

duction contribution (phonon conduction). The transport of thermal

radiation in a semi-transparent medium affects the temperature distri-

bution, depending upon the optical thickness of the specimen. The optical

thickness is defined

s = Xx (2)

where A is the bulk absoption coefficient and x is the thickness of the

specimen. If the optical thickness of the specimen is greater than about

4, then the thermal radiation contribution to the conduction can be

simply added to the phonon conduction to constitute an "effective" thermal

conductivity. The apparatus used by Fine and Elliott was designed so

that the specimens were sufficiently optically thick for the measurements

of "effective" thermal diffusivity.
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Thermal radiation through a semi-transparent specimen may also be

important in determining heat transfer at a phase boundary. The absorption

of thermal radiation at a solid boundary in a liquid glass specimen was

modeled and measured at a steady state by Eryou and Glicksman (74). A

non-linear temperature distribution in the glass and an increase in the

heat flux at the boundary was observed, which depended upon the magnitude

of the bulk absorption coefficient in the glass. The bulk absorption

coefficient for glassy slags at 0 to 14% FeO concentrations was measured

by Fine and Elliott (3). The scattering coefficient for polycrystalline

slags also limits the transport of thermal radiation through a specimen.

In most cases the scattering coefficient is several orders of magnitude

greater than the bulk absorption coefficient.

More recent measurements with the periodic steady state apparatus,

reported by Nauman, Foo and Elliott (4) of ferrous silicates and synthetic

copper smelting slags, indicated no general relationship between slag

composition and effective thermal diffusivity. The thermal diffusivity

of the solid slag was also measured in the periodic source apparatus.

The typical value of thermal diffusivity of a ferrous silicate, composed

principally of fayalite, was 0.0042 cm2/sec. This value applied for the

liquid as well as the solid slag. The effect of radiation on the heat

transfer in these slags was not appreciable due to the very high con-

centration of FeO (50.1 to 69.5%). All of these slags were prepared at

iron saturation.

Braun (13) measured the thermal conductivity of several coal ash

slags with a calibrated thermal gradient technique. These slags were
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obtained from a slagging boiler and contained 20 to 64.4 wt.% Fe2033

Under various oxygen pressures, which attempted to simulate boiler

conditions, the conductivity increased with exposure to oxidizing

atmosphere. This increase was probably due to the oxidation of ferrous

iron to the ferric state.

Gibby and Bates (6) measured the thermal diffusivity of basalt

using a high temperature laser pulse technique. Similar to other measu-

rements on terrestrial rock (5), the thermal diffusivity decreased with

increasing temperature near the melting point. A value of about 0.0045

cm /sec. was recorded for a liquid basalt about 1400%C.

Using the same laser pulse technique, Bates (7) measured the thermal

diffusivity of several synthetic and real power plant coal ash slags.

His measurements indicated that the diffusivity of the solid slag decreased

with increasing temperature. This contradicts the measurements made by

Braun in which the thermal conductivity of solid coal ash increased with

increasing temperature. Also Bates' measurements demonstrated that slags

of nearly identical compositions have distinctly different thermal

diffusivities. The only explanation given for the different diffusivities

was that the degree of crystallization and heat treatment seemed to have

an effect. The microstructure of these nearly identical slags may have

been quite different, but there is insufficient information presented

to asses this.

In general, the thermal diffusivity from available data on silicate

slags ranges from 0.003 to 0.007 cm2/sec. for both the high temperature
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solid and liquid. The works of Bates and Braun demonstrated that solid

slags which have similar compositions may not exhibit the same thermal

conductivity of thermal diffusivity, if the slags are given different

treatments.

II.B. Practical Slag Heat Transfer

There are several practical processes in metallurgical operations and

electric power generation where heat transfer in the slag is critical.

Some of these processes are electric furnace steelmaking with reduced

iron pellets, electroslag remelting, strand casting with a slag flux,

coal fired boilers, and open cycle magnetohydrodynamic generators.

The continuous charging of reduced iron pellets into an electric

furnace may be limited by heat transfer in the refining slag layer within

the furnace. Many of the present day reduced pellets have densities less

than that of the refining slag, and the melting of these pellets is

accomplished almost entirely within the slag layer. Sibakin et al. (14)

reported that such a practice with reduced iron pellets was feasible, if

precautions were taken to minimize the freezing of slag and pellets into

"islands". Formation of these islands was greatly affected by the

distribution of pellets in the furnace and convection in the liquid slag.

In the electroslag remelting process, heat transfer in the slag is

extremely critical for melting to electrode and solidification of the ingot

in the copper mold. Heating in this process is primarily by joule heating

of the slag contained between the electrode and the formed ingot. Mitchell

and Joshi (15) determined that among the most important factors controlling
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the heat generation in the remelting of an ingot were the electrical and

thermal properties of the slag. Also the depth of the liquid metal pool

and thus the solidification of the ingot depended upon the thermal insu-

lation by the layer of slag that forms on the ingot.

In boilers which are fired with coal, slag forms from the ash on

the fire side of the tube walls. This slag increases the resistance of

the walls to heat flow, so the burner temperature must be increased to

maintain the operation of the boiler. At the higher temperatures the

flow of heat through the slag is irregular because there are variations

in the thickness of the slag and the radiation properties of the surface

(57). A thin layer of slag or a large radiation absorption results in

catastrophic tube wall temperatures (68, 69). Similarly, in the tech-

nology of open cycle magnetohydrodynamic power systems, the thermal

properties of the ash and slag become critical. At wall temperatures

below 17000 C, Bogdanska et al. (12) reported that a significant quantity

of slag condenses. The condensation and freezing of slag was controlled

by heat transfer in the walls and slag. It was found that the slag coating

on the electrodes and insulators caused severe corrosion of oxide elec-

trodes and insulators, while actually protecting the metal electrodes.

Therefore the presence of the condensed layer of slag can be very

critical to the operation of the generator.

II.C. Heat Transfer at a Phase Boundary

Liquid slag solidifies on the surfaces of cold metal particles

refractory tubes, and walls in practical operations. With the presence

of solids and liquids, heat transfer in these systems involves a moving
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solid-liquid phase boundary accompanied by absorption or release of

the enthalpy of fusion. The heat balance at the moving boundary is

given by

dX S dX s dt

where KL and KS are the thermal conductivities of the liqfid and the

solid slag, respectively; ps is the density of the solid slag, AH is the

enthalpy of fusion; and dL is the change in the thickness of the solid

slag. The temperature at this boundary may be fixed at a melting

temperature; it may reflect under cooling during solidification or over-

heating during melting; or, since most slags melt over a range, the

boundary temperature may vary over this melting range.

Mathematical models of heat transfer in the presence of a moving

boundary and flowing liquids have been investigated only for specific

conditions as yet. The exact solutions due to Stefan and Newmann (22)

apply to the more elementary problems of solidification of a stationary

liquid at the melting temperature, bounded by a plane wall at a constant

temperature. Goodman's integral method has been applied assuming soli-

dification on a plane wall of uniform and constant temperature, and

assuming constant heat flux from the liquid to the solid phase (23, 24,

26, 27). Variational methods, such as those developed by Biot and Green

(28, 29) have been applied to moving boundary problems for cylindrical

and spherical walls. However, the evaluation of the integrals in all of

these methods presents considerable difficulties when dealing with problems

of solidification and convection in the liquid boundary layer. Also,
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according to the investigations by Megerlin (75), the Goodman integral

method does not yield very accurate results in problems of melting

solidification.

Numerical methods can become very complex due to the nonlinear

boundary conditions for heat flux at the phase boundary. The usual

procedure is to estimate the thickness of the solid layer, then to

determine the temperature distribution, which provdes a new value for

the thickness of the layer (33, 34). Several numerical methods have also

been proposed which lump together the specific heat and the enthalpy of

fusion at the melting temperature of the materials (30, 31, 32, 35). In

these methods the moving interface is never actually defined.

A further survey of the previous work on mathematical models and

convection in the liquid, which apply directly to the present experimental

study, is included in Chapter V on mathematical modeling.
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III. EXPERIMENTAL

In this chapter the design and the procedure of the laboratory

experiments for the study of heat transfer in silicate slags are des-

cribed. The principal laboratory experiments consisted of immersing

a cold metal sphere in a "semi-infinite" liquid slag. The metal sphere

enters the slag at a predetermined temperature, and the temperature at

the center of the sphere is measured continuously. From this continuous

measurement of temperature it is possible to determine the transfer of

heat from the slag to the sphere as a function of time. During this

experiment the flow of liquid slag was controlled by spinning the

sphere, or holding the sphere static and stirring with rising gas

bubbles. The experiments were conducted in different compositions of

liquid slag at various temperatures. The metal objects which were

immersed into the liquid slag were nickel spheres, nickel cylinders,

copper spheres, and porous iron spheres.

During the immersion of the metal sphere into the liquid slag,

the slag solidifies around the cold sphere and then melts away as

shown in Figure III-1. Stage 1 shows the sphere and the slag at

constant temperatures upon the initial immersion. Stage 2 shows the

slag shell solidifying on the sphere, and the temperature distribution

within the sphere as it begins to heat. Stages 3 and 4 show the slag

shell at a maximum thickness and as it begins to melt. After the slag

shell is completely remelted, stages 5 and 6 show the sphere continuing

to heat to the slag bath temperature. Heat transfer in such a system is
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determined by the thermal properties of the metal sphere, the solid slag,

and the convection in the liquid.

The melting range of the slags studied was measured by differential

thermal analysis. This melting range was necessary for the mathematical

model which is described in Chapter V.

III.A. Preparations for Experiments

III.A.1. Preparation of the Slag

The slags were prepared for these experiments by mixing toget1er

reagent grade powders of pure oxides to obtain the compositions shown

in Table III-1. After mixing the powders for 10 to 20 hours by tumbling,

the mixture was charged into an iron crucible and melted. The iron

crucible consisted of a 21 cm. section of a 6 inch diameter steel tube

(0.7 wall thickness) which was closed on the bottom by a 1/2 inch

steel plate welded to the tube. On the top of this iron crucible was

placed a lid of 1/4 inch steel plate with a 5 cm. hole in the center.

This lid prevented the formation of a solid slag crust on the top of

the liquid.

The crucible was surrounded by bubble grain alumina and high

temperature refractory brick as shown in Figure 111-2. Heat was applied

to the iron crucible by an induction furnace (Tocco Meltmaster, 50KVAR,

9720 Hertz). When an optical pyrometer sighted on the inside wall of

the crucible, the temperature was increased to 100C above the melting

temperature of the slag mixture. This temperature was held constant

until most of the mixture became liquid, and then more powder was stirred



Table iii-1. Calculated Compositions of Slags Based on the Mixed Powders.

weight percent
Slag Total Fe

N-2W 60.2
(60.1)

N-FA 59.2
(58.9)

N-lW 58.1
(58.1)

N-FB 54.7
(54.7)

N-FC 47.6
(48.6)

N-lA 43.2
(43.5)

N-2A 39.3
(40.3)

N-CA 43.2
(43.1)

N-1CU 32.8
(35.2)

N-2CU 38.5
(40.2)

N-IR 11.0

Found by analysis

FeO

74.4

73.5

72.9

69.5

60.5

55.1

50.1

55.1

40.5

45.5

14.2

Fe203

3.2

3.0

2.6

1.8

1.4

1.2

1.1

1.2

5.0

5.0

SiO
2

22.4

23.5

24.6

28.7

38.1

34.7

31.5

34.6

40.5

35.5

31.4

CaO Al203 Other

9.0

17.3

9.1

7.0 5.0

7.0 5.0

31.4 12.5

1.0 MgO; 1.0 S

1.0 MgO; 1.0 S

10.5 MgO

Description

wustite saturation, near
the fayalite-wustite

peritectic
Fayalite-wustite peritectic

Fayalite saturation, near
the fayalite-wustite peritectic

Fayalite (Fe2SiO 4 )

Fayalite-silicate peritectic

N-FC + 9% Al203

N-FC + 18% Al203

N-FC + 9% CaO

high silica synthetic copper
smelting slag

high FeO synthetic copper
smelting slag

synthetic steelmaking

as described in Appendices C and G.

Mixed composition at iron saturation based on available phase diagrams.

I

"'' "' '
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in and melted to obtain a liquid slag of 14 cm. depth. Before starting

any experiments the liquid slag was kept at a constant temperature for

30 to 40 minutes. The single charge could be reused for several

experiments.

Because of the higher working temperatures for slag N-IR (1300-

1400'C), a MgO crucible (1.4 cm. wall thickness) was used instead of the

iron crucible. Heat was provided by a 1.5 cm. thick graphite susceptor

surrounding the MgO crucible. A 3 cm. thick graphite lid with a 5 cm.

hole in the center prevented the formation of a slag crust on the top

of the liquid.

Samples of the slag were taken from the liquid and analyzed for

total iron to check the expected composition (see Appendix G).

III.A.2. Preparation of the Metal Spheres

The nickel and copper spheres were prepared by investment casting,

while the porous iron spheres were prepared by sintering iron powder.

The spherical patterns for the investment molds were made in the

following manner. Standard ball bearings of 1 1/4, 1, and 3/4 inch

diameter were mounted separately on wax pedestals. They were then

surrounded by silicone rubber (Allied Resin Co., RTV 664). After the

silicone rubber hardened (24 hours) the ball bearings were removed by

carefully cutting along a vertical cross-section of the rubber block

with a sharp knife. By leaving a portion of the rubber uncut, the

rubber mold could be reassembled and filled with wax.
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These spherical wax patterns were then used to make lost wax

investment molds. A pattern was attached to a cylindrical wax stem

which was 0.8 cm. in diameter and 1.0 cm. long. Two or three of these

assemblies were then attached to a cylindrical riser which was 3.0 cm.

in diameter and 6 cm. long, as suggested by Taylor et al. (64). A

0.8 cm. diameter runner and a 1.0 cm. diameter sprue were fitted to the

bottom of the riser, and would funnel the liquid metal into the riser

during pouring. The entire wax pattern was inverted on a metal into

the riser during pouring. The entire wax pattern was inverted on a

metal plate, and surrounded with a section of steel pipe. Ferrous

investment material (Ransom and Randolf 711) was mixed, 10 parts to

1 part water, and poured around the wax pattern. The green mold was

then vibrated to eliminate gas bubbles.

After setting overnight, the green mold was removed from the plate

and placed in a furnace at 1000C for 4 to 12 hours to remove the wax.

The temperature of the mold was then increased at a rate of 100 to 200

degrees per hour to reach 9000 C. At this temperature the investment

mold was allowed to burn clean, set, and reach a steady temperature.

Then the mold was removed from the furnace and was ready for casting.

For the nickel castings, pure nickel shot was melted inductively

and brought to 1550 0C in a dense MgO crucible (15.2 cm. deep and 1 cm.

wall thickness). The temperature was monitored by an optical pyrometer.

To deoxidize the melt, 1 to 2 grams of aluminum were added just before

the nickel was poured into the hot investment mold. For the copper
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castings, electrical grade copper was melted in a graphite crucible

which was heated inductively. Argon was bubbled into the melt for 3

minutes prior to casting to help purge oxygen from the copper. The

copper was poured at 11500C.

The nickel and copper castings were removed from the investment

after 4 to 8 hours of cooling. The stem of each sphere was cut close to

the riser to remove the sphere. The stem was machined to fit into the

iron tube (5/16 inch inside diameter) as shown in Figure 111-2, and the

hole for the thermocouple was drilled to the center of the sphere.

While mounted in a lathe the surface of the sphere was lightly sanded and

polished with 320 emery paper. Later, the sphere and hole were cleaned

with acetone.

The porous iron spheres were sintered using the ferrous investment

molds, but in a different configuration. Spherical wax patterns were

made from the silicone rubber molds of 3.0 cm. diameter, with cylindrical

stems 2.5 cm. long. The spheres with stems were mounted vertically on

a metal plate and cast in the ferrous investment material. After the

investment was set as described above, the investment mold was removed

from the furnace and filled with either 50 mesh iron filings or 100 mesh

iron powder. Then iron tubes (5/16" outside diameter 3/16"inside and

2.5 cm. diameter long)were pressed into the iron filings, such that 0.5

cm. of the iron tube extended into the spherical cavity of the investment

mold. The tube was carefully centered, straightened, and packed securely

in the filings. A small amount of graphite powder was spread on top

of the iron filings and the mold to minimize the oxidation during
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Table 111-2. Properties of Metal Spheres

Metal

Nickel

Nickel

Copper

Iron
(50 mesh)

Iron
(100 mesh)

See Section V.F.

Thermal
Diameter Density Diffusivity

-m. g/cm 3 cm2/sec.

3.06

1.83

3.06

3.06

8.2

8.2

8.7

3.8

4.53.06

0.14

0.14

0.90

Specific
heat (cal/

g-OC

0.13

0.13

0.11

At 8000C
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sintering. The mold was placed in the furnace and heated to 900 0C.

After three hours at 900 0 C the mold was removed and allowed to cool.

The sintered spheres were removed very carefully and cleaned. As with

the copper and nickel spheres, a 0.3 cm. hole for the thermocouple

was drilled carefully into the sphere.

The densities of the metal spheres were calculated from the weight

and the size of the spheres and stems. Values at room temperature are

given in Table 111-2., along with other properties. The estimation of

the thermal diffusivity of the porous iron sphere is discussed in

Section V.F.

The thermocouple which was inserted into the metal sphere shown in

Figure III-3 was a platinum platinum-10% rhodium couple of 10 mil wire.

In the experiments with slag N-IR, the thermocouple was protected by

a 0.1 cm. thick alumina protection tube. In the experiments with all

other slags, the thermocouple bead was protected by platinum foil which

was placed in direct contact with the metal sphere. The effects of the

protection on the response of the thermocouple are discussed in

Appendix A.

The iron tube which supported the sphere was 60 cm. long and 1.2 cm.

in diameter. At the bottom end of the iron tube, the metal sphere was

held in place with two set screws. The thermocouple wires, which were

protected by an alumina insulator, ran from the sphere and along the

inside of the tube. The tube was mounted in ball bearing pillow blocks

which were fixed to the transite carriage as shown in Figure 111-4.



0 0

Figure 111-4 Transite carriage supporting the DC motor, pillow block
bearings and the slip rings and brushes for the spinning
tube and sphere
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Along with these pillow blocks, a DC motor and a set of electrical

contacting brushes were mounted on the carriage. The metal brushes

were in contact with two copper slip rings which were connected to the

thermocouple wires at the top of the iron tube. These contacting

brushes and slip rings allowed the tube and sphere to spin freely

about their vertical axis without disturbing the output of the thermo-

couple.

III.B. Heat Transfer Experiments in Liquid Slag

The experimental conditions for the heat transfer experiments with

liquid slag are shown in Table III-3.

III.B.1. Forced Convection by Spinning

Heat transfer experiments were conducted in liquid slag with

spinning nickel spheres. Forced convection by spinning produces the

conditions of flow which are shown in Figure 111-5 (11). The fluid flows

vertically toward the sphere at the poles and proceeds spirally along

the surface to the equator. There an outward jet forms in the shape of

an equatorial plate. Under the conditions of the present experiments

in liquid slags, the flow along the surface of the sphere is laminar,

based on the empirical criteria (11)

2
wD 5

p L< 10

where w is the spinning frequency; D is the diameter of the sphere;

PL is the density of the liquid; and p is the viscosity of the

liquid slag.
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Table 111-3. EXPERIMENTAL CONDITIONS

Slag
Run No. Temperature (oC) ConvectionSlag

N-Fa

N-FB

6C
4A
4B
4C
4D
4E
4F
4G

19C
19D
19E

IOA
lOB
1OC
1OD

2A
2B
2C
3A
3B
3C
3D
3E

1OF
15A
15B

11A
11B
11C
19A
19B
20A
20B
20C
20D

11D
6A
6B

0 rpm
700 rpm
700 rpm
700 rpm

900 rpm
900 rpm
700 rpm
0 rpm

310 rpm
710 rpm
680 rpm
930 rpm
700 rpm
700 rpm
700 rpm

1250
1250
1250
1310

1250
1250
1200
1220
1220
1220
1220
1220
1250
1250
1250

1200
1245
1275
1240
1240
1230
1230
1200
1220

1240
1230
1225

1220
1170
1170
1205
1260
1250
1140
1200

1240
1240
1240

rpm
rpm
rpm
rpm
rpm
rpm
rpm
rpm
rpm

rpm
rpm
rpm

rpm
rpm
rpm
rpm
rpm
rpm
rpm
rpm

700 rpm
700 rpm
700 rom

Metal

Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)

Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (1.8cm)
Ni (1.8cm)
Ni (1.8cm)
Ni (1.8cm)
Ni (1.8cm)
Ni (3cm)

(3000C)
(5500oC)

Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Fe (50 mesh)
Cu
Ni (3cm)
Ni (3cm)

Ni (3cm)
Ni (3cm)
Ni (3cm)

Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)

Ni (3cm)
Ni (3cm)
Ni (3cm)

700
700
700
700
700
700
700
700
700

700
700
700

700
700
700
700
700
700
700
700

N-FC

N-1A

N-2A

N-CA
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Table 111-3. EXPERIMENTAL CONDITIONS (Cont'd.)

Slag
Slag Run No. Temperature (oC)

19C
9C
9D

N-2CU 17A
17B
17C
17D
17E
17F
17G

N-lW

N-2W

N-IR

15C
15D
15E
15F

15G
7A
7B
7C

12A
12B
12C
12D
8A
8B
8C
8D

21A
21B
21C
21D
21E
21F

1240
1140
1150

1120
1130
1210
1230
1220
1220
1200

1230
1230
1230
1240

1250
1150
1170
1200

1360
1360
1340
1350
1350
1340
1350
1400
1300
1350
1390
1360
1380
1350

Convection

700 rpm

700 rpm
700 rpm
700 rpm
700 rpm
700 r~m
50 cm /sec
300 cm3 /sec

static
700 rpm
700 rpm
700 rpm

700 rpm
700 rpm
700 rpm
700 rpm

600 rpm
600 rpm
330 rpm
550 rpm
700 rpm
900 rpm
500 rpm
700 rpm
static
static
static
static
static
static

Metal

Ni (3cm)
(5500C)
(3000C)

Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)
Ni (3cm)

Ni (3cm)
(5000C)

Ni (3cm)
Ni (3cm)

(3cm)
(3cm)
(3cm)
(3cm)

(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
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Table 111-3. EXPERIMENTAL CONDITIONS (Cont'd.)

Slag Run No.
Slag
Temperature (oC) Convection

700 rpm
700 rpm
700 rpm
700 rpm
700 rpm
700 rpm
700 rpm
700 rpm
700 rpm
700 rpm

0-300 rpm
300-0 rpm

700 rpm
700 rpm
700 rpm
700 rpm
700 rpm
40 cm3/sec

250 cm3/sec
410 cm3/sec
330 cm3/sec

Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Ni
Fe
Fe
Ni
Ni
Ni
Ni

(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
(3cm)
cylinder
(3cm)
(3cm)
(100 mesh)
(50 mesh)
(3cm)
(3cm)
(3cm)
(3cm)

N-ICU

Metal

18A
9A
9B

13A
13B
14A
14B
14C
14D
14E
18B
18C
16A
16B
16C
16D
16E
181)
18E
18F
16F

1.200
1150
1150
1160
1200
1210
1240
1300
1300
1230
1200
1200
1160
1180
1200
1200
1200
1200
1200
1200
11200
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Figure 111-5 Fluid flow about a spinning sphere, arrows indicate
streamlines
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It will be shown in Section V.D. that heat transfer coefficients

for forced convection by spinning can be determined from empirical

correlations. Also, in Section VI.D.3. it will be shown that the

temperature distribution in the liquid boundary layer of a spinning

sphere reaches a steady state very quickly. Both the heat transfer

coefficient and the steady temperature distribution in the boundary

layer are essential to the calculations in the mathematical model which

is presented in Chapter V.

Heat transfer experiments involving spinning were conducted in the

following manner. The thermocouple was positioned at the center of the

3 cm. nickel sphere, which was attached to the iron tube. Then the

iron tube was mounted in the pillow block bearings shown in Figure 111-4,

and the slip rings and brushes were connected. After the liquid slag

in the crucible shown in Figure 111-2 remained at temperature, the

temperature was measured with an optical pyrometer. The slag was

stirred by hand with an iron rod to improve the uniformity of the

temperature of the slag. Using the controlled DC motor, the spinning

velocity (revolutions per minute) of the sphere and tube assembly was

set at a particular value as noted in Table 111-2. This velocity was

measured with a stroboscopic tachometer before immersing the sphere

into the slag. After starting the millivolt recorder, the spinning

metal sphere was immersed into the liquid slag by manually lowering the

transite carriage along two vertical metal tracks located just above

the furnace. The carriage was quickly lowered until the center of the

sphere was 7 cm. beneath the surface of the liquid slag. The spinning
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velocity was again measured with the tachometer, and the temperature of

the liquid was measured with an optical pyrometer, which was sighted on

the surface of the slag. The metal sphere remained immersed in the

liquid slag until the temperature recorded by the thermocouple at the

center of the sphere indicated no further change. At this time, the

electric motor was shut off, and the sphere and assembly were removed

from the furnace.

Usually the sphere and assembly could be reused, after the iron

tube was checked for straightness, and the metal sphere was cleaned off

and allowed to cool to room temperature. Often the tube could be

straightened, if it became bent. Some metal spheres were used for as

many as eight separate experiments.

The errors which are inherent in this experiment are discussed in

Appendices A, B and C.

III.B.2. Forced Convection by Bubble Stirring

The purposes of conducting heat transfer experiments in silicate

slags stirred by rising bubbles were to test another form of convection

in the slag, and to simulate practical mixing conditions in an electric

furnace steelmaking operation. Bubbling was a good alternative method

of convection because it was less severe than spinning, yet direct

enough for estimating heat transfer coefficients in the liquid. Also,

bubbling is the predominant means by which the slag is stirred during

electric furnace steelmaking operations.
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The procedure for the experiments which used stirring by rising

bubbles was similar to that for the experiments which used the spinning

sphere. A horizontal iron tube provided the flow of gas bubbles in the

experiment as shown in Figure 111-6. This iron tube was 5 cm. long and

1.2 cm. in diameter with 24 1 mm. orifices on the upper one fourth of

its surface. Nitrogen gas flowed into this bubbling tube from another

1.2 cm. iron tube, rising vertically through the top of the crucible

shown in Figure VII-6. The flow of nitrogen was measured by a mercury

manometer and a capillary flowmeter. As shown in Table 111-3 the range

of flow rates was 0 to 410 cm 3/sec. Only slags N-lCU and N-2CU were

used in these experiments.

After the slag was completely melted inside the iron crucible, the

bubbling tube was lowered through the hole in the top of the lid,

immersed into the liquid slag, and set at the bottom of the crucible.

Gas flowed through the orifices of the bubbling tube until the tempera-

ture of the slag and the tubing reached a steady state. Once this

steady state was achieved at a set gas flow rate, the nickel sphere

(not spinning) was quickly immersed into the liquid slag and fixed in

position immediately above the column of rising bubbles. The tempera-

ture at the center of the sphere was recorded as a function of time

after immersion until the temperature reached a steady value. All

other procedures were identical to those with the sphere spinning,

Section III.B.1.
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sphere

bubbles

bubbling tube

Figure 111-6 Bubbling tube arrangement
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III.B.3. Experiments with Various Slag Compositions

Several different types of slags were studied under the conditions

outlined in Table 111-2. The chemical compositions and descriptions

of these slags are given in Table III-1. For the ferrous silicate

slags, N-1W, N-FA, N-2W, N-FB, and N-FC, the locations of the

compositions are shown in the polythermal projection of the liquidus

of the FeO-Fe20 3-SiO 2 system in Figure 111-7. The measured and

estimated properties of some of these slags are shown in Table 111-4

and 111-5. The sources of these values are discussed in detail in

Section V.E.

III.B.4. Experiments with Various Metal Objects

The purpose of using various metal objects in these heat transfer

experiments was to assess the effects of 1) the initial temperature of

the metal object, 2) the size of the metal object, 3) the shape of

the object, 4) the thermal conductivity of the metal, and 5) the melting

of the object.

The initial temperature of the spinning nickel sphere was varied by

preheating the sphere above the furnace before immersing it into the

liquid slag. The initial temperature of the sphere in Table 111-2 was

obtained by heating the nickel sphere 10 to 20 degrees above the pre-

determined initial temperature and then placing it inside a refractory

shield to cool uniformly. Once the initial temperature was obtained,

the spinning sphere was immersed into the slag and the normal experimental

procedures were followed.



Table 111-4. Thermal Properties of Liquid Slags at Iron Saturation

Symbol

Specific heat, cal/g oC

Density, g/cm 3

Thermal diffusivity
(cm /sec x 104 )

Thermal conductivity
cal/sec-cm-oC x 10

Viscosity, poise

Linear coefficient of thermal
expansion, /oC x 106

CL

OL

N-FA

0.28

3.8

N-FB

0.28

3.7

47. 40.

48. 41.

1.5 2.

l 50 50.

N-F

0.2

3.6

Slag Designation
'C N-lA N-2A

8 0.28 0.28

3.5 3.5

52. 32.

52. 31.

2. 2.

N-CA

0.28

3.5

N-ICU

0.28

3.5

N-IR

0.28

2.9

32. 53. 47. 40.

31. 53. 47. 32

2. 2. 2. 5.

50. 50. 50. 50. 50. 50.

See Section V.E.1 for complete references

--------------- ~---
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Table 111-5. Thermal Properties of Solid Slags

Symbol N-FA N-FB N-FC N-lA N-2A N-CA N-ICU N-IR

Specific heat, cal/g-0 C CS  0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.24

Density, g/cm3  pS 4.3 4.2 3.7 3.8 3.8 3.9 3.8 2.9

Thermal diffusivity, cm2/sec x 104 aS  51. 47. 64. 37. 37. 48. 45. 40.

Thermal conductity, cal/sec-
cm-OC x 104 KS  52. 44. 59. 35. 35. 47. 43. 28.

Solidus temperature, oC TS  1152. 1170. 1150. 1070. 1070. 1060. 1125. 1230.

Heat of fusion, cal/g AH 110. 115. 80. 80. 80. 80. 80. 130.

See Section V.E.2 for complete references

See Section IV.B.

0 0 0 0 0() 0 0 0
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The following metal objects were studied in the heat transfer

experiments: 1) nickel and copper spheres of 3.06 cm. diameter, 2)

nickel spheres of 1.8 cm. diameter, and 3) a nickel cylinder of 1.5 cm.

diameter and 8.8 cm. length. The conditions for these experiments are

shown in Table 111-2. In the case of the copper sphere, the copper

melted was allowed to fall to the bottom of the crucible.

Some heat transfer experiments were conducted with porous iron

spheres as described in Section III.A.2. These experiments simulated

the heat transfer to low thermal conductivity porous iron pellets used

in electric furnace operations. The experimental conditions are shown

in Table 111-2. Procedures were identical to those used for a spinning

sphere.

III.C. Differential Thermal Analysis of Slags

The melting temperature for the solidified slag shell was determined

by differential thermal analysis. A 20 mg. sample of powdered slag was

placed inside an iron crucible (1.4 mm. inside diameter) as shown in

Figure 111-8. A 20 mg. reference of Baker reagent grade alumina was

placed in an identical iron crucible. Positioned in a K-28 firebrick

which was surrounded by a graphite susceptor, these crucibles were

heated to a temperature 500C below the suspected solidus. Then the

heating rate was adjusted to 10 degrees per minute and the temperature

was raised through the melting temperature of the slag. During the

melting, a platinum/platinum-l0% rhodium thermocouple which was in

direct contact with the powdered slag recorded the temperature of the
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Fi~O4

Figure 111-7 FeO-SiO2-Fe20 3 phase diagram for ferrous silicate slags (72)

FeO
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slag. The temperature of the slag was plotted against the temperature

difference between the slag and the alumina to indicate the presence

of phase changes.

This differential thermal analysis technique was tested with samples

of KC1. Cooling as well as heating DTA curves were recorded with some

of the samples of slag to test the measurement of the melting range.

The slag samples for the analysis were obtained from the solid slag

shell formed on the nickel sphere after 30 seconds of immersion in the

particular liquid slag.
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IV. EXPERIMENTAL RESULTS

IV.A. Heat Transfer Experiments in Liquid Slags

Selected experimental results for the heat transfer experiments

described in Chapter III are presented under the titles of the

following experimental conditions: 1) Spinning and national convection,

2) bubble stirring, 3) variations in slag composition, 4) liquid slag

temperatures, and 5) variations in initial temperature, size, shape, and

composition of the metal object.

IV.A.l. Spinning and Natural Convection

The difference between heating a nickel sphere which is in spinning

convection or only natural convection is shown in Figure IV-I. The

temperature recorded by the thermocouple at the center of the sphere is

plotted as a function of the time of immersion for a 3 cm. nickel sphere

in slag N-IR. The lower heating curve results from the heat transfer

to the sphere with no spinning; thus, only natural convection is present.

The upper curve results from heat transfer to the sphere spinning at

550 rmp. During the initial 30 seconds of the experiments, a delay

in the response .of the thermocouple is observed. This delay is

especially pronounced because the thermocouple is surrounded by an

alumina tube as described in Chapter III. The delay in the thermocouple

response is discussed in detail in Appendix A.

The effect of the spinning rate on the temperature at the center

of the sphere immersed in slag N-IR at 13200C is shown in Figure IV-2.
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Figure IV-1 Comparison of heating curves of a spinning and a static
sphere. Conditions: 3 cm. nickel sphere; slag N-IR,
and bath temperature 1350 0C

140C

1200

1000

800

600

400

200

100 200
Time, seconds

Figure IV-2 Comparison of heating curves of a sphere at various
spinning rates. Conditions: 3 cm. nickel sphere; slag
N-IR; and bath temperature 13200 C
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Spinning rates of 960 rpm. and 550 rpm. are shown. Similarly, the

effect of spinning is shown for a 1.83 cm. nickel sphere in slag N-FB.

in Figure IV-3. An abrupt increase in the temperature is shown in the

final stage of the heating curve. This increase indicates that the

insulating slag shell is finally removed.

The effects of spinning are shown even more dramatically in

Figure IV-4. In curve 1, the temperature of a 3.06 cm. nickel sphere

spinning at 700 rpm. is shown. In curve 2 the sphere spins initially

at 300 rpm. for 45 seconds. At that time the spinning is stopped and

the sphere remains static; after 270 seconds it is spun again at 300

rpm. In curve 3 the sphere is initially static for 250 seconds, then

it is spun at 300 rpm.

IV.A.2. Bubble Stirring

Observations were made of the bubbling apparatus in a clear

glycerol 10% water solution. The similarities between the bubbling in

the glycerol solution and in the liquid slag were the orifice diameter,

the volumetric orifice flow rate (at the liquid temperature), and the

viscosity of the liquid. Similarity criteria for the glycerol and slag

systems are discussed briefly in Appendix G.

In the glycerol solution the gas bubbles leaving the orifices

coalesced into large spherical cap bubbles of 1 to 3 cm. diameter. The

mean bubble radii shown in Table IV-1 were estimated from photographs

taken during the bubble stirring. At a gas flow rates less than

100 ml/sec., the bubbles rose preferentially to one side of the sphere.
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Table IV-i. Approximate Bubble Sizes in

Glycerin 10% Water

Mean bubble
diameter (cm)

0.2

0.4

0.5

0.5

Range of bubble
dijameter (cm)

0.1 - 3.0

0.01 - 3.0

0.01 - 4.0

0.01-4.0

Flow rate
(ncm3 / isec)

100

200

300
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Figure IV-3
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Comparison of heating curves of a small sphere at various
spinning rates. Conditions: 1.8 cm. nickel sphere;
slag N-FB; and bath temperature 12500 C
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Figure IV-4 Comparison of heating curves of a sphere at various spinning
and static conditions. Conditions: 3 cm. nickel sphere;
slag N-1CU; and bath temperature 12000 C

b4.

1400

1200

U
1000

- 600

400

200

0



65.

The cross section of the bubble column at all flow rates was about

2
50 cm2

The effects of bubble mixing on the heating of the nickel sphere

immersed in the liquid slag are shown in Figure IV-5 at various gas

flow rates. Also the heating curves for the spinning sphere and the

static sphere with no gas bubbling are shown. All of these heating

curves were obtained with a 3 cm. nickel sphere in slag N-lCU at a

bath temperature of 12000 C, and only the manner or degree of convection

was different. With the gas flow rate of 40 ml/sec. the heating curve

was not substantially different from the curve obtained with a static

sphere and no bubbling. At a flow rate of 410 ml/sec. the heating

curve was nearly identical to the curve obtained with the spinning

sphere.

Samples of the solidified slag shell were obtained by removing the

metal sphere after 50 seconds of immersion in the bubbling slag. When

the gas flow rate exceeded 250 ml/sec., the pores in these samples

constituted about 10 to 15 volume percent and ranged in diameter from

a few microns to 1 mm. Along the bottom of the nickel sphere, the shell

thickness was 50 to 70% thinner than on the sides of the sphere. At

the lower gas flow rate the shell was dense and uniform in thickness.

IV.A.3. Variations in Slag Composition

Comparison of the heating curves for spinning nickel spheres in

various liquid slag compositions is shown in Figures IV-6, IV-7, and

IV-8. The shapes of these heating curves range from the smooth logarith-
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Figure IV-5 Comparison of heating curves of a sphere under various types
of convection. Conditions: 3 cm. nickel sphere; slag
N-lCU; and bath temperature 1200%C
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Figure IV-6 Comparison of heating curves of a sphere in slags N-IR,
N-lCU and N-2CU. Conditions: 3 cm. nickel sphere; spinning
at 700 rpm; and bath temperature 1300°C
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mic heating curve, as in slag N-CA, to an irregular curve, as in slag

N-FA. These irregularities in the heating curves give an indication

of the growth and shrinkage of the solid slag shell on the sphere, which

will be discussed in Chapter VI.

The heating curves for synthetic steelmaking and copper smelting

slags are shown in Figure IV-6. The curves for both N-lCU and N-2CU

are nearly identical. The difference between the initial portion of

the heating curves for slags N-lCU and N-IR is caused by the difference

in the protection of the thermocouple. In the experiments with slag

N-lCU, platinum foil was used to protect the thermocouple from contami-

nation and improve contact with the sphere. In experiments with slag

N-IR a 1 mm. thick alumina protection tube was used to protect the

thermocouple. The copper smelting slags are better heat transfer media

than the steelmaking slag, because the heating of the 3 cm. nickel

sphere was faster in the copper slags.

The effect of EeO in the liquid slag on the heating curves for a

spinning nickel sphere is shown in Figure IV-7. As the concentration

of FeO in the liquid slag increases, the heating time decreases. The

compositions, descriptions, and thermal properties of these ferrous

silicates are given in Table III-1, III-4 and 11-5, respectively.

During the heat transfer experiments with these ferrous silicates,

the surface of the solidified slag shell ranged from smooth and hard

to rough and mushy. The surfaces of all the silicates except N-lW and

N-FB are smooth and hard, as shown in Figure IV-9. For slags N-1W
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Figure IV-7 Comparison of heating curves of a sphere in slags N-2W,

N-FA, N-lW, and N-FB. Conditions: 3 cm. nickel sphere;
spinning at 700 rpm; and bath temperature 12500 C
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Figure IV-8 Comparison of the heating curves of a sphere in sphere in
slags N-FC, N-1A, N-2A, and N-CA. Conditions: 3 cm. nickel

sphere; spinning at 700 rpm; and bath temperature 1250*C
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N-FB N-FA

Figure IV-9 Surface structure of slags N-FB and N-FA
from the solid slag shell (5x)
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and N-FB the slag shell is covered with large faceted crystals of

fayalite, visibly protruding 0.7 mm. from the surface, as shown in

Figure IV-9. The slag shell from slags N-lW and N-FB is also very soft

or mushy upon immediate removal from the furnace.

The effect of additions of CaO and A1203 to slag N-FC is shown in

Figure IV-8. In both cases, the oxide additions decrease the heating

time for the spinning sphere.. The microstructures of the solidified

slag shell are substantially modified by these additions as shown in

Figures IV-10 and IV-11. More solid phases are present and the crystals

are better oriented in the direction of heat flow.

IV.A.4. Variations in Liquid Slag Temperatures

The comparisons of the heating curves obtained in several of the

liquid slags are shown in Figures IV-12, 13, 14, 15,16 and 17. In all

of these silicate slags, the slope of the heating curve increases with

increasing temperature of the liquid. This increase in slope is minor

in slag N-IR in Figures IV-12 and IV-13, but it is substantial in slag

N-2A as shown in Figure IV-17.

IV.A.5. Variations in the Initial Temperature, Size, Shape, and

Composition of the Metal Object

The effect of the initial temperature of the spinning nickel sphere

on the temperature of the sphere immersed in various liquid slags is

shown in Figures IV-18, IV-19, IV-20. In all cases, preheating the sphere

decreased the heating time of the sphere in the slag, but it had little

effect upon the slopes of the heating curves.
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Figure IV-10 Microstructure of slag shell for slags
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Time, seconds

Figure IV-12 Com-arison of the heating curves of a static sphere at
various bath temperatures. Conditions: 3 cm. nickel sphere;
and slag N-IR
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Figure IV-13 Comparison of the heating curves of a spinning sphere at
various bath temperatures. Conditions: 3cm. nickel
sphere; spinning at 700 rpm; and slag N-IR
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Figure IV-14 Comparison of the heating curves of a spinning sphere at
various bath temperatures. Conditions: 3cm. nickel sphere;
spinning at 700 rpm; and slag N-FA
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Figure IV-15 Comparison of the heating curves of a spinning sphere at
various bath temperatures. Conditions: 3cm. nickel sphere;
spinning at 700 rpm; and slag N-lCU
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Figure IV-16 Comparison of the heating curves of a spinning sphere at
various bath temperatures. Conditions: 3 cm. nickel sphere;
spinning at 700 rpm; and slag N-FC
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Figure IV-17 Comparison of the heating curves of a spinning sphere at
various bath temperatures. Conditions: 3 cm. nickel sphere;
spinning at 700 rpm; and slag N-2A
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Figure IV-18 Comparison of the heating curfes of a sphere at various
initial temperatures. Conditions: 3 cm. nickel sphere;
spinning at 700 rpm; bath temperature 11800 C;
and slag N-ICU.
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Figure IV-19 Comparison of the heating curves of a sphere at various
initial temperatures. Conditions: 3 cm. nickel sphere;
spinning at 700 rpm; bath temperature 12500 C; and slag N-FB
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Figure IV-20 Comparison of the heating curves of a sphere at various
initial temperatures. Conditions: 3 cm. nickel sphere;
spinning at 700 rpm; bath temperature 1250°C, and slag N-1W
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The temperature of both 1.8 cm. diameter nickel sphere and the 1.5

cm. diameter nickel cylinder increased more rapidly than that of the

3.0 cm. diameter nickel sphere, as shown in Figures IV-21 and IV-22.

Under identical slag conditions, the heating times for the 1.8 cm.

diameter nickel sphere and the 1.5 cm. nickel cylinder were less than

that for the 3.0 cm. nickel sphere, as shown in Figure IV-20 and IV-21.

The heating curves in Figure IV-23 for porous iron spheres differ

markedly from that of the 3.0 cm. nickel sphere. The temperature at the

center of the 50 mesh porous iron sphere increases at nearly the identi-

cal rate as that of the nickel sphere, but it is offset by about 10 to

20 seconds. However, the temperature of the 100 mesh porous iron sphere

not only is offset considerably from that of the nickel sphere, but the

temperature increases at a lower rate as well.

It was observed that, if the iron supporting tube was sealed, the

porous spheres evolved a considerable amount of gas into the liquid slag.

The heating curves for copper spheres in Figure IV-24 show the

heating and melting of the copper in the liquid slag. Since the melting

point of copper is lower than the melting point of any of the silicate

slags studied, the solid slag shell provided a means of support while the

copper was melting. This means of support was maintained throughout the

melting for the static copper sphere, but it was insufficient support for

the spinning sphere, as shown in Figure IV-24.
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Figure IV-21 Comparison of the heating curves of a 3 cm sphere and a
1.8 cm. sphere. Conditions: spinning at 700 rpm; bath
temperature 12500 C; and slag N-FB
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Figure IV-22 Comparison of the heating curves of a 3 cm. nickel sphere and
a 1.5 cm. nickel cylinder with the same volume. Conditions:
spinning at 700 rpm; bath temperature 1200*C; and slag N-lCU
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CoiODarison of the heating curves of a solid nickel sphere,
a 50 mesh porous iron sphere, and a 100 mesh porous iron
sphere. Conditions: 3 cm. sphere; spinning at 700 rpm;
bath temperature 1200*C, and slag N-lCU (and N-FC)
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IV.B. Differential Thermal Analysis

When the temperature of the iron crucible in the DTA furnace reached

the solidus temperature of the slag, the powdered slag sample began

to melt and absorb heat. The temperature of the powdered alumina refe-

rence continued to increase normally at 100 per minute. This created

a positive temperature difference, AT, between the reference and the

sample which was plotted against the recorded temperature of the slag

sample, as shown in Figure IV-25. The solidus was the temperature at

which the AT increased significantly from the base line in the figure.

The liquidus was the temperature at which the AT returned to the base

line. After the slag sample was completely liquid, the furnace was

cooled at 100 per minute. The liquidus temperature was then observed

when the AT began to decrease, as shown for slag N-FB in Figure IV-25.

The solidus temperature was difficult to determine from the DTA curve

upon cooling, because the sample did not solidify uniformly. Since

there was cooling by the highly conducting thermocouple, there may have

been unsolidified slag in the bottom of the crucible after the slag as

the thermocouple was below the solidus temperature. This nonuniform

solidification may have caused the slow decay of the AT during cooling.

DTA curves were obtained for KC1 and the silicate slags for which

the thermal diffusivity had been measured (3, 4), and the curves are

shown in Figure IV-15. The solidus and liquidus temperatures are listed

in Table IV-2.

The established melting point of KCl is 776 0 C. From the DTA curve
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for heating in Figure IV-25, the onset of melting occurred 2 to 3 degrees

below the melting point. Also melting continued 4 to 7 degrees after

the melting point of KC1. A similar error of about +20 and -5' would

be expected for the solidus and liquidus temperature, respectively,

using the present DTA apparatus. The +2' correction for the solidus was

small enough to neglect, the but the 50 for the liquidus was subtracted

from the temperature on the DTA curve.

For the simplest ferrous silicates N-FA, N-FB, and N-FC, an expected

melting range is also listed in Table IV-2. This melting range is based

on equilibrium solidification of the liquid in the FeO-SiO2-Fe203 system

shown in Figure 111-7. The agreement is fairly good. The expected

solidus temperature is somewhat lower than the measured solidus, due to

the low sensitivity of the millivolt recorder in the AT axis.



Table IV-2. Solidus and Liquidus Temperatures

Solidus-Liquidus
Temperatures

1170-1240

1150-1210

1150-1215

1070-1225

1060-1225

1125-1220

1230-1310

Expected
Melting Range

1160-1240

1140-1240

1150-1240

Equilibrium solidification of slag. FeO-SiO2-Fe203 system
in Figure III-7.
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V. MATHEMATICAL MODELS OF HEAT TRANSFER

A mathematical model is developed which simulates the heat transfer

to a cold metal particle immersed in a high melting point liquid, such

as in the present heat transfer experiments. The model uses the avail-

able data for the thermal properties of silicate slags and various

boundary conditions for the solidification and melting of the slag on a

metal particle. This model can be used to analyze the results in the

present heat transfer experiments and can be applied directly to practical

operations of feeding iron pellets into an electric furnace.

Since the principal purpose of this model is to aid in the analysis

of the present experiments, the following calculations are necessary:

1) heat transfer in the liquid boundary layer, 2) movement of the solid-

liquid slag interface, 3) temperature distribution within the slag shell,

4) temperature distribution in the metal sphere, and 5) response of the

thermocouple at the center of the sphere. This chapter describes the

formulation of the mathematics for a finite difference model of heat

transfer to a cold metal particle immersed in a liquid slag.

V.A. Thermal Conduction by Finite Difference

Non-steady state heat conduction in a sphere can be calculated by

finite difference equations (37). In these calculations the system is

divided into spherical shell elements with a finite thickness Ar, as

shown in Figure V.1. The heat flow into the spherical element i is the

sum of the heat flow from the i+l element and the i-1 element. Assuming

a constant heat flow from these adjacent elements, the heat flow is
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Figure V-i Finite elements for conduction in the alumina, metal sphere,
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written in finite difference form,

(T .-T. .) (T .-T. .)
KA--i+l, i,3 + KA. 1, , (1)

i Ar i-i Ar

where K is the thermal conductivity of the material

A. is the outside surface area of the element i
1

A. is the inside surface area of the element i

T. . is the temperature at the center of the element

T is the temperature at the center of the outside adjacent
element

T i is the temperature at the center of the inside adjacent
element

At non-steady state the heat flow into the element i in equation (1)

is used to increase the temperature of the element over a finite period

of time t. This heating of the element may be written in a forward

difference form

1 Vic(Ti,j+ - T ij (2)Q '(2)
At

where V. is the volume of the element i
1

T + is the temperature at the center of the element i after
time t

c is the specific heat of the material

p is the density of the material

Combining Equations (1) and (2), the temperature at the center of the

element i after a finite time can be written

TAt
Ti,+ = T + arV [A (T i + l , -T. .) + A (T -T .)] (3)

ij+l i1, ArV. +j i1, -1 i-1,j i1,1



88.

Given the initial temperatures, the temperature of these elements may

be calculated explicitly with Equation (3). This equation is used

to calculate the temperature distribution in the solid metal sphere and

the solid slag shell shown in Figure V-1 as functions of time. At the

interface between the solid metal sphere and the solid slag shell, the

forward difference equation for the element is

KMAM T -T ) + KSAS T s-T .) = (VMcMpM + VScSPS)(TRj+l--TR (4)
Ar ( Mj Rj Ar ( Sj Rj M R+ R,

where
AMis

AS is

KM is

KS is

TM, j is

TS, j is

TR,j is

T is
R ,j +1

V is

VS is

c M is

c S is

PM is

PS is

the inside surface area of the interface element in the metal

the outside surface area of the interface element in the slag

the thermal conductivity of the metal

the thermal conductivity of the solid slag

the temperature of the adjacent metal element

the temperature of the adjacent slag element

the temperature of the interface element

the temperature of the interface element after time At

the volume of the metal in the interface element

the volume of the slag in the interface element

the specific heat of the metal

the specific heat of the slag

the density of the metal

the density of the slag
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When the solid slag melts away from the surface of the metal sphere

the boundary condition at the metal-liquid slag interface is

( -T R)+h(T-T ) =Vco (T -T )
Ar (TM,j R,j (T-TR,j VMEM (TR,j+ -TR,j )

where hL is the heat transfer coefficient in the liquid slag, and Tm is

the temperature of the bulk slag.

The other boundary conditions in this system are discussed in detail

in the subsequent sections in this chapter.

V.B. Thermocouple-Metal Interface

Heat transfer from the metal sphere to the thermocouple positioned

at the center of the sphere determines the temperature recorded by the

thermocouple. The thermocouple response measurements in Appendix A show

that the material around the thermocouple is critical to this heat

transfer. Inside the experimental sphere there were two thermocouple

arrangements: a 1 mm. thick alumina refractory protection tube, and a

0.3 cm2 piece of platinum foil.

When alumina insulated the thermocouple from the nickel wall in

Figure IV.3, poor surface to surface contact and radiation heat transfer

is assumed at the interface. The heat transfer by conduction is

modelled by assuming a 5% alumina to metal contact. This 5% surface

contact gives response which is consistent with the measurements of

thermocouple response presented in Appendix A. The reduced area of

contact is used in the boundary equation



(T .-T ) (T .-T )

0.5A K Ar ,j
Ar

where 0.05AA

0.05AM

is the surface area of the outside of the alumina element

is the surface area of the inside of the metal adjacent
element

KA is the thermal conductivity of the alumina

cA is the specific heat of the alumina

PA is the density of the alumina

TA,j is the temperature of the alumina (thermocouple temperature)

T I j is the temperature at the interface element

T j is the temperature in the adjacent metal element

Heat is also transferred by radiation between the alumina and

nickel surfaces. The radiation transport to the alumina QA is calculated

by

QA = AIa (T 4,j-T Aj
ruT

S1
T 1 1

+ - 1
EM CA

where AI is the area separating the alumina and the metal

TI is the temperature at the metal surface

CM is the total normal emissivity of the metal surface

a is the Stephan-Boltzman constant

EA is the total normal emissivity of the alumina surface

(6)

(7)

90.

(5)
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In the case of the platinum foil packed around the thermocouple

bead, 10% area of contact is assumed, and the conduction equation is

(T pj-T ,) (T M-T .)
O.1AK 0.1 + .A MKM Ar (VMCMPM + VpCpp)

(T j+-T I  ) (8)

where 0.lAp is the surface area of the platinum element

Kp is the thermal conductivity of the platinum

Cp is the specific heat of the platinum

vp is the volume of the amount of platinum present in the
bead and the foil

Tpj is the temperature of the platinum (thermocouple temperature)

The radiation transport to the platinum is given by

4 4
Q =TA a (T ,-T ) (9)P I I,j P,j

1
T = 1 1 (10)

+-- 1+ 1 1
FM  Ep

where Ep is the total normal emissivity of the platinum surface.

Only the spherical portion of the material surrounding the thermo-

couple bead is considered in the calculation. This is reasonable

because the heat flow in the alumina insulator which reaches out of the

sphere is small in comparison to the heat flow within the metal sphere.

V.C.. Moving Solid-Liquid Slag Interface

The solid-liquid interface in the slag becomes a moving boundary

during transient heat transfer in the slag. The interface may be smooth

or rough and crystalline, while the enthalpy of fusion is absorbed or
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emitted as the slag solidifies or melts, respectively. This section

presents the general nature of the solidification and melting of the

slag in terms of the temperatures and the heat balance at the inter-

face.

V.C.l. Structure of the Solid-Liquid Slag Interface

The two general structures of the solid-liquid slag interface are

1) cellular with a "mushy" solid-liquid region and 2) planar with a

smooth interface. The temperature at the interface depends on whether

the interface is planar or mushy.

For the calculation of the temperature at the solid-liquid slag

interface, a steady composition and temperature distribution in the

liquid during solidification and melting is assumed. For example, as

liquid slag N-FB cools iron precipitates from the liquid first as shown

in the polythermal projection of the FeO-SiO2-Fe203 system in Figure

V-2. At 12050 fayalite begins to precipitate and the liquid boundary

layer becomes depleted in Fe2SiO4 as shown in Figure V-3b. Eventually,

the composition of the liquid adjacent to the solid reaches the compo-

sition at point P and a small amount of magnetite precipitates. When

the composition of the adjacent liquid reaches point S, there is no

further change in the liquid. The temperature at this point S is the

solidus temperature of slag N-FB. If mass diffusion in the liquid

boundary layer is limited the solidification of slag N-FB occurs with

a steady composition distribution in the liquid, as shown in Figure V.3b.

The solid has the same overall composition of the bulk liquid and the
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Figure V-2 Liquid compositions for the solidification of slag N-FB (72)

FeO Fe(,-
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adjacent liquid has the composition given by point S. This solidifica-

tion with a steady composition distribution has been observed for many

metals and organic crystals (63). Equilibrium is assumed between the

solid and the liquid present.

The interface during the solidification may be planar, under the

proper conditions. A general criterion for the stability of a planar

interface has been developed. This criterion has been successfully

applied to the solidification of metals (63) and organic crystals (65).

In its simplest form the criterion for stability of a planar interface

is

G ImAC (11)
R - D

m

where G is the thermal gradient in the liquid, R is the rate of solidifi-

cation, Dmis the mass diffusion of the controlling chemical species in

the liquid, m is the slope of the liquidus surface in the direction of

solidification; and AC is the composition over which the material

melts. Assuming that the slope of the liquidus is constant, then

% AT
m = (12)

where AT is the melting range. Upon substitution of Equation (12)

into Equation (11), the stability criterion is

GD > RAT (13)m-

The application of this stability criterion to the present heat transfer

experiments is discussed in Section VI. In the present mathematical

model both the planar and mushy interface boundary conditions are presented.



96.

The temperature distribution for a planar interface is shown in

Figure V-3a. The temperature at the interface is the solidus tempera-

ture during the steady state solidification and melting.

For the muishy interface the temperature distribution is shown in

Figure V-4a. The temperature at the tips of the solid cells in the

liquid is the liquidus temperature. The temperature at interface between

the mushy region and the solid region is the solidus temperature. The

composition of the liquid and solid phases for the mushy region is

shown in Figure V-4b. The solid and liquid phases in the mushy zone are

assumed to always be in equalibrium, and diffusion in the solid is

neglected. In the composition curves shown in Figure V-4b, the composi-

tion of the solid is the mean composition of the solid present at the

given distance and not the composition of the solid in contact with

the liquid.

If a glass forms the interface between the liquid and the glass is

not distinct and the temperature at this interface may be below the

melting temperature of the slag. In the experiments described in

Chapter IV, a glass did form immediately upon immersion of the cold metal

sphere into the liquid slag. After about 2 to 15 seconds this glass

devitrified to form a crystalline solid. Based on this observation

the slag shell which solidified on the sphere is assumed to be crystal-

line for calculations.

In the general case some segregation would be expected in the solid

unless the cooling rate is extreme or chemical diffusion in the liquid
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is limited. These conditions are discussed in Section VI.B.2. For the

present calculations segregation is neglected.

V.C.2. Mathematical Boundary Conditions for Planar and Mushy Interfaces

For a planar boundary condition the temperature at the solid-liquid

interface is constant.

T=T ; r =L.

As suggested in Section V.C.1, this constant temperature is the solidus

temperature of the slag.

The position of the solid-liquid interface is calculated by

balancing the heat flow at the interface. This heat balance is written

in finite difference form, for Figure V-1

(T.-T ) p AH
h L (T-T ) + K - (L -L) (14)
L s s . At j+l j

where Tm is the bulk temperature of the liquid slag

hL is the heat transfer coefficient in the liquid

KS is the thermal conductivity of the solid slag

AH is the heat of fusion of the slag

p is the density of the solid slag

2. is the distance from the center of the adjacent element in the
solid slag to the solid-liquid interface

T. is the temperature of the adjacent element in the slag

L. is the distance from the center of the sphere to the solid
liquid interface

L is the distance from the center of the sphere to the solid
liquid interface after a finite time At.
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Equation 14 is rearranged to calculate the position of the interface

after the finite time At

K At
hAt sLj+ = L + hA (T-T ) + (T -T S ) (15)j+1 j p AH£M S p AH i S

s J s

For the mushy boundary condition the temperature distribution is

shown in Figure V-5a. This temperature distribution depends on the

amount of slag which solidifies in the various portions of the solid-

liquid region, as schematically shown in Figure V-5b. For the purpose

of calculation the structure of the mushy region is simplified to the

rectangular cells shown in Figure V-5c. In this idealized structure

a fraction of the slag solidifies at the solidus and the remaining slag

solidifies at the liquidus.

The mathematical boundary condition for mushy solidification

T = T; r = L.

T = T ; r= L + X.
j J

where X. is the thickness of the mushy region, and TL is the liquidus
L

of the slag. The position of the boundary at the solidus temperature

is calculated from the heat balance

(TL-T S )  (T i-T) S AH
KS X + K = fs (L -L.) (16)S X. S Z. S At j+l j

where L. is the distance from the center of the sphere to the solidus

boundary of the mushy region, and fS is the fraction of slag which

solidifies and melts at the solidus temperature. The position of the

boundary at the liquidus temperature is calculated from a similar heat
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balance,

h(T -T ) +K (TL-T) P SAH
SL S = fL At (L Lj+-L ) (17)

where fL is the fraction of slag which solidifies and melts at the

liquidus temperature, and LL,j+l is the distance from the center of the

sphere to the liquidus boundary. The following relationships hold true

throughout the calculation.

fL + f = 1 (18)

L < LL,j

If the rate of growth at the solidus temperature is approximately

equal to the rate of growth at the liquidus temperature, Equations (1-6)

and (17) may be added to give the simple boundary condition

(Ti-T ) p AH
hL (TM-T ) + KS  S At (Lj+1-L ) (19)

This boundary condition is similar to the boundary condition for the

planar interface, as shown in Equation (14), except the solidus tempera-

ture TS in Equation (14) is replaced by the liquidus temperature TL.

A computer program was written which uses the finite difference

equations for the moving interface and the temperatures in the metal, slag,

and at the thermocouple. This program calculates the temperatures of

the individual elements and the position of the moving interface for

successive time increments At. The result is a temperature at the center

of the sphere which should be comparable to the temperature recorded by

the thermocouple at the center of the metal sphere immersed in liquid slag.
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Such comparisons will be shown in Chapter VI. The details of the com-

puter program are shown in Appendix D.

V.D. Heat Transfer Coefficients

This section and the remainder of this chapter presents the condi-

tions and properties which are used in the mathematical model to simu-

late the experimental heating of the metal sphere in the slag.

V.D.l. Forced Convection by Spinning

The heat transfer coefficient for the surface of a spinning sphere

is calculated from the empirical correlation developed by Krieth et

al. (11)

0.5 0.4
N = 0.43 N N (20)
Nu Re Pr

N < 5 x 10 5
Re

0.7<Npr < 215

NGr < 0.1 N2
Gr Re

o

hD
where NNu = (21)

NuKL
wD

ReS

Np -
PL L

SD (T -T )
N r g
Gr
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where D is

KL is

hL is

w is

P is

pL is

aL is

B is

T is

T S is

the diameter of the sphere

the thermal conductivity of the liquid slag

the mean heat transfer coefficient

the spinning frequency

the viscosity of the slag

the density of the liquid slag

the thermal diffusivity of the liquid slag

the linear coefficient of thermal expansion of the liquid slag

the bulk temperature of the slag

the temperature at the solid-liquid interface

With the properties of the liquid slag and the spinning velocity of the

sphere, heat transfer coefficients are calculated for the experimental

conditions.

The heat transfer coefficient for the spinning cylinder is calculated

from an empirical correlation developed by Eisenberg et al. (50, 56)

-03 -0.644NNu = 0.079 NRe NPrNu Re Pr

where

100 <NRe (22)

VDp LSL
NRev

V = TwD

V.D.2. Natural Convection

For the static sphere suspended in the slag, the heat transfer

coefficient is calculated from the empirical correlation (66)

N1/4 1/3Nu = 2.0 + 0.06 NGr N (23)Nu Gr Pr
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1/4 1/3
N NP
Gr Pr

< 200

V.D.3. Forced Convection by Rising Bubbles

Two sets of heat transfer coefficients

conditions of bubble stirring in the slag.

fluid which is drawn upward by the bubbles,

pated by the rising bubbles.

are calculated for the

1) using the velocity of the

and 2) using the power dissi-

The heat transfer coefficient for a sphere which is suspended in a

laminar flow of fluid can be calculated by the Ranz-Marshell correlation

(78)

1/2 1/3N = 2.0 + 0.6 N N
Nu Rev Pr

(24)

where
VfD L

Re Pv
where Vf is the velocity of the rising fluid. Gal-Or et al. (58, 59)

calculated the velocity of a fluid drawn upward by a swarm of rising

bubbles

2 2 4/3 1/3 ý 61/3
(PL- rb b 15 3 5

f 3 l 21-

,1/3

215/3
15

61/3
+ - ] (25)5

where rb and p are the mean radii and density of the rising bubbles, ý

is the volume fraction of bubbles, and p is the viscosity of the fluid.

The volume fraction of rising bubbles in the slag is related to the

gas flow rate F, by the equation

F
AV
cb

(26)
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where Vb is the velocity of the rising bubbles, and Ac is the cross-

sectional area of the rising column of bubbles. Gal-Or et al. (59) also

calculated the velocity of the rising bubbles as a function of the

volume fraction.

(P g 2 4 / 3  1/2 1/3

V L b b 15 3 5 _+2

Vb 3 [1 3 ] (27)

The relationship between the velocity of the fluid and the gas flow rate

of bubbles is demonstrated in Figure V-6, based upon the calculations

of Gal-Or, et al.

The heat transfer coefficient for the sphere suspended in the column

of rising bubbles is calculated using the experimental gas flow rates,

the properties of the liquid slag, and the bubble radius observed in the

glycerol solution at the given gas flow rates.

The calculations made by Gal-Or et al. were based on several ideal

assumptions that limit their application. The bubbles were assumed to

be hard spheres enclosed in spherical cells of fluid. It was assumed

that the surface of the fluid cells had no net heat flux. The flow of

the fluid was laminar. In the present slag experiments, the bubbles are

not perfect spheres and at the higher gas flow rates the fluid may not

remain laminar. Although the ideal conditions used for the calculations

do not exist in the present system, there are experimental results with

gas bubbling columns (21, 60) which are similar to the present experi-

ments and that agree with the results of Gal-Or et al. The limits to
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applying these calculations to the present experiments are further

discussed in Section VI.D.2.

Another set of heat transfer coefficients are calculated for the

conditions of bubble stirring in the slag, by calculating the power

dissipated by the bubbles rising in the slag. Brian and Hales (16, 17)

correlated the heat transfer coefficients for spheres suspended in a

stirred tank. They found that the data correlated very well with the

dimensionless power number, as shown in Figure V-7. The dashed line in

this figure represent the correlation for the properties of the slag

N-ICU.

To use the correlation in Figure V-7 the power dissipation per unit

mass P/m is calculated from the work done by the buoyancy and expansion

forces on the rising bubbles. The work per unit volume during the rise

of a single bubble was calculated by Nakaniski et al. (62).

dW = VpLgdy + PdV (28)

where V is the volume of a single bubble, y is the vertical distance

from the submerged orifice, and P is the pressure of the gas in the bubble.

Assuming that the nitrogen is an ideal gas, this equation is integrated

over the height of the column of bubbles Y to give

pgLY
W = 2nRTo (1 + ) (29)P

a

where Pa is the atmospheric pressure, and To is the bath temperature.

This work is then used to calculate the power dissipation per unit mass

of slag at the volumetric gas flow rate F (ml/sec.)
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Table V.1. Experimental Fluid Flow Conditions for Figure IV-5.

Bubble F/A Rising slag 1/3
ions Radius, rb(cm) (cmC/sec) NNu [2] N [3

Power
Dissipation
] NNu [4]

1 Spinning (700 rpm)

2 Natural Convection

3 Bubble 40 ml/sec [1]

4 250

5 330

6 410

[1]

[2]

[3]

[4]

0.2

0.4

0.5

0.5

at the temperatureof the slag

from Equation (24, Chapter V

from Equation (31), Chapter V

from Figure V-7.

41.6

2.3

28.3

64.9

78.5

82.0

0.8

5.0

6.6

8.2

20.4

37.2

40.9

43.9

22.0

30.0

31.5

34.0
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P/m 1.09x10 7 F _P Y Watts
P/m( -) n (1 + 3 ) (30)PY 103.3 gm

Lc

The volumetric flow rate is based on the temperature of the gas in the

liquid slag.

For the experimental conditions listed in Table VI-1, the Nusselt
hLD

number, , is calculated and listed in this table. The power number
KL

Np is defined as

4 3
P/m D4p

N = (31)
p 3

For the conditions of bubble mixing, the Nusselt numbers based on both

the velocity of the rising bubbles and the power dissipation of the

bubbles are shown.

V.E. Properties of Slag

In this section the properties of the slag which are used in the

mathematical model are described.

V.E.l. Properties of Liquid Slags (Table 111-4)

The thermal diffusivities of the slags listed in Table III-4 were

measured previously in this laboratory (3, 4). The thermal diffusivity

of the liquid for the model calculations was taken directly from this

data.

The thermal conductivity of the liquid is calculated from the

relationship

KL = aLCLPL (32)
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where cL and PL are the specific heat and density of the liquid slag.

The specific heat for all of the liquid slags except slag N-IR is

the specific heat reported for Fe2SiO 4 (39). For the specific heat

of slag N-IR the specific heat of the individual oxides, FeO, SiO 2, CaO,

MgO, and Al 203' are averaged according to Kopp's law (9) at 13500C.

The densities for all of the liquid slags except for slag N-IR are

based on the measurements by Lee and Gaskell (8). The densities for slag

N-FB and N-CA were measured by them, and this densities are used directly

in the model. The densities of the other slags, except slag N-IR, are

interpolated from the measurements and the effects of FeO and SiO 2 on

the density reported ty Lee and Gaskell. For slag N-IR the density of the

solid slag is used for the density of the liquid.

The thermal coefficient of expansion of the liquid slag is the

average value reported by Lee and Gaskell for slags N-CA and N-FB (8).

For slags N-FA, N-FB, and N-FC (in the FeO-SiO2 system at iron

saturation) the viscosity was compiled by Elliott et al. (38). These

values of viscosity are directly used for these slags. The viscosity

of slag N-FC is also used for slags N-CA, N-lA, N-2A, N-ICU, and N-2CU,

because they had similar fluidity during the laboratory experiments.

The viscosity of slag N-IR is estimated from the values for similar

steelmaking slags listed by Elliott et al. (38).

V.E.2. Properties of the Solid Slag (Table III-5)

The thermal diffusivity of the solid slag for the model calculation

is taken directly from the measurements made in this laboratory. The
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thermal conductivity is calculated from the equation

KS = acS PS (33)

where cS and PS are the specific heat and density of the solid slag.

The specific heat for all of the liquid slags except slag N-IR is

the reported specific heat of Fe2SiO 4 (9) at 1000
0 C. For slag N-IT the

specific heat is the average of the specific heat of the simple oxides

present at the 10000C (39). The effect of temperature on specific heat

is neglected because most of the solid slag remains above 10000 during an

experiment with the immersed sphere.

The density of the solid slags was measured in this laboratory by

weighing a sample of slag, dry, and then immersed in water. This

measurement gave the density of the solid slag at ambient temperature.

Since the density of the slag is less at the experimental temperature,

this density at ambient temperature is corrected by assuming a 1%

thermal expansion. The 1% thermal expansion is the average expansion for

fayalite and silica from 25 to 10000C (39). The density listed in

Table V-3 is the corrected value which is used in the model calculations.

The solidus temperatures are taken directly from the differential

thermal analysis which is presented in Section IV.B, Table IV-2.

The heat of fusion for slag N-FB is the reported heat of fusion for

fayalite (10). The heat of fusion for slag N-IR is the heat of fusion

for calcium silicate (10). For slags N-FA and N-FC the heat of fusion

is the average of the heat of fusions reported for fayalite (10), silica

(38) and wustite (38), using the proportions of these oxides present as
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calculated from the compositions of the slags. The heat of fusion for

N-CA, N-lA, N-2A, N-ICU, and N-2CU, because the compositions are similar

and no better values are available.

V.F. Thermal Conductivity of the Porous Sphere

The thermal conductivity of the porous iron spheres which were used

in some of the experiments is calculated by the geometric mean of the

thermal conductivities (43)

KM = K~i (34)

where KM is the thermal conductivity of the porous metal, KI and K

are the thermal conductivity of the solid iron and gas in the pores,

respectively. The i is the porosity or pore fraction by volume. The

geometric mean of the thermal conductivities agrees reasonably well

with the measured thermal conductivity of porous metals (48) and porous

oxides (47) over a range of porosity from 0.03 to 0.5.

The thermal conductivity of the iron is calculated as a function of

temperature from the reported measurements between 3000K and 14000K (9)

42
K + 0.0519 (cal/cm-sec-oC) (35)
I T

The thermal conductivity of the pores is calculated from the sum of the

radiation KR and conduction K contributions
R c

K = KR+Kc (36)

From the reported data for the thermal conduction of air between 5000

and 1500'K (9), the thermal conductivity of the pores is
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K = 3.04 x 104 [-exp (-7.65 x 104 T)] (cal/cm-sec-oC)(37)

The radiative thermal conductivity in the pores is based upon the

approximation suggested by Marino (44) and Loeb (76) for homogeneously

distributed spherical pores

KR = 3 o T d (38)

where a is the Stephan-Boltzman constant and d is the diameter of the

pores.

The diameter of the pores in the sintered iron spheres used in the

present experiments is mean pore diameter observed on a polished cross-

section of the sphere. The porosity of the metal is calculated from

the measured weight of the porous sphere mM

3mM 3 _(39)

where p1 is the density of pure iron, and R is the radius of the sphere.

V.G. Melting Copper Spheres

The melting of the copper is calculated in the mathematical model

for the experiments with solid copper spheres (described in Section

III.D.5). When the surface temperature of the copper sphere in the model

calculation reaches the melting temperature, 1356oK, the boundary

condition at the copper-solid slag interface is

T = 1356 0 K; r = R (40)

The heat flow from the solid shell is then balanced at this interface

A] V (T. - 1356
0K

PM AHM At = AMKS Ar (41)
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where AV is the volume of copper which is melted in the time increment

At. This boundary condition applies until the total volume of melted

copper is equal to the total volume of copper present.

V.H. Dimensional Analysis

The differential equations which describe heat transfer in the

metal sphere and the solid slag shell are written in dimensionless form

T-T T-T
r o o

(r) a ( o- a(1 ) o ( o

r r r
D D D D

1 r

D D

T-T
r 0
D T-T

3)
D

T-T
3

T -T
0o o

( t)

D

(43)

where r is

D is

T is

T is
o

T is

aM is

t is

aS is

the radial distance from the center of the sphere

the diameter of the sphere

the temperature at the radial distance r

the initial temperature of the sphere

the bulk temperature of the slag

the thermal diffusivity of the metal

the time

the thermal diffusivity of the slag

The heat balance at the solid liquid slag interface is written in

dimensionless form for a smooth or planar interface
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T-T
L d(- )d (T -T )Cs T -T c DhL

= (T -T )at r m s
s( AHS  d (D) R AH

d(DT S D s

where c is the specific heat of the solid slag

AH is the heat of fusion of the slag

KS is the thermal conductivity of the solid slag

hL is the heat transfer coefficient

TS is the solidus temperature of the slag

The heat balance at the solid slag metal interface is written in dimen-

sionless form

T-T T-T

T -T K T -T0o0 S 0 0

r r
d(-) d()D D

where KM is the thermal conductivity of the metal.

Since these equations determine the conditions for heat transfer

in the system, there are eight independent dimensionless variables which

are required to completely specify the heating of a metal sphere in the

presence of a solid slag shell. These variables are rearranged and listed

in more familiar forms below.

hLD
N L
Nu KL

T -T
0o OT -T

, aM

aS
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T-T

T -T
m O

* r
r

D

ct
s

D

C (T -T )
s o L

AH 'D

The heat transfer coefficient hL is described in terms of a Nusselt

number, NNu* The solidus fraction represents the fraction of the

temperature range from T to T in which the slag is completely solid.

This fraction also represents the difference between the temperature at

the surface of the solid slag and the temperature in the bulk of the

liquid slag. A represents the ratio of the thermal diffusivity of the

metal to the thermal diffusivity of the solid slag. The 6, r/D, and tS /D2

are the dimensionless temperature, distance, and time for conduction in

a sphere, respectively. The remaining dimensionless variables listed

above have less direct meaning.

In the present study the most important variables are the temperature

2 *0, the time t S/D , the Nusselt number NNu, the solidus fraction 0 , and

the diffusivity fraction A . These variables will be discussed in

detail in Chapter VI.

In the case of a mushy solid-liquid interface, an additional

variable must be added to the list. This variable is 0
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T -T
** TL -To

T -T
CO 0

where TL is the liquidus temperature of the slag.

In the case of the melting copper sphere, the solid slag-copper

heat balance at the interface is

T-T
V o

d dpM AHM V T -T
M M o o

pc (TM-T ) tss o s r
d -7 d (D)

where V is the volume of melted copper, Vo is the original volume of

copper, TM is the melting point of copper, and pM is the density of

copper. During the melting of copper, two additional dimensionless

variables are

p MAHM
P c (T -T )

s M o

V

0

V.I. Convergence and Stability

To test the stability and convergence of the numerical solution

of the difference equations presented in this chapter, a dimensionless

modulus is defined (37)

Ata
M= s

Ar

where At and Ar are the finite time increment and width of an element,

respectively. This modulus determines the stability of the calculation

for the temperature of a finite element by forward difference equations
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(52). If the modulus is too large, the temperature change which is

calculated for the time At is too great to be contained by the element,

and the calculated solution is oscillatory or unstable. Fowler (52)

determined that the finite difference solution using forward differences

is stable and convergent when

M < 0.5

Convergence is achieved when the solution is reproducible at various

values of At and Ar at a constant M.

In the present mathematical model, the solution is stable and

convergent within 1% when

M< 0.14

This modulus is small because of the movement of the solid-liquid

interface within the elements. The limiting distance is the minimum

distance allowed between the interface and the center of an element

(0.lAr).
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VI. DISCUSSION

In this chapter the effects of various properties and conditions

on the heating of a sphere in a silicate slag are discussed. First an

overall heat transfer coefficient is presented which illustrates the

effects of the solidified slag shell. Then the separate effects of the

moving boundary, conduction in the solid slag, and convection in the

liquid are discussed through comparisons between the heating curves

obtained from the experiments and calculated from the mathematical model.

VI.A. Overall Heat Transfer Coefficient

The Newtonian heating of the sphere in the liquid slag is given in

terms of an overall heat transfer coefficient U,

dT

UAM (TTM) = CMPMVM dt (1)

where AM is the area of the metal sphere

To is the bulk temperature of the liquid slag

TM is the temperature of the metal sphere

cM is the specific heat of the metal

pM is the density of the metal

VM is the volume of the sphere

t is the time

Newtonian heating as described by equation (1) is valid, if the

temperature gradient within the sphere is small. This temperature

gradient is related to the Biot number

UD
Bi KM
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where D is the diameter of the sphere, KM is the thermal conductivity

of the metal. A low value of the Biot number reflects low resistance

to heat flow within the sphere, D/KM, relative to the resistance of the
-l

liquid slag, U-1. In practice, when the Biot number is less than 0.1,

the temperature is nearly uniform within the sphere (66). For a nickel

sphere of 3 cm. diameter the temperature is uniform within the sphere

when the overall heat transfer coefficient U is less than 0.0053 cal/cm -

0

sec- C.

From equation (1) an overall heat transfer coefficient is defined

CMPMVM dTM

U AM(TWTM) dt

The overall heat transfer coefficient is calculated from the experimental

heating curves for a nickel sphere immersed in the liquid slag. The

temperature of the metal sphere is taken directly from the experimental

heating curve, and the differential, dT/dt, is taken from the slope at a

point on the curve. This calculated overall heat transfer coefficient

varies during the time of immersion, as shown in Figure VI-1. The overall

heat transfer coefficients shown in this figure are calculated from the

experimental heating curves in Figure IV-5.

If the nickel sphere is heated according to Equation (1), the over-

all heat transfer coefficient, U, should reflect the growth of the

insulating slag shell. The coefficient should decrease initially to a

minimum, when the slag grows to a maximum thickness. As the solid shell

melts away, the coefficient should increase rapidly to the liquid heat
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transfer coefficient, hL which is described in Section V.D.

The overall heat transfer coefficient which is calculated from the

experimental heating curves does reflect the growth of the slag shell.

As shown in Figure VI-1, the overall heat transfer coefficient U

decreases to a minimum, after an initial transient, and then increases

toward the liquid heat transfer coefficient, hL. The liquid heat trans-

fer coefficient hL for the spinning sphere in curve 1 is 0.07 cal/cm -

sec-C ° , as calculated from the correlation in Section V.D.1.

The overall heat transfer coefficient for the heating of the sphere

by natural convection is somewhat unusual. As shown in curve 2 of

Figure VI-1, the overall heat transfer coefficient rises initially and

then steadily decreases in the remaining time. The liquid heat transfer

coefficient hL which is calculated from the correlation in Section V.D.2

2 0
for natural convection is 0.0045 cal/cm -sec- C. This liquid heat

transfer coefficient hL is lower than the overall heat transfer coeffi-

cient which is calculated from the experimental heating curve. The

larger overall heat transfer coefficient U is due to the heat which is

initially available in the solid slag adjacent to the sphere. This heat

from the adjacent slag supplements the heat from the liquid slag.

It should be noted that the calculated heat transfer coefficients

U are usually above the maximum value which is allowable for Newtonian

2 0
heating, 0.0053 cal/cm -sec- C. Although Newtonian heating is not

achieved during the heating of the nickel sphere in the slag, the

overall heat transfer coefficient U does indicate the effect of the solid

slag shell.
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IV.B. Slag Solidification and Melting

From the overall heat transfer coefficients, it is clear that the

solidification and melting of the slag influence the heating of the

sphere. The stability and the effects of the moving solid-liquid inter-

face are discussed in this section. Also, comparisons between the experi-

mental heating curves for the sphere which is immersed in the slag and

the calculated heating curves from the mathematical model (described in

Chapter V) are presented.

VI.B.1. Calculated Effects of the Planar and Mushy Boundary Conditions

The mathematical model presented in Chapter V is used to calculate

the heating curves for a metal sphere. Two different boundary conditions

are proposed in Section V.C. for the moving solid-liquid slag interface

planar and mushy. For the two boundary conditions, two different heating

curves are calculated. The calculated heating curves for a 1.8 cm. spin-

ning nickel sphere in slag N-FB at 12500C are shown in Figure VI-2. The

thickness of the slag shell is also shown in this figure. The melting

range for this slag is 11700 C to 12400 C as listed in Table IV-2.

The calculated thickness of the slag shell and the temperature at

the center of the sphere depend on the boundary condition which is used.

The planar boundary condition produces a thinner slag shell and a higher

temperature at the center of the sphere. This is reasonable because the

planar boundary condition uses a lower temperature at the solid-liquid

interface, the solidus temperature, and the resulting heat flux from the

liquid, hL(To-TS), is greater. The mushy boundary condition adds another
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barrier to the flow of heat and uses the liquidus temperature to deter-

mine the heat flux from the liquid hL(T -TL).

VI.B.2. Stability of a Planar Solid-Liquid Boundary

Using the criterion for a stable planar frontsolidification and

melting, as developed in Section V.C.1.

GD > R AT (3)m- t

the likely conditions of the interface can be estimated. The numerical

values of the terms which make up this criterion are shown below for the

conditions given in Figure VI-2.

(T -T )
G = NNu = 1000 0 C/cm.

Nu D

-6 2
D = 10 cm /secm

AT = 62 0C

Rt = 0.042 cm/sec

The thermal gradient G in the liquid is calculated from the Nusselt number

NNu for a spinning sphere, the diameter of the sphere D, and the tempera-

ture difference between the bulk slag and the surface of the sphere. The

mass diffusivity Dmis taken from the data compiled for the diffusion of

oxygen in liquid silicates (38). The melting range AT is taken from the

range listed in Table IV-2. The rate of growth R is estimated from the

calculated thickness of the slag shell shown in Figure VI-2 for the growth

in the initial 5 seconds. Using these values the product of G*D is farm

less than the product of AT*R. This inequality indicates that the planar

front solidification is not stable.
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The growth of the solid slag slows as the sphere heats. At 10 to

15 seconds after immersion, the rate of growth is 0.009 cm/sec. This is

still not low enough to give a stable planar interface according to

Equation (3). Only when the rate of growth approaches zero and begins

to reverse does the criterion indicate a stable planar boundary. If

this criterion is accurate, a planar boundary is unlikely in the present

slag system.

VI.B.3. Comparisons of the Experimental and Calculated Heating Curves

for Various Slag Compositions

The heating curves from the experiments using liquid slag N-FA and

N-FB at 12500C are shown in Figure VI-3. A 3 cm. spinning nickel sphere

was used in both experiments. Also the heating curves which are calcu-

lated from the mathematical model with a planar boundary condition are

shown. The mathematics and the properties of the materials used for

these calculated curves are described in Chapter V. The agreement

between the experimental heating curve for slag N-FA and the calculated

heating curve is good. The calculated curve deviates from the experimental

curve only in the final state of heating. In the case of slag N-FB, the

agreement is not so good.

Since slag N-FB is almost entirely composed of Fe2Si0 4, it is possible

that the slag solidifies at 1205 0C, the melting temperature of iron satu-

rated Fe2SiO4. The comparison between the experimental heating curves

and the calculated heating curves using 12050 as the solidus instead of

11700 is shown in Figure VI-4. The two experimental heating curves are

for a 1.8 and a 3.0 cm. spinning nickel sphere in slag N-FB at 1250 0C.
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The agreement between the calculated and the experimental curves is still

poor. Apparently, the planar boundary condition does not describe the

heating of a sphere in this slag or the thermal properties for this slag

(Section V.E.) are in error.

Using the mushy boundary condition as described in Section V.C.2 and

a melting range of 11700 to 12400C, the heating curves for the conditions

in Figure VI-4 are calculated. The agreement between the calculated and

experimental curves in this case is very good, as shown in Figure VI-5.

The mushy boundary condition does agree with the heating of a sphere in

this particular slag. Further evidence for a mushy or cellular boundary

for slag N-FB was presented in Chapter IV. The surface of the solid shell

for slag N-FB was covered with large protruding crystals as shown in

Figure IV-10. The surface of most of the other slags was smooth. Also

the slag shell for slag N-FB was softer than for the other slags when

the sphere was removed from the liquid slag.

The comparisons between the experimental and calculated heating

curves for the remaining slags under similar experimental conditions

are shown in Figures VI-6 and VI-7. All of the calculated curves in

these figures are based upon the properties of material given in

Chapters IV and V, and the planar boundary condition. The agreement

for the slags N-FC, N-1CU, N-2CU, and N-IR is reasonably good. For slags

N-CA, N-lA, and N-2A, the calculated heating curves are considerably

below the experimental curves. Since a mushy boundary condition would

further lower the heating curves, there must be another explanation for

these disagreements. Either the thermal conductivity of the solid shell
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is greater than expected, or the temperature at the solid-liquid inter-

face is lower. These explanations will be discussed in Sections VI.B.3.

and VI.C.

From the comparisons of the experimental and the calculated heating

curves, it appears that there is a planar solid-liquid interface during

the heating of the cold metal sphere in all but slag N-FB. This planar

interface is in direct contradiction to the stability criterion discussed

in Section VI.B.2. The planar interface may form when the mushy region

is sheared away by the motion of the liquid slag, because the only fact

that distinguishes slag N-FB from the other slags is that it is composed

of over 97% Fe2SiO 4. Almost pure fayalite precipitates during the

solidification of this slag. This single phase solidification suggests

that the strength of the large fayalite crystals in the mushy zone may

explain the existence of the mushy region. If the shear produced by the

spinning sphere is sufficient, the mushy region may be sheared away.

The large fayalite crystals which constitute the mushy region of slag N-FB

in Figures IV-8 and 0 may survive the shear while the smaller crystals

in the other slags do not.

VI.B.4. The Calculated Effects of the Solidus Fraction

If the solidification and melting of the slag proceeds with a planar

interface, then the temperature at this interface is a critical variable

for the heating of the sphere. The comparisons between the experimental

and calculated heating curves indicate that this temperature is usually the

solidus temperature of the slag, TS . The calculated effect of the solidus

F, - -
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Ts -T o

fraction T _T on the heating curve is shown in Figure VI-8. In this

figure the calculated heating curves for the surface of a sphere immersed

in a slag are plotted using the dimensionless variable described in

Section V.G. The dimensionless temperature at the surface of the sphere,

T-To ast
is shown as a function of the dimensionless time at variousT -T 2o D

solidus fractions.

The effect of the solidus fraction on the calculated heating curve

is shown by the relative positions of the curves in Figure VI-8. The

effect is especially great in the range of solidus fraction from 0.7 to

0.95. In the present study the solidus fraction ranges from 0.8 to

0.95 as calculated from the solidus temperatures which are listed in

Table IV-2 and the experimental conditions which are listed in Table 111-2.

The solidus fraction is decreased either by lowering the solidus

temperature of the slag or by increasing the temperature of the liquid

slag. When either alumina or lime is added to slag N-FC, the solidus

temperature is decreased. This decrease is indicated by the melting

ranges measured by the DTA. The addition of either alumina (slags

N-lA and N-2A) or lime (slag N-CA)to slag raises the experimental heating

curve as shown in Figure VI-6. The effect of increasing the liquid slag

temperature is shown in the heating curves presented in Figures VI-12

through 17. As the liquid temperature increases, the solidus fraction

decreases and the shape of the heating curves changes according to the

shapes shown in the calculated heating curves in Figure VI-8.
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The sensitivity of the heating curve to the solidus fraction may

explain some of the disagreement between the experimental and the

calculated curves for slags N-lA, N-2A, and N-CA, in Figure VI-6. If the

solidus temperature which is used in the mathematical model is incorrect,

neither the shape nor the position of the calculated heating curve will

agree with the experimental curve. The positions and shapes of several

experimental and calculated heating curves for slag N-lA are compared in

Figure VI-9. The shapes of the experimental and calculated curves agree

at 1260' and 12050, but the positions do not. At 11600 neither the shape

nor the position of the heating curves agree. The shape of the calculated

curve at 11600 is more like that of the experimental curve at 11400.

According to the shape of the calculated dimensionless heating curves in

Figure VI-8, the solidus fraction of the experimental heating curve at

11600 is about 0.9. The solidus temperature for the calculated curve at

11600 is 0.93, based on the solidus temperature 1070 which was determined

by DTA. If the solidus temperature of this slag is reduced by 30' in

the mathematical model, the solidus fraction would be 0.9. The lower

solidus would bring the shape of the calculated curve into agreement with

the experimental curve at 11600 and would improve the agreement in the

position of the curves at all temperatures.

Since the melting range is measured by DTA, it is difficult to

justify the lower solidus temperature. There may be some error in the

determination of the solidus when the melting range is so great, but

not 300. It is also possible that there was substantial undercooling at

the interface, but undercooling during both solidification and melting



136.

IAr I-
19fAJ

1200

1000

800

600

400

200

0
0 100 200

Time, seconds

Figure VI-9 Comparison between the experimental and calculated heating
curves for slag N-2A at liquid at various liquid bath
temperatures. Experimental conditions in Figure IV-17

116(7 C

ft A I I A I A I I I A I



137.

is unrealistic. Still, there is a good indication that part of the

disagreement between the experimental and calculated curves for this

slag is due to a lower solidus temperature. There are also good indi-

cations that part of the disagreement is due to the increased thermal

conductivity of the solid slag shell. This explanation is discussed in

the following section.

VI.C. Heat Transfer in the Solid Slag

Heat flow through the solid slag shell is critical in the present

experimental arrangement. This solid shell forms an insulating layer

which affects the heat flow to the metal sphere. The effect of the

thermal diffusivity of this solid slag shell on the heating curves was

shown earlier in Figure VI-8. In this figure the calculated temperature

at the surface of the sphere was plotted as a function of the dimensionless
a t

time, -,- , where a is the thermal diffusivity of the solid slag.

Doubling the thermal diffusivity of the solid slag would halve the time

needed for the sphere to reach a particular temperature. The structure

of the solidified shell and the properties of this shell are important

in explaining the occurrence of a planar solid-liquid interface and the

higher than expected heating curves for slags N-lA, N-2A, and N-CA.

The structure of the solidified silicate slag depends on mass

diffusion, nucleation, radius of the curvature, crystallography, and the

temperature distribution. Some of the possible structures for the solid-

liquid interface of a ferrous silicate N-FA are shown in Figure VI-10.

The structure in Figure VI-lOa occurs with a nearly planar interface of
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wustite and fayalite in region I. The structure is oriented in the

direction of the heat flow. This structure requires limited convection

in the liquid, a slow rate of growth, and a steep temperature gradient

in the liquid (see Section V.C.).

Under less ideal conditions the structure for slag N-FA is shown in

Figure VI-lOb. There is a large mushy zone in region I, which is

composed of wustite and fayalite crystals surrounded by a liquid which

is depleted in FeO and Fe2SiO 4. This structure eventually solidifies

completely in region II. In Figure VI-10 the mixing of the liquid
c

shears many of the unsupported crystals in the mushy region I. These

solid fragments of slag may either form new nucleation sites for further

growth or be carried away into the bulk of the liquid slag. All three

solidified structures shown are oriented in the direction of the heat

flow, as were the slags in the present study (Figures IV-10, and 11).

The shearing of the mushy region in Figure V-lOc suggests that a

planar interface is possible even if the mushy interface is favored

according to the criterion discussed in Section VI-B. This may explain

why the heating curves which were calculated by the model using a planar

boundary condition agreed so well with all the experimental curves except

those with slag N-FB. The large crystals of fayalite with slag N-FB may

not have been sheared when the sphere was spinning, and the mushy region

remained. The smaller crystals in the mushy zone of the other slags may

have been sheared away, and the interface was planar.

VI.C.l. The Effects of Orientation

In Figure VI-10 the crystals of the solidified slag shell are oriented
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in the direction of heat flow. This orientation is predominantly

observed in slags N-CA, N-lA, N-2A, and N-FA, and to some degree in all

of the other slags, as shown in the micrographs, in Figures IV-lO and 11.

The thermal conductivity of a multiphase solid depends to some degree

on the orientation of the crystals. Some simple two-phase solid struc-

tures are shown in Figure VI-11. The cellular structure in Figure VI-lla

may conduct heat in a direction parallel or perpendicular to the cells.

At a steady state heat flow perpendicular to the cells, the thermal

conductivity is represented by the equation for conductivity of layers (67).

KIK2
K = (4)

1 K2+ 2K1

where K1 and K2 are the thermal conductivity of the two phases present,

and 1 and 2 are their volume fractions. The thermal conductivity which

is calculated from this equation is demonstrated as a function of volume

fraction in the lowest curve in Figure VI-12. If the heat flow is

parallel to the cells in Figure VI-lla, the thermal conductivity is rep-

resented by Equation (5) (67).

s = 1K1 + 2K2  (5)

as demonstrated by the upper curve in Figure VI-12. The orientation of

the cells in the direction of the heat flow may greatly increase the

thermal conductivity of the solid, if there is a large difference between

the thermal conductivity of the separate phases.
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For mixed structures such as shown in Figure VI-llb, the value of

thermal conductivity is intermediate between the thermal conductivity of

oriented structures as shown in Figure VI-12. For a homogeneous multiple

phase solid the thermal conductivity can be estimated by the geometric

mean (43)

K = K 1 K 2 (6)
s = K1 2

The thermal conductivity of the solid slag can be increased substan-

tially when the crystals are oriented in the direction of the heat flow,

such as in the present solidified slag shell. This increased thermal

conductivity may partially explain the higher than expected heating

curves for slags N-CA, N-1A, and N-2A, as shown in Figure VI-6. All

these slags formed highly oriented solid structures.

VI.C.2. The Effects of Porosity on the Thermal Conductivity

All the slag shells formed in the present study have some degree of

porosity. For the experiments conducted with bubble stirring, the poro-

sity is 0.12 to 0.15, while for the other conditions the porosity is less

than 3%. The effect of such porosity on the thermal conductivity of the

solid slag is calculated in this section.

Porosity can increase or decrease the conductivity of a material.

In the case of small homogeneous prosity, the geometric mean of the

conductivities can be used to approximate the thermal conductivity

K = K K(  (7)
s p

where 2 is the pore fraction, K and K are the thermal conductivities of
p
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the non porous solid and the gas pores, respectively. This equation

has been successfully used to calculate the thermal conductivity of

porous metals and oxides (47, 48). The thermal conductivity of the pores

which are filled with air is represented by equation (8) which combines

the conduction and the radiation contributions (see Section V.F.).

-4 -4 3
K = 3.04 x 10 [1-exp(-7.65 x 10-4T)] + 3aT d (cal/cm secoK)

(8)
where T is the temperature of the pore, a is the Stephan-Boltzman

constant, and d is the diameter of the pore.

The effects of porosity, pore size and temperature on the thermal

conductivity of a porous slag are calculated and shown in Figure VI-13.

In this figure the thermal conductivity of the slag is plotted as a

function of temperature at various pore fractions and pore diameters, as

calculated from Equations (7) and (8). The hypothetical thermal con-

ductivity of the non-porous slag is represented by the uppermost curve

in this figure. The thermal conductivity of this solid slag with 0.03

and 0.15 pore fraction at various pore sizes is shown beneath this curve.

Porosity lowers the thermal conductivity in all the cases shown. Only

extremely large pores at a low porosity could increase the thermal con-

ductivity of a slag.

Based on the calculated effects of porosity on the slag, the thermal

conductivity of the solid slag during gas bubble stirring should be

substantially lower. This lower conductivity lowers the heating curve of

the metal sphere as will be discussed in Section VI.D.2.
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VI.D. Convective Heat Transfer in the Liquid Slag

Aside from the transfer of heat in the solid slag shell, the trans-

fer of heat in the liquid boundary layer in the slag is very critical for

the heating of the metal sphere. In this section the effects of the heat

transfer coefficient for the liquid boundary layer are presented and cal-

culated and experimental heating curves for the various conditions of

fluid flow are compared. The effects of radiation and the non-steady

temperature distribution in the liquid are also discussed.

VI.D.l. The Calculated Effects of the Heat Transfer Coefficient

The liquid heat transfer coefficient hL is related to the Nusselt

number, NNu by the definition

hLD
NNu L (9)Nu KL

where D is the diameter of the sphere, and KL is the thermal conductivity

of the liquid slag. The calculated Nusselt number for the present experi-

mental conditions range from 2 in the case of natural convection to 70

in the case of rapid gas bubbling.

The calculated effects of the heat transfer coefficient in terms of

the Nusselt number on the temperature at the surface of an immersed sphere

is shown in Figures VI-14 and VI-15. These dimensionless heating curves

are calculated from the mathematical model described in Chapter V which

uses the planar boundary condition for solidification and melting. In
T -T

Figure VI-14 the solidus fraction T-T is 0.8 for the calculations, while
T -T

O 0

in Figure VI-15 the solidus fraction is 0.95.
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If the solidus fraction is 0.8, then the heat transfer coefficient

hL in terms of the Nusselt number has a tremendous effect upon the heating

curve of a sphere. As shown in Figure VI.14 an increase in the Nusselt

number from 10 to 100 reduces the time required for the surface of the

sphere to reach a particular temperature by more than 80%.

For a solidus fraction of 0.95 the effect of the heat transfer coef-

ficient is greatly reduced, as shown by a comparison of Figures VI-14

and VI-15. The calculated time for the surface of a sphere to reach a

particular temperature is reduced by only about 50% if the Nusselt number

is increased from 10 to 100. An increase of the Nusselt number from 1

to 10 has almost no effect.

The effect of the solidus fraction on the heating curves in these

two figures can be simply explained. The heat transfer coefficient hL

represents the conductance of the boundary layer in the liquid, while the

driving force is the difference of the temperature in the bulk liquid and

at the solid-liquid interface. When the solidus fraction becomes larger

this temperature difference becomes smaller. Thus, the heat flux in the

boundary layer is a function of the heat transfer coefficient and the

solidus fraction, which can be written

h hLD

QBL = [1- ] (10)
BL K

The magnitude of each of these variables modifies the effect of the other

variable on the flux of heat in the boundary layer.

The interdependence of the heat transfer coefficient and the solidus
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fraction explains why some some experimental heating curves are so sensi-

tive to spinning of the sphere. For the experimental heating curves

shown in Figure IV-2 with slag N-IR the solidus fraction is calculated

from the solidus measured by the DTA to be 0.93. The difference between

the heating curve of the static sphere and the spinning sphere is only

moderate in this figure. For the same slag in Figure IV-1 the solidus

fraction is 0.90 and the resulting difference between the heating curves

of the static sphere and the spinning sphere is slightly greater. Slight

changes in the solidus fraction modify the effects of the convection heat

transfer in the liquid.

VI.D.2. Comparison of Experimental and Calculated Heating Curves for

Spinning and Bubble Stirring

A comparison between the experimental and calculated heating curves

for a spinning nickel sphere and a spinning nickel cylinder is shown in

Figure VI-16. The calculated heating curves are based on the planar

boundary condition and the Nusselt number described in Section V.D. The

agreement between the calculated and experimental heating curves is very

good. This comparison demonstrates that the Nusselt numbers described

in Section V.D. for a spinning sphere and a spinning cylinder are

appropriate. The comparison also indicates that the effect of increasing

the surface area of the metal object on the heating of the object through

a change in shape is predicted by the model.

A comparison between the experimental and calculated heating curves

for a variety of fluid flow conditions is shown in Figure VI-17 and VI-18.

The Nusselt numbers for the various spinning, bubbling, and static con-
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ditions are discussed in Section V.D. The values of these Nusselt numbers

are listed in Table V-l.

For a static sphere the agreement between the experimental and

calculated heating curve is reasonably good. The mathematical model

for this heating curve uses a planar boundary condition, but in this case

of poor convection, a mushy boundary condition may be more appropriate.

If the heating curve for the static nickel sphere is recalculated using the

mushy boundary condition, the same calculated curve results. The moving

boundary has little or no effect on the calculated heating of the sphere

which is held static in the slag.

For forced convection by rising bubbles, there are two sets of cal-

culated heating curves shown is Figures VI-17 and VI-18 for the two sets

of Nusselt Numbers shown in Table V-1. The calculated heating curves

in Figure VI-17 are based on power dissipation by the rising bubbles.

The agreement between the experimental and calculated curves is only fair.

The calculated curves in Figure IV-18 are based on the velocity of the

rising liquid slag which is drawn upward by the rising bubbles. The

agreement between the experimental and calculated heating curves is not

good. Of the two sets of calculated heating curves the set based on power

dissipation fits better with the experimental curves.

At a gas flow rate of 40 ml/sec both of the calculated heating

curves are far above the experimental curve, but the curve based on power

dissipation is the closer. The solid-liquid interface in this case may

not be smooth or planar as suggested by the comparison of curves for the

spinning sphere. If a mushy boundary condition is used in the mathematical



1400

1200

.1000

6 800

600

400

200

100

152.

200

Time, seconds

Figure VI-18 Comparison between the experimental and calculated heating
curves at various gas bubbling rates. Calculated heating
curves are based on the velocity of the rising slag (see
Section V.D.3). Experimental conditions in Figure IV-5

1400

1200

1000

800

600

400

2000o

0 100 200

Time, seconds

Figure VI-19 Comparison between the experimental and calculated heating
curves for a gas bubbling rate of 410 ml/sec. Calculated
heating curve for bubbling is based on the velocity of the
rising slag and a porosity in the solid and liquid slag
of 0.15

a Ia a a a I a

A I I - I I a I

1

E

-

-

-

-

-

-

-



153.

model, the calculated heating curves for both Nusselt numbers are lowered

and the agreement is greatly improved. At this rate of bubble mixing a

planar interface may not be formed, and a mushy interface may control the

heat flux from the liquid slag.

At the intermediate gas flow rate of 250 ml/sec, the effects of

porosity of the solid and liquid slag should be considered in the compari-

sons. The pore fraction observed in the experiments at this gas flow

rate was about 0.12. According to the calculations in section VI.C.3.

this pore fraction should reduce the thermal conductivity of the slag

2 0 
2  °

from 0.0045 cal/cm -sec- C to about 0.003 cal/cm -sec- C. This thermal

conductivity gives a thermal diffusivity for the porous slag of about

0.004 cm2/sec. As shown in Figure VI-8, a decrease in the thermal

diffusivity should displace the calculated heating curve proportionately

to the right. This displacement of the calculated curve based on power

dissipation (Figure VI-17) places the calculated curve below the experi-

mental curve, but the agreement between the two curves is slightly

improved. A similar displacement of the calculated curve based on the

velocity of the rising slag improves the agreement between the curves in

Figure VI-18, but not significantly.

At the highest gas flow rate of 410 ml/sec, the pore fraction was

about 0.15 and the calculated thermal diffusivity from Section VI.C.3 is

about 0.003 cm2/sec. This reduced thermal diffusivity displaces the

calculated heating curved based on power dissipation far away from the

experimental curve. A similar displacement of the calculated heating

curve based on the velocity of the rising slag brings the calculated
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heating curve much closer to the experimental curve, as shown in Figure

VI-19. Although the agreement between the calculated and experimental

curves after 70 seconds of immersion is improved by this consideration

of porosity, the agreement is poor during the initial times. The effects

of porosity on the thermal conductivity are not apparent during the

initial heating of the sphere. A close look at the photograph in

Figure VI-20, does show that the porosity of the initial slag formed

on the sphere is less than the porosity of the later slag.

Neither set of calculated Nusselt numbers fits all the experimental

heating curves for bubble mixing. At the higher gas flow rates the

porosity of the slag must be considered and the Nusselt number based on

the rising slag gives the more reasonable heating curves. At the lower

gas flow rates the Nusselt numbers based on power dissipation are

slightly preferred.

VI.D.3. The Effect of a Non-Steady State Boundary Layer

For a liquid boundary layer to reach a steady state temperature dis-

tribution, the velocity distribution must be steady and some heat must

be extracted from the liquid slag adjacent to the sphere. The velocity

distribution is consistent around a spinning sphere. The time required

for the spinning boundary layer to reach a steady state is short, but

for natural convection or bubble stirring the time may be considerable.

An effective Nusselt number may be substituted for the steady state Nusselt

number when the boundary layer is in a non-steady state.

The effective Nusselt number for a non-steady state boundary layer is
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calculated by solving the heat conduction equation in the boundary layer

of the liquid. For a thin boundary layer the conduction equation is

where T is
s

T is

a L is

t is

x is

6 is

the

the

the

the

the

the

T-T T-T
s s2(

T -T T -T
CO S s

t 2
L x6 2

temperature at the solid surface

temperature of the bulk liquid

thermal diffusivity of the liquid

time

distance from the solid surface

thickness of the boundary layer in the liquid

This equation is solved for the boundary conditions in the boundary layer

T=T ; x=O

T = To; x =

The boundary layer thickness is represented by the steady state Nusselt

number NNu and the diameter of the sphere D (36)

0=
Nu

(12)

The initial conditions of the boundary layer are

T = T ; x > 0

T=T ; x=O0

eff
The non-steady state Nusselt number, N is defined as

Nu

(11)

F
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T-T
d( S

eff s (13)
N =(13)
Nu

d( )
6 x=0

Using finite difference equations, similar to those described in Section

VI.A, the conduction equation is solved with the given boundary conditions.

The solution gives the effective Nusselt number as a function of the time.

The effective Nusselt number is shown in Figure VI-21 as a function

of the dimensionless time. The dimensionless time required for the

effective Nusselt number to reach 10% of the steady state Nusselt number

is about 6.0. For the spinning sphere at 700 rpm, this time is 4.5 seconds.

The effective Nusselt number for natural convection in the present expe-

riments should be about three or four times greater than the steady state

value. This increase in the Nusselt number has little effect on the

calculated heating curve for natural convection because the heat transfer

from the solidified slag shell dominates the heating of the sphere. As

discussed in Section VI.D.2, when the solid slag shell is present, the

effects at the solid-liquid interface may be neglected for natural

convection.

The effective Nusselt numbers for the boundary layers in bubble

stirring are further complicated by the fluctuations in velocities in

the boundary layer. These fluctuations in the velocity will extend the

time necessary for the temperature distribution in the boundary layer to

reach a steady state. Using a higher effective Nusselt number or heat
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transfer coefficient for the calculated heating curves for bubble stirring

improves the agreement of the calculated curves based on power dissipa-

tion with the experimental curves. The eTfective heat transfer coeffi-

cient only at the lower gas flow rates because, at the higher flow

rates, the boundary layer is small.

VI.D.4. Radiation in the Boundary Layer

Radiation heat transfer through the boundary layer may contribute

significantly to the heat transfer from the liquid. Fine, Enge and Elliott

(3) suggested that the radiation contribution in the bulk liquid slag

may be equal in magnitude to the conduction contribution for slags of

less than 15% FeO. A detailed calculation of the radiation contribution

to the heat flux in the boundary layer is discussed in Appendix E. This

calculation gives the fraction of heat flux through the boundary layer

by radiation, frad

f (14)rad XAK T -T (14)

1+ ( )20 T -T

where a is the Stephan Boltzman constant

TS is the temperature at the surface of the solid

To is the temperature of the bulk slag

A is the bulk coefficient of absorption in the liquid

KL is the thermal conductivity of the liquid slag

The radiation fraction frad is a function of the wavelength of the

radiation emmitted and absorbed in the slag because the bulk coefficient
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of absorption is a function of wavelength. For several concentrations

of FeO this radiation fraction is calculated from Equation (14) and

listed in Table VI-2. The bulk absorption coefficient for the low FeO

slags is taken directly from the room temperature measurements of glasses

by Fine, Enge, and Elliott (3) for a wavelength of 2.5 microns. At this

wavelength the emissive power from Plank's radiation law for a black body

is at a maximum for 14000K (71). The bulk absorption coefficient for

a 60% FeO ferrous silicate is extrapolated from the values at much lower

FeO concentrations. The thermal conductivity of the liquid slag is assumed

to be 0.003 cal/cm-sec-oC. The temperatures for the ferrous silicate are

typical for the present experiments, while the temperatures for the low

FeO slags are typical for steelmaking processes. For the present ferrous

silicates the radiation contribution is very small, while for the low

FeO slags this contribution may be quite significant.

VI.E. Heat Conduction in the Metal Sphere

VI.E.I. The Initial Temperature of the Sphere

A comparison between the experimental heating curves and the cal-

culated heating curves for a nickel sphere immersed in slag N-ICU as

three different initial temperatures of the sphere is shown in Figure

VI-22. The agreement is good. A similar agreement between calculated

and experimental curves is obtained in the other experiments in which

the initial temperature of the sphere was varied. As observed in the

experimental and calculated heating curves, the time required for the

sphere to reach a particular temperature is greatly reduced by preheating

the sphere. The effect of the initial temperature on the calculated
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Table VI-2. Fraction of Radiation Heat Flux in a

Boundary Layer

Slag (cm-
X (cm )

Ferrous-silicate 400

Low FeO (14.7%)

Very low FeO
(7.1%)

100

60

T (oK) T (oK)
-- o- --

1500

1873

1873

1400

1773

1773

f
rad

0.025

0.18

0.29
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curves for a nickel sphere of various initial temperatures.
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heating curves in Figure VI-8, 14, and 15 is included by the use of the

initial temperature of the sphere T in the solidus fraction and the

dimensionless temperature.

VI.E.2. The calculated effects of thermal diffusivity of the Sphere

The model with a planar boundary condition is used to calculate the

heating of a metal sphere with various thermal diffusivities aM. The

calculated temperatures at the surface and the center of the metal

sphere are shown in Figure VI-23, based on this model. The Nusselt

number is 40 and the solidus fraction is 0.9 for this calculation. The

OM
thermal diffusivity ratio --- represent the transient conduction in the

a
S

sphere relative to the conduction in the solid slag. The higher diffusi-

vity ratio corresponds to a high thermal conducting metal like copper,

while the low ratio corresponds to a very porous sphere, like the porous

iron spheres used in some of the present experiments.

A decrease in the metal diffusivity increases the rate of heating at

the surface of the metal sphere as shown in Figure VI-23. The temperature

at the center of the sphere is reduced by a decrease in the thermal

diffusivity of the metal, because the decreased thermal diffusivity

decreases the heat flow into the center of the sphere and allows the

temperature to build up at the surface of the sphere.

VI.E.3. Comparison of the Experimental and Calculated Heating Curves

As described in Section V.F., the thermal conductivity of the porous

iron spheres is calculated in the mathematical model using the geometric

mean of the conductivities of the iron and gas that are present. A com-
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parison between the experimental and calculated heating curves for the

porous sphere is shown in Figure VI-24. The calculated heating curve for

the 100 mesh iron sphere uses the properties listed in Table III-2 and

the calculated thermal conductivity from Section V.F which depends on the

temperature of the sphere. The agreement between the experimental heating

curve and the calculated heating curve is not close during the initial

stages of heating. The agreement improves with the time of immersion.

The effects which are excluded from the mathematical model curve are

the moment of gas in pores of the sphere; and the temperature dependence

of the specific heat of the metal sphere. A considerable amount of

expanding gas evolves from the porous sphere. When the iron tube which

is used to support the sphere is not sealed, the expanding gas flows past

the thermocouple and up through the tube. The convection in the pores

of the sphere which is caused by this gas flow contributes to the conduct-

ion in the gas pores, and accounts for much of the discrepancy between

the calculated and experimental heating curves. Some of this discrepancy

may also be due to the initially lower specific heat of the porous sphere.

The temperature dependence of the specific heat of iron is neglected in

the calculations with the model. If the specific heat of the iron at a

lower temperature is used in the calculations, then the thermal diffusivity

of the sphere is higher and the heating curve would more closely agree

with the experimental curve.

For the 50 mesh iron sphere, experimental heating curve is above the

curve for the 100 mesh sphere in Figure VI-24. This 50 mesh iron sphere

has a greater porosity and a greater pore size, so the calculated thermal
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conductivity is less than that of the 100 mesh sphere. The calculated

heating curve for this sphere should be even lower than the curve for

the 100 mesh sphere instead of the higher curve which is shown in Figure

VI-24. Apparently, the effects of the convective heat transfer in the

pores is even greater in this sphere. The pores are larger and better

connected, so the gas may flow more freely in the pores of the 50 mesh

iron sphere.

VI.E. Copper Spheres

A comparison between the experimental and calculated curves for the

heating and melting of a copper sphere is shown in Figure VI-25. The

agreement of the curves for the spinning copper sphere in slag N-ICU is

good. For the static sphere in slag N-1R, the calculated curve is

similar to the experimental curve during heating, but it indicates that

the melting time is slightly longer than that observed in the experiment.

It is possible that the heat from the non-steady state boundary layer may

have shortened the actual melting time of the sphere. As is discussed

in Section VI.D.4, the heat flux from a non-steady state boundary layer

during natural convection may be three or four times greater than the

calculated steady state heat flux. The additional heat flux may have

shortened the melting time of the sphere.

VI.G. Summary

1. The mathematical model with a planar solid-liquid interface

accurately simulates the heating of a cold metal sphere in most liquid

slags.

2. The solid-liquid interface is planar during solidification and
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melting of the slag, apparently because the mushy solid-liquid region is

sheared away from the sphere.

3. The temperature at the solid-liquid interface in the slag is the

solidus temperature of the slag.

4. The thermal conductivity of the slag shell which is solidified on

the sphere may be increased by the orientation of the crystals in the

direction of heat flow.

5. The most important properties of the slag which control the

heating of the sphere in the presence of the slag shell are the solidus

temperature and the thermal conductivity of the solid slag. After the

shell is melted away the thermal conductivity of the liquid is the most

important property.

6. The convection in the liquid slag greatly affects the heating
T -T
S o

of the sphere, if the solidus fraction is below 0.95 and the
T -T

hLD 
o o

Nusselt number is above 10.

7. The heat transfer coefficient during the bubble stirring at a

low or intermediate gas flow rate is more closely estimated by the power

dissipation by the rising bubbles.

8. At a higher gas flow rate, the heat transfer coefficient for

bubble stirring should be based on the velocity of the liquid slag and the

porosity of the solid and liquid slag.

9. An increase in the surface area of the metal object at a constant

volume decreases the heating time proportionally as shown by the compa-

rison between the heating of the nickel cylinder and sphere of equal
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volume.

10. The thermal conductivity of the porous iron sphere may be greatly

affected by the convective heat transfer in the gas pores.
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VII. APPLICATION OF THE MATHEMATICAL MODEL TO THE

FEEDING OF IRON PELLETS

Iron pellets in an electric furnace are heated and melted in the

liquid slag layer. The mathematical model and the results of the experi-

metal measurements which were presented in Chapters V and VI allow the

calculation of the time required to melt a single iron pellet in the slag.

In this chapter this melting time of a single pellet is calculated under

idealized furnace conditions. The effects of thermal interaction among

the pellets on the melting time of a pellet is briefly developed.

VII.A. Feeding Operations

The feeding of porous iron pellets into an electric furnace is

illustrated in Figure VII-1, where the pellets are shown in various

stages of heating and melting in the slag. When a pellet falls into the

liquid slag, it either floats or descends, depending on its density

relative to the density of the liquid slag. Initially, the pellet is

covered by a frozen shell of slag, which melts away as the pellet

heats. In the usual case the temperature of the liquid slag is greater

than the melting temperature of the iron, and the surface of the pellet

heats to its melting temperature and begins to melt. The pellet may

reside on the surface of the liquid slag, within the slag layer, or at

the interface between the liquid slag and the liquid iron in the furnace.

The heat which flows to the pellets in the furnace is the sum of

the heat flow to each of the N number of pellets which are present at

any time.
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N

n = A h (TW-T ) (1)
n=l n n 11

where T. is the bulk temperature in the furnace

A is the surface area of pellet n
n

h is the heat transfer coefficient for pellet n
n

T is the temperature of the surface of pellet n

For a collection of pellet there are three conditions for heat flow

which are summed in Equation (1). First some pellets are covered by

a slag shell, and the area A is the surface area of this shell exposed
n

to the liquid slag. The temperature at this surface T is the solidus
n

temperature of the slag. In a later condition, the shell has melted

away and some of the pellets are directly heated by the liquid slag.

The area of these pellets is their original surface area, and the

temperature at the surface T ranges from the solidus temperature of the
n

slag to the melting temperature of the pellet. Finally, some of the

pellets are melting, and their surface area A ranges from the original
n

surface area to zero. The temperature at the surface of these pellets is

the melting temperature of the pellet.

During the continuous feeding of the porous iron pellets, a heat

balance is established in the furnace

Qe + Qc = QL + Qp (2)

where Qe and Qc are the heat inputs from the arcs and combustion reactions

in the furnace, respectively. The QL is the heat loss through the roof

and the walls of the furnace. The heat flow to the pellets can also

be expressed as the product of the mass feeding rate, M, and the enthalpy
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for heating and melting of the pellet material, AH per mass
P

Q = MAH (3)
p p

At a steady state the heat from the arcs and combustion are balance by

the heat losses and the heat flow to the pellets, as shown by Equation

(2). The feeding rate M is fixed by this heat balance. The only way to

increase the steady state feeding rate is to increase the heat from the

arcs and combustion reactions or decrease the heat losses. The melting

time of a pellet in the slag has no effect upon the steady state feeding

rate.

During any transient in the operation of the furnace, the melting

time of a pellet is one of the most critical factors. These transients

occur during the start up of the furnace, the shut down, or as a result

of any change in the feeding practice during operation. During start up

of the feeding operation, a constant feeding rate M may begin at the same

time as the power goes to the arcs. The number of pellets which is

present in the furnace N increases at a constant rate as shown in Figure

VII-2b. When the feeding operation reaches a steady state the rate at

which the pellets melt is equal to the rate at which they are fed into

the furnace, M. The total number of pellets present in the furnace at

this steady state is

3Mt
N m (4)

3
44Tp r

P P

where p is the density of the porous iron pellets, tm is the time required

to melt a single pellet, and r is the initial radius of the pellet,P
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assuming the pellets are spheres. At a constant feeding rate M the time

which is required to feed N number of pellets into the furnace is the

melting time of a single pellet t m. This melting time tm is the length

of the transient start up time, as shown in Figure VII-2b.

For a change in the feeding rate M during the operation of the

furnace, the transient time is that required to reach the new steady

number of pellets in the furnace, as shown at time t1 in Figure VII-2a.

The transient time in this case is also the melting time of a single

pellet tm, because the final pellet which was fed at time t1 must be

completely melted before a new steady number of pellets is achieved.

When the steady state number of pellets is achieved in the bath,

the heat balance in Equation (2) is satisfied. This balance is shown in

Figure VII-2c where the total heat input Qa + Qc is plotted as a function

of time, and the heat flow to the pellets is also plotted. Heat losses

from the furnace are neglected in this figure. The heat flow to the

pellets increases at a nearly constant rate as the number of pellets in

the bath N increases at a constant rate. There is a slight deviation

from a constant increase in heat flow because the pellets which are in

the process of melting have less surface area and less heat flow per

pellet. When the number of pellets in the furnace reaches a steady

state, the heat flow to the pellets balances the heat input into the

furnace. The temperature of the bath in the furnace also reaches a

steady state at the same time t as shown in Figure VII-2d.
m

VII.B. The Melting Time for a Single Thermally Isolated Pellet

Since the melting time of a single pellet determines the transient
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time for any changes in the feeding operation, it is important to estab-

lish the factors which control this melting time. The previous dis-

cussions of the heating a metal sphere in a liquid slag (Chapter VI)

apply directly to the melting of the pellet in the liquid slag. Because

practical porous iron pellets range in density from 2 to 6 g/cm 3 , the

heating and melting of the pellet occurs either entirely in the liquid

slag or at the boundary between the liquid slag and the liquid iron in

the furnace.

The finite difference mathematical model which is described in

Chapter V was modified to calculate the time to melt a single porous

iron sphere. The mathematical model calculated the temperature of the

sphere, the solidification and melting of the slag on the sphere, and

the melting of the porous iron sphere under idealized conditions in an

electric furnace.

It is assumed that the pellet is a sphere, it is thermally isolated

from the other pellets in the furnace, and the temperature of the bulk

liquid metal and liquid slag is constant.

If the density of the pellet is greater than that of the liquid slag,

the pellet descends at Stokes' velocity U

(p -pL r g
S= p L p (5)

s 9 1A

where the pL is the density of the liquid slag, g is the gravitational

constant, and p is the viscosity of the slag. The heat transfer coef-

ficient hL during this descent is calculated from Equations (6) and (7)

as described in Section V.D.2 (78)
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N NNuKL
h• - (6)

D

1/2 1/3
N = 2.0 + 0.6 N N (7)
Nu Re Pr

v

The D is the diameter of the pellet and KL is the thermal conductivity

of the liquid slag. The density and the thermal conductivity of the

porous pellet are calculated as described in Section V.E. The numerical

values which are used in this mathematical model are listed in Table

VII-1. These values represent typical conditions in the refining opera-

tion of an electric furnace (14).

If the density of the porous pellet is greater than the density of

the liquid slag, the pellet reaches the interface between the liquid

iron and the liquid slag. At this interface the pellet displaces an

appropriate mass and volume of liquid ironand liquid slag according to

the balances

V =V + VS  (8)

pV = IVI + SVS (9)

where V , VI , and VS are the volumes of the pellet, the displaced

liquid iron, and the displaced liquid slags; p p, PM, and pS are the

densities of the pellet, the liquid iron and the liquid slag, respectively.

The density of the pellet at a particular time is calculated from the

original density of the pellet and the mass of the slag which is frozen

on the pellet. Both the surface area of the pellet in contact with the

liquid iron andthe surface area in contact with the liquid slag are

calculated from the condition of buoyancy in Equation (9). In this

model the position of the pellet and the areas of contact are calculated
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Table VII-I. Numerical Values for Calculation of the Melting

Time of Various Porous Iron Pellets

Slag

Depth (L)

Density (pL)

Thermal diffusivity

Specific heat

Melting point

Heat of fusion

Bulk temperature

Power number N
p

Pellet

Density

Radius

Melting point

Heat of fusion

Initial temperature

Pore diameter

30 cm

2.9 g/cm3

0.004 cm2/sec (Liquid-solid)

0.28 cm/goC

1500 0C

110 cal/g

1600 0C

44

2-6 g/cm 3

0.5, 1.5, 3.0 cm

15300 C

60 cal/g

300C

0.01 cm.
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as a function of the time of immersion.

The heat transfer coefficient for the pellet, if it is suspended

in the liquid slag or at the interface between the liquid iron and the

liquid slag, are calculated by the power dissipation from the carbon

boil. This calculation is described in Section V.D.3. The numerical

values of the power number Np (listed in Table VII-1) represents a

vigorous carbon boil. The porosity of the slag is neglected in the

present calculation, but during the carbon boil the slag may be filled

with small gas bubbles which increase the porosity of the slag. This

increased porosity decreases the density and thermal conductivity of the

slag greatly, as discussed in Section VI.D.4.

The melting of the iron pellet is calculated in the present mathe-

matical model. When all of the frozen slag melts from the pellet, the

surface of the pellet heats to the melting point of iron. It is assumed

that the pellet remains spherical throughout this melting. The heat

balance at the melting interface is

(Ti-TM) 
MAHM

KM . + hL (TW-T ) - (Lj - L.) (11)

where KM is the thermal conductivity of the porous iron

hL is the heat transfer coefficient

TM is the melting temperature of the iron

To is the bulk temperature in the furnace

PM is the density of the porous iron

AHM is the heat of fusion of iron

T. is the temperature at the center of the adjacent metal element
1
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L. is the previous distance from the center of the metal sphere to
the melting surface

Lj+ 1 is the new distance from the center of the metal sphere to the
melting surface after time At

At is the time increment

k. is the distance between the center of the adjacent metal element
and the melting surface

Similar to the planar boundary condition for melting slag, this

balance is used to calculate the movement of the solid metal-liquid slag

interface. The temperature distribution in the pellet and the position

of the solid-liquid interface are calculated until only 2% of the original

volume of the pellet remains.

Using this mathematical model of a thermally isolated porous iron

pellet, the temperatures at the surface and the center of a particular

pellet are calculated as a function of time, as shown in Figure VII-3.

The radius of the pellet is also shown in this figure. This particular

pellet falls through the 30 cm. of liquid slag to reach the liquid iron-

liquid slag interface in about one second as shown by the dashed line.

The temperature of the surface of the pellet reaches the melting

temperature of iron in just over a second in Figure VII-3, but the tem-

perature at the center of the pellet responds slowly to the flow of heat

from the liquid slag and liquid iron. For these particular conditions

the radius of the pellet increases slightly when the slag freezes on the

pellet during the first second. During most of the time, the radius of

the pellet decreases at a constant rate because the pellet is melting.

The calculated melting time for this pellet is about 15 seconds.
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The calculated melting time for the pellets of various radii and

densities are shown in Figure VII-4. The density represents the original

density of the porous iron pellet. The melting time in this figure

increases with the decreasing density, because the time for the pellet to

fall through the liquid slag and make contact with the liquid iron is

longer. Also when the pellet reaches the liquid iron, the area of the

pellet in contact with the liquid iron is less when the density of the

pellet is lower. The melting time is much greater for a pellet which

has a density close to that of the liquid slag. At this density a

pellet is heated and melted almost entirely in the liquid slag.

If the slag porosity is increased by the carbon boil, the density

of the slag is decreased. This decrease in density shifts the curves

for the melting time in Figure VII-4 to the left. The increased porosity

also lowers the thermal conductivity of the slag and the melting times

for a pellet with a density near the density of the porous slag is

increased. During a carbon boil gas bubbles may cling to the pellet and

reduce the effective density of the pellet also.

VII.C. Relationship Between the Melting Time and the Heat Transfer

Coefficient

By rearranging Equation (4) the melting time for a porous pellet is

4 Trp r N
t -= -- (12)
m 3M

The feeding rate M is related to the heat flow to a collection of pellets

in the furnace by Equation (3). Substituting Equation (1) and (3) into

Equation (12), the melting time is
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4 r 3p NAH
t = - NP (13)

m N
3 n 1 Anh (TM-T )

Equation (13) can be simplified by observing that the temperature

at the surface of the pellet Tn remains at the melting temperature of

iron throughout most of the time of immersion, as shown in Figure VII-3.

Also the heat transfer coefficient based on power dissipation is nearly

independent of the pellet diameter and is essentially constant throughout

the melting of the pellet. For a collection of pellets in the furnace,

most of the pellets would have the same heat transfer coefficient and

the same temperature at the surface in Equation (13). Also, an average

area A for the collection of pellets in the furnace can be calculatedn

from the average radius of a melting pellet. Since the pellet melts at

a constant rate as shown in Figure VII-3, the average radius is r /2.
p

Substituting the average area, heat transfer coefficient, and surface

temperature into Equation (13) gives

2p r AH
t = - (14)

3h(TW-Tm )

According to Equation (14) the melting time of a porous pellet is

inversely proportional to the heat transfer coefficient. This heat

transfer coefficient depends on the density of the pellet relative to

the slag, the mixing in the bath, and the interaction among the pellets.

The effect of the heat transfer coefficient on the melting time for

various modes of operation is shown in Figure VII-5. A constant heat

transfer coeffficient in Equation (14) is used to calculate the melting
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times shown in this figure.

In region I of Figure VII-5 the metal pellets are sufficiently

dense to reach the liquid slag-liquid metal interface in the furnace.

The heat transfer coefficient in the liquid metal is very high. In

Region II the density of the pellet is equal to or less than the density

of the liquid slag. The pellet remains trapped in the liquid slag layer

throughout the melting of the pellet. The mixing in the slag is suf-

ficient to thermally isolate the pellets. At the lower limit of the

region II the heat transfer coefficient is calculated from the correlation

for natural convection to a thermally isolated sphere (Section V.D.2).

Otherwise, the heat transfer coefficient in region II is calculated by

the power dissipation in the liquid slag (Section V.D.3).

In region III of Figure VII-5, the mixing in the liquid slag is not

sufficient to thermally isolate the pellets from one another. The thermal

interaction among the pellets reduces the heat transfer coefficient as

will be discussed in the next section. The melting time in region III

may reach several hours. This is a prohibitively long transient for

furnace operation.

VII.D. Heat Transfer Coefficients for Interacting Pellets

If the pellets in the furnace freeze together or effect the thermal

boundary layer of adjacent pellets, they are interacting thermally, and

the pellets are not thermally isolated. The factors which control the

heat transfer coefficient during this interaction are the motion of the

fluid between the pellets, the pellet concentration in the bath, and the
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clustering or freezing of the pellets to one another.

The effect of particle interaction on the heat transfer coefficient

are shown in Figure VII-6. The heat transfer coefficients for thermally

isolated particles in a stirred bath are plotted as a function of the

power number for the stirring in curve 1. This curve is based on the

experimental and theoretical work of Brian and Hales (17) for melting

ice particles. The heat transfer coefficients for particles which are

not completely isolated is shown by the shaded area in this figure.

This shaded area is based on the range of heat transfer coefficients

which were calculated from many experimental systems compiled by

Calderbank (21). A correlation was developed from these experimental

heat transfer coefficients by Calderbank as shown in curve 2

hL 2/3 P/m I/4
N P = 0.13 [ i

CL Pr pL L

The heat transfer coefficient is decreased by the interaction of the

particles.

The Nusselt numbers for heat transfer to two equally sized spheres

with their centers placed parallel to the direction of a laminar flow

was calculated by Aminzadeh et al. (79). The average Nusselt number

for the front and back sphere decreases as the distance separating the

sphere decreases, as shown in Figure VII-7. When the spheres are nearly

touching at a low flow velocity vL the Nusselt number is below the value

of 2. If additional spheres are brought into the area, it is reasonable

to assume that the Nusselt number would decrease further.
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There are no experimental or theoretical studies available at present

to quantitatively asses the effects of the interaction of multiple parti-

cles suspended in laminar or turbulent flow.

VII.E. Conclusions on the Feeding of Iron Pellets

During the continuous feeding of pellets into an electric furnace,

the steady state operation is achieved in approximately the time which

is required to melt a single pellet. Pellets which are much more dense

than the liquid slag reach the liquid iron in the furnace and melt

quickly. Pellets which are less dense remain in the liquid slag and

melt more slowly. The melting time for a pellet depends directly on the

heat transfer coefficient for the pellet. If the pellets are thermally

isolated from one another in the furnace, the heat transfer coefficient

may be determined by the power dissipation due to the carbon boil. If

the pellets are not thermally isolated, then the heat transfer coefficient

may be much lower. The melting time for a pellet which is thermal inter-

acting with the other pellets is extremely long and disadvantageous to

furnace operation.

In the operation of a continuous feeding process, it is necessary

to minimize heat losses from the furnace, and minimize the time required

to produce a heat of iron. To minimize the heat losses from the furnace

the temperature of the slag layer should be kept to a minimum. Only

enough heat should be added to the furnace as is required by the number

of pellets that are present. During a transient in the operation of the

furnace this heat input should be carefully adjusted to supply heat to

the pellets which are present and maintain a constant bath temperature.
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Too much heat input increases the heat losses from the furnace, and too

little heat input allows the temperature of the bath to decrease and

the melting time of a pellet to increase, which prolongs the transient.

To minimize the time required to produce a heat of iron, fast melting

pellets should be used and transients during the furnace operation should

be avoided. If the pellets are allowed to freeze or cluster the melting

times are greatly increased and the resulting transients in furnace

operation are excessive.
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VIII. GENERAL SUMMARY OF THE THESIS

Experiments were conducted to determine the heating of a metal

sphere in a liquid slag. In these experiments the slag solidified on

the surface of the sphere and then melted away as the sphere heated.

The temperature inside nickel, copper, and porous iron sphere was meas-

ured during the heating in the slag. The composition of the liquid slag

and the motion of the liquid around the metal sphere were varied.

A mathematical model was developed which could be used to calculate

the temperature inside the sphere while immersed in the slag. This

mathematical model solved the heat conduction equations in the solid

metal and solid slag using a smooth or planar moving boundary condition

for the solidification and melting of the slag. The heating curves for

the sphere which were calculated with this model were compared to the

experimental heating curves. The agreement was good for most of the

slags and conditions which were studied. The smooth or planar inter-

face may have resulted when the mushy region at the solid-liquid inter-

face was sheared away by the motion of the liquid.

Comparisons between the calculated and experimental heating curves

indicated that the temperature atthe .-solid slag-liquid slag interface

was the solidus temperature of the slag in most cases. This solidus

temperature and the thermal conductivity of the solid slag had the

greatest effect on the heating of the sphere in the liquid slag. The

thermal conductivity of the solid slag may have been increased in some

cases by the orientation of the crystals in the direction of heat flow.
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At the solid-liquid slag interface the heat flux from the liquid slag

was controlled by the difference between the solidus temperature and the

bulk temperature of the slag, and the heat transfer coefficient in the

liquid. The heat transfer coefficient for the spinning sphere and

natural convection to the sphere could be accurately calculated, while

the heat transfer coefficient for bubble stirring in the slag was not as

accurately calculated. For the porous iron sphere, the calculated heating

curves indicated that the surface of these spheres heated faster than the

surface of the solid spheres because of the low thermal conductivity of

the porous spheres.

Dimensionless heating curves for the surface of a sphere immersed

in slag were calculated with the mathematical model. These curves could

be used to estimate the effects of the thermal diffusivity of the solid

slag, the solidus temperature of the slag, the diameter of the sphere,

the bulk temperature of the slag, the initial temperature of the sphere,

the heat transfer coefficient in the liquid, and the thermal diffusivity

of the sphere.

The mathematical model which was developed and tested by the com-

parisons with the experimental heating curves was used to simulate the

heating and melting of a porous iron pellet in an idealized electric

furnace. The melting time for porous pellets was calculated for a

practical range of pellet sizes and densities. For a collection of

pellets, it was shown that the heat transfer coefficient in the liquid

slag is inversely proportional to this melting time. The heat transfer

coefficient was controlled by the mixing in bath, the thermal conductivity
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of the liquid slag, and the thermal interaction among the pellets in

the bath.

During the continuous feeding of pellets into an electric furnace,

the melting time of a single pellet determines the time which is required

to reach a steady state following a change in the feeding or heating

operation. The time for melting a pellet in the slag is not important

to the steady state operation of the furnace but it is critical to any

transients in the operation.
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IX. FURTHER RESEARCH

Further studies on the heat transfer in silicate slags should

concentrate on the properties of the solidified slag shell. These studies

should center on the thermal conductivity of the phases present in the

solid, the effects of orientation on the thermal conductivity of solidi-

fied slag, the solidus temperature of practical metallurgical and coal

slags, and the mechanical strength of the solid at high temperatures.

Study is also needed to describe the effects of gas bubbles rising

from the bottom of the slag and from the surface of the porous sphere.

The effects of the expanding gas in the porous sphere on the thermal

conductivity of the sphere should be considered.

An experimental and theoretical study is needed on the interaction

among particles suspended in a liquid, like pellets in an electric

furnace. Such a study should determine the criterion for thermal iso-

lation and an effective heat transfer coefficient for a particle as a

function of the particle concentration in the liquid and the clustering

of the particles.

For the analysis on continuous feeding of pellets into an electric

furnace, the model for melting a porous sphere in slag should be tested

by experiments. The transient time for a continuous feeding operation

should be measured and compared to the melting time of an individual

pellet. Also, the specific case of a porous metal melting in a slag with

a solidus temperature of the slag below the melting temperature of the

metal should be tested separately.
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The mathematical model which is developed in this thesis could be

modified for application to the solidification of slag on boiler tubes

and furnace walls. The model may also be applied to the solidification

of a continuously cast strand of steel whose surface is protected by a

slag flux.
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APPENDIX A. THE EFFECT OF THE THERMOCOUPLE PROTECTION

The temperature recorded by the thermocouple at the center of the

metal sphere in the heat transfer experiments described in Chapter III

was affected by the material which was used to protect it from contamina-

tion. In the experimental heating curves, the effects of the protection

of the thermocouple was most noticeable during the initial heating.

When alumina was used to protect the thermocouple there was a 10 to 15

second delay before the thermocouple responded to the heating of the

sphere. When the platinum foil was used, this delay was usually less

than five seconds. The delay in response was very important in developing

the mathematical model which simulated the heating of the metal sphere

in the slag and the response of the thermocouple to this heating.

To determine the effect of the protection of the thermocouple on

the temperature response, experiments were conducted in a thermal

radiation furnace with the nickel sphere in the absence of slag. The

radiation furnace was prepared by inductively heating a graphite crucible

(30.5 cm. deep and 1.5 cm. thickness of the walls), covered by a 3.0

cm. thick graphite lid with a 4.5 cm. diameter opening. A 3.0 cm. nickel

sphere was attached to an iron tube for support. Then a platinum/

platinum 10% rhodium thermocouple was positioned at the center of the

sphere with one of the following protective materials between the

thermocouple bead and the nickel sphere: 1) tightly packed zinc powder,

2) 1 mm. thick dense alumina protection tube, and 3) nothing. The

crucible was heated to 12000 C, as measured on the inside wall by an

optical pyrometer. Once the furnace reached a steady temperature, the
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sphere was inserted through the opening in the lid so that the sphere

was suspended at the center of the graphite crucible. The response of

the thermocouple was recorded by a millivolt recorder as a function of

time.

Using the same sphere and same furnace temperature, the temperature

which was recorded by the thermocouple is shown in Figure A.I. The

temperature recorded when the thermocouple is packed with zinc powder

best indicates the temperature at the inside wall of the nickel sphere,

since the heat transfer through the zinc should be the best. The

temperature recorded by the thermocouple which is protected by the

alumina lags about 10 to 15 seconds behind the temperature recorded with

the zinc. With no protection the temperature lags about 5 to 10 seconds.

The four temperature recordings taken with the zinc protection (shaded

area) and the 6 recordings taken with no protection are fairly consistant,

while the 8 separate recordings with the alumina protection vary over a

range of about 5 seconds or 300 C. The heating rate is slightly faster

in the experiments with slag and the range in response should be larger.

The comparison of the temperatures which are recorded by the thermo-

couple inside the nickel sphere in Figure A-I demonstrate that the

thermocouple which is protected by the alumina is not a reliable indica-

tor of the temperature inside the metal sphere. This is due to the

long lag in response of such a thermocouple and the scatter of the

response data. The thermocouple with no protection is not much better

because its delay in response is also substantial. The best form of

protection of the thermocouple is some metal packing which gives the
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Figure A-i Recorded response of a thermocouple with various forms of
protection positioned at the center of a nickel sphere
which is heated in a radiation furnace
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bead an intimate contact with the nickel surface. For this reason the

platinum foil was used on all of the heat transfer measurements in the

liquid slag except for the early measurements with slag N-IR. The

delay in the response for the thermocouple protected with platinum foil

is expected to be about the same as the delay for the zinc powder. The

delay for the platinum foil was not measured in this radiation furnace,

but it is observed in the initial response of the thermocouple during

the experiments with liquid slag, as shown in Figure IV-6.
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APPENDIX B. THE EFFECTS OF THE SUPPORTING TUBE AND STEM

In the heat transfer experiments described in Chapters III and IV,

the supporting iron tube and the metal stem, which is inserted into the

tube, have a small effect upon the heating of the metal sphere in the

slag. The surface of the metal sphere attached to the stem and iron tube

is initially cooler than the surface exposed to the slag. Later, the

stem and tube provide additional heat to the attached surface. The

effects of the stem and iron tube as a heat sink and later as a heat

source are discussed in this section. Two cases are considered: good

contact between the stem and the tube and an interfacial resistance

between the stem and the tube.

Since the 1.3 cm. diameter supporting iron tube is immersed about

5 cm. into the liquid slag, the tube is assumed to be heated only by the

slag. The temperature distribution throughout the iron tube and the

nickel stem is calculated directly from the mathematical model described

in Chapter V using cylindrical coordinates and a heat transfer coeffi-

cient for a spinning cylinder. For perfect contact between the iron

and the nickel, the temperature at the inside of the stem is shown by

the dashed line in Figure B-1. The solid line in this figure represents

the temperature calculated for the surface of the 3.0 cm. nickel sphere

under the same slag conditions. Comparing the solid and dashed curves,

the stem and tube act as a heat sink during the first 30 seconds and

as a heat source, later. The overall effect of the stem and the tube

is quite small because 1) the additional heat from the stem is nearly

equal to the heat absorbed initially by the stem later, and 2) the area
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Figure B-1 Comparison between the temperature at the surface of a nickel
sphere exposed to the slag and the surface attached to the
nickel stem and iron tube. Calculated with the mathematical
model assuming perfect contact between the stem and the tube
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of the stem in contact with the sphere is only 1.2% of the total area of

the sphere. For a 1.8 cm. sphere the surface temperature increases much

more rapidly and the stem and tube draw heat from the sphere for a larger

percentage of time. Also the effect of the stem and the tube is much

more pronounced on the smaller sphere because the area of the stem is

over 5% of the surface area of the sphere.

Because the contact between the iron tube and the nickel sphere is

not perfect an interfacial resistance should be included in the

calculations. The temperature of the iron tube, TR, in contact with the

metal stem is calculated with the mathematical model of slag heat

transfer as before. The temperature of the stem TSt is calculated from

Equation (1) if the temperature distribution within the stem is neg-

lected.

dTst
PstC V - hAst (TR-Tt ) (1)
St St St dt I St R St

where TSt PSt' CSt' VSt and ASt are the temperature, density, specific

heat, volume, and surface area of the stem, respectively. The hI is the

interfacial resistance between the tube and the stem. To calculate the

temperature of the stem as a function of time, Equation (1) is written

in finite difference form as shown in Equation (2) and inserted into

the finite difference mathematical model

AtA h

T T (T -T ) (2)
St, j+l St,j VstCstPs t  R,j St,j

The temperature of the stem TSt is calculated along with that of the tube

wall, TR ., at each time step, j, in the model.
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The temperature of the stem from this calculation is shown by the

shaded area in Figure B-2, for a range of interfacial resistance from

2o0.02 ro 0.04 cal/cm -sec C (66, 67). The solid line represents the

calculated temperature at the surface of the exposed 3.0 cm. nickel

sphere. Comparing the two curves, the stem and tube act as a heat sink

throughout most of the time of immersion in the slag. The presence

of the stem and tube should lower the heating curve of the immersed

sphere. In the comparisons between the experimental and the calculated

heating curves, no systematic lowering was observed. The effect is

apparently absent because of the limited area of contact between the

stem and the sphere.



205.

1000

E 500
CL
E
F-

0 50 100
Time, seconds

Figure B-2 Comparison between the temperature at the surface of a nickel
sphere exposed to the slag and the surface attached to the
nickel stem and iron tube. Calculated with the mathematical
model assuming an interfacial resistance between the stem and
the tube
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APPENDIX C. RANDOM ERRORS IN EXPERIMENTAL HEATING CURVES

The temperature at the center of a 3cm. spinning nickel sphere in

slag N-ICU or N-2CU at various bath temperatures is summarized in Figure

C-I. In this figure the temperature recorded by the thermocouple after

50 and 100 seconds is plotted as a function of the measured liquid bath

temperature for 14 different experiments. The temperatures recorded in

the sphere is fairly consistent between one experiment and the next,

but there is a distribution caused by random errors in the measurement

of temperature.

Most of the error is probably due to variations in the position of

the thermocouple inside the sphere. The measurements shown in Appendix

A with a static sphere in a radiation furnace indicate a range of 5 to

15 degrees in the temperature inside the sphere. This range depends

upon the protection and the position of the thermocouple. For a

spinning sphere the position of the thermocouple is even less certain.

There are also several sources of error in the determination of the

liquid slag temperature. As described in Chapter III the temperature of

the liquid slag is determined from the temperature recorded by the thermo-

couple at the center of the metal sphere after reaching a steady value.

The temperature measurement with the optical pyrometer sighted on the top

of the liquid slag is consistently higher than the steady value which is

recorded by the thermocouple in the sphere. Sometimes the steady

temperature in the sphere is difficult to determine. The difficulty is

due to fluctuations in the heating curve at the high temperatures and
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Figure C-i Temperature inside a 3 cm. nickel sphere after 50 and 100
seconds of immersion in a liquid slag at various bath
temperatures
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occasional contamination of the thermocouple by liquid slag, which seeps

into the supporting tube. There is also about 2 to 100 C of noise in the

output of the thermocouple due to the spinning of the sphere, the

vibrations of the slip rings and brush contacts, and the high frequency

induction field. This noise is more pronounced at temperatures above

1000 0 C.

The liquid slag and metal sphere are sources of some random error.

The temperature distribution in the bath is minimized before immersing

the sphere by stirring the slag by hand. There is still a likely

variation of 100 in the temperature of the liquid slag at the walls and

in the center of the crucible. The mass of the solid metal sphere does

not vary by more than 2%.

The composition of the slags is relatively consistent. The total

iron content of the liquid slags was analyzed as described in Appendix

G and it was found to agree well with the iron content as mixed and did

not change more than 1% during an expeimental period. The iron crucible

fixed the oxygen potential in the slags, so that diffusion of oxygen from

the air into the slag was balanced by the dissolution of iron from the

crucible. For the slag N-IR the oxygen potential was initially fixed

by the excess iron which was added to saturate the slag with iron. In

many experiments an iron sheet was inserted inside the MgO crucible to

lengthen the life of the MgO crucible and to maintain the iron saturation.

In the case of slag N-IR the graphite lid and susceptor lowered the

oxygen potential in the gas surrounding slag N-IR so the oxygen diffusion
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into the slag would be limited. Finally, no systematic effects on the

heating curves were observed after the 10 to 12 hours of experiments

with any of the slags in the MgO or iron crucible. The composition

of the slag remained fairly consistent and what small changes occurred

had not apparent effect on the heating curves measured.

Another possible source of error is the separation of the slag shell

from the metal sphere due to the difference in thermal expansion between

the nickel and the slag. A 3 cm. nickel sphere expands 1.7% (69) when

it is heated from room temperature to 10000C or 0.38 cm. along the

circumference. The solid slag shell expands only about 1% (Fe2 Si0 4 )

(69) during this heating or 0.38 cm. along the interface with the nickel.

This difference in expansion places the metal surface under compression

and the slag shell under tension which may cause the shell to crack.

The cracking of the shell at the interface would create a gap between the

slag and the metal which may act as an additional resistance to the flow

of heat to the sphere. In all of the experiments with liquid slag the

shell was very adherent. No cracks in the slag shell were observed in

any of the slag samples which adhered to the sphere, Either the solid

slag was sufficiently plastic to accommodate the stress or it was

strong enough to withstand the stress. An interfacial resistance at

the slag metal interface was neglected.
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APPENDIX D. COMPUTER PROGRAMS FOR SIMULATION MODELS

There are three computer programs which are used to simulate the

heating of particles in the liquid slag:

1. Program for heating a sphere in liquid slag (with options for

a copper sphere which melts in the slag, a nickel sphere, and a porous

iron sphere).

2. Program for heating an infinite cylinder in liquid slag.

3. Program for heating and melting a porous iron sphere in an

electric furnace.

The scheme for the initial heating of the metal object is the same

in all of these programs.

1. Initialize the temperatures, areas, and volumes of all the

finite difference elements.

2. Set an initial slag thickness.

3. Calculate the temperature distribution in the metal and solid

slag with finite difference equations.

4. Calculate the movement of the liquid-solid slag interface.

5. Return to step 3 for the next time step.

Copies of the three programs are presented on the following pages

with brief notes on the meaning of the terms and the calculations. All

calculations were done in cgs units and OK.
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PROGPAM FOR HE,kTTNG A SPHEPF IT A LIQUID SLAG

******* INPUJT PPOPEoTTES OF 5.AG ANn SPHERE

REALt. M.IOTI9
DIMENSION (g99),v(99),T(99),F(99)

200 PEAD(,100)NO. NOT, NOSc,NALNOME,IDRIDTTITOT1STMSP
C,ACPALPSDTNP, D,)SCPt ,CPS,UC PMCINDLALLTMPORECORotZZ

100 FOPMAT(SI5/(SFlO.4))
100?2 wpWRTE (6,10 NO,NDOT ,NOS,NALPNO-E, I DR, I DT TI, TO TM TMSTP

C ACP ALPSD TNV, D0S, CPtI CPSu,CPM, CI NDL, ALL, TMPORECOR, ZZ
7n FOPMAT( 8F10.4)

IF (NJO)201 ,?01o ,0

NO = TOTAl_ \UMBEP OF ELEMENTS
NOT = TOT^.I 'JUMBE• OF TIME STEPS ALLnWABLE
NOS = NUMFFR OF EI-EMENTS IN THE SLAG
Inn = wI•~T OF AN ELEMENT
InT = LENGTH OF A TIME ELEMENT
TT = TEMPEPATURE OF THE BULK LIQUID cLAG
TO = INITIA, TEMPERATURE OF THE METAL SPHERE
TMS = SO Tr-JS TEMPERATURE OF THE SLAG
TMSD = LIOIl-JUS
TMSP = LIOIJI:)US TEMPERATURE OF THE StAG
ACk = HFAT OF FUSION FO THE SLAG
ALP = THNFMAL DIFFUSIVITY OF THE SOLTD SLAG
SDIN = NUtrSLT NUMRER
P = RADIUS OF THE METAL SPHERE
0 = DENSITY OF THE META-L SPHERE
0; = DENSTTY OF THE SOLID SLAG
CPL = SPFCT-IC HEAT OF THE LIQUID SLAG
CDS = SPFCITIC HEAT OF THE SOLID SLAr
U = VISCnSTTY 3F THE LIQUID SLAG
CPM = SPFCT7IC HEAT OF THE METAL SPHERE
CTN = THFRMAL CONDUCTIVIFY OF THE SLAG METAL INTERFACE



0 0 0

ni = DENITY OF THE LIQJ1O SLAG
ALL = THF.MAL 3IFFUSIVITY OF THE LIQUID SLAG
TM = MELTIN3 TEMPERATUPE OF THE METAtL SPHERE
PnRE = POROSITY OF THE 6ETAL SPHERE
CORP = RUIPFACE AREA AND THERMAL DIFFUSIVITY nF

T"F04OCOUPLE PROTECTION TUBE
ZZ = TDouI._ DIFFUSIVITY OF THE METAL SPHERE

******* INITIALT7F A4EA, Vor)li'ES,

Sn DR=(R-.I)/(0o-
WRITE(6,711

71 FOPMAT(l TI4 E
NOM=NO-I
ALPM= 7Z
KL = 0

72 nO 101 N=1.NOS
,J=0

AND TEM'C-ATURES OF FLEMENTS

NOS-I)

H AnT'IS

F(N) =TMS
A(N)=((N-. )*T RP+R)•

Inl V(N)=.333*(("-.5)*ITOP+ ) *3
DO 102 N=NO.*NO
T(N)=TO
A(N)=((N-NlS- .c)*•P+.1)**2

I02 V(N)=.333*((N-NOS-.5 )*n4+.1
T(1) =TO
KP=100
ROND=9
X=.10*IOD
PI = (7.874 - r)/7.871
ACPM = 50.
S)V = 0.0
OV= 0.0
DM = X
XN=X
ALPL.=.019

SUPFACE CENTEP C6L/Cm2-SPC,)

-.333*((N-1.5)*TDR+R)**3

)**3-.333*((N-NOS-1.5)*DR+,.1)**3

THE

· ·
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4TPANS = SDIN*ALL*0L*r'DL//2
M= I DT - LP/T D:
CKM = ALPMoD*CDM
CK=ALP*DS*e*PS

TiN) = TEMo:*ATUPE OF E.EMENT AT PREVIOUS T
A(N) = A4F4 OF ELEMENT
VNJ) = VOtj•t4 3F ELEMENT
8OND = DTITANCE FOOM THZ CENTEP OF THE SPHE

AOVTN4" 3OUNDAPY
x = DISTANrE FRoM THE CENTER OF THE FURTHES

TO THF lOVING BOUNDARY
ACRM = HFT OF FUSION OF THE METAL SPHERE
SnV = TOTAL VOLUME OF METAL MELTED
DV = METAL MELTED IN A SINGLE TIME STEP
XN = MOVIMFNT OF THE MOVING dOUNDARY IN ONE
HTRANS = HFAT TRANSFER COEFFICIENT

******* MAIN LOIP OUT

5A 9OND=ROND+YN
TF(POPF)89,89,90

9n N = (NO + \OS)/2
CKM = (42.n/T(N)

C EXP(-7.65-04*T
ALPM = CKM/D/COM

89 TIME= *IFDT
IF(TII"- NIT)87,

87 IF(T(U)) I 8 ,86,8
$( lOT = IOT-IDT/I

GO TO 200
AC IF(TI-T(1))R6, 6
19 T(NO)=T(1)

KL = KL +
J=J+1
IF(KP- 5/

IME

RE

STEP

TO THE

T ELEMENT

TIME STEP

OUT ANf) kO ERTTES CALCULATIONS

+ 0.n519)**(1 - PI)*(3.04E-04*(1 -
(NI)))+ 3.66E-1?T (NJ)*T(N)*T(N)*POoE)**PI

200,200

84

994

I-T)49,5,5

0 0 0
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W I T T( 6,7C)
KP=KP()

4 KP-KP ',

TIME,sONDT(l) T (NOS) D9.•D

TTIME = TIE OF IMMEPSION
CKM = THFMA4L CONDUCTIVITY OF
ALM = T4FDMAL 3IFFUSIVITY OF

A POROUS IRON SPHERE
A POROUS IRON SPHERE

******* CALCULATI

HIN=3.587E-1
F (NOS) =HINl
GD=- (E (NOS)
HOUT=A NOS+1

ON OP TEMFroATURES AT THAIMOCOUPLE
MPTAL S"DEPE
5*(T(NOS+1)**4-T(NOS)**4).CORR
3T*3/.001+T(JOS)

- T(NOS) )/(T(NDJS)-TI)
)*(T(NOS+P2)-T(NSI))*AL M/DR

E(NOS+1)=(WOJT-HIN)*IOT*3/((DoO.5+.1)**3-*001
NA=NOS+2

1l5 00 51 N=N6.N3M
HIN=A(N-1) ,(T(N-1 )-T(Ni))
HOUT=A (N) (T (N+])-T (N))

51 E(N)=(HIN+OUT) *ALPMe T/V (N) /OR+T (N)
NJ= 1

F(N) = TFMP-EATJRE OF E.EMENT AT

*e***e* CALCULATION OF TEMPEPATJRES AT THE SURFACE

SHELL THTrw4ESS LESS TH4N IR

IF(P+TIDP-GNJD)1Oe,10AR0 3

1o3 HIN=-HOUT*l"K /O0
VU = DS*CPq*(.333*(R * .5*")**3 - R*R*R*.333)
VI = Vil * +Pm*O*.333*(R*4*R - (P - .5*PR)*o3)

IF(RFOND• - D)1031,1031,1032
1031 x = 0.0

HOUT = R*R*HTRANS*(TT - T(1))

F (1) = (HIN Tj+4lUT) *ITT/V *T ( (l)
RONiO = p
CO TOr) 203

AN) THNOUGWOUT

*(T'NOS=1)-T(NOS))

*T ('OS+ )

PRESENT TIMF STEP

OF SPHERE WITH A SLAG

0 0

)



*

ln32 Al=(P+.9*x)**2
HOUT=61 *(T4S -T(1))*CK
E (1) = (H I'HOUT) *TT/V
H=-.ACI:
XN=IDT/H/Dq*(C••(T( )-TMS
8A=OND+X N-P
L=BA/TOP
e=TOR* (BA/TOP-1)
IF(nm - ID•'/0l.),9,9
DM = TDP/1'
TF(X-TOT/10)7,?039203
x = IFP/1O

******* CHFCK FnP MFLTING OF SPHERE AND
DTSTIRTUTTIJ

PE.ET PREVIOUS TEMPERATURE

2n3 TF(T(1) - T )lnrl9B,198
198 IF(SDV-4.**~9R**3.1417/3) 100192009200
In01 OR=4.*3.1417*A(1)*CK*(T(2)-1357.)/ID4

DV=IDT*OR/ D*ACRs)
SDV=SDV+DV
E(1)=TM

In0 IF(NOT - NI)200,200,9Q
99 DO 705 K=1.NOM
705 T(K)=F(K)

GO TO R8

**0~*** CALCULATF TEMPERATUPRS AT THE S
THE SOLIn SLAG SHELL

1n HIN=-HOUT*tKM /DR
HOUT=A(1)*(T(2)-T(1))*CK /IDR
VU = DS*CPS*(.333*(P+.5*I0R)**3 -
Vl = VI) + rP"*0*.333*(R*R*R - (R
E(i)=(HIN+HOUT)*I0T/V1 +T(1)

1n9 N=N+1
IF (R+((N )*IDo-ROfND)115,115,110

URFACE OF THE SPHERE AND THROUGHOUT

R*R*R.*333)
. 3IR)**3)

+T(1)

)/X+(TI-TMSJ)*HT-ANS)

0 0 · · 0 ~ ~~~ 0 0



11 x = (OND- /2.) * ( :OMO-X /2.)
u =. 333 ( DM4q-x/ >) *-3-. 333* (ROND- Irg/2-X ) +3
HIN=A(N-I)-' (T(Nj-1)-T(r N))) IO)
HOlUT=X*(T,.S -T(J))/X
E(N)=(HI N+40UT) *ALo* TrT/V+T(N)
H=-ACe
XN=IoT/H/D•*(Cw*(T(N)-TS )/X+(TI-TMS )*-4TANS)
BA=OND+XN-20

L=B A/ T ()
x=IOP* (3A/TF)- )
IF(DM - ID-/10.)9,,9,

115 IF(N-N'O+1)1i16,A6,6
116 r=A(N-i)*T(N-1) +A(N)*T(N+1)

H=(M/V(N))e(A(N-1)+A(N))
F(N) =(,/V(N))*G+T(N) *(1-H)
IF(F (N)-Tm )401,402.402

4n2 F(N)=TMS
401 GO TO 10q
2nl STOP

ENpF

PDOGRAM FOP HEAT

PEAL MIT)T
DIMENqION

290 PEAD(q,100

TNG AN INFINITE CYLINDER IN LIOUIO SLAG

.I)
S(99 99 ),V( 9 T(99) E(99)

ýNO. NOT, NOqNALJ,NOMEIDR9lDTgTTgTOgTMSTMSP
CACP,IP, SDT NP D,DSCPLCPSU,CPMC IN,DL ALL

100 FOPMAT(515/(,F10.4))
1002 wYTTF ( O100) ONOT, NOcAL P9NOMEIDPIDTTITOTMS,TMSP

C 4ACQgAI PS' T \J,, (,DS, CPI .CPS,IJ,CPk,CI \,DL, ALL
7n FORMAT( 8F]0.4)

IF (NO) 201 P201.0



Sn DR=t9-.1)/(NO-NOS-1)
WRITE(6.71l

71 FOPMAT(, TITE PADtIJS
NOv=NO-1
ALPM= .093
KL = 0

72 DO 101 N=1.NOS
J=n

SUrPPFACE

F (N) =TOS
A(N) = ( (N-. r) *TnR+P) ~*2

Inl V(N)= <(N-.S)*100+P) 2
DO 10? N=NOSNO
T(N)=TO
A(N)=((N-NIS- .9)*np+.1)*2

1n2 V(N)= ((N-NOS-.5 )*n.+.1)}**2-
T(1) =TO
KP=100
;ONO=:
X=.lO*IOR
DM = X
XN=X
ALPL=.019
HTRANS = Sl'*ALL*DL*CDI-/o/2
M=IDT*ALP/TDR
CKM = ALPM*D*CPM
CK=ALP*DS*rPS

RR ROND=ROND+vN
TIME=J*IOT
TF(T(NiOS) -. 99*TI)87,q00.200

87 IF(T(1)) 86,86,85
RA IOT = IDT-IDT/In

WRITE<6,73) TOT
71 FOPMAT(' TDT = CHANGFO,,F10.6)

GO TO 7?
PC IF(TI-T(1))R6,AP6qS
84 T(NO)=T(I)

CENTER CAL/CMP-SFC,)

((N-1.S)*IDR+P)**2

((N-NOS-1.5)*DR+.1)**2



KL = L + 1
J=J+1
IF (K -100) 195,5

S TH =(T(1)-Tn)/(TI-TO)
THM = (T(1)-TO)/(TMS-Tn)
WRTTE(6,70) TIMEON ,T T(I),T (NOS),0DM,3<D
KP=0O

4 KP=KP*l
HIN=7.287F-14*(T(NOS+1)**4-T(NOS)**4)" .04*ALPL*
E(NOS)=HINIDT*2/ .01+T (40S)
GN)=-(E(NOq) - T(NOS))/(T(NDS)-TI)
HOUT=A(NOS+1)*(T(NOS+ )-T(NDS+I))*ALM/DR
E(NOS+1)=(ýOUT-HIN)*InT*2/((0DP*.5+.1)**2- .01)+T
NA=NOc+2

InS DO 51 N=NA.NO'A
HIN=A(N-1) (T (N-I) -T (!))
HOUT=A (N) * (T (N+I)-T(N))

51 F (N) = (HIN+HOUT) *ALPM*TrvT/k/ (1) /nr +rT (N)
N=1
IF(P+TDR-8,ND) 1O,10RAln3

ln3 HIN=-HOIJT*Km4 /OP
VU = DS*CPq*( ( +

(T(NOS+I)-T(NOS))

(NOS I )

*X) ** - R*4)

Vl = VIi + -Pm•of* (R*? - (P - .5*gRR)*p)
IF(ROriF - 0)1031,1031.1032

1031 x = 0.0
HOUT = 2*R*HTRA.lS*(TI - T(1))
E(1)=(HIN+HOUT) *IDT/V +T(1)
9OND = P
GO TO 203

1032 Ai=(R+.5*X)*2
HOUT=AI *(TMS -T(1))*C( /X
E(1)=(HIN+H)o UT)*IDT/V +T(1)
H=-ACD
XN=IDT/H/Dc~(CK*(T(1)-TMS )/X+(TI-TMSP)*HTPANS)
A =BON+ XN-P

L=RA/ToD



90

x=-T)Ro (BA/TOn -I )

IF(Dm - 10D/10.)9,9,p
9 DM = TDR/ln
8 IF(X-IOT/10) 7003,203
7 X = InpR/i
2n3 IF(NOT - NI)200,200,9q
99 DO 705 K=1.NOM
7o5 T(K)=F(K)

GO TO 98
1n8 HIN=-HOUT*rK /0Q

HOUT=A(1.)*(T(2)-T(1))*C" /I3R
VtJ = DS*CPS*( (R+,g*IDR)o** - R-R)
Vl = VlJ + "rD*D* (* - (R - .5*DR)**?)
E(1)= (HIN+HOUT)*IDT/V1 +T(1)

1n9 N=N+1
IF (R+(N )*IDP-ROND) llS ll5 O110

110 AX=(BOND-X/2.)*2
VX= (BnND-x/?)**2- (ON4D-IDP/?-X)**2
HIN=A(N-) * ( T ((1)-T()/IDR
HOUT=AX*(T.S -T(N))/X
E(N)=(HIN+HOUT)*ALP*IfT/V+T (N)
H=-ACP
XN=IDT/H/DS*(C V *(T(N) - TuS )/X+(TI-TMSP)*HTRANS)
BA=BOND+XN-P
L=BA/TDP
x=TOR* (BA/TDR-L)
IF(DM - IO/10n.)9,9,t

115 IF(N-NO+1)116,R6,86
116 G=A(N-1)*T(N-1) +A(N)*T(N+1)

H= (M/V (N)) (A (N-i) +A (N)
E(N) =(,,/V(N))*G+T(N) *(I-H)
IF(F(N)-TMcz )4019402,40n

40• F(N)=TMS
401 GO TO 109
2nl STOP

E NO



9 0
0

PPOGPAM FOP HEATTNG AN') MELTTI3 A POROUS IRON SP-ERE IN AN ELECTRIC

PEAL MIDTelDOP.
DIMENcION (9V(),V(9Q).T(99),E(99)

200 PEAD('.100NO, NIT. NO,*NAL ,NOMEID9IDTTITOTMSTTMS
C,ACPg ALt_ SDT NIoP, DOSCPI CPSU ,CPM

100 FORMAT(SIS/RP'10.4))
1002 wPTTE(6,lon)MO,NODTNOflIALPNOMFIDPI3TTTI,TOTMSg,TMS

C,ACPqLPSDT N\DDSCP; S ,PSCPSLU C~Cu
7( FOPMAT( 8F! ,.4)

IF(J40)201 201 0)
5n OR=(R-.1)/(ND-NOS-1)

WPTTE(F,71>
71 FOPMAT(' TrME PADnIIS SUPFACE CENTER INTER

C PENETPATe METAL K,)
NOM=NO-1
nO 101 N=1.NOS
F(N)= TMS
A(N)=((N-. •)*InR•+Q) *

1l V(N)=.333*("\N-.5)*IDr+).**3 -. 333*((N-1.5)*IDR.R)**3
00 102 N=NODSNO
T (N) =TO
A(N)=((N-N 'S- .5) r) ÷.])**2

1n2 V(N)=.333*•(N-NOq-.5 )*nR+.1)oa 3-.333*((N-NOS-1.5)*DR+.
T(1) =TO
ACPm = 65.
KP=50
ROND=P
X=.10*IDP
XN=X
HSLAG = .001
HMET = 3.17
ALPL=.019
PI = (7.87/ - r)/7.87-
SLAG = 30.
nDoP = 0.0
RADIUq = P

P

FACE HTRANS

1)* *3

FURNACE



0 0

PFN = P
J=O
R=v.
C=.0018
ALP=ALP*10/NALo
M=TOT*ALP/Tf)l
CK=ALP*DS*fPS

oQ  BOND=RON)D+YN
N = (NO + \1OS)/
CKM = (42.n/T("!) + 0o.519)**(1 - PI)*t3.04E-04*(l -

C EXP(-7.65r-04T(,N)))+ b*66E-14*T(N)*T(N)*T(N))**op
ALPM = CKM/D/CPM
IF(Do + .1- Q0•D)%R,5 5,2o04

?n4 RATE = D*PiOTUS/TI',E
wRITE( 67n') ATETITE
GO TO 200

8r, T(NO)=T(])
TIME=i,*I)T
VT = ROND*ROND*0NOD*4..19
VM = P*R*R*4.Is9

OTOT = DSs (VT -VM)/VT + D *Vi/VT
IF(SLAG - ,nPOP)10501050501055

1n55 VEL = 163*"ONF*i0OND* (DTOT-DS)/ U
DROP = )ROo * VEL*TDT
HTPANq = O.ig9*VEL**.S*qS**1.167*ALP***67*C L/BOND**O5/UJ**.
HTRANS = HTRANS * ALP*DS*CPL/BOND
GO TO 1060

105n VM = VT*(DTOT - DS)/(7.A 74 - DS)
PEN=(2*BONn*BOND*BOND - 3*V4/3.1417) /(3*80ND*BOND - PEN*P

ST = ROND*ROND*12.57
IF(PEN) 1051 ,1052.,1052

ln51 SM =ST- ( 4.93 * PON)*3OND + 3.1417*PEN*SQRT(ROND*BONr
C -PEN*PEN) - 3.1417*DNEN*EN* ARSTN(-oEN/BOND))
HTPANS = SV/ST*HM4T + (ST-S4)/ST*HSL40
GO TO 1060

1n52 SM = 4.93 * OND*q3NF) - 3.1417*PEN*SQRT(RONOD*ONr

C -PEN*PEN) - 3.1417*PEN * ;E N* APSTN(PEN/BOND)

167/.14

EN)
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+ (sT-S4)/ST*HSLAG
1060 J=J+1

IF (KP-S() 4,5,5
5 WRITE(6,70)TIME,gONFDT(I),T(NOS), XN ,HTRANSPENCKM

KP=O
4 KP=KP+1

HIN=3.587E-15*(T(NOS+1)**4-T(NOS)**4) + .001*ALPL*(T(NOS+
E(NOS)=HIN*IDT*3/.001+T(NOS)
HOUT=A(NOS+1)*(T(NOS?2)-T(N3S+1))*ALPM/DP
E(NOS+1)=(.UO T-HIN)*I'T* 3/((D*. 5+,1)**3- OO )*T(.JOS+I)
NA=NOS+2
IF(E(1) - 1RO00.)105,19R,198

198 DO 52 N=NA,NO
IF(OP*(N - NOS - 1)- RONID + .1)197,199,199

199 AX = (BOND- x/2)*(BONO - X/2)
VX = .333*(•ONO - x/?)**3 - .333*(ROND - DR/2-X)**3
HIN = A(N-1)*(T(N-1) -T(N))/DP
HOUT = AX*(1800.-T(N))/X
E(N) = (HIj + HOJT)*AIPM*IDT/VX + T(C)
H= -ACRM
XN = TOT/H/(D )*(CKM *(T(N) - 1800.)/X + (TT -18

C HTPAS )
R= BOND + XN
BA = BOND * KN - .1
L = BA/DP
X = DP*(BA/DP - L)
IF(X-nP/10189106,106

8 X = 01/10
GO TO 106

197 HIN=A(N-1)*(T(N-1)-T(N))
HOUT=A(N)*(T(N+1)-T(N))

52 E(N)=(HIN+wOUT)*ALPM*TIT/V
GO TO 200

In5 DO 51 N=NA.NOM
HIN=A(N- ) * (T (N-1)-T(N))
HOUT=A(N) * (T(N+1)-T(N))

51 E(N)=(HIN+ýOUT)*ALPM*TfT/V
IF(P - RONr)87q,8,86

1)-T(NOS))

00.)*

(N)/DR+T(N)

(M)/DR+T(N)

HTPANS = Sv/STo*FET

O O O



AA HIN = -HOUT*CKM /DO
Al = PR
HOUT - Al*(TI - T(1))*-TRANS
VI =(.333*"*•*q -.333*(P-.5*DR)**3)/)/CPM
E(1) = (HI,, + HOUT)*Ir T/V1 +T(1)
XN = 0.0
GO TO 106

87 N=1
IF(R+IDR-HlOLD)I10, 108,103

In3 HIN=-HOUT*,"K /DP
Al=(R+.9 *X)**2
HOUT=Al *(T4S -T(J))*oc /X
VU = DS*CPS*(.333*(R + .5*X)**3 - R**R*R*333)
Vl = Vi + "PD*r)*.333*(R*R*R - (P - .5*rR)**3)
E(1)=(HIN+-40UT) * IDT/V +T(1)
H=-ACP
XN=IDT/H/OD*(C v *(T(1)-TMS )/X+(TI-TMSP)*HTRANS)
BA=BOND+XN-P
L=BA/TDP
X=IDR*(BA/Tr)R-1)
IF(x-IDR/ln)7,2039203

7 x = I•/10
p?3 IF(F(1) -1800.0)106,205,205
2n5 x = Dp

OND = P
n16 IF(NOT-J)2onn200,99

90 00 705 K=1.NOM
7n5 T(K)=F(K)

GO TO 88
1S8 HIN=-HOUT*IrKM /DR

HOUT=A(I)*(TT(2)-T(1))*CK /IDR
VU = DS*CPS*(.333*(R+.5*IDR)**3 - RoR*R*.333)
Vl = VI) + rP%*O*.333*(R*R*R - (R - .5*)R)**3)
E(I)=(HIN+HOUT)*IDT/Vl *T(1)

1n9 N=N+1
IF (R+(N )*IDP-ROND)115,115,110

110 AX=(BOND-X/2.)*(BOND-X/?.)



vx=,333*(8N.--x/P)**3-333*(BOND-IDP/~2-x)**3
HIN=A(N- ) * (T (N-i)-T(N))/ID
HOUT=AX*(ToS -T(N))/X
E(N)=(HIN+HOUT) *ALp*InT/VT (N)
H=-ACP
XN=IDT/H/DS•*(CK*(T(N) - T MS )/X+(TI-TMSP)*HTR:ANS)
BA = BOND+.N-P
L=BA/TDR
X=IDR*(RA/TfR-! )
IF(X-I)OR/n) 7,9203,203

115 G=A(N-I)*T(N-1) +A(N)*T(N+1)
H=(m/V(N)) (A(N-1)+A(N))
F(N) =(I/V(N))*G+T(N) *(I-H)
IF(E(N)- T'9, )401-402,402

402 F(N)=TMS
401 GO TO 109
2n1 STOP

END)
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APPENDIX E. RADIATION HEAT TRANSFER IN A BOUNDARY LAYER

This appendix presents the mathematics for calculating the relative

amounts of heat transfered by radiation and conduction in a fluid

boundary layer at steady state.

Heat Transfer by Conduction

The system consists of a solid adjacent to a liquid slag with a

smooth interface separating the two phases as shown in Figure E-1. The

solid material is either metal or frozen slag. In the latter case the

interface moves according to the balance presented in Chapter V, and the

temperature at the interface is at the solidus temperature of the slag.

Radiation through the bulk of the frozen slag shell is neglected due to

the high extinction coefficient caused by the absorption and scattering

of the photons by tie crystalline slag.

The liquid slag is bounded by the metal or solid slag on one side

and unbounded on the other. The heat conduction from the liquid to the

solid through the boundary layer is represented by a mean heat transfer

coefficient, hL. The heat transfer coefficient is a function of the

fluid motion and is assumed to be constant. If radiation heat transfer

is neglected, the heat flux, qc', to the surface of the solid depends on

the heat transfer coefficient, hL, the surface temperature, TS, and the

bulk liquid temperature, T , as shown in Equation (1)

(1)qc = h (T-Ts)
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With the addition of radiation heat transfer, the total heat flux is

Q = qc + qr

when coupling between the radiation and conduction is neglected.

Heat Transfer by Radiation

Radiation is only significant in the liquid phase. One can solve

the radiation transport equations for a region bounded by the surface

of the slag at its melting temperature and the infinite bulk of liquid

slag. This solution is done in one dimension considering energy

balances at an arbitrary element in the liquid of width dxo (41).

The element dx shown in Figure E-1 is at steady state, the

radiation received must be equal to the radiation emitted.

I + I = 2Ix (1)x- x+ o

Also because there is a net flow of heat through the plane at x
o

I - I = q (2)
x+ x- r

Subtracting the Equations (1) and (2)

21 = 2Ix - q (3)x- o r
fxo

where I = a' le o + 0Ie o dxx- o f

a' = (l-r) fraction adsorbed + fraction transmitted x
o o

I = radiation from solid surface

= absorption coef.



x=O Xo x
I I
II I'
II I
i I  X II I I
I I I I
I ' i I
I I I

I I I IIxI I+ II

S I I

I I I III I I
Liquid , H

I I I I
II II
I I I II I

dxo dx

Figure E-1 Radiating liquid bounded by a solid

227.
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Equation (3) becomes

Ix
2 le - ( x - ) dx = 21

0
0

-Bx
- 2a' I e o - qr

o f

To remove the integral, Leibnitz rule is applied to the differentiation

of Equation (4) with respect to xo

That is

d( Ble ( dx)

dx
0

oIx d(Ie- B( x -x)

o dx dx
o

-O(x -x) dx
o o

+ OIe
dx

X=X O
O

(x

B2Ie
-O(x -x)

o + ax

And Equation (4) becomes upon differentiation with respect to x

(x
o  2

2 - B21e

- (x -x) 2dIx
o dx + 28I = + 2a 'OI

o dx o fe
0

Dividing Equation (5) by 0 and adding it to Equation (4) results in

q 3dx = 2dI

Thus (6) is integrated over the limits

at x = O,
o

at x = x,
O

(4)

- (x o-x)
0

BIe
dý(o)
dx

o

x=O

-Bx
o (5)

7r 0
(6)

I = I
x f

= I

I

= I
J
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qrB x

Resulting in If - I - 2 (7)

which gives the temperature distribution if

I = oT

If the heat transfer coefficient represents a linear boundary layer, 6,

h = -

where K is thermal conductivity of the liquid. The net heat flux due
c

to radiation through the boundary layer is

-a2(T - T4) (T- T1 ) 2h
S OS 2h

r -6 (K

Then the total fraction of heat transfer by radiation is

qr (T4 -T ) 02

f 4 4
rad q +qc (T -T )42 + ATMKc

It should be noted that the above calculations are based on the

assumption that the solid surface acted as a black body and that the

liquid slag acted as a grey medium. The assumption of a black body

for nickel may be very good if there is an oxide layer on the surface

(likewise true for iron). But crystalline slags have emissivities of

the order of 0.6 to 0.8 and therefore may scatter much of the radiation

back into the liquid. This would have the effect of increasing the

thermal gradient at the solid surface, but on the whole the radiation

heat transfer would be less due to less absorption at the surface.
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APPENDIX F. CHEMICAL ANALYSIS OF THE SLAGS

A total iron analysis was performed on the ferrous silicate slags.

Powdered slag samples, which were taken from the liquid slag, were dis-

solved in hot hydrochloric acid or fused with molten calcium carbonate

and then dissolved in the acid. Once in an aqueous solution the iron

present was reduced to Fe by reduction with tin (II) chloride and

titrated with a potassiLum permaganate solution. A Zimmermann-Reinhardt

reagent was used to inhibit the oxidation of the chloride ions by the

permanganate (73). The detailed procedure for the iron analysis is

presented by Skoog and West (73).

Comparisons between the total iron calculated from the mixed

reagent powders and the total iron from the analysis are shown in Table

III-1. The agreement is good except for the synthetic copper smelting

slag N-ICU. The excess iron which is present in this slag is the result

of oxidation of the iron crucible by the Fe20 3.

Slag samples were taken just after the initial melting of a powder

and also after several hours of experiments with the slag. These samples

were analyzed for total iron, and there was no more than 0.1% variation

in iron present. Such a small change in the iron content would have a

negligible effect on the thermal conductivity or melting range of the

slag.
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APPENDIX G. SIMILARITY BETWEEN THE SLAG AND THE GLYCEROL

SOLUTION

The principle parameters which characterize the motion of bubbles

(36) are the bubble Reynolds number

N bL
Reb I

where db is the diameter of a sphere of equal volume to the bubble

u is the velocity of the rising bubble

PL is the density of the liquid

p is the viscosity of the liquid

the Weber number

dbu PL

We a
s

where a is the surface tension
s

The Morton number

N =
Mo pL .gO-

where g is the gravitational constant.

Although there is a limited amount of data on the relationship

between bubble velocity and bubble size for a variety of gas liquid

systems, an empirical relationship has been derived by Davies and Taylor

(80) which is independent of the properties of the liquid

gdb 1/2
u = 1.02 (-)

This relationship appears to hold true for equivalent bubble diameters

between 0.2 cm. to 4 cm.
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For the formation of a bubble at a orifice, the mean bubble

diameter appears to be related to the orifice Reynolds number

dVp
N ooL

Re - p
o

where d is the diameter of the orifice and V is the velocity of the gas
o o

at the orifice. Since the orifice is the same in both the slag and the

glycerine experiments, the similarity between the bubble diameters of the

two systems depends only on the kinematic viscosity - .--  Also, since the
PL

rising velocity of a bubble is independent of the properties of the liquid,

similarity in the motion of the bubble depends only on the kinematic

viscosity. For the glycerol 10% water system the kinematic viscosity

is

S- 1 poise3 = 0.80 cm 2 /sec.

PL 1.25 g/cm

For the slag N-lCU the kinematic viscosity is estimated from the pro-

perties presented in Chapter V.

_ 2 = 0.57 cm 2/sec.
PL 3.5

The similarity is not perfect, as the kinematic viscosity of the glycerol

solution is somewhat higher than the slag. The higher viscosity may

result in slightly larger bubbles in the glycerol solution.
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