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ABSTRACT

The transportation planning process has been traditionally performed
on a sequential, heuristic basis, with each step having a methodology of
its own. This thesis suggestsa unified approach, and an algorithm, within
which many transportation equilibrium analyses can be carried out, using
a disaggregate demand model (the multinomial probit) as an integral part
of the equilibration procedure. The conditions of equilibrium in the
passenger transportation market are identified and defined, the problem is
cast as a mathematical program and an efficient algorithm for its solution
is introduced.

The approach consists in reducing the equilibration problem to a
network assignment problem over a modified network (termed hypernetwork).
All choices faced by tripmakers (e.g., taking a trip, mode, destination,
route, etc.) are viewed as choice of an alternative path on this (abstract)
hypernetwork, to which the network formulation and equilibration algorithms
are applied.
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CHAPTER 1

INTRODUCTION

1.1 OBJECTIVE AND SCOPE

This thesis presents a framework and an algorithm, within which many

transportation equilibrium analyses can be carried out. It departs from

the main line of thought in previous transportation planning research and

applications in that it suggests that passenger transportation market fore-

casting problems can be dealt with in a unified way. The solution method-

ology consists in interpreting the sequence of choices faced by an

individual about to take (or not to take) a trip, as a choice of path on an

abstract network (hypernetwork).

The hypernetwork's methodology eliminates some of the biases and in-

consistencies that limit the theoretical basis of existing analysis tech-

niques and that are a major source of the high cost associated'with such

procedures. This alternative approach simplifies the analysis conceptually

and promises significant cost savings. In this thesis, the equilibrium

conditions are defined, the equilibration problem formulated, and an

efficient algorithm for its solution is developed. The mathematically con-

sistent formulation and algorithmic solution of the transportation market

equilibrium equations greatly enhances the potential of disaggregate demand

models since it is now possible to avoid their gross mispredictions, when

applied to congested and capacitated transportation systems.

Although the urban passenger transportation planning process is used

throughout this thesis as an example, it should be noted that the algorithmic



framework is not restricted to either macroscopic or microscopic applications.

It can be used to study the equilibrium flow pattern over an entire urban

area, or to design the capacity and location of an isolated parking lot.

The next section introduces the notion of equilibrium and discusses

the transportation planning process.

1.2 REVIEW OF EQUILIBRIUM TRANSPORTATION PLANNING METHODOLOGY

The term "equilibrium" as used in this thesis (and as it is commonly

used among transportation engineers and planners) refers to a consistent

pattern of flows and level of service (LOS) over the transportation market.

Predicting such equilibrium situation (the equilibration process) is not

trivial since the performance of the transportation system (the LOS) depends,

in general, on the volume (flows) of users in the system and vice versa.

The function relating the LOS to the flow is commonly referred to as the

"supply" side of the transportation "market".

It is useful to distinguish between the economic concept of supply

and the meaning of the same term here since this distinction would clarify

the scope of this thesis. The economic term relates the reaction of the

consumers and firms to the market stimulus, while the latter refers to

technological relationships. In the context of transportation, the economic

term of supply describes the reaction of government and operators to the

LOS in the system (in terms of changing capacity and performance). Such

reactions are long-run phenomena and are not included among the market

forces under consideration in this thesis. In contrast, the term supply

in this thesis means performance function, as explained above.

A similar distinction holds with regard to the demand side of the



transportation market. Demand funtions relate the reactions of the users

(passengers in our case) to the LOS offered by the system. The users

reactions considered in this thesis consists in the short-run travel

decisions (e.g., not to take a trip, change mode, change route, etc.).

Longer-run phenomena (e.g., residential relocation, car ownership level

changes, etc.) are not included in this analysis.l Thus, the analysis of

the transportation market involves the equilibration of the short run

travel decisions with the system performance (supply) functions.

Modelling the abovementioned equilibrium is the classic problem of

passenger transportation planning. Sheffi and Daganzo (1978a) review a

sample of the huge body of literature dealing with this so-called "trans-

portation planning process". The process is typically modeled and conducted

as a four step analysis, including the prediction of trip generation, trip

distribution, modal split, and traffic assignment, where each step is

associated with a methodology of its own.

The most widely used model of urban passenger transportation is the

"UTPS"2, which is a battery of computer programs designed to perform the

abovementioned process. There are other computer packages that attempt

to perform the transportation market equilibration process, such as

"DODOTRANS"3 (which, unlike the early versions of the UTPS, is an explicit

1Manheim (1978) terms these long-run forces on the demand side "Type II",
and the abovementioned long-run supply relationships "Type III". Note,
however, that technically the methodology can be extended to include this.
"UTPS" stands for "UMTA Transportation Planning System"; see USDOT/UMTA
(1974) for a description of the model system, and, for example, Brand
(1972) for a discussion of the methodology.

3 "DODOTRANS" stands for "Decision Oriented Data Organizer for Transporta-
tion Analysis, see Manheim and Ruiter (1970).



equilibration package). A review of many of these packages can be found in

Peat, Marwick, Mitchell and Co. (1973).

Although generally accepted and widely used, the abovementioned four

step process was severely criticized in the literature in the last several

years. Some of the criticism is general and points out the deficiencies

of all large scale models [e.g., Alonso (1968), Bolan (1970) and Lee (1973)].

Some of it is directed at specific models used in process . Yet other re-

searchers have based their criticism on a more fundamental issue -- the

statistical and behavioral assumptions that underlie the treatment of the

demand side. The latter line of criticism led to the so-called disaggregate

travel demand models which by using individuals as the study units attempted

5
to capture travellers' behavior 5 . Subsection 2.2.1 of this thesis contains

a brief overview of the foundation and functional forms of these models.

Because of their apparent advantages, disaggregate models have gained

6
popularity among planners and are increasingly used in practice . However,

disaggregate demand models have raised a set of new unresolved issues. The

first of these is the aggregation problem, i.e., how to use disaggregate

models to get aggregate predictions. Koppelman (1976) reviews several

methodologies, none of which produces satisfactory solution [see for

example Bouthelier and Daganzo (1978)]. The second difficulty (which

is related to the aggregation problem) is in incorporacing these

4For review of references concerning criticism of specific models see
Sheffi and Daganzo (1978a).

5See for example Lave (1969), Reichman and Stopher (1971), McGillivray (1972),
Charles River Associates (1972), Ben-Akiva (1974), and Richards (1974).

6 Sheffi and Daganzo (1978a) review applications of disaggregate models to
issues such as trip generation, trip distribution, modal split, traffic
assignment, residential location and freight shipping.



models within an equilibration framework. The third one is that most

disaggregate modelling effort has been with models, such as logit, that

involve sometimes unrealistic assumptions and often fail to capture reason-

able user behavior (see Subsection 2.2.1).

In addition, some of the issues that arise from the heuristic nature

of the four step transportation planning process still remain, as happens

for instance, with its failure to represent the transportation system LOS

consistently, throughout all the steps. In order to circumvent this prob-

lem, it is suggested that the model system should be iterated several times,

in order to achieve a state of equilibrium (which is not formally defined).

However, due to the high computation costs involved, seldom is this done

in practice. These iterations are the source of a body of literature

concerning "feedback-loops" and "accessibility measures".7

Lastly, there are some specific problems in addition to the aggrega-

tion and equilibration issues. For instance, even though it was realized

that market segmentation might enhance predictions [e.g., Lovelock (1975),

and Nicholaidis, Wachs and Golob (1977)] and is commonly used in practice,

no firm guidelines are given as to the necessary extent of the segmenta-

tion. Similarly, in the traffic assignment step, no definite criteria

exist on how to represent the network, i.e., how to locate the zone

centroids and select the number and characteristics of dummy centroid

connectors.

In summary, the following issues are identified:

1. Concerning disaggregate demand models --

la. The aggregation problem (including market segmentation)

7See Sheffi and Daganzo (1978a) for references with regard to this point.



lb. Incorporation in equilibrium analysis

ic. Alternatives to logit.

2. Concerning the traditional process in general --

2a. Equilibrium formulation and equilibration procedure

2b. Consistency throughout the steps

2c. Network representation.

The objective of this thesis is to provide a framework within which these

issues can be resolved. Some of these problems have recently been tackled.

McFadden (1977) has introduced a generalized logit (The General Extreme

Value Model) -- a model that eliminates some of the theoretical weaknesses

of logit, while Daganzo, Bouthelier, and Sheffi (1977a and 1977b) have

developed a numerical solution to probit -- both reasonable alternatives to

logit (issue ic). The network representation problem has been solved by

Daganzo (1977c) through a continuous approximation of the interzonal trip-

end impedance (issue 2c). Some of the abovementioned problems are partially

solved, such as the aggregation problem with the aggregation method intro-

duced by Bouthelier and Daganzo (1978) as a multivariate extention of the

work of McFadden and Reid (1975) and Westin (1974), and yet some of them

remain unsolved (incorporating disaggregate demand model within a formal

and efficient equilibration scheme). This thesis uses some of these

results and some new ideas, to formulate a solution (at least partial) to

the abovementioned problems.

Several equilibrium models have been recently developed. The first

ones dealt (rigorously) with the route choice and netowrk equilibrium

only [e.g., Nguyen (1974) and LeBlanc (1975)] by casting the problem as

a mathematical program. Ruiter and Ben-Akiva (1977) developed a complete



equilibrium forecasting system incorporating an integrated set of pro-

duction oriented disaggregate models, and a conceptually similar model

system was used by Jacobson (1977); both methods, however, are not guaranteed

to produce the desired results (in terms of convergence to a defined equil-

ibrium). A formal solution of the equilibration problem over a transporta-

tion corridor, using disaggregate demand models was obtained by Talvitie

.and Hasan (1977). Their approach consists in formulating the equilibration

as a fixed point problem and solving it utilizing the algorithm proposed

by Scarf (1973).

The approach taken in this thesis is to view and formulate all the

choice processes as route choice processes over an abstract network (hyper-

network) and use an efficient mathematical-programming procedure to derive

the equilibrium solution. The general concept of hypernetworks is intro-

duced in the next subsection below.

1.3 THE HYPERNETWORK CONCEPT

In this thesis, the various alternatives opened to travelers in the

transportation market (e.g., mode, route, destination, etc.) are viewed as

paths in a hypothetical network (a hypernetwork) made up of link character-

ized by disutilities. It is assumed that, as in route choice problems, users

select the shortest route (i.e., the alternative with the lowest disutility)

from their origin to their destination. (This is merely a restatement of

the utility maximization principle of choice theory).

The ideate of hypernetworks has been latent in the literature for

some time. As early as 1972, at the Williamsburg conference, A. G. Wilson

(1973) noted:



"...It is tempting as computer capacity expands to think
of assigning on multimodal networks, in effect, possibly
directly on routes on an abstract modal basis.... This is
another class of mathematical aggregation problems."

Manheim (1973) tried to formulate the transportation planning process as

a network assignment problem, using logit path-choice model (in the form

of Dial's (1971) STOCH algorithm) imbedded in an incremental assignment

equilibration.8' 9

Dafermos (1976) suggested an integrated equilibrium flow model for

transportation planning, based, again, on visualizing the whole trans-

portation planning process as a solution to a network assignment problem.

In her words,

"...We adopt the natural behavioral assumption that each
user chooses his origin, his destination, as well as his
path as to minimize his "travel cost." Of course,
"travel cost" should be interpreted in a very liberal
fashion. In reality additional factors such as "attrac-
*tiveness" of the origins (residential areas) and destin-
ations (places of work) have to be taken into account
but this can be incorporated into the model as "travel
cost" by a straight-forward modification of the net-
work....Interestingly, we establish a mathematical
equivalency which reduces integrated transportation
problems for a network into assignment problems for a
modified network".

Dafermos' model, although very similar to the hypernetwork concept, is

not quite as general for she was working exclusively with deterministic

A similar technique, but for the traffic assignment step only, was formu-
lated and tested recently by Fisk (1978).

9This approach does not solve any of the issues discussed in the preceeding
section, due to the use of logit (see Subsection 2.2.1 for a review of
logit's flaws and also Schneider (1973), Burrell (1976), Florian and Fox
(1976) and Daganzo and Sheffi (1977) for a critique of Dial's assignment
method) and the heuristic incremental equilibration procedure (see Yagar
(1976) and Ferland, Florian and Achim (1975) for a discussion of the
inconsistencies of incremental methods).



travel costs over the modified network. This explicitly excludes many

demand models from the realm of applications of her model since, as it

is assumed with deterministic equilibrium traffic assignment methods,

users are identical (this excludes disaggregate demand models), fully

informed (which excludes logit, probit, and other stochastic models)

individuals, making consistently perfect decisions.

The well known elastic demand traffic assignment problem formulated

by Beckman et al. (1956) can be solved with existing fixed demand (fixed

trip rate) traffic assignment algorithms on an expanded network, as shown

by Danzig et al. (1976). Such an expanded network can be viewed as a

hypernetwork since it includes (in addition to the street network) dummy

links going from each origin to each destination in order to represent the

no-travel alternative.

Sheffi and Daganzo (1978a) cite additional references of formulations

combining several steps of the planning process which can be viewed as

hypernetwork formulations.

The hypernetwork concept, as developed in this thesis, is intimately

related to Multinomial Probit (MNP) models, and thus present the same

advantages and disadvantages of MNP models. Namely, MNP models and hyper-

networks solve, or at least alleviate, the market segmentation problem, as

explained in Sec. 2 of this thesis. The old issue of the proper step

sequence (i.e., should mode choice be predicted before destination choice,

after it or simultaneously with it), posed by Ben-Akiva (1974) (who

demonstrated the feasibility of a simultaneous approach) has already been

(indirectly) addressed in Sec. 1.2. The hypernetwork approach is equiva-

lent to a simultaneous MNP choice model whose covariance matrix can be



studied visually. The hypernetwork idea is the key to performing supply-

demand equilibration with disaggregate demand models over the whole trans-

portation market, on a mathematically consistent basis (heuristic equilib-

ration technique based on feedback loops do not necessarily converge).

To illustrate the hypernetwork methodology developed in this thesis,

assume for instance that one is concerned with a modal split and route

choice problem for a single origin-destination pair, and to further faci-

litate the concept, assume that there is only one transit mode and two

automobile routes. Figure 1-1 presents a possible configuration of the

hypernetwork corresponding to such problems.

In this figure there are three hyperpaths corresponding to the three

alternatives. The "costs" over links OA and OB represent the flow

independent components of the disutility of the two modes (e.g., socio-

economic-related disutility components, comfort, privacy, etc.) and links

AD and BD are associated with the actual travel impedance (e.g., travel

time) of the two alternatives. Choice of, say, the top route in the

figure, implies that the shortest route through the hypernetwork consists

in driving a car through Route 1 of the street network.

In the most general case, link disutilities may be random (i.e.,

perceived and measured utilities are distinguished), flow-dependent (e.g.,

travel time under congested conditions or transit dwell times), fixed

(e.g., transit fare, parking fee or transfer disutility) and/or multi-

attributed. As will become apparent in the subsequent chapters, compu-

tational efficiency considerations require the modelling of links exhibit-

ing flow-dependent and flow independent disutilities in a different way

(see Subsection 2.3.2). Disutilities are also assumed to be additive so
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that the disutility of an alternative (hyperpath) equals the sum of the

disutilities of the links that make it up.11

By changing the structure of a hypernetwork, one can affect the probabi-

listic structure of the corresponding choice model (this will be seen in

Subsection 2.3.1 which explains the effect of network topology on the choice

probabilities). For instance, Figure 1-2 displays an alternative representa-

tion of the choice situation depicted in Figure 1-1, corresponding to a

view of the three hyperpaths as alternatives exhibiting statistically

independent utilities.12

Figure 1-3 illustrates a more complicated choice problem represented

as a hypernetwork. It displays a (single origin) problem of combined

modal split, route and destination choice, where a fraction of the

population does not have access to the car mode. The links representing

the street network and transit lines are associated with travel impedance.

All other links represent other dimensions of travel choice and are

associated with the corresponding disutility [e.g., links D.D (i=1,2,3)

are associated with destinations attraction variables]. Note that 02

does not have access to the street network, in order to represent market

segments that do not own automobiles. The number of hyperpaths in this

hypernetwork is larger than in the preceeding example (in fact, in real

problems this number is large enough as to preclude total enumeration of

all possible hyperpaths).

A discussion of the additivity assumption is included in Section 3.3.
12This discussion corresponds to a restriction on the randomness in the

process where link utilities are viewed as statistically independent
variates. This point is discussed in detail in subsequent chapters of
the thesis. As shown later in the thesis, such a representation corres-
ponds approximately to the so called "independence from irrelevant alter-
natives" property [due to Luce (1959)].

18



Figure 1-3

Mode, Destination and Route Choice Hypernetwork
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These examples were intended to demonstrate that it is possible to

construct a hypernetwork for many choice problems and that different market

segments can be adequately handled by appropriate representation (as will be

shown later, one doesn not have to enumerate all hyperpaths in order to

solve for the equilibrium flows).

1.4 THESIS OUTLINE

This research provides a framework and an algorithm for equilibrium

analysis of hypernetworks. Chapter 1 has presented the problem and its

context, while Chapter 2 reviews and further develops some specific analyti-

cal tools needed in the following one. Chapter 3 presents the body of the

research and Chapter 4 summarizes the results and suggests further research

needs.

Chapter 2 is divided into three main parts: choice theory background

(Sec. 2.1), aggregation issues (Sec. 2.2), and network equilibration

methodology background (Sec. 2.3). Following an introduction outlining

Chapter 2, Section 2.1 presents the MNP disaggregate demand model and the

method used for evaluating the MNP choice probabilities. Sec. 2.2 explores

some of the MNP model's advantageous properties with regard to various

aggregation problems. Section 2.3 covers the necessary network assignment

and equilibration background. It includes a review of the MNP-based theory

of stochastic equilibration, the rationale of the deterministic modelling

of congested links and an algorithm for the spatial aggregation traffic

assignment which is the basis for the equilibration algorithm presented in

Chapter 3.



Chapter 3 starts with a modification of the abovementioned algorithm,

(Sec. 3.1). The quilibrium conditions and the hypernetwork concept are

explored in Sec. 3.2, and the modified algorithm (of Sec. 3.1) is applied

to the hypernetwork in Sec. 3.3. The latter section also discusses the

modelling assumptions and illustrates the approach through an example.

The first section of Chapter 4 includes a brief summary of the thesis

and the assumption underlying the approach. The last section (Sec. 4.2)

discusses some applications and extensions of the methodology, and points

out directions for further research.



CHAPTER 2

CHOICE THEORY AND EQUILIBRIUM BACKGROUND

In Chapter 2, the tools needed as background for developing the

comprehensive equilibration method presented in Chapter 3 are briefly

reviewed. It is divided into three basic parts: choice theory (Sec. 2.1),

aggregation issues (Sec. 2.2) and equilibrium theory (Sec. 2.3).

The first subsection of Sec. 2.1 reviews choice theory and the multi-

nomial probit (MNP) equation, while the subsequent subsection (2.1.2)

presents the method for evaluating the MNP choice probabilities. Sec. 2.2

deals with the aspects of the MNP model upon which the demand side of the

equilibration procedure is based. Subsection 2.2.1 illustrates how aggre-

gation can be performed analytically with MNP models when some of these

models' explatory variables are approximately normally distributed across

the population. Such a normal approximation is used in Subsection 2.2.2

to obtain the intrazonal travel time distribution of trip ends. The last

part of Sec. 2.3 explains the concept of expected maximum utility and its

use in obtaining the total utility of the population.

Section 2.3 deals with equilibrium network assignment background.

The first subsection reviews a MNP-based traffic assignment (i.e., route

choice) model for networks exhibiting stochastic links costs. This sub-

section also points out the inefficiencies of existing algorithms for

traffic assignment over stochastic and congested networks, leading to

Subsection 2.3.2, where the rationale for approximating certain components

of equilibrium models by deterministic ones, is presented. Such approxi-



mations are exploited in later sections of the thesis to develop the equili-

bration method. The last subsection of Sec. 2.3 reviews an algorithm,

orginally developed to solve the spatial aggregation problem of traffic

assignment. This technique serves as a basis for the hypernetwork

equilibration method developed in Chapter 3.

2.1 CHOICE THEORY BACKGROUND

2.1.1 Disaggregate Demand Models and the Probit Integral

This subsection introduces the multinomial probit (MNP) disaggregate

model of travel choice.13

Disaggregate demand models have been the central thrust of travel de-

mand research in the last decade or so due to their following features:

(a) The use of disaggregate data for model estimation is more

efficient, implying a reduction in data collection costs.

(b) The estimation is independent of the distribution of the explan-

atory variables -- making disaggregate models potentially more

transferrable and eliminating possible biases due to prior aggre-

gation.

(c) Some of these models are interpreted as utility maximization,

giving them a flavor of causality and behavioral realism.

The hypothesis underlying these models is that when confronted with a choice

situation, an individual associates a (perceived) level of attractiveness

1letailed review of disaggregate models and travel choice theory can be
found in a variety of references including Domencich and McFadden (1975),
Manski (1973) and Richards and Ben-Akiva (1975).



(utility14 ) with each available alternative. This utility is a function

of the choice maker's characreristics and the alternatives' attributes, and

the choice maker is assumed to select the alternative with the greatest

utility. Since utilities are not observable, they are modeled as random

variables distributed across the population of choice makers.

Most operational models assume a functional form of the utility,

which is linear in the parameters and with additive disturbance, i.e.,

the utility of alternative i to an individual chosen in random from the

population, U., is given by:

Ui = BZ. + . [2.1]

where ý is a vector of parameters, Z. is a vector of functions of character-
1

istics of the individual under consideration and the attributes of alterna--

tive i, and Ei is a random variable representing an unobserved disturbance
1

or error term. 15 The term BZi is usually denoted Vi and termed the obser-

ved utility (or mean utility since without loss of generality, it can be

assumed that E[U t ] = Vt).

The disaggregate choice model is concerned with estimating the probab-

ility of each alternative being selected, given the vector of measured

utilities V = (..., Vi,...) and the joint distribution of E = (...,*i,...).

The probability, Pi, that alternative i is selected by a (randomly chosen)

individual,from his choice set S is:

14The term "utility" is used throughout this thesis to denote this level of
attractiveness associated with each alternative. However, the term util-
ity does not correspond exactly to the general meaning of this term in the
economic literature -- see discussion in Subsection 3.3.2.

15If the parameters, $, vary from individual to individual (taste variation),
the distribution of E depends on the characteristics and attributes, Z;
such models are discussed by Hausman and Wise (1978),and Albriaht, Lerman
and Manski (1977).



P. = Pr(choose i1S) = Pr(U. > U. ; VjES) ; ViES [2.2]

Substituting Eq. [2.1] into [2.2], one gets the choice probabilities:

P. = Pr(ý. < V. - V. + 5 ; VjsS)
1 :-- 1 i

= Pr{[i E(t,t+dt)] n [E. < (t+V.-V.)]}dt [2.3a]

t Vj ES

Letting F(...,ti,...) denote the joint cummulative distribution function of

the disturbance vector E,and Fi(...,t.,...) its partial derivative with

respect to t. (assumed to exist), one can rewrite Eq. [2.3a]:

P. - j F.(...,t+V.-V.,....)dt. [2.3b]

In order to solve Eq. [2.3b] one has to assume a probability law for the

disturbance vector, = (..., ,...). If the 2i's are assumed to be inde-

pendent and identically distributed (iid) Gumbel variates, Eq. [2.3b] re-

duces to the well known multinomial logit (M4NL) formula [see for example

Beilner and Jacobs (1972) and McFadden (1973)].

The major drawback of the MNL model is that it exhibits the irrele-

vance from Independent Alternatives (IIA) property (Luce, 1959) that have

been shown to produce unacceptably counter-intuitive results when applied

16to certain choice situations.1616Mayberry (1970) carried the consequences of the IIA property to an extreme
in the context of mode choice with the well known "Blue Bus-Red Bus"
(contrived) example, Daganzo and Sheffi (1977) showed its undesirable
consequences for route choice situations (see also Footnote 9), and Sheffi
(1978a) discussed the failure of the MNL for the case of integer ordered
alternatives.



Multinomial Probit (MNP) models provide a more attractive alternative

to the MNL model, as they are based on the hypothesis that the random vector

5 is multivariate normal (MVN) distributed . Since the MVN distribution

admits a full parametrization in terms of covariance matrix, correlation

among alternatives can be captured (thus obviating the IIA property). Fur-

thermore, some very powerful results with regard to the aggregation problem

can be developed,because the MVN family is closed under linear transforma-

tion. Substituting the MVN probability law in Eq. [2.3] the choice probab-

ility becomes:

tl+Vi-V1  ti-+Vi-Vi o ti -Vi+Vi+I  t +Vi-VI

1 i-1 1 l+1 IP1 = f.... J fff MVN(t)Qt 19 .9.dtt t ti- ti titl [2.4]

where:

MVN(t) = (w/2)I / 2  1 exp(-1/2 tT -1t) ,

and I is the number of alternatives in the choice set S, Z is the covariance

matrix of E and, as mentioned above, E[E] = 0.

Although Eq. [2.4] is not easy to evaluate, an approximate solution

method was recently proposed and tested by Daganzo, Bouthelier and Sheffi

(1977a and 1977b). This solution method is reviewed in the next subsection

below.

2.1.2 The Approximation of the Probit Integral

The solution of the integral [2.4] is approximated based on some

formulae suggested by Clark (1961) to evaluate the MVN distribution function.

This section reviews these formulae and their use to calculate choice



probabilities.

Clark's formulae approximate the first four moments of the distribution

of max(U1 ,...,U ), where the I random variables have an unrestricted joint

normal distribution.

Let U1,U 2 and U3 be MVN distributed with means V1,V2 and V3,
2 2 2

variances a,' a2 and 3', and correlation coefficients p12' 013 and p23'

th
Then if v. is the i moment about zero of the random variable,

1

max(U1 ,U2), and p[U 3, max(U1 ,U2)] is the coefficient of linear correlation

between the new variable and U3, Clark showed that:

S= V () + V 2(-y) + a4(y) [2.5a]

2 2 2 2
S(V 1 + 1 )(y) ( V2 + a2 + 1  2)a4(y) [2.5b]

and

p[U3,max(U1 ,U2)] = [a1 13() +2(23.Y)( 2 - 1) [2.5c]

where:

cP(x) = (27r)-1/2exp(-X2/2) (the standard normal distribution)

¢ (x) = _f (t)dt (the standard cumulative normal curve)

2 2 2
a = J1 + 2 - 2a1 2 P12  (the variance of the difference V1-V2)

and

y = (V1 - V2)/a.

If now one approximates the distribution of the maximum of two normal

random variables by a normal distribution, one has,

max(U1,U 2) 1 N(V1' V2 - V ) '  [2.6]

and Equations [2.5 through 2.6] can be used recursively to obtain the



approximate distribution of the maximum of I variates by calculating the

mean vector and covariance matrix of [U1 ,...,UI1 2 ,max(UI1 I,U )] and re-

peating the process to calculate them for [U , ...,max(U max(U-1 ,U )) ],

[U1 ,...,max(U 1-3 ,max(U1-2 ,max(U1-2 ,max(UI-1,U )))], etc. Thus, after I-1

iterations, one can obtain the approximate mean and variance, V andmax

a , of the maximum.
max'

If U. is the last variable to be considered, we have at the last

iteration:

V_i = E[max(U ,...,U i,Ui+ ,...,U9)] [2.7a]

2
a.- = var[max(U ,...,U _l Ui + ,.. .,U)] [2.7b]

p-ii = corr[U i.,max(U., .. ., U., U. i+,...,U )] [2.7c]

thIt is now possible to calculate the probability that the i variate is

th
actually the largest (i.e., the probability that the i alternative is

chosen), P.:
1

Pi = Pr{Ui > max [U.]} = Pr{[max(U ,...,U. 1 ,U.,...,U1 )] - U. < 0}
1' 

-  i + l ' 
i1 1 +-

Vj#i

V. -V .
1 -1

= ( 2 ( 2 [2.8]
a -1+ - i -iP i i

Due to the error introduced by Eq. [2.6], Eq. [2.8] is only approxi-

mate. However, as shown by Daganzo, Bouthelier and Sheffi (1976b), the

latter is a good approximation for forecasting purposes for a wide range of

conditions.

Further results with regard to the approximation method, its accuracy,



its use in MNP models' estimation and related statistical issues are explored

in detail by Bouthelier (1978).

The next section reviews the use of MNP models for various aggregation

purposes.

2.2 AGGREGATION WITH MULTINOMIAL PROBIT

2.2.1 Aggregation Over Individuals and Market Segmentation

The usefulness of travel demand models for planning and policy analy-

sis lies in the model's ability to generate an aggregate demand function

for each alternative, i.e., the share of the population choosing each

alternative as a function of the alternative's attributes. The MNP model

enables the user to perform such aggregation analytically, as shown below.

In accordance with the notation introduced in Subsection 2.1 denote

the I-vector of observed utilities, V, (V=ýZ, where S is a I x J matrix of
17

calibrated coefficient and Z is the J-vector of explanatory variables)17

and the calibrated (disaggregate) choice model Pi(v).

The predicted population share of alternative i, R., is the expecta-

tion of the choice probability over the joint probability density function

(p.d.f.) in the population, of the vector of measured utilities or:

R. = E [P i (v)] = P.(v)ofv(v)dv [2.9]

where f(v) = fV (...V 1(V...., I is the joint p.d.f. of V across the

17These notations deviate from the more common ones, in the travel demand
literature, where B is denoted as a vector and Z as a matrix. Though the
product BZ is identical in both cases, this form lends itself to a clearer
explanation of the aggregation method reviewed below.
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population.

The above multiple integral is, in general, difficult to compute and

its numerical evaluation is prohibitively expansive in most cases.

Koppelman (1976) reviews most of these numerical methods.

However, as discussed by Bouthelier (1978), R. equals the probability

that an individual sampled at random from the population, selects alterna-

tive i, and the utility vector for such individual, U*, can be constructed

as a multivariate convolution of the probability density functions of V

and E. For some p.d.f.'s such as the MVN, the distribution of the con-

volution is known and a simple choice model can be applied to groups of

individuals.

Let GU*(u) denote the cummulative distribution of U*, and G its

partial derivative with respect to u*. In a fashion parallel to the
1

derivation of [2.1] through [2.4], one gets:

R. = Pr (U. > Uj ; Vj)

= GU* (...,t+V i- V..)dt [2.10]

t= -00

where Vj = E(Uj), and Eq. [2.10], the aggregate share, exactly parallels

Eq. [2.3b], the disaggregate choice probability.

When the MINP model is used [ ~ MVN(0,7E)] and if V is approximately

normally distributed [V - MVN(V, )], the convolution p.d.f. becomes:

U(t) = Pr {t < (V + < )< t + dt} = MVN(V, E + E) [2.11]



where gU*(t) is the p.d.f. of U* at t [gU*(t)=3GU*(t)/Dt ] and assuming that

V and ý are independent random vectors.18 The p.d.f. of the aggregate

utilities can be linearly transformed, assuming that the explanatory vari-

ables are MVN distributed [Z ~ MVN(Z, z)], using the definitional relation-

ship V = BZ to express the joint distribution of the aggregate utilities as:

gU*(u*) = MVN (SZ, E z + Tz • ) [2.12]

and the Clark method can be applied to Eq. [2.10] to get the aggregate share.

Bouthelier and Daganzo (1978) (following McFadden and Reid's (1975)

and Westin's (1974) works with regard to binary choices) extend this solu-

tion, freeing it from the assumption that all attributes Z have to be

normally distributed (a hardly acceptable assumption especially for binary

and other discrete members of Z) by simply conditioning on the values of the

non-normal variables. Partitioning Z into its normally distributed members

Z' and non-normally distributed members Z", ZT = (zT, ZT), the conditional

MVN distributions of Z, given that Z"=z" becomes:

(Z Z" = z") % MVN[2(z"), E (z")],z

(ZZ" = z") MVN
z" 0 ... 0

where the conditional notations are self-explanatory. Then, Eq. [2.12]

becomes:

18The assrmption of the independence between V and iTmplies that the aggre-
gation procedure described here does not apply to a model including taste
variations, where E is specifically assumed to be a function of V.
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gu* Z,,(u*Iz") = MVN[Z(z"), Z + Wz(z")BT] ]2.14]

and
K qk

R. = -- R(z [2.15]1 q 1 k
k=l q

where R i(z) is the probability of choice derived from [2.14], z" is the

value of the vector Z" in kth combination, q is the population size,

qk is the group size to which the kth combination applies, and there are

K such combinations.

Typically, only a small number of the attributes'p.d.f.'s would not be

approximately normal and K, the number of market segments, would be rela-

tively small. Furthermore, the segmentation criterion is clear since it

consists in classification with regard to discrete variables.

Another application of normal approximation and MNP models is discussed

in the next section which is concerned with spatial aggregation.

2.2.2 Spatial Aggregation through Normal Approximation

The spatial aggregation errors in traffic assignment studies arise from

the representation of the population of each zone in the study area as a

point - the "centroid". Generally, it is reasonable to assume that the finer

the division of the study area into zones, the more accurate the representation

is. However, the computational burden of the network analysis increases

dramatically with additional nodes and centroids.

In this Subsection, this problem is tackled through a representation

of the intra-zonal travel impedances by a continuous approximation, follow-

ing the work of Daganzo (1977c). The approach consists in assuming that the

population is uniformly distributed over a zone and that the intrazonal

impedance distribution over the pcruLa-ion approximately follows a iVN



probability law. This approximation is used in Subsection 2.3.3 below and

in the equilibration algorithm of Chapter 3.

The issue is presented through an example of one zone. Consider the

a x b rectangular zone shown in Figure 2-1, including three access nodes

consecutively number 1 to 3. Assume further that the intrazonal street

network consists of a uniform grid parallel to the zone sides.

The distance traveled from a random point in the zone, 0, to access

node i, Di, is the sum of two uniformly distributed and independent random

variables, Ai., [between o and a] and Bi, [between o and b] (see Figure 2-1b).

Thus, the expected distance from a random point to any of the access nodes,

E[Di], is:

E[Di] = E[Ai + B.] = 2 i = 1,2,3. [2.16]

The variance of D. is given by:
1

2 2
2 a +b
1 

= var[A. + B ] = ; i = 1,23 [2.17]
S21,2,3.

The covariance between the distances to any two access nodes i and j is:

ij. = cov[(A. + Bi),(A. + Bj)] = cov[Bi,B.] + cov[Ai,A.] [2.18]

since A. and B. are independent.

Calculating, for example, the first term of the above equation, one gets:

cov[Bi,Bj] = E(B.iB] - E[B.] E[Bj]

bb

= Yi(b - yi ) * -dyi 2 = - - [2.19]
y =O

Calculating the rest of the moments of D in a similar fashion, and apply-

ing a normal approximation to the joint p.d.f. of D, one gets:
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Daganzo (1977c) develops a graphical technique for computing the moments

of the distance from a random point to the access nodes for zones of any

shape. He assumes that intrazonal travel can take place in any direction

and uses the uniform distribution assumption to derive the moments with

a graphical integration technique.

The moments of the intrazonal distance p.d.f. can be also obtained

through an off-line Monte-Carlo simulation. Using the simulation techni-

que one does not have to assume that travel can take place in all direc-

tions at the same speed, or over a grid. Also the uniform population

distribution assumption can be relaxed and any p.d.f. might be used to

represent the distribution of origins or destinations within a zone.

To obtain the moments with a simulation approach, the intrazonal

network is represented and the population is sampled. Once a realization

is drawn, the minimum path tree from the random point (the realization)

to the access nodes is computed and the impedance to all access nodes

recorded. After a large enough sample has been drawn, the moments of

the impedance vector are estimated using the sample moments.

Since in most instances the geometry of the local street network

only has a second order effect, a simple pythagorean expression can re-

place the minimum-path-tree calculation in each drawing.

D =

D

D2

D
3



Bouthelier and Daganzo (1978) discussed the accuracy of the normal

approximation for the case of uniform population distribution. In the

context of this thesis, it is important to note that the intrazonal trip-

end impedance distribution can be reasonably approximated by a MVN normal

distribution for other population distribution patterns too [see Daganzo

(1977c)].

2.2.3 Aggregation of Alternatives

This subsection deals with the expected utility of an individual chosen

in random from the population. This expected utility is used in Chapter 3

as an integral part of the equilibration procedure (where it is multiplied

by the population size to generate a measure of "total utility").

To find the mean utility, note that (as mentioned in Subsection 2.2.1)

the aggregate share of an alternative i equals the probability that an

individual sampled at random from the population selects alternative i,

based on the distribution of the aggregate utilities vector U* = (...,

Uj,...). In accordance with the definition of random utility models, it is

clear that the utility of a group of alternatives (facing a randomly

chosen individual) is the utility of the chosen alternative, i.e., the

maximum-utility alternative. Denoting the utility of the chosen alternative

by I* we have:

V* = max {U.} [2.21]

where S is the aggregate choice set (including I alternatives).

Since U* is a random vector, V* is a random variable and to find its

mean, one has to use the expectation operator. Thus denoting the popula-



tion size by q:

Total Utility = q-E[U*] = q.E[max {U,.]. [2.22]
jeS

The computation of E[U*] does not require any additional effort when the

Clark method (see Subsection 2.1.2) is applied to evaluate the alternatives'

aggregate shares. As evident from the description of the method, the

expected maximum utility, E[t*], can be computed as an integral part of

the technique.

The expected maximum utility has been used in similar contexts of

several researchers. Sheffi (1977a) and Sheffi and Daganzo (1978b) utilized

it in the context of stochastic network assignment models, which is some-

what parallel to the use of E[t*] in this thesis -- over the hypernetwork.

Other researchers, including Harris and Tanner (1974), Williams (1977) and

Ben-Akiva and Lerman (1977) have used it at the disaggregate demand model

level as a measure of accessibility.

As an aside, and to facilitate some intuitive notion of the expected

maximum utility, note that it has two properties:

a) It is monotonic with respect to the size of the choice set:

E[max{*,U*} )] > E[mt*] [2.23]I+1

b) Its marginal with respect to the mean utility of an alternative

equals the choice probability (aggregate share) of this alterna-

tive:

E[t*] = R. [2.24]

1



where (see Subsection 2.2.1) Vi = E[Uf] and Ri is the aggregate share of

alternative i (see Eq. [2.10]).

Both of the abovementioned properties of the expected maximum utility

mean that the total utility (as defined by Eq. [2.22]) is a reasonable

measure of the aggregate attractiveness of a given system to all users.

The first property holds for non-interacting alternatives (i.e., when the

introduction of a new alternative does not decrease the measured utility,

V, of any existing alternative) 19. It means that as the choice set is ex-

panded, the expected maximum utility increases. The second property holds

provided that the distribution of U* is translationary invariant [Williams

20
(1977)]20. For the MNP model, this restriction means that the variance of

19
To see that [2.24] holds, one can write the random variables explicitly,
i.e., for every individual in the population:

max{U*, U U+ I > maxU*,...,U* },1'"'' 1, I+1 -' I
and the expectation operator will obviously yield Eq. [2.23].

20To prove [2.24], write explicitly the expression for E[U*] = E[max{Ut)}]:

E[U*] = f.. max(U9)gU*(I ...,u )dul-'duI  jS

where g, (*) is the p.d.f. of U* (see Eq. [2.11]). Interchanging integra-
tion an differentiation (utilizing the independence assumption) the mar-
ginal expected maximum utility becomes:

aE[U*] = . i [max(U.)]g (u 1,...u I)du "',du I
f f V- jCs

1 1

Now, define the set of U*'s, S. such that U* >(Ut; VjES), and denote the
indicator function of Si by IDtul,..., u). Tatis ID(ul,...,u ) = 1 if

(Ul,...,u )ESi and zero otherwise. Since:

max(U*) =IDi(l,...,u
vi jeS 5

the marginal expected utility can be expressed as:

E[U*] = ' ID (u ...u )g(u,...,u )dul. ..du

= Fr [(U,..u)S] = U Pr [U* >(U VjS)] = R.

where the last equality follows from the definition of R. (see Eq. [2.10]).
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U* is not a function of its mean vector. (A similar assumption was util-

ized already in Subsection 2.2.1 -- see Footnote 18.) Property (b) means

that as the measured utility of an alternative is improving, the expected

utility in the system increases (since R. is the share, which is non-

negative by definition).

Though quite straightforward, the above mentioned properties do not

hold for other measures that were intended to approximate the expected

utility [e.g., the weighted sum used by McLynn (1976) and others) --

see Ben-Akiva (1977) ].

This concludes the review of the choice theory background and the

various aggregation issues that are part of the equilibrium analysis. The

next section is devoted to some background on network equilibrium analysis.

2.3 EQUILIBRIUM OVER NETWORKS

2.3.1 On Stochastic Models of Traffic Assignment

A theory of traffic assignment over network exhibiting stochastic

links costs has been developed by Daganzo and Sheffi (1977). This Subsec-

tion includes a brief overview of this theory, as it provides a link

between MNP choice models and network (and hypernetwork) representation

and topology.

Equilibrium traffic assignment models attempt to achieve the follow-

ing user-equilibrium (U-E), the (differently phrased) definition of which,

was given by Wardrop (1951):



"At equilibrium no user can improve his travel 
time21

by unilaterally changing routes."

Recognizing the somewhat unrealistic behavioral assumptions underlying this

definition Daganzo and Sheffi (1977) expanded upon this principle, disting-

uishing between the measured and perceived travel time and suggested the

following definition of stochastic user equilibrium (S-U-E):

"At equilibrium (S-U-E) no user believes he can
improve his travel time by unilaterally changing
routes."

In their work, the travel time on route k between origin r and destination

s, as perceived by a randomly selected motorist, is modeled.as a random

rs rs rs rs
variable -- tkrs . They also postulated that E[tk = Tk , where Tk denotes

the measured travel time. Using these notations, the above S-U-E defini-

tions can be formalized, based on the weak law of large numbers, as follows:

rs

Pr {trs h , Vh#kIT} xk Vr,s,k [2.25]

h

rs
where xk is the flow on route k between origin r and destination s, and

T rs

For a user sampled at random from the population, the LHS of Eq. [2.25]

is the probability the route k is chosen (it parallels Eq. [2.2] which

applies to any choice) and since it is a function of the measured travel

times, Trs, which in turn dependson the flow pattern x = (...,xrs,...),

21For the discussion of network assignment (throughout Sections 2.3 and 3.1),
the terms travel time and travel cost are used interchangeably, meaning
negative travel utility (disutility), without loss of generality.



Eq. [2.25] is an equilibrium equation which merely states the S-U-E

principle. This equation can be shown to be a generalization of the

abovementioned U-E principle. This result is extended in Chapter 3 to

define the equilibrium over the whole transportation market.

To evaluate the LHS of Eq. [2.25] one has to assume a probability

rs 22
law for t = (...,tk ,...) . Postulating that non-overlapping sections of

road are perceived independently by tripmakers and that sections of equal

length are perceived in identical fashion, Daganzo and Sheffi have shown

that the perceived links travel times, t'j, are approximately normally

distributed:

t'. - N(T> , GT'.) [2.26]

where e is the variance of tij on a road section of unit length. Defining

the network incidence matrix, as a matrix with entries, 6.ij,k' given by:

1 if link ij belongs to route k

ij,k 0 otherwise,

one can write:

t = t' * 6.tk V i j ij ,k

or using vector notation:

t = t' * A. [2.27]

22For the rest of the discussion in this Subsection, we deal with a single
arbitrary O-D pair as we concentrate on the probability of choice given
the measured travel times, and the superscripts denoting O-D pair are
dropped. This problem was termed S-N-L (stochastic network loading) by
Daganzo and Sheffi (1977).



Since t' is a vector of mutually independent normal random variables,

and [2.27] is a linear transformation, the vector of route travel times,

t, is a MVN random variate.

By definition, E[t] = T and the covariance matrix of t is easily ob-

tained. Letting tkp and Tkp denote respectively the perceived and measured

travel times onthe road sections shared by the routes k and p, it is easy

to see that:

var(tk) = eTk [2.28a]

and

cov(tk,tp) = var(tkp) = eTkp . [2.28b]

The important conclusion from Eqs. [2.28] is that the distribution of t

(and therefore the flow pattern) is not only determined by the measured

travel times, T (like any traffic assignment procedure) and the accuracy

of people's perception of time, 6, (like any stochastic assignment method),

but by the topology of the network as well.

Since Eqs. [2.25] and [2.28] define a probit (MNP) model with

utilities equal to minus travel time, the route choice probabilities can

be obtained (for small networks) with the results of Subsection 2.1.2.

In the context of this thesis, it is important to note that logit

based models of route choice produce unreasonable results because the

logit formula cannot capture well the topology of the network. This

point is explained below.

Consider the simple network shown in Fig. 2-2. The argument used by
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most authors23 when discussing Dial's logit-based method is that the

fraction of flow using the top route, P , should behave as (see Figure
top'

2-2a):

P top 1/2 when p - 1
top

and P top 1/3 when p + 0.
top

None of the logit-based models produces a systematic dependency of P on
top

p in this example. Dial's (1971) model predicts P = 1/3, regardless oftop

p; Tobin's (1977) "Arrival Likelihood" model predicts P = 1/2, regard-top

less of p [this last model is similar to an earlier one suggested by

Gunnarson (1972)]; and the model used by Sheffi (1977b)24 would produce

Ptop = 1/2 or Ptop = 1/3, depending on an ad-hoc modeler's definition of

the network.

The three abovementioned approaches are demonstrated in Figure 2-2b

where the MNP approach is also plotted; and as can be seen from the figure,

this latter curve coincides with what most authors dealing with stochastic

assignment (see Footnote 23) described as a desired result.

Thus, MNP is theoretically more attractive than logit. However, while

logit models can be put into analytical assignment algorithms, the MNP approach

cannot, as yet, since its straightfoward application requires path-

enumeration which is prohibitively expensive for large networks. A

practical approach to MNP assignment has been suggested by Daganzo and

23This deficiency of logit-based models has been pointed out by many authors
including Schneider (1973), Burrell (1976) and Floridan and Fox (1976),
with regard to Dial's model, and by Sheffi (1978b), with regard to Tobin's
(1977) model.

24 See also Moavenzadeh, Sheffi and Brademayer (1977).



Sheffi, based on a simulation of perceived link travel times25. Although

such a technique can be applied to networks exhibiting flow dependent travel

times and stochastic effects, its rate of convergence is slow in congested

networks. Thus, rejecting all the abovementioned methods, the approach

taken in this thesis is to approximate the S-U-E flow pattern over congested

networks with a U-E (deterministic) flow pattern and yet recognize the

important stochastic aspects of the problem.

An intuitive justiciation of this simplification is given in the

next subsection.

2.3.2 Approximating S-U-E by U-E for Congested Networks

This subsection explains the rationale for using the Wardropian

user equilibrium (U-E) flow pattern to approximate the stochastic user

equilibrium (S-U-E) flow pattern presented in the last subsection. The

argument is based,on the system's behavior near capacity.

Using the notation of the latter subsection (since we are concerned

here with the street network), the S-U-E equilibrium equations are:

rs rs rs rs rs
xk = q k P T , ) ; Vr,s,k [2.29]

and

rrs s rs rs
T = • 6rs T'. ( x 6.. ) ; Vr,s,k [2.30a]k ij,k iT m ijm

ij r,s m

( r s) = T ; Vr,s,p,q [2.30b]
pq pq

25This algorithm is a modification of the simulation algorithm suggested
by Burrell (1968), Von Falkenhausen (1966) and Wildermuth (1972).



where qrs is the trip interchange rate (i.e., q = h )2 P h k is the
h

r ers( rs rs )  P k th Vhk} and
MNP route choice probability (i.e., k rs rs) = Pr{ts rs; hk and

rs rs rs rs thtrs MVN[T , ]), 6 = 1 if link ij belongs to the m route from
ij,m

r to s rs = 0 otherwise and T!.(*) is the volume-delay curve for link13,m 1j

ij.

If Týk() T , Eqs. [2.29]-[2.30] reduce to stochastic assignment over

uncongested network, and Subsection 2.3.1 reviewed the solution of this

problem. It was also mentioned in the abovementioned subsection that

if 8e-0 the problem reduces to the well-researched U-E equilibrium and

available algorithms [e.g., Nguyen (1974), LeBlanc (1975)] can be used to

solve for such an equilibrium. Following Daganzo (1977d) this subsection

demonstrates that the U-E condition is a reasonable approximation for S-U-E

as the network links approach capacity, even if e#0.

It is well known from both queueing theory and experience that real-

istic volume-delay curves should rapidly increase as the link approaches

capacity [e.g., see Daganzo (1977a)]. In other words, acceptable curves

must satisfy:

lim , T!. (x!.) = [2.31]
x .+C ijxi3 ij

where C.. denotes the link capacity, and T!. (.) is non-negative, increas-

ing and strictly convex.

Assume that a network is uniformly congested and in user equilibrium.

Then, at the limit (heavy congestion), a small change in the flow pattern,

results in such large travel time changes that the relative merits of

alternative routes become obvious and perceived "correctly" (in accord-

ance with the measured travel times) by the users. Under these conditions,
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the U-E and S-U-E flow patterns must coincide.

In other words, if x' = (...,x 1  ... ) is a U-E flow pattern such that

x!'.C.. and T!. (x) , x' is also a S-U-E flow pattern.ij i dx..13 I
ij X=x..

ij
This holds because if any given user (one unit of flow) between r and

s were to change from route k to route k*, the travel time on route k*

would increase by:

dT' (x)
r r.s (1 - 6rs) [2.32a]
ij,k* ij,k dx x

1J

and the travel time on route k would change by:

dT!. (x)
E 6rs ( x -1) -3 [2.32b]ijk ijk* dx

Obviously, for partially congested networks, the approximation would

be better with increased congestion, and as the perception variance de-

creases (i.e., as +0 -- see Eq. [2.30b]).

This conclusion is in agreement with the validation experiment carried

out by Florian and Nguyen (1976). They tested (deterministic) U-E methods

on an urban area (the city of Winnipeg) and reported:

"... The results... show clearly that, the higher the
predicted volume, the better the fit between predicted
and observed volume."

Since users imperfect perception of link travel times was not modeled in

this study, their deterministic model predicted better, over congested

parts of the network, where the S-U-E is well approximated by determinis-

tic U-E, as argued in this subsection.

The other argument for using deterministic methods to assign trips
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to the street network is that no better method is available. As mentioned

in the preceeding subsection, path enemeration of the street network is

computationally infeasible and simulation methods are inefficient. This

is the reason that deterministic methods are always applied in practice,

for congested networks.

The next subsection discusses the last piece of background material

needed for the development of the equilibrium method. It -deals with an

application of the convex programming formulation and solution of the

(deterministic) traffic assignment problem to the spatial aggregation

problem.

2.3.3 An Algorithm for the Spatial Aggregation Problem of Traffic
Assignment

This subsection reviews a traffic assignment algorithm which was

proposed by Leblanc et al. (1975) and modified by Daganzo (1977a) to count

for finite link capacities as well. It further presents two algorithms

[Daganzo (1977b and 1977c)] that can account for continuous distributions

of population, thus solving the spatial aggregation problem of traffic

assignment 26.

Consider a network (directed graph) consisting of a set of nodes J

containing a set of centroids C and a set of nodes N (i.e., {C}l{N} = ý

and {C}U{N} = {J}), and a set of links, L, joining nodes (i.e., (ij)EL

if there is a link from i to j). Denoting the link flows (which are the

objects of this analysis) by xij, the link volume-delay curves by Tij (),

26The Appendix to this thesis contains a more detailed discussion of the
formulation of the traffic assignment problem as a minimization program
and the convex combinations algorithm for its solution.



the link capacities by C.., and the given (fixed) centroid to centroid trip

interchange by qrs' the user equilibrium can be shown to be [see for example

Jorgenson (1953), or Beckman et al., (19561 the solution of the following

mathematical program:
X..

min E " (w)dw [2.33]
ij 0

s.t.

Z x.. - Z x i
Vj VR

= D.
I

VieJ

0 xij C..ij V(ij)EL

where D = qri - E qis if iEC and D. = 0 otherwise.
1 r Vs

LeBlanc et al. (1975) applied the Frank Wolfe (1956) convex combinations

algorithm to solve the Program [2.33]. The algorithm steps (including

Daganzo's (1977a) modification -- see Step 2) are the following:

Step 0. Initialization

Determine an initial link flow pattern {x. } and the associated link

travel times {Tij }.

Step 1. Direction Finding

Perform an "All-or-Nothing" assignment using the current link costs,

T.ij; label the resulting flow pattern {y ij}.

Step 2. Step Size Determination

Find the value of a* that minimizes:
x.+a(Yij-xij )
f T.. ( )dw

(i,j)EL 1

s.t.
a < a = min {(C..

- max 13
xij <Yij

- xij)/(yij - xij.)} and 0 < a < 1.
13 13 1J



Step 3. Updating

next
x.. + +*( x..) V(ij)ELij ij - xij

next next
13 ij xij

Step 4. Stopping Test

If convergence has not been achieved, go to Step 1; otherwise, the

current {xij} is the equilibrium flow pattern.

The details of the stopping test are not important for the following

next
discussion (some measure of similarity between x.. and x.. can be used)

in this subsection.

It should be noted that Step 1 of the F-W algorithm is what limits the

size of the problem to be solved, and Step 3, though complicated looking,

uses up relatively small amounts of computer time.

The approach taken by Daganzo (1977b) is to introduce several centroids

per zone instead of a single one, thereby reducing the spatial aggregation

bias. A straightforward application of the above algorithm to such a

representation would have been very expensive and thus the F-W algorithm

had to be changed.

In order to discuss the streamlined algorithm, the network representa-

tion used should be explained in more detail. Denote the set of nodes that

can be reached in one step (traveling on one link only) from centroid r, as

N' (these are termed "outbound" access nodes) and the set of nodes fromr

which centroid s can be reached in one step N" ("inbound" access nodes).

Obviously, {N'nr N'} needs not be empty, {N'} # {N"} in general, andr s r r

{N'}, {N"} {N}. The links connecting between centroids and access nodesr s



are termed access links (in the traditional network representation these

are the dummy centroid connectors) and are assumed to exhibit no congestion

effects since they represent the somewhat ubiquitous intrazonal street

network. The set of access links is denoted L' ({L'} {L}), and the com-

plementary subset, L', denotes the links of the street network (the

network between access nodes) which is termed the basic network.

For the discussion of the multicentroid representation some more

notations are needed. Let each zone r be divided into m subzones eachr

associated with a single subcentroid. The set of subcentroids of zone r

is denoted M . The trip interchanges, q' , between subcentroids arer rs

arranged in a sub O-D matrix, Q'. Figure 2-3 illustrates a schematic

Figure 2-3

Network Representation for the
Multicentroid Assignment Problem

- -- -- --

_ __ __ _ _ ___ r_



representation of the various network components.

In order to perform the "All-or-Nothing" assignment required in

Step 1 (and Step 0) of the F-W algorithm on a network such as the one de-

picted in Figure 2-3, Daganzo (1977b) utilized the optimality principle of

dynamic programming to decompose the problem into two stages. In the

first stage, the travel times over the shortest paths between all possible

access nodes combinations are computed. The matrix of trip costs for

every access node pair is referred to as the skim tree.

Stage Two consists in finding the best access nodes to connect any

given pair of subcentroids. Since a shortest path is also shortest for

any pair of intermediate nodes, all one needs to find the access nodes used

by the shortest path between any given subcentroid pair is the skim tree

(and the access links travel time). Once the access node pair used by a

subcentroid pair has been found, one adds the corresponding trip inter-

change to the number of trips already assigned (from the other subcentroid

pairs) to the access node pair under consideration. In the end one will

have a trip interchange table, Q", between access nodes, which is termed

the access table. Stage Two is completed when one assigns the entries

of the access table, q" , to the appropriate paths identified in Stage
rs

One (this is done either by using the paths found in Stage One or by

recomputing the shortest paths between all access nodes) to get the

flow pattern {y. ij..

Thus, Step 1 of the algorithm would consist of the following: 27

27Note that Stage Two is broken here into two steps (Ib and ic).



Step 1. Direction Finding

Step la. Obtain the minimum travel cost between each access node
pair based on the current link costs {T. ij1.

Step lb. For each subcentroid pair, find the access nodes that
result in the least travel cost from subcentroid to sub-
centroid; allocate the trip interchanges q'r to such access
nodes and obtain the total travel cost. Repeat the process
for all subcentroid pairs to obtain the access table, q"rs

rs

Step Ic. Load the access table, Q", onto the network by performing
a new "All-or-Nothing" assignment between all access nodes.
This yields a set of link flows {Yij }.

The computational advantages of this decomposition are discussed in Sub-

section 3.1.2 of the following chapter.

The rest of the algorithmic steps are, of course, not affected by

the decomposition of the Direction Finding Step. However, for reasons

that will be apparent in the sequel, the line search (Step 2) is decom-

onsed qs follows:

1ij- 1ij 13ij
min [ T..[xij + a(y..-xi.)] + Tij1(1)d [2.34a]

,(C ,, - [2.34b]

where a = min(1,a ),and a = min {(C.. - x /.. 2.34b
max max 1 i 1

X. <V
1j-• ij

since for (ij)EL'(the set of access links), Tij(Q)dW = x ij ij

Eliminating constants from the above minimization (see Appendix A), Eq.

[2.34] can be written as:

xij -(ij-x 1

min [a(L -Lx ) + E T. (w)dw] [2.35a]

0<a <a (ij)ED' 0

where:

L = T ij'Yij and L = E Tj. x.j [2.35b]

y (ij)EL' x (ij)EL' T



L , the total access cost, can be readily obtained in Stage Two of the

streamlined "All-or-Nothing" method, by adding up the product of the sub

O-D table, q' , and the sum of the costs of the two access links used
rs

between each subcentroid pair rs as pair rs is considered in Step lb.

These values are accumulated as Stage Two proceeds.

This decomposition brings about one value to be updated in Step 3,

that replaces the updating of all access links costs:

next
L nex t  L + *(L - L). [2.36]x x y x

Figure A-2 of the Appendix describes the multicentroid streamlined algor-

itm in detail.

Even though this algorithm ameliocrates the large increase in compu-

tational cost that results from an increase in the number of centroids,

the latter cannot be drastically increased. Daganzo (1977c) overcomes

this limitation by using a continuum approximation for the distribution

of intrazonal trip ends, which is practically, equivalent to using an in-

finite number of subcentroids. This approach is reviewed below.

The approach is based on the observation that Stage Two consists in

calculating the access table, {q" }, and the total access costs, Ly,
rs y

(see Step lb above) and that by representing origin and destination densi-

ties by continuous functions, q" and L can be obtained mathematically.rs y

Let t denote the intrazonal travel time, for a person in zone r
O,r

chosen at random, to access node r.,(riEN'), and let t denote the intra-
Sr sj,D

zonal "inbound" travel time from access node s.(sj.eN") to a random destina-

tion in zone s. Using these notations note that the distribution



of the random vectors representing the intrazonal travel time to/from the

access nodes can be approximated, using the methods of Subsection 2.2.2, by

(see Eq. [2.20] for example):

to0 ~ MN(E[t0] , E0) [2.37a]

and

t D - MVN(E[tD],  ED) [2.37b]

where t (..., t ... ) and t t .) The techniques0 0,r. D s9.,D

discussed in Subsection 2.2.2 can be used to obtain the moments of the

abovementioned distribution (i.e., E(t ), var(t r , t D  ) and
i i 'ri

cov(t ,r t ) for the origin zone, and E(t si), var(t ) and
i 3 i 1

cov(t ,D t D) for the destination zone).
s.,D sj,D

Given the skim tree entries, Tij, the probability, P(ri,sj ) and thus

the volume using each access node pair ri,s. can be determined, using a

MNP model, i.e.:

P(r i,s.) = P {t* < t* ; rh EN' and s EN"} [2.38]
3 r r.,s. -- r h,s hr s

where:

t* = t + T + t [2.39]
rhsZ O,rh thSZ s ,D

Thus, for a given zone pair, r-s, the p.d.f. of the vector t* =rs

t* ,...) is given by:rh, s

Note that t0 and tD are independent random vectors, but their entries
are not.



t* MVN(E[t* ], E* )
rs rs rs

where the entries of the vector of means and covariance matrix in Eq. [2.40]

are given by:

E[t* ] =
rh,sP

E[t0,rh] + T + E[t D]rh,sZ s ,D

var[t* I = var[to,rh] + var[t D]rh,s P h s 9,D

cov[t*
rh$,s

t* ] cov[t t ] + cov[t , t ].
r i sj ,r h  ,ri Ds Z D,s.

[2.41c]

The volume of tripmakers using access node pair (ri,s.) (for zone pair r-s)

is thus given by:

ri,s j
= P(ri,sj).qr s [2.42]

To complete the calculation of Step Ib, the total access costs, Ly,

28 rshave to be obtained. The total access cost for a given zone pair, L
y

can be expressed as:

Lrs = (total travel cost) - (total cost on the basic links)
y

= qrs (mean cost of the chosen route) - rXN' q" T
ri r isj ris

sj EN"

28 The terms travel time and cost are used interchangeably here, without
loss of generality - see Footnote 21.

[2.41a]

[2.41b]

[2.40]



As shown in Subsection 2.2.3, the average cost over the chosen route is

given by -E[max{-t* 1] (since travel time (cost) is negative utility), orrs

E[min{t* )] which is readily obtained from the MNP approximation methodrs

reviewed in Subsection 2.1.2.

Thus,

Lrs = q E[min{t* ] - q T [2.43]
y rs rs r rsN' r.s. .j

i r

and the decomposed algorithm can be applied as described above.

This concludes the review of the tools needed for developing the

equilibration approach, which is the subject of the next chapter. Section

2.1 presented the MNP model and the computation of the associated choice

probabilities. Section 2.2 discussed three aggregation issues that are

an integral part of the equilibration scheme. The last section of Chap-

ter 2 reviewed a decomposition of the Frank-Wolfe algorithm which is

the basic algorithmic approach for equilibrating the whole transportation

market.



CHAPTER 3

THE TRANSPORTATION MARKET AS A HYPERNETWORK

This chapter includes the main research results of this thesis.

Section 3.1 presents a modified algorithm for the spatial aggregation

traffic assignment problem presented in the last subsection. It includes

some computational cost considerations that lead to a modified algorithm.

This algorithm is the basis for the hypernetwork equilibration procedure

developed in Section 3.3.

Section 3.2 includes the formulation of the transportation market as

a hypernetwork. The first subsection introduces the equations governing

the equilibration in this market, as a generalization of the S-U-E condi-

tions presented in Section 2.3, and also the general equilibrium condi-

tions for any probabilistic disaggregate demand model. The concepts of

hypercentroid and hyperzone are introduced in Subsection 3.2.2. The

hypercentroid (a subcentroid of the hypernetwork) is defined as a point in

a space (the hypercube or hyperzone) spanned by the explanatory variables

in the utility functions of the disaggregate demand model used. Subsection

3.2.3 explores the structure of the hypernetwork, the interpretation of

hyperpaths, the use of the aggregated MNP model to assign trips to hyper-

paths, and related modelling issues. This section draws heavily from

the background material introduced in Sections 2.2 and 2.3. 1.

The equilibration algorithm is presented in Section 3.3. The first

subsection includes the necessary generalizations of the algorithm



presented in Section 3.1 to be applicable to the hypernetwork of Section

3.2. Subsection 3.3.2 includes a discussion of some properties of the

equilibrium solution. These properties are an extension of the results

associated with the formulation of the deterministic network equilibration

problem as a mathematical program. This subsection also discusses some

of the modelling assumptions that enable the network formulation of the

--problem. The last subsection of Section 3.3 presents a numerical example

which illustrates many of the concepts discussed in this thesis.

3.1 A MODIFIED ALGORITHM FOR THE SPATIAL AGGREGATION PROBLEM

3.1.1 The Modified Algorithm

In this section, the streamlined F-W algorithm described in Subsec-

tion 2.3.3 is modified two ways. Step 1 is carried out by origin (or

destination) and the convergence criterion is based on the associated

objective function.

The first modification is a matter of computational efficiency.

The original version of the algorithm proposed by Daganzo (1976b) requires

the computation of the shortest path between all access nodes twice in

every iteration (Steps la and ic), unless all shortest paths are simul-

taneously stored during the execution of Step lb (which in most cases

would be more expensive than recomputing them). The modification des-

cribed below eliminates this computational burden for most network

representations.

The second modification of the algorithm is the adaptation of the



original convex combinations (Frank-Wolfe) algorithm property, that at

each iteration, the solution of the Direction Finding Phase (Step 1)

provides a lower bound to the optimal value of the (U-E) problem (See

Eq. [2.33] and the Appendix). Hence, the difference between the value of

the objective function and this lower bound can be used to construct a

convenient stopping rule.

To explain the modification of the Direction Finding Step, the notion

of zonal access table is introduced. The zonal access table for zone r

is the matrix Q", the entries of which qr.s. (Q)], are the trip

interchange rates between all "outbound" access nodes of zone r (the set

N') and all other "inbound" access nodes (the set N"). Similarly, let

Lr denote the total access cost between zones r and all other zones and
y

r
let x.. denote the flow on basic link ij (ijcL') with origin r. Each time

the Direction Finding Step is executed (i.e., each iteration), the

shortest path trees from each origin zone's access nodes to all other

access nodes are computed and the corresponding (zonal) skim tree obtain-

ed. Given this skim tree, the zonal access table entries, q" (r. EN';r s. i r
s .N"), are obtained using Eq. [2.42]. These entries are assigned to the

basic network before a new origin zone is handled, yielding an increment

r
of flow y .i As the step proceeds, these increments are summed up to

r
obtain the new links flows yij = Z yij. Similarly, the access cost

r

L is obtained (Eq. [2.43]) 29 for the origin zone under consideration
y

and the (zonal) access costs are summed over all zones as the algorithm

proceeds to handle all origins, i.e., L = E L .

y Yr
The algorithm, including the stopping rule (discussed below), is

29 r rs
Naturally, L = L .

y ys



Figure 3-1

A MODIFIED ALGORITHM FOR THE CONTINUOUS APPROXIMATION OF
TRIP END INMPEDANCES

I

I

STEP 0. INITIALIZATION
Determine initial link costs {T..}, initial total access costs,

Lx, and the associated link flows bxij}.

STEP 1. DIRECTION FINDING
For every origin zone r:

a. Obtain the minimum travel time from each access node ri to

all other access nodes, based on the current Tij's (store

the associated shortest paths).

b. 1. Find the volume using each access node pair, q"

2. Assign q" to the shortest path trees between
r.s.

all r. anŽ ll inbound access nodes s.. This yields
r

rrYij"
3. Obtain the access cost Lr

Yy r r
As Step 1 proceeds, obtain y = r y ; L = L .

ij r ij y r

STEP 2. STOPPING TEST

If L - L + E (Yij - x..)T ij < E STOP; otherwise, go to
y x (ij)EStep 3.

STEP 3. STEP SIZE DETERMINATION

Find a* that is the solution of:

x..+a(y..-x )
min [C[Ly - LX ] + i Ti ..(ij )dw
0 < a < • (ij)y 0

0

where a = min(l,ca ), and a = min {(C .-x .)/(I .-x, )
max max 1ij 1] J ij

xij <Yij
ii ij

STEP 4. UPDATING

Obtain the sets of flows, (x. ., costs, {T..}, and total accessij 13
costs, Lx, for the next iteration:

next
x. = xij + C*(Yij - xij.)

11 13

next nextT.. = T..(x )
j ij xij

next
L = L + C*(L - L).x x y x
Go to Step 1.

. . .toI Ie I1.



described in Figure 3-1. (This description corresponds to the Frank-

Wolfe (F-W) algorithm as given in the Appendix.) Note that only the

shortest paths trees rooted at a single origin have to be stored at any

given time. Subsection 3.1.2 discusses this and various other computa-

tional issues.

Step 0, the initialization step, is completely identical to Step 1,

but one starts with any feasible solution, typically a flow pattern that

is based on T.. = Tij (0), Vij. Note also that during the execution of

Step 1, the flow information that is stored with regard to each link in

the basic network includes the current flow level, xij, and the inter-

mediate flow level, E yir (where the sum includes only those origins al-
r

ready considered at any point during the execution of Step 1).

The stopping test in Figure 3-1 is based on a predetermined tolerance

level C. The algorithm terminates when the difference between the above-

mentioned lower bound and the current value of the objective function at

a given iteration is less than e. For the original Frank-Wolfe (F-W)

algorithm, this can be shown (see Appendix) to be equivalent to:

S(y - xij) T .. < [3.1a]
ij ij 1j 12

where the link costs and flows correspond to their values in a given iter-

ation. Since the LHS of Eq. [3-la] is merely the difference between

the total cost over the network between the current solution xij } and

the linearized-problem solution {yij } and since the corresponding access

costs, in our case, are given by L and Ly, the stopping criterion
becomes:

becomes:



L - Lx + - (y.. - x i) T.ij < E . [3.1b]
(ij)EL'

The line search that determines the step size (Step 3 in Figure 3-1) can

be carried out using any standard technique such as Golden Section,

Fibbonaci or Bolzano search.30

The algorithm as described in Figure 3-1 is the basis for the equil-

ibrium over the transportation market - the hypernetwork, that is the

subject of this chapter. Before expanding the network representation to

include dimensions of travel choice other than route choice, some compu-

tational considerations are given below. This discussion centers on the

spatial aggregation algorithms for traffic assignment, but bears directly

upon the hypernetwork equilibration algorithm presented in Section 3.3 since

basically the same algorithm is used there.

3.1.2 Computational Considerations

The preceeding subsection discussed a modification of the stream-

lined version of the F-W algorithm presented in Sec. 2.3. In this

subsection, some of the computational aspects of these algorithms are

compared and some computer implementation issues, bearing upon the com-

putational costs, are discussed.

To avoid confusion in the following discussion, the algorithm des-

cribed in the beginning of Subsection 2.3.3 is referred to, in this

section, as the original algorithm . The decomposition algorithms suggested

by Daganzo (1977b and 1977c)are referred to as the streamlined algorithm and

the algorithm depicted in Fig. 3-1 is termed the modified algorithm. The

30 See for example Zangwill (1964) or Avriel (1976).
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comparisons below are made with respect to two network representations:

the multicentroid problem (whose network representation is depicted in

Fig. 2-3) and the continuum approximation problem (discussed in Subsection

2.2.2).

The objective of the first comparison is to demonstrate the reduction

in the computational cost of Step 1 of the algorithm resulting from the

streamlining of the F-W algorithm.31 Thus, the first comparison is between

the original algorithm and the modified algorithm both applied to the multi-

centroid network representation, where each zone is represented by m

centroids (m may represent the average number of subcentroids per zone).32

Let a be the total number of access nodes in the network and let c

denote the number of centroids. The approximate processing time of access

pathfinding and obtaining L for the algorithm given in Figure 3-1 can be

shown [if one uses a simple dynamic programming algorithm, for instance --

see Daganzo (1977b)] to be:

P1 = k() M[a + mc]mc [3.2]

where k is the time it takes to perform some elementary calculations

(specifically one sum of three quantities and two multiplications needed

31Step 1, the direction finding, is the most crucial step of the algor-
ithms described in this thesis, in the sense that it takes the most of
the computation time and is what limits the capabilities of the algor-
ithm with regard to larger networks.

32The algorithms are compared with regard to the multicentroid problem
rather than the continuous representation since the original version of
the F-W algorithm cannot handle the latter. Note, however, that Figure
3-1 includes the modified algorithm as applied to the continuum approxi-
mation problem, but it can be trivially modified to apply to the multi-
centroid problem.



for access pathfinding and obtaining Ly). To the above time, one should

add the computation time needed to obtain the skim tree:

P2 = T • k''a'n [3.3]

where n is the number of nodes in the basic network and k' is the compu-

tation time incurred in adding one branch to the tree of the shortest

paths (which would be comparable to k and likely smaller). The coeffic-

ient, T, stands for the average number of zones to which an access node

belongs. In general, the computation of the shortest paths from an access

node that is shared by more than one zone would have to be carried out

separately for each of the zones sharing this access node (and the coeffi-

cient T captures this effect); this point is further explained and

commented upon when the second comparison is made.

The total approximate computation time is the sum of the abovemen-

tioned times, i.e.,

P = k( -)(a + mc)mc + T'k'*aon [3.4a]

Assuming k - k' and a = 'Pc, the computation time of Step 1 of the

modified algorithm becomes:

P = k'P[mc2(P + m) +T.cn]. [3.4b]

For the same problem (the multicentroid network representation), the

approximate computation time using the original algorithm, P', is given

by :

P' = k' (mc + n)mc. [3.5]



The difference in computation time between the original and modified

algorithms, relative to the computation time of the original algorithm

(when both are applied to the multicentroid problem) is given by (P' - P)/P.

For 1=l (i.e., the number of zones is equivalent to the number of access

nodes), the relative costs are:

(-)(m - T) - m
1- _= c [3.6]

m(m + 1) + T (3)

This function is depicted in Figure 3-2, where the relative cost increase

with the original algorithm is drawn versus m, for different values of (-)

and for T = 1.5 (e.g., on the average, 50% of the access nodes belong to

two zones or 30% belong to two zones and 10% to three zones, etc.). For

values of m (the average number of subcentroids per zone) between 3 and 5

and values of (-) between 10 and 20, the relative cost difference are about

50% to 100% of the computation time for the modified (streamlined) algorithm.

The algorithm is advantageous for values of m greater than T, for example,

if m=l the network representation is the traditional one for which the

original F-W algorithm is more efficient.

Thus, it can be concluded that the decomposition of Step 1 of the

F-W algorithm reduces the increase in computational cost associated with

addition to centroids to a network.

The second comparison discussed in this subsection deals with the

streamlined algorithm [Daganzo (1977c)] and the modified algorithm suggested

in the preceeding subsection. Here the comparison can be made with regard

to the problem of traffic assignment with continuous approximation of the

intrazonal travel times.
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The modified algorithm (depicted in Figure 3-1) reduces the core re-

quirements of the streamlined algorithm when the latter is applied in stor-

age mode (i.e., Step lc uses the path computed in Step la) by approximately

a factor of c. (More specifically c/' since the modified version stores on

the average Y minimum path trees at every iteration.)

Transforming the MNP CPU-time formula developed by Daganzo, Bouthelier

and Sheffi (1977b), the modified algorithm can be compared to the stream-

lined one when the latter is applied with double minimum path computation

at every step. In both algorithms, the access table is given by

q" = q " P(ri ,sj) which is calculated through the Clark approximation

(see Subsection 2.1.2). Using the notation developed in this subsection

the total processing time for Step 1 (of the modified algorithm) is

given by:

a4 2 k'
P" = k" (a) c + k' T n a. [3.7]

For the streamlined algorithm, the total processing for Step 1 is given by

the same formula, but with T = 2, since the shortest paths are computed

exactly twice at each iteration. Thus, if T, the average number of zones to

which an access node is connected, exceeds 2, the streamlined version

should be preferred.

A slight change in the modified algorithm, in conjunction with care-

ful implementation, can reduce the computational costs of the modified

algorithm for T > 2. This can be accomplished by taking advantage of the

tBased on the results of Daganzo, Bouthelier and Sheffi (1977b) it can be
estimated that k" = (1/6)10-5 CPU minutes, on the M.I.T. IBM 370/168
computer.



geography of the study area and ordering adjacent zones subsequently in the

zones list. The algorithm can be modified to keep in core a list of the

shortest path trees rooted at the last zone (or several zones) dealt with.

This list should be scanned prior to computing the skim tree for a new

origin zone, as some of the entries of the latter can be found in this

list. When the calculation with a given zone are finished, the above-

mentioned list of shortest paths is updated and the next origin zone

considered in the same fashion.

This concludes the discussion of algorithms related to the spatial

aggregation problem of traffic assignment. The most promising approach

(especially for T < 2) seems to be the algorithm depicted in Figure 3-1,

with the shortest path storage strategy just described.

The next section, 3.2, includes the formulation of the problem. The

equilibrium equations are presented in the first section, while the second

one introduces the concept of hypercentroid and hypercube that are key to

the formulation of the transportation market equilibration as a hypernet-

work assignment problem. Subsection 3.2.3 discusses some issues with re-

gard to the topology of the hypernetwork and. related modelling topics.

3.2 FORMULATING THE TRANSPORTATION MARKET AS A NETWORK

3.2.1 Equilibrium Conditions

In this subsection, the equilibrium conditions are defined and related

to the hypernetwork representation of the transportation market, introduced

in Section 1.3.

Although the equilibrium problem has been addressed in the literature



(see Section 1.2), the equilibrium conditions over the whole transportation

market (when the demand side is modeled as a probabilistic proposition,

based on random utility theory) do not appear to have been formalized.

Therefore, the following definition is proposed :

Equilibrium Criterion

"At equilibrium no user perceives a possible
increase of his utility by unilaterally changing
alternatives".

Later on in this subsection, this definition is shown to be a generalization

of the Stochastic User Equilibrium principle (see Subsection 2.3.1) of

traffic assignment which, in turn, is a generalization of Wardrop's (1952)

User Equilibrium rule.

The equilibrium solution is obtained by solving the two systems of

equations representing the demand and supply relationships. Let P.(z)
1

denote the disaggregate demand model, i.e., the probability that a user

characterized by a given combination of attributes, z, will choose travel

alternative i (which may be a combination of frequency, mode, access node,

route, destination, or any other alternative of interest). Also let

f (Z) denote the joint p.d.f. of Z. Using these notations (see also Sub-

section 2.2.1 and Eq. [2.9] in particular), the equilibrium equations are :

Demand

Pi(z) fZ(z)dz = [3.8a]

z J

where x. is the number of users selecting alternative i, and Z x. is

a known, fixed quantity (the population size). This equation is, of course,

merely a statement of the weak law of large numbers. It states that the

(predicted) market share, equals the expectation of the choice probability



with respect to the distribution of the attributes (the aggregation

integral).

Supply

Z = Z(x) [3.8b]

This equation states that the values of the vector of attributes, Z, are

a function of the usage of each of the alternatives.

Equations 3.8 are general and apply to a general disaggregate demand

model and a general distribution of the attributes across the population.

The equilibrium equations are given below for the case of the multinomial

probit model utilized in this thesis.

Without yet specifying a probability law for the utility functions,

and using the notation for utility functions introduced in Sec. 2, Eq.

[3.8a] can be written as :

DTmand
x.

Pr(U* > Ut ; Vj) = [3.9a]

where Ut is the utility of travel alternative j as perceived by an indiv-

idual chosen at random from the population. Equations [3.8a] and [3.9a]

are, of course, identical. The distribution function of U* = (...,U,...)

is determined by the (assumed) distribution function of the error term,

ý, (i.e., the disaggregate model) and the distribution function of the

measured utility, V, across the population.

If the disaggregate model is MNP and the measured utility is approx-

imately multivariate normally distributed (see Subsection 2.2.1), the

distribution function of U* is totally characterized by a vector of means,



33
V, and a covariance matrix , C, and in the general case, one has :

Supply

V = V(x) ; = Z(x) [3.9b]

These equations state the vector of mean utilities and the corresponding

covariance matrix are functions of the usage of each one of the alter-

natives. In instances where E can be considered independent of x, standard

supply modelling techniques can be used to determine Eq. [3.9b].

For Eq. [3.9a] to follow a MNP model, one has to assume that the

covariance matrix of the disaggregate model (ZE -- see Footnote 33) is

independent of the vector of means, V, (i.e., no "taste variation" allowed--

see Footnotes 15 and 18). If this condition is not met, the distribution

of U* is not MVN and one can not use a MNP model to determine the aggregate

shares. Thus, in Eq. [3.9b], not all the components of 7 can be flow-

dependent (since V is flow dependent), i.e., # E (x), but in general,

S= EV(x), and therefore t = E(x).

The abovementioned equilibrium definition holds whether the trans-

portation market is represented as a hypernetwork or not. However, it can

be viewed as a generalization of the S-U-E principle defined in the pre-

ceeding chapter, where the network under consideration represents all

dimensions of travel, i.e., a hypernetwork, as shown below.

Assume that a general hypernetwork is composed of links representing

various independent dimensions of travel choice. Every link ij of the

hypernetwork is associated with a utility level U'. that is the utility

33
Note that in accordance with the notation of Subsection 2.2.1, E=Z +Z
or Z=E +6ZBT.E Z



of this link as perceived by a randomly sampled individual from the

34
population . The link utilities are assumed to be normally distributed,

i.e., U' MVN (V', ').

Following the same linear transformation of Subsection 2.3.1 (see

Eq. [2.27]) and defining A as the link-route incidence matrix for the
rs

hypernetwork O-D pair35 r-s, the vector of hyperpaths utilities, Urs, is

given by:

rs
U = U'*A [3.10a]rs

and

U rs MVN (rs, rs) [3.10b]

where:

~=rs '- ; E = AT *E'*A [3.10c]
rs rs rs

Once the distribution of the alternative hyperpaths' utilities is given for

every O-D pair, the equilibrium equations for the hypernetwork are:

Demand
rs

X.
Pr{Urs> Urs ; VjVrs, rs} = 3.11a]J - rsZ x.

Vj J

3434Note that this utility was denoted U* in the preceeding discussion; the
asterisk is omitted here for clarity of notation.

35The specific meaning of origins and destinations in the hypernetwork con-
text is explained in the following subsection. At this point, note that
since the following hypernetwork is fbrmulated by O-D Dairs, the hyper-
path utilities correspond to an individual sampled at random from the
population of zone r that is destined to zone s.



rs rs
where E x. is the trip rate interchange between r and s, and x. is the

J J
th

flow on the j route between r and s.

Supply

ors =-rs rs Ers
Vs rS(x) ; = (x). [3.11b]

In formulating the hypernetwork through the Transformation [3.10], it

was assumed that links exhibit independent utilities, and that the

utility associated with a hyperpath is the sum of the utilities of all

links comprising it. If the hyperpaths' utilities are known (as is

the case with travel demand models) this assumption is unnecessary. How-

ever, as will become apparent in the following sections, the additivity

assumption is required with respect to the part of the hypernetwork ex-

hibiting flow-dependent utility. The reason for this is that this

part of the hypernetwork would typically include the street network, where

path enumeration is prohibitively expensive and thus the flow dependent

utility over this part is modeled differently (i.e., by link, where the

Transformation [3.10] holds -- see Subsection 2.3.2). This assumption is

further discussed and explained in Subsection 3.2.3 through 3.3.2.

Once the equilibrium solution (the solution of Eq. [3.10a] and [3.10b]

has been obtained, one can calculate various measures with regard to the

systems's evaluation, policy analysis and decision making.

The next subsection introduces the concepts of hypercentroid and

hyperzone that replace the traditional centroid-zone network representation.

3.2.2 The Hypercentroid and Hyperzone

Consider the network representation used in Section 3.1, depicted

in Figure 3-3 for one origin-destination pair. In the traditional net-



work studies (and in the abovementioned multicentroid problem), the

points 0 and D stand for centroids, i.e., the network nodes where trips

are originated and ended, and where all zonal residential locations and

intrazonal destinations are assumed to be concentrated. In the continuum

approximation case, they represent a random point in a zone, or a random

point in a space, the dimensions of which are the travel times (or costs)

to the access nodes. In this section, points such as 0 in Figure 3-3

are referred to as hypercentroids.



Each hypercentroid is a point representing an individual or a

group of individuals with the same observed and unobserved utility. If

one now associates with such a point, a set of coordinates (the differ-

ent observed attributes and the unobserved utility components), all

hypercentroids, can be arranged in a hypercube termed a hyperzone. A

hyperzone is associated with a certain zone (either origin or destina-

tion).

The number (or density) of people at a given hypercentroid is given

by the joint p.d.f. of the observed and unobserved utility components.

Thus, any given point in the hyperzone defines a hypercentroid referring

to any number of individuals, all identified with the same composition

of socio-economic characteristics, alternatives' attributes, and error

terms. Each hypercentroid is also associated with a deterministic choice

(e.g., of access node, mode, etc.) that is identical to all individuals

represented by it (unless there are alternatives with the same perceived

utilities). The choice is deterministic since the unobserved part of

the utility function is one of the dimensions (coordinates) of the space

of which the hypercentroid is a part.

A simple hyperzone is illustrated in Figure 3-4. Point A in this

figure represents a group of individuals with income I', distance to

a given access node D i and error term 'j

The hyperzone can be visualized as partitioned into several sub-

hypercubes, where in each one of these, the combination of coordinates is

such that all people in a sub-hypercube choose the same alternative.

As explained later in this chapter (see Section 3.3), the equilibration
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process can be thought of as finding the boundaries of these sub-hypercubes,

and the number of decision makers in each (i.e., the integral of the de-

cision makers' density over the sub-hypercube).

Each hypercentroid pair (one in the origin hyperzone and one in the

destination hyperzone) is connected by hyperpaths. In general, each

hyperpath is composed of three sequential parts:

a) A sequence of hyperlinks connecting the origin hypercentroid

under consideration to an "outbound" access node. Each of

these hyperlinks is associated with some utility level, e.g.,

intrazonal (origin zone) travel time, mode utility (from a

mode-choice demand function) etc.

b) A sequence of links through the basic network. Such links are

associated with a single measure of impedance (typically travel

time) which is a function of the flow over the link, i.e.,

this links exhibit flow-dependent utility which is -measured

by a deterministic quantity (the rational behind this treat-

ment of the basic network was given in Subsection 2.3.3).

c) A sequence of hyperlinks connecting "inbound" access links to

a destination hypercentroid. Each of the destination hyper-

links might be associated, for example, with the destination

intrazonal travel time, or the utility estimated for a destin-

ation choice model. (As shown below, each destination zone is

actually associated with a single hyperlink of the latter

kind.)

In general, to solve for the equilibrium in the transportation

market the flow over all these hyperpaths between all hyperzones has to
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be determined; thus the travel market equilibration process reduces to an

assignment problem over a hypernetwork. This point is further discussed

in the following sections.

In the remainder of this subsection and in order to clarify the

concept, a simple hypernetwork example, where there is only one hyper-

zone is provided.

Consider an origin hyperzone, associated with a zone. Assume that

the population of this zone is concentrated in one geographical point

(say, the zone includes only one multi-story apartment complex). Assume

further that there are two available modes (say, car and transit) bet-

ween this zone and a given point destination (say, an industrial park)

and the trip interchange rate to the destination is fixed and known.

Thus, there is only one choice that is modelled in addition to route

choice through the basic network (for the car mode) -- the choice of

mode.

The dimensions of the origin hyperzone (hypercube), in this case,

are the explanatory variables appearing in the mode choice mode, including

the two error terms. Each point in this hyperzone is a hypercentroid.

From each hypercentroid, there are two access hyperlinks connecting

to each one of the access nodes (say, the parking lot and the transit

station). Such a hypercentroid is shown as point 0 in Figure 3-5

below where the hypernetwork associated with the choice situation

under consideration is depicted. The "cost" over the access hyper-

links is given in terms of the (negative) utility function (dis-



utility 6 associated with each one of the modes (access hyperlinks).

The cost over the basic links is given in terms of volume-delay curves.

The infinitesimal trip rate interchange, dq, between the hyper-

centroid and the destination is known -- it equals the zonal trip inter-

36From this point on in the thesis, the attractiveness associated with
the travel alternatives is referred to as disutility rather than utility,
since travel demand is generally thought of as derived,and since most of
the network literature deals with "costs" or "impedance" over links
rather than with positive utility or attractiveness.

Figure 3-5

Mode and Route Choice Hypernetwork Example
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change rate times the density of people at a given hypercentroid. Note,

however, that this representation poses two restrictions that are funda-

mental to the general approach, since in traffic assignment the "cost"

of a hyperpath is the sum of the "cost" over the links comprising it:

First, the utility functions have to be additive; and second, the access

hyperlinks "cost" (disutility) should be expressable in travel time units

to be compatible with the cost over the basic network. Both these points

are further discussed in detail in Subsection 3.3.2.

The cost over the access hyperlinks can be given as a mathematical

function of the coordinates of the corresponding hypercentroid (this func-

tion is given by the underlying demand model). In other words, the cost

(in terms of disutility) and the choice, from a given hypercentroid, depend

on the location of the hypercentroid in the hyperzone (i.e., on what

segment of the population the hypercentroid represents). This point is

explained below in more detail.

Consider a hyperplane (in the abovementioned hyperzone) that is

parallel to the error terms axes. Such a hyperplane represents a given

combination of observed attributes and characteristics (the explanatory

variables associated with the measured utility functions in the mode

choice model). The number of tripmakers that can be characterized by

this set of attributes is given by the joint density function of the

explanatory variables. The loading of this hyperplane onto access

node, i, is given by the disaggregate mode choice model:

P.(V) = Pr(U. < U. V. ; Vj) Vi., [3.12]

tThis equation parallels Eq. [2.2] but it is written in terms of dis-
utilities rather than utilities (see the last footnote).
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where U. and V. are the disucility and measured disutility of alternative

i, respectively, and (using the notation introduced earlier),

U = V + ý = BZ + ý . The entries of the matrix 8 are known parameters

and the vector Z is fixed (by definition) over the hyperplane under con-

sideration; V is thus fixed over the hyperplane and the choice varies from

point to point as ý varies, of course.

In the case of the example under consideration, the observed dis-

utility of the car-hyperlink includes the travel time over the basic

network (the skim tree), multiplied by its respective coefficient in

the car utility function of the mode choice model. The algorithm des-

cribed in the preceeding section can be used to solve the equilibration

problem resulting from assigning from the abovementioned hyperplane to

point D over the hypernetwork illustrated in Figure 3-5.

To execute the algorithm, as described, one needs the total cost

over the access links, at every iteration (Lr and L in Figure 3-1),
y y

which is given, for the hyperplane under consideration, by (see Eq.

[2.43] and the related argument):

L = dqOD E[min{U.}] [3.13]

where U. is the disutility of alternative j and dq0D is the population

in the hyperplane under consideration.

This can be done regardless of the disaggregate demand model form

used [Pi(V)].
1



In order to find the total flow carried by all hyperlinks to a

certain access node, the flow from all possible hyperplanes have to be

summed up. This is merely the aggregation problem discussed in Subsection

2.2.1. Thus (under the normality assumptions discussed in the latter

subsections) the total volume choosing access node i is given by

(see Eq. [2.10]):

q =  GU(..., t+ýZi -3Zj,...)dt [3.14]

where q'", the aggregate share of alternative i, is, in this case, the

corresponding entry to the access table (see Section 3.1) and G () is

defined by Eqs. [2.11] and [2.12].

The aggregate total access cost over all possible hyperplanes is

merely the total utility (or total disutility, in this case) presented

in Subsection 2.2.3. (It is the product of the flow from all hyper-

centroids, and the disutility associated with the hyperpaths used by

these flows.) One has only to subtract the cost over the basic net-

work from the total disutility to get the total access cost, AU:

AU = q[E[min U}]- E R.'T. 1 [3.15]
Vi 1 i iD

where q is the population size, R. is the share of the population
1

choosing access node i, and TiD is the travel time over the basic net-

work, from access node i to the destination D.

The problem of assignment from a hyperzone parallels the spatial

aggregation problem discussed in Subsection 2.3.3 and 3.1.1. To see



the similarity, consider another hyperplane, parallel to the explantory

variables axes (and perpendicular to all the error terms axes). In every

point on this hyperplane, the mode split due to unobserved characteristics

is given, and the problem is to identify those sub-hyperplanes associated

with a combination of explanatory variables that yield the same choice. All

decision makers contained in this subspace would be assigned to the same

entry of the access table. The only difference between the continuum-

approximation spatial aggregation problem and the above mentioned one is

that the intrazonal distribution in the hyperzone case is given by a joint

MVN density function rather than a uniform density over the zone in the case

of the spatial aggregation assignment. 37

This concludes the discussion of the simple example of Figure 3-5.

The extension to multi-O-D pairs hypernetworks is trivial because the

access hyperlinks costs are flow-independent. Thus, in the next sub-

section the representation of several choice models as a hypernetwork

(e.g., the decision to take a trip, mode, access node, etc.) is explained

and illustrated.

3.2.3 The Hypernetwork Structure

This section explores the hypernetwork representation of the

transportation market, in greater detail. The following issues, all

related to the hypernetwork topology, are covered in this subsection:

37In the continuum approximation case, the population density is assumed
to be uniformly distributed, the moments to the access nodes found and
then the normal approximation is applied. In the hyperzone case, all
dimensions are assumed to be normally distributed over the population
to begin with.



a. The role of hypernetworks in estimation.

b. Effect of hypernetwork structure in prediction.

c. Market segmentation.

d. Modelling of through traffic.

The first issue is related to the specification of the MNP model

covariance matrix during the model estimation phase.

r s

The linear transformation used in Subsection 3.2.1, U = U'*A r

is an example of the choice model specification where it is assumed that

a hypernetwork representation of the choice situation has been obtained

prior to the estimation. In this regard, and as mentioned in Section

1.2, hypernetworks as a visualization of the choice process may serve

as an aid in finding good parametrizations of the covariance matrices

associated with the corresponding MNP choice model. This point is further

explained below.

The main effort, in econometric studies (estimation), is devoted to

the specification of the measured variables, i.e., which variables are

to be included in the model and in what functional form. Another part

of the specification problem is the specification with respect to the

choice set, i.e., which parameters are modelled as generic and which are

modelled as alternative-specific.38

38Assuming the usual specification U=BZ+ý where 3 is an I by J matrix of
parameters, Z is a J-vector of the alternatives attributes and decision
makers' characreristics and 5 is the disturbance I-vector, an attribute
Zj is called generic if the values of the entries of the associated vec-
tor of parameters are constrained to be the same (in the estimation
phase) across alternatives, i.e., Bi~ .j;Vi (except for the base
alternative). If the $j,'s are unreStricted across the alternatives,
Zj is said to be alternative-specific. Some variables can, of course,
be partially generic (i.e., constrained across some of the alternative).



The advantage of a generic specification (aside from reducing the

computational requirements) is that it permits the prediction of choice

probabilities of alternatives that are not observed in the data (say,

a new mode) if the new alternative's attributes are given (one can hypoth-

esize that a parameter Sk applies to the variable Zk if it is in generic

form).

In estimating MNP models, one has to deal with the estimation of the

entries to the covariance matrix associated with the MVN distribution

of E. In order to be able to use the estimated model for prediction of

the usage of new alternatives, the covariance matrix has to be para-

metrized, i.e., one has to hypothesize the pattern of correlation among

the alternatives. This is no different from any other specification prob-

lem concerning generic variables. The abovementioned correlation pattern

is assumed, in this thesis, to be independent of the specified measured

utilities (see Footnotes 16 and 18 -- this point is also discussed in

more detail in Subsection 3.2.2).

To discuss the effects of hypernetwork structure in prediction,

an example of modelling the urban passenger transportation market is

given below since the four step process, mentioned in Section 2.1, is

widely used.

Figure 3-6 illustrates two possible hypernetwork configurations

relating to the decision (at the disaggregate level) to take (or not

to take) a trip, mode choice, destination choice, and route choice

(through the basic network). Mathematically, these two representations

are equivalent, i.e., the demand model can be represented by one origin



Figure 3-6

Equivalent Hypernetwork Representations of
Trip Generation, Mode, Destination and Route Choice
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hypercentroid and one trip -end hypercentroid as in Figure 3-6a, or by

a hypercentroid and a series of hypernodes on the origin side and trip-

end side, as in Figure 3-6b. These are merely different visualizations of

the same transportation market, as explained below.

Both representations refer to an origin zone with three access nodes

to the basic network and one transit station, and three possible destin-

ations. The decision not to take a trip is represented by the top

direct hyperlink, from 0 to D. In Figure 3-6a, there are five hyperlinks

coming out of the origin hypercentroid, associated with the disutility

of the following choices:

hyperlink O-D: Not taking a trip

hyperlink 0-01: Take a car trip and depart the origin zone through 01

hyperlink 0-02: Take a car trip and depart the origin zone through 02

hyperlink 0-03: Take a car trip and depart the origin zone through 03

hyperlink 0-04: Take a transit trip

The destination hyperlinks (leading to D) are associated with the

disutility of choices such as:

hyperlink D11D: Arrive at destination Dl through access node D11 , or;

hyperlink D32D: Arrive at destination D3 through access node D32, etc.

and the "no trip" hyperlink O-D.

The origin hyperzone is spanned by the components of the utility

functions associated with the trip generation model (to take or not to

take a trip), the modal split model (car vs. transit), and the choice

of access node (the associated disutility here, typically includes the

intrazonal travel time only). The trip-end hyperzone is spanned by the



intrazonal travel times from the access nodes and the variables appearing

in the destination choice model.

Figure 3-6b depicts a different representation of the same problem.

If one visualizes users moving from left to right and making a myopic

decision every time a node is reached, this representation corresponds to

a sequential decision, and the representation in Figure 3-6a to a simul-

taneous one.

Of course, if one assumes that link disutilities are independent,

representations 3-6a and 3-6b will yield different results. This is

because, as discussed in Subsection 2.3.1, network topology affects the

probabilities of choice. However, both representations can correspond

to the same probit model if the proper covariance matrix of link dis-

utilities is selected.

The third issue mentioned at the beginning of this subsection is

the market segmentation problem. Even though this is an aggregation

issue, it bears upon the hypernetwork representation, as shown below.

In describing the hyperzone concept, it was assumed (see the

preceeding subsection) that all explanatory variables appearing in the

utility functions are MVN distributed. However, even though the den-

sity of most variables can be expected to be well approximated by a

normal one, this does not hold with regard to binary variables (such

as car ownership). The solution of this difficulty was discussed in

Subsection 2.2.1; it consists in conditioning on the non-normal vari-

ables.



In the context of hypernetworks, such a conditioning is equivalent

to the introduction of additional hyperzones to take care of market

segments characterized by discrete attributes. In fact, the hyper-

network in Figure 1-3 illustrated how an additional origin could be used

to model one market segment that had no access to the car mode.

In general, different population segments should be represented by

different hyperzones, and for every zone there should be as many hyper-

zones as market segments. This ensures that the distribution of observed

and unobserved attributes in a hyperzone remains MVN and that one can use

analytical aggregation for calculating the shares and total access

disutility in each hyperzone.

The last subject of this subsection is the modelling of traffic

passing through hyperzones. Destination zones are used not only as

"sinks" but they also serve through traffic to other destination zones.

To model the abovementioned phenomenon, the basic network should

be expanded to include links connecting access nodes directly (across

zones). The travel time over such links can be the airline distance

divided by the intrazonal average speed (if warranted, a local or

global street network factor can be used to modify these travel times)

and they should be treated as basic links in every aspect during the

assignment process.

The hypernetwork example depicted in Figure 3-6 serves as a basis

for the description of the hypernetwork assignment algorithm given

in the next section. The algorithm is developed in the first subsection

as an extension of the spatial aggregation assignment algorithm describ-



ed in Section 3.1. Subsection 3.3.2 discusses some properties of the

equilibrium solution and the assumptions leading to it. The last

subsection of Section 3.4 gives an example of the equilibration proced-

ure.

3.3 ASSIGNMENT OVER HYPERNETWORKS

3.3.1 The Hypernetwork Assignment Algorithm

The main idea of this thesis is that the problem of equilibration

of the transportation market is shown to be equivalent to a traffic

assignment on a modified network -- a hypernetwork.

The assignment algorithm is an extension of the one described in

Section 3.1 for the spatial aggregation problem of traffic assignment.

Instead of using an arbitrary point in each zone as a centroid, the

hypercentroid concept, described in the preceeding section, is used 39

Thus, Step 1 of the algorithm is applied in two stages, for each origin

hyperzone. At the first stage the minimum paths from all origin

access nodes to all other access nodes are found and the travel times

over these paths is the origin zonal skim tree, the entries of which

are given by Tris (Vi,s.). The second stage consists in finding the

volume, q" , using each access node pair r.-s. (the access table):r.s.

q1 = qr P(O ,ri ,s,D) [3.16]r.s. r r

3The spatial aggregation problem is thus a special case of hypernet-
work equilibration, when, trip generation, modal split, destination
choice, etc., are given and only the car trips are equilibrated.



where qr is the population in origin zone r, and P(Or ,r.,s,D) is the

probability of choosing a hyperpath from hyperzone r to the trip-end

hypercentroid D, using access nodes r. and s.. The disutility of hyper-

40
path Z, Uh , is given by:

U = Uf + U + Ud + (tr + t +T ) [3.17]
k p q 2 3 13

where:

U = Aggregate (over individuals) disutility 41 of taking k trips.42
k* * * T -
The vector Uf = (Uf , U f) \ MVN(Vf,f ).

, o 1

U = Aggregate disutility associated with mode p; U "I MVN(V ,Z ).
m m mm

P

Ud  = Aggregate disutility of traveling to destination q;
q ,

Ud  d MVN(V d d
)

43t ,t = Travel time from/to a random point in zone r/s to/from an

access node r i/sj, respectively; t 1 MVN(t ,Zt )
r

ts I MVN(ts, t
s

T = Minimum travel time over the basic network between access noder.s.

r. and access node s.. (The r.s. entry of the skim tree.)

r = Units conversion factor, "utils"/minutes.

For MNP demand models, the density function for each of the above

utility vector is MVN -- see Eq. [3.14] and the related discussion. The

40The description here refers to a frequency-mode-destination-route-access
node transportation planning problem, such as the one depicted in Figure
3-6.

4 1An aggregate disutility means, in this context, the disutility as per-
ceived by a decision maker sampled at random from the population.

42The hypernetwork in Figure 3-6 refers to k=O (not taking a trip) and
k=l only; thus it is applicable to say, peak hour travel.

4 3Note that in Subsection 2.3.3, tr and t were denoted as t and t
Note that in Subsection 2.3.3, t and t were denoted as t and t .i s ,r. s.D
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intrazonal travel time distribution is given by an expression similar

to Eq. [2.20] (trivially transformed from distance to travel time). The

min-path travel time over the basic network refers to a given level of

flow over the basic network and is the only deterministic disutility

in Eq. [3.17]. The units conversion factor ensures the compatibility

of the estimated utility functions with the travel times derived from

the network topology. Rather than expressing Uh in terms of utility

units, it can be expressed in terms of travel time by the transforma-

1 u * *
tion: -(U + U + Ud) + t + t + T . Thus, from every

h I f m d r. s. r.s.

origin hyperzone, there is a list of available hyperpaths to the

trip-end hyperzone (denoted D in Figure 3-6). To this list one should

add the "No-Trip" hyperpath, thus the hyperpaths' disutilities are

given by:

1 for "No-Trip" hyper-
U f0 path

Uh [3.18]
1 * * *

(U + Um + Ud ) + t + t + T for all hyperpaths
1 p q 1 3 1 j associated with

taking a trip.

Since Uh is a linear combination of normal variates (jointly MVN),

it is itself MVN and the probability of choosing any hyperpath is given

by a probit model:

P(O,ri,sj.,D) = Pr(Uh p Uh ; Vn) [3.19
p n

where hyperpath Uh in the above equation uses access nodes r. and s..
s. [3.19] can be readily evaluated with the use of the formulae intro-

Eqs. [3.19] can be readily evaluated with the use of the formulae intro-



duced in Subsection 2.1.2.

The entries of the access table are assigned to the basic network,
r r

yielding a flow pattern y (the set of link flows, Yij, over the basic

links ij (ijEL') with origin at r). As Step 1 proceeds, the total link

flow on the basic network is accumulated to yield the link flow
r

pattern y = E yij
r

One quantity has to be computed each time an origin hyperzone is

considered - the total access disutility. This quantity was discussed

in Subsection 3.2.2 and stands for the product of access hyperpaths

flows and disutilities, summed over all hyperpaths. Using the hyper-

paths notation introduced in this subsection, the total access disutil-

ity, for origin r, AU (or AUr , depending on its reference to the flow
y x

pattern y or x, respectively) is given by:

AUr = q E[miný h }] - q" T . [3-20]
y h r s. r.s.

s N
s.SN"

Since E[min{Uh}] is available once the access table entries are cal-

culated (see Eqs. [3.16], ]3.19] and Subsection 2.1.2), the access

disutility, AU , can be readily obtained as each origin zone is con-

sidered, and the total access disutility AU = E AUr accumulated as
y y

Step 1 proceeds.

The rest of the algorithmic steps are equivalent to those des-

cribed in Section 3.1, with the new meaning and interpretation given in

Section 3.2 and here. A complete description of the algorithm is given

in Figure 3-7.



Figure 3-7
AN ALGORITHM FOR ASSIGNMENT OVER HYPERNETWORKS

Step 0. INITIALIZATION
Determine initial basic links costs {T..}, initial access
costs AU , and the associated links fl~os {x..}.

x J3

STEP 1. DIRECTION FINDING
For each origin hyperzone r:
a. Obtain the minimum travel time from each access node r. to

all other access nodes, based on the current T.. 's (store
the associated shortest path trees). 1J

b. 1) Find the volume using each access node pair,

2)

q"i q= q P(O ,ri,s.,D).

Assign q" to the shortest path r.+s. obtained inr. s. 1 o3
(a); this yields a flow pattern (y}.) over the basic

1]
nL~worL.

3) Obtain the access disutility,

AUrr = q E [m i n {I ] - E q." T
y r h r.s. r.s.

As the step proceeds to deal with all origin hyperzones,
obtain: yij = yr ; AU = Z AUr

r r

STEP 2. STOPPING TEST

If IAU - AU +
y x E

..j ) E
(y.ij

1l
- xij)Tij < E . STOP, o.w. CONTINUE

13 ij

STEP 3. STEP SIZE DETERMINATION
Find a* that is the solution of:

min [(AU - AU ) +
0<a<[ Y[

x..+fx(y .- x..)j. i] +(Y. ij
STi (oj)do

1j'e~ji( d'\ -J /-

where Ct = min{l,a i,and a
max max

= in {(. - x./
xi<y. Cij 13 1 ij
ij ij

UPDATING
Obtain the sets of flows, x..}, basic links costs, (T.},
and the total access disutil]ly, AUx , for the next iteration.
next

xj ij ij
next next
T = Tij x..
ij 1' 1j

- X..)
1]

next
AU = AU + a*(AU - AU ).

x x y x

GO TO Step 1.

STEP 4.

- x.)}
13

°



The next subsection describes some analytical aspects of the hyper-

network formulation.

3.3.2 Properties of the Equilibrium Solution

As mentioned in the preceeding subsection, the problem of the

equilibration of the transportation market is solved by reducing the prob-

lem to an assignment over a hypernetwork. The equilibrium in the trans-

portation market is defined by the equations (using the hyperpath notation

introduced in the preceeding subsection):

Demand:
xi

-r -r -r i
Pr[U < ; , --- ; Yi,r [3.21a]

Supply:

-r -r r
Vh. (x.) ; Vj,r
h. jJ J

Er = rh(X) ; V'r [3.21b]

-r

where Ur is the disutility (expressed in car travel time units) of (alter-

native) hyperpath i from hypercentroid r to the trip-ends hypercentroid,

D, for a person sampled at random from zone r. The mean aggregate dis-
-r

utility, Vh., is a function of the flow on hyperpath j through the volume-

delay curves associated with the basic network, T.i(xij) and in general,

the covariance matrix of the hyperpaths' disutilities may be a function of

the flow as well (see Subsection 3.2.1).

The solution of the equilibrium equations is the flow pattern over

the hypernetwork. As can be seen from Figure 3-7, this flow pattern is

given by the solution of the mathematical program:



X..

min (minin{ ] - PhTh) + Tij()d] [3.22]
i i h. i i (ij) Ef'

where P = P(Or i.,j D), Th = T , and the sum E goes over all r.EN'
1i 1 1 h

and s.eN" (see Eqs. [3.19] and [3.20]). This minimization is, of course,

subject to the hypernetwork connectivity and flow conservation constraints.

The Formulation of the equilibration as a network assignment problem

enables the use of many results from the theory of (deterministic) network

equilibrium. Thus, an equilibrium flow pattern exists if the network

has enough capacity to handle the volumes (e.g., if the no-travel alterna-

tive hyperlink between each origin and the destination hyperzone has infin-

ite capacity, a solution would always exist). The equilibrium solution is

then unique, in the sense that if there are two equilibrium solutions,

both will have the same value of the objective function [3.22]. Further-

more, the link flow pattern on the basic network is unique in a strict

sense as long as the routes' travel trimes between any two hyperzones are

increasing functions of these routes' flows. this, of course, happens if the

flow delay curves on all basic links are strictly increasing functions of

the link flow.

The output of the equilibration procedure, in an urban transportation

scenario, would include the total flow on the basic network (which,

depending upon the hypernetwork representation, may include the flow on

the various transit lines), the total number of users (by mode) at each

destination, the total number of users of each mode (by origin) and the

total number of people at each origin zone who are not taking a trip.

The solution is given in terms of hyperlink flows.



Note that the market equilibration can be actually reduced to net-

work assignment with fixed demand, or fixed trip table. The fixed trip

table is given in terms of the total population of each origin zone.

The elasticity of demand is handled through the hypernetwork structure

(hyperpath choice) and not explicitly in the objective function as is the

case with the classical formulation of traffic assignment with elastic

demands (see Bekcman et al., 1956).

The condition of non-negative cost functions for the hyperlinks is

met, by definition, for the basic links. The sign of the access hyperlinks'

disutilities does not matter, since the disutilities can be made positive

by adding a large enough constant to the disutilities of all access links

(note that the solution does not change if one does that).

In the formulation presented in this thesis, it is assumed that the

hyperpath disutilities are MVN distributed. This requires that all dis-

aggregate demand models involved be based on a MVN distribution of the

associated error term vector (MNP models) and that the p.d.f. of all

explanatory variables in the disutility functions (excluding the ones

that are conditioned upon in the aggregation process, i.e., modeled as

additional hyperzones) is MVN as well (see Subsection 2.2.3).

For the hypernetwork interpretation to hold, the disutility func-

tions have to be additive, as mentioned in the preceeding section. This

requirement poses an additional (with respect to traditional studies)

constraint on the model; the disutility functions have to be not only

linear in the parameter and with additive disturbance term (as is the

case with most disaggregate travel demand models) but also additive.

In other words, the travel time over the basic network has to be modified
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by a generic parameter, n, and has to enter the disutility functions as a

linear-additive term. This assumption is essential in order to establish

the equivalency between the transportation market and the hypernetwork

equilibration problems. Moreover, the evidence with regard to linearity

in variables is very mixed.44

The hyperpaths' disutility have to be expressed in terms of travel

time (or any other measure of travel impedance on the basic network) for

the access hyperlinks to be compatible with the basic links. Doing so

explicitly might raise some questions in the minds of economic purists

since this means the utility is used as a cardinal rather than an ordinal

measure. However, the utilities are used in the same fashion in any other

random utility model and the approach suggested in this thesis is no

different, in this respect.

Another assumption that was used in setting up the hypernetwork

is that the covariance matrix in all MNP demand models associated with

the hyperlinks is independent of the vector of measured disutilities,

V. If this is not the case, and Z = Z(V), (as happens if the demand models

include taste variations) the results developed with respect to the

44The requirement for utility functions that are linear in the parameters
and with additive disturbance term that is used in most disaggregate
demand models such as the logit, is rooted (just like the utility
additivity requirement) in analytical feasibility. It is only for such
specification of the utility functions that the logit log-likelihood
function is proven to be unimodal, thereby enabling unique parameters
estimates. The behavioral rationale for the traditional assumption and
the one added here are identical. In addition, it is not difficult to
show that the additivity assumption of travel time, coupled with a logit
model of destination choice, leads to both the entropy and gravity models
of trip distribution.



aggregation procedure (Subsection 2.2.1) are invalid, the expected cost

over the chosen hyperpath cannot be shown to be monotonic (see Subsection

(2.2.3) and the solution properties developed with respect to the hyper-

network assignment formulation of the problem do not hold. The justifica-

tion of this assumption is identical to the abovementioned argument with

respect to the additivity assumption.

This concludes ,the discussion of the algorithm and the properties of

the equilibrium solution. The next subsection includes an example of a

hypernetwork formulation of a contrived problem, its solution using the

algorithms presented in this section and comparison with traditional

approaches for the same problem.

3.3.3 Example

The hypernetwork approach and the algorithm, presented in this

thesis, are applied, in this subsection, to a hypothetical example problem.

The purposes of the example are to demonstrate the following issues:

a. Aggregation with MNP models,

b. Execution of the algorithm,

c. The accuracy of the results, and

d. The failure of naive techniques to converge.

In order to achieve all these goals, the problem chosen is the (classi-

cal) binary mode choice. The basic network is modeled as one link only,

hence finding the skim tree, the access table, and the loading of the

basic network are all trivial steps which the reader can follow without

need for too many calculations. There is only one destination and one

origin hyperzone spanned by the mode choice disutility functions' compon-
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ents and only traditional centroids are used (i.e., no intrazonal access

time is modeled). For this problem, the analysis can be performed manually

and the exact equilibrium flow pattern can be found directly, enabling a

comparison of the solutions.

Figure 3-8 displays the hypernetwork that corresponds to this example.

Link AD stands for the basic network and the inherent disutility of the car

mode is shown as link OA. The transit alternative is similarly represented

by links BD and OB. The link disutilities are given in the figure for each

hyperlink and the corresponding error terms distribution at the bottom

of the figure.

The supply equations for each mode are the following:

10
T = minutes
car 1 - x

Ttr = 15 minutes

where Tcar and Ttr are the travel times by car and transit, respectively,

and x is the volume on hyperpath OAD.

The disaggregate MNP model (assumed to be estimted prior to the

analysis) is given by the disutility functions:

Ucar = 10-5-INC + Tcar + car [3.23a]

Utr = 5 + T +ýr [3.23b]

and
car BVN 0 , [3.23c]

(tr ) 0 75

101



Figure 3-8

Hypernetwork for the Numerical Example

VAD=CAR TRAVEL TIMEADV OA=10-5xINCOME

CAR /

TDAMBlTT

V OB= 
5

IBD .J. 1 I2III"I I"IL
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where U and U are the disutilities associated with the car and tran-
car tr

sit mode, respectively and INC is an income variable.

These equations are not ready for use since they are not functions

of the alternatives' attributes only, i.e., they have to be aggregated

with respect to the socio-economic characteristics. Assuming that the

income is normally distributed across the population with mean and

variance, say, 4; i.e., INC ~ N(4,4), the aggregate disutilities are

given by:

( U INC
car car

= ` -5*
tr tr 0

and the joint density function of the aggregate disutilities is:

- BVN car5  1) 50[3.24]

U Ttr + 5 0 75)
tr tr

Before applying the algorithm, the exact solution is obtained by

solving the equilibrium equations directly and the non-convergence of

traditional methods demonstrated. This is done below.

Writing explicitly the equilibrium equations for this example

(see Eqs. [3.21]) one gets:

Demand:

xq P (Ucar <U tr) [3.25a]

where q is the total O-D trip rate interchange,
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Supply:

10
T = minutes
car -

[3.25b]

T = 15 minutes .

Substituting Eq. [3.24] in the demand function, one gets:

( 15+T 
- T

q 15

Assuming, without loss of generality, that q=l (i.e., the trip rate

interchange is measured in units of q), and upon substituting the supply

equations in the last expression, one gets a single equilibrium

equation:

2/3x =0 (2 ) [3.26]1-x

A graphical solution of Eq. [3.26] is illustrated in Figure 3-9,

yielding x= 0.61 (numerical solution yield x = 0.6116) for the equil-

ibrium flow pattern. This is the solution that any equilibrium algor-

ithm should achieve for this example.

An (often used) naive equilibration procedure (involving feedback

loops) consists in solving Equations [3.25a] and [3.25b] alternatively.

In other words, given a flow over the basic network, the supply equations

are solved. Using the current level of service, the modal split is

determined by solving the demand equations, and the new flows assigned to

the basic network to serve as the basis for computing the level of service

for the next iteration.
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In the example under consideration, and to better illustrate the

point, let the initial starting value for the abovementioned procedure be

X = 0.62, (a value which is very close to the equilibrium solution).. Table

3-1 displays the results obtained with this procedure. The same itera-

tive scheme could have been carried out graphically, as shown in Figure

3-10, to yield a divergence pattern resembling the well known cobweb

model.
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Graphical Solution of the Example
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Table 3.1

DIVERGENCE PATTERN OF TRADITIONAL EQUILIBRATION SCHEME

Iteration X T Y
--- car -

min split

0 0.6200 26.3158 0.5970

1 0.5970 24.8139 0.6352

2 0.6352 27.4123 0.5685

3 0.5685 23.1750 0.6754

4 0.6754 30.8071 0.4786

5 0.4786 19.4791 0.7646

6 0.7646 42.4809 0.2027

7 0.2027 12.5423 0.8778

8 0.8778 81.8331 0.0003

9 0.0003 10.0030 0.9087

10 0.9087 109.5290 0

11 0 10.000 0.9088

12 0.9088 109.6491 0

1 i •
_ _ _ _

It is evident that the naive approach diverges, for this example,

even when started from an excellent initial solution.

The algorithm described in Subsection 3.3.1 is applied now to the

same example problem. All the expressions needed in the course of

executing the algorithm are given explicitly below, so that the algor-

ithmic steps can be followed easily. These expressions are:
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a) The hyperpath assignment (Step 1, part b.1) formula:

The hyperpath assignment formula determines the trip table

entries, which in this case are equivalent to the (aggregate) modal

split.
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q = q'P (Ucr <U ) [3.27]

30 - T
car

15

b) The access disutility (Step 1, part b.3) formula:

This formula is obtained using Clark's formulae (see Sub-

section 2.1.2):

AU = E[min(U U )]-T •x.

x (Ucar' Utr car

Since Clark's formulae apply to the maximum of two normal variates, the

first expression on the RHS of the last equation should be expressed as:

E[min(Ucar, Utr )] = -E[max(-Ucar -Utr )].

Following Eqs. [2.5] and substituting in Eq. [3.27], the expression

for the access disutility becomes:

30 - T
car

AU = 20 - 30X - 15 ( 15 car) [3.28]
x 15

c) The optimal step size (Step 3):

The optimal step size, t*, is the solution of the program:

x+C (y-x)

min [a(AU - AU ) + 10/(l-N)dw ].
0 <<l y x J
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The upper bound of a is a = 1, since in this case the total trip rate,

q=1 and the intermediate flow, y cannot exceed the basic link's capacity,

which is 1. Letting a' be the unconstrained optimal step size, it can

easily be verified that:

, i - x 101 + [3.29a]
v - x AU - AU

y x

and the optimal step size is given by:'

0 for a' < 0

a* = a' for 0 <a'< 1 [3.29b]

1 for 1 <a'.

Now the algorithmic steps can be easily followed. The algorithm is

initialized at the natural "empty basic network" value, T ar(0) = 10

minutes. The first iteration of the algorithm is summarized in Figure

3-11 below. Table 3-2 displays the convergence pattern (note that since

standard normal tables where used in parts b.l and b.2 of Step 1, the

displayed results are subject to some round-off error).

The table illustrates the convergence of the algorithm with re-

spect to the skim tree, the total access disutility, the flows, and

in particular the test quantity. The output of the algorithm includes

all these quantities at the e-optimal point.45

45
Note that if the percentage change in flow over the hypernetwork is
used as a stopping rule, the flow on access hyperlinks has to be
counted for as well, not only the flow on the basic network.
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Figure 3-11

FIRST ITERATION OF THE ALGORITHM FOR THE EXAMPLE PROBLEM

STEP 0:

Ta r (0)car
= 10 minutes

X = 0.9071

AUx = -9.6730 minutes

STEP 1:

a. TAD

b. 1) qAAD

= 107.6426 min. (the skim tree)

= 0 (the access tree)

2) Y = 0

3) AU
y

= 20 min.

STEP 2:

IAU - AU + (y-x)TAD = 67.9696

STEP 3:

a* = 0.2346

STEP 4:

xnext = 0.6943

AUn e x t = -2.7117
x

Tnext
AD = 32.7118
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Table 3-2

THE CONVERGENCE OF THE HYPERNETWORK EQUILIBRIUM ALGORITHM

y
(hyperpath
assignment)

0

0.4283

0.7978

0.6176

0.6013

0.6092

0.6157

0.6124

AU
y

(Access
disutility)

min

20

1.2650

-8.1610

-4.2502

-3.8290

-4.0345

-4.2017

-4.1185

0.6103

Iteration

1

2

3

4

5

6

7

8

T

(skim
tree)

107.6426

32.7118

17.4917

25.5102

26.1502

25.8398

25.5885

25.7202

Test
Quantity

67.9696

4.7246

2.9628

0.6864

0.0040

0.0011

0.0009

0.0008

0.0008

Xnext

0.9071

0.6943

0.4283

0.6080

0.6176

0.6130

0.6092

0.6112

0.6124

AUnext
x

min

-9.6730

-2.7117

1.2650

-3.3189

-4.2502

-4.1316

-4.0345

-4.0871

-4.1185

I

0.2346

1

0.4863

1

0.2816

1

0.3145

1

Tnext

min

107.6426

32.7118

17.4917

25.5102

26.1502

25.8398

25.5885

25.7202

25.7998

r- - - ---- - -- - · P----r-

--- ~-

--- ._I

--

25.7998 -4.0635



In general, several more quantities can be recorded for policy

analysis and decision-making purposes. For example, the total auto-

mobile-kilometers traveled, the transit operator's revenue, etc.

This concludes Chapter 3 which includes the major results of the

research of this thesis. Section 3.1 described a modification of the

algorithm for the assignment with spatial aggregation (reviewed in

Chapter 2) based on some computational efficiency consideration. In

Section 3.3, the transportation market is formulated as a hypernetwork,

based on the hypercentroid and hyperzone concepts. The hypernetwork

assignment algorithm is given and exemplified in Section 3.4.

The next chapter concludes the thesis. It is divided into two

sections. In the first section, the research is summarized and the main

modelling assumptions and approximations reviewed. In the second

section, some applications of the hypernetwork approach are illustrated

and some extensions of the methodology discussed.
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CHAPTER 4

SUMMARY AND APPLICATIONS

4.1 SUMMARY OF THE APPROACH AND MODELLING ASSUMPTIONS

This section summarizes the thesis and reviews the assumptions

and limitations of the modelling approach and the hypernetwork concept.

The main contribution of this thesis is in identifying and defining

the conditions of equilibrium in the passenger transportation market,

formulating the equilibration problem, and introducing an efficient

algorithm for its solution. The approach consists in reducing the

equilibration problem to a network assignment problem (with fixed de-

mands) over a modified network -- the hypernetwork. All choices faced

by tripmakers (e.g., taking a trip, mode, destination, route, etc.) are

viewed as choice of path (hyperpath) through the hypernetwork. The

travel disutility associated with each hyperpath is assumed to be MVN

distributed at the disaggregate and aggregate level (i.e., the dis-

aggregate demand models are all MNP and the components of the measured

disutility functions are MVN distributed). Thus, the equilibration

approach utilizes disaggregate demand models as an integral part of

the transportation equilibrium problem.

The use of the MNP models eliminates theoretical shortcomings

that are inherent in some other modelling approaches and enables

analytical aggregation which is one of the keys to the network formula-

tion of the problem.

The use of the normal approximation to eliminate the intrazonal
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spatial aggregation bias introduces the concept of access node choice.

Since the associated intrazonal travel time is viewed as MVN distributed

disutility, it can be convoluted with the other dimensions of choice to

produce the general MNP model representing the aggregate demand side of

the problem. Furthermore, the reduction of the spatial aggregation bias

makes the use of larger zones possible. This implies the use of fewer

zones and fewer links and nodes in the basic network, thereby reducing

the total cost of analysis.

The availability of an equilibration method also suggests that less

variables may be used in the estimation phase of the analysis since by

analytical aggregation and equilibration, one is making better use of the

information contained in the variables, thereby compensating a possible

specification error.

The hypernetwork concept can be used at almost any level of analysis,

i.e., for detailed urban passenger transportation planning or as a sketch

planning tool with very few zones and crudely aggregated network. Thus,

the hypernetwork is more of an approach to problems rather than a rigid

model. Some other applications of the hypernetwork approach are review-

ed in the following section.

The approximations involved in the modelling approach include the

deterministic treatment of congested hyperlinks46 and the normal approx-

imation of all the explatory variables (excluding impedance of congested

hyperlinks) comprising the disutility of the access hyperpaths.

46For uncongested settings, stochastic effects cannot be ignored and a
different approach should be used (see Subsection 2.3.1 and 2.3.2).
Note, however, that in such casesthe equilibration problem is obviated.
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Due to the graph formula-ion of the problem, the flow-dependent

(equilibrated) part of the hypernetwork (e.g., travel time over basic

links) has to enter the disutility functions of all choice models in-

volved in an additive form. Conservation of flow constraints have also

to be met, implying that car pooling models cannot be incorporated in a

straightforward fashion in the hypernetwork.47

The covariance matrix of all MNP models involved is assumed to be

independent of the associated mean disutility. This implies that taste

variations across the population cannot be conveniently modeled within

a supply-demand equilibrium framework, with the approach presented in

this thesis. 48

As mentioned in the introductory chapter, the hypernetwork approach

deals with static equilibrium and "steady state" behavior. This means

that issues such as dynamic route selection, trip chaining and time-

dependent demand are not handled within the analytic framework suggested

in this thesis.

The hypernetwork methodology does provide a unified approach to the

transportation planning by modelling all choices with MNP models inte-

grated into an efficient equilibrium algorithm that is proven to

47Existing car occupancy levels can be modeled through a deflating factor
applied to the basic links' congestion curves.

48Intrinsically different population groups can be modeled, though,
through the introduction of additional origin hyperzones, with the
implication of a significant increase in the analysis costs. Modelling
such different groups independently is equivalent to discreticizing
and segmenting the taste variations across the total population by
"taste groups."
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converge. Some applications and extensions of the hypernetwork concept

are suggested in the next section.

4.2 APPLICATIONS AND EXTENSIONS OF HYPERNETWORK METHODOLOGY

As mentioned in Section 4.1 above, the hypernetwork approach is not

limited to a given scale of application, thus hypernetworks such as the

ones used in Chapter 3 can be applied to an urban setting as detailed

planning tool or at the sketch planning level.

The hypernetwork methodology is applicable to determining the con-

sequences of altering the capacity of components of a transportation

system. Thus, for example, it can be used as a design tool in determin-

ing the location and capacity of parking lots along a transit line.

Such parking lots are intended for "Park and Ride" mode of transportation

and within a hypernetwork framework this mode can be modelled in a natural

way. The usage of any suggested scheme of lots can be determined

solely by a choice model, the physical characteristics of the lots, the

transit line and the basic network (aggregated to reflect mainly conges-

tion delays along competing routes of the basic network and parking lots'

capacities). Hyperlinks associated with the disutility of mode transfer

or parking fees can be added to the hypernetwork in a trivial fashion.

The results of such analysis would be theoretically sound and obtainable

at a cost that is comparable with traditional methodologies.

Another example of a hypernetwork analysis is Dial-a-Ride (DAR)

49
systems sketch modelling and design. Using DAR supply functions , one

49Such as the ones recently developed by Daganzo, Hendrickson and Wilson
(1977) for the many-to-one case.
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can create a one hyperzone (covering the area of the DAR operation),

one basic link (with supply curve given by the DAR performance curve) hyper-

network, where all intrazonal trip impedances are MVN approximated - using

the guidelines and techniques mentioned in Subsection 2.2.2. The equilib-

rium flow pattern in such a market can be obtained by a manual application

of the algorithm, analogous to the solution of the example of Subsection

3.3.3. Furthermore, such hypernetwork can be readily incorporated within

a larger hypernetwork, for example, in designing an integrated DAR-fixed

route system...

The abovementioned applications are only two simple examples of the

usefulness and simplication implied by the hypernetwork approach.

Further research in transportation equilibrium modelling might be

directed in two main directions. The first one is in developing

"Engineering Wisdom" with regard to model specification. This includes

continuing research concerning good specifications for the demand models

used and in particular parametrizations of covariance matrices of MNP

models. Tied to this is the development of hypernetwork representations

applicable to many of the planning and design issues faced by the trans-

portation analyst.

The second line of further research is in developing better compu-

tational techniques designed to solve the problem as posed in the thesis,

i.e., more efficient demand estimation and network equilibration methods.

Coupled with this, one might think of computational and theoretical

developments with regard to network equilibration, such as the equilibra-

tion of several measures, all flow dependent, simultaneously; an

efficient equilibration of a network exhibiting stochastic and flow-
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dependent impedances; equilibration with interdependent link impedances;

equilibration when route selection is dynamic and depends on traffic

situations, and other transient solutions to equilibration problems.
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APPENDIXt

THE CONVEX COMBINATIONS METHOD OF USER EQUILIBRATION

This appendix reviews in more detail the solution of the user-equilib-

rium problem of traffic assignment, using the method of convex combinations.

It also includes Daganzo's algorithm for the user-equilibrated multi-

centroid problem.

As mentioned in Section 2.4, the user equilibrium (U-E) problem of

traffic assignment can be formulated as a mathematical program. Consider

a network (directed graph) with a set J of nodes, a set of C of centroids

(the special nodes where traffic originates and/or terminates), and a

set N of non-centroid nodes (UUC = J; NflC = #). Let L be the set of

links (denoted by their end nodes, i.e., ijeL if there is a link from

i to j). Denote the link flow by xij and the trip rate interchange by

qrs (r,seC). The flow-cost (non-negative, increasing and with continuous

derivatives) curve associated with each link is denoted Tij(xij) and Cij

denotes the link's capacity.

Beckman et al. (1956) have shown the user-equilibrium flow pattern

is the solution of the following mathematical program:

X..

MinF(x) = Min J Tij.()dw [A.1]
ijEL 0

s.t.
Eqri - qis if i E C

Vr Vs
E x.. - E ki = [A.2]

Vj k 0 if i e N
O<x . < C

tThe references mentioned in the Appendix appeared already in the thesis
and are included in the main REFERENCE section.
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As shown in the abovementioned reference, the equilibrium flow pattern

is also unique if the flow-cost curves are strictly increasing.

Frank and Wolfe (1956) described an iterative algorithm for quadratic

programming with linear constraints that [as shown by LeBlanc (1975) and

Daganzo (1977a)] can be applied to solve the U-E program. The method is

a feasible-direction with optimal step size one, where, in each iteration,

a good direction of descent is found through a linear approximation

of the objective function at the current solution. The steps of the

algorithm are given in Figure A-I below.

k k
Given a current solution x = (...,xij,...), Step 1 is merely a

solution to a linearized U-E problem since x is assumed fixed. The

k k k
direction of descent is given by the vector (y k-x ) where y is deter-

mined through a minimization of a first order approximation of the ob-

k
jective function [A.1] at x . The linearized problem, FL(Y) is:

Min FL ( y) = Min[F(x k ) + VF(x k )(y-x k )] [A.3]

s.t. constaints [A.2] in y.

k k k
Not that since x is fixed in this LP, the term [F(x ) - VF(x k)x ] can be

discarded and the objective function of [A.3] becomes:

Min FL (y) = Min VF(x k ) -y [A.4]

which is an "All-or-Nothing" problem since the links' costs,

VF(k) = T(x) k are independent of y.

The stopping test (Step 2) is based on the fact that the solution

of the subproblem [A.4] is a lower bound the optimal value objective

function [A.1] at ea'ch iteration. To see this, denote this optimal
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value by x*. By convexity:

F(x*) > F(xk) + VF(xk)(x*-xk).

Since yk minimizes VF(xk) for every feasible y, we also have:

F(x k ) + VF(xk)(x*-x k ) > F(x k ) + VF(xk )(yk -x )

k k kkTherefore, [F(xk) + VF(x k)(y -x )] is a lower bound on F(x*) for every

k. The algorithm, therefore, terminates when the current solution is

within a given 6 of this lower bound, i.e., when:

IF(xk ) + k k k F(xk)
F(x ) + VF(x )*(y -x ) - F(x )I <

or:

IT(xk )(yk -xk) I < e

Step 3 consists in a one-dimensional search to find a* that is the sol-

ution of:

k k kMin F[x +ca(y -x)] [A.5]

Subject to:

_< a = Min f(C..
- max 1 ij 13

xij <Yij

k k k
x.)/(y - x. )

13 13 1j

a< 1

ct>Q

In the original revision of LeBlanc's algorithm, the constraint [A.6] was

127

[A.6]

[A.7]

[A.8]



not included, imposing a continuity requirement on the flow-cost curves.

Daganzo (1977a) generalized this algorithm to be applicable to a problem

including capacity constraints as well (i.e., the introduction of con-

straints of the form: xij < C.i; Vij, in the Program [A.1, A.2], where Cij

are link capacities (which can be set to C..=o). The original algorithm
1J

k
cannot handle such a problem, since, given a feasible flow pattern x ,

the result of the direction finding step can be a flow pattern, y k, which

k+l k k k
is infeasible, and for some links x k= xj + a*(y. - x i) might exceed

k+l * k+1
capacity (i.e., x. > Cij). Thus, to ensure the feasibility of x , the

step size is restricted by Eq. [A.6].

Note that the presence of link capacities requires an initialization

procedure that would guarantee an initial feasible solution. Such a pro-

cedure is suggested by Daganzo (1977a) who also proved the convergence

of this algorithm.

The line search of Step 3 can be accomplished by standard techniques

such as Golden Section or Fibonacci search (see for example Zangwill

(1969) or Avriel (1976)].

The updating phase (Step 4) consists in moving from the current

k k+l next
solution x, to the next one, x (denoted x in Figure A-1) along the

feasible descent line (y k-xk ) by the linear optimal amount a*(y k-xk).

Nguyen (1974) suggests a special adaptation of the Convex Simplex

for the same problem (Eqs. [A.1] and [A.2]). The steps of Nguyen's

approach are conceptually similar except that in Step 1 (see Figure

A-1) the shortest spanning trees are not recomputed from scratch but

rather revised from the previous iteration. Thus, his algorithm is
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Figure A-i

THE FRANK-WOLFE ALGORITHM OF TRAFFIC ASSIGNMENT

Step 0. INITIALIZATION
Determine an initial link flow pattern {x } and the assoicated
links costs {T. .).

STEP 1. DIRECTION FINDING
Perform an "All-or-Nothing" assignment using the current
label the resulting flow pattern {Yij}.

STEP 2. STOPPING TEST

f I (y..-x )T I < e STOP; otherwise, CONTINUE.
ijEL

STEP 3. STEP SIZE DETERMINATION

Find a* that solves:

x.ij+(yij -xij

Min T (w)dw
0<a< a ij EL f0

where a = minfl,a m , and a
max max

T 's;
ij

= min {(C. -xij)/y.i-x
xjj 1 ij1

ii (ij

STEP 4. UPDATING
next

xij = xij + a*(Yij-xij)

Tnext S next= T.i xij )

Go to Step 1.
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faster but requires larger core (see Nguyen (1976) for computational

comparisons). Gartner (1977) gives an excellent review of the F-W

algorithm and many of its variants.

As mentioned in Section 2.3.4, it is Step 1 that limits the size

of the problem that can be solved with the F-W algorithm. Daganzo (1976b),

in trying to reduce the aggregation bias, represented each zone by sever-

al centroids and developed a streamlined version of the F-W algorithm

to moderate the associated increase in computational cost. To explain

the decomposition of the algorithm, it is applied below to the trad-

itional single-centroid representation.

Daganzo's decomposition takes advantage of the flow-independence

property of the costs over the links connecting the zone centroids

to the basic network (the access links). Denoting the set of access

links by L' (i.e., ijeL' if i or j s C) and the complementary set of

basic links by L'., the objective function of the U-E problem (Eq. [A.1])

can be written as:

Min F(x) = Min[ T..j x.. + T. ()d] [A.91
ijEL' 13 13 ijEV

X..

Since for the access links, f Tij ()dw = Ti.. xij , problem [A.1] natur-

0
ally decomposes to an assignment over the access links and an assignment

over the basic links. The advantages of this decomposition become appar-

ent as one increases the number of centroids representing each zone.

(Subsection 2.3.4 included a discussion of the multicentroid problem and

Section 3.2 covered some of the related computational considerations.)

Using the notation introduced in Subsection 2.3.4 the original version of
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of Daganzo's algorithm for the multicentroid problem is given in Figure

A-2. (This algorithm corresponds to the F-W algorithm description given

in Subsection 2.3.4.)

Figure A-2

DAGANZO'S ALGORITHM FOR THE MULTICENTROID PROBLEM

STEP 0. INITIAILIZATION
Step Oa. Define some link costs and obtain the minimum travel cost

between each access node pair.
Step Ob. For each subcentroid pair, find the access nodes that re-

sult in the least travel cost from subcentroid to centroid,j
allocate the trip interchanges, qrs to such access node
pair and obtain the total access cost. Repeat the process
for all subcentroid pairs to obtain the access table q'.'.
and the total access cost, L .

Step Oc. Load the access table onto tie network by either using the
shortest paths obtained in Step Oa or performing another
"All-or-Nothing" assignment. This yields a set of flows
x = (...,xij....

STEP 1. COST UPDATING
Define a new set of link costs by entering the recently
obtained flow pattern, x, into the flow-cost curves
Tij (*) [ijEL' ].

STEP 2. DIRECTION FINDING
Repeat Step 0 using the link costs obtained in Step 1.
The result is a flow pattern, y, and a different total
access cost, L .

y

STEP 3. INTERPULATION
Obtain a* by solving Eq. [A.5] and obtain the new set of
link flows, xnext, and the new total access cost, Lnext, byx
next
x = x + a*(y-x)

next
L = L + a*(L -Lx)

x x y x

STEP 4. STOPPING TEST
If convergence has not been achieved go to Step 1.
Otherwise, terminate.

i' --- r----- I1--. _ · CC- - - - Is
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