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ABSTRACT

This thesis explores hierarchy as a knowledge representation strategy. I will

examine the use of hierarchy to represent knowledge about place, a natural candidate

given the importance of the inclusion relationship between places. I shall show that for a.

first order theory of place, hierarchy proves economical and powerful, effectively

expressing regularities of place implicit in statements such as "Boston is in Massachusetts"

and "Cambridge is a city". But I shall also show that for an extended theory of place

knowledge, hierarchy proves insufficient, burdened by the handling of incomplete,

uncertain, and exceptional information, and the effects of data addition and deletion.

Finally, I shall propose methods by which a hierarchical representation scheme can cope

with dynamic knowledge bases in an interactive environment, an essential capability for

the practical use of such representations.
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I. What's It All About?

This thesis explores hierarchy as a knowledge representation strategy. I will

examine the use of hierarchy to represent knowledge about place, a natural candidate

given the importance of the inclusion relationship between places. I shall show that for a

first order theory of place, hierarchy proves economical and powerful, effectively

expressing regularities, of place implicit in statements such as "Boston is in Massachusetts"

and "Cambridge is a city". But I shall also show that for an extended theory of place

knowledge, hierarchy proves insufficient, burdened by the handling of incomplete,

uncertain, and exceptional information, and the effects of data addition and deletion.

Finally, I shall propose methods by which a hierarchical representation scheme can cope

with dynamic knowledge bases in an interactive environment, an essential capability for

the practical use of such representations.

Common Sense About Place

Place knowledge clearly involves some element of hierarchy. For example, a

person may refer 'to his or her home in terms of the city it's in, or the metropolis, state,

section, or even country it's in, such as Center Line, Detroit, Michigan, Midwest, or USA.

The context set by the relative generality of the kinds of places being talked about

determines which generalization is appropriate:

Within the home city of Center Line: "When I come home, mom fixes dinner."
In Detroit, referring to Center Line: "At home, I don't have to be

careful to get home before dark."
In Mass., referring to Michigan: "Back home, we passed a Bottle Bill."
In the East, referring to Midwest: "Back home, it's a milk shake."
In Europe, referring to the USA: "Back home, the water's OK to drink."

Mark Jay Jeffery
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From a representational perspective, a system is needed which conveniently handles

speaking about places at various levels of generality.

These levels also have interrelationships associated with them that are

implicitly used in reasoning about places. For example, if a person is in a particular city,

then that person will be in the same country no matter where he or she is in the city.

This is almost always a valid deduction, although there are exceptions, such as Berlin.

These relationships (and their occasional exceptions) must be made explicit if they are to

be used wisely by the computer.

Finally, each level of specificity has associated with it various properties. For

example, countries form a disjoint class, but sections, like New England and East Coast,

can overlap. Levels differ in typical size which in turn affects typical means of travel: in

rooms, one walks; in cities one takes cars, buses, and taxis; in countries one takes cars,

buses, trains, or planes. These various means of travel in turn have implications for

scheduling, such as travel time, cost, and preparation, as well as considerations like gas,

keys, ticket, luggage, license, visa, or good weather. An adequate representation for place

will have to provide means to represent the properties of each level.

Thus we see that a representation for place demands the accommodation of

various levels of generality, the ability to assert relationships between those levels, and the

association of particular properties with each level.

of ci ~I_..( ~_.. 1-Tr-~...
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Putting It All Together: A "Near" Scenario

A frame representation language was employed to implement a system which

meets these demands. This system is called the PLACE system, and it is based on a

hierarchy of frames with attached procedures. To illustrate this system and some of the

strengths and weaknesses of hierarchy that it explores, an interaction appears below

which exercises the system's knowledge of near. An Anglisized account of the PLACE

system's reasoning is provided for comprehensibility. The LISP version of this

interchange is found in Appendix A.

The PLACE system considers two places to be "near" one another in a given

region. if they both are in a common sub-region:

Is Boston near Cambridge relative to Massachusetts?

Yes, because they are both in the Metro-Boston
sub-region of Massachusetts.

Is Boston near New York relative to North America?

Yes, because they are both in the East Coast
sub-region of North America.

The conceptualization of near based on hierarchy can give rise to errors. For

example, the existence of the sub-region East Coast which contains both New York and

Boston causes the system to consider them as being nearer to each other than Montreal

and Boston, which are not contained in a known sub-region:

Is. Boston near Montreal relative to North America?

No, because they have no sub-region of North America in common.

In fact, there is not much difference, compared to the size of North America -- Boston is

185 miles from New York, and 260 from Montreal.

Mark Jay Jeffery
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The inadequacy of a NEAR predicate based solely on hierarchy is even more

obvious in the following example, where two cities separated only by a river are not

considered near:

Is Detroit near Windsor relative to North America?

No, because they have no sub-region of North America in common.

We shall see that the constraints imposed by hierarchy make it very difficult, if

not impossible, to handle these situations with a purely hierarchical scheme. Perhaps the

simplest solution is to tell the computer to make a specific exception to the general

hierarchy. For example, the system could be told to consider Detroit to be near Windsor

relative to any area of type state or province, or larger:

Assert Detroit is near Windsor relative to
including areas of type state or province.

Done.

Is Detroit near Windsor relative to Michigan?

Yes, because they are known to be near
relative to including places of type state.

While this approach requires special knowledge for each pair of places, it does allow a

better approximation of the meaning of near.

Hierarchy integrates well with these exceptions. For example, it allows the

exception to apply automatically to the hierarchy of places within Detroit and Windsor:

Is Cobo Hall (a building in Detroit) near Windsor Mutual
(an imaginary building in Windsor) relative to Ontario?

Yes, because they are in places known to be near
relative to including places of type province.

h
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A difficulty, however, with making explicit exceptions is that they must be

asserted at the proper level of generality. The system should have been told that Metro-

Detroit is near Metro-Windsor, relative to the size of a state or province. That would

prevent errors of the following sort:

Is Center Line (a suburb of the Metro-Detroit area) near
Fairfield (an imaginary suburb of Windsor) relative to Michigan?

No, because they have no sub-region of Michigan in common.

Chapters II and III of this essay develop a first order theory of place knowledge

and a corresponding frame representation. Chapters IV and V criticize this first order

theory, discussing more refined concepts that place knowledge must encompass,'and more

complex processes on frames that the representation scheme must accommodate.

Relation to Previous Work

The "room theory" of David Rumelhart (1974) is similar to the concept of near

employed in the present system: two places are near if they are in a sub-region of the

context-defining place. Rumelhart defines that theory as follows:

The room theory posits the existence of a psychological room relative to
which distances are reckoned. ...the room corresponds to the smallest
geographical region that encompasses both the reference location of the
conversants (normally their physical location) and the locations of the places
in question. Places that are close to one another are. those whose distance is
small relative to the size of the size of the room. ... The rule is find the
smallest room which just includes the reference location and the answer
location. The appropriate answer is the next smallest geographical unit
which contains the location in question, but excludes the reference
location. (Rumelhart, 1974)

The simplicity of this concept of near gives it wide applicability and ease of

implementation, making it a reasonable starting point for a first order theory of near.

It · h
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Murray Denofsky's work (1976) explores the concept of "near" as a judgment

about physical distance. He does so not just from the perspective of place, such as

buildings in a city, but also for many other entities, such as pages in a book, letters on a

page, or cars on the road. This near weighs factors such as purpose of the judgment,

dimensions of the object, absolute distance, and relative distance to other objects, ranges,

and standards. Denofsky's approach is quite quantitative in that it depends on having

specific numbers available for its computation, whether they be actual values, or default

values. The PLACE system does not depend on numerical information, but only on the

inclusion relationships involved. Hence it is less accurate, but more often applicable

when dealing with partial information. Extending the PLACE system so that it can use

numeric information when it is available would not be too difficult.

Ben Kuipers (1976, 1977) has explored place representation at the level of streets

and neighborhoods, with an emphasis on being able to learn and find routes between

places given a local and incomplete (but correct) description of the streets and

intersections of the area. A hierarchy of specific places (Boston --> Massachusetts -->

USA) is used to determine travel routes between large areas, such as the East and West

Coasts. These routes are refined at progressively lower levels in the hierarchy until an

exact route, say from the Stanford AI Lab to the MIT AI Lab, is found.

My current work differs from Kuipers' in that it uses an abstraction of

hierarchy of specific places (city --> state --> country) for the purpose of reasoning about

place and travel. For example, information about the rank of a place in this abstract

hierarchy is used to deduce facts about inclusion relationships (MIT is a building

complex, and hence can't contain a city), and inclusion relationships are used to put

Mark Jay jeffery
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restrictions on what rank a place can have. There is also a concern for dealing with

incorrect as well as incomplete information, and for assisting the user with options and

examples for modifying that information. Finally, the issue of detailed route-finding,

which is a major element of Kuipers' work, is not considered in my work.

Terry Winograd (1975) examines a frames approach for embedding a hierarchy

of time in a frames system. Many of the problems and advantages of his approach apply

to the current system, including those concerning the use of procedurally-attached

knowledge and inheritance. The NUDGE system (Goldstein and Roberts, 1977) is a

knowledge-based scheduling system which attempts to integrate common sense. about time,

place, meetings, activities and people using just this type of system. The PLACE system

finds practical use as a module in the NUDGE system.

Organization of This Document

Chapter II explores the formalization of knowledge about place, identifying

several major regularities. Chapter III describes the implementation of this theory in a

frame-based hierarchical system. The limitations of the place theory are explored in

chapter IV, and suggestions are made concerning improvements. Chapter V

demonstrates the limitations of a frame representation by exploring the impact of

incomplete and changing data on the hierarchical structure of the data base. Finally,

chapter VI explores methods for dealing with interactive classification within a

hierarchical system, and discusses some issues of user interaction and control which are

easily mishandled in such systems.

Mark Jay Jeffery
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II. A Basic Theory of Place

In this chapter, I define formal relations "IN" and "NEAR" to capture the

regularities of place implicit in the corresponding ordinary English relations. In order to

make full use of the reasoning power these regularities provide, exceptions to them which

the ordinary use of "in" and "near" allow will not be considered. We will pursue these

exceptions as we refine the theory in chapter IV.

The Inclusion Relationship

The most fundamental concept needed for dealing with place is that of

inclusion -- Detroit is in Michigan, the USA is in North America. The semantic sense of

"in" that is important here is the relation "is a part of", not the relation "physically

inside". For example, the city of Center Line is completely surrounded by the city of

Warren, but it would generally be judged incorrect to say "Center Line is in Warren".

Hence in formally defining IN, we make the distinction that even though one country or

city is totally surrounded by another, it is not IN it unless it is a part of it.

Another regularity usually exhibited by the use of "in" is that it is a binary

relation. Either one place is completely within another, or it isn't in it. Hence we add to

the definition of IN that it means "completely in", not "partly in". This is not always the

case -- part of Kansas City is in Missouri, and part is in Kansas. This situation is not

expressible with our definition of IN as "completely in".

Combining the two characteristics of IN that we have discussed, we arrive at

the definition that IN means "completely a part of". Consequently, if P' is IN P, then it is

reasonable to think that any place P" IN P' is also IN P -- all subparts of P' are IN P.

For example, if Boston is IN Massachusetts, then any place IN Boston is IN

of tn II-..(. 1-.. 1-rr-,..
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Massachusetts. This is equivalent to saying that IN is a transitive relation. Transitivity

is a very powerful reasoning tool to have, so cases such as Kansas City will be handled as

exceptions.

Place Generalization: Rank

Another regularity of place is the typical use of place generalization. To reflect

that regularity, I shall introduce the concept of "rank", which refers to the level of

generalization. The most basic levels seem to be those of room, building, city, state, and

country. Generalizing slightly and including some less often used categories, the

following rank levels were selected:

1. meeting-place smallest kind of place considered; it has the
property that it takes no time to travel within
a single meeting-place, and people at the same
meeting-place are always aware of one another.

2. building-area sub-parts of a building, such as an entry or floor.
3. building
4. complex collection of several buildings
5. city
6. metro-area collection of several cities in close relation
7. political-unit subdivision of a country, such as state, province.
8. section area of a country, such New-England, Midwest.
9. country
10. continent
11. world for completeness.

The properties of generalization that this categorization seeks to capture are the

following: (1) the typical levels of generalization encountered in everyday dealing with

place are present; (2) the complete range of place sizes is covered; and (3) the

classification of places and classes of places is unique. Hence every place P has a single

rank R(P) corresponding to the level the place falls into, "world" being the highest rank.

The first property of including all common levels is an obvious requirement for any first

Mark Jay Jeffery
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order theory. The second property of spanning all sizes makes it possible for the

properties of places which depend heavily on size (such as travel time and nearness) to

vary as smoothly as possible, with no large jumps. Finally, the third property of

uniqueness means that there is no ambiguity in determining rank-dependent properties;

hence reasoning about places can proceed straightforwardly.

There are several other inherent properties of rank which we will exploit. First,

as has already been mentioned, each rank has factors associated with it which determine

nominal travel means and time. For example, it just a fact that building have stairs,

elevators, and sometimes escalators, while cities have cars, buses, taxis, and sometimes

subways. Secondly, ranks have a natural inclusion order -- a place is never in another

place of lesser rank: a country is never IN a city; a city is never IN a building. Hence

the general relation holds that if the rank of P is greater than the rank Q, P cannot be

in Q. This order property will prove useful in reasoning about inclusion relationships.

In addition to these basic properties, other useful properties can depend on

rank information. For example, if it is known that the members of a rank are mutually

exclusive, then it can be checked that at most one member of that level contains a given

place. For example, Boston can not be IN both Maine and Massachusetts, since states are

a mutually exclusive category. If it is known that a particular level spans another (that at

least one member of that level contains all places of a certain set), additional deductions

can be made. For example, all cities of the USA are IN states, since states span the USA.

If a level's known members are also known to form an exhaustive set, further deductions

are possible, since the members are then known to span that level. For example, knowing

that you knew all the states IN New England would let you deduce that Michigan isn't

Mark Jay Jeffery
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IN New England, since it wasn't in your list. As it turns out, the members of most ranks

are mutually exclusive and collectively exhaustive, a comment perhaps on how people

organize their descriptions of the world.

Dividing places into levels also creates expectations for inclusion relationships,

since it is known which levels are of ranks above and below a given one. This

information can be used in asking more intelligent questions. Not only can one avoid

asking questions which violate the rank order property, such as "What building is Boston

in?", but one can ask questions in terms of the most appropriate rank, such as "What

building is the Al LAB in?", instead of "What continent is it in?".

Lastly, the levels enable one to generalize up or down to the rank appropriate

for a given place context. For example, one would say "the drinking age in Michigan is

18", not "the drinking age in room 214 is 18".

The Rank-inclusion Property

The concepts of rank and inclusion interact in an interesting way -- with few

exceptions, regions of one rank form boundaries along the boundaries of regions of lesser

rank. For example, countries such as the USA are divided into states, and no states are

split by a country boundary. Cities are not split by state or country boundaries (Kansas

City is one of a small number of counter examples), buildings are seldom split by city

boundaries, and a room is generally not split among several buildings. I call this

regularity in the structure of places the "rank-inclusion" property.

If a place can not be split by the boundaries of places of greater rank, then it

acts as a unit -- either all in or all out. Hence if part of a place is known to be IN a place

Mark Jay Jeffery
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of greater rank, then the entire place must be IN the greater ranked place. This is a

powerful reasoning aid. For example, if Detroit is known to be IN the USA, and Detroit

is also known to be IN Michigan, then Michigan must also be IN the USA. Otherwise

the USA would be spliting a region of lesser rank, Michigan, into two parts -- a part

containing the Detroit part of Michigan, and the rest of Michigan. To summarize, if any

part of P is IN Q, and the rank of P is less than the rank of Q, then all of P is IN Q

An implication of this is that if two places P and Q both contain a third place, and the

rank of P is less than the rank of Q, then P is IN Q For example, the USA and New

England both .contain Boston; since the rank of New England is less than that of the

USA, New England is IN the USA.

The rank-inclusion property is violated by places like Kansas city, or buildings

that straddle state lines. We take up these exceptions in chapter IV.

A Simple Concept of Near

Evolving an adequate understanding of the concept near is pivotal to

developing a practical theory of place. Complexity arises because its meaning varies with

context: my room is near his room; Vermont is near New Hampshire; Japan is near

India. The formal definition of "near" used here is based solely on the ideas of rank and

inclusion as presented thus far. One place is used to establish the context, and nearness

is defined in terms of the internal place structure of this context-establishing place unit

(this follows the definition suggested by Rumelhart, 1974). More specifically, places are

considered to be near each other if they all lie in some sub-unit of the context-

establishing place unit: places P(l)...P(n) are NEAR one another relative to Q if there

of
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exists a Q IN Qsuch that P(i) is IN Q' for i=1 to n.

- tecCA

G 4 "'SVB- RFClo t . lVIID W- ST

P(I) P(2) P (3) MIC41GAN OHIO ELLItJOIS

Fig. 1 Definition of Nearness

Michigan is NEAR Illinois relative to the USA since they are both IN the

Midwest. Similarly, Detroit is NEAR Lansing relative to the Midwest, since they are IN

the same state; but Detroit is not NEAR Chicago, since there is no sub-unit of the

Midwest that contains both Detroit and Chicago. One could be invented, however, such

as "Great Lakes States".

This NEAR relation depends solely on the inclusion relationships that are

known, and uses no distance metric. Hence it is easy to implement, and often gives

reasonable results, as long as only general magnitudes of distance are all that matters (see

Denofsky, 1975, for a more metric oriented approach).

This approach has its shortcomings: while Detroit and Windsor are separated

only by the Detroit River, they would not be found to be "near" each other using this

approach, and no region can be invented which allows that deduction that does not also

violate the rank-inclusion property. We will take this up in chapter IV.

S Mark Jay Jeffery
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We have examined the concepts of "in" and "near" and defined two

corresponding formal relations IN and NEAR which capture some of their regularities.

IN is defined to mean "completely a part of", and is transitive. NEAR is defined in terms

of IN. Place types have been organized into a collection of ordered ranks which .reflect

the properties of general categories of places, and which constrain inclusion relationships.

In the next chapter, I will explore a frame representation for these concepts.
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III. A Basic Frame Implementation of Place

The simple theory of place described in chapter II was implemented as the

PLACE system in the frame representation language FRL developed by Goldstein and

Roberts (Goldstein and Roberts, 1977; Roberts and Goldstein, 1977). As was anticipated,

the hierarchical orientation of the language was well-suited to the hierarchy of place

relationships. Knowledge could be placed at one place in the knowledge base,

corresponding to its level of generality, and be accessed automatically, via inheritance,

when needed by other parts of the system. This modularity and matching with

appropriate level of generality made it easy to understand and modify the system.

Finally, procdural attachment proved useful for automatically maintaining the structural

integrity of the hierarchy when adding new places. In this chapter, I shall describe how

this fortuitous matching between FRL and place relationships was carried out. In

chapters IV and V we shall see how uncertain, incomplete, exceptional, and changing

information adversely affect the effectiveness of the place hierarchy and FRL's

maintenance of it, and chapter VI proposes methods for handling the special difficulties

one encounters when dealing interactively with a hierarchical system.

In FRL, knowledge representations are built from individual packages of

information, called frames, which are nested association lists. Each frame has a number

of slots which reflect various aspects of the thing the frame represents. For example,

BUILDING might have slots for number of floors, instances of specific buildings known

by the system, travel information for getting around in a building (stairs, elevators,

walking), and common facilities of a building, such as lavatories. Each slot in turn has

".Itr
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facets, which categorize the kinds of information the slot contains. For example, one facet

type is reserved for the actual value of a slot ($value); another is used for procedural

knowledge which says what to do when a new value is added to that slot (0if-added); and

yet another specifies requirements that any value for that slot must satisfy ($require).

There are other facets which we will describe latter. If there is no $value facet under a

certain slot, a value can be inherited from a frame that the current frame is a kind of.

For example, an office has the facility of light-fixtures because its "a kind of" (AKO) slot

has value ROOM, and ROOM contains the value LIGHT-FIXTURE under its facility

slot. A number of simplified sample frames appear below; a larger listing of frames

appears in appendix B.

The OFFICE frame demonstrates the nested association list structure of frames, and the
use of the value and default facets:

(OFFICE (AKO ($VALUE (ROOM)))
(INSTANCE ($VALUE (NE43-319) (NE43-823)))
(FACILITIES ($VALUE (DESK) (WASTE-BASKET)))
(ACTIVITY ($DEFAULT (PAPER-WORK) ) )
(AVAILABLE ($DEFAULT ((INTERVAL 9AM 5PM)))))

The PLACE frame is the most general one in the place hierarchy. All places can inherit
its slots and their associated facets. Note the use of the if-added and require facets:

(PLACE (AKO ($VALUE (THING))
($IF-ADDED ((CHECK-IMPROPER-SUPERS))

((ADD-INSTANCE)))
($IF-REMOVED ((REMOVE-I NSTANCE))))

(INSTANCE ($VALUE (ROOM) (CITY) (SCHOOL)...)
($REQUIRE ((RESTRICT-AKO 'PLACE))))

(SUPER-PLACE ($IF-ADDED ((CHECK-IMPROPER-SUPERS))
((SUGGEST-AKO)))

($REQUIRE ((> (RANK :VALUE)
(RANK :FRAME))))))
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The CITY frame illustrates the embedding of travel information in a frame:

(CITY (AKO ($VALUE (PLACE)))
(INSTANCE ($VALUE (CAMBR I DGE) (DETROIT)))
(SUPER-PLACE ($REQUIRE ((>= (RANK :VALUE)

(RANK 'CITY)))))
(INTRA-TRAVEL ($DEFAULT (CAR (TI,MýE: 20 MIINUTES)

(COST: 35 CENTS))
(TAXI (TIME: 20 MINUTES)

(COST: 4 DOLLARS))
(BUS (TIME: 25 MINUTES)

(COST: 25 CENTS)))))

The CAMBRIDGE frame contains a small amount of very specific information; other
information can be inherited from the more general CITY and PLACE frames:

(CAMIBRIDGE (AKO ($VALUE (CITY)))
(SUPER-PLACE ($VALUE (METRO-BOSTON)))
(SUB-PLACE ($VALUE (MIT) (HARVARD) ... )))

As we have seen from the examples, each place-frame is "a kind of" (AKO) one

of the rank-determining levels in the place hierarchy, by inheritance, if not directly. For

example, PAPA-GINO'S is AKO RESTAURANT which is in turn AKO BUILDING.

Each rank level, such as CITY or COUNTRY, is AKO PLACE. The AKO tree that

this produces appears on the next page (Fig. 2). The tree is abbreviated, but serves to

illustrate the principles involved. It is this AKO tree structure which is used for

inheriting basic properties of the various categories, such as appropriate travel means,

and which permits over-riding those properties in more specific cases by placing

information further down in the tree.
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Fig. 2 The "A Kind Of" Hierarchy of the PLACE System

(All the leftmost places are "a kind of' PLACE)
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The Inclusion Relation

There are two options as to how to capture inclusion relationships within the

frames system. One is to put the information completely internal to each place-frame; the

other is to embed the inclusion information in the links between frames. The former

method would mean putting the complete inclusion chain for that place inside the frame;

for MIT, this would look as follows:

(MIT . . .
(SUPER ($VALUE (CAMBRIDGE METRO-BOSTON MASS EAST-COAST

NEW-ENGLAND USA NORTH-AMERICA EARTH)))

This approach has the virtue that inclusion does not have to be transitive to be stored

this way, making exceptions easier to represent. But it was rejected for several reasons.

First, it is highly redundant (it would be identical for every building in Cambridge, even

longer for each room in Cambridge). This means that storage space is being used

needlessly. Second, the redundancy makes it very hard to integrate changes into the

hierarchy. For example, suppose it was desired to add to the place-frames system that

Massachusetts was in the section of the USA called the East Coast. This new place

information would have to be added to the inclusion list of every single place in

Massachusetts. Similarly, deleting that information would involve finding each place-

frame in which it occurs and removing it. This difficulty would disappear in a static

system, but for an evolving one such as this, it is inappropriate.

Embedding inclusion relationships in the frame links reduces the redundancy:

Massachusetts can be made part of the East Coast by adding just the one fact that it is

linked to the East Coast via a "SUPER-PLACE" link. All the places that make up
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Massachusetts would automatically be a part of the East Coast by the transitivity of

inclusion. There is an increase in computational complexity, however, in determining

SUPER-PLACEs, since rather than having a ready-made list, the chain of transitive

inclusion links must be traced. It was decided that this increase in complexity was more

than compensated for by the increased modularity of information in the linked frames

approach and by the ease of modification. This approach also results in increased

storage efficiency: since there are many more places of lower ranks than higher ranks

(many more rooms than countries than continents) and about ten rank levels, most place-

frames would require 80-90% less storage for the inclusion relation. These advantages of

modularity and storage efficiency are typical of hierarchical systems, and are similarly

reflected in the AKO hierarchy. The representation of a non-transitive relationship,

which the first approach allowed, will be reconsidered in chapter IV for handling

exceptions to transitivity.

Sub-super Links

The PLACE system embeds inclusion relationships as a transitive link called

the SUPER-PLACE link, as discussed above. It occurs in pairs with its inverse, the

SUB-PLACE link, making it easy to trace inclusion chains both up and down (these

links will henceforth be abbreviated as SUPER and SUB). Using the AKO information

we examined earlier, we see that MASS is AKO STATE (which is AKO POLITICAL-

UNIT), and has SUPERs NEW-ENGLAND and EAST-COAST, and SUB METRO-

BOSTON:
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Fig. 3 Using SUB-SUPER Links to Capture Inclusion

A requirement on the general PLACE frame (which every place-frame has, by

inheritance) enforces the property that the rank of a place-frame must be less than or

equal to that of its SUPERs, and greater than or equal to that of its SUBs (see the

PLACE frame at the beginning of the chapter).

Frames can also have preferences on their SUB and SUPER links which

indicate what ranks it is desirable to have fill those slots. For example, one would

generally want to narrow down the location of a city as much as possible, and therefore

one would rather know what metro-area or state its in than what country or continent.

Hence metro-area and political-unit occur under the preference facet of the SUPER slot

of CITY. These are only preferences, however, not requirements. The including country

or continent is permissible, if that's all that's known. Here is how the preference facet of

CITY would appear:

(CITY (SUPER ($PREFER ((RESTRICT-AKO
'(METRO-AREA POLITICAL-UNIT))))

($REQUIRE ((>= (RANK :VALUE)
(RANK 'CITY))))))

The exact ordering for the rank levels is implicitly stored in the preference

facets of the SUPER slots. However, a function called RANK has access to an ordered
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list called PLACE-TYPES which explicitly contains that ordering. This results in

greater efficiency through less searching and less computation in establishing rank

ordering, although it is not in keeping with a pure frame representation of knowledge.

The current SUB-SUPER structure of the place-frames system is mapped out

on the next page (Fig. 4).

Procedural Attachment

There are certain disciplines maintained in the place-frame hierarchy to

facilitate data integrity and efficient computation. First, IF-ADDED and IF-REMOVED

methods are used to insure inclusion information is properly available -- that an upward

SUPER pointer is paired with a corresponding downward SUB pointer. Every place

inherits these procedures from the top-level place-frame PLACE, thereby exploiting the

hierarchical structure of the PLACE system:

(PLACE (AKO ($VALUE (THING))
($IF-ADDED ((ADD-INSTANCE)))
($IF-REMOVED ((REMOVE-I NSTANCE))))

(SUPER ($IF-ADDED ((ADD-SUBS)))
($IF-REMOVED ((REMOVE-SUBS))))

(SUB ($IF-ADDED ((ADD-SUPERS)))
($ I F-REMOVED ((REMOVE-SUPERS)))))

For example, if WARREN, a city, is added to the system with SUPER METRO-

DETROIT, a SUB pointer is automatically added (by the IF-ADDED method on the

SUPER slot of WARREN) to METRO-DETROIT, pointing back to WARREN:
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This is the hierarchy represented by the SUB-SUPER slots of the place-frames.
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Fig. 5 SUB and SUPER Pointers Are Added as Pairs

Similarly, SUB-SUPER pointers are deleted in pairs. This guarantees that any search

which goes up the inclusion chain will get the same results as any that goes down the

chain. A similar discipline is at work for AKO-INSTANCE links: if HARVARD,

which is AKO SCHOOL, is added to the system, then SCHOOL automatically gains an

INSTANCE pointer to HARVARD. Hence we see that attached procedures provide a

convenient way of maintaining links in a hierarchical structure.

The rank-inclusion property is also a part of the place-frame discipline, since it

can be used to properly locate new places in the inclusion hierarchy. Recall that this

property says that if any part of P is IN Q, and the rank of P is less than the rank of

Q,.then all of P is IN q. Hence if P is IN several different places which all have

different ranks, it is possible to determine the inclusion relationships between these places.

For example, if CAMBRIDGE is IN METRO-BOSTON, MASS, and NORTH-

AMERICA, one can deduce that METRO-BOSTON must be IN MASS, and that

MASS must be IN NORTH-AMERICA:
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Fig. 6 Restructuring Inclusion Relationships

In the place-frames system, each time a new SUPER is added to a place, a check is made

to'see if such a hidden inclusion relation holds. If it does, inclusion links are

manipulated to reflect the new relationship.

This restructuring is accomplished by maintaining a discipline which

guarantees that no hidden inclusion relationships exist. This discipline consists of

enforcing the constraint that the SUPER slot of a place-frame hold only its most

immediate SUPERs. These will all necessarily be of the same rank, and hence can not

contain any hidden inclusion relationships deducible from the rank-inclusion property.

(There is no similar discipline at work regarding SUBs -- it is possible for SUBs to have

varied rank.) More formally, its says that for each place P with SUPER Q (P IN Q

holds), there is no known P' such that P is IN P' which is also IN Q. For example, if

CAMBRIDGE has SUPER MASS, then there should be no place IN MASS which

contains CAMBRIDGE.

This constraint is maintained by comparing the rank of each SUPER that is

added (via IF-ADDED and IF-REMOVED methods) to see if its rank is greater than or

less than the old SUPER. If the the rank of a new SUPER is less than the rank of the

old SUPER, then the new place is inserted in the inclusion hierarchy between the current
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frame and the old SUPER. In Fig. 7, we that if CAMBRIDGE was IN MASS, and it

was asserted that CAMBRIDGE was also IN a new place METRO-BOSTON, which

has a lower rank than MASS, then CAMBRIDGE would have MASS removed as its

SUPER, and have it replaced by METRO-BOSTON. MASS would then gain the SUB

METRO- BOSTON. This leaves CAMBRIDGE with just its most immediate SUPER,

as desired. This process generalizes when a place has several SUPERs in a straight

forward manner by comparing the new SUPER with the entire set of old SUPERs.

MA3$ MAf$
tO suEER

,a 0w,"-C4

nmTo$-8O3TOI4

CAmsRIDko CAmBR0~E4

Fig. 7 Eliminating Hidden Inclusion Relationships

More formally, when a new SUPER Q is added to place P, an IF-ADDED

method (CHECK-IMPROPER-SUPERS) compares the rank of the new SUPER with

that of one of the old SUPERs P(i):

Ss'

P
I 1 )

x -if

P
Fig. 8 The Formal Algorithm
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If the rank of Q is less than the rank of some P(i) (which are all necessarily of the same

rank), then Qremains a new SUPER of P, and the old P(i) are removed as P's SUPERs,

and become Q's SUPERs. If Q is of greater rank than the P(i), then it is deleted as a

SUPER of P, and added as a SUPER to each of the P(i). This last step can cause

another use of CHECK-IMPROPER-SUPERS, since Qbehaves as a new SUPER being

added to each P(i). This process continues until Qcan no longer rise in the hierarchy

and has "percolated" to its proper position. There are a few subtleties to this process

when places have the same rank (like NEW ENGLAND and the EAST-COAST), since

overlap does not imply inclusion, but we will not pursue them.

The following is an example of how the percolation process described above

takes place. Suppose that it is known that CAMBRIDGE is IN METRO-BOSTON

which is IN MASS which is IN NORTH-AMERICA (see Fig. 9). Then suppose the

new information is asserted that CAMBRIDGE is IN the UNITED-STATES. The rank

of the UNITED-STATES is compared with the rank of CAMBRIDGE's old SUPER,

METRO-BOSTON. Since it is higher, the UNITED-STATES is deleted as a SUPER

of CAMBRIDGE, and becomes a SUPER of METRO-BOSTON. In becoming a

SUPER of METRO-BOSTON, the UNITED-STATES triggers the process again. The

UNITED-STATES, as a new SUPER of METRO-BOSTON, is then compared with

MASS, which is an old SUPER of METRO-BOSTON. These comparisons continue

until the UNITED-STATES is compared with NORTH-AMERICA. Since the rank of

the UNITED-STATES is less than that of NORTH-AMERICA, NORTH-AMERICA is

removed as MASS's SUPER, and becomes the UNITED-STATES' SUPER. This leaves

each place with only its most immediate SUPER, guaranteeing there are no hidden
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inclusion relationships. This process is summarized below:
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Fig. 9 Recursive Application of the Rank-inclusion Principle

While the use of attached procedures does allow new places to be automatically

integrated into the place hierarchy, we see that it results in a fairly complex, recursive

computation. In chapters IV and V, we'll find that this tendency becomes more

pronounced as the system tries to cope with the imperfect information base probable in

useable systems.

Place Functions

There are several types of procedures that operate on the place-frames data

base. First, there are predicates which test the validity of statements about the data base.

Second, there are functions which return information from the data base. Finally, there

are commands which alter information in the place-frame data base. We'll briefly

examine functions of each type.
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Predicates:

(CONTAINS? 'USA 'MICH) Does the USA contain Michigan?

CONTAINS? is computed using inclusion relationships by checking to see if the first

argument is a member of the transitive set of SUPERs of the second.

(NEAR? 'MASS '(BOSTON CAMBRIDGE)) Are Boston and Cambridge near
to one another relative to Mass.?*

NEAR? is computed by intersecting the transitive set of SUBs of the first argument with

the smallest place(s) which contains all the places of the second argument (this is the

PLACE-SPAN of the second argument -- see below). The result is then a place (or

places) which is a SUB of' the first argument, and which contains all the second

arguments;, this corresponds to our definition of NEAR. If this result is non-empty, the

function returns true.

(PLACE-TYPE? 'BOSTON 'CITY) Is Boston an example of a city?

PLACE-TYPE? is computed by seeing if its second argument is either the AKO of the

first argument, or is a member of the set of all the AKOs of all the SUPERs of the first

argument.

Functions that interrogate the data base:

(TYPE-SPAN 'BOSTON) ==> CITY

TYPE-SPAN is computed by intersecting the rank levels with the transitive set of AKOs

of the argument.
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(PLACE-SPAN ' (MAINE MIT)) ==> (SECTION NEW-ENGLAND)

PLACE-SPAN is computed by finding the place of lowest rank which contains all the-

places in the argument. .This is done by intersecting the list of their SUPERs, and then

finding the one that is of lowest rank.

(TRAVEL-COST ' (BOSTON AUGUSTA)) = ((CAR 15) (PLANE 35))
(TRAVEL-TIME ' (BOSTON AUGUSTA)) = ((CAR (HOUR 5)) (PLANE (HOUR 2)))
(TRAVEL-MEANS ' (BOSTON AUGUSTA)) = (CAR PLANE)
(MINIMIZE 'COST: ' (BOSTON AUGUSTA)) = (CAR 15)
(MAXIMIZE 'TIME: '(BOSTON AUGUSTA)) = (CAR (HOUR 5))

These functions are all computed by looking at the INTRA-TRAVEL slot of the frames

in the PLACE-SPAN of the places given. If, for example, the PLACE-SPAN is NEW-

ENGLAND, then NEW-ENGLAND, via inheritance, will have the INTRA-TRAVEL

slot value for a SECTION. This slot contains a list for each vehicle with order of

magnitude estimates for typical travel times and costs within an average area of that type:

(SECTION (AKO ($VALUE (PLACE)))
(INTRA-TRAVEL ($DEFAULT (CAR (COST: 15 DOLLARS)

(TIME: 5 HOURS))
. (PLANE (COST: 35 DOLLARS)

(TIME: 2 HOURS))
(BUS (COST: 20 DOLLARS)

(TIME: 7 HOURS))))

A set of estimates for CITY occurs at the beginning of this chapter. More sophisticated

estimates of travel time and cost are possible if exact sizes and/or routes are known.

Inheritance also provides an effective way to supply information specific to a particular

place, since inheritance will reach more specific information before general information.

Hence special information about NEW-ENGLAND, such as the effects of a rail strike,

would be inherited before general information about SECTIONs.
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(DESCRIBE-PLACE 'MIT) ==> SCHOOL: MIT
CITY: CAMBRIDGE
METRO-AREA: METRO-BOSTON
STATE: MASS
COUNTRY: USA
CONT I NENT: NORTH-AMER ICA
WORLD: EARTH

DESCRIBE-PLACE looks thru the transitive set of SUPERs of its argument, and prints

them in order of increasing rank.

Commands that alter the place-frame data base:

SPECIFY-PLACE is a function which engages the user in a "menu" style dialog to

define a new place. It uses the preference and exemplar facets and SUB-SUPER and

AKO-INSTANCE information to generate reasonable choices and examples for the user

(see chapter VI). Here's a sample dialog generated by invoking SPECIFY-PLACE:

What is the name of the place?

>Center-line

Center-line is AKO:

(A)
(B)
(C)

>C

Center-I

room
building
city

(D)
(E)
(F)

ine has super type:

(A) metro-area
(B) political-unit

state
country
other

(such as Metro-Boston)
(such as state Cal Mass)

>A

Can you be more specific?

>yes
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Choose one or supply your own:

(A) Metro-Boston
(B) Metro-Detroit

>B

Is this correct for Center-line?

CITY: CENTER-LINE This information is computed
METRO-AREA: METRO-DETROIT by the DESCRIBE-PLACE
STATE: MICH function, above.
COUNTRY: USA
CONTINENT: NORTH-AMERICA
WORLD: EARTH

>yes

(place Center-line located)

Everything in Its Place

We have seen that all the elements of our basic theory of place can be

effectively expressed in FRL, a hierarchy-based knowledge representation language,

thereby illustrating the usefulness of inheritance for both data and procedures. Inclusion

relationships are expressed as SUB-SUPER pointers between place-frames. The

restrictions of rank ordering are embedded as inherited requirements and preferences on

SUB-SUPER links. Procedural attachment through IF-ADDED and IF-REMOVED

methods on the SUB and SUPER slots maintains the logical integrity of the place

hierarchy, bringing about the changes that must be made in the SUB-SUPER relations

when a place is added or removed. Finally, SUB, SUPER, and AKO chains are used to

implement the concept NEAR, and to establish basic travel information. The next

chapters explore some of the difficulties encountered when the hierarchical structure

forced to cope with less rigorous information.
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IV. Refining the Theory of Place

The theory of place presented so far depends on a hierarchy of inclusion

relations and place types. We have seen that there are exceptions to these relations, such

as Kansas City, and that a comprehensive theory of near is needed for situations like

Detroit and Windsor. This chapter develops extensions to handle the limitations of a

strictly hierarchical representation. We will find that these extensions often depend on

information that goes beyond the general, widely known information of name, rank, and

inclusion that our simple theory uses. Hence there is a trade-off between the accuracy

provided by the extensions, and the availability of the facts they depend upon. We shall

also find that these extensions raise general issues whose solutions require new processing

capabilities, such as greater control of inheritance mechanisms, reasoning with sets of

values, converting between multiple representations, and reasoning with uncertain values.

Exceptions to Inclusion

A fundamental property of the inclusion principle is its transitivity -- if A is IN

B, and B is IN C, then A is IN C. This property hinges on the fact that IN means

completely in. What about those places which are only partly IN other places? Kansas

City is in two different states; Berlin is divided between East Germany and West

Germany; the Rocky Mountains cut through portions of many states. One of the most

important implications of a PARTLY-IN relationship is that the rank-inclusion principle

no longer holds. Hence, if I am IN the Rocky Mountains, and they are only PARTLY-

IN Wyoming, then there's no way to tell if I'm IN Wyoming or not.

It is clear that it is best to use the "completely in" relationship when it is
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applicable, because of the reasoning power it provides. When it doesn't hold, it seems

that that some provision must be made for expressing and reasoning with PARTLY-IN,

since it can't be avoided. What constraints are there for the use of PARTLY-IN?

First, a PARTLY-IN occurring anywhere in a chain of inclusions breaks the

chain from that point downward. Hence if A is IN B, and B is PARTLY-IN C, and C

is IN D, nothing can be deduced about the relationship between place A and the places C

and D; Fig. 10 demonstrates several possibilities. However, a PARTLY-IN relationship

holds for B and D in every case, since the IN relation does preserve the PARTLY-IN

'1 .: _

A N8oT xQ c A PA•ARTLy : C.
A 46-T L0 0 A PARTLy xN D
B PARTLY ~tN D 8 PARTLy X' D

Fig. 10 Possible Inclusion Relations with PARTLY-IN

For example, if my boat is IN the Rio Grande, and the Rio Grande is PARTLY-IN

Texas, and Texas is IN the United States, then I don't know whether my boat is IN the

United States, PARTLY-IN in the United States, or completely outside it. I do know,

however, that the Rio Grande is PARTLY-IN the United States, since the IN relation

preserves the PARTLY-IN relation.

The PARTLY-IN relation can reduce to a "completely in" of the union of the

places involved. For example, if Joe's Place is IN Kansas City, then it can be deduced

that it is IN the United States, although not directly from inclusion. Kansas City is

Mark Jay Jeffery
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PARTLY-IN Kansas, and PARTLY-IN Missouri, but it is completely in the two taken

together. The use of exhaustive sets of PARTLY-IN'S allows the same deductions that

can be made about individual places to apply to the entire set. Hence since Joe's is IN

{Kansas, Missouri}, and {Kansas, Missouri} is IN the United States, we know that Joe's is

IN the United States.

Reasoning with PARTLY-IN can become quite subtle. For example, this same

deduction concerning Joe's Place could have been done another way, utilizing adjacency

and size information. Since Kansas is far from the United States border, and Joe's Place

is much smaller than Kansas, the fact that it is PARTLY-IN Kansas guarantees that it is

IN the United States. We. will not consider this degree of subtlety in detail.

We have seen that a PARTLY-IN relationship can be used to represent some

of the exceptional cases mentioned previously, as well as the more irregular inclusion

relations of natural entities such as rivers and mountains. We also have explored some

of the machinery needed to utilize this extension to the representation, such as reasoning

with sets of place. Finally, we note that the increased scope of the representation has a

concommitant cost in terms of the complexity of the reasoning which must be done to

process the extended representation.

Exceptions of Rank

Rank is our term for the categorization of places according to various levels of

generalization (such as room, building, city, country, and continent). One desirable

property is that each kind of place, such as university, restaurant, laboratory, stadium,

etc., should fit into exactly one of these categories, thereby inheriting useful, unambiguous
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information, such as approximate size, means of travel, kind of activity, etc. This

uniqueness property seems to break down as far as man-made structures are concerned --

a restaurant, for example, does not fall into exactly one category; it may be a room, a

collection of rooms, or an entire building. This can result in conflicting inheritance

chains: a building may have a furnace or stairwells, while a room typically has neither.

Leaving the situation ambiguous also has drawbacks; reasoning is difficult when even

these broad characteristics are in doubt. For example, "I will meet you at Joe's Place" is

not sufficient to specify a place to meet, if Joe's is a collection of buildings; it is sufficient

if Joe's is a single room. This failure of places to fall into a single category also makes

monitoring for violations of rank inclusion more difficult: a collections of rooms can be

IN a building, but not vice versa, but there is no way to test for a violation if one of the

places involved could be either a collection of rooms or a building. Finally, nothing has

been said about how natural places like mountains and lakes fit into this ranking scheme.

How can these difficulties be dealt with?

Conflicting Properties

One approach to conflicting inheritance is to find a common abstraction, i.e. to

set up internal categories which contain only the common properties of a given set of

categories. One such category might be that of STRUCTURES, which would have all

the properties held in common by a room, collections of rooms, a building, and a

collection of buildings. Then there would be no difficulty with not knowing which of the

four types of places a place actually is -- only properties common to all four types would

be inherited.

This approach has weaknesses. Besides the fact that the number of such
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properties is small, simple heuristics in a normal situation often narrow down the

possibilities to some subset of these four categories. Being able to eliminate a category is

often very helpful, since it allows stronger constraints to be put on the properties. For

example, if something was known to be smaller than a collection of buildings, maximum

travel time is significantly reduced, and certain factors, like weather, are no longer very

important. But if eliminating categories is useful, 15 possible groupings of categories

would be needed in this case to allow for all possible eliminations, including ROOM-OR-

ROOMS, ROOM-OR-BUILDING, ROOM-OR-ROOMS-OR-BUILDING, etc. Hence

we find this approach rapidly becomes inelegant and ponderous. This large number of

artificial categories would be confusing to someone trying to classify a place. Finally,

there is no way to compare ranks of these sub-categories -- the rank of a ROOM-OR-

ROOMS can not be compared with the rank of a ROOMS-OR-BUILDING.

Another approach is to group categories in a more natural way -- as a unit and

the corresponding collection of units -- such as room and rooms, or building and

buildings. While these groupings combine categories of similar properties, and can be

nicely described as singleton-collection relationships, they do not provide sufficient

flexibility to handle the property conflict in the ROOMS-OR-BUILDING case. This

singleton-collection relationship does seem to be a very common one, though, since city-

metropolis, state-section, and country-federation all reflect it. A more refined theory of

place should make it possible to define and use such a relationship.

Rank ambiguities could also be handled by a general facility for dealing with

loýgical operations on inheritance. For example, a restaurant would be of rank (OR

ROOM ROOMS BUILDING BUILDINGS). However, schemes as simple as ORing
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don't seem sufficient by themselves. For example, reasoning with rank disjunctions

becomes an exponentially explosive problem, since at each decision point, each option

would has to be taken into consideration. A similar difficulty exists with the simple use

of ANDs. If a restaurant were the AND of the four categories, conflicting inheritance

chains can result. There is also a problem of consistency -- a place shouldn't inherit a

property from ROOM one time, and BUILDING the next. A more sophisticated logic

scheme which takes into account ambiguity, conflict, and exceptions in the inheritance

chain is needed.

Throughout the above discussion, we have seen a clash between the uncertainty

of available knowledge, and the desire for classification into exclusive categories, which

makes powerful reasoning possible. It may be the case that these limitations are intrinsic

to powerful classifications which must deal with uncertainty, and hence are not the result

of bad classification. Fahlman (1977) takes such a perspective in that he develops a

theory of hierarchical representation which directly addresses itself to issues of

exclusiveness, conflict, exceptions, etc. The theory that he presents may in fact be

adequate for the PLACE system. Unfortunately, his implementation depends on a

parallel processing scheme which is not generally available. Rather than duplicate

Fahlman's work, the approach taken in extending the PLACE system has been to delay

direct confrontation of this issue until Fahiman's scheme or a similar one is available.

When it is, the PLACE system would be a ready candidate for testing it.

In the mean time, a far simpler solution to these difficulties will be used.

Where there is uncertainty, a choice will first be made as to which rank is most likely,

and then the regularities of the place theory will be applied to that single rank. Since the
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theory is being applied as before, little modification to the current implementation is

required. This approach should prove adequate until more powerful hierarchically-based

schemes are available, and it deserves study as a significant style of reasoning in its own

right.

Places Outside the Ranking Scheme

Another short-coming of rank as discussed so far is that it doesn't include

certain large classes of places -- such as playgrounds, ball fields, lakes, rivers, mountains,

mountain ranges, harbors, valleys, etc. Furthermore, these kinds of places don't exhibit

the same kinds of regularities as the types of places already mentioned, such as buildings,

cities, and countries. For example, size variations are immense; travel means can vary a

great deal for items of the same type; and the rank-inclusion property doesn't often hold,

since these areas are split by boundaries. This last issue has the greatest impact on the

current theory, since it means that a PARTLY-IN relationship is required if these places

are to be merged into the existing hierarchy.

Some of these types could be accommodated into the current theory quite

simply, such as playgrounds and ball fields. This can be done by creating a new

category, say OUTSIDE-PLAY-AREAS, and giving it a rank intermediate to those of

building and complex. The other areas, besides requiring a PARTLY-IN relationship,

don't have inclusion or relative size relationships to the other established categories, and

hence are not constrained by their relationships to established ranks. This substantially

limits the amount of reasoning that can be done. Perhaps it is inevitable that for any

large knowledge base, there will be significant portions where generally useful reasoning

heuristics don't apply.
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Another significant issue is that while places outside the current ranking

scheme don't follow strict inclusion very well, they are sometimes spoken of in terms of

dominant inclusion. For example, one might say "The Rocky Mountains are in the

western United States," even if they do extend into Canada slightly. Hence "in" doesn't

means "completely in", or "partly-in", but "mostly-in". When the system's normal

reasoning heuristics are applied to these situations where dominant inclusion holds, the

conclusions arrived at are often correct, but not always correct. Hence some care must be

taken in their use. No modifications are required for the system to perform this

reasoning as long as the dominant including area is a single entity. If the including area

is a set of entities, then an extension to the IN relationship to handle sets is needed, just

as with the PARTLY-IN relationship. Again we see that the added complexity of

handling these exceptions gives the system completeness, but not much more reasoning

power.

Another way in which these types of places are spoken of is as borders. This is

the case that the present theory least addresses. We'll consider it more under the concept

of adjacency.

Refining Near: Directionality, Adjacency, and Size

The hierarchical concept of near that has been examined so far is too narrow

to accommodate the finer distinctions that are often made in everyday circumstances. We

will examine some of the those concepts which can be used to provide a more refined

near. The following examples serve to illustrate the various concepts and their use.
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Newton and Cambridge are considered
near to each other relative to
Massachusetts because it is known that
each is in Eastern' Massachusetts.

Fig. 11 Directional Information

Detroit and Windsor are considered
near because Southeast Michigan is
known to be adjacent to Southwest
Ontario, and because Detroit and
Windsor are known to. be in those sub-
parts.

Itit'I •11 'oin IV

Fig. 12 Adjacency and Directional
Information

PENMSYLVA9I1A
Philadelphia is near Dover relative to
Pennsylvania because Delaware is
known to be adjacent to Southeastern
Pennsylvania, and is very small; hence
any place in Delaware is near any place
known to be in Southeastern
Pennsylvania, such as Philadelphia.

Fig. 13 Adjacency, Size, and
Directional Information
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Various other factors can be used in
determining nearness. Here, knowledge
about the detailed geometry of the
places is needed to determine nearness.

Fig. 14 Adjacency, Direction, Shape,
Orientation, and Position

Directionality

Directional modification is probably the most common means of modifying a

place specification (no matter what the rank): western Massachusetts, northside of

Detroit, etc. The incorporation of directional information is quite simple -- a directionally

modified place can be thought of as defining a pseudo-place, with its own name, rank,

and inclusion relationship. More specifically, the name would be <direction>-

<unmodified place name>; the rank would be just below that of the unmodified rank;

and the inclusion relationship IN would hold with the unmodified place. For example,

Newton and Cambridge would be near each other relative to Massachusetts, because they

are both in the pseudo-place Eastern-Massachusetts, which is IN Massachusetts, and thus

fulfills the definition of near. (The use of directional information across place boundaries

is a more difficult question which we'll examine later.) There is some caution required in

dealing with directionally modified places, though, since a place can be in two pseudo-

places at the same time -- inclusion is not exclusive with directionally modified places.

For example, a city in Northwestern Massachusetts would be in both Western
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Massachusetts and Northern Massachusetts. Though troublesome, this overlap does not

require any modification to our current theory, since the rank-inclusion principle only

says that places of differing rank can't overlap.

A weakness of the use of directional information is that potentially misleading

inferences are possible: while normally the rank of a place is known, the appropriate

directional modifier may not be. For example, places P and P' may be known to be IN

western Massachusetts, and place Q may be known only to be IN Massachusetts.

Therefore, relative to Massachusetts, place P will be near to place P', since they are both

in the sub-region Western Massachusetts. However, Q will not be near, even though it

may actually be much closer to P' than P, since it is not known to be IN any sub-region

of Massachusetts. Hence deducing from the fact that P is not known to be near Q that P

is, in fact, not near Q is invalid, unless both have the relevant directional modifiers

present. The ability to deal with uncertainty is required, since the correct answer should

be: P and possibly Qare near P'.

Another difficulty with directional information is that it follows an

approximate, but not exact, relation to inclusion. If city P is south of city Q., there is a

good chance that the country of city P is south of the country of city Q But this is not

necessarily so, since countries can have irregular borders:

COVECTRY

P 'S
COVWh

P s.

t-jV M-7-0Q.
Fig. 15 Directional Information and Inclusion
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Sometimes special information,, like the regular square shape of most rooms or the regular

arrangement of buildings along a street can be used to strengthen this type of reasoning.

Also, seeming contradictions can result from the use of "dominant" direction.

For example, country P shares its eastern border with country Q, but Q is basically

southeast of P:

Fig. 16 An Exception To Dominant Directionality

No attempt will be made to accommodate these peculiarities, but only to recognize that

directionality deduced through inclusion and dominant directionality are weaker

regularities than the others we have been exploring, and that there are many subtleties

involved in their use. Perhaps this is where a geometric representation becomes useful --

the force of a picture being worth a thousand words begins'to be felt more strongly as

detailed knowledge increases.

Finally, there is a danger of not using the "appropriate" directional modifiers --

the ones that give useful distinctions. For example, the indicators southern P and

northern P tell very little in regard to place P; the "appropriate" modifiers are eastern,

central, and western (Fig. 17). For other places such as place Q, southwest and northeast

would be better (Fig. 18). This idea of appropriate modifiers is really a combination of

orientation, shape, and position information.
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EAST

SOurH

Fig. 17 Inappropriate Directional Fig. 18 Appropriate Directional
Modifiers Modifiers

Adjacency

The greatest weakness of the theory of place presented so far is that it cannot

handle the concept of adjacency. As we have seen, this is particularly important in

relationships like near when the crossing of place boundaries is involved. For example,

as was mentioned, Windsor, Canada is near Detroit, Michigan, but there is no direct way

to express that without additional refinements of near. The refinement suggested here is

that whenever adjacent areas exist, checks utilizing directionality and size should be

made. As we have, seen, modifiers of Southeast for Michigan and Southwest for Ontario

would indicate the nearness of Detroit and Windsor (Fig. 12); Eastern Pennsylvania and

the size of Delaware would indicate the nearness of Philadelphia and Dover, relative to

Pennsylvania (Fig. 13).

This relationship cannot be expressed by rank and inclusion relationships.

However, rank and inclusion are both useful in discovering adjacency. For example,

suippose the cities of Detroit and Windsor are known to be adjacent. A question as to

whether Mlichigan and Ontario are adjacent could be answered by checking to see if any

place IN Michigan is known to be adjacent to any place IN Canada; eventually Detroit
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and Windsor would be found to be adjacent, and hence so would Michigan and Ontario.

As the ranks of the places known to be adjacent and those being asked about grow

further apart, the computational effort can go up significantly. If asked to see if the

United States was adjacent to Canada, a naive approach could involve checking every

place IN the United States to see if it was adjacent to any place IN Canada. Note, too,

that we have been using adjacency of two places to show the adjacency of their superiors;

using nearness to suggest adjacency of superiors is possible, but not always valid. For

example, if two houses in different countries are near each other relative to the size of,

say a city, then one might guess that their respective countries are adjacent. However, it

is conceivable that another country could lie between them:

Fig. 19 Using Nearness to Suggest Adjacency

Rank information can be used to simplify adjacency calculations if each place

has associated with it all the places that are adjacent to it of the same rank. Questions

like "Is the United States adjacent to Canada" are easy then. This can be done by

percolating adjacency information from places of low rank to places of higher rank. For

example, if Detroit is known to be adjacent to Windsor, then each successive rank

generalization also holds (Michigan adjacent to Ontario, United States adjacent to

Canada), and Detroit can pass its adjacency information to its SUPERs who will in turn

pass it on to their SUPERs. There are still many other cases that could be explored, but
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we'll move on.

This added power provided by adjacency information carries with it the same

dlifficulties that extension to directionality did -- there is dependence on increasingly less

avail~ble information (did you• know Delaware and Pennsylvania touched?). The absence

of such information is not necessarily evidence for its being false, so care is needed in

interpreting it. When adjacency information is not available for a detailed consideration

of near, the looser rank-inclusion definition serves as a less exact, but more often

applicable, default.

Relative Size

As we have seen, size information can be useful in determining nearness; it can

also be used to guess travel times, seating capacity, etc. While rank provides a rough

approximation of size, actual size can vary considerably. For example, consider Texas vs.

Rhode Island, or the Soviet Union vs. Japan. Size, as well as height and depth, become

even more important when dealing with rivers, mountains, mountain ranges, etc.

Relative size is also important when dealing with types of places; for example, it may be

known that a state is only a medium-sized political unit, while shire is a very small one.

Mass~achusetts is a small state, which is in turn a medium-sized political unit, so a relative

size weighting is needed when applying information about political units to

Massachusetts. While absolute size information (such as number of square feet or square

milrs) would be the ideal canonical measure, again it must be remembered that the more

detailed a piece of information is, the less likely it is to be available.

Ifow does this size information relate to rank and inclusion? First, size is
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Cenerally relative, and hence a context is necessary in order to understand what is meant.

The rank of'a place provides some of that context -- any reference to the size of a place

can be taken in the context of its rank. Hence, when one says Japan is small, it is relative

to its belng a country. Specialization of rank, such as state as a specialization of political

unit, could provide a further refinement, with the immediate specialization serving as the

context. Then a small state could be compared somewhat with, say, a large shire.

A further refinement in the use of size could involve relative comparisons

between places of different rank. This is more difficult, since the weighting of sizes down

thro-ugh the various specializations of a rank is not very exact. While it might be easy to

helieve that an auditorium (which is a very large room, which is a kind of meeting place)

is smaller than even the smallest continent, the comparison of a very large city with a

small country is much more difficult. It's close enough so that one typically compares the

suspected sizes of known examples of large cities, say New York or Chicago, with the

siispected sizes of known examples of small countries, say Switzerland or Japan. Hence we

say that size relationships between ranks can be examined via examples.

Other Refinements

We have explored some of the major factors that one might need to refine the

theory of lIlace to handle more information about nearness. Other factors exist which

reflect geometric information about a place more explicitly, including its shape (oblong,

zoiurnd, pear), the orientation of that shape (north-south, big end southwest), and the

actual position of sub-places (3 miles from the southern border, and 20 from the eastern

border). The more geometric this information is, the less it is amenable to the symbolic

approach being employed here. It may be true that any theory which is to handle all
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possible place information will have to be able to convert symbolic information to

numeric information, and numeric information to symbolic. One could ask why can't all

these symbolic expressions be turned into ranges in numeric terms. One reason is that

purely relative comparisons can't be adequately expressed -- there is no way to indicate

country P is 10 square miles bigger than the country Q, if the uncertainty of the absolute

sizes of P and Q is large relative to 10 square miles. Secondly, the use of numerical

ranges tends to obscure the effects of inexact reasoning -- the uncertainty in the amount

of uncertainty is often large or unknown, and numerical interpretations of it seem

presu mptuou s.

There are many other types of place information that a more sophisticated

theory might include, such as: applicable laws (passport, customs), currency exchange

(rubles, dollars, pesos), accessibility (club membership, age limits), population statistics,

and dominant weather conditions. We won't consider any of these.

New Issues Raised

This exploration of extensions to the basic theory of place indicates several new

issues. First, the issue has been raised whether the difficulties in handling exceptions in

the place classification is a general problem of classification schemes, or a result of a poor

choice of classes. It has been argued that it is a general problem of dealing with

uncertainty in exclusive classification schemes.

Second, it has been suggested that being able to deal with sets of places as

easily as with individual places would be very useful -- particularly when properties such

as exhaustiveness and exclusiveness are known. This raises a more general question:
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perhaps this is a capability that should be built into any general scheme which deals with

part-whole relationships.

Third, we have seen that symbolic representation becomes strained when more

detailed geometric knowledge becomes available. The converse also appears to be true --

geometric representation becomes difficult when information is sparse and uncertain.

Does this point to an intertwined dual representation which can handle both extremes?

Further work is needed.

Fourth, it is evident that refinements of place concepts such as near depend on

more detailed information. The more detailed a piece of information is, the less likely it

is to be available. Also, added detail usually means added computational complexity.

Together, these factors suggest that a reasoning system should have provision for making

tracle-offs among the specificity of the desired answer, the availability of the required

information, and the cost involved in making the computation. When a quick general

answer is needed, or when little is known with much certainty, a broad theory can be

used, such as the inclusion-based definition of near. More effort to acquire information

and more computational effort can be used as more exact answers are required. This use

of progressively more detailed theories as a way of limiting cost and dealing with

uncertainty seems promising.

Finally, we have seen that secondary regularities (which are often, but not

always valid) and the uncertainty of information necessitate a reasoning system which can

accommodate varying states of certainty. The following table represents a coarse-grained

approach in that direction:
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T = Valid reasoning, proving truth.
T? = Positive, though not conclusive, evidence

? = No evidence found.

F? = Negative, but inconclusive, evidence.
F = Proven false.
A = Ambiguous inconclusive evidence (i.e., both T? and F?)
C = Contradictory evidence found (i.e., both T and F)

Of course, the interaction of certainty of information with certainty of reasoning is quite

complex; the suggestion here is that it appears necessary that such inexactness must be

handled by any theory that hopes to be generally applicable.

We have seen in this chapter that extending the theory of place to handle

exceptional cases and more. detailed descriptions brings up many general issues of

representation. Hence we find that while a hierarchical organization of knowledge

proves effective as a first order theory of representation, it is ineffective by itself for

handling refinements. It seems that future work should focus on integrating the

organizational power of hierarchy with more powerful processing and reasoning

capabilities, such as controlled inheritance, set manipulation, dual representation schemes,

cost-validity considerations, and multi-valued logic.
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V. Refining the Frame Implementation of Place

We have already examined some of the more theoretical limitations of our

hierarchical scheme. In this chapter, we explore the limitations of the implementation of

that scheme, focusing on difficulties encountered while trying to maintain the hierarchy

in the face of incomplete and changing information. We shall find that incomplete

information complicates the use of local attached procedures to add information, resulting

in recursive computations which make it difficult to understand and verify the resulting

reconfiguration of the hierarchy. This suggests that a cleaner, clearer approach is needed

which has a somewhat broader perspective than just the immediately connected frames.

We shall also see that deleting information raises difficult questions about data

restoration that the PLACE system can not handle, indicating that perhaps more

processing power is needed.

Ignorance Is Not Bliss

The first issue we will consider is that of incomplete information. Data bases

with hierarchical structure depend on having available certain information to create that

hierarchy. When that information is not available or is only partially available,

provision must be made for keeping track of data until it can be properly integrated into

the data base, and for correctly propagating the side-effects of the addition.

In the context of the place-frames system, this problem arises in maintaining the

rank and inclusion disciplines of the data base. For example, suppose the SUPER of a

place is known, but its rank is not. How is such a place to be included in the data base?

How can rank information be used to properly locate that place in the place hierarchy
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when that information does become -available? How should the functions which depend

on knowing rank handle this case? Exploring these questions will help us understand the

difficulties that incomplete information presents for hierarchical data bases.

Whenever a place is being, specified, the user can choose not to respond to the

question being asked, whether it relates to determining rank, inclusion information, or

individuality. One approach to handling this lack of information would be to keep

incompletely specified frames in a separate data base, and generalize the functions which

access and manipulate the frames system to utilize this separate data base. This approach

seems very difficult in that the separate data base would have to be searched often, and

the general system functions would have to become quite complex to handle the lack of

uniformity. Furthermore, in a dynamic knowledge-based system, all frames may be to

some extent incomplete. Hence I have pursued an integrated approach where a frame

that is missing information is treated the same as the other place-frames, and is

incorporated into the hierarchy as well as the missing knowledge permits. We will now

look at how such a frame can be better incorporated when that missing knowledge

becomes known.

A typical situation would be where the user asks "Is MIT in MASS?", and

receives an answer of "Don't know". Then the user supplies the additional information

that MASS is a state, and that is sufficient for the system to determine that MIT is in

MASS. How could such a circumstance come about?

Consider the place-frame MASS which has a SUB link to NE43-348 (my office),

and a SUPER link to USA, but no AKO value, so that its rank of state is unknown (Fig.

20). (We adopt the convention that inclusion links are represented by lines, with SUPER
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chains generally heading up the page, and that places are represented by small circles.

An unfilled circle means a place's AKO is unknown, and a filled circle means the AKO

is known.) A ...-

Fig. 20 MIT

3--347r
Fig. 21

NE 4)3-34?'

Now suppose another known frame MIT is a SUPER of MASS's SUB (Fig. 21 ). Now,

as suggested in the example above, suppose that MASS is AKO state becomes known. It

is now possible to deduce via the rank-inclusion principle that the two branches of the

"V" should be merged: (ISA

MITMA SS (AkoFig. 22

NEL3-34 r

There are two general courses of action possible as to how the merge could be

discovered and carried out. One involves a global view of the system which looks over

the entire data base and decides what changes to make; the other involves a local view

of just the frame being changed. In order to investigate the power of if-added and if-

removed methods, which are activated by the specific data being added, the "local view"

approach was chosen. This puts the power of procedural attachment of frame-based

systems up against the complexities of maintaining hierarchical discipline. A key

advantage of the local approach is that the complexity of the computation remains

independent of the total size of the data base. I shall present one such local algorithm,

and then discuss its limitations and extensions (the basic algorithm is implemented in the
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PLACE system, but its extensions are not). In the discussion which follows, we will

assume that the initial system contains no hidden inclusion relationships; of course it

may contain other places with unknown AKOs.

The insight behind the algorithm which we will consider is this: when a

place's AKO becomes known, it will be treated as though it were just being added to the

system foir the first time. Recall from chapter III that when a new SUPER Q~is added to

a place P, the rank of that new SUPER is compared with the ranks of P's other SUPERs.

The end result is that Q "percolates" to its proper place in the hierarchy. If we change

our perspective so that we view the world from the new place Q, the algorithm for

adding new places becomes "Check the SUPERs of the SUBs of the new frame". The

algorithm does exactly the same thing as before, since the SUPERs of the SUBs of Q are

precisely the SUPERs of P (which include Q). Hence when a frame's AKO becomes

known, we apply the algorithm "Compare the SUPERs of the SUBs of this frame". The

added AKO knowledge will then be used to percolate that frame to its proper place in

the hierarchy:
COMMPAR E

SUPERS of
a SUB

AKO being added

UB of frame being chanped

Fig. 23 The Initial Merging Algorithm

Let us look at this alogrithm in operation. The most common situation is

where a place missing an AKO straddles several other places of known AKO (Fig. 24).
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There's no way to tell whether METRO-BOSTON should be merged under MASS,

CAM BRIDGE, or MIT. METRO-BOSTON's SUB is just NE43-348, an office, which

has SUPERs MIT and METRO-BOSTON. Hence when METRO-BOSTON's AKO

becomes known, applying our "Check the SUPERs of the SUBs" algorithm involves

coml0aring MIT's rank with the newly learned rank of METRO-BOSTON. METRO-

BOSTON will percolate to its proper place in the hierarchy (Fig. 25) just as a new place

would.
P Ai & MaAM gw,&Ltl

MASS

CAM8CIDI

•/E

P aG W ' W' %
RAmNK 1ECOMEt kJNWU

MASS

Q orroN CAMBORIM

M

NEl

Fig. 2A4 A Missing AKO Fig. 25 The Merge is Completed

The difficulty with this algorithm is that there may be other places in the

hierarchy with unknown AKOs. If this is the case, it may be that in the course of

comlparing ranks, a dead end will be reached, because there will be no ranks to compare.

IFo cxarnple, if we apply our "Check the SUPERs of the SUBs" algorithm to Fig. 26, we

will reach such a dead end very quicky, since MASS's rank cannot be compared with the

unknown rank of CAM BRIDGE. Hence the proper merge (Fig. 27) will not be made:

J
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No C omPAAISON
US A CAN 8s tAOE. VSA

SMA 5 hMASS
(AKO STATE) ME)o-

CAMBRI(O. CAM 8 RIOGE

M FIT MIT

Fig. 26 Multiple Missing AKOs Fig. 27 The Desired Merge

One approach to handling the dead ends caused by these unknown AKOs is to

pass through them when following SUB-SUPER links until a place which does have a

rank is reached. A place which is a SUPER of this ranked place will be a proper

SUPER of all its unranked SUBs as well. We can see how this would work in the last

example -- if we "pass through" CAMBRIDGE, we can compare MASS with METRO-

BOSTON and US.A, and the proper merge results.

A slightly different example (Fig. 28) demonstrates some subtlety with "passing

through"; when we pass through CAMBRIDGE and METRO-BOSTON, we reach

USA, which is already a part of MASS's SUPER chain. So even though it has a rank,

no merge can be made. What should happen next? In this same example, a merge is

possible (Fig. 29), since MASS should be a SUPER of BOSTON. Hence we can see

that the algorithm must not stop when already-merged SUPERs are encountered. In fact,

we can see from this example that the proper comparison results if we "pass through"

M IT, and check the SUPERs of the next SUB down, NE43-348 (my office):
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111A
BurA MERfGI

M ETRA
es-ros

CAAMIRIO1G

NE

Fig. 28 Subtleties of "Passing Through" Fig. 29 The Desired Merge

When is it safe, then, to terminate the algorithm? Is everything properly

merged when one merge has been made? Could there be any more possible merges with

SUPERs of SUBs further down? An additional insight is required to answer these

qu.estions. We. already know that the rank-inclusion principle is only applicable where

places have a common SUB. We also know that comparisons require both places

involved to have a rank. Figure 30 is drawn according to these two criteria -- a common

SU)B, and two unmerged SUPER chains with a least one ranked place in each chain. In

Figure 31, we see that a merge is always possible if the two ranked places have different

a`~nk s

p
AS5VME

Rk() < R(P)

Fig. 30 Conditions Necessary for a Merge Fig. 31 Also Sufficient for a Merge

Hence we have what appear to be necessary and sufficient conditions for when a merge is

required: a common SUB with disjoint SUPER chains with a least one ranked place in

each chain.

9
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These conditions help us tell when to terminate our algorithm, since they

indicate only one SUPER chain with unmerged ranked frames is possible. We can see

this as follows: When a new AKO is added to the data base, it has added a ranked

SUPER to all of its SUBs. Hence any SUB could now potentially be a common SUB of

several rank-containing SUPER chains. Our algorithm begins, then, by checking the

SUPER chains of each SUB, looking for one with a ranked, unmerged SUPER; then a

merge with the newly-ranked frame will be possible, as we have seen. There can be no

other SUPER chains with unmerged ranked frames, because finding another such frame

on a different chain (Fig. 32) would mean that a merge was possible before the new AKO

was added (Fig.. 33), and we assumed the initial system had no hidden inclusion

relationships. Having determined which SUPER chain must be merged with, it remains

to determine exactly where in the SUPER chain the merge should take place. This can

be done by first locating the lowest SUB in the hierarchy which this SUPER chain and

the newly-ranked frame have in common, and then comparing the newly-ranked frame

with each ranked SUPER of this SUB. While this last modification nearly completes the

a.lgorithm, we won't pursue any. further changes; it is sufficient for our purposes to note

that the algorithm is quite complex for even this simple hierarchy.

FIR3T RAi
FRAME FO

SRCONiD RANKED
FRAME FoVNDc

AKO

PREVouV

NIEDED ME

Fig. '32 Previous Unmerged Chains Fig. 33 A Merge Was Possible

We now have an algorithm such that if the system is properly merged before an
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AIKO is added, it will be properly merged afterward. This inductive approach is useful

for building up the initial data base -- places are added one at a time, just as we have

seen here. In practice, the full power of the complete algorithm is seldom needed, since

almost always a place's AKO is known,'and multiple SUPERs occur only with places of

the same or unknown rank. We note, too, that a similar algorithm is needed for

handling the creation of SUB-SUPER links.

We have seen that attached procedures can be used to maintain hierarchical

structure in spite of incomplete information. We have also seen that ascertaining the

correctness and completeness of a computation is difficult when it uses only local

information to accomplish results which depend on global properties and conditions.

Since this is only a simple system which ignores exceptional cases, it seems probable that

if-added procedures will need more than a local perspective if they are going to be used

in a well-understood, controlled fashion for more complex systems. Perhaps a formal

analysis of hierarchical structures is required which focuses on the general properties of

inclusion relations with incomplete and partial orderings. This analysis could be used to

develop more comprehensible and general purpose algorithms for manipulating the

hierarchy than those embedded in local attached procedures.

Modification Is Worse than Addition

The complications which result from deleting data in a hierarchically organized

data base are more difficult to deal with than those of adding data. Sometimes these

deletions are straightforward, and other times they are disguised as additions which

conflict with known information. In either case, it must be decided how the hierarchy
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should be restructured around the deletion. Questions are raised which can not

necessarily be solved with backtracking mechanisms; there are also problems of

protecting certain data, deciding what conflict-generating changes should be allowed, and

resolving those conflicts which are allowed. We'll explore how some of these difficulties

are manifested in the PLACE system, and then focus on treating deletions as a problem

in restoring previous values. We shall see that general solutions don't seem possible

within the current system, but that simplistic approaches provide some useful capabilities.

Consider the following situation: two hitherto independent inclusion chains

exist (Fig. 34); the user adds the information that a place P on one of the chains also

has a SUPER from one of the other chains. Assuming all the AKOs are known, the

final result will be a merge of some of the SUPERs (Fig. 35):

Fig. 34 Fig. 35

Now, suppose the user decides he or she was mistaken, and removes that SUPER link

which was added earlier. Does the removal of that link imply that all the changes that it

originally caused should go away as well? What information must be kept around to

make those corrections? Or, suppose the user decides that the USA is really a city; this

will create inconsistencies among SUB-SUPER relationships. Should the USA

"percolate" down the inclusion chain? Should any place ever be allowed to have its rank

changed to one above that of its SUPERs or below that of its SUBs? Perhaps it depends

Mark Jay Jeffery
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on how the SUBs and SUPERs got there -- whether they were explicitly specificed, or

implicitly determined based on the rank of the frame in question. If allowed, how would

the change be made to the data base so as to maintain the required discipline? Should

the user be prevented (or at least warned) from trying to change basic inclusion and rank

information of the initial world, for his or her own protection? These questions serve to

illustrate the complexity of manipulating the information of the place-frames system.

We'll briefly explore some of the issues they raise.

There are three particularly important characteristics of a change involving

deletion. The first is the scope of the change -- how much does it affect the structure of

the hierarchy? It could be an intra-frame change, such as a change in travel time, which

can have affects by inheritance. It could be a change to links between frames (SUB,

SUPER, and AKO links), which changes the local structure of the hierarchy. Finally, it

could be a change which results in global changes, such as the rank-inclusion principle

can tproduce.

Another characteristic of a change is how the original value was determined,

and a final characteristic is how the new value is being determined. In some cases the

values involved are changed explicitly by the user through answering a question the

system has posed; other times values are changed because of the propagation of the

ldirect implications of another change; sometimes the changes are the result of an

echcated guess or careful deduction made by the computer. One approach to handling

deletions is to keel) track of which of these three sources of change is involved, and how

it came about. That information can be used to restore the system to its state before the

data being deleted was added, thus taking alot of guess work out of how to patch the

of
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deletion.

' Each of these sources of change requires different information: the name of the

uiser in the first case, the basic change that triggered the propagation in the second, and

the information source (both data and program) of the last. Full use of all this

information would require forward and backward pointers linking the place-frames

involved together, leaving a trace of causal associations. A difficulty with this approach

is that it is cumulative; changes interact, and soon a whole web of pointers exists linking

frames in tangled ways. A CONNIVER-like approach (McDermott and Sussman, 1973)

which saves each state of the system would automatically keep track of these changes;

however it would not be able to "undo" a particular change without undoing all changes

hack to that point, and recomputing everything. A smarter system which knew more

about how individual changes affected the system might be able to selectively restore the

system without this huge cost in space and time. Finally, since the PLACE system is an

interactive system, re-computation would involve re-asking the user any questions asked

previously. Again, a smarter system might be able to limit the number of questions re-

asked by knowing which might actually have different answers.

A less complete, but computationally less demanding approach is possible. First,

an attempt is made to selectively restore the system, as mentioned above. Then a local

consistency check is made to see if everything appears to be in order. Finally, a watch is

kept for situations which suggest that the patch may be in error. If such evidence is

observed, either the above process can be repeated, utilizing the additional knowledge of

how the patch has failed, or a "back-up and recompute" phase could be entered. The

level of detail at which these recomputations are made would depend on the system's

~n
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evaluation of how complex the error appears. This recompute stage can also be repeated,

at increasing levels of detail.

While the CONNIVER approach appears too expensive and inappropriate for

an interactive system, this compromise approach is too informal and depends on a wide

range of domain knowledge and debugging knowledge. Hence the problem of recovery

seems very difficult for the simple frame representation being explored here. In order to

see just how much recovery support a much simpler approach could in fact provide,

detailed causal records were distilled down to just the name of the user at the time a

change came about. The record of any previous user was erased. For a single given

change, this turned out to be an efficient means of tracing the extent that a change had

propagated, making it useful for debugging the system. It can also be used to detect

collisions between user and system information (indicated by a NIL source). For example,

suppose a user tries to change the SUPER of MASS from USA to USSR. Since countries

form a mutually exclusive set, this indicates a direct collision between the user and the

initial system value. Changes which do not result in such discrepancies, such as

supplying the state for a city for which the state had been previously unknown, would be

allowed, even though they result in changing system values (the SUPER of the city would

change). Certain classes of information, such as the travel data on the general rank

frames, could also be protected from the user by the source information.

Recording only the user is not sufficient information to undo "mergers";

however this doesn't happen very often. It would be difficult to cause a merger

inadvertently which would not also generate collisions with initial system information.

This corresponds somewhat to the "local consistency check" of our compromise approach.
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A more likely case than incorrect merging is the supplying of an incorrect AKO which

causes a place to percolate to the wrong place in the hierarchy. However, this percolating

will leave behind a trace of change by that user, which can be enough to restore the

system if it is the only change. Change which is isolated from the frame which caused it

can not be traced in this way.

One can use this approach to identify the effects of a change by indexing the

source annotation of each change according to a unique identifier for each top-level

interaction. Hence one can find the effects of any top-level interaction if one can find all

instances of the appropriate unique identifiers.

Finally, the possibility of trading off look-ahead for backtracking exists -- a

"before-adding" method could be used to forecast the impact that a proposed change

might produce. If-added methods can not be used for this purpose, since they gain

control only after a change has taken place, and until all if-added's have been run, the

data base may be inconsistent. Predicates may have different or meaningless values than

they had before the addition. Of course, one could immediately remove the value just

added, hence eliminating the inconsistencies it might have caused, but then the if-

removed methods would be dealing with an inconsistent state of the world. Before-

adding methods would in essence serve as requirements (preconditions) for making

changes to the frames-system. They are different from "pre-plans" in that they do not

represent preparation for a change, but evaluation of a proposed change. Perhaps some

of these inconsistency difficulties of if-added and if-removed methods could be lessened

by considering them an ordered part of the data base; then it would be known which of

them had been run and which had not.
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Source information could also be used by the system to propagate its own

internal "guesses" in order to determine their global effects. If sufficiently sophisticated,

hypothetical reasoning would be possible. Straight low-level back-tracking with a

CONNIVER-like context approach is probably insufficient, since knowing a value is only

a guess could easily affect depth and breadth trade-offs in significant ways. This topic

will be examined again in the next section from the perspective of top-level control.

In this section, we have investigated the changing of information in the

structured data base of a hierarchically organized system. Some of the complexities of the

problenm have been pointed out, such as types of changes, sources of changes, and the

cumulativeness of source information. These difficulties seemed too much for the current

system, and so a simplified approach of recording the current user was suggested, and

some of its uses and short-comings were looked at. The possibility of a "before-adding"

method, to replace some back-tracking with look-ahead and to serve as a mechanism for

imagining, was also discussed. To close on a hopeful note, we take heart that "real"

systems which deal with place will probably change less than toy ones, since place

information is basically static.

In summary, we see that the current implementation lacks sufficient power to

handle the problem of restructuring incomplete hierarchies when information is added or

deleted. It appears that a stronger formal analysis is needed for dealing with the

manipulations required for additions, and that the handling of deletions will require more

processing power and more exploration of recovery heuristics.

Mark Jay Jeffery
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VI. User Interaction with a Hierarchical System

As a knowledge base grows larger, it becomes increasingly important that a user

be able to add more knowledge to it without having to know the details of its structure

11- content. For a hierarchical system, this becomes a problem of classification; this is

explored in the first section of this chapter. It is also important that the system be

flexible enough to accommodate the requirements of a given user without requiring

special detailed knowledge. Hence the second section explores dimensions of control that

a user should be able to exercise, and discusses some features of hierarchical systems

which can interfere with that control.

Suppljying New Information

One difficult problem faced by hierarchical representations is that of

dynamically integrating new information into its data base. Getting the user and the

machine to cooperate in classifying new facts for such a disciplined data base is crucial.

That problem is approached here by having the computer provide the user with

appropriate choices generated from information provided by values, preferences, defaults,

requirements, and exemplars.

The issue we will examine is that of accurate classification -- whenever a new

place is being added to the data base, it is desirable to narrow down the type (AKO) of

the place as far as possible, thereby allowing maximum reasoning accuracy. The problem

is that the user may not know explicitly what types the machine knows about, and so an

atternmpt must be made to supply the user with likely choices sufficiently fine-grained that

the most concise answer is obtained. Where there are many possibilities available (as

Mark Jay Jeffery
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there are for types of places), listing all the choices seems cumbersome. Several

alternatives are possible. One is to pick a smaller number of larger categories, and then

expand sub-categories based on the response. This raises the difficulty, however, of

getting the machine to come up with "larger" or "more general" categories on its own,

unless the categories are already a part of the hierarchy. A variation on this approach is

to provide a choice just among the most common known categories at a given abstraction

level, reserving the additional category "other" for the more uncommon categories. The

PLACE system has all the facilities required for this kind of interaction, as well as

additional ones. Here is a possible system-directed dialog where the machine guides the

us.er throlugh several levels of hierarchy -- place to building to store to supermarket. The

computer asks the question, provides the choices, and prompts the user for his or her

response with the ">" character.

What kind of place is A&P?

(A) room (D) state
(B) building (E) country
(C) city (F) other

>B

What kind of building is A&P?

(A) store (D) house
(B) school (E) office
(C) factory (F) other

>A

What kind of store is A&P?

(A) restaurant (D) department
(B) fast-food (E) other
(C) grocery

\.· ~ 111\ cl~
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What kind of store is A8cP?

(F) clothing (I) drugstore
(G) hardware J) other
(H) supermarket

>H

Difficulties arise with this system-directed interaction. One difficulty is that the user may

try to force a category match if the common categories aren't covered very well by the

given choices. An example of this would be the categorization of MIT under the choices

room, building, city, political-unit, and country; the answer the system would prefer is

"complex", as in building complex. However the user may prematurely match the type of

Ni IT to building before examining "other". This difficulty is lessened when there is a

distinct break between the common categories and the not so common.

Another difficulty is that the suggested categories may not be sufficiently

disjoint from categories not yet listed to prevent generally correct, but less than completely

accurate classification. For example, "school" might be chosen for the type of MIT, when

the more accurate choice "university" would have appeared as a choice only if "other"

had hbeen selected. Similarly, "grocery" could have been prematurely chosen instead of

"other" (whiclh lead to super-market) in the A&P example, above. It is easy to see that

these classification problems would be even more difficult if unfamiliar categories, chosen

for the machine's purposes, were used, such as the subsets of a STRUCTUR ES category,

like ROOM-OR-ROOMS and BUILDING-OR-ROOMS.

An alternative that addresses these difficulties is to reverse the roles of the

computer and user by allowing the user to take the initiative in supplying a category.

The computer could then see if it recognizes the category. For example, instead of
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pursuing a menu style dialog as above in classifying MICH, the following format could

be used:

What kind of place is MICH?

>state

Or: What kind of place is MICH?

>rCgion

I don't know about regions. Should I:

(A) wait for another response?
(B) give possible choices?

> etc.

In the cases where the machine is aware of more specific categories, it could still pursue

the)m:

What kind of place is MICH?

>p)olitical -unit

Can you be more specific?

>yes

What kind of political-unit is MICH?

>state

This kind of interaction where the user has the initiative is desirable, but puts

great demands on the breadth and depth of the system's knowledge. Hence the PLACE

system explores an intermediate position: the system still controls the interaction via a

menu-style dialog, but it generates choices using a large number of refinements over just

offering a list of possible alternatives. These refinements include the ones we have
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alre:cdy discussed, such as limiting the number of alternatives, the use of an "other"

category for the more uncommon choices, and the asking for greater specificity.

Additional features discussed below include the use of examples to clarify categories,

attention to type-token distinctions in choice and example generation, and the use of

doniain heuristics in deciding which choices to suggest.

Sometimes a category may not make much sense to a user, because it reflects a

generalization which is not very common. For example, state, province, and shire are

grouped under the category political-unit. The PLACE system generates "such as"

examples as an explanation by example:

(A) metro-area (such as Metro-Boston, Metro-Detroit)
(B) political-unit (such as state, province)

Julst as it is best to suggest most likely categories first, thereby eliminating excessive

confusing detail, it is best to supply "such as" examples only where most needed. Having

listrs of examples for every type, including even the common ones such as "city", becomes

cu1mb1ersome to the user, and obscures those cases where examples may really be needed.

A question of the semantics of examples also arises. It must be clear that the "such as"

exarmples are meant to clarify the meaning of the category, and not to serve as possible

opitions for the response.

Some issues also arise in choosing what kind of examples are required. Choice

"A" above uses specific places (Metro-Boston, Metro-Detroit), but choice "B" uses category

types (state, province). Determining which, if either, is better, and why, is important to

optimally aiding the user. For example, MICH is of type state; it would make no sense

to offer USA as a possible type for MICH. Conversely, it would make no sense to offer
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"country" as a possible SUPER of MICH; only specific places should be offered. If this

kind of specific-general distinction is important to supplying intelligent choices, the system

has to know whether a place-frame is a specific place ("individual") or general category

("non-individual"). Such information is kept in the SELF slot of each frame; the

question of specificity is dealt with as each new place is added to the system.

Another way of offering intelligent choices to the user is to make logical guesses

based on either deductions or heuristics. For example, if MICH is a SUB of the USA,

and a SUPER of DETROIT, then the best choices for its type are SECTION, STATE,

or METRO-AREA. Hence only these three should be offered as choices. The advantage

of suggesting a correct answer right away is balanced against having to start over if the

guess is not right, or close.

All these added refinements of choice generation come at a cost of increased

information requirements: somehow the machine must know or deduce how to sub-

categorize the various categories; it must know which categories are common in order to

assign types to the "other" category and to know when to provide "such as" examples; it

must have type-token information; and it must have some domain knowledge to

determine additional restrictions. Some of this information is already available in the

system, such as the rank categories and "individuality" information. The rest of the

needed information is stored in specific place-frames and general place-frames under five

different facets which can occur under any slot: $DEFAULT, $PREFER, $REQUIRE,

1'EXNEMPLAR. and $VALUE. The PLACE system tries to exploit the information

provided in these facets to generate choices which lead to acceptable user-machine

interaction.
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The semantics for the various classes are still evolving, but here are some of the

general distinctions being made. Defaults are used to supply the "usual" value one might

expect in the absence of more definite information. For example, a state is assumed to be

of medium size if no other information is available. In general, it seems appropriate to

verify the value of a default, particularly when the value is clearly related to the user's

inquiry or statement. Preferences are used to create expectations of type that guide

giving choices. For .example, usually the SUPER of a city is either a state or a country;

that information is stored in the system as a preference for state or country on the

SUPER slot of city. Requirements on the other hand represent restrictions on values

which must hold if the discipline of the data base is to be maintained. The -rank and

inclusion relations are enforced as requirements on SUBs, SUPERs, and AKOs.

Requirements would also used to suggest possible types if no preference information is

available, or if such information proves to be inadequate. Exemplars are used to provide

"canonical" examples or classes of examples for a particular slot value. This is helpful in

deriving examples to explain a category through "such as" examples (values from the

"instance" slot can serve the same purpose if no exemplars are listed), or in picking out

the major sub-categories of a type from all the possible sub-categories. The major sub-

categories can be the major options offered the user, and the minor sub-categories supply

the options to be used under "other". Also, being an exemplar indicates that a "such as"

expansion is probably not needed. Finally, the value facet is used to hold actual known

values. The type of a value can sometimes be used for deducing possible AKO

categories for other values in similar places in the place hierarchy. For example, if the

SUPER of a particular place has a value which is AKO building, the system might
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expect that similar places might also have SUPERs of AKO building.

An alternative to this approach of using separate facets would be to have an

"association index" facet whose value increases with the strength of the association. This

would reflect the continuum aspect of the classes: a strong preference is little different

from a weak requirement; a strong default is like a value with a few exceptions; etc.

H-lowever, while the FRL system inherits differentially for different facets, there is

currently no elegant way to direct it to inherit differentially for different values on a

continuoius scale. Finally, we are presently concerned only with gross differences along

this scale; thef other place functions can not handle answers along a continuum, only

discrete categories. This continuum approach will have to wait for a more sophisticated

system to be adequately tested.

There are some difficulties with the multi-facet approach as well. For example,

how far up the tree should these classes be inherited? Certainly inheriting makes a lot of

sense if no other values are available, but when several or even a great many exist,

p:riorities have to be developed to choose which to use. Currently, inheritance is used

very sparingly (chaining stops when a value is found). If, for example, all the

requirements of a particular slot were used in generating choices, many of the suggestings

would be much too general, coming from even the top level place frame. The inheritance

primitive alone lacks sufficient high-level perspective to perform appropriately; there

should be some provision for higher-level input.

''
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Using the Slot Facet Categories

In the current system, a function called SAMPLE looks at a specified facet in a

place-frame, and returns the specific places and general types that it finds there,

translating requirements into frame names where needed. For example, suppose the

prefer facet of the SUPER slot of CITY has the following form:

(CI TY . . .
(SUPER ($PREFER ((RESTRICT-AKO :VALUES

'(POLITICAL-UNIT
METRO-AREA) ) )))

Then (SAMPLE 'CITY 'SUPER '$PREFER) yields (POLITICAL-UNIT METRO-AREA).

SAMPLE is used by a function called EXAMPLES, which maps SAMPLE over the

various facets in a specified order to generate a specified number of suggestions, usually

around five to ten. The facet ordering ($PREFER, $EXEMPLAR, $REQUIRE,

WVALUE, $DEFAULT) reflects the relative strength of the associations, and serves, to

establish a priority among choices, the less likely ones going into the "other" category.

For example, suppose the PLACE, CITY, and CAMBRIDGE frames have facets as

follows under their SUPER slots:

(PLACE
(SUPER ($REQUIRE ((>= (RANK :VALUE) (RANK : FRAME)))))

(CITY
(SUPER ($PREFER ((RESTRICT-AKO :VALUES

'(POLITICAL-UNIT
METRO-AREA))))

($EXEMPLAR (METRO-DETROIT) (USA))
($DEFAULT (STATE))))

)
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(CAMBRIDGE . . .
(SUPER ($VALUE

Then (EXAMPLES 'CAMBRIDGE 'SUPER)

each facet:

(METRO-BOSTON)))

would first compute, in order, the results for

$PREFER POLITICAL-UNIT METRO-AREA
$EXEMPLAR METRO-DETROIT USA
$REQUIRE CITY METRO-AREA POLITICAL-UNIT

COUNTRY CONTINENT WORLD
$VALUE METRO-BOSTON
$DEFAULT STATE

Then it would combine them, in order, to get:

(POLITICAL-UNIT METRO-AREA METRO-DETROIT USA CITY METRO-AREA
POLITICAL-UNIT COUNTRY CONTINENT WORLD METRO-BOSTON STATE)

Many different kinds of post-processing are available to refine this list so it can

be Iised effectively. First, duplicates are eliminated, but the order, which reflects the

priority of the facets, is preserved. If the choices' required must be general types, then

each individual is replaced by its AKO value. This way, a type which is associated with

the given frame and slot by specific value only still contributes to the choice list.

Duplicates are again removed, while still preserving order. The first four choices are

given, withl the next set being accessed if "other" is chosen:

First four: POLITICAL-UNIT
METRO-AREA
COUNTRY
CITY

Second set: CONTINENT
WORLD
STATE

A further refinement is the generation of "such as" examples for those choices which may

not be well-known. For example, POLITICAL-UNIT would have the examples "state"
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and "province". Types which have no sub-types would have examples of individuals,

found by using the EXAMPLES function. How can the system tell if a type is

uncommon and hence requires examples? Currently, it checks to see if that type appears

as an exemplar under its own AKO. POLITICAL-UNIT has AKO PLACE, and the

exemplar facet of the INSTANCE slot of PLACE does not contain POLITICAL-UNIT.

H-ence it is given examples.

One further rdfinement is to replace a general type which is uncommon by an

exemplar of its sub-types, and put the more general category under "other". Hence

POLITICAL-UNIT would be replaced by STATE in the first set of options, and added

to the second set. The actual choice list would appear as follows:

What is the super of Cambridge a kind of?
(A) state
(B) metro-area (such as Metro-Detroit)
(C) country
(D) city

The first three choices are reasonable; the fourth, CITY, is not very reasonable, since

cities do not usually contain other cities. This choice was generated by the require facet

of the general PLACE frame, and reflects a common difficulty with inheritance: the

requirement is from a very general level, and hence is very apt to be necessary, but not

sufficient, to guarantee a reasonable candidate for a slot far down in the hierarchy. In

this example, it suffices to re-order the mapping of facets done by the EXAMPLES

fulnctions so that the require facet is done, say, last. A more general solution should

d istinguish necessary requirements from necessary and sufficient requirements.

As has been mentioned, the manipulations which can be done with general

types can also be done using individuals -- all the types can be replaced by exemplars

n~ · I-..(~ ~-.. I-C~-Y..



Representing "Place"

and/or instances of individuals. These manipulations can be integrated to produce

special combinations, such as a specific individual for each general type (state, metro-area,

cointry ==> MICH, METRO-BOSTON, USA). While still in the early stages of

development, these heuristics serve to illustrate how the general knowledge in the various

facets can be effectively used to generate intelligent choices. It is hoped that continued

refinement of these heuristics will. result in a broad-based, robust strategy which can be

used not only for choice generation, but also for guessing at missing information.

Some issues of dynamically integrating data into a hierarchically organized data

base have been examined. Problems of providing appropriate choices for the user's

response have been approached using information provided by values, preferences,

defaults, requirements, and exemplars. It is suggested that developing a language for

exarnmples and their manipulation is important for communicating with any interactive,

knowledge-rich system.

Top-level Control

We have seen that accurate classification is particularly important when dealing

interactively with hierarchical systems. The are several more issues that an interactive

system must address which significantly affect user interaction: dialog control, context

control, reason control, resource control, and validity control. While not peculiar to

hierarchical systems, these issues rapidly become important as a knowledge base expands,

and hierarchy allows for that kind of rapid expansion. Also, hierarchy lends itself to

natural abuse in these areas. I will briefly discuss each area.

In course of asking the user questions, intelligence if often displayed by dialog
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control -- that is, by not asking certain questions, such as ones which would not make

sense to. the user, ones which have already been dealt with recently, ones which try the

uiser's patience, etc. For example, perhaps the system needs the knowledge of whether a

frame is an "individual" or not. The user may have been asked the question, and

responded that he or she didn't know, or ignored the question. An intelligent system

should somehow record this response so that the user isn't continually bothered with a

question he or she has chosen not to answer. Or, perhaps the user is working in a

certain problem domain where all the places mentioned are AKO restaurant; the user

shou.ld be able to tell the system this fact. The user may be in a hurry, and wishes only

essential comments, not long-winded embellishments. All of these examples relate to a

knowledgeable user-machine interface: intelligent dialog.

H-hierarchical systems can subvert the intent of intelligent dialog by using local

attached procedures to ask the user questions. The local nature of these procedures

prevents them from considering the issues mentioned above, such as recent answers to the

same question in a similar context. Hence an uncontrolled, naive dialog results. The

intitligent use of hierarchy requires that dialog be under structured control. It seems

quite probable that this control could be embedded in a hierarchy of dialog frames which

used inheritance to relate previous subjects, questions, and answers.

Context control is the ability of the system to set up its own "context" for its

operation. This involves being able to "keep notes" for itself. For example, it may want

to make an assumption, such as "Detroit is an individual", or "Detroit is AKO city". It

may want to suppose that states are mutually exclusive, or that its knowledge of the

members of the Midwest is collectively exhaustive. Such guesses or assumptions can be
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used to forecast the global effect of local changes, supply more refined guesses, supply a

piece of missing information, anticipate a user's response, or keep track of general facts

the user has supplied. One can also imagine wanting to ignore particular pieces of data,

or temporarily replacing them with others.

Again there is a need to structure this kind of information, so that the system

can provide the flexibility the user expects without loosing sight of what it's doing. The

inheritance mechanisms of hierarchical schemes tempt one to embed this information

throughout the system as individual values; this is sufficient for simple problems, but

when dealing interactively, it will be necessary for the system to know what its current

assumptions are, and why. This information should be a structured part of the frame

hierarchy, which can be accessed by the dialog frames.

Reason control is the flow of task-oriented control that is followed in the system.

For exampie,' when the user is classifying a new place, normal control flows from one

attached procedure to the next, until each slot has been covered. This is a simple

technique which suffices for simple systems. But as the knowledge base grow in

complexity, there will be slots on each place for many more kinds of information, such as

time, people, activities, and facilities. It should be possible for the system to control the

flow of operation so that only certain kinds of information is requested, or only a certain

level of detail is pursued. Again, this involves taking control away from the local

attached procedures, and giving it to a complex of frames which contain knowledge

about level of detail and appropriateness of information; these should be accessible to the

dialog and context frames.

Finally, we consider resource control and validity control. Whenever a large
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system is involved, it is likely that there are several ways that it can proceed to determine

a given piece of information. We explored this idea in chapter IV when we looked at

refiniements of NEAR. Some methods are more costly than others, but they provide more

accurate results. In an interactive system, it should be possible to direct the operation of

the system so that concerns for computation time and logical validity can be taken into

account. This is difficult to do if the system relies too heavily on fixed inheritance and

local attached procedures. A more general scheme is required which accommodates these

cost--validity considerations. Such a scheme would include the use of a multi-valued logic

for expressing varying degress of certainty.

Together, these different kinds of control capabilities should make it possible

for the user to direct the system's operation towards the end he ori she has in mind

without becoming frustrated by the system's mode of interaction. The development of

hierarchical systems should proceed with a sensitivity to the importance of top-level

con text.
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Appendix A

Actual "Near" Scenario

This is the actual LISP version of the "Near" scenario in chapter I. The mechanism for

handling specific exceptions (the function NEAR:) was not implemented, due to its lack

of generality; it would be easy to do so, however, as the explanations below demonstrate.

(NEAR? 'MASS '(BOSTON CAMBRIDGE)) ==> T

(NEAR? 'NORTH-AMERICA '(BOSTON NEW-YORK)) ==> T

(NEAR? 'NORTH-AMERICA '(BOSTON MONTREAL)) ==> NIL

(NEAR? 'NORTH -AMERICA ' (DETROIT WINDSOR)) ==> NIL

(NEAR: '(STATE PROVINCE) '(DETROIT WINDSOR)) ==> DONE.

NEAR: would add a NEAR slot to Detroit and Windsor which would
comlpute all their respective SUPERs which were of rank greater than or
equal to the specified ranks.

(NEAR? 'MICHIGAN ' (DETROIT WINDSOR)) ==> T

NEAR? would catch the exception by checking Detroit and Windsor's
SUPERs for a NEAR slot, and intersecting the results with the given
place, Michigan.

(NEAR? 'ONTARIO ' (COBO-HALL WINDSOR-MUTUAL)) ==> T

Detroit and Windsor would be found when the SUPERs were computed,
and hence so would their NEAR slots.

(NEAR? 'MICHIGAN ' (CENTERLINE FAIRFIELD)) ==> NIL

Detroit and Windsor do not occur as the SUPERs of Centerline or or
Fairfield, and hence their NEAR slot would not be found.
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Appendix B

Sample Place-frames

(fassert PLACE
(ako

(instance

(super

(sub

($val (thing))
($if-added ((progn

(forall v (fget-values
:frame 'ako)

(fadd-value+source

'instance
(fname :frame)))

(forall v (fget-values :frame 'sub)
(check-improper-supers v
(fname :frame)))

(suggest*super)
(forall v (fget-values :frame 'sub)

(check-improper-supers v
(fname :frame))))))

($if-removed ((fremove-value (fget-value
:frame
'ako)
'instance

(fname :frame)))))
($val (city) (school) (building) (room))
($exe (room) (building) (city)

(state) (country))
($req ((restrict-ako :vs '(place)))))
($if-added ((progn (add-sub)

(check-improper-supers
(fname :frame)
(fname :value))
(suggest*ako)

(check- improper-supers
(fname :frame)
(fname :value)))))

($if-removed ((remove-sub)))
($req ((restrict-ako :vs ' (place))))

($req ((forall v :values (greaterp
(rank (fname :frame))
(rank v))))))

($if-added ((and (add-super) (suggest*ako))))
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($if-removed ((remove-super)))
($req ((restrict-ako :vs '(place))))

*($req ((forall v :values (lessp
(rank (fname :frame))
(rank v))))))

($type (non-individual)))

(fassert ROOM
(ako
(super

(capacity

(phone-numbe

(facilities
(users
(primary-per
(care-takers
(user-focus

(available

(self

($val (meeting-place)))
($pre ((restrict-ako :vs '(building-area

building)))))
($req ((integer-range? :v)))
($def ( (in-teger-range 5 10))))

; The number of people it can hc
r) ; Unfortunately, places, and not

; people, have phones.
($def (chairs) (light-fixture)))
($def (guests-of 'primary-person)))

son ($def ( (assignee :frame))))
($def ( (owner :frame)))).
($exe (facilities) (convenience) (privac
($cef (assignment)))
($def ( (interval (am 8) (pm 11))))
($req ((null (overlap? :v

(schedule-of
((interval? :v))))

($type (non-individual)))

)ld.

y ))

(fassert OFFICE
(ako
(instance

(facilities
(primary-ac
(self

(fassert NE43-819
(ako
(super

($val (room)))
($exe (ne43-819))
($val (ne43-819) (ne43-823)))
($val (desk) (waste-basket)))

tivity ($def (paper-work)))
($type (non-individual)))

($val (office)))
($val (545-technology-square (floor: 8))))

(primary-person ($val (ira)))
(self ($type (individual)))

(self

: frame)) ))
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(fassert CITY
(ako
(instance
(intra-travel

(super
(sub

(sel f

(fassert BOSTON
(ako
(super
(sel f

(fassert CAMBRIDGE
(ako
(super
(self

($val
($val

($val

($pre
($pre

(place)))
(cambridge) (san-francisco)))
(car (time: (minute 20))

(cost: .35))
(taxi (time: (minute 20))

(cost: 3))
(bus (time: .(minute 25))

(cost: .25))
(by-foot (time: (minute 40))

(cost: 0))))
((restrict-ako :vs '(state m
((restrict-ako :vs ' (buildin

complex))
($type (non-individual)))

($val (city)))
($val (mass)))
($type (individual)))

($val (city)))
($val (mass)))
($type (individual)))

(fassert STATE
(ako
(super
(self

($val
($val
($type

(fassert MASS
(ako
(super
(self

(fassert CAL
(ako
(self

(political-unit)))
(usa)))
(non-individual)))

($val (state)))
($val (usa)))
($type (individual)))

($val (state)))
($type (individual)))

ietro-area)))))
ig
)))
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(fassert COUNTRY
(a.ko
(super
(intra-travel

(self

(fassert SCOTLAND
(ako
(super
(self

(fassert USA
(ako
(super
(sub
(self

(fassert WORLD
(ako
(intra-travel

(sel f

(fassert EARTH
(ako
(sub
(self

(fassert RESTAURANT
(ako
(instance
(users
(u ser-foc us

($val (place)))
($pre ((restrict-ako :vs '(continent)))))
($val (plane (time: (hour 6))

(cost: 100))
(car (time: (hour 10))

(cost: 35))
(train (time: (hour 8))

(cost: 50))))
($type (non-individual)))

($val (country)))
($val (europe)))
($type (individual)))

($val (country)))
($val (north-america)))
($val (cal) (mich) (east-coast)))
($type (individual)))

($val (place)))
($val (plane (time: (hour 12))

(cost: 500))))
($type (non-individual)))

($val (world)))
($val (north-america) (europe)))
($type (individual)))

($val
($val
($val
($def

(building)))
(dodin-bouffant)))
(public)))
(social-event) (food-quality)))
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(activity
(self
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Appendix C

Samiple Place System Functions

(setq PLACE-FUNCTIONS
(near? contains? place-span minimize maximize

continent travel-cost travel-means
travel-time specify-place describe-place))

(def prop PLACE-SPAN
((inputs:
(return:
(function-
(action:

(example:

comments)

cdefun PLACE-SPAN
(prog (commo

(ifnot

(<place-name> <place-name> etc ) )
(<place-type> <place-name> <place-name> etc.))

type: generative)
returns the type of the smallest
common abstraction level and the
places of that type (usually one))
(place-span /' (mit maine)) =>

(section new-england east-coast)))

(place-names)
n ans place-type)
(forall p place-names (ako? p 'place))
(print (list 'not

'all
'places:
place-names)))

(setq common
(apply 'intersectq

(foreach p
pla'
(co

(setq place-type (rank))

ce-names
ns (fname p)

(fdescendents p
'super)))))

(cond ((setq ans
(mapappend '(lambda (place-name)

(if
(memq
(car
place-type)
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(cons place-name
(fdescendents

place-name
'ako)))

(list
place-name
)))

common))
(return (cons (car place
(null (pop place-type))
t (go a).))))

(setq place-types

-type) ans)))
(return nil))

'(meeting-place building-area building
sub-complex complex
city metro-area
political-unit section
country continent
world))

(defun PLACE-TYPE? (place type)
(mapappend ' (lambda (place)

(cond ((null (memq type
(fdescendents

nil)
(t (list place))))

(cons (fname place) (fdescendents place

place 'ako)))

'super))))

(defun ROOM (place)
(place-type? place 'room))

(defun STATE (place)
(place-type? place 'state))

(defun CITY (place)
(place-type? place 'city))

(defun TRAVEL-MEANS (place-list)
(setify (mapappend '(lambda (place)

(fproperties place
'intra-travel
'$val))

(place-span place-list))))

(defun TRAVEL-COST (place-list)
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(travel-.news place-list 'cost:))

(defun TRAVEL-TIME (place-list)
(travel-news place-list 'time:))

(defun MINIIMIZE (topic place-list)
(assoc-pred. 'min* (travel-news place-list topic)))

(defun NEAR?
(prog

(region place-list)
(span descendents ans)
(setq span (place-span place-list))
(and (null span) (return nil))
(setq descendents (fdescendents region 'sub))
(setq ans (intersectq (cdr span) descendents))
(and (null ans) (return nil))
(return (cons (car span) ans))))

(defun CONTAINS? (outer-place inner-place)
(and (memq inner-place (fdescendents outer-place 'sub))

t))

(defun RANK args
(prog (ans)

(cond ((equal args 0) (return place-types))
((null (arg 1)) (return nil))
((numberp (arg 1))
(return (nth (difference (addl (length place-types))

(arg 1))
place-types)))

((equal (typep (arg 1)) 'symbol)
(ifnot (fget-values (arg 1) 'ako) (return nil))
(if (setq ans (memq (arg 1) place-types))

(return (length ans)))
(return (length (memq (car (place-span (list (arg 1))))

place-types)))))))

(defun RANK-NAME args
(prog (ans)

(cond ((equal args 0)
((null (arg 1))
((numberp (arg
((equal (typep
(return (rank

(return (rank)))
(return nil))

1)) (return (rank (arg 1))))
(arg 1)) 'symbol)
(rank (arg 1))))))))

(defun CHECK-IMPROPER-SUPERS (frame new-super)
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(prog (rank-new rank-old)
(setq rank-new (rank new-super))
(return (mapappend '(lambda (old-super)

(progn (setq rank-old (rank old-super))
(return (cond ((greaterp rank-new rank-old)

(fremove-value old-super 'sub frame)
(fadd-value+source old-super

'sub
new-super)

(print (list 'removed
frame
'from
old-super
'added
new-super
'to
old-super)))

((lessp rank-new rank-old)
(fremove-value frame

'super
new-super)

(fadd-value+source old-super
'super
new-super)

(print (list 'percolating
new-super
'thru
frame
'to
old-super)))

(t nil)))))
(setminus (fget-values frame 'super)

(list new-super)))))))

(defun DESCRIBE-PLACE (frame)
(prog (ans)

(terpri) (terpri)
(return (mapappend '(lambda (type)

(cond ((setq ans
(apply

'place-type?
(list

U(fname
frame)

type)))
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(princ (car

(princ ' I:
(tyo 9)

(fget-values
(car ans)
'ako)))

1)

(princ (car ans))
(foreach x (cdr ans)

(terpri)
(tyo 9)
(tyo 9)
(princ x))

(terpri)
ans)
(t nil)))

(rank)))))

(defun SPECIFY-PLACE args
(prog (ans ako name

(if (greaterp
(setq ako

(if (or (equal
(setq name

des temp templ)
args 1)
(arg 2)))
args 0) (null (arg 1)))
(request2 (list 'lwhat is the name of thel

(or ako 'Iplacel) '?) nil))
(go c))

(if (greaterp args 0)
(setq name (arg 1)))

c (if (null (frame? name))
(fcreate name))

(if (greaterp args 2)
(cond ((eq (arg 3) '?)(request-individual name))

((arg 3) (make-individual name))
(t (make-non-individual name))))

(and ako (fadd-value+source name 'ako ako))
(or ako (setq ako (car (fget-values name 'ako))))
(or ako (suggest* 'place 'instance (list name) 'ako))

a (cond ((and (setq des (describe-place name))
(request2 (append '(is this correct for)

(list name)

nil))
(print (list 'place name 'located))
(return (ascii 0)))

((setq ans
(request2 '(what would you like to do?)
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'(Ireplace a place namel
Idelete a place namel
ladd to an existing categoryl
ladd a new categoryl)))

(cond ((equal ans 'ladd a new categoryl)
(and (setq temp (type-range des))

(setq ans (request-choice
(expand-individuals

temp 3)))
(setq templ (next-down ans des))
(specify-place nil ans t)
(foreach p templ

(for (:frame (fname ans)
: slot 'sub
:value name)

(fadd-value+source (fname ans)
'sub name)))

(go a))
(print 'laddition failedl)
(go a))

((print 'lcan not do that yetl)
(go a)))

(t (print 'ok)))
(return (ascii 0))))
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