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Abstract

This thesis examines the linear secondary instability to finite amplitude vor-
ticity waves in narrow gap Ekman flow. A deductive path is taken in which a
linear primary instability is first investigated and its equilibration determined from
a parametric expansion, giving the Reynolds number as a function of the equilib-
rium amplitude. As the gap size decreases the primary vorticity waves become
longitudinally directed. Comparison is drawn between Ekman and Poiseuille flow.
The presence of a small amplitude transverse wave links the fourier components
of the secondary instability, permitting a more complex '3-D' disturbance, with a
streamwise fourier component, to grab energy directly from the mean shear. A
large streamwise velocity, u3D, is induced. Strong '3-D' amplification results be-
cause the streamwise mode is very effective in generating power via the correlation
uD (W3d)* (dUM/dz) . Longitudinally directed primary vorticity waves force a large
streamwise velocity, which alternately steepen and flatten the velocity field. In this
case, the energy supplied to a secondary instability comes mostly from the primary
wave, and relies on a primary wave amplitude sufficiently large to produce inflec-
tions in the local velocity field. In narrow gap Ekman flow (G C - 2.5) secondary
instability develops sporadically along vortex filaments as a small scale finely hashed
perturbation (appearing like a string of beads), and is considerably milder than the
bursting phenomenon associated with subcritical transition for Poiseuille flow.
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Introduction.

Considerable effort has been devoted to uncovering the various transition

mechanisms which lead to turbulence. It has become clear that several pro-

cesses quite distinct in character are possible scenarios for the breakdown

of shear flow. Of these, secondary instability appears promising. Its basic

nature is in general agreement with many observations, it is applicable to a

wide variety of flows, and is predictable on a purely deductive basis directly

from the Navier-Stokes equations without further hypothesis. Secondary in-

stability provides a link between wave interactions (global instability) and

turbulent spots (local instability) which suggests (Malkus' conjecture) that

turbulent spots exist as an isolated 'island' instability beyond the scope of

weakly non-linear theory.

The transition process in boundary layers, pipes, and channels is of prac-

tical interest, especially with regards to boundary layer control, aerodynamic

stability, and drag reduction. Because of its relatively simple velocity pro-

file, Poiseuille (pressure driven) channel flow has served in the capacity as

role model. In contrast to pipe flow, Poiseuille channel flow can experi-

ence linear instability at Reynolds numbers in excess of 5772. Realistically

this distinction may be of little importance since both flows are subject to

burstlike disturbances at Reynolds numbers as low as 1000. Reconciling the

observed low Reynolds number transition with previous theoretical studies

proved to be quite a mystery. S. Orzag and A. Patera proposed that spots

are the development of a highly structured (but global) three dimensional

instability on a finite amplitude wave. Both the three dimensionality of the

instability and the finite amplitude of the primary wave are necessary con-

ditions. For Poiseuille flow, the existence of a quasi-steady finite amplitude

wave is posited. This is consistent as, the secondary instability grows on a



fast convective time scale, while any pre-existing wave will decay slowly. In

the analysis, the primary wave characteristics are chosen to resemble those

on the upper branch of the finite amplitude stability curve. The exact wave

number and amplitude that leads to instability are left unspecified, and sec-

ondary instability becomes operational when rapid three dimensional growth

can overcompensate the two dimensional decay.

Turbulent boundary layers are subject to spots, bursts, and a collection

of coherent structures such as horseshoe vortices. Remarkably, as discov-

ered by Emmons, the spots are characterized by a definite spreading angle,

growth rate, and phase speed. The onset of transition in boundary layers is,

however, distinctly different than that of Poiseuille channel flow or pipe flow.

The experiments of Klebanoff, Tidstrom & Sargent first demonstrated that

a well ordered sequence of triggering steps connects transition with weakly

non-linear wave interactions. In boundary layers the Reynolds number in-

creases downstream, so spatial development substitutes for temporal evolu-

tion. In the Blasius boundary layer, linear Tolmien-Shlichting waves amplify

and become unstable to a three dimensional disturbance. The warping of the

velocity field increases producing the appearance of 'peak-valley' splitting.

This is accompanied by high frequency spikes having periods which are an

integral multiple of the fundamental linear wave. A longitudinal pattern of

streaks intensifies, and within typically one or two wavelengths the flow field

breaks down, becoming highly disordered.

The early work by D.J. Benney gives a surprisingly good account of the

observed two and three dimensional non-linear wave interactions. One of

the most interesting features of his analysis is that a three-dimensional pri-

mary oscillation induces a mean second order vorticity into the flow, having

a component ý02 in the downstream direction. It is this mechanism which

produces a spanwise momentum exchange and causes a warping of the orig-

inal velocity profile. His theory correctly predicts that breakdown originates



near the 'peak' (a spanwise distributed region where the velocity field is en-

hanced by the local wave field). As the local velocity profile is inflectional

around each peak, much speculation was generated regarding a subsequent

inviscid, Rayliegh, instability at these periodically spaced locations.

In contrast to Benneys work, T. Herbert considers the secondary in-

stability as the transition mechanism in the Blasius boundary layer. An

important distinction is that the three dimensional disturbance arises as an

instability to a finite amplitude wave field, and this makes its properties

calculable from maximum linear growth rate considerations. The spanwise

wavenumber is determined by this condition. For this reason the phase ve-

locity of the secondary instability matches that of the primary wave. The

three dimensional instability that results from secondary instability is highly

structured. The non-separability of the ensuing boundary value calculation

introduces oblique and longitudinal vorticity modes at the same order. The

cross-stream eigenstructure that is predicted from this theory is not merely of

an Orr-Sommerfeld type, but has a more complex nature involving a coupling

of modal components through interaction with the primary wave. Herbert

has gone to considerable length to demonstrate agreement between the pre-

dicted and observed cross-stream velocity structure. His work also supports

the premise used by Patera, that the exact form of the primary wave is not

crucial for secondary instability.

R. Pierrehumbert and S. Widnall analyze secondary instability of Stuart

vorticies. Pierrehumbert has concluded on the basis of additional work that

vorticies of a general nature will become unstable to secondary disturbances.

On the basis of their eigenvalue calculation they show that in this case the

secondary instability has no high wavenumber cutoff, a characteristic of in-

viscid instability, and a mechanism for generating a cascade to smaller length

scales.



F. Busse and M. Nagata examine secondary instability in flow down an

inclined plane, with heating. The primary instability is generated by a cubic

inflectional velocity profile. Waves equilibrate, and subsequently undergo

vortex pairings.

The previously mentioned works relate almost exclusively to primary dis-

turbances aligned so that the vorticity is originally transverse to the flow.

C.F. Pearson has studied the evolution of a streamwise diffusing vortex core,

in an unbounded linear shear. He finds that even for modest vortex Reynolds

numbers (I/(27ru)), the vorticity forces a large longitudinal velocity response.

Thus several characteristic features of secondary instability appear to be

worthy of further study and possible clarification. What is the general rela-

tionship that exists between the mean shear, the primary wave, and possible

secondary instabilities? Patera found that transverse vorticity waves serve

to mediate the transfer of energy from the mean shear to the 3-D perturba-

tion. How is this accomplished? Can the 2-D wave ever supply the secondary

disturbance with energy directly? What is the cross-stream structure of the

secondary instability? Is it concentrated near the boundary or highly struc-

tured throughout the interior and of a more inviscid nature? Is it located

near inflections (maximum vorticity regions) in the local velocity profile?

Does it have a high wavenumber cutoff?

This thesis explores stability and secondary instability in 'narrow gap'

Ekman flow, a class of rotational flows parametrized by gap size (Ekman

number) and created to permit the variation of wave criticality. Here stable

finite amplitude waves are realized making predictions more readily testable,

and providing a direct link to weakly non-linear wave theories. In particular

for small gap separations the finite amplitude waves are nearly stationary



in the rotating frame of reference. Another important distinction is a mean

shear along the wave axis and a large induced 'helical' (streamwise) velocity

component associated with the vortex wave. These differences contribute to

enlarging the notion of secondary instability.

The first part of the thesis establishes the linear stability of narrow gap

Ekman flow. The mean profiles are dependent on the local Rossby number

and are conveniently developed in a regular perturbation expansion. The

stability analysis that follows considers that the basic flow is a parallel shear

flow at small Rossby number. The experimental analogue is then pressure

driven flow between two rotating discs where the aspect ratio of the disc ra-

dius to the gap thickness is large. Several nonlinear wave problems are then

treated. The method of modified perturbation theory is used to parametrize

the finite amplitude stability curves. The method of amplitude expansions is

also developed. In particular the two wave interaction using the technique of

multiple scales and the case of three wave resonance are examined. The for-

mer expansion results in a coupled set of non-linear Schr6dinger equations.

Ekman flow is a very good case in point for distinguishing between wave

chaos and turbulence. The third part of the thesis concerns mapping out

the secondary stability properties of supercritical Ekman vorticies. This is

contrasted with secondary instability in Poiseuille flow with a quasi-steady

primary wave. An energy equation points to the significance of the cor-

relation product, uOd(wo )*(dUM/dz) , in generating power for the rapid

secondary instability growth.



Chapter 1. The Mean Velocity Profiles

In this chapter the basic mean velocity profiles for narrow gap Ekman flow are

derived via a perturbation expansion in the Rossby number. The first term of the

solution is physically representative of the flow in an infinitely long gap, and will

approximate the velocity field far from the origin. We start with the Navier-Stokes

equations in polar- cylindrical coordinates, in a uniformly rotating reference frame.

vP 2v U(1)
ut + (u -V)u-- 2Qv= + (V 2 2) (1)r p r r

S+vu p (Vo + 2u8 vvt + (u -V)v + + 2v u = + v('v 2  ) (2)
r pr r r

wt + (u. V)w P + V(V2w) (3)

Where (u -V) _ (ua, + • 9 e + w4a,) and V 2 = (a2 + la'r + I* + aC).

In addition mass conservation for an incompressible fluid requires,

1 1-a,(ru) + 1- 0v + azw = 0 (4)
r r

i.e. V - u = 0. We follow A.J. Faller (J.F.M. 1963) in nondimensionalizing the

Navier-Stokes equations. The characteristic length, time, and velocities determine

the appropriate scaling and relevant parameters. Then

z' =zD , r'= rR , t' =t/(2f)

CU ev I
U v' - w' =Dcw/R

r r
ROfc Rfnc Rfc

p' = -- Pr , Pe =-, P=z Pz-
r r r

where D = is the characteristic boundary layer depth, c = S/(rRD) is

the characteristic speed, and S is the forced volume flux per unit time. R is

a dimensional outer radius and H is the dimensional gap size. The dimension-

less parameters are the Rossby number, Ro = c/(Ofr 2 R), the Ekman number,



Ek = (v/(IIH2))I = D/H, and the Taylor number, T = fl'R 2 /v' = R 4 /D4 .

The Rossby number number is a function of radial position and its rate of variation

is a measure of non-parallelness in the basic velocity profile. The inverse of the

Ekman number expresses the gap thickness in terms of boundary layer units. The

inverse of the Taylor number turns out to be exceeding small in the present study.

Assuming the underlying steady-state velocity field, (U,V,W), to be axisymmet-

ric and making the above scaling transformations Equations [1.1-4] can be reduced

to,

au 2 a a2U 1 1 aU
Ro(rU - U2 - V2  rW ) 2V= -Pr + T (r)) (5)

R r W z -z2 yr r 9r

R V 2 V 82V 2 a 1 aV
Ro(rU + r2 ) + 2U =-- + T-T(r (-- ) (6)

R r Uz +2 9r r 9r

aw aw !Pz a2W _ a2W 1 aW
Ro(rU + r2W ) -T-- +  + T-( +- ) (7)r z r + z2 ar 2  r 4r

aU aw
U-+ r-7 = 0 (8)

+r =z

The solution is developed in a power series in the Rossby number, which is conve-

niently written Ro = E/r2 , in terms of the small quantity E. The Taylor number is

determine'd by the relation T-2 = EA where A is also small. The expansions are

U(z, r) = Uo(z) + RoUl(z) + Ro 2U2 (z) + Ro 3Us(z) + Ro4 U4 (z) + ...

V(z, r) = Vo(z) + RoVi(z) + Ro2V2 (z) + Ro3 V3 (z) + Ro4V 4 (z) + ...

Ro Ro2  Ro3  Ro3

W(z, r) = W(z) + --2-W(z) + 2 W3() + 2  
4( +...

r r r r

T-2W (z, r) = zRo W(z) + iRo3W2(z) + zRo W3 (z) + . . .

T-1 T-1 T
p, = Po + Ro(P,+ 2Pi(z)) + Ro2(PII+ T- P2(z)) + Ro3(PIII+ T P3(z))+...

S T 2  T- T- T-!
r 3r 2 5r 2 7r 2 -9r 2 4()



A set of equations at each order of the Rossby number results. The first three

are

0(1):
82 Uo

-2Vo = -Po +
8z 2

02Vo
2Uo =

8z2

O(Ro) :
82 Ux

-(U + V02) - 2V1 = -P, + az-8Z2

82 V
2U1 =

az 2

Pi(z) 82W1+ =o
3 8z2

-2Uz + W1 = 0

O(Ro2 ) :

8Uo  82 U2
(-4Uo0V - 2VoV 1 + W,1  ) - 2V2 = -(P, + PPi(z)) + 8z2 + 8AU 1

a Vo a2 V2
(-2UoV, + W1 --) + 2U2 - z + 81V,1

P(z) 82 (W,-4(UoW,) = ( ) + 2 + 161W,
5 8z 2

-4U2 + W2 = 0

A few words concerning the solution of these equations are in order, especially

with regards to the decomposition of the pressure and the role of the constants

Po, PI, PII,... A solution to these equations which transports a given radial flux is

sought. At 0(1) the constant Po is chosen to meet the radial flux requirement.

The first two equations at O(Ro) are used to solve for U1 and V, and the

value of PI is picked to maintain the net radial flux. Continuity determines W1 ,

and then P1 (z) is easily obtained by integrating the third equation. Similarly



at O(Ro2 ) the first two equations determine U2 and V2 and the constant PII is

chosen to meet the flux requirement. It should be clear that by adding a multiple

of the homogeneous solution to the forced equations the flux condition can be met.

For the case of narrow-gap Ekman flow U(O) = U(H) = V(O) = V(H) = 0 and

the 0(1) solution is

Uo(z) = -PA- 1 (exp(z-H) sin z+exp - z sin (H-z)-exp(H-z) sin z--expz sin (H-z)) (9)
2

Vo(z) = Po PA-(exp(z-H) cos z+exp- z cos (H-z)+exp(H- z ) cos z + exp z cos (H-z))2 2
(10)

with A = (exp-H(1 + expH cos H) + expH(1 + exp-H cos H)). The flux requirement

that foH U(z)dz = -1 determines Po = 2A/(exp-H - expH +2 sin(H)).

If the upper boundary is taken to be infinity and a stess free boundary condition,

U(oo) = V (oo) = 0, is applied then the O(1) flow is the Ekman boundary layer,

Uo(z) = °(exp-z sinz) and Vo(z) = -°(1- exp-zcos z). In this case the O(Ro)

correction term is

P, 1 1 2 1 1
U(z)= Uo+ (ex-z (-z sinz - -z cosz - -sin z +- cos z) - exp 2

Po 4 2 2 5 5 5

P1  P 2  1 1 1 3 1 1
Vi(z) = -Vo + (exp-(-z sin z + -z cos z - - sin z + - cos z) - exp-2

Po 4 2 2 5 5 10 2

The flux requirement that fo' U(z)dz = - then fixes Po = -2 and P = -
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Chapter 2. Linear Theory of Narrow Gap Ekman Flow

In this chapter the linear stability characteristics of narrow gap Ekman flow

are examined in the small Rossby number limit. A brief outline is first given. At

large enough gap sizes the flow is best thought of as two uncoupled Ekman bound-

ary layers separated by an interior geostrophic flow. The stability characteristics

of this then reduce immediately to what was given in D.K. Lilly, J.A.S. 1966 (see

H.P.Greenspan for a concise review). As the gap width is decreased waves that can

be justly thought to propagate along either top or bottom surface (i.e. mathemati-

cally the sum and/or difference of a symmetric/antisymmetric pair of modes) begin

to interact. The gap distance at which coupling becomes significant is properly

a function of the wavelength, (the linear eigenfuction decays exponentially as the

wavenumber in the vertical direction) and for the wavelength of fastest growth is

approximately of 15 boundary layer thicknesses. It will be shown in a later chap-

ter, that a reasonable model for this is given by two coupled Shr6dinger equations.

Further reducing the gap size increases the intensity of the interaction. Not sur-

prisingly the critical Reynolds number for the symmetric mode is decreased while

the critical Reynolds number for the antisymmetric mode is increased. A minimum

critical Reynolds number is reached for gap size nearly six boundary layer distances

wide. With gaps smaller than about eight boundary layer widths separation it is no

longer appropriate to consider the disturbance as two interacting waves and a look

at the perturbation streamlines indicates that the two vorticity centers have merged.

Physically however the instability still has its energy source in the two inflectional

points of the velocity profile perpendicular to the roll axis. Further decreasing the

gap size greatly reduces the mean shear associated with the inflectional velocity

profile. This results in the critical Reynolds number shooting up fast. In fact for

gaps of less than one boundary layer thickness a new linear instability, namely that



associated with the nearly Poiseuille velocity component, occurs. Not only is this

instability subcritical but there are finite amplitude effects such as bursts which

will dominate the stability of the flow at lower Reynolds numbers and thus larger

gaps. This must be taken to account with gaps less than about two boundary layers

across.

The stability analysis herein treats narrow-gap Ekman flow in terms of a parallel

shear flow model. The local velocity profiles are used in the Orr-Sommerfeld/Vertical

Vorticity equations which are coupled through rotational terms. The validity of this

approach requires that certain assumptions be met and while these conditions are

not very restrictive it is best to be clear as to the approximations that are made. In

the previous chapter the narrow-gap velocity profiles were determined as a power

series in the Rossby number. The leading term is the solution at infinity, i.e. it is

approached far enough from the center of the rotating disks. It would be a solu-

tion for the problem of a pressure induced flow between uniformly rotating infinite

parallel plates. In this idealization the parallel flow stability computation is exact.

Recall however that the narrow-gap Ekman profiles are dependent on the radial

distance from the disks center. The magnitude of the basic velocity profiles vary

inversely as the radial distance and are additionally altered in shape, a modification

whose magnitude depends on the inverse of the radial distance squared. Then in

terms of dimensionless parameters, the Reynolds number increases inversely as the

radial distance while the Rossby number increases inversely as the radial distance

squared.

A stability calculation that treats the local velocity profiles as though they were

uniformly extended throughout space is approximate on the grounds that it neglects

the change of the mean with position and thus requires that the flow change slowly.

By 'slow' it is meant that the change in the velocity field is small over distances

of the order of several disturbance wavelengths. Since the major interest concerns



the small Rossby number region, all the restrictions are satisfied at large distances

from the origin. These conditions are experimentally achieved by working with a

large enough disk and focusing attention near the outer boundary. (For small gaps

the Rossby number correction may alter the small inflectional velocity component

and Rossby effects should be included.)

For viscous flow in a rotating boundary layer in which the fluid is incompressible

with constant density, the equations of motion are given by

d V=V 2 n x +v V (1)
dt p

V- V=o (2)

Equation [2.1] is the 'Navier-Stokes' equation for the momentum of the fluid when

viewed in the non-inertial frame of reference in which the observer moves with the

constant angular velocity kfi of the physical system. Thus the left hand term rep-

resents the acceleration of the fluid which is balanced by (respectively) a pressure

gradient, the Coriolis force, and the viscous dissipation. The density, p, is also

assumed to be a constant however it should be clear that an additional set of equa-

tions relating temperature with density stratification could be included to make

the analysis that follows more generally applicable to atmospheric circulation (c.f.

Brown). These equations are the starting point of this paper. The following con-

vention should be mentioned. The centrifugal force x x ( x r) = -V (±) is in

balance with the radial pressure gradient and the gravitational force (which is also

conservative) is balanced by the hydrostatic pressure so they have been combined

with p in (1) so that p is actually the reduced pressure. As a matter of convention

and in keeping with Lilly's notation we consider a rotation of the coordinate axes

through an angle E, counterclockwise, bringing the y-axis into alignment with the

direction of wave propagation. Surfaces of constant phase then lie parallel with the

x-axis so that derivatives of the perturbed quantities vanish along this direction,



i.e. = = . Under this transformation;

( COS E

- sinE

COSin c
Cos E

The Ekman boundary layer profiles then become UE = (cos E - e- z cos(z + E)) and

VE = (- sinE + e-z sin(z + E)). Both V and VE satisfy (1)-(2). Subtracting

VE 'V VE +E- + 20×x VE= LV2 VE (3)

V. VE= 0

from (1)-(2) with V=VE + v* yields,

dv+*
+ VE V +at

v -V VE + V v +

p* -r*V- + 2kx v2 = vV2 v

V.v =0

The linear theory is obtained by ignoring products of perturbed quantities.

component form, with the Reynolds number R = VD , this reduces to
Vi

au* du** + VE
at 4y

dv* dv*S+ VEat ay

,aUE
+wz Oz

+ w VE
dz

+ VE -
at ay

2 V*
R

dp*
ay

dp*
dz

2
R* +
R

1 d2u* 2 U*
R -y2 +z2

1 , 2v*

1 d2 w*

R dy2

(5)

(6)

(7)

*2V

Jz-

av* dw*
dy dz

(10)

with the perturbation boundary conditions, u* = v* = = = 0 at z = ±H for the

finite gap problem. For the semi-infinite problem the perturbation velocities vanish

U* = v* = W* = 0 at z = 0 and a zero stress condition is applied at infinity so

9u*= 0v* =w, =0 at z=oo.
5Z aZ

+-n 2



The two dimensional incompressibility condition allows for the introduction of

a streamfunction potential for which

v* * w (11)
az ay

A vorticity equation is formed by cross differentiating (5-6), and with

=( a*( - *) the perturbation equations take the form:

(* 8* ,d 2 VE 2 au* 1 a2 * ( 1*

+VE - - + -,(12)
-t ay dz 2  R z R ay2 8z2

9u* Eu* *dUE 2 1 a2U* 2 u*(
+ VE - = -v* + ( + ) (13)

at ay dz R R ay 2  + z2

A linear eigenproblem is obtained by the substitution of the normal modes

* = -p(z)ei a (Y-ct) , u* = s(z)eia (( -et) which represent vorticity waves trav-

eling along the y-axis in the form of longitudinal rolls. Note that the presence of

a mean velocity along the roll axis gives the perturbation a 'helical' (streamwise)

component. Here a is the wave number and c = c, + ici is the complex phase

speed. This results in the following boundary value problem:

Os

p' - 2a2 + a4 - iaR[(VE - c)(p - a 2 (p) - VE'PI +24 = 0 (14)

Ti - a2 A - iaR[(VE - c)s + UEp] -2b = 0 (15)

The boundary conditions become p = b = A = 0 at z = ±H for the

narrow-gap case. For the semi-infinite Ekman layer the boundary conditions are

p =b = = O at z = 0 and b = = =0 at z= oo , where "' signifies .

This is an appropriate place to mention some of the more basic properties of

the stability equations. For a unidirectional parallel shear flow without rotation

the linear stability analysis leads to the Orr-Sommerfeld (0 S) equation for the

streamfunction, (that portion of Equation (14) which is overbraced). The theo-

rem of Squire states that a minimum critical Reynolds number is obtained for two



dimensional waves propagating in the direction of the flow. Moreover it provides

a transformation from the linear three-dimensional stability problem at a higher

Reynolds number to an equivalent two-dimensional stability problem at a lower

Reynolds number with an identical spectrum. For three dimensional waves, that

is waves whose phase varies along both coordinate axes, still without rotation, a

complimentary equation for the longitudinal velocity (the underbraced portion of

equation (15) ) needs to be included. However it can be shown that the homogeneous

operator of the longitudinal velocity ( CV) equation has no unstable modes, and thus

the Orr-Sommerfeld equation can first be solved and then used to determine the

forced response of the longitudinal velocity. Note that the forced response of the

longitudinal velocity increases proportionally with the Reynolds number. There are

modes of the longitudinal velocity equation which are only weakly damped which

allows for the possibility of 'direct resonance' with modes of the Orr-Sommerfeld

equation should two or more eigenvalues of these operators be equal or nearly so

(see D.J. Benney & L.H. Gustavson or T. Akylas and Benney). For a one wave

system an equivalent set of independent variables are the vertical velocity and ver-

tical vorticity, which are just scalar multiples of the streamfunction and longitudinal

velocity. But the formulation in terms of vertical vorticity also carries over to more

general systems of waves for which there is no preferred coordinate system which

permits a streamfunction. In the presence of uniform rotation the Orr-Sommerfeld

equation and longitudinal velocity equation are weakly, O(1) , coupled. (the im-

portant term is 24L in Equation (14), while the term -2ýb in Equation (15) is

only of minor significance). In Ekman flow the rotational coupling allows energy

to be efficiently supplied from the shear of the velocity component, UE(z) , that

is parallel with the disturbance vorticity. This initiates a low Reynolds number,

Type II, instability that otherwise cound not be obtained. While the source of the

instability remains the mean inflectional velocity profile, VE(z) , the induced helical



velocity component redirects the roll alignment and selects the wavenumber so as

to better utilize the power provided through the correlation u2d(w 2d)*(dUE/dz ).

For each value of R, a, E , (14-15) is an eigenproblem for the phase speed c.

The locus of points in (R, a, E) space for which an eigenvalue c has a positive

imaginary part constitutes a region of linear instability, while the locus of points

in (R, a, E) space in which no eigenvalues have non-negative imaginary part

constitutes the region of linear stability which (providing the eigenfuctions form a

complete set) indicates that the flow is stable to all infinitesimal periodic waves.

These regions are separated by the 'neutral surface' on which c has zero imaginary

part. This is illustrated in figure 2.6 (a-d) taken from D.K. Lilly.

The number of potentially realizable linear instabilities present in the system

will be equal to the number of local positive maxima in the growth rate function(s)

(ac,) (E, a) . At such points (ac,) = (ac,) = 0 . Each maximum traces

a branch of the curve of greatest growth rate when parametrized by the Reynold

number. Intersection of each branch with the neutral surface occurs at critical

points (R, a, E),, corresponding to the onset of an observable instability.

For Ekman flow (semi-infinite gap) the Type II or 'parallel' instability occurs

first at a Reynolds number of 55, a wavenumber of .3, and with the phase velocity

.6, oriented -22 degrees counterclockwise from the geostrophic direction. The Type

I or inviscid instability has a critical Reynolds number of 115, and a corresponding

wavenumber of .5, and nearly stationary phase speed of .06, directed 8 degrees

counterclockwise from the geostrophic flow. By varying the wavenumber and wave

orientation the eigenvalue and eigenmode of a Type I and Type II instability can

be continuously transformed into each other.

In viewing the eignenfunctions of narrow gap Ekman flow, an important charac-

teristic to keep in mind is the ratio of the maximum magnitudes of the streamfuction

to streamwise velocity.
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Chapter 3. Parametric Expansions of Equilibrated Flow

The finite amplitude parametric scheme of Malkus and Veronis is applied to

determine the criticality of incompressible parallel shear flows with arbitrary ve-

locity profiles (U(z),V(z),O). The foremost examples for this study are Poiseuille

flow and narrow gap Ekman flow, however the analysis applies directly to a wide

class of other laminar flows. Some of the more prominent of which are the Blasius

boundary layer, flow over sweptback wings, Oceanic boundary layers, and flow over

rotating disks. The laminar velocity profiles over rotating disks (Kaufman et al.,

J.F.M. 1983) are in fact very similar to those of the Ekman boundary layer.

Of the various perturbation schemes, the Malkus and Veronis expansion (J.F.M.

1958) is the most efficient in determining the finite amplitude equilibrium near

criticality. Here the Reynolds number and phase speed are parametrized by the

equilibrium amplitude E. (E is strictly defined as the magnitude of the projection of

the wave on the linear eigenfunction). Then

R = Ro + R 1E2 + R2  +... (1)

C= co + ClE2 + C2E4 +... (2)

where the constants R, and c, are determined by solvability conditions. The analyt-

ical structure of the equilibrium curve at the critical Reynolds number is obtained

with one set of calculations. Note that because the plan form is simply a plane wave

( as opposed to cells of hexagons or squares which occur in the study of convection)

the self-interaction does not result in a solvability condition and the parametric se-

ries depends only on the square of the amplitude. With ti = n(a2 +02), the underlying

finite amplitude wave has the fourier representation

00

- [n exp(i'"n +'inY-Inct) ±(*)]
n=l



This representation is then substituted into the Navier-Stokes equations where the

eigenfunctions Oi = (wi, rm) are further expanded as:

1,(z, R) = co10(z) + E3 ,11(z) + Eq512(z) +...

¢ 2(z,R) = E20 2 0(z) + E4€ 11 (z) + E6' 2 2(z) +...

k (z,R) = ckok,o(Z) + Ek+ 2¢k,l(Z) + Ek+ 4 ¢k,2 (Z) + . . .

(3)

(4)

(5)

The linear operator is a function of R, c, and the mean flow and so it to is developed

in powers of E2

ZR = =o + E2Z1 + E4
2 +...

We have adopted the following notation. Let V be the velocity profile (U, V, 0) and

a be the wave number vector (a, #). Then define

£CR[V, ] =

(D 2 -(a2 +2))2 -R(iaU+iPV-ile)(D2 -(a 2 +p2))+R(iaD2 U+i3D2 V) -2D

(D2 -(a2 +#2))-R(iceU+iPV -i l c)

0[V, C] =

(D2 
_(a2+2))2 -Ro(iaUo+i#Vo-ilco)(D 2 - (a 2 + 2 ))+Ro(iaD 2 Uo+i3 D 2 Vo)

Ro(iPDUo-iaDVo)+2D

-2D

(D 2 - (a 2 +, 2 ))-Ro(icoUo+i Vo -ilco )

R(i#DU-iaDV)+2D



and for n = 1, 2, 3,...

Ln[V, a]

n

S[-RA (iaU.-k+i3Vn- k-iln-k) (D 2 - (Ca2 +5B2))+RA(icaD2Un-k+iOpD2V_-k )]
k=O

n

Z Rk (i#DUnk -iaDVn.-k)
k=O

0

n

Z Rk (iUk _k+iVn -i-eIn-k)
k=O

The eigenproblems that arise from the preceding development are ordered first

with respect to the harmonic component to which they contribute (the first sub-

script) and then according to the degree of the correction (the second subscript).

0(E) :

0o[v, a01~0 = o

o(E3) :

0o[Vl, a]1ii = -£C[V, aJ]1 0 + (Nonlinear terms)

0o[V, ;][,i = - eLk[V, -]41,n-k + (Nonlinear terms)
k=1

O(e) :
£o[V, 2a]020 = (Nonlinear terms)

n

£o[V, 2a]j2,n = - 1 £k[V, 2a]q2,n-k + (Nonlinear terms)
k=1

o(e2"+l)

o(e2"+2) :



0o[V, mca]•.,o = (Nonlinear terms)

O(E•2n+m)

0o[V, mrra]¢m,n = - Z £k[V, mra]•m,n-k + (Nonlinear terms)
k=1

The bracketed 'Nonlinear terms' is meant to indicate all nonlinear terms that occur

in the particular problem. In practice they are determined by a coded algorithm

without having to write them out explicitly. (Appendix 1)

The expansion for the mean flow is given by:

UM = UB + E2Uc = Uoo + 2U 1 + E4U0 2 + ... (7)

VM= V+ E2 V = VOO + e2 V01 + E4V02 +... (8)

To arrive upon the equations governing the mean flow it is convenient to introduce

a set of functions {Pi} which operate on pairs of subscripted sequences. Take

Po(A 1, B 1) = AloBlo

Pi(A1, B 1) = (A1oB 1n + A11B l o)

P,(At, Bk) 1 AlAiBZn_
i=O

For the steady mean flow,

Rdz ((uiw* + u w,)) = 2; + d

Rd (-(viw, + v Wi)) = -2 dz
i=1



and in the notation above:

O(E2)

0oi + 2Vol = Ro (Po(ul,w ) + (*))

Vo, - 2Uo1 = Ro d(Po(v, w ) + (*))
dz

O(e2n) :

UoJ + 2Von = Z R dz (Pn,_-(uj )+ (.))
j=1 i=0

ýn - 2Uon = -R dz (P,_i_-i(vi, w) + (*))
j=1 i=0

We will call the (Ri, ci) Linsted coefficients. (R, ci) are found by taking the inner

product of the equation for 01,n with the adjoint eigenfunction to0 = (wlo, r/to) and

integrating between boundaries (the solvability conditions.) Thus

oV, a 1,n) lodz = - E (£[V,- al,n-i)' lo0dz+ (Nonlinear terms). qotdz
i=O

= vfq,,. -(4[v, €IAo)*dz = 0. (9)

Here the adjoint operator is given as:

L t [V, a]

(D _-(a 2+p))2 -Ro(iaUo+iPVo-ilc )(D2- (a2+i2))+Ro(icaDUo+i DVo)D

+2D

(iaDVo-iPDUo)-2D

(D 2 - (ac2 + 2 ))+Ro(iaUo +iPVo-ilc;)



Some algebraic manipulation is performed and yields the formula for (Rn, c,), the

n-th Linsted coefficient.

R, [[-(iaUo+iPVo-ilco)(D 2 -(a2 + 2))w l o.w
t

o+(iPUo- iaVo)w olo 0
o - (iaUo+i,5Vo- i l c o i)rio 'r0 o]dz ]

+c [f[iRo(D -(a•2 +))wo.wto +ilRoo l7foldo ] =

n-1

f [Ro(iCaUn+ipVn )(D 2- (a
2 + 2))wloi 0o+ E [RA (iaUn. +iPVf- -ilcn-k)(D2 

-(a 
2

+#
2

))]WO .w o

k=l

n-1 n-1

- (R (ian- A:-kk+ifVA)wo1 0 - Z (Rk A(i&n-1k S-it-k )W10 1

k=O k=O

n-1

Ro(iaUn+i'V,),no.r1to +E (Rk (iaU, -+i#aV,-n-k-in-k)),1o.t oldz
k=1

n-1

-Z f (ci[v, a 1,-),t-)* odz+f (Nonlinear terms)-ao dz

i=O
The ordering of the problems to be solved in this formulation is most easily discerned

as a tabular array diagramed as follows:

40 k1  02 s3 44 05

€oo

(Ro,c o) 1io

01oi 20

(R, cl) 1, 0o30

002 €21 040

(R 2 , c2 ) €12 31 50so

0(1)

0(c)

O(E2)

O(E3)

O(E4)

O(E5)



One proceeds in solving the problems for the related eigenfunctions from left to

right across each row and continues on to the next row down. At O(E2 n+ 1) the

n-th Linsted coefficient is obtained. The diagram for the parametric expansion is

identical to the one given in Herbert for Stuart-Watson theory (where we have only

replaced the Landau constants by the Linsted coefficients).

The actual numerical calculation of the Linsted coefficients is easier to do in

matrix form, with the linear operator divided up into four parts.

[v, a=

0

n--I• k= 1 - R k, (iQ ,U n , _k + iO V ,, _k - ilC , _k )

n [E• --R2(i "--+iV"---i"--)(R -(i C2+U 2))+ -- RA(ia,-k+ifn-k)]

- (iczU+i,5Vo-iICo)

+Cn

+Roil(D 2-(a2+p2))

0

( -Ro(iaUn+iVn)(D2-(a2+#2))

0

0

+Roii )

0 1

-Ro(iaU.+i6V,,)

One final technical point; the adjoint equation need never be solved for. (Rn, c,)

can be more accurately determined through gaussian reduction and elimination.

-R, [-(iaUo+iOVo-ilco)(D2-(Ca2+2))+(iaU°o+ipVo)]

+Ro



Table 1. LINSTED COEFFICIENTS
POISEUILLE FLOWt a = 1.02

SR, ci

0 .5772E+04 .2639E+00

1 -.1676E+08 .2683E+03

2 .8278E+12 -.8600E+07

3 -.4434E+17 .4358E+12

4 .2673E+22 -.2597E+17

twith the normalization w(0) = 1

.01

.008

.006

.004

.002

nnn
5200 5400 5600 5800

Re

Figure 1: THE FIRST FOUR APPROXIMATIONS : POISEUILLE FLOW

6000
.VVV

5000



Table 2.1 LINSTED COEFFICIENTS
NARROW GAP EKMAN FLOW

GAP=20. GAP=6.0 GAP=4.0 GAP 2.5

P R ci R c1 R4 c1 R4 ci

0 .5437e2 .5833e0 .3476e2 .4580e0 .5333e2 .2571e0 .2044e3 .0729e0

1 .3689e5 -.9229e2 .4940e4 -.1971e2 .2359e4 .2059e0 .4686e4 .1916el

2 .5671e8 -.1887e6 .1265e7 -.5314e4 .1603e6 .2272e2 .1958e6 .7329e2

3 .1087e12 -.4173e9 .3913e9 -.1699e7 .1380e8 .1642e4 .8255e7 .3791e4

4 .2372e15 -.9789e12 .1333e12 -.5961e9 .1330e10 .1334e6 .1740e9 .2442e6

Table 2.2 MARGINAL WAVE CHARACTERISTICS
NARROW GAP EKMAN FLOW

GAP = 20. GAP = 6.0 GAP = 4.0 GAP = 2.5

Rcr 54.37 34.76 53.33 204.4

ccr .5833 .4580 .2571 .0780

wave no.
()3) .30 .40 .75 1.2

wave angle
Eo -20.o -5.00 7.50 36.0

normalization w(-.8) = 1. w(0.) = 1. w(0.) = 1. r7(.5) = 1.



Figure 2: THE FIRST FOUR APPROXIMATIONS: GAP = 20.
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Figure 3: THE FIRST FOUR APPROXIMATIONS : GAP = 6.



Figure 4: THE FIRST FOUR APPROXIMATIONS : GAP = 4.
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Figure 5: THE FIRST FOUR APPROXIMATIONS : GAP = 2.5
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Chapter 4. Weakly Non-Linear Theory: Stuart-Watson Expansions

Linear theory can account for the initial development of a wave disturbance

under the approximation that it represents an infinitesimally small perturbation of

the basic flow. If exponential growth is predicted the latter assumption soon fails to

hold and nonlinearity must be accounted for. The nonlinear expansions applied to

this problem have been developed by J.T. Stuart and J. Watson in related papers

(J.F.M. 1960). In this approach the Reynolds number is fixed and the evolution

of the wave is followed in time until an equilibrium state (if one exists) is reached.

Stuart's expansion takes the form of a series in the wave amplitude with the linear

growth rate aci treated as order A2 . The original conjecture, due to Landau, gave

the first terms of the initial departure of the wave disturbance from equilibrium

as dA/dt = aciA + kA 2A*. The implications of the Stuart-Landau equation are

easily grasped. If Re({k} < 0 and ci > 0 an initially infinitesimal disturbance

will undergo exponential amplification in accord with the linear theory. This will

be altered as the wave amplitude becomes small with the resulting finite amplitude

equilibrium given by IAI = - . If ci and FRe{k} > 0 the equilibrium state

is unstable and small perturbations will lead to instability if they are larger than the

threshold equilibrium amplitude. This latter situation is referred to as subcritical.

The constant k is commonly known as the Landau constant. For high Reynolds

number parallel shear flow, Herbert has shown that many terms in the expansion

need to be computed to achieve reasonable quantitative agreement with the ana-

lytical solution. In both the single and two wave expansions the same procedure is

adopted. A nonlinear perturbation equation is obtained from (2.1) and (2.2). The

perturbed quantities are decomposed into a spatial mean and periodic part. The

periodic part is represented as a fourier series and the resulting equation for each



harmonic are subject to an expansion in the wave amplitude, which is considered

to be a slowly varying function of time.

The Single Mode Expansion.

The nonlinear perturbation equations are:

au VEau

at •By
dv* dv*

* +VEat + ay
aw *

5t

dw*
+ VE dy

+ UE
dz

+w aVE+w*

du

rv*

dy

au*
dz

rv*
+w*

8z

ap*ay
dap*
dz

dw *

dz

These give rise to the nonlinear vorticity equations:

a8* a8*+ VE
at 9ay

du* du*
9u+ VE
at dy

, d2 VE
- W dz2

,dUE- w •
dz

,0*+ vy
By

+ waz
,+ u*
dz

2 au*

R dz

2 1= -V* +1
R R

.2 :*1 a2*

R ay2

a2U
- u*

dy

+ n2~32

a2U *

dz2

(4)

(5)

The streamwise velocity and vorticity perturbations are further decomposed into a

mean and a fluctuating part, so that u* = ii+u' and (* = ,+ (' where the overbar

indicates the averaged component and the prime the fluctuating part. Substitution

of these into (4.1-3) and taking the average of the equations over a wavelength in

the y direction results in the equations for the mean flow distortion:

-+ v'
at Fy

dii + u'
at ady

+ w'
dz

du'
+ w't-

Oz

2 dfl
R az

1 a2ý
R dz 2

2 1 a2R
R R z 2

2

R
1

R

1

R

d2 U*
ay 2
dy2
a2*

2U*
Ru
R

a2 U*
+ dz2

a2v

+ )dz2

O'w

+z2

(1)

(2)

(3)
1 d2w*

R ay2

(6)

(7)



Subtraction of the mean flow equations above from the perturbation equations yields

the equations for the periodic part of the disturbance:

(VE + + ')
ay

+ ,) - vla
ay

+ W (E +8z
2 au' 1 92 '1

+ R y2R 8z RaBy=2

au'
ay

a2 '

+z2

+ w' (UE + ii + ')az
2 1 92u'

= R v' +(5y
R R By=

au'
ay

a2U'
+ z2) (9)

It is easier to work with the mean flow velocity components obtained by averaging

(4.1-3) and these are:

ai au'w'
at az

av av'w',
at azr

Now the fluctuating quantities are E

2 1 a2fZ
=- +
R R az2

2 1 a2
ft +

R R az

periodic and so

oo

Iu' = (u,(z,t)e' " (Y - c' ' t) + (*))
n=1

E' = (n(z,t)e• 'in( -c'' t) + (*))
n=1

a+at az

au'

(10)

(11)

au
- W

I

8z

9
z



Thus each term in the fourier series will satisfy a component equation:

-- ZacrU1 +
+u

a + ia(VE + tU +at
, Ou2+ w-4zaz

2iav*u2 - iauv 2 + w1 +(UE + )

au* 1
+ W20- = -(2vi5z R - a 2 ui + )z2

- 2 iac,u2 + S+ 2ia(VE + F)u2 + iaVl. + w2a(UE + i) + W1at az
1
R(2vR

- 4a 2u 2 +
a2U2)
az 2

-iaCrýl + o + ia(VE + + 2iav•2lat
+ Wa -Z

+at

az
1 au

R az

+ 2ia(VE + •-) 2 + iav' 11 + W2 a(E8z
= (2 U 2R az

- i?;v2 + wi-(ýE + -)az
- 2 + 2 1

az2

+ 0 + WlaZ19
4a2 2 2+ aZ

8z2

With the equations for the mean flow distortion becoming:

ai  a 2
a+ a (U1 W + u*wl + W2 4U + w2U2) =

at 8z R

1 a2fi
+ azR 8z 2

(VlW 1 Wl vW 1 + w 2vI + wv) ()
2 1 (20

= • +
R R z 2

(12)

(13)

(14)

(15)

a+ a
at z•

(16)

(17)



A stream function can be introduced for each harmonic such that

2

= 
(-aII =(-ar+ )ýjr2

2 2
2z2

(4.14-15) can now be revised to,

(-iac, + at)(-_aat 02 02
+ ) + ia(VE + f))(-a 2 + )01aZ2 az2

02 2 01 22 (2 02-2ia o(-4a2 + - 2)+ it (- + a2 ) + ial1•b (VE +E +9z az2 9z az2 1a2

0z2
49Z2i)¢

+ 2iatlk 2 a (-a2 +
0z

z02
1 (2 u

= -(2R 8z

(-2iac, + )at 02 02(-4a2 + 2 )-z)2 + 2ia(VE + V)(-4a2 + )- 0aZ2 az2

-ia (-a2 02 02
+ )41 - 2iab2 (( (VEaz2 8z2

+ 0) + iao az(-_a219 2
1 R u21 (2R az a z2

(19)

with similar changes to (4.12-13). The Stuart-Watson ordering, in the form of a

separable solution, is given to order AS by:

1l(z,t) = A(t)l1(z) + A 2(t)A*(t)¢4?(z) + o(A 5)

0 2(z, t) = A 2(t)02 (z) + o(A 4 )

(20)

(21)

(22)

(23)

ul(z, t) = A(t)l.1(z) + A2 (t)A*(t), 11(z) + o(A 5 )

u 2(z, t) = A2 (t).U2 (z) + o(A 4 )

0
2

+ (-•a2 t )2 1)

(18z2
(18)

02
+ z2)

- Ma (_4a 21 z



The first mean flow correction occurs at order AA* so that,

i(z,t) = AA*ft(z) + o(A 4 )

7(z, t) = AA*k(z) + o(A4)

(24)

(25)

With the slow time dependence of the wave amplitude given by

A
= acA + kA2A* + o

(As)

(26),1 1

the leading order problem is complete and seen to be consistent. The formal sub-

stitution of (4.18-26) into the equations for the harmonic components results in a

corresponding problem at each order of A

The Linear Problem:

a2 a2(-a2 + )2 1 _ iaR(VE - c)(-a 2 +

82
(-a 2 + )p, - iaR(VE - C),l -i

8z

)0 1 + iaR1

ci~o a ¢llO-E

82VE 91 E +2

841
-2 =0

Oz

The Problem at O(A2 ):

a 2

(-4a2 + ± 8 2 )2 - 2iaR(VE

a
= iaR1 (_-a2 +8z

- c)(-4a2 +

92
a 2

982

8 • 'ý-

82V
+ 2iaR€2 8zE

-z2)
Ca2 + )2o1aZ2

a2 UE
(-4a2 + )/• - 2iaR(VE - c)A2 - 2iaR 2 UE

az2 (9z
8q 2

- 2
dz

+ iaRkl 1
8z

S= 0

+2(
Oz

-iaR Oi l8z



The order AA* Mean flow distortion:

d 82p
2Racj + iaR dz (q1;4 - q*g 1) = -2 + z

d 82 p2Racp + iaR (41I - ) = 20 + az 2dz 8z2

The Problem for Landau's Constant:

S82 2  + 2 VE 2 811
(-a2 zg2)2 11 - iaR(VE - C) - 2 + 2) 11 + iaR 11 z 2

a 2 -
2v - 2 2

R(iarp + k)(- + 01 -- iaR1 - 2iaR (-42 - Z2)2 2 22 _2 _

+iaR (-a 2 + )d* - iaRq* (-4a2 + )• 2 + 2iaRz2(-a 2 + )8z aZ2 • z 8z2 • z2 -z

(_-2 + )A 1l - iaR(V E  C)1, - iR11 E -2 11
Zz az a 8z

R(iaP + k),l iR l + 12i A*2

atz 8z

-iaR¢ 2 8u*
iaR + 2iaR 2

These systems of differential equations can now be solved in the following manner.

The linear eigenvalue problem is first solved and the resulting eigenfunction substi-

tuted into the inhomogeneous terms on the right hand side of the order A2 , and the

mean flow distortion equations. Now the linear operator for the order A2 problem is

not singular if (2a, c) is not an eigenvalue of the homogeneous problem. The homo-

geneous operator associated with the order AA* mean flow distortion contains only

an exceptional set of eigenvalues (Davey 1978). The solutions of these equations

are therefore obtained by inverting their corresponding operators. Having obtained

these solutions the inhomogeneity of the order A 2A* problem is determined up to



the unknown Landau constant, k. The differential operator is identical with that

of the linear problem (that is the linear eigenfuction is a homogeneous solution).

The Landau constant is therefore determined by the Fredholm alternative, which

requires that the inhomogeneity be orthogonal to the adjoint eigenfunction of the

homogeneous problem. The adjoint system (c.f. Ince) to (2.13-14), with respect to

the inner product (f, g) = fo' f -g*dz is given by:

a 2  a2 aUE(-_a + -)2X + iaR(VE - c*)(- 2 -z)X + iaR N
(- 92 E+ 2 dz

dVE dX dN
+ 2iaR +2 -=0 (27)

dzz 5z dz

82 ax(-a 2 + )N + iaR(VE - c*)N - 2 = 0 (28)N 2-2 a=
together with the boundary conditions X = * = N = 0 at z = 0 , and = j =

N = 0 at z = oo . The Landau constant can be given explicitly as

k = foO (I) -x*+(II)- N*} dz
fo (jlX* + ulN*)dz

where the linear eigenfunction has been normalized by

max(sup O(z), sup u(z)) = 1 (30)

and with

(I) = (-ia + ia z + 2iaý* 2 - ia$ ~ + ia 2 - 2i2)

(II) = (-ia-v L - ia"0i+ + 2iar p) - iat 2 2 - 2iNf 241)



Table 3.1 LANDAU CONSTANTS
NARROW GAP EKMAN FLOW

Without Mean Total
Without SecondGAP flow Landau

Harmonic Correction Constant
1.5 (-1.0697,2.0220) (.0983,-.1520) (-.9714,1.870)

1.8 (-.6342,.46687) (.1005,-.1112) (-.5337,.3557)

2.0 (-.5922,-.6490) (.1354,-.1123) (-.4568,-.7613)

2.2 (-.6315,-2.164) (.1932,-.1241) (-.4383,-2.2881)

2.5 (-.5789,-.4.5277) (.1354,-.0942) (-.4435,-4.6219)

4.0 (-1.2458,-.7405) (.3391,-.01388) (-.9067,.7544)

10. (-2.3420,5.2265) (.2293,4.1977) (-2.1127,4.0348)



Chapter 5. WNLTs and Secondary Instability

We want to compare the weakly non-linear theories (WNLTs) and secondary

instability. The weakly non-linear theories start with a basic mean flow. The

theories account for first non-linear effects of one or several waves each of which is

nearly marginally stable. The physical effects that these theories incorporate are (1)

a mean flow distortion, (2) the generation of harmonics, (3) a correction to the linear

wave speed, and (4) a modification of the linear eigenstructure. The computations

show that the mean flow distortion predominates over the generation of harmonics.

Poiseuille flow is subcritical because the Reynolds stress exerted by a small but

finite amplitude wave destabilizes the mean toward the growth of the wave. Thus

an equilibrated mean -wave field exists below the linear critical Reynolds number.

Similarly Ekman flow is supercritical largely because the Reynolds stress exerted

by a finite amplitude wave stabilizes the mean toward the growth of the wave.

For viscous shear flow, the linear eigenproblem (the Orr-Sommerfeld equation) is

singular with a critical layer of thickness (aR)- 1/ S . In using the method of amplitude

expansions the initial growth rate, aci, should be small compared to the dimensions

of the critical layer. If the basic mean flow has more than one linearly unstable

mode, Figure 5.1, the WNLTs can account for the wave interactions, that one

would naturally anticipate, along the lines of (1)-(4) above. (Chapters 6-8).

The 3-D instability of the kind considered here (Chapter 9), Figure 5.2, results

from a secondary instability to a finite amplitude wave field. The secondary insta-

bility does not occur without the presence of the primary wave, which serves to link

the fourier modes of the secondary instability. This permits the 3-D eigenstructure

to assume a form capable of rapid linear growth. In the language of the WNLTs

the important consideration is the modification to the secondary eigenstructure

that a primary wave of given amplitude effects. This is perhaps best illustrated

in Poiseuille flow where calculations show that the eigenvalue of the secondary in-



stability is accurately determined by a three mode representation, consisting of a

downstream roll and two complimentary oblique waves. Squires theorem precludes

the possibility of a linearly unstable downstream roll (which would be essentially

sinusoidal, i.e. the solution of a forth order constant coefficient O.D.E.). The ex-

istence of the primary transverse 2-d wave locks the oblique wave mode to the

downstream component. The downstream mode is altered near the boundary (in-

side the viscous sublayer) by coupling with the oblique mode (see Figure 9.2, on

page 92). A small but finite 2-d wave amplitude is sufficient to link the down-

stream and oblique components into a rapidly growing 3-D perturbation. Strong

growth results because the downstream mode is very effective in generating power

via the correlation uSd (w"d)*(dUM/dz). A preferred spanwise wave number and the

phase speed for the 3-D instability are determined from maximal linear growth rate

arguments.

We also wish to distinguish between finite amplitude procedures and asymp-

totics. In the asymptotic analysis one chooses a physical scale as a small parameter

and usually expands in 'slow' and 'fast' variables. The difference in scales reflects

the characteristics of the various processes that occur. The physical situation we

have in mind is the interaction of waves ensuing secondary instability. The interac-

tion is between a finite amplitude wave and a small secondary perturbation. Here an

appropriate scale for the fast variables might be the derivative of the linear growth

rate of the secondary instability with respect to the Reynolds number, La R=R, .

The wave properties such as phase velocity and wavelength are associated with the

fast time and small spatial scales while the wave envelopes have a large length scale

and slow time scale over which modulations can develop. The asymptotics captures

the physics in some small neighborhood of parameter space. In contrast what is

implied by a finite amplitude expansion is a well defined and extendible procedure

by which the equilibrium solution can be explicitly computed to arbitrary accu-

racy. The Malkus & Veronis finite amplitude expansion does just this, providing



an algorithmic framework in which the Reynolds number and the phase speed are

parametrized as functions of the equilibrium amplitude. The asymptotics reveals

the stability of this equilibrium and the nature of small departures from it. Con-

sistency is very important and the governing asymptotic equations are no longer

valid once any of the neglected terms becomes significant or whenever the scaling

assumptions no longer apply. Thus if the wave amplitude becomes large enough

the higher order nonlinear terms not only become important but will dominate the

physics and asymptotic equations which neglect these terms cannot be applicable.

Largely because of the singular character of high Reynolds number flow the finite

amplitude expansions have a very limited range of convergence. Pade summation

(T. Herbert, JFM 1983) will accelerate the convergence of the series. Shanks trans-

formation (Sen et al., JFM 1983) even gives the 'correct' (analytically continued)

sum of the series beyond its first singularity. But both of these procedures require a

large number of terms to be computed with high accuracy (to ensure numerical sta-

bility). For Poiseuille (subcritical) flow the upper stable branch of the equilibrium

curve remains inaccessible.

H. Zhou (1982) has considered a method that combines a fourier mode integra-

tion with a modified Stuart-Watson amplitude expansion. Alternatively it seems

possible to expand about a previously obtained finite amplitude equilibrium in a

stepwise fashion. (What might appropriately be called "Integrating with Malkus

& Veronis".) The crucial factor is that the eigenfuction in which one expands is

changed. At each step the new equilibrium flow is calculated and the expansion is

developed using the eigenfunction generated by the new mean field. This procedure

was suggested by Meksyn & Stuart where in the limit of large Reynolds number the

value of (U"(z)/U'(z))z=,z, evaluated at the critical level (where U(z) - c = 0) is

what needs to be updated along the neutral curve. Moreover that the equilibrated

finite amplitude eigenfunction differs in shape only slightly from the linear eigen-

function (as has been pointed out in some ongoing research of W.V.R. Malkus) is



indicative that a more efficient perturbation scheme might be developed in which

one stretches the cross stream coordinate.

Obviously any valid asymptotic theory will match first finite amplitude results.

Here it will be instructive to display the relationship between the lowest order

results obtained via the the Malkus-Veronis finite amplitude scheme and those from

the Stuart-Watson asymptotic technique. For the critical Reynolds number, R0 , at

which marginal stability occurs the real part of the Landau constant, kI, is related

to the first Malkus-Veronis coefficient R 1 by the formula:

R1 (ia1) R=Ro = PIe{klR=Ro} (1)

/,c~

Figure 5.1 In Ekman flow there are two linear unstable waves.

Figure 5.2 For the '3-D' instability there is no critical
Reynolds number without the primary finite amplitude wave



Chapter 6. The Two Wave Interaction

The evolution of many physical systems involve successive instabilities upon an equi-

librated secondary state. In the case of the Ekman boundary flow two wave modes

are linearly unstable over a given range of the Reynolds number. The presence of

more than one unstable wave disturbance enriches the possible dynamic behavior

that can be expected. One purpose of the asymptotic analysis is to qualitatively

characterize the observable dynamics in a neighborhood of criticality. In itself this

provides insight into the nature of the system under study. Furthermore if one

is fortuitous, the prediction has a range of validity that extends well beyond any

rigorously justifiable domain.

The physical situation considered is the simultaneous growth of the two Ekman

wave modes upon an undisturbed Ekman flow. It should be pointed out that this

may be different than the evolution of a wave system consisting of one pre-existing

finite amplitude wave subject to the onset of a second wave if the magnitude of the

finite amplitude wave is sufficiently large.

The new effects introduced into the problem consist of wave-wave interactions.

In addition to the previously considered wave-mean flow effects the two waves cou-

ple to produce overtones which interact with both waves and mean flow. A stream

function can no longer be introduced to simplify the computations. These complica-

tions can be overcome in a fairly straight forward generalization of the single mode

case albeit, the computational work becomes somewhat more involved. The nonlin-

ear perturbation equations must now contain variations along all three coordinate

axes and so assume the form:



au* au*

- +UEat dx

8w *

at

ay *

8v*
+ VE

ay

+ w*E + S =azU

,aVE+W5z
8z

+ S2 =

ap*ax 2
R

S p *
+ S3 z

8z

aw *
+ UE j

where we have used the notation (from Benney and Gustavson)

S= = (*)2 +

S2 = (u*v*)

ay

0 +S (v*)' + (v*W *)ay az
S, = (U*w*) + a(•*w*)ay + ( )2az

In addition the incompressibility equation will be

au* av
ax ay

dw*
+ -= 0

8z (4)
The perturbation equations (6.1-3) can be reduced by taking the laplacian, A , of

(6.3) and eliminating the pressure. When normal mode solutions are sought the

resulting linearized boundary value problem is the Orr-Sommerfeld equation of the

preceding section. The complimentary equation for the vertical vorticity is obtained

by cross differentiating (6.1) and (6.2).

( + UE a

+ (
8x2

8 8( + UE -

as2

a
+ VE-)?* +ay

a8S
ay

1
+ !V2u*R

-V2v*
R

ap* 2
u* +

By R
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(2)

(3)
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+ V2W*R

a
+ a(u*W*)az

w *

By
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z VE

8z2
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By*
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82S1
axsz
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8x 8z2
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8y2z 2 r7 * .
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8w* 8
VE8z 8z
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8w* 8aW aUE
8y 8z
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= (zR 8z

1+ - An7*)R (6)

dw*
+ VE

ay



The velocity components are obtained from the relations,

au* av* aw *+- = (7)
Xz ay 8z

du* 9v*
+5 = * (8)

For the wave modes u* = fi(z)ei(az+9Y) and v* = O(z)ei(axz+P) (6.7-8) determine the

relationships,

A di2v
= 1(2 + d ) (9)

S= ( j - ai ) (10)

with the wave modes ,7* = 9(z)e'i( Z+IY) and w* = W(z)e'( +" 'B9 ) , where each fluctu-

ating quantity (i.e. u', v', w' ) has a fourier series representation. In the two wave

interaction the coefficients assume the form (to leading order);

f(x, y, z, t) = (Af!ooo + A 2 A*f 200oo + ABB* fiol)e(a, , licir)

+(Bfoolo + B 2B* foo2 1 + AA*B fsio)e(q, , 6,1 2c2r)

(A 2 f 2ooo)e(2a, 2fl, 2licr) + (B 2 f0020)e(2-, 26, 212c2 r)

+(ABfioio)e(a + -y, + 6, 1 lC1l + 122r) + (AB*fiooi)e(a - -, , - 6,S lcli - 12C2r)

+ (*) (11)

Here e(a, , licir) is a concatenation for ei'(+ OY- '1c" ,t) while the subscripts on the

coefficients associated with the fluctuating quantity denote respectively the power

of the amplitudes A,A*,B, and B* which multiply it. (*) signifies the complex

conjugates of all terms which are explicitly given in the expansion.



A typical expansion representing the product of two fluctuating quantities,

f(x,y,z,t) and g(x,y,z,t) is given by:

f (x, y, z, t) g(x, y, z, t) = AA* floogoloo + BB*foologoooi

+(A2 A*(foloog 2000 + f 2000ooogo0100) + ABB* (foologlool

+fooo0giolo + frologoool + fiogolgooo))e(a, 3, licir)

(AA*B(flooogollo + foloog1 olo + fjloogoloo + fonlog0ooo

(B 2 B*(fooogo10020 + foo2090001goo))e(, , ,22r)

(A2 fl ooog0ooo)e(2a, 23, 21xcir) + (B2 foologoolo)e(2-y, 26, 212c2r)

(AB(flooogoolo + fooloooo1000))e(a + y, # + 6,,lcl,. + 12c2r)

(AB*(fiooogoool + fooo0giooo))e(a - -, 0 - 6, 1lClr - 12c2,)

(*)Averages are now taken overthe x-y plane. The mean flow equations are:

Averages are now taken over the x-y plane. The mean flow equations are:

i a 2 1 a2Bl
+ -u'w' = - + -at dz R Rdz 2

- + + V'w
at dz

2 1 i+ di
R-- Rd2
R R 8 z 2

The equations for the fluctuating quantities are obtained from (6.1-3) by subtraction

of the mean flow equations. We find

BUU du'-+ UM a +
at xd

dv' dv'
+ UM- +

at zx

dw' dw'
a+ UM 5

at 8 z

du'
VMu

dy

dv'
VM

dy

dUM
+ w '

dz

w VM+ -l -zjT

dp'+ s- - s a =

dpt+ s' - S2 = oy

dw'
+ VMay

2 1
+ - v ' + V2u'

R R

2
R
R

dp'
Sz

1
+ -V2vI

R

+ 1V2w'
R

(12)

(13)

(14)

(15)

(16)

(17)



with S' = - (u')2 + ~u'v') + ýL(u'w') and UM = UE + ii etc ... (6.15-17) admit

the vertical vorticity formulation,

a a 8a aw' a 2  aw' a 2
( + UM + VM )Anw VO -zVM - UMat ax ay ay GzJ 4z aZ2
+ (2  a2  , 2S' 2 2' _S2 2 r' + 1

+( S+ n-AAw' (18)
x2 ay2 5 3 azxz yaz Rz R

a a a aw' d aw'a
(-f+ Um +VM-)77'+ V- -a M UMat ax ay axz ay z

as2  aS' 2 aw' 1 (
+ax ay R az R

Observe that (6.5-6) and (6.18-19) are rather identical in form. This is to be ex-

pected since t7* and w* have zero mean. The nonlinear terms involving S1, S2, S3,

must now be computed in terms of the fourier and Stuart-Watson expansions of

r7', and w', a task that requires a formidable amount of labor even after symmetry

is exploited. The reader will be spared the details and the results will merely be

stated at the correct order where each term appears.

The amplitude equations relevant to the two wave interaction are the natural

extension of (4.23).

dA
= licilA + klA 2A + miBB*A + o(As, B 2 A3 , B 4 A)

dB = 12c2iB + k 2B 2B + m 2AA*B + o(B, A2 B 3, A 4B) (20)

As before the Landau constants kl and k2 arise from the interaction of the mean

flow distortion with the fundamental harmonic as well as the self-interaction of the

fundamental on its second harmonic. The new features pertinent to the two wave

problem are the coupling constants mi and m 2 . These nonlinear modifications are

brought about through the interaction of each wave with the mean flow distortion

induced by the other remaining wave, and also the wave-wave interaction coupling

with the fundamentals.



Again the main features of the amplitude equations are salient. For example

three new possibilities can arise; (1) Mode-mode suppression whereby the presence

of a first instability increases the apparent critical Reynolds number of the second

instability. (or mode-mode excitation wherein the first instability decreases the

apparent critical Reynolds number). (2) Intermittency with the waves alternately

dominating in close proximity of each other. (3) Transition from equilibrium to

unbounded growth (in which case the equations will ultimately fail to hold but may

still be useful in predicting the onset of a transition).

The fluctuating quantities are assumed to have the form of a fourier series rep-

resenting a two wave interaction. Thus

w' = wa,#,e(a, p licir) + wm,se(, 6, 12c2r)+

w2o,,2 e(2a, 20, 211cir) + w2,,26e(2-, 26, 212c2r)

w,+,_,+ 6e(a + 1, / + 6, IlClr, + 12c2r) + wc-,#-se(a - 1, / - 6, Ic 1 , - 12c2r)

+ (*) (21)

7 = ,7c6e(a, 0, Ilcir) + t,,6e(-y, 6,L 2c2)+

?72,, 2 .e(2a, 2/, 21Ccir) + 72,1, 26e(2y, 26, 212C2r)

ia+y,p+6e(a + Y, 3 + 6, l +Clr + 12C2r) + 7c,?-6e(a - -, 3 - 6, 11Cr -2C2r)

+ (*) (22)

where typically wa,, = (Awlooo +A 2A*w2100 + ABB*wo101) and the other coefficients

are given similarly in accordance with the appropriate generalization of Stuart-

Watson theory, equation (6.11).

Each fourier component then gives rise to a system of P.D.E.s. Corresponding

to ei (a x+# -' I'c- t) there results the set,



( + ilicir) + iaUM + iiVM (D-2 -(a + 32))wa

2 2
-iP(D 2 VM)wc" - ia(D 2 U M)wo,c + -Drl±,e - R(D - (a2 + ' 2 ))2 Wa,,

= < Non - Linear Terms > (23)

S + illc,) + iaUM + i/VM r] ,,

2 1

-i/(DUM)wc,6 + ia(DVm)wu,, - 2 Dwc,, - (D2 - ( 2 + + 2)),77,

= < Non - Linear Terms > (24)

with D differentiation with respect to z. Mean flow distortion occurs at leading

orders AA* and BB* and so,

ii(z, t) = AA*ulloo + BB*uooin + o(A 4 , B 4, A 2B 2 ) (25)

v(z, t) = AA*v1uoo + BB*vooln + o(A 4 , B 4, A2 B 2 ) (26)

Finally the ansatz of all this together with the amplitude equations (6.20) allows

for the ordering of the two wave problem in terms of the powers of the wave am-

plitudes. Collecting terms respective problems whose solution govern the temporal

evolution of the nonlinear two wave interaction can be formally stated. Ofcourse

the symmetry of the (a, f, ,y, 6) interaction requires that only the (a, 0) problem be

given. Again the solution of these equations proceeds in a fashion similar to that

for the single mode case. The homogeneous eigenfunctions are obtained and then

the mean flow corrections and the second harmonics are determined as a forced

response to the fundamental. The problem for the interaction of the fundamentals

presents no problem as long as (a- ± , ±- 6, l1 C1 -± 12c2r) is not an eigenvalue of the



related homogeneous eigenproblem. The Landau constants and the coupling con-

stants are determined by the application of the Fredholm alternative. As before the

adjoint eigenfunction is orthogonal to the respective inhomogeneity and this com-

patibility condition is used for computational purposes. The adjoint eigenproblem,

with respect to the inner product < 4, tb >= fJ( - *)dz , is given by

1(D2 - (a2 + p/2))20 + (iaUE + iPVE - illc*)(D 2 - (a2 + 02))o
R

2
+ 2(iaDUE + iPDVE)DiP + (iaDVE - i#DUE)N - -DN = 0 (27)

R

1 2
(D 2 - (a 2 + pf2))N + (iaUE + iPVE - illc*)N + RDV = 0 (28)

R R

together with the boundary conditions ip = Di = N = 0 at z = 0 and 4 =

D20 = DN = 0 at z = oo00 . In the following statement of the two wave problem

the definitions 11 = (a 2 + fp2)1/2 , 12 = ('2 + 62)1/2 are in use. The coefficients

(e, g, i) and (f, h, j) are obtained from (s, t, r) by the transformations (a, 1, 1-, 6) -- *

(a - -, 13 - 6, -y, 6) and (a, 3, -, 6) -+ (a + 7Y, 1 + 6, -1, -6) respectively.



Stuart-Watson Expansion for the Ekman Boundary Layer

The Linear Problem O(A):

1 (D2 - (a2 +/3 2 ))2 W1000- (iQUE+iPVE-illcl)(D2 -(a_2 +/P2 ))ulooo+(iP/D 2VE+iaD UE) 1000

2
-11000o = 0

1 2(D - (a2+P 2))?1000o (iaCUE+iPVE -illcl)1000l-ia(DVE)wlooo+i(DUE) looo+-Dwlooo o0
R R

The Second Harmonic O(A 2 ):

R(D 2 -4(a 2 +9)) 2ooo-(2iaUE+2ifVE -2ilicl)(D2'-4( 2'+2))w2ooo000+(2DVE+2iaD2 UE)W200 0

2R 2000ooo = 2(D 3'wooo)wlooo - 2(D 2 w1000ooo)(Dwlooo)

1R( -4(C,2.+ p2))12000 - (2icUE +2iPVE - 2illcl)I 2ooo - 2iea(DVE)w 20 0 0 + 2iP(DUE)w2000

2
+ 2Dw2ooo = -2(Dwlooo)ilooo + 2wtooo(DrYlooo)

The Mean Flow Distortion O(AA*):

RD(ulooowoloo + uoloowlooo) = 2vl1oo + D2 Ulloo

RD(vlooowoloo + volooWlooo) = -2ulloo + D2 vlloo



The Interaction at O(AB):

R (D2 - ((a+ ) 2±+ (f3+6) 2 )) 2WlOlo- (i(a+±)+UE+i(L+6)VE -i(lcl+12c2))(D 2 -((a+-Y)2 +(3+6) 2 )o1010

2
+(i(# + 6)D2 VE + i(i +, I)D 2 UE)Wlolo - 21olo -

sl(Dwlooo)woolo + s 2 (Dwoloo)wlooo + 83ss1000 wo0 + S4?7001OW1000

tl(D3 wlooo)wooio + t2(D2 wlooo)(Dwoolo) + t3(D3 Woolo)Wo00o + t4 (D 2woolo)(Dwiooo)

t5 (D2 W0ooo)1 7 0010 + t6(Dwlo0 o)(Dj7oolo) + t7 (D2 woolo)•7 1000 + t8(DWoolo)(D1 71 ooo)

tg(Dqlooo)1)oolo + tio(Di7oolo)(r7looo) + tilwoolo(D2 1700 + t2wooo1000(D 7 oo00o)

- ((aC + _.)2 + (/ + 6)2))171010 _ (i(a + E,)UE + i(9 + 6)VE - i(llC1 +/ 2c2))7 1 010

2
-i(a + -y)(DVE)wlOl0 + i(# + 6)(DUE)Ol010 + -Dwlolo =

R

ri(D2 wlooo)wooo1 + r 2 (D 2 woloo)w1 ooo + r3 (Dwlooo)ro0 1 o + r4 (Dwoolo)l 1 00 0

+r5100looo0010oolo + r60010(ooo1000) + r7wlooo(Doolo)

The Problem for the Landau Constant O(A 2 A*):

S(D2 - (a + )) 2w2100-(iaU+iVE-ill1)(D -( 2  2 )2100(iD 2VE+iaDUE) w 2100- -2100 -

ki (D2 - (ca2 + 2 ))wiooo+ (icutloo+ivloo) (D2 
-(a 2 + 2 ))woo000 -i/(D 2viloo)wlooo-ia(D2 u1 100 ) 1000

- (aZ + # 2)[3(Dwo100oo)w 2000 + 3(Dw2000)wo0100

-[ (D 3 2000 )w0 100 + (D 2w2000)(Dwo0oo) - (D 3wooo)w2 00ooo - (D2 
010 0 ) (Dw2o00)]

2 2

1 2
(D'2- (C2'+P 2 ))172 10 0- (iaUE+rVE -ill )1 2100-ia(DVE)w2loo+il(DUE) W2 100 Dw2100ooR R

klrlooo + (iaulloo + iv'lloo)r7looo + ia(Dvlloo)wlooo - i (Dulloo)wlooo

1 1
+ [(Dwoloo)r7 2ooo - (DW2ooo)1ooo - w2000ooo(Doloo + W0100ooo(D 2ooo)]2 2



The Problem for the Coupling coefficient O(ABB*):

(D - (a2 + ))2 (iaUE + ipVE - iliC1)( 2 - ( +2 + / 2))W1011

2
+(ipfD 2VE + iaD 2UE)wlOll - •71011

mi (D 2 - (a2+/ 2)) 1000+ (iauol001 +ivo0 1)(D2 - (a2 +P 2 )) wio00 -ip(D 2 vooii)wiooo -ia (D' uoo ) w1ooo

el(Dwlool)woolo + e2(Dwoolo)wloo0 + esrlloolwoolo + e4r7OOlowlool

fi(DwloIo)wooo0 + f 2(Dwoool)wloo0 + f3lloowoool0 +- f4 o70001w10 10

g1(D 3 w1ooi)wooio + g2(D 2w1001)(Dwoo1 o) + g3 (D3 woolo)wjooj + g4(D 2wooo010 )(Dwlool)

95 (D2w0ool)0l oolo + 96(Dwiooi)(Drlooio) + 97(D2 woo 1o)7O1001 + g8(Dwoolo)(D 7 o1001 )

g9 (Dliooi)t7oolo + gio(Dm7ooio)(tliooi) + Sgiwoolo(D 2 10~aoO + g912W1001(D77oo0o)

hi(D3Wioio)woooi + h2(D2wo101 )(Dwooo,) + h3(D3 WOool)w0lo + h4(D2Wooo0)(Dwiojo)

h5 (D2Wlolo)000ooo + h6 (Dwlolo)(Dtioool) + h7 (D 2woo001)7 101 0 + h8 (Dwoool)(Di7ro1 o)

h9(Dr7lolo) 00ooo0 + hio(DVroooi)(uliolo) + hllwoool(D2 t710to) + h12w1010(Dr7 oool)

(1 2 _ (a 2 + P2 ))171011 _ (iOUE + iIVE - il•c1)t710 1 1

2
-ic(DVE)wloll + if(DUE)W1011 + - DwlOl =

mirooo + (i•uooll + i, voo0 l)lxooo + ia(Dvooli)wjooo - iP(Duooxl)wooo

il(D2wiool)woo01 + i2(D2woo01o)wIoo + i3(Dwlool)t7 ooLo + i4(Dwoolo)• 1001

+ioo 100 1ooo00 10 + 6 0010 (r1001) + i 7 W1001(D 7 oo01o)

ji (D2Wtolo)woool + j2(D 2 woool)wlolo + j3 (Dw1010o)oo01 + j4(Dwoool)7o1010

+i5s olooool0001 + 00ooo1 (oo1010) + 7W101oo0(Dloool)



The Coefficients of Non-Linear Terms:

8s = 8s .(a2 + 2 + 2 2  5f• 2)

S2 = s8 (= 2 + #2)(_ + 6 _ 8# - y)

S3 = . (C8 -3_ )(_2 + 2 )

4 = .(=Y - i8)(c2 + 2)

t = -t - (a2 + p2 + /_ + 3 8)(_2l + 82)

tZ = t (3 - + (i2 7 - 282 + ai 2# + Cp2_y + 4cipay _ p2^/ + p03 + p262)

tS = -t - (_Y + 82 + CYy + #8)(a2 + #2)

t4 = t • ( -2 ( _ 22 2+ a,3 + 4aP-y6 + Ca62 y + p282 + Pg28 + p83 - _Y202)

ts= t. (Ca3 6 - a2 #_ + 2a2 yS - 2a2#y + 2a#82 + ay 2 8 - 33,_ - 2 32 _S)

t6 = t . (2a 2_6 - 2a/3' 2 + 2a 82 - 22 PTS)

t7 = t. (-2a2 y8 + 2a3-/ 2 _- iY2S -- 2acP8 2 _- S 3 + 2# 2 _y8 + 23 + p•/Y 2 )

t8 = t - (-2a2 •y + 2a/3y 2 - 2a/C62 + 2#2•r8)

t9 = t - (-2a2 S62 + 4acPyS - 2#2_72)

tlo = t - (-2a2S 2 + 4a'P'y - 222 _ 2)

til = t . (aS - 7Y)('7 2 + 62)

t2 = t"- (Y-( - aS)(a 2 + # 2)

,r = r , (aS - p~)(_2 + 82)

z = r (P - aS)(a 2 + p2)

rS3 = -r - (a2S 2 + a2 2 + aC,,2 + aCy3 + /P2 + P2 , 2 + P83 +882)

r4 = -r .(a 2P# + a37y + a2 82 + a2,72 + Ca'/ 2 + #262 + P2,.2 + #38)

rs = r . (a'2 7 + ayS - a3S - af826 + a83+ 83"- P8y2 - pf3)



r6 = r (a2 + 2 + 3S + a-y)(y 2 + 62)

r7 = r -(Y2 + 82 + Cy + 6)(C,2 + '2)

with

(c, + y)2 + (8 + 6)2
(,k + y)2(p + 8)2

-1

(,L + 02)(2 2 82)
1

S (c2 + #2)(, + 82)



Four two wave computations: Ekman flow (semi-infinite case)

Re = 120.

E1 = -9.0

a 1 = .3

cl= (.3928,.01957)

E2 = 9.0

as = .54

c2 = (.07346, .00140)

k = (-2.27, 7.37)

k2 = (-6.38, 2.23)

m= (-35.06, -8.26)
m = (-7.81, -3.09)

Re = 180.

e1 = -2.0

a, = .4

= (.2421, .0179)

E2 = 13.0

a 2 = .55

c= (.0223, .01823)

ki (-2.72, 8.29)

k2 = (-4.31, 2.25)

m, = (-6.11, +3.17)
m• = (-29.75, -3.37)

Re = 220.

E1 = 0.0

a 1 = .3

S= (.2429,.0268)
E2 = 13.0

a 2 = .55

c2 = (.02296, .0248)

k= (-5.06, 9.06)

k2 = (-3.51, 2.05)

m= (-8.16, +4.36)

m2 = (-33.41, +1.39)
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A Hypothetical two wave interaction displaying intermittency.

dAdA = .0123A + (-7.58, 1.67)A 2 A + (-2.500, -2.508)BB* A
dt

dBdB = .01229B + (-5.27, 1.635)B 2B + (-2.370, 2.720)AA*B
dt



This memo might be read in conjunction with the photographic plates recorded

by A.J. Faller (Dynamics of Fluids and Plasmas, Pai Editor, 1966). The coupling

coefficients that have been calculated have large negative real parts. There are

numerically generated cases where the phase plane is divided into two parts, with

trajectories ending up either with (Aeq, 0) or (0, Beq) depending on initial condi-

tions. In other computations one wave will always suppress the other. That Type

II (parallel) waves suppress the first occurrence of the Type I (inviscid) wave is

supported by a good deal of evidence (Van Atta, J.F.M). Faller has also observed

regions of parameter space exhibiting intermittency of Type I and Type II waves.

Ideally this would be modeled in the analogous numerical computation. Although

no systematic attempt was made to include every likely two wave interaction this

behavior hasn't so far been found numerically. It is however fairly easy to pick

coefficients for the model which exhibit this type of behavior. In Figure 6.1 ini-

tially linear waves grow along a path in phase space which comes too close to the

the unstable equilibrium point (AEQ, BEQ). After a large swing in amplitudes the

trajectory approaches the (attracting) limit cycle. The limit cycle displays rapidly

oscillating intermittent behavior, where the wave modes alternately predominate.

We mention some of the obvious features of (6.20). If the coupling coefficients

are small we expect the equilibration (AEQ, BEQ) to be attained. The magnitude

of equilibration amplitudes depends only on the real parts of the landau and cou-

pling constants. If the coupling constants are large there needn't be an equilibrium

point, where both A and B are non-zero. A necessary criteria for whether mode

A can suppress mode B is that a 2ci 2 < Re{m2}lA,,q 2 , where the magnitude of

the equilibrium amplitude of A with B = 0 is IAeq 2 = ,C1cil/,Re{kl}. We leave as

an elementary puzzle for the interested reader the enumeration of all topologically

distinct dynamics of the two wave interaction with arbitrary coefficients.



Chapter 7. Resonant Interactions

In this section we formulate two sets of model equations for discrete resonant

interactions and give the formulas for their coefficients. The analogy between weakly

nonlinear dispersive waves and hydrodynamic stability will be evident. In fact the

model equations have appeared in the context of deep water gravity waves (see Equ.s

3.6-3.9 in D.J. Benney (1962)). There is however a distinctive difference between

these two situations. The case of surface waves on a body of liquid is one of the

classical examples of inviscid irrotational flow. Consetvation of energy implies the

existence of integrals of the motion and this is reflected in that the model equations

have real coefficients. The dissipative nature of waves in the boundary layer with

important viscous effects introduces complex coefficients into the equations.

Figure 2-6 (D.K. Lilly, JAS 1966) gives some insight as to how the linear spec-

trum of basic Ekman flow develops with Reynolds number. This indicates which

resonant interactions are allowed (although we still want to know which are the

preferred interactions). The model set of equations whose coefficients we wish to

derive are for the resonant interactions (1) ki - 2k 2 + k3 = 0 and w - 2w 2 +w 3 = 0

and (2) ki + k2 + k3 + k4 = w1 + W2 + w3 + w4 = 0 . The first involves resonant

coupling between the second harmonic of wave two with the fundamental of waves

one and three. It is an asymmetric interaction in that wave two needs to be present

for resonance to occur. Waves two and three (or one) will generate wave one (or

three), but wave modes one and three will constitute a two wave interaction. The

resonant quartet interaction is symmetric in that the presence of any three modes

generates the forth. In general the time scale for an n - wave interaction is o(1/E")

(where E scales the characteristic wave amplitude) so that low order rather than

higher order resonances are likely to be the preferred mechanism when they exist.
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Figure 1: Schematic dispersion diagram for Ekman flow

At Reynolds numbers of roughly 150 the class A mode which is most unstable

has characteristics al = .3, cl .4 and is oriented 10 degrees clockwise from

the geostrophic (0 degrees). The mode which corresponds to the maximal linearly

amplified class B mode has wavenumber as3  .5 and phase speed c3s 0 and is

directed 10 degrees counterclockwise to the geostrophic. The wave whose second

harmonic resonates with these two modes then will have wavenumber C 2 2 .4 and

phase speed c r .15 and is directed approximately 2.5 degrees counterclockwise to

the geostrophic. A comparison of the above remarks with figure 2-6(c) shows that

the dispersion relation is nearly satisfied by a wave with these properties and indeed

this corresponds to a highly unstable wave mode ! In the case where wave A has

reached a finite amplitude the nonlinear dispersion relationship has more relevance.

However this would entail only a small adjustment of the actual wavenumbers and

frequencies of the resonating modes involved.

More generally if a class A mode already exists (at a lower Reynolds number) it

should be possible to find a continuous set of resonant interactions of the form (1),

which are schematically represented by the three wave vectors. This follows because

of the trend to smaller phase speeds and larger wavenumbers for the most highly

amplified modes at a fixed angle to the geostrophic as the corresponding wave vector

is rotated counterclockwise. ( It should be pointed out that 'direct' resonances with

weakly damped modes are a possibility. We feel that in a supercritical flow attention

should be focused on the linearly unstable waves).

R < 15"0
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This reasoning leads to the conjecture that resonances involving waves of class

A alone might occur for the right initial conditions and before class B waves become

unstable. This seems to be supported by the observations of Caldwell and Van Atta,

and is a more complex situation since a continuous set of wave vector pairs (kl, k2)

can complete the triad with the most linearly unstable class A wave. The former

case in which both a class A wave and a class B wave are involved in a resonant triad

could very well be in keeping with the findings of Tatro and Mollo-Christenson. For

the triad interaction kI - 2k 2 + k3 = l - 2w 2 + w3 = 0 the model set of asymptotic

equations is:

dA
= 11A + A(mi1A 12 + mi 2IB12 + m13i C 2 ) + nlB2 C*

dt

dB
d = 12B + B(m 21 A 2 + m2 2 B 12+ m231C12) + n2ACB* (1)

dC
--= 13C + C(m311(A2 + m32IB12 + m3sICI2) + n3B2 A*

The determination of the constants I4, i = 1,3 follows from the respective linear

eigenproblems. m1,j are determined by the two wave interaction process; they are

either the Landau constants if i = j or the respective coupling constants if i #: j.
This leaves ni, i = 1,3 to be computed. The associated problems at orders B2C

and ACB* are given on the following pages.



·

The Problem at O(B 2 C*):

1 (D2 - (a 2 + # 2 )) 2 w00oo 2001 - (iaUE + i#lVE - ilicl)(D 2 - (a2 + 2)woo002001

2
+(iPD2 VE + iaD2 UE)w002001 - rioo200o = n 2(D2 - (a2 + P2))W1ooooo

+ao(Dwoolool)Woolooo + U2 (Dwooiooo)wooloo1 + O3rooo1001woolooo + a4r0 0 wooowoolool

+o (Dwoo2000) W00oo000oo + ox2 (Dwooooo) woo02000 + OXz37oo2000W0oooo1 + X4000ooooo1Wo02000

+71 (D3 Woo1oo1)Woo1 000 + r2 (D2W oooo11)(Dwooooo) + T3 (D3 woo1 ooo)wooioo1 + r4 (D 2 Wooooo)(Dwoolo00  )

+T5 (D2W0ooloo1 )001000 + r6(Dwoo1 oo) (Dr•oolooo) + r7 (D2 woo0ooo) ooioo1  + T8 (Dwoolooo)(Doo0 oo01)

+T9 (Drloolool)00oo 1ooo + rio(DT0oo0 ooo)(7o001001) + rnjwoojooo(D 2 700oo101) + Tr2Wo0100oo(D 1 7oolooo)

+oyl (D3woo200o) woooo +oy2 (D 2 W002000) (Dwooooo) +oys (D3 Wooooo1 ) W00oo2000 +oy 4 (D2 oooo01) (Dwoo2000)

+ oy5 (D2 Woo00 20 00 )ooooo000001 + oy6 (Dwo0 2000) (Dr70 ooooo) + oy7(D 2 ooooo01 ) 002000 + oy8 (Dwooooo0  ) (Do700 2000)

+ y9 (Do7002000) ? 000001 + oyo10 (D7 oooo01 ) (7002000) + OYn Woooo01 (D2
7002000 ) + Y12 Woo00 2000 (D1 7ooooo1 )

00



0 S

(D 2 - (Ca2 + P2)),002001 - (ioaUE + i/VE - i11l)00oo2oo01
R

(-iaDVE + ipDUE)wo00 20 0 l + -Dwoo201 = nlit7ooooo
R

+7r(D 2wooloo) wooo0 oo + 7r2(D2Woolo0oo)W 001oo0  + 7r3(Dwoolool) 7oolooo + 7r4(Dwooiooo) r0oo0oo

+ 5s 01ooloo00 1 00olooo + 7r6wo01000oo(001001) + 0r7Woo0oo1(Drtooiooo)

+oz (D 2 woo002o0oo) WOOO + 0 2 (D 2Wooooo1 ) woo2000 + oz3 (Dwoo02000ooo) ooooo1 + oz 4 (Dwooooo) 1oo002000

+oZ5?oo 20ooo7?1oooool + oz6 ooooolo(l0oo2ooo) + oz7woo0ooo(D7oooooj)



The Problem at O(ACB*):

S(Dn2 _ (,2 + 62 )) 2 Wiooio - (iYUE + i6 VE - il 2c 2)(D 2 - (Y2 + 62 )W100110

+(ibD2 VE + iyD2 UE)wloolo - R?71oolO = z(D 2 - (/2 + 62 ))W001000

+apl (Dwlooolo)woooloo + ap2 (Dwoooloo) wooolo + ap3s7oooloWoooolo + ap47 0oooloo 1 looolo

+aoi(Dwiooloo)woooolo + ao2(Dwoooolo)wlooioo + aos3 10oo0 oo1  oooolo + ao4r0oooolowloo1 oo

+aml (Dwooollo)wiooooo + am2(Dwiooooo) woooio + am3 70ooo 1owlooooo + am4 71lOOOOOW00 0  110

+bpi (D3 wlooolo) woooloo+bp2 (D 2ooo100010) (Dwoooloo)+bp3 (D3 woooioo) Woolo0 +bp (D2 Wooo00100) (Dw00oooo)

+bP 5 (D 2w1o00010)7000100 + bp6 (Dwoooo)(Dooo0100oo) + bp 7 (D2 wooooo)ooolo010 + T8 (Dwooo0100oo)(D 7100010 )

+bpg(Dr 71ooolo)7 000looo + bpio(Droooloo) (77oooo010) + bpllwoooloo(D 2r100010) + bp 12w 1000 10 (D•loooioo)

+bo01 (D3 wooioo) wo000o 01oo+bo2 (D 2Woooo) (Dwoooolo)+bO3 (D 3 WOOOl) )wiooioo+bo 4 (D wooooio) (Dwiooloo)

+bo5 (D 2 woo)oo7oo0000 lo + bo6 (Dwlooloo) (Drooolo) + bo7(D2 woooolo)oooo100100 + bos(Dwoooolo) (Dr7 100 l00 )

+bog (D7rloolo)r
7 oooolo + bolo(Droooolo) (7710oooo) + bo11 woooolo(Dn2rl100oo ) + bo12wlooloo(D7noooolo)

+bmi (D 3wooo11o) wlooooo bm2 (D2Wo0010o) (Dwlooooo) +bm3 (D3  oooo) woooo+0110bm 4 (D2 Wioo0000) (Dwooo0o)

+bm 5 (D 2 w0001oo1o)100000 +bm6 (Dwoooo110) (D 7 ooooo) +bm7 (D2 w1ooooo) 7ooo0 10o+bm (Dwooooo) (D7 ooo00 11o)

+bm9 (D•7 ooollo)i 7 100000 + bmio(Dn looooo)(O70oooO) + bmllwooooo(D 2
7700 0 110 ) + bm12Wooo 1o(D71 0ooooo)



0 S

1
-(D' - (72 + 62 ))o100110o - (i.UE + 2iVE - il/2 2 )O100110
R

2
(-iyDVE + i6DUE)Wlooo100110 + Dw1 oollo = n2l00000

R

+cpl (D2wlooolo)Woooloo + cp2 (D2woooloo)Wlooolo + cp 3 (Dwiooolo)l7oooloo + cp 4 (Dwoooloo)7,ooolo

+cp5r 0looolo0roooloo + cP6wooo0oo0(rloooio) + cp7 00ooolo(Dtloooloo)

+col (D2wlooloO)woooolo + co2 (D2 woooo0o)W01 ooloo + co3(Dwooioo)r/oooolo + co 4 (Dwoooolo)tool7101

+cos51 oo1 oooooo1 o + co6 woooolo(?71oo0oo) + co7e wooloo(DDoooolo)

+cm 1 (D2 wooollo)wlooooo + cm 2(D2 wlooooo)wooollo + cm 3 (Dwooollo)10000ooooo + cm 4(Dwlooooo)000loolo

+cm 5?0ooonlo~ilooooo + cm 6wlooooo(0000 oooo11) + cm• wooollo(Dntlooooo)



The coefficients of the nonlinear terms appearing on the preceding pages are ob-

tained from those of (s, t, r) under the transformations given in the table below.

Table 5.1 Transformations giving the

coefficients for nonlinear terms in the Resonant Interaction.

(o, , r) : (a, ,, 6) -+ (k21, k22,k21 - k31, k22 - k32)

(ox, oy, oz) (a, -,, ) (2k21, 2k22, -k3 , - 32)
(ap, bp, cp) : (a, I,, 6) - (ki + k31, k2 k2, -k21, -k22)

(ao, bo, co) : (a, ,y, 6) -- (ki - k21, k12 - k22, k3 , k32)
(am, bm, cm) : (a, 3, -y, 6) -+ (kI,, k1 2, k31 - k21, k32 - k2 2)

This is for the resonant interaction ki - 2k 2 + k3 = wl - 2w 2 + w3 = 0 Here

kl = (k11,k 1 2) and k 2 = (k 21,k 22) while a = 2k 21 - k31 , / = 2k 22 - k32 ,

S= kll - k2 + ks , 6 = k1 2 - k22 + k32  . Also lI = (a 2 + 3 2)1/2 and

12 = (r2 + 62)1/2

Consider the transformations,

A(t) --+ AEQ + a(t)

B(t) -- BEQ + b(t)

C(t) --- c CE+ (t)

as applied to the model equations (1). Let v= (a, a*, b, b*, c, c*) and linearizing

about the equilibrium state we obtain the linear system of equations :

dt = [M] v (2)

Then the equilibrium is linearly stable provided the eigenvalues of M have negative

imaginary parts. The 6x6 matrix [M] is given as,



[M] =

(1I + 2mllIAEI2 + m121BE12 + m13 CE 2) (m11AEI2) (m12AEBý + 2BECnl) (m12AEBE) (m13AECE) (m13AECE + nLB)

(mIAE*2) (i1 + 2m*l AE 2 m 2IBE 2 + m31CE2) (m12AEB)) (m 2 lAABE + 2B-CE 3B) (mAC + * 3 A*CE)

(m 2 1BEA* + n2CEBE) (m21AEBE) (/2 + m211AEI 2 + 2m221BE 2 + m23 CE 2) (m2 2 B + AECEn2) ( 23BEC + n2AEB) (23BECE)

(m *A*EBý) (m*lB*AE + n*CýBj) (m*2BV2 + A*Ckn) (12 + m•lJAEI 2 + 2m* •BEI2 + m;3 ICE 2) (m*3B*Cý) (m 3sB*CE + n*A* BE)2 E *2CEA2 (mEnC2A2 + B2

2
(m31CEAE) (m31CEAE + n3E) (M 32CEBE + 2n 3 BEAE) (ms2CEBE) (13 +- 311AE 2 + m321BEI 2 + 2ms33CEI 2 ) (33 sC)

(mCAA + nB ) (m, CAE) m (m,CBE + 2B(,AEmnB3 (m*,321 (. 4- mn.IAE 2 4- mnl 4x,I 2 +- 2m*,C I1 2
,

0 0 0 0

E 3 E 3 V E

·



The model asymptotic equations for the resonant quartet interaction, (2), are

given by :

= 11A + A(mllJAI ' + mil2 IB 2 + ml 3IC12 + mi 4 D 12) + nl(BCD)*

= 12B + B(m 21 A 12 + m22 1B12 + m 2s3 C 2 + m 24 |D 2 ) + n 2(ACD)*

(3)

= 13C + C(m311AI 2 + m32 1B2 + m33 1C 2 + m34 DI2) + n3(ABD)*

dA
dt

dB
dt

dC
dt

dD

dt
+ n4 (BCD)*

Here the equations for ni, i = 1,..., n4 can be obtained from the problem at order

ACB* by a suitable adjustment of the subscripts and coefficients that appear there.

= 14 D + D(m4 A'12 + m 42 IB2 + m 43 1C 2 + m 44 1D 2 )



Chapter 8. Modulation Theory

It should be emphasized that the results obtained from the preceding Stuart-Watson

expansion contain only the first terms of an asymptotic series. In a neighborhood of the

critical point the growth rate aci - dfR - RI can be chosen arbitrarily small. It is in this

limiting sense that there is agreement with the exact analytical solution for the amplification

of a discrete mode of a given wavenumber. Post critically the spectrum will have a range of

wavenumbers and phase velocities (connected by a dispersion relationship) which correspond

to unstable wave modes. To permit a critical assessment of the weakly non linear wave

theories based upon observability, it is desirable to provide a framework in which waves in

a narrow wave band can interact. In this section attention is focused on the periodic wave

envelope of a group of waves with the most unstable wave at the center of the spectrum. The

equations address the question of the stability of the most unstable wave to sideband modes

or more generally the development of modulations upon the wave envelope. The description

of parallel shear flow instabilities in terms of wave envelopes (also called modulated wave

trains) was first given by Stuart and Stewartson (J.F.M. 1971). The work in this chapter is

an adaptation of that paper to Ekman flow, with an aim towards a future numerical study

of the non-linear Schr6dinger equation. The papers of C.S. Bretherton and E.A. Spiegel

(Phys. Letters, 1983), and Y. Kuromoto (Prog. Theor. Phys. Suppl., 1978) indicate the

kinds of instabilities that can develop from an initial band of wave modes, when nonlinear

and dispersive effects are included in the interaction. In the case of a continuous spectrum

of participating modes the appropriate model would be a wave packet.

The initial value problem is used as a guide to suggest the appropriate scales. By

employing the method of steepest descent (Stuart, ibid) it can be shown that in the 'far

field' approximation (Ix - cgt1 <« a2tI) the eigenfunction t is given as

_ (=_-elt)
2

~ , X(Z) .(expia' (z - c" t)) .exp 42, (1)

where cg is the group velocity and a2 is the group velocity dispersion. Here the expansions

proceed about the wavenumber, am, and phase speed, cm , of the fastest growing mode

(subscripted with m).



The perturbation equations are again (4.4-5) as before

+w'

2 au'

R az

+ + ')

az2

a Z2
1 ,a2

+ R ay
au' -au'+ (VE + V + v)
at ay + WI (az + U + u')aZ dtj±' . -'Vlau, -Wfauay az

2 1 a2u' a2u'S' + + )R R (y2 + z2
But now we consider a modulated wave train so that the expansions assume the form:

u' = EZ' I (un(Y,T, z) expin+(*))

' = I ,= (cn(Y, T, z) expine +(*))

'p' = Z'=l (on(Y, T, z) expine +(*))

with 8 = a(y - ct) , and moreover where the slow variables Y = 1l/ 2 (y - cgt) and T = Et

have been introduced. e is now explicitly taken as aci .

determined that:

Ty ay aY

a aat- ---at
at at

a

By the chain rule it is readily

1/2 Cg ý-

The previously used relations still hold so that in the transformed variables we have:

=1 = (Pizz - a 2(1 + 2iac1/2~oiy + eC1YY)

C2 = (P2zz - 2oP2 + 2Vi• 1/2 2y + eCP2yy)

W1 1 /2 aP1 a 1
ay ay az
aP2 1/292 P22 a2

w2 = + 2ay aY a8z

az
a8' a8'+ (VE + + V')
at ay



Gathering terms in the harmonic expansions the following equations are obtained:

(-iaci 1 - E1/2 Cg•l + E~1T) + (iaC(VE + O)C1 + irCi2 • - 2i((2

a2
+E1/2(VE + f)) IY - E1/2•2y 4 - €1/2 2•y) + (-ic1(zO 2 (VE + V)

2 1-iePiC2 + 2i'LP2*l - (VE + V) + .lE/l2(Piy + E1/2p~y•)2 Ri + R (ý1 - aL2c1 + e1/22ic"•1y + -- IYY) (5)

(-ic'cut - E1/2CgtLy + Ul1T) + (icx(VE + 0)lU1 + ic• 2U2 - 2iýPu2

+E1/2(VE + D)U1Y - ,1/2U2ypl - 61/2 p2Uy) + (-iac l(UE + E )

-i:aP1ui 2 + 2iV2tiu - E1/2~o1y (E + ) + 1/2 y  1/2P2YY1)

2 1
- 01+ (ii1 - a-2 u + E1/2isly + eulyy) (6)

together with,

(-2iacS2 - e1/2cg~2y + e2T) + (2ie(VE + T)C2 - i0l 161 + E1/2(VE + D)2Y

a2  a2
-e1/251y) -+ (iaPo 1 2i - 2iaEcp2 (VE +) €1/2(lyl - C1/22Y z2 (VE + v))

21= R (2 -(~ 22 f+ 1/22ici 2y + EC2yy) (7)

(-2iacu2 - E1/2CgU2y + EU2T) + (2ic(VE + f))u 2 - i l•blul + E1/2(VE + V)U 2 Y

-E1/26P1Uly) + (ioLpliit + 2iO(PO2(UE + ) 1/21y 1 + 1/2cp2y(&E + ))

2 1
R 2 (2 - +2U2 CE1/22ioU 2y + EU2yy) (8)

The formal expansion has a hierarchy that increases in powers of 1/2 ,

ul(Y,T,z) = E1/2U 1 (Y, T,z) + CU12 (Y, T,) + 3/ 2 U13 (Y, T, z) +...

u 2 (Y, T, z) = u 2 1 (Y, T, z) + o(3/2)

f(Y, T, z) = Etol(Y, T, z) + o(c 3 /2)

V(Y, T, z) = Eol(Y, T, z) + o( 3/2)



P 1I(Y,T,z)= e'/2 pll(Y,T,z) + e~12(Y,T,z) + E3/2 c13 (Y,T,z) +...

0p2 (Y, T, z) = Epo21(Y, T, z) + o(E3/2) (9)

and where separability allows the representation to be expressed as:

ull(Y,T,z)= A 11(Y,T)ul(z) : p•(Y,T,z)= A 11(Y,T)Oll(z)

u12(Y, T, z) = A12(Y,T)U12(z) : P•12(Y,T,z) = A12(Y,T)4 12(z)

u 21(Y, T, z) = A 21(Y,T)u 21(z) : p2(Y,T,z) = A 21 (Y,T)0 21(z)

iol(Y, T, z) = Aoi(Y, T)uoi(z) : ol(Y, T, z) = Aol(Y,T)voi(z) (10)

These substitutions lead to the set of ordered eigenproblems: At order E1/2 the linear

eigenproblem is determined.

ll

S 11 i(VE - c)( 11 - a2q 11) - iC E11 - 11 - 1•(41  - 20 2 i 11+ a 4
11)

L11  iai(VE - c)u11 + E11 + 11 - -(l11 - -2U11)

At order E the group velocity is determined by the Fredholm alternative applied to,

Ul2

(2c'(VE - c) + VE)k11 + ( - (VE - Cg))( 11 - 2iii) 1

((2 c - (VE - Cg))Ull - UE011

(11)

Then Ally = A12 and [ 12 A1 y 12 + B [ i
IU12 IU12 I Iuli



The mean flow distortion is found from the set of equations,

d d
icR •(ullkll - u 114 1) = 2001 + U01

d d
iaR-4(11411 - -1011)= -2ol + Vol

so that Ao01 = At 1AI. The second harmonic component yields the set of simultaneous

equations,

2i(VE - 1C)(21 - 4a•21) - 2iaE21- U21- R'2 - 8a•f21 + 16ai421)

d
-= ' (11 - a 2 11) - ii z( 11 - 2 11)

2. 1
2ia(VE - c)U2 1 + 2iaUE421 + 2 21 - (i21 - 4a 2 21 )

= -- icait~lli + ia'•1u1ii

and the relationship A 21 = A21. Finally at order e3/2 the evolution equation is obtained,

again by the application of the Fredholm alternative applied to:

U13r-[ 0'13
Aulyy(2ci 2 (VE - C)012 - (VE - Cg)(012 - 2 0'12) - 2ia(VE - cp,)4 11- iac4' 1 1

+VE 12 + Ira(12 - a 2 12) + i - 3a _I))

+A 12 A(ia*i01o11 - icvo1(ll - a 211) + 2iI 1(421 - 4a 2421) + l'I d ( 21 - 4a2221)

A2iotO2 ( 1a - a n - a-2 ))

--A1 1T(11 - a 2 011)

Allyy(-(VE - Cg)U12 - UE412 + 1 ~2 12 + -11)

+A2 1 A* 1 (-icvolui + 2iaVL 1121 - i:* 1 1421 - iaitO111 + 1iau21 - V2e0211)

L-AlTull

(12)



The evolution equation for the amplitude All is thus the nonlinear Schr6dinger equation.

8All 8 2 A11AT A a7y = aciAll - kAl*A2' (13)

The constant -k is the Landau constant as expected. The constant 7 is a measure of

dispersive effects, and is computed from :

f[(2a2 (VE - c)012 - (VE - cg)(ý12 - a 2 12) - 2ia(VE - cg)ll

+ici + VE12 + 12 - C2 12) + 11 - 3C, 2 11)). (*
-7S'c+ll -TE12 --- 2i, • (14)

7 "+(-(VE - Cg)Ul2 - UE412 + -u 12 + ull) - N*]dz

f[(Oll - a 2 )11) - * + Ul - N*]dz

where (V;, N) is the adjoint eigenfunction to the linear problem. The nonlinear Schr6dinger

equation has the plane wave solution,

(A aCi 1/2 1k5ic )

exp(- cit) (15)km( k-. kr
and this is modulationally unstable to sidebands when kr-y, + ki-Fi < 0. This is a direct

generalization of the Benjamin-Fier criteria for the stability of a Stokes wave, (A.C. Newell,

1969). For the case of two interacting wave envelopes growing from an undisturbed Ekman

flow the asymptotic equations would be a coupled set of nonlinear Schr6dinger equations.

8A a2A
- Yl aAy = acilA + kiA*A2 + miBB*AaT jY 2

aB a2B
T 72 2 = Ci2B + k2B*B

2 + mlAA*B (16)

Coupled Schr6dinger equations also serve as model equations in narrow gap Ekman flow,

when vorticity waves generated on opposite boundaries begin to merge. The photographs on

the next page, (courtesy of W.V.R. Malkus) are taken of Ekman flow, with a gap separation

of 5-6 boundary distances. At this Ekman number, the linear theory predicts a nearly

overall minimum critical Reynolds number and wave fronts propagating almost radially

inward. In the top photograph, orderly finite amplitude rolls develop post critically. At

larger Reynolds numbers (the bottom print) a modulational instability becomes visable.

Several scales of motion are simultaneously introduced. Secondary instability is initiated

(in theory) at locations where the modulation intensifies the transverse vorticity of the

primary wave field.
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Chapter 9. Secondary Stability of Ekman Flow

We assume a parallel shear flow in a rotating, f= flk, coordinate system. Then

the velocity and pressure field satisfies:

dV 1
= -Vp - 2×x V + V 2 V (1)dt R

V.V = 0 (2)

We will derive equations for the departure from finite amplitude equilibrium. Here

the velocity field has a representation,

00

u(x, y, z,t) = uB(z) + E un,(z)eia n(z- ct) + u*(x - ct, y, z,t)
n=--00

v(x,y,z,t) = vB(z) + E v,(z)eian(z-ct) + v*(x - ct, y,z,t)

00

w(x,y,z,t) = E wn(z)eian(z- ct) + w*(x - ct,y,z,t)
n= -oo00

It is convenient to move into a coordinate system moving with the finite amplitude

wave velocity. Then x' = (x - ct) and hence at = (0,, + ca,,) and u = (u' - c). In

this coordinate system (having dropped all primes)

u - 2 2 1 2
+ * u.V u= -Vp- kx u +-3c + V2at R R R

V.u = 0

If we let

u(x, z) = (UB(z) + c) + E > Un.()eian
1-00n= -oo

0o

V(x, ) = vs(Z) + E v,(z)e'•ia
fl -00

W(, z) = E W[(z)e """
n= -oo



and

u(x, y, z, t) = U(x, z) + u*(x, y, z, t)

S(, y, ,z, t) = V(, z) + v* (x, , ,z, t)

(x, y, z,t) = W(x, z) + w* (, y, z, t)

then the full non-linear perturbation equations (which are invariant) are:

a u* - 2. 1+ U -V u* + u* -V U + u* -V u*= -Vp* --x u* +-V2 u* (3)
dt R R

V. u*= 0 (4)

We will proceed in a stepwise manner to derive the modal decomposition of (9.3-4).

In component form the full non-linear perturbation equations are;

du* du*  Bu* du* Op* 2 1
+U +V +W +u*U + w*U. + Si * +V+ Au*

at dxz y dz dz R R

-v* +  v* +  v* ov* wp* 2 1
+U +V +W +u*V, +w*V, +S2 U * + v*

dt dx dy dz dy R R
dw* dw* dw* dw* dp* 1

+U +V +W + u*W, + w*W,+S = +-S3*dt dz By dz dz R

du* dv* dw*5--- 0o
dz dy dz

We will now be more specific with regards to the form of the linear 3-D perturbation

under investigation. We'll look at the stability of 2-D finite amplitude vorticity

waves to that class of 3-D disturbances which have the same periodicity in the

downstream direction and arbitrary spanwise periodicity. Therefore

it (Xy,zt) = E E [Un,m (z)e'e"'nei'mYeim + Un,._m (z)e'ieie-'-mei '] (5)
m=O n=-oo

with a being the complex frequency. Note that reality of u* implies un,m,=un,-m

(~ denotes complex conjugation.) For an infinitesimal disturbance, m = 1, we have

00

n=-oo
'--- 00



If for each perturbed quantity in (9.3-4) we substitute an expansion of the form

(9.6), neglecting at present nonlinearities, there results a set of equations coupling

the modal components of the infinitesimal wave disturbance. These constitute a

linear eigenvalue problem in a, for a 3-D perturbation upon a 2-D finite amplitude

wave field:

+ D2 )2 - (i)(-k, 1 + D2 )]w, - rl,

+ianD[(U u,),, 1 + (V* uy)., 1 + (W* u)., 1 + (U * u)n,1 + (Uz *w)n,1]

+i/PD[(U * vx)., 1 + (V vy)n,1 + (W vz).,l + (Vz * u), 1 + (V, w)n,1]

+ k1,l[(U * wz)n,1 + (V * w,)n,1 + (W wz)., 1 + (W• * u)n, + (Wz * w)n,1 ] = 0 (7)

1 2[(-k ,1 + D 2) - (iu)], 1 + Dwn,1
R IR

-ian[(U * v.)n, + (V * v,),, + (W* v)n,, + (V, * u)n,1 + (Vz *W)n,j]

+ i/3[(U * u2 )n,1 + (V * Uy)n,l + (W * u2z), 1 + (U. * u)n,1 + (Uz * w)n,1] = 0 (8)

as the vertical component of vorticity is given by = ( - ) the relations- ay) the rlations

u,1 = (ianDwn,1 + i•37n,1) /k, 1

v,,1 = (i/PDwn,1 - ianA,1)/k2,1

are obtained, with k2,1 = (na)2 + P#. The convolution product (F g)n,m -

Ep+q=n Fp . gq,m*
The most significant result of the secondary stability calculation of Patera and

Orzag is the prediction of transition at Reynolds numbers of the order of 1000, in

Poiseuille and Couette flow. This is in agreement with the observations of bursts

and the appearance of spots that occur at about this number. The predictions

are based on a quasi steady equilibrium approximation which balances 2-D viscous

decay rates with convective 3-D growth rates to obtain an instability cutoff.
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Figure 9.1 shows the finite amplitude velocity fields for (a) Poiseuille and (b)

Ekman flow, in a reference frame moving at the 2-D wave speed. It can be seen

that a finite amplitude 2-D wave produces a local vorticity maximum. Early the-

ories attempted to relate secondary instability with local velocity inflections and

generalized Rayliegh criteria. A WKB type argument applied around the inflection

point would indicate inviscid instability to small length scale disturbances, provided

the local Reynolds number was large enough. This argument fails to account for

the fundamental physical characteristic of the instability, namely its '3-dimensional'

signature. Additionally only a small threshold 2-D amplitude is required to initi-

ate the secondary instability, which can occur prior to the establishment of a local

inflection. While a subcritical secondary instability might conceivably produce its

own local inflections, the 3-D instability considered here grows from infinitesimal

amplitude as a rapidly growing linear perturbation on a 2-D wave field.

For the case of primary transverse vorticity waves, as in Poiseuille flow or the

Ekman boundary layer the '3-D' eigenvalue is accurately given by the lowest consis-

tent three mode fourier truncation. For Poiseuille flow this involves the downstream

roll (-a* eitY, the n = 0 mode) and two symmetric oblique modes (, e+± ' z + ' Py , the

n = +1 modes). At Reynolds numbers of 1000 each of these modes would individu-

ally decay fairly rapidly. Squires theorem precludes the possibility of a linearly un-

stable downstream roll (which, in the absence of the primary 2-D wave, would have

a sinusoidal eigenstructure, i.e. a the solution of a forth order constant coefficient

O.D.E.). The primary transverse 2-D wave serves to link the oblique and streamwise

fourier components of the secondary perturbation. The streamwise mode is altered

near the boundary (inside the viscous sublayer) through coupling with the oblique

component (Figure 9.2). A large forced streamwise velocity, u3d , response is in-

duced. Strong '3-D' growth results because the downstream mode is very effective

in generating power via the correlation Uod(wSd)* (dUM/dz) . The linear streamwise
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component is locked into a '3-D' eigenstructure together with the oblique and higher

wave modes. The total perturbation would not have the appearance of simply a

downstream roll. For the three mode truncation in Poiseuille flow, the vorticity of

the oblique component (which is somewhat larger in magnitude than the vorticity

associated with the streamwise mode) will alternately enhance and detract from

the streamwise vorticity of the downstream mode. This is illustrated in Figure 9.3,

which shows four cuts of the total '3-D' perturbation velocity field (v" d , w3d), at

downstream locations separated a distance 7r/(4a) apart.

Many of the parametric dependencies of the '3-D' instability model are in keeping

with an inviscid mechanism. For uni-directional mean flows the '3-D' instability

travels at the 2-D phase speed. For Poiseuille and Couette flow there is no large wave

number cutoff. After reaching a maximum the growth rate curve asymptotes off,

slowly decreasing with increasing wave numbers. Most revealing, however, is that

'3-D' growth rates increase with Reynolds number, and the instability is maintained

in the inviscid limit. This latter holds for secondary instability in Ekman flow, and

is generic to the kind of secondary instability considered here.

The spectra of Ekman flow differs from Poiseuille flow in that the phase speed is

not zero in the frame of reference moving with the primary wave velocity. The 3-D

disturbance can be advected by the geostrophic flow above the boundary layer, in

the large gap case. For the narrow gap case the 3-D disturbance is similarly advected

by the mean velocity field orthogonal to the inflectional profile. As can be seen from

the wave number dependence of the 3-D growth rates (Figures 9.4(a)-(d)) there is

a well defined maximum and wavenumber cutoff. An additional complication, that

appears in many of the cases examined, is the competition of two 3-D modes. There

is still a predicted critical Reynolds number for the onset of secondary instability.

Because of the large parameter space involved with this problem we limit attention

to a few gap cases, and the zero Rossby number limit. The amplitude of the 2-
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Figure 1: Growthrate vs Wavenumber: (Gap = 20.,Re=80.,Amp=.03)
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D wave is a given, predicted from the finite amplitude expansions. Unlike the

numerical experiments done with Poiseuille flow, we are not testing if there exists

some threshold 2-D amplitude, but whether the realized flow at a given Reynolds

number becomes unstable.

Each of the cases considered is of interest in its own right, although the semi-

infinite and small gap cases represent the two extremes of transverse and streamwise

primary vorticity. The large gap case (G = 20.) is naturally close in behavior to

the semi-infinite Ekman boundary layer. The primary roll is a taken to be a type

II (class A) mode with RD = 53. and oriented -20.o counterclockwise from

the geostrophic. There is a large asymmetry between the n=1 and n=-1 modes.

This is the best computational example of a '3-D' disturbance reducing to a low

order wave interaction, which can't be accounted for in terms of the WNLTs. If

the 2-D wave amplitude is artificially decreased to zero the '3-D' eigenvalue traces

back to a slightly damped type I (class B) mode. The n = 1 component is a type

I mode in the sense that its orientation to the geostrophic is 130, and it is similar

in eigenstructure to the linear Type I mode. Its wave number is not that normally

associated with type I instability but has been selected by optimal growth rate

considerations. When the type II mode achieves an amplitude of .02 at Reynolds

number 80 it becomes unstable to this secondary instability. The phase speed of

the '3-D' disturbance is nearly that given by the type I eigenvalue. Increasing the

number of modes to 5 produces very little change in the '3-D' eigenvalue. The

type I wave serves as the oblique, n=1 , mode allowing the n=-1 component, to

generate power from the mean shear. The n=-1 mode is not found in the classical

picture of Ekman flow. In terms of its energy producing ability, it corresponds to

the downstream rolls of uni-directional flows. This is a bonafide 3-D instability. A

two wave interaction (Chapter 5) consisting of a Type I and Type II wave never

generates the n = -1 mode. Even a three wave resonance could at best generate



the n=-1 mode by coupling the Type I wave and with the second harmonic of the

Type II mode. This is not the process involved in this '3-D' instability. Here the

n=-1 mode is generated through a more complex locking of the Type I, and n=O

components without the inclusion of the second harmonic of the primary Type II

wave. It is the 3-D perturbation and not just a single wave mode that is growing,

and more that half the power to sustain the instability comes from the n=-1 mode.

The case of G=6. is also of special interest. This corresponds with nearly a

minimum critical Reynolds number, 34, for the onset of primary waves. Secondary

instability is predicted at Reynolds numbers as low as 60, at 2-D amplitudes of

about .04 . This is also a case where experimental observations indicate a mod-

ulational type instability, with energy spreading out into a wave band of modes,

and secondary instability originating at locations near the wave peaks where the

modulation reinforces the primary vorticity.

G = 4 is marked by two secondary instabilities almost equally unstable at

Reynolds numbers of about 100. and primary wave amplitudes .06 . At this gap

separation the secondary instability receives energy from both the mean shear and

wave (chapter 10).

G = 2.5 is a case where the primary wave rolls can be considered to be nearly

longitudinal with respect to the mean shear. The inflectional velocity component

which generates the instability is small compared to the radial velocity profile which

is nearly Poiseuille. Secondary instability can occur at Reynolds numbers over 900, if

the primary wave amplitude is .145 or larger. The growth rate has a sharp amplitude

cutoff. As discussed in the next chapter the energy pathway for the instability of

longitudinal rolls is different. Any physically realized instability depends on a large

primary wave amplitude. Figure 2.5 (a,b) shows the total longitudinal velocity,

where the linear wave is added to the mean velocity so that ratio of the maximum

amplitude of the perturbation velocity to the maximum mean velocity is (a) 15%



and (b) 30%. The location where the maximum wave velocity contributes to the

total velocity determines its relative importance. If for example the maximum

was located near a boundary where the mean velocity is small the effected change

would be dramatic. Because the perturbation is a wave, it will alternately steepen

and flatten the total velocity in the spanwise direction. The resulting 'warped'

velocity fields have local inflections. These periodic local vorticity maxima are most

likely instrumental in initiating possible secondary instability to primary streamwise

directed waves.

The numerical work by A. Patera and S. Orzag on Poiseuille flow and the ex-

perimental observations of S. Widnall and others in boundary layers indicate that

the occurrence of secondary instability overlaps with transition to a turbulent flow

involving small scales of motion, and immediately precedes the appearance of spots.

The results here suggest that the '3-D' instability initiates or triggers the appear-

ance of further burstlike instabilities, (which are determined by the local physics),

rather than itself developing into a global 'turbulent' spot.

In the subcritical case it has been speculated that turbulent spots are a mani-

festation of a fully nonlinear interaction. As conjectured (Malkus' hypothesis), the

physical realization does not make use of a quasi steady 2-D viscous wave. Rather

the spot initiates a self perpetuating process. This 'island' instability is isolated

in phase space, inaccessible through perturbation techniques that start with only a

mean shear flow. Its origins are local and it propagates through the fluid much as

a pressure pulse would.

Since the current work reports only on the linear aspects of 3-D instability, the

analysis applies only to the initial growth. However certain aspects of the linear

secondary solution will influence even the fully nonlinear disturbance. It is believed

that the secondary instability in Ekman flow is supercritical. Therefore at slightly

post critical Reynolds numbers it will retain much of its linear character. Under



these conditions the secondary instability may, heuristically, be viewed in terms of

modal wave couplings. The energetics of the instability indicate the rapid channeling

of energy into the downstream velocity component, uod , of the streamwise mode.

Where as in the absence of a primary wave linearly unstable longitudinal rolls

are prohibited, the presence of a small amplitude transverse wave permits a more

complex '3-D' disturbance, with a streamwise fourier component, to effectively grab

energy from the mean shear. This results in the appearance of intense longitudinal

streaks just prior to boundary layer transition. Any one who has looked over a body

of water on a windy day has seen longitudinal streaks in the rough patches of water

swept by gusting wind. A similar coupling mechanism is responsible for transferring

energy from the wind shear into the 'helical' streamwise velocity perturbation. For

layered flows with two mean velocity components the situation is complicated in

that more than one orientation may be capable of generating the large correlations

normally associated with the downstream direction. The instability mechanism is

however the same.

Finally it appears that primary streamwise rolls are relatively stable, but be-

come unstable at high Reynolds numbers, where large wave amplitudes produce

local inflections in the velocity field. For narrow gap Ekman flow with G ~ 2.5,

this instability has the appearance of a 'string of beads', a finely hashed small scale

disturbance running parallel along individual vortex filaments. The hashings have a

preferred orientation with respect to the primary wave. The onset of the instability

occurs sporadically within narrow spanwise intervals. The 'strings' start indepen-

dent of one another. As the disturbance is advected into higher Reynolds number

regions the instability spreads out contaminating neighboring filaments and becom-

ing more intense. Eventually patches where the primary wave field is nearly ob-

scured result. This has a substantially milder character than bursting phenomenon

associated with the subcritical Poiseuille instability.
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Chapter 10. The Energetics of the Linear 3-D Instability.

There are two complimentary features of 3-D instability that wave energetics helps

to clarify. The first is the strong instability of finite amplitude 2-D transverse waves

to 3-D instability. A small transverse wave results in convectively large 3-D growth

rates. Longitudinal or streamwise vorticies must achieve a relatively large amplitude

to initiate 3-D instability. The energy transfer to the secondary instability in each case

relies on quite different pathways.

Ekman flow with variable gap width provides a class of flows where the orientation

of the vortex waves to the mean shear varies. For large gap widths the two mean

velocity profiles are comparable in magnitude. The inflectional profile, which generates

the primary rolls, is substantial enough to supply the secondary disturbance with power.

At small gap widths the inflectional component of the mean is only a fraction of the

radially directed and nearly Poiseuille velocity component. The rolls that are initiated

can then be considered to lie longitudinally with respect to the mean shear.

Energy transfer in Poiseuille flow has been examined by A. Patera, (J.F.M., 1982)

where it is shown that the secondary instability receives an order of magnitude more

power from the mean flow directly, than from the 2-D wave. This same result holds for

Ekman flow and is a general characteristic of transverse vorticies. However when the

gap width is sufficiently small, so that the primary waves are longitudinally directed,

any secondary instability which occurs is delivered power directly from the wave, and

necessarily relies on a very large 2-D amplitude.

The motive behind this section is to determine specifically how the 3-D instability

can derive energy from an equilibrated or quasi-equilibrated 2-D finite amplitude state.

We introduce a modal decomposition of the Reynolds stress tensor in terms of the

harmonic (fourier) velocity components. The principle result is that the energy transfer

responsible for the instability is supplied to the 3-D perturbation directly from the mean

shear, through the correlation 3d (wr d)*(dUM/dz).
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We work first with Poiseuille flow then return to Ekman flow, where the same results

hold except for the case of streamwise vorticity waves. These longitudinally directed

waves are stable against 3-D instability until the maximum primary perturbation veloc-

ity reaches about 15% of the maximum mean velocity. They then can become unstable

via an alternate pathway involving a correlation between the 2-D wave and the 3-D per-

turbation. For G > 2.0 the realized equilibrated waves achieve sufficient amplitude to

become unstable to the secondary instability, before the onset of subcritical instability.

As mentioned at the end of the Chapter 9, observations indicate that the secondary

instability initially takes on the form of a string of beads, along streamwise vortex fil-

aments. The instability prefers a given orientation with respect to the primary wave.

Although the large amplitude required to initiate the secondary instability probably

places the computation of the equilibration in a range beyond that which can be accu-

rately predicted from the finite amplitude expansions used, the stability calculations for

this case can be performed by artificially varying the 2-D amplitude and Reynolds num-

ber. Then numerical model predicts primary rolls (of reasonable amplitudes) should

remain stable to '3-D' disturbances untill a Reynolds number of about 900 (compare

this with the 2-D onset at a Reynolds number of 204). The Reynolds number regime

over 1000 is particularly interesting because of the appearance of a subcritical instabil-

ity from the Poiseuille velocity profile. A competition between these two mechanisms

would result. Whether this beadlike instability works to delay the occurrence of bursts

or helps in their initiation it is not known.

We will make use of several simplifications in an attempt to leave the equations

unfettered with superfluous terms, while still retaining all the essential physical effects.

Thus (i) the basic flow (UM(z),0,0) is taken to be unidirectional, (ii) the 2-D wave

{ (U2D(z), 0, w2D(z))eia(x-ce) + (*) is assumed to be sinusoidal, neglecting its higher

harmonics, and (iii) the 3-D perturbation is truncated to three modes, its lowest order

representation, consisting of two complimentary oblique components and a longitudinal

mode.
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Let the time dependent velocity field be decomposed as v = veq + u where veq

is the equilibrated finite amplitude flow and u the 3-D perturbation. Let ) (x, y, z)

be the region given by { x E [0, !-], y E [0, ], z E [-1, 1] } so that the velocity vectors

vanish on the boundary. The fundamental equation for the perturbation kinetic energy,

K f J u.udV is

dK - (u.D.u+vVu: Vu) dV (1)

where
1 0viq  veq.

[D],j +2 azi axi
is the deformation matrix of the equilibrium flow, and

L uj

The approximate form of the 3-D perturbation in component form is

U = ( (u, VD ,wD) eian(-ct)eieat + () (2)
n=- 1,0,1

The second integrand of Equation (1) is negative definite. Therefore the first integrand

of Equation (1) must be positive and large enough over a sufficient region of V in order

for the perturbation to grow. Upon substitution the deformation matrix becomes

1 0 0 U (z)
D = D+D = - 0 0 0 +

U2 (z) 0 0

iau2D 0 1 2 D+ iw2D)
2 dz

0 0 0

1 du 2D dw 2D
2 ++ iaw2 ) 0.2 dz dz

eia(z-ct) + (*) (3)
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The part of the integration involving D 1 represents an energy contribution occurring

through the action of Reynolds stresses, involving the shear in the mean flow, ULu(z) ,

and the individual modes of the 3D perturbation. After making use of the symmetry re-
lations (u D , v D , w 3_D ) = (u3D -3D 3D)* and (U3 D 3D, 30D )  --3D  3D, w3D)*

11- 1 -1  ,w1 1  ,0 0 ,W0  (U

the second part of the first integral reduces to

2at 3DD 3D*3D)

dz dz 0 1

4-dz 0 (wi I + {*I dz (4)

There is no instability without the 2-D wave. A stability calculation based on the

the mean shear alone amounts to solving uncoupled Orr-Sommerfeld equations for each

of the 3-D wave components separately. This results only in decaying modes. In light

of the above Reynolds stress decomposition, there are three alternatives to consider.

(i) The 2-D wave could conceivably supply energy to the 3-D perturbation directly,

through the second of the two integrals (Eq. 4). (ii) The finite amplitude 2-D wave

could distort the mean, allowing a modified mean shear to become unstable to 3-D

disturbances. (iii) The 2-D wave could, through nonlinear wave couplings, permit the

3-D eigenstructure to assume a form capable of extracting energy from the mean shear.

The second phenomenon, mean flow distortion is important to 2-D equilibration but

plays an inconsequential role for the type of 3-D growth considered here. The eigenvalue

computations with or without the correction to the mean show little difference. Merely

altering the mean shear, but setting the 2-D wave amplitude to zero, again results in

uncoupled eigenproblems with only decaying modes.

The computation of the power integrals shows that terms from the second integral,

which are proportional to the 2-D wave amplitude, are much smaller than the contribu-

tion from the mean shear that result from the first integral. Of the terms in the second

integral the largest is the correlation 2D u3D (u3D)*. This contributes positively to
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3-D growth, but is considerably smaller than (about one sixth of) the energy transfer

from the mean shear, at near critical wave amplitudes. Therefore, in the presence of a

finite amplitude 2-D wave, nonlinear wave couplings permit a modified 3-D eigenstruc-

ture to draw energy directly from the mean shear. This is the mechanism responsible

for large 3-D growth rates. The downstream component (the 0 th fourier mode) delivers

six times the power as the oblique component to the 3-D perturbation. With increasing

Reynolds number, the streamwise velocity component u3D becomes proportionately

larger and the correlation product u3D (W3D)*(dUM/dz) more significant.

This model is consistent with a further simplified interpretation along the lines of

the three mode fourier truncation. Where as in the absence of a primary wave linearly

unstable downstream rolls are prohibited, the presence of a small amplitude transverse

wave permits of a more complex '3-D' disturbance, with a downstream fourier com-

ponent. The downstream component is very effective at producing energy through the

correlation product u3d(w3d)*(dUM/dz) and this results in the large '3-D' amplification

rates that calculations predict. While for an infinitesimal 2-D wave the 3-D eigenvalue

problem decouples into modal components, a small but critical primary amplitude is

the essential ingredient necessary for secondary instability. The sensitivity of the 3-D

eigenstructure to variations in amplitude make it believable that beyond some large 2-D

amplitude the eigenstructure is modified so as to effect a decrease in the growth rate or

energy cutoff. This is a parametric feature of the model found by Orzag and Patera for

Poiseuille flow.

Figure 10.1 shows respectively the 2-D power integral (a), the power produced by

the downstream mode (b), and the oblique component (c) of the 3-D perturbation, and

the largest of the dynamic energy terms (d), for Poiseuille flow.
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Poiseuille flow secondary instability case

( Table 10.1 ) INTEGRALS OF THE MODAL ENERGY TERMS
3 d= -1.314e - 03 E,13 = -1.498e- 02 E,13 -1.314e - 03

-1, .868913e - 03 E3 +15.323e - 04 E5 = -3.661e - 6

El = -1.8689e - 03 E3 = 5.323e - 04 E5 : -3.661e - 6
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Re 3d = 1000.

a = 1.25

0= 2.

C2d = (.3054, -. 01765)

w(.0) = 1.
amp2d = .002

(NN, Q, M) = (1, 1,0)
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For mean profiles (UM(z), VM(z),O) and a 2-D primary wave {(u 2D, V2D, w 2D)eia(z-ct) + (*)}

the decomposition D = D1 + D 2 proceeds just as before. A number of new correlation

products appear and the symmetry y - -y is broken. Then Equation (4) is modified to:

(u -D 2 - u) dV = 2 2t f 2D U 3D 3D* 3D U3D

iav2D (u3D (vD)* + U 3D(VD)* + (D) *V3D + (u 3D) * 3D)

du 2Ddz + inw2D) (u3D (3D) * + U(WD)* + (UD)*WD + (U3D)*_W)3D +

dv 2Dz ( 0 ,-1 ,,o0 +0 0 1 +)'-
d2D 3D D3D)* 3D * 3D * (V3D)*W3D + 3D 3D)

22D 3D D)+ W 3D D) + {*( dz (5)

These are referenced as the five dynamic terms, El,..., E5 . i.e.

El = 2iau 2D(U 3D(UD)* + u3D(u3D)*)

Now six terms couple the two mean profiles directly with the three wave mode com-

ponents. (The terms arising from the contribution of D 1 in the energy equation.) These

are the terms usually associated with the Reynolds stress of individual waves. The eigen-

structure of a linear '3-D' perturbation is affected by the presence of a 2-d finite amplitude

primary wave, which couples (and locks) the component fourier modes. In the terminology

in use

E 3 = (d d) * 3d) * d dUM
1,13 (u(w1) + (ul) W• ) dz

3D =3 dVM
E0,23 = (vO (wO)* + (v 0)*w• ) dz

... etc. Figure 10.2 shows the important correlations for G = 20, where primary trans-

verse vorticity enables the '3-D' instability to draw energy directly from the mean shear. In

Figure 10.3, G = 2.5, the correlations proportional to the 2-d amplitude of the streamwise

directed primary vorticity wave produce the energy necessary to maintain the secondary

instability. In the convention adopted below, negative terms supply power to the distur-

bance.
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Narrow gap Ekman flow secondary instability models

Gap = 20.

Re 2d = 100.

E = -20.0'

a = .3

C2d = (.5415,.01765)

w(.8) = 1.

0 = .2

amp2d = .02

a = (-.1454, 7.58e - 4)

(NN, Q, M) = (1, 1,0)

Gap= 6.

Re2 d = 84.

E = -5.00

a = .4

C2d = (.3909, .0325)

w(.0) = 1.
S= .3

amp 2d = .06

a = (-.1423, 2.79e - 3)

(NN, Q, M) = (1, 1, 0)
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Gap = 4.

Re2d = 90.

E = 7.5o

a = .75

C2d = (.2210, .0192)

w(.0) = 1.
0 = .4

amp2d = .08

a = (-.0473, .0503)

(NN, Q, M) = (1,1,0)

Gap = 2.5

Re 2d = 1000.

E = 36.00

a= 1.2

C2d = (.0563, .0087)

7 (.5) = 1.

S= 1.6

amp2d = .15

a = (-.8912, .02196)

(NN, Q, M) = (1,1,0)



Table 10.2 INTEGRALS OF THE MODAL ENERGY TERMS

Table 10.3 INTEGRALS OF THE DYNAMIC ENERGY TERMS
NARROW GAP EKMAN FLOW

GAP = 20. GAP = 6.0 GAP = 4.0 GAP = 2.5

E, -4.06e-2 .1954 -2.93e-2 4.1e-4

E2 -1.64e-2 -.4038 -.2893 -.4795
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NARROW GAP EKMAN FLOW
GAP = 20. GAP = 6.0 GAP = 4.0 GAP = 2.5

E3D-1,13 -.15796 -.760 -6.71e-3 -5.46e-2

E-1,23 -3.46e-3 -.7559 -5.20e-2 -.2662

E3DEo,13 -1.25e-3 -2.77e-3 -2.44e-3 3.47e-2

E3DS,23 5.85e-4 .557 2.05e-3 .1640

E3D1,13  -5.76e-3 -.760 8.51e-3 1.05e-2

E301,23 -. 1116 -. 9218 -.2639 -. 2435

E3  4.94e-4 -.9928 -7.936e-3 -1.436e-2

E4 -5.21e-2 -.6207 -1.71e-2 -. 1106

E 5 3.20e-3 -1.84e-2 -5.07e-4 -6.71e-3
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Concluding Remarks.

Various non-linear wave interactions and secondary instabilities have been ex-

amined in the context of Ekman flow. Ekman flow has the virtue of being supercrit-

ical, which allows the formulation of stability theories in terms of weakly non-linear

wave dynamics. The evolution of Ekman flow also displays several of the many

routes to transition, and their dependence upon the flow parameters, such as the

Reynolds and Rossby numbers, and on initial conditions, such as the existing wave

amplitudes. The orientation of the primary vorticity wave to the mean shear has a

dramatic effect on secondary instability.

Each of the routes to transition involves physically distinct mechanisms. We

mention three different regimes which, experimental observations indicate, are reli-

ably interpreted in terms of the models considered.

The weakly nonlinear wave theories, i.e. amplitude expansions, correctly predict

phenomenon of the sort observed near criticality and the onset of primary waves.

The coupling equations are in agreement with the experimental observations of

Faller and Kallor and Van Atta in predicting the suppression of type I waves by

the type II modes. The coupling coefficients that have been computed have large

negative real parts indicating their inhibitory affect. A hypothetical two wave com-

putation shows that this model is also capable of exhibiting intermittent behavior

where the wave modes alternately predominate in close proximatity of each other.

Such behavior has been observed by Faller. Some numerical simulations show limit

cycles with large swings several times the equilibrium amplitude. Caution should

be exercised when the amplitude equations are applied far from criticality, as the

perturbation scheme used to derive them rapidly becomes 'disordered'. Malkus (pri-

vate communication) has suggested an alternative approach which should exhibit

better convergence properties.
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As the amplitude of the primary wave grows, there are several ways in which

the spectrum of the flow field might change. The development of a modulation in-

stability could result in wave chaos, should the initial wave be unstable to sideband

modes. Dispersive effects have been incorporated into the weakly nonlinear frame-

work, by introducing multiple scales. This leads to coupled nonlinear Shr6dinger

equations. A secondary instability might receive additional encouragement near the

wave envelope peaks.

One important kind of oscillation, which has been neglected in this study, is

the subharmonic instability. In the case of narrow gap Ekman flow photographic

evidence suggests parameter regions where wave 'defects' play an initiating role in

transition. Here neighboring vortex tubes begin to merge giving the perturbation

a wavelength twice the original. The most unstable oscillations involve spanwise

dependence and would have a three dimensional character.

For the fast growth and introduction of small scales that accompany the burst-

ing phenomenon, a different process has to be considered. The secondary instability

considered here, in the context of narrow gap Ekman flow, results from a three di-

mensional linear instability to a finite amplitude primary wave field. The primary

wave links fourier components of the secondary disturbance. If the primary vorticity

is transverse to the shear, the primary wave permits the secondary disturbance to

effectively tap available energy in the shear that it otherwise couldn't utilize. The

energy is channeled into large streamwise velocity perturbations. These warp the

underlying mean flow, alternatively steepening and flattening the flow field. If the

primary vorticity wave is originally longitudinally directed then secondary instabil-

ity relies on a large primary wave to supply energy to the secondary disturbance.
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Appendix 1: On the Summation Algorithm for Non-Linear Terms.

1. It is convenient to keep things in terms of the components w and 77, remem-

bering that for wave mode ei(" z + p/) we have the transformation:

dz
12

2. Introduce the nonlinear quadratic forms, ,•m,n(f,g) = Am,A-' (f,g) for m

n, by the rules:

Omn(f V9) = f•m-i,-i
i=O i=o

and whenever (i = j) or (m - i) = (n - j) that product is neglected from the

summation.

3. Let '4 denote a 'tensor' of rank two defined as the dyadic sum

(m$n)

4(f,g) =LL {AmA'nm,n(z)e(m*- )e} Zmn
m n

(Where 0 = (ax + ,y).)

4. We invent, for convenience, two dyadic wave number (m,n)-tuples. They have

components

(M), = (m-n))(a)

(V),mn = (m- n)(3)

m = n and we give them the following two properties

* (m,n)-tuples are closed under multiplication which is performed compo-

nentwise, leaving a dyadic of the same order.

* (m,n)-tuples multiply tensors of rank two via contraction over both in-

dices which gives a scalar.
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Then we can write the nonlinear products for the Navier-Stokes Equation

S ') iE - (u, u) + iv - (v, u) + #,(w, u)

S2 = i0 j (u, V) + iv 4D (v, V) + 9.(w, v)

S3 i P. #(w, u) + iv · (v, w) + 4,(w, W)

also note the symmetry #(u, v) = 4(v, u).

5. It can readily be determined that

a2  S, S
d2 S 1  92S2

-(zax + zy =

6[e2 (u, U) + vz(v, v) +2ev(uv) - ie,(w, u) - iV(zW, v)]

as2  as1

[ECV(uU) _- EL4(V,v) + (V2 _- 2)j(vU) - iVcLz(Wu) + iE''Z(W, V)]

6. Now the final measure of nonlinear terms at a given order of E2 = AA* is a

summation of the above terms after being multiplied by the Reynolds number,

R = Ro 6R + eE 8R + R2 ..
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Appendix 2: The Numerics of the Linear Eigenvalue Problem.

The differential eigenvalue problem to be solved consists of two sets of coupled

equations for the fourier components of the vertical velocity, wn,m, and the vertical

vorticity, r7n,m.

1 2
[ (-k',m + D2 )2 - (iam)(-k2,m + D)]Wn,m -2 Dm

+ianD[(U * Uz)n,, + (V * uy)n,m + (W * uz)n,m + (U. * u)n,m + (Uz * W)n,m]

+ip3mD[(U * Vx)n,m + (V * •)n,m + (W * Vz)n,m + (V. * u)n,m + (Vz * w)n,m]

+k2,m[(U* Wz)n,m+ (V * W,)n,m + (W *wz)n,m+ (Wx * u)n,m+ (Wz *W)n,m] = 0 (1)

1 2
[1(-k 2m + D2 ) - (iUm)]n,, + Dwn,mR n I? R n+m

-ian[(U * V.)n,m + (V * Vy)n,m + (W * Vz)n,m + (Vz, * )n,m + (Vz * W)n,ml

+ ipm[(U * U,).,m + (V * Uy)n,m + (W * U)n,m + (U. * U)n, + (Uz * W)n,m] = 0 (2)

Both the limitation of memory space and the need for high accuracy in manipulating

the eigensolution are imperatives for using the Chebychev formulation (Orzag, JFM

1971). The linear eigenstructure representation is given by

N P

w(x, y, z, t) = > wm,n,peinP zeW•"mei •T,(z) + (*) (3)
n=-N p=O

N P

S(x,y, z,t) = E ••,n,pe''"n eimv'eimTp(z) + (*) (4)
n=-N p=0

(with m = 1 for linear theory.) The differential eigenproblem is reduced to the

matrix equation ([A] + a[B])X = 0, where the structure of the [A] and [B]

matrices are schematically illustrated as follows,
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FPxP ... xP

Vars

Wl ,n,p

Vars
w1,n,p

Vars

171,n,p

Vars
771,n,p

00

0IxI

n=-N

Eq's
Wl,n,p

n=N

n=-N

Eq's
7 7 1,n,p

n=N

The dimensions of the complex matrices A and B are 2(2N+1) (P+1) although by

making use of cross stream symmetry this can be halved. In the case of Poiseuille

(unidirectional) flow a further reduction which makes A and B real is possible

(symmetry under y -+ -y). It is useful to fill in some details with regards to the

matrix eigenvalue problem. Each row of the matrix equation could be thought of

as an equation for wx,1 ,p or rl,n,p. Line [(N+n)(P+1)+(p+l)] corresponds to the

equation for wl,,p and line [(2N+1)(P+1)+(N+n)(P+1)+(p+1)] corresponds to the

equation for rl1,n,p. Obviously 1,n,, is the [(N+n)(P+1)+(p+l)]th component of the

eigenvector while r1,P,, is the [(2N+1)(P+1)+(N+n)(P+l)+(p+l)]th component

of the eigenvector. The convolution products in Equations (1-2) are a coupling

between the variables and fill a diagonal band of A of width 2*Q+1 blocks, where

Q is the number of harmonics included in the primary wave approximation. The

eigenvalue problem is then solved by inverting B and applying a Q-R algorithm to

determines all the eigenvalues of AB - 1. The eigenfunction is then determined by

inverse iteration.
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