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IMPLEMENTATION OF SHORT-TIME HOMOMORPHIC DEREVERBERATION

by

James Lewis Caldwell

ABSTRACT

For short rp-verberation times (~ 10 msec) t and over short
intervals (~ 50 msec) , speech waveforms reverberated by small rooms
can be approximated by the convolution of a function interpreted
as the "room impulse response" with the uncorrupted speech. It is
possible, therefore, to remove the effects of reverberation by
applying a deconvolution process to 50-msec sections of reverberated
waveform. Homomorphic deconvolutiont ,.,hichconsists of transfor-
ming the convolved signal components into a sum of corresponding
signals, linear-filtering the sum, and reconstructing dereverberated
speech from the result, is well-suited to this application. Com-
puter simulations discussed in this paper show that such a process
is effective for artificially-reverberated speech. Neu results
include filtering techniques that are useful when the reverberation
is not precisely known before processing.
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I. Introduction

A. Spectral Coloration

Small-room reverberation poses a significant problem in the

quality improvement of Speakerphone and Conference Room Telephony Systems.

Speech waveforms reach the microphone by a multiplicity of paths, one

direct and the others involving reflections from walls, tables, or other

objects. The dimensions of a typical office or conference room are such

that interpath delays are likely to fall between I and 10 ms. As a

result of the shortness of these delays, one perceives a tonal distortion

of the speech (referred to as "spectral coloration"), rather than dis-

tinct echoes. The speaker's voice often sounds as if it is coming from

within a hollow barrel. This unnatural and annoying effect is far more

pronounced to a person listening via the microphone than to one actually

in the room. The auditory system of a listener in the room tends to

adjust to, and discriminate against, echoes of sounds. This is not

possible for one listening by artificial means. In this case, therefore,

the effects of short-time reverberation must be removed by signal

processing.

A few interesting approaches to dereverberation have been developed,

not all applicable to the removal of spectral coloration. In the process

of Mitchell and Berkley, a set of bandpass filters divides reverberant

speech into several channels, and each filter output is center-clipped

at a level anticipated to eliminate eclloin its bandl• This is particu-

larly effective for suppression of long-time reverberative tails, but

hardly affects coloration. Flanagan and Lummis experimented with another

process capable of reducing spectral coloration, but not the effects of

long-time reverberation2• Small-room reverberation produces an effect
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upon speech which is similar to that of a linear comb-filter with "valleys"

in its frequency response typically spaced at intervals of 100-500 Hz.

Valley spacing varies with microphone placement, so positioning several

microphones at different locations in a room produces "filters" which

pass different parts of the frequency spectrum. By allowing each of

several microphones to contribute to a composite signal those parts of the

spectrum it receives more faithfully than the other microphones, Flanagan

and Lummis partially eliminate the valleys. The resulting speech sounds

considerably less colored than any individual microphone output.

No one process has proven suitable for all types of reverberation.

Dereverberation by homomorphic deconvolution, the subject of this paper,

is no exception. Several factors make this method impractical for long-

time dereverberation; however, its applicability to removal of spectral

coloration makes it of interest in the present problem.

B. Past Development of Homomorphic Dereverberation and Contributions

of this Research
The theory of homomorphic dereverberation has been developed

considerably in the work of others. Oppenheim5 and Schafer3 are prima-

rily responsible for developing the theory of the complex cepstrum and

its application to deconvolution. Their work includes a rigorous mathe-

matical justification for homomorphic systems, techniques for the analysis

and computation of complex cepstra, and the foundations of short-time

echo-removal. With regard to the latter area, little attention was given

to finding filtering methods that are practical when little is known

about the reverberation, or to the possibility of using the cepstrum

(as opposed to the complex cepstrum) for dereverberation. Oppenheim and

Schafer have also been closely associated with the homomorphic analysis
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7 8and synthesis of speech.' Of particular significance to the present
7research are the principles of Oppenheim's homomorphic vocoder (based

upon the cepstrum), which play an important role in the discussions of
4Section III. Host recently, Flanagan has suggested the use of the

cepstrum for the removal of spectral coloration due to short-time rever-

beration. His proposal includes a scheme for averaging several cepstra.

To a large extent, the ideas of Flanagan and Schafer served as a

starting point for this work.

The cepstrum (or complex cepstrum) of a reverberant speech wave-

form is the sum of a component corresponding to the unreverberated speech

and an unwanted compo~ent due to the reverberation alone. If the rever-

berative component is precisely known, its removal is straightforward.

In this thesis, new techniques are introduced for discriminating between

components when the reverberative component is not precisely known. As
4initially suggested by Flanagan , these methods center about the advan-

tages obtained \olhenseveral cepstra of differently-reverberated speech

waveforms are combined. One technique involves computing the average and

difference of two such cepstra. The difference yields information about

the reverberative components, which can be used to remove these compo-

nents from the average cepstrum. Computer simulations indicate that this

is quite effective in reducing the effects of artificial reverberation

in voiced speech when the interpath reverberation delays are in the 3-10

msec range, as for small-room reverberation. Results for delays outside

this range are not as satisfactory. In a second filtering technique,

the use of memory and minimum mean-square error estimation is proposed to

reduce the speech distortion produced by removal of the reverberative

component. Another objective of this method is the possibility of

(7)



extending echo-removal capability to include echo delays dm.,n to 1 msec.

No speech-processing experiments have been done using the second technique,

and it is set forth primarily as a stimulus to future research. Further-

more, the processing of unvoiced speech, female speech, or naturally-

reverberated speech has not been attempted. Although the artificial

reverberation used in simulations was reasonably severe, it is not certain

that either filtering method would work as well for natural reverberation.

A separate problem treated in the thesis is the choice of an

appropriate method of resynthesizing the dereverberated speech waveform

from its recovered cepstrum. This is complicated by the lack of speech

phase information in the cepstrum. The basic result is to demonstrate

the compatability of the filtering process with the resynthesis procedure
7used by Oppenheim in the homomorphic vocoder. Certain interesting side

issues, such as the influence of the input sectioning window upon the

accuracy of pi tch detec tion as ,.,ellas upon echo removal, are treated.

As achievement of sufficiently high-quality synthetic speech has been a

major problem in this work, it is felt that a discussion of some of the

important factors influencing this quality will be useful to the reader.

For ease of reading, however, many details have been omitted.

The remainder of this paper is arranged in the following manner.

Section II deals with important background material on homomorphic decon-

volution, treated in terms of the complex cepstra of speech waveforms

and room "impulse responses." Section III covers the speech-synthesis

aspects of the homomorphic dereverberation process, and introduces the

cepstrum. Section IV begins the discussion of cepstrum filtering tech-

niques, including the average-difference process mentioned above; most of

the important experimental results are treated here. Section V contains
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the proposal for the memory/estimation filtering technique, also mentioned

above. Section VI consists of conclusions and suggestions for further

research.
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II. Principles of Echo Removal by Homomorphic Deconvolution

A. Linear Time-Invariant Hodel for the Reverberation Process

A reverberated waveform may be usefully and not unreasonably

modelled as a superposition of weighted and delayed replicas of an

unreverberated source waveform. On the basis of this idealization, a

reverberant speech waveform detected by a stationary microphone can be

expressed as
t

x(t) = f s(L)p(t,t)dL,
-00

where s(t) is the unreverberated speech waveform and p(t,t) is the

"impulse response" of the room. Although p(t,-r) is generally made non-

stationary by source motion, it is sufficient for our purposes to view it

as stationary:

p(t,L) = p(t--r, -r)o p(t--r) •

In the processing to be discussed, speech is processed in "sections" of

about 50 msec in duration, over which period source motion is typically

small. Hence, we shall treat the reverberated speech waveform as a

convolution:
t

x(t) = f s(-r)p(t-L)dL = s(t) * p(t)
-ex>

( 1)

The dereverberation problem can then be interpreted as one of deconvolution.

The case of a speech waveform distorted by a single echo of itself

illustrates the above notions. In this case, x(t) would take the form

from which p(t) is seen to be a "train" of two impulses:

where tl is the interpath delay. Similarly, if there are M sharply

(10)
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(2b)

defined echoes, then
M

p(t) = uo(t) + I aiuo(t-ti).
i=l

If the 1.thpath' I d di . th1nc u es spers1ve media, then the i echo will not be

"sharply defined"; that is, p(t) takes on the more general form

p( t) = u (t) +
o

(2c)

Such "echoes" \'1i1lturn out to be more difficult to remove by the signal

processing described in this paper than sharply defined echoes. Unneces-

sary complication will be avoided here by limiting the discussion of

process theory to the case of sharply defined echoes.

Given the above time-invariance approximation, the extraction of

s(t) from x(t) by any method is equivalent to inverse filtering, or

passing x(t) through a linear system having time-invariant impulse
-1response p (t), where

To do this exactly requires complete knowledge of p(t), an undesirable

requirement from the point of view of practicality. A practical approach

to deconvolving s(t) and p(t) is based on using limited information about

these signals to greatest possible advantage. This problem has three

facets: (1) identification of a set of characteristics distinguishing

s(t) from p(t); (2) development of signal processing which can utilize

and/or enhance these differences; (3) development of a method of recon-

structing an acceptable speech waveform from a minimal amount of informa-

tion about s(t), allowing maximum elimination of p(t). All three aspects,

as they apply to homomorphic dereverberation, will be treated here.
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B. Homomorphic Dereverberation of Speech

At this point it is necessary to switch from continuous-time

notation to discrete-time notation. For the type of system to be

discussed below, a continuous-time interpretation leads to serious

mathematical difficulties. In particular, signals of infinite amplitude

are encountered. In a discrete interpretation, however, this does not

occur. The theory is accordingly phrased in discrete terms and imple-

mented using a digital computer.

Let us assume that a reverberated speech waveform is indeed a

convolution:

x(t) = set) * pet) ,

where

pet) = u (t) +o

M
Ii=l

a. u (t-t.).101

Define the discrete-time sequence x(n) by

x(n) ~ X(t)! '
t=nT

(3a)

where n takes on integer values only; then x(n) is the value of a "sample"

of x(t) taken at time nT, where T is an appropriately chosen sampling

period. Similarly, define

s(n) ~ s(t)1
t=nT

(3b)

To remain consistent with the interpretation of x(t) as a convolution, we

must define a pen) such that x(n) is the discrete convolution of s(n)

with pen):
+<x>

x(n) = I s(k)p(n-k)
k=_oo

(12)

s(n) * pen). ( 4)



Assume that p(t) has the form of Equation 2b, that s(t) is bandlimited,

and that T is chosen to be less than or equal to the Nyquis t sampling

period. Then from

x(t) s( t) +
H
L

i=l
a. s (t-t.)
1 1

and the bandlimited interpolation formula

s(t-t.) = T
1

. n ( , )+00 sln T t-ti-mr
L s(m) n(t-t.-mT)m=_OO 1

it follO\"s that

p(n)
H sin -¥ (nT-ti)

= u (n) + L a. -TI-----
o i=l 1 T (nT-ti)

where u (n) is the unit sample:o

u (n)
o 1 n = 0

o n =f: 0

If all the t.'s are integer multiples of T, then1
1'1 t.

p(n) u (n) + L a.u (n-n.), 1= n. =-
0 . 1 101 1 T1=

an ideal correspondence with p(t); but if the t.'s are not integer
1

multiples of T, the relation is more complicated. For example, suppose

Then

p(n)
(-1) n+ 1

u (n) + 33'
o n(n- 2)

as shown in Figure 1. As in the case of dispersive media, this spreading

of energy is an undesirable effect. However, no special treatment of the

problemis given belm.,; the simpler form of Equation 6 is assumed.

(13)



Figure 1

Sample sequence p(n), defined such that

s(n) * p(n) = [s(t) * p(t)]t = nT '

where
33Tp(t) = u (t) + u (t - --2--)o 0

and s(t) is appropriately bandlimited.



. . . .
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Much is known about sophisticated methods for separating added

signals by linear filtering, particularly when only partial information

about one or both signals is available. Not nearly as much can be said

about convolved pairs of signals, such as s(n) * p(n). It is possible,

though, to transform a convolved signal pair into an added pair in such

a way as to allow the use of linear filtering techniques. The resulting

approach to separating s(n) and pen) is most easily expressed symbolically.

Let A[-] be a transformation having the property

A[s(n) * pen)] = s(n) + pen)

where

s(n) = A[s(n)]
pen) = A[s(n)]

( 7a)

(7b)

If pen) were known (which is only partially true in practice), the ideal

linear separation of s(n) and pen) could be accomplished:

[s(n) + pen)] - pen) = s(n) • (8)

If A is invertible (i.e., a one-to-one mapping), s(n) can be recovered:

s(n)
\-.rJ
output

-1" )s(n) = A [s(n].

Hence, the ideal overall process can be expressed as

= A-l[A[s(n) * pen)] - A[p(n)]] •
~

input

The transformation A can be "realized" as a sequence of three

(9)

(10)

invertible operations:

(1) Evaluation of the Fourier transform, S(ejw)P(ejw), of s(n) * pen).

The Fourier transform of a sequence is its z-transform evaluated on the

unit circle, z=ejw• This transform always exists for the finite-duration

sequences with which we shall be concerned.

(16)



(2) Evaluation of the complex logarithm of S(ejw)P(ejw). The object

of this is to separate the product into a sum:
jW'W .W .wlog S(e )P(eJ) = log S(eJ ) + log P(eJ ) , (lla)

ultimately leading to satisfaction of Equation 7a. Equation lla must hold

for real and imaginary parts:
.W.W .W .w10g\S(eJ )1 IP(eJ )1 = 10g\S(eJ ) 1+ 10g\P(eJ )1

L{S(ejW)p(ejW)} = L{S(ejW)} + L{P(ejW)}

,..,here

(lIb)

(llc)

Equation lIb is always satisfied; but Equation llc does not necessarily

hold. The value of the "phase angle", LX(ejW), is only de terminate to

within an integer multiple of 2n, and one's natural inclination is to

resolve this ambiguity by always specifying the principal value3 of the

phase, which lies between 0 and 2n, when computing the complex logarithm.

Equation llc does not generally hold for the principal value, since the

left-hand side is bounded by 2n while the right-hand side is only bounded

by 4n. Satisfaction of Equation lla can be accomplished if the phase is

computed in a certain manner3, but this leads to practical difficulties

that will be discussed in Part III.
". ".

(3) Evaluation of the inverse Fourier transform of S(eJw) + P(eJW),
A.W A.W .w .w

where S(eJ ) and P(eJ ) denote log S(eJ ) and log P(eJ ), respectively:

Note that since each of these steps is invertible, the inverse
-1transformation, A ,is also defined.

It is conceptually helpful to represent the above sequence of

operations as blocks in a system, as shown in Figure 2a. Figure 2b

(17)



Figure 2

(a) Block diagram representation of operation

sequence used to transform s(n) * p(n) into ~(n) + p(n)

(transformation 'A').

(b) Similar representation for operation sequence

which transforms s(n) back into s(n) (transformation
,A-I ').

(c) Canonic form of homomorphic deconvolution system,

where operator L represents a linear filter.

Note: Symbol ,~, in drawing, corresponding to '*' in text,

denotes discrete convolution.

(18)



A 1\
S(z)+P(z)s(z)P(Z)

...... z-transform ...... complex "- inverse "-,/ ,/ logarithm /' z-trdnsform -7

s(n)~p(n)

(a)

s<z> sCn}

"- z-rransform ...... complex ...... inverse "-
/' /' exponential /' z- trdnsform 7'

(b)
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"""'- A """'- L """'- A-I """'-
/' /' ./ .7

(c)
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illustrates the inverse sequence of operations. These "systems" are

representative of a class known as homomorphic systems, reflecting inter-

pretation of the inputs and outputs as elements of vector spaces and

the relation between the spaces as a homomorphismS. In simple terms,
-1this means that A and A each satisfy a "generalized linearity property",

which, in this case, is

A{[sl(n)]a1 * [s2(n)]a2} = alA[sl(n)] + a2A[s2(n)],

. 1 1. 1 . f A-IWltl tle lnverse re atlon or •

Since A transforms the convolution s(n) * pen) into the sum

s(n) + pen), a possibility is to use selective linear filtering to

recover s(n) from this sum. The ideal linear filter for this purpose can

be represented in terms of the linear operator L[-], where

L[8(n) + pen)] = L[8(n)] + L[p(n)] = 8(n).
-1The composite operator A LA, therefore, will produce s(n) from

s(n) * pen); for any L, it is easily shown that

I -1-1A- LA[s(n) * pen)] = A LA[s(n)] * A LA[p(n)],

and the above choice for L determines that

A-1LA[s(n)] =

A-ILA[p(n)] ==

s (n)

u (n)o

This operator also satisfies a generalized linearity property, and so

may be viewed as representing in canonic form a class of "homomorphic

deconvolution systems" illustrated symbolically in Figure 2c.

In general, if
x(n) = A[x(n)],

then x(n) is called the complex cepstrum of x(n). For example, s(n), pen),

and s(n) + pen) are the complex cepstra of s(n), pen), and s(n) * pen),

(21)



respectively. We next discuss some basic properties of these complex

cepstra which are useful in selecting an approach to the linear separation

problem.

C. Complex Cepstra of Speech Waveforms and Small-Room Impulse

Responses

It is often observed that s(n) and pen) each tend to consist

largely of a sequence of narrow, separated peaks, except for a broader

concentration of energy near the origin in s(n). When the peaks of pen)

do not overlap those of s(n), the possibility exists for removing them by

selectively multiplying by zero the regions where these peaks lie. Such

an approach to filtering complex cepstra has been called "frequency-
3invariant" filtering (of the log spectrum) , because it is the dual

of linear time-invariant filtering. Simple models of speech waveforms

and room "impulse responses" are helpful in unders tanding ,,,hythis is a

reasonable approach.

A linear time-varying system excited by a train of pulses,

representing the vocal tract as excited by puffs of air, provides a
6useful model for the production of voiced speech. As shown at the top

of Figure 3, the pulse train, e(n), can be though t of as the output of a

linear system with impulse response g(n), excited by a series of impulses,

men). In turn, e(n) excites a system having the vocal tract impulse

response, r(n). Although g(n) and r(n) are more accurately time-varying

impulse responses, the typically slow variation of vocal tract and vocal

cord characteristics in actual speech production allow us to model these

as approximately time-invariant over short analysis intervals of about

50 msec. For convenience, g(n) and r(n) can be convolved and interpreted

as the impulse response, hen), of a single linear time-invariant system.

(22)



Figure 3

Simple linear time-invariant model for speech waveform

production, approximately valid over short intervals.

Sequence g(n) is glottal pulse and r(n) is vocal tract

impulse response.

Note: Symbol '0' in drawing, corresponding to '*' in text,

denotes discrete convolution.

(23)
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The speech waveform, s(n), is then the convolution of the impulse train,

m(n), with h(n). The spacing bet\veen impulses in men) determines the

short-time fundamental frequency, or pitch, of s(n).

As pitch and vocal tract characteristics change slowly, a 50-msec

segment of a speech waveform appears as a section of a periodic signal.

This is reflected in the frequency spectrum of the segment. Figure 4

shows the magnitude spectrum of the short piece of speech waveform

illustrated in Figure 3. Prior to spectral analysis, this segment was

weighted with a Hamming window

wen) = 0.54 - O.46COs~2~n), 0 < n < N-l

= 0 otherwise

which, because of the low sidelobes of its transform, reduces the spectral

distortion resulting from truncation of the speech waveform. The spectrum

of Figure 4 exemplifies two basic features typical of most short-time

voiced speech spectra. One is the series of narrow peaks spaced at

equal intervals in frequency, a result of the periodicity of the speech

segment. The other is a slowly-varying spectral envelope, which is very
'wnearly IH(eJ )1, the magnitude spectrum of hen). This envelope is not

greatly distorted when the segment is weighted by a Hamming window.

From the nature of its spectrum, the form of the complex cepstrum,

s(n), of a short section of speech can be deduced. The spectrum of s(n)

can be viewed as a product of two components: 'wH(eJ ), which provides the
'wspectral envelope, and M(eJ ), the transform of the impulse train excita-

tion men).

The transform of s(n)

. 'w'wS(eJw) = H(eJ )M(eJ )

'wis the logarithm of S(eJ ):

(25)



Figure 4

Short-time magnitude spectrum of segment of speech

waveform s(n) shown in Figure 3. Segment was

pre-,.,eightedwith Hamming window to reduce spectral

dis tortion.
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or

The complex cepstrum of a section of voiced speech is thus the sum of two
'" '"distinctly different components, h(n) and m(n):

'" '" '"s(n) = h(n) + m(n).
'w '" 'wSince H(eJ ) is a slowly-varying function, H(eJ ) is also slowly-varying.

,...
Therefore, h(n), which corresponds to the spectral envelope, occupies the

low-time region of s(n), as shmvn in Figure 5. '" jwOn the other hand, M(e ),
'wlike M(eJ ), exhibits peaks equally spaced in frequency.* Hence, @(n)

consists of a series of peaks spaced periodically in time, at multiples of

the pitch period. As shown in Figure 5, s(n) extends into both positive

and negative time, even if s(n) = 0 for n < O. This is because the real
'wand imaginary parts of log S(eJ ), which are equivalent to the log magni-

'wtude and phase of S(eJ ), respectively, are not generally Hilbert trans-

forms of each other, as required for s(n) to be "causal".3 Furthermore,

even if a short section of s(n) is analyzed, s(n) is generally infinite

in duration, although it tends to die out faster than lflnl.3

Next, let us consider the complex cepstrum of a simple room impulse

response, p(n). Let p(n) consist of two impulses, corresponding to the

case of a single echo of amplitude al:

Then

which is recognized as a periodic function of frequency. Figure 6 shows a

*The frequency of this periodic variation in frequency is sometimes called
the "quefrency", to distinguish it from the frequency itself. Quefrency,
of course, has the dimensions of time.
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Figure 5

Typical complex cepstrum of speech waveform segment.
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Figure 6

Hagnitude spectrum of simple room "impulse response"

p (n), '''here

.wThe typical "valleys" in IP(eJ )1 are responsible for

the "comb-filtering" effect of simple reverberation.
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plot of the magnitude of P(ejw). The valleys in the room frequency

response, as can be seen from Figure 6, would cause considerable distor-

tion of the sound reaching the microphone.
'w "'wIn this case, log P(eJ ) (or P(eJ » is periodic in frequency,

its period of variation being 2n/nl• TIlerefore, p(n), like m(n), consists

of a series of peaks, these spaced at intervals of nl in time, as shown

in Figure 7. For this example, p(n) occupies only positive time, though

in general p(n) extends into negative time also.

The complex cepstrum of s(n) * p(n) is simply the sum of p(n) and

8(n). Figure 8 illustrates the desirable situation in which p(n) does

not overlap the major concentrations of energy in 8(n). The arrangement

of peaks in Figure 8 is not unreasonable, since values for the echo time,

nl, typically fall between 1 and 10 ms, while the pi tch period of a

speech waveform ordinarily falls between 5 and 20 ms.

Realistic room impulse responses contain more than one echo, of

course. It is not generally feasible to determine analytically the form

of p(n) for more complicated p(n). Usually many more peaks appear in a

pattern not simply related to p(n), and the peaks may not be as sharp as

for the case of a simple echo. Since the overlap of p(n) with 8(n)

increases, it becomes more difficult to recover 8(n).

If it is known where to expect to find peaks of p(n), then a

reasonable method of eliminating p(n) might be to set the complex cepstrum

to zero at these points. This is easy to do when 8(n) + p(n) is stored

in an array or register of a digital computer. Of course, such an opera-

tion may cause varying degrees of "damage" to 8'(n), depending on the

values of 8(n) at the zeroed locations.
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Figure 7

Complex cepstrum, p(n), of

p(n) = uo(n) + a1uo(n-nl).

Note, in this instance, that

1)(n) = 0, n < 0,

although this is generally not true. Also,

p(n) decays faster than l/Inl for lall < 1.
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Figure 8

Complex cepstrum of reverberated speech waveform,

s(n) * p(n), showing "reverberation peaks" which

must be removed to recover s(n).
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Given only 8(n) + p(n), however, the information needed to

identify the peaks of p(n) is not readily available. Another approach

might be to set to zero all parts of the complex cepstrum in which the

values of g(n) are expected to be so small as to be insignificant. The

more extensive the zeroed regions are, the more likely it is that they

will include all the peaks of p(n). Unfortunately, determining which

regions of g(n) are significant poses a problem similar to that of finding

the peaks of p(n). It is difficult to distinguish peaks of s(n) from

those of p(n) by automatic means.

A more effective although less efficient approach to eliminating

p(n) is to identify unvlanted peaks by "comparing" the complex ceps tra of

two differently reverberated versions of the same section of speech.

That is, compare 8(n) + Pl(n) with 8(n) + P2(n); where they differ

significantly, there is a peak in either PI (n) or 1>2(n)• These t,~ocom-

plex cepstra are obtainable from the outputs of two differently-positioned

microphones; since the reverberation would be different in each case, the

p(n)'s will likewise be substantially different. This idea will be

treated in more detail in Section IV.

D. Summary
A reverberated speech waveform is conveniently represented as a

convolution s(n) * p(n), where s(n) is the unreverberated speech waveform

and p(n) is the "impulse response" of the reverberant room. It is pro-

posed to recover s(n) from s(n) * p(n) by homomorphic deconvolution,

which consists of:

(1) transforming s(n) * p(n) into a sum of corresponding signals,

8(n) + p(n);
(2) linear-filtering the sum to eliminate p(n);

(38)



(3) transforming the result, s(n), back into s(n).

The characteristics of the "complex cepstra", s(n) and p(n), of s(n) and

p(n) often make it possible to remove p(n) from s(n) + p(n) without

excessive distortion of s(n), if the peaks of p(n) can be accurately

identified. One way of doing this is to compare two complex cepstra of

the form s(n) + Pl(n) and s(n) + P2(n), where Pl(n) and P2(n) are sub-

stantially different.

In the next section it is seen that the cepstrum, or even part

of the complex cepstrum, is more practically dealt with than the complex

cepstrum. However, its use complicates the final step of the deconvolu-

tion process, recovery of s(n) from the filtering result.
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III. Aspects of Voiced Speech Resynthesis from the Even Part of the

Complex Cepstrum

A. The Cepstrum

Recent vocoder work7,9 has indicated that speech of reasonable

quality can be resynthesized from spectral magnitude data, through the
7introduction of a minimum phase characteristic which resembles the phase

of natural speech. This suggests a possible simplification of the homo-

morphic filtering process. In Section II it was seen that

where "F.T." denotes "Fourier transform." The real and imaginary parts

of the above are
,.. .
SR (e

Jw
)

,.. .
SI(eJW)

.W
= loglS(eJ )\

= L{S(ejW
)} •

,..
Since the inverse transform of SR is the ~ part of s(n),

S (n) ~ ;R(ejW
)ev

it follows that if acceptably good speech can be synthesized from
.W\S(eJ )\ alone, then it should be necessary to recover only s (n) fromev

the reverberated input speech. This means that instead of computing

s(n) + p(n) from s(n) * p(n) and removing p(n), only s (n) + p (n) willev ev
be computed to start with, necessitating removal of p (n). This processev
is, in most respects, similar to the process described in Section II,

except that resynthesis of speech cannot be accomplished from direct

"inverse transformation" of s (n) as it could for s(n). In the author'sev
work, the resynthesis technique employed follows closely that of

7Oppenheim's homomorphic vocoder •
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The even part of the complex cepstrum is referred to as the

cepstrum. Aside from the reason discussed above, certain practical consi-

derations have favored the use of the cepstrum. One problem in computing

the complex cepstrum is evaluation of the complex logarithm such that the

relation
'w'w 'w 'wlog S(eJ )P(eJ ) = log S(eJ ) + log P(eJ )

of Equation lla is satisfied. As discussed in Section II, the problem

stems not from the real part of the equation,

which is always true and suffices for determination of s (n) + p (n),ev ev
but the imaginary part,

It is true that for any piece\olise-continuous integer-valued function N(w),

ejLx(ejw) = ej{2TIN(w) + lX(ejw)}. ,

thus, the actual phase functions produced by a computational algorithm
'w 'w 'w 'wfor S(eJ )P(eJ ), S(eJ ), and P(eJ ) can generally have the form

l{S(ejw) } = e (w) + 2TIN (w)s s
l{P(ejw) } = e (w) + 2TIN (w)

P P

1{S(ejw) P(ejw) } = e (w) + e (w) + 2TIN (w) ,s p sp

where e(w) is the principle value of the phase and N (w) may not equalsp
N (w) + N (w).s p

3Schafer has argued that one way of guaranteeing satisfac-

tion of Equation llc (the only way yet discovered) is to choose the unique

N(w) such that Sew) + N(w) is a continuous function.~'c This involves finding

*Thi~ is always possible for a finite-duration sequence x(n), for \yhich
X(eJw) is continuous, implying that there is a unique continuous func-
tion from which the phase (as computed) may differ only by some multiple
of 2TI at any value of w.
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the discontinuities of 2n in 8(w), ,,,hichcan be viewed as the "continuous

phase" in modulo-2n form. All of the algorithms proposed for "unwrapping"

this phase function have required a fine-resolution spectral analysis

or have otherwise necessitated an excessive amount of computation.

This has been the most serious barrier to use of the complex cepstrum.

Another potential problem ,,,iththe complex cepstrum arises in a

filtering process involving the "comparison" of two or more complex

cepstra. The benefits of comparison are realized only if the complex

cepstra have a cornmon component corresponding to the unreverberated

speech, and differ only in the components due to reverberation, e.g.

Such complex cepstra can be derived from the outputs of two differently-

placed microphones. But if the source-to-microphone distances are not

equal, then there is a "differential delay" between xl (n) and x2(n); i.e.,

s (n) * PI (n)

x2(n) = s(n-M) * P2(n), M # 0

which does not result in the desired condition.

However, the cepstrum provides a possible solution to this

problem. Let the short-time spectrum of s(n) be defined by

N-I .jw \ -JwnS (e ,r) = L w(n-r)s(n)e
w n=O

= F.T.[w(n-r)s(n)],

where w(n) is a duration-limited weighting window:

w(n) = 0, n < 0, n > N.
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For window durations on the order of 40-60 msec, it is observed that the

short-time magnitude spectra of speech waveforms tend to vary slowly lvith

window position, r, while the short-time phase spectra vary considerably

more rapidly. Thus, although the odd part of a complex cepstrum computed

from S may be substantially altered by small changes in r, the even partw

or cepstrum will not, since it depends only on the magnitude spectrum.

Applied to the above problem, this means that the short-time cepstrum of

s(n-M) is approximately equal to the short-time cepstrum of s(n) if M is

a number of samples corresponding to a delay of less than about 7.5 msec.

This is roughly the delay that would be produced by a 7.5-foot difference

in speaker-to-microphone distances. Since speech can be resynthesized

from these short-time cepstra, use of the cepstrum provides a potentially

feasible solution to the differential-delay problem. Experimental verifi-

cation of this idea is discussed in Section IV.

It must be emphasized that these arguments against the complex

cepstrum are not based on enough conclusive evidence to rule it out

entirely. Most of the present investigation centered around the cepstrum

because of the simplifications it allowed. Parallel experiments were

not carried out using the complex cepstrum.

B. The Resynthesis Problem

It was seen above that the cepstrum has certain practical advan-

tages over the complex cepstrum. In addition, p (n) is often more easilyev
separable from s (n) than p(n) is from 8(n), because the odd part of 8(n)ev
frequently causes a worse time-overlap with p(n) than the even part.

Therefore the filtering problem is simplified by use of the cepstrum.

On the other hand, resynthesis of s(n) from g (n) is complicatedev
by the cepstrum's lack of speech phase information. In recovery of s(n)
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from 8(n) by "direct inverse transformation",*

-1 "s(n) = A [s(n)],

the odd part of 8(n) produces the phase spectrum of s(n), while the even

part produces the magnitude spectrum. The phase is necessary to preserve

important temporal characteristics of the waveform: proper amplitude

modulation, periodicity (or quasi-periodicity), incidence of voiced-

unvoiced and unvoiced-voiced transitions, etc. In short, the magnitude

spectrum determines how the signal energy is distributed among the

sinusoidal components of the tvaveform, but is insufficient to determine

the temporal energy distribution, for which phase information is also

required. -1 "It follows that A [s (n)] is not s(n), and generally doesev
not even have the same temporal properties.

Exact recovery of s(n) from s (n) is therefore not possible. Anev
interesting question is whether speech resynthesized from the processed

magnitude spectrum but using the phase spectrum of the reverberated

waveform sounds adequately dereverberated. The net effect of such a pro-

cess is essentially equivalent to passing the unreverberated speech wave-

form through an all-pass filter having a phase equal to the phase spectrum

of p(n). This was tried experimentally, and the results compared 'oliththe

unreverberated input and the "completely" reverberated 'vaveform. Unfortu-

nately, there was Ii ttle difference bettveen the completely reverberated

speech and that tvith only phase dis tortion. I t can be concluded» therefore,

that the phase of a reverbera ted speech t"8veform mus t ei ther be processed

to remove the effects of reverberation or replaced by a suitable "artifi-

cial" phase.

*Note that tllis inverse transformation process applies whether we mean a
section of s(n) or s(n) in its entirety.
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There are several possible approaches to approximate speech

resynthesis using artificial phase. The most simple-minded is to synthe-

size a section of output waveform (corresponding to the analyzed input

section) directly from the magnitude spectrum produced from g (n) and anev
artificial phase. This is equivalent to creating an artificial complex

cepstrum by adding an odd-symmetry sequence, S den), to g (n) and
-0 ev

"inverse transforming":

Section
of

Output
s(n) A-l[sA (n) + A ()]s d n •ev -0

Synthesized sections would then be butted together to form the processed

output signal.

The main problem is to choose a phase (or an S den»~ which results-0
3in a satisfactory waveform. A convenient choice is minimum phase. The

minimum phase function, <Pmin(w), where

3 .Wis the Hilbert transform of log IS(e] )1, and can therefore be produced

by choosing

S den) = s (n), n > 0
-0 ev

= 0 n = 0

= -g (n~ n < O.ev
The resulting "minimum-phase complex cepstrum" is

g . (n) = g (n)k(n)m1.n ev
where

ken) 2 11 > 0

= 1 n = 0
= 0 n < O.
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Sections of speech synthesized with minimum phase often closely resemble

the original, natural-phase sections, as the example of Figure 9 illustrates.

However, this case also exemplifies some of tile undesirable characteristics

of minimum-phase sections. These sections almost invariably decay as time

increases, and generally appear time-shifted relative to the original

section in such a way that the maximum peak occurs near n = O. Therefore,

even if the minimum-phase sections resemble their natural-phase counter-

parts in certain aspects (such as quasi-periodicity), successive sections

do not "match" at their boundaries. Furthermore, since each section

decays, a waveform produced by butting together minimum-phase sections

has a "periodic" amplitude modulation not characteristic of the original

waveform. The possibility exists for weighting the sections to compensate

for this modulation; section boundaries could perhaps be matched by appro-

priate time-shifting, and "smoothed" together by overlapping sections and

interpolating sample values. However, no successful method of doing this

has been found.

Other phases are of course possible. Zero phase, (<P(w) = 0), for

example, can be used, but zero-phase sections tend to be even more distorted

than minimum-phase sections. A typical zero-phase section is illustrated

in Figure 10. Zero phase and minimum phase are mentioned here primarily

because they are easily generated using the cepstrum. Some experimentation

with other phases has been done; the results have not been satisfactory

and are omitted here.

One might suspect that if successive sections do not overlap, then

information common to alTO such sections,which is perhaps essential to make

the synthesized sections compatible with each other, is lost. This would

suggest that section overlap should be a large fraction of section length.
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Figure 9

Comparison of natural-phase speech waveform section

and minimum-phase section having same magnitude

spectrum. }linimum-phase section was constructed by

computing Discrete Fourier TransformlO (DFT) of

natural-phase section, replacing natural phase with

minimum phase, and computing Inverse Discrete Fourier

Transform (IDFT) of resulting spectrum.

(47)



nc3turdl-phQse section

minimum-phase reconstruction

(48)



Figure 10

Comparison of natural-phase speech \'1aveform section

and zero-phase se ctian vJi th same magni tude spec trum.

Zero-phase section was computed in same manner as

minimum-phase section of Figure 9.
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In the extreme case, sections of N-sample duration could be overlapped by

N-I points. For each input section, a corresponding processed output

section (with artificial phase) would be produced. Then a complete

waveform could be constructed as a composite of these sections, either by

interpolating sample values in overlapping regions or allowing each section

to contribute only a few samples to the output.

A difficulty in successfully accomplishing this is that time-

shift information is lost \o1iththe discarded phase. For example, if

successive N-sample sections are overlapped by N-l samples, then the

corresponding processed sections should look almost identical to one

another except for a time-shift of one sample. But often this time-shift

is completely lost, as is illustrated by the minimum-phase and zero-phase

examples. Resynthesis techniques can introduce the shift artificially,

but serious problems still remain.

Before considering an example, let us define the short-time

"running" spectrum of a waveform x(n) by

. N-I 'wm
X (n, eJW) = I w(m)x(m+n)e-J •

w m=O

Computationally, we are limited to a discretely-sampled version of the

above:

X (n, k)w
( ejw) I= X n, =w

2nk
W =--

N

N 1 .2nkm- -J---N-
I w(m)x(n+m)e •

m=O

10 .This is equivalent to the Discrete Fourier Transform (OFT) of a \o1el.ghted

N-point section of x(n), or may be interpreted as the spectrum produced by

*a bank of N filters having impulse responses

*I.e., the output of the kth filter is seen to be

Yk(n) = Xw(n-N+l,k).
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.27T(n+l)k
J N

= w(N-l-n)e

= 0 othenvise.

o < n < N

The discrete spectrum is specified by N successive samples, k = 0, ••• ,

N-l, because
.27T(k-rN)m-J N

e

.27Tkm-J-N-
e r integer.

These N samples are sufficient to recover the section of x(n) between

formula

n < n ~ N-l,0-

n = no and n = n +N-l according to the inversiono
.27Tkn1 N-l J---N-

x(n) = N ( ) L X (n , k)e ,w n-no k=O w 0

which is essentially equivalent to the Inverse Discrete Fourier Transform

(IDFT) of X (n , k).w 0

We now return to the resynthesis problem. The procedure described

below has been proposed as a possible solution. Difficulties encountered

here are typical of those encountered with other "direct inverse trans-

formation" approaches to synthesizing the processed speech \vaveform using

artificial phase.

First, an artificial-phase running spectrum,

is computed, where Is (n, k)1w
is the magnitude spectrum of the weighted

section of s(n), as recovered from s (n). Next, consistent with theev
fact that

N-l j27Tkn
s(n) = _1_ I S (n, k)e N , all n,Nw(O) k=O w

the output waveform is synthesized from the running spectrum according to
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N-l .21Tkn1 J-N-
s(n) = -----(0)I ~(n, k)e , all n.Nw k=O-

Note that this is not just a section of output waveform, but a complete

waveform.

It is possible to interpret ~(n) as a composite of artificial-

phase sections. Let g (m) denote the sequence
n

g (m)
n

N-l .21Tkm
1 '\ J-N-

= Nw(O) L ~(n, k)e ,
k=O

where n is treated here as constant. Thus g (m) has period N:
n

g (m) = g (m+N), all m.
n n

Suppose that ~(n, k) is a minimum-phase spectrum; for example, let

I~(n, k)1 equal the magnitude spectrum of the speech waveform section of

Figure 9, and let the phase be the corresponding minimum-phase spectrum.

*Then the minimum-phase section of Figure 9 is one period of g (m). It
n

follows that g (m) is a periodically-decaying waveform with its maxima
n

near multiples of N. Nearly all g (m)'s synthesized from minimum-phase
n

sampled spectra are found to have these same characteris tics. Now,

observe that

s(n) = gn(ffi) I

m=n

i.e., s(n) is the nth sample of the nth element of a sequence of

periodically-decaying g (m)'s. Because all of the g (m)'s have similarn n
characteristics, ~(n) itself will also exhibit these properties. That is,

~(n) will decay periodically (although it will not generally be periodic),

and will have maxima near multiples of N! Similar phenomena can be

*This section was actually computed from the formula given for g (n).
m
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expected to occur whenever an artificial phase, which is entirely

dependent on the magnitude spectrum, produces g (n)'s having common
m

properties highly characteristic of that phase.

This occurs for zero phase as \-lellas minimum phase. In an

experiment, the sentence "The light flashed the message to the eyes of

the watchers" was synthesized according to the above procedure using zero

phase. As expected, the resulting waveform was characterized by a strongly

periodic modulating envelope, with the envelope period dominating the

sound of the sentence. The sentence was still intelligible, but quality

was entirely unacceptable.

c. Pitch-Synchronous Synthesis

Probably the most serious problem with the above resynthesis

approaches is that the proper quasi-periodic structure of voiced speech

waveforms is not preserved. To solve this problem, the pitch-synchronous
7synthesis method used by Oppenheim in the homomorphic vocoder was

adopted. This, in principle, is the literal implementation of the speech-

production model of Figure 3. Three basic operations are involved:
"-I. The low-time part of 5 (n), h (n), corresponding to theev ev

spectral envelope IH(ejW)I, is separated from the rest of the

cepstrum. An odd-symmetry part,
"-

~od(n) =
"-
h (n), n > 0ev

= 0, n = 0

"-
= -h (n), n < 0,ev

"-is added to h (n) to produce an artificial "vocal tract impulseev
response,"

which is the minimum-phase counterpart of the h(n) shown in

Figure 3.
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2. The current pitch period of the input waveform is measured by

locating the first pitch peak of the cepstrum. Recall from

Section II that these peaks are produced by the approximate

periodicity of M(ejw), which is the transform of the impulse

train men) in Figure 3.

3. Using the pitch data obtained in Step 2, the effective convolu-

tion of men) with ~(n) is carried out, producing a speech waveform

s(n) = men) * hen).
Quality synthesis requires that new cepstra be computed approximately

once every 10 msec, producing new ~(n)'s and pitch measurements often

enough to follow the natural changes of hen) and men).

It should be pointed out that the Fourier transform and inverse

Fourier transform operations involved in the above are computationally

performed using the DFT and IDFT:

DFT:

IDFT:

X(k)

x(n)

I
N-l

X(ejW) L
271'k n=O

W =--
N

N 1 .271'kn
- J--

1 '\ N= N L X(k)e ,
k=O

.271'kn
-J-N-

x (n) e , 0 < k < N-l

o < n < N-l.- -

Both x(n) and X(k) are periodic wi th period N. "Nega tive time", as in the
~ Ndefinition of ~od(n), corresponds computationally to 22 n 2 N-l, and

N"positive time" corresponds to 0 2 n 22'-1. Thus, the "artificial complex

cepstrum" is actually computed according to
~ ~ ~h (n) + h den) = h (n)k(n), 0 < n < N-lev -0 ev

where
ken) N= 2, 1 < n < - -1- -2

1, 0 and N= n = n = -2
= 0, !i +1 < n < N-l2 -

(55)



How much of s (n) should be included in the "low-time part" isev
determined by the amount needed to maintain synthesis quality, the neces-

sity to exclude any pitch peaks from the low-time part, and the desirability

of maximizing the amount of p (n) eliminated in the process of isolatingev
the low-time part. A reasonable choice is found to be 3-4 msec of the

cepstrum, as illustrated by the typical cepstrum of Figure 11. (For

example, at a sampling rate of 10KHz, this corresponds to about 30-40

samples. )
A.

Thus, h (n) is obtained from g (n) by multiplying the latterev ev
by a "truncation window," i(n):

i(n) = 1, 0 ~ n ~ L, N-L ~ n ~ N-1,

= 0, L < n < N-L ,

where L = 30-40. Actually, since "negative time" samples of h (n) areev
not used, the actual i(n) can be

i(n) = 1, 0 < n < L

= 0, L < n < N-l.

In practice, the convolution of hen) with men) is performed by

simply delaying successively-computed ~(n)'s by amounts equal to the

speech period and adding them to form a running output waveform. This

process is illustrated in Figure 12. The quality of the resynthesized

waveform can be improved by smoothing the transition from one hen) to the

next. This can be accomplished by interpolation. The interpolation

method involves a weighted sum of two ~(n) 's, the lveighting depending

upon the time a given synthesized period* begins relative to the interval

between production of the two h(n)'s. Let H samples be this interval and

let ~o(n) and ~l(n) be produced at the beginning and end of the interval

*I.e., a new period begins at each impulse of men).
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Figure 11

A typical voiced-speech cepstrum, s (n), illustratingev
its similarity to the corresponding complex cepstrum.

The low-time part is defined such that it excludes the

pitch peaks and to include the smallest fraction of the

cepstrum from which quality ~(n)'s can be recovered.
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Figure 12

Running speech v,aveform cons truc tion from h (n) 's

produced each 10 msec. Delays of ~(n) 's, which

determine period of 'vaveform, are based upon pitch

period values found by detection of cepstral pitch

peaks. Each period is a 'veighted average of ~ (n) 's,

\-liththe weights adjusted according to the time a

given period begins relative to the times that the

~(n)'s are computed from their cepstra. These rela-

tive times are measured according to the vertical

dimension in the drawing. (See also Figure 13.)

Hote: Symbol 'h' (n)' in drmving corresponds to hen) in text.
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respectively. Then an ~(n) to be positioned in the running speech

output Q samples into the interval is computed as

hen) = (1- g)h (n) + g 11 (n)
"I "'J -1 '- I' -0 l'

as illustrated in Figure 13.

The length and shape of the input sectioning window, wen), also

influence the quali ty of the synthesis. The length of the windm'1 should

be short enough that hen) and the pitch do not vary significantly over

the window duration. Then

w(n)s(n) ~ w(n) [h(n) * men)].

A further requirement is that

w(n)[h(n) * men)] ~ [w(n)m(n)] * hen)

so that the low-time part of the cepstrum of s(n)w(n) is approximately

h (n). In terms of transforms, this necessitates thatev

IW(ejw) * [H(ejW)M(ejw)]I ~ IW(ejw) * M(ejW) I IH(ejW) I.

This approximation is good if IW(ejw)I is sufficiently narrowband relative

to variations in IU(ejW) \. .00Since the bandwid th of 1"1(eJ ) I varies

as the inverse of the duration of wen), a lower limit is placed on

section length, in conflict with the first requirement above. Thus

only a restricted range of window durations is acceptable.

Another factor is that the vlindow should enhance the amplitude

of the first cepstral pitch peak so that it is easily identifiable as a

local maximum in the cepstrum. This is accomplished by choosing wen)

such that W(ejw) has lovl sidelobes, making Iw (ejw) * M(ejw) I more nearly

"sinusoidal" than if the sidelobes are large. FigurES 14 and 15 illustrate

the effect of side lobes wi th a comparison be t\.,reena 512-point square \'lindow

(Figure 14) and a 512-poin t Hamming vlindmv, given by
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Figure 13

Detailed procedure for \.,eighted averaging of ~(n) ts t

which is done to smooth the transitions between

successively-computed ~(n)ts. This partially offsets

roughness of quality due to computation of a new ~(n)

only once every 10 msec. In drawingt h' (n) is vie\.,ed
0

as being computed "at" n=n t and hi(n) "at" n=n +H.
0 0

Note: h' (n) of drawing corresponds to h(n) of text.
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Figures 14 and 15

Comparison of square and Hamming windm-l performance.

(14a) 5l2-point square window

(14b) Magnitude spectrum of this window: note high

sidelobes

(14c) Magnitude of speech waveform section weighted

by square window. Low amplitude, narrow spikes are

due to spectral sidelobes of windm-l.

(14d) Cepstrum computed from above spectrum; pitch

peak is not clearly resolved.

(l5a, b, c, d) Corresponding functions for a 512-

point Hamming vlindow. Note clear resolution of

cepstral pitch peak in Figure l5d.
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21Tnw(n) = 0.54 - 0.46 cos~, 0 2 n 2 N-l.

As the drawings show, the performance of the Hamming window is far

superior. In addition, the low sidelobes improve the approximation

w(n)s(n) ~ [w(n)m(n)] * h(n)

as mentioned in the preceding paragraph.

It has been observed that, for a Hamming window, pitch peak

amplitude varies substantially with the position of the window relative

to the analyzed speech waveform. This results from the fact that

w(n).s(n) looks more or less like a portion of a periodic sequence

depending upon the position of the pitch periods within the window. As

the number of periods captured by the window increases, the pitch peak

variation decreases. Figure 16 shows the results of an experiment in

which a hypothetical m(n) 'o1as weighted by a shiftable 5l2-point Hamming

window w(n) :
+00

m(n) = I u (n-r1'1)
0r=-oo

m (n) = m(n)vl(n-n)•w
The window shift is allowed to vary over the range 0 2 n ~ M-l, or one

period of m(n). The first cepstral pitch peak amplitude as a function

of n, determined from

Peak Amplitude = Max[m (n)], 1'1-5< n < H+5,wev - -

is plotted for 1'1= 150 and M = 170. Note that there is a substantial

increase in variation as the number of periods captured by the window

changes from 3.4 (1'1= 150) to 3.0 (M = 170). A similar plot, Figure l6c,

was made using a portion of a speech 'o1aveformin place of m(n), wi th

approximately 4.2 periods under the window. Figures l6d, e, and f show

the optimum positioning of the window as determined from the plot maxima
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Figure 16

Computer-generated plots showing effect position

of Hamming window (relative to speech waveform)

can have on pitch peak amplitude. Plots a, b, and c

show peak amplitude as a function of the window-

shift index, n, for two impulse trains and a voiced

speech 'vaveform; Figures l6d, e, and f show the

weighted waveform when the window is in the optimal

position. Window length is 512 samples.

(a) Cepstral pitch peak amplitude for weighted

impulse train, impulse spacing of 150 samples.

(b) Same, except impulse spacing of 170 samples.

(c) Pitch peak amplitude for lIamming-'veighted

speech 'vaveform, with 4.2 periods under windmv.

(d) Impulse train of part (a) weighted by optimally-

posi tioned ,.,indm-l.

(e) Same, for impulse train of part (b).

(f) Same, for speech waveform of part (c).
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of Figures l6a, b, and c, respectively. Not too surprisingly, maximum

peak height occurs when the maximum amount of "periodic energy" is under

the window. A method for automatic positioning of the window to take

advantage of the maximum peak height for a given window length might

substantially improve the performance of cepstral pitch detection algo-

rithms.

For typical speech waveforms, the requirement that h(n) and the

pitch period do not vary much ~yithin the window allows a window length

not much longer than about 50 msec. This may conflic t ~-ri th the need to

have enough pitch periods under the window to produce a consistently

strong pitch peak, if the period is long. This problem is encountered

with low-pitched male speech. For example, if the window length is 40

ms and the pitch period is 15 ms, then there are only 2.67 periods under

the window, so that for some window positions the cepstral pitch peak

may be very small. Due to pitch-detection errors thereby caused, the

synthesized speech may sound very rough. in lm-r-pitched areas. A possible

solution to this problem is the automatic adjustment of windm-r length to

some minimum number of pitch periods, according to the most recent pitch

measurement, whenever the normal window length is less than this minimum

number of periods. The improvement in pitch-detection accuracy would

probably be worth the sacrifice of short window length.

As will be discussed in Section IV, windm., length and shape

also have importance with respect to the effectiveness of cepstral

filtering for eliminating reverberation. It is shown there also that a

Hannningwindow is a good choice for these requirements.

D. Speech Quality with Pitch-Synchronous Synthesis

Rough or strident quality has been the main difficulty ~vith
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pitch-synchronous synthesis as implemented. This distortion is judged

by some to be less tolerable than the reverberation being removed:

Probably the fundamental limit upon the quality of speech synthesized in

this way is determined by the extent to which the model of Figure 3 accu-
*rately represents natural voiced speech production. If the model is

assumed valid, several secondary factors still detract from the quality,

some of which were discussed above. Two others have been seen as contri-

buting to roughness: the minimum phase used in the synthesis of ~(n),
"and the cepstral truncation involved in isolating h (n) from the rest ofev

the cepstrum. Both of these affect the temporal distribution of energy

in ~(n).
In particular, minimum-phase ~(n)'s tend to have a high peak

factor and often decay more rapidly than natural-phase h(n)'s, even when

they have the same magnitude spectra. This does not seem to affect the

ready identification of voiced sounds by a listener, but may strongly

influence quality. The duration of ~(n) may be increased and the peak
'wfactor decreased by adding to the phase shift in ~(eJ). An addition to

the phase other than a linear term results in a time-shift of certain

sinusoidal components of ~(n) relative to others, which can produce a

spreading of the energy distribution in hen). Zero-phase ~(n)'s (corres-

ponding to "zero delay" of all sinusoidal components) generally have the

highest peak factor and shortest duration of all. This is because a sum

of undelayed cosines has maximum constructive interference at n=O and

destructive interference increases very rapidly as Inl increases. Minimum-

,-c It should be pointed out that this model can be extended to allow synthesis
of voiced sounds.7 However, only voiced speech is considered in this paper.
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phase ~(n)'s have the property that of all causal ~(n)'s having the

same magnitude spectrum, the minimum-phase ~(n) has the smallest phase

shift. Since this is as close to zero phase as a causal hen) can get,

minimum phase also produces relatively high peak factor and short duration.

The concurrent appearance of rough or "buzzy" speech quality with these

characteristics suggests the possible importance of the choice of arti-

ficial phase to accomplishing good quality.

A few experiments were carried out in which the phase was increased
"-by making h den) larger than for minimum phase. A marked change in the
-0

temporal energy distribution of the ~(n)'s was produced, but other compli-

cations resulted in a net degradation of speech quality. One interesting

consequence was that as the duration of hen) was increased beyond a certain

point, initially unreverberated input speech was made to sound reverber-

ated in the synthesis!

\vhile minimum-phase, pitch-synchronous synthesis has often

resulted in undesirably rough quality as implemented above, Rabiner and

Schafer have not encountered this degree of roughness with minimum-phase

forman t syn thes is •9 Their technique also assumes the voiced speech

production model of Figure 3, but the linear system representing the vocal

tract, glottal pulse, and radiation characteristics is realized as a ten-

pole digital network. The multiple resonances of this network are

periodically adjusted to correspond to the naturally-occurring resonant

peaks in IH(ejw)I (Figure 17), which is computed from approximately the

first four milliseconds of the cepstrum s (n). The network frequencyev
response, therefore, is actually an approximation to IH(ejw)l. Signifi-

cantly, this ten-pole model is devised in such a way that although the

network impulse response is minimum-phase, speech synthesized by impulse-
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Figure 17

Illustration of essentials of formant synthesis

(voiced speech) by method of Rabiner and Schafer.

Resonant frequencies of three cascaded digital

resonators are adjusted at periodic intervals to

correspond to natural formant peaks detected from

envelope of log magnitude spectrum of input speech

waveform; envelope is computed from low-time part

of cepstrum.
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train excitation of the network sounds more natural than if the h(n)'s-
are derived directly from the cepstrum. On the other hand, the amount

of computation required for formant synthesis by present techniques is

greater than for synthesis 'vith direct-computed ~(n)' s.

The above ten-pole model provides a convenient idealization

through which to discuss the effec ts of ceps tral trunca tion. Specifically,

the formant net,.,orkhas the system function (expressed as a z-transform)

Hf (z) - -1A -1 _1

4

1 [ -1 1 -1 ]
(l-az ) (l+bz ) k=l (l-~z ) (l-ck*z )

where A, a, and b are real cons tants and

-Ok + j~
ck = e

for which ak and ~ are the kth formant bandwidth and frequency. Each pole

corresponds in the time domain to an exponentially-decaying sequence; the

network impulse response hf(n) is the convolution of these sequences.

The decay rates are controlled by a, b, and the ak's. In particular, as

the ~'s, or formant bandwidths, are increased, the rate of decay in-

creases. Now, an important consequence of the ten-pole model is that the
"complex cepstrum hf(n) is necessarily infinite in duration. As computed

from3

"where C is the unit circle, hf(n) is given by

4 -~ n ]an + (_b)n + \' k.L e cos ~(n ,n > 0 ,
k=l
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log A, n=O

= 0, n < O.
The infinite duration of hf(n) contrasts with the truncated complex

cepstrum from which the l1(n)'s are computed.

Consider the effect of truncating hf(n):

where

9.,(n) 1

= 0

Inl < L

Inl > L
Since multiplication in the time domain corresponds to convolution in

the frequency domain, the effect of this truncation will be to increase

the formant band\o1idths. Therefore, hf (n) \o1illtend to decay more rapidly.

The lower is L, the higher will be the ra te of decay. We \o1ouldexpec t

a similar effect with the truncation of s (n) to produce h (n). Actually.ev ev '
what is really produced is only a truncated approximation to the "true"

"h (n); although this leaves the positions (in frequency) of the formantev
peaks essentially unchanged, the width of the peaks is increased, with the

result that ~(n) decays more rapidly than it should. Formant synthesis

escapes this effect because the formant bandwidths are preset at values

which produce natural-sounding speech, and thus are not influenced by

cepstral truncation.

It must be emphasized, however, that to maximize the elimination

" "of reverberation, truncation of h (n) + h d(n) at the lowest possibleev -0

point is necessary unless reverberant "clutter" can be reduced to an

insignificant level without distortion of h (n) + h d(n). An approachev -0

to accomplishing this is suggested in Section V.
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A final possibility is that the effects of truncation might be

reduced somewhat by the smoothing of the truncation window at its ends~

An end-tapered truncation window is illustrated in Figure 18. This

tapering tends to reduce the sidelobes of the spectrum of the truncating

"-lindow,although it also increases the width of the central lobe. Such

a window was used in the experiments to be described in Section IV.

E. Summary

The cepstrum, or even part of the complex cepstrum, is seen to

have advantages over the full complex cepstrum with respect to computational

feasibility, the problem of differential delays benveen the multiple

inputs required for "comparison" of complex cepstra, and the ease of

removing the reverberant component of the cepstrum. On the other hand,

synthesis of speech from the cepstrum is complicated by its lack of speech

phase information. A feasible solution to this problem is use of the

pitch-synchronous synthesis technique of Oppenheim's homomorphic vocoder.7

Speech synthesized by this technique has been slightly rough, although quite

intelligible. Some important factors influencing synthesis quality seem

to be speech model validity, the effects of sectioning the input waveform,

the use of minimum phase in resynthesis, and truncation of the cepstrum.

In the next t"10 sections, methods of filtering the ceps tra of

reverberated speech waveforms to remove the reverberant component are

discussed. The pitch-synchronous synthesis technique is found to be

realistically compatible ,.°liththese filtering methods.
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Figure 18

Truncation'vindow, £(n), with tapered ends to

reduce broadening of formant peaks caused by

cepstral truncation.
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IV. Filtering of Cepstra

It will be useful before beginning this discussion to define

certain sequences clearly. The weighted section of reverberated speech

waveform from which our cepstra are computed can be expressed as

w(n)[s(n) * pen)],

where wen) is the weighting window. The cepstrum of this section will

be denoted by x (n), and often referred to as the "reverberated cepstrum".ev
The reverberated cepstrum will be viewed as the sum of two components,

the first to be "recovered" and the second to be "removed":

(1) S (n), the cepstrum of s(n)w(n);wev

(2) P (n), defined by-ev
p (n) = x (n) - s (n).-ev ev wev

Both s (n) and p (n) depend upon w(n); careful choice of this windmvwev -ev
is important because it affects the approximation of s (n) to s (n)wev ev
and the amount of additive "clutter" due to p (n). It is to be noted,-ev
in this regard, that p (n) is not equal to p (n).-ev -- ev

The pitch-synchronous synthesis method discussed in Section III
"requires the recovery of h (n), the cepstrum of the short-time vocalev

tract impulse response, and accurate determination of pitch period from

the location of the first cepstral pitch peak. Therefore, two important

requirements upon wen) are that it allows the low-time part of swev(n) to

"approximate h (n) closely and that it enhances pitch peak amplitude.ev
We saw in Section III that the Hamming window satisfies these requirements.

A significant result is that the Hamming windm-l can also reduce

the amount of "clutter" from p (n) and sharpen the reso lu tion of "rever--ev
beration peaks", as compared to results obtained without Hamming weighting

of the input. An example is shown in Figure 19. This is important
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Figure 19

Comparison of reverberated cepstra, x (n),ev
produced \vith Hamming weighting and square

weighting of the input speech section, respec-

tively. No tice, for the Hamming window, that

not only is the pitch peak amplitude enhanced

as compared to the square window cepstrum, but

also the reverberation peak.
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because the effectiveness of cepstral filtering is reduced if the rever-

berant clutter is \videly spread in the cepstrum rather than being

concentrated in narrow peaks. Improved peak resolution makes identifica-

tion and specific removal of reverberation peaks simpler.

Of course, the Hamming window does not make p (n) any less-ev
"cluttery" than p (n) itself. vlhat the window actually accomplishes isev
to improve the approximation

w(n)[s(n) * pen)] ~ [w(n)s(n)] * pen)

or

s (n) * pen)w

'tV'here

wen)
M
I ais(n-ni) ~

i=l

M
I aiw(n-ni)s(n-ni),

i=l

so that

N
pen) = 1 aiuo(n-ni)

i=l
i :f M ,

X (n) ~ s (n) + p (n).ev wev ev

Since this requires that

wen) ~ w(n-~), all n,

it is seen that the tapering of window ends is an important factor in

achieving the approximation. Note, however, that the quality of approxi-

mation decreases as the duration, ~, of pen) increases, regardless of

vTindow shape. Hence, the ability of cepstral filtering to recover s (n)wev
generally decreases as reverberation times increase.

Comparison of the plots of £ev(n) for square versus Hamming

windows in Figure 20 illustrates the improvement that can be afforded by

the Hamming window. For this example,

pen) u (n) + 0.5u (n-64).o 0

The sampling rate was 10KHz and the windm., length was 512 samples.
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Figure 20

Comparison of Cev(n) for Hamming and square win-

dawing of the input. These cepstra Here ljener-

ated by computing separately x (n) and s (n) ,ev \o1eV

and then subtracting the latter from the former.

(a) ("Ideal") cepstrum of pen), where

pen) = u (n) + O.5u (n-64).a 0

(b)

(c)

p (n) for square window.-ev
p (n) for Hamming HindoH.-ev

All cepstra Here computed from the same section

of speech.
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Figure 20a shows the ideal p (n), given byev
(Xl

p (n) = 1. Iev 2 k=l
(O.S)kk uo(n-64k);

Figures 20b, c show p (n) for square and Hamming windows, respectively.*~ev
The improvement is not always so dramatic, but is usually quite substantial.

For reference, Figure 21 shows the Eev(n) of Figure 20c added to

the cepstrum 5 (n). Below this, p (n) is shown alone on a matchingwev ~ev
scale. In this particular instance, the reverberation peak does not

exceed the pitch peak in amplitude.

Note from Figure 20 that the amplitude of the main reverberation

peak is lower for square than Hamming windowing. In other instances the

difference is even greater. This may lead to the somewhat mistaken specu-

lation that the square window has "reduced" the reverberative information

in the cepstrum. Such an assumption is incorrect because what has really

occurred is that the reverberative information is just more spread out

and more difficult to remove than for the Hamming window. Indeed,

nothing changes the fact that Figure 20b is the cepstrum of a reverberated

speech section! Significantly, the main reverberation peak of Figure 20c

is such a dominant feature of this p (n) that its removal alone very~ev
nearly eliminates reverberation in the processed output speech. This

single peak can be removed with little damage to 5 (n), because it iswev
so narrow.

Some window shapes other than Hamming or square were tried, but

the performance of the Hannningwindow was consistently better. In partic-

ular, exponential shapes of various decay rates and product windows,

*Note, hm'1ever, the different amplitude scales.
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Figure 21

Cepstrum p" (n) of Figure 20c added to s (n)-ev wev

to form reverberated ceps trum (above), and

£ev(n) shmvn alone for reference. The latter

is the component that must be removed from

the reverberated cepstrurn.
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consis ting of a Hamming window mul tip lied by an exponential window, were

used.

A. Single-Cepstrum Processing

Cepstral filtering methods can be classified according to whether

or not they involve the comparison of two or more cepstra to identify the

reverberative information. If only one cepstrum is available, comparison

is not possible. This has the most severe effect upon pitch detection,

since there is little way to distinguish between reverberation peaks and

pitch peaks without cross-reference between the cepstra of two differently-

reverberated versions of the same speech waveform section. Other than

comparison, four relatively unreliable characteristics can be used to

discriminate between peak types:

1. The first pitch peak is always positive; hence negative peaks

can be rejected.

2. For reverberation which is not severe, the pitch peak amplitude

is often larger than any of the reverberation peaks.

3. Pitch peak location often changes little from a given cepstrum

to its successor, if the time between cepstra is on the order of

10 msec. Therefore, if the pitch period from the preceding

cepstrum is accurately known, it is known where the pitch peak

in the present cepstrum is most likely to be located.

4. The main reverberation peaks, corresponding to dominant impulses

in p(n), tend to move even less than the pitch peaks from cep-

strum to cepstrum. Changes in their positions result only from

motion of the speaker with respect to the microphone. After

several cepstra have been examined, therefore, it should be pos-

sible to decide which peak is the first pitch peak, because it
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would have moved relative to the other peaks. The degree of

certainty should increase with the number of cepstra examined.

This perhaps \-1illalloV1 "tracking" of reverbera tion peaks as

they slowly move, a procedure which would be very useful in

eliminating confusion if the pitch peak location "crosses" a

reverberation peak.

Little use can be made of the second characteristic, since high reverber-

ation peaks and/or low pitch peaks sometimes occur. The first character-

istic is always useful but often not sufficient, because reverberation

peaks are not always negative. An obvious drawback to use of the third

characteristic is the possible unreliability of past pitch period estimates.

An algorithm which selects one of two peaks on the basis of past pitch

data may become erroneously "stuck" on a reverberation peak if it once

makes an error in selection. A combination algorithm based on the third

and fourth characteristics would have the best chances of success, but

would require considerable time to identify and "lock onto" all peaks

with certainty.
"-The recovery of h (n) is also difficult. If no reverberationev

peaks lie in the low-time part of the cepstrum, the job is simple. However,

this is certainly not always the case. Data obtained by the above methods

indicating the positions of reverberation peaks would be helpful in

determining which parts of the cepstrum to remove, but the low-time part

of s (n) often contains peaks of its own which can be confused withwev
reverberation peaks. A center-clipping process which excludes all

cepstrum samples below a given threshold amplitude, or its inverse, which

excludes samples above a given threshold, tend to perform poorly due to

the difficulty of making accurate statements about expected h (n)ev
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amplitude or reverberation peak amplitude. "-A peak of h (n) erroneouslyev
removed from the cepstrum will produce the same effect in the processed

output speech as will a reverberation peak which is not removed.

B. Cepstral Averaging

A technique which is not as effective as cepstral comparison but

is worthy of discussion is cepstral averaging. This process, and all

others involving averaging and/or comparison, requires two or more cepstra

computed from corresponding sections of differently-reverberated versions

of the input speech waveform. These reverberated waveforms can be obtained

from the outputs of substantially-separated microphones.* A necessary

property of the reverberation cepstra for averaging to be useful is that

the peaks of PI (n) do not coincide with those of P2 (n), P3 (n), etc •...ev ...ev ...ev
This will generally be the case if the reverberation impulse trains

Pl(n) , P2(n) , ••• are sufficiently different.

ated cepstrum is denoted by

thThen if the k reverber-

21 (n) = g (0) + ~k (n),<ev 'tvev ...ev

the average of K such cepstra is

1 K "-K I ~ev(n)
k=l

K
= s (n) + -K: L Pk (n).wev k=l ...ev

Hence, although there are now more reverberation peaks to contend with,

they may be reduced in amplitude by as much as a factor of l/K. This

does not imply that the level of reverberation in the output is l/K of

that in the input. Rather, the magnitude spectrum of each p(n) is

exponentiated:

*It will be assumed, for simplicity, that there is no "overall delay"
bebleen the waveforms, in the sense discussed in Section III.

(93)



Because cepstral averaging reduces reverberation peak amplitude,

it improves the chances of accurate discrimination between pitch peaks

and reverberation peaks. However, it still cannot be guaranteed that

reverberation peak amplitude will not exceed pitch peak amplitude.

Averaging can also reduce the amplitude of whatever reverberative infor-

mation overlaps the low-time part of s (n). Therefore, even if some ofwev
this information is not filtered out, the effect may not be as severe as

if averaging were not done. It is possible that if the reverberation

peak amplitudes are reduced enough, swev(n) would be less distorted than

if removal of this information were attempted. This suggests that enough

cepstra should be averaged to reduce reverberation peak amplitudes to a

level a.tleast as small as s (n). The obvious drawback to such an ideawev
is the large amount of computation required and the unfeasibility of an

excessive number of microphones.
Figure 22 shows the results of several cepstral averaging experi-

ments. In each of these, three cepstra are averaged. The reverberating

impulse trains each contain three impulses. The cepstra are shown in

pairs, the unreverberated cepstrum s (n) above, and the averaged, rever-wev
berated cepstrum below. Figure 22a, for which the reverberating impulses

were spaced with no particular pattern, is one of the best results. Small

cepstral reverberation peaks at times corresponding to reverberation

impulse delays, however, can be found upon close inspection. These peaks

are more clearly identifiable in Figure 22b. In Figure 22c, the rever-

beration impulse spacing was the same as that in Figures 22a, b, but here

a reverberation peak exceeds the pitch peak in amplitude. The reverberating
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Figure 22

Six examples of cepstral averaging results.

First of each pair of cepstra is g (n)wev
without any reverberation components added.

Second is average of three reverberated cep-

stra. Each pen) is of the form

The values for the impulse amplitudes and

delays for each example are given below:

(a) Pl(n):1.0 0.9 0.5 64 75
P2(n):1.0 0.8 0.76 16 40
P3(n):1.0 0.75 0.86 45 77

(b) PI (n) :

P2(n): same as example (a)
P3 (n) :

(c) Pl(n):
P2(n) : same as example (a)
P3(n):

(d) Pl(n):0.35 0.70 0.35 35 70
P2(n):-0.350.70-0.35 61 122
P3(n):0.35 0.70 0.35 50 100

(e) PI (n) :

P2(n): same as example (d)
P3(n) :

(f) Pl(n):1.0 0.90 0.81 35 70
P2(n):1.0 0.90 0.81 61 122
P3(n):1.0 0.90 0.81 50 100
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impulses for Figures 22 d, e, and f are equally-spaced, ~vhich produces more

serious reverberation than random spacing. The reason for this is that an

impulse train of the form

p(n)
H

= u (n) + L au (n-kP)
o k=l K 0

can be expressed as a convolution of H two-impulse trains:

Each two-impulse train has a magnitude spectrum like that in Figure 6,

with the "valleys" occurring at a spacing of 27T/P. Since the spectrum of

p(n) is the product of M such spectra, and since the valleys in each
.wspectrum correspond, the valleys in P(eJ ) will be very "deep", resulting

in serious reverberative distortion. If, in the case of three impulses,

p(n) is of the form

p(n) = au (n) t 2au (n-P) + au (n-P),000

spectral zeroes are produced, and the reverberation peaks are very large.

This was done in the examples of Figures 22d, e. Figure 22d is a good

example of a case in which several reverberation peaks could be confused

with the pitch peak. Note, hmvever, that the negative reverberation peak

could be rejected, because the first pitch peak must be positive. In

Figure 22e, the reverberation peak amplitudes again exceed the pitch

peak amplitude. They are again so large that if they were not removed,

the output speech would remain reverberant-sounding. The impulse weight-

ing for Figure 22f is not as severe as for Figures 22d, e, but the rever-

beration peaks are still unacceptably large even after averaging.

These examples indicate that cepstral averaging alone is probably

insufficient for reverberation reduction for feasible numbers of averaged
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cepstra. In addition, it does not solve the problem of interference with

pitch detection. TIlerefore, a method of removing the reverberation peaks

before pitch detection is necessary.

C. Cepstral Averaging with Adaptive Comb-Filtering

The following discussion is phrased in terms of the comparison of

two cepstra, for simplicity, but may be extended to any number of cepstra

if desired.

It is desirable, when removing reverberant peaks from the cep-

strum, to minimize the damage to s (n) incurred in the process. Simplewev
threshold clipping is unsatisfactory in this respect, because it is insuf-

ficiently selective. It is possible, however, to identify reverberation

peaks in the average of two cepstra by computing the difference, dIZ(n),

of the cepstra in addition to averaging.

cancel:

The common s (n) componentswev

= PI (n) - P2 (n).....ev ....ev

Therefore, if the dominant peaks of Elev(n) and E2ev(n) are never coinci-

dent, dIZ(n) will exhibit a large peak wherever eleven) or eZev(n) have

*large peaks. The peaks may be removed from the average cepstrum using

a multiplicative "comb-filter" c(n), defined by

c(n) = 1, Id 12(n) I < ten)

= 0, \dlZ(n) \ > ten)

where ten) is a suitably-defined threshold function. The filtered

*Of course, if PI (n) and Pz (n) have coincident peaks of comparable....ev ....ev
amplitude and the same sign, this technique of peak identification fails.
It is assumed this occurs infrequently.
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Figure 23
Example of identification and removal of

reverberation peaks by locating large peaks in

the difference of two reverberated cepstra and

comb-filtering the average cepstrum. The

"comb-filtering" is accomplished by multiplying

(in the time domain) the average cepstrum by

zero at every sample where the cepstral differ-

ence,ld12(n)l, exceeds the threshold, t(n).
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average is then

[!.2Xl (n) + -21S{2 (n)] c(n) ~ S (n)•[ev ev wev

An example of the filtering process is shm'ln in Figure 23.

Proper choice of the threshold ten) is important. Clearly it

should be high enough to avoid making c(n) equal zero for too many values

of n. A reasonable criterion for choosing ten) is that it equal the

average absolute value of s (n) for each value of n. Then. if a rever-wev
beration peak is larger than the threshold. the chance is good that

removal of the peak is worth the distortion of s (n) caused by removal.wev
If the reverberation peak falls below the threshold. it is probably smaller

than s (n) and its removal would likely worsen the distortion. A hypo-wev
thetical "best shape" for ten). excluding consideration of pitch peaks.

is illustrated in Figure 24a. and a step approximation to it in Figure 24b.

It may be desired to make the threshold extra high in the low-time region,
"if preventing filtering distortion of h (n) is considered more importantev

than removing low-time reverberative peaks. Such a procedure may be

justified by the observation that large reverberation peaks in the low-

time region generally correspond to short-delay reverberation, which often

is usually more tolerable than long-delay reverberation. Also. if

cepstral pitch detection will be done after multiplicative filtering, it

is important that the filtering leave the pitch peak undistorted even if

there is a reverberation peak near to or coinciden t wi th the pi tch peak.

"Protection" of the pitch peak can be accomplished by raising the thres-

hold in the area where the pitch peak is expected, according to the last

cepstral pitch period measurement. Note that the pitch peak can fall out-

side the protected area and still be detected, however. A threshold which
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Figure 24

Better threshold functions, ten), which could

be used in the filtering process of Figure 23.

Thresholds account for expected amplitude of

s (n).wev
(a) Hypothetical smooth "optimum" threshold

(b) A step approximation to the threshold of

Figure 24a, suitable for computational use.

(c) Hodified threshold with amplitude increased

in the region where the pitch peak is expected

to occur. This threshold was used extensively

in speech-processing experiments.
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produced good results in practice is illustrated in Figure 24c, and

specified by

t(n) = 1 0 ~ Inl ~ 10

= 0.2 11 ~ Inl ~ 20

= 0.06, /n/ > 21,

based on a sampling rate of 10KHz, with a pitch peak protection thres-

hold of 0.2 within :t 5 samples of the expected pitch peak location.

Better thresholds can perhaps be devised with further experimentation.

Several speech-processing experiments were done using the

above techniques. Three male-spoken all-voiced sentences were used:

1. "May we all learn a yel10tv lion roar." (Speaker LJG)

2. Same sentence (Speaker PDB)

3. rr'~ewere away a year ago." (Speaker LRR)

Common parameters in the experiments, except as noted, were:

Sampling rate = 10KHz (4KHz desampling filter)

Interval between successive cepstra = 100 samples (10 msec)

Length of Hamming sectioning window = 500 samples (50 msec)

Number of points in all DFT's = 512 samples

Cepstra1 truncation point = 32 samples (3.2 msec) •

Minimu~phase resynthesis, as produced by (see Section III)

k(n) = 2, a < n < 256

= 1, n = 0 and n = 256

0, 256 < n < 511

was used in all experiments. Cepstral truncation was smoothed by use of

a tapered truncation window ~(n):
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ten) = 1, 0 ~ n ~ 30

1 27T= 2[1 + cos :r(n-3l)], 31 < n < 35

= 0, 36 ~ n ~ 512.

~vo cepstra were averaged in all cases. All reverberation was artificial.

Results for the first sentence were particularly good. Artificial

reverberation, producing spectral zeroes, was used in both input channels:

Channell:

Channel 2:

pen)

pen)

O.35u (n) + 0.70u (n-35) + 0.35u (n-70)000
= 0.35u (n) + 0.70u (n-50) + 0.35u (n-lOO).000

The synthesized output was less rou~~sounding than when the other

sentences were used. Aural comparison of the processed sentence with each

reverberated input showed that reverberation was essentially removed.

Comparison of the output \vith the original unprocessed sentence was also

favorable. However, the speaker's voice was very low-pitched (the period

ranged as high as 170 samples), and for all but one trial with this

sentence, a 400-sample Hamming input window rather than a SOO-sample window

was used. Numerous pitch detection errors resulted from the consequent

low pitch-peak amplitude: serious errors occurred in about 25 of 190

pi tch measurements, when 5l2-point FFT' s \vere used. Hos t of the pi tch

errors occurred in the 10vlest-pitched portions of the sentence. Inter-

estingly, when l024-point FFT's were tried (still with 400-sample input

sections), the number of serious errors in the first half of the sentence,

which was all that vIas processed for the l024-point DFT's, dropped from

six to zero. The use of a 500-sample \vindmv reduced the number of pitch

errors from 2S to 19.

The largest number of experiments \vere done using the second

sentence. In all trials the synthesized versions of this sentence
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sounded noticeably rougher than for the other two sentences, a problem

which was never completely resolved. However, except in certain cases

in which very short-delay reverberation was used, reverberation in the

processed speech was virtually inaudible. Because there was substantial

roughness in the synthetic speech, a synthetic standard was used in

making this judgment. The standard was produced by passing identical

unreverberated speech inputs through the processor. It \-las very diffi-

cult to distinguish between the standard and the dereverberated speech,

except in cases that will be noted.

When the severe reverberation discussed two paragraphs above was

used, the results vlere very good. Figures 25a, b, c, d show the narrow-

band spectrograms of the original sentence, one of the reverberated inputs

(with 35-samp1e reverberation impulse spacing), the dereverberated speech

(Figure 25b processed), and the processed standard, respectively. The

corresponding wide-band spectrograms are sh~ln in Figure 26. Figure 25b

shows very clearly the spectral zeroes produced by the reverberation,

while temporal effects of the reverberation can be seen in Figure 26b.

These distortions have been virtually eliminated in Figures 25c and 26c.

Comparison of the originals wi th the standards, hO~lever, reveals that the

formant bandwidths in some areas have been increased by the processing

technique, which contributes to the rapid decay of the h(n)'s in the

synthesis. Another effect of the processing was to "smear" the transi-

tions between different voiced sounds.

Pitch detection in this experiment was also notably good. The

two serious errors occurred at the end of the sentence. Pitch accuracy,

however, was affected when a net delay was introduced in the Channel 1

input relative to the Channel 2 input. Net delays of 10, 22, 40, and 75
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Figures 25 and 26
Spectrograms of all-voiced sentence "May we

all learn a yellow lion roar" (PDn speaker).

(25a) Narrowband spectrogram. original sentence.

(25b) Narrowband spectrogram, reverberated but

unprocessed sentence.

(25c) Narrowband spectrogram, processed rever-

berated sentence.

(25d) Narrowband spectrogram, sentence processed

but unreverberated before processing.

(26a, b, c. d) Corresponding wideband spectrograms.
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samples caused 3, 4, 4, and 6 serious pitch errors, respectively, out of

a total of 204 pitch measurements. The probable cause of these is the

averaging of two slightly different s (n)'s. If the pitch period iswev
rapidly changing in an area of the waveform, the pitch peak in the

cepstrum of the delayed waveform may be shifted relative to the pitch

peak in the cepstrum of the undelayed input. Therefore, the peaks will

not reinforce each other in the average, and low amplitude will result.

On the other hand, the several sentences were essentially undistinguish-

able from the zero-delayed and standard processed outputs, indicating

that the quality of dereverberation remained basically unaffected by

the delays.

A crucial test of the comb-filtering technique was its effective-
A

ness in minimizing distortion of h (n). It was not possible to evaluateev
this aspect of the algorithms performance from the above experiments,

because the cepstrum was truncated at 35 samples, which was the lowest

echo delay. Only low-level reverberative information distorted the low-

time portion of the cepstrum, and no filtering was done there. An experi-

ment was performed to determine whether the truncation point could be

extended to n = 50 or above when the same reverberation was used. It was

found that residual reverberance and non-linear distortion in the output

increased somewhat as the truncation point was moved higher. In subse-

quent experiments it was decided to leave the truncation point at 35

samples.
\lith the truncation point set at 35 samples, the second sentence

was processed with the Channel 2 reverberation replaced by

p(n) = O.35u (n) + 0.70u (n-15) + 0.35u (n-30).000

This caused a reverberation peak to appear at n = 15 in the cepstrum.
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After the usual filtering, the processed sentence was comparable in quality

to the standard, indicating that h (n) suffered only slight-to-moderateev
distortion from removal of tllispeak. However, in another experiment the

Channel Z reverberation was left as above, and the Channel 1 reverberation

replaced with

pen) = O.35u (n) + O.70u (n-19) + O.35u (n-38).000

The filtering algorithm failed to remove this reverberation without

considerable distortion of the speech, although the sentence remained

intelligible.

Experiments with the third utterance were performed using

PI (n) = O.35u (n) + O.70u (n-35) + O.35u (n-70)0 0 0

Pz (n) = O.35u (n) + O.70u (n-50) + O.35u (n-lOO)
0 0 0

and
PI (n)

pz(n)

O.35u (n) + O.70u (n-15) + O.35u (n-30)000

O.35u (n) + O.70u (n-19) + O.35u (n-38),000

repeating two of the above combinations. The results of these were

comparable to the corresponding trials with the second sentence.

It can be concluded from these experiments that comb-filtering

of the averaged cepstrum prior to pitch detection, according to peaks in

the cepstral difference, effectively eliminates confusion between pitch

peaks and reverberation peaks, except in the case of low pitch peaks or

coincident peaks of Elev(n) and Ezev(n). Long pitch period and net delays
between the inputs tend to reduce pitch detection performance by causing

low pi tch peaks to occur. The lot-l-timepart of the cepstrum can be

recovered without unreasonable distortion if there are no speech waveform

echoes with delay times below the cepstral truncation point. Intolerable

distortion may result if tlleecho delays fall below this point.
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D. Summary

The Hamming window, which was found in Section III to have

desirable properties with respect to pitch-synchronous synthesis of

processed speech, is found also to increase the abili ty of ceps tral

filtering to remove the reverberative component from the cepstrum.

This is important to the compatibility of dereverberation and synthesis

requirements.

Sing1e-cepstrum processing appears to be unfeasible due to the

difficulty of distinguishing between reverberation peaks and parts of

5 (n), given the information provided by a single cepstrum. Thewev
averaging of two or more cepstra can reduce the amplitude of reverberation

peaks without distorting s (n), but is probably insufficient to elimi-wev
nate confusion between pitch peaks and reverberation peaks in the pitch-

detection process. Computation of the difference of two reverberated

cepstra can yield the information necessary to remove large reverberation

peaks prior to pitch detection, reducing the possibility of detection

errors. Reverberation peak removal is done by multiplicative comb-

filtering of the averaged cepstrum.

Processing results for three artificially-reverberated voiced

sentences indicates that for echo times in the range 3-10 msec, the comb-

filtering technique essentially eliminates the effects of reverberation.

Also, differential delays of up to 7.5 msec between the two input

waveforms were found to cause little distortion of the speech. Results

were not obtained for naturally-reverberated, unvoiced, or female speech.
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v. Weighted Averaging of Cepstra

When the two cepstra are averaged in the above filtering process,

substantial amounts of little-distorted information contained in the

individual cepstra can be lost.

example, it is often true that

Between the large peaks of PI (n), for~ ev

Xl (n) ~ s (n).ev wev
The same is true for Pz (n) and Xz (n). Sometimes, areas which are~ ev ev
badly distorted in one reverberated cepstrum are little distorted in the

other. Therefore, when the averaged cepstrum is comb-filtered without

regard to this possibili~, parts of 21 (n) and 2Z (n) are destroyedev ev
which might have provided better estimates of s (n).wev

It is possible to utilize the individual cepstra to greater

advantage by computing a weighted average in which the least distorted

portions of 21 (n) and Xz (n) are emphasized and the most distortedev ev
portions are suppressed. Let al(n) and aZ(n) be u~o weighting sequences

satisfying

Then

al(n)xl (n) + aZ(n)xZ (n) = s (n) + [al(n)Pl (n) + aZ(n)pZ en)].ev ev wev ~ ev - ev

The sequences al(n) and a2(n) should be chosen to minimize the absolute

value of the bracketed term. Since PI (n) and pZ (n) are unknown,- ev - ev
however, the term cannot be made to vanish identically. However, it can be

minimized with respect to a probabilistic criterion. Several criteria

are possible.
In the discussions below, the following shorthand notation is

adopted for simplicity:
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s ~ s (n)
';'01 wev

'" '" ~'" () '" ()xl' x2 xlev n , x2ev n
'" '" ~'" () '" ()PI' P2 £lev n , £2ev n
aI' a2 ++ al(n), a2(n).

In addition, E[-] is used to denote the expected value or mean of a

random variable in the brackets. '" '" '" "It is assumed that PI' P2' sw' xl' and
X2 can be treated as random variables if desired.

One approach to the weighted averaging problem is to choose al
and a2 such that the weighted average is the minimum linear mean-square-

error estimate of sw' given xl and x2. xl and x2 can be interpreted as

known quantities, while PI and P2 are treated as random variables depen-

dent upon the random variable s through the relations
\'01

'" '" '"PI = xl - Sw

'" '" '"P2 = x2 - sw.
In other words, the problem is essentially viewed as one of attempting to

determine PI and P2 in the presence of uncertainty due to

a1 and a2 are found by minimizing the expression

e(a1) = E{[alPl + a2P2]2}

E{[al(xl-sw) + (1-al)(x2-sw)]2}

E{[al(xl-x2) + x2 - sw]2},

'"s •w The weights

vlhich is the mean square error subject to the condition that al + a2 = 1.

( 1 '" "')This yields except for tle case xl = x2
E(s ) - x2\-1

These coefficients are not useful for direct estimation of sw' because
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the weighted average reduces simply to

E(s )_w

However, 'ole shall see that a modified approach can be followed, in which

better use can be made of estimation techniques_

The coefficients of Equation 12 serve to justify some "intuitive"

conceptions about the proper choice of weights_ For example, if xl is

close to E(sw) while x2 is very different from E(SW) , Equation 12 states

that al should be chosen much larger than a2- This supports the notion

that, with high probability, xl is a better estimate of Sw than is x2-

Therefore, xl should be 'oleightedmore heavily than x2- The same example

can be interpreted in another way_ From Equation 12, the linear minimum

mean-square-error estimates of PI and P2 given xl and x2 are

"x -1

(13)

In this example, tlle estimate of PI is much smaller in magnitude than the

estimate of P2' dictating a weighting bias toward xl- Another example is

the case in which Xl ~ x2- On the basis of these measurements, there is

no information to indicate an estimate other than sw ~ Xl ~ x2- Consistent

with this situation, Equation 12 specifies

al ~ a2•

Under some circumstances, however, Xl would be chosen as the better

estimate of sw' while x2 may in fact be a far superior one_ As illustrated

in Figure 27, this occurs when, for example, E(sw) = 0, PI ~ -sw' and P2 ~ 0_

Equation 12 would erroneously dictate a preference toward Xl.* Errors of

*Note that this is also an instance in which comb-filtering would destroy
S at the peak location.w

(120)



Figure 27 (avo pages)

Example of filtering error that can occur if

PA ~ -s pAZ~ 0, and E(s )=0.1 - \01' \01
One possible

method of preventing such errors is to utilize

past estimates of reverberation peak locations

and amplitudes.
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weighted average

1\,...~correct Sw,
I

(123)



this type due to at least short-term variations in S can be suppressedw

by basing the estimates of PI and P2 partially upon similar estimates for

past cepstra. A convenient method of accomplishing this is to let the

"best" estimates of PI and P2 for the present pair of cepstra equal the

exponential average of the present and all past estimates:

(14)

In the above, the subscript 'k' corresponds to the present cepstra,

'k-l' to the immediately preceding cepstra, etc. The advantage of this

particular way of averaging estimates is that Plk and P2k can be computed

from only Pl(k-l) and P2(k-l):

E(SW)] - (l-b)i'Hk_l)

E(Sw)] (l-b)P2(k_l) •

Therefore, it is necessary to store only one past value to take into

account all past estimates. The parameter 'b' controls the extent to

which past estimates influence the present estimates.

The choice of b is important to the effectiveness of this pro-

cedure. As b approaches zero, Equation 14 approaches a sample mean, and

suppression of the effects of changes in 5 from cepstrum to cepstrumw

becomes great. Nevertheless, it is not possible, for b < 1, to suppress

indefinitely the influence of a long-persistent excursion of s from itsw

mean, such as might result from an unchanging voiced sound of extended

duration. Suppose, for instance, that R is a step function of k, which.",

although unrealistic, helps to reveal the behavior of the estimates in
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response to a long-term change in s :
w

s = l3u l(k).w -
If PI and Pz are assumed to be time-invariant, then

= PI + 13 - E(s ),.,

Hence, the estimates eventually change by 13. A corresponding measure of

the short-term rejection properties of the averaging process is provided

by the response of the estimates to an impulse

s = l3u (k).
,., 0

change in S :w

Under the same conditions as above, this response is

" = " E(s ) + [bll (1-b) ku -1 (k)] , all kPlk P -1 w

" " E(gw) + GIl (l-b) kU_1 (k)]. all k.PZk = P -Z

Note that the maximum excursion of the estimates is proportional to b.

In practice, unfortunately, b could not be made arbitrarily small,

because ~lk and ~Zk exhibit the same response to changes in ?l and ~Z as

to changes in sw. Variations in PI and Pz occur as a result of motion of

the speaker relative to the microphones. The cepstral filtering process,

to remain effective during such motion, must be able to respond to these

variations. Therefore, b must be chosen to "average out" the longest-term

changes in Sw possible while maintaining adequate response to PI and ~Z.

For this choice of b, the exponential average can be expected to produce

fairly reliable estimates of ~l and Pz with high probability.

The follO\.,inghypothetical example provides additional insight

into the factors influencing the choice of b. Assume that sand P,.,
(representing ~l or ~2) can be modelled as Gaussian random processes with
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autocorrelations Rs (kl-k2) and RA(kl-k2) but generally nonstationary
l,v p

means nA (k) and nA(k) , respectively.* RA and RA are measures of cepstrum-
sl,v p Sw p

to-cepstrum variations of sand p relative to their means. The broaderw

and RA are, the smaller are the expected varia-
p

the distributions of RAsl,v
tions of sand p over a given number of cepstra.w Of course, the time

interval between cepstra directly influences the width of the distributions.

As this interval increases, the distributions narrow; in the limit of

infinite time intervals, the samples of 5 and p become entirely uncorre-
to1

lated. For finite time intervals, in any case, it is advantageous that

RA be much more broadly distributed than RA , as will presently be demon-
p sw

strated. This allows the tradeoff discussed in the previous paragraph to

be made.

The process of exponential averaging is a linear transformation of

the averaged variables. The result of the transformation is equivalent to

the action of a linear system with impulse response

upon an input corresponding to the sequence of estimates. It is well-

knO\-lnthat if the input to this linear system is a Gaussian random process

with mean ni(k) and autocorrelation Ri(kl-k2), then the output is also a

Gaussian random process, with

n (k)o

and

A(k) * n. (k)
1

*Similar results could be obtained if p and s were considered to bewdeterministic signals.
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In the case at hand, the input is

x - E(s )
T,:l

s + P - n".l,v s

Assume that sand pare independent.* Thenw

n. (k) = n" (k)
1 P

and
R" (k) + R,,(k).sw p

I t follows that

n (k)o A(k) * n,,(k)p
(l5a)

(l5b)

R (k) and n (k) as determined above specify the estimates Pk•
o 0

Now, a measure of the effectiveness of the cepstral filtering algorithm

is the degree to which the process Pk is equivalent to the process p, of

which Pk is an estimate. According to Equations l5a, b, this requires

that

A(k) * n,,(k) ~ n,,(k)p p

and

R,,(k).
P

These approximations are good if b is sufficiently large and R" issw
relatively narrow compared to R". In other words, the impulse responsep

A(k) must be of sufficiently short duration to clearly resolve n" and R",
p P

and P should tend to vary slmlly relative to s. (It is not known whetherw

the latter requirement is met in practice for normal speech and motion

pattern&) A second important measure of performance is the variance of

s(n), and thus upon s (n).l,v
window, this dependence is considered to be weak.

*This is not exactly true in practice, because p, or p (n), depends upon-ev
Hm.,ever, due to the effect of the Hamming
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Pk relative to that of "s •w For the estimates of PI and Pz to be accurate

with high probability, which is necessary for them to be useful, the vari-

ance of Pk should be small compared to that of sw. I.e., variations in

" must not be allowed to exert a strong influence "s on Pk.w
of " and Pk given bys arew

o~ = ~ (0)s sw w
and

o~ = R (0)
Pk 0

+00 Gg (kl Rp(kl] r(kl * ).(-kl]= L +
k=_oo w

The variances

where b must be in the range

o < b < 1.

2 2Therefore, the requirement that 0" «0" necessitates choosing b as small
p Sw

as possible. This implies that, as expected, there must be a compromise

between the accuracy with which Pk tracks p and the accuracy of estimating

g (through estimating pl.
w

Although extension of this analytic technique to the general case

would be formidable, similar results can be expected to apply. It mayor

may not prove to be sufficiently realistic to model sand p asw Gaussian

random processes. If it does, such modelling could be a useful tool.

In applying the model, R,.. and R" could be estimated by measurement of thes p

power density spectra of these signals* for a large set of typical cases.

*Keep in mind that these are not, in this case, g (n) and pen), but rather
'\'1

g (k) and p(k), where k is the cepstrum-to-cepstrum index.w
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Similarly, sample means could be used to estimate means. If meaningful

statistics can be obtained in this way, it may be that they vary in a

quite definite manner from speaker to speaker.

The next step is to transform the estimates Plk and PZk into
,..If the estimates were of sufficient accuracy, Sw

could be determined directly by choosing al and aZ so that

However, due to the above considerations, PI and Pz cannot be estimated

with arbitrary accuracy. Furthermore, even if PI (n) and PZ(n) are time-

invariant, there \"ill be fluctuations in PI and Pz because of their

dependence upon s(n). Although Hamming weighting of the input sections

tends to suppress this dependence, the variations are enough that Plk
and PZk probably cannot be considered to be sufficiently accurate in an

amplitude sense. The main value of these estimates, then, is for the

positive identification of large reverberation peaks in one cepstrum or

the other. Generally, the locations of these peaks are very constant for

time-invariant Pl(n) and PZ(n), and they would also be fairly stable for

quasi-time-invariant Pl(n) and PZ(n). Therefore, in a "peak locational"

sense, the estimates Plk and PZk should be potentially quite reliable,

with the reliability increasing as the peak amplitude increases relative

to the variance of s. This could be particularly helpful in the 1-10
w

msec low-time range of the cepstrum.

Since Plk and PZk are not especially reliable in the amplitude

sense, Sw can perhaps be best estimated by allowing the estimate sWk to

equal Xz if IPlkl » IpZkl with high probability and Xl if IpZkl » 1Plkl

with high probability. This will usually occur when there is a large peak
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in either cepstrum, because coincident large peaks of PI and Pz tend to

occur with low probability. Due to this fact, it is most likely better

to assume that a peak of Sw has occurred than coincident peaks of PI and

The alternative would be to assume that PI and Pz were

both large and to set s k equal to its expected value. This is unjusti-w ..
fied due to the low relative probability of such an event. Finally, if

P lk ~ -PZk' the bes t es timate of S'" is probab ly jus t the average of xl

A suitable method of specifying weights al and aZ in terms of

Plk and PZk' accounting for the reliability of the estimates as a function

of the expected variation in S , must, therefore, satisfy the following:w

« I
0"s

w

where 0" is the standard deviation of gs ww
Figure Z8a shows a hypothetical plot of 0" as might be expectedsw

from observation of several typical voiced speech cepstra. In Figure Z8b

is illustrated a reasonable weight-assignment curve as based on the above

criteria, and in Figure 28c a stepped approximation to this curve, suitable

for computational use.

The experimentally-determined sample mean and standard deviation

plots of Figure 29 lend credibility to the possibility of this type of

filtering. These statistics were computed from an ensemble of 204 short-
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Figure 28

(a) Hypothetical plot of the cepstra1 standard

deviation, aA , as a function of n.sw
(b) A reasonable (smooth) weight-assignment curve.

(c) A step approximation to the curve of Figure 28b,

suitable for computational use.
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Figure 29

Experimentally-determined cepstral mean and

standard deviation as a function of n, as

computed from an ensemble of 204 cepstra

derived from the sentence "Hay \ole all learn

a yellrnv lion roar".
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time cepstra derived from the all-voiced sentence "May we all learn a

yellow lion roar" (speaker PDB). This sentence contains a substantially

wide range of voiced sounds. The sample mean and standard deviation for

each point in the cepstrum are given by

Sample
Nean

1 204= TlA (n) - - \' sk (n)sw - 204 k~l ev

Standard
Deviation

1 A (). the nth . ( 1) f h kth f hWlere s1 n 1S p01nt samp e 0 t e. cepstrum O' t e(ev
ensemble. The fact that the mean is nearly zero for all but very low

values of n is computationally advantageous, because this implies that

a special array or register for storage of the mean may be unnecessary.

The "hump" in the standard deviation for n ::::65-100, of course, is due

to the occurrance of pitch peaks in that range (sampling rate was 10 KHz).

Unfortunately, time constraints prevented the performance of

further experiments to determine the feasibility and effectiveness of

the ~veighted averaging method of filtering described here. This is

suggested as an area for future research.
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VI. Final Summary and Conclusions

The main findings of this research are listed below.

(1) (Section III) The cepstrum appears to be more practically

suited to actual implementation of homomorphic dereverberation than

the complex cepstrum.

(2) (Section III) A feasible solution to the problem of voiced

(and perhaps unvoiced) speech resynthesis from the cepstrum is the

pitch-synchronous synthesis technique of Oppenheim's homomorphic
7vocoder.

(3) (Section III) Key influences upon the quality of resynthe-

sized speech seem to be the validity of the speech-production model upon

which the synthesis procedure is based, the method of realization of

the model, the effects of sectioning the input waveform, the "artificial

phase" used in resynthesis, and the truncation of the cepstrum. A

possible alternative to homomorphic vocoder resynthesis, which has

produced slightly rough quality as implemented, is minimum-phase formant

synthesis as described by Schafer and Rabiner.

(4) (Section IV) Heighting of input speech sections by a Hamming

window improves the resolution of reverberation peaks in the cepstrum,

increasing the ability of the cepstral filtering process to remove these

peaks. Because a Hamming windm-l also improves the quality of synthesized

speech, this fact contributes to the compatibility of the synthesis

method \-lithdereverberation requirements.

(5) (Section IV) A technique useful for identifying reverberation

peaks in the cepstrum is to locate large peaks in the difference of two

cepstra, computed from differently reverberated versions of the same
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speech waveform. A peak in this difference indicates a corresponding

reverberation peak in one of the cepstra; thus removal of these peaks

from the average of the cepstra leaves a result approximating the ceps-

trum of the unreverberated speech 'tvaveform. The primary benefit obtained

from this filtering technique is elimination of confusion between cepstral

pitch peaks and reverberation peaks in the pitch-detection process.

(6) (Section IV) Reverberation effects are essentially removed

from artificially-reverberated waveforms when their cepstra are filtered

by the above process. Hmvever, except in possibly a few cases (as the

1.5 msec echo discussed in Section IV), the filtering method is not

effective for echo delay times less than about 3 msec, due to the increase

in cepstral distortion caused by removal of reverberation peaks located

in the 0-3 msec range of the cepstrum. Also, an upper limit of 10-15 msec

is placed upon the duration of the reverberating impulse train by the

length of the input sectioning window.

(7) (Section IV) Differential delays of up to 7.5 msec between

the input reverberated waveforms were not found to degrade the quality of

dereverberated speech when the cepstrum was used in processing.

(8) (Section V) In the filtering process described above, it is

the average of OvO reverberated cepstra which is filtered. By averaging

the cepstra before filtering, it is possible that some "good" informa-

tion is lost. Stated in a different way, the identification of reverbera-

tion peaks by formation of the difference of two cepstra does not, by

itself, indicate which cepstrum contains a given reverberation peak.

As a result, to insure that all reverberation peaks are eliminated, both

cepstra must be overfiltered. A possibly improved method is proposed
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which utilizes the mean and standard deviation of the speech component

of the cepstrum, along with reverberation peak estimates from past

cepstra, to associate each reverberation peak with a particular cepstrum.

Then a weighted average of the cepstra is computed, emphasizing the

leas t-dis torted portions of each ceps trum and suppressing the mos t-

distorted parts. No experimental speech-processing results are available

for evaluation of this method.

Important Conclusions Relating to Future Investigations

If a homomorphic dereverberation process is to be ultimately

applied in Speakerphone and/or Conference Room Telephony Systems,

improvements in the quality of resynthesized, processed speech \vill

have to be accomplished.

With respect to true evaluation of the effectiveness of cepstral

filtering for removal of reverberation, further experiments with naturally-

reverberated speech will have to be conducted. Although the artificial

reverberation used was severe in the sense that it produced great

spectral distortion of the speech and large reverberation peaks in the

cepstrum, an important observation is that these peaks have been highly-

resolved and easily-identifiable. This may not be so for natural rever-

beration, complicating the cepstral filtering problem. In addition, the

effects of dereverberation processing upon unvoiced speech and female

voiced speech are yet to be ascertained.
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