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Abstract

Electronic devices with characteristic dimensions of the order of 100 nm or less exhibit
many novel quantum transport phenomena at low temperatures when the phase-breaking
length becomes comparable to the device size. This thesis describes electron transport
mechanisms and the resulting current-voltage relationships in quasi-one-dimensional wires,
superlattices, and resonant tunneling devices. An intuitive 'convolution method' is devel-
oped to describe the energy averaging due to a finite bias voltage, finite temperature,
disorder, and the influence of emitter dimensionality on these currents. We emphasize
the dominant effect of evanescent or 'cutoff' electron waveguide modes in determining the
shape of the electrical conductance versus Fermi energy in a confined geometry such as
a quantum wire. Finally, we study experimentally the magnetoconductance of a novel Si
'grating gate' field effect transistor where the current path can be varied electrostatically
in a single device from many narrow wires in parallel, to a modulated periodic poten-
tial, to a two-dimensional electron gas. Electron weak-localization, the classical Drude
magnetoconductance, and the quantum Hall effect are modified by the periodic potential.
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1 Introduction

This thesis describes phase-coherent electronic transport in small conductors. Quan-
tum mechanical effects in the conductance of an electronic 'device' can be destroyed if
the temperature is too high, if the applied voltage across the device is too large, if too
many dopant impurities or geometrical irregularities are present in the structure, or if an
unconstrained direction of free electron motion is permitted inside the device structure.
We present a simple 'convolution method' which unifies the mathematical description of
all these effects, and embodies in a very physical way some of the more important ef-
fects of temperature, voltage, disorder, and any additional directions of free motion in the
device. We apply this 'convolution method' to describe the current-voltage characteris-
tics of different device structures such as resonant tunneling devices, superlattices, and
quasi-one-dimensional wires.

This 'convolution picture' shows that finite temperature, voltage, disorder, and any di-
rections of free electron motion inside the device each serve to 'broaden' or 'energy average'
the conductance in different ways. We find that when energy relaxation processes occur
only in the contacts of the device, which often happens at low temperatures, the 'smearing'
or energy averaging of the conductance due to a finite temperature is independent of the
energy averaging due to the finite applied voltage. In this extreme coherent regime the
applied voltage acts in some ways like an effective temperature, yet does not 'heat' the
electrons. This difference between the energy averaging due to the finite voltage and finite
temperature energy averaging has observable physical consequences in electrical transport.
Incorporating additional directions of free electron motion inside the device increases the
average conductance by classically adding many 'quantum contact conductances' in paral-
lel, yet serves to 'smear' any quantum structure present in the conductance. In contrast to
the thermal and voltage energy averaging, there is no characteristic energy scale associated
with the 'dimensional energy averaging'.

The bulk of this thesis studies electron transport in disordered quasi-one-dimensional
wires. Electrical transport in quantum wires is very similar to microwave transmission
down a microwave waveguide, so that much of microwave physics can be applied to these
'electron waveguides'. It more difficult to fabricate a purely ballistic electron waveguide
than a defect free microwave guide, so that studying how electrons scatter in an imper-
fect narrow wire is important to understanding the variation of the conductance with
Fermi energy in the electron waveguide. The conductance of these narrow quantum wires
is obtained by calculating how an electron scatters from obstacles in a low-dimensional
structure and then applying Landauer's formula.

We find that electron scattering in quantum wires is dominated by the evanescent
or 'cutoff' waveguide modes whenever the Fermi energy is near a subband minimum, so
that transport can only be correctly described when these modes are properly considered.
Our result is reasonable because the evanescent density of states diverges as the Fermi
energy approaches a subband minimum from below, just as the propagating density of
states diverges as the Fermi energy approaches a subband minimum from above. And
even though the cutoff waveguide modes themselves carry no current, they strongly affect
the scattering of propagating modes through the scattering boundary conditions when the



Fermi energy is near a subband minimum in a narrow wire. This effect is well known in
microwave waveguides and is manifest as additional electromagnetic energy storage near
any discontinuities or defects in a microwave guide. For electron waveguides, additional
particles are 'stored' in these evanescent modes near scattering centers. One can physically
picture these additional electrons as 'clinging' to the sides of the defect in a classically
allowed region. The usual evanescent waves inside the classically forbidden region of a
tunnel barrier can exist in any spatial dimension, but the type of evanescent or cutoff
waveguide modes considered in this thesis can exist only in a low-dimensional structure
such as a quantum wire.

The most striking effect of the evanescent waveguide modes is that, when an attrac-
tive scattering potential is present, bound or quasi-bound states composed of evanescent
modes can form just below each new subband minimum in the wire. These 'quasi-donor
levels' strongly reflect any carriers nearby in energy, leading to characteristic 'dips' in the
conductance versus Fermi energy of the wire. Other scattering anomalies are present as a
result of the evanescent modes, including 'perfect transparency' through a point scatterer
whenever the Fermi energy aligns with a subband minimum. The electron moves as if the
point defect were completely absent from the wire at these special energies. Anomalous
behavior of the conductance versus Fermi energy due to the cutoff waveguide modes is also
manifest in more complicated geometries, as shown in this thesis.

Finally, we experimentally study the two-terminal magnetoconductance of a Silicon
'grating gate' MOSFET at low temperatures. The device consists of a lower 'grating'
gate and a continuous top gate. This dual-gate device structure permits one to gradually
vary the inversion layer geometry electrostatically from many narrow wires in parallel,
to a modulated potential, and to a two-dimensional electron gas. For low magnetic fields
normal to the interface, weak localization becomes much more pronounced as the inversion
layer is pinched from a two-dimensional electron gas into narrow wires. This proves the
electrons are phase-coherence across the wire width. For intermediate magnetic fields of 1-
10 Tesla, we also find a large drop in the device current of 90% or more and which persists
to room temperature, as electrons are added to the device so that it opens electrostatically
from many narrow wires in parallel to a two-dimensional electron gas. This large negative
transconductance is a manifestation of the different boundary conditions which must be
applied to the low-field Drude magnetoconductance tensor in a long and narrow versus a
short and wide conductor. At high magnetic fields from 10-30 Tesla, the approach to the
quantum Hall effect strongly and qualitatively depends on the inversion layer geometry.
Furthermore, the conduction band degeneracy of (100) Silicon is not resolved in the narrow
wires at high magnetic fields, leading to Hall steps of twice the expected size.

This thesis is organized as follows: The body of the thesis summarizes the main results
obtained during this research. This introduction contains an even shorter summary of the
main results. Detailed justification of these results can only be obtained in the appendices
to the thesis, consisting of papers published and submitted for publication. The purpose in
writing the new sections of this thesis is not to repeat material contained in the appendices,
but to present it in an intuitive way so that the reader does not become distracted by
additional details. Appendix C and J are in fact also reviews of material in the other
appendices, and could easily have been substituted for portions of the remaining chapters
of this thesis.

I _ ~_____ __ I~_ ________



But where I have more to add, where a point could have been made more concisely,
clearly, with increased physical understanding, or where connections between different
concepts in these papers drawn, I have done so in writing the new sections of this thesis. I
have arranged the appendices in logical order, rather than the chronological order of their
publication. Quantum mechanical electron transport is already too large and too rapidly
expanding a field to present a tutorial review in this thesis. I point to important books,
papers, and review articles [1]-[10] to accomplish this task.

1.1 Experimental Background

Three of the best known quantum mechanical transport phenomena [1]-[10] involving
normal electrons' in inversion layers are the quantum Hall effect [11], weak electron local-
ization [12], and the 'universal' conductance fluctuations [13]-[15]. To this list could also
be added the periodic magnetoconductance oscillations in long metallic cylinders [16]-[17],
the Aharonov-Bohm effect in small metallic rings [18], the quantization of the ballistic
conductance in GaAs/AlGaAs heterojunctions [19]-[20], modifications to the classical Hall
effect in ballistic conductors at low magnetic fields [21]-[22], and electronic charging of a
small and nearly isolated conducting region [23]-[24]. Highly nonlocal 'resistances' have
also been observed in quantum conductors [25]-[26]. If one moves away from inversion
layers or metals to vertical transport in GaAs/GaA1As heterojunctions, the resonant tun-
neling diode [27] is the premier 'quantum device', with a record peak to valley current
ratio of 30 to 1 at room temperature [28]. Undoubtedly, more exciting developments are
yet to come. Other quantum mechanical effects in electronic transport have also possibly
been observed.

Weak localization and the universal conductance fluctuations are both understood as
wave interference effects arising from independent electrons scattering coherently from a
'random' impurity potential. The 'universal' conductance fluctuations are similar to op-
tical speckle patterns, and are called 'universal' because they depend only weakly on the
sample shape, dimensionality, and average value of the conductance itself (as long as the
conductor is in the metallic limit where 'ensemble averaged' perturbation theory is valid).
These 'universal' fluctuations give a specific 'fingerprint' for each individual sample. As
the sample size becomes larger than the electron phase-coherence length L4, each individ-
ual phase-coherent segment acts like an independent sample, leading to the destruction
of electron wave interference patterns in the conductance through 'self-averaging'. The
universal conductance fluctuation pattern is altered in a small magnetic field, but is not
destroyed until the magnetic field becomes large enough to force the conductor into the
quantum Hall limit.

Weak electron localization, since it depends only on pairs of time reversed paths, is

1Another important class of 'quantum devices', not discussed in this thesis, arise when the charge carriers
are superelectrons. The phase-coherence length in superconductors is believed to be infinite, circumventing
the problem of maintaining phase-coherence in a quantum device when the current is carried by normal
electrons. The superconducting input coil of a SQUID flux-to-voltage transducer can be made arbitrarily
large without the device malfunctioning. Furthermore, superconducting devices, even of a finite size, are
believed to be 'single channel', not 'multi-channel' as for small normal metal conductors.
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not destroyed by this 'self-averaging'. So long as L4 is larger than the size of the average
diffusion path to return to the origin, weak localization persists even though the sample
size L may be large so that L > Lo. Weak localization is destroyed by a large enough
magnetic field, usually less than 1 Tesla, which breaks time reversal symmetry inside
the conductor. Weak localization is related to the Aharonov-Bohm effect, and is in fact
responsible for oscillations in the conductance of a long metallic cylinder in a magnetic
field [16]. These 'Sharvin oscillations', which have a magnetic flux period of h/2e, were not
initially believed in the West, even though they had been previously predicted [17]. The
standard Aharonov-Bohm effect predicts h/e oscillations in the conductance of a small ring
in a magnetic field, and has also been observed [18]. If an array of these rings are placed in
parallel, the conductance oscillation period is found to be h/2e as for the Sharvin cylinder.
A good review is found in Ref. [8].

The quantum Hall effect (and related experiments) has been beautifully explained
by Biittiker [29] in terms of magnetic 'edge states' and the subsequent elimination of
backwards scattering in a strong magnetic field. This simple one electron picture, when
combined with a Landauer transport formalism, has brought great clarity to a previously
confused research area. The 'bulk conduction picture' of the quantum Hall effect [30]-[31]
has all but expired. If electronic currents really were flowing though the sample bulk in the
quantum Hall limit, why does the measured two terminal resistance not depend on the size
and shape of the conductor? ' Electron 'localization' away from the center of a Landau
level was formerly thought to be responsible for the quantum Hall effect [30]-[31], but to
the mind of this author was never able to explain the Hall plateaus. The 'explanation'
of the quantum Hall effect in terms of electron 'localization' between Landau bands also
usually erroneously invoked current carrying states below the Fermi level. States below
the Fermi energy cannot contribute to any net current flow at the device terminals. Of
course, the 'extended' edge states actually carry the quantized Hall current at the Fermi
energy. A strong piece of evidence in favor of the edge state picture is the breakdown of
the quantum Hall effect in narrow samples, explained as tunneling between the sample
edges [32].

A new type of symmetry for the electrical conductance in a magnetic field, when the
conductor is connected to multiple current and voltage 'probes', has been predicted [3] [33]
on the basis of the Landauer transport formalism. The same four-terminal phase-coherent
conductance should be measured if the current and voltage leads are interchanged and
the external magnetic field is reversed, even though the 'conductivity' may be non-local.
This generalization of the Onsager reciprocity relations has been experimentally verified
in multiprobe conductors [34]. Measured four-terminal voltages can have a sign opposite
to that expected classically from the current flow pattern in this formalism, which is
also experimentally observed. Power dissipation in the conductor as a whole is of course
positive.

Two more recent experiments which have been extremely important in defining the field
of quantum mechanical electronic transport in small devices are the 'quantization of the

21n the classical Hall effect both the two terminal and Hall resistances do depend on the size and shape
of the conductor, even if the conductor is large. However, for a long and narrow 'Hall bar' geometry, the
Hall voltage is given essentially by Pxy and the two-terminal voltage given by p,, as explained in Appendix
M.

· __



ballistic point contact resistance' [19]-[20] and the 'quenching of the Hall effect' in small
and nearly ballistic 'Hall crosses' [21]-[22]. The discovery of conductance quantization
in a ballistic point contact was important because it clarified when different types of
Landauer transport formulas could be applied to describe conduction and defined the
extreme quantum ballistic limit to transport. It was also the first clear observation of
quasi-one-dimensional subbands in electrical transport. The quenching of the Hall effect,
and related low field magnetoresistance anomalies such as the 'negative bend resistance',
were another success for the Landauer transport formalism. Discovery of the quenching of
the Hall effect was also important because most of its dominant features could be explained
by i• -ating the electrons as classical billiard balls [22], simply ignoring their wave properties
despite the extreme high mobility small samples held at milli-Kelvin temperatures.

1.2 Theoretical Background

The most important theoretical achievement in quantum electronic devices has been
the development and understanding of the Landauer conductance formulae [1]-[6]. The dis-
covery of the quantized ballistic conductance in point contacts, which could legitimately
be said to have been 'predicted' by studies of the Landauer formulae [35]-[36], has greatly
stimulated and clarified our understanding of quantum transport. By relating the conduc-
tance to the total transmission and reflection coefficients of the device [37], the Landauer
conductance formulae have greatly simplified computations as well as providing a concep-
tual framework for thinking about conductance.

Two central insights were obtained in Landauer's early work. The first and most im-
portant is that any transport coefficient can be related to the transmission coefficients (or
scattering matrix) of the device. While this insight seems evident today, like any impor-
tant advance in science it is only immediately obvious in hindsight [38]. The scattering
mechanism reflecting the carriers need not be purely elastic or involve only single-electron
physics [37]. But Landauer's second and also crucial insight is that electrostatic potential
is dropped locally around scattering centers in the device as follows: A steady incident
current is applied from the left to an obstacle. The obstacle reflects some carriers leading
to a charge build-up on the left a relative defecit on the right. This 'transport charge'
should be screened self-consistently like any other embedded charge. When this is done,
an electric dipole field builds up locally around the scattering obstacle and assists the in-
cident applied current to flow around the obstacle. Integrating these 'residual resistivity
dipole fields' across each scatterer gives the total voltage drop across the device.

There has already been a great deal of work done using the various Landauer con-
ductance formulae, and its rate of growth is increasing rapidly as more people come to
understand it. Like Feynman diagrams, Landauer's formulae have made quantum conduc-
tance calculations more tractable and understandable. It is somewhat surprising (and in
the opinion of this author a major scandal) that the Landauer picture was first completely
neglected for over two decades, and was then controvertial for almost another decade,
before reaching common acceptance. During this period throughout the 1970s a concep-
tually identical conductance formula was in routine use in the research area of tunneling
conductance, especially in the area of resonant tunneling, and was known at least since
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the 1930's. Needless to say, its full implications were not appreciated [39]. A clear un-
derstanding of resonant tunneling theory during the 1970s would have forced any theorist
to conclude that the one-dimensional ballistic conductance should be quantized. Instead,
it took the development of microlithography and small electronic conductors to force a
major rethinking of electrical transport theory, though the correct conceptual path should
have been apparent long before the 1980's. Fully understanding the ballistic conductance
quantization requires knowledge of how the voltage is dropped near the opening of the
conductor [5]-[6].

Another large share of blame for the underdeveloped state of electrical conductance
theory until the 1980's can be placed on the excessive authority and credibility placed in
diagrammatic quantum field theory techniques. These techniques supposedly 'automate'
physics calculations (meaning one doesn't have to think too deeply about the process),
yet they usually obscure rather than assist physical understanding of electrical transport.
Usually when one knows the final answer, it is at least possible to derive it again using
diagrammatic field theory techniques. Yet Landauer's simple conductance formula has still
not been convincingly derived from quantum field theory [51-[6]. And discussions of quan-
tum transport are still burdened with terminology tied to this one calculational technique.
When electrical conduction is being described in the independent particle approximation,
quantum field theory techniques seem both too obscure and unnecessary. In transport
theory these techniques have been applied to produce notoriously wrong answers; con-
duction in a quasi-one-dimensional wire is a prominent specific example (see Chapter 3).
Field : ory techniques have also contributed little towards, and have done much to obfus-
cate [31], our understanding of the quantum Hall effect. Yet even the application of simple
wave mechanics to electrical conduction has lagged until this decade. Quantum physics
has been very successful in understanding the energy level spectra of atoms and molecules,
the interaction of light and matter, etc. Phase-coherent electronic transport in solids can
soon hopefully be added to its resume of successes.

1.3 Open Problems

The confusion previously surrounding the whole field of the quantized Hall effect sharply
illustrates the previously confused thinking about conductance calculations in general. A
theoretical situation similar to that which occurred in the quantum Hall effect is repeating
itself for conductance calculations in quasi-one-dimensional wires (Chapter 3 and Appendix
L). Magnetoconductance in bulk samples, especially the so-called 'longitudinal Shubnikov
de-Haas oscillations' [40], have been described with a formalism almost identical to the
erroneous one used to describe transport in narrow wires. Quantum Monte Carlo simula-
tions of bulk semiconductors use essentially the same 'Golden-Rule' approach to describing
transport [40]. Ref. [41] develops the Golden-Rule/Master Equation approach thoroughly
and very physically, obtaining many important insights. Some elements of these transport
calculations may eventually turn out to be correct, but until one understands which ele-
ments of the models can in fact be obtained from a more rigorous Landauer-like transport
approach, these 'Golden-Rule' type transport calculations should be regarded as highly
suspect. 'Golden-Rule' scattering rate transport calculations are especially unlikely (see



Chapter 3) to be correct near any scattering thresholds such as those arising from optical
phonons, scattering into higher conduction band valleys in GaAs, and near confinement
subbands in quantum wires, thin films, or inversion layers. The degree of discrepancy
remains to be calculated for most of these systems, but for narrow wires the change of the
scattering rate is in the wrong direction and the magnitude of the difference is quite large.

As far as we now understand, the Landauer approach is limited to time independent
potentials. Generalization of the formula to the AC conductance is an outstanding theoret-
ical problem [35], though some convincing attempts have been made [42]. Finite frequency
effects are still usually computed using the Kubo formula [43], though physical interpre-
tation of the results is usually unclear. Each new calculation using the Kubo formula
constantly begs this question of interpretation: Why can the AC frequency be regarded
as a quasi-chemical potential in the Kubo approach, since a more reasonable candidate
for such a quasi-chemical potential is the rms AC voltage? How does the changing elec-
trostatic potential distribution due to the AC voltage and inertia of the carriers affect the
quantum AC conductance? Can the electron 'reservoirs' in fact be assumed to follow the
applied AC voltage as in Ref. [42]? The research area of 'tunneling times' should make a
strong connection with any AC Landauer conductance approach [44].

Another outstanding theoretical problem has been the inclusion of phase-breaking pro-
cesses in electrical transport. Biittiker has proposed a simple theoretical model for phase-
breaking scattering [45], consisting of placing an electron 'reservoir' at the scattering site.
Carriers entering and exiting the reservoir can do so at a constant energy, but their phases
are unrelated due to the long path lengths inside the reservoir. Presumably this model is
related to low-energy acoustic phonon scattering, but its present use is mainly conceptual.
Reference [46] distributes point oscillators everywhere in space and, after calculating how
the electron couples to these oscillators in a first Born approximation (like a 'Golden-Rule'
rate approach), finds that these oscillators act very much like tiny Biittiker reservoirs
distributed in space. A viewpoint emphasizing the measurement of the particle by the
'environment' inducing dephasing is given in Ref. [47]. Reference [48] proposes an ex-
actly solvable 'local phonon' model, in which the transmission amplitudes are convolution
broadened by the inelastic scattering. This 'local phonon' model is presumably related to
electron scattering from a barrier which oscillates in time [49], giving rise to phase-coherent
'sidebands' in the electron transmission.

Scattering from a magnetic impurity spin is the canonical example that inelastic scatter-
ing and phase-randomizing scattering are not necessarily the same. Imagine, for example,
an Aharonov-Bohm loop with magnetic impurities sprinkled in one arm. If no magnetic
field penetrates the arms of the interferometer, a magnetic impurity with spin up has
the same energy as the conductor with the impurity spin down. Thermal agitations can

(supposedly) induce impurity spin flips with no energy being dissipated by the conducting
electrons. And the electron scattering elastically from each set of random impurity spin
configurations has a different phase when it exits the arm of the Aharonov-Bohm loop.
Therefore, averaging the conductance over each different spin configuration destroys the
Aharonov-Bohm oscillations. This should lead to destruction of the Aharonov-Bohm effect
when magnetic impurities are present in a metal loop and IUBB < kBT. The Aharonov-
Bohm effect would be restored if the magnetic field were allowed to penetrate the arms
of the conductor and ALsB > kBT. When a large enough magnetic field is present in the



arms, thermal agitations do not have enough energy to flip the magnetic impurity spins
so that one no longer averages the conductance over the random phase from each spin
configuration.

The preceeding paragraph really does not consider spin-flip scattering processes be-
tween the electron and the magnetic impurity. We emphasize that scattering from an
individual spin is not necessarily an incoherent process. There are coherent spin-flip scat-
terings and incoherent (thermally induced) spin-flips. The same statement applies to
phonons. Lattice vibrations can be coherently induced by electron motion as well as by
incoherent thermal agitation from a heat bath. Electron scattering from an oscillating
barrier is one example of coherent 'phonon' scattering [49]. The oscillating barrier is also
an example that inelastic scattering and phase randomizing scattering are not necessarily
the same, since any phase changes of the incident wave are faithfully reproduced in each
emitted sideband.

What is the potential distribution around obstacles in a quantum conductor? How
does electron screening occur when the conductor is phase coherent? Applying a local
Thomas-Fermi screening approach is unlikely to be adequate under these conditions. The
most systematic study of this question to date has been carried out in Ref. [50], though
a fully self-consistent solution for any particular problem has yet to be carried out. Ref-
erence [50] argues that, for small applied voltages, these 'self-consistency' corrections to
currents flowing out of the device terminal are likely to be negligible. Yet, as emphasized
in Ref. [6] and Ref. [50], transport formalisms that ask questions only about what occurs
at electron 'reservoirs' cannot begin to adequately answer how current is carried through
the conductor, i.e. the transport mechanism. One must look inside the conductor and
ask, 'What is the detailed current flow pattern and voltage drop around obstacles?' to
understand transport processes [50].

Much of the work attempting to find self-consistent solutions to electron transport
problems involves quantum kinetic equations [50]-[52], an interesting area of study in its
own right. Ref. [50] emphasizes that power dissipation does not necessarily occur at the
same point in space as the voltage drop in a quantum conductor. Ref. [52] has emphasized,
using the 'notch' state trapped in the accumulation layer of a resonant tunneling diode
emitter, that the standard 'Golden Rule' scattering rate theory (or Pauli Master Equation)
violates current conservation if the scattering states are not plane waves. Therefore, the
Pauli Master Equation cannot describe scattering in a spatially inhomogeneous situation.
Admitting off diagonal density matrix elements into the calculation to preserve current
continuity then produces a full quantum kinetic theory.

Asking for the self-consistent electrostatic potential within the device requires a full
understanding of the coulomb interactions between electrons. An interesting recent series
of experiments [24], in which electrons are forced through a small region of conductor
where 'charging' or 'interaction' effects are likely to be significant [53], has yet to be
fully understood. Small normal metal tunnel junctions have shown 'coulomb blockade'
effects [54], which have been explained semi-classically.

How is the noise current affected by quantization and phase-coherent transport? Surely

3 Understanding screening in a phase-coherent conductor is increasingly important due to the recent
observation that high electron density in a contact is much more important than high mobility to observe
ballistic conductance quantization.



the Nyquist formula must suffer some modification [55]-[56]? One would hope that the noise
could be expressed in terms of the static transmission properties of the conductor, possibly
modified to account for individual electron transmission (shot noise). Perhaps the shot
noise spectrum would also be modified by quantization and phase-coherent conduction [57]?
Finally, there are 'classic' papers on electron transport [581-[61], now decades old, whose
insights and validity need to be re-examined in light of our current knowledge.

1.4 Guide to Appendices

Appendices A-C are concerned mainly with diffusive electron transport in quasi-one-
dimensional wires and superlattices. The transport is treated 'semiclassically' in that the
conductance is obtained as a solution to the semiclassical equations of motion for the
electron wavepacket. Of course, this solution requires making a model for the scattering
time (a point addressed in detail in Appendix L and Chapter 3).

A better intuitive feel for the semiclassical treatment in Appendices A-C is that the
electron is assumed to move between scattering events at the Fermi velocity. For classical
diffusive motion and a Drude-like conductance to apply, phase-coherence must be broken
inside the conductor. Two alternative viewpoints are then possible: (1) Phase-coherence is
assumed to be disrupted at each scatterer. (2) Phase-coherence is assumed to be disrupted
between scattering events. The important question in both viewpoints is, 'What determines
the scattering time rtr in the conductor? One should then have a reliable model to calculate
Ttr for a given scattering process. 4

Consider the first viewpoint: When an electron scatters in the semiclassical model its
phase-coherence is assumed to be broken. However, the electron motion between scattering
events is phase-coherent and quantum-ballistic. Thus, all one needs to determine the
conductance is the electron group velocity and scattering time as a function of Fermi energy.
From this viewpoint the calculations in Appendices A-C really describe the conductance
through a set of phase-breaking scatterers in a superlattice or quasi-one-dimensional wire.
The transport lifetime rtr then describes phase-breaking scattering which also randomizes
the momentum direction. 5

The second viewpoint asserts the following: Phase-coherence of the electron is assumed
to be broken between scattering events, but not by any process which significantly reflects
the electron or alters its Fermi velocity. From this viewpoint the calculations in Appendices
A-C describe conduction through a set of elastic scatterers with weak phase-randomizing
processes between the elastic scatterers. The scattering time rt, is then determined solely by
the momentum randomization from the elastic scatterers. The calculations in Appendices
A-C were originally done with this second viewpoint in mind.

Appendices A-C also develop a 'convolution method' to include the effects of finite
temperature and 'disorder' on the density of states and electrical conductivity. The 'ther-
modynamic density of states' dn/dty is a well defined concept in Appendix B, explaining

4In either viewpoint the electron requires phase-coherence over a few superlattice periods for its velocity
versus Fermi energy to have significant modulation. A different method must be used to calculate the
conductance when the inelastic scattering length is shorter than the superlattice period.

5This viewpoint is developed somewhat in the discussion on classical diffusion in Appendix D.
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thermal broadening of the density of states. However, the process leading to thermal
broadening of the conductance is difficult to understand from the approach given in Ap-
pendix B. Thermal smearing of the conductance is shown to follow from a Landauer-type
approach in Appendix D, if one assumes a carrier distribution incident on the conductor
which is in thermal equilibrium with the device contacts. Appendix D therefore provides a
qualitative understanding of why the conductance is said to 'thermally broaden'. Since the
thermodynamic density of states applies even when no current flows in the device, it is an
equilibrium property of a conductor. In contrast, thermal smearing of the conductance is a
quasi-equilibrium property, since it depends on an imbalance of carrier velocities incident
on the conductor.

'Disorder broadening' of the conductance and density of states in Appendices A-C is
somewhat more problematic, but still probably correct and widely accepted as being cor-
rect. Although the standard quantum field theory calculation for this disorder broadening
has been performed in detail [62]-[64], a good physical explanation for the broadening
has never been given to my knowledge. I give one possible explanation for the disorder
broadening in Chapter 2. The impurity broadening function is shown to be a histogram
of the impurity potential if the potential varies slowly in space compared to the electron
wavelength. It is still not completely clear if this 'impurity potential histogram' relates
to the field theory discussion of Refs. [62]-[64], where the chosen scattering potentials are
highly non-adiabatic. We give a possible relation between these two ideas in terms of
the non-local influence of scattering potentials which are not adiabatic. The discussion in
Chapter 2 recovers in a simple way the 'Golden-Rule' broadening of Refs. [62]-[64], yet
still uses the key idea that, on average, the energy levels follow the background impurity
potential for distances larger than the inelastic scattering length.

In Appendices A-C, convolution with the free electron density of states is shown to
increase the 'dimensionality' of the density of states and conductivity. A good physical
counting argument why this is true for the density of states is given in Appendix B. A
similar result for the conductivity tensor was shown to follow from the standard semi-
classical expression in Appendix B, but a physical explanation was not really attempted.
This same result was also shown to hold for the tunneling current from Landauer's for-
mula in Appendix D, providing a physical explanation for this result in terms of classically
adding resistors in parallel. This physical interpretation is further extended and clari-
fied in Appendix E (and Chapter 2). Each independent resistor, or current 'channel' to
cross the conductor, has a value determined by the quantum mechanical transmission T
of that 'channel', namely RiD = 7rh/e 2T. Classically adding these quantum mechanical
resistors in parallel constitutes our dimensional 'convolution method'. This 'convolution
method' for increasing the dimensionality of a conductor (or other system) sometimes ap-
pears in physics journals without an accompanying understanding of its physical origin or
implications [65]-[66].

Appendix D studies the Landauer formula, which governs ballistic, diffusive, coherent,
and incoherent transport. The 1D Landauer formula is

2e2
G1D(E) = T(E) , (1)

where T(E) is the quantum mechanical current transmission coefficient through the device

,m



potential. The transmission coefficient T(E) as a function of Fermi energy E can be
evaluated for whatever scattering mechanisms exist: the gate potential, disorder due to
impurities, acoustic or optical phonons, etc. [6] [37]. We emphasize here that Eq. (1)
describes a 'two-terminal' conductance. The original Landauer formula in 1D is

E 2e2 T(E)
h R(E) ' (2)

where R(E) = 1 - T(E) is the reflection coefficient, and describes a non-invasive 'four-
terminal' measurement of the conductance [5]. But Eq. (landgla) is not merely a formula
of academic interest. A complete understanding of the ballistic conductance quantization,
or indeed of any transport process, can be obtained only by using Eq. (landgla) and its
higher dimensional analogues of to see how the voltage is dropped near a constriction or
other obstacle [5]-[6]. A large variety of other Landauer-type formulae are possible [67]
depending on exactly what types of 'probes' are used to measure the voltage drop around
the reflecting obstacle.

T(E) can also be calculated classically through a chain of obstacles in 1D, as done
in Appendix D. If the device has length L, the transmission coefficient is found to be
T(E) = lt 7/L, where ltr = vFrtr is the transport mean free path. This recovers the standard
Drude formula for the electrical conductance in 1D.6 Viewed from this perspective, the
conductance calculations in Appendices A-C are valid because the transmission coefficient
is proportional to the Fermi velocity when the electron momentum direction is randomized
on average every rt. seconds. Thus in Appendices A-C the transport must be regarded as
semiclassical, that is partially phase-incoherent.

Appendix D also develops a novel 'voltage broadening' of the conductance. A source
to drain bias is shown to energy average the transmission coefficient in much the same
way as finite temperature averaging. Thermal and voltage energy averaging are shown
to be statistically independent if the device is coherent, a surprising result since a drain
voltage is generally regarded as 'heating' the electrons. 'Heating' due to power dissipation
in the conductor and energy averaging due to a finite bias across the device are in fact
quite different, with distinguishable physical consequences (Chapter 2). The independence
of thermal and voltage broadening arises physically because no power dissipation occurs
inside a coherent conductor. Power dissipation occurs only in the contacts to the device.
If inelastic scattering does occur inside the device, so that the conductor is partially phase-
incoherent, this picture is modified as described in Chapter 2.

The ideas in Appendix D were applied to resonant tunneling devices in Appendix E.
The resonant tunneling diode currents are determined by adding many quantum contact
resistances in parallel, so that the quantization of the ballistic resistance should have been
predicted by people studying resonant tunneling diodes in the 1970's. We stress this point
again in Chapter 4 using a simple example. The current versus base voltage, drain voltage,
and emitter Fermi energy for one, two, and three dimensional double barrier devices are
calculated in Appendix E using the 'convolution method'. All of the device I-V curves can
be sketched very easily by hand once one understands how the different spatial dimensions

6 This subject is not yet completely closed, since rtr/r = TIR from the Landauer approach, yet one
obtains rt/r- = 1/2R from a 'Golden Rule' approach to the scattering time.
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are related via convolutions, and if one also takes account of the energy averaging due
to finite source-drain voltage. The shape of the conductance versus Fermi energy, versus
drain voltage, or versus a 'base' voltage depends strongly on the emitter dimensionality as
shown in Appendix E.

To describe a conductor of finite lateral size, a finite width quasi-1D, 2D, quasi-2D, or
3D conductor, one needs to consider a Landauer formula with many quantum 'channels'
as

2e2G(E) = h1 Tnm (E) (3)
nm

The full power of a Landauer approach is needed in these 'multi-channel' scattering prob-
lems, or when the device has more than two terminals (a 'multi-probe' conductor). The
resonant tunneling devices studied in Appendix E are a special case where Tnm is diagonal
so that T,,(E) = 6m,,T,, which just describes adding conductors G, = (2e 2/h)Tn classi-
cally in parallel. The transmission coefficient Tnm(E) = 6,,,T, is diagonal in Appendix E
due to the special shape of the double-barrier potential, which permits momentum con-
servation perpendicular to the tunneling direction. Again, each independent resistor may
have a value determined by computing Tn quantum mechanically (as is the case for the
resonant tunneling diode in Appendix E), or the resistor itself may be classical where the
transmission coefficient Tn is determined using classical mechanics (as done in Appendix
D). We may then sum either the classical or the quantum mechanical resistors in parallel
using the 'convolution method'.

A simple model potential for which one can calculate Tn, exactly by hand is electron
transmission through a point scatterer in a quasi-1D wire. This is done by a (brute
force) wave-function matching method in Appendix F, and by a more 'elegant' Green
function technique in Appendix G. Both approaches of course give the same answer for
the transmission coefficients Tm. The Tnm's through these point scatterers are no longer
diagonal since the scattering potential has no special Cartesian symmetry. The point
scatterer is interesting in that, whenever the Fermi energy aligns with the bottom of a
quasi-iD subband, the transmission is perfect as though no scatterer were present in the
wire. This 'perfect transparency' effect is quite counterintuitive, and arises only because
the evanescent wire modes are now properly included in the transmission calculation. This
perfect transmission at a subband minimum is shown to be the only possible way to obey
the scattering boundary conditions in Appendix I and Chapter 3.

Making the scatterer attractive leads to new 'quasi-donor levels' splitting off the confine-
ment subbands. Donor levels below the conduction band minima of a doped semiconductor
are quite well known, where the donor electrons are strictly bound to the parent atom at
zero temperature. Requiring additional quantum confinement of the electronic motion to
a narrow wire induces a 'remnant' of these donor levels below each subband minimum.
These quasi-donor levels are therefore quite analogous to the original donor level in a bulk
semiconductor, but are formed from the evanescent or 'cutoff' electron waveguide modes.
The new quasi-bound states give rise to depressed transmission before a new confinement
subband opens, where the energy separation between the 'dip' in conductance and the next
subband is related to the binding energy of the state. Appendix F is the first published
discussion relating these pronounced 'dips' in conductance to the 'quasi-donor' states.

Appendix F also uses a numerical scattering matrix technique to describe electron



transmission through a finite size rectangular box potential. Transmission is no longer
perfect at a subband minimum when the scatterer is given a finite size. If the finite
size scatterer is made attractive and large enough to admit several bound states, several
conductance 'dips' appear before the opening of a subband. The appearance of multiple
conductance 'dips' again confirms that the depressed conductance near these energies is
related to bound states forming in the attractive potential.

An obvious question to ask once one has solved the multi-channel electron transmission
through a point barrier is, 'What is the transmission through two such point barriers?'. The
answer is given briefly in Appendix H, and in more detail in Appendix I. The interesting
answer to emerge from studies of electron transmission through two point barriers is that
the electron transmission is not always perfect despite that each individual barrier, taken
by itself, is indeed perfectly transmitting. This result is in sharp contrast to the analogous
situation in a strictly one-dimensional problem. It is found in Appendices H-I that wave
interference between propagating modes, as in a Fabry-Perot resonant cavity, generally has
little to do with the electrical conductance when the Fermi energy aligns with a subband
minimum. Instead, the shape of the lowest evanescent waveguide mode determines the
electron transmission so that the usual Fabry-Perot resonances are suppressed. A new
series of resonances develop related to the evanescent modes, and these new resonances
have completely different properties from the Fabry-Perot transmission oscillations. These
new oscillations can be interpreted in terms of molecule-like 'bonding' and 'anti-bonding'
states formed from the evanescent modes.

Appendices K and L are concerned with the multi-channel electron transmission through
many point barriers in a quasi-one-dimensional wire. Appendix K criticizes an alterna-
tive view of the development of conductance 'dips' in a multi-channel wire before a sub-
band opens. As alluded to previously, these drops in conductance before a new subband
opens are due to 'quasi-donor-levels' splitting off a new confinement subband. Appendix
L presents a positive calculation of the conductance in a quantum wire from the ballistic
to the quantum diffusive regime, examining the conductance of both individual wires and
the ensemble averaged conductance of a wire array.

A new subband structure fundamentally different from the quantized ballistic con-
ductance steps is found for the conductance of a quantum wire array in Appendix L: The
conductance falls rapidly after a subband opening when quantum diffusion is the dominant
electron transport mechanism. This electron 'localization' subband structure manifests it-
self when the effects of the 'quasi-donor-levels' are carefully eliminated (by allowing only
repulsive scatterers in the wire). Appendix L therefore proves that there is no unique
subband structure of the conductance versus Fermi energy in a quantum wire. The de-
penedence of the conductance on Fermi energy in these narrow wires reflects the type of
disorder present, even if one performs an ensemble average over different arrangements of
the scatterers in an attempt to eliminate this dependence. If some fraction of the scatterers
in the wire attract electrons, the quasi-donor levels dominate the shape of the conductance
versus Fermi energy near subband crossings. The quasi-donor levels again produce large
drops in the conductance before a new subband opens.

Appendix M describes measurements on Si MOSFET 'multiple parallel quantum wire'
devices fabricated in the Submicron Structures Laboratory and Microsystems Technology
Laboratories at MIT. The results shown have been reproduced on several different devices
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at different times (four separate devices), and the measurements are shown to be consistent
in several different regimes of temperature, gate biases, and magnetic field. A physical
interpretation of the magnetoconductance is given which is consistent in all these different
measurement regimes. It is shown that the 'grating gate' can actually pinch the two-
dimensional electron gas into narrow wires. Interesting manifestations of electron weak-
localization, the classical Drude magnetoconductance, and the quantum Hall effect are
found.

Although our interpretation of the measurements in Appendix M require no startling
new physical ideas, the combination of effects seen together in this multiple parallel wire
device is unique and sharpens our understanding of magnetoconduction in inversion lay-
ers. Weak localization becomes much more pronounced as the device is pinched from
a two-dimensional electron gas into narrow wires, proving that the electronic motion is
phase-coherent over the width of the wire. This large modification to weak localization
as one pinches the inversion layer into a narrow wire has not been previously confirmed
experimentally to our knowledge. Certainly, measurements of weak localization have been
performed on different two-dimensional and one-dimensional MOSFETs. However, direct
comparison of the results is difficult because of the radically different scales of the conduc-
tance of a two dimensional inversion layer and a narrow wire. The 'grating gate' MOSFET
allows a direct comparison of weak localization in one and two dimensions directly on the
same device.

The 'grating gate' MOSFET also displays an unusual two terminal low-field Drude
magnetoconductance, which has not been previously well understood. This can be con-
firmed by studying the references (which only periphereally discuss this subject) given in
Appendix M. Indeed the standard review article on two-dimensional systems [69] cites
a Japanese paper [70], which gives only the standard Drude magnetoconductance ten-
sor in two-dimensions. Other workers [71]-[72] give general and formal 'solutions' for the
two-terminal magnetoconductance by applying appropriate boundary conditions to a two-
dimensional conductance tensor, but do not obtain the simple insights of Park [68] given
in Appendix M.

In the low-field Drude magnetoconductance regime,. we find a large (80-90%) drop in
the two-terminal conductance as the inversion layer geometry is opened electrostatically
from many narrow wires in parallel to a two-dimensional electron gas. This effect per-
sists to room temperature, confirming its classical origin. We explain this large negative
transconductance by requiring that the Drude conductance tensor properly satisfy the
boundary conditions at the edges and contacts to the device, giving an intuitive picture
of the effect. For a long and narrow conductor, the current must essentially continue to
flow parallel to the sides of the device irrespective of the magnetic field. Therefore, a
high aspect ratio conductor displays almost no magnetoresistance. For a short and wide
conductor, however, the equipotential contours from the source and drain determine the
current direction, so that the current must flow at the Hall angle from source to drain.
Since the edges of the conductor are far away compared with the close proximity of source
and drain contacts, the magnetic field has a large and dramatic effect on the transport in
a low aspect ratio device. As the inversion layer geometry opens from many narrow wires
in parallel to a two-dimensional electron gas in an applied magnetic field, the current path
'switches' from running parallel to the sides of the device to flowing at the Hall angle,



producing a large negative transconductance.
The high field magnetoconductance and approach to the quantum Hall effect in the

grating gate device is also anomalous, with the two-terminal conductance characterized by
a large rising background when the inversion layer geometry consists of many narrow wires
in parallel. When the inversion layer forms a two-dimensional electron gas, the background
two-terminal conductance continues to fall (as it did. in the classical Drude regime). Thus,
the magnetoresistance has large movements in opposite directions on different segments of
the same device curve. The formation of quantum edge states in the wire array explains
this result. Finally, when quantum Hall plateaus are well developed in the two-terminal
conductance, we find the Hall steps are twice the expected size due to the conduction
band valley of (100) Si not being resolved. The spin degeneracy is well resolved at the
highest magnetic fields. The quantum Hall effect can also be used to count the number of
conducting wires in parallel, giving additional confirmation of device integrity.
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2 Convolution Picture of Quantum Transport

A simple 'energy averaging' picture can explain the lowest order effects of finite tem-

perature, finite source-to-drain voltage, and 'disorder' in the conductance of quantum

electronic devices. This 'convolution picture' of quantum transport is shown in Fig. 1,
where one merely averages the transmission coefficient over an energy range kT, eV, and
h/i, respectively, to account for these effects. Each of these 'broadening mechanisms' is
subject to limitations we discuss below, since temperature, voltage, and scattering do much

more than simply broaden the energy distribution of conducting electrons at the Fermi
level. However, in the lowest approximation, one can account for their effects by making
the electron beam at the Fermi level non-monochromatic.

Transmission Temperature Voltage Impurities Conductance

2 T(E) -df(ET) W(E,V) A(E,v) G-G(E,V,i)
h dE

3

3.5 kT hlr

0 0 eV•  0

Figure 1: Energy level broadening due to finite temperature, finite source-to-drain volt-

age, and 'disorder' can be incorporated in the electrical conductance by convolving the

transmission coefficient with functions of width 3.5kT, eV, and h/r, respectively.

The second aspect of our intuitive 'convolution method' is the incorporation of free
electron motion perpendicular to the direction of transport shown in Fig. 2. As emphasized
in Appendix E, this method is not a general way to increase the dimensionality of the
conductance and density of states for any arbitrary device potential, but it works for
an important class of electronic devices in addition to providing much physical insight
into conduction. The method works if the total Hamiltonian is separable into a sum of

components as H = H (x) + Hy (y) + H, (z) in Cartesian space. For any Hamiltonian having

this form the transmission coefficient is diagonal as T,, = Tntm. For the tunneling diode,
where H,(z) - p2/2m and Hu(y) = p//2m describing free electron motion perpendicular

to the tunneling direction, the method is particularly simple: One merely convolves the

transmission coefficient T(E) with the free electron density of states for the other two
directions of motion perpendicular to the tunneling barriers as shown in Fig. 2. The

dimensional convolution method will also work if the Hamiltonian is separable in some

other complicated coordinate space [65].
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Figure 2: If the electrostatic potential is constant along the directions perpendicular to
transport, one merely convolves the 1D transmission coefficient with the 'transverse' free
electron density of states to obtain the total device current.

2.1 Disorder Broadening

Why are electron energy levels said to 'broaden' in the presence of a 'random' electro-
static scattering potential? Our simple contention is: (1) a scattering center which lowers
the potential also lowers some of the energy levels on average, (2) a repulsive scattering
center raises some of the energy levels on average, (3) the DC level of the potential 'shifts'
the energy bands [73]. Of course, there will be fluctuations in the density of states in a
phase-coherent sample due to electron wave-interference. Looking at the 'average' density
of states is necessary in order to smooth out these interference patterns. But the energy
levels are still 'broadened' even in a specific sample which is phase-coherent.

An Anderson model calculation [74] shows how this idea works. Fig. 3(a) shows the
clean tight-binding periodic potential density of states. It has 1/vE/ singularities at both
band edges. The 'on-site' disorder added in (b) and (c) has equal amounts of repulsive
and attractive scatterers, so that there is no DC level shift of the states. The state density
calculated in (b) and (c) is for a specific phase-coherent sample, so that wave-interference
fluctuations can be seen in the density of states. However, the energy level spectrum is
already 'broadening' in (b) and (c) even in this specific phase-coherent sample. One can
easily imagine that averaging over many such calculated density of states curves, each
with a slightly different arrangement of the disorder and therefore a different interference
pattern, will produce a nice 'broadened' curve [75].

That attractive scatterers add states below the band edge and repulsive scatterers
add states above the band edge can be seen in at least three limits: (1) the formation
of 'bound' and 'anti-bound' states, (2) weakly varying 'adiabatic' potentials, and (3) in
perturbation theory. Consider (1), the formation of bound and anti-bound states. It



Figure 3: Calculated density of states for a specific sample, a tight-binding periodic po-
tential with increasing amounts of 'on-site' disorder, showing the presence of energy level
broadening. Attractive scatterers add states with E < 2, while repulsive scatterers add
states with E > 2. The periodic potential is subject to (a) no disorder, (b) small disorder,
and (c) medium disorder. From Ref. [74].

is well known that an attractive scattering center can produce a 'donor-level' below the
conduction band edge in a doped semiconductor. But if the band has an upper limit
of allowed energies as in Fig. 3, a repulsive scatterer can also produce an 'anti-bound'
state above the band edge. The 'anti-bound' state is analogous to an acceptor level in
a doped semiconductor. This 'anti-bound' state also illustrates a symmetry between the
effects of repulsive and attractive scatterers when the energy spectrum is band-limited.
Next consider (2), the limit of smoothly varying 'adiabatic' potentials. In this case the
entire energy level spectrum follows the slowly varying background potential so that our
contention in the first paragraph is trivially true. A first order non-degenerate perturbation
theory calculation, in case (3), where an additional small scattering potential is added for
example to a quantum well, also easily verifies these claims.

A similar view has been expressed in the context of the quantized Hall effect and the
broadening of Landau levels in Ref. [30]: 'The various quantum states in each energy band
can be divided into three general classes. The states near the bottom of each band, that
is, those of lowest energy, are each localized in some small region of the sample. These
low-energy localized states occur at "valleys" in the electrical potential energy, for example
in the regions around impurity atoms that have an excess of positive charge. Similarly,
near the top of the band are high-energy localized states. These are localized near "peaks"
in the electric potential, perhaps in the regions around impurity atoms that have acquired
electrons and so bear an excess of negative charge.'

Thus, the energy distribution is already 'broad' when scatterers are added, even when
the sample is phase-coherent. The addition of many phase-coherent segments, to make
up the incoherent sample of Fig. 4, is only necessary to 'smooth' the (already broadened)
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density of states (by averaging out the quantum wave-interference fluctuations). The
incoherent sample itself is not really necessary to produce energy level 'broadening', only
level 'smoothing' of an already broadened spectrum.

How does a real macroscopic sample eliminate the wave-interference pattern which
will manifest itself in the density of states? One imagines a situation like Fig. 4, in which
phase-randomizing scattering effectively breaks the full sample up into a number of smaller
coherent samples of size L#. Each phase-coherent segment of the conductor has a slightly
different arrangement of impurity scatterers, so their quantum state densities will differ
due to a complicated wave-interference pattern in each coherent region. One expects that
the electrical conduction, density of states, optical absorption, etc., will simply be averages
of the quantum properties over each phase coherent segment of the sample.

Ir

L

Figure 4: An incoherent macroscopic sample. Inelastic scattering inside the conductor
breaks up the sample into many phase coherent segments of size L~.

Our discussion here relates to the one in Appendices A and B as follows: The impurity
spectral function A(E, r) tells us how much the energy levels move around from the extra
disorder inside each phase coherent segment of the conductor. Inside each phase-coherent
block A(E, r) has peaky structure, due to electron wave-interference, which gets smoothed
out if we look at the average spectrum. Thus, the 'broadening' due to elastic scattering
is just a reflection of the range of states that are needed to form the eigenstates of the
disordered system from those of the pure system. These newly formed states are eigenstates
of the disordered potential inside each phase-coherent block, and again already have a
broadened spectrum. The physics of energy level broadening is no more complicated than
computing this spectrum.

'Ensemble averaging' over different arrangements of the scatterers, sometimes carried
out in a type of perturbation theory called 'ensemble-averaged perturbation theory', mim-
ics the incoherent macroscopic conductor of Fig. 4. When calculating the conductance of
a narrow wire for example, 'ensemble averaging' corresponds to calculating the conduc-
tance for one specific arrangement of the static disorder in the wire, then for a second
arrangement, etc. The conductances of the wires are first added classically like indepen-
dent resistors in parallel, and then divided by the number of parallel wires to obtain the
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'ensemble averaged' conductance. In ensemble averaged perturbation theory the conduc-
tance of the average sample, free of the wave-interference fluctuation pattern present in a
single phase-coherent conductor, is calculated directly. However, the 'second moment' of
the conductance can still be calculated (in a complicated way) in this special 'average' sam-
ple, which is how all the 'universal' conductance fluctuations results are obtained. Again,
this type of 'self averaging' is (supposedly) carried out in large individual samples, like the
macroscopic conductor of Fig. 4, due to phase-randomizing scattering. As more questions
are asked about the nature of inelastic scattering itself, this assumption will suffer more
scrutiny.

There are two common limits where energy level broadening can be explicitly calcu-
lated: (1) when the scattering potential is slowly varying in space, and (2) if the scattering
potential is a delta function. We can easily translate the ideas from the previous para-
graphs into mathematics if we assume that the impurity potential V (x) varies slowly in
space compared to the electron wavelength. We can then, to a good approximation, neglect
the detailed wave interference pattern between impurities so that the Schrbdinger equation
applies locally at each point. The impurity potential V(x) is then just a constant offset to
the total energy at each point. Therefore, the average density of states R(E) is simply

N(E) = - No(E - V(z))d , (4)L fo
where No(E) is the density of states of the 'clean' system before the impurities are added.
We can slightly rewrite Eq. (4) as

R(E) ] dE'No(E - E') 6(E' - V(x))• (5)
-oo L

Eq. (5) can be expressed in a more transparent form

N(E) = f dE'No(E - E')P(E') (6)
-oo

where the probability density in energy P(E) is found as

P(E) = (E- V(x)) (7)

Eq. (7) makes it clear that the shape of the energy level 'broadening' function P(E),
sometimes called A(E,r) in a different context, is simply a histogram of the impurity
potential energy V (x).

Note that Eq. (4) neglects wave interference between scattering events, thereby em-
bodying the assumptions inherent in cases (2), adiabatic potentials which nearly eliminate
reflections, and (3) first order non-degenerate perturbation theory. Eq. (4) in fact assumes
that first order non-degenerate perturbation theory is valid locally at each point in space.
These assumptions limit the validity of Eq. (4). For example, Eq. (4) cannot describe any
impurity potential in which bound states can form. Also, due to electron wave-interference,
inserting a repulsive potential can probably lower the energy of some states. But on aver-
age it is certainly true that an attractive potential lowers the energy of electron states and
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a repulsive potential raises their energies. If the scattering potential is weak and varies
slowly in space, Eq. (4) should provide a good approximation to the average density of
states. Note also that because wave-interference is specifically neglected in arriving at
Eq. (4), so that the 'ensemble-averaging' idea is not needed in this first approach.

The second model for energy level broadening consists of calculating A(E, r) using
ensemble averaged perturbation theory, and taking each impurity to be a point scatterer

V (x) = 6(x - zx) . (8)

Then, as calculated in Refs. [62]-[64], the width in energy AE of A(E, r) is given by the
'Golden-Rule' expression

N; -
AE = 27r N' 'No(EF) - - (9)L r

The potential from Eq. (8) is highly non-adiabatic, so we cannot expect the level broadening
from Eq. (7) to apply.

The usual argument justifying Eq. (9) runs as follows: The 'momentum spread' (i.e.
the range of k states needed to form the eigenstates of the new system with scatterers
from the 'clean' plane-wave states) around the Fermi surface introduced by scattering is
Ak and the corresponding energy spread is AE. They must be related by

h 2 (kF + Ak)2  AE EF h2kFAk
= EF + AE _ E - (10)

2m m

One then argues the scatterers 'confine' the electrons in position on a scale of the mean
free path so that Ax = L. Therefore, from Ax Ak - 1, we obtain

AE = h = , (11)e (

where r is the mean free time. However, this does not explain why r is determined from
Eq. (9). One usually appeals to the 'Fermi Golden Rule' to justify why r is given by
Eq. (9). However, it is difficult to understand how this appeal to a 'scattering rate' can
be related to the idea that each impurity locally 'shifts' the energy level spectrum around
itself.

We give a different argument for Eq. (9) here: Suppose that the average spacing between
the point scatterers is a, so that we can smear out each point scattering event over that
spatial scale. Then, a naive application of Eq. (7) gives AE f- Hq/a, the same result
one would obtain from first order non-degenerate perturbation theory. But this answer,
AE _ [jll/a, is in conflict with the 'Golden-Rule' result of Refs. [62]-[64] and Eq. (9).
However, because the scattering potential leading to Eq. (7) is assumed to be adiabatic,
Eq. (7) requires that the impurity potential only locally influences the density of states. We
can try a slightly different approach where the potential at a point x influences states at
other points within a phase coherence length away from x. We also assume phase-coherence
extends only over the spacing a to the next scatterer. By this assumption, we can still
neglect wave interference between scattering events in calculating the average density of



states. These same assumptions are made implicitly in Refs. [62]-[64]. By again neglecting
wave interference between scatterers in this second approach, we eliminate the need for
'ensemble averaging'.

We assume that each point scatterer influences the electron states only within a distance
a between itself and the neighboring point scatterers. Then, the number of states which
will be affected by the scatterer V(x) = y6(x) is approximately

number of states = -No(EF)a . (12)
a

Since these states are phase-coherent, they effectively 'see' the same point scatterer. Each
state will therefore have its average energy moved by an amount Y/a. We can now treat the
problem as if a number (q/a)No(EF)a of local scatterers, each having a strength 'Y/a, are
added to the conductor at each point. To avoid shifting the DC level of the potential, we
assume for simplicity that half the scatterers are attractive and half are repulsive. These
assumptions require

2P(E) 6 (E - (y/a)'No(EF)a) + (E + (y/a)No(EF)a) . (13)
Computing the variance of P(E) from Eq. (13) recovers the 'Golden-Rule' broadening of
Eq. (9). The argument in this paragraph is not completely rigorous, but may incorporate
the basic physics of energy level broadening when the influence of the potential is non-local.

2.2 Thermal and Voltage Broadening

Thermal and voltage broadening follow directly from the calculation of tunneling cur-
rents in Appendix D, where these two broadening mechanisms are shown to be independent
if the device is coherent. What limitations are there on this result? How is voltage broad-
ening physically distinguishable from electron 'heating'?

If the source to drain voltage is large enough, electron heating certainly does occur
inside a small conductor. A dilution refrigerator containing the sample can also be heated
using this method if too little care is taken. But power dissipation need not occur inside
the device where the voltage is dropped. It can occur in the large device contacts (electron
'reservoirs') which remain essentially in thermal equilibrium. As long as the demands
placed on the device contacts to carry away the Joule heat produced are not excessive,
conduction occurs at essentially the same 'temperature' as when the drain voltage is zero. It
is in this sense that the energy averaging due to voltage and temperature are independent.

To illustrate the difference between Joule heating and energy averaging due to the finite
source-drain voltage, consider the conductor in Fig. 5. Phase-randomizing (or inelastic?)
scattering can be modeled as expanding the conductor out into an electron 'reservoir',
by which we mean that it has a well defined temperature and chemical potential [451.
Geometrically diluting the current density by expanding the conductor out into a wide
region ensures that the wide region is essentially in thermodynamic equilibrium so that
J(x, y) " 0 everywhere in the 'reservoir'. (A negligible amount of inelastic scattering
inside each 'reservoir' is necessary to insure that thermodynamic equilibrium obtains in
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Figure 5: (a) A one-dimensional conductor much longer than an inelastic length, L > L.
(b) Conceptual model of the same conductor as the addition of constriction resistances in
series. Phase-randomizing scattering permits the classical addition of resistors in series.
Each individual resistor, however, is phase-coherent. Adiabatically widening the conductor
enforces thermal equilibrium after each inelastic scattering event.

each widened region, but we assume this additional scattering does not significantly reflect
the carriers and therefore has little effect on the overall resistance.) Inelastic scattering
inside the original conductor is therefore seen in the model of Fig. 5 as bringing the
conductor locally into thermodynamic equilibrium.

Thermal averaging of the conductance will be - kT in each coherent segment of the
device in Fig. 5. But the voltage averaging of the conductance in each coherent device
segment will be reduced to N eV/n, since only a fraction - 1/n of the total voltage will
be dropped across each phase-coherent segment if there are n inelastic scatterings between
voltage probes. This difference offers the possibility of an experiment which can distinguish
between electron 'heating' and energy averaging due to a finite source to drain voltage.

Consider again the conductor of Fig. 5(a), where there are four inelastic scattering
lengths between the device contacts. Further, let us assume the characteristic energy
scale E, for structure in the conductance, i.e. the correlation energy EI for 'universal'
conductance fluctuations, is the same in each coherent segment. The wave-interference
pattern in the current will then 'go away' at a temperature T* determined as kT* ~ Ez,
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(b) Conceptual model of the same conductor as the addition of constriction resistances in

series. Phase-randomizing scattering permits the classical addition of resistors in series.

Each individual resistor, however, is phase-coherent. Adiabatically widening the conductor

enforces thermal equilibrium after each inelastic scattering event.

each widened region, but we assume this additional scattering does not significantly reflect

the carriers and therefore has little effect on the overall resistance.) Inelastic scattering
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conductor locally into thermodynamic equilibrium.

Thermal averaging of the conductance will be N IcT in each coherent segment of the

device in Fig. 5. But the voltage averaging of the conductance in each coherent device

segment will be reduced to N eVln, since only a fraction N lln of the total voltage will
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Consider again the conductor of Fig. 5(a), where there are four inelastic scattering

lengths between the device contacts. Further, let us assume the characteristic energy
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Figure 6: An experiment which could distinguish between electron 'heating' and energy
averaging due to a finite source-drain bias voltage. One can also measure the phase-
breaking length Lo using this method, given by the intersection point of the solid and
dotted lines. From Ref. [76].

independent of the number of inelastic scatterings between voltage probes. But the wave-
interference pattern will persist up to a voltage V* such that eV*/(L/L#) ~ E,, because
only a fraction (L/L,) of the total voltage is dropped across each coherent segment of the
conductor.

This viewpoint has been emphasized in Ref. [76] and in Appendix C, where V* is plotted
for different lengths L of the conductor. The oscillations persisting to higher drain-source
voltages as the device is made longer would be clear evidence that energy averaging, not
electron 'heating', is responsible for the structure washing out. If electron 'heating' were
responsible, the criterion would be eV* = kT* = E, independent of the device length L. A
drawback of this scheme is that the size of 'universal' conductance fluctuations naturally
decreases anyway as the device is made longer, so one would have to correct for this power
law effect. Furthermore, 'going away' would have to be better defined statistically. But
such an experiment can qualitatively distinguish between energy averaging due to the finite
device bias versus electron 'heating' even without these refinements. Additionally, one
obtains an independent measurement of the phase-breaking length L_ from the intersection
point of the solid and dashed lines in Fig. 6.

2.3 Dimensional 'Broadening'

The simple dimensional convolution method shown for the conductance in Fig. 2, and
which also applies to the density of states, can be understood in two dimensions as follows:

w
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Since the Hamiltonian separates as H = H(sx) + H,(z), the total energy can be written
as E = E. + E_. We draw this constant energy line of constraint in Fig. 7.

The tunneling electron can have any combination of E, and Ez such that the total
energy E is conserved during tunneling. But let us choose a particular value of E, and E.
The current carried by the electron at energy E_ is simply

£2

I1D(Ez) = e-T(Ez) , (14)7rh
where T(E,) is the one-dimensional transmission coefficient through the tunneling potential
described by H,(z). The number of electrons carrying this current in a small energy
range dE, is given by the density of transverse momentum states in this range, namely
LNlD(E,)dE,/2 where L, is the size of the conductor along the x-direction. N1D(E,) is
the one-dimensional density of states from the Hamiltonian H,(x) = p2/2m, namely the
free electron density of states.

Because the different transverse momentum directions do not scatter into each other,
the currents in each channel can be classically added like resistors in parallel. The incre-
mental device current dl at a particular value of E and Ez is therefore

dI 2D(E, E,) = IlD(Ez)L, N1D(E,)dEz/2 . (15)

When one allows the energy to be distributed between all values of Ez, the currents again
add classically like resistors in parallel so that

I2D(E) = f dl 2D(E, Ez) = f IlD(Ez)LND(E - E,)dEz/2 . (16)

This proves the convolution result shown in Fig. 2. A similar result holds for three-
dimensional conductors and the electronic density of states in different spatial dimensions.

This 'dimensional convolution' method for the conductance simply corresponds to clas-
sically adding many quantum point contact resistances in parallel. This viewpoint is
emphasized in Appendix E, and explained in a simpler way in Chapter 4. For the density
of states, this 'dimensional convolution' method also holds. If particle motion is decoupled
along the two orthogonal directions except for the constraint that the total energy of mo-
tion is a constant, the total number of available states is simply a product of the number
of states along one direction times the number of states along the other. This is explained
clearly in Appendix B.
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3 Conductance of Quantum Wires

A quantum wire or electron waveguide, where electrons are laterally confined to a few
normal modes and transport occurs perpendicular to the confined direction, is shown in
Fig. 8. The electron dispersion relation for these wires is shown in Fig. 9. The multiple
channel Landauer formula is ideally suited for calculating the conductance of quasi-one-
dimensional wires (see Appendices F through L). Each new normal mode, or electron
transmission 'channel' to cross the conductor, carries a maximum current ",_ = e2V/irh
of about 0.1 nA/isV. Equivalently, the ballistic resistance h/2e2 of a single channel in the
quantum wire is roughly 13 kfl. Refs. [35]-[36] and [5]-[6] explain in detail why a ballistic
conductor has a resistance of h/2e2 per quantum channel.

Figure 8: Transport modes in an electron waveguide.

The second and third sections of this chapter review rigorous quantum mechanical
scattering calculations of the conductance in quantum wires done in Appendices F-L. We
argue that these calculations are correct, give a consistent picture of electron scattering in
low-dimensional geometries, and are on their way to becoming qualitatively understood.
Evanescent or 'cutoff' electron waveguide modes shown in Fig. 9, and for which we later
give a transparent physical picture, dominate electron scattering when the Fermi energy
is near any subband minima in the wire.

However, to make connection with previous work and calculations done in my S.M.
thesis [62], I first criticize previous approaches used to calculate conductance in these
narrow wires. The criticism hinges mainly on the models used for the electron scattering
time: the Fermi Golden-Rule approximation. This Born approximation scattering theory
(or 'Golden Rule' approach) completely breaks down whenever the Fermi energy is near a
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Figure 9: Dispersion relation for an electron waveguide. The top half indicates the propa-
gating modes having dispersion E = E, + h2 k2/2m, while the bottom half shows 'negative
dispersion' for the evanescent or 'cutoff' waveguide modes having E = F - hx2 /2m
(where n, = ik,). The corresponding evanescent density of states diverges below the
subband minimum. From Appendix F.

subband minimum in a narrow wire. But because this particularly simple type of scattering
theory breaks down near a subband minima does not imply that incoherent electron motion
in a quantum wire cannot be classical and diffusive. The physical assumption of classical
diffusive motion and the subsequent Drude-like conductivity can be valid for these wires in
some circumstances. However, to properly implement the physical assumption of classical
diffusive motion, the conductor must be 'assembled' by classically adding each coherent
'resistor' in series (see Fig. 5 in Chapter 2). To obtain the correct value of the total
resistance, therefore, the scattering in each coherent segment of the conductor must be
calculated properly. Equivalently, in the Drude-Sommerfeld language, the scattering times
must be calculated properly. The Fermi-Golden Rule approach is incapable of properly
computing these scattering times when confinement subbands exist in a narrow wire.

3.1 Fermi Golden-Rule Approach

To motivate this section, consider first a completely one-dimensional conductor where
only the x-direction of space exists. The impurity potential we take to be a sequence of
point scatterers. We assume the electron phase is randomized after each collision so the
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resistances of each point barrier can be added classically in series. We can therefore cal-
culate the resistance of each coherent segment of the conductor by quantum mechanically
obtaining the electron transmission coefficient T through a single point barrier. The Lan-
dauer conductance of the chain, neglecting the contact resistance at the end for this long
chain having low transmission, is therefore (see Appendix D)

e2 T 1
G = . (17)7rh R Ni

Here Ni is the total number of barriers and R = 1 - T the reflection coefficient of a single
point barrier.

Each point scatterer in the one-dimensional wire has a potential V(x) = -6(x - 4).
The quantum mechanical transmission coefficient T through this potential is

1
T = 1 , (18)

where v = hk/m is the electron velocity. The resulting Landauer conductance of the
impurity chain is

e2 (h2k )2 1 2 {v2 ((E (19)
7r my NV 2-2 N

In writing this last expression we have introduced the density of states N(E) in one-
dimension, namely N(E) = 2m/rh2 k = 2/irhv.

Eq. (19) can be directly compared with the Drude conductance of the one-dimensional
chain, given by

S= L L e2(E)N(E)= e (v rN(E) (20)

where D(E) is the diffusion constant and rTt the momentum relaxation time or transport
lifetime. For Eq. (19) and Eq. (20) to be equivalent we must have

h- = r q'N(E) . (21)
tr L

Eq. (21) is one form of the well-known Fermi Golden Rule expression for the transport
lifetime, specialized to a point scattering potential. The classical diffusive conductance ob-
tained from the Landauer transport formula and the conventional 'Golden-Rule' scattering
calculations give the same answer in this one-dimensional or single subband model. We
find below that, due to the influence of evanescent modes on the transport, the Golden-
Rule type scattering arguments do not predict the correct Drude conductance when the
Fermi energy crosses a confinement subband.

Before the discovery of the quantized ballistic conductance, several calculations were
made to determine the effect of quantum confinement on the transport properties of elec-
trons. In most of these calculations, the 'ensemble averaged' conductance of diffusive

_



quasi-one-dimensional wires was obtained using the Kubo formula [77]-[82]. Similar calcu-
lations continue to appear [83]-[84]. A simplified discussion of these references is given in
Appendices A-C. Here we repeat the most salient points of that discussion.

A sharp drop in the conductivity, due to rapid intersubband scattering, is obtained
whenever the Fermi level passes into a new quasi-one-dimensional subband in the calcula-
tions of Refs. [77]-[82] and Appendices A-C. This is because the scattering rate in the wire
is found to be proportional to the total electron density of states as in Eq. (21). When
the density of states diverges above each subband, the scattering rate diverges and the
conductivity falls to zero. The small number of additional carriers obtained when a new
subband is populated cannot overcome the large increase of the scattering rate above a new
subband in Refs. [77]-[82] and Appendices A-C. One small problem in these calculations
is that the scattering rate depends on the density of states, but scattering changes the
density of states, which again changes the scattering rate, etc. Recognizing this difficulty,
most of Refs. [77]-[82] have applied the self-consistent Born approximation to calculate the
conduction in narrow wires. (A self-consistent convolution broadening method should give
similar results, if not identical ones.) However, the results even after this pseudo' 'self-
consistency' is taken into account are qualitatively the same: electron scattering increases
dramatically above each new subband minimum in the wire.

These calculations [77]-[82J are in contrast to the quantized conductance steps in a
ballistic wire: the conductance increases whenever the Fermi energy passes through a new
subband minimum in those experiments. Furthermore, the drop in conductance predicted
in Refs. [773-[82] and Appendices A-C sharply contrasts to the results shown in Appen-
dices F-K for a small number of impurities. In those calculations the conductance always
increases when a new subband is populated. This is because, in Appendices F-K the
transmission and reflection at an individual impurity scatterer is correctly calculated. In
addition, evanescent modes in the wire are not included in the calculations of Refs. [77]-[82]
and Appendices A-C, and we know that such modes are very important in determining
the subband crossing behavior of the conductance.

The Golden-Rule approximation of Refs. [77]-[82] and Appendices A-C is also ques-
tionable when more than one subband is occupied. Appendix G shows that the Born
approximation breaks down completely at a subband minimum: It is found in Appendix G
that the Born approximation gives the exact opposite answer as a rigorous scattering cal-
culation. The Born approximation suggests a decrease in transmission when a subband is
encountered, while the correct answer gives increasing transmission as a subband is crossed.
This difficulty is not remedied in any self-consistent Born approximation scheme. It is
therefore difficult to understand from what perspective the detailed results for conduction
in quasi-one-dimensional wires in Refs. [77]-[82] and Appendices A-C can be viewed as
being valid.9 I conclude that the Golden-Rule type scattering approach, touted in many

'All electrostatic charging effects are obviously neglected here and in the later discussions in this chapter.
It is unknown at the present time how this affects the results presented.

8It has been suggested that a 'degenerate' Born scattering theory might work at a subband minimum. I
do not believe this is possible, since the perturbation series in Appendix G diverges at a subband minimum.
Furthermore it is not even clear how one might develop such a theory, since one is solving for the scattering
of electrons from potential barriers rather than the stationary energy levels of a closed system.

9 It is possible to obtain a sharp drop in the four probe conductance using the multiple channel Landauer
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textbooks and papers on the subject of electrical conduction in solids, gives not just a quan-
titatively wrong answer, but the wrong qualitative dependence of electrical conductance
on the Fermi energy in a narrow wire. It should be equally unreliable for discussing the
Shubnikov-de Haas oscillations, scattering in a multi-valley semiconductor such as GaAs,
and optical phonon limited mobility, since scattering thresholds similar to confinement
subbands are encountered in all these cases.

Before leaving this section I would like to point out that none of the effects discussed
above have any connection to the electron mobility enhancement in one-dimensional wires
predicted by Sakaki [85]. Sakaki uses the same Golden-Rule type theory as above to support
this claim. Reference [85] notes that the Fourier transform of the impurity scattering
potential V (q), which enters the general Golden Rule expression for the transport lifetime

= 27r NV(q) 1N(E) , (22)
_tr(q) L

must be evaluated only at q = 2kF in one-dimension (since small angle scattering is not
allowed in 1D). The usual Bessel function result for a screened Coulomb potential V (q) falls
off quite rapidly with increasing q, due to the finite size of scatterers in the wire, so Sakaki
concludes that the electron mobility should be larger in a one-dimensional wire. However,
for point scatterers V(q) = -y independent of q, so point scatterers give none of Sakaki's
mobility enhancement. Indeed, the Sakaki mobility enhancement should be negligible for
scatterers having a size smaller than 1/2kF. It is only for very large scatterers that Sakaki's
argument is relevant. I again emphasize that Sakaki's ideas say nothing about subband
crossings, they are concerned only with conduction deep in the lowest subband of the wire.
As we have seen, these 'Golden-Rule' type theories behave much better if the Fermi energy
is not near a subband crossing, so the ideas in Ref. [85] may perhaps be correct.

3.2 Multi-mode Transmission Through a Single Barrier

To understand the scattering and subsequent electrical conductance in a quantum wire,
recall the electron dispersion relation from Fig. 9. As the Fermi energy approaches a
subband minimum from below, the evanescent density of states diverges and dominates
the scattering properties of electrons from any obstacles in the wire. The shape of these
states in real space is shown in Fig. 10, where the evanescent modes can be pictured as
'clinging' to the side of the barrier in a classically allowed region of space. These evanescent
modes accumulate around any obstacles present in the wire, driven by the current incident
on the obstacle and the mode coupling at the scatterer (as stressed in Appendix F). This
phenomena is well known in the context of electromagnetic wave scattering in microwave
waveguides. Even though these evanescent states do not carry any currents along the wire,
they strongly influence the scattering boundary conditions when the Fermi energy is near

formula due to a screening effect [37]. This screening effect is also examined in Appendix F. However in
the extreme diffusive limit of low transmission, the two-probe and four-probe Landauer conductances are
almost identical. This screening effect therefore cannot rescue the Golden-Rule approach. Furthermore,
none of the calculations I critize in this chapter considered screening of the scattering potential by reflected
or transmitted electrons.
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a subband minimum. Therefore, these exponentially decaying modes wind up dominating
the scattering when the Fermi energy is near a subband minimum.

Incident X, (y) Transmitted X, (y) yI%-
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Figure 10: Due to electrons scattering from the current incident on an obstacle, evanescent
modes accumulate around obstacles in the wire. This process becomes especially important
in determining the dependence of electrical conductance on the Fermi energy near any
subband crossings. From Appendix F.

A simple model scattering problem, where a single point scatterer is placed in a narrow
wire, is sufficient to investigate the influence of these evanescent states on transport. The
conductance versus Fermi energy through the point scatterer is shown in Fig. 11. A
completely different qualitative dependence of the electrical conductance on the Fermi
energy from that expected in Refs. [77]-[82] and Appendices A-C is found in Fig. 11: The
conductance increases whenever the Fermi energy passes through a new subband in the
wire. Cascading many of these defects by adding constriction resistances in series, as done
in Fig. 5 and implicitly in the calculations of Refs. [77]-[82] and Appendices A-C, will also
result in an increasing conductance whenever the Fermi energy crosses a new subband
minimum in the wire.

Attractive scatterers strong enough to allow the formation of bound states result in a
unique structure of the conductance versus Fermi energy in these narrow conductors. Just
as an attractive impurity can form a donor level below the conduction band minimum in
a semiconductor, so too can attractive defects placed in a narrow conductor form 'quasi-
donor levels' below each subband in the wire. These new quasi-donor levels or 'quasi-bound
states' manifest themselves as the drop in conductance just before the Fermi energy enters
a new subband in the broken curve of Fig. 11. It is not obvious that these 'dips' in
conductance before a new subband opens correspond to quasi-donor-states, as inspection
of the References given in Appendix K indicates, but this matter is analyzed in some detail
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Figure 11: Landauer conductance through a single point defect in a narrow wire. The
solid line is for a repulsive point defect, while the broken curve shows the conductance
when the sign of the scattering potential is reversed. The dips in conductance before the
opening of a new subband indicate 'quasi-donor levels' forming in the attractive scatterer.
From Appendix F.

in Appendices F and I. Even though these conductance 'dips' are clearly associated with
the quasi-donor levels in Appendices F and I, the detailed scattering mechanism leading
to the depressed conductance is not clear. 10

One puzzling feature of the electrical transmission through a point scatterer in a nar-
row wires is that the electron transmission is perfect whenever the Fermi energy aligns
with a subband minimum regardless of the sign, strength, or location of the scatterer.
Although recognized in Appendix F-G, this property was finally understood simply to be
a consequence of the scattering boundary conditions in Appendix I. The only way in which
all the boundary conditions can be obeyed is for the incident mode to propagate through
the point defect without reflection. A more general arrangement of point scatterers also
yeilding perfect transmission at a subband minimum was found in Appendix I.

Perfect transmission at a subband minimum results for the point scatterer simply by

10I thank Prof. Marc Kastner for pointing out the existence of these type of quasi-donor states when he
saw the curves from Fig. 11 in an informal talk. At that time the origin of these conductance drops was not
obvious to me.
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imposing the boundary conditions at a defect having the form

Vd( , y) = 16(z)6(y - y;) . (23)

The wavefunction (zx, y) can be expanded in terms of the lateral normal modes of the
wire Xn (y) as

b(Z, y) = a(x)Xn (y) , (24)
n

simply from the completeness property of the wavefunction. Integrating the SchrSdinger
equation gives

da(X) Er= .rnam(Z = 0) , (25)
dx z=0+ dx Z=0- m

where the mode coupling constants Fnm have a 'product form'

rnm 2y Xn( = Yi)Xm(Y = y=) . (26)

nm factors in Eq. (25) due to the special shape of the point scatterer. Therefore, Eq. (25)
can be rewritten using Eq. (26) as

das(x) _ das(S) = 2my=0X 2 n(- = y  X) (y = y)am(x = 0) , (27)
dx =0+ dx z=0- m

Note that the term in square brackets on the right does not depend on mode n, so that the
derivative jump of mode n at the defect is proportional to the value of the wavefunction
Xn(Y = yi) at the defect.

Eq. (27) implies that the derivative jump along the x-direction of propagation for mode
n is proportional to the derivative jump of any other normal mode, since the Zm in Eq. (27)
is simply a number independent of n. Suppose we are at the second subband minimum,
where the derivative jump of the second normal mode must be zero simply by wavefunction
continuity, i.e. (da2/dx)jl=o+ - (da 2/dx) I.= o_ = 0 when E = E2 . Then, from Eq. (27), the
derivative jump of the the first normal at the scatterer must also be zero. Therefore, the
lowest normal mode cannot reflect when the Fermi energy is equal to the second subband
minimum.

Although this argument does not explain physically why the electron cannot reflect, it
does prove that the scattering boundary conditions are not obeyed if any reflection occurs
from the point scatterer at a subband minimum. If the scatterer is not a delta function,
reflections can and do occur at a subband minimum without violating any scattering
boundary conditions. However, this argument shows that the evanescent modes, which one
might initially guess are unimportant in transport since they carry no current, actually
dominate the scattering behavior of the conductor when, the Fermi energy is near the
openening of a new confinement subband. If the scatterer is not a point defect, but has
some finite size which is small compared to the electron wavelength, we also expect the
scattering to be reduced by this mechanism when the Fermi energy is near a subband
minimum. But the dominant and most likely observable effect of evanescent modes, for
any shape of an attractive scattering potential, is to form 'quasi-bound' or 'quasi-donor'
levels below the subband minima.
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3.3 Multi-mode Transmission Through Two Barriers

New physics emerges when an electron scatterers from two or more barriers placed
in a narrow wire." Figure 12 illustrates the basic idea leading to these new scattering
properties: Evanescent waves now accumulate around both barriers in the wire, whereby
some of the evanescent tail of the waves building up around one barrier can now extend
to the second barrier. If the separation between the barriers along the x direction is d,
and the decay length of the evanescent waves is r., this effect is important when d < ri.
However, besides simply determining r., the position of the Fermi energy relative to a
new confinement subband is also important. To produce a large effect on the transmission
properties of the wire, it is not enough that the evanescent waves simply overlap. When the
Fermi energy is away from a subband minimum, the modifications to electron scattering
from the overlap of these evanescent waves are small because the evanescent density of
states is also small. When the Fermi energy is near a subband minimum, however, the
density of evanescent states is large so that the evanescent states dominate transport as
they did for scattering from a single barrier. The decay length of the evanescent wave is
also long near a subband minimum, so it is not difficult for the two tails of these evanescent
waves to overlap.

Scattering from two barriers in a quasi-one-dimensional wire is calculated in Fig. 13 to
illustrate these ideas. Two point scatterers, where the second scatterer is five times stronger
than the first, are placed in a narrow wire and the resulting transmission coefficient T11
computed. When the Fermi energy is below the second subband minimum, E = 0.92 in
Fig. 13(a), the standard one-dimensional resonant tunneling picture generally holds. Only
the first two transmission minimum in Fig. 13(a) are slightly altered due to the overlapping
evanescent tails of the wavefunction. However, since the Fermi energy is not too near a
subband minimum, the effect is small.

When the Fermi energy is placed on the second subband minimum, E = F in Fig. 13(b),
the transmission properties change drastically. There are three significant changes to usual
resonant tunneling picture in Fig. 13(b) induced by the evanescent modes: (1) The trans-
mission maxima are perfect even though the scatterer strengths are not equal. Further-
more, even though each barrier at E = Ez taken alone is perfectly transmitting, the
transmission coefficient when two such barriers are placed in the wire is perfect only at
certain resonant values of the scatter separation. (2) The spacing between transmission
maxima has changed from a half-wavelength to a full wavelength. (3) The transmission
coefficient is not periodic, it approaches unity as the separation between the scatterers
increases.

The essential conclusion to draw from Fig. 13(b) is that, when the Fermi energy aligns
with a subband minimum in a narrow wire, the wave-interference between propagating
modes no longer determines the electron transmission and subsequent electrical conduc-
tance of the wire. One would expect some type of Fabry-Perot resonances in Fig. 13(b)
if this were not true, since both barriers are still coupled to the lowest propagating wave-
function in the wire. However, properties (1)-(3) of the preceeding paragraph show that

"All work in this section was performed in collaboration with Arvind Kumar.
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Figure 12: When an electron scatterers from two barriers in a narrow wire, evanescent
waves accumulate around both of the barriers. When the tail of the evanescent wave
accumulating around one of the barriers can reach to the second barrier, and the Fermi
energy is near a subband minimum, the electron scattering and the resulting electrical
conductance is strongly modified. From Appendix I.

the transmission oscillations when E = E_ in Fig. 13(b) arise from a completely different
mechanism, described in detail in Appendix I. The shape of the evanescent waves accumu-
lating around the barriers determines transmission when E = E, rather than the usual
wave interference between propagating modes, so that the usual Fabry-Perot resonances
are completely suppressed and a new series of transmission oscillations with completely
different properties emerges. This new series of conductance oscillations at E = E. can
be understood by analogy to 'bonding' and 'anti-bonding' like states forming around the
scatterers, and the interplay of the incident waveguide modes with these molecule-like
states.
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Figure 13: Transmission coefficient T11 versus distance d/Al between two point scatterers
in a narrow wire, where A1 is the electron wavelength of the lowest normal mode incident
on the barriers. Curve (a) takes E = 0.9E2 , (b) sets E = E 2, and (c) sets E = 1.1E 2 .

From Appendix I.
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4 Resonant Tunneling and Periodic Potentials

Resonant tunneling devices have received much attention in the past decade due to
their large peak to valley current ratios at room temperature, their ability to operate
at ultra-high frequency, their relatively large operating currents, and their nearly ideal
current-voltage characteristics. All these properties combine to make a seemingly ideal
quantum device with the ability to operate at room temperature. Several groups have
explored the circuit possibilities of resonant tunneling three terminal devices, focusing
primarily on multiple valued logic.

Yet the resonant tunneling diode shows ideal single electron behavior only on first
glance. The resonant tunneling diode is in fact a non-ideal quantum device, with quite
complicated internal dynamics. For example, the valley current is larger by a factor of
10-1000 in these devices than a simple quantum mechanical scattering calculation permits.
It has been speculated that inelastic phonon scattering, elastic impurity scattering, and
scattering through secondary conduction band valleys inside the tunneling barriers all
play a significant role in increasing the valley current. Furthermore, the quantum well
charges and discharges as the diode voltage is swept, giving rise to hysteresis or 'intrinsic
bistability' in the I-V characteristics. If the transmission through the barriers is low, the
intrinsic device bistability can be large.'2 Finally, the magnetoresistance of the tunneling
diode, when a magnetic field is applied along the direction of the current, is completely non-
ideal. An ideal device would show a dramatic magnetoresistance, where the triangle-like
shape of the I-V characteristic would evolve into a large step. However, actual tunneling
diodes show very little 'longitudinal' magnetoresistance even up to 30 Tesla fields. It is
not known why the magnetoresistance displays such strong non-ideal behavior.

Despite these non-idealities in real resonant tunneling diodes, it is still useful to under-
stand what an 'ideal' theory would predict for the I-V curves of different types of resonant
tunneling devices. Resonant tunneling devices built in inversion layers or using lateral
transport along GaAs/AlGaAs heterojunctions in a MODFET may also display closer
to ideal behavior than those embodied using vertical transport through GaAs/AlGaAs
heterojunctions. Also, for unknown reasons, the resonant tunneling diodes grown using
molecular beam epitaxy display relatively close to ideal behavior when the magnetic field
is zero. Figure 14 shows the expected ideal behavior of the currents in resonant tunneling
devices having a (a) one, (b) two, or (c) three dimensional electron emitter, obtained using
the 'convolution method' of the chapter 2.

The 1D device of Fig. 14(a) simply traces the transmission coefficient, displaying a
single resonant peak at Er and rising to unity at ET as the Fermi energy passes above
the tunneling barriers. The dependence of the 2D and 3D currents in Fig. 14 on the
Fermi energy are obtained by classically adding many quantum point contact resistances
in parallel. A simpler physical picture than that given in Appendix E can be used to
understand this statement.13 We understand that the 1D device current versus Fermi

12An additional 'bistability' can also arise if the external measurement circuit of the diode is improperly
adjusted. But it is now fairly clear that intrinsic bistability of the tunneling diode is a real effect.

13I thank Ray Ghanbari for suggesting this picture.
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energy simply traces the transmission coefficient through the double barriers. From this
1D transmission coefficient, we obtain the dependence of current on the Fermi energy for
a 2D device as follows: Consider the 2D tunneling geometry of Fig. 15. The Hamiltonian

X T(E7)

(a)

(b)

I.-

Er z

Sharp Resonance

T(Ez)

Er

Sloppy Resonance

Figure 15: Transmission through a two-dimensional Fabry-Perot resonant cavity. The
perfect cavity in (a) has a sharp momentum selection rule. If the cavity mirrors do not
completely reflect electrons as in (b), there is some 'sloppiness' in the momentum selection,
permitting a small range of k-vectors to pass through the barriers.

separates as described in Chapter 2 section 3, so we can consider the transmission coefficient
as a function of E,.

In Fig. 15(a) we assume each Fabry-Perot mirror is nearly perfectly reflecting, so that
the resonant peak of the transmission coefficient is extremely sharp. We idealize :it as
letting through only electrons with a precisely defined wavevector k, = k, as

T(Ez) = 6Ez,E, , (28)

where 6 is the Kroenecker delta function. This transmission coefficient has a resonant peak
of zero width. Yet the barriers still permit electrons at the precisely defined wavevector k,
to pass, and only those electrons. The total current I for the sharply defined momentum
'filter' is

I(E) = [26SE,E,] . (29)
7i-7L
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The factor of two enters the conductance because there are two momentum directions
allowed through by the mirrors. These two 'wavevector current channels' each contribute
a conductance quantum to the total current, because they each propagate through the
double barriers independently. This occurs because there are no terms in the 'separable'
Hamiltonian which could cause one momentum direction to scatter into the other.

Next, we consider a Fabry-Perot cavity where the mirrors are no longer perfect. The
resulting sloppiness in the momentum selection rule allows k-vectors having a small range of
angles to pass through the barriers, as shown in In Fig. 15(b). This sloppiness is described
by a transmission coefficient having a finite width, usually a Lorentzian of the form

(AE)2

T(Ez) = . (30)(E - E,) 2 + (AE)2

For our purposes, the exact form of the sloppy transmission coefficient is unimportant; we
simply approximate it by saying that electrons having E, within an energy window AE
near Er transmit through the mirrors with probability one.

The number of electrons at an energy E transmitted through the imperfect cavity can
now be simply estimated. In this two-dimensional problem the energy is determined as
E = Ez + E,. The electron kinetic energy available for motion transverse to the barriers is
Ez - E - E,. The number of electron states available at this energy is simply the density
of states for motion along the x direction. The energy range near Ez - E - Er is AE due
to the sloppy mirrors. And the number of 'point emitters' in space along the device can
be simply obtained by multiplying the spatial density of point emitters by the length L.
of the device along the x-direction. These considerations give the number of transmitted
electrons as

number of electrons = L,(AE)NlD(E - Er) . (31)

Each transmitted electron then carries a conductance quantum of current, so that the total
current is

e2V
12D(E) - [Lz(AE)NlD(E - Er)/2] . (32)

7rh
We have simply classically added all the momentum channels in parallel, where each chan-
nel carries the quantum contact conductance of current since it is perfectly transmitting.
Dividing by the extra factor of 2 in Eq. (32) is required so as not to double count the
electron spin, a detail for our purpose here.

Eq. (32) describes only how the current carried by resonant electrons in Fig. 15 depends
on the Fermi energy. We see from Eq. (32) that the dependence is 1//E - Er for the sloppy
Fabry-Perot cavity, in contrast to the constant dependence of the current on Fermi energy
from Eq. (29) when the cavity is nearly ideal. The sloppy mirrors are not choosy in deciding
which k-vectors may pass, so that the current in Eq. (32) is much larger than in Eq. (29).
On the other hand, the conductance versus Fermi energy for the sharp mirrors shows
essentially one-dimensional behavior. One merely obtains the quantum contact resistance
times the two possible independent momentum directions. There is also a nonresonant
piece to the current on the left side of Fig. 15 which is examined in Appendix E.

The 1//E - E-E decay of the 2D current on Fermi energy from Eq. (32) is easily pic-
tured. As the incident electron energy E increases, the energy for motion of resonant



electrons perpendicular to the tunnel barriers E must also increase, since E, ~ E - E, for
those electrons. Stated differently, resonant electrons must travel at a greater angle from
normal incidence to satisfy the wavelength matching condition of the cavity. The number
of available transverse momentum states for this motion decreases in one-dimension like
/v/, and is the origin of the decreasing current with Fermi energy above the resonant

peak E, in Fig. 14(b). Even though the resonant electrons must travel at an increasingly
larger angle from normal incidence to the tunnel barriers as their emitted energy increases,
the current carried by resonant electrons along the z direction is independent of this an-
gle. This is easily seen when the tunnel barriers produce an extremely sharp transmission
resonance, where one merely obtains twice the quantum contact conductance independent
of energy.

The net resonant current depends only on the component of momentum directed along
the tunnel barriers, not perpendicular to them. For resonant electrons, the velocity along
the tunnel barriers is independent of the incident electron energy. Therefore, I emphasize
again that, as the Fermi energy increases, the resulting increasing angle from normal
incidence required to match the cavity resonance is not the mechanism leading to the
decrease in current in Fig. 14(b). Instead, this negative transconductance arises from a
reduction in the available number of transverse momemtum states to move perpendicular
to the barriers at high energy.

The same arguments above also apply when the device emitter is three-dimensional. If
the transmission coefficient is broad, as for the sloppy mirrors of Eq. (30), we find a total
current e2V

13D(E) [LyL(AE)N 2D(E - Er)/2] . (33)

There are now two directions of free motion parallel to the tunnel barriers, which must be
described by the two dimensional free electron density of states N2D(E - Er). Since the
2D density of states is a constant independent of energy, the current versus Fermi energy
in the 3D device of Fig. 14(c) is constant.l4

The dependence of current on the device voltage can also be thought of as classically
adding quantum point contact conductances in parallel in energy space. The applied
voltage introduces an energy range eV into conduction, and all the carriers in that energy
range must be considered. This is accomplished by convolving with the 'voltage box' or
'voltage window' of Chapter 2. Integrating the current under the sharp resonant peak gives
the constant dependence of current on the 1D device voltage in Fig. 14(a). Similarly, the
voltage dependence of the 2D and 3D devices (curves on the right of Fig. 14) are obtained
by integrating over the range of Fermi energies eV (curves on the right of Fig. 14) filled
by the device emitter. This is explained in detail in Appendix E.

Electrical conduction through periodic potentials has been discussed using many dif-
ferent methods, models, and approximations. There has also been a recent experimental
resurgence of magnetoconductance studies through periodic potentials formed in inversion
layers. The low-field structure of the magnetoconductance in these experiments however,
is essentially classical in origin, being simply a classical geometrical resonance between the

14It is interesting to imagine what the analogy to Eq. (29) describing sharp mirrors would be if the device
emitter is three-dimensional.
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cyclotron orbit size and the periodic structure [86]. It does not demonstrate quantum con-
duction through a periodic potential. Furthermore, a recent experiment claiming to observe
superlattice 'minibands' in a finite sample, may be in fAct only electron 'charging' of the
small constructed regions [87]. Clear 'quantum' superlattice effects in a two-dimensional
electron gas have yet to be observed.

The elusive search for 'Bloch oscillations' has long been lurking in the background
of studies of conduction in periodic potentials. These oscillations have never actually
been observed to the knowledge of this author, and previous claims were undoubtedly
overstated. They were originally sought in optical absorption near the band edge of bulk
semiconductors [88] in the 1960's and 1970's, but the high electric fields required combined
with broadening mechanisms made the search unsuccessful. The longer spatial periods in
manmade structures, combined with long coherence lengths, make the search once again
somewhat feasible.

An interesting real space picture of these Bloch oscillations, related to the Stark lad-
der states, has been proposed by Capasso and collaborators [89]. Assume two identical
quantum wells are brought close together so that the levels split by an amount AE. If an
electron is initially localized to one of the wells, it will oscillate back and forth between
the wells in time with a period T = h/AE. For the Stark ladder states, the separation
between the levels is simply AE = eVw = eV/N, where V is the total voltage and N the
number of superlattice periods. Therefore, the time for an electron to oscillate from one
well in the superlattice to an adjacent well and back is simply T = h/eVw.

In contrast, the Bloch oscillation period Ts can be derived from the semiclassical equa-
tions of motion for an electron wavepacket, in the limit where the applied voltage is low
enough so that the energy band picture is still approximately valid. One straightforwardly
obtains Ts = h/(aeE) in this picture, where a is the superlattice period and E the uniform
electric field. Of course aE = Vw is the voltage drop across a single quantum well, so these
two pictures predict an equivalent oscillation frequency. The oscillations between adjacent
wells in the Stark ladder is asserted in Ref. [89] to be an equivalent real space picture of
the Bloch oscillations.

Presumably, the DC current will reflect these Bloch oscillations by falling, perhaps
to zero, when the oscillations begin. However, the appearance of Bloch oscillations is
difficult to reconcile with a Landauer transport formalism. One can easily calculate the
transmission coefficient through a periodic potential to obtain a DC current at all energies.
Therefore, a finite DC current should exist at all energies. Yet, in the usual semiclassical
Bloch oscillation picture, the DC current completely disappears when the oscillations begin
and only an AC current survives. What additional physics needs to be considered in order
to resolve this conflict is unclear to the present author. How to calculate the AC current
response in a Landauer transport picture is also an open problem. One would also need to
consider processes where one frequency applied to the conductor is converted into another.
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5 Silicon Grating Gate MOSFET

Silicon 'grating gate' MOSFET devices were fabricated at M.I.T. in collaboration with
Anthony Yen [90] as described below. The 'dual gate' structure of the device is shown below
in Fig. 16, and permits easy control of the inversion layer geometry from many narrow
wires in parallel, to a modulated potential, and to a two-dimensional electron gas. This
control is achieved via electric field-effect by varying the voltages on the two gates shown
in Fig. 16. The existence of the grating gate (but not its details) could be distinguished in
an optical microscope, despite its period being smaller than the wavelength of light. See
Figs. 3.13 and 3.14 of Ref. [90] for these pictures.

Grating
Gate

Inuersion
Electrons

CA

Grating
Sate

Figure 16: Cross section of the Silicon 'grating gate' MOSFET, showing the buried bottom
gate and continuous top gate. Using field-effect control, the electron gas can be confined
either underneath the gate wires or in the gap between wires. A modulated electron density
or a two-dimensional electron gas can also be achieved in this geometry.

Electrical conductance of devices similar to the one in Fig. 18 was measured in tem-
peratures ranging from 50 mK to 300 K, in magnetic fields ranging from 0 T to 30 T,
and over the entire range of inversion layer geometry controlled by the gate bias. Several
different devices were measured, all showing qualitatively the same dependence of the con-
ductance on the various parameters. Measurements were done at low drain bias using an
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Figure 17: Grating gate running over the locally oxidized isolation areas (LOCOS). The
grating lines proved quite robust over variations in surface topology. The small step in the
surface near the bottom of the picture is where the gate oxide has grown at different rates
over bare Si and a Phosphorous implanted region.
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Figure 18: Scanning electron micrograph 'birds eye' view of t
The slightly discolored region running from source to drain is
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AC lock-in amplifier and isolation transformer. Ultra-low temperature dilution refrigera-
tor measurements were carried out in Prof. Kastner's laboratory at M.I.T, and additional
measurements around 1.2 K but at higher magnetic fields were done at the Francis Bitter
National Magnet Laboratory.

5.1 Physical Insights Gained

Several interesting magnetoresistance effects were observed in this device including
modifications to electron weak localization (for low magnetic fields below 1 Tesla), an un-
usual manifestation of the classical Drude low-field magnetoconductance (for intermediate
magnetic fields between 1-10 Tesla), and the approach to the quantum Hall effect (for high
magnetic fields between 10-30 Tesla). We do not wish to repeat our detailed analysis of
these effects, since that is done in Appendix M, but only to briefly illustrate the types of
effects observed in this device.

Electron weak localization becomes much more pronounced as the inversion layer geom-
etry is electrostatically pinched from a two- dimensional inversion layer into many narrow
wires in parallel, proving that the wire width can be reduced below the electron phase co-
herence length. This is shown in Fig. 19 where one can see that, by pinching the electron gas
into narrow wires, a pronounced depression in the magnetoconductance develops around
B = 0. The classical diffusion paths of electrons, which originally were unconstrained in
a two-dimensional electron gas, must now collide with the sides of the wire. Weak local-
ization is extinguished approximately when the average size of a phase-coherent diffusion
orbit encloses a magnetic flux equal to the flux quantum 0o = h/2e. Weak localization
is therefore destroyed at a magnetic field B such that 00 t BL' in the two-dimensional
sample. In the reduced dimensional sample the size of the phase-coherent diffusive orbits is
obviously much smaller, because the wire width W satisfies W < L0, so weak localization
persists to a much higher magnetic field such that Oo - BWL#. In addition there will be
flux cancellation, as in a SQUID magnetic field gradiometer, between 'figure eight' paths
that cross each other. This additional flux cancellation serves to permit weak localization
at even higher magnetic fields in a narrow wire.

In Fig. 19 we held the inversion layer geometry fixed (by holding the gate voltages
constant) and varied the magnetic field. We can do the conductance measurement in
a different way, where we fix the magnetic field and vary the inversion layer geometry.
Typical conductance versus gate voltage data for a 15 Tesla magnetic field normal to the
Si-SiO2 interface is shown in Fig. 20. Each curve is for a different temperature ranging
from 4.2 K to 300 K, with the larger conductance occurring at lower temperatures. It can
be seen that the large negative transconductance persists to room temperature, indicating
a classical origin. The dotted line is the conductance at 4.2 K in zero magnetic field.
Consistent with Fig. 19, the magnetoconductance from Fig. 20 is relatively small when the
gate voltage is less than zero volts, when conduction occurs through many narrow parallel
wires. As the device geometry opens to a modulated potential above '0.0 V the conductance
falls, reaches a minimum when the potential is an unmodulated two dimensional electron
gas at around 10 V on the top gate, and rises again when the gate voltage reinduces a
modulated potential as the gate voltage rises above 10 V.
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Figure 19: Two terminal magnetoconductance of the grating gate Si MOSFET showing
an enhanced weak localization minimum around B = 0 as the inversion layer is pinched
into narrow wires. Note the background magnetoconductance also changes as the inversion
layer is pinched into narrow wires. Instead of decreasing with magnetic field as in a two-
dimensional electron gas (top curve), the magnetoconductance remains essentially constant
in a long and narrow wire (three bottom curves).
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The significant observation in Fig. 20 is that the current decreases as more electrons
are added to the inversion layer (in the presence of a large magnetic field). This is due to
electrostatically changing the dominant two-terminal boundary condition on the classical
Drude magnetoconductance tensor from that for a long and narrow to a short and wide
geometry."s For a long and narrow conductor, the current must continue to flow essentially
parallel to the sides of the wire, even at moderately high magnetic fields. Therefore, the
two-terminal conductance is almost unaffected by the magnetic field. In contrast, for a
short and wide device, the electric potential profile is fixed by the close proximity of source
and drain, so that the current must flow across the device at the Hall angle. When our
grating gate MOSFET is opened electrostatically from many wires in parallel to a two
dimensional electron gas, the current path abruptly 'switches' to the Hall angle, giving the
sharp drop in conductance seen in Fig. 20. The same argument also explains the change
in background conductance from Fig. 19.

The conductance at high magnetic fields is described in Appendix M, but we list the
qualitative features here. At high magnetic fields quantum edge states form in the wire
array, giving opposite magnetoconductance for the parallel wires and wide electron gas.
In other words, the approach to the quantum Hall effect is qualitatively different if the
aspect ratio of the device is high or low. If the inversion layer is long and narrow, it will
generally have a conductance much less than 4e/h so that the conductance must start to
rise when the device begins to enter the quantum Hall regime. In contrast, a short and
wide inversion layer will generally have a conductance much greater than 4e2/h, so that the
conductance must continue to fall when the device enters the quantum Hall regime. At a
magnetic field of 30 Tesla the conductance versus gate voltage of the narrow wires evolves
into quantum Hall steps having a height of 4e2/h multiplied by the number of wires in
parallel. The evolution from Shubnikov-de Haas oscillations to the quantum Hall effect in
these narrow wires qualitatively reproduces the 'anomalous magnetoresistance' described
in Ref. [68] and [92].

5.2 Device Fabrication

I undertook the fabrication and measurement of Si 'grating gate' MOSFET devices
jointly with Anthony Yen, as described in his S.M. Thesis [90]. A cross section of the
device showing the two gates is given in Fig. 16. I concentrated on learning the more
standard Si processing technology, while Yen's efforts were brought to bear on the novel
grating-gate fabrication. After Anthony Yen's S.M. Thesis was written, the laboratory
in which we were originally building the devices closed, and fabrication was moved to
the M.I.T. Microsystems Technology Laboratories. The grating gate fabrication was still
carried out in the Submicron Structures Laboratory using x-ray nano-lithography.

Moving device fabrication into the new laboratory resulted in a number of improve-
ments which enabled the project to be carried successfully to completion. The lower gate
oxide quality was measurably improved in the new furnaces. This thermally grown oxide
was less leaky and its breakdown voltage higher than before. But more importantly, the

15Sam Park provided the correct interpretation for this part the experiment.
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Figure 20: Two terminal magnetoconductance of the Si MOSFET for a 15 Tesla normal
magnetic field at temperatures of 4.2 K, 20 K, 50 K, 100 K, 200 K, and 280 K. There is
a sharp decrease in conductance, which persists to room temperature, as the device opens
from many narrow wires in parallel to a two-dimensional electron gas. The electrostatic
change in the aspect ratio of the inversion layer explains this classical phenomenon, where
the current path 'switches' to flow at the Hall angle as the aspect ratio of the inversion
layer changes.
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top gate oxide could now be grown using high quality LPCVD oxide (low-pressure chemi-

cal vapor deposition), replacing the obsolete PYROX machine (thermal decomposition of

silane gas in the presence of oxygen) grown oxide from the older laboratory. It is difficult

to overemphasize how much the device characteristics improved because of this change. In

addition, all the fabrication tools in the new laboratory were much better characterized,
so that fabrication steps were more reproducible.

About this same time, a number of technological improvements in fabricating the
grating-gate also occurred. A new deep-UV exposure tool was purchased for the Submicron

Structures Laboratory, replacing the home built UV exposure tool we had previously used.

Exposing the gate contact pads was now significantly easier, far less time consuming, more
reliable, and uniform over a much larger area of the wafer than before. Also, a sequence of

new x-ray masks was fabricated by Anthony Yen, eliminating the need to borrow a second

hand x-ray mask and enabling excellent control over the grating line to space ratio. In ad-

dition, Yen developed an imaginative 'double shadowing' technique, which produced much

more uniform grating lines. This technique can be appreciated by comparing Fig. 3.10 of

Ref. [90] (before the double shadowing technique) with Fig. 17 above (using the new tech-

nique). The grating lines in Fig. 17 are noticeably smoother. Around this time feedback

stabilization of the optical holographic technique, essential to fabricate x-ray masks, was

also being developed. The x-ray masks could now be more reliably produced and were

of higher quality. We also designed and installed a vacuum annealing furnace, evacuated

to 10- 7 torr by a turbomolecular pump, to anneal damage to the SiO2 produced during
x-ray lithography. In short, the grating gate fabrication was developing from a hit and

miss operation into a reliable technology.
In the long run, grating fabrication proved the least of our difficulties in fabricating

these devices. A large effort was already underway in the Submicron Structures Labora-

tory to improve x-ray mask fabrication and technology. Problems with the grating gate

metallurgy proved more difficult. Anthony Yen's Cr-W-Cr metallization technology, com-

bined with vacuum annealing, eventually made possible fair inversion layer mobilities. The

idea behind high-temperature (900-1000 OC) vacuum annealing was to heat the gate oxide

until it turned nearly liquid, thereby 'reflowing' the oxide and healing any defects. High

temperature annealing in an inert gas would probably also have worked, but would have

required more plumbing. We obtained useful assistance from John Scott-Thomas, who

had run a matrix of times and temperatures for the anneal. If the grating metal was an-

nealed too long or at too high a temperature, disasters of the type illustrated in Fig. 3.4 of

Ref. [91] can occur. Various other disasters not shown in Ref. [91] also occur if the anneal

is too aggressive. We did not stop to explore the materials science of these calamities. A

lingering mystery is why the Chromium capping layer actually protects the grating lines

from oxidation, since the lines are quite tall (27.5 nm) compared to the cap layer thickness

(7.5 nm), so that the sides of the wires are exposed to oxygen.
As for the actual device fabrication steps themselves, the only major difference between

the device runsheet given in the Appendix of Ref. [90] is that two masks were used to

contact the final devices. The first masked the etching of source and drain contact holes.

The second mask opened grating contact holes, but also had holes open for further over-

etching the source and drain contacts. Contacting the grating with HF etching was initially

difficult. One did not wish to overetch and destroy the grating contact. (We solved the
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problem of shorting the grating contact to the substrate by adapting a LOCOS geometry.)
It is difficult to tell visually in a microscope if one has completely etched down to the
grating gate contact or not. And a small oxide barrier left on top of the contact makes
the device completely useless. Timing the etch is one solution, but not extremely reliable.
Forming the device contact holes in two steps provided an unexpected solution to this
problem. Usually the second mask was slightly misaligned from the first, so that a slightly
misaligned source and drain contact was being etched on top of the original source and
drain contact while the grating gate contact was being etched. When the 'lip' of the
second and slightly misaligned source-drain contact was etched away, which could easily
be determined by optical microscope, the etchant had now reliably uncovered the grating
gate contact pad. Aluminum was then evaporated onto the both contacts simultaneously,
patterned, and the device was sintered in forming gas. Many devices were also destroyed
during bonding, both mechanically in the bonder and by electrostatic discharge through
the gate oxide. To this author, device bonding still seems to be a black art.
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I. INTRODUCTION

This chapter discusses electron transport effects that are expected or have
already been observed in ultrasmall three-terminal silicon MOS structures.
These effects fall into three categories: quantum effects related to carrier
confinement perpendicular to the direction of transport, quantum effects
that result from carrier propagation along periodic potential variations with
very fine spatial periodicities, and effects arising from nonstationary trans-
port across very small distances.

We treat electrical conductivity throughout this chapter using the semi-
classical Boltzmann transport theory in the relaxation time approximation.
Sections II-IV deal with quantum mechanical effects generally observable
at low temperature. There are several device structures that permit such
observations. We refer to them collectively as "quantum MOS devices."
Section II deals with the theory of conductivity in quantum MOS devices
and derives necessary observability criteria for quantum effects in terms of
characteristic energies, distances, or times. We apply this theory to treat the
quasi-one-dimensional MOS transistor in Section III and the surface super-
lattice MOS transistor in Section IV.

In Sections II-IV, we assume that the carrier and lattice temperatures
are the same. On the other hand, Section V deals with hot-carrier transport
effects observable at room temperature. In this case the carrier temperature
is typically higher than the lattice temperature. We show that the signature
of quantum mechanical effects is conductance and transconductance oscilla-
tion with varying gate and drain bias conditions, while the signature of
nonstationary transport is convective carrier velocities in excess of the
saturation velocity.

II. SEMICLASSICAL CONDUCTIVITY OF
QUANTUM MOS DEVICES

A semiclassical Boltzmann transport method of calculating electrical
conductivity allows us to understand the current-voltage relationship in
most silicon MOS devices. This semiclassical method uses quantum
mechanics to calculate the allowed electron energy levels and the group
velocity versus energy dispersion relationship of electron wave packets, but
treats the electron as a point particle between collisions. Ignoring wave
interference between collisions is the essence of a Boltzmann transport
approximation. A full quantum mechanical treatment of electrical conduc-
tivity would include the possibility of electron waves interfering with each

AM- II
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other between collisions. Electron "localization" is one example of a non-
Boltzmann transport process.' In silicon inversion layers, however, these
bulk interference effects are generally weak, and the standard Boltzmann
transport approximation is a good one. This particle-like approximation to
the electron wave requires that we model the electron as a wave packet and
use the semiclassical equations of motion for the wave packet.

Quantum mechanics also enters electrical conductivity in the calculation
of a scattering rate. The effect of scattering on the momentum relaxation
rate depends both on how often the particles scatter and on the probability
of their being deflected through a given angle. Both of these are functions
of the particle's energy and can be calculated in quantum mechanical
scattering theory. Treating the electron as a wave during scattering events
in no way conflicts with the standard Boltzmann transport approximation.
However, if scattering events are closer together than a few electron
wavelengths, the Boltzmann approximation begins to break down.

There are subtle relationships between scattering and electrical conduc-
tivity. Ohmic heating is a necessary consequence of power dissipation in a
conductor. The electron gas must dissipate energy it gains from the electric
field, and it cannot do so using purely energy conserving or elastic scattering
processes. Inelastic or energy dissipating processes are therefore necessary
to define resistance. But inelastic scattering disrupts the phase of the wave
function, and is, thus, anathema to electronic devices that depend on the
wave nature of the electron to give interesting structure to the conductivity.

It is also important to understand the effects of temperature, elastic
scattering, and inelastic scattering in quantum MOS devices. So called
"elastic" broadening of electron energy levels can average away interesting
features in electrical conductivity. Yet the term "elastic" broadening is a
misnomer. Inelastic processes are required for the incoherent averaging
necessary to produce "elastic" energy-level broadening. Finite temperature
also leads to an incoherent averaging of energy levels. The resulting tem-
perature broadening of energy levels can average away interesting structure
in the electrical conductivity.

To understand how these issues relate to quantum MOS devices in detail,
we study a semiclassical model of electron transport that is equivalent to
the Boltzmann transport equation in the relaxation time approximation. We
consider the role of elastic and inelastic scattering in this model, before
discussing the semiclassical calculation of electrical conductivity in a
quantum MOS device. We consider the cases of a quasi-one-dimensional
inversion layer MOSFET and a superlattice transistor as examples of this

It is possible to modify the Boltzmann equation by adding a term that is nonlocal in time
to include these memory effects [1].
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semiclassical method. Incoherent processes such as inelastic scattering and
finite temperature are seen to impose the operating limits on quantum MOS
devices.

A. Scattering Mechanisms

1. Elastic Scattering

Consider a particle scattering elastically with an elastic mean free time
7. At every collision the momentum direction of the electron is altered. In
the simplest approximation the electron scattering is isotropic. When it hits
a scatterer, the electron has equal probability to go in any direction, as
shown in Fig. 1. These scatterings tend to randomize the electron's momen-
tum direction. 2 This is the mechanism responsible for finite electrical con-
ductivity.

If a group of electrons are injected with some initial momentum, then
their momentum direction at times greater than 7 is totally random.3 Elastic

Incident
Electron
Wave

Scattered Electron Waves
Fig. 1. Elastic scattering from a defect.

2 For a thorough quantum mechanical description, a sum over scattering histories approach,
describing a general scattering cross section see Ref. [2].

3 Note that, for an isotropic scattering cross section, the elastic mean free time is equal to
the momentum relaxation time.
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scattering also requires that the magnitude of each electron's momentum
before and after scattering are equal. It may seem strange that no energy
or momentum is imparted to the scattering obstacle in the collision. This
is, of course, an idealization that holds approximately true if the scattering
obstacle is much heavier than the electron. Electron-ionized impurity col-
lisions in an inversion layer are only approximately elastic, but we will treat
them as such.

The scattering rate depends on electron energy if the density of states
(i.e., the number of states available to scatter into) varies with energy. Let
the quantum number k label a wave packet made up of either free electron
eigenstates eik' or Bloch states of a crystal and centered about momentum
hk. The electron energy Ek depends on k. The scattering rate from the state
k to the state k' is then

h/Tk',k = 2rnnimpl(k'j V k) 2N(Ek) (1)

with Ek = Ek'. Here nimp is the density of impurity scatterers and N(E) the
electronic density of states. Equation (1) is called the Fermi Golden Rule
approximation for the scattering rate [3]. The scattering matrix element
(k'j VIk) is simply the Fourier transform of the impurity scattering potential
V(r). Our assumption of an isotropic scattering requires that the probability
for elastic scattering from one k state to another be independent of the
direction of k, but still conserve energy. We further assume a white-noise
power spectrum for the scattering potential, so that (k'lVik')= VI2

constant. Other choices for the impurity power spectrum (e.g., Gaussian
randomness) are possible but lead to more complicated results. Our
expression for the elastic scattering time becomes

- = 21rnimp VI2N(Ek) (2)
,r(Ek)

We now discuss inelastic scattering in order to develop a specific calcula-
tional scheme for the electrical conductivity.

2. Inelastic Scattering

Two main types of collisions that change the electron energy in silicon
inversion layers are electron-electron inelastic scattering and electron-
phonon inelastic scattering. Electron-electron inelastic scattering is basically
the same coulombic type of scattering we studied in the Section II.A.1.
However the masses of both particles are now comparable, and we can no
longer neglect the recoil of the "target." The energy and momentum of both
electrons change during collision, which serves to equilibrate electron tem-
perature within the inversion layer. This type of inelastic scattering domi-

nates in silicon inversion layers below about 10 K [4].
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Electron-phonon inelastic scattering serves to equilibrate the electron
gas temperature with the lattice temperature. This scattering mechanism is
responsible for ohmic heating in a conductor. An applied electric field raises
the temperature of the electron gas, which must then dissipate its excess
energy. If the average length for an electron-phonon inelastic event is longer
than the sample size, the electron gas begins to heat. This has been observed
in silicon inversion layers [5]. To avoid all ohmic heating effects, the voltage
drop across the sample (or one inelastic block of the sample) should be
less than k T1 q. It is also observed experimentally that quantum oscillations
in MOSFET I-V curves disappear at high drain biases [6]. When electron
heating begins to occur, the range of validity of Ohm's law in electric field
also shrinks to zero, since electrical "conductivity" changes as the electron
gas continues to heat during a constant applied bias.

Experimentally, the inelastic scattering rate depends on a power law of
the temperature as r,'Oc T P, and becomes arbitrarily long at low tem-
perature. For electron-phonon inelastic scattering P= 3 since the number
of phonons at low temperature is proportional to T3. For electron-electron
inelastic scattering P= 1. Approximate values for 7•- in two-dimensional
MOS inversion layers at low temperatures as determined from low field
magnetoresistance measurements [4] are that -,p-h 107T 3 and r-.-
108Ro T. Here the times are in inverse seconds, temperature in Kelvins, and
the sheet resistance in ohms per square. Reviews of weak localization are
found in Refs. [7-9].

B. Broadening of Energy Levels

1. "Elastic" Broadening

If inelastic scattering is indeed necessary to dissipate the energy given to
the electrons between elastic collisions, how is it possible to derive an
electrical conductivity without considering inelastic scattering? The implicit
assumption in all such calculations is that inelastic scattering happens much
less frequently than elastic scattering, and can thus be neglected in calculat-
ing conductivity. Yet enough inelastic scattering occurs to equilibrate the
electron temperature with the lattice.

To quantify this assumption, let r be the mean elastic time and 74 be the
mean inelastic time. Because the electron scatters elastically many times
before traversing the sample or undergoing an inelastic scattering event,
the motion of the electron will appear to be diffusive, with a diffusion
constant D. Let 7, be the time to diffuse across the sample. The average

_
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distances an electron can diffuse in these times are

1 = , (3)

LO = DV-D- (4)

L =-D-• (5)

where I is the mean free path or elastic scattering length, L, the inelastic
scattering length, and L the sample size. Therefore, the usual assumption
is that L >> L4 > 1.

Electron phase coherence relates to inelastic scattering in the following
way: The time-independent solutions to Schridinger's equation have a fixed
energy. Each energy eigenvalue corresponds to a single electron wave
function extending over the entire sample. Each eigenstate m is given by

Cm(F, t) = tm(F) e-iEmt / . " (6)

and has a definite energy E,. If there are many elastic scattering sites, then
i m(i) can still be found and the energy levels will still be definite. However,

as soon as the electron inelastically scatters, its energy must change, forcing
it to assume a different wave function, which will have a different phas,.
Consequently, on the average, only regions of length smaller than L, can
be described by a coherent wave function that has a definite phase or energy.
The sample as a whole may be pictured as broken up into many coherent
blocks of length L,, each block with a single electron wave function valid
throughout the block. In Fig. 2 we show the case L > L. > I. This sample
as a whole has no well-defined phase because the wave function in one
coherent region is uncorrelated in phase to another neighboring coherent
region. We call the sample incoherent.

In an incoherent macroscopic sample we cannot measure the properties
of each individual coherent region, we can only measure average properties.
It is reasonable to assert that macroscopic properties like density of states,
electrical conductivity, and optical absorption are simply averages of these

L

t

L

Fig. 2. An incoherent macroscopic sample.
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properties over all the coherent regions. The electrons inside each coherent
region of the sample solve a different Schr6dinger equation in that region,
since the arrangement of impurities varies from region to region. A fixed
impurity configuration in each region leads to a well-defined eigenvalue
spectrum (i.e., the energy levels have no width). However, any given impurity
configuration will have only a small probability of occurrence when we
average over the configurations. A given energy eigenvalue associated with
some specific arrangement of impurities will now also only have a certain
probability of occurrence.

For a random impurity potential with a white-noise power spectrum in
a sample with L> Lo, the probability of an electron having some energy
E away from the energy level Em, where Em is an energy level when there
is no scattering, is given by a Lorentzian line shape [2, 10]. We denote the
normalized Lorentzian probability density, shown in Fig. 3, as the impurity
broadening function,

1 h/27
A(E - Em, h/(27)) - (7)

ir (E - Em) 2 +(h/27)2

which has a full width at half maximum (FWHM) of h/-r. The Lorentzian
shape arises from an incoherent average of the solutions to Schridinger's
equation in all the coherent regions of the sample. If the sample size becomes
of the order of L,, the energy eigenvalues will again become discrete. The
exact shape of A(E - E,, h/27) depends on the assumption for the impurity
power spectrum. For Gaussian randomness the impurity broadening func-
tion would not be a Lorentzian.

If the sample were to have no scattering at all it could be described by
its energy levels as given by the density of states N(E). The density of
states with scattering, N(E, h/27), in the sample with L> L4 > I is then

cJ

w
LU

E

Fig. 3. Impurity broadening function A(E, h/27).
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given by finding all the states that have energy E, namely,

N(E, h/(2r)) = N(E')A(E-E', h/(2,)) dE'

= N(E)OA(E, h/2r) (8)

Here 0 denotes a convolution. Consequently, the broadened density of
states is the convolution of the unbroadened density of states with the
impurity broadening function A(E, h/27). Although A(E, h/2T) has a width
set by the elastic scattering, it is inelastic scattering that leads to the incoherent
averaging process necessary to produce "elastic" broadening.

If the inelastic length becomes of the order of the sample size, however,
we must consider another mechanism for energy-level broadening: broaden-
ing due to a finite sample size. When we allow currents to flow in a finite
device, each electron spends a finite amount of time in the sample. The
energy eigenvalues have additional broadening from the uncertainty prin-
ciple AE At> h, as well as from the inelastic processes, we have discussed
previously. In a diffusive sample At= rs, where T, is the time to diffuse
across the sample given by L = D. In this simplistic argument we must
ask, however, what defines the size of the "sample." The sample size L is
the distance between two inelastic contacts (i.e., the inelastic length for a
coherent sample). In this case the sample size plays the role of the inelastic
length, the.average distance a particle must travel before suffering an
inelastic collision. Inelastic processes are again necessary to produce an
energy-level broadening, entering in this context through the guise of a
finite sample size. We can again represent the energy-level broadening due
to a finite sample size by a broadening function of width h/ T7, and convolve
it, instead of the impurity broadening function, with the density of states.4

If we make the sample size too small, energy-level broadening due to a
finite time to diffuse across the sample can actually be worse than "elastic"
broadening. Operating MOS devices in the regime L < L4 also introduces
sample-specific fluctuations in the conductance of size e2/h, the so-called
universal conductance fluctuations, which we discuss in Section III. If we
attempt to average away the conductance fluctuations by placing many
"identical" devices in parallel, the energy-level broadening again becomes
h/7, since we must average over different impurity configurations inside
each device. This is the same incoherent averaging over impurity positions
that lead to "elastic" broadening of energy levels. The usual regime of
device operation, however, is that energy-level broadening due to a finite

4 Energy levels in an isolated finite sample (i.e., one not connected to a temperature or
particle bath) also have zero width. Since we cannot contact these types of samples with wires
to carry current, we are not interested in them here.

1 _ _ __ _ _ _
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sample size is negligible compared to "elastic" broadening, which is true
in a typical device where L> L, > 1. We, therefore, concentrate our dis-
cussion primarily on this regime.

2. Temperature Broadening

The occupation of electron energy levels at finite temperature is deter-
mined by the Fermi-Dirac probability distribution function:

1
fo(E - EF, T)= (9)1 + exp(E - EF)/k k T

The derivative of this function at finite temperature gives the probability
density of an electron being some energy away from EF

afo(E - EF, T) 1 E -E(10)
aE 4k5 T . 2kT "'

and is known as the thermal broadening function. It is a normalized
probability density function that has a FWHM of 3.5kB T. We display the
thermal broadening function graphically in Fig. 4.

We count the total density of particles in a quantum system at finite
temperature by

n(EF, T)= N(E', T= 0)fo(E'-EF, T) dE' (11)

We can express this result more usefully by differentiating with respect to E,,

dn(E, T) N(E, T)=,N(E, T) (12)
dE aE

fo(E) 3.5 kT = FWHM

E
O EF

Fig. 4. Thermal broadcning function -afo/aE and the Fermi-Dirac probability distribution
function fo(E - EF, T).
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The electron density of states at zero temperature is convolved with its
probability density of being a certain energy away from the Fermi energy
at zero temperature to obtain the effective thermodynamic density of states

N(E, T) at finite temperature. We can calculate the electron density by

n(EF, T)= f N(E, T) dE (13)

Temperature broadening of energy levels can be connected to distance
and time scales in the following way: Consider a beam of electrons in the
solid at the Fermi energy. Because it is connected to a temperature bath,
the electron beam at the Fermi energy has a spread in energy kB T. Because
it is at a finite temperature, the electron beam is not monochromatic. Suppose
the electron beam initially has all its frequency components in phase. How
far can this beam of electrons travel before the probability distribution of
measuring a certain phase is nearly uniform? In other words, how far can
the electron beam travel before we must say it really has no well-defined
phase at all?

To estimate this distance we ask how far the electron beam must travel

before the phase at its center frequency is i away from the phase at a
frequency approximately one standard deviation away. This is the condition
that the center frequency interferes destructively with the frequency one

standard deviation away, namely, -WFt = 7--[w0F+(Aw/ 2 )]t. With AE =

k T=• h Aw, this corresponds to a thermal time rT= hl/k T, and in a

diffusive sample to a distance scale

LT= VDrT= DD (14)
kB T

called the thermal diffusion length. We cannot conduct electron interference
experiments in a solid on distance scales longer than LT because the electron
has no well-defined phase beyond this distance.

The thermal diffusion length LT is analogous to the mean inelastic length

L,. This is because "temperature" is a macroscopic parameter used to

describe inelastic scattering between electrons and a temperature bath. The

difference in these length scales depends on which of the inelastic scattering

processes connect electrons to the heat bath. For example, LT might include

only a fraction of the electron-phonon inelastic scattering, while L, might

include all electron-phonon inelastic scattering and electron-electron
inelastic scattering. In this case we would have L, < L-. If all inelastic
scattering processes are between the electrons and the heat bath we have

L, = LT. Note also that LT can create the so-called "elastic" broadening

of energy levels if LT is much smaller than the sample size.
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3. Total Energy-Level Broadening

Energy-level broadening due to "elastic" scattering is statistically
independent of finite temperature broadening. The total probability density
function is then a convolution of the ones for these two independent random
processes. This leads to an expression for the effective density of states

N(E, T, h(2))= N(E, T= 0) fo(E, T) A(E, (2E,)) (15)

at finite temperatures with the electron inelastic scattering length short
compared to the device size. As before, the total electron density is given by

n(EF, T, h/(27))= N(E, T, li/(27)) dE (16)

If the mean inelastic length is long compared to the device size, the
electron distribution function f may deviate from an equilibrium Fermi-
Dirac distribution function fo inside the device. Thus, temperature is not
well defined inside the device. Assuming the deviation from a Fermi-Dirac
distribution is not too severe, we can model this regime of device operation
by replacing the mean elastic time 7 in the impurity spectral function by
the time to diffuse across the sample 7r. Recall that sample-specific fluctu-
ations in conductance of size e2/h appear in this regime.

C. Broadening of the Conductivity

If we neglect electron wave interference between collisions, then the
Boltzmann transport equation is adequate. We consider here an infinitely
long device (i.e., a free electron gas or superlattice in any dimension) where
the distribution function f(r, p, t) is only a function of p. We determine the
current from

ddk17)
ji = e v,(k)f(k) - 2 d (17)

f=jarev )JZ (2 )d

where d is the dimension of the system and e is the electron charge, which
is negative. In the MOSFET inversion layer, d = 2. For a periodic system
or a free-electron gas the electron group velocity can be calculated as

1 (
v,(k) - E (k) (18)

h a k

The semiclassical equation of motion leads to the following expression for

A-
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the conductivity tensor [11]

( .f1 E( (1 aE '(kj) afo(E , - , T) 2 d (19)

At zero temperature

afo(Ei,, EF, T= 0)
S8( E,- E,) (20)

aE•

so that

o4(EF, T=0)=e2  S(E-EF) '- ] -c1j r(EX)2 d d (21)f( ak, A k, a (27)
At finite temperatures, Eq. (19) can be written as

o(E, T)= o-(E, T= 0)®( afo(E, T) (22)

We merely convolve the zero temperature conductance with the thermal
smearing function to obtain the finite temperature conductivity. This is the
usual semiclassical scheme for calculating the conductivity [11, 12].

A complete quantum mechanical calculation [2] of the electrical conduc-
tivity with "elastic" broadening and with temperature broadening gives

o-(E, T, h/(27))= o(E, T= 0) (E, T) , A(E, h/(27)) (23)

The temperature broadening follows directly from our standard semi-
classical treatment. Just as with the density of states, we merely convolve
the zero-temperature conductance with the thermal broadening function
and the impurity broadening function for random impurities to obtain the
full conductivity.

Now we have a full semiclassical algorithm to calculate the current versus
voltage relationship in a quantum MOS device.5 In MOS devices, terminal
voltages really control the electron density, not the Fermi energy. Therefore,
what we want to graph is o-(EF, T, h/27) versus n(EF, T, h/27) with both

variables described parametrically by EF for a given T and h/27. First, for
a given temperature, elastic scattering time (i.e., device mobility), and
density, we calculate the Fermi energy by demanding that the Fermi energy
satisfy

n = n(EF, T, h/(2r)) = _ N(E, T, /(2T)) dE (24)

'A fully self-consistent algorithm would solve the coupled Poisson and Schradinger
equations.

_ _________. I.~__.11I_--1-I_~.-~_---~
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where

N(E, T, /(2))= N(ET=0) -(ET) A(Eh/(2,)) (25)

Next, we calculate c(E, T= 0, h/27 = 0) as in Eq. (21), then broaden the
conductivity with temperature and elastic scattering as

c(E, T, h/(27)) = a(E, T=O)0 o (E, T)) ®A(E, h/(2T)) (26)

We can now plot the conductivity versus density parametrically with Fermi
energy at finite temperature and in the presence of elastic and inelastic
scattering. Since electron density is proportional to gate voltage in MOS
devices, this completely specifies the MOSFET current versus gate voltage
relationship.6

D. Observability Criteria

To see if any MOS device structure will have an interesting conductivity
versus density relationship, we must carry out the algorithm previously
outlined. Before proceeding with this algorithm, we first find some necessary
criteria that must be satisfied in order to observe structure in the conductivity
from quantum mechanical effects due to the device geometry. It is reasonable
to assume that if the effective density of states N(E, T, h/27) has its structure
smeared out, then the conductivity will also lose its structure. Let AE be
the spacing between the structure in the density of states N(E). For the
structure to remain in N(E, T, h/2r) after convolution with the temperature
broadening function we must have AE > kB T. For the structure to remain
in the presence of elastic and inelastic scattering, there are two possibilities.
One possibility is to make the sample size smaller than the inelastic length
so that incoherent averaging is less severe. In this case the wave function
is coherent in phase and depends on the exact type and location of elastic
scattering sites. However, since the exact location of scattering sites is
unknown, the density of states and the conductivity cannot be predicted.
Furthermore, Lee and Stone [13] have shown that the differences in conduc-
tivity between two samples with slightly different locations of scattering
sites can be very large. This phenomenon is known as universal conductance
fluctuations and will be discussed in Section III. In order to have predictive
power, we must have L> L4, so that we can calculate the effective density

6 If electron density is not proportional to a terminal voltage, we require a semiclassical
solution to Poisson's equation in the device to determine this relationship.
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of states, while at the same time have the elastic broadening small enough
so as not to smear out any structure in the density of states. In other words,
we must demand that L > L, and AE > ht/7.

As an example of these two criteria, consider an ultranarrow MOSFET
of width W. The spacing between the nth and (n + 1)th energy levels due
to quantization in the width direction for this system is

h rr2
AE 2 m W 2 (2 n +l) (27)2m* W2

where m* is the carrier effective mass in the semiconductor. The temperature
criterion becomes

h 7r2
k T<-"< (2n + 1) (28)2m* W2

and using the mobility g = qr/m*, the elastic broadening criterion becomes

2q W 2  1
h (2n+1) (29)A ·r2 (2n + 1)

These criteria are satisfied between the first and second energy levels for a
75-nm wide channel if the device mobility is greater than 6000 cm 2/V sec
and the temperature is below 8 K[ 14]. These are typical numbers for explora-
tory silicon MOSFETs. We should note again that these observability criteria
are only necessary conditions. Even if they are fulfilled one must still
calculate the conductivity to see if it actually has any structure.

Energy scales for confining potentials on the order of 100 nm are in the
range of one-tenth of a milli-electron-volt. For example, in a finite square
well of width 100 nm and height 1 meV, the three bound state energy levels
(as measured from the bottom of the well) are at 0.114, 0.444, and 0.909 meV.
For a reasonably high mobility silicon device, 15,000 cm 2/V sec, on a (100)
surface (which corresponds to an electron effective mass m*= 0.2mo) we
obtain a mean free time, from p = q7/m*, of 1.7 x 10-12 sec. This corre-

sponds to an energy-level broadening, AE = h/7, of 0.386 meV. The tem-
perature broadening, AE = kB T, at 1 K is 0.086 meV. At liquid helijum
temperature, 4.2 K, temperature broadening is 0.362 meV, approximately
the same as elastic broadening. In contrast, a GaAs heterostructure having
a mobility of 200,000 cm 2/V sec with an electron effective mass m* = 0.067 mo
has a mean free time of 7.6 x 10-12 sec and an elastic broadening of
0.086 meV. This roughly corresponds to 1 K.

A good approximate relation for the total energy-level broadening (exactly
valid if both the thermal smearing and elastic broadening functions are
Gaussian) is that

(AE,,) 2 = (hl) 2 +(3.5ka T) 2 (30)
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III. QUASI-ONE-DIMENSIONAL MOSFETs

The experimental work on one-dimensional conductors began as an effort
to see the effects of one-dimensional subbands in the electrical conductivity.
When structure was observed in conductivity versus gate voltage (density)
of quasi-one-dimensional MOSFETs, experimentalists were initially very
excited about having seen the one-dimensional subbands. As more experi-
ments were done, however, it was found that the structure varied from
sample to sample even though reproducible within a given sample, that it
sometimes changed if the sample was heated to room temperature and then
recooled, and that the structure was much denser in gate voltage than one
would expect from the number and spacings of the one-dimensional sub-
bands. These results suggest a connection to random disorder.

A clear picture of the fluctuations has recently emerged [15]. In the low
gate voltage or strongly disordered regime, the fluctuations in conductivity
are very large and result from resonant tunneling (at T= 0) or phonon-
assisted hopping (T $ 0) between localized levels. In the high gate voltage
or weakly disordered regime, the rms conductance fluctuations have an
universal size e2/h [13], independent of the sample size (for a coherent
sample) and the degree of disorder (as long as the sample remains metallic).

We begin this section by studying the regular features in conductivity
one would expect in the presence of one-dimensional subbands, then return
to the subject of conductance fluctuations in the regime of weak disorder.
The conductance fluctuations are more pronounced in lower dimensional
systems, so we study them along with the one-dimensional conductivity.

A. Conductivity of Quasi-One-Dimensional Inversion Layers

A quasi-one-dimensional conductor is an one-dimensional conductor of
finite width. The crossover from two dimensions to one occurs when the
width of the device becomes narrower than the inelastic diffusion length.
A single coherent wave function then extends across the entire width of the
device. Schridinger's equation can be solved by the separation of variables
method in this case and predicts energy eigenvalues [16]

2mE - n 2k2 k+ •), n =1,2,3,... (31)

for an infinite square-well confining potential. Here we take the x direction
to be along the length of the wire. The wave function has a product form

41 (x, y)= 2 sin y exp(ikxx) (32)
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8. Nanostructured Silicon Inversion Layers 321

Consider the two constant energy surfaces shown in Fig. 5. If the Fermi
level lies in a higher subband (the third subband in Fig. 5), it becomes
possible to scatter between different transverse eigenstates on the constant
energy surface. Even though we discuss an infinite square well here for
simplicity, our conclusions about conduction in quasi-one-dimensional
wires are independent of the shape of the confining potential. It is desirable,
of course, to have the confinement as strong as possible so that the subbands
are widely spaced in energy.

To understand the motivation for making quasi-one-dimensional conduc-
tors, we investigate what the semiclassical conductivity formula would
predict for such structures. Consider first the case of an one-dimensional
conductor without subbands (i.e., only one spatial dimension exists, so that
E = h 2k~/2m). The group velocity v,, density of states N(E), density, and
conductivity at a given Fermi energy are, respectively,

1 dE= 2E
v, - -•- (33)h dk m

N(E) = 2m (34)
1T -fiE

2 2mE
n(E) =- 2 (35)

o-(EF, T= 0)= e 2( FF)N(EF) (36)

Equation (36) follows from direct integration of Eq. (21). We show the
results for the approximation when r = constant in Fig. 6. The conductivity
rises as the square root of Fermi energy and is linear in the electron density.

It.. -M•ar
r..

ky =N"

Skx

Fig. 5. Energy
conductor.
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dispersion and constant energy surfaces. for a quasi-one-dimensional
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o(E)

/E(a)

o-(n)

(b)n
(b)

Fig. 6. One-dimensional conductivity for r= constant as a function of (a) energy and
(b) density.

Using the same equations, if we choose an energy-dependent scattering
rate, as discussed in Section II.A; namely,

- 21Tnimpl Vj2 N(E)
T(E)

(37)

we obtain a conductivity linear in the Fermi energy and parabolic in electron
density, as in Fig. 7.

These relations assume that only one physical dimension exists. To make
quasi-one-dimensional conductors, we must begin in three dimensions and
make two of the dimensions smaller than the inelastic length, thus creating
one-dimensional subbands [17]. Each subband is an additional channel to
carry current; their conductivities add like resistors in parallel if we ignore
wave interference between different subbands. Then

cr(E) = Cr(E) = e2 vi Ni(E)7,(E) (38)

where we label the sum over all occupied subbands with
density of states adds similarly,

N(E)=Z N,(E)

a(E)

(EE
(a)

the index i. The

(39)

o-(n)

(b)
(b)

Fig. 7. One-dimensional conductivity for r-'(E) N(E) as a function of (a) energy and
(b) density.
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8. Nanostructured Silicon Inversion Layers

We consider the extreme quantum limit of widely spaced subbands at T = 0
with negligible "elastic" broadening in order to see clearly the effect of the
one-dimensional subbands. We take the density of states for the case of
two such one-dimensional subbands as shown in Fig. 8.

There are three possibilities for the scattering time in a quasi-one-
dimensional conductor. One case is when 7 = constant. The results for or(E)
and o,(n) are shown in Fig. 9. The constant r case is interesting because,

N(E)

Fig. 8. Quasi-one-dimensional density of states for two subbands.

-(n)a-(E)

Fig. 9. Quasi-one-dimensional conductivity for constant T as a function of (a) energy and
(b) density.
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even though conductivity versus energy shows structure, the physically
important plot, conductivity versus density, shows none.

The second case we consider allows only intrasubband scattering, with
no intersubband scattering. Mathematically this means

,( E 2Trnimpl Vl2Ni(E) (40)

The results are shown in Fig. 10. The sharply decreasing derivative of or(n)
when the second subband begins to be populated is because almost all the
carriers are being added to the lower velocity subband, due to its very large
density of states.

There is no a priori reason why electrons cannot scatter from one subband
to another. This is the third case to consider, and the one we believe actually
corresponds to experiment. Allowing both inter- and intrasubband scatter-
ing, our model for the mean free time is

( - 2r1nimpl 2 Nj(E) (41)
T(E) J

We present the results graphically in Fig. 11. The dramatic increase in
scattering rate as the second subband becomes populated overwhelms the
modest increase in the additional number of low-velocity carriers, and makes
the conductivity drop to zero.

If there is "elastic" or finite temperature broadening, the conductivity
will not drop to zero as the Fermi level crosses into a new subband, since
the scattering rate remains finite. We expect the resulting ro(n) to look

r(E) 0'(n)

Fig. 10. Quasi-one-dimensional conductivity allowing only intrasubband scattering as a
function of (a) energy and (b) density.
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8. Nanostructured Silicon Inversion Layers

o-(E)'

Fig. 11. Quasi-one-dimensional conductivity with both intra- and inter-subband scattering
as a function of (a) energy and (b) density.

or(n)

Fig. 12.
scattering.

Broadened quasi-one-dimensional conductivity with both intra- and intersubband

something like Fig. 12. This result qualitatively agrees with the Green
function calculation of DasSarma and Xie [18]. We show their results in
Fig. 13.

There has been one experiment [19] that has claimed to observe the
effects of one-dimensional subbands in the electrical conductivity. This
experiment used an array of hundreds of quasi-one-dimensional MOS
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40

OCXX

20

O
0.0 0.2 0.4 0.6 0.8 1.0

N1 (106 cm t- )

Fig. 13. Broadened quasi-one-dimensional conductivity with intra- and intersubband scat-
tering, assuming nimp = 10" cm - 2 , at T= 1.2 K (0), 4.2 K (A), and 10 K (0). After DasSarma
and Xie [18].)

£

vssu (I) ',6 u  IV

Fig. 14. Measured quasi-one-dimensional conductivity of MOS wire array. Ids vs. VGSU is
equivalent to .xx vs. n. (After Warren [19].)

inversion lines in parallel, rather than a single wire. We discuss the advan-
tages and disadvantages of using arrays of wires after examining universal
conductance fluctuations in the next section. The measured results of Warren
et al. [19] are shown in Fig. 14. We also show quantitatively how closely
such a periodic array of wires should approximate a quasi-one-dimensional
conductor in our discussion of the two-dimensional superlattice transistor.

An important test to determine whether or not any structure seen in the
conductivity of quasi-one-dimensional MOS devices is due to one-
dimensional subbands is the magnetoresistance. Assuming the effect of the
magnetic field is only to shift the subband energies, the dips in conductance
should follow the so-called fan diagrams of Ref. [20].
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8. Nanostructured Silicon Inversion Layers

B. Universal Conductance Fluctuations

Rapid progress has been made in the study of electronic conduction in
disordered metals. A good review of this subject and its relevance to silicon
MOSFETs is the work of Kastner et al. [15]. For a general review, see Ref.
[21]. One striking result of this work is the prediction that all one-
dimensional conductors become insulators at T= 0. A new length scale,
the localization length, emerges in this theory. For a coherent sample in
the "localized" regime, for which kF l< 1, the fluctuations in conductance
with density or gate voltage can be large. We do not discuss the localization
length or the physics of the "localized" regime, since the useful regime of
MOSFET operation is the high density or "extended" regime. In a two-
dimensional MOSFET with a 100-A mean free path, the device enters the
"extended" regime, for which kF 1> 1,7 at electron densities of around
1 x 1011 cm - 2 . Gate voltage breakdown limits the maximum electron density
to about 2 x 1013 cm - 2.

For a coherent sample in the "extended" regime, the normal MOSFET
operating regime, the rms value of conductance fluctuations were predicted
to have the universal value [13],

e
2  1

SGrs = 38.7 I.LS (42)
h 25813 0

Many experiments helped lead to [22] and later confirm [23, 24] this
prediction. Intuitive accounts of why the universal conductance fluctuations
are "universal" and have size e2/h are found in Ref. [25]. The basic
mechanism of the universal conductance fluctuations is that, as the sample
becomes coherent, we can no longer neglect the wave interference of
electrons scattering from imperfections. The constructive and destructive
interference of the many electronic scattering paths depends strongly on
the exact number and location of scattering centers and on the Fermi energy.
It is the relative changes in the interference of electron scattering paths that
give rise to universal fluctuations in conductivity. Universal conductance
fluctuations are, thus, a manifestation of true "quantum transport" proces-
ses, like weak electron localization, and unlike all the device examples we
calculated using the semiclassical conductivity formula.

The fluctuations are called "universal" in that they are independent of
the sample size (as long as the sample remains coherent), degree of disorder
(as long as the sample remains metallic), and only weakly dependent on
dimensionality. They are perfectly reproducible with gate voltage and are,
thus, not "noise" [17]. We show an example of these fluctuations and their

7 kF 1 > 1 is also a necessary condition for validity of the Boltzmann transport approximation.
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10 20 30

GATE VOLTAGE (V)

Fig. 15. Universal conductance fluctuations in a quasi-one-dimensional MOS wire. Zero
field structure in four devices of different widths on the same chip. The small numbers indicate
the pattern of the structure expected from simple "particle in the box" quantization, based
on the measured device widths. (From Skocpol et al. [17].)

reproducibility in Fig. 15, after Skocpol et al. [17]. Further indication that
the universal conductance fluctuations are a true manifestation of "quantum
transport" has come from the experimental observation of voltage fluctu-
ations outside the classical current path in MOS inversion layers [26]. We
expect nonlocal effects in wires with multiple voltage probes spaced closer
together than an inelastic length, since several of the probes are coherent.

If the device is incoherent, we know that eventually all the quantum
fluctuations in conductance will average to zero. Consider a sample N

] reservoir

MW

N = L/L

Fig. 16. Incoherent averaging of universal conductance fluctuations.
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8. Nanostructured Silicon Inversion Layers

inelastic blocks long and M inelastic blocks wide connected to perfectly
ballistic leads and nonreflecting but phase randomizing reservoirs, as in
Fig. 16.

The relative fluctuation G/ G, where BG is the rms fluctuation in the
conductance and G the average conductance, will average away like the
square root of the number of coherent regions in the device [24], as one
would expect from standard statistical averaging;

8G_ 1 5G (43)

The relationship between the total conductance G and the conductance of
an inelastic block Go is

G = (M/ N)G, (44)

so that

1 M
SG - M G, (45)

or

(W 1/2 3/2 2

8G = -L- e (46)
L,6 L h

If the sample is quasi-one-dimensional (i.e., W< L,), then

G = 3 / 2 2  (47)

In addition to the average size of the universal conductance fluctuations,
it is also possible to predict their average spacing in Fermi energy or magnetic
field [13].

C. Single Wires versus Wire Arrays

In considering whether the subbands of a quasi-one-dimensional wire
can be more easily seen in the conductivity of single wires or arrays of wires
in parallel, we must examine several cases. We first re-examine our observa-
bility criterion for a single wire and then consider wire arrays.

The simplest case for a single %wire is when the wire becomes long
compared with the mean inelastic length. In that case, conductance fluctu-
ations are negligible, but the subband spacing must be larger than h/7. This
constrains the wire width to some maximum value. If, in addition, the wire

_I
- __3 ---~-~ ------~hr- __3 ---~-~ ------~hr

329



Philip F. Bagwell, Dimitri A. Antoniadis, and Terry P. Orlando

has some statistical variation in its width, the energy levels in each coherent
region of the wire will be slightly different due to their different widths.
Since the spacings of energy eigenvalues go as E - W - 2, this introduces a
spread in energy eigenvalues,

AW
-AE = E (48)

W

Recalling our statistical averaging ideas of Section II, we can model the
effects of random variations in the wire width by convolving the density of
states and the conductivity with a new stochastic broadening function. The
exact shape of the broadening function depends on the statistics of the
random width variations along the wire, but we can estimate that its variance
will be about AE if the fractional variance of wire width is A Wi W. Our
observability criterion suggests that the random spread of energy eigenvalues
along the wire must be smaller than the intersubband spacings to observe
one-dimensional subbands in the conductivity. Notice that the broadening
becomes worse at higher energies.

If a single wire has a length less than or comparable to the inelastic
diffusion length, we reduce "elastic" broadening from i/7h to h/7, and can
ignore the energy-level broadening from statistical variations in the wire
width. The question in this regime is whether or not we can impose a regular
modulation in the conductance whose size is much larger than e2/h, in
order that the regular features dominate over conductance fluctuations. Due
to the extremely large conductance modulation we expect from intersubband
scattering, we might safely assume, in the absence of numerical simulations,
to observe one-dimensional subbands in this regime as well.

We turn now to the possibilities for observing one-dimensional subbands
in wire arrays. In wire arrays, we have two additional possibilities: the
spacing between wires in the array is either larger than the mean inelastic
length or it is smaller. We also have our two previous possibilities: that the
length of wires in the array is either longer or shorter than the inelastic
diffusion length. This makes a total of four cases to examine.

We consider first the case where the length of wires in the array is much
longer than the inelastic length and the spacing between wires is greater
than an inelastic length (i.e., each wire is independent). The same broadening
mechanisms that affect single wires also limit the wire array; however, they
are no worse in the array. It is important in this case that all wires in the
array have a random variation in their nominal widths that is no worse than
for a single wire. The wire array may also offer a practical advantage of
larger currents, hence a larger signal-to-noise ratio. It is not difficult,
however, to measure the conductance of single wires. We conclude in this
limit that neither the single wire nor the wire array shows any advantage.

L I · · - I lj
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If the length of the wires becomes shorter than the inelastic length but
the spacing between wires remains larger than an inelastic length, the relative
conductance fluctuations average away like the square root of the number
of wires. Energy-level broadening in the wire array, however, is set by the
elastic mean free time h/'r, while the broadening in single wires is set by
the time to diffuse across the sample h/I,. This is because each wire has
a slightly different arrangement of impurities, so that peaks and valleys in
the average conductance occur at slightly different values of the electron
density. This is really the same procedure as for averaging over impurities
in an incoherent macroscopic sample we discussed in Section II. We
conclude that there is no advantage in making each wire in the array shorter
than an inelastic diffusion length. The wire array also has the possible
disadvantage of introducing additional energy broadening due to random
width variations between wires.

The possibility of making several quasi-one-dimensional channels closer
together than an inelastic length is an intriguing one, but more complicated
to analyze. To begin with, it is not clear that the mean inelastic length
between wires will be the same as the one along the wire. Electrostatic
control may offer one possibility to vary this length [18]. Several wires may
be coherent at once, and the energy eigenvalues are determined by the
properties of these several wires.

If the length of the wires is long compared to the inelastic diffusion
length, having several wires coherent with each other will lead to a larger
modulation in conductance, due to additional scattering between wires.
This assumes the transport lifetime is still governed by the Fermi Golden
Rule approximation. We consider the extreme case, where all wires in the
array are coherent, in our discussion of the two-dimensional superlattice
transistor. If the confining potential of the wire is large compared to the
Fermi energy, a coherent array of wires can quite closely resemble a
quasi-one-dimensional conductor, but can have a much larger modulation
in its scattering time due to much greater variations in the electron density
of states. This is analogous to the intersubband scattering mechanism, which
lead to the large regular conductance variation we saw earlier. If the
one-dimensional channels are incoherent, we can do no worse than add
their separate conductances in parallel. If instead we allow some scattering
between the channels, we suppress the conductance even more strongly
when the Fermi level enters a new subband. The wire array may show an
advantage in this regime, provided the energy-level broadening from random
width variations is no worse in the wire array than for a single wire.

If the wire length is shorter than the mean inelastic length and the spacing
between wires is smaller than the inelastic diffusion length, the conductance
fluctuations average away as the square root of the number of coherent

-- - ,. __~___~. ___1__~___~
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regions of the sample, not as the square root of the number of wires. The
scattering between quasi-one-dimensional channels will again lead to a
larger regular modulation in conductance than the single wire case. The
wire array, however, again has the disadvantage of a larger energy-level
broadening, h/7 for the array versus h/7,; for the single wire. If the entire
sample is coherent, the wire array and the single wire both have the same
energy-level broadening h•/7,. The wire array does not reduce universal
conductance fluctuations, but may show larger regular variations in its
conductance due to scattering between wires.

In summary, for cases where the spacing between wires in a wire array
is long compared to the inelastic diffusion length between wires, the wire
arrays and long single wires offer equal possibility for observing one-
dimensional subbands in the conductance. When the length of a single wire
becomes short compared to the inelastic diffusion length, we can impose a
larger regular modulation in the conductance, but conductance fluctuations
of size e2/h begin to appear. Having many wires in an array coherent with
each other improves the chance of observing one-dimensional subbands.
In terms of fabrication, very narrow single wires are easily fabricated using
shadowing techniques [15]. Making large-area, uniform, wire arrays can be
difficult. New fabrication techniques for wire arrays have promise to elimi-
nate this problem [27], yielding almost atomically smooth and very uniform
wire arrays.

IV. SURFACE SUPERLATTICE TRANSISTORS

The idea of an electrically controllable superlattice transistor dates from
the late 1970s [28]. After the invention of molecular-beam epitaxy and the
tiny vertical dimensions it made possible, experimentalists began to explore
fixed potential superlattices [29]. Extremely high-quality GaAs/GaA1As
heterojunctions combined with vertical spacings on the angstrom scale
spurred these investigations, leading as well to the development of a resonant
tunneling diode and the proposed resonant tunneling transistor. For a review
of these topics see Ref. [30]. Device research on the surface superlattice
transistor, which depends on fine lateral patterning, had to wait for the
development of new lithography techniques.

In sharp contrast to systems emulating static crystal properties, such as
superlattices grown using molecular-beam epitaxy, a surface superlattice
transistor would function as a true voltage controlled crystal. In the ideal
case, device electrodes would allow independent control of the average
electron density as well as the density modulation.

1 L 3 IJ
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Channel length: iO/Lm SiOz Grating
Grating period :O.2.m m . gate

Source Drain
Upper gate.

n+si n+ Si

i, p Si substrate

Fig. 17. A silicon surface superlattice MOS transistor.

Figure 17 shows the cross section of a silicon surface superlattice device
that meets this criterion. The grating gate (bottom gate) electrode controls

electron density in the channel directly beneath the grating. The continuous
gate (top gate) electrode and the grating gate compete for control of the

electron density between grating wires via bottom gate fringing fields. From

a practical viewpoint, it is extremely important in fabricating this device to

make both insulators as thin as possible and, if possible, to use a high

dielectric constant material for the insulators. This ensures that the top gate
will have adequate control over the device operation.

To understand the operation of this device we first consider the simplest

case, a periodic potential in one dimension. We study both the energy

dispersion and conductivity in one dimension to gain insight into the

problem. We then derive analytic expressions for the energy eigenvalues,
density of states, and conductivity in a two-dimensional superlattice device,
given those in an one-dimensional superlattice.

A. Energy Momentum Dispersion in a Surface Superlattice

i. One Dimension

An electron in a periodic potential V(x)= V(x+ a) can form standing
waves when an integer multiple of its wavelength is twice the superlattice

period

nA = 2a, n = 1, 2, 3,... (49)

A factor of two enters the Bragg reflection condition because the electron

density, not the probability amplitude, must have the superlattice perio-

dicity.

1E I I'I I
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We must solve Schridinger's equation

2m* dx2 + V(x) I(x) = E (x) 
(50)

for the energy eigenvalues of the problem. Using the Fourier transform and
the condition that V(x) is a periodic function, Eq. (50) can be transformed
into a matrix equation, the so-called central equation [12], for the wave
function and energy eigenvalues.

We can label all the eigenvalues of the central equation by a band index
N and a crystal momentum k [12]. The label k in the eigenvalues EN(k)
is no longer the electron's momentum. The quantum number k is restricted
to the range Iki <(7/a). The value k = +(ir/a) defines the Brillouin zone
[12] boundary.

The group velocity of an electron wave packet, the quantity of interest
to us, is still given by Eq. (18) [12].

2. Two Dimensions

For a two-dimensional surface superlattice, we must solve Schriidinger's
equation written as

[2 a2 h2 a2+ V(x)] i(x, y) = E4,(x, y) (51)2m* ax' 2m* ay'
This has solution

Ir, N(x, y)= ei"lYk.,N(x) (52)

where Ik,,N(X) is a solution to the one-dimensional Schridinger equation

in a periodic potential V(x) as given in the previous section. The energy
eigenvalues in two dimensions are

h2k2
EN(kx, k,)= EN,,(k,)+ 2k= EN,x(kx) + E(ky) (53)

2m*

where EN.,(kx) are the eigenvalues of the one-dimensional superlattice

problem. The group velocity of an electron wave packet is given again by
Eq. (18) [12].

We show an example of energy dispersion for a two-dimensional superlat-
tice in Fig. 18 [31]. Surfaces of constant energy, shown in Fig. 19, are circles
if V(x)= 0, deforming to ellipsoidal shapes in a periodic potential along
the x direction [31]. The ellipsoids open at the Brillouin zone boundary
kx = + :T/a, or at the zone center k = 0, when electrons form standing waves.

.I
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Fig. 18. Energy dispersion in a two-dimensional superlattice. (After Warren [31].)

x

Weak Potential Strong Potential

Fig. 19. Constant energy surfaces in a two-dimensional superlattice. (After Warren [31].)

To find the total number of electrons below the Fermi energy in this
two-dimensional k space, we must integrate the density of electron states
up to EF:

n2-D(EF) = f N 2-D(E) dE (54)

For potentials of the form V(x, y) = V,(x)+ Vy(y), the x and y motions of
electrons are independent except for the constraint that the total energy of
motion is a constant. We can then express the two-dimensional density of
states as a convolution,

N 2.D(E) = N,(E) Ny(E) (55)
where we calculate Nx(E) and NY(E) from solutions to the two one-
dimensional Schridinger equations with potentials V(x) and V(y), respec-
tively.

For a two-dimensional surface superlattice device, Nx(E) is the density
of states we calculate numerically from the solution to the one-dimensional
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central equation, and Ny(Ey) is the free-electron density of states for motion
perpendicular to the superlattice given in Eq. (34). Equation (55) is a very
intuitive one. Electron motion in the x direction is independent of motion
along y, except for the constraint that the total energy E = EN, (kx) + Ey(k,)

is a constant. Thus, for some density of available states along x with a
contribution to the total energy ENx, the total number of available states
at a fixed energy E = ENx+ Ey is simply the product Nx(Ex)Ny(E- Ex).
To find the total number of available states at energy E, we must sum over
all the states Ex obeying the energy conservation condition.

N2-D(E) = J Nx(E.)Ny(E-Ex) dEx (56)

The factor ½ in this convolution compensates for overcounting electron spin
states in the one-dimensional state densities. Any gaps in the energy spec-
trum in the one-dimensional superlattice are removed by convolution with
N,(E). There are no true energy gaps in a two-dimensional superlattice
transistor.

To determine the energy scales and electron densities in a two-dimensional
silicon superlattice device, we consider first the two-dimensional free-elec-
tron gas with m* = 0.2mo and an imposed periodicity a = 2000 A. In two
dimensions for a free-electron gas of density n, the Fermi wave vector and
Fermi energy are, respectively,

h2k' "ht
2

kF = (2nn)1/ 2,  E- 2m - ,n (57)
2m* m*

Typical numbers are given in Table I.
If we apply a periodic modulation to the free-electron gas, the values of

EF for a given kF (and, thus, a given density) will change, but the relation
between kF and the electron density will be the same. Thus, the band number
N at a given density is kF/(w/a), and the density wavelength at a given
density, AD = AF/ 2 , remain unaffected by the periodic potential. In a periodic

TABLE I
Parameters of a Two-Dimensional Silicon Superlattice Device

n(cm
- 2

) 1010 1011 1012

EF(meV) 0.1 1 10

kF(cm- ') 2.5 x 105  8.0 x 105  2.5 x 105
rla (cm - 1)  1.6 x 10' 1.6 x 10

5  1.6 x 10
5

kF/(r/a) 2 5 15

AD,= AF= rr/k F (A) 1200 400 120

· ' I
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potential, the electron density n refers to the average electron density in
the channel. These numbers suggest, for example, that for an electron density
of 10" cm - 2, we must have an appreciable energy gap between the fifth and
sixth energy bands to see structure in the conductivity. The fifth harmonic
of the electron density wavelength must make a standing wave with the
superlattice. Contrary to our intuition from perturbation theory, this is not
difficult to do if the periodic potential is large, even for a potential having
only the lowest spatial harmonic (i.e., a cosine potential).

The Fermi energy can have a modulation on the order of 10 meV in a
superlattice. But the Fermi energy (i.e., the electrochemical potential) is the
sum of the electrostatic potential and the chemical potential. The electro-
static potential V(x) is the potential in Schridinger's equation. Simulations
[32] of this superlattice configuration have shown that modulation of the
electrostatic potential can be of the order of 100 meV.

The one-dimensional energy eigenvalues for 0.1 and 10 meV peak-to-peak
modulation of the electrostatic potential at the fundamental wavelength of
2000 A are shown graphically8 in Figs. 20 and 21. These solutions are enough
to qualitatively understand the superlattice transistor. Note that almost all

.a,
E

:2.

E >
00 a,

*k t

o = 2000 -A 0
me = 0.2 mo

Fig. 20. Energy eigenvalues for V(x)= Vp,_,cos(27rx/a) where Vp= 0.1 meV. V(x) is
shown to the left of the dispersion relationship and the band index N is shown to the right.

8 All numerical calculations of energy dispersion relations diagonalize a 32 x 32 Hamiltonian
matrix with 64 samples of the potential V(x). They assume m*= 0.2mo and a = 2000 A.
Electrical conductivities were calculated numerically using these solutions.
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Fig. 21. Energy eigenvalues for V(x)= Vp_ cos(21rx/a) where Vp, = 10 meV.

the energy gaps lie below the top of each cosine potential. 9 This is not the
case if V(x) has higher spatial harmonic components.

B. Conductivity of a Surface Superlattice

We begin our discussion of conductivity in the surface superlattice in the
simplest case of one spatial dimension. We assume one-dimensional sub-
bands are either not present or lie too high in energy to enter into the
problem. After analyzing one dimension, we obtain analytic expressions
for the conductivity of a two-dimensional surface superlattice transistor,
given the conductivity of an one-dimensional superlattice. These analytic
expressions permit us to qualitatively explain how features in conductivity
will change in the two-dimensional surface superlattice.

1. One Dimension

Take first the case 7 = constant. The conductivity versus density and versus
Fermi energy relationships for the two cosine potentials are shown in Figs.

9 There is an easy way to estimate the number and average spacings of the bound energy
levels in a cosine potential. Match the cosine to a harmonic oscillator potential at the bottom
of each cosine well. Assume the last bound level is when the harmonic oscillator eigenvalue
has a larger energy than the top of the cosine. The average spacing in energy is simply the
strength of the cosine divided by the number of bound levels. This estimation method agrees
very well with the exact solutions.

__ -- I I · ·
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1 2 3
(a) (b)

2 3

Fig. 22. Conductivity versus (a) Fermi energy and (b) density for V_p= 0.1 meV and

constant T. Numbers along the x-axis denote the energy band associated with a feature in the

conductance.

a(E) a-(n)

Fig. 23. Cond

7891011 12 7 8 9 1011 12
(b)

uctivity versus (a) Fermi energy and (b) density for Vpp = 10meV and

constant 7. Band numbers are shown along the x-axis.

22 and 23. The conductance modulation is solely a result of the Fermi group
velocity tending to zero at a Brillouin zone boundary (k = +'r/ a) and at

the zone center (k = 0). Notice how rapidly the conductance drops to zero
in the strong cosine potential of Fig. 23, compared to the free-electron case,
once the Fermi energy falls into the cosine potential. This is because the

Fermi group velocity for energy levels bound deeply in the cosine well is

nearly zero. These strongly bound energy levels can be important in optical

experiments, but not in transport. The envelope of conductivity versus

_ I __ __
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density is linear in n for large densities, while the envelope of conductivity
versus Fermi energy goes as the square root of energy, as we showed in the
discussion of one-dimensional conductors.

We also examine the case of r-'- N(E). Conductivity versus density
and versus Fermi energy relationships for the cosine potential 0.1 and
10 meV are shown in Fig. 24 and 25, respectively. Conductivity is suppressed
significantly over the constant 7 case. Some features in conductance that

cr (n)-(E)

1 2 3
(a) (b)

I 2

Fig. 24. Conductivity versus (a) Fermi energy and
7- 1' N(E). Band numbers are shown along the x-axis.

(b) density for V,_ = 0.1 meV and

cr(E)

891011 12 8 9 10 II 12

Fig. 25. Conductivity versus (a) Fermi energy and (b) density for V_,= 10 meV and

7-1 N(E). Band numbers are shown along the x-axis.
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were present in the constant 7 case have now disappeared. This is because,
in addition to the Fermi group velocity approaching zero at a Brillouin
zone boundary or zone center, the scattering rate now becomes very high
as well. This suppresses conductance still further over the constant 7 case.
Again, as for an one-dimensional conductor, the envelope of conductivity
versus density is parabolic in density for high densities, while the envelope
of conductivity versus energy is linear in energy.

Substantial energy-level broadening in the one-dimensional case will alter
our qualitative results for conductivity. For small periodic potentials, con-
ductivity in the bound energy levels should rise and approach the free-
electron gas result as we increase energy level broadening.

2. Two Dimensions

The qualitative structure of conductivity versus density will change once
we add free motion perpendicular to the superlattice. The additional y
degree of freedom in the electron motion will broaden the structure in the
superlattice or x degree of freedom, resulting in a weaker modulation of
the conductance. This has been explored numerically in the conductance
versus Fermi energy as in Fig. 26, after Kelly [33]. Here o-,(E) does not
fall to zero, since electron motion perpendicular to the superlattice is
forbidden only for a given kx, not a given E. For any given Fermi energy,
it is always possible to choose many k,'s such that kx does not match the
Bragg reflection condition. Some current leaks through because there are
no true gaps in the energy spectrum:

Using arguments analogous to those for computing the two-dimensional
density of states in a superlattice, we can express the two-dimensional
conductivity as a convolution:

'.,2-D(E)= ,1-D(E) NY(E) (58)
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Here oxx_-D(E) is the conductivity of a one-dimensional superlattice, calcu-
lated in the previous section. N,(E) is the one-dimensional free-electron
density of states of Eq. (34). The same physical interpretation of this
convolution we made when discussing two-dimensional density of states in
the superlattice is again valid for the conductivity. Free motion parallel to
the superlattice broadens features in the superlattice density of states and
conductivity by convolution with the free-electron density of states. Conduc-
tivity perpendicular to the superlattice does not fall to zero, qualitatively
explaining the results shown in Fig. 26 in which o-(E) has roughly a 1/1/1
dependence in the gap regions. If r is not a constant in the two-dimensional
superlattice, we must first carry out the calculation assuming it is constant,
then scale conductivity by the variable scattering time afterwards.1 o

Consider now conduction parallel to the superlattice, again for a constant
scattering time. Arguments similar to those above for oxx,2_D(E) yield the
relation

yy2.-D(E) = 2•2'.D(E)O Nx(E) (59)
Here Nx(E) is the one-dimensional superlattice density of states calculated
from solution of the central equation. Here oyy,1-D(E) is the one-dimensional
conductivity for a constant scattering time, as given in Section III. If the
mean free time is a function of the particle's energy, we scale the conductance
by this variable scattering time after carrying out the convolution.

The strongly bound energy levels, which carry no current perpendicular
to the superlattice, approximate quite well a quasi-one-dimensional conduc-
tor for transport parallel to the superlattice. Convolution with the one-
dimensional superlattice density of states, Nx(E), determines how closely

ryy,2-D approximates the quasi-one-dimensional conductor. In the limit that
Nx(E) is a sum of delta functions, the approximation is exact. This will be
roughly true in the strongly bound energy levels. As the Fermi level sweeps
above the top of the cosine potential, there should be a transition from
one-dimensional to two-dimensional behavior in the conductance.

One experiment that has attempted to probe the current-voltage charac-
teristics of the superlattice transistor is shown in Fig. 17. Full details of this
work by Warren et al. are found in Ref. [34]. We reproduce the experimental
curves" in Fig. 27. Ismail et al. [35] have seen similar results in a GaAs

to A much stronger modulation in conductivity perpendicular to the superlattice, similar to
the one-dimensional superlattice, is possible if the superlattice potential is periodic in both
the x direction and y direction. To calculate the conductivity in these proposed devices, it is
both necessary to generalize the central equation to two dimensions to find the energy dispersion
and to use the more difficult method of integrating over the Fermi line to calculate conductivity.

"1 The transconductance plot is versus current, not voltage. The rationale is that current is
proportional to density, which is proportional to Fermi level in two dimensions. This argument

is true only for a free-electron gas in the case of constant 7.

1. - - - -- II -
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Fig. 27. Measured characteristics of superlattice transistor. (After Warren et al. [34].)

surface superlattice. This device structure has been simulated by Tokura
and Tsubaki [36].

While our calculations of conductivity assume an infinite superlattice,
the superlattice transistor has finite extent. It may be important that the
electron coherence length limits the number of superlattice periods seen by
the wave function. This constraint may, in fact, play some role in the
observability criterion for a superlattice transistor. The finite device extent
can be modeled in several ways. We can broaden the energy eigenvalues
by the time to diffuse one inelastic length (i.e., by h/7,6) as we discussed
in Section II. This is not a severe constraint for a diffusive superlattice,
since we know "elastic" energy-level broadening smears the energy levels
by hi/7, a much more severe limitation as r < 7~. It is also possible to explore
the effect of a finite device size on the conductance using transmission
coefficient.

V. DYNAMICS OF ELECTRON TRANSPORT IN HIGH
ELECTRIC FIELDS

A. Boltzmann Transport Theory

The steady-state terminal I-V characteristics of long-channel MOSFETs
can be accurately calculated by describing the flow of carriers in the channel
by the classical "drift-diffusion" hydrodynamic equation, written below for
electrons:

C

0c

I 'Y ---- 1

·--'""

I

(60)j, = qlunW + qDV n
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where j, is the electron current density, q is the magnitude of the electron
charge, /L the electron mobility, n the electron concentration, V is the
electric field, and D is the electron diffusivity. Assuming little or no impact
ionization due to the primary current in the channel, Eq. (60) along with
the following two equations model accurately (NMOS) devices under
steady-state low-field conditions:

V j,, =0 (61)

V2b =q (n - N+ N,) (62)
Esi

Equation (61) is an expression of carrier conservation, and Eq. (62) is the
Poisson equation with 4i the electrostatic potential, s,i the silicon dielectric
constant, and N+ and N, the ionized donor and acceptor concentrations,
respectively. Equations (61) and (62) are derived from Boltzmann's equation
for electrons in steady-state under the assumption that the distribution
function of electrons is Maxwellian with a characteristic width determined
by the lattice temperature To. In other words, it is assumed that the electron
temperature T, is equal to To, which is equivalent to saying that the electric
field is low enough so that the drift velocity of electrons v is much smaller
than their thermal velocity, for example,

IvI << mkT (63)

At room temperature, T, = 300 K, Eq. (63) becomes Iv << 2.4 x 107 cm/sec.
Equation (60) can also be considered as an expression of momentum

conservation while Eq. (61) is a statement of mass conservation, both in
steady-state under the condition that the distribution function is only weakly
perturbed from its thermal equilibrium state. Since the energy of the elec-
trons is assumed in equilibrium with the lattice there is no need for an
expression of energy conservation, so Eqs. (60) and (61) are a complete set
of equations of electron motion. For most practical applications of modern
MOSFETs the "weak perturbation" conditions just described are readily
violated. For example, in a MOSFET in saturation, electrons move with
drift velocity equal to or exceeding the value of the so-called electron
saturation velocity vsat, which is around 107 cm/sec at room temperature
[37]. Similarly, the electron temperature Te rises above 2000 or 3000 K [38].
Thus, both the thermal equilibrium condition, T = To, and the condition
in Eq. (63) are violated.

To properly model MOSFETs under these conditions the Boltzmann
equation must be solved directly to derive the distribution function with
no a priori assumptions whatsoever about its form. This is typically done

- I-I

344



8. Nanostructured Silicon Inversion Layers

by Monte Carlo techniques and has the distinct advantage that the collisional
terms can be properly taken into account [39]. Since accurate direct integra-
tion of the Boltzmann equation is computationally expensive and does not
lend itself to increased physical insight, a popular alternative solution is to
assume a displaced Maxwellian form for the distribution function and to
directly derive from the Boltzmann equation expressions for the conserva-
tion of electrons, momentum, and energy [40, 41]:

an
n+v - (nv) = G (64)at

a----- v - V(m*v) = -q -B V(nT) - m*v (65)at n 7
aw kg 1 w - Woaw +v -Vw= -qE-v---V (nT,v) - V - (K VT ) (66)
at n n 7T

where G is the net generation rate, 7 is the momentum relaxation time, 7•
is the energy relaxation time, K is the electron thermal conductivity, and w
is the electron kinetic energy given by

2 random motion convective motion (67)

and wo is the equilibrium energy, kB To. Note that v = lvi. Equations
(64)-(66) have simple physical interpretations. Equation (64) is the particle
conservation equation under nonsteady-state conditions and in the presence
of net generation, for example, due to impact ionization. Equation (65) is
the electron momentum conservation equation. The left-hand side is the
sum of the inertial and momentum outflow terms, set equal to the sum of
the driving forces consisting of the electric field and temperature gradient
(pressure) terms minus the rate of momentum lost to collisions expressed
in the simplified momentum relaxation form.

Equation (66) is the electron energy conservation equation. Similar to
Eq. (65), the left-hand side is the sum of the rate of change and energy
outflow terms, and it is equal to the sum of the energy rate supplied by the
electric field, the work rate performed by the electron pressure, the diver-
gence of heat flux, and the rate of energy lost to collisions expressed in the
simplified energy relaxation time form.

The conservation equations along with the Poisson equation [Eq. (62)]
have been solved to various degrees of approximation depending on the
number of terms that are neglected. The two relaxation times are generally
complicated functions of electron energy [37, 42, 43]. For silicon the energy
relaxation time for room lattice temperature is a slowly increasing function
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of electron energy with values somewhat less than 10-12 sec. On the other
hand, the momentum relaxation time decreases sharply with energy because
of increasing optical phonon scattering. It is worthwhile mentioning here
that under steady-state conditions and provided the electric field does not
change very abruptly in space, the convective energy term in Eq. (67),
m*v 2/2, is always much smaller than the temperature term [43, 44]. Often
the convective term is neglected, and, therefore, T, is assumed to represent
directly the electron energy. So, often 7 and 7, are given as function of T,.

B. Electron Velocity Overshoot

Carrier velocity overshoot has been much discussed recently, primarily
because of its promise to obtain currents from short-channel compound
semiconductor FET devices exceeding those predicted by simple device
scaling [44, 45]. Velocity overshoot means that in some region of the device
the carrier velocity exceeds the saturation velocity. The phenomenon occurs
when the electric field in the device changes rapidly in space or in time,
and it is a direct result of the dynamic nature of the conservation Eqs. (65)
and (66). Here we will restrict our discussion to silicon with an eye on its
applicability to short-channel MOSFETs.

The simplest model for a short-channel FET is to imagine that electrons
are continuously emitted from a cold reservoir (i.e., the source), which is
in equilibrium with the lattice with T, = To, into a region of uniform high
field (i.e., the channel) where they proceed to accelerate and heat up
according to Eqs. (64)-(66). They transit the channel and are collected at
the drain. Since this is a one-dimensional steady-state problem, Eqs. (64)-
(66) can be written as

d(nv)= G (68)
dx

dv kB d(nT,) m*v
m*v = --q (69)dx n dx 7

dw kw d(nvT,) 1 d dT\ w-wo
V -- qvW K (70)

dx n dx n dx dx 7

Correct treatment of even this simplified problem requires simultaneous
numerical solution of the above equations. Several simplifications have been
done in the past by omitting various terms, for example, all terms with
differentials involving T. [46]. However, Baccarani and Wordeman [41]
have shown that it is not safe to neglect these terms under general conditions,
and that indeed they might have profound effect in the solution.
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Before proceeding further we should discuss briefly the two relaxation
times. These can be obtained as functions of T, under steady-state
homogeneous conditions from Eqs. (69) and (70). Noting that under these
conditions we have w -1 k T,, we obtain

m* v
'(T.) - V (71)

3 T,-To m*
7, (T,) = - kB -- q (72)

2 q,2 q 7(T,)
under steady-state homogeneous conditions Te is a direct function of W. It
is interesting to note that Eq. (72) states that all the joule heating from the
electric field relaxes like the electron energy difference from thermal equili-
brium:

o, 0 2 = n(w- wo) (73)

where ro = ne27a/m* is the conductivity due to electrons. To eliminate V
from Eqs. (71) and (72), we note first that

v/W = L(Te) = g(w) (74)

where p. is the chordal mobility of the electrons, which is experimentally
available as a function of W. A reasonable fit to the data is [47]

p.(W) = ILo[1 + (p0 o/ •/sat)2 ]- 1/ 2  (75)

where po is the low-field (T,= To) mobility of electrons. Resorting now to
an additional experimental observation, which is also confirmed by Monte
Carlo calculations, namely, that the diffusivity of electrons is nearly indepen-
dent of w and, therefore, of T, [37], we obtain from the generalized Einstein
relation [41]

( (T.) T go (76)T.
Therefore, Eq. (71) becomes

m*'o To,7(T,) - (77)
q Te

and by using Eqs. (75) and (77) in Eq. (72)

3 kg To po 1
7 q (78)2 q vat 0/ Te)

which is an increasing function of the electron temperature. It is interesting
to note that at a given temperature .To the higher the low-field mobility go,

A
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the higher are both relaxation times and, therefore, the more important are
the dynamical effects of carrier transport under inhomogeneous conditions.

To demonstrate the effect of go and to illustrate clearly the phenomenon
of velocity overshoot, we simplify the set of Eqs. (69) and (70) by ignoring
all terms involving Te, as already done by Huang and Ladbrooke [46]. The
reader is cautioned here that this simplification cannot be justified and is
allowed here only to provide a qualitative description of nonstationary, or
dynamic, transport effects. Also, omission of the continuity equation is
unjustifiable. Our simplified momentum and energy conservation equations
become

dv qvm*v-+ * -q± (79)

d(Te - To) + T - To 2 q(80)
+ (80)

dx 7O4• ( Te) 3 kg

where it was assumed that w 3 kB Te. These two equations are decoupled.

Equation (80) is solved for a given V using Eqs. (76) and (78). The resulting
T,(x) is then substituted into Eq. (76), and Eq. (79) is solved for v(x). The
results are shown in Fig. 28 for 8 = 50 kV/cm and various values of /o. As
can be seen in Fig. 28a, at a short distance from the source, electrons can
accelerate to velocities higher than vsat when po is greater than about
500 cm 2/V sec. The velocity overshoot is a direct consequence of the slower
rise of Te(x) as shown in Fig. 28b. It is also worthwhile to note that the
higher the mobility, the higher the final Te, because the energy loss rate is
decreasing as mobility increases.

Proper solution of the system of Eqs. (68)-(70) with G = 0 (i.e., no net
carrier generation) has been performed by Baccarani and Wordeman [41].
We refer here to their results in order to discuss the salient features of the
velocity overshoot effect. Figure 29 shows the distribution of electron con-
centration, electron velocity, and electron temperature along with the ratio
of the convective energy to the total kinetic energy of the electrons. In this
hypothetical device, electrons with concentration n = 1016 cm-3 and tem-
perature T, = 300 K are assumed to be presented at x = 0 to a low electric
field region where V1 = 103 V/cm. At x = 0.5 pým, it is assumed that the field
changes abruptly to Wh = 105 V/cm. This low-to-high field transition corre-
sponds somewhat to a MOSFET channel in saturation. In Figs. 29a and
29b the distribution of concentration and of velocity calculated from the
classical drift-diffusion (DD) model [i.e., from Eqs. (60) and (61)] is also
shown (dotted lines). The only difference is at the field discontinuity. There
the carrier velocity overshoots the saturation velocity, vsa, = 107 cm/sec, by
a factor of almost two, while the DD model simply predicts v = vsat. Close
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line is the DD solution. (b) Corresponding electron velocity versus distance. (c) Corresponding
electron temperature and ratio of convective to total energy versus distance. (After Baccarani
and Wordeman [41].)

examination of Fig. 29c reveals that, as expected, the overshoot is the result
of the slow rise of Te. It is also interesting to note that at the field
discontinuity, the convective energy is about 30% of the total kinetic energy
and, therefore, nonnegligible. It is also important to note that, as can be
seen from Figs. 29a and 29b, the current density, j = -qnv, predicted by the
momentum-energy (ME) model and the DD model are identical. In other
words, velocity may be overshooting inside a device at a low-to-high field
transition without the effect being evident in the I-V characteristics. Indeed
several MOSFET simulations based on the ME model have demonstrated
this for devices with channel lengths around 0.5 to 1.0 l.m operating in the
saturation region [48]. Under such conditions the only benefit of velocity
overshoot is a slightly reduced carrier transit time.

In order to take advantage of velocity overshoot to increase the current
of a device the electrons must be injected cold into a high-field region. This
situation can be approximated in extreme submicron-channel-length
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Fig. 30. Calculated electron velocity versus distance for a high-to-low step field distribution.
Electron mobility is assumed to be 500 cm2/V sec. (After Baccarani and Wordeman [41].)

MOSFETs. A hypothetical example of this effect is demonstrated in Fig.
30, after Baccarani and Wordeman [41], which shows the velocity distribu-
tion in a device with a high-low field discontinuity at x = 0.05 p.m. In this
example electrons at n = 1016 cm -3 are presented cold to a 105 V/cm field
at x = 0. As can be seen at the "source," v 2 x 107 cm/sec, which means
that there is a current enhancement by a factor of two in the ME solution
(solid line) compared to the DD solution (dotted line).

C. Extreme Submicron-Channel-Length MOSFETs

As we discussed previously, the benefit of velocity overshoot in the
channel of a MOSFET cannot be realized until the carriers are overshooting
very near their injection point from the source into the channel. The expected
benefit is increased drain current and transconductance in the saturation
region of operation.

The drain current Id can be written as

Id = WQ1000 (81)

where W is the channel width, Q1o is the channel charge density at the
source end (x = 0), and vo is the carrier velocity at x = 0. Assuming no
parasitic series resistances, Qlo = Cg( Vg, - VT), where C, is the gate capacit-
ance per unit area, and V., and VT have their usual meaning; Eq. (81)
becomes

Id= WCg( Vgs- VT)VO (82)

ML -- kI1
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Without velocity overshoot vo vsat, and, therefore, for a given C, and VT
there exists an upper limit, Idl, for Id:

Idl< WCg( Vs- VT) Vsat (83)

On the other hand, if velocity overshoot does take place at the source end
of the channel, vo can exceed v.,s, and, therefore, Id can exceed Idl.

Because of uncertainties in defining VT experimentally it is safer to study
vo by means of the device intrinsic transconductance:

g. I =- WC g Vo (84)

gm,, can be obtained easily from the device transconductance after corrections
for the parasitic series resistances. On the other hand, Cg cannot be obtained
very accurately. Large-area capacitance measurement yields the static gate
capacitance C , which may differ from the dynamic capacitance Cg. Calcu-
lations [49] and simulation [50] show that Cg at vo- Vsat is only slightly
smaller than C'. Keeping this in mind, a lower bound for vo can be obtained
from experiment:

gvi
vo:> m (85)WC/

The first reported experimental observation of velocity overshoot was in
sub-100-nm channel-length MOSFETs at 4.2 K [51]. No overshoot was
observed at 77 or 300 K, according to that report. Subsequently Shahidi et
al. [50] reported velocity overshoot at 77 and 300 K in MOSFETs with
similar channel lengths. The progress from the first report to the second is
attributed to an increase in the low-field mobility /0o due to deliberate
reduction in the channel doping. The mobility in the second report was

. . .. '2.5 x 10

-Z 2.0 x 10
E

>" 1.5 x 10

u x OxIo0

a 5.0 x10

0 0

'Ui

77 K

t .0o
BULK V,,,

300K

0.00 0.10 U2.U 3u.u u.+u u.Zu
CHANNEL LENGTH (,gm)

Fig. 31. Electron velocity versus channel length at room temperature and 77 K. (After

Shahidi et al. [50].)
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450 cm 2 /V sec with a surface concentration of dopants of 5 x 1016 cm- 3,
while in the first report mobility was 300 cm 2/V sec with surface concentra-
tion of 1018 cm - 3. This serves to illustrate the significance of low-field
mobility in the attainment of velocity overshoot, as discussed in Section
V.B. Calculated vo according to Eq. (85) versus channel length at 77 K and
at 300 K, from Ref. [50], is shown in Fig. 31. As can be seen, overshoot is
observed at somewhat longer channels at 77 K as compared to 300 K. This
is expected because the energy relaxation time increases somewhat with
decreasing lattice temperature [37, 42] even though the approximate
expression given by Eq. (78) does not reflect this fact.
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We use a semiclassical method to calculate the conductivity tensor and density of states for in-
dependent electrons subject to a periodic potential along one direction. We incorporate into our
model collision broadening due to impurities, temperature broadening, and an increase in spatial di-
mension due to free-electron motion perpendicular to the superlattice. We show that these three
effects can all be put on an equal basis by convolving the one-dimensional unbroadened conductivity
and density of states with the impurity spectral function, the Fermi-Dirac probability density func-
tion, and the one-dimensional free-electron density of states, respectively. We discuss the implica-
tions of our results for superlattice and quasi-one-dimensional field-effect transistors.

I. INTRODUCTION

Recent low-temperature conductance measurements on
Si metal-oxide-semiconductor field-effect transistors
(MOSFET's) and GaAs modulation-doped FET's
(MODFET's) which impose a periodic modulation on
electrons in a quasi-two-dimensional inversion layer, - 4

or electrostatically confine electrons to quasi-one-
dimension,' - 7 have demonstrated weak structure in the
device conductance versus gate voltage attributed to
Bragg diffraction from the surface superlattice and the
filling of quasi-one-dimensional subbands, respectively.
These devices all operate in the diffusive regime of trans-
port in which the inelastic diffusion length is much longer
than the elastic mean free path. The devices also operate
in the typical incoherent regime of metallic conduction,
for which the sample size is much longer than the inelas-
tic diffusion length. The semiclassical equations of
motion for an electron wave packet work well in this
diffusive, incoherent regime of transport.

Some incoherence in the device is an advantage in that
it allows measurements between different devices to be
reproducible, i.e., independent of the specific arrange-
ment of defects in the device. However, incoherence also
imposes the operating limits through inelastic scattering
and finite temperature on these types of quantum-
electronic devices. In this paper we show these limits
arise naturally from convolving the conductivity and den-
sity of states with the impurity spectral functiorf, which
includes elastic and inelastic scattering, and the Fermi-
Dirac probability density function, to account for finite
temperature. The effect of these two convolutions is to
average the conductivity and density of states over an en-
ergy. range of the inverse elastic mean free time and the
temperature, respectively.

We use the semiclassical equations of motion together
with the electronic band structure to calculate conduc-
tivity versus electron density and conductivity versus
Fermi energy assuming a model Hamiltonian for the de-
vice. We emphasize that, throughout this paper, the po-

tential will be periodic only in one direction regardless of
whether the Hamiltonian has one, two, or three kinetic
degrees of freedom. Because we assume a potential
periodic only along the x direction, the free-electron
motion along y and z decouples from motion along x ex-
cept for the constraint that the total energy of motion is a
constanit. Increasing the dimensionality of space from
the one-dimensional periodic potential along x means
first adding free-electron motion perpendicular to the su-
perlattice along the y direction to obtain two spatial di-
mensions, then adding free-electron motion perpendicu-
lar to the superlattice along the z direction to arrive at
three spatial dimensions. Increasing the dimensionality
of space in this manner allows the calculation of conduc-
tivity and density of states in two and three dimensions
by first solving the problem in one dimension, then con-
volving with the one-dimensional free-electron density of
states for each additional spatial dimension. This convo-
lution provides an intuitive picture of the effect of free-
electron motion perpendicular to the superlattice on the
conductivity and density of states. Unlike the convolu-
tions used to incorporate broadening effects, increasing
the dimensionality of space via convolution does not lead
to any well-defined "observability criteria" as to which
spatial dimension a feature in conductivity or density of
states will become extinct, since the one-dimensional
free-electron density of states has no well-defined vari-
ance.

By restricting ourselves in this paper to devices which
are incoherent, we can neglect so-called "mesoscopic"
effects, i.e., wave-interference effects destroyed by self-
averaging in the sample such as the universal fluctuations
in conductance8 '9 or a nonzero -off-diagonal element of
the conductivity tensor due to a fixed impurity arrange-
merit. Our results are also applicable to experiments on
quasi-one-dimensional wires, since conduction perpendic-
ular to the superlattice reduces to the same result as
many independent wires in parallel when the Fermi ener-
gy is much less than the superlattice potential. Our
method may also be used to calculate the conductivity of

3735 © 1989 The American Physical Society
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many quasi-two-dimensional planes in parallel. A more
detailed discussion of our calculational method may be
found elsewhere.o, 11

The superlattices incorporated as a gate into field effect
transistors1- 4 offer several unique features as compared
to standard compositional or doping superlattices. Both
the Fermi level and strength of the periodic potential can
be varied separately with dc voltage sources, thus the
transistor functions as a voltage-controlled crystal. In
addition, because the superlattice period is on the order
of a thousand times the periodicity of the underlying
crystal and the superlattice potential changes gradually
over that distance, the effective-mass theorem should
hold. There are no ambiguities as to the form of the
Hamiltonian or boundary conditions on the envelope
function. For these reasons, the superlattices incorporat-
ed into field-effect transistors offer a nearly ideal testing
ground for the theory of electrical conduction in a
periodic potential. The goal of this paper is to use a
semiclassical theory of electrical conductance to gain in-
sight into the current voltage characteristics of superlat-
tice field-effect transistors'-' and quasi-one-dimensional
field-effect transistors57- at low temperatures. Elastic
impurity scattering is the dominant velocity relaxation
mechanism in these devices at low temperatures, so we
design our computational method to account primarily
for elastic scattering. Our method to calculate electrical
conductivity must be altered if inelastic scattering comes
to dominate velocity relaxation in the device, as is the
case at higher temperature. We specifically do not ac-
count for phonon scattering except as it contributes to
energy level broadening as discussed in Sec. II, and that
we assume it maintains the electron gas temperature in
equilibrium with the phonons. We also assume the elec-
tric fields are low so that nonparabolicities and subsidiary
minima of the bulk band structure can be neglected.

II. IMPURITY BROADENING

Let r be the elastic mean free scattering time and 7, be
the mean inelastic scattering time. Electron motion is as-
sumed diffusive so that the characteristic distance over
which the electron's phase is coherent is the inelastic
scattering length L#,= /V', where D is the diffusion
constant. The sample length L is assumed much larger
than L, so that in the sample as a whole the electron's
phase is incoherent. Therefore, the sample as a whole
may be pictured as broken up into many coherent blocks
of length Lo, each block with a single-electron wave func-
tion valid throughout the block as in Fig. 1.

In an incoherent macroscopic sample we cannot mea-
sure the properties of each individual coherent region, we
can only measure average properties. It is reasonable to
assert that macroscopic properties like density of states,
electrical conductivity, optical absorption, etc. are simply
averages of these properties over all the coherent regions.
Only the incoherence brought about by inelastic scatter-
ing allows this type of averaging over the different ar-
rangements of impurities in each coherent region. This
type of sample is also called "self-averaging", since it
mimics an ensemble average over all possible arrange-
ments of the impurities in a single sample.

'I
t

FIG. 1. An incoherent
elastic mean free path, L,
the sample size.

L

macroscopic sample. Here 1 is the
the inelastic diffusion length, and L

For such an ensemble averaged random impurity po-
tential, the probability of an electron having some energy
E away from the energy level Em, where Em is an energy
level when the impurity potenial is zero, is given by the
impurity spectral function A. 11,12 For the white-noise
impurity power spectrum described below, A has a
Lorentzian shape

A (E -Em,,il/2-7)= (1)
S(E -Em )2 + (?/2r) 2

and is a normalized probability density function

f A (E -Em,i/2 - -)dE = 1

with a full width at half maximum of Ai/r.
.If the sample were to have no scattering at all it could

be described by its energy levels as given by the density of
states N(E). The density of states with scattering
N(E,i/2'7) is then given by finding all the states which
have energy E, namely

N(E,hi/27)= f _ N(E')A (E --E',hi/2,)dE'

=N(E)® A (E,Ai/27). (3)

Here @ denotes a convolution in energy. Although
A (E,?/27) has a width set by the elastic scattering, it is
inelastic scattering that leads to the incoherent averaging
process necessary to produce "elastic" broadening.

The elastic scattering rate from the state k to the state
k' using the Fermi golden rule is12,13

S2zrnimp (k'I k ) 12N(Ek)
'k',k

with Ek =Ek'. Here n imp is the density of impurity
scatterers. We assume the impurities scatter incident
electrons isotropically and with a white-noise power spec-
trum so that

I(k'l k )12= I V(Ek )12=I VI=const .

Equation (5) is a good approximation if the scattering po-
tential V(r) for a single defect is taken to be short
ranged.

III. TEMPERATURE BROADENING

The occupation of electron energy levels at finite tem-
perature is determined by the Fermi-Dirac probability
distribution function fo, where

I
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1
fo(E -, ,kB T)= (E-p)/k5 T (6)

l+e

The derivative of this function at finite temperature is
known as the Fermi-Dirac probability density function or
the thermal smearing function and is given by

8fo(E -I, kBT)_ 1 sech 2 E-~
aE 4kB T I2kB T

The deviation of - 8fo/8E from a 8 function describes
nonmonochromatic electrons at finite temperatures.
Since -- afo/aE is a probability density function it
satisfies

S-, k T) dE = 1 . (8)

Also, -8fo/aE has a full width at half maximum of
3.5kB T.

We count the average density of particles in a quantum
system at finite temperature by

n (p,kB T)= f-N(E)fo(E -- ,kBT)dE. (9)

We can express this result more usefully by
differentiating Eq. (9) with respect to IL to get

dn (IL, kg T)
d -- N(i, k T) , (10)

dit

so that N (, kB T) is the thermodynamic density of
states. Using afo/ai = - 8f o / a E we find an expression
for the thermodynamic density of states in terms of the
zero-temperature density of states:

N(E, kBT)=N(E)®[ - a-(E, kB T)
aE

(11)

Y TENSOR AND DENSITY OF...

The electron density of states at zero temperature is con-
volved with its probability density of contributing a cer-
tain energy away from the Fermi level to obtain the ther-
modynamic density of states N (E, kB T) at finite tempera-
ture. We calculate the electron density by

n(P, kBT)= f~' N(E,kBT)dE . (12)

In addition to broadening the zero-temperature density
of states, finite temperature also introduces another im-
portant length scale. The thermal diffusion length,

LT=V ==V/Di/kBT , (13)

set approximately by the variance of Eq. (7), gives the
mean distance for the nonmonochromatic electron beam,
with all its frequency components initially in phase, to.
dephase. We cannot conduct electron interference exper-
iments in a solid on distance scales longer than LT be-
cause the electron has no well-defined phase beyond this
distance.

Energy-level broadening due to "elastic" scattering is
statistically independent of finite temperature broaden-
ing. Therefore, the total probability density function is a
convolution of the broadening functions for these two in-
dependent random processes. This leads to an expression
for the thermodynamic density of states

N(E,kBT,i/27r)=N(E)e afo(E, kB T)

® A (E,hi/27) .

Writing this convolution explicitly gives

(14)

N(E,kB T,fi/27)= f dE' dE"N(E -E'-E") fo (E',kB T) A (E",ih/2r) .

The total electron density is still given by

n (p, kBT, hi/2r)= f_', N(E,kBT,/27r)dE .

IV. BROADENING OF THE CONDUCTIVITY

We determine the current from the semiclassical ex-
pression14

ji = e f vi(k)f(k)2 dd k  (17)
(271r)d '

where the factor 2 is due to the spin of the electron and d
is the dimensionality of the system. For a periodic sys-
tem the electron group velocity can be calculated as

from a solution of the central equation. 14 The dynamics
of the wave vector k are determined by the semiclassical

(16) equations of motion for an electron wave packet,' 4

dt(fik)= e hk ,
dt 7

(19)

where the crystal momentum's time rate of change equals
the electric force plus the average random force. In the
time-independent case, the equilibrium k values are shift-
ed by an amount

(20)

leading to a change in the electron distribution function

1 8
vi(k)- E(k) ,

i 8ki

where E(k) is the energy of a Bloch electron obtained

(N5)

afo 8 Ek
(18) f(k)= fo(k-Ak) -fo- aEk+- -- (21)

- I cl
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ji=e2f I a1 8k iAEk

Safo 2 ddk
X -•k (Ek--p, kBT) 2 )d 6. (22)

At zero temperature, where -= EF we have

af0
---- (Ek -,kB T=0)=8(Ek -EF) (23)
aEk

so that, if we assume the scattering time is only a func-
tion of the particle's energy and is independent of the
direction of k, we obtain a zero-temperature conductivity

aij(EF)

21 aEk I ]Ek 2 d dk

e2 (EF) f (Ek-EF) [h ki ] [ aEk (2)d

(24)

In general there is a different relaxation time for each k
vector on the Fermi surface so that the scattering time
cannot be removed from the integral over k. Equation
(24) assumes it is a good approximation to replace this k-
dependent scattering rate by an average relaxation rate
for all the k vectors on the Fermi surface. The average
relaxation time -(EF) depends only on the Fermi energy
and not on each individual k vector. This is a standard
approximation in transport theory which is exact only for
elastic scattering and isotropic constant energy sur-
faces. 13 At finite temperatures Eq. (24) becomes

o '(E)= ua(E)® KaE (E, kB T) (25)

We merely convolve the zero-temperature conductivity
with the thermal smearing function to obtain the finite-
temperature conductivity. This is the usual semiclassical
scheme for calculating the conductivity.14

A complete quantum-mechanical calculation" of the
electrical conductivity with "elastic" broadening and
with temperature broadening gives

we can now plot the conductivity versus density parame-
trically with the chemical potential at finite temperature
and in the presence of elastic and inelastic scattering.
Such a graph should closely resemble the device current-
voltage characteristics, and will be presented in detail in
Sec. VI.

As a crude observability criteria for quantum effects in
the device current-voltage characteristics, it is reasonable
to assume that if the thermodynamic density of states
N(E,kBT,A/27) has its structure (whose characteristic
energy scale is AE) smeared out, then the conductivity
will also lose its structure. For the structure to remain in
N(E,kB T,h/27r) after convolution with the temperature
broadening function we must have AE > kB T. For the
structure to remain in the presence of elastic and inelastic
scattering and be independent of the exact arrangement
of impurities in the device we must demand that L > L
and AE > h/7, leading to the observability criteria of Ref.
16.

V. EFFECT OF DIMENSIONALITY

An electron in a superlattice potential with periodicity
a along the x direction, namely V(x,y,z)=V(x)
= V(x +a), can form standing waves when an integer
multiple of its wavelength is twice the superlattice period.
Since the periodic potential depends only on the x coordi-
nate, the total effect of dimensionality appears in the
kientic energy term of the Hamiltonian H, where

A2  d d2
H=-- ; V(x) .

2m* i=1 dx7i2 (27)

Here m * is the effective mass of the crystal before the su-
perlattice potential is applied.

We must solve the Schr6dinger equation' 4

H bk,N(x,y,z) =EN(k )Pk,N(X,y,z) (28)

for the energy eigenvalues of this problem. The wave
functions describing free-electron motion perpendicular
to the superlattice along the y and z directions are plane
waves, so we need only solve the motion along the x
direction. This motion we calculate using a Fourier
decomposition of the potential and the central equation,
as in standard band-structure calculations. 14 The eigen-
vectors and eigenvalues are

o'(E,kBT,Ai/27r)=o(E)0® (•lE, kT)

e A(E,h/2)r). (26)

The temperature smearing follows directly from our stan-
dard semiclassical treatment. Just as with the density of
states, we merely convolve the zero-temperature conduc-
tivity with the Fermi-Dirac probability density function
and the spectral density function for random impurities
to obtain the full conductivity. After carrying out the
convolutions we set E =ip.

In GaAs and MOS devices, terminal voltages are usu-
ally proportional to the electron density and have a more
complicated relationship to the Fermi energy or chemical
potential.' 5 Using the calculation scheme outlined above,

k, N (,y, Z)= kx, N(x)e ike ik

42k;2 2

EN(kx,ky,kz)=E N ,x(kx)+ A + k
2m* 2m*

=EN,x(kx)+E,(k,)+Ez(kz),

(29)

(30)

where Okx,N(x) and EN,x(kx) are the solution to the one-
dimensional Schr6dinger equation in a periodic potential
V(x). The one-dimensional density of states along the x
direction Nx (E. ) can be obtained from

2 1
Nx() r idE,(k)I/dkx l (31)

and the one-dimensional conductivity ua(Ex) can be

|_
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calculated as in the previous section.
Consider now the case of two dimensions at zero tem-

perature. To find the total number of electrons below the
Fermi energy in this two-dimensional k space, we must
integrate the density of electron states up to EF, namely

k(EF) d 2 k
n 2D(EF )= 2 (--do (21r)2 f_ N 2D,(E)dE

- "

We have, therefore, an expression for the densit,
states:

N2D(E)= f (E -EN(k))2 d 2k
(27r)2

1 dkx  dky
=2 J (E-ENx(kx)--E,(k,))2 2•- 2 2r

We can express this in terms of the one-dimensional
sity of states, recognizing the one dimensional identiti

dkx
2 Nx (Ex )dEx217

and

dk,
2 • -=NY(Ey)dEy ,21

ergy spectrum of the one-dimensional superlattice are re-
moved by convolution with N,(E), since N,(E) has a
finite value for all E : 0. It is also important to note that,
since it is impossible to calculate the mean or variance of
Eq. (38), the convolutions used to incorporate free elec-
tron motion have no natural energy scale associated with
them.

We can also find an expression for the conductivity in
two dimensions at zero temperature given the results in
one dimension, analogous to Eq. (37). Assuming a con-
stant scattering time, Eq. (24) for the conductivity can be
rewritten using arguments similar to the ones above as

a'(E)=e2f (E -Ex-Ey) - (Ex)

X fkt- 8k (E) j±Nx(Ex )dEx

es XN,(E,)dE, ,
(34) to give the result analogous to Eq. (37)

a2(E)= +f a(Ex)N,(E - Ex)dEx

(35)

where N (Ex ) and N,(E,) are the 1D density of states in-
cluding spin. Thus

N 2D(E)= f 8(E -Ex -E,)Nx(Ex)dExN,(E,)dE,.

(36)

Integrating over the 5 function leads to our final result

N2D(E)= f N,(E - Ex )N(E x )dEx

=-Nx (E)®N,(E) . (37)

Our result, Eq. (37), is a very intuitive one. Electron
motion in the x direction is independent of motion along
y, except for the constraint that the total energy
E=EN,x(kx)+E, (k, ) is a constant. Thus for some densi-
ty of available states along x with a contribution EN,x to
the total energy E, the total number of available states at
a fixed energy E =EN,x +E, is simply the product
Nx (Ex )N,(E -E x ). To find the total number of available
states at an energy E, we must sum over all the states Ex
obeying the energy conservation condition as in (37). The
factor 1/2 in this convolution compensates for over-
counting electron spin states in the one-dimension state
densities. N,(E,) is the free-electron density of states for
motion perpendicular to the superlattice given by

2 1
NY (k(E )/dk,

1 JdEy(ky)/dkyJ
1 2m * 1/2
S I2 1 (E,)

-N free(Ey) ,

where O(E) is the unit step function. Any gaps in the en-

(39)

=- ° . 1(E)e N,(E) . (40)

If the scattering time r varies with Fermi energy, we first
carry out the convolution assuming it is a constant, then
scale the conductivity by the variable scattering time
afterwards. The tensor component au(E) can be easily
calculated using the convolution

Oay(E)-= '0 yy(E)9 Nx (E) , (41)

where ua(E) is the free-electron conductivity in one di-
mension for constant scattering time given by

(42)

The off-diagonal tensor component oa.(E) is identically
zero as can be confirmed from Eq. (24). This scheme is
easily generalized to three dimensions by convolving Eqs.
(37), (40), and (41) with one-half of the one-dimensional
free-electron density of states, Nfr(E)/2, to account for
additional free-electron motion in the z direction.

Although we originally thought of V(x) as a periodic
potential, we could just as easily have taken V(x)= 0 for
a free electron. We then obtain well-known analytic re-
sults for the free-electron density of states in two and
three dimensions, given the free-electron density of states
in one dimension ND (E). Using the identities

1 1O(E)® e(E)=1re(E)

and

S (E)e E(E)® O (E)=2ntrV/ (E),V/ T V

(43)

(44)

it is possible to obtain the standard free-electron density
of states; namely,

_ __ ~ _ C~
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and

(45)

(46)

where N fr(E) is defined in Eq. (38). Similar relation-
ships hold for the free-electron conductivity in one, two,
and three dimensions assuming a constant scattering
time.

VI. CALCULATED RESULTS

The main motivation behind this work is to understand
the current-voltage characteristics of the electron devices
studied in Ref. 1, in which a grating is incorporated as a
Schottky gate onto a standard GaAs MODFET struc-
ture. We show this geometry in Fig. 2, which is adapted
from Fig. 1 of Ref. 1. Electrons move from source to
drain, which we choose to be the x direction as in Fig. 2.
The carriers form a quasi-two-dimensional electron gas
modulated by the periodic potential imposed from the
gate. The average electron density is controlled from a
backside contact. The x direction would correspond to
motion normal to the grown layer in standard composi-
tional superlattices. The plane of the grown layer would
correspond to the y-z plane in standard compositional su-
perlattices.

Following Ref. 1, we choose V(x) Vocos(27rx /a)
with Vo=1 meV, m*=0.067mo, and a=2000 A. All
conductivity calculations we present assume this poten-

V(x,y) ---

L X
-200 rnm-,

FIG. 2. Electrons moving in a two-dimensional gas subject to
an artificially imposed periodic potential from a grating gate.
This is the experimental geometry studied in Ref. 1.

2000 A DIOCfl WOVe vecTor

FIG. 3. Enery bands for V(x)=(1 meV)cos(2rx /a) with
a =2000 A and a mass of m * =0.067mo0 .

tial except for Fig. 6. This is a conservative approxima-
tion for the potential in these devices. We show the
energy-band structure for this potential in Fig. 3. Notice
that this potential, while still relatively weak for a GaAs
device in which Vo =250 meV is possible,' is already well
outside the limit of first-order degenerate perturbation
theory. 14 We expect in first-order degenerate perturba-
tion theory to have only one energy gap opening at the
first spatial harmonic of the potential, yet significant en-
ergy gaps are already opening at the second and third
spatial harmonic of the potential. It is also interesting
that the energy gap at the third harmonic is above the
top of the cosine potential. For stronger cosine potentials
almost all the energy gaps lie below the top of the cosine
potential. This will not be true if the potential has higher
spatial Fourier components, such as a square-wave poten-
tial.

Figure 4(a) shows the one-dimensional thermodynamic
density of states versus energy calculated for the same po-
tential. The lowest energy band, being almost flat, con-
tributes a 8-function-like feature to the density of states.
At higher energies the curve behaves asymptotically like
the one-dimensional free-electron density of states, hav-
ing an inverse square root of energy dependence. The
thermal broadening full width at half maximum for the
temperatures 50 mK, 0.6 K, and 1.2 K is drawn on the
figure for comparison with the energy gaps. As can be
verified from the figure, the lowest temperature is compa-
rable in size to the fourth energy gap and allows the
lower energy gaps to be well resolved, while the highest
temperature is roughly comparable in size to the second
energy gap. 17

Disorder broadening qualitatively resembles thermal
broadening. The broadening of the density of states in a
one-dimensional disordered superlattice has been calcu-
lated for a given arrangement of disorder in Ref. 18.
From the figures in Ref. 18, one can easily see how the
density of states over an ensemble average of many
different configurations of the disorder can be calculated
via convolution with the impurity spectral function.

We now consider the conductivity in one spatial di-
mension for the simplest case of a constant scattering
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FIG. 4. (a) Thermodynamic density of states NID(E, kB T) vs

energy in one dimension. The bars beside each temperature in-
dicate the scale of the energy averaging. (b) Conductivity
o"i(E, ksT) assuming a constant scattering time and electron
density n ID(E, kB T) vs energy in one dimension.

time. When the Fermi energy becomes much larger than
the superlattice potential, we expect the conductivity and
electron density to be proportional from the free-electron
conductivity formula a free=ne 2r/m *. Figure 4(b)
confirms this is true in one spatial dimension, showing
the conductivity versus Fermi energy for a constant
scattering time as well as the density versus Fermi energy
on the same graph. These two curves approach each oth-
er at high energies. The lowest energy band has a negligi-
ble group velocity and makes practically no contribution
to the conductivity. The conductivity also falls to zero
when the Fermi energy lies in an energy gap at zero tem-
perature. The conductivity modulation is solely a result
of the Fermi group velocity tending to zero at a Brillouin
zone boundary (k= -±tr/a) and at the zone center (k = 0).
Also of interest is the structure in conductivity associated
with the fourth spatial harmonic of the potential.
Despite the fourth energy gap being negligible compared
with kE T, the structure remains in conductivity at
T= 0.6 K. This is because the spacing between structure
in the conductivity versus Fermi energy is much larger
than the energy gap for this feature. The electron group
velocity, whose maximum is associated with an inflection

I

i

"C

E J

a niD

FIG. 5. Conductivity au'(n) versus electron density in one
dimension assuming a constant scattering time. The one-
dimensional free-electron conductivity having unit slope is
shown for reference.

_ _

I

3741

point in the energy band diagram, tends to zero before
reaching the band gap. Thus it is the inflection points in
EN(k) which determine the characteristic energy scale
for the conductivity and not the band gaps. At lower en-
ergies the structure in conductivity more closely parallels
the band gaps, but can never be smaller than them. The
band gaps are thus an overly conservative estimate for
the characteristic energy scale in conductivity. The elec-
tron density in Fig. 4(b) first undergoes a series of steps
corresponding to the flat bands. Then the density and
conductivity asymptotically approach a square root of
energy at higher energies typical of free electrons.
Another interesting feature in the electron density versus
Fermi energy is that the lowest two energy bands, which
are almost flat, contribute a shape which is the mirror im-
age of a Fermi distribution function.

The final goal of our procedure is to plot conductivity
versus electron density, since it should closely resemble
the actual current-voltage relationship of a superlattice
field effect transistor. We graph conductivity versus elec-
tron density in one dimension again assuming a constant
scattering time in Fig. 5. Since the conductivity in a
periodic potential in one dimension asymptotically ap-
proaches the free-electron conductibity at large densities,
the free-electron conductivity is shown for reference with
unit slope in this figure. Again note that the lowest ener-
by band makes a negligible contribution to the conduc-
tivity due to its small Fermi group velocity. It is interest-
ing to compare the conductivity versus density for this
relatively weak cosine potential, having Vo = 1 meV, with
a stronger potential. In Fig. 6 we show the conductivity
versus electron density for a stronger cosine potential
having Vo=25 meV but with the same period and
effective mass. The scattering time is again assumed to
be constant. Notice how rapidly the conductivity drops
to zero, .compared to the free-electron case, once the Fer-
mi energy falls below the top of the strong cosine poten-
tial. For this stronger cosine potential, we can see from
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FIG. 6. Conductivity ar(n) vs electron d
mension for the case of a strong potential hav
and assuming a constant scattering time. The I
ductivity is shown having unit slope.

Fig. 6 that the first nine energy bands m
contributon to the conductivity. This is b
mi group velocity for energy levels boun
cosine well is nearly zero. These levels ca
in optical experiments, but not in transpoi
superlattice.

Matching the cosine well to a harmoni
tential shows us that the energy spacings
ly bound energy levels are approximately

AE 21rV 2 Vo/m *a 2

This ratio should determine how varying
m *, a, and Vo improve the observability
cillations in the conductivity versus densit
For other shapes of the periodic potenti
teristic energy scale AE would be differ
lead to different relations analogous to
rough agreement with the energy spacinl
potential, Eq. (47), the structure in condu
Figs. 5 and 6 disappears at a temperature
times higher for the stronger potential, c
though this is not shown in the figure. I
rameters m *, a, and Vo affect the observe
tum oscillations in general as follows: It
from the differential equation of motion in
for any periodic potential V(x)= V
h(x)= h(x+a) that, for any value o:
m *a 2 V0 = const, the normalized
EN,X(kxa)/Vo or m*a 2EN,x(kxa) are al
Thus, the solution of a single one-dimen,
also gives the solution for a family of value
eters m *,a 2, and V0.19 Equation (47) for
tial is consistent with this general theorem.

The qualitative structure of conductivity
changes once we add free-electron motion
to the superlattice. The additional y degre
the electron motion will smear the structu
lattice direction (the x degree of freedom)

tion with the one-dimensional free-electron density of
states, resulting in a weaker modulation of the conduc-
tivity. However, since the one-dimensional free-electron
density of states in Eq. (38) has no well-defined variance,
it is not possible to assign a well-defined observability cri-
terion as to which spatial dimension a feature in the con-
ductivity will become extinct. This observation is
motivated by analogy with the convolutions used to in-
corporate thermal broadening and disorder broadening.
Equation (7) for thermal broadening has a variance of ap-
proximately kB T and Eq. (1) for disorder broadening has
a variance of approximately h/7-. If these variances are

32 40 comparable with some characteristic energy scale in the
conductivity, then structure in the conductivity is no
longer observable at that particular temperature or elec-

ensity in one di- tron mobility. However, it is not possible to calculate the
!ing Vo= 25 meV variance of the free-electron density of states in Eq. (38).
free-electron con- Even though disorder, temperature, and increasing the

dimension of space all enter through convolutions with
known functions, the convolution used to increase the
spatial dimension is different and cannot be thought of as

ake a negligible broadening the conductivity. If Eq. (38) had a well-

ecause the Fer- defined variance, then it would be possible to say, for ex-

d deeply in the ample, that a certain feature in the conductivity should

in be important be observable in one dimension but not two, just as we

rt parallel to the say that a certain feature in the conductivity should be
observable at a temperature of 1 K but not at 50 K.

c oscillator po- The two-dimensional density of states is shown in Fig.
of these strong- 7(a). We obtained it by convolving Fig. 4(a) with the

free-electron density of states in Eq. (38). Notice the in-
verse square root of energy singularities typical of a
quasi-one-dimensional system eventually approach a con-

(47) stant density of states characteristic of free electons in
two dimensions at high energy. This is the correct

the parameters asymptotic behavior in two dimensions as given by Eq.
of quantum os- (45). The feature associated with the fourth energy gap,
y of the device. while visible in the one-dimensional density of states, is
al, the charac- no longer visible in two dimensions.
ent and would Figure 7(b) displays the conductivity and electron den-

Eq. (47). In sity versus energy in two dimensions, again for a constant
gs for a cosine scattering time. The conductivity a (E) was obtained
ctivity between from ac(E) in Fig. 4(b) by convolution. Conductivity
iround V25 =5 versus Fermi energy in two dimensions has been previ-
or about 10 K, ously explored numerically. 20 ar(E) no longer falls to
Tarying the pa- zero, since electron motion parallel to the superlattice is
ibility of quan- forbidden only for a given k., not a given E. For any
is easy to show given energy, it is always posible to choose many ky's
the x direction such that kx does not match the Bragg reflection condi-
oh (x), where tion. The current is finite because there are no true gaps
f the product in the energy spectrum. Notice the conductivity has an

eigenenergies inverse square root of energy behavior for energies lying
so a constant. in the forbidden energy gaps in one dimension. This is
sional problem characteristic of the convolution of broadened 8-
s of the param- function-like features in the one-dimensional conductivity
a cosine poten- with the one-dimensional free-electron density of states.

An inverse square root function convolved with a
versus density smeared 8 function looks like a slightly smeared inverse
perpendicular square root of energy. The feature associated with the

e of freedom in fourth energy gap, a strong feature in the one-
re in the super- dimensional conductivity a', is greatly reduced in the
by a convolu- two-dimensional conductivity o,'. Both the conductivi-
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FIG. 7. (a) Thermodynamic density of states N 2D(E,kBT) vs

energy in two dimensions. (b) Conductivity oax(E,kB T) assum-
ing a constant scattering time and electron density n 2D (E, k T)
vs energy in two dimensions.

ty and electron density versus energy have a linear depen-
dence on energy in the limit of large energies.

The density versus energy in Fig. 7(b) can also be inter-
preted as o2Y at constant scattering time. The strongly
bound energy levels, which carry virtually no current
parallel to the superlattice, approximate quite well a
quasi-one-dimensional conductor for transport perpen-
dicular to the superlattice. This is easily seen in Fig. 7(b).
In the first energy band uo is nonzero while oX is virtu-
ally zero. Convolution of aoY with the one-dimensional
superlattice density of states, Nx(E) in Eq. (41), deter-
mines how closely oy approximates a quasi-one-
dimensional conductor. In the limit that N, (E) is a sum
of 8 functions, the approximation is exact. This will be
roughly true in the strongly bound energy levels, leading
the first two energy bands in Fig. 7(b) to display approxi-
mately a square root of energy dependence as in Eq. (42).
As the Fermi level sweeps above the top of the cosine po-
tential, there is a transition from quasi-one-dimensional
to two-dimensional behavior in the conductivity and den-
sity of states.

Again, the goal of our procedure is to find the conduc-
tivity versus electron density since this graph should

0aI~
Noj

z

(a)

_· ____ _~_ __ ~
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FIG. 8. Conductivity oa(n) vs electron density in two di-
mensions assuming a constant scattering time. The free-
electron conductivity in two dimensions is shown for reference
with unit slope.

closely resemble the actual current-voltage characteristics
of the superlattice field-effect transistor in Ref. 1. Figure
8 shows the conductivity a' versus density for constant
scattering time in two dimensions, with the free-electron
conductivity or ao plotted on the same graph and nor-
malized to unit slope. Note that ay(n) shows no struc-
ture when plotted versus electron density if the scattering
time is a constant. The conductivity oxD again asymptot-
ically approaches the free-electron value for large densi-
ties, though this cannot be seen in the figure.

Consider now the three-dimensional case. The density
of states versus energy in Fig. 9(a) shows a series of steps
characteristic of quasi-two-dimensional behavior asymp-
totically approaching the square root of energy depen-
dence of the free-electron density of states in three di-
mensions given in Eq. (46). The conductivity oa versus
energy and electron density versus energy follow in Fig.
9(b). Their asymptotic behavior is proportional to the
three halves power of energy. The plateaulike features in
a3D when the energy lies in the forbidden gaps in one di-
mension arise from the step function in Eq. (45) being
convolved with the smeared 8 function-like features in
Ux to generate o,. A step convolved with a smeared 6
function looks like a slightly smeared step. The weak
feature in on, associated with the fourth spatial harmon-
ic of the periodic potential is no longer visible in three di-
mensions. The electron density versus Fermi energy,
shown also in Fig. 9(b), again closely approximates uo
for constant scattering time.

In contrast to the one- and two-dimensional cases, the
conductivity uo will not asymptotically approach the
free-electron value at high energies, but will asymptoti-
cally approach the free-electron value minus a constant
Air•, determined by

E--D. c2 1r

=A0 . (48)

In one dimension, conductivity along the superlattice ap-
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FIG. 9. (a) Three-dimensional thermodynamic density of
states N3D(E,kBT) vs energy. (b) Three-dimensional conduc-
tivity a'(E,k, T) assuming a constant scattering time and elec-
tron density n 3D (E, kB T) vs energy.

proaches the free-electron conductivity at high energy.
Two dimensions is the marginal case, where the conduc-
tivity in a superlattice approaches the free-electron con-
ductivity very slowly because the free-electron density of
states in one dimension decays slowly. The two-
dimensional free-electron density of states, however, does
not decay at high energies. Consequently, any residual
area remaining after subtracting aue(E)-a (E) will
not decay as E-- oo after performing the convolution in
Eq. (48). The conductivity oa% versus density in three di-
mensions is shown in Fig. 10 with the free-electron con-
ductivity, or equivalently oD=a D, also shown with a
unit slope for comparison. The features in conductivity
a• parallel to the superlattice as a function of density
are plateaulike.

The previous conductivity calculations all assume a
constant scattering time. We have also examined the
case of an energy-dependent scattering time
"r-'(E)~N(E), as in Eqs. (4) and (5). 2 1 The conductivity
tensor component arD plotted vershs density is a straight
line if the scattering time is a constant independent of
Fermi energy as shown in Fig. 8. aoD displays much

FIG. 10. Three-dimensional conductivity o~(n) vs electron
density assuming a constant scattering time. The free-electron
conductivity in three dimensions is shown having a unit slope.

more striking behavior if we consider the scattering time
to vary as a function of Fermi energy as shown in Fig. 11.
The electron density of states versus energy for this po-
tential has already been shown in Fig. 7(a). oa shows a
minimum whenever the density of states becomes large,
since the scattering rate in Fermi's golden rule becomes
very high. This intersubband scattering is the dominant
mechanism for Drude conductivity oscillations in quasi-
one-dimensional wires, as was pointed out in a self-
consistent Green's function calculation of the conductivi-
ty in narrow wires Das Sarma and Xie,22 and by Kearney
and Butcher. 23 Figure 12 shows oy plotted along with
the free-electron conductivity as a function of electron
density, again with a variable scattering time given by
Fermi's golden rule. Figure 12 should closely resemble
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FIG. 11. Conductivity alf(E, T=50 mK) vs Fermi energy
with a variable scattering time given by the Fermi golden rule.
The drop in conductivity as the Fermi level enters a new sub-
band is due to intersubband scattering. The curve is not
broadened using the variable scattering time.
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FIG. 12. Conductivity oaf vs electron density with a variable
scattering time given by the Fermi golden rule at T = 50 mK.
The free-electron conductivity in two dimensions with a vari-
able scattering time is the straight line with unit slope shown on
this graph.

the I-V characteristic of a quasi-one-dimensional wire or
quasi-one-dimensional grating gate transistor. This con-
ductivity can be broadened with either a constant or a
variable scattering time, with the qualitative effect being
similar to thermal broadening. The differential mobility

D/ayDdn, is higher than d4 rID/dn when the density of
states available to scatter into is less than the free two-
dimensional density of states N2D < Nf, and vice versa.

Sakaki24 observes that all physical scattering centers
have a finite spatial extent, and that these finite-range
scatterers cannot deflect electrons as effectively in a
quasi-one-dimensional wire as they can in two and three
dimensions. This leads to an additional suppression of all
scattering in the wire. But Sakaki's argument will not
drastically change the shapethe shape of oD(n) in Fig. 12.

To obtain quantitative values for the electrical conduc-
tivity in two dimensions, it is necessary to extract the
magnitude of the impurity scattering length ni I pv 2,

which has the dimensions of energy squared times area,
from the mobility of a standard quasi-two-dimensional
field effect transistor. Equation (4) implies for the stan-
dard field-effect transistor that

meVa 2. Therefore, a typical energy level broadening ob-
tained from Eq. (4) would be A/-r=0.170 meV. This
broadening is comparable to a temperature of 2 K, so col-
lision broadening will dominate below that temperature
for a GaAs device having a mobility of 100 000 cm 2/V s.
For this case we have R (n =1/a 2 )=25 000 f. This
resistance sets the scale of the conductance axis in Figs.
11 and 12.

It is also possible to obtain an analytic expression for
the conductivity and density versus Fermi energy in
quasi-one-dimensional wires with intersubband scatter-
ing. 10,11 The results look very much like the ones
presented in Figs. 11 and 12 when the Fermi energy is
much smaller than the periodic potential. Consider a
quasi-one-dimensional wire with an energy dispersion
Ei(k)=Ei + 2 k 2/2m!. Each subband in a quasi-one-
dimensional wire is an additional channel to carry
current; their conductivities add like resistors in parallel
if we neglect interference between the subbands. Then

(51)

where we label the sum over all occupied subbands with
the index i. The density of states adds similarly

(52)

Allowing for both inter- and intrasubband scattering, our
model for the mean free time in the quasi-one-
dimensional wire is

h} _ h -2rnnimp IV1 2N(E)r(E) -ri(E) imp

= 2rnimp IV12  Nj(E),
j

(53)

which is independent of the subband index i. Note that
the scattering rate into each subband simply adds as in
Matthiessen's rule, there is no wave interference between
different scattering events. This form for the scattering
rate gives rise to a conductivity

(E)2 nimpI V 2

nimpl VI2= ei 3

21(m )2 (49)

Therefore, the resistance of a two-dimensional free-
electron gas at a density of one electron per area a 2 is

1/R ree(n =/a2) I .e( n = /a2)

1 e 2ih3=ea 2 2nimpI VI2(m*) 2a2 2 (50)

Consider now a GaAs MODFET with a mobility of
100000 cm 2/V s and a mass of m *= 0.067m *. We ob-
tain from Eq. (49) nimp 12= 9800 (meV ~)2=2450
(p/eVa)2, where a=2000 A. The two-dimensional
free-electron density of states, obtained from either Eq.
(45) or Fig. 7(a), is N = 2.75 X 10-6/meVk 2 = 11.0/

1 2m (E -Ej)
2m (E -Ei) 1/2

X •2 
'

and an electron density

(E)2 I 2m (E -Ei) /2

IT A

(54)

(55)

where we again restrict the sum to include only occupied
subbands. The dramatic increase in scattering rate as the
higher subbands become populated overwhelms the mod-
est increase in the additional number of low-velocity car-
riers, and makes the conductivity drop to zero when the
Fermi level passes into a new subband in the wire. In ad-
dition to the Green function calculations 22,23 which argue

_ _ _ _ __l__i_ _~
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for this drop in conductivity due to intersubband scatter-
ing in quasi-one-dimensional wires, Biittiker et al.25 also
argued for a drop in the conductivity in quasi-one-
dimensional wires as a new subband becomes populated
based on the Landauer formula.

Analogous to our discussion of intersubband scattering
in the quasi-one-dimensional wire and aoY for the period-
ic potential in two dimensions, the tensor component ao
also shows an interesting structure if we allow the
scattering time to vary with Fermi energy. The conduc-
tivity tensor component aui will behave like the conduc-
tivity in a quasi-two-dimensional plane, i.e., a thin film
with normal subbands, for Fermi energies small com-
pared to the periodic potential. The conductivity ac{,
drops where the density of states shows a maximum due
to the increase in scattering rate, exactly analogous to the
conductivity tensor component uaD. This has also been
pointed out by Trivedi. 26 The relative conductivity
modulation, however, is much weaker than in two dimen-
sions. It is also possible to derive formulas analogous to
Eqs. (54) and (55) above for conductivity in a quasi-two-
dimensional plane.

We now describe the effect of a variable scattering time
on o,. While the asymptotic behavior of the conductivi-
ty at large energies or densities is different in one and
three dimensions for the variable scattering time, the
qualitative features in aX are very similar to the case of
constant 7. The variable scattering time has the effect of
forcing the conductivity to fall even faster at a Brillouin
zone boundary or zone center. This is because, in addi-
tion to the Fermi group velocity approaching zero at a
Brillouin zone boundary, the scattering rate now becomes
higher as well. The energy level broadening also becomes
larger around a Brillouin zone boundary or zone center if
the conductivity is averaged in energy using a variable
7.2 1

We now wish to give a qualitative argument for the
density values at which features appear in the conductivi-
ty versus electron density in different spatial dimensions.
We have computed the conductivity versus electron den-
sity n in the dimensionless units of na d where d = 1,2, 3 is
the dimension of space. If we had considered the case
where the potential was periodic with periodicity a along
the x, y, and z directions (which we did not do in this pa-
per), and if the periodic potential were strong enough,
then structure would appear in the conductivity at values
na d=2,4,6,... corresponding to putting one electron of
each spin into a length a in one spatial dimension, a
square of area a 2 in two dimensions, and a cube of
volume a3 in three dimensions, thereby filling up a Bril-
louin zone. In the case of a periodic potential with the
same periodicity along all directions, there is a single
characteristic distance in the problem. Consequently,
structure appears at the same value of the normalized
density na ain all three dimensions.

Consider now the case which we have analyzed in this
paper, namely, where there is a, periodic potential with
period a only along the x direction. In one spatial dimen-
sion, the density values at which structure appears are
given by the above counting argument. Next, we added
free-electron motion along the y direction. The exact
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density of states is built up by convolution, given by Eq.
(37), but there is a way to estimate these density values.
The density of states for motion along the x direction in
the lowest two energy bands is approximately two 8 func-
tions having an energy separation of AE = 0. 85 meV. Be-
cause the density of states is a convolution, the change in
electron density between features is approximately a
product

An 2Da 2• 'nxaAnya =2a o N' (E, )dE,
T y 2 O, I"D (EyWE

(56)

Numerically Eq. (56) gives An 2Da 2 5, approximately
the density spacing to the first feature in two dimensions
in Figs. 8 and 12. The density spacings between other
features can be estimated in a similar manner. Notice
that the density spacings between feaures in two dimen-
sions are constrained by the density of states for motion
along x, meaning that they are constrained by the
strength and shape of the periodic potential along x as
well as by the free electron density of states. A stronger
periodic potential corresponds to a wider spacing AE be-
tween allowed energy bands in the one-dimensional prob-
lem. Thus, a larger number of carriers are required be-
fore the second allowed energy band can be occupied in
higher dimensions. The three-dimensional analog to Eq.
(56) is

An3a'- --va 2= 2a2 •AE N'free3D 3f, x yz 2 N '(Eyz)dEz

(57)

Numerically Eq. (57) gives An Da3, 9, approximately
the density spacing to the first feature in three dimensions
in Fig. 10.

It is possible to extend our model for the conductivity
in several ways. The scattering matrix element
(k V(r) k') in general is dependent on both k and k'. It
is necessary to include this momentum dependence in the
conductivity Eq. (24). Finally, nothing has been said
about possible high field effects. We can include the
effects of moderate electric fields by averaging the con-
ductance and density of states over an energy range
eV*.27 We implement this mathematically by convolving
with the function [e(E +eV*)--O(E)]/eV*, where V*
is an appropriate voltage defined in Ref. 27, which de-
scribes the nonmonochromatic electron beam introduced
by the electron reservoirs (contacts) being at different
electrochemical potentials. Electrical conduction now
occurs in a finite-energy window of width eV*. Note that
this is not a hot-electron effect, but an effect of energy
averaging in the spirit of our previous treatment of tem-
perature broadening and. disorder broadening. The
effects of higher fields may be even more interesting. It
may be possible to observe a negative differential conduc-
tance in quasi one dimensional wires analogous to the in-
tervalley transfer in bulk GaAs responsible for the Gunn
oscillations at high electric fields. Consider electrons oc-
cupying only the lowest subband of a wire. An electric
field may raise their energy to the point where a fraction
of the electrons may scatter into the second subband.
Their velocity in the second subband at the same energy
will be much lower, so the current will drop. This type of
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negative differential conductance should also be possible
in a quasi-two-dimensional sheet from transfer of energet-
ic electrons between subbands normal to the surface, i.e.,
in a standard GaAs MODFET transistor. Biittiker and
Thomas28 have pointed to the possibility that instabilities
similar to the Gunn oscillations may form in superlattices
due to their negative differential conductance.

Another important extension of our model is to truly
two-dimensional periodic potentials. A much stronger
modulation in oaD, similar to the one-dimensional super-
lattice conductivity aUD, is posible if the superlattice po-
tential is periodic in both the x and y directions. This has
been observed in the recent measurements of Ismail
et al.1 by comparing the I-V characteristics of grating
versus grid gate devices. The features in conductivity in
a periodic potential along both x and y directions should
have roughly the same strength and extinguish at roughly
the same temperatures as the one-dimensional conduc-
tivity in a periodic potential. To calculate this precisely
requires a more computationally difficult method because
the Hamiltonian of the system is no longer separable.

Finally, an important observability criteria for oscilla-
tions in 'XX is that the electron coherence length limits
the number of superlattice periods seen by the wave func-
tion. We need Lo > a for our calculations to apply to real
devices. Exactly how much their ratio must be cannot be
determined by our method. A finite superlattice may also
play some role in limiting the observability of quantum
oscillations in superlattice devices, regardless of the
coherence length. Horiguchi1 9 has investigated both of
these questions using the transmission coefficient in a
periodic potential, tentatively concluding that not very
many periods must be coherent before standing waves
due to quantum interference can be observed in a super-
lattice and that the superlattice itself need not consist of
very many periods.

VII. CONCLUSIONS

We have presented a semiclassical model for the con-
ductivity of electrons in a periodic potential which in-
corporates elastic and inelastic scattering, finite tempera-
ture, and the effect of increasing spatial dimension. All
three of these effects are incorporated into the model by
first solving for the one-dimensional zero-temperature
conductivity and density of states without scattering,
then convolving with various known functions. The main
effect of elastic and inelastic scattering is to average the
zero-temperature conductivity and density of states over
an energy range i/7r, where 7 is the elastic mean free

time. Inclusion of finite temperature averages the con-
ductivity and density of states over an energy range k B T.

This energy averaging takes the mathematical forfh of
convolving the conductivity and density of states with the

impurity spectral function and the Fermi-Dirac probabil-
ity function to include scattering and finite temperature,
respectively. Since Schr5dinger's equation can be

TENSOR AND DENSITY OF...

separated for a superlatice potential along only one direc-
tion, increasing the dimensionality of space only involves
convolving the electron density of states and conductivity
with the one-dimensional free-electron density of states.
This is both mathematically and conceptually much
simpler than the standard method of integrating over the
Fermi line in two dimensions, or Fermi surface in three
dimensions, to obtain the density of states and conduc-
tivity in higher dimensions.

Many arguments have been made about the shape of
conductivity in a quasi-one-dimensional wire or a period-
ic potential based on the electron density of states. Even
though conductivity falls when the density of states goes
through a maximum in either the periodic potential or
quasi-one-dimensional wire, totally different physical
mechanisms are responsible. In the quasi-one-
dimensional wires, intersubband scattering is the mecha-
nism responsible for the drop in conductivity as the Fer-
mi energy enters a new subband. In a superlattice the
Fermi group velocity falls to zero as the electrons form a
standing wave with the superlattice. And for the conduc-
tion of a free-electron gas in a two-dimensional plane
with a magnetic field applied perpendicular to the plane,
just the opposite is the case. 29 The conductance goes
through a maximum when the density of states reaches a
maximum. The conclusion we must draw is that, in gen-
eral, nothing can be said about the shape of conductivity
in any electron device by considering solely the electron
density of states. Conduction processes depend on many
factors other than the electron state density.

Conductance versus electron density will closely resem-
ble the actual current-voltage characteristics of field-
effect transistors, so we emphasize the importance of ob-
taining a(n) in this paper. The terminal voltages of a
field-effect transistor have a complicated functional rela-
tionship with Fermi energy, but in many cases the gate
voltage of a field-effect transistor is directly proportional
to the electron density. Also, semiclassical electron de-
vice simulators can always determine the average elec-
tron density, but may not be able to determine the Fermi
energy in a complex device structure. If we wish to
determine the actual current-voltage characteristic of a
field-effect transistor using semiclassical device simula-
tors, obtaining the conductance versus electron density is
an imporant advantage.
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QUANTUM DEVICE MODELING WITH THE CONVOLUTION METHOD

T. P. Orlando, P. F. Bagwell, R. A. Ghanbari, and K. Ismail

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139

1 Introduction

Recent advances in materials fabrication and nanolithography have made pos-
sible a generation of semiconducting structures whose conductance is governed by
quantum mechanical phenomena. In particular, nanostructures on Si MOSFETs and
GaAs MODFETs have shown modulations in their conductance versus gate voltage
characteristics that have been attributed to quantum mechanical effects. In this pa-
per, we review a modeling scheme which gives a unified way of understanding how
these quantum effects are affected by temperature, mobility, voltage, and the struc-
ture of the device. This model provides not only a qualitative understanding of the
various quantum phenomena, but also a basis for developing efficient computational
algorithms for modeling specific devices. We have called this scheme the convolution
method because most of the calculations can be written in terms of separate con-
volutions involving the individual phenomena of temperature, mobility, voltage, and
structure.

In §2 specific quantum devices and their characteristics will be briefly described.
The main part of the paper in §3 will present the convolution method and apply it
to understanding the devices presented in §2.

2 Fabricated Devices

Quantum effects have been seen in the conductance of two principle types of semi-
conducting devices. In the first type, the electrons are electrostatically confined so
that subbands are formed in one dimension, while the electrons remain free to move
in the other dimension. The structure in the conductance of such quasi-one dimen-
sional (Q1D) devices has been attributed to the filling of the Q1D subbands in both
Si MOSFET and GaAs MODFET devices (Scott-Thomas et al., 1988; Ismail et al.,
1989b; Warren et al, 1986). In the second type of structure, a periodic superlattice is
imposed on the electrons in a two dimensional electron gas (2DEG). The modulation
in the conductance of these devices is attributed mainly to Bragg diffraction from
the potential induced by the lateral surface superlattice (LSSL) structure (Ismail
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Figure 1: (a) Schematic of three multiple parallel quantum wires (MPQW) in a GaAs
MODFET. (b) Drain-source current as a function of the substrate bias for a device
with 100 parallel wires. The dashed line is for a scaled down 2D device. From Ismail
et al. (1989b).

et al., 1988; Ismail et al., 1989a; Tokura and Tsubaki, 1987; Bernstein and Ferry,
1987; Warren et al., 1985). We now discuss three devices that illustrate the kinds of
observed quantum effects.

Figure la depicts three parallel Q1D wires fabricated in a GaAs MODFET. The
electrons are confined in the z-direction to a region about 40 nm wide, and are free
to move in the y-direction. The actual device (Ismail et al., 1989b) consists of 100
parallel wires which were fabricated by ion milling a shallow grating into the doped
AIGaAs layer through a mask produced by x-ray lithography. The period of the lines
is 200nm. The drain-source current along the y-direction is shown in Figure lb as
a function of back gate bias. As the back gate bias is increased the density of the
electrons in the inversion layers increases, causing successive Q1D subbands to be
occupied. The conductance decreases as electrons occupy each new subband. The
structure in Figure lb washes away with increased temperature and is less pronounced
for devices with lower mobility.

The same x-ray mask used to make the Q1D conductors in Figure 1 can be rotated
as shown in Figure 2a so that the electrons now flow perpendicular to the grating
lines. In this device (Ismail et al., 1988) a 200 nm-period Schottky barrier grating
gate of Ti/Au replaces the usual continuous gate in the MODFET configuration. As
the gate-source potential is changed, the drain-source current along the z-direction
is modulated as shown in Figure 2b. This modulation is believed to be caused by
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Figure 2: (a) Schematic view of a lateral surface superlattice (LSSL) device.
(b) Drain-source current as a function of the gate-source voltage. The dotted curve
is for a continuous gate device. The insert shows the transconductance g, for the
LSSL device. From Bagwell and Orlando (1989b) and Ismail et al. (1988).

Bragg diffraction of the electrons from the periodic potential. The structure in this
device also washes away at higher temperatures and for devices with lower mobility.
In addition, the structure diminishes with increasing drain-source voltage.

The structure in the conductance for the grating-gate LSSL is weak because the
electrons experience a periodic potential in only one direction. A truly two dimen-
sional periodic potential was fabricated in the grid-gate configuration as- shown in
Figure 3a. The period of the grid-gate is 200 nm and the linewidth is about 60 nm
(Ismail et al., 1989a). A much larger modulation of the conductance is seen for this
device in Figure 3b than in the grating-gate LSSL because the Bragg diffraction con-
dition can be satisfied such that true minigaps are possible. As in the other two
devices, the modulation of the conductances washes away as the temperature and
drain-source voltage are increased, and as the mobility is decreased.

3 Device Modeling

There are three characteristic lengths that determine the type of electrical trans-
port. The first is the length of the device L. The second is the average distance
between elastic scattering events 1, which is known as the mean free path. The con-
duction electron has an average speed given by the Fermi velocity vF, so that the
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Figure 3: (a) SEM micrograph of a grid-gate with 200nm period and a 60nm line
width. (b) Drain-source current as a function of the gate-source voltage for various
drain-source voltages. From Ismail et al. (1989a).

mean free path can be related to a mean time r between elastic scattering events by

I = vFr. (1)

The third characteristic length is LO, the phase breaking length. This is the length
over which the phase of the quantum mechanical wavefunction of the conducting
electron is correlated. The phase of the wavefunction is randomized, on average, each
time r7 that the electron undergoes an inelastic scattering event which changes its
energy. For this reason, we refer to L4 as the inelastic scattering length. Depending
on the relationship between these three lengths, the type of electrical conduction
can range from diffusive transport where many scattering events occur, to ballistic
transport where no scattering events occur. We now discuss these two limiting forms
of electrical transport.

If L :> , then the electron will undergo many elastic scattering events before it
traverses the device. Classically, the electron undergoes a random walk as it scatters,
making its motion diffusive. The classical diffusion constant D is given by

1 1
D = -V = r &F, (2)

where d is the dimensionality of the transport (d = 2 for a 2DEG). When electron
motion is diffusive, its characteristic lengths and times are related via the diffusion
constant. For example, the time rL for an electron to diffuse across the device and
the phase breaking time rg are given by

S 2= and o =- , (3)D
as in Table 1.

The semiclassical Boltzmann transport equation gives a method for combining the
concepts of classical diffusion with quantum mechanical properties. In the semiclassi-
cal method quantum mechanics is used to calculate the energy levels of the electrons.
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Table 1: Length Scales and Time Constants

Diffusive Ballistic
L > LO > t LO >t > L

NV/-Dr-= vr £ = VFr

L • = Drf L4 = vspr,
L = 1D L = VFr

The electrons are then treated as wavepackets with their group velocities given by
the dispersion relationship of the energy levels. This is the standard method used
to calculate the conductivity of metals and semiconductors (Kittel, 1986; Ashcroft
and Mermin, 1976). For the semiclassical method to be valid, there must be many
inelastic scattering events in the sample such that L > Lg 4 L. Because the phase
of the wavefunction is randomized at each inelastic event, the overall properties of
the sample will be an ensemble average of all the possible scattering configurations.
It is this averaging process that justifies the semiclassical method. Note that the
wavefunction still has its phase correlated over the distance L4.

To see why there must be many inelastic scattering events to use the semiclassical
method, let us suppose, on the contrary, that there are no inelastic scatterers in
the sample. Quantum mechanically, the elastic scatterers could then be described
by some scattering potential V(r) which depends only on position. Therefore, the
eigenstates for this potential could be found. These eigenstates have a discrete energy
E so that the phase ý of the wavefunction would increase as 0 = Et/a and would
be correlated for all times. Indeed, if L4 > L the conduction electron would always
have its phase correlated and the resulting conduction would be sensitive to the
exact positions of the elastic scatterers. For such a regime of lengths LO > L > L,
the conduction would be dominated by unpredictable but repeatable fluctuations
known as "universal conduction fluctuations" (Lee and Stone, 1985; Al'tshuler, 1985;
Skocpol et al., 1986). To have diffusive transport, the phase of the wavefunction
must be randomized many times during the transport across the sample, that is,
L> L > £L.

In the opposite limit to diffusive transport, there are no elastic scatterers in the
sample so that the transport is ballistic (1 > L). We also assume that the inelastic
length is larger than the other two lengths so that L4 > L > L. In this case the
electron moves without scattering at the Fermi velocity vF. Therefore, the mean
free path is given by Equation i. The inelastic scattering length is related to the
scattering time by

L# = v~r, (4)

and the time rL for the electron to ballistically traverse the sample is

LTL = -. (5)

Table 1 lists these lengths and times.t We now discuss our method to calculate the
transport in these two limiting regimes.

tin Table 1, L÷, t, r÷, and r are defined as if the material between the contacts were infinite and
disregards any influence of the contacts on the device. If the contacts are considered in the definitions
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3.1 Diffusive transport

In the diffusive limit of transport where L > L4 > 1, the calculation of the con-
ductivity and the density of electrons can be done using the semiclassical method
(Kittel, 1986; Ashcroft and Mermin, 1976). We will recast the usual expression for
the density and the conductivity in terms of convolutions as the first example of our
convolution method. Let N(E) be the density of states for electrons in the material.
The density of electrons n at a temperature T is given by

n(EF,T) = f N(E')f(E' - Ep,T) dE', (6)

where Ep is the chemical potential and f(E, T) is the Fermi-Dirac distribution func-
tion. The thermodynamic density of states N(E, T) is defined by

N(E,T) - n(E,T) = N(E')f'(E' - E, T) dE'. (7)

Here f'(E, T) is the negative derivative of f(E, T) with respect to E and is given by

f'(E, T) = sech . (8)

This bell-shaped function has a full width at half maximum of 3.5kT and is sym-
metric in E. Due to this symmetry of fr(E), the thermodynamic density of states in
Equation 7 can also be written as

N(E, T) = N(E) 0 f'(E, T) . (9)

The symbol ® denotes a convolution which is given by

C(E) D(E) = f_ C(E')D(E - E')dE
= f D(E')C(E - E') dE' (10)

Because the convolution tends to broaden the first function by the width of the second
function, f'(E, T) will be referred to as the thermal broadening function.

In the semiclassical method the conductivity tensor is given by (Kittel, 1986;
Ashcroft and Mermin, 1976).

*i(EF, T) = e2' L v(E')v(E')r(E')N(E') [- af(E - E T)] dE'. (11)

At zero temperature the derivative of the Fermi function is a delta function so that
the conductivity is simply

o'i(E) - e'v,(E)vj(E)r(E)N(E). (12)

Furthermore, the derivative of the Fermi function in Equation 11 is just f(E, -E', T)
since this function is symmetric about the Fermi energy. Therefore, the conductivity

of these lengths and times, it is then possible to interpret the contacts as a source of inelastic (phase-
breaking) scattering such that L4 = L and r# = rt. Nevertheless, ballistic transport still means that
no scattering occurs in the material between the contacts.
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(a) N(E) frET) A(E,) N(ET,)

f'(E,T)

3.5kT

(b) U(E)fE A(Ea) -- c(ETT)

Figure 4: The convolution method for (a) the thermodynamic density of states
N(E, T, r) and (b) the conductivity o"i(E, T, r). The thermal broadening function
f'(E, T) and the impurity broadening function A(E, r) are shown graphically along
with their widths. The symbol 0 denotes a convolution in energy.

as a function of temperature in Equation 11 can also be written as a convolution;
namely,

Ca'(E, T) = -'i(E) 0 f'(E,T) . (13)

We see that if the density of states and the conductivity are known at zero temper-
ature, then their values at finite temperatures can be found by a simple convolution
with the thermal broadening function f(E, T).

In the diffusive transport limit, the ensemble averaging (due to the phase ran-
domization from inelastic scattering) leads to an additional energy level broadening
(whose width is set by the elastic scattering). This additional broadening is charac-
terized by the impurity broadening function A(E, r) given by (Abrikosov et al., 1963;
Rickayzen, 1980; Bagwell, 1988)

1 A/2rA(E, r) = I / (14)
A E2 + (h/2r)•

The impurity broadening function has a Lorentzian shape with a full width at half
maximum of h/r. The thermodynamic density of states including the broadening
from both temperature and impurities is given by (Bagwell et al., 1989; Bagwell and
Orlando, 1989b)

N(E, T,r) = N(E) 0 f'(E, T) 0 A(E, r). (15)
Likewise the conductivity is given by (Bagwell et al., 1989; Bagwell and Orlando,
1989b)

o'i(E,T, r) - oi'(E) 0 f'(E, T) 0 A(E, r). (16)

Figure 4 summarizes the convolution method for diffusive transport and shows the
shapes of the two broadening function. Because the convolution with f(E, T) de-
pends only on the temperature while the convolution with A(E, r) depends only on
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the impurity scattering, we see that the broadening effects from temperature and
impurities are independent effects.

This convolution method readily implies that, if the conductance has a feature
which occurs over some energy range AE, then to see that structure the widths of
the broadening functions have to be smaller than AE. For temperature and impurity
broadening, this means that

AE > 3.5kT and AE > -. (17)

These two restrictions lead to the observability criteria (Antoniadis et al., 1985) that
to see quantum effects, the electron should have a small effective mass, high mobility,
low temperature, and be confined to a small length scale. Measurements clearly
show the washing away of structure in device I-V characteristics as the temperature
is increased and as the mobility is decreased (Ismail, 1989).

The convolution method clearly demonstrates why the structure in the conduc-
tivity tends to wash away at high temperatures and low mobilities. However, this
method can also be used to understand device characteristics. In most field effect de-
vices, the conductivity (of the source-drain) is measured as a function of gate-source
voltage. We will assume here that the gate-source voltage is proportional to the den-
sity of electrons in the inversion layer. (If the density is related to the gate-source
voltage in a more complicated fashion, then this more complicated relationship must
be used.) Therefore, we seek in our convolution model to plot the conductivity versus
density n. From the definition of the thermodynamic density of states in Equation 7,
the density is

n(Ep,T) = f- N(E,T,r)dE. (18)

Another piece of information needed to model a specific device is the scattering
time r that enters the conductivity ao (E) and the impurity broadening function
A(E, r). This scattering time can be calculated from the quantum mechanical ex-
pression for the scattering rate r- 1 given by Fermi's golden rule; namely,

1 2
AnimpV1I- = IV N(E). (19)

Here nimp is the density of impurities and IVr is the square of the matrix element
between scattering states, which is assumed constant for the average of random impu-
rities (Madelung, 1978). Hence, we see that r is inversely proportional to the density
of states. This is plausible because more states to scatter into implies a higher scat-
tering rate and therefore a lower mobility. The constant of proportionality between r
and N(E) can be found if the mobility p(E) = er(E)/m is known for a given energy
E, (or equivalent density n,). Then,

mr(E.) N(E.) N(E,)r(E) = ro (20)e N(E) N(E)

Equations 15, 16, 18, and 19 are the central results of the convolution method
needed to calculate the diffusive conductivity for a given device. We will now use
these results to find the conductivity for a few devices. The first example will be for
a one dimensional (ID) conductor. We will then show how the conductivity for a



Q1D device and the LSSL device can be calculated by means of yet another simple
convolution.

As the first example of using the convolution method, we consider a 1D conductor
in which the electrons are free to move in the y-direction. The energy-momentum
dispersion relationship is

E , (21)
2m

The group velocity is then

v'(E) = E VD -- " (22)

The density of states for the electrons (including both spin states) is the usual 1D
result (Kittel, 1986; Ashcroft and Mermin, 1976),

N2D (E) - 2 (23)

which integrates to give the density

niD = E (24)

The conductivity is non-zero only in the y-direction so that

1D = e'v2 (E)r(E)NrD(E). (25)

These zero temperature results are displayed in the first column of Figure 5 where
the scattering time has been assumed to be a constant for all energies. The density
of states NrD(E) displays the inverse square root singularity in E, while the density
nD (E) has the resulting vfE dependence. The conductivity CV(E) also has aV
dependence because the energy dependence of the density of states cancels the energy
dependence of one factor of velocity in Equation 25. Therefore, the conductivity for a
constant scattering time has the same energy dependence as the velocity. Conductiv-
ity versus density is obtained by parametrically combining the conductivity-vs-energy
and the density-vs-energy plots. This combination results in a conductivity versus
density is that is linear, as shown in the bottom plot in the first column. This re-
flects the fact that a = en/A and the mobility is a constant. This result also holds at
non-zero temperatures.

The importance of taking r to be inversely proportional to the density of states as
in Equation 20 is illustrated in Figure 6. For zero temperature and for no impurity
broadening, the density of states and the density are the same as in Figure 5. The
linear increase of al"D with energy is a direct result of r being inversely proportional
to NYD(E) so that these two factors cancel in Equation 25. The conductivity then
has the energy dependence of v2 which is proportional to E. Therefore, since n1D
depends on the square root of energy, the conductivity depends on the square of the
density as shown in the bottom figure in the first column. The effect of tempera-
ture broadening is included by simply convolving the zero temperature results for
N1YD(E) and ac(E) with f'(E,T). These results are shown as the dashed lines in
Figure 6. Although we have only shown the results for temperature broadening, the
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Figure 5: Calculated diffusive conductance for ID and Q1D wires. The first column
shows the density of states, density, and conductivity as a function of energy and the
conductivity versus density for a 1D conductor where the electrons are free to move
in the y-direction and r is taken to be a constant. The second column is the density
of states in the z-direction for a Q1D conductor. The third column shows the full
results for the Q1D conductor. The symbol ® denotes a convolution in energy. Units
are arbitrary.
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Figure 6: Calculated diffusive conductance of 1D and Q1D wires as Figure 5, but
with the scattering time r taken to be inversely proportional to N2D(E). The
solid curves are for T = 0, and the dashed curves are for T = 1.2 K. Note that
a4D(E) afg(E) ® !N1D(E) since the scattering time is now a function of energy.
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results for impurity broadening are similar because the resulting convolutions will
give qualitatively similar plots.

To find the conductivity for the Q1D and grating-gate LSSL devices (but not the
grid-gate), the two dimensional problem must be solved. In both of these devices the
total potential is of the separable form

V(z, y) = V,(z) + V,(y) . (26)

With this potential the total energy E of the 2D system is

E = EzD + EID (27)

where EfD and E"D are the eigenenergies for the corresponding 1D problems with
potential VI(zx) and V,(y) respectively. Let NI D(E') and N'D (E') be the correspond-
ing density of states for the 1D problem. Then the total density of states N2D(E) for
E consistent with Equation 27 is simply

1too
N 2 D (E) = -• ND(EZ)N,•,(E - Ez) dE,. (28)2 -o

The factor of 1/2 compensates for the overcounting due to the spin states in the 1D
densities of states. Equation 28 is a convolution so that it can be written as

N 2D (E) = NYD (E) N1D (E). (29)

Figure 7a shows the diagram for this convolution.

The convolutions for the conductivity are not as straightforward as for the den-
sity of states. This is because the scattering time depends on the total density of
states. Nevertheless, the components of the conductivity tensor in 2D for a separable
potential can be written as (Bagwell et al., 1989; Bagwell and Orlando, 1989b)

a°g (E) ,,• (E) 1
S(E) -NE) ID (E) (30)

72D (E) lD (E) 2 iD

and
S(E) = cr(E) 1 ND (E) (31)

T2D (E) I1D (E) 2

and
ca4(E) = ac4(E) = 0. (32)

A convenient algorithm for doing the convolutions for the conductivity is to first do-
the problem for the case when the scattering times are constant and equal. Then
Equations 30 and 31 are simply convolutions with the 1D conductivities. That result
can be multiplied by the energy dependent scattering time (which is proportional to
the inverse of the density of states) to give the conductivity. Figure 7b shows the
diagram for the convolution in Equation 30 and Equation 31.

To see how the convolutions for going from 1D to 2D devices work, consider
the case of the QID conductors shown in Figure 1. Each one of the ID parallel
conductors can be considered to have a number of subbands at discrete energy levels.
For simplicity we take the number of subbands to be three. The corresponding density
of states N.D (E) describing the subbands in the z-direction is shown in the second
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(a) N (E) N1 (E) N1

N2D (E) N3(D M

(b) ~1D (E)

u ii
a2D (E) 3D(E)

Figure 7: The diagrams for calculating (a) the density of states and (b) the conduc-
tivity when the potential is separable. These diagrams assume zero temperature and
no impurity broadening. The symbol ® denotes a convolution in energy.

column of Figure 5. The three delta functions correspond to the three energy levels
of the subbands for a model potential. We have also included a portion of the 1D
density of states going as E - 1/ 2 to describe the density of states when the electron's
energy exceeds the confining potential, since at those high energies the electron is.
virtually free. Of course, this is only a model density of states. Calculations based on
solving Schradinger's equation for the confining potential give similar results (Bagwell
and Orlando, 1989b). The density of states N2D is calculated by convolving the two
1D density of states as is shown in the top row of Figure 5. The density n2D(E) is
just the integral of the density of states. The conductivity a` (E) is a convolution
of the ID conductivity with the density of states if the scattering time is taken to
be a constant. The result of that convolution is shown in the third row of Figure 5.
Note as a function of density that o r(n) is linear even though the density of states
and the conductivity both have structure in energy. This must be so for a constant
scattering time, since the conductivity is given by a = enyr and p is a constant for a
constant r.

Taking r(E) to be inversely proportional to N2D(E) gives ao(E) as shown in
Figure 6. a"f(E) in Figure 6 follows from multiplying 2 v(E) in Figure 5 by the
ratio r(E)/ro from Equation 20, where r, is the constant scattering time in Figure 5.
Now when we plot oY (E) versus density in Figure 6 the structure remains. The
conductivity for a QID device is a minimum each time a new subband begins to
be filled, because the scattering time (and mobility) is a minimum there due to the
sudden increase in the density of states. Hence, we see that it is the modulation of
the scattering time (mobility) that gives rise to the structure in the Q1D device.

By including temperature broadening and impurity broadening, we have been
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able to model the conductivity of the QlD device shown in Figure 1. The model
calculation semi-quantitatively reproduces the features in the measured conductance.

The convolution method can also be applied to find 4a. If we consider a periodic
array of wires, then this configuration is equivalent to finding the conductivity for
the grating-gate LSSL. The model for this device has been discussed in (Bagwell and
Orlando, 1989b).

3.2 Ballistic transport

In the ballistic limit of transport where L4 > t > L, the conductivity can be
calculated using Landauer's formula. Landauer's formula connects the current in
the device to the quantum mechanical transmission coefficient T(E, V) through the
device (Landauer, 1957; Landauer, 1970). In 1D the current flowing in the y-direction
from a left contact, which is at a voltage V greater than the right contact, is given
by (Wolf, 1985)

IID(E,V,T)= e vDI (E')TD (E', V)N1D(E')
[f(E' - E, T) - f(E' - (E - eV), T)] dE'. (33)

Here v+D(E) is the group velocity for electrons moving in the positive y-direction,
Nj+(E) the density of states for electrons of both spins moving in the positive y-
direction in a one dimensional free electron gas, f(E, T) is the Fermi-Dirac distribu-
tion function, T the temperature of both contacts, and T1D(E, V) the transmission
coefficient. Here the energy E is measured from the bottom of the band of electrons
in the left contact.

The product of the group velocity and the electron density of states in one di-
mension is a constant given by

v+D(E)N+D(E) - . (34)

Note that this is a half of what Equations 22 and 23 imply since we are only interested
in the electrons which are traveling in the positive direction, which is half the total
density of states at a given energy.

The Fermi-Dirac function can also be expressed as the convolution

f(E, T) = [1 - O(E)j] f'(E, T) (35)

where 0 is the unit step function. Equation 33 can therefore be rewritten as (Bagwell
and Orlando, 1989a)

ID,(E, V,T) = T•TD (E, V) 0 W(E, V) 0 f'(E, T) . (36)

Here
W(E, V) = [((E) - O(E - eV)1 (37)

is the voltage broadening function.1 Figure 8 depicts the convolution method for
the current in 1D as given by Equation 36. Figure 8 is valid in the limit of ballistic
transport.

*If the applied voltage is greater than the Fermi energy then W(E, V) must be cut off at the Fermi
energy, namely

1 [e(E) - (E- eV) eVp
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f'(E,T)
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3.5kT

E EO eV 0

Figure 8: The convolution method for the current in 1D ballistic transport. The
thermal broadening function f (E, T) and the voltage broadening function W(E, V)
are shown graphically along with their widths.

As an example of the convolution method, consider a ballistic Q1D conductor
of uniform width. If El is the energy of the first subband, then, neglecting all the
higher subbands, the QID conductor has unity transmission coefficient for all energies
greater than El such that

T1D(E, V) = O(E - El). (39)

For small voltages the zero temperature current becomes

e'
I1D(E,V) = e.VO(E - EI), (40)

where structures of order eV have been neglected. Hence, we see that a Q1D conduc-
tor with perfect transmission is characterized by a resistance rth/e' for all energies
greater than El. This is the quantum contact resistance (van Wees et al., 1988;
Wharam et al., 1988). If there are two 1D subbands at E1 and E3 in a Q1D de-
vice, then for perfect transmission the contact conductance would be e2/irh for each
subband. The convolution broadening of Equation 40 with temperature and voltage,
similar to Figure 9 below, is shown in Bagwell and Orlando (1989a).

Next, consider the case where the 1D subbands are formed in a constriction
between two wider regions. This geometry describes the experiments of van Wees
et al. (1988) and Wharam et al. (1988). For this case, there is an electostatic
potential difference between the wider regions and the constriction (Payne, 1989).
As the applied voltage increases, the 1D subbands formed in the constriction shift to
a lower energy with respect to the incident electron distribution in the wide regions.
The transmission coefficient becomes approximately

T1D(E, V) = e(E - El + meV) , (41)

where m = 1/2 for the case of a symmetrical constriction. In general m is a phe-
nomenological parameter where 0 < m < 1 (Kouwenhoven et al., 1989). For two
QID subbands at El and E2 , the conductance when V is small is given by the solid
line in Figure 9. We consider a symmetrical constriction so that, when the applied
voltage is not negligible, the broadening of the conductance G = I/V due to finite
voltage is shown by the dashed line in Figure 9. The effect of temperature broadening
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Figure 9: The ballistic conductance versus emitter Fermi energy for two 1D subbands
at El and E2 formed in a constriction between two wider regions. The two subbands
have perfect transmission as shown by the solid line. The energy of the left contact is
assumed to be at a voltage V above the right contact. The dashed curved shows the
broadening due to voltage and the dotted curve the broadening due to temperature
following Bagwell and Orlando (1989a).

is also shown in the figure. Note that the shapes of the two broadenings are qualita-
tively different. Results similar to Figure 9 have also been obtained by Glazman and
Khaetskii (1988, 1989). The nonlinear conductance of these ballistic devices has been
measured and analyzed (Kouwenhoven et al., 1989). In addition, Landauer (1987,
1989) has addressed many fundamental issues relating to the conductance of these
constrictions.

Many types of ballistic devices can be made in two and three dimensions. Again,
if the transmission coefficient is known for the device, then the Landauer formula
can be used to calculate the conductance. Unfortunately, the Landauer formula for
higher dimensions, known as the multi-channel Landauer formula (Bfittiker et al.,
1985; Fischer and Lee, 1981), is in general quite complicated to evaluate. However,
for separable potentials of the form given by Equation 26, the multichannel formula
is equivalent to adding in parallel all the possible channels opened up by the second
dimension. This parallel combination is equivalent to a convolution with the free
electron density of states and hence, is similar to the diffusive result of Equations 29
and 30.

If the 1D transmission coefficient is known, then the convolution method will
give the current for a 1D conductor. For a 2D conductor described by a separable
potential as in Equation 26, the current density can be written as (Bagwell and
Orlando, 1989a)

J2D(E, V,T) = IlD(E,V,T) 0 2N1D(E), (42)

where ID (E, V, T) is known from Equation 36. Likewise, the current density in 3D



can be written for a separable potential in 3D as (Bagwell and Orlando, 1989a)

J3D (E, V, T) = IlD(E, V, T) 0 1 N1 D (E) 0 1N2D (E). (43)

These two equations have been used to correctly give the I-V characteristics for 3D
resonant tunneling devices as well as for 2D resonant tunneling devices.

We have restricted our calculations to only the diffusive and ballistic limits. In the
region between these two limits the effects of inelastic and elastic scattering must be
treated at the same time. At present this has been done for a few isolated examples
because of the complexity of the general problem. However, a rough estimate of how
the transport is affected by energy level broadening in between these two limits can be
given as follows: Divide the sample into blocks which have a linear dimension of the
average L4. The conductivity can be calculated in each of these blocks by considering
the transport in each block to be ballistic. The conductances of each block can then
be added up as a network of resistors (Bfittiker, 1988). The broadening due to
temperature would be the same for each block. Hence, if there was structure on the
order of AE in each block, then the temperature of about AE = 3.5kT would wash
the structure away. However, the voltage broadening would only be due to that part
of the voltage that was dropped across each block. Therefore, the voltage broadening
would be much less if there were more inelastic lengths in the sample. For example, a
1D conductor which has L = mL÷ has a voltage broadening of width eV/m where V is
the total voltage drop across the sample. Therefore, a voltage such that eV = mAE
is necessary to wash away structure of the order AE. This dependence of voltage
broadening on the number of inelastic lengths has been observed in grid gate LSSL
devices and has been used to find L, (Ismail, 1989) for devices where m is small.
As the number of inelastic blocks gets large, we expect the result from adding up
the ballistic resistances of the blocks to merge into the result calculated from the
diffusive limit when L > L# > L.

4 Summary

In this paper we have shown how the convolution method provides a convenient
framework for understanding and calculating the conductivity in the diffusive and
ballistic regimes of transport. In the diffusive regime the effects of temperature
and impurity broadening can be written as convolutions. In the ballistic regime the
effects of temperature and finite voltage can also be written as convolutions. We
have also seen that for separable potentials, which describe many but not all devices,
that the density of states and conductivity for 2D and 3D structures can be written
as simple convolutions with the results for the 1D structure. Hence, we have used
the convolution method in two ways: (1) to include physical broadening effects, and
(2) to include dimensional effects.
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We recast the expression for tunneling current to show that the energy averaging due to a finite
voltage is statistically independent from the energy averaging due to finite temperature. The energy
averaging takes the mathematical form of convolutions. Convolving the standard Landauer con-
ductance formula in energy with a voltage windowing function averages the conductance over an
energy range equal to the applied voltage, just as the independent convolution with the Fermi-Dirac
probability density function averages the conductance over an energy range equal to the tempera-
ture. We illustrate the effects of voltage broadening versus ordinary thermal broadening of the con-
ductance using a quasi-one-dimensional ballistic conductor as a model system, as in the recent ex-
periments of van Wees et al. [Phys. Rev. Lett. 60, 848 (1988)] and Wharam et al. [J. Phys. C 21,
L209 (1988)].

I. INTRODUCTION

Since Landauer's original work 1' 2 relating electrical
conductance to the transmission probability through a re-
gion of elastic scatterers between two temperature baths,
his formula has been extended to the case of multiple
quantum channels, 3' 4 extended to include inelastic
scattering within the sample, 5 applied to many different
experimental geometries,6 '7 and derived from linear-
response theory. 4,8 A review of the two types of Lan-
dauer formulas, discussing the different measurement
conditions under which each applies, is given in Refs. 6,
8, 9, and 10. References 6, 8, and 10 review the higher-
dimensional analogs of these two types of Landauer for-
mulas. The extension of Landauer's formula to finite
voltages has also been investigated.1 1,12

The main goal of this paper is to express the effects of
energy averaging due to finite voltage and finite tempera-
ture on the electrical conductance mathematically in
terms of convolutions. This objective is important be-
cause convolutions are a very natural way to incorporate
random processes leading to a broadening of energy lev-
els, as is the case with the energy level broadening due to
elastic and inelastic scattering in a normal dirty metal. 13

We show in Sec. II that to generalize the zero-voltage and
zero-temperature Landauer conductance formula to finite
voltage and finite temperature, one merely convolves it in
energy with both a voltage windowing function and a
thermal smearing function, respectively. These two con-
volutions show that the effect of finite temperature is to
average the conductance over a region kg T near the Fer-
mi level, while one effect of finite voltage is to average the
conductance over an energy range e V near the Fermi lev-
el, as previously mentioned in Refs. 11 and 12. By prov-
ing that the difference in Fermi functions characterizing
electrical conduction can be written as a convolution of

two separate functions, one function depending only on
the applied voltage and the other depending only on tem-
perature, we show in this paper that voltage broadening
and temperature broadening are statistically independent.
We apply this convolution broadening method to a
quasi-one-dimensional ballistic conductor to understand
the qualitative similarities and differences between volt-
age broadening and ordinary thermal broadening of the
conductance. By emphasizing that electrical conduction
necessarily occurs at finite voltages, we gain additional
insight into the physical mechanism responsible for the
quantum contact resistance in one-dimensional ballistic
conductors. In Sec. III we examine Landauer's formula
in the classical diffusive limit in one dimension, showing
that it reduces to the standard Drude conductance result.
We show that one also obtains the quantum contact resis-
tance from the Drude-Sommerfeld conductance formula
in the limit that the mean free path grows to its upper
bound of the device size.

A subsidiary goal of this paper is to examine the rela-
tionship of Landauer's conductance formula to previous
treatments of electron tunneling at finite voltages. In the
tunneling limit, by which we mean many parallel quan-
tum channels with no scattering between them, we show
in Sec. IV that the finite-voltage Landauer formula
reduces to many well-known treatments of electron tun-
neling at finite voltages. 12,14,15 However, even in this
well-known tunneling limit, we can gain physical insight
into the shape of the current density versus Fermi energy
in different spatial dimensions by noting that, because the
tunneling Hamiltonian is separable, we can obtain the
tunneling current density in two spatial dimensions by
convolving the one-dimensional tunneling current with
the one-dimensional free-electron density of states, re-
peating this process to obtain the three-dimensional tun-
neling current density.

@1989 The American Physical Society
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II. LANDAUER'S FORMULA IN ONE DIMENSION

Our model for a quantum conductor in one dimension
is a potential U(x, V) between two thermal reservoirs as
in Fig. 1, where U depends both on position x and the ap-
plied voltage V. The potential U(x, V) depends on the
applied voltage because electrons reflected from a scatter-
ing obstacle pile up on one side of the obstacle, as em-
phasized in Ref. 1, leading to a density gradient and
nonuniform electric field concentrated around the obsta-
cle. These density and potential gradients in turn
influence the tunneling potential so that U(x, V) must be
determined self-consistently, and our treatment totally
neglects such effects. We emphasize that the self-
consistent determination of U(x, V) is the central issue in
any specific calculation of tunneling currents. An ap-
proximate method to self-consistently determine the tun-
neling potential at finite voltages, but which still assumes
a uniform electric field, is given in Ref. 11. In this paper
we will seek results which will not depend strongly on the
exact shape of the tunneling potential, as long as the elec-
tron tunnels through some U(x, V).

Electrons deep inside the two reservoirs are assumed to
have a Fermi-Dirac distribution shown in Fig. 1. We as-
sume the effect of an applied voltage between the two
reservoirs is to create an imbalance in the electrochemical
potentials deep inside the reservoirs equal to the applied
voltage. This results in a current14

I(p, V, T)=e f v +(E)T(E, V)N+(E)

X[f(E -- (p+eV),T)

-f(E -- p,T)]dE , (1)

where v +(E) is the group velocity for electrons moving
in the positive x direction, N+(E) the density of states
for electrons of both spins moving in the positive x direc-
tion in a one-dimensional free-electron gas, f is the Fermi
function, T the temperature of both reservoirs, and

T(E, V) the transmission coefficient through the potential
U(x, V). By enforcing time reversal symmetry and
current conservation during tunneling, it is possible to
show that the current transmission probability through
the potential U(x, V) is the same from left to right as
from right to left, i.e., T(E, V)=Tr(E,V)=Trl(E,V).
While Eq. (1) is intuitive, it is also possible to derive it us-
ing the transfer Hamiltonian method and Fermi's golden
rule. 12, 14

The product of the group velocity and the electron
density of states in one dimension is a constant given by1 1  i 1v+(E)N +(E). (2)Sdk ]i IdE/dk j (2)

The Fermi function in Eq. (1) can itself be expressed as a
composite probability function

f(E-p, T) =[1-O(E -p)]® - df- (E , T )dE
where ® denotes a convolution in energy, 0 is the unit
step function, and

ST(E, T) 1 sech 2  E E
dE 4 kT T [2kBT

is the thermal smearing function or Fermi-Dirac proba-
bility density function. The convolution e of two func-
tion A (E) and B (E) has its usual meaning,

A (E)EB (E) f _ A (E -E')B(E')dE'

=f A (E')B (E -E')dE' .

The difference of Fermi functions in Eq. (1) can therefore
be written as

f(E -- (p +eV), T)- f (E -p, T)

= [O(E -p)-0[E -(p+eV)]]® df (E, T) .dEI

x
0 xt X2 L

FIG. 1. Model for a one-dimensional quantum conductor:
An elastic scattering potential U(x, V) located between two
thermal reservoirs. p, and P2 are the electrochemical potentials
in the left and right ideal conductors, respectively. An applied
voltage V creates an imbalance between the electrochemical po-
tentials p =p+eV in the left reservoir and r,=p in the right
reservoir. Note that PztLpL and /r#=p2.

(6)

Equation (6) shows that the difference of Fermi functions
in Eq. (1) can be expressed as the convolution in energy of
two independent functions, one of which depends only on
the applied voltage and the other which depends only on
the temperature. Equation (6) therefore separates the
effect of finite voltage on the electrical current from the
effect of finite temperature.

Our expression for the current now becomes

I (E, V, T) T ( E, V) W ( E, V) -d (E,T)
VA dE

Se
2 V V

ST(E, V)-- •i

Equation (7), where W(E, V)= [O(E +eV)-O(E)], is our
interpretation of the finite-voltage Landauer formula in
one dimension in terms of convolutions. T(E, V) is the
energy averaged transmission coefficient. After carrying
out the convolutions we set E p. We display Eq. (7)
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graphically in Fig. 2. At this point we ignore the last two
convolutions shown in the figure. If both eV and kB T are
small compared with any structure in the transmission
coefficient T(E, V), Eq. (7) reduces to the well-known re-
sult

e2  V
I(E)=-- T(E)V- (8)1rh Rt

which is Landauer's conductance formula in one dimen-
sion. Here R, is the total resistance of the electron mov-
ing from one contact to the other. This formula was also
obtained explicitly in Ref. 12 in a discussion of tunneling
in one dimension between two thermal reservoirs.

Equation (7) has a simple physical interpretation: The
convolution with the voltage window W(E, V)
= [O(E +eV)- 0(E)] implies that the electron beam near
the Fermi surface contributing to conduction is not
monochromatic; it has a width in energy of eV. The box-
like shape of W(E, V) as shown in Fig. 2 argues that the
electron beam near the Fermi surface has a uniform prob-
ability to have any energy between the electrochemical
potential in the right contact and that energy plus eV.
Equivalently, the average tunneling electron near the Fer-
mi energy has a variance about its mean energy of
AE--eV due to the applied voltage.'6 The convolution
with -df/dE is just the standard thermal broadening of
the conductance. Just as thermal broadening of the con-
ductance makes it necessary to average the zero-
temperature conductance over an energy range kE T near
the Fermi level, finite voltages require averaging the con-
ductance over an energy scale eV near the Fermi level.
The separate convolutions imply that thermal broadening
and voltage broadening are statistically independent.
Note also that the phase coherence time 7V =h/eV intro-
duced by the nonmonochromatic electron beam at finite
voltages is analogous to the better-known phase coher-
ence time at finite temperatures TT= h/kB T, both times

- (E,T)
hEI

I (E,V,T)= - T(E,V)

W(E,V)

-eV 0

-J

E E
O O0

FIG. 2. Effect of finite temperature and finite voltage on the
tunneling current displayed graphically as independent convolu-
tions. Energy averaging due to finite voltages is included in the
voltage window W(E, V), while the energy averaging due to
finite temperature results from the thermal smearing function
-df(E, T)/dE. The two convolutions with the one-
dimensional free-electron density of states relate tunneling
current density in three dimensions to the one-dimensional tun-
neling current.

being set approximately by the variances of W(E, V) and
-- df (E, T)/dE, respectively.

Equation (8) predicts that a conductor having perfect
transmission T(E)=1 has a contact resistance of
R e =h /2e 2. This result seems contrary to one's intuition
from the Drude formula as well as from Landauer's origi-
nal formula,' 7 which gives the device resistance Rd as

h R (E)
Rd 2eT(E)

Here R(E) is the reflection coefficient so that
T(E)+R (E)= 1. Biittiker6 discusses the assumptions
necessary to obtain Eq. (9). Both the Drude formula as
well as Landauer's original formula, Eq. (9), assert that a
length of perfect conductor has zero resistance.' 7 It is
now understood 9"' 0 that whether one obtains Eq. (8) or (9)
in an actual experiment depends on how the resistance is
measured. Connecting two weakly coupled voltage
probes to the ideal conductors in Fig. 1, which measure
the electrochemical potentials j1 and 11 2 as defined in Ref.
18, one obtains the original Landauer formula

Vd =(41 -- tz2)/e =IRd =I(h/2e2)(R/T) ,

which is Eq. (9). Landauer's original formula for Rd cor-
responds to the standard four-probe geometry for
measuring resistance, in which the voltmeter is only
weakly coupled to the sample one wishes to measure and
no current flows into the voltmeter. If, on the other
hand, one wishes to obtain the resistance using a two-
probe geometry, which measures the electrochemical po-
tentials +. +eV = i1 and t-= i,, one obtains

V = V =(Qp --.r )/e =IRt =I(h/2e 2)(l/T)

which is Eq. (8). In this case the voltmeter is the reser-
voir, which is strongly coupled to the system one wishes
to measure. Due to the incoherence introduced by the
reservoirs5 in Fig. 1, the total resistance R t is simply the
sum of the device resistance Rd plus the contact resis-
tance Rc, i.e., R, =Rd+Rc. That R c is in fact a contact
resistance associated with the introduction of the two
reservoirs in Fig. 1 was explained by Imry'o in terms of
the effusion of a gas through a small hole, and by
Biittiker 9' 6 who emphasized that carrier motion from one
reservoir to the other was essential to obtain the contact
resistance.

The contact resistance implied by Eq. (8) follows from
the argument in Eq. (1) that the current is simply a prod-
uct of the carrier charge, velocity, and density. For small
temperatures and voltages this gives

2

I=ev n+(E F) ev+ [N+(EF )eV]
=  V,

where n +(EF)=N+(EF)eV is the carrier density near
the Fermi level. As the Fermi level is raised, the Fermi
velocity increases but the carrier density decreases.
Equation (2) tells us that, in one dimension, these two fac-
tors exactly cancel each other for all energies. The con-
tact resistance in Eq. (8) is then a consequence of the
seemingly fortuitous cancellation in Eq. (2). We wish to
propose a heuristic explanation for Eq. (8), which does
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not rely on Eq. (2), and which emphasizes the way in
which current is drawn out at a contact.

To 'gain further insight iinto the contact resistance and
make:a plausibility argument for Eq. (8), introduce the
times '

2e e2  2e 2 .
I - T(E)V and I -- V (10)

Tc + 'd h Tc T,

which define the effective time of an electron in the device
rd and the contact •c. One obtains for these times

T 2id 2rAt 1- T(E)
eV eV T(E)

The time Td corresponds to the original Landauer formu-
la Rd while the time r, corresponds to the contact resis-
tance Rc. If the conductor is in the classical diffusive
limit, the time rd is proportional to the time for a classi-
cal particle to diffuse across the conductor.19

We can now make a plausibility argument for Eq. (8).
We consider a single quantum ballistic channel having
unity transmission so that the resistance Rd is negligible,
i.e., Td-+0. That the conductance of the perfect wire by
itself is infinite one can understand simply from the
Drude formula, in which an impulse function electric
field excites a current which flows forever without decay-
ing. Our emphasis must be on understanding the resis-
tance R c, which we do b'y arguing for the time Tc as fol-
lows: Consider the case of zero temperature. Far away
from the interface between the device and the reservoir,
the right contact must be described by a Fermi function
having a single current-carrying state at the electrochem-
ical potential I,. As the right contact rapidly draws out
an electron at energy ,r, another electron can occupy
that energy level. It cannot, however, do so instantane-
ously. When the average tunneling electron near the Fer-
mi surface reaches 'the right contact, it must dissipate on
average an amount of energy AE =eV in that contact.
Even if inelastic scattering processes occur on very rapid
time scales in the contact, there is a limit imposed by the
uncertainly principle for the rate at which energy can be
*dissipated into the thermal bath, namely 1/Ar= AE /i.
The time AT to dissipate a 'amount of energy AE=eV
into the contact should be the same order of magnitude
as the time rc to equilibrate with the measurement reser-
voir. This equilibration step will limit the current flow
'because, if the electron is out of equilibrium with the
measurement reservoir, 'the reservoir cannot detect the
electron. Therefore; only one electron- of charge e can
flow across the device every fi/eV sec.20 Imposing this
rate-limiting process in the contacts, we argue that the
electrical current even in this ballistic case is

be transported into the right contact even in a perfectly
ballistic device. Since the rate-limiting step for the
'current occurs in the contact, not in the device itself, the
conductance formula (7) is independent of the length of
the device as T(E) -+1. The contact resistance is also
plausible from the perspective that the voltage sources,
which influence only the electrochemical potential deep
inside the reservoirs, have no way of knowing that an
electron has, in fact, transited the device until it comes
into equilibrium with a Fermi function inside the reser-
voir. While the above argument is only heuristic, we be-
lieve it can be placed on firmer mathematical grounds by
analogy with the onset of resistance in narrow supercon-
ductors via "phase slips."

The factor of T(E) which enters into Eq. (8) can also
be understood from an energy dissipation viewpoint:
Only those electrons which in fact transit the device dissi-
pate energy and wind up contributing to the resistance.
We also note that the analog of Eq. (9) at finite voltages
has been suggested in Ref. 11 to be
I/Vd=(2e2/A)(T/R), where T is simply the energy
averaged transmission coefficient defined in Eq. (7) and
T+R =1.

Consider now a quasi-one-dimensional ballistic wire
described by the separable potential U(x,y, V)
= Ux(x, V)+ UY(y), where UY(y) is a confining potential
which quantizes the electron energies perpendicular to
the direction of transport. The separable Hamiltonian
implies that there is no scattering between the different
subbands created by the confining potential UY(y). Equa-
tion (7) therefore generalizes, as we show in Sec. IV, to
simply a sum over all the possible paths for electrons to
transmit between the left and right contacts:

I(E,V,T)-•• Ti(E,V)& W(E,V) --M d(E,T)

(13)

where the sum is over all occupied subbands. For a
ballistic quasi-one-dimensional wire with Ux (x, V) -- 0, we
have

(14)

at moderate voltages. Here E i is the subband energy for
quantized motion perpendicular to the direction of trans-
port. The limiting case of this formula at zero tempera-
ture is when the thermal smearing function becomes a 8
function so that

(15)

e e
I- E-- VAT' r (12)

which is the same order of magnitude as Eq. (8). This
contact resistance corresponds to energy dissipation in
the reservoirs, since no energy can be dissipated by elastic
scattering in the sample. For the electron to dissipate an
amount of energy e V in the reservoirs requires some time
Sr,= 2rh/eV, which limits the rate at which current can

We can carry out the convolution to obtain

O(E -Ei )® W(E, V)

0, E<E--eV

= E--(Ei - e V ), Ei--eV<E<E i . (16)

eV, E>Ei

We sketch the current in a ballistic quasi-one-

-- --~-
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eI(E, V, T =0)= e Y, O(E -Ei)o W(E, V).
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FIG. 3. Ballistic contact resistance in a quasi-one-
dimensional quantum wire illustrating the effects of finite volt-
ages and finite temperature. The conductance is shown versus
the electrochemical potential IL in the right contact. The finite
width of the steps in conductance is inversely proportional to
the phase coherence time introduced by finite voltage or finite
temperature.

dimensional wire with several subbands versus the elec-
trochemical potential 1 in the right contact in Fig. 3.
The conductance G is defined as the current divided by
voltage, even at finite voltages. These steps in the ballis-
tic conductance have been observed 21' 22 and explained us-
ing formalisms similar to the one in this paper as quan-
tum contact resistances. The conductance at finite volt-
ages, given by the dashed line in Fig. 3, shows initially a
linear dependence versus Fermi energy instead of a step
at zero temperature. We also show the effect of finite
temperature on the conductance in Fig. 3 for comparison.
Both finite temperature and finite voltage smear out the
sharp steps in the zero-temperature conductance. The
maximum slope of these steps in the conductance versus
Fermi energy occurs at conductance values half-way be-
tween the plateaus, and is given by

dG e2  1 e2 7T
x-- ~-- for V~0 (17)

di max Tr 4k T 7rhi fi

at finite temperature and

dG _ e 2 1 e2 TV
d - for T=0 (18)

d max TAeV Trh i

at finite voltages. The maximum slope of the steps in
conductance versus Fermi energy is limited by the phase
coherence times TT and TV, and is proportional to the
phase coherence time. In a field effect transistor where
the chemical potential is proportional to the gate bias
voltage Vs, and if the chemical potential were controlled
by such a gate, one could interpret
g, = dl /d Vg = e V dG /dml as the transconductance of the
device. For such a structure, the transconductance
would have a finite maximum value even in the ballistic
transport regime. When the applied voltage is much
greater than the temperature, this maximum transcon-
ductance in the quasi-one-dimensional ballistic wire be-
comes just g, = 2e 2 /h.

1460

(19)T, = 1 , where Tn +R,= 1 .1n -RIR,-I
The solution of this recursion relation, which can be
motivated from physical arguments involving the addi-
tion of classical resistors in series,2 is

1
T,n =( /T(R,/TI)n +1 (20)

where T, is the probability of a classical particle being
transmitted by a single scatterer. This result has been ob-
tained in Ref. 2, and the special case with T =R = ±2
treated in Ref. 23 using a different method. Substituting
this classical transmission coefficient into Landauer's
conductance formula in one dimension, Eq. (8), gives the
diffusive conductance

e2  
1

G (R )n +
ID & (R, /T )n +1

(21)

If we chose the scattering centers to be different, with
scatterer a having a transmission coefficient Ta, etc., we
obtain for the resistance R ID after solving a recursion re-
lation similar to Eq. (19)

e2  Ra Rb R
R ,D + + b + +1,

STo Tb 2"c

(22)

which is just the classical sum of the original R /T Lan-
dauer resistance from each scatterer plus the contact
resistance.

If we choose Ta=Ra=± for each scatterer, corre-
sponding to the assumption of isotropic scattering in the

1 2 34 5

777
/Thermalreservoir
'///

FIG. 4. n randomly positioned scatterers between two
thermal reservoirs in one dimension. The two reservoirs are
also regarded as scatterers so that the mean separation 1 be-
tween scattering centers is L = (n + 1)1, where L is the sample
length.
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III. CLASSICAL DIFFUSIVE LIMIT
OF LANDAUER'S FORMULA

We are interested in the case with there are n scatterers
randomly distributed in one dimension between two
reservoirs as in Fig. 4. We consider the diffusion of clas-
sical particles down the chain of scatterers. Evaluating
Landauer's formula for this case requires evaluating the
transmission probability of a classical particle down a
chain of n identical scatterers. This can be treated as a
classical random walk down the n scattering sites. The
classical transmission probability Tn down the total chain
of n scatterers can be obtained in terms of a recursion re-
lation

-~I-I
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conductor, each elastic collision with a scatterer com-
pletely randomizes the particle's momentum direction.
Our form for the classical diffusive conductance, Eq. (22),
suggests that we interpret the contact resistance on the
right-hand side as stating that the thermal reservoirs
completely randomize the momentum direction of the
electron when it enters the reservoir. The reservoir cap-
tures all particles incident upon it, then immediately ran-
domizes their momentum direction due to rapid scatter-
ing inside the reservoir. This assumption is included in
our derivation of the conductance formula (8) by assum-
ing the reservoirs are described by a Fermi distribution.

We now wish to compare Eq. (21) to the standard
Drude-Sommerfeld conductivity expression in one di-
mension,

e2

clD=e2N(EF)D(EF )-e2 2• F'tr=2 1 ltr , (23)

where ltr=VF-tr is the transport mean free path at the
Fermi level and D (EF)= v2Ttr is the diffusion coefficient.
To obtain the conductance in one dimension, we merely
divide by the length of the sample:

GID D 2 e 2 tr(24)
G L 2tL (24)L 1rhi L

In order for the diffusive conductance from Landauer's
formula, Eq. (21), to equal the Drude conductance in Eq.
(24), we must conclude that

2tr _ 1
L (R 1/TI)n +1

To show that Eq. (25) is correct, consider the special case
of isotropic scattering in the conductor. Here
T, =R I,= , so that the transport mean free path is equal
to the mean distance between the scatterers, i.e., Itr=l.
In that case Eq. (25) becomes

1 1
2 1 - 1 (26)

L n+l

In the limit that n becomes large, Eq. (26) implies that
the mean free path is half the average spacing between
scattering centers. We would obtain this result for the
mean free path in one dimension if we average the dis-
tance to collide with a scatterer over a uniform distribu-
tion of all possible starting positions for the random
walk. This statistical average is consistent with the stan-
dard assumption used in deriving the Drude conductivi-
ty, in which we consider an electron executing a random
walk inside an "average" conductor that is spatially uni-
form. We can either keep the scatterers fixed and aver-
age over all possible starting positions for the random
walk, or we can keep the origin of the random walk fixed
and average over all possible impurity locations. Either
way we obtain that the mean free path which should ap-
pear in the Drude formula, Eq. (24), is half the average
spacing between scatterers. Consequently, for large n, Eq.
(26) is correct, so that the Drude conductance is
equivalent to the diffusive limit of the Landauer conduc-
tance. Moreover, even for small n, Eq. (26) can be shown
to be valid by the following argument: Consider again

the arrangement of the n scatterers between two thermal
reservoirs as shown in Fig. 4. The reservoirs are regarded
as being two additional scatterers which absorb all car-
riers incident upon them while simultaneously randomiz-
ing the carrier's momentum direction, so they must be in-
cluded in computing the mean free path 1. From the
geometry of the scatterers we therefore have for a given
scattering configuration that L = (n + 1)1. The mean free
path in the average configuration of the scatterers is
therefore L =2(n + 1)1 as in Eq. (26). We see again that
the Drude conductance, given by Eq. (24), and
Landauer's conductance formula, Eq. (8), in the classical
diffusive limit are the same.

The Drude conductance formula and the Landauer
conductance formula can also be made equivalent in the
ballistic limit of no scattering between the thermal reser-
voirs (n =0), if we reinterpret the meaning of the trans-
port mean free path which enters the Drude conductance
in Eq. (24). The standard interpretation of the transport
mean free path Itr = VFrtr is that rtr is the scattering time
in an infinite system. In this standard interpretation ltr
can increase without bound. If we now reinterpret ltr as
the average distance for the conduction electron to ran-
domize its momentum direction in a finite sample, we see
that the longest possible transport mean free path for any
given sample is just the sample length. For the average
sample described by Eq. (24), this argument gives
21tr =21 =L, in which case the ballistic conductance is

e
2

GID = e (27)1rhi
as before. The contact resistance can be thought of from
this viewpoint as a consequence of the electron's trans-
port mean free path being limited to at most the sample
length.

We can gain further insight into the Drude-
Sommerfeld conductance by considering a quantum par-
ticle moving in a set of potential barriers in one dimen-
sion, with barrier a having a quantum-mechanical
transmission probability Ta, etc. In computing the total
transmission probability of a quantum particle down this
chain of scatterers one cannot ignore the phase of the
particle. The total transmission coefficient down the
chain will therefore be much more complicated than in
Eq. (22). Biittiker 5 has worked out the general case for
the addition of quantum resistors in series. In the case
where the particle inelastically scatters with probability
one between each elastic scatterer, his results can be writ-
ten very simply as

e2 +1 + Rb+1 Rc +1RTa Tb Tc

+".+1 . (28)

The quantum particle picks up the contact resistance
each time it inelastically scatters. Equation (28) was de-
rived for zero applied voltage. In the case of a finite volt-
age, we must average each transmission and reflection
coefficient over the energy dissipated into the inelastic
scatterer. This energy averaging will be of the order of
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the applied voltage divided by the number of additional
inelastic scatterings inside the sample. If the number of
inelastic scattering events increases with temperature,
then the energy averaging due to voltage and temperature
will be related, in contrast to the case where there is no
inelastic scattering inside the device. Another interesting
property of Eq. (28) is that the total transmission
coefficient decreases linearly with the length of the 1D
chain as expected if the motion is diffusive. It is generally
believed that, for most types of disorder, the resistance of
a 1D chain without inelastic scattering increases ex-
ponentially with the length of the chain. Therefore, it
appears that inelastic scattering processes are necessary
to obtain diffusion in 1D. Equation (28), if compared
with the Drude conductance in Eq. (24), gives
Matthiessen's rule lt I=.l +lij , where L/2ll,
=(R I/T,)n for the case of identical barriers and
L /21in= n +1.

IV. TUNNELING LIMIT OF LANDAUER'S FORMULA
IN TWO AND THREE DIMENSIONS

We consider here the generalization of Landauer's con-
ductance formula to include many quantum channels or
sets of good quantum numbers in the ideal device leads as
described in Refs. 3 and 10. Define the current transmis-
sion probability Tij from channel j in the left reservoir to
channel i in the right reservoir evaluated at a given ener-
gy as

Ji,right
Tii- J= =t -tijtif; (29)

Jj,left

when all other incoming currents are zero. Here tij is the
current transmission amplitude as defined in the scatter-
ing matrix. 10 The current from left to right, in the spirit
of the derivation in Ref. 14, is therefore obtained as

I,,ir= e • (E)N(E)(E)Tij(E, V)
i,j

Xfl(E-(p+eV))[l-fr(E-pt)]dE . (30)

The current from right to left is similarly

Irl=- e f vi(E)Ni-(E)Tj(E, V)f,(E -pL)
ij

X[l--fl(E -(p+eV))]dE . (31)

Here v+=v- and N+=N- =N/2.
Current conservation along with time reversal symme-

try give the constraint tij = tji, implying that Ti = Tji.
The net current is therefore

I =Ir -Irl

= f Tij(E, V)[fl(E -(y+eV))- fr(E -iL)]dE .
5,i

(32)

Equation (32) reduces to the general result

I= • Tii(E, V)® W(E, V) - df(E, T)SI dE '
(33)

where W(E, V) is again the voltage window given by

W(E, V)=[O(E +eV)-O(E)] .

Equation (33) shows that temperature broadening and
voltage broadening are statistically independent even in
this multichannel case. Equation (33) reduces at low tem-
peratures and small voltages to the well-known result3' 4'8

(34)
Se22V v e2e 2V

"I" T. T -= - .tijti*"-2 Tr(tt )
2 triQJ 2?rh ,Ji 21r2di * d 2

where the sum in Eq. (34) also runs over the individual
spin quantum numbers, thus differing by a factor of 2
from Eq. (33). Equation (34) is analogous to the Lan-
dauer formula proportional to T, Eq. (8) describing a
two-probe measurement. References 3, 6, and 10 give the
multiple channel Landauer formula which describes a
four-probe measurement, analogous to the T/R Lan-
dauer formula in Eq. (9).

For a general Ti, Eq. (34) allows the possibility that
electrons can scatter between different quantum channels.
We are interested in the tunneling limit of this formula,
for which Tij = Ti Sij . The current transmission probabil-
ity takes this form only if the Hamiltonian is separable as
ftotal =Ax(x)+fty,(y)-+ ft,(z), thus justifying Eq. (13) in
our earlier treatment of the ballistic quasi-one-
dimensional wire. This tunneling limit corresponds to
the classical addition of resistors in parallel, i.e., there is
no communication between the parallel resistors. Be-
cause there is no scattering between the different con-
ducting channels inside the sample, we only have to sum
over one channel index in Eq. (34), namely,

e2 V e2 VI '= __ IT iS ij 2• r Ti "
i,J I

(35)

This limit also corresponds to the usual treatment of elec-
tron tunneling, for which we assume a static potential
having spatial variation only along the x direction. 12' 14' 15

To prove this, note first that the Hamiltonian is separable
so that E =E x +Ey +E z . Furthermore, the eigenfunc-
tions along y and z are plane waves so that Ey = 2k2/2m
and Ez =

2kz /2m. The transverse channel index i can be
labeled by i = (ky, kz ). Translational invariance along the
y and z directions implies there is no scattering potential
to couple the transverse channels. We enforce conserva-
tion of energy by writing

T,(E x )= T(E -E,(k,)-Ez(kz))

Expressing the multichannel Landauer formula, Eq. (35),
in terms of a current density then gives

I
J3D-r r

e 2 V 1
2TIi LYLZ

Y, T(E--Ey(ky)--Ez(kz)) .
ky,k.,spin

(36)

1__

1462



LANDAUER'S CONDUCTANCE FORMULA AND ITS ...

Recognizing the one-dimensional identity

2 • f Nc (E,)dE, , (37)
yk,

where NID (E) is the one-dimensional free-electron densi-
ty of states including spinM 1/2 /

Nfr (E)= 1 [_2m 1j O(E) , (38)I 2 E
the current density now becomes

e 2 VJ3D=e2v Iff free( E I •fre¢(E

spin

X T(E -EY(k,)-Ez(k z ))dE, dE .

(39)
Equation (39) can be written as a convolution

I e 2 V
J3D I e2V T(E)® N f(E)e(lNfr(E). (40)

LL - 7r 1DJ''h 1D2\I' 2

If we had started from a standard tunneling formal-
ism,12,14 we would have obtained

J3 D(E, V, T) - e T(E, V)® W(E, V)®
1h

-df (E, T)dE
1freeN (E) 1 free(E) -\(41)2 1D \'Tzv ID ID(1

as the current density at finite voltage and finite tempera-
ture. Equation (41) is shown graphically in Fig. 2. From
Eq. (41) one can obtain any tunneling current at finite
voltage and temperature found in Refs. 12, 14, and 15. A
helpful identity in obtaining these tunneling currents is

1 N(free(NE)9 1 Nfree=) N (ELfree (-- 1 (42)2D 22~2 0 (E)2. (42)SID T ID 2D \2 - 2 2Tr2'

Results analogous to Eqs. (42) and (40) for the density of
states and electrical currents follow for any separable po-
tential.' 3 Using Eqs. (42) and (40), we see that in the stan-
dard type of quantum-mechanical tunneling calculations
in three dimensions, the quantum contact resistance nev-
er appears. The reason is, of course, that in going over to
a continuum of states we add an infinite number of con-
ducting channels in parallel. For tunneling at finite volt-
ages, Eq. (33) reduces to the standard tunneling current
density at finite voltages, Eq. (41), thus having the correct
behavior in the tunneling limit.

By analogy with our consideration of classical diffusion

in the previous section, we note that the multiple-channel
Landauer formula has been applied to consider voltage
fluctuations in small diffusive conductors. 25

V. CONCLUSIONS

Using the Landauer formalism we have examined the
effects of finite voltages on quantum transport, showing
that the finite voltage acts to average the electrical con-
ductance over an energy range equal to the applied volt-
age. This voltage broadening is similar to ordinary
thermal broadening of the conductance, which averages
the conductance over an energy range equal to the tem-
perature. We showed that both thermal and voltage
broadening of the conductance can be expressed as in-
dependent convolutions with known functions, proving
that voltage broadening and ordinary temperature
broadening are statistically independent. Motivated by
the recent experiments of van Wees et al. 21 and Wharam
et al.,22 we examined thermal and voltage broadening of
the conductance using a quasi-one-dimensional ballistic
conductor as a model system. The finite width of the
rises in the quantized steps in conductance versus electro-
chemical potential in these experiments is inversely pro-
portional to the phase coherence time of the electron in-
troduced by either finite voltage or finite temperature.
The quantum contact resistances can be thought of either
as a consequence of the rate limitation imposed by the
uncertainty principle in the device leads or as a conse-
quence that the mean free path is limited at most to the
device size.

We also examined both the diffusive and tunneling lim-
its of Landauer's conductance formula. In the classical
diffusive limit the one-dimensional Landauer formula
reduces to the Drude-Sommerfeld conductance in one di-
mension. In the tunneling limit, the finite-voltage Lan-
dauer formula is equivalent to many previous treatments
of electron tunneling at finite voltages. In this tunneling
limit, we have shown that simply by repeatedly convolv-
ing the tunneling current in one dimension with the one-
dimensional free electron density of states, one obtains
the tunneling current density in two and three spatial di-
mensions.
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We calculate the current versus emitter to collector voltage, current versus emitter Fermi
energy, and current versus potential energy in the quantum well for double-barrier resonant
tunneling devices having a one-, two-, or three-dimensional electron emitter. We consider both
transistor and diode operation of the devices. For each device, the current is obtained using a
method which describes the effects of finite temperature, finite voltage, and free-electron
motion perpendicular to the tunneling direction as independent convolutions.

I. INTRODUCTION
Resonant tunneling diodes have improved steadily since

the 1970's,' attaining frequency responses in the terahertz
range2 and peak-to-valley current ratios of over 30 at room
temperature.3 The development of fine lithography has led
to other types of resonant tunneling devices, both vertical4

and in the plane of a GaAs/GaA1As heterojunction layer.5 -7

Many of these new types of electron devices based on reso-
nant tunneling are designed to operate as a transistor, 89 and
not merely as a diode, as was the case in earlier work.

Luryi'o developed one way to understand the currents
in resonant tunneling devices. He considered a three-dimen-
sional electron emitter and, by enforcing momentum conser-
vation perpendicular to the tunneling direction, concluded
that only electrons lying on a disk in momentum space de-
fined by the resonant wavelength contribute to the current.
Liu and Aers" extended this picture to explain the current-
voltage characteristics for electrons tunneling from a three-
dimensional emitter (3DE) into a quantum well, quantum
wire, and quantum dot. But recently fabricated resonant
tunneling devices contain a two-dimensional emitter
(2DE) 5- 7 as well as a one-dimensional emitter (1DE). 4

While the standard picture of Luryi and its extensions can
undoubtedly be used to understand the current-voltage
characteristics of these devices, we believe that a comple-
mentary graphical method based on convolutions' 2 is a pow-
erful method for understanding these new types of resonant
tunneling devices.

The goal of this paper is to apply our convolution meth-
od' 2 to calculate the currents in resonant tunneling devices
having a one-, two-, or three-dimensional electron emitter
shown schematically in Fig. 1. In Sec. II we rewrite the stan-
dard formula for tunneling current' to clearly separate the
effects of finite temperature, finite voltage, and an increase in
the spatial dimension of the electron emitter in these devices.
Finite voltage, finite temperature, and increasing the emitter
spatial dimension enter the formula for tunneling current as
a convolution in energy with a voltage broadening function,
a thermal broadening function which is the derivative of the
Fermi function, and the free-electron density of states, re-
spectively. The effects of temperature, voltage, and the emit-
ter dimensionality on the tunneling current can therefore be
considered independently and in any order.

The separation of the effects of finite voltage, finite tem-
perature, and the spatial dimension of the emitter in the for-
mula for tunneling current, and the resulting intuitive pic-
ture of tunneling currents, is the main advantage of our
method. The voltage convolution averages the device cur-
rent over the electron energy distribution in the emitter, ac-
counting for the emitter launching electrons over a range of
different speeds. The thermal convolution accounts for the
variance in these speeds. And the convolution with the free-
electron density of states merely counts the number of reso-
nant electrons, given that the emitter can launch electrons in
many possible directions.

We evaluate these convolutions graphically to obtain
the current as a function of Fermi energy in the emitter, as a
function of bias across the device, and as a function of poten-
tial energy in the quantum well. In Sec. III we consider the
resonant tunneling devices of Fig. 1 operated as transistors
by sweeping the Fermi energy at low source-to-drain vol-
tage. This simulates field-effect transistor operation. We

(0) 0

1 DE

(b) I V
2 DE

- z

x

T

I x
(c) .z

3 DE

FIG. 1. Resonant tunneling from (a) a one-dimensional emitter (IDE),
(b) a two-dimensional emitter (2DE), and (c) a three-dimensional emitter
(3DE). The subbands created when confining the electrons are assumed to
be widely separated compared with any other energy in the problem.
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compare the transconductance of devices having different
emitter dimensionality. In Sec. IV we consider the three res-
onant tunneling devices operated as diodes. The resonant
tunneling peak has a shape characteristic of the emitter spa-
tial dimension. In Sec. IV we also consider transistor oper-
ation resulting from modulating the potential energy of the
quantum well. This simulates adding a base contact to the
device. Our goal in this paper is not to obtain quantitative I-
Vcurves for a particular device structure, but to understand
how the general shape of the curves change for each different
spatial dimension of the device emitter. In Sec. V we show
how the currents in other possible resonant tunneling device
geometries are related via our convolution method.

II. CONVOLUTION METHOD

In this section we give an intuitive introduction to our
convolution method" using the devices in Fig. 1 as an illus-
trative example. The potential U(z, V) in these devices de-
pends only on the z coordinate as in Fig. 2, so that momen-
tum perpendicular to the tunneling direction is conserved.
The essential physical difference between the three devices in
Fig. 1 is shown in Fig. 3. The 1DE can launch electrons only
in the z direction, the 2DE can launch electrons in any direc-
tion with equal probability through an angle of Ir in the z-x
half plane, and the 3DE can launch electrons in any direc-
tion with equal probability through a solid angle of 21r in the
z - x - y half space. We also display this as a graph in mo-
mentum space on the left-hand side of Figs. 4(a), 4(b), and
4(c), respectively.

(a) I DE ( ---. Line - z

(b) 2 DE

(c) 3 DE

Circle
x

4z

Sphere xz

FIG. 3. Basic physical difference between (a) a one-dimensional electron
emitter, (b) a two-dimensional emitter, and (c) a three-dimensional emit-
ter. The IDE can only launch electrons in the z direction. The 2DE can
launch electrons at any angle with equal probability in the z-x half plane.
The 3DE can launch electrons at any angle with equal probability in the z-x-
y half space.

The current carried by each electron on the left-hand
side of Fig. 4 depends only on its wave vector kz along the z
direction, and only resonant electrons with k= = k, can con-
tribute to the device current. Following Luryi,'o we identify

Z,V=O)

t--*z

zV)LZ
2

EF-eV

-Ve

FIG. 2. Device potential U(z, V) (a) under zero source to drain bias ( V= 0)
and (b) under an applied bias V. The applied voltage creates an imbalance
between the electrochemical potentials in the contacts equal to the applied
voltage. The position of the resonant level E, can be either above or below
the Fermi level EF in the emitter when V= 0. In (b) we have neglected the
accumulation layer in the emitter and depletion layer in the collector which
would be present in an actual device.
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LURYI'S PICTURE
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FIG. 4. Luryi's picture of resonant tunneling (left-hand side) compared
with the convolution picture (right-hand side) for a resonant tunneling de-
vice with (a) a one-dimensional emitter (1DE), (b) two-dimensional emit-
ter (2DE), and (c) a three-dimensional emitter (3DE). This figure is valid
only for the case E, > EF. For the convolution method on the right-hand
side of the figure, the resonance condition is contained in the transmission
coefficient T(E, V) in the first column. Convolution ( e ) with the free-elec-
tron density of states in the second column, 6(E), NID (E), and N2D (E), in
(a), (b), and (c), accounts for the emitter launching electrons in all possi-
ble directions in one, two, and three dimensions. Convolution with W(E, V)
in the third column averages the conductance over the energy distribution
of these electrons, that is, it accounts for the different possible energies with
which the emitter can launch electrons in all the different directions. The
independent convolutions in each of the three columns separates these three
physical effects. Finite temperature is described by another convolution not
shown in the figure.

Bagwell etal. 4635

_ ____ _~ ~;__ __ __ ______I~

...... •

..

5.



these resonant electrons as a dot, a line, and a disk on the left-
hand side of Fig. 4. The device current is simply proportional
to the number of resonant electrons, so the problem of calcu-
lating the current reduces to computing the number of reso-
nant electrons and their velocity along z given the specific
electron distribution launched by the emitter. The standard
method"' '0 for counting the number of resonant electrons
requires computing the volume of the dot, line, and disk on
the left-hand side of Fig. 4. Note that on the left-hand side of
Fig. 4, the emitter is not merely launching electrons in all
possible directions for each spatial dimension, but over the
entire range of emitter energies from zero to the Fermi ener-
gy.

In the convolution method, shown graphically on the
right-hand side of Fig. 4, we obtain the number of resonant
electrons as follows: The current transmission coefficient
T(E, V) through the potential U(z, V) contains the wave-
length matching condition k, = k,. We display T(E, V) in
the first column on the right-hand side of Fig. 4. Convolu-
tion with the free-electron density of states in the second
column on the right-hand side of Figs. 4(a), 4(b), and 4(c),
either 6(E~), NID (E), or N2D (E), accounts for the emitter's
ability to launch electrons at any angle in one, two, and three
dimensions with equal probability, i.e., it accounts for the
spatial distribution of the emitted electrons. Since this spa-
tial distribution is different for each of the three devices in
Fig. 1, only this second column is different for each device.
The convolution with the energy distribution in the emitter,
.W(E, V) in the third column, accounts for the emitter's
launching electrons over a range of different energies or
,speeds. In the convolution method, the geometrical problem
of counting the number of resonant electrons is handled au-
tomatically by convolving the transmission coefficient both
with the energy distribution in the emitter and with either
the one- or two-dimensional free-electron density of states.

Our convolution method relates the currents in each of
the three devices in Fig. 1. The 1DE device current of Fig.
4(a) is obtained in the usual manner by evaluating the trans-
mission coefficient T(E, V). Since the 1DE device of Fig.
4(a) can only launch electrons in one direction, i.e., there is
no "transverse energy," the second column is just a convolu-
tion with a delta function. The 1DE device current is found
by convolving T(E, V) with W(E, V). Figure 4(b) shows
that one may obtain the current of a 2DE device by convolv-
ing the IDE device current with the one dimensional free
electron density of states NID (E). Convolution with
NI (E) accounts for the 2DE launching electrons at all pos-
sible angles in the z - x half plane. Similarly, Fig. 4(c) as-
serts that one obtains the 3DE device current by convolving
the IDE device current with the two-dimensional free-elec-
tron density of states N2D (E). Convolution with N2D (E)
accounts for the 3DE launching electrons at all possible an-
gles in the z - x - y half space. Although it is not shown in
Fig. 4, the 2DE and 3DE device currents are also related via
convolution with NI, (E).

We now summarize the equations to calculate tunneling
current 12 for the devices of Fig. 1. After writing down these
equations, we give an intuitive argument for them in the
remainder of this section. Following Fig. 2(b), we assume
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the left- and right-hand device contacts are described by a
Fermi function, and that the applied voltage induces a differ-
ence in electrochemical potentials between the two contacts
by an amount equal to the applied voltage. We then compute
the current as the product of charge, density, and velocity for
each electron. These assumptions allow us to obtain the cur-
rent in the 1DE device of Fig. 1(a) from a generalization of
one of Landauer's'3 formulas

I D (E, V T) = T(E, V) o W(E, V) ( (E, n,
1-h dE

(1)

shown in Fig. 4(a). For the 2DE device of Fig. 1(b) we
obtain the current from

shown in Fig. 4(b). Current in the 3DE device of Fig. 1 (c) is

13D (E, V,T) = 2D(E,V,T) (L/2)NID(E). (3)

We argue below that Eq. (3) is the same as the equation
shown graphically in Fig. 4(c).

We display Eq. (3) graphically in Fig. 5. In Fig. 5 and
Eq. (3), ® denotes a convolution in energy, 14 T(E, V) is the
current transmission coefficient through the one-dimension-
al potential U(z, V) of Fig. 2, and W(E, V) is the voltage
broadening function:

WE,V)=0(E) -- 0(E--eV), eV<EF,

0(E) -(E- EF), eV>EF.
(4)

8(E) in Eq. (4) is the unit step function.
The convolution with W(E, V) simply averages the con-

ductance over the energy distribution in the emitter. It de-
scribes the emitter launching electrons over a range of differ-
ent speeds. Thus W(E, V) has a maximum width set by the
emitter Fermi level EF as in Eq. (4), since EF is the highest-
energy electron available in the emitter. The third column on
the right-hand side of Fig. 4 shows W(E, V) for the case of
eV>EF, while Fig. 5 shows W(E,V) when eV<EF. The
function W(E, V) is slightly different from the one used in
our earlier work, 2 since we take the zero of energy to lie at

a- f(ET)
hF (ET)

13,(E,V,T)= 1

W(E,V)

ST(E,V) I E
o ev

"N•o(E) LNID(E)o o

0,E -E
0 0

FIG. 5. Convolution method for calculating the 3DE device current corre-
sponding to Eq. (3). The transmission coefficient T(E, V) is successively
convolved ( o ) with W(E,V), - df(E,T)/dE, and NID (E). W(E, V) is
the emitter energy distribution at zero temperature. The separate convolu-
tion with - df/dE includes the effects of finite temperature. The convolu-
tions with the free-electron density of states relate current in the IDE device
to the 2DE and 3DE devices. W(E, V) is shown for the condition eV< EF.
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the bottom of the zero temperature Fermi distribution in the
emitter as shown in Fig. 2. This is a more convenient choice
for calculations at large voltages."5

The thermal broadening function - df/dE in Eq. (3)
and Fig. 5 is the negative derivative of the Fermi function

df 1 E_dE 4k, T sech 2k, E (5)
dE 4kB T \2kBT/

and describes the thermal variation in the speeds with which
the emitter can launch electrons. Figure 4 is drawn for the
case of zero temperature, so that the convolution with - df/
dE does not appear on the right-hand side of the figure. For
the case of finite temperature the convolution with - df/dE
would enter as a fourth column on the right-hand side of Fig.
4, and would be the same for all three devices. In Eq. (3) and
Fig. 5, NID (E) is the free-electron density of states in one
dimension

N (E) = (E), (6)

and Lx and LY are the size of the device along the x and y
directions drawn in Fig. 1.

We have previously shown 2 that Eq. (3) and Fig. 5 are
equivalent to the standard methods used to calculate tunnel-
ing currents.' But Eq. (3) is conceptually and mathemat-
ically easier than the standard method since it separates the
contributions to the device current from several different
physical effects. The convolutions are independent and can be
done in any order, and each convolution incorporates differ-
entphysics. Free-electron motion perpendicular to the tun-
neling direction is incorporated through the convolutions
with NID (E), accounting for the spatial distribution of emit-
ted electrons. Thermal broadening is included in the convo-
lution with - df/dE. And voltage broadening effects are
described through convolution with W(E, V). The convolu-
tions with W(E, V) and - df/dE together account for the
total energy distribution of emitted electrons. These separate
convolutions prove that thermal broadening is independent
of voltage broadening, that the effect of adding free-electron
motion along x is independent from adding free-electron
motion alongy, and that adding free-electron motion is inde-
pendent of any voltage or temperature broadening. These
conclusions are of course subject to the assumptions under
which Eq. (3) is valid as we now discuss.

Equations (1), (2), and (3) describe electron motion
through a separable potential V(x,y,z) = Vx (x)
+ V, (y) + V, (z). This separable potential describes many

but not all types of electron devices. For the devices of Fig. 1
the potential depends only on the z coordinate as in Fig. 2, so
a separable potential with Vx (x) = VY (y) = 0 describes
these devices. Equations (1), (2), and (3) also assume that
the electron coherence length is long compared to the size of
the confining well, although it is possible to remove this re-
striction. 16,7 The convolution with the free-electron density
of states in Eqs. (2) and (3) is equivalent to the sum over
electron channels in the multichannel Landauer formula.'
The different channels correspond to the different spatial
directions through which the emitter can launch electrons.' 9

The two convolutions describing free-electron motion
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perpendicular to the tunneling direction for the 3DE device
of Eq. (3) can be evaluated by means of a simple physical
argument. 20 Consider the case of free electrons in two di-
mensions. Since the potential is separable, electron motion
along the z direction is independent of motion along x except
for the constraint that the total energy E = E, + Ex is con-
stant. The Schridinger equation for electron motion along x
can be solved for the density of states N(Ex ) available for
motion along the x direction, and similarly for motion along
the z direction. Therefore, the total density of states at a fixed
energy E for any given energy E. is just the product of the
number of states available for motion along x times the num-
ber of states available for motion along z as

ND, (Ez)ND, (Ex)dEZ = N,D (EZ)N,, (E - Ez )dE,.

But there are an infinite number of ways that the total energy
E can be distributed between E, and Ex. Thus, to find the
total density of states at a fixed E, we must sum over all these
possibilities as

N2D(E) = N, (E,)N,(E-- E )dE,.2f
The extra factor of I in the convolution compensates for
counting the electron spin twice in NI,. We can rewrite Eq.
(7) as

INID (E) ® 1N,D (E) = JN 2 D (E) = J(m/ir)9(E).

By a similar argument for free electrons in three dimensions,

JN2D (E) 9 INID (E) = N3D, (E)

= 1 2 m \ 3/ 2

2 2(r
Equations (8) and (9) will allow us to easily evaluate the
convolutions required to compute the currents for the de-
vices in Fig. 1. We will also use the result21

O(E) ® O(E) = EO(E). (10)

Using Eq. (8), one can thus proceed directly from the
1DE device current to the 3DE device current, as shown in
Fig. 4(c), by convolving ID (E, V,T) with the two-dimen-
sional free-electron density of states N2D (E). Equation (3)
can therefore be rewritten as

I3D (E, V,T)

= I1D (E, V,T) ® (Lx/2)NID (E) & (L,/2)NID, (E)

= ID (E, V,T) ® (LxLY/2)N 2D (E), (11)
as in Fig. 4(c).

The arguments used above for the density of states in
each dimension are equally valid for the current, and can be
used to argue for Eqs. (2) and (3). Consider the current in
two dimensions. As above, E = E + E, since the potential
is separable. Furthermore, the current carried by each elec-
tron depends only on its wave vector k,, that is, it depends
only on energy E. for motion along the tunneling direction.
Let the current carried by electrons having energy Ez in one
dimension be IlD (E2 ). The number of parallel one-dimen-
sional channels which have this current in two dimensions is
Lx ND (Ex )dE2 /2. To find the total current in two dimen-
sions we must add all the possible ways to distribute the total
energy E between motion along the tunneling direction and
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motion perpendicular to the tunneling direction. We must
also take into account the different number of parallel chan-
nels and different values of the current in each channel.
Therefore, the current in two dimensions is

I2D (E) = I (Ez)-- Nm (E-- E,)dE,, (12)

which is Eq. (2) and Fig. 4(b). A similar argument can be
made for the current in three dimensions giving

"2

as in either Eq. (3), Eq. (11), or Fig. 4(c).
If the electron distribution were monochron '", so that

the width in energy of W(E, V) was small, electrons would
be launched at a point of constant energy in momentum
space for a 1 DE device, a half circular ring of constant ener-
gy in momentum space for a 2DE device,'and a half-spheri-
cal shell of constant energy in momentum space for the 3DE
device. This is also shown on the left-hand side of Fig. 4, if we
consider only the electrons at a radius kF. These constant
energy "shells" at kF, correspond to the emitter launching
electrons with a constant velocity, but in all possible direc-
tions with equal probability. Therefore, convolution with the
free-electron density of states accounts for launching elec-
trons at a constant energy but in all possible directions with
equal probability. Convolution with the voltage broadening
function W(E, V) then adds up all the different energy shells
or velocity shells, accounting for the emitter's launching of
electrons over a range of energies set by the width of
W(E, V).

Having outlined our convolution method, the only re-
maining task is to obtain the transmission coefficient
T(E, V) as a function of energy and voltage for the double-
barrier diode structure in Fig. 1. Several papers review the
physics of resonant tunneling and determine the transmis-
sion coefficient. 16.22-24 We review the energy dependence of
the transmission coefficient in Sec. III and the approximate
voltage dependence in Sec. IV.

III. TRANSISTOR OPERATION

Most ideas for operating the resonant tunneling devices
of Fig. 1 as transistors focus on the possibility of making
direct contact to the well between the two tunnel barriers, as
in Refs. 8, 9, and 25. We consider this transistor mode of
operation after treating the operation of resonant tunneling
devices as diodes in the next section. In this section we con-
sider another possible way to operate the devices of Fig. 1 as
transistors. Motivated by the field-effect transistor experi-
ments in Ref. 5, we calculate the current as a function of
emitter Fermi energy assuming the emitter to collector vol-
tage Vis small. This type of transistor operation can be real-
ized either by incorporating a substrate gate into high elec-
tron mobility transistor (HEMT) devices, or by varying the
Fermi energy with light-emitting diode (LED) light as was
done in Ref. 5. In the 3DE device it would be difficult to
control the Fermi energy with a gate, though one can ima-
gine varying it by shining light on the device.
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Our purpose in this section is to examine only the effect
of the emitter spatial dimension on the tunneling current.
We wish to exclude any effects due to a finite width in energy
of the emitted electrons. We can consider these effects sepa-
rately as explained in Sec. II. Thus, in this section we consid-
er the dependence of the current on emitter Fermi energy
assuming the applied voltage is small. In Sec. IV we can
convolve the device currents in each spatial dimension ob-
tained in this section with the electron distribution in the
emitter, thereby calculating the diode currents when the vol-
tage is large. We also work at zero temperature so that we
can omit the convolution with - df/dE.

The energy diagram for the resonant tunneling device
under zero bias is shown in Fig. 2(a). For simplicity we
assume that only a single resonant level exists in the well.
Under zero bias we take the resonant level to lie at energy E,.
We also assume the transmission probability T(E) has a
total area AE under its resonance peak, that is f T(E-
)dE = AE, where the integral is over the resonance peak. If
the emitter to collector bias is small, then the device current
is simply proportional to the applied voltage V. We can then
replace the convolution with W(E, V) by multiplication with
eV and can approximate T(E, V) - T(E, V= O) - T(E).
Thus, we assume that the energy E, of the resonant level
does not change significantly under applied bias if the vol-
tage Vis small. The energy scale AE defines small voltages as
e V4 AE.

The tunneling probability T(E) near a resonance has a
Lorentzian shape'6 ,17.23 which we denote L (E - E,):

L(E-E,) = (14)
(E - E,) 2 + (hi/2) 2(FL + FR) 2 '

Here FL and FR are the partial leakage rates for the electron
out of the quasi-bound state to the left and the right. For the
transmission probability L (E) we find AE = 2 r-hfL FR /
(FL + FR), while the full width at half maximum
(FWHM) is just the sum of the partial leakage rates
FWHM = ii(FL + Fr ). For our purposes, we shall not be
overly concerned with the exact shape of the resonance peak
and can approximate

L(E- E,) -=•(E- E, + AE/2) - O(E - E, - AE/2).
(15)

This approximation assumes we will not try to resolve the
exact shape of the resonance peak. In addition, if we do not
attempt to resolve features on an energy scale of AE, we can
approximate the resonant peak in L (E) as a delta function
whenever it occurs underneath an integral sign as

L(E- E) = (AE)(E - E,). (16)
The tunneling probability T(E) through the potential

U(z, V = 0) of Fig. 2(a) can now be well approximated as

T(E) =L(E - E,)O(E)O(E, - E) + 0(E - ET),
(17)

where E, is the top of the potential barrier as in Fig. 2. We
have sketched Eq. (17) for the transmission probability in
the first column on the right-hand side of Fig. 4. This second
piece of the transmission probability arises from nonreson-
ant transmission above the double barrier. The approxima-
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tion in Eq. (17) ignores the slight increase in transmission as
the energy approaches the top of the barriers. Equation (17)
also ignores any oscillations in T(E) resembling the Ram-
sauer resonances, which occur when the Fermi energy is
larger than the barrier height ET. If we calculate T(E) nu-
merically and numerically apply our convolution method,
we can remove these restrictions. However, the numerically
calculated transmission probability will still qualitatively re-
semble Eq. (17).

The 1DE device current from Eq. (1) is proportional to
the transmission coefficient

IlD(E)
= (e2V/tfi) [L(E- E,)O(E)9(ET - E)

+ O(E -E,)]. (18)
We display this result graphically in Fig. 6(a). The quantum
contact resistance of h /2e 2 implied" by this formula has re-
cently been observed in a striking series of experiments.2 6

To calculate the 2DE device current as a function of
emitter Fermi energy, we must convolve Eq. (18) with
ND (E) as in Eq. (2). We first make an intuitive argument
for the resonant piece of the current following the reasoning
leading to Eq. (12). Since only electrons with E_ - E, con-
tribute to the device current, we only have to evaluate the
convolution at one value of E.. The current at the resonant
peak for the 1DE device from Eq. (18) is

I1D (Er) = e2 V/ni. (19)
This current can be pulled outside the integral in Eq. (12).
The number of parallel one dimensional channels having en-
ergy near E. = E, is given by taking dE, - AE in Eq. (12).
The resonant piece of the current for the 2DE device is then
found by multiplying the current carried by each one dimen-
sional channel by the number of channels as

eZ VL,
12D (E) - (AE)N D (E- E,).

By simila r arguments 2
By similar arguments to the ones above combined with

leading to Eq. (13), the resonant piece of the current for the
3DE device is

I3D (E) e V LxL (AE)NZ(E-E).
fD 2 (21)

Again, this result is simply the current carried in each one-
dimensional channel multiplied by the number of channels
in parallel. The amount of current carried in each channel is
limited by the quantum contact resistance in Eq. (19), so
that the current in a large resonant tunneling device may be
thought of as adding a large number of quantum contact
resistances in parallel.

We now obtain the 2DE and 3DE device currents. Us-
ing the delta function approximation from Eq. (16) for the
resonance peak, we carry out the convolution of Eq. (18)
with ND, (E) to obtain the 2DE device current from Eq. (2)
as

2D (E) = e2VL 1 ( I
D rh 2 ir 1)

S(AE- (E-E,) (E,)

+ 2V E-EO(E - E,)). (22)

The resonant piece of Eq. (22) agrees with Eq. (20). We
display this result graphically in Fig. 6(b). To obtain the
result for the nonresonant piece of the current in Eq. (22) we
used Eq. (9).

We carry out the convolution of Eq. (18) with N2D (E)
in Eq. (11) to obtain the 3DE device current. We again use
the delta function approximation from Eq. (16) for
L(E- E,) so that Eq. (11) gives

e2V L ,L, m_(20) I3D (E) = -

those X [ (AE)9(E - E,)8(E,)

+ (E - ET)(E - E r ) ]. (23)

IIo(E,V O)
e2V AE

() ET E
Er ET

(b)

I3D(E,VO)

(C) E
Er ET

FIG. 6. Device current vs Fermi
energy in the emitter for (a) the
IDE device, (b) the 2DE device,
and (c) the 3DE device. These
curves correspond to transistor op-
eration of the devices, since EF
could be controlled by a gate vol-
tage or by light. The curves in (b)
and (c) follow directly from the
curve in (a) by convolution with
the one- and two-dimensional free-
electron density of states, respec-
tively.

The resonant piece of Eq. (23) agrees with Eq. (21). We
display this result graphically in Fig. 6(c). To obtain the
result for the nonresonant piece of the current in Eq. (23) we
used Eq. (10). We have included the step function O(E,) in
the resonant terms of Eqs. (22) and (23) because the reso-
nant piece of the transmission coefficient from Eqs. (16) and
(17) is zero if E, < 0. While it is not possible to have E, <0
for the potential we have drawn in Fig. 2(a), it is possible to
imagine a potential in which the bottom of the well is below
the zero of energy shown in the emitter. For that case we
could have E, < 0 and the resonant piece of the transmission
probability would be zero.

We can sketch the energy dependencies of the three cur-
rents in Fig. 6 from physical arguments alone. One can argue
physically for the energy dependence of the transmission co-
efficient needed to obtain the current in one dimension in
Fig. 6(a). Furthermore, we can draw the energy dependence
of the convolutionris in Eqs. (8) and (9), which are also
known from physical arguments, 20 to graph the energy de-
pendencies for all three cases in Fig. 6. And as we show in the
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next section, the energy dependencies from Fig. 6 determine
the shape of the resonant peak when the devices are operated
as diodes.

It is possible to incorporate a substrate gate into stan-
dard HEMT field-effect transistors which controls the Fer-
mi energy. We can then interpret the energy axis of the
graphs in Fig. 6 as being controlled by a transistor gate vol-
tage. We can also interpret it as being controlled by LED
light as argued at the beginning of this section. Figure 6
shows that the 1DE device has a strong negative transcon-
ductance, the 2DE device a weaker negative transconduc-
tance, while the 3DE device can at best show a zero trans-
conductance. The 3DE and 2DE devices show positive
transconductance when the emitter Fermi level is above the
top of the potential barrier, but the 1DE device shows zero
transconductance. This has recently been observed in GaAs
HEMTs.2 6 Only in the 1DE case does the current fall to zero
when the device is operated as a transistor. This has been
observed in Si inversion layers. 27

Other modes of field-effect transistor operation are pos-
sible, in which the gate voltage controls the barrier height
and width instead of the emitter Fermi energy. This has been
demonstrated in a 2DE resonant tunneling transistor.' In
this mode of transistor operation it may be possible to make
the current fall to zero by raising the lowest resonant level
either above the emitter Fermi energy or below the bottom of
the emitter distribution. Negative transconductances were
also observed in a 3DE device by controlling the well with a
base contact."'9 We discuss this mode of transistor operation
in the next section.

The temperature dependence of the current versus Fer-
mi energy in Fig. 6 is calculated by convolving each of the
three curves with the thermal smearing function - df/dEas
in Eq. (1). This is most easily done numerically. For small
emitter-collector voltages, a convolution with the voltage
broadening function W(E, V) has an effect similar to the
convolution with - df/dE on the curves in Fig. 6. Both the
thermal and voltage convolutions act to broaden the curves,
leading to the criterion that any feature in the transmission
coefficient at zero temperature and small voltage must have
an energy spacing larger than about 3.5kT or eV to be ob-
servable at that temperature or voltage. 2 8 Note that the con-
volution with - df/dEincludes both "thermal broadening"
of the resonance peak, as well as "thermionic emission" over
the top of the barrier entering through the nonresonant piece
of the current. The voltage convolution can never have an
effect analogous to thermionic emission, since the function
W(E, V) has a sharp cutoff instead of the long Fermi tail
present in - df/dE.

IV. DIODE OPERATION

In this section we consider the devices of Fig. I operated
as diodes. That is, we calculate the current as a function of
source to drain bias V. We obtain the diode curves in each
dimension by averaging the transistor curves from Sec. III
over the energy distribution in the emitter, as outlined in Sec.
II.

The energy diagram for the resonant tunneling device
operated as a diode is shown in Fig. 2(b). We again assume
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that only a single resonant level at energy E, having area AE
exists in the well under zero bias. We assume that the reso-
nant level for our symmetric tunnel barriers moves down in
energy an amount eV/2 under applied bias," based on a
simple geometrical argument using the device structure in
Fig. 2(b). This conclusion seems to hold even if the position
of the resonant level is calculated quantum mechanically in-
cluding electrostatic self-consistency with the Poisson equa-
tion.29 We also assume the resonance area AE does not sig-
nificantly change under an applied bias."3  These
assumptions are valid as long as the structure remains ap-
proximately symmetrical under an applied bias, that is, for
energy differences E, - E, which are large compared to the
applied voltage V. We also neglect the small Stark shift in the
energy of the resonant level, as well as the accumulation in
the emitter and depletion in the collector which would be
present in a molecular-beam-epitaxy-grown device." Thus,
the following calculations are valid for large barrier heights,
low-lying energy levels in the well, and moderate voltages.

Our simplified tunneling probability as a function of
biasing voltage under these assumptions becomes

T(E, V) L (E - E *)O(E)O(E, - E) + O(E - E,),
(24)

where E* = E, - eV/2. The transmission coefficient has
the same form as before, but the applied voltage distorts the
tunnel barriers so that the position of the resonant level de-
pends on the applied voltage. The resonant term in the trans-
mission probability is nearly zero when e V/2 > E,, leading
to a negative differential resistance in all three dimensions.
As is well known, the negative differential resistance arises
because the resonant level in the well falls below the electron
distribution in the emitter, leaving no electrons which can
tunnel resonantly.

The Fermi level EF in the emitter is constant indepen-
dent of V."3 Therefore, it is not necessary to evaluate the
convolution with W(E, V) for all energies. We only evaluate
this convolution at the Fermi energy. We also assume
EF < E. Using only the resonant portion of the current in
Eqs. (18), (22), and (23), we first divide these currents by
e V, replace E, by E *, then convolve with W(E, V) at the
Fermi energy to obtain

I (E, V) = e (AE) 6(E - E0*)(E)dE

for the 1DE device,

I2D (EF, V)= (AE)

EF-  O(E - E) O(E)dE

E,-, eV EE- E*

for the 2DE device, and

e LxLy, m\
13D (EFV) = (AE) ii

X O(E--E*)O(E*)dE
JEF- eV

(25)

(26)

(27)

for the 3DE device. In Eqs. (25), (26), and (27) we have
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finally carried out the procedure outlined in Fig. 4. Again we
have approximated the resonance peak as a delta function
inside the integrals, which is valid assuming eV> AE. We
need the step function O(E *) in Eqs. (26) and (27) to en-
force the condition from Eq. (25) that the current ID be-
comes zero when the resonant level E, falls below the elec-
tron distribution in the emitter. The result when convolving
zero current with the free-electron density of states must be
zero. From Eqs. (25), (26), and (27) we can consider either
the dase where the resonant level is initially above or below
the emitter Fermi level, that is E, > EF, or E, < EF.

A. Case of E,>EF

The simplest case to analyze is when the resonant level
E, lies above the Fermi energy EF, at V= 0, that is E, > EF.
This is the standard case for resonant tunneling diodes
grown using molecular-beam epitaxy. The resonant level ini-
tially lies above the Fermi level and moves down at a rate e V/
2, while W(E, V) initially opens at the Fermi level and grows
wider at a rate e V. Yet if the initial width of the emitter
distribution is only e V, how we are able to represent the
device current as being averaged over the full width EF of
electron energies in the emitter as in Fig. 4?

To answer the question in the preceding paragraph
graphically, we display the convolution of Eqs. (18), (22),
and (23) with W(E,V), as in Eqs. (25), (26), and (27),
respectively, on the left-hand side of Fig. 7. We again ignore
any structure on the scale AE. The lower limit of W(E, V) at
EF, - e V is always below the energy threshold E * for reso-
nant current to flow, as seen in Fig. 7. Therefore, we can
always extend the lower limit of W(E, V) from EF, - e V to 0O
and obtain the same device currents. We conclude that the

device currents for E, > EF will be the same if we average the
transmission probability over the full width EF of electron
energies in the emitter instead of the true width e V, even for
eV< E, as in Fig. 4. The importance of this argument is that
only in this special case of E, > EF can we picture resonant
tunneling currents in the standard way as on the left-hand
side of Fig. 4.

The shaded area underneath the small voltage current,
I(E, V~ 0) on the left-hand side of Fig. 7, corresponds to the
total current of the resonant electrons after averaging
I(E, VO 0) over the emitter distribution W(E, V) for each
value of V. The total current when the voltage is large is then
simply the addition of the small voltage currents over an
energy range set by W(E, V). The solid lines on the left-hand
side of Fig. 7 represent the resonant portion of the current
which shifts down with the applied voltage. The dotted lines
represent the nonresonant above barrier contribution to the
current, which under our set of approximations does not
shift in energy with the applied voltage and does not contrib-
ute to the diode current at T= 0. This is why we have ne-
glected the nonrlesonant current in Eqs. (25), (26), and
(27).

Integrating the resonant portion of the current from
Eqs. (25), (26), and (27) we obtain the current magnitudes

1.D (EF, V) = (e/li) (AE) (I V - Vth)( V, - V 1) (28)

for the 1DE device,

12D (EF, V)

e ( LE) /L 1 2m

X (lv V- Vth )O(V,- V

for the 2DE device, and

[2)/e( VI - Vth)/2 ]

I) (29)

(a) (E,V)
0 EF-eV E EF Er ETr E

I2 (EYV~0)

(b) 1W(EV)
0 EF-eV !E E ET

13o0(EV=0)-,

(c) WEY /
SEF-e EV* EF Er ET

IID(EF,V)

o Vth Vr V

I2D(EF,V)

0 Vth Vr

I3D(EF,V)

0 Vth Vr

FIG. 7. Device current vs emitter to collector voltage assuming E, > EF for
(a) the IDE device, (b) the 2DE device, and (c) the 3DE device. These
curves correspond to operating the devices as a diode. The shaded areas on
the left-hand side give the total diode current at each voltage V through a
convolution of the transistor currents from Fig. 6 with W(E, V) shown on
the figure. The integrated area as a function of voltage follows as shown on
the right-hand side, illustrating the connection between transistor and diode
operation of the devices. The dotted lines on the left-hand side indicate the
nonresonant piece of the transmission coefficient, which does not contrib-
ute to the device current on the right-hand side.
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1 3 D (EF, V)

S-- (AE) - -LY [e(I VI - Vth)/2]

xo( VI- Vt)9( V, - I VI) (30)
for the 3DE device. In Eqs. (28), (29), and (30), the thresh-
old voltage is Vth = 2(E, - EF)/e and the resonance vol-
tage is V, = 2E,/e. The current is symmetric about V= 0.
We graph Eqs. (28), (29), and (30) on the right-hand side
of Fig. 7. Below the threshold voltage Vth no current flows
through the diode. The negative differential resistance oc-
curs at the resonance voltage V,.

The 1DE diode current in Fig. 7(a) is especially inter-
esting because the current value is the product of fundamen-
tal constants e/r•i times the area AE under the resonance
peak. If such a diode could be fabricated, it would provide a
macroscopic measurement of the quantum mechanical reso-
nance width AE. The form of each diode current in two and
three dimensions from Eqs. (29) and (30) is also easy to
understand, because they again simply multiply the diode
current in one dimension by the number of channels in the
transverse dimension in an energy range e( V - Vth )/2
available to carry current. Equations (29) and (30) there-
fore describe a continuum of one-dimensional diodes in par-
allel.
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We now wish to argue for the shapes of the diode current
in Fig. 7, knowing only that we must average the transistor
characteristics from Fig. 6 over the energy distribution in the
emitter. Looking at the left-hand side of Fig. 7, we see that
the convolution with W(E, V) requires us to add up all the
resonant current from E * to EF. Integrating the delta-func-
tion-like shape of the IDE device from Fig. 6(a) gives the
constant voltage dependence for the 1DE diode current in
Fig. 7(a). Integrating the inverse square root of energy de-
pendence of the 2DE device from Fig. 6(b) gives the square-
root dependence of the 2DE diode current on voltage in Fig.
7(b). And integrating the constant energy dependence of the
3DE device from Fig. 6(c) gives the linear voltage depend-
ence of the 3DE diode current in the voltage in Fig. 7(c). We
can therefore obtain the shape of the diode characteristics on
the right-hand side of Fig. 7 by graphically averaging the
transistor characteristics on the left-hand side of Fig. 7 over
the emitter energy distribution. Figure 7 therefore shows
how transistor operation (sweeping the Fermi energy) and
diode operation (sweeping the source-drain voltage) are
connected via our convolution method.

Although we have already physically argued for the
shapes of the diode current in Fig. 7 using the transistor
currents in Fig. 6 (which we physically argued for in the
previous section), we wish to give yet another way to under-
stand the shapes of the diode current in different spatial di-
mensions. Examining the diode current for each of the three
emitter dimensions will show how our convolutions with the
free-electron density of states are again merely counting the
number of resonant electrons in each dimension.

The current for a 1DE device is given by counting the
charge, times the velocity of the resonant electrons v,, times
the density of resonant electrons n,.12 Since the resonance
width is narrow compared to the applied voltage, the num-
ber of resonant electrons for the one dimensional device can
be obtained by multiplying the density of states at the reso-
nance energy by the area AE under the resonance peak in
T(E, V),

ID- =ev,n+ = ev, (E ) [N, t(E) AE]. (31)

In one dimension vr (E)N t (E) = 1/rrhi for all E, where
N + (E) = NI, (E)/2 is the density of states for electrons
moving only along the positive z direction, so we recover the
diode current3 2

I1D = (e/li) (AE) (32)

as in Eq. (28). Because of the separable potential U(z, V), we
can count the density of resonant electrons in two and three
dimensions as in Secs. II and III. The only difference here is
that, instead of finding the number of resonant electrons at
an energy E, we wish to find the density of resonant electrons
in a range of energies between E* and EF. Therefore, the
density of electrons in two dimensions by analogy with our
arguments in Secs. II and III is

n+ = N+ (E*) (E)EFL --2 NI (E - E*)dE. (33)

We obtain the diode current in two dimensions as
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12D= e (AE) L2 ( EPý 2 E- , (34)
S 2 \1r"V

agreeing with Eq. (29). The number of resonant electrons in
three dimensions we find from

I-EF L L
n I = NL (E )(AE) N,(E- E )dE,

JE t  2

yielding the current

3D =e (AE) m (E,- E*),

(35)

(36)

consistent with Eq. (30).
We wish to return here to the origin of the negative dif-

ferential resistance in Fig. 7 when V= V,. From the left-
hand side of Fig. 7 it looks as though in two and three dimen-
sions there will still be resonant electrons even when V> V,.
Mathematically, it is clear from Fig. 7(a) that the diode
current in one dimension will be zero when V> V,. Thus,
convolving the one-dimensional device current with the free-
electron density of states must give zero when V> V,. Physi-
cally, in two and three dimensions, even though there are
still electron states available in the well for the range of emit-
ter energies 0 < E < EF when V> V,, the emitter cannot put
electrons into these states and simultaneously satisfy all the
required conservation laws. In two dimensions for example,
the total energy E must be conserved and E = Ez + Ex. Be-
cause of translational invariance along the x direction, the
momentum kx must be conserved. Therefore, Ex must be
conserved. But ifE and E, must be conserved during tunnel-
ing, then the energy Ez along the tunneling direction must
also be conserved. The only range of electron energies Ez
available in the emitter are between zero and the Fermi ener-
gy. Therefore, if the resonant level moves outside this energy
range, the diode current must fall to zero. If there are defects
in the diode such that momentum perpendicular to the tun-
neling direction no longer must be conserved, there can be a
finite diode current even when the resonant level falls below
the electron energy distribution in the emitter in two and
three dimensins.

B. Case of E, <EF

We now consider the case E, < EF, where the resonant
level is initially below the Fermi level. Beginning with one
dimension, no current can flow until the applied voltage is at
least e V= (EF, - E,). But by the time we have applied this
much voltage, the resonant level has moved down to a posi-
tion E* = E, - (EF - E,)/2 and so on. The diode thresh-
old voltage Vth in one dimension for E, <EF is therefore
found from the infinite series

eVth = (EF -Er)(1 +1 + + + -. ) = 2(EF, - E,).
(37)

Also, the resonant level must be at least EF - Er above the
bottom of the conduction band when V= 0, or else the level
will fall below the bottom of the conduction band before the
applied voltage reaches the threshold voltage. In other
words, if the resonant level is lower than half the Fermi level
there will be no resonant diode current in one dimension.
This naturally divides the case EF > E, into two subcases:
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EF > E, > EF/2 and E, < E/ 2 .
We display the integrands of Eqs. (25), (26), and (27)

graphically on the left-hand side of Fig. 8 for the case
E,> E, > E/2 and the bias condition V< V,. As in Fig. 7,
the shaded area in Fig. 8 corresponds to the total current of
the resonant electrons. Note there are no resonant electrons
in one dimension for V< V,, in the figure. The threshold
voltage corresponds to the emitter energy distribution over-
taking the resonant level as it moves down in energy. When
the applied voltage is greater than the threshold voltage,
these energy diagrams on the left-hand side of Fig. 8 will look
almost exactly the same as the ones on the left-hand side of
Fig. 7. In the case where E, > EF described in Fig. 7, the
emitter energy distribution always extended below the reso-
nant level. Thus we expect the same dependence of the cur-
rent on the applied voltage for both the case E, > EF, and for
the case E, < EF when the applied voltage is greater than the
threshold voltage.

Integrating Eqs. (25), (26), and (27) directly for
EF > E, we find

ID (EF, V) = (e/i) (AE)0(IVI - Vth )( V, - IV ) (38)

for the 1DE device,

12D (EF, V) = (AE) L-
irrs 2\1r FA

x{ [2e ( Vt + V)/2 ]o(Vth + V)

- [2e(V- V)/2]9(Vth - V)

XO(V,- IVI) (39)
for the 2DE device, and

13 D (EFV) = e(AE) (Tr-i 2 v*f2

X{[e(V'h + V)/2(h(Vth + V)

- [e( V,h - V)/2]0(V, - V)}

XO( v,-I V) (40)

for the 3DE device. Equation (38) is a current magnitude
while Eqs. (39) and (40) are signed currents.

We display the three diode currents from Eqs. (38),
(39), and (40) graphically for E, > E, > EF,/2 on the right-
hand side of Fig. 8. In contrast to the IDE diode, a nonzero
current flows for voltages below the threshold voltage for the
2DE and 3DE diodes when E, <E,. This can be inferred
from the left-hand side of Fig. 8, where there will always be
some resonant electrons in the 2DE and 3DE diodes for
small V. The 1DE device current in Eq. (38) is always zero if
the resonant level is below half the emitter Fermi level.

The form of Eqs. (39) and (40) motivate the following
useful construction of the diode currents for EF > E,: The
two terms in Eqs. (39) and (40), shown as dotted lines on
the right-hand side of Fig. 8, have exactly the same func-
tional form as Eqs. (29) and (30) from our previous case of
E, > EF. The difference of these two dotted lines gives the
diode current in the case of I Vj < Vth. These two dotted lines
may be thought of as the "forward" and "reverse" currents
with their difference giving the net current. The forward cur-
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V

FIG. 8. Device current vs emitter to collector voltage assuming E,/
2 < E, <E, for (a) the 1DE device, (b) the 2DE device, and (c) the 3DE
device. The left-hand side of this figure, similar to Fig. 6, is shown for the
bias condition V< V,h. The left- and right-hand sides of the figure again
illustrate the connection between transistor and diode operation of the de-
vices. The shaded areas on the left-hand side again add up the total diode
current for each value of V. The diode current when V< V,h may be pic-
tured by subtracting the dotted curves shown on the right-hand side, corre-
sponding to subtracting the "forward" and "reverse" diode currents. In (c)
describing the 3DE device, the slope of the I- Vcurve changes by a factor of 2
at V,h.

rent is the current from the emitter assuming there are no
filled electron states in the collector and vice versa. For our
previous case ofE, > EF the reverse current was zero and did
not contribute.

The diode current in Fig. 8 increases faster with voltage
when IV < Vth than it does above the threshold voltage,
there being a factor-of-2 difference in the slopes in three di-
mensions. The graphical construction in Fig. 8 includes both
subcases EF > E, > EF/ 2 and E,< EF/ 2 , only in the case
E, < EF/ 2 the negative differential resistance voltage occurs
before the threshold voltage. This construction can also be
done in one dimension as shown in Fig. 8 (a). And similar to
the discussion following Eqs. (28), (29), and (30) the diode
currents in two and three dimensions can be thought of as
arising from adding many one-dimensional diodes in paral-
lel. The difference for the case of E, < EF is that we must
subtract the reverse diode current from the forward current
in each one-dimensional diode.

C. Base contact to the quantum well
In this section we explore a simple model for operating

the devices in Fig. 1 as transistors by adding an additional
base contact to the quantum well. We assume the base cur-
rent is zero, and that the base acts only to alter the shape of
the tunneling potential. We show that a strong negative
transconductance is possible for all three devices if one can
contact the quantum well. In contrast, for the mode of tran-
sistor operation in which we sweep the Fermi energy as in
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Sec. III, only the IDE device showed a strong negative trans-
conductance.

Under the same caveats as at the beginning of our dis-
cussion of the diode operation, we can model the effect of the
additional base contact as simply shifting the position of the
resonant level linearly with the base voltage as

E* = E, - eVB, (41)

where V, is the emitter to base voltage. Note that an applied
base voltage can shift the position of the resonant level to
either a higher or lower value in energy. The emitter to col-
lector bias V no longer has any effect on the energy of the
resonant level, and simply determines the width of W(E, V)
as before. Equations (25), (26), and (27) still describe the
effect of the base contact if we use Eq. (41) to determine the
position of the resonant level E *.

For the case of large bias across the device so that
e V> EF, the full electron distribution in the emitter partici-
pates in conduction as in Fig. 7. Therefore, from Eq. (41),
the diode curves on the right-hand side of Fig. 7 can be rein-
terpreted as current-versus-base voltage if we rescale the vol-
tage axis by a factor of 2 and similarly change the threshold
and resonance voltages. We graph the current-versus-base
voltage when e V> EF, on the left-hand side of Fig. 9. In this
figure the threshold voltage VB = Vh occurs when
E* = EF so that e Vth = Er - EF. The resonance voltage
V, = Vr occurs when E* = 0 and is given by e V, = E,.
Note that the threshold voltage for the base can be either
positive or negative. The number of resonant electrons can
be pictured in the same way as on the left-hand side of Fig. 7.

When the applied bias is smaller than the Fermi energy,
e V< EF, we can obtain the current-versus-base voltage by a
construction similar to the one we used in the diode in Fig. 8

IID(EF,VB)

(a) VVth Vr

12D(EF, V)

(b) V8
Vth Vr

13D(EFVs)

(C) Va
Vth Vr

IIo(EF,VB)

when E, < EF. We shown this construction on the right-
hand side of Fig. 9, subtracting the dotted lines to obtain the
total current. The threshold and resonance voltages are the
same as the case of large bias, but in addition there is a
"break" voltage VB = Vb, defined when E* = EF - eI Vj
giving Vbr = Vth + I V . This break voltage in the transistor
currents only occurs when the applied voltage is less than the
Fermi energy. We do not write down any equations for the
currents shown in Fig. 9, as they are easily obtained from the
ones found in our treatment of the diode earlier in this sec-
tion.

V. OTHER RESONANT TUNNELING DEVICES

In this section we examine other possible resonant tun-
neling devices in addition to the ones in Fig. 1. Our purpose
in this section is to show how currents in these other possible
resonant tunneling devices are related through a convolu-
tion with the free-electron density of states. Both the emitter
spatial dimension and the degree of confinement in the quan-
tum well can vary. This gives a total of nine possibilities as
shown in Fig. 10. The columns of Fig. 10 hold the emitter
dimension fixed while the rows hold the degree of confine-
ment in the quantum well constant.

In this paper we have shown how the convolution meth-
od connects the conductance of devices along the main diag-
onal of Fig. 10, as indicated by the arrows in the figure. The
top left-hand corner of Fig. 10 is the usual resonant tunnel-
ing diode grown by molecular-beam epitaxy. We label this
device the 3DE/1DC for its three-dimensional emitter
(3DE) and one-dimensionally confined (lDC) quantum
well. We proceeded in this paper from the 1DE/3DC device
by convolution to the 2DE/2DC device, and similarly from
the 2DE/2DE device by convolution to the standard 3DE/
1DC device.

The conductance of the devices in the left-hand column
of Fig. 10, the 3DE/lDC, 3DE/2DC, and 3DE/3DC de-

1 DE f1 DC

1 DE
2 DC

C 0

t.,_E) CC e
0-0

C-

1 DE
3DC

FIG. 9. Transistor characteristics for the three resonant tunneling devices
having abase contact to the quantum well. We show the device current vs
base voltage V, for (a) the IDE device, (b) the 2DE device, and (c) the
3DE device. Our calculation assumes the resonant level moves linearly with
base voltage and that the base current is zero. The left-hand side shows the
transistor characteristics when the emitter-to-collector bias is greater than
the Fermi energy, eV> E,. The curves on the right-hand side are for
eV<EF,.
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Emitter
dimension

FIG. 10. Nine possible combinations of resonant tunneling devices having
different emitter dimensions (IDE, 2DE, and 3DE) and different confine-
ment dimensions in the quantum well (IDC, 2DC, and 3DC). The convo-
lution method relates the conductance of the devices along the diagonals, as
indicated by arrows in the figure.
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vices, was calculated in Ref. 11. This was called "tunneling
into a quantum well, wire, and dot," respectively in Ref. 11.
The transmission coefficient for the 3DE/3DC device in the
lower left-hand corner was also calculated in Ref. 33 and
found to have a Lorentzian shape. It is unclear whether these
two calculations' 1.33 are in agreement. The case of resonant
tunneling in two dimensions, the 2DE/3DC device, was
studied in Ref. 34. The transmission coefficient was also
found there to have a Lorentzian shape. It should be possible
to relate this calculation34 for two-dimensional tunneling
into a quantum dot (2DE/3DC) to the case of three-dimen-
sional tunneling into a quantum wire (3DE/2DC) in Ref. 11
using our convolution method. This is shown by an arrow
along a diagonal in Fig. 10. Biittiker'6 has also argued that
the Lorentzian shape for the transmission probability of the
3DE/3DC device in Ref. 33 and the 2DE/3DC device in
Ref. 34 must follow from the Breit-Wigner formula. And
the transmission coefficient of the 1DE/3DC device is al-
ready known to have a Lorentzian shape2 3 near the reso-
nance peak. Thus, all the devices along the bottom row have
Lorentzian-shaped transmission coefficients.

The devices in the upper right-hand corner of Fig. 10
have not been fabricated and only recently studied,35 but the
1DE/2DC device is connected to the 2DE/1DC device
through convolution as shown by an arrow along a diagonal
in the figure. Thus, for the nine possible devices of Fig. 10,
convolution with the one-dimensional free-electron density
of states relates their conductance along the diagonals.

Including quantization in the device emitter produces
many more possibilities for resonant tunneling devices.
Some recent studies in this area are summarized in Ref. 36.
The 2DE devices could be regarded as having a quasi-one-
dimensional emitter (Q1DE), while the 3DE devices can
have either a quasi-two-dimensional emitter (Q2DE) or a
Q1DE. Obtaining the conductance for these devices is quite
difficult in general. But for the devices along the main diag-
onal of Fig. 10, which are described by a separable potential,
including the effect of the emitter quantization is much easi-
er. Because the potential depends separately on each coordi-
nate z, x, and y for the 1DE/3DC, 2DE/2DC, and 3DE/
1DC devices, an electron cannot scatter from one subband to
another as it traverses these devices. The separate subbands
then act like independent devices in parallel.

Suppose that confinement in the emitter gives rise to a
number of subbands at energies E,, E2 , E3, etc. To obtain the
conductance of the devices along the main diagonal when
the emitter energies are quantized into confinement sub-
bands, we must convolve the device currents obtained in the
previous sections with the function

6(E - E ) + 6(E - E2) + 6(E - E3) + - - - . (42)

Again, this corresponds to adding classical resistors in paral-
lel since there is no scattering between the different confine-
ment subbands. One can sketch all the diode and transistor
currents very easily for this case. It has also been speculated
that accumulation in the emitter of a standard MBE-grown
tunneling diode would give rise to a bound level in the emit-
ter. In that case, we would have to add the current of a 2DE
in parallel with the 3DE to obtain the total device current.
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VI. CONCLUSIONS

We have studied the transistor- and diodelike operation
of resonant tunneling devices having a one-, two-, and three-
dimensional electron emitter. Our method emphasizes the
use of convolutions, allowing us to separate the effects of
finite voltage, finite temperature, and increasing spatial di-
mension of the emitter on the device current. Using this con-
volution method, we obtained an intuitive physical picture
of the tunneling current. Although we did not emphasize the
temperature dependence of the current here, it can also be
included as a simple convolution.

We considered transistor operation by sweeping the
Fermi energy in the resonant tunneling device. This is possi-
ble in a field-effect transistor using either a substrate contact
or light. For this case, the 1DE device shows a strong nega-
tive transconductance, the 2DE device a weaker negative
transconductance, while the 3DE device can at best show a
zero transconductance. Only in the 1DE case does the cur-
rent fall to zero when the device is operated as a transistor.

For diodelike operation of the resonant tunneling de-
vices, we recover the standard triangular-shaped resonant
peak in the 3DE device where the resonant device current is
proportional to the emitter to collector voltage V. For the
2DE device the resonant current is proportional to XV. In
the 1DE device the resonant current is independent of
source-to-drain voltage. The resonant current for the 1DE
diode is equal to the fundamental constants e/lrfr times the
area AE under the resonance peak in T(E, V). We examined
the case where the bound level is initially below the Fermi
energy in the emitter and the different resulting voltage de-
pendencies of the diode current.

We also examined transistor operation of the resonant
tunneling devices in each dimension by sweeping the energy
of the quantum well. We modeled this energy as being direct-
ly proportional to a base voltage VB and assumed the base
current was zero. A strong negative transconductance is
then possible in each spatial dimension sweeping the base
voltage, because the base contact can pull the resonant level
either above or below the electron distribution in the emitter.
The dependence of the transistor currents on the base vol-
tage for large bias across the device is the same as for the
diode current, that is, proportional to VB for the 3DE, rising
like ýfi for the 2DE, and independent of V, in one dimen-
sion. We also examined the transistor currents-versus-base
voltage at small emitter to collector voltages.

The unifying theme of our paper is that the effects from
various physical process on the tunneling current can be
more easily understood when expressed as convolutions. We
have used convolutions to treat dimensional effects as well as
broadening effects. As a final example, we have shown how
our convolution method can give insight into resonant tun-
neling devices having different degrees of confinement in the
quantum well, in addition to having a different spatial di-
mension in the device emitter.
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We calculate the current transmission amplitudes and electrical conductance as a function of Fer-
mi energy for electrons scattering from a single defect in a quasi-one-dimensional wire. In a
confined geometry the scattering boundary conditions couple propagating modes in the wire to
nonpropagating or evanescent modes. Therefore, the applied steady current causes localized or
evanescent modes to build up around any defects in the wire. These extra stored electrons strongly
affect the scattering boundary conditions for the propagating modes whenever the Fermi energy ap-
proaches either a new quasi-one-dimensional subband or a quasi-bound-state splitting off of the
higher confinement subbands. We show that the presence of evanescent modes can lead to either
perfect transparency or perfect opaqueness for the scattering modes, even in the presence of scatter-
ing defects. For the special case of a 8-function scatterer in the wire we analytically obtain the
scattering amplitudes. We also numerically examine a finite-range scatterer.

I. INTRODUCTION

When an electron scatters elastically from an imperfec-
tion in an open geometry, such as the scattering from a
potential-energy barrier or well in an infinite three-
dimensional space, it scatters into a traveling wave which
propagates away from the defect. In contrast, if the elec-
tron is restricted to a wire such that confinement sub-
bands are formed, the incident electron can elastically
scatter into evanescent modes available in the wire. Thus
for a steady current flow incident on a defect in the wire,
a localized mode will build up around the defect even if
the scatterer is repulsive. Unlike the case in electron lo-
calization theory where the "localization" is either a
consequence of the coherent scattering of electrons from
multiple defects or of electrons trapped in potential-
energy wells, the localized electron trapped around a sin-
gle scattering defect in a narrow wire is maintained there
by the applied incident current, regardless of the sign of
the scattering potential.

For the special case of an attractive scatterer in a nar-
row wire, it is possible to have quasi-bound-states split-
ting off from one of the higher-lying confinement sub-
bands. The bound state associated with the lowest sub-
band is analogous to a donor level below the conduction-
band minima of a semiconductor. An electron trapped in
the lowest subband's "donor level" at zero temperature
cannot escape the region of space near the donor; it is
truly bound. But since the confinement potential of the
wire gives rise to multiple subbands, there will be a new
"quasi-donor-level" associated with each subband. These
additional "bound-state remnants" are also spatially lo-
calized near the defect and composed of evanescent
waves, but are not true bound states. Because they are
degenerate in energy with propagating modes in the wire
and are coupled to the propagating modes, they will de-

cay with time. But in contrast to the unbound evanescent
waves which can build up around either an attractive or a
repulsive scattering defect, we believe the quasi-bound-
states can persist for much longer times if the incident
current is reduced to zero. Analyzing how these new
quasi-bound-states will decay with time is an interesting
problem in its own right, but for the purposes of this pa-
per it is sufficient to realize that these states exist and are
important for electron transport in confined geometries.

We show in this paper that the presence of evanescent
modes strongly affects the scattering of propagating
modes from a defect in a quasi-one-dimensional wire.
For interacting electrons this is clearly true because an
electron trapped near a scattering defect will alter the
scattering potential near the defect. But even for the
noninteracting electrons which we consider in this paper,
the building up of evanescent modes near the scattering
defect alters the boundary conditions for the scattering
event. This leads to unusual scattering properties when
the Fermi energy approaches either a subband minima or
a quasi-bound-state splitting off of a higher-lying
confinement subband, so that evanescent modes cannot
be neglected when analyzing scattering in a confined
geometry. We are careful in our analysis to consider the
effects of both propagating and evanescent modes during
the scattering event. It is well known from the analogous
case of electromagnetic wave scattering in microwave
,waveguides that one cannot neglect the electromagnetic
energy stored near any defects or sudden spatial varia-
tions in the guide when calculating its scattering proper-
ties. For optical waveguides one must also consider elec-
tromagnetic radiation generated at defects, an effect
whose analog is absent in our problem.

Our main goal is to understand the simplest possible
scattering problem in a quasi-one-dimensional wire:
scattering from a single 5-function defect in an infinitely
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tain an equation of motion for the Fourier coefficients
c (x) as2

+ k2 c(X) = + r.. (x)cm (x) (4)
dx 2  m

where the wave vector kn is

k. = f(E -En )

and the rnm's given by

mnm (x)= 2 f dyX*(Y)Vd(X,Y)Xm(Y) (6)

are the mode coupling constants. Equation (4) allows any
normal mode to scatter elastically into any other normal
mode through the defect potential Vd(x,y). One must
therefore solve a scattering problem with an infinite num-
ber of coupled modes to obtain the exact answer for the
scattering properties of any one normal mode. The sum
on the right side of Eq. (4) includes both the term n = m
and the coupling to any evanescent modes for which we
set kn = iK .

The boundary conditions for solving this scattering
problem are analogous to the ones from textbook
quantum-mechanical scattering problems in one dimen-
sion. Continuity of the wave function */(x,y) requires
that each Fourier coefficient c,(x) be continuous. If the
scattering potential Vd(x,y) is nonsingular, then it fol-
lows by integrating Eq. (4) and using the continuity of the
c,(X)'s that the derivative dc,(x)/dx must be continuous
for each n. We discuss the boundary conditions for
singular potentials in the next section.

In the regions where the scattering potential is zero,
namely, regions I and III as shown in Fig. 1, the solutions
to Eq. (4) are

C,(x)=
(7)

, x>L , (8)

for the propagating modes and, by setting'k n =iK,, ob-
tain

Ane-X+Bne K X, x<0 (9)

Cne  (x-L)+Dne , x > L , (10)

for the evanescent modes. Solving Eq. (4) with the ap-
propriate boundary conditions will determine the
coefficients An, Bn , Cn, and Dn in each region. We de-
scribe a method for doing this in Sec. III and V.

Suppose the coefficients An, Bn, C,, and Dn are now
known. Define the current transmission probability
Ti j =Tij from normal mode or "channel" i on the left
to channel j on the right following the diagram in
Biittiker et al. IS by

J k.Tij,right - kj (11)
--Ji ten = ki(11)

when all other incoming currents are zero except those in
channel i. Here tij is the current transmission amplitude
as defined in the scattering matrix.20 In terms of the
coefficients An, Bn, Cn and D, these are

(kj)1/2 (kj )'1/2 C.
S (k ti- (k ) (12)(ki )1/2 (k i )1/2 Ai

where we have defined tij= C/A i as the ratio of the
wave-function amplitudes. Similarly, the reflection
coefficients R 1 are

R , =_ =7left = * (13)
oi,eft

where rj-=Bj/A i is the ratio of the reflected wave-
function amplitude to the incident amplitude. The two-
probe current at small voltages we obtain from one of
Landauer's formulas'5-

22

I e
2  2  2

-- e -t
Gtwo-probe- V ~ ..Tij . ij =- Tr( t t )

i,J I,j

(14)

where the sum in Eq. (14) runs only over the propagating
normal modes of the wire. Equation (14) and its generali-
zations to finite voltages are equivalent to standard tun-
neling conductance formulas. 24- 26 The quantum contact
resistance implied by Eq. (14), discussed in Refs. 17-22,
has been seen in a striking and clear fashion.27,28

We shall also examine the four-probe Landauer con-
ductance.14,15,1 7,21,22 For the cases we consider in this pa-
per, an electron incident on the scatterer from either end
of the conductor will have the same transmission proba-
bility. Or in the notation of Ref. 15, we will have
Ti j=T and Rij=R . in all our calculations. For this
case the four-probe conductance can be written more
simply as

Gfour-probe - e2  [iiV, rh if J

(15)

Equation (15) is just the two-probe conductance from Eq.
(14) multiplied by a voltage division factor. The currents
I in Eqs. (14) and (15) are the same but the voltages Vand
V' are measured differently.'14 In Eq. (15) N i is the one-
dimensional free-electron density of propagating states
for the ith occupied subband. Also following Ref. 15, we
assume that the weakly coupled voltage probes are far
enough away from the scatterer so that evanescent modes
existing near the voltage probes can be neglected. This
assumption is always violated near the subband minima.
However, for our special case, the evanescent mode am-
plitude is the same on either side of the scatterer so the
four-probe formula of Ref. 15 is likely valid for our prob-
lem despite its neglect of charge accumulation near the
voltage probes in the evanescent modes.

If evanescent modes are important in any scattering

-- -----I ~ ~~~
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EVANESCENT MODES AND SCATTERING IN QUASI-ONE- . . .

Density of Propagating States

E, E2  E3

Density of Evanescent States

E1  EPz EEI E2 E3

so that we take L =0 in Fig. 1. The weight y can be ei-
ther positive or negative. Integrating Eq. (4) across the 8
function gives2

dc, (x) dc, (X)
dx x=o + dx x o nm cm(O)

x=0- m
(18)

where

Fnm 2m X(F *)Xm(Yz)nm i 2P nY (19)

FIG. 2. Density of states in a quasi-one-dimensional wire. (a)
shows the unusual dispersion relation and density of propaga-
ting states while (b) emphasizes that evanescent states also exist
in the wire. Thus, in the presence of scattering defects, the
states available in (a) are not the only relevant ones to consider.
The evanescent density of states depends on position as ex-
plained in the text.

problem, as they must be for scattering in a confined
geometry, then the position-dependent density of states

(16)N(E ;x,y)= = I (E -- Enk ) I 0nk(X,Y)l 2

n,k

will no longer be just the usual result for clean wire
shown in Fig. 2(a). Instead, for positions near the defect,
there will be an extra piece added to the position-
dependent density of states which will resemble Fig. 2(b).
Figure 2 again emphasizes that evanescent modes will
have an effect on the scattering properties of the wire well
before the subband minima is reached. If quasi-bound-
states form in the wire for the case of an attractive
scatter, then Fig. 2(b) will of course become more compli-
cated.

The remaining sections will be concerned with solving
the infinite set of coupled equations (4) for the wave func-
tions c,(x), obtaining the various transmission and
reflection coefficients, and studying the Landauer conduc-
tance of the wire.

III. CASE OF A 8-FUNCTION SCATIERER

In this section we consider electron scattering from a
6-function potential in a quasi-one-dimensional wire. We
write down the detailed analytic solutions to the infinite
set of coupled equations, Eq. (4), for the transmission
coefficients Tii and reflection coefficients Rii in Appendix
B. These solutions are valid for 6-function potentials of
arbitrary strength and for any arbitrary number of propa-
gating and evanescent modes. In this section we formu-
late the problem and discuss some of its most interesting
features.

Let the 6-function scattering potential be

Vd(x,y)= y(x)6(y -yi ) (17)

An +B, =C, +D, (22)

for all normal mode indices n.
Imposing the remaining boundary conditions from our

scattering problem, proceeding as in the normal textbook
quantum-mechanical scattering problems in one dimen-
sion, allows further simplification of Eqs. (20), (21), and
(22). We consider particles incident only from the left.
Then Dn =0 for all propagating n. Because we take the
wire to be infinitely long, we can eliminate all growing
evanescent waves and set Dn = 0 and A n= 0 for all
evanescent n. This leaves the condition B, = Cn for all
evanescent n and An-t+Bn=C C for all propagating n.
Furthermore, for all the propagating An's, we allow only
one normal mode incident at a time so that we have one
more unknown than equations (as is usual in scattering
problems). We solve for all the transmitted and reflected
wave amplitudes with respect to the single incident A,.

We now find a procedure for solving the infinite set of
coupled equations (20), (21), and (22). Truncating the
equations to a finite size will allow us to find the right
procedure. For definiteness, let us write down the matrix
equation we must solve if we consider two propagating
modes and two evanescent modes. Let mode two be in-
cident on the scatterer so that A1 =0 and B1 =C 1. We
write down the set of four coupled equations valid when
E 2 <E <E 3 as

10 357

are the mode coupling constants. The n,, are propor-
tional to the strength of the impurity and the size of the
wave function at the impurity, and are zero if the wave
function has a node at the impurity position. Equation
(18) reduces to

ik( C -Dn )- ikn( A -Bn)= Fnm (Am +Bm) (20)
m

if n denotes a propagating mode and, setting k = iK,, be-
comes

-KC,, -Dn,) +Kn( An -Bn) = C ,nm(Am +Bm) (21)
m

if n denotes an evanescent mode. The sum over m again
includes the term where m =n as well as all the evanes-
cent modes. In addition, the boundary condition that the
wave function itself must be continuous, cn (0 -)=c,(0 + ),
gives
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0 111-2ik,
-2ik 2  1F2 1

o r3l
0 o 1

F12

r 22 -2ik 2

F32

F42

F 13

r 23
F33 +2K 3

F43

F 14  t21

r 24  t22

F34  t 23

F44+2K4 t 24

Now let us eliminate the highest evanescent mode, in this case mode four, from the 4 X 4 matrix Eq. (23). We obtain
the 3 X 3 matrix equation

0

-2ik 2

0

FI1,4 -2ik,

F 21,4
F31, 4

F12,4
F 22,4 -2ik 2

F 32,4

F 13,4  t21

F 23,4  t22

F 33,4 +2Ki 3 t23

(24)

which has the same form as the matrix equation we would have started with if we had originally decided to allow two
propagating modes and only one evanescent mode. Equation (23) looks formally like Eq. (24) if we simply truncate the
highest evanescent mode in Eq. (23). The only difference between Eq. (24) and truncating Eq. (23) is that all the mode
coupling constants in Eq. (24) have been rescaled by the evanescent mode four where

(25)2K 4Fij,4 =Fij 44+2K 4 ' ij= 1,2,3

Now eliminate the next highest evanescent mode, mode three, from Eq. (24). We obtain

0 [I11, 3- 4-2ik 1

-2ik 2 I 21,3- 4

Fl2,3-4 t21
F22,3- 4-2ik 2 I t22 I

Again, this is the same matrix equation we would have
originally written down if we had allowed only the two
propagating modes and completely neglected the evanes-
cent modes in Eq. (23), except that the mode coupling
constants [which were initially only rescaled by mode
four in Eq. (24)] are now rescaled by both the evanescent
mode three and mode four as

213
ij,3-4- Fij,4 ,334+2K3 , ij= 1,2 . (27)

The total effect of the evanescent modes is to rescale
the mode coupling constants of the propagating modes.
The rescaling procedure makes the mode coupling con-
stants energy dependent. And although we have written
down this procedure only for two propagating modes and
two evanescent modes, by induction it clearly holds for
any number of propagating and evanescent modes. If
there are p propagating modes and q evanescent modes,
we can eliminate the q evanescent modes by the pro-
cedure outlined above and solve a p Xp matrix equation
to obtain the transmission and reflection amplitudes for
the propagating modes, and hence determine the conduc-
tance. We solve this matrix equation explicitly for the
lowest three subbands in Appendix B and assert that, be-
cause of the symmetry of the matrix equation analogous
to Eq. (23), we can solve the p Xp matrix equation for any
integer p. Hence we find a complete solution to our
scattering problem. We emphasize at this point that our
scheme for including the total effect of the evanescent
modes as a simple rescaling of the mode coupling con-
stants for the propagating modes is only valid for the spe-
cial case of a single 8-function scatterer in a narrow wire.

Clearly we must truncate this infinite set of coupled

I
equations in order to solve them, but how many equa-
tions must we include in order to obtain a physically
correct answer? The above rescaling procedure tells us
that it depends on the strength of the scatterer. From
Eq. (19) all the mode coupling constants are of order
Fnm - 2my/W Wi 2 so that for strong scatterers the larger
will be F,,, and hence it will be necessary to include more
evanescent modes in order to obtain the correct transmis-
sion probabilities. For evanescent mode n, the rescaling
of the mode couplings constants will have negligible
effect when the evanescent density of states times the
strength of the scatterer is small, (m /h2K,, )(y /W) << 1,
and so it is necessary to include enough evanescent modes
in the calculations such that this inequality is satisfied.
In real wires, which have a potential well of finite depth,
evanescent states from the continuum may play some role
in determining their scattering properties if the scattering
potential is strong enough.

Our mode rescaling procedure tells us another impor-
tant fact: The modes completely "decouple" when the
particle's energy aligns with the bottom of a subband,
and perfect transmission results for each of the separate
modes. Consider the case of two propagating modes de-
scribed by Eq. (26). From Eq. (27), as we approach the
bottom of subband 3, we must rescale all the mode cou-
pling constants by the factor 2K3/( 1 33 +2K 3). This factor
approaches zero since K3-- 0 at the third subband mini-
ma. Hence all the mode coupling constants become zero,
making it appear as though the scatterer were absent
from the wire as we approach each new quasi-one-
dimensional subband. This "perfect transparency" effect
can be seen here for T"22 =1 and T 21 =0 by substituting
the mode coupling constants near the third subband
minima into Eq. (26). A similar equation written down in

(23)

(26)
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Appendix B shows T,, = 1 and TI2 = 0 near the third sub-
band minima. By our mode rescaling arguments, all the
mode coupling constants will become zero at each new
QlD subband minimum for the 8-function scatterer.

One can see this perfect transmission effect even more
clearly by writing down the set of equations valid for one
propagating mode and one evanescent mode for
E, <E <E 2 as

-2ik, Fii-2iki
0 r 21

'2 22 t11

F12+2K 2 t12

longer be a point in energy of perfect reflection in that re-
gion because the bound state (which originally split off of
the second subband) has dropped below the first subband
and therefore out of the scattering problem. We discuss
the bound states of the 8-function potential in a quasi-
one-dimensional wire in detail in Appendix A.

We are now interested in showing, from Eq. (28), how
the occupation probability of the evanescent mode accu-
mulates as the Fermi energy approaches the second sub-
band. The solutions to Eq. (28), valid in the energy range
from E, <E <E 2 , are

or, writing this slightly differently,

-2ik( A 1 -C 1 )= F1 C 1, + F 2C 2 ,

-2K 2C 2 = 2 1C 1+ 22C 2

(30)

(29)

Including more evanescent modes in Eq. (28) will not
affect the structure of the equation, since their total effect
is just to alter the mode coupling constants in a qualita-
tively unimportant way. The first row of Eq. (28) or Eq.
(29) asserts that the discontinuity in the derivative of
mode one at the defect is proportional to the probability
amplitudes of each of the modes. The derivative jump of
the evanescent mode, from the second row of Eq. (28),
must also be supported by the buildup of the wave func-
tion at the defect. The second row of Eq. (28) emphasizes
that the modes are coupled, since if the amplitude of the
evanescent mode is taken to be zero, the propagating
mode must also have zero amplitude.

Setting K2= 0, meaning that there is no change in the
derivative of mode two at the defect (mode two stays a
constant value for the entire length of the wire), gives
perfect transmission of mode one, T,1 = 1 when E =E 2.
To obtain this result from Eq. (28) we use the identity
r 21r 12 =r 11r 22. The analogous result holds for higher
subbands; all the modes have perfect transmission when-
ever the electron energy aligns with the bottom of a sub-
band. Equation (28) asserts that, at the bottom of the
second subband, the evanescent mode occupation will
build up to exactly the right amount to compensate for
the derivative jump required of mode one at the scatterer.

There is another interesting feature of Eq. (28). If the
6-function potential is attractive, that is if y < 0, then it is
possible to have F22 + 2K2 = 0. Or more generally, if there
are m total modes, then r22,3-m +2K 2 = 0. We show in
Appendix A that the energy satisfying this equation cor-
responds to a quasi-bound-state in the 8 function splitting
off from the second subband. In that case Eq. (28) pre-
dicts zero transmission, that is T11 =0. A qualitatively
similar thing happens in higher subbands as we show in
the next section, although the transmission does not fall
to zero for the higher subbands. So the presence of
evanescent modes in the wire leads to perfect transparen-
cy when K, =0 for any n, and we can also lead to perfect
opaqueness in the lowest subband if the 8-function poten-
tial is negative but not too strong. If the 8 potential is so
strong and negative that r 22,3-m + 2K2 = 0 has no solu-
tions in the energy range E1 <E <E 2, then there will no

O1 2K2 -1
2ik, ][22+2K2

leading to the transmission coefficient T1 1:

Tll 11  
2 K2

2k, 2 2 + 2
K 2

(31)

Since there is only one propagating mode we have
1= T-1 +R 1 l. The wave-function amplitude in the
evanescent mode is

B2  "21
t12- A - FI' 2 2+2 2 tll

1-21 (F 22 +2K 2 ) ik- 2K2

leading to a building up of probability density

B2 2

= Fl 22 (r 22 +2K 2)2+ 2k (2K2 )2

1, (32)

(33)

The transmission coefficient T 11 from Eq. (31), as well
as the size of the evanescent mode ItI212 1B 212/1A 12

from Eq. (33), are shown in Fig. 3. The strengths of the 6
functions are given in the figure caption and other
relevant parameters at the beginning of the next section.
Figure 3(a) shows the case of a repulsive 6-function
scatterer. The two solid curves in Fig. 3(a) are for a weak
repulsive scatterer, while the two dotted curves describe a
slightly stronger repulsive scatterer. The transmission
coefficient T 11 is shown near the top of Fig. 3(a). Perfect
transmission, Ti1 = 1, occurs when the incident electron
energy aligns with the second subband minima at
E=E2 =25 meV. The transmission coefficient T 11 de-
creases as the scatterer is made stronger. The electron
probability to occupy the evanescent mode, It12 2 shown
near the bottom of Fig. 3(a), grows steadily as the energy
approaches the second subband. Itl 2 2 qualitatively fol-
lows the density of evanescent states. As the strength of
the repulsive scatterer increases and the transmission
probability T 11 correspondingly decreases, the probabili-
ty of occupying the evanescent mode increases. This is a
reasonable result since (1) a more opaque barrier reduces
transmission and (2) the evanescent modes must be popu-
lated by scattering from the incident modes, and this
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FIG. 3. Transmission coefficient T,1 through 8-function
scattering potential V(x,y)=yS(x)8(y -yi) shown next to the
strength Itl2 2 of evanescent mode two. Perfect transmission
T, = I1 results when E =E2 =25 meV. (a) shows the case of a
repulsive scatterer having strength y= 10 feVcm 2 (two solid
lines) and y = 80 feV cm2 (two dotted lines). As the scatterer is
made stronger, transmission decreases and more electrons are
stored in evanescent mode two. (b) shows an attractive scatterer
of strength y = -70 feV cm2. The transmission coefficient T11
(solid line) becomes zero at the quasi-bound-state energy, while
the number of electrons Itl 2 12 (dotted line) stored in evanescent
mode two reaches a maximum near the quasi-bound-state and
then decreases as the incident electron energy approaches the
second subband minima.

scattering is enhanced if the scattering strength increases.
Figure 3(b) shows T 11 (solid line) and Itl 2 2 (dotted

line) for an attractive scatterer which is slightly weaker
than the repulsive ones of Fig. 3(a). The point where
T 1, =0 is the quasi-bound-state energy of an electron in
the attractive scatterer which has split off from the
second subband. Again T 11 =1 at the second subband
minima. The building up of the evanescent mode tl 12 2 is
largest near the quasi-bound-state energy, but its max-
imum does not occur at the bound-state energy. Equa-
tion (33) for It12 12 has a Lorentzian-like shape whose
peak is above the bound-state energy. Note also that, for
the attractive scatter, the occupation of the evanescent
modes is much larger than for a repulsive scatter. We

I(a)
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have more than ten times the number of electrons stored
in evanescent modes near the defect in Fig. 3(b) for the
attractive scatterer as compared with the repulsive
scatterer of Fig. 3(a). This is due to the quasi-bound-state
nearby in energy. We shall see in the next section, how-
ever, that if the scatterer is made so strong that the
quasi-bound-state energy moves below even the first sub-
band, the transmission coefficient T 11 in Fig. 3(b) for the
attractive scatterer will evolve to qualitatively resemble
the T11 found in Fig. 3(a) for the repulsive scatterer. For
the moderately strong attractive scatterer, evanescent
modes will then become less important. Another impor-
tant difference between the attractive and repulsive
scatterers is that, for the attractive scatterer of Fig. 3(b),
the occupation of evanescent mode two first rises, reaches
a maximum near the quasi-bound-state energy, and then
falls as the energy approaches the second subband mini-
ma. This is in contrast to the repulsive scatterer of Fig.
3(a) where the occupation of evanescent mode two in-
creases continuously as the energy approaches the second
subband minima.

IV. RESULTS AND DISCUSSION
OF 8-FUNCTION SCATTERER

In this section we graph the detailed solutions to the
infinite set of coupled Eqs. (4) for the 8-function scatterer
which are written down in Appendix B. We display all
the intersubband and intrasubband transmission and
reflection coefficients for the single 6-function scatterer as
follows: As in Sec. III, we consider both a repulsive and
an attractive scatterer. In Fig. 4 we consider a weak
repulsive 8-function scatterer, while Fig. 5 shows a weak
attractive scatterer of approximately the same strength as
the repulsive scatterer. As the repulsive scatterer is made
stronger, the energy dependence of the transmission or
reflection coefficients does not qualitatively change. For
an attractive scatterer the energy dependence of the
reflection and transmission coefficients does qualitatively
change as the scatterer is made stronger due to the move-
ment of the quasi-bound-state. We do not show the
transmission coefficients for the case of a strong attrac-
tive scatterer because they qualitatively resemble the ones
for the repulsive scatterer in Fig. 4. As the attractive
scatterer is made stronger all the graphs of Fig. 5 will
evolve into ones qualitatively resembling Fig. 4. We then
display the two-probe and four-probe Landauer conduc-
tance for these sets of scatterers in Figs. 6, 7, and 8.

For definiteness in all the calculations, we consider an
infinite square well along the y direction whichlwe take to
be W= 300 A vide. We take the mass of the electron to
be the effective mass for GaAs, that is 0.067 of the free-
electron mass. For this wire, the subband energies are
E 1 = 6.236 meV, E2 = 24.94: meV, E 3 =56.12 meV, and
E 4 =99.78 meV. We place the impurity -L of the dis-
tance across the wire. We include 100 total modes in our
calculations. These are the same parameters used in Fig.
3. It is easy to :include a greater or fewer number of
modes, but including more modes does not have a great
qualitative influence on the results. As we argued in Sec.
III, if we include enough modes such that, for the highest

I
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mode n we satisfy 2K,• >2m y/Wji2, including more
evanescent modes makes only a small quantitative
difference in the results. Using Eq. (25) we see that, for a
repulsive scatterer, including more evanescent modes in-
creases the transmission because the mode coupling con-
stants are made smaller. In our rescaling procedure each
additional evanescent mode then multiplies the coupling
constants by a number less than one. For an attractive
scatterer where r,, is negative, including more evanes-
cent modes decreases the transmission because each addi-
tional evanescent mode then multiplies all the coupling
constants by a number greater than one.

Figure 4 shows the transmission probabilities for a
repulsive 8-function scatterer having y = 10 feV cm 2. Or
expressed more usefully y/W 2

= 1.111 meV, so that the
potential is relatively weak. Consider first the intrasub-
band transmission and reflection coefficients. Figure 4(a)
shows that the transmission probability T11 is unity
whenever the electron energy aligns with the bottom of a

new subband. Figure 4(b) shows a similar result for T22
and T33. The reflection coefficient R 11 is shown in Fig.
4(c). Note that R 11 is zero at the minima of the second
and third subbands and undergoes no discontinuous
change as does T11. Reflection into the lowest normal
mode is suppressed at the bottom of the second and third
subband. A similar behavior for the intrasubband
reflection coefficient R 22 is shown in Fig. 4(d). If only the
lowest mode can propagate, the intrasubband transmis-
sion and reflection coefficients T1, and R I have the same
functional form as those through a 8-function potential in
one dimension given in Appendix A.

The intersubband transmission coefficients T12, T 13,
and T23 are shown on Figs. 4(a) and 4(b) multiplied by a
factor of 10 so they can be clearly seen. The intersub-
band transmission and reflection coefficients are equal for
the 8-function scatterer, that is R 12 = T 12, etc. If there
were no scattering the intersubband transmission would
be zero, so the intersubband transmission should increase
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FIG. 4. Transmission coefficients for scattering from a weak repulsive 8-function potential in a quasi-one-dimensional wire having
strength y = 10 feV cm2. We assume infinite square well confinement of width W= 300 A. (a) shows T 11, T12 T 21 =R 12 =R21, and
T13 = T31 =R 13 =R 31. (b) shows T22, T33, and T23 = T 32 =R 23 =R 32. (c) shows R 11 and (d) shows R 22 all as a function of the incident
electron energy. The overall shapes of the reflection coefficients Rij can be understood from the golden-rule scattering rate as de-
scribed in Appendix B. In addition, perfect transmission with no mode conversion occurs whenever the incident energy aligns with a
new QlD subband. The functional form of each curve is given in Appendix B.
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FIG. 5. Scattering from a weak attractive 6 function having strength y - 6 feV cm2 . (a) shows T 11, (b) gives T22 and T33, (c)
shows R 11, (d) shows R 22, (e) gives T22, while (f) shows T 13 and T23. The qualitatively different behavior of these transmission
coefficients from the ones in Fig. 4 arises from the presence of new quasi-bound-states forming in the attractive 6-function potential.
For example, the new dips in the intrasubband transmission T11, T22, and T33 occur well before reaching subbands 2, 3, and 4, the dis-
tance between these dips and the subband minima being simply the bound-state energy as we show in Appendix B. The intrasubband
reflection increases strongly at the quasi-bound-state energy as shown in (c) and (d). The intersubband transmission and reflection,
given in (e) and (f), also rises strongly at the quasi-bound-state.
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with increasing strength of the scatterer. This is indeed
true, although not shown in the figures. In Fig. 4 the in-
tersubband transmission is small because the potential is
relatively weak. At the onset of the second subband in
Fig. 4(a) only about 6% of the incident carriers are con-
verted into the second normal mode through T12, and
4-5 % are converted into the third normal mode via T1 3
at the bottom of the third subband. Figure 4(b) gives
only between 1% and 2% conversion from the second to
the third mode at the bottom of the third subband via
T23 .

We can understand some features of Fig. 4 by arguing
from the Fermi "golden-rule" scattering rate. To do this
we do not consider the intrasubband transmission Ttl,
T22, or T33 , as they are simply the result of leftover parti-
cles which did not scatter and can be obtained from the
requirements of current conservation. Consider first the
intersubband transmission T12 , T13, and T23 . The inter-
subband transmission has a maximum near the onset of a
subband and decays like the inverse square root of energy
away from the maximum. This can be understood from a
Fermi's "golden-rule" viewpoint, where the probability of
scattering is proportional to the final density of states in
the subband which decays like 1/1/E. In Appendix B

3.0
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0 20 40 60 80 100

Energy (meV)

FIG. 6. Two-probe conductance through a 8-function defect
in the quasi-one-dimensional wire in units of 2e 2/h. The solid
line corresponds to the repulsive scatterer from Fig. 4, while the
dashed line gives the conductance of the attractive scatterer
from Fig. 5. When the electron energy aligns with a subband
minimum, the conductance through the defect is equal to the
ballistic conductance. At these special energies the wire is per-
fectly transparent as if no scatterer were present. There is only
a small difference between the conductance for the weak repul-
sive scatterer and the ideal ballistic conductance throughout the
entire range of electron energies. For the attractive scatterer,
the new dips in conductance correspond to quasi-bound-states
developing in the wire. The distance in energy from these dips
to the subband minimum is the quasi-bound-state energy. Note
also that, even though the repulsive scatterer is stronger, the
conductance of the attractive scatterer is much smaller due to
the presence of the quasi-bound-state.

we show that the dominant term in the intersubband
scattering probability is indeed given by an expression
similar to the golden rule. The intersubband transmis-
sion and reflection coefficient T 12 =R 12 in Fig. 4(a) also
shows interesting behavior around the bottom of the
third subband, staying zero on both sides of the subband
minima. There is no scattering out of mode one into
mode two at the bottom of the third subband. We have
yet to find a good explanation for this lack of mode con-
version or reflection at the subband minima. However,
the overall shapes of the transmission and reflection
coefficients are still well understood by golden-rule argu-
ments.

Given the golden-rule-like shapes of the intersubband
transmission and reflection coefficients and the intrasub-
band reflection, we can argue for the shape of the in-
trasubband transmission. Let us do so for T11. Because
particles must be conserved so that 1= T +T 12
+R 12 +R,1 , and since R 11 0 = on both sides of the sub-
band minima, the drop in T 11 after reaching perfect
transmission at the second subband must be equal to
T12 +R 12 = 2T 1 2, or just twice the intersubband transmis-
sion coefficient. This is shown in Fig. 4(a). Similarly, the
discontinuity in T,1 in Fig. 4(a) at the minima of the
third subband is just twice T1 3 .

Next, let us examine the scattering coefficients for an
attractive potential. Figure 5 shows a 8-function scatter-
er of comparable strength to the one in Fig. 4, but when
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FIG. 7. Two-probe conductance in units of 2e 2/h for an at-
tractive scatterer having y=--8 feVcm2 (solid line), 'y=-9

feV cm 2 (dotted line),and y= -20 feV cm 2 (dashed line). Begin-
ning with the dotted line from Fig. 6 showing the weakest at-
tractive scatterer having y = -6 feV cm 2, the overall conduc-
tance level decreases and the new dips corresponding to the
quasi-bound-states move lower in energy as the scatterer is
made more attractive. As the scatterer becomes so attractive
that the quasi-bound-states move below the bottom of the next
lowest subband, the new dips first disappear and the conduc-
tance then increases as the scatterer is made stronger. This
unusual effect occurs because the bound states have now moved
below the energy range in which they can block conduction.
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the scatter is made attractive. The strength of the
scatterer in Fig. 5 is y = -6 feV cm 2, or equivalently
y/W 2= -0.666 meV, 60% of the strength of Fig. 4.
The transmission coefficient T 11 through this potential is
shown in Fig. 5(a). The new dips in T 11 immediately be-
fore each subband minimum correspond to a quasi-
bound-state forming in the wire. The distance in energy
between each local minimum in T,11 and the following
subband is simply the quasi-bound-state energy. Al-
though these new minima appear to be immediately
below the subband minima, they are in fact at a lower en-
ergy. We can see this clearly from Fig. 3(b) where the at-
tractive scatterer is stronger. Since the scatterer in Fig. 5
is very weak, the quasi-bound-states lie very near in ener-
gy to their respective subbands. Figure 5(b) shows T 22
and T33 for this potential. We see again that intrasub-
band transmission decreases at the quasi-bound-state en-
ergy and is perfect at the subband minima.

The intrasubband reflection R 11 and R 22 increase at
the quasi-bound-state energies and are zero at each suc-
cessive subband minimum as shown in Figs. 5(c) and 5(d),
respectively. Intersubband transmission also increases at
the quasi-bound-state energies as shown for T 12 in Fig.
5(e) and again for T 13 and T23 in Fig. 5(f). Note that
both the intrasubband reflection and intersubband
transmission are much larger for this attractive scatterer
than for the repulsive scatterer we considered in Fig. 4,
even though the scattering strength is weaker than in Fig.
4. This is also due to the quasi-bound-state nearby in en-
ergy.

Now we turn to a study of the Landauer conductance
through these 8-function scatterers. Figure 6 shows the
two-probe conductance from Eq. (15) for both the repul-
sive 8-function defect of Fig. 4 (solid line) and the attrac-
tive 8-function defect of Fig. 5 (dashed line). The con-
ductance for the weak repulsive scatterer is nearly the
same as that of a perfect ballistic wire throughout the
whole range of Fermi energy, and is exactly equal to the
ballistic conductance when the Fermi energy aligns with
each new subband minima. The shoulders of the quan-
tized ballistic conductance steps are slightly rounded due
to increased reflection immediately above each subband
minima. The weak attractive scatterer, however, has a
much smaller conductance reflecting the presence of the
quasi-bound-state nearby in energy. The extra dips in the
conductance through the attractive 8 function again
occur before reaching each subband, the difference being
just the quasi-bound-state energy. The conductance of
the attractive 8 function is also exactly equal to the ballis-
tic conductance when the Fermi energy aligns with new
subband minima.

Figure 7 shows the two-probe conductance evolving as
we increase the strength of the attractive scatterer from
y=--6 feV cm 2, shown as the dashed line in Fig. 6, to
y = -- 8 feV cm 2 (solid line), y = -9 feV cm 2 (dotted line),
and y = -20 feV cm 2 (dashed line). Note that, as for the
repulsive scatterer, perfect transmission still occurs at the
subband minima. However, the additional quasi-bound-
state in the attractive scatterer causes increased reflection
well before 'the subband minima are reached, leading to
an additional dip in the conductance (solid curve). As the

strength of the attractive potential is increased, the con-
ductance becomes smaller and the dip moves lower in en-
ergy until the quasi-bound-state drops below the next
subband as shown by the dotted curve, where the conduc-
tance resembles a "cobweb" (dotted curve). As the po-
tential is made even more attractive (dashed curve), the
conductance increases and begins to resemble the con-
ductance through a repulsive 8 function. This is because
each quasi-bound-state energy which originally split off
from, say, subband i, has now moved below the bottom of
the next lower subband i -1, and therefore out of the
problem. It is paradoxical that, as the scatterer is made
stronger over this small range of strengths, the conduc-
tance actually increases. The bound states have now
moved out of the way and the electron can transmit

O 20 40 60 80 100
Energy (meV)
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Energy (meV)

FIG. 8. Two-probe resistance (solid line) and four-probe
resistance (dashed line) in units of h /2e 2 for the case of (a) the
repulsive scatterer from Fig. 4 and (b) the attractive scatterer
from Fig. 5. The overall resistance is much lower for the four-
probe measurement due to the absence of contact resistance.
The four-probe resistance R four-.probe is zero at each subband
minimum in both (a) and (b) due to the perfect transmission.
R four-probe rises just above each subband minimum to equal the
two-probe resistance as a result of the screening described in
Ref. 15 for both the attractive and repulsive defects. In addi-
tion, for the attractive scatterer of (b), Rfour-probe also rises im-
mediately below each subband minimum due to increased
reflection at the quasi-bound-states.
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through the defect. Usually stronger scatterers lead to a
reduced conductance. But we see this is not necessarily
the case when the electrons are confined to move in a
wire.

Figure 8 compares the two- and four-probe Landauer
conductance for the scatterers from Figs. 4 and 5. Since
the four-probe conductance is so large, we plot its in-
verse. Figure 8(a) shows the resistance of the repulsive
scatterer having the same strength as in Figs. 4 and 6.
The solid line in Fig. 8(a) is the two-probe resistance, the
inverse of the two-probe conductance from Fig. 6. The
dashed line in Fig. 8(a) shows the four-probe resistance
for the same repulsive scatterer. The four-probe resis-
tance is of course much smaller than the corresponding
two-probe resistance due to the absence of any contact
resistance. The four-probe resistance is close to zero ex-
cept when the electron energy is slightly above each sub-
band minimum, where it suddenly rises to equal the two-
probe resistance and then falls again. The four-probe
resistance being zero slightly below each subband is a
consequence of the scatterer being perfectly transmitting,
while the rise in the four-probe resistance slightly above
each subband minimum is a consequence of screening.' 5

Near the bottom of each subband the voltage division
factor in Eq. (15) is dominated by the transmitted or
reflected waves for that subband. Since each intrasub-
band reflection coefficient is one at the bottom of its
respective subband, while the intersubband reflection is
initially zero, the voltage division factor is simply 1 and
the two- and four-probe conductances are equal at these
special points.

Figure 8(b) shows the resistance of the attractive
scatterer having the same strength as in Figs. 5 and 6.
The two-probe resistance (solid line) is the inverse of the
dashed line from Fig. 6. The four-probe resistance
(dashed line) for the same attractive scatterer is again
lower than the two-probe resistance due to the absence of
contact resistance. Both resistances increase sharply at
the quasi-bound-state energies, and are both equal and
infinite at the quasi-bound-state in the first subband due
to perfect reflection at that point. At subsequent quasi-
bound-states, the four-probe resistance is smaller because
the reflection at the quasi-bound-states in higher sub-
bands is not perfect. The four-probe resistance is again
zero at each subband minimum, and again rises to equal
the two-probe resistance just above each subband. Near
the subband minima the resistance for the attractive
scatterer first rises due to the presence of the quasi-
bound-state, then falls to zero due to the unexplained
mode "decoupling," then rises again to equal the two-
probe resistance as a consequence of screening.

We have also numerically examined the transmission
through two 8-function scatterers in a narrow wire, 29 and
find unusual modifications to resonant tunneling whenev-
er the Fermi energy is near the second subband minima.
In particular resonant transmission is suppressed when
distance between the two barriers is equal to an odd num-
ber of half wavelengths of the lowest mode, but
unaffected when the distance between the barriers equals
an even number of half wavelengths. It is also possible to
exactly solve the Dyson equation for scattering from a 8-

function defect in a Q1D wire, including mode conver-
sion and coupling to the evanescent modes. The same
transmission coefficients are obtained as in Appendix B.

V. FINITE-RANGE SCATTERER

In Sec. III and IV we considered the transmission and
reflection from a single 8-function scatterer inside a nar-
row wire. In this section we examine the next simplest
case where the scatterer inside the Q1D wire is a rectan-
gle with a finite width and length. Recall the geometry of
Fig. 1, shown there for an arbitrarily shaped defect.
Analyzing the transmission through a rectangular defect
will allow us to understand how to calculate transmission
through an arbitrarily shaped defect.

As in Sec. II, the wave functions c, (x) in region I have
coefficients A, and B, given by Eqs. (7) and (9), wave
vectors kn given by Eq. (5), and are described by the nor-
mal modes Xn(y). In region II we will also have
coefficients parametrizing the exponential solutions for x
motion C, and D, . But now, due to the presence of the
'extra defect, we will have a new set of subbands En and a
new set of normal modes Y,, (y) which must be calculated
numerically by diagonalizing a matrix expanded in the
old basis set X,, (y). In addition, we have a new set of
wave vectors k n defined by

n 2 (E -En, ) (34)

such that the c,(x)'s in the region 0<x <L can be ex-
pressed

c,n(x)= Cne nX+Dne-iknX

if n denotes a propagating mode in region II and

Cn(X)=Cne KnX+Dne "

(35)

(36)

if n denotes an evanescent mode in region II. Since re-
gion III has the same confinement potential as region I,
the normal modes X, (y) and wave vectors k in region III
will be the same as for region I. We take the coefficients
for x motion to be En and F, in region III where

ikn (x -L) -ikn(x -L)
c,,(x)=Ene +F,,e

describes the propagating modes for x > L.
Following our discussion of the scattering boundary

conditions in Sec. II, enforcing continuity of the wave
function and its derivative at each boundary leads to the
transfer matrix

C=1 [f dy YZ (y)Xa(y)
B L YK

1+
ka]

(38)+ ka
D 2a f dy YYZ(Y)Xa(Y)J 1f--k, Ba Y

+2, [fdy YZ(Y)Xa(Y) 1+- Ba
a k,6 I

(39)

_I
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describing the mode coupling at x =0, the transfer ma-
trix describing the propagation on top of the rectangular
barrier as

C = C e iI, L, D _ = D ge -ik L (40)

and which does not couple the modes, and finally the
transfer matrix

[f dyX(y)Y,(y)

(41)+-j [f dy X((y)yY,(y) 11- D ,

+ f dy X(y) Y,(y) ]1+ - D'Y y j

0 20 40 60 80 100
Energy (meV)

(42)

incorporating mode mixing at the x =L potential step.
Multiplying these three transfer matrices numerically

will give all the transmission coefficients through the rec-
tangular defect. However, there is a numerical problem
with the growing real exponential for Dn in Eq. (40) if we
include too many evanescent modes, or if the length of
the scatterer L is made too long. The highest evanescent
modes, which should become unimportant to the physics
of the problem, wind up dominating the transmission
properties as well as violating particle number conserva-
tion. In place of multiplying the transfer matrices, if we
instead cascade scatter matrices as described in Ref. 2 we
avoid these numerical problems. An arbitrarily shaped
defect can be broken up into many rectangular shaped
defects of short lengths, so that equations similar to Eqs.
(38), (39), and (40) can be used to calculate the transmis-
sion and reflection coefficients through an arbitrarily
shaped defect in a narrow wire.

We display the two-probe Landauer conductance for a
rectangular shaped scatterer in Fig. 9. Figure 9(a) shows
a repulsive scatterer that is 50 nm long (along the x direc-
tion), 8.7 nm wide, offset 1.2 nm from the side of the wire,
and 50 meV tall. We include six total modes in our cal-
culations, and again assume the original confinement po-
tential to be an infinite square well of 30 nm width. The
shape of this defect potential forms an extra constriction
inside the Q1D wire. Extra oscillations analogous to the
Ramsauer resonances appear in the conductance of Fig.
9(a), known from many previous calculations including
Refs. 9, 11, and 12. These Ramsauer-like resonances ap-
pear in.all the inter- and intrasubband transmission and
reflection coefficients, though we do not show these here.
We emphasize, however, that the rises in conductance
corresponding to the "quantized steps" do not occur at
the original subband energies E, of 6.23, 24.9, 56.1, and
99.7 meV, but rather at the new subband energies E• of
10.3, 39.4, and 78.3 meV. Due to the presence of evanes-
cent modes below the En, some carriers can leak through
below the new subband minima as shown in the figure.
Also, nothing unusual happens when the Fermi energy

0 20 40 60 80 100
Energy (meV)

FIG. 9. Conductance in units of 2e2/h through a finite size
rectangular barrier whose dimensions are given in the text. (a)
shows a repulsive barrier while (b) considers the same size bar-
rier when the sign of the potential is reversed. Ramsauer-like
resonances are observed in (a) due to the finite barrier size. The
"quantized steps" in (a) occur at the new subband minima inside
the barrier, not those of the clean wire. Multiple quasi-bound-
states where the conductance falls sharply occur in (b) again due
to the finite size of the defect. Transmission is no longer perfect
at each minimum as was the case for the 8-function scattering
defect.

rises above the 50-meV barrier height as shown in Fig.
9(a).

When we reverse the sign of the scatterer, making it at-
tractive but leaving all other parameters unchanged, we
obtain the two-probe conductance shown in Fig. 9(b).
The new subband energies En for those potential are at
-20.6, 13.3, 44.0, and 84.3 meV. Three bound states can
be seen in the conductance of Fig. 9(b) immediately be-
fore the original second and third subband minima. Our
point in Figs. 9(a) and 9(b) is that, as we give the scatterer
a finite size, (1) we obtain geometrical resonances with the
defect analogous to the Ramsauer resonances, (2) there
can be multiple bound states if the scatterer is attractive,
(3) there is more than one set of subbands in the problem
which are important, and (4) the transmission is no
longer perfect at a subband minimum although this is not

- ------ L---------
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shown in the figures. For example, T 11 has quite a com-
plex behavior for both potentials considered in this sec-
tion. Also we have verified that, as we shrink the size of
the scatterer while maintaining the total area underneath
the potential, the results for transmission coefficients
evolve into those for the 8-function scatterer studied in
the preceding two sections.

VI. CONCLUSIONS

In this paper we have considered the scattering from
defects in a confined geometry, in our case for electrons
confined to a quasi-one-dimensional wire. The scattering
properties of electrons in these confined geometries are
qualitatively different from the usual case of scattering in
open geometries due to the building up and storage of
electrons in evanescent waves near the scattering defect.
This phenomenon is well known for the analogous case of
electromagnetic wave scattering in microwave
waveguides. We obtained both the intersubband and in-
trasubband transmission and reflection coefficients by
hand for the special case of a 8-function scatterer, and
numerically found these same coefficients for the case
when the scatterer has a finite size. We then used these
coefficients to study the two- and four-probe Landauer
conductance through the defect.

For the case of the 8-function scatterer we found that,
for electron energies equal to the subband minima, all the
normal modes completely decouple and that conductance
through the defect is equivalent to the ballistic conduc-
tance in agreement with Ref. 23. This unusual result is
independent of where the scatterer is located in the wire,
the shape of the confining potential, and the subband sep-
aration (i.e., independent of the incident electron wave-
length). This "perfect transmission" effect therefore
seems to be independent of any exact geometrical feature
in the problem except for the existence of confinement.
These facts support our conclusion that the existence of
evanescent modes is the qualitatively new and important
feature responsible for the unusual scattering properties
in the confined geometry, rather than a geometrical reso-
nance between the scatterer and the walls of the wire. In
addition, if the 8-function scatterer is made attractive, a
quasi-bound-state splitting off of each Q D subband
forms in the potential and dominates the scattering prop-
erties when the electron energy is near the quasi-bound-
state energy.

For the finite size scatter which we explored briefly in
Sec. V, the overall features in the transmission ampli-
tudes and the conductance qualitatively resemble those of
the 8-function scatterer. However, the transmission is no
longer perfect at each subband minimum. We therefore
attribute the perfect transmission seen for the 8-function
potential to the special shape of the scatterer, and con-
clude that it is not a general feature for any possible
shape of the scattering potential. Reference 23 concludes
that any s-wave scatterer will exhibit the perfect
transmission property. The 8 function is an s-wave
scatterer while the square barrier, is not. We can con-
clude in general that the transmission is enhanced near a
subband minimum and reflection increased near any
quasi-bound-states in the wire. The finite size scatter also

•CA

[p2
E=h

2 F 2
E=-- 2

T(E)= 1+ + 4k2

(Al)

(A2)

where F =2m Vo /f i
2 and the bound-state energy is a solu-

tion of the equation 2K+ F =0 where K is the inverse de-
cay length.

In this appendix we wish to discuss the quasi-bound-
states for a 8 function in a Q1D wire in order to under-
stand the similarities and differences between the Q1D
case and the 1D case worked out in Ref. 30. The poten-
tial V(x,y)=y8(x)8(y -yi) is attractive so that y <0.
We consider a wave function which consists of a sum of
exponentially decaying modes as

-K
n

ip(x,y)= ' B, e , n(y) (
. n

so that the matrix equation for the
evanescent modes for definiteness, is

0 T 11 +2KI

0 F21

0 F31
0 ]F4 1

Fl2
F22 + 2K2

F 32

F42

r13

F23

F33 +2K 3

F43

Bn's, taking four

F 14  B 1

F24 B 2

F34 B2

F44+2K4 B4

(A4)

The same method of rescaling the mode coupling con-
stants applies for this case as in the previous discussion of
Sec. III, so that for m total modes the bound-states ener-
gy is a soldtion of

II-
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exhibits geometrical resonances (analogous to the Ram-
sauer resonances) in all the transmission coefficients, both
intersubband and intrasubband. A finite size scatterer
which is attractive can have multiple quasi-bound-states
splitting off of the higher confinement subbands, and the
effects of these can be seen in the transmission probability
through the defect.

Note added in proof. We have learned after submitting
this manuscript of a complementary study of impurities
in a constriction by Tekman and Ciraci, 1 of a quantum
cavity resonator by Peeters, 32 and of the influence of
evanescent waves on electron localization in the limit of a
large number of impurities by Cahay et al.33
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APPENDIX A: QUASI-BOUND-STATES
FOR AN ATTRACTIVE 8-FUNCTION POTENTIAL

IN A Q1D WIRE

The bound-state energy and transmission coefficient
through a 8-function potential V(x) = V0 8(x) in one di-
mension can easily be evaluated3 0 to find
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Fii,2 - m +2K =0 . (A5)
Call the energy which solves this equation Elb. This
bound-state energy will satisfy Elb <E1 , so that it is
below the first subband energy. The energy Elb is a true
bound state which is a stationary solution of the
Schr6dinger equation. However, if mode one is a propa-
gating mode and we set kI =iK1 in Eq. (A4), we cannot
obtain a solution to the equation. This implies there are
no "truly bound" states in the wire which are degenerate
in energy with any of the propagating modes. But if we
throw away all of the mode coupling to the propagating
modes, in this case by neglecting the first row and first
column of the matrix in Eq. (A4), we obtain a quasi-
bound-state energy E 2b below the second subband given
by

r22,3-m +2K 2=0 , (A6)

where the quasi-bound-state solution E 2b to this equation
satisfies E 2b <E 2. If the 8 function is made attractive
enough we can even have E2b <E1 . The energies E 2b,
E 3b, etc., are important in understanding the scattering
properties of electrons from the 8-function defect. Since
the quasi-bound-states at energies Eb2, Eb3, etc., actually
do couple to the propagating modes of the wire, they will
decay with time. Only the bound state splitting off of the
lowest subband at energy Ebl is a truly bound state.

Equation (A5) can be rewritten as
m ii

1+ 1 "it 0. (A7)i= I 2Ki
The bare mode coupling constants appear in Eq. (A7),
not rescaled by any of the evanescent modes. Equation
(A6) can be rewritten similarly as

m riiI+ 0, (A8)
i=2 2Ki

and so on for all the possible quasi-bound-states. Clearly,
the terms in the sum become smaller and smaller quite
rapidly as the Ki's become larger and larger.

Sketching the terms in the sums of Eqs. (A7) and (A8)
shows that there can only be one bound-state or quasi-
bound-state solution to each equation. The sketch also
shows that the presence of all the other evanescent modes
acts to lower the bound-state energy below its value in
the absence of all the other evanescent modes. Therefore
an upper bound on the solution of Eq. (A7), for example,
is ll+ 2 K,=0. Since the solution to this equation is
below El, and the solution to Eq. (A7) will have an even
lower energy as we can see graphically, we must have the
bound-state solution to Eq. (A5) satisfy Elb <E1 .

Next consider Eq. (A8), which describes only modes
two and higher allowed as evanescent waves. The quasi-
bound-state energy solution to Eq. (A8) does not have to
be below the lowest subband, in contrast to the case of
the 8 function in lD. Even if the first mode is propaga-
ting, there can still be a quasi-bound-state split of from
the second subband given by the solution to Eq. (A8) at
any energy below E2 . An upper limit to the energy Eb2
is found by solving r22 + 2K2 =0.
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APPENDIX B: SOLUTIONS
TO COUPLED SCATTERING EQUATIONS

Here we wish to write down the general solution to the
infinite set of coupled scattering equations, Eq. (4), for the
case of a single 8-function scatterer. For this case Eq. (4)
can be expressed in a form similar to Eq. (23) for any
number of propagating incident modes. We proceed as
follows: We write down the solutions first for the case of
a single propagating mode, then for two propagating
modes, then for three, etc. It is these solutions which we
have plotted in Sec. IV. In writing down these solutions
we will recognize a pattern that, when generalized, leads
to the transmission coefficients for any arbitrary number
of propagating modes. We have already considered the
effect of the evanescent modes in Sec. III, so our solutions
are valid for any arbitrary number of evanescent modes
by simply rescaling the mode coupling constants. This
rescaling procedure is only valid for the case of a single
8-function scatterer in a wire.

Our main result in this appendix is to show that the
reflection amplitudes Fab can be written as

rab (E) =

-I
2V/~j

e p
1+ 1 (F,,, / 2

Kn ) + i Y (nn /2k,)
(B1)

In Eq. (B1) 1e denotes a sum over all the evanescent
modes, YP denotes a sum over the propagating modes,
and modes a and b are assumed propagating. Equation
(B1) also holds for the intersubband transmission ampli-
tudes since rab(E)=Tab (E) for a:#b. The intrasubband
transmission amplitude Taa(E) can then be obtained from
the constraint of current conservation. The simple ana-
lytic result of Eq. (B1) can be interpreted in terms of the
Fermi golden-rule scattering rate as we argue below, and
has been obtained more transparently from the solution
of Dyson's equation for this same scattering problem.
Equation (B1) is a compact way of writing down the re-
sults listed in this appendix, and can be obtained from
them by the same type of algebra used to go, for example,
from Eq. (A5) to Eq. (A7).

We now write down the solutions for the transmission
amplitudes and transmission probabilities for m total
modes as the number of propagating modes ranges be-
tween one and three. When transport is only in the
lowest subband, namely, E l <E <E 2, we must solve the
matrix Eq. (28) or Eq. (29) given in Sec. III to obtain

tll=1/dl=l+r1  ,

k, 1
Tll=, tdt•l apl ,s

k, D,
where the denominator amplitude d, is

(B2)

(B3)

(B4)dl= 1 I . .-
2ik 1

yielding the denominator

Dl=dld=1+ 1+ ,2-m I.2kl (B5)

-A--- ----- -~~-- I I' ----~-~

•k
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Note that Eq. (B3) has the same form as the transmission
coefficient through a 8 function in one dimension given in
Appendix A, except that we make the substitution

The reflection coefficient,2-m s are
The reflection coefficients are

r ll,-m i
rl= 2ik1 d

(B6)

R kz -.f 11,2--m 12
R 11 - ,- rl1r1 1 - 1l D (B7)

k, 2k, D1

from which the current conservation identity

R 11 + T, =1 (B8)

is satisfied. Note also that 0:5 T,, < 1 since 1 D 1 
-5 oo,

so that the normalized two-probe conductance in units of
2e 2/h is between zero and one when only the lowest sub-
band is occupied.

We would like to give Eq. (B3) for T 11 and Eq. (B7) for
R11 an interpretation in terms of the Fermi golden rule
for scattering rates. Our viewpoint is that T 11 does not
describe any scattering processes (for this problem), and
is just the remaining particle flux left over by current
continuity after any scattering processes (reflection or in-
tersubband transmission) subtract particles from the in-
cident beam. The only scattering process when one sub-
band is occupied is intrasubband reflection. The numera-
tor for R 1 1 can be approximated as J

2ki
_ 2 km 2 XYi2

'T fk( 2)
2 m
ir hf2k

2

=N,(E) y(y-yi) N(E)2 (B9)

which is reminiscent of the Fermi golden rule for transi-
tion rates. The numerator of R 1 is simply the density of
initial states in subband one, the square of a matrix ele-
ment coupling subband one to itself through the scatter-
ing potential, and the density of final states in subband
one. Each term in Eq. (B1) can be similarly interpreted.

To lowest order in the scattering potential we would
just have T11 = 1 (i.e., the particle would pass through the
obstacle undisturbed) and R 11 just equal to its numerator
from Eq. (B9), which is the Fermi golden-rule transition
rate. But then particle continuity would be violated.
Hence the denominator D 1 from Eq. (B5) is determined
by the sum of the scattering probabilities for each process
to the lowest order in the scattering potential. This
denominator D 1 preserves particle continuity.

Now we consider transport for energies in which both
the first and second subbands are occupied. For
E 2 <E <E, we have two propagating modes and four
transmission coefficients. Consider first the case where
only mode one is incident on the scatterer. We obtain a
matrix analogous to Eq. (23)

-2ik, r 11-2ik,

0 F2 1

0 P31

0 "41

F12

r22-2ik 2

]32

]42

P 13

r23

]33+ 2K 3

F43

r'14 tll

r24 t12

r 34  t13

F44+2K4 t 14

Solving the matrix Eq. (B10) we obtain the transmission
amplitude t 1 as

t= -l 2 ,3 m =+r 112ik2  d1 d2  
+ r ll

yielding the transmission coefficient T 11

k _ _

T = k t I 1 "+ 22,3-m 1
k, 2k2  D 2

where the denominator amplitude d2 is

F11,3-m F22,3-m
2ik 1  2ik2

and the denominator D2 is

D2 =d 2d=1+ ,3- 22,3- .
2k, 2k2

(B11)

(B 12)

The remaining intersubband transmission amplitudes'and
transmission coefficients from Eq. (B10) are

t 21,3-m 1
= 2ik2 d 2

k2 t 11,3-m r22,3-m 1
k 12 2k 2 D 2 R2

1 2k, 2k 2 D2

(B17)

(B18)

Equation (23) describes the transmission properties for
(B 13) two occupied subbands when mode two is incident on the

defect. We obtain the solutions to Eq. (23) as

(B14)

Note that from Eq. (B12) we can recover Eq. (B3) by set-
ting k 2 -+iK2 . The reflection coefficient R11 is obtained
from

rl 11,3-m (B15)r 2ikl d 2 (B15)

I12 ·.. 1

t21 21 ,
2ikI d2

Lk2kt* = 11 ,3-m F22,3-mT21 =-2t2 - 2k 2k2  D2 R2 1

so that T21 = T12 and

t22= 1 k-m =L 7+r22 ,

(B19)

(B20)

(B21)

(B10)

1

DD2
(B16)

---
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S1+T22= k t22 t = 1,m 2  1Sr13-2k I D2

r22,3-m
S2ik2 d 2

k2
R22 22r22 - [ 2 2 ,3 -m n 1

The current conservation identities

TI+T112+R11+R12=1 ,

T21 + T22 +R 21 +R 22 = 1

are also satisfied. The identity

1
T + T12  T2 1 + T22 = 1+

D2

limits the normalized two-probe conductance to b
tween one and two for two occupied subbands
I D 2 _5c.

We would like to consider a Fermi golden-rule-il
terpretation of the transmission and reflection coeffic
for two occupied subbands. Analogously to our inte
tation for R 11 when one subband is occupied, give
Eq. (B9), the numerators of R 1, from Eq. (B 16), T12
Eq. (B18), R12 from Eq. (B18), T21 from Eq. (B20)
from Eq. (B20), and R 22 from Eq. (B24) can be reg,
as the golden-rule scattering rates for their respe
scattering processes. The denominator D2 from
(B14) can similarly be regarded as the sum of al
scattering processes.

For transport for three occupied subbands in the
gy range E3 < E < E 4, the pattern from our calculati,
the transmission coefficients for one and two occi
subbands continues as before. The matrix equation
solve to find all the scattering coefficients are very sii
to Eq. (23) from the text and Eq. (B10) from this al
dix, so we do not write them down. Instead, we m
catalogue the solutions for three propagating subb
The transmission amplitude t , is

tr_= 1- r22,4-m r33,4-m 1 1
2ik 2 2ik 3 I d3

T11= ktItf=• "- 1+k,5 ti I1
"22,4- m + 33,4-m

2k2 2k 3

(B22)

(B23)

(B24)

r11 4-rm 1
2ik, d 3

R1 k_ _•_ *1 r _ 1
k1 2k( D 3

The remaining coefficients are

t 21,4-m 1
t12- 2ik2 d3 r12 ,

k(B25) 2  ,r-m r22,4-m 1(B25) T12 tl2t• --- 2 2 12

(B26)
r31,4-m 1t 2ik3 d r13 ,

(B27) k 3  r r 1L37 tT3tl3= 1,4-m `33,4- 1 _= =R(B27) T3= 2k 1  2k 3  D 3  ,1

ie be- F12,4-m 1
since t21 2ikI d3 r21 ,

ke in- k, 11,4-m 22,4-m
:ients T2 •1 = 2t2 l-  ,2k 2k 2  3R21 ,

,rpre-
en by giving T21 = T 12. We write
from 1,4- 33,4-
, R 2 1  t2 2 = 1 I4-m 334--m 1+ 22irded 2ikI 2ik 3 d3

k 2
T22 • 22 t

r22,4-m 1
2ik2  d 3

k 2  *
R22 k2 r22r 22

S1+
11,4- m  

r33,4-m

2k1 2k3

2

2k 2 j D 3

t 32,4-m 1
t23- 2ik3 d3 r23 ,

k23  3  F33,4-m 1_22,4-m 1=R(B28) 2 t233 2k 3 2k 2 D 3 23

1 1 31 D3

F13,4-m 1
= 2ikI d 3 r3

(B29) T3L t3l t 3*3 1 33,4-m F11,4-m 1T3 =k2k 3 2k1 D3 R3
where the denominator amplitude d3 is

d3= 1 I11,4-m F22,4-m F33,4-m

2ik 2ik 2  2ik3
and

D==dAd=1+ L FII4-m 22,4-m + 33,4--m
2k + 2k 2  2k 3

The reflection coefficient is obtained from

(B30)

)2

(B31)

so that T13 = T 3 1,

r23,4-m 1
t32 2ik2  d3  r3 2 ,

k2 33,4-m "22,4-m
T32 = t32t 32  =R322k 3 2k 2 D 3 32

leaving T23 = T 32, and finally

(B32)

(B33)

(B34)

(B35)

(B36)

(B37)

(B38)

(B39)

(B40)

1
D3'

(B41)

(B42)

(B43)

(B44)

(B45)

(B46)

(B47)

(B48)

(B49)

__I_
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T31 + T32 T33 +R 3 1+R 32 +R 33 = 1
(B50)

k 3T33 t 33t 3 = + FrI,4-m 22,4-m
2k, 2k 2

r 33,4-m I
2ik3 d 3

k3

1
D 3 '1)

(B15 1)

are also satisfied. The identity

TI, + T12 + T13 + T21 + T22 + T23

+ T3 T3 T 33 -'2+
D3

(B57)
(B52)

F33,4-mS2k 3

2
D3

The current conservation identities

TI,, +T12 + TI3 +Rl ,+R12 +R 3 = 1 ,

T21 T22 T23 +R 21 +R22 +R23 =1 ,

limits the two-probe conductance to be between two and
(B53) three when three subbands are occupied since

1 5D 3 5 o.
The equations in this appendix are plotted in Sec. IV.

By continuing the pattern from the above equations, we
(B54) can obtain a general solution for any number of propaga-

ting modes in the waveguide scattering from the 8-
(B55) function defect given compactly in Eq. (B1).
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Abstract. We obtain the current transmission amplitudes as a function of Fermi
energy for electrons scattering from a defect in a quasi-one-dimensional wire by solv-
ing Dyson's equation for the single-electron Green function. Dyson's equation in a
confined geometry includes both mode conversion and coupling to all the evanescent
modes in the wire. After obtaining the Green functions, we use Fisher and Lee's re-
lationship between the single-electron Green functions and the current transmission
amplitudes through the defect to find all the intersubband and intrasubband trans-
mission probabilities. In agreement with a previous calculation of the transmission
amplitudes performed by simply matching wavefunctions at the defect boundary,
evanescent modes are shown to dominate the scattering properties whenever the
Fermi energy approaches either a new confinement subband or a quasi-bound state
splitting off from the higher-lying confinement subbands.

1. Introduction

Electron scattering in a confined geometry is qualitatively different from scattering
in an open geometry due to the existence of evanescent modes introduced by the
confinement [1]. Figure 1 shows a case where only the lowest normal mode is incident
on a defect in a wire. In figure 1 the second and higher normal modes are evanescent
waves which decay along the z direction of propagation. The scattering defect couples
propagating modes in the wire both to each other and to all the evanescent modes
through the scattering boundary conditions. Therefore, for a steady current flow
incident on a defect in the wire, a localised mode will build up around the defect even
if the scatterer is repulsive. These extra stored electrons cannot collect around a single
defect in an open geometry where the electrons must scatter into a travelling wave
which propagates away from the defect.

In this paper we consider the scattering from a single delta function defect in a
quasi-one-dimensional wire. Dyson's equation for the single-electron Green function
is exactly soluble for this special potential. Mode conversion as well as scattering into
all the evanescent modes from each higher-lying confinement subband are included in
the Dyson equation describing scattering in a confined geometry. We have already
examined this problem using a simpler method of matching wavefunctions and their
derivatives at the defect [1]. Here we show that the same transmission and reflection
coefficients result from the solution of Dyson's equation. Some additional insight can
be gained into the resulting unusual scattering properties [1-4] by considering the class
of scattering diagrams which dominate our solution of Dyson's equation.
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Incident X, (y)
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Transmitted X, (y)
....... ;

,
! xiL

I
I

Evanescent Mode X2(y)
Figure 1. A single scattering defect in a quasi-one-dimensional wire. The wire is
assumed to be infinitely long on either side of the defect. For carriers incident only in
the lowest subband as shown, evanescent waves build up on either side of the defect
in the second and higher normal modes. The building up and storage of electrons
around a single scatterer is a unique feature of scattering in a confined geometry such
as a wire.

C0

0.,o=r

0 20 40 60 80 100
Energy (meV)

Figure 2. Two-probe Landauer conductance versus electron Fermi energy through
a repulsive delta function defect (full curve) and an attractive delta function defect
(chain curve) in a quasi-ID wire. A point of 'perfect transparency', where the con-
ductance is equal to its ballistic value of (n - 1) times 2e2 /h, appears immediately
below the nth subband minima. The extra drops in the conductance through the
attractive potential correspond to extra quasi-bound states in the wire which have
split off from the confinement subbands.

The paradigm for calculating conductivity in phase coherent structures has shifted
almost exclusively to the viewpoint of Landauer and the various Landauer conductance
formulae [5]. Derivations of these conductance formulae from linear response theory
have been criticised by Landauer [6] for failure to include the necessary adiabatic
widening from a narrow to a wide region. These criticisms can be further appreciated
by comparing the electrostatic and electrochemical potentials for a geometry with
and without a constriction, given in figure 1 and figure 2 of [7], to the geometries
without a constriction considered in [8-10]. For the geometries considered in [8-10]
it is difficult to understand how the necessary electrostatic potential drop associated
with the quantum contact resistance can develop, for at what point in space can the
electrostatic potential V(z) in the perfect leads correspond to that in figure 1 of [7]?
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Solution of Dyson's equation in a quasi-ID wire

However, in these same studies of conductance using linear response theory [8-10],
a relation has been derived between the one-particle Green functions and the cur-
rent transmission amplitudes through a disordered region beginning with the work of
Fisher and Lee [8] and also discussed in [9-11]. Here we confirm that the Fisher-Lee
relationship is satisfied for the special case of a delta function potential in a quasi-1D
wire by explicit calculation of both the single-particle Green functions and the trans-
mission amplitudes. 'Two-probe' Landauer formulae can therefore be used to calculate
conductance when the transmission probabilities are obtained either by straightfor-
wardly matching wavefunctions and their derivatives at the disordered regions or by
the more complicated recursive evaluation of Dyson's equation for the single-particle
Green functions [12]. Detailed background and bibliography of previous work on the
conductance of phase-coherent electron devices can be obtained from the citations
in [1-11].

2. Dyson's equation in a quasi-1D wire

Consider again the quasi-one-dimensional wire having electrons confined along the y
direction but free to move along the z direction shown in figure 1. The two-dimensional
'wire' of this paper is a reasonable approximation to real physical systems where the
confinement along z, usually normal to a semiconductor heterojunction interface, is
much stronger than the 'lateral' confinement along y. Furthermore, if the additional
confinement along z is taken into account the results for the transmission coefficients
presented in section 4 do not change substantially, so it is adequate to work with the
simpler two-dimensional 'wire'.

The equation of motion for the Green function G in the quasi-1D wire of figure 1
is

(2m [ x-d2 dy2
{E -[-2m d + d2) + Vi(y) + Vd(X,y)] } G(zy; x'y') = 6(z - -')6(y_ y')

(1)

where the confinement potential Ve(y) depends only on the transverse direction y and
Vd(Z,y) is the potential of any defects or impurities in the wire. Throughout our
discussion we assume propagation at a constant energy E and do not write the energy
argument in the Green functions. G(zy; z'y') from (1) has the standard interpretation
as being the 'transmission amplitude' that a unit impulse of probability amplitude
originally deposited at position (x', y') will propagate to position (z, y). The one-
dimensional Schr6dinger equation along y including only the confinement potential
Vc (y)

2m dy2 + VC() Xn(y) = E.X.(y) (2)

gives rise to a set of normal modes X,(y) and subband energies En where n is the
subband index. In addition to their standard completeness property, the Xn(Y) can
be chosen real and obey the useful relation

E )X(y') = 6(y - y'). (3)

~__1~1~1_ ~~1;
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Multiplying (1) on the left by X,(Y), on the right by X,(y), and applying the useful
equation (3), we obtain the equation of motion for the Green function in a QID wire
as

E E t2 - ba - Vab(z) G(zb; z'c) = 6(z - z')6ae. (4)

The matrix elements of the defect potential in (4) are

V.a(z)= /dyXa(Y)Vd(z, Y)Xb(Y) (5)

and the matrix elements of the Green function are

G(zb; x'c) = J dy dy' b(y)G(zy; z'y')x.(y'). (6)

G(zb; z'c) from (6) has the interpretation as being the 'transmission amplitude' that
a unit impulse of probability amplitude originally deposited at position z' in normal
mode c will propagate to position z in normal mode b. Also, the 'free' Green function
in the absence of a defect potential obeys an equation of motion

(E / '2 d2 \
E- Ea - 2m d- Go(za; z'c) = 6(z - X')6ac (7)

so Go(za; x'c) is diagonal in the mode indices a and c as Go(xa; z'c) = G (z; x')6a,.
By standard manipulations of (4) and (7), repeatedly applying (3), we obtain the

Dyson equation for a Q1D wire as

G(za; z'c) = Go(za; z'c) + "- J dx" GO(za; z"b)Vbd(r")G(z"d; z'c). (8)
bd

This Dyson equation can be given its usual interpretation of summing over the prob-
ability amplitudes of all the possible scattering processes for a particle starting at
position z' in normal mode c arriving at position z in normal mode a.

3. Delta function scatterer

We choose the scattering potential Vd(z, y) to be a delta function

Vd(z, y) = 76(z)6 (y - y,) (9)

so that its matrix elements Vab(z) from (5) are

Vab(X) = 6 (x)7Xa(Yi)Xb(Yi). (10)

The weight 7 can be either positive or negative.

11_____~___1_________I__



Solution of Dyson's equation in a quasi-ID wire

Now let us iterate the Dyson equation (8) assuming initially for simplicity that
only the lowest two normal modes are present. The infinite series for G(zl; z'1) is

G(zl; x'1) = G°(z; x') + G°(z; 0)Vn1G°(O; z')

+ G°(z; 0)VI,G°(O; 0) V11G(0; z')

+ G°(z; O)Vl 2G°(0; 0)V21 GO(0O; z')

+ Go(z; 0)V 1Go(0; 0)V 11xG(0; 0)VI1Go(0; z')

+ G(zx; 0)V, 1G°(0; 0)V12GO(0; 0)V21G° (O; x')
+ G(z; O)VI2 G(O; O) V2 1 G(O; O)V, 1G(O; z')

+ G(z; O)V12 G(O; O)V22 G°(0; O)V2 1G°(O;;z') +... (11)

where Vab = TXa(Yi)Xb(Yi). Equation (11) can be regrouped as a power series

G(zl;z'1) = G°(z;z') + G°(z;O)V,1 G°(O; z')[1 + (V1 G°(0;0) + V22 G°(0; 0)) 1

+ (V,,G(0; 0) + V,,2G(0; 0))2

+ (V0,,G(O; 0) + V22Ga(O; 0))3 +...] (12)

and summed as

G(zl;'1) = Go(x; z') + Go(x; 0)V 1 IGo(0;z')(13)
1 - (V,,G°(0; 0) + V22 G°(O; O))(

Equation (13) is valid for any energy of the incident electron. That is, equation (13)
is valid when modes one and two are either propagating modes or evanescent modes.
We later discuss the convergence of the power series (12) leading to (13), and show
that the resulting equation (13) is better than the method used to obtain it.

By analogy with our calculation of G11 from (13), the result for an arbitrary
intrasubband Green function G(za; z'a) including all the normal confinement modes
is

G(xa;x'a) = G (z;x') + Ga(x; )V.aG (0;z') 1 - ( VnnGn(0;0) . (14)

Detailed discussion of one-dimensional results similar to (14) are given in [13-14].
The expression for the intersubband Green function G(xa; z'b) again including all the
normal confinement modes is

G(za;x'b) = +G (x; 0)V..G(0;x') 1 - ( V nG(0;0) . (15)

Equations (14) and (15) are the exact solutions of the Dyson equation (8) with the
scattering potential (9), and can be obtained by straightforward algebra after inserting
(9) into (8). The iteration proceedure in (11), which fails if the Fermi energy is equal
to a subband minimum but is useful for visualizing the possible scattering processes,
is not necessary to solve (8).

._ __ ___
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Equations (14) and (15) can be evaluated by noting that the 'free' Green function
for normal mode a is [13]

G (; z') = -. exp(-Kalz - z') E<E. (16)

if mode a is an evanescent mode where

2m(E - E) (17)

and

G (x; z') =Fi exp ±ik(zz')) E > Ea (18)

if mode a is a propagating mode where

2m(E - Ea)ha = + 2 (19)
From (16) and (18) we see that G°(O, 0), which occurs repeatedly in the power se-

ries (12) and corresponds diagrammatically to the particle repeatedly looping around
the delta function [14], is simply proportional to the density of propagating or evanes-
cent states for mode a. Thus, the series in the denominator of (14) and (15) of the
form E•, V,,G (0; 0) should be interpreted as a Golden Rule amplitude involving the
square root of the initial density of states, a matrix element connecting initial to final
state, and the square root of the density of final states. Taking the square magnitude
of this denominator will yield an infinite series of Golden-Rule-type scattering terms
between all possible normal modes. The numerators of (14) and (15) can also be
interpreted in this way.

4. Transmission coefficients

Let us evaluate the Green functions for the special case where x and x' are on opposite
sides of the scatterer and hence z' < 0 < z. Since we are interested in transmission
through the scatterer from left to right we consider only G+. Because we work with
the time-independent form of the Green functions, implicitly assumed in all our calcu-
lations is that a constant applied incident current is imposed on the scatterer from the
left. If this were not true the scattering problem could not reach a time-independent
solution. We must leave on the applied current long enough that evanescent modes
can build up around the scatterer until a steady state is reached as described in the
introduction and in [1].

To evaluate the intrasubband Green function from (14), we use the identity

G +(z; 0)G*(0; z') = G +(0; 0)G +(x; x') (20)
to rewrite (14) as

G+(xa; z'a) = taa(E) G' +(z; z').

m__
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Solution of Dyson's equation in a quasi-to wire

Here taa(E) is the current transmission amplitude through the defect

taa(E) = 1 + V" h'-- + i• Vn h
n a P n n n1k ,

x 1 + Enn h2, + i Vnn h2 (22)

given in [1]. In (22) F" denotes a sum over all the evanescent modes, "P denotes a
sum over the propagating modes, and mode a is assumed propagating. The ability to
factor the Green function into a product of the free Green function multiplied by the
transmission amplitude depends critically on the shape of the scatterer. Only for delta
function scatterers is it possible to make the simple factorization in (21). In (21), the
'free' Green function keeps track of the particle's phase while taa(E) gives the current
transmission amplitude including any possible phase shifts. Factorization of the Green
function as in (21) for the case of two delta function scatterers in one dimension
(modelling a resonant tunneling problem) has been noted by Garcia-Calder6n [15].

The new physics of scattering in a confined geometry, discussed in detail for all
the transmission coefficients in [1], can be briefly illustrated by considering a simple
case of (22) where mode one is propagating and mode two is evanescent:

1 + V,2 m/hl2 c2t(E) = 1 + V + i / (23)1+V22 2 K+iVJJm/h2 ki
At the minima of the second subband we have 1c2 = 0 resulting in perfect transmission
of the incident mode t 11 = 1. This 'perfect transparency' effect, first pointed out by
Chu and Sorbello [2], is a consequence of evanescent modes building up near the
scattering defect [1]. In addition, the numerator of (23) is zero when the incident
electron energy lines up with the quasi-bound state which has split off from the second
subband [1] resulting in perfect reflection, tll = 0. Setting the real part of the Green
function's denominator in (21) to zero we recover the quasi-bound-state energy.

Evaluating the intersubband Green function from (15) yields'

G+(xa; x'b) = tb(E) -ih 2  exp(+ikaz - ikbz'). (24)
a )

Here tab(E) is the current transmission amplitude through the defect from the incident
normal mode b on the left to the transmitted normal mode a on the right

n n nnt,,(E)= -iVa,$(Z1+ zV""A- +iZ VCn'kJ (25)

given in [1].
Equation (25) gives the transmission amplitudes t ab = t ba for a $ b. But for the

delta function scattering potential of (9), tab = rab for a $ b simply by wavefunction
continuity at the scatterer [1]. Furthermore 1+ r.a = taa ,so (25) gives the reflection
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amplitudes ra, if a = b. These results can also be shown using the Green function
approach of this paper. Therefore

r'(E)- -iVa , 1+ V'n( +, + iEVZ" 2, (26)

which holds for any two propagating normal modes a and b, should be considered the
fundamental result of this paper. The two factors of (26) have a simple interpretation
in terms of the Fermi Golden Rule as described in the previous section. Conversely,
the intrasubband transmission from (22) appears to be a result of 'leftover' particles
not deflected by the delta function, and can be obtained by applying (26) together
with wavefunction continuity at the scatterer.

The relationship obtained by Fisher and Lee [8] between the current transmission
amplitudes and the Green functions for an arbitrary defect potential is

tab(E) = -ifihvv-4~ G+(za; ~'b) exp(-ikax + ikbz') (27)

where we again require that z' < 0 < z. We have inserted an extra h in their
relationship which must be there on purely dimensional grounds. The current trans-
mission amplitudes tab through the delta function potential were explicitly calculated
in [1]. In this paper we have calculated all the Green functions G(za; z'b) through
the delta function defect. Both the intrasubband Green functions from (21) and the
intersubband Green functions from (24) clearly obey the relation in (27) (up to an
unimportant phase factor of -1). Alternately, had we not previously calculated the
current transmission amplitudes using another method, we could have used the cal-
culation in section 3 and (27) to obtain them. Therefore, we can also regard the
transmission coefficients taa from (22) and tab from (25) as being obtained by solving
the Dyson equation (8) and applying the Fisher-Lee relation (27).

The current transmission coefficients Tab necessary to calculate the conductance
through a defect we may now obtain as

Tab = tabt•b = vavbIhG+(zxa; z'b)12 . (28)

The-two probe Landauer conductance can then be written as

(2 22

G -= K = • EvavblhG+(xa;x'b)12 (29)
ab ab

which is similar to the expression in [8]. Relation (27) of Fisher and Lee for the
transmission coefficients, inserted into the two-probe Landauer conductance formula,
gives the expression for the conductance in terms of Green functions as in (29).

The two-probe conductance versus Fermi energy from (29) for both a repulsive
delta potential (full curve) having 7 = 7 feV cm2 and an attractive delta potential
(chain curve) with 7 = -7 feV cm2 are shown in figure 2. Figure 2 assumes an
infinite square well confinement of 30 nm width and an electron mass of 0.067 times
the free electron mass appropriate for GaAs heterojunctions. Conductance through
the repulsive potential (full curve) is lower than its ballistic value of n times 2e 2/h
(where n is the subband index) due to increased reflection immediately above the
bottom of the nth subband. This increased reflection rounds the shoulders of the
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quantised conductance steps. Immediately below the minima of the nth subband
the conductance rises to its ballistic value of (n - 1) times 2e2/h as a result of the
'perfect transparency' effect described in this section. For the two-probe conductance
through an attractive defect (chain curve), a single quasi-bound state splits off from
each quasi-one-dimensional subband and is visible as the extra pronounced dips in
the conductance. The quasi-bound state associated with the nth subband appears
when the Fermi energy lies in the (n - 1)th subband, resulting in increased reflection
and a correspondingly lower conductance near the quasi-bound-state energy. The
'perfect transparency' effect is also present when the scatterer is attractive. We have
investigated the conductance through a delta function scatterer in a wire in detail
in [1].

5. Conclusions

The scattering properties of electrons in a confined geometry are qualitatively different
from the usual case of scattering in open geometries due to the building up and storage
of electrons in evanescent waves near the scattering defect. To illustrate these prop-
erties, we solved Dyson's equation for the single-electron Green function describing
electrons scattering from a delta function defect in a quasi-one-dimensional wire. We
then used Fisher and Lee's relationship between the single-electron Green functions
and the current transmission amplitudes to obtain the current transmission coeffi-
cients of electrons through a delta function defect in the Q1D wire. The transmission
coefficients so obtained agree with those found by simply matching wavefunctions and
their derivatives at the defect [1]. For the delta function scatterer, all normal modes
completely 'decouple' at a new subband minimum resulting in perfect transmission
despite the presence of a scatterer. If the delta function scatterer is attractive, a sin-
gle quasi-bound state splits off from each confinement subband and causes increased
reflection if the Fermi energy is near the quasi-bound state.
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We calculate analytically the transmission coefficient through two delta function
barriers in a quasi-one-dimensional wire as the Fermi energy and distance between
scatterers are varied. In a purely one-dimensional or single-mode system, the trans-
mission coefficient is periodic as a function of distance between scatterers with
successive resonances separated by half the wavelength of the incident electron. In
a two-mode system we find unusual modifications to this result when the Fermi
energy is near the second subband minimum. First, the presence of the evanescent
mode causes successive resonances in the transmission coefficient to be separated by
a full wavelength rather than by a half wavelength. Furthermore, when the Fermi
energy coincides with the second subband minimum, the transmission approaches
unity for scatterer separations larger than a few wavelengths and is therefore no
longer a periodic function of distance between scatterers.

1. Introduction

Electron scattering in a confined geometry exhibits
unusual properties because of the existence of evanes-
cent modes induced by the confinement. In a confined
geometry, such as the quasi-one-dimensional wire shown
in Fig. 1, scattering into the evanescent modes causes a
local buildup of particle density around the scatterers.
The novel scattering properties of a single obstacle in a
multi-channel wire have been studied in Refs. [11-[41. In
particular, it was found that the transmission through
a single delta function scatterer becomes perfect when-
ever the Fermi energy coincides with the bottom of a
subband regardless of the sign of the scatterer. Addi-
tional novel transmission properties were found for an
attractive scatterer when the Fermi energy is near a
quasi-bound state of the wire.

In this communication we calculate the transmis-
sion through two delta function barriers in a quasi-one-
dimensional wire. In the presence of only a single mode,
one obtains the usual one-dimensional resonant tunnel-
ing problem, which is discussed in detail in Refs. [5]-[7].
When the Fermi energy is near the bottom of the sec-
ond subband, we find that the two-mode transmission
coefficient is not periodic as a function of distance be-
tween scatterers and has resonances separated by a full
wavelength of the incident electron. These properties

suggest.that the two-mode transmission resonances are
caused by a mechanism different from the geometrical
interference effect found in the one-dimensional prob-
lem. When the Fermi energy is near the bottom of a
subband, we find that coupling to the evanescent mode
dominates the scattering in the wire.

Our purpose in this communication is to present
only the basic and most dominant features of this multi-
mode scattering problem. Therefore, we choose to focus
our attention here on the case where the two tunnel bar-
riers have equal strengths and are aligned, though we
comment on the more complicated results obtained for
other scattering potentials. We also concentrate for sim-
plicity only on the transmission of the lowest mode for

Reflected Quasi-1 D wire
Fig. 1. An electron, incident from the left in the lowest
normal mode, scattering from two barriers in a quasi-
one-dimensional wire.
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RESONANT TUNNELING IN A MULTI-CHANNEL WIRE

energies near the second subband minimum. If one or
both of the scatterers are made attractive, there are also
complicated effects arising from quasi-bound states in
the wire which we do not investigate here. The method
and some results we present encompass these more com-
plicated cases, as we note at the appropriate points.

2. Scattering From Two Barriers in a Wire

The system we consider is a quasi-one-dimensional
wire with a confining potential V,(y) and a scattering
potential Vs(z,y). The time-independent Schr8dinger
equation (in the effective mass approximation) is

I r a 2 + a 2' \ + . Y + X 1 1 O
+2mV(y) +(Vs(x52) (zs 

))
= EO (z, y). (1)

For our two-barrier problem, we take the scattering po-
tential to consist of two delta functions:

The wavefunction in Eq. (4) must be continuous. Af-
ter multiplying Eq. (4) by x.(y) and integrating over all
y, the orthogonality property of the (X,(y)} demands
that each individual mode be continuous [8] so that
a,(O+) = a,(0-). Therefore, at z = 0,

A. + B. = F. + G.
holds for all n.

The boundary condition on the derivatives of the
{a,(zx)} follows similarly by inserting Eq. (4) into Eq. (1).
The orthogonality property of the {xn(y)} can then be
used to show that

dzZ+ k ()

= (r 6(x) + r$6( - d)) a,(x).

Here the mode coupling constants for barrier (i) are
given by

Vs(x,y) = .(1)6(Xs)(y - y)
+'(2)6(z - d)6(y - s(2)).

This potential is shown schematically in Fig. 1 where
the barriers are separated along the x direction by a
distance d.

The confinement potential V,(y) defines a basis set
of normal modes {Xn(y)} satisfying

2m dy- + V.(y) x.(y)= E.X.(y), (3)

where n = 1,2,3,.... In the quasi-one-dimensional wire
each transverse eigenstate n is associated with a mode
which is propagating if the particle energy E > E,, and
a mode which is evanescent if E < E,. The wavefunc-
tion of the clean wire is separable so that the x depen-
dent part of the wavefunction is a linear combination of
two plane waves for the propagating modes, and a lin-
ear combination of growing and decaying exponentials
for the evanescent modes.

Away from the scattering potential we can therefore
expand the wavefunction as follows [8]:

(x, Y) =E Cn a,(z)x,(Y), (4)
n

where

SA,,c.k + Bne- iks, x < 0,
a,(z) = F neik, + Gne-i"", O < < d, (5)

C.e ik.( - d) + De - •( -'z , x > d.

Here the wavevector k, is

2m 1/2 )
k=. [ (E - E)] , (6)

and becomes imaginary if the mode n is evanescent. The
boundary conditions require A, = D, = 0 for evanes-
cent modes so that there are no growing exponentials
away from the scatterers.

S= Xn(Y))X(Y ),s i= 1,2.

At z = 0 the discontinuity in the first derivative of
each mode, by integrating Eq. (8), must satisfy

da0,(x)
dx dxZ -0- (10)

Inserting Eq. (5) in Eq. (10) yields

ik,,(Fn - G.) - ikn(A. - B.) = r (An, + Bm).(11)

Equation (11) couples mode n to all other modes in the
problem. For simplicity, we cut off the sum in Eq. (1i)
at a finite number of modes. Likewise, equations similar
to Eq. (7) and Eq. (11) enforcing the boundary condi-
tions at z = d can also be written down. We note that
the form of Eq. (11) does not depend on the y depen-
dence of the scattering potential in Eq. (2). A different
choice for the y dependence would only change the val-
ues of the r ( i.

The previous equations also do not depend on the
choice of the confinement potential, so that none of the
results of this paper depend fundamentally on V,(y).
For definiteness we take Ve(y) to be zero for 0 < y < W
and infinite elsewhere, yielding

E= W n'2 (12)

3. Transmission Coefficients

We take the particles to be incident from the left, so
that D, = 0 in Eq. (5), and define wavefunction trans-
mission and reflection amplitudes normalized to the am-
plitude of the incident mode:

C, B,
tn=,, =ý , rn. - -A .Am' A,m (13)

For propagating modes n and m the current transmis-
sion and reflection coefficients are given by
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kkmn m (14)k.r km
For one mode, by solving Eqs. (7) and (11) and the

analogous equations at z = d, we straightforwardly ob-
tain

til = ei"Id/I 1  (15)

where the denominator Dr is

D = 1 + l) 1 + i•• +22k, 2k,
4 k-I e2ikld
4k?

The denominator of the transmission amplitude D1 is a
periodic function of distance d with period A1/2, where
AX = 27r/k 1 . The numerator of Eq. (15) is a simple phase
factor having unit modulus. Therefore, the transmission
coefficient T11 is periodic as a function of distance with
period A1/2.

We now consider the case of two modes. For sim-
plicity we take the scatterers to be identical and aligned
with r( = r 2 = r e•, although the two scatterers can
be either attractive or repulsive. Solving Eqs. (7) and
(11), along with their analogues at z = d, and applying
Eq. (13) yields

t- = I [2 rn•2 r2. sink.d+ (1+i e.- (17)

where

D2= 2[r1-ikd r

= + sin kd

+ 1+r 11 +.Ir22 12  e-i(k,+ 2 )d
I kli k2 2•kzk2

+_• • (-2ikld + -2ik2d)
4kik2

tering properties occur mainly for a range of electron
energies near E = E2. Therefore, we choose to plot
Ti1 as a function of scatterer separation d. We now
take the scatterers to be repulsive, with 0(1) = (2) =

10- 14 eV cm 2 and ()= s2) = 13.3 nm. The variation
of the transmission coefficient T11 with scatterer sepa-
ration d is illustrated in Fig. 2 for energies E = 0.9E 2

(bottom), E = E2 (middle), and E = 1.1E 2 (top). We
have chosen parameters m = 0.067mo and W = 30 nm
appropriate for GaAs heterojunctions.

For E = 0.9E 2, when the Fermi energy is below
the second subband minimum, the evanescent modes
have little qualitative effect on the transmission prop-
erties of the system so that we recover the standard
one-dimensional result: perfect transmission resonances
separated by A1/2 with the first resonance offset from
d = 0, consistent with Eqs. (15)-(16). However, the
transmission is enhanced when the evanescent modes
are included. When E = E2 , we note that successive
resonances in Tn1 become separated by a full wavelength.
The first maximum occurs at d = 0, so that we recover
the result of perfect transmission at E = E2 for a single
scatterer that was proved in Refs. [1]-[3]. Furthermore,
the transmission asymptotically approaches unity when
the scatterer separation becomes larger than a few wave-
lengths of the incident electron. Finally, at an energy
E = 1.1E 2 such that the second mode is propagating,
we observe a beat-like modulation in T11. This is not
surprising, since there are now two allowed propagating
wavelengths in the transmission problem. This beat-
ing pattern would not occur if the coupling between the
two modes were zero, and is therefore a qualitatively
new feature of scattering in the multi-mode wire.

(18)

To derive this expression, we have used the identity
r, = r,,m. Of course, Eqs. (17)-(18) reduce to
Eqs. (15)-(16) if r, 2 = r2, = 0 so that there is no cou-
pling to the second mode. If we set d = 0 in Eqs. (17)-
(18) we recover the results of Refs. [1]-[2] for a single
scatterer.

In the limits k2 < r22 and k2 < d- 1, we obtain

2 2 sin k.d + iT22] ssl

tl - s "n ] s .(19)

r2 sin k,.d + ST2s +•E12 (cos ki, d - 1)

Since the bracketed terms in the numerator and denom-
inator of tu are equal, we obtain unity transmission
when (cos kid - 1) vanishes, i.e., when d = j.X,j =

0,1,2,.... We additionally note that if A1 < d < As,
the n = 2 term in the above summations will dominate
both the numerator and the denominator, driving the
transmission to unity.

Plotting the transmission coefficient as a function
of energy gives no special insight in this problem, since
the strongest modifications to the one-dimensional scat-

1.0

0.6
1.0

0.6
1.0

0.6
012 3 4 5 6 7 8

Fig. 2. Transmission coefficient T 11 versus scatterer sep-
aration d for two aligned delta function barriers in a
quasi-one-dimensional wire. The scatterer separation d
is normalized to the incident electron wavelength Al,
which is different for each energy E. The graphs shown
are for constant energies E = 0.9E2 (bottom), E = E2
(middle), and E = 1.1E 2 (top).
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We have also considered disaligned scatterers, un-
equal scatterers, and attractive scatterers [9]. Impor-
tantly, we still find successive resonances in Tn sepa-
rated by a full wavelength and T11 approaching unity in
the limit of large scatterer separations as before. These
properties fail only when one of the barriers is exactly
on the node in X2(Y), eliminating the coupling to the
second mode at that scatterer. Even if the scatter-
ers have unequal strengths, the transmission maxima
are still perfect provided the scatterers are aligned, in
sharp contrast to the one-dimensional case of Eqs. (15)-
(16). Disaligning the scatterers does slightly degrade
the transmission maxima, but this effect is appreciable
only when either of the scatterers is near the node in
X2(Y). The first transmission maximum is also offset
from d = 0 if the scatterers are disaligned. If the scat-
terers are attractive we additionally find T-=O near the
quasi-bound state energies splitting off from the confine-
ment subbands.

4. Discussion

Near the subband bottom, it is evident from Eqs. (17)-
(19) that the dominant terms, which have k2 1 depen-
dences, all involve coupling to mode 2. These terms
are nonexistent in the single-mode case, Eqs. (15)-(16).
In particular, the terms in Eqs. (17)-(18) correspond-
ing to the geometrical interference effect in the one-
dimensional problem are completely overshadowed by
terms involving coupling to mode 2. Hence, mode con-
version dominates the scattering properties near the
subband minimum. This is reasonable since the one-
dimensional density of states for mode 2 diverges as k2
on either side of the subband minimum.

The relative phase of the incident mode at each of
the barriers plays an important role in determining the
spatial variation of the evanescent modes, which can
only be populated by scattering from the incident ap-
plied current. Since the relative phase of the incident
mode is clearly periodic with a period A,, we have some
basis for understanding the change in the spacing be-
tween successive resonances in the transmission coeffi-
cient from A1/2 to A1 when coupling to the second mode
becomes dominant. To understand this in more detail
we examine the spatial variation of the evanescent mode
a2(z).

For the simple case of identical, aligned scatterers, so
that the mode coupling constants of the two barriers are
equal, we have found [9] that the evanescent mode am-
plitude a 2 (z) can be chosen real and has the form shown
in Fig. 3. If the scatterers are separated by an integer
multiple of A1, the evanescent mode amplitude a 2(z)
is symmetric about z = d/2, the midpoint between the
scatterers. By analogy to molecular physics, we have la-
belled this a 'bonding' state. Transmission maxima oc-
cur when the evanescent mode forms a 'bonding' state.
In contrast, if the scatterer separation is a half integer
multiple of A\, the evanescent mode amplitude a 2 (z)
has opposite signs at each scatterer, resulting in a node

mode It

d-X1/2mAnd 9 1

'Anti- bonding"state

model s' x

mode 2
d=XI

"Bonding" state

Fig. 3. The evanescent mode is populated by scattering
from the incident applied current, so that electrons ac-
cumulate locally in evanescent modes around each tun-
nel barrier. For the case of identical, aligned scatterers,
the evanescent mode forms an 'anti-bonding' state when
the barriers are separated by half the wavelength of the
incident electron, and a 'bonding' state when the sepa-
ration is a full wavelength.

in the evanescent mode halfway between the scatterers.
We have labelled this an 'anti-bonding' state. We em-
phasize that the form of the evanescent mode is more
complicated if the coupling at each scatterer is different.

5. Conclusion

We have compared the transmission of an electron
through two delta function barriers in a one-mode wire
to that in a two-mode wire. The substantial differences
we find between the one-mode and the two-mode case
suggest that resonances in the transmission coefficient
arise from different mechanisms when the Fermi energy
is near the bottom of a subband in the multi-mode wire.
Geometrical resonances analogous to those in a Fabry-
Perot optical cavity dominate the transmission proper-
ties in the single-mode case, whereas the intermode cou-
pling and the accumulation of evanescent modes around
the scatterers dominate the transmission properties of
the two-mode wire.
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one-dimensional wire as the Fermi energy and distance between scatterers are varied.
At a subband minimum the standard wave interference pattern between propagating
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stead, we find that the shape of the lowest evanescent waveguide mode determines the
electron transmission so that a new pattern of conductance oscillations emerges. If
either of the scatterers is attractive, the transmission is suppressed abruptly near the
'quasi-donor' levels formed in the scatterer below each new subband minimum.
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1 Introduction

Discovery of the quantized constriction resistance [1]-[2], and its explanation in
terms of the Landauer conductance formula [3]-[4], has greatly stimulated interest
in understanding scattering in quasi-one-dimensional conductors [5]-[21]. After first
understanding the simplest case of scattering from a single barrier in a quasi-one-
dimensional geometry [5]-[7), one would then like to understand the scattering from
two barriers [13]-[16], and eventually the transport through many barriers [18]-[21].

In this paper we make the first attempt to qualitatively understand scattering from
two barriers in a confined geometry. We use a 'point defect' model for the scatterers,
which may be too idealized to describe present experiments on transport in quantized
GaAs constrictions. The impurity potential in GaAs heterojunctions is believed to vary
slowly (on the scale of 0.1 microns) compared to the electron wavelength. Nonetheless,
the point defect model is useful to obtain qualitative insights into electron scattering
in low-dimensional geometries. The limit of slowly varying or 'adiabatic' potentials
has already been described in detail [22]-[231, so we choose to examine a highly non-
adiabatic potential where interchannel scattering is significant.

If a current is flowing in a confined geometry, such as the quasi-one-dimensional
wire illustrated in Fig. 1, the incident electrons can scatter into evanescent modes
which accumulate locally around the scattering centers. When more than one barrier
is present in a multi-mode wire, an electron scattered into the evanescent channel
at one of the obstacles can again be scattered at another obstacle. This effect most
strongly influences the transmission properties when the distance between the two
barriers is less than the decay length of the evanescent mode, so that the tail of the
evanescent wavefunction accumulating around one of the scatterers will overlap with
the other scatterer. If the Fermi energy is away from a subband minimum or quasi-
bound state in a wire with two scatterers, we find that this effect results in only small
deviations from one-dimensional resonant tunneling theory [24]-[26].

However, as the Fermi energy approaches a subband minimum, where the de-
cay length of the evanescent mode and the evanescent density of states both become
infinite, the transmission properties are determined largely by the shape of the low-
est evanescent mode. At a subband minimum the Fabry-Perot interferences between
propagating modes are completely suppressed, and a new series of transmission res-
onances with completely different properties emerges due to the strong coupling to
the evanescent mode. We use this result to obtain the most general arrangement of



point scatterers which give perfect transmission at a subband minimum, extending
the calculations of Refs. [5]-[6].

The Hamiltonian and transmission coefficients through the two point scatterers
are defined in Sec. II. In Sec. III we study the transmission coefficients when both
scatterers in the wire are repulsive. Making one or both of the scatterers attractive
introduces additional novel transmission properties, as investigated in Sec. IV. The
appendix describes how the transmission coefficients are calculated. [17]

2 Scattering in a multi-mode wire

A quasi-one-dimensional wire, in which noninteracting electrons are free to move
in the x direction but are confined in the y direction as shown in Fig. 1, is described
by the Schr6dinger equation

[2m • 2 y2 + K () + Vy (X, y) (xJ, y) = E( , y)  (1)

The confinement potential V,(y) defines a basis set of normal modes {Xn(y)} satisfying

h2 d' 1
2m dy2 V(y) Xn,(Y) = EX,(y), (2)

where E, is the subband energy for mode n. In the quasi-one-dimensional wire a
transverse mode n is propagating if E > E, and is evanescent if E < E,, as shown in
Fig. 2. The scattering potential V,(x, y) we take to be two point scatterers separated
along the x direction by a distance d as

V,(x, y) = -y(1)6(x)6(y - y(1)) + y(2)6(x - d)6(y - y 2)). (3)

Since the wavefunction of the clean wire is separable, it can be expanded away
from the scattering potential as follows: [17]

~(, y) = an(X)xn(Y), (4)

where

Aneikz + Bne - i k , x < 0,
a,,(•) = Feiknz + Ge-iknz, < x < d, (5)

Cne ikn(z - d) + Dne- ikn( z - d), x > d.



Here the wavevector kn is

k = [2m (E - E.)] , (6)

and becomes imaginary if the mode n is evanescent so that kn = in, where nK > 0.
The resulting dispersion relation for the wire modes is shown in Fig. 2. The boundary
conditions require An = Dn = 0 for evanescent modes so that there are no growing
exponentials away from the scatterers. We take the particles to be incident from the
left, so that Dn = 0 in Eq. (5).

We define wavefunction transmission and reflection amplitudes normalized to the
amplitude of the incident mode Am:

t Cnnm = A, r (7)SA' A' (7)m
The boundary conditions for obtaining each tnm and rnm are given in the appendix.
Most of the following numerical results we present for tnm and rnm can be verified
analytically (when the lowest two modes are present) by taking the appropriate limits
of Eqs. (18)-(19) in the appendix.

For propagating modes m and n the current transmission and reflection coefficients
are given by

kI, k,
Tnm = Rm= "rr (8)

The normalized two-probe conductance g at zero temperature is then obtained from
the multi-channel Landauer formula [27]-[30]

G
S= = E Tnm, (9)- 2e 2/h n, (9)

where the sum in Eq. (9) runs over only the propagating modes of the wire. The
remainder of the paper is concerned with analyzing the transmission coefficients Tm
through the scattering potential in Eq. (3). For definiteness throughout the remainder
of this paper, we choose an infinite square well confining potential V,(y) having width
W = 30 nm and an electron mass m = 0.067m, appropriate for GaAs heterojunctions.

_ ~ ____________1____11______



3 Two repulsive scatterers

We show in Fig. 3 the transmission coefficients and two-probe conductance as a
function of energy E for d = A1 = 34.64 nm, where the wavelength A1 is evaluated
at E = E2 . The scatterers are aligned at y!') = y(2) = 13.3 nm. We choose barriers
having different strengths -y(1) = 10 feV cm 2 and y(2) = 5_(1) in Figs. 3-4. The lowest
three modes have been kept for all numerical calculations in this section.

The two transmission resonances in Fig. 3 for E 1 < E < E 2 arise from single mode
Fabry-Perot interference, and are less than unity because the barriers have unequal
strengths. At the subband bottom (E = E 2), where the scattering is dominated by
the evanescent mode, we observe that T11 is unity even though the Fermi energy is
not near an expected Fabry-Perot resonance. When the Fermi energy rises into the
second subband so that E 2 < E < E3 , there is no remnant of Fabry-Perot type
resonances. The presence of two incident electron wavelengths, combined with the
intermode scattering, makes the Fabry-Perot resonance more difficult to achieve.

To obtain a better understanding of the transmission properties at a subband
minimum in Fig. 3, we fix the probing electron wavelength near the second subband
minimum and vary the scatterer separation. In Fig. 4(a)-(c) we study the variation
of the transmission coefficient T 11 versus d/AX for three values of the energy: (a)
E = 0.9E 2, (b) E = E£, and (c) E = 1.1E 2. Note that the wavelength A, = 27r/ki is
different for each energy.

In Fig. 4(a) we observe the usual one-dimensional resonant tunneling behavior,
subject to only small modifications. The transmission resonances are separated by
A1/2 and the first maximum is offset from d = 0 because of the phase shifts from each
scatterer. Additionally, we note that T11 is no longer strictly periodic as a function
of d, as can be seen from the first two minima. The scatterer separation for these
two minima is in the range d - 1/r'2 so that the evanescent tails of the second mode
accumulating around each scatterer overlap significantly. The transmission coefficient
is in general not a periodic function of scatterer separation d when evanescent modes
are present.

The variation of the transmission coefficient in Fig. 4(b)-(c) is markedly different
from the standard one-dimensional resonant tunneling result. In case (b), when the
Fermi energy aligns with the second subband, we see that successive transmission
maxima are now separated by AX and that the transmission maxima are unity even
though the barriers have different strengths. The first maximum occurs at d = 0 so



that there is no scattering phase shift. Also, the minima of T11 tend asymptotically
to unity as d is increased, so that the transmission is perfect when the scatterers
have a large separation. The transmission coefficient T11 versus d/Ax in Fig. 4(b) is
therefore highly aperiodic. These large qualitative differences between Fig. 4(a) and
(b) demonstrate that the Fabry-Perot wave-interference between propagating modes
is not the mechanism giving rise to conductance oscillations when the Fermi energy
aligns with a subband minimum. In case (c) T 1l has a beat-like pattern, due to the
presence of two propagating wavelengths, and is no longer perfect anywhere.

Examining the shape of the evanescent mode around the scatterers will enable
us to understand the change in transmission properties as the new subband becomes
occupied. Figure 5(a) shows the lowest evanescent mode wavefunction a 2 () when the
scatterers are separated by a half wavelength d = A• /2, while Fig. 5(b) shows the lowest
evanescent wavefunction at a full wavelength separation d = A• . The important insight
to gain from Fig. 5 is that, if the lowest evanescent mode is uniform along the length of
the wire, perfect transmission results for the incident propagating wavefunction. The
position of the scattering barriers and their coupling to the incident mode determine
how the incident electrons scatter into the evanescent mode, the subsequent shape
of the lowest evanescent wavefunction, and the resulting transmission properties. We
have chosen the scatterer strengths to be equal in Fig. 5, y7(l) = -(2) = 10 feV cm 2, to
illustrate the analogy between these evanescent states and 'bonding' or 'antibonding'
orbitals in molecular physics. The evanescent wavefunction Ca2 (x) for the unequal
barrier strengths studied in Figs. 3-4 is slightly more complex.

We can now give an intuitive argument to explain the electron transmission in
Fig. 4(b). Because the evanescent density of states diverges like Jc2- 1 as the Fermi
energy approaches the second subband minimum, we expect the evanescent mode to
dominate the scattering at that energy. Suppose we place a point defect barrier in
the wire, which is known to give perfect transmission at a subband minimum [5]-[6],
and try to add a second barrier so that the transmission is still perfect at the second
subband minimum. In general, the addition of the second scatterer will affect the
evanescent wavefunction at both scatterers and there will be some reflection in the
incident mode. Therefore, to obtain perfect transmission, we must place the second
scatterer in the wire in a way that does not change the evanescent wavefunction at
either scatterer.

For a single point scatterer located at coordinates (,, y,), the evanescent mode



accumulates to a constant independent of z given by [5]

C1z(z) = C2 = t,2eiklz*A1, (10)

where t21 is the transmission amplitude into the lowest evanescent mode when x, = 0:

t2 = r2l = -r2/r22 = - sin(,ry,/W)/ sin(2iy,/W) . (11)

Therefore, from Eq. (10) and Eq. (11), the same value of the evanescent mode a 2 (x) =
C 2 is obtained for different choices of the single scatterer coordinates (x,, y,) only when

eikcx, sin(7ry,/W)/ sin(2ry,/W) = const . (12)

Note that Eqs. (11)-(12) are independent of the scatterer strength -y.
Consider now the case of two point scatterers in the wire when E = E2. Fixing

the position of the first scatterer at coordinates (0, yl)) determines the value of the
constant in Eq. (12). Then from Eq. (12), a second scatterer aligned with the first can
be placed at coordinates (d, y(2) = y(l)) and not affect the evanescent wavefunction at
either scatterer only when d = JA 1, where j = 0, 1, 2,.... If the second scatterer is not
an integer number of wavelengths from the first scatterer, the evanescent mode a 2 (x)
must change its value from one scatterer to the next. As explained in the appendix,
the resulting derivative jump in the evanescent mode must be met by a derivative
jump in the first mode, giving rise to a reflected wave.

Therefore, perfect transmission is obtained only when the second barrier is placed
an integer number of wavelengths from the first barrier, explaining the change in
spacing between successive maxima of the transmission coefficient T 1, from a half
wavelength in Fig. 4(a) to a full wavelength in Fig. 4(b). Since Eq. (12) is indepen-
dent of the scatterer strength, the barriers can have different strengths and perfect
transmission still results at E = E2. The approach of the transmission coefficient T11
to unity in Fig. 4(b) is also easily explained by noting that, if the positions of the scat-
terers force the evanescent wavefunction to assume different values at each scatterer,
the resulting discontinuity in the derivative of a 2(x) will become progressively smaller
as the scatterer separation is increased.

If the two scatterers are disaligned, then in general it follows from Eq. (12) that
the same value of the evanescent mode cannot be supported at both scatterers, and
perfect transmission can no longer result at E = E2. [31] We confirm this in Fig. 6
where T11 is shown as a function of d/A 1 for three different y positions of the second
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scatterer: (a) y (2) = 14.8 nm, (b) y '2) = 15.0 nm, and (c) y!2) = 23.7 nm. We fix the
energy at E = Ez and the position of the first scatterer at y!l) = 13.3 nm as before.
The barriers have the same strengths as in Figs. 3-4.

In Fig. 6(c) the transmission resonances are not exactly perfect, but the deviation
from unity is not noticable on the graph. We find this behavior of T11 generally
holds for most lateral positions y!2). Only if the second scatterer is brought close to
the node of X2(y), as in Fig. 6(a-b), does a different transmission behavior begin to
emerge. When we place one of the scatterers directly on the node in X2(y), so that it
does not couple to the lowest evanescent wavefunction, the transmission coefficient in
Fig. 6(b) becomes essentially independent of separation d even though the barrier is
still coupled to the incident mode. The absence of transmission oscillations in Fig. 6(b)
is easily understood, since the barrier in the node of X2(Y) does not alter the shape
of the evanescent modes needed to give perfect transmission [5]-[6] through the other
barrier. Therefore, the transmission coefficient is independent of the separation d and
limited only by the barrier in the node of X2(y). If one of the scatterers is placed very
near but not exactly on the node in X2(Y), as in Fig. 6(a), the resulting transmission
resonances of period A1 are noticably less than unity. However, the transmission still
asymptotically approaches unity after many wavelengths, as in our previous analysis.

There is a special case of disaligning the two scatterers where perfect transmission
still results at E = E2 If y!2) = W - y71), so that the scatterer positions along y are
mirrored about the axis of the wire, the mode coupling constants between the incident
mode and the lowest evanescent mode at the two scatterers are negatives of each other
(F() = -r( 2 )). Then, if we displace the second scatterer by a half wavelength from the

first along the x direction, the incident wavefunction eikl x sin(iry/W) changes sign at
the second scatterer. Therefore, by Eq. (10), the same constant value of a 2z(x) = C2
again satisfies the boundary conditions at both scatterers. By the arguments in the
preceding paragraphs, perfect transmission is again obtained at E = E2 if y!2) =
W - y71) and d = (j3 + 1/2)A1 for any sign or strength of the second scatterer.

To conclude this section, we use the argument from the preceding paragraph to
consider adding more than two point scatterers to the wire. By induction, we can
continue to place additional scatterers having arbitrary signs and strengths on any
subset of the grid points shown in Fig. 7 and still obtain perfect transmission when
E = E2. The perfect transmission through a single delta function scatterer at a
subband minimum [5]-[61 is a special case where only one site in the grid is occupied.
Figure 7 represents the most general arrangement of delta function scatterers yielding
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perfect transmission T 11 = 1 when E = E2.

4 Attractive scatterers

If attractive scatterers are present in a multi-mode wire, quasi-bound or bound
states made up of evanescent waves form below each subband minimum, as shown in
Fig. 2. The quasi-bound state is localized around the attractive scatterer like a donor
level below the conduction band minimum of a semiconductor. Such a state is truly
bound only if its energy lies below the bottom of the lowest subband; otherwise its

energy is degenerate with that of a propagating mode and a particle in such a state
has a finite lifetime. If one or both of the point scatterers in our two-barrier problem
are made attractive, we expect zeroes in the transmission coefficient in the vicinity
of the quasi-bound states, similar to those in previous calculations. [5]-[7], [19]-[21]
We find that the qualitative behavior of the transmission coefficients is similar to that
found for repulsive scatterers, except when the Fermi energy is near a quasi-bound
state.

In Fig. 8 we plot the zeroes of the transmission coefficient T11 in the d-E plane,
with the scatterer separation d normalized to the wavelength A1 at each energy E.
The lowest two modes are retained in Figs. 8-9. Figure 8(a) shows one attractive
scatterer and one repulsive scatterer, while Fig. 8(b) shows two attractive scatterers.
The calculation in Fig. 8(b) can be viewed as transmission through a diatomic molecule
attached to the wire. The figure insets show the position of the bound state energies
calculated by setting the coupling of the incident propagating mode to the evanescent
mode to zero, mimicking a simple one-dimensional calculation of molecular binding
energies. The scatterers are aligned at y1l) = y-2) = 13.3 nm and have equal strength

Jy()l = ly(2)- = 25 feV cm 2 . The energy near the top of the figure where the zeroes
terminate abruptly is E2, the bottom of the second subband.

Figure 8(a) displays a single bound state in the attractive scatterer for any value
of the separation d : 0. As in elementary molecular physics, Fig. 8(b) displays two
bound states when d is large, and only one bound state when d becomes small. When
d becomes small in Fig. 8(b), the 'anti-bonding' state is forced into the continuum
above the second subband.

The zeroes of T11 in Fig. 8(a)-(b) qualitatively follow the bound state energies of the
single-mode problem shown in the inset. These zeroes in T11 exhibit some oscillatory



structure of periodicity A1, and coincide with the bound state energies shown in the
inset when d = jA•. The oscillatory structure in T11 arises from the coupling of the
propagating mode to the quasi-bound states, so that the zeroes in T11 are sensitive to
the relative phase of the incident mode at the two scatterers. We do not understand
the precise relationship between the quasi-bound states of a multi-channel system [32]
and zeroes in the transmission coefficient, though the two are clearly related. When
both scatterers are made attractive we also observe, in Fig. 8(b), gaps of d for which
there are no transmission zeroes.

We plot the conductance versus Fermi energy in Fig. 9 when (a) both scatterers
are repulsive, (b) the first scatterer is repulsive and the second is attractive, and (c)
both scatterers are attractive. The strength and lateral positions of the scatterers
are the same as in Fig. 8, and we choose the separation d = 90 nm (or d = 2.6A1

at E = E2). There is one transmission zero immediately before the second subband
opening in Fig. 9(b), two zeroes in Fig. 9(c), and no transmission zeroes in Fig. 9(a),
as expected from Fig. 8(a)-(b). [33]

5 Conclusion

We have calculated the transmission coefficients for an electron scattering from
two point barriers in a quasi-one-dimensional wire. Our main conclusion is that,
if the Fermi energy is near a subband minimum in a quasi-one-dimensional wire,
the scattering properties of the wire are determined primarily by the shape of the
lowest evanescent mode around the scattering centers. Wave interference between
propagating modes in the wire, which normally produces an interference pattern of
oscillations in the conductance, is no longer the dominant mechanism giving rise to
structure in the conductance when the Fermi energy is near a subband minimum.

All of the unusual scattering properties we find can occur only for electrical con-
duction in a low-dimensional structure, where electrons accumulate in evanescent
or cutoff waveguide modes around each scattering center. For example, in a one-
dimensional scattering problem, perfect transmission through a single barrier implies
perfect transmission through two such barriers. Contrary to our original expecta-
tions, when the Fermi energy coincides with a subband minimum, the multi-mode
transmission through two point barriers is perfect only for certain resonant values of
the scatterer separation. Even though each single barrier in the multi-mode wire,
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taken by itself, appears completely transparent, an incident electron can be reflected
from two such 'perfectly transmitting' barriers in series.

Although our model scattering potential is highly idealized, and probably not di-
rectly applicable to present experiments on GaAs constrictions, we expect the same
general transmission properties to hold for transport in real low-dimensional systems.
In particular, the recurrence of transmission resonances every wavelength of the inci-
dent electron should be insensitive to the exact choice of the scattering potential. If
electron charging effects [34] or inelastic scattering between the barriers becomes dom-
inant, the transmission properties studied in this paper may be suppressed. Similar
transmission properties would result from two dielectric posts placed in a microwave
waveguide.
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7 Scattering Boundary Conditions

In this appendix we give the method used to obtain the transmission and reflection
amplitudes following Ref. [17]. Numerical calculations in the body of the paper were
performed by cascading scattering matrices (because they proved to be numerically
stable near a subband minimum), while in this appendix we give an analytical result
for t1i obtained by multiplying transfer matrices.

The wavefunction in Eq. (4) must be continuous. After multiplying Eq. (4) by
XM(Y) and integrating over all y, the orthogonality property of the {x,(y)} demands
that each individual mode be continuous so that ca,(O-) = a,_(O + ) and a,(d-) =

11
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an(d+). [17] Therefore, at x = 0,

A, + Bn = Fn + G, (13)

holds for all n.
The boundary condition on the derivatives of the {a,(x)} follows similarly by

Sinserting Eq. (4) into Eq. (1). The orthogonality property of the {Xn(y)} can then be
used to show that

S+ k (a(Z) = + (rI5(2) + rT 6(X - d)) am ). (14)

Here the mode coupling constants for barrier (i) are given by

= n( i))Xm (i)), i= , 2. (15)

At x = 0 the discontinuity in the first derivative of each mode, by integrating Eq. (14),
must satisfy

da, (x) da, (Z) r (1)'am (o)
dx 0+ dx 0- m

= Xn(Y ••') ( E( m( (1))• 0) . (16)

Since fm from Eq. (15) factors into a product form, the right side of Eq. (16) is
simply Xn(Y . ' )) times a constant independent of n. If the right hand side of Eq. (16)
is not zero so that mode n has a derivative jump, Eq. (16) implies that every other
mode with a nonzero wavefunction amplitude X,,(yW1) ) at the scatterer must also have
a proportional derivative jump.

When the Fermi energy coincides with a subband minimum for the case of a single
delta function scatterer, wavefunction continuity from Eq. (13) requires that the lowest
evanescent mode wavefunction a(x) must be constant everywhere in space. The term
in large brackets in Eq. (16) must then be zero if the lowest evanescent mode is
populated. Therefore, the incident mode must have a continuous first derivative at
the scatterer because the evanescent mode has a continuous first derivative. Since for a
point barrier there can be no reflected wave without a derivative jump in the incident
mode, it follows that* the transmission must be perfect at each subband minimum
when only a single point barrier is present.



Inserting Eq. (5) in Eq. (16) yields

ik,(F, - G,) - ikn(A, - B,) = r(t(Am + Bm). (17)

Equation (17) couples mode n to all other modes in the problem. For simplicity, we
cut off the sum in Eq. (17) at a finite number of modes. Likewise, equations analogous
to Eqs. (13) and (17) enforcing the boundary conditions at x = d can also be written
down.

For the case of two modes, multiplying the individual transfer matrices by hand
yields t' and r' directly. [17] We then interchange r( 1) and r (2) to obtain til as:

t2l = sin knd + 1 + 2e-ikd (18)

ie-ik2d 2 F(1) p(2) ie-ik.d 2 (1)r(2)
Dz = "sinkd + 2 n2 2n sin knd+

1 (r  +  i)) i(rr(1) + (2) + r•'(2) 1 (2) e
[1 11 22 -2 11 2 +

2ki 2k 2  4kik 2 2

r1l) 2) (1) r (2)121 2kd 21 12 -i 2kd (19)4k1 k2 4kik2
Most of the results of this paper can be obtained by taking appropriate limits of

Eqs. (18)-(19). To obtain the curves in Fig. 8 we have set t1 l = 0 from Eq. (18). The
resulting expression is

S 2 1 nsin k i d + 2222sinh 2d + 1 + 2 22 eICd = 0 (20)K22 K2 2XE2

where we have written K2 = -ik 2 since the second mode is evanescent in the energy
range over which quasi-bound states occur. The graphs in the inset of Fig. 8 are
obtained by setting the intermode coupling to zero, namely r1() = (2) = 0 in Eq. (20).
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Figure 1: An electron, incident from the left in the lowest normal mode, scattering
from two barriers in a quasi-one-dimensional wire. Because of the confined geometry,
evanescent modes accumulate locally around each tunnel barrier. If the barriers are
separated by a distance d N r.1 the evanescent modes accumulating around each
barrier begin to overlap, changing the conductance of the wire.

Figure 2: Dispersion relation E = E, + hk /2m for motion in mode n of a
quasi-one-dimensional wire. The solid lines show the usual dispersion relation for
the propagating modes (E > E,). The confined geometry induces evanescent modes
(E < En), where kn = ix~, having a dispersion relation given by the dashed lines.
In addition, attractive scatterers give rise to bound or quasi-bound states associated
with each subband formed from the evanescent wavefunctions.

Figure 3: Transmission coefficients T 1l (short dashes), T22 (long dashes), T12 = T21
(mixed dashes), and normalized conductance g (solid) through two point barriers in
a narrow wire. The two Fabry-Perot transmission resonances evident when E < E2
are less than unity because the barriers have different scattering strengths, while the
transmission is unity when E = E2 despite the presence of scattering barriers.

Figure 4: Transmission coefficient T11 versus scatterer separation d/Al for incident
electron energies (a) E = 0.9E 2, (b) E = E2 , and (c) E = 1.1E 2. Spacing between
transmission maxima changes from A1/2 to A1 as the Fermi energy aligns with the
second subband in (b), so that the Fabry-Perot resonances in (a) are completely sup-
pressed and a qualitatively different series of transmission resonances related to the
evanescent modes emerges.

Figure 5: Wavefunction amplitudes of the second mode (a 2 (x)) when E = 0.9E2
(dashed) and E = E 2 (solid) for scatterer separations (a) d = A1/2 and (b) d = A1.
When the scatterers are separated by a half wavelength in (a), an 'anti-bonding' state
is formed. As the Fermi energy aligns with the second subband at E = E 2 the
'anti-bonding' wavefunction has a discontinuous change in its derivative, leading to
a reflected wave. Conversely, if the scatterers are separated by a full wavelength in
(b), the corresponding 'bonding' wavefunction is uniform along the length of the wire,
forcing perfect transmission of the incident wavefunction at E = E 2 .
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Figure 6: Transmission coefficient T 1l at an energy E = Ez when the barriers are
disaligned. In (c) we show the general transmission behavior for most lateral positions
of the scatterers: the transmission resonances are hardly distinguishable from unity.
Only when one of the barriers is placed (a) near or (b) on the node of the lateral
wavefunction X2(y), are the resonances severely degraded. Note in (b) that, even
though both barriers are still coupled to the incident propagating mode, there are no
Fabry-Perot type resonances.

Figure 7: Point scatterers of arbitrary signs and strengths can be placed at any com-
bination of these positions in the wire, and perfect transmission T11 = 1 still results
when the Fermi energy is aligned with the second subband minimum at E = E2 . Any
of the scatterers can be taken to have zero strength so that the scatterers do not
necessarily form a periodic array.

Figure 8: Zeroes in the transmission coefficient T 11 = 0 in d-E plane for (a) one
attractive and one repulsive scatterer and (b) two attractive scattererers. Zeroes in
T11 qualitatively follow the bound state energies calculated in the insets. Transmission
oscillations of period A, indicate an interplay between the relative phase of the incident
mode at each scatterer and the quasi-bound states.

Figure 9: Normalized conductance g versus Fermi energy for (a) two repulsive scatter-
ers, (b) one attractive and one repulsive scatterer, and (c) two attractive scatterers.
The insets show more detailed behavior near the second subband minimum. Con-
ductance 'dips' below the second subband minimum in (b)-(c) are associated with
'molecular' bound states.
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LOW-DIMENSIONAL RESONANT TUNNELING

Philip F. Bagwell, Terry P. Orlando, and Arvind Kumar

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139, U.S.A.

ABSTRACT.- Resonant tunneling occurs for a wide variety of possible device geome-
tries in one, two, and three dimensional conductors. The simplest example is the one

and two dimensional analogue of the standard three dimensional resonant tunneling
diode. We consider these three resonant tunneling devices operated as either a diode

or a transistor by developing a 'convolution method' to calculate the device currents.
Next, we consider resonant tunneling in a quasi-one-dimensional wire where the nor-

mal modes transverse to the tunneling direction cannot be neglected. Many unusual
scattering properties, due to the existence of evanescent modes induced by the confine-
ment, are found near quasi-one-dimensional subband minima or quasi-bound states in
the wire.

INTRODUCTION

Many possible geometries are available for resonant tunneling in reduced dimen-

sions, some of which are shown in Fig. 1. The overwhelming majority of studies so

far have focused on resonant tunneling diodes with a three dimensional electron emit-

ter and one direction of confinement in the quantum well, the 3DE/1DC geometry

shown in Fig. 1. Space does not permit us to list the numerous experimental and the-

oretical contributions to resonant tunneling in reduced dimensional geometries which

motivated our own work, but that is done in detail elsewhere 1 . Our purpose in this

article is twofold: (1) to illustrate in section 2 an alternative 'convolution picture' for

resonant tunneling currents in diodes and transistors for the simplest one, two, and

three dimensional resonant tunneling geometries, and (2) to show in section 3 that if

quantum confinement is strong enough that one cannot neglect the existence of nor-

mal modes induced by the confinement, there are unusual modifications to electron

scattering, and resonant tunneling in particular, when the Fermi energy is near any

subband minimum or quasi-bound state in a quantum wire.

The currents for all of the resonant tunneling devices in Fig. 1 can be calculated
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Fig. 1. Possible resonant tunneling devices having different emitter dimension (1DE,
2DE, and 3DE) and different confinement dimension in the quantum well (1DC, 2DC,
and 3DC). The 'convolution method' relates the conductance of the devices along the
diagonals as indicated by arrows. (From Ref. 1.)

using the two terminal Landauer formula2 - 3 as

I(A, V, T) = e -••f dE Tiy(E, V)[f(E - A) - f(E - A + eV)J (1)

Equation. (1) includes a factor of 2 to describe spin degenerate electrons. The indices i
and i refer to the quasi-one-dimensional normal modes or scattering 'channels' induced
by confinement on opposite sides of the conductor3 . Equation. (1) can also describe
interacting electrons and inelastic scattering2 , 4 . For the standard one-dimensional
resonant tunneling geometry Tu1(E) = T(E) is the usual transmission coefficient 5 - 6
Section 2 shows how to separate the effects of temperature, voltage across the device,
and the dimensionality of the device in Eq. (1), while section 3 presents analytical
results for the transmission coefficient Tii through one and two point scatterers in a
quantum wire.

CONVOLUTION METHOD

Equation. (1) implies that the currents in the devices of Fig. 1 are not independent
but, for the devices along the diagonal arrows shown in Fig. 1, are related by a
'convolution method' 1, 7 - 8. This 'convolution method' separates the effects of finite
voltage, finite temperature, and the addition of free electron motion along one or more
directions in the device, and embodies Eq. (1) in a very intuitive way for a certain
class of devices. Here we apply this method to the devices along the main diagonal in
Fig. 1 with the purpose of understanding conceptually how the ideal resonant tunneling
transistor and diode I-V characteristics change when the electron emitter becomes
three dimensional, two dimensional, or one dimensional. This presents a physical
picture of resonant tunneling currents complementary to that in Refs. 9 and 10. The
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final mathematical expressions for the tunneling current are the same as if calculated
using the method in Refs. 9 and 10.

Consider a strictly one dimensional device where one completely ignores the other
two directions perpendicular to the transport direction. Transport only in the lowest
subband of a quasi-one-dimensional wire, or the 1DE/3DC device in Fig. 1, would
correspond to this situation. In that case Eq. (1) reduces tol

ID(E, V, T) = V T(E, V) W(E V) 0 f- (ET) (2)

One merely convolves11 (0) the transmission coefficient T(E, V) with the voltage
broadening function W(E, V)

W O(E) - O(E - eV) eV < Ep
O(E) - O(E - E) eV > Ep (3)

where O(E) in Eq. (3) is the unit step function, and with the derivative of the Fermi
distribution function

df 1 E
df (E, T) 1= sech2 ( E(4)

dE 4kT 2kT (4)

to obtain the total device current. The surprising feature of Eq. (2) is that one can
separate the effects of thermal and voltage broadening in Eq. (1). The convolution
with W(E, V) describes the emitter launching electrons over a range of speeds near
the Fermi energy, while the convolution with -df/dE gives the thermal variance in
those speeds. These are shown as the first two convolutions in Fig. 2.

Next, we wish to show how the currents for devices along the main diagonal in
Fig. 1 are related. The essential physical difference between the 1D, 2D, and 3D
electron emitter is that the 1D emitter can launch electrons only forwards, the 2D
emitter launches electrons at all angles in a half plane with equal probability, and the
3D emitter launches electrons at all solid angles in a half-sphere with equal probability.
This is illustrated in momentum space on the left side of Fig. 3. To make any further
progress, one must specify the shape of the tunneling potential. For the simplest case
along the main diagonal in Fig. 1, the potential is free electron like perpendicular to

af (ET) L
aT- NDo(E) 2 NID(E)

W(EV)

IW(E,V,T)= T(E,V) 3.5kT
0 E E E Eo ev o o o

Fig. 2. The convolution method for calculating the 3DE device current corresponding
to Eq. (6). The transmission coefficient T(E, V) is successively convolved (0) with
the range of emitter velocities W(E, V), with the thermal variance in those velocities
-df(E, T)/dE, and with the free electron density of states N1D(E) corresponding to
the spatial distribution of emitted electrons. (From Ref. 1.)
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Fig. 3. Luryi's picture (left side) compared with the 'convolution picture' (right side)
for calculating tunneling currents. In the convolution method, the electron trans-
mission coefficient is convolved both with the emitter distribution W(E, V) and the
number density of available transverse states N(E) to give the total tunneling current.
(From Ref. 1.)

the tunneling direction such that transverse momentum is conserved. Therefore, along
the main diagonal in Fig. 1 where V(x,y,z) = V(z), so that V(z) is the tunneling
potential for a double barrier structure, the sum of the transverse 'channels' in Eq. (1)
can be written for the 2DE/2DC device as1

I2D(E, V, T) = ID(E, V, T) --LN 1ID(E)
2

and similarly for the three dimensional emitter 3DE/1DC device as

L,
I4D(E,V,T) = IDo(E,V,T) 0 NID(E)

L, and L, are the size of the device along the x and y directions and NlD(E) is the
one-dimensional free electron density of states including spin degeneracy

N D(E) = (E)
r717 E

Equation. (5) assumes the 2DE/2DC device in Fig. 1 is strictly two dimensional, and
completely ignores the vertical confinement. This is a good assumption if transport
occurs only in the lowest subband normal to the confinement surface of an inversion
layer or thin film. The 'convolution' formula for the 3DE/1DC resonant tunneling
current from Eq. (6) reduces to the standard formulal0 when one inserts the definition
of the convolution 1 1 into Eq. (6).

Convolution with the one-dimensional free electron density of states needed to go
from the one-dimensional to the three-dimensional resonant tunneling device is shown
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Fig. 4. Device current versus Fermi en-
ergy in the emitter for (a) the 1DE de-
vice, (b) the 2DE device, and (c) the
3DE device. These curves can correspond
to transistor operation of the devices by
varying EF either by a gate voltage or by
light. (From Ref. 1.)
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Fig. 5. Transistor current versus base
voltage VB in the quantum well for (a)
the 1DE device, (b) the 2DE device, and
(c) the 3DE device. We assume 2eV >
Ep , that the resonant level moves linearly
with base voltage, and that the base cur-
rent is zero. (From Ref. 1.)

graphically in Fig. 2 and Fig. 3. The convolution with the one dimensional free electron
density of states in Eq. (5) and Eq. (6) results from simply adding classical resistors
in parallel. This is due to the special shape of the tunneling potential V(z, y, z). Since
V(x,y,z) = V(z) there is no scattering potential to couple the different transverse
channels, so the scattering channels labeled by the different values of the transverse
momentum are non-communicating. The transverse channels therefore add 'in paral-
lel', by summing the current in each channel. The convolutions in Eq. (5) and Eq. (6)
may also be though of as embodying the difference in the spatial distribution of the
emitted electrons from a 1D emitter to a 2D and 3D emitter. A convolution method
similar to that in Eq. (5) above can be developed to connect the calculated conduc-
tance for devices along any of the diagonal arrows in Fig. 1, not just those devices
along the main diagonal1 . The standard method, sometimes called 'Luryi's method',
has recently been applied to tunneling from a 3D emitter through quantum wires and
dots (the left hand column of Fig. 1) by Liu and Aers1 2 . Luryi's method has also
been applied by Ohno, Mendez, and Wang1 3 to study tunneling currents when the
effective mass differences in the semiconductor well and barrier material are taken into
account.

A plot of current versus Fermi energy for the devices along the main diagonal of
Fig. 1, assuming the emitter to collector voltage V is small, is shown in Fig. 4. In Fig. 4
the energy ET signifies the top of the double barrier potential under zero bias, E_ is
the position of the resonant level, and AE the area under the transmission resonance
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peak so that f, T(E)dE = AE. The dependence of the current on Fermi energy
is qualitatively different for each different spatial dimension of the emitter. Fig. 4
corresponds to a type of transistor operation of resonant tunneling devices which can
be realized either by incorporating a substrate gate into HEMT devices where the
energy axis can be thought of as a gate voltage, or by varying the Fermi energy with
LED light 14 where the energy axis may be thought of as the light intensity. Current
in the 1DE device of Fig. 4(a) is proportional to the transmission coefficient. The
current traces the resonant peak when Ep is below the top of the double barriers and
yields the quantum contact resistance of h/2e2 when the Fermi energy is above the
barriers. Current in the 2DE device of Fig. 4(b) follows by convolving T(E) with the
1D free electron density of states. Current in the 3DE device of Fig. 4(c) follows by
convolving T(E) with the 2D free electron density of states.

Next, we consider adding a contact to the quantum well base. If we assume the
base contact moves the resonant level in the base linearly with the applied base volt-
age, and that the emitter to collector voltage is large, one obtains 1 the curves shown
in Fig. 5. Fig. 5 results from simply convolving the curves in Fig. 4 with the electron
energy distribution W(E, V) in the emitter. Negative transconductance is obtained
for the 1DE, 2DE, and 3DE devices. Note that in one dimension the current saturates
at I = e(AE)/irh. Therefore, if one could fabricate a truly one dimensional resonant
tunneling device, it would be possible to measure the resonance width of the trans-
mission coefficient on a current meter. The shapes of tunneling diode curves in each
spatial dimension are qualitatively similar1 to the transistor curves of Fig. 5. The
peak current in Fig. 5(b) in two dimensions is

, 1 1 ;n (81 2D = T(AE) 2 L , (8)

while for Fig. 5(c) the three dimensional peak current is

e mEF
ISD =- (AE) 27r LL, , (9)

the same as in the standard method10 . We also comment that, for a ballistic conductor
in one dimension, the current saturates at a value I = eEF/7rh proportional to the
Fermi energy when eV > EF.

We discuss one problem with this approach to calculating tunneling currents (which
is also a problem in the standard approach): In the limit of a standard wide tunneling
device, where the conductor opens up into a continuum of plane wave scattering states
and one imposes periodic boundary conditions on the problem, Eq. (1) evolves into
Eq. (6). While this limit of Eq. (1) is mathematically appealing, it involves a subtle
physical assumption. Neglecting the quantum confinement in Eq. (1) implies that
the electrons do not feel the confining walls of the conductor so that one can impose
periodic boundary conditions. This can only be true if weak 'phase randomizing'
scattering is invoked inside the conductor. The phase breaking scattering must be
weak enough so that the electrons are not significantly reflected by the scattering, but
strong enough so that the information about the boundaries of the conductor is not
retained by the tunneling electron. A rigorous treatment of the conditions necessary
for Eq. (1) to cross over into Eq. (6) has yet to be supplied.
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TUNNELING IN A QUANTUM WIRE

We wish to obtain the conductance of a quantum wire when one or two potential
barriers are present using Eq. (1), the Landauer formula. Transport in the quantum
wire of Fig. 6 is described by the SchrSdinger equation

S2m 2 + V(y) + V V (y +(, y)] +(x, y) = EC(z, y) , (10)

where Vd(z, y) is the potential of any impurities or defects in the wire. The confinement
potential V,(y) defines a set of normal modes X,(y) satisfying

h2 d2 1

2m ~ y+ C/(y) Xn(y) = EXn(y) , (11)

where En is the subband energy for mode n. The electron dispersion relation E =
E, + hl2kn2/2m for each subband n is also shown in Fig. 6.

Single subband transport never strictly exists in a confined geometry such as the
quantum wire shown in Fig. 6. If the Fermi energy lies in the lowest subband there
are propagating states for which the wavefunction has the form

(z, y) ~ eikizXl(Y) , (12)

and evanescent states for which the wavefunction has the form

(z, y) - e-1 2X2(Y) . (13)
Here r2, defined by

2m(E2 - E)
nz = ik2 = i2m( ) (14)

is the imaginary wavevector for the second normal mode. Note that the dispersion

Incident X, (y) Transmitted X (y) y
===> A

i I
SIQ , t./ ",,U77Z/

W 10O .X

Evanescent Mode X2 (y)

Fig. 6. Scattering from a defect in a quasi-one-dimensional wire where a steady current
incident in the lowest mode is applied from the left. The scattering potential couples
the incident propagating mode to the evanescent modes, causing probability density
to accumulate locally around the defect. (From Ref. 18.)



relation for the evanescent modes is E = E,- h2x2 /2m for each subband n. The
wavefunction on the left side of the scattering defect where z < 0 can be expanded as
a linear combination of both the propagating and evanescent modes of the clean wire
as

t(z, ) = (Aneiknz + Bne-iknzx) Xn(Y) (15)

On the right of the defect in Fig. 6 where z > L, the wavefunction can be expanded
as

k(z, y) (Cneik,.x + De-ik,Z,) Xn() (16)

If a defect is present in the wire, propagating modes such as Eq. (12) are coupled
through the scattering potential to the evanescent modes such as Eq. (13). Consider
a steady current flow incident from the left on a defect in a quantum wire shown
in Fig. 6. The scattering potential will cause some of the electrons to be scattered
out of the propagating incident wave into an evanescent wave, and a localized mode
will therefore build up around the defect even if the scatterer is repulsive. This phe-
nomenon is similar to the electromagnetic energy storage near any defects or sudden
discontinuities in a microwave waveguide. Since the scattering boundary conditions
require the wavefunction and its derivative be continuous everywhere, the presence
of the localized mode built up around the scatter will change the scattering of the
incident waves. This is true even though the evanescent waves carry no current.
References. 15-22 discuss some of the unusual scattering properties of electrons in a
confined geometry.

In this section we first consider the case of a wire having uniform width subject to
a delta function scattering potential 17 - 19

VdC(X, y) = IS6 (X)(y - y) . (17)

Requiring the wavefunction be continuous at z = 0 forces

A, + B,, = C + D,, (18)

for all propagating and evanescent modes n. Integrating Eq. (10) across the defect
gives the derivative jump condition

ik,(C, - D.) - ik,,(A, - B,) = rFnm(Am + Bi) , (19)

where h2rab/2m = yXoa(Yi)Xb(Yi) - Vb. Forcing particles incident only from the left

requires D, = 0 for all propagating modes. We take only a single incident propagating
mode A, to be nonzero. Additionally we require An = D, = 0 for all evanescent

modes so that the wavefunction is normalizable. The transmission coefficients T,, for
propagating modes m and n required to evaluate Eq. (1) can then be obtained as

T,,. k= and RPn = k- -- (20)
where kR are the reflection coefficients.

where PR, are the reflection coefficients.
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This scattering problem through a single point defect in Eq. (17) is easy to state,
and the transmission and reflection coefficients easily obtained by solving Eqs. (18)
and (19), but the results are not intuitive. We have solved this problem both by simply
matching wavefunctions and their derivatives at the scatterer 18 , and by a sum over
scattering histories approach solving the Dyson Equation in a quasi-1D wire19 . Both
approaches give the same answer for the current transmission coefficients T,,n. One
essential insight obtained is that, just as the propagating electron density of states
diverges as 1//E- E. when the Fermi energy approaches each subband minimum
from above, the evanescent electron density of states diverges as 1//E, - E when the
Fermi energy approaches each subband minimum from belowl8 . Thus, the evanescent
modes determine how the electrical conductance behaves as the Fermi energy crosses
each new quasi-one-dimensional subband.

The reflection amplitudes rab through the point scatterer in Eq. (17) have the
simplest form and are

-iVoa 2
rab(E) = , (21)

1+ E'v, + i. Vn Mk.

where the reflection coefficients are found from Rb = Irab 2. In Eq. (21) the EP denotes
a sum over the propagating modes of the wire, En denotes a sum over the evanescent
modes, and modes a and b are assumed propagating. The current transmission am-
plitudes are determined as tab = rab when a 5 b and ta = 1 + ra. when a = b. This

follows from enforcing wavefunction continuity at z = 0. The transmission coefficients
in the conductance formula Eq. (1) are then found from Tab = Itab j. Note that m/h,2 k,
is simply the density of propagating or evanescent states for mode n, while Vnn is a
scattering matrix element. Thus, each term in Eq. (21) can be interpreted in terms of
a Fermi Golden Rule scattering rate18 .

The conductance determined from Eq. (1) with the transmission coefficients deter-
mined from Eq. (21) is shown in Fig. 7. Figure. 7(a) shows a weak repulsive scatterer
(b =10 feV cm2 , solid line) and a weak attractive scatterer (y =-6 feV cm 2, dashed
line). At each subband minimum perfect transmission is obtained for all the modes
in the wire, a result first pointed out in Ref. 17. The shoulders of the quantized con-
ductance steps are rounded for the case of the repulsive scatterer due to increased
reflection immediately above each new subband minimum. The extra dips in the
conductance through the attractive scatterer correspond to new quasi-bound states
forming in the attractive potential. Outside the attractive potential the evanescent

mode decays on either side, but locally inside of the potential well the evanescent mode

can propagate. The condition that an integral number of electron wavelengths of the
evanescent mode can fit inside the attractive defect roughly defines the condition for a
quasi-bound-state to form. These quasi-bound states resemble a donor level below the
conduction band minima of a semiconductor, but now there is one new 'donor level'
for each subband. These new minima in the conductance through a single attractive
barrier in a wire are therefore a form of 'resonant tunneling' occurring through the
evanescent mode, and lead to minima rather than maxima in transmission.
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Fig. 7. Conductance through a single scatterer in a quasi-one-dimensional wire as a
function of Fermi energy. (a) compares the conductance through a repulsive defect

(solid) and an attractive defect (dashed). (b) studies the motion of the quasi-bound-
state in the attractive defect. Paradoxically in (b), the strongest scatterer (dashed)
gives the largest conductance. (From Ref. 18.)

Figure. 7(b) shows the movement of the quasi bound state as the attractive scat-
terer is made stronger. For an attractive scatterer slightly stronger than Fig. 7(a)
(b =-8 feV cm 2 , solid line), the quasi bound state moves lower in energy and the
conductance decreases. For an even stronger attractive scatterer (7 =-9 feV cm 2 ,
dotted line) the minima in transmission due to the quasi-bound state move so close
to the next lowest subband minimum that they are is no longer visible, while for the
strongest attractive scatterer (' =-20 feV cm 2 , dashed line) each quasi-bound state
has moved completely out of the subband in which it originated and into the next
lowest subband. Note that the electrical conductance actually increases for all values
of the Fermi energy in Fig. 7(b) from the medium strength scatterer (dotted line)
to the strongest scatterer (dashed line). This paradoxical result in Fig. 7(b), that
conductance actually increases as the scatterer is made stronger, occurs because the
quasi-bound states have now moved out of the energy range in which they can block
transmission of the incident electron.

We next consider electron transmission through two delta function barriers in a
quasi-one-dimensional wire where the scattering potential is

Vd(Z, y) = Y1 6(X)b(y - y1) + y26(x - d)6(y - y2) , (22)

shown schematically in Fig. 8. Evanescent modes, which have a spatial extent of 1/1r.
if the electron Fermi energy is in the lowest subband, now accumulate around both
barriers in the wire as shown in Fig. 8. When the separation between the barriers
d < 1/i 2, the evanescent modes building up around one barrier will extend to the
other barrier and alter the scattering properties of the electrons.

The transmission coefficient T 1, through the potential of Eq. (22) for the case of
two allowed modes is calculated analytically in Refs. 21-22, and analyzed numerically
when many modes are present in Ref. 22. The equations which must be solved to
obtain the transmission coefficients are very similar to Eqs. (18) and (19) in this
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Fig. 8. Scattering from two defects (resonant tunneling) in a quasi-one-dimensional
wire. Evanescent modes accumulate around both scattering defects. When the evanes-
cent mode building up around one barrier overlaps the second barrier, deviations from
standard one-dimensional resonant tunneling theory occur. (From Ref. 22.)

section. We display T 1, in Fig. 9, where we have chosen two repulsive barriers having
=1 = =y = 10 feV cm 2 and yl = y2. When E = 0.9E 2 in Fig. 9(bottom), we recover

almost the same qualitative behavior for Ti1 as a function of distance d between
the scatterers as in the usual 1D transmission coefficient5 - 6. In the 1D case the
transmission coefficient is periodic with period A1/2 where A1 the incident electron
wavelength. However, the first two transmission minima in Fig. 9(bottom) are slightly
different than all the others, indicating that the evanescent modes are overlapping at
small d. Thus, when the Fermi energy is below the second subband minimum, we find
only small modifications to the standard one-dimensional resonant tunneling theory.
This is because the density of evanescent states far below the second subband minimum
is small.

At the second subband minimum, E = E2 in Fig. 9(middle), the evanescent modes
completely dominate over the Fabry-Perot wave interference effect. Firstly, the trans-
mission coefficient becomes highly aperiodic. The transmission minima rise as the
scatterer separation increases and the transmission actually approaches unity for large
d. Secondly, the perfect transmission resonances are separated by a wavelength of the
incident electron, rather than by a half wavelength. Furthermore, perfect transmission
occurs for d = 0 in agreement with the case of a single scatterer. The scattering phase
shift present in the 1D case and in Fig. 9(bottom) is completely absent at E = &E.
The change in oscillation period from half the incident electron wavelength to a full
wavelength is robust and does not depend critically on the shape of the scatterers.
The 'beating' pattern in T11 when both modes are propagating, shown for E = 1.1EM
in Fig. 9(top), is also a new feature of the multimode wire.

At the second subband minimum, E = E2, the spatial shape of the lowest evanes-
cent mode in the wire determines the scattering properties of the propagating mode.
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Fig. 9. Transmission coefficient T11 through two point defects in a wire as a function of
distance d between the scatterers for energies E = 0.9E2 (bottom), E = E2 (middle),
and E = 1.1E 2 (top). The Fabry-Perot effect present when E = 0.9E, is completely
extinguished when E = Ez. (From Ref. 21.)

Since the evanescent modes are populated by scattering from the applied incident
current, and the coupling to the evanescent mode is sensitive to the phase of the
incident electron, the general shape of the evanescent mode is repeated when the
barrier separation is increased by a full wavelength 2 2 . If the barriers are equal and
aligned, a shape resembling a 'bonding' orbital in molecular physics recurs when d =
jAX, j = 0, 1; 2... , and perfect transmission results. The z-dependence of the lowest
evanescent mode resembles an 'antibonding' state when the barriers are separated by
a half integer multiple of the electron wavelength as d = (j + 1/2)AX, where some
fraction of the incident electrons are reflected. If the evanescent mode must change
its value from one scatterer to the next, as it does when an 'anti-bonding' state is
formed, it can do so more gradually as d becomes large. This suppresses reflection of
the incident mode at each barrier so that the transmission becomes perfect when the
barriers have infinite separation.

CONCLUSIONS

We have presented an intuitive 'convolution method' for the transistor and diode
currents in a resonant tunneling device. The method is conceptually important be-
cause it separates the effects of finite temperature, finite voltage, and free electron
motion perpendicular to the tunneling direction in the formula for tunneling current.
The voltage, thermal, and dimensional convolutions can be easily evaluated graphi-
cally to calculate the tunneling current. Each current has a characteristic dependence
on Fermi energy, emitter to collector voltage, and .potential energy in the quantum
well base which is different for 1D, 2D, and 3D electron emitters.
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We then examined the transmission coefficients through one and two point scat-
terers in a quantum wire. Evanescent modes are shown to dominate the transmission
properties and electrical conductance when the Fermi energy is near a subband min-
imum or quasi-bound-state in the wire. When a single attractive scatterer is present
in the wire, a type of 'resonant tunneling' occurs via the evanescent mode and leads
to minima in the conductance as a function of Fermi energy. When two repulsive
barriers are placed in a quantum wire, and when E = E2, the transmission coefficient
T1 as a function of distance between the scatterers has maxima separated by the full
wavelength of the incident electron, rather than the usual 1D result in which succes-
sive transmission maxima are separated by a half wavelength. The spatial shape of
the lowest evanescent mode in 'bonding' and 'anti-bonding' orbitals determines the
behavior of the conductance at a subband minimum, rather than wave interference
between propagating modes in the wire, so that the Fabry-Perot interference effect
between propagating modes is completely suppressed.
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Comment on 'Effects of Channel Opening and

Disorder on the Conductance of Narrow Wires'

Philip F. Bagwell and Arvind Kumar

Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

October 10, 1990

Kander, Imry, and Sivan [Phys. Rev. B 41, 12941 (1990)] have ar-

gued that electron scattering in a disordered quasi-one-dimensional wire

increases whenever the Fermi energy is near a subband minimum. We

show that the conductance drops in the calculation of Kander et al. arise

when quasi-bound states form in a locally attractive minimum in the scat-

tering potential. Adding even a single attractive impurity to a disordered

wire produces these conductance drops, so that their occurrence does not

depend on wave interference between multiple impurity scattering events.

PACS 73.20.Dx, 73.20.Hb, 73.50.Bk

submitted to Physical Review B-15 (Received July 23, 1990)
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Kander, Imry, and Sivan [1] calculate the electron transmission through

an array of elastic scatterers placed on a square grid, where half the scatter-

ers are attractive and half are repulsive. A similar calculation was also done

in Ref. [2]. In interpreting the conductance 'dips' below each new subband

in their calculation Kander et al. state: 'Since the longitudinal energy of a

barely open channel is small, this channel is localized and reflects many of

the incoming electrons to backwards propagating states. Such a mechanism

will indeed result in conductance dips each time a new channel is opened.

The effect also exists as the evanescent channel is about to be opened.'

If the interpretation of Kander et al. is correct, it implies that the con-

ductance should drop on both sides of a subband minimum, not just below

the subband. Furthermore it is known, from studies of electron transmis-

sion through a point barrier in a narrow wire [3]-[4], that in some models the

electron transmission always increases as the Fermi energy passes through

a subband minimum from below. So the argument given in Ref. [1], if

correct, cannot be a general one.

The conductance 'dips' in the calculation of Ref. [1] actually arise from

quasi-bound states forming in a local attractive minimum in the disordered

i



potential [3]-[5]. This 'quasi-bound state' is analogous to a donor level below

the conduction band minimum of a semiconductor, where the confinement

introduces a new 'quasi-donor level' below each subband in the narrow wire.

The formation of quasi-bound states explains why the conductance drops

occur only below the subband, so that the energy separation from the 'dip'

to the next subband is related to the binding energy of the state. Further-

more, as the attractive 'hole' is made larger to admit more bound states,

the 'dips' move lower in energy and more such 'dips' appear [4]. 'Level

repulsion between Lyapunov exponents of the transfer matrix', emphasized

in Ref. [1], seems unnecessary to understand this suppressed transmission.

In Fig. 1 we show the two terminal Landauer conductance [6] versus

Fermi energy through twenty repulsive delta-function scatterers (solid line),

randomly positioned in a 30 nm wide wire. The conductance was calculated

by cascading scattering matrices [7] including the evanescent wire modes.

There is no evidence of suppressed transmission near a subband minimum.

We then made one of the twenty scatterers attractive by reversing its sign.

The resulting conductance (dashed line) shows two pronounced 'dips' below

the second and third subband minima, corresponding to the quasi-bound

~



states forming in the attractive scatterer.

The essential aspect for the manifestation of the conductance drops

studied Refs. [1]-[5] is the formation of quasi-bound states in the disordered

potential, not the global sign of the scattering potential. In our point

scatterer model a locally attractive potential is necessarily also globally

attractive, but this need not be the case. One can easily imagine a slow

(adiabatic) rise and fall of the band edge in the conduction channel to form

a large repulsive barrier. A small locally attractive hole can be placed on

top of this potential barrier to admit one or more quasi-bound states. The

same arguments used above would then apply to the local subbands formed

around the locally attractive hole. For this case, the position of the 'dips'

in conductance with respect to the global subbands depends on the height

of the large repulsive barrier.

This work was supported by the U.S. Air Force Office of Scientific Re-

search under Grant No. AFOSR-88-0304.
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Figure Caption

Fig. 1: Two terminal Landauer conductance versus Fermi energy through

twenty delta function scatterers in a 30' nm wide wire. When all the scat-

terers are repulsive (solid line) the conductance rises at each new subband

minimum. When one of the scatterers is made attractive (dashed line) by

reversing its sign a pronounced 'dip' appears before the opening of each new

quasi-one-dimensional channel.
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Evolution of the Quantized Ballistic Conductance
with Increasing Disorder in Narrow Wire Arrays

Arvind Kumar and Philip F. Bagwell
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
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We study the Landauer conductance averaged over a parallel array of disordered narrow
wires as the Fermi energy and length of the disordered region are varied. When quantum
diffusion is the dominant electron transport mechanism, we find numerically that the bal-
listic conductance steps evolve into conductance drops after a new subband is populated.
Consistent with this result, the electron localization length decreases above each new sub-
band. Adding attractive scatterers to the wires strongly modifies these results due to
'quasi-donor levels' forming in the impurities.
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Discovery of the quantized ballistic conductance through a point contact [1]-[2] has
greatly stimulated theoretical studies on the effect of impurity scattering in nearly ballis-
tic quantum wires [3]-[16]. The essential conclusion of these studies is that the average
conductance rises after the opening of each new subband channel, although structure in
the conductance of a single wire may be obscured by wave interference fluctuations. If
some of the scatterers are attractive, pronounced conductance drops before the opening of
each new subband were also found to occur, due to the formation of 'quasi-donor levels'
in the impurities [3]-[9]. Thus repulsive and attractive scatterers result in a very different
subband structure for the conductance versus Fermi energy in a narrow wire.

If disorder in the wire is increased, so that the transport becomes diffusive rather than
nearly ballistic, it might be expected that a fundamentally different subband structure
should be observed experimentally [17]-[20] in narrow quantum wires. Indeed, based on a
modified Drude model, Refs. [21]-[28] conclude that electron scattering increases whenever
a new subband becomes occupied, leading to a drop in conductance versus Fermi energy
after each new subband opening. In contrast, Refs. [3]-[9] have argued that pronounced
drops in conductance should occur before each new subband opening. Some structure in
the conductance versus electron density has possibly been observed in arrays of narrow
wires [17]-[19], but it is has been unclear what physics this structure might represent or
where it occurs in relation to subband minima in the wires.

In this letter we calculate the Landauer conductance [29]-[33] of a parallel array of
quantum wires [17]-[19] to obtain the 'ensemble-averaged' conductance. We show that there
is a clear transition between a quantum ballistic regime, marked by increasing conductance
after each new subband channel opens, and a quantum diffusive regime, marked by a sharp
drop in conductance when a new subband is populated. We associate this conductance
drop with a decrease in the electron localization length immediately above a subband, so
that the drop in conductance after each subband opening in the diffusive regime depends
on quantum diffusion, rather than the classical diffusion of the Drude model. Finally, we
find conductance drops before the opening of a new subband channel only when attractive
scatterers are present in the wires. We also show that the standard semiclassical 'Golden-
Rule' or 'Born approximation' scattering theory is invalid near a subband minimum, so
that the correct dependence of the conductance versus Fermi energy is not obtained in
Refs. [21]-[28] even when the carrier diffusion is classical.

We choose a model Hamiltonian describing electrons free to move along the x-direction
and confined along the y-direction:

[ - (' + d V + V(y) + Vd(x, )] c(x, y) = E'(x, y) . (1)

The confinement potential V (y) gives rise to confinement subbands E, such that

h2mdy + V() Xn(y) = EX.(y) . (2)
2m dy /

We choose the impurity potential to be a sequence of point scatterers

Vd(Z, y) = i -(x) C(Y - y,) (3)
i



where the ith scatterer is located at position (xi, yi) and has strength -i. The conductance
is obtained from the two-probe Landauer formula

G Tmn (4)

where T,mn denotes the transmission coefficient from mode n to mode m. The transmission
coefficients are found numerically by cascading together the individual scattering matrices
for each point defect and each intermediate region of free propagation between defects [16].
We include the lowest five modes in our calculations, enough to understand the qualitative
features of the conductance, although we expect the inclusion of higher modes to have
quantitative influence on our results.

For a single wire with a disordered region of length L along the x-direction, we randomly
position the scatterers with a uniform probability density over the ranges [0, W] across the
channel and [0, L] along the wire. We choose a fraction f of the scatterers to be attractive
('-y < 0). All the scatterers have equal strengths 1[y = 10 feV-cm 2 . We choose the mean
spacing between impurities along the x-direction of the wire to be 10 nm, so that there are
5 impurities in the wire when L = 50 nm and 50 impurities when L = 500 nm. We model
the confinement using an infinite square well potential of width W = 30 nm, and take the
electron mass to be 0.067 times the free mass. This choice of parameters is consistent with
experiments on GaAs/AlGaAs heterostructures.

In Fig. 1(a) we show the conductance as a function of Fermi energy for a single wire in
the ensemble having L = 50 nm for both f = 0.0 and f = 0.5. The conductance is seen to
rise after the opening of each new subband whether all the scatterers are repulsive (f = 0.0)
or half the scatterers are attractive (f = 0.5). However, the introduction of attractive
scatterers gives rise to pronounced dips in conductance below each subband minimum, near
the energies of quasi-donor levels splitting off from the confinement subbands. The spacing
AE from these quasi-donor levels to the next subband is of order AE A (mE/h )(,/W) 2,

close to the binding energy of a state trapped in the point defect [4]-[7]. If the length
of the disordered region is increased to L = 500 nm, as shown in Fig. 1(b) for f =
0.0, the resulting electron wave-interference pattern obscures any regular structure in the
conductance. When f = 0.5 and L = 500 nm as in Fig. 1(c), the conductance exhibits
similar fluctuations which obscure any underlying subband structure.

To manifest the underlying subband structure of the conductance versus Fermi energy,
we plot in Fig. 2 the conductance from Fig. 1 averaged over an array of 100 independent
wires in parallel. Each wire has a different random arrangement of the scatterers, but the
length of the disordered region is kept fixed. In Fig. 2(a) each wire has L = 50 nm. Some
broad resonances present in the single wire are eliminated after averaging when all the
scatterers are repulsive (f = 0.0). When half the scatterers are made attractive (f = 0.5),
the quasi-bound state energies vary from wire to wire [6], resulting in a broadened dip in
the average conductance before the opening of each new channel.

If we increase the length of the disordered region to L = 500 nm, as in Fig. 2(b), a fun-
damentally 'different subband structure of the conductance versus Fermi energy emerges.
The conductance drops abruptly after the opening of each new subband channel when
all the scatterers are repulsive (f = 0.0, top curve). When half the scatterers are made
attractive (f = 0.5, bottom curve), the quasi-donor states still give rise to a broadened



conductance dip before the new channel opens. The net effect of this broadened conduc-
tance dip for f = 0.5 is that the average conductance is so suppressed before the opening
of each new channel that conductance drops after the new channel opens are not observed.
The inset of Fig. 2(b), an expanded view of the lightly boxed region, shows clearly the
drop in conductance for f = 0.5 before the second subband channel opens.

To understand this transition from the nearly ballistic conductance in Fig. 2(a) to the
diffusive subband structure in Fig. 2(b), we examined the variation of the conductance with
the length of the disordered region. The average conductance of 100 parallel wires con-
taining only repulsive scatterers (f = 0.0) is plotted versus L in Fig. 3(a). The Fermi level
is placed at energies just below (dashed), directly on (solid), and just above (dot-dashed)
the second and third subband minima. The average conductance decreases roughly ex-
ponentially with length at each value of the Fermi energy, as in one-dimensional electron
localization theory [34]-[35]. For short disordered segments L, the average conductance
is seen always to increase with Fermi energy. However, as the disordered region is made
longer, a crossover length L, is found such that when L > L, the average conductance
falls after the Fermi energy passes through a new subband minimum. Consistent with this
result, the electron localization length 7, found from < G >' exp(-L/77), is appreciably
shorter just after the Fermi energy moves into a new quasi-one-dimensional subband. This
decrease in localization length is systematic and repeats around each new subband mini-
mum in Fig 3(a). If the scatterers are made stronger by increasing 1, the point at which
the curves 'cross over' occurs for a shorter length L, of the disordered region.

In Fig. 3(b) we plot the ensemble-averaged conductance versus length when f = 0.5 for
the same energies as in Fig. 3(a). Quantum diffusion is still evident, since the conductance
decreases roughly exponentially with L. But in contrast to Fig. 3(a), there is no 'crossing
over' of the conductance versus length curves so that 1 is roughly the same (or increases)
for increasing values of the Fermi energy. The conductance drops versus Fermi energy
when f = 0.5 in Fig. 2(a-b) therefore do not depend on electron 'localization' phenomena,
and can be seen in the conductance of each individual ensemble member when only a few
scatterers are present. Indeed, conductance drops of this sort occur if only one attractive
scatterer is present in a wire [7], and therefore clearly do not depend on multiple reflec-
tions between different scatterers. In contrast, when all of the scatterers are repulsive in
Fig. 2(b), the conductance drops after a subband opens occur only if the electron motion
is phase-coherent over a long enough segment of the conductor [36].

A drop in conductance due to enhanced scattering after the opening of a subband
channel has been argued previously [21]-[28], based on a Drude model in which the colli-
sion time is modified to account for scattering between quantum channels. Because wave
interference between different scattering events is neglected in the Drude approximation,
such a drop should occur only if the transmission at each individual scatterer decreases
as a new channel is opened. However, as shown for example in Refs. [3]-[5], the electron
transmission through a single impurity increases when a new subband channel is opened.
Furthermore, Refs. [21]-[28] use essentially a Golden-Rule (or first Born approximation)
approach to calculating scattering rates, an approximation depending only on the square
magnitude of the scattering potential, so that attractive and repulsive scatterers erro-
neously give the same subband structure of the conductance in these calculations. Finally,
the Born approximation of Refs. [21]-[28] breaks down at a subband minimum [4]. Even
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though the neglect of wave interference between scattering events may be valid in some
circumstances, the scattering at each impurity must be calculated properly, and this has
not been done in Refs. [21]-[28]. In Refs. [3]-[9] pronounced conductance dips are shown
below each subband minimum, as in Fig. 2(a), but we choose here to attribute these to
formation of quasi-bound states in a local impurity potential energy minimum [4]-[7].

In conclusion, we find that the electrical conductance versus Fermi energy in a quasi-
one-dimensional wire does indeed evolve from the ballistic conductance steps into con-
ductance drops after a new subband opens, but for reasons totally different from those
given in Refs. [21]-[28]. In the calculations of Refs. [21]-[28] the conductance decreases
linearly with the length of the wire so the electrons are delocalized. In our calculation,
we find that the electrical conductance in a quasi-one-dimensional wire decreases roughly
exponentially with the length of the disordered region. However, the localization length
of the decay is reduced when the Fermi energy crosses a confinement subband, leading to
a fundamentally different subband structure in arrays of long quantum wires. Therefore,
the new subband structure we find depends on quantum diffusion, not classical diffusion as
in the Drude model of Refs. [21]-[281. Similar results should follow from Anderson model
calculations [8]-[9] if care is taken to exclude formation of quasi-donor levels described in
Refs. [4]-[7]. If the potential energy is locally attractive, so that quasi-donor levels can form
in an impurity, the new subband structure arising from localization phenomena studied in
this letter is modified by the depressed transmission near the quasi-bound states.

We thank Terry P. Orlando, Dimitri A. Antoniadis, Henry I. Smith, and Kevin Delin
for useful discussions. This work was sponsored by the U.S. Air Force Office of Scien-
tific Research under grant AFOSR-88-0304. A.K. gratefully acknowledges support from a
Semiconductor Research Corporation Fellowship.
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Figure 1: Landauer conductance versus Fermi energy for a single quasi-one-dimensional
wire having (a) L = 50 nm and (b)-(c) L = 500 nm. When only a few scatterers are
present (a), the conductance varies smoothly with Fermi energy and, if some attractive
scatterers are present (f = 0.5), dips abruptly near the 'quasi-donor levels' below each
subband. As more scatterers are added, wave-interference conductance fluctuations in (b)
and (c) obscure the underlying regular structure due to confinement subbands.

Figure 2: Landauer conducance averaged over an array of 100 parallel wires, each having
length (a) L = 50 nm and (b) L = 500 nm. The ballistic conductance steps are rounded
for the short quantum wires in (a). A new 'diffusive' subband structure emerges for the
long quantum wires (b, top curve) having f = 0.0: The conductance falls after each new
subband opens. 'Quasi-donor' states are still observed for either short (a) or long (b,
bottom curve) quantum wires when f = 0.5.

Figure 3: Average conductance versus length L for an array of 100 parallel wires having
(a) f = 0.0 and (b) f = 0.5. Six values of the Fermi energy are shown: 0.9 Eý and
0.9E3 (dashed), E2 and E 3 (solid), and 1.1E 2 and 1.1E 3 (dot-dashed). The 'crossing over'
of the conductance curves in (a) indicates a much shorter localization length when the
Fermi energy moves into a new subband. 'Quasi-donor states' present in (b) depress the
conductance below each subband, so there is no 'crossing over' of the conductance curves.
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Figure l(a)
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Figure 1(c)
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Figure 2(b)
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Magnetotransport in Multiple Narrow Silicon Inversion
Channels Opened Electrostatically Into a Two-Dimensional

Electron Gas

Philip F. Bagwell, Samuel L. Park*, Anthony Yen,
Dimitri A. Antoniadis, Henry I. Smith, Terry P. Orlando, and Marc A. Kastner*

Department of Electrical Engineering and Computer Science
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We study electrical transport in a dual gate Si metal-oxide-semiconductor field-effect tran-
sistor. The bottom gate is a grating which allows the inversion layer geometry to be
controlled electrostatically. We compare the magnetoconductance of many parallel narrow
inversion channels, a modulated potential, and a uniform two dimensional electron gas
formed from the same background Si crystal. Electron weak localization becomes much
more pronounced as the device is electrostatically pinched from a two dimensional inver-
sion layer into many narrow wires in parallel, proving that the wire width can be reduced
below the electron phase coherence length. For magnetic fields greater than 1 Tesla normal
to the inversion layer there is a large drop in the two-terminal conductance of 90% or more,
and which persists to room temperature, as electrons are added to the device so that it
opens electrostatically from many narrow inversion layers in parallel into a two dimensional
electron gas. This large negative transconductance results from electrostatically changing
the dominant boundary condition on the classical Drude magnetoconductance tensor from
that of a long and narrow to a short and wide conductor. Quantum edge states form at
high magnetic fields, giving very different magnetoconductance for the parallel wires and
wide electron gas. At a magnetic field of 30 Tesla the two-terminal conductance versus
gate voltage of the narrow wires evolves into quantum Hall steps having a height of 2e 2/h
multiplied by the number of wires in parallel. In contrast to a wide device the conduction
band valley degeneracy is.not resolved, giving rise to Hall steps of twice the expected size.
The evolution from Shubnikov-de Haas oscillations to the quantum Hall effect qualitatively
reproduces the 'anomalous magnetoresistance' of Kastner et al. [Phys. Rev. Lett., 60,
2535 (1988)].

* Department of Physics
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1 Introduction

The confinement of electrons into narrow Si inversion channels [1]-[5] can be achieved by
means of dual gates incorporated into a metal-oxide-semiconductor field-effect transistor
(MOSFET). Varying the two gate voltages controls both the electron density and the
width of the narrow channel. A variety of conductance fluctuation phenomena [6]-[9], weak
localization [10], Shubnikov-de Haas oscillations and their evolution into the quantum Hall
effect [11]-[13], and possible electron charging effects [4] have been demonstrated in narrow
Si inversion layers. Although the mean free path in Si inversion layers is much shorter
than in an electron gas formed at a GaAs/AlGaAs heterojunction, electrostatic control
of the Si inversion layer geometry is much easier using a MOS field-effect capacitor. We
exploit field-effect control of the Si inversion layer geometry to study in a single device
the electrical conductance of an array of narrow wires, a modulated potential, and a
uniform two dimensional electron gas as a function of electron density, magnetic field, and
temperature.

Our device geometry is the dual gate MOSFET shown in Fig. 1. The bottom gate
is a W grating gate having a 200nm period, and is separated from the inversion channel
by a 20nm thick SiO 2 insulating layer. All the grating lines are electrically connected at
the bottom gate contact pad. A futher 500nm of SiOx separates the grating gate from a
second continuous Al gate electrode. Standard MOSFET devices made with a continuous
W gate on the same wafer had a mobility of 5000 cm 2/V-s at 4.2 K. The novel device
fabrication technology is described elsewhere [3]-[5].

2 Device Characteristics

We measure the rms ac-drain current IDs of the MOSFET device of Fig. 1 at low rms
ac-drain voltage, VDS = 25 IV, using standard lock-in amplifier techniques. When the
device is cooled to low temperature, T=50 mK, in a dilution refrigerator, the conductance
G=IDs/VDs versus gate voltage in Fig. 2 is obtained. In Fig. 2 the top gate voltage VTG
is swept from -16 V to 20 V holding the bottom gate (grating gate) voltage VBG fixed at
different values.

Fig. 2 shows that, for the family of curves where VBG = 2.5 V, 3 V, 4 V, and 5 V
there is a clear 'break' or 'kink' in the device I-V around VTG = 0 V. For VTG < 0 V on
this family of curves the electron gas is confined only beneath the grating wires, while for
VTG > 0 V the electron gas exists everywhere in the channel. The 'break' in the device
I-V curves as the entire channel becomes inverted can be understood in a simple model
where conduction underneath the grating wires and in the gap between grating wires are
viewed as two different MOSFETs in parallel having different threshold voltages. When
the grating gate VBG is held well above its threshold voltage of approximately 1 V, biasing
the top gate negative can shut off the transistor current on this family of curves. This can
only happen if electrostatic fringing fields around the bottom gate are significant, so that
the field lines from the top gate can reach around the bottom gate fingers and turn off the
electron gas.

For the family of bottom gate voltages VBG = 1 V, 0 V, and -1 V in Fig. 2 there is
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no 'kink' or 'break' in the I-V characteristics. For this family of curves the electron gas
is confined only in the gap between grating lines. The entire MOSFET channel does not
become inverted, as we subsequently prove by examining the device magnetoconductance.
The small current which is independent of the top gate voltage on these three curves is a
parasitic parallel current path around the side of the device which does not significantly
affect the data we subsequently present. The current saturates in Fig. 2 due to the 330 fl
resistance of the wires running into the dilution refrigerator in series with the 50 0 device
contact resistance. This same series resistance is present in Figs. 2-5.

We now fix the top gate voltage above its threshold so that VTG = 13 V, and gradually
pinch the electron gas down into narrow inversion strips using VBG = 3 V, 1.5 V, 0 V,
and -1.25 V in Fig. 3. The magnetic field B is swept from -1 T to 8 T. As the electron
gas is pinched into narrow channels the conductance decreases as expected. However, as
the bottom gate voltage passes below its threshold from VBG = 1.5 V to VBG = 0 V,
a large weak localization [14] magnetoresistance feature develops around B = 0. The
development of this large weak localization feature proves that the wire width W is being
made smaller than the electron's phase coherence length L4, and is further indication that
narrow inversion channels are present. If the electron motion is diffusive, then in two
dimensions an applied magnetic field extinguishes the weak localization when a magnetic
flux quantum 0o = h/2e fits inside the average diffusion path to return to the origin.
If this semiclassical diffusion path is constrained by a boundary, such as the side of a
narrow wire, then the area of the semiclassical diffusion path is much smaller so that a
higher magnetic field is needed to turn off the weak localization. The critical magnetic
field B, is approximately given by B -= O0/(Lý) 2 in two dimensions, and increases to
B, - o0/(WL4) when the wire width is much smaller than the coherence length. The size
of the conductance correction is also much larger in one dimension than in two dimensions.
Using the semiclassical one-dimensional weak localization formula of Al'tshuler [15], after
correcting for series resistance, we obtain an electron phase coherence length LO 0.6 tm
and a wire 'width' between 350-450 A when VBG = 0 V.

For the two dimensional electron gas in Fig. 3, formed when both gate voltages are
large so that VTG = 13 V and VBG = 3 V, the two terminal device conductance decreases
with magnetic field. This decreasing two-terminal current with increasing magnetic field is
the same magnetoconductance as in a standard wide MOSFET device. As our grating gate
device is pinched into long and narrow wires, such as when VTG = 13 V and VBG = 0 V
in Fig. 3, there is almost no dependence of the background conductance on the magnetic
field. All the curves display Shubnikov-de Haas oscillations, but the background magne-
toconductance changes completely from a negative magnetoconductance in a wide device
to almost no magnetoconductance in the narrow device. This is a third indication that
narrow inversion channels are actually being formed. The device curve VTG = -7 V and
VBG = 3 V in Fig. 3, when the electrons are now confined underneath the grating lines,
shows a qualitatively similar magnetoconductance as the two previous curves where the
electrons are confined in the gap between the grating lines, VTG = 13 V and VBG = 0 V
and -1.25 V in Fig. 3.

The different magnetoconductance of a wide versus a narrow MOSFET is manifest in a
quite dramatic way when the magnetic field is held fixed and the inversion layer geometry
is varied with the two gates as in Fig. 4. We fix the bottom gate voltage at VBG = 3 V
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and vary the inversion layer geometry with the top gate. The 'break' or 'kink' in the static
I-V curve around VTG = 0 V becomes quite prominent as the magnetic field is increased.
For VTG < 0 V the current is almost independent of magnetic field, consistent with the
magnetoconductance of the array of narrow wires in Fig. 3. However, when VTG 2 0 V,
the current drops very strongly with increases in the magnetic field, the drop becoming
more pronounced as the magnetic field is further increased. This behavior is consistent
with the magnetoconductance of a standard wide MOSFET device. The counterintuitive
result in Fig. 4 is that, as more electrons are added to the device, the current actually
decreases when a magnetic field is present. The decrease in the current is not small, a
drop of more than two-thirds of the original current is observed at a magnetic field of 8 T
in Fig. 4.

We argue that, in Fig. 4, the region of the curve where VTG < 0 is where the electron gas
is confined into narrow inversion channels. The decreasing conductance with increasing
gate voltage occurs when the electron gas first becomes continuous across the channel
and forms a modulated potential, and continues until a minimum conductance occurs at
VTG ! 8 V when B = 8 T. The conductance minimum occurs when the gate voltages permit
an unmodulated two dimensional potential. The rising conductance when VTG 2 8 V
occurs partially because more carriers are being added to the inversion layer, but mainly
because the combination of gate voltages now again produces a modulated potential. [16].
On the rising part of the curve where VTG Ž 8 V, the electrostatic potential minimum
has shifted over by half a grating period to lie in the gap between grating wires. When
0 V < VTG < 8 V on the falling part of the I-V curve, the 'electrostatic potential minimum
was underneath the grating gate wires. A similar large negative transconductance can be
observed by fixing the top gate voltage above its threshold and sweeping the bottom gate
in an applied perpendicular magnetic field.

If our interpretation of Fig. 2 is correct, that the 'breaks' in the device I-V curve
correspond to an opening of the narrow inversion channels into a wide two-dimensional
electron gas, then there should be very little magnetoconductance of the family of bottom
gate voltages below threshold, VBG = 1 V, 0 V, and -1 V, where there is no 'break' in the
static I-V. This is indeed the case as shown in Fig. 5, confirming that for this family of
I-V curves the electron gas exists only in narrow strips between the grating gate wires.

3 Temperature Dependence

To understand if the large negative transconductance in Fig. 4 is a classical or quantum
mechanical effect, we study its temperature dependence. Fig. 6 shows the current on a
different device when VBG = 3.5 V. We sweep the top gate voltage for temperatures
T = 4.2 K, 20 K, 50 K, 100 K, 200 K, and 280 K. The total series resistance is 120 f1
in Fig. 6, since different measurement equipment is now being used. Although fringing
fields are able to shut off the device when T = 4.2 K, we see in Fig. 6(a) that by the
time the device is at room temperature the fringing fields are much less effective. We
do not understand this different in detail. The decrease in conductance with increasing
temperature is presumably due to more electron-phonon scattering at higher temperatures.

We apply a 15 Tesla magnetic field normal to the Si-SiO2 interface in Fig. 6(b). The
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T = 4.2 K curve when B = 0 is also shown for reference. At T = 4.2 K and B = 15 T, a
single Shubnikov-de Haas oscillation is observable over the range of gate voltages shown. By
T = 20 K the Shubnikov-de Haas oscillation is no longer present, indicating that the Landau
level structure has completely detereorated. Yet the large negative transconductance seen
in Fig. 6(b) persists even to room temperature. We conclude that the effect is completely
classical.

Could this classical magnetoconductance effect arise from electrons being classically
confined to a wire width smaller than the cyclotron orbit or a mean free path? In this
sample a generous estimate of the mean free path which enters the Drude conductance is
roughly 600 A when T = 4.2 K. Thus, the mean free path can be smaller than the wire
width at low temperature, but this does not seem possible at room temperature, when the
mean free path is 5-10 times smaller. Also, at a magnetic field of B = 15 T, the cyclotron
radius in (100) Si is less than 100 A, yet the negative transconductance becomes larger,
not smaller, as the magnetic field is increased.

The correct explanation for the behavior of the magnetoconductance as the device
geometry changes was provided by Park [12]. Assume the magnetoconductance is described
by the Drude conductance tensor. This assumption is appropriate if the device is not in the
quantum Hall limit so that local resistances can still be defined. One must obtain the two
terminal device conductance using the Drude tensor, by calculating the current consistent
with the boundary conditions on the current and voltage. The boundary conditions are
(1) that no current can flow through the side of the device, and (2) that the voltage at the
source terminal be zero and at the drain terminal be VE3s, since the device contacts are
heavily doped and can thus be approximated as an equipotential surface.

In a long and narrow geometry where L > W, and if one is well away from the device
ends, the current distribution from one differential slice of the device to the next must be
the same as shown in Fig. 7(a). Therefore, the current mostly flows parallel to the edge of
the device and the electric field is pointed away from the current path by the Hall angle.
Since the current distribution is known, one can integrate

Ez = pzzJx + pxJy (1)

from source to drain. The term involving p,, is completely negligible when L > W and
p,, : 0, i.e. the device is not in the quantum Hall limit, so one obtains the two terminal
resistance of the device as

R2P - LPZ/W . (2)

This result makes sense, as it is just the standard argument for measuring PA in a Hall
bar geometry. To make an accurate measurement of p,, in a Hall bar geometry one wishes
to make a sample very long and narrow, and keep the Hall probes well away from the ends
of the device. Equation (2) for the two terminal resistance has been previously suggested
by Syphers and Stiles [17].

Conversely, in the short and wide geometry of Fig. 7(b) where W > L, the edges of the
device are far away so that the current will have to adjust to the boundary condition on
the voltage. For the short and wide geometry, the equipotential surfaces must be the same
as one moves laterally across the channel as in Fig. 7(b). Therefore, the electric field points
directly from source to drain and the current flows at the Hall angle across the channel.



There are minor corrections to this picture at the edges of the device, which will be small
if W > L. Consequently, since the electric field is known, the two terminal current can be
obtained by integrating

J. = aE,,E + a,,E, (3)

from source to drain. One obtains in the limit W > L and a,, 6 0, where the second term
in Eq. (3) is negligible, that

G2P = WO,,IL (4)
Ref. [18] has suggested a similar expression for the two terminal magnetoconductance of a
short and wide conductor.

The classical Eq. (2) and Eq. (4) qualitatively explain the data in Fig. 4. Since p,,
is independent of magnetic field, Eq. (2) predicts that in a long and narrow device where
L > W there is no magnetoconductance. Conversely, since a,, depends on magnetic field
like 1/[1 + (AB) 2], where /i is the electron mobility and B the magnetic field, the two
terminal conductance of a short and wide device where W > L decreases as the magnetic
field increases. To completely explain the data in Fig. 4, such as the minima occurring
at different values of VTG at different values of the magnetic field, one needs a theory of
classical magnetoconductance in a modulated potential which is not available at this time.
However Eq. (2) and (4) qualitatively explain most of the data.

How Eq. (2) and (4) relate to the more complicated expressions [19]-[20] of two terminal
magnetoconductance in terms of the conductance tensor elements is not clear. One would
expect to obtain Eq. (2) and (4) from Refs. [19] and [20] in appropriate limits. Park [12]
has constructed a proof using the conformal mapping technique of Ref. [19] that there is
a symmetry between G2p in the W > L limit and R 2p in the L > W limit. As a special
case, this symmetry implies that, if Eq. (2) holds in the limit of L > W, then Eq. (4) holds
when W > L.

4 High Magnetic Fields

We turn to the behavior of the conductance at large magnetic fields. Fig. 8 shows
the conductance (corrected for series resistance) when VBG = 3.5 V and the top gate is
swept for a family of magnetic fields B = 0 T, 5 T, 10 T, 15 T, 20 T, and 23 T. When
the device aspect ratio is short and wide, the conductance continues to decrease with
the large applied magnetic field. When the electrons are confined to a long and narrow
conductor, the current remains roughly constant up to a magnetic field of 15 T. However,
for the magnetic field values of 20 T and 23 T, there is a large increase in the current as
B increases in the high aspect ratio device. Thus, the magnetoconductance is moving in
different directions on different parts of the same device curve in Fig. 8.

We claim that this rise in conduction is due to edge states forming in the wire array
as outlined by Biittiker .[22]. Our device is 60 pm wide and the grating period is 0.2 jm,
so that roughly 300 wires are present in the array. In a high magnetic field each wire
must have a conductance of 2e2/h, the same conductance as that in a quantum ballistic
conductor [21]. Since the wires have many scattering centers, their initial conductance is
much less than the ballistic value. Therefore the conductance must rise with magnetic



field when edge states begin to be formed in the wire, giving a conductance of 2eF/h times
the number of wires. The conductance of the wide MOSFET will also approach 2e/h at
large magnetic fields. Since many conduction channels are initially occupied in the wide
MOSFET, its conductance must continue to fall at large magnetic fields to approach the
quantum Hall conductance limit of 2e2/h. Therefore, the magnetoconductance must move
in opposite directions at high magnetic fields in the wire array, depending on whether
conduction occurs in many narrow wires or in a two-dimensional MOSFET.

To prove that edge state conduction is occurring, we measured the conductance of
electrons confined in the gap between grating lines where VBG = 0 V and B = 0 T, 10 T,
20 T, and 30 T in Fig. 9 (also corrected for series resistance). For B = 0 T and 10 T, the
current versus top gate voltage qualitatively resembles Fig. 5, where Shubnikov-de Haas
oscillations appear in the conductance and the background magnetoconductance is flat.
When B = 30 T a well defined quantum Hall plateau develops at 1200e2/h, with weaker
precursors to quantum Hall plateaus appearing at 600eF/h and 1800e2/h. Quantum Hall
plateau's were first reported in the two terminal conductance by Fang and Stiles [23], and
fit nicely with the theory developed by Biittiker [22]. Since the device has 300 parallel
wires, we interpret the Hall plateau at 1200e 2/h as the first filled Landau level with spin
and valley degeneracy, due to the two conduction band valleys at a (100) Si surface. Note,
however, that only one of the degeneracies is resolved in the conductance. Following
Refs. [11], [12], [24], and [25], we interpret the valley degeneracy to be restored in the wire.

The magnetic field value B = 20 T is an intermediate case between the Shubnikov-de
Haas oscillations and the quantum Hall effect. This curve'reproduces roughly and qualita-
tively the basic phenomenology observed by Kastner et al. [11] in narrow MOSFET's, the
'anomalous magnetoresistance'. The anomalous filling factors in Ref. [11] have since been
explained [12] in a model which takes into account how edge states form in the various
thick and thin oxide regions underneath the gate of the samples in Ref. [11]. In our present
device the narrow wire runs straight between the three dimensional degenerately doped
source and drain, and not through any two dimensional regions or under different gate
oxide thicknesses.

5 Conclusion

We originally undertook this study in an effort to see some manifestation of quasi-one
dimensional subbands in the device conductance [1]-[2], [26] in a diffusive sample. This
was not observed in these particular devices. However, a variety of magnetoresistance
effects were studied. Weak localization was found to become a much stronger effect in the
conductance, and persist to a much higher value of magnetic field, when the electron gas
is pinched into a wire narrower than the phase coherence length. The grating gate enabled
us to compare the magnetoresistance of a two dimensional sample with a one dimensional
conductor, since the conductance of both systems are the same order of magnitude and
can be observed on the same graph.

We also observed that the two terminal magnetoconductance of an inversion layer is
strongly determined by the device aspect ratio (when a local magnetoconductance tensor



description of conduction is appropriate). This is in contrast to the two terminal resistance
of a quantum Hall conductor, in which the resistance is independent of the size and shape
of the conductor. A long and narrow conductor was found to have very little dependence
of the resistance on magnetic field, while a short and wide conductor has a two terminal
resistance which increases with magnetic field. This is manifested as a large negative
transconductance of our grating gate MOSFET when the magnetic field is held fixed and
the device geometry is varied.

Finally, for conduction in very high magnetic fields, the magnetoconductance was shown
to move in opposite directions for the device with many parallel wires and a two dimensional
MOSFET. We interpret this result in terms of magnetic quantum edge state formation in
the wire array, as confirmed by the appearance of quantum Hall plateaus at the highest
magnetic fields. The quantum Hall steps have size 2e?/h since the conduction band valley
degeneracy is not resolved.
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Figure 1: 'Grating Gate' MOSFET geometry. The split gates permit control of the inver-
sion layer geometry via the field effect. A narrow inversion layer can form underneath the
grating lines, in the gap between grating lines, or a wide inversion layer having a weakly
modulated electron density can also form depending on the applied gate voltages.

Figure 2: Static device I-V curve for zero applied magnetic field. The five curves on the
left show a pronounced 'kink' near zero volts, indicating a transition where inversion layer
opens from an array of narrow channels underneath the grating wires to a two-dimensional
electron gas. The three rightmost curves, where no 'kink' is observed, indicates the electron
gas exists only in the gap between grating lines over the range of voltages shown.



Figure 3: A pronounced weak localization minimum developes as the two-dimensional in-
version layer is pinched into narrow wires, indicating that the electron phase coherence
length has crossed over the wire width. A corresponding change in background magneto-
conductance also occurs, so that the magnetoconductance of the wide electron gas is large
but the magnetoconductance of the array of narrow wires is small.

Figure 4: A large negative transconductance appears in a perpendicular magnetic field
as the inversion layer geometry opens from the narrow wire array into a two dimensional
electron gas. The additional carriers added to the device cannot overcome the decrease in
two-terminal current required by the new boundary conditions on the Drude conductance
tensor.

Figure 5: When there is no change in the inversion layer geometry with gate voltage, for
the device curves without a 'kink', little magnetoconductance is observed.

Figure 6: Temperature dependence of the device current shown for T = 4.2 K, 20 K, 50 K,
100 K, 200 K, and 280 K. The magnetic field is (a) B = 0 T and (b) B = 15 T normal to the
interface. The large negative transconductance persists to room temperature, confirming
its classical origin.

Figure 7: To obtain the two-terminal conductance from the Drude conductance tensor,
we apply boundary conditions on the current and electric field appropriate to the device
geometry. For (a) a long and narrow conductor, the current must continue to flow parallel
to the side of the device even at high magnetic fields. If the conductor is (b) short and
wide, current flows at the Hall angle across the device.

Figure 8: Conduction in a large magnetic field having values 0, 5, 10, 15, 20, and 23 Tesla.
The bottom gate is held at 3.5 V. For the long and narrow conductors below 0 V in the
figure, there is a large increase in the current at the two highest values of the magnetic
field indicating the formation of quantum edge states and the approach to the quantum
Hall effect.

Figure 9: Two-terminal conductance of a narrow wire in applied magnetic fields of 0, 10,
20, and 30 Tesla. Shubnikov-de Haas oscillations are seen when B = 10 T, and quantum
Hall plateaus appear when B = 30 T.
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Figure 6 (a)
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Figure 6 (b)
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