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Abstract

The effect of interweaving on the strength and modulus of filament-wound composites is
investigated. Simple models based on lamination theory and modifications made for woven
fabric composites are developed. More complex models are outlined but not fully developed.

Forty-five composite cylinders with different wind angles and degrees of interweaving
were made and tested to failure under axial compression. Test results show that, for wind
angles of 300 and 600, axial compressive strength can be increased by 50% or more simply
by changing the interweaving. However, interweaving has little or no effect on cylinders
with 450 wind angles.

The failure modes appear to be localized shell buckling for the 300 and 600 cylinders,
and outer ply buckling for the 450 cylinders. In all cases, a crack propagates from the initial
failure point, and the interweaving seems to act as a barrier to crack growth.

The theoretical models do not adequately predict the effect of interweaving. More
complex theoretical models need to be developed. A buckling model which incorporates
local imperfections looks promising.

Thesis Supervisor: James W. Mar
Title: Professor, Aeronautics and Astronautics
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Chapter 1

Introduction

Composite materials are being used in an increasing number of applications. Many industries,

from sporting goods to automotive to aerospace, use composites on a regular basis. Of particular

interest to the aerospace engineer are composite shells, such as tubes for space trusses, or

pressure vessels for aircraft fuselages and manned space vehicles.

When designing a shell, or any structure, one major goal is to minimize weight while max-

imizing strength. Filament-wound shells should be considered because they are less expensive

to manufacture than comparable laminated shells. Both money and time are saved because

filament winding is a highly automated process.

In filament winding, a bundle of fibers, or a tow, is laid down on a rotating mandrel. The

tow can be purchased pre-impregnated (towpreg) with a thermoset or thermoplastic matrix

(dry winding), or it can be impregnated as it is laid down on the mandrel (wet winding). The

machine motions can be programmed in advance, and thus the actual manufacturing process

requires only minimal supervision. For a more detailed discussion, see [31] and [30].

To achieve the best performance, designers need accurate models of the mechanical and

physical properties of the materials they work with. For metals, these models are well developed,

and are backed by years of empirical verification. But advanced composites, being a relatively

new material, are not as easily analyzed.

To analyze the mechanical properties of a composite laminate or structure, engineers gen-

erally turn to Classical Laminated Plate Theory, or CLPT, sometimes modified to include edge

effects, interlaminar stresses, or nonlinear effects (see, for example, [40] and Section 4.3). To
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analyze the strength properties, engineers have several choices. The most common choices are

the following criterion [42]:

* Maximum Stress

* Maximum Strain

* Interactive Critera

- Tsai-Hill

- Tsai-Wu

- Chamnis

- Hoffman

Like CLPT, these criterion can also be modified in several ways.

It is important to remember that all of these theories have certain limitations. For the pur-

pose of this study, the most critical limitation is that these theories were developed for laminated

composites, with the fibers in each ply lying in a single direction (Figure 1-1). Filament-wound

composites are both laminated and woven, with the fibers in each ply lying in two different

directions (see Chapter 3 and Figure 1-2; there are some exceptions in extreme cases).

Does this unique layup affect the properties of the finished composite? The purpose of this

thesis is to provide an answer to that question. It does so by looking at the axial compressive

strength of filament-wound cylinders. The specific goals of this work are to:

1. Provide a summary of the literature dealing with the structural analysis of filament-wound

composites.

2. Develop a mathematical description of the "degree of interweaving."

3. Show experimentally the effects of interweaving on the compressive strength and modulus

of filament-wound cylinders.

4. Determine if a simple model, based on CLPT, can be used to predict these effects.

5. Provide recommendations for developing more complex models in future projects.



Figure 1-1: Laminated Composite Showing Fiber Directions in Individual Plies

Figure 1-2: Wound Composite Showing Fiber Directions in Individual Plies
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Chapter 2 reviews the available literature on wound composites, and answers these questions

as well as the current data allows. Chapter 3 then goes into the mechanics of filament-winding,

beginning with a description of machine motions and ending with a mathematical description

of interweaving.

Chapter 4 presents the theoretical background. Sections 4.2, 4.3, and 4.5 present overviews

of micromechanics, lamination theory, and shell theory. Sections 4.4.1 and 4.4.2 contain two

methods for modifying lamination theory to include interweaving. Section 4.5 also discusses

the different buckling models considered.

Chapter 5 presents the experimental results, and compares these to the theoretical mod-

els. Finally, Chapter 6 shows what conclusions can be drawn from these results, and gives

recommendations for future work.



Chapter 2

Literature Review

Although articles dealing with composite analysis have proliferated over the past twenty years

or so, the number of articles dealing specifically with wound composites has remained small. In

this thesis, I have attempted to compile a comprehensive bibliography on wound composites.

This is probably not a complete bibliography, but should serve as a good starting point for

further research.

2.1 False Assumptions

One of the greatest difficulties in finding articles about wound composites is finding articles

which truly deal with wound composites. Often, an article with the phrase "filament-wound"

in its title will simply treat the wound composite as a laminated composite.

I should point out here that it is possible to wind a cylinder such that it is a true laminate.

This is achieved by varying the width of the tow: for a given diameter and wind angle, there

is a unique tow width which produces a laminated composite (see Chapter 3). In the articles

discussed below, the authors may have been referring to this type of winding. But few if

any wound composites are made this way in practice; interweaving almost always remains an

important factor.

For example, the title of an early article by Sherrer [35] derives the shell equations for

an orthotropic material. The title begins with "Filament-Wound Cylinders ... ," but almost

immediately makes the assumption that "...each layer [has] a constant angle of wrap .... "
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Thus, the analysis more accurately applies to a laminated composite.

Similarly, two other general reports make the same assumption: Pagano and Whitney [29]

define "thin-walled cylinder" for anisotropic materials, by finding appropriate e/r and r/h

ratios; and Takahashi et al. [38] look at the mechanical properties (using CLPT) and strength

properties (using the Tsai-Wu criterion) of filament-wound pipes.

Other papers which make the same assumption deal with specific loading conditions. Pagano

et al. [28] look at tension buckling and the effects of end constraints. Garde and Lakkad [14]

match axial buckling loads obtained from experiments to the model in [27]. This model uses

an empirical factor obtained from isotropic materials, and contains the warning that "it should

be applied with discretion to new and unusual geometries and proportions." Another article

on compression, Khitrov and Katarzhnov [22], looks mostly at failure mechanisms and end-cap

design.

Pressure and torsional loading have also been written about. Three papers which look at

pressure loading are those by Uemura a.nd Fukunaga [41], who use a probabilistic model; by

Prater and Hackett [32], who develop a viscoelastic/damage model; and by Kiselev et al. [24],

who use simple shell equations. The torsional papers have been more concerned with the

strength of lap joints, but the modelling of the composite must still be considered. Chon [7]

uses laminated shell theory; Hipol [15] uses a finite element method.

An approach which looks promising has been used in strength/weight optimization. Fil-

ipenko et al. [13] characterize the structure by a set of parameters x0 for which an objective

function 4(F) takes an extremum value

D(.o) = extr #(f) (2.1)

Protasov and Ermolenko [33] take a similar approach. Although neither paper mentions inter-

weaving, it may be possible to include interweaving in the set of parameters F.

Finally, Hoa et al. [16] use a finite element approach. Their element allows several layers to

be modeled by a single element, resulting in a major reduction in computation time. Although

the finite element approach may be a good way to model wound composites (Appendix C), this

article again makes the "one layer/one angle" assumption.

This assumption is one of the main reasons that the above articles do not truly apply to
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wound composites. Wound composites will have two angles per ply except in the extreme cases,

when they a.re identical to laminated composites.

2.2 Woven Fabrics

Woven fabric composites have two things in common with wound composites: each ply contains

fibers lying a.t two angles; and the composite is woven. But in a woven composite, the fibers are

oriented only at angles of 00 and 90*, which makes the regions of interweaving much simpler

than in wound composites. Still, models developed for woven composites may give some clues

for developing models for wound composites.

Ishikawa [19] presents both a simple analytical and a finite element model of woven fabric

composites. The simple model is called a "mosaic" model, and basically ignores the details

of the weaving. Changes in fiber angle are assumed to occur abruptly, as shown in Figure 2-

1. This model can be applied to wound composites as shown in Figure 2-2 and discussed in

Section 4.4.1.

To more accurately model the weaving, Islhikawa and Chow [21] develop the fiber undulation

model. This is still a one-dimensional model, but it takes into account the curving of the fibers

when they are woven. In [18], the same authors slightly refine the undulation model; they

also develop the bridging model, a two-dimensional extension of the undulation model. Finally,

in [20], they extend the work to hybrid composites-composites formed from two or more types

of fibers.

2.3 Wound and Interwoven Composites

The first step in analyzing a wound composite is to describe the machine motions and fiber

patterns. Chapter 3 discusses this topic in detail, and some of the references below also cover this

subject. Of greater importance, however, are the conclusions reached regarding the behavior

of wound composites under different loadings.

Seleznev et al. [34] devote their entire article to filament winding patterns. In addition to

the simple helical winding covered in this thesis, they also discuss windings where neighboring

tows can overlap or have gaps between them, and the even more complicated case where several
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strands are laid down at once (multiple winding eyes).

Zakrzhevskii and Khitrov [44] derive some of the equations found in [34]. More importantly,

they empirically document the effect of interweaving on the torsional strength of wound rods.

In particular, they found that:

1. As interweaving increases to moderate values, strength also increases because of the cre-

ation of a more uniform material and barriers to crack growth.

2. As interweaving approaches its maximum value, the strength begins to decrease because

the material contains almost no straight fibers.

3. The magnitude to which interweaving affects torsional strength depends on the failure

mode.

4. By carefully selecting the amount of interweaving, the torsional strength of the tubes

could be increased by 50%.

Bulmanis and Gusev [2] test filament-wound tubes in axial tension. Though interweaving is

mentioned in the paper, they do not document its effects. In a later paper [3], however, they do

look at the effects of interweaving on the axial tensile strength. Instead of varying the winding

pattern to achieve different degrees of interweaving, they vary the tow width. They conclude

that both interweaving and tow width have an effect on the strength of their cylinders. The

effects of each factor considered individually cannot be determined from this study, but two of

their conclusions are important for this work:

1. Increasing the degree of interweaving causes a reduction in tensile strength; failure occurs

in the regions of greatest interweaving.

2. Neither tow width nor interweaving have an effect on the elastic properties of ±4.5" wound

tubes.

Brito [1] looks at wound tubes subject to axial tension, internal pressure, and torsion. The

main purpose of his study was to find the effect of interweaving on the engineering constants

EL, ET, VLT, 'TL, and GLT of wound tubes. lie also looks briefly at the rupture strength from

internal pressure loading. His important conclusions are:
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1. As interweaving increases, the elastic and shear moduli also increase, whereas the Poisson's

ratio decreases.

2. The elastic moduli and Poisson's ratios do not satisfy the reciprocity relation

VLT "ITL
(2.2)EL ET

i.e. the elastic matrix is not symmetric. As the interweaving increases, the elastic matrix

approaches symmetry.

3. As interweaving increases the behaviour of the wound tube goes from that of an anti-

symmetric angle-ply laminate to that of a macroscopically homogeneous and orthotropic

material.

That last statement is particularly important, because it will form the basis of the simple model

considered in this thesis.

Finally, Eckold [11] develops both strength and elastic models of filament-wound composites.

lie points out that interweaving has an effect on properties and must be accounted for, and his

models incorporate it. Unfortunately, he does use interweaving as an experimental variable. As

a result, his results cannot be used for comparison with this work.

This thesis adds to the conclusions of the above authors by looking at filament-wound

composites in axial compression. Based on the results above, we should expect interweaving to

have some effect on the compressive strength of wound tubes, though it is not clear whether

that effect will be positive or negative.

Aside from the loading condition, this thesis also differs from these earlier works in two

important ways:

1. More than one wind angle is tested. The studies above, except for [11], examine only a

single wind angle.

2. The width of the tow is held constant. In at least one of the studies [3], interweaving is

varied by changing the tape width. Thus, the effect of interweaving is separated from the

effect of tow width.
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Mechanics of Filament Winding

Modern computer controlled filament winders are capable of winding complex parts with min-

imal setup effort. Tape-laying machines, and thermoplastic towpreg, now allow winding on

concave mandrels. Advanced pattern generation software, such as Silma Corp's CimStation,

can even predict layer thicknesses and slippage problems. For this work, however, we will only

be discussing simple helical-wound cylinders.

The basic filament winder consists of a control panel, a creel or rack for holding the spools

of tows (usually with some kind of tension controller), a set of redirects which terminate in a

payout or delivery eye, a resin bath for wetting the tows (if necessary), and a rotating chuck

which holds the mandrel (Figure 3-1). As the mandrel rotates, the delivery eye moves back

and forth parallel to the axis of the mandrel's rotation, and the tow gets wrapped around the

mandrel (Figure 3-2).

As mentioned in the introduction, this method of fabrication creates a much more com-

plicated laminate geometry than does simple lamination. A laminated composite consists of

several plies, each ply having a unique fiber angle (Figure 3-3). A wound composite, however,

has two fiber angles, +0 and -0, in each ply (Figure 3-4). Furthermore, as Figure 3-5 shows,

the wound composite has regions where the fibers are interwoven (major crossovers), regions

where the fiber angle changes abruptly (minor crossovers), and regions similar to the simple

laminated composite.

The effect of all of these regions is a diamond-shaped or triangular pattern on the finished

composite, as shown in Figure 3-6. The relative sizes of these triangles depends on a number
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of factors, most of which are set by mechanical design requirements. One factor, however, the

repeat' , is chosen arbitrarily, usually by the machine programmer or operator. As shown in the

literature review, repeat can have a significant effect on the stiffness and strength properties of

a wound composite. Thus, the repeat should be chosen with more care.

In order to derive a rule for choosing the repeat, or at least incorporating it into the anal-

ysis, we must first find a way to characterize it; i.e. we need a mathematical model which

describes the triangular pattern shown above (Figure 3-6). In the past, these models have been

developed using the gear ratios of the winders [44]. Most winders now, however, are electrically

or hydraulically actuated. A more general approach, which I will employ herein, is to begin

with the speeds of the delivery eye carriage and the rotating mandrel.

'Repeat will be related to degree of interweaving later in this chapter.
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Figure 3-2: Tow Being Wrapped on a Mandrel

Layer 1

Layer 2

Layer 3

etc.

Figure 3-3: Fiber Angles in a Laminated Composite
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Figure 3-4: Fiber Angles in a. Wound Composite
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Figure 3-6: Triangular Pattern of a Wound Composite
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3.1 Tow Path

We begin by assuming that the part diameter D (the mandrel outer diameter), the wind angle 0,

and the bandwidth or tow width2 B have already been deterumined-the former two by design

requirements, the latter by the availability of material. Furthermore, we will also choose a

payout rate for the tows, V1 . This should be as high as possible to mininmize production time,

but must be low enough to prevent fiber damage from the redirects and to assure adequate

wetting in the resin bath.

To calculate the machine speeds, look at a small piece of the mandrel, flattened out into a

rectangle. This mandrel piece contains a single length of tow lying along its diagonal (Figure 3-

7), which has been laid down in some arbitrary time t3 . The length of this tow is C£4 , and the

angle it makes with the mandrel axis is the wind angle, 0. The dimensions of the rectangle are:

* £eye = linear distance delivery eye has travelled in time t, and

* £spin = linear distance mandrel has rotated in time t.

In terms of the appropriate speeds,

£eye = Vht (3.1)

,pin, = Wt (1) 7rD

= (3.2)

From Figure 3-7,

tan 0 =
£eye
•Dt 1

2 Vht

2Bandwidth and tow width are used interchangeably.
3This term will soon disappear from the equations. For a simple cylinder, t should include up to one full

revolution of the mandrel. For a more complex shape, t should include a portion of the mandrel with an
approximately constant diameter, and again less than one revolution. In such a case, this analysis is only
approximate. For a more detailed discussion of winding on complex mandrels see, for example, [26] and [43].

4In Figure 3-7 and following figures, Roman letters are used in place of calligraphic letters, so that L! = 4£,
etc. This substitution is made solely for software compatibility reasons.
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L.,slVm

LI- ,,6 r

Figure 3-7: Small Portion of Mandrel Containing Single Tow

(3.3)

Equation 3.3 has two unknowns, w and D. For a second equation, use either of:

sinll = Cf 2Vf

or

cos = £•Leye
SCf

The latter equation immediately gives V•:

(3.4)

(3.5)It

Vh = Vf cos8 (3.6

The mandrel rotational velocity is found by substituting equation 3.6 back into equation 3.3:

wVP
tan =- (3.7

2Vf cos 0

2V1 sin 0
V

CHAPTER 3.
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(3.8)
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Figure 3-8: Eye and Tow Path After One Circuit

Equations 3.6 and 3.8 completely define the tow path for a single circuit. A circuit is defined

as a double-pass of the delivery eye, or the path the eye traverses from one end of the mandrel

to the other and back again. Figure 3-8 shows the eye path for a single circuit, and also shows

the tow that has been laid down during this circuit.

3.2 Repeat

At this point, we cannot tell what the repeat is going to be. This should be evident from the

math, because the repeat does not enter into any of the equations. But to lay down more than

one circuit, we must choose a repeat. In practice, the winding software presents a list of repeat

values and the operator selects one. But we need to know how that list is generated.

The eye is back at its starting point, and the winding pattern is in the middle of the first

turn-around region. The amount of this turn-around, or dwell rotation, must be at least large

enough to prevent tow slippage. This may require a dwell rotation greater than 360*, which

is more than we need to define repeat. All we really need to know is where the tow path in

the next circuit should lie in relation to the tow path from the first circuit. In other words,

we are only concerned with the fractional part of the dwell rotation, as measured in mandrel

revolutions.

Let M be the number of revolutions the mandrel makes in one circuit. Then [44]

mI 2rn = m + - (3.9)
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Major
Crossover

Wound Composite Layer Laminated Composite Layer

Figure 3-9: Layers in a Wound and a Laminated Composite

, where

* 1.1 = integer part of A4, and

* nm2 /./ = fractional part of •l.

By definition, m2/N" < 1. The value of nmi is unimportant: it is the extra rotation mentioned

above, and can be calculated from the machine speeds, part length, and desired turn-around.

The values of 1m12 and Nf, however, will be needed, because they lead directly to the repeat.

First, define N as the number of circuits necessary to completely cover the mandrel, i.e.

one layer. (Note that one single layer of filament-wound composite corresponds to two layers

of laminated composite, as shown in Figure 3-9.) KA, like the machine speeds, is independent

of the repeat, so we can calculate it immediately.

The bandwidth and wind angle were defined earlier. From these two values, two more widths

can be defined: the axial bandwidth ba, and the circumferential bandwidth bc (Figure 3-10).

They are:

sin 0
Bbc -

cos 0

(3.10)

(3.11)

Now, Figure 3-11a shows two neighboring tow paths after the first circuit (tow paths in

the other direction are not shown for clarity). The distance L between them must be filled by

additional bands to complete the layer (Figure 3-11b). Each circuit will put one more band



T
b
Y

Figure 3-10: Axial and Circumferential Bandwidths

into the gap. Thus,
L

N- = 1+ -
ba

(3.12)

where the '1' accounts for the circuit already laid down. The distance L also equals the distance

travelled by the eye in exactly one mandrel revolution. From equation 3.1,

L = Vht + ba (3.13)

(The last term is included because L is measured from the inside edges of the two bands,

Figure 3-11a.) The time it takes for one mandrel revolution is:

1 21r
nres = t- 1 t t = -

27 w (3.14)

Substituting this value for t and the earlier values for Vh and ba (equations 3.6 and 3.10)

into equation 3.13 gives

2r B
L = (Vfcos 0)2w sin

V B= (2rl cos ) sin sin
2Vf sin 0 sin 0

3.2. REPEAT
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(a) Neighboring tows after first circuit

(b) A circuit is complete when '"L" has been filled

Figure 3-11: Determination of Number of Circuits Per Layer, K
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Lay-down
order

Figure 3-12: Meaning of "Skip" Value, mn2

L = rD cot - (3.15)
sin 0

Finally, substituting this last equation back into equation 3.12 gives us YA:

N= + cotO 0 (3.16)
si sin 8B

or, more simply,
irD cos 0

S= B (3.17)

With equation 3.17, the only unknown that remains in equation 3.9 is ms. Entec [12] calls

this value K and defines it as "the number of circuit positions covered from start of first circuit

to start of second circuit." Figure 3-12 shows what this means.

When the second circuit begins laying down, the new tow path lies an integral number of

b,'s away from the first tow path. The number of these bc's is defined as mi. m 2 may be called

a "skip" value: it indicates the number of bands (or circuits) in the circumferential direction

"skipped" from one circuit to the next. These "skipped" circuits will eventually be filled in,

but not necessarily in order.
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+mn2

Figure 3-13: Positive and Negative m2's

Furthermore, .m2 can be either positive or negative. A positive value means the next circuit

is laid down "after" the current circuit; a negative value means it is laid down "before" (Figure 3-

13). We can write for m2 that:

1 _< Im21 < J (3.18)

(nm2 could be equal to 0 or KJ, but then each tow would lie directly on top of the previous one.)

At last, we get to the repeat. Entec [12] defines the repeat as "the circuit number that

will lay next to the first circuit." In other words, the repeat answers the question "How many

circuits from now will the tow be laid next to the tow from the current circuit?" It is much

easier to see the repeat than to describe it. On a finished part, the repeat will equal the number

of diamonds around the circumference, as in Figure 3-6.

Figures 3-14 and 3-15 show mandrels with NA = 9 and N = 10, respectively. Also shown are

the order the tows are laid down for different values of repeat, 1?, and m2 . Note that a given

m2-or even an Im121-does not give a unique R. In fact, for a given 1R, the ratio m2/nA can

take on one of many values, as shown in Table 3.1.

The general rule is:

Rule 3.1 If R = n, then , , ... , n-1 uhere n < K.

-n2



3

5

n

m2 /Af

1 2

5' 5' 5' 5

1 2 n-1
;,I -n7 "° ' n

Table 3.1: Relation Between R1 and m2/N

R Order s]•

1 1,2,3,... 2
2,3,4,... 3
6,7,8,... 7

3 1,4,7,2,5,8,... 4

3,6,9,4,7,... 6

Figure 3-14: Possible Circuit Orders for N = 9

(This rule assumes that for a repeat of 1, m2 = A, not 1.)

We could simply define R7 as the denominator of m2/N/, after the fraction has been put

into its simplest form. This isn't a very elegant definition, though. Look again at Figures 3-14

and 3-15. It should be apparent that

N
distance between circuits

where the distance between circuits is given in circuit numbers. Thus, in Figure 3-15 with a

repeat of 5, the circuit numbers in the order they are laid down are {0,2,4,6,8,0,... }, and the

.31. 1?EPEAT3.. EPA
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R Order M2

2 2,4,6,... 4

5,7,9,1,... 7

5 1,6,2,7,... 6
4,9,5,0,... 9

Figure 3-15: Possible Circuit Orders for N = 10

distance between them is 2.

This implies that the set of all m 2's for a given repeat are equivalent. The problem is to

figure out which set a given m2 belongs to. For example, with N = 10, the value of m2 = 4

belongs to the R7 = 5 set. But with K = 8, the same m12 = 4 belongs to the Z = 2 set. A

comparison of several different sets and K/ values yields the final form of the repeat equation:

= lcm(n 2,K) (3.20)
m2

where lcm(0m2,N)stands for the least common multiple of m 2 and KV.

3.3 Pattern Definition

The winding path has now been completely defined. Before going on to the strength and

elasticity analysis, two more variables will be needed. These two variables depend on the

earlier work in this chapter, but do not themselves affect the winding path.

Refer back to Figure 3-6, which shows the triangular pattern on the composite. Again,

the number of "X's" (or diamonds) around the circumference equals the repeat. The distance

between the minor crossovers equals (K - 1)B, and the axial distance between them equals L
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/\

\ \ /IF \ \/ , N

N /

Figure 3-16: Major Crossover

(equation 3.15). But what is the distance between the major crossovers?

We first need to better define where the major crossovers end and the laminar region begins.

Figure 3-16 shows a closeup of the region near a major crossover. The major crossover, unlike

the minor crossover, is not a smooth line. Rather, it forms a double-sawtooth boundary between

two laminar regions. Note that the surface pattern doesn't show the full extent of the major

crossover-the dotted lines in Figure 3-16 indicate regions where the sawtooth pattern continues

below the surface of the composite.

As shown in [44], the effect of interweaving extends to the midline of the region indicated

by dotted lines. Therefore, this line will be considered the boundary of the major crossover.

Figure 3-17 shows an even closer view of the one of the "teeth." The height of the major

crossover is

£0t = 28 cos 0 (3.21)

For the distance between the major crossovers, take the distance between the top and

bottom edges of two closest sawtooth regions plus £4t (Figure 3-18). Figure 3-19 shows a single

triangle. Obviously, we also need the length of the base of this triangle. Since it represents

one measure of the circumferential distance between minor crossovers, call it C,min. Along any

/

N ~/
N

N /
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20

Figure 3-17: Closeup of Major Crossover "Tooth"

major crossover, the number of triangles equals the repeat. Therefore, the base of each triangle

contains th of the part circumference, or

(3.22)
7r'

Icmin

L.
Figure 3-18: Distance Between Major Crossovers,

Figure 3-18: Distance Between Major Crossovers, £maj

CHAPTER 3.
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Figure 3-19: Single Triangle

The distance between two major crossovers is then easily found to be

£maj = cot 0 - £,t

or, substituting equation 3.22 for £min and equation 3.21 for 4£t,

£mCj = cot 0 - 2B cos 0
27Z

(3.23)

(3.24)

£maj cannot take on any value. If ,,mj = 0, then neighboring major crossovers will meet.

This sets a maximum value for the repeat:

r*D
lzmax = - csc 0

4B
(3.25)

Since this equation is unlikely to produce an integer value, Rmaz should be taken as the integer

portion of equation 3.25.
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Figure 3-20: Diamond Repeating Unit

3.4 Repeating Unit and Degree of Interweaving

We can now describe the tow path and the triangular pattern which appears on the surface

of the wound composite using a just a few variables. One further idea will help with the

analysis-a simple repeating unit. Basically, this is just a portion of the triangular pattern

which contains all of the information about the entire pattern, and which can be used to

reproduce the complete pattern simply by making duplicates of the unit and placing them next

to each other on a cylinder.

Two repeating units can be identified. The first is a diamond separated into two triangles,

one triangle of layup [+0], the other of layup [FO] (Figure 3-20). The diamond is divided in two

by a major crossover, and its four sides are minor crossovers. The surface pattern is formed by

placing the diamonds so they share each of their sides with a neighbor (Figure 3-21).

The second repeating unit is a rectangle, which actually contains one of the diamond re-

peating units. Portions of neighboring diamonds are included to make the unit rectangular

(Figure 3-22). Although the layup within the rectangle is more complicated than the diamond,

and the rectangle is not bounded by any crossovers, it is easier to form a complete pattern:

Simply fill a grid with the rectangular repeating unit, as shown in Figure 3-23.
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Figure 3-21: Replication of Repeating Diamonds

Figure 3-22: Rectangular Repeating Unit

AX#A
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Figure 3-23: Replication of Repeating Rectangles

This latter repeating unit leads to a simple definition of degree of interweaving. The phrase

"degree of interweaving" has been loosely used in the literature; often it is synonymous with

repeat. In this work, a new and precise definition is introduced. Degree of interweaving I shall

be defined as the area fraction of the repeating unit affected by interweaving. Each repeating

unit contains one full major crossover and two halves of a major crossover, along the top and

the bottom of the repeating unit (Figure 3-22).

The width of the repeating unit is £,,in, and the height of a full major crossover is £,t.

Thus, the area taken up by the major crossovers-or regions of interweaving-in a repeating

unit is

AI = 2Cst1 min

47rlD cos 0
(3.26)

The height of the repeating unit is 2(Cmaj + Ct), so the area of the repeating unit is

Aru = 2 (E£maj + £st))fmin

= cot 0 (3.27)

r

X
ii

7
Via

A
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The degree of interweaving can thus be written as

AI

Aru

481? sin 0
arD

or as

?mrax

(3.28)

(3.29)



Chapter 4

Theoretical Background

The theoretical models developed in this work to predict the behavior of wound composites

are based on the theories designed for lanminated composites. These latter theories have been

presented in numerous other sources: see, for example [40], or any other basic composites text.

Only the important results are presented herein.

Most texts use engineering notation. Tensor notation, however, is a more natural choice

for shell analysis, so it will be used throughout this work. Normal expansion rules should be

followed unless otherwise noted, with Greek indices taking on the values 1,2 and Roman indices

the values 1,2, 3.

4.1 Coordinate Systems and Laminate Notation

Two coordinate systems will be used to describe a laminate: ply coordinates xz, and laminate

coordinates ya. Figure 4-1 shows these coordinate systems. The ply coordinates are sometimes

called L (for longitudinal) and T (for transverse), and are aligned with the fibers. The ym and y2

axes of the laminate system are chosen to align with the laminate principle axes; y3 , sometimes

called z, is taken as a thickness coordinate with y3 = 0 at the laminate midplane.

A laminate consists of several plies stacked together, with their fibers oriented in different

directions. We need a shorthand method for describing the stacking sequence and orientation

of the plies in a laminate. Define Oi] as the angle the x1 axis of the ith ply makes with the y'
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Ply Laminate y

S - 1-2
-- y

1

L

2
y

1

v

Figure 4-1: Ply and Laminate Coordinate Systems

axis of the laminate (Figure 4-1). A laminate can then be described as

o9l /0 / i-[2] 1 0s/T (4.1)

The order of the 0[ i] represent the stacking sequence, with ply one being at the top of the

laminate ( y3 = max) and ply k being at the bottom of the laminate (y3 = min). k represents

the total number of plies in the laminate.

The other symbols are defined as follows:

* mi = number of plies at angle 0[i ] at that position in the laminate;

* [...] = sublaminate;

* n = number of times the subla.ninate is repeated;

* S = symmetric laminate; i.e. the stack of n sublaminates is reflected about its nmidplane;

and

* T = total laminate.

2x•
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Code Expansion
[0g/90j] 0/0/90/90
[450]z2T 45/ - 45/45/ - 45
[00/ ± 60]s 0/60/ - 60/ - 60/60/0

Table 4.1: Examples of Laminate Code

Note that either S or T may be used, but not both. If either mi or n are not present, they are

assumed equal to one. Table 4.1 shows several examples of how this notation is used.

4.2 Micromechanics

AMicromechanics is the prediction of composite properties based on the properties of the con-

stituents. Micromechanical models have a reputation for being inaccurate, but with reliable

material data they can actually be quite good predictors of composite behavior.

The micromechanical model used herein is a modified rule of mixtures [5]. Fiber properties

are denoted by the subscript f, matrix properties by the subscript m. The ply engineering

constants are found from

Ell = kfEfll+kmEm
E•

E22 = Em E331 - Vf(1 - Em /Ef 22)
V12 = kfvfl1 2 + kmvm = V13

E22V -- 1V23 = 2 - 1
2G23

GmG1 = m = G13
= 1- V/Y(1 - Gm/Gf12 )

G23 = 1 - (1- Gn /G ) (4.2)

where k1 and km are the volume fractions of the fiber and matrix respectively, and kf + km = 1.

For most of the later analyses two-dimensional models are used, and the constants E33, v23,

G13 , and G23 are not required. But for the fiber undulation method derived in section 4.4.2,

these constants will be needed.



d1.~ FA n/ffT'ATTOW TUEORY'

4.3 Lamination Theory

Lamination theory describes the elastic properties of a composite laminate-a stack of laminae

or plies. Although wound composites are not true laminates, this theory is still useful in

describing them.

4.3.1 Lamina Properties

Lamination theory begins be describing the ply stiffnesses in the ply coordinate system. The

stiffnesses of the individual plies are then transformed into the laminate coordinate system.

Finally, the transformed stiffnesses of each ply are summed over the laminate and normalized

to the laminate thickness. The laminate elastic properties are the result of this process. This

section describes the first two steps.

Hooke's Law for a two-dimensional orthotropic problem (a composite ply) in the principal

coordinate system is written as

Oap = EapeO- (4.3)

11 E111 E122  0 E11

O22 = Ef122 E222z 0 E22

012 J 0 0 EI212  E12

where ap are the stresses and E,, are the strains. Note that E*,#,,

The nonzero components of E~p, are given by

E22 2

E1122

EI*212

EL

1 - VLTVTL
ET

ETVLT
1 - VLT ,TL

=GLT

Equations 4.5 are in terms of the ply engineering constants.

* EL = E1 1 = Young's modulus in longitudinal direction,

(4.4)

is, of course, symmetric.

(4.5)
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* ET = E22 = Young's modulus in transverse direction,

* VILT = /12 = major Poisson's ratio,

* v1 TL = 21 = minor Poisson's ratio = IvLTETIEL, and

* GLT G12 = shear modulus.

These constants can be found using the micromechanics equations of Section 4.2.

Equations 4.4 and 4.5 apply to the ply coordinate system; they must be transformed to

the laminate coordinate system to determine laminate properties. E , could be transformed

using the tensor transformation rule for transforming from one orthogonal system to another,

i.e.

e3j = l•.I~l~oLlpEeop (4.6)

In this particular expression of the general rule, the corresponding axes of the original and

transformed systems are assumed to lie at an angle 0 to each other. The expression l53 refers

to the cosine of the angle between the a axis of the transformed system and the 0 axis of the

original system.

This rule can obviously be quite complicated to use in practice. Thus, most authors adopt

a set of invariants to use in performing the transformations. I will use the invariants chosen by

Tsai and Hahn [40]:

UI = [3E;11 + 3E2222 + 2E1I 22 + 4E12121

U2 = [E=111 - E2  n]

U3 = [E 111 + E 2222 - 2E1 22 - 4E1212 ]

U4 = [Eu11l + Eg222 + 6E122 - 4E•~1 2I

U•  = 8 [E 111 + E2222 - 2El122 + 4E·212 ] (4.7)

The transformed stiffnesses in terms of the invariants are

E1'1 = U. +U 2 cos20+ U3 cos40

E2222 = - U2 cos 20 + U3 cos 40
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E1122 = 4 -U 3 cos 40

E1212 = Us -U 3 cos 40
E[o] 1

1112 = U2 sin 20 + U3 sin 40
2

E[] 1 2 1 U2 sin 20 - U3 sin 40 (4.8)

Note that the laminate coordinates do not necessarily coincide with the principal axes of the

plies, so E1l12 and E812 can be nonzero (and are nonzero for 0 5 00,90*).

4.3.2 Laminate Properties

The individual ply properties must now be combined to describe the laminate. The method

used to derive the plate equations will be followed here: although the governing equations differ

from shell theory, certain constants do not change when making the transition from plates to

shells. At this point, we only need to define these constants and see how they describe the

laminate. Later, they can be applied to the curved geometry of a shell.

We begin by making two assumptions about the laminate under an arbitrary loading:

1. In-plane stresses are constant in any lamina; bending stresses vary linearly through any

lamina.

2. Strains are constant through the entire laminate.

Thus, the stress and strain state through a laminate may look like that shown in Figure 4-2.

We will further assume that all plies have the same thickness, tpl,. This assumption is not

necessary to the theory, but it is true for all of the laminates studied herein. It also helps

simplify the math.

Now, the stress-displacement equations for a plate can be written as [4]

l E1111 i E1122 E1112 - Y3 U3,11{ 22  = E1122 E2222 E2212 u, 2 - u3 ,22  4.9)

12 E1112 E2212 E1212 u ,2 + U2, - 2 ,12

where all values are given in laminate coordinates and
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Figure 4-2: Stress and Strain States Within a Laminate
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* Epa,-y = laminate stiffness property, yet to be defined;

* ua = displacements in the ya direction;

* "0" as a superscript refers to midplane displacements; and

* ",a" as a subscript refers to differentiation with respect to y*.

Because of the two assumptions made earlier, equation 4.9 can be written as

iL] 11 1122 1112 1 - 33,11

[,L] E 1  1  , [ E61  u0, - y3U3,22 (4.10)'22 1122 *2222 2212 33,22[i,L] E[0] Ei 6 E[] U02  0 2y3

12 1112 2212 1212 [ 1,2 + 2, - U3,12

where the superscript [i, L] refers to the stress in the ith ply in laminate coordinates.

It will be easier to work with stress- and moment-resultants rather than simple stresses.

Therefore, define the stress-resultants as

Lh/2
N = h2[iL]dy" (4.11)

J-h/2

and the moment-resultants as

p = I2 [i,L] 3dy (4.12)
M -hl2

Substituting equations 4.11 and 4.12 into equation 4.9, and considering equation 4.10, we

can write

Ni1 A111  A1122  A1112  u, i B1111  B1122  B1112  u3,11
N22  = A11 22  A2222  A2212  u2,2  B1122  B2222  B2212  U3,22

N12  A1112 A2212  A1212  u,2 + u2,1  BA112  B2 212  B1212  2us3,12

A22 = B11 22  B2 22 2  B22 12  ,2  - D1122  D2222  D22 12  t 3,22

',I1  B111 B2 B 212  B1212  u ,2 + u, DU,2  D2112 D 212  2u3,12
(4.13)
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Figure 4-3: Thickness Coordinates

with

k

i= •-E[-] (h h?)

1 ki=1

=3 E (,hi-, - hg)
i=l

(4.14)

where hi refers to the y3 coordinate of the lower surface of the ith lamina (Figure 4-3). E is

referenced to -0 because a. positive 0 was defined as a clockwise rotation (Figure 4-1).
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4.3.3 Special Laminates

In the general case, A, B, and D will be fully populated. In most applications, however, several

of the components will be zero. Let's take a look at these special cases.

Unsymmetric Cross-Ply Laminate Here, all plies are either 00 or 900, and all laminates

are of the form [00/9001,T. Special properties of A, B, and D are:

* (A, D)1111 = (A, D)2222

* (A, D)111 2 = (A, D)2212 = 0

* B1122 = B 1212 = B 1112 = B 2212 = 0

Antisymmetric Laminate Here, all plies are of the same angle though of different sign, such

that 0(y3 ) = -_(-y3 ). This gives a laminate of the form [±Om]nT or [:8m]nT. Special

properties are:

* (A,D)llll = (A,D) 2222

* B1 112 = B 2212

* (A, D)1112 = (A,D) 2212 = 0

* Blll1 = B 222 2 = B1 12 2 = B1212 = 0

The laminar regions of filament-wound composites are antisymmetric.

Symmetric, Balanced Laminate This is the simplest and perhaps most often used laminate.

The term balanced means that for every angled ply, i.e. plies whose angles are not 0'

or 900, the laminate must have another ply of the same angle but of opposite sign. The

laminate is of the form [0l, /90 2/ ± , 9/ ± 0 / 0 ]ns. The 0* and 900 plies do not

both have to appear, or neither may appear. If both appear, the 0 plies may be absent

(a symmetric, cross-ply laminate). Special properties are:

* A 1112 = A22 12 = 0

*B=0

Wound composites should not be modeled with unmodified lamination theory, but most

papers do exactly that (Chapter 2). The two most common choices are an antisymmetric
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laminate, either [±e0nT or [F0,1T; and a specially orthotropic laminate, with the same stiffness

properties as a symmetric, balanced laminate, but consisting of a single ply with fibers in both

the +0 and the -0 directions.

4.4 Woven Composites and Area Averaging of Properties

4.4.1 Mosaic Model

As a first attempt at analyzing wound composites, let's try an approach which has worked

well for woven composites. Recall from Figures 2-1 and 2-2 that the geometry of woven and

wound composites are somewhat similar. Both contain regions of interweaving, even though

the patterns may be different.

The simplest model of a woven or wound composite is the mosaic model-the fiber angle

within a ply is assumed to change abruptly between one laminar region and another. For the

wound composite, these regions are bounded by the major and minor crossovers. The sawtooth

pattern of the major crossover will be ignored: assume it has straight lines as boundaries.

The mosaic model sums the A, B, and D matrices for each laminar region, and averages

them by the fraction of the area they occupy in the repeating unit. That is [20],

(ALva, BB, y, Dpoy ) = Tj- 1 [Aap.(zl, z2), B.),(zl z2), D,,e,y(zl, z)]dz'dz2

(4.15)

where the ,l are the lengths of the repeating unit in the za directions (Figure 4-4). Note that

the unaveraged A, B, and D are functions of the two repeating unit coordinates.

The wound composite consists of three layup regions: 1) ±0; 2) TO; and 3) interweaving.

The first two are obviously antisymmetric. Assume the latter matches the specially orthotropic

condition mentioned above.

The values for A and D do not depend on the ply sequence. Thus, A and D are identical

for all three regions. That leaves B. In the specially orthotropic case, i.e. in the interwoven

region, B = 0.

The laminar regions are antisymmetric, and a property of antisymmetric laminates is that
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reversing the ply sequence reverses the sign of B. Therefore,

B(-0) = -B(FO) (4.16)

Because the ±0 and :0 regions of the repeating unit occupy the same area, the area average of

B is 0. This means that simple area averaging gives a result identical to the specially orthotropic

case.

Hlowever, the buckling model presented in Section 4.6.2 depends only on the magnitude of

B, not its sign. Therefore, we should be justified in using the absolute value of B. I equals the

area fraction of the repeating unit covered by interweaving. In this fraction of the area, B = 0.

In the rest of the area, B is simply IBJ. Thus, the effective properties of the wound composite

by this method would be

(A, )) = (A,D) (4.17)

B = (1 - I)IBI (4.18)

4.4.2 Fiber Undulation Method

This method was also originally developed for use with woven composites. The method is

similar to the simple area averaging examined above, but the fiber geometry in the region of

interweaving is allowed to be more complex. The work in this section is based on [17].

Once again, area averages of A, B, and D are taken. This time, however, the detail of the

weaving, or "fiber undulation," in the regions of the major and minor crossovers is accounted

for. We accomplish this by assuming a function which describes the undulation of the fibers

through the weaving.

This model is shown pictorially in Figure 4-5 (based on the figure in [21]). For the region

a0o < x < a2 , assume an undulation shape such as

h(x')= I+ sin a -)-I (4.19)

In practice, this function should be based on an actual cross-section of the composite. This

information was not available for the cylinders tested in this project; the function above is the
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Figure 4-5: Fiber Undulation Model

same one which appears in [17].

Within the undulation region, the fibers make an angle 0 with the x-x 2Z plane, where

=dh(xl )= tan-
dx (4.20)

Assume 4 is small, so tan-l(0) % 0. Then

htrhe~r /'rxS sinl --4a a (4.21)

For a/ht = 1.5 the error in the approximate 4 is under 10%; for a/ht = 2.0 the error is under

2-3%.

Two methods are now available to find the effective A, B, and D matrices. Both methods

find elastic constants in the local plane of the undulation (the (z 1 )'-(x 2)' plane) and transform

these constants to the laminate plane. The first method, used by Ishikawa and Chou in [21]

ht

.

• 

|

e
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and [17], takes the engineering constants in the undulated plane and transforms them into the

laminate plane.

The local engineering constants are determined using the micromechanics equations and are

assumed equal to the engineering constants of a fiat laminate. The transformation equations

are then [25]

El cos4 C(1 2v 2 os i •a 2  sin"
E G 3  EEll

V21 = V1 COS 2  + •23 Sin 2

G12  = Gi2 cos2  + G'63 sin2

E22  = E22 =E33 (4.22)

The primed constants are those in the undulated plane'. These new ply engineering constants

are substituted into equations 4.5, a new E* matrix is found, and from this the effective A B,

and D matrices are found.

The second method, also suggested by Ishikawa and Chou in [21], is to directly trans-

form the matrix of elastic constants, thereby bypassing the calculation of the engineering con-

stants. In [21], the transformation is applied to E*. But E* is the plane-strain form of the

three-dimensional E matrix-an out-of-plane transformation is being applied to a plane-strain

elasticity matrix2 .

The more accurate method is to calculate the full E with principal axes in the local undu-

lation plane, transform this matrix to the laminate plane, then apply the plane-strain approxi-

mations to get E*. However, E is a function of the coefficients of Chentsov and the coefficients

of mutual influence of the first and second kind-constants which are usually not known [25].

Therefore, the first method, using only the four basic engineering constants, is the only practical

method.

In either case, the effective A, B and D are equivalent to the original A, B and D, except

that each component (not matrix) is multiplied by a constant. These matrices are then multi-

'Note that Lekhnitskii's transformation relations ([25], p. 41) are for a rotation about the z3 axis, whereas

the undulation calls for a rotation about the x2 axis. However, the single ply is specially orthotropic, and the 2
and 3 axes are equivalent.

2 Perhaps that is why this method appears in [21] but not in the later article [17].
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plied by the factor (1 - Z) as in equation 4.18 to account for the amount of interweaving. The

effect is the same as in the mosaic model, but the modifications to the elastic matrices are more

complicated.

4.5 Shell Theory

We now move away from the flat geometry of plates and into the curved geometry of shells. As

in Section 4.3, only a brief review of the theory will be presented, and only that part dealing

with cylindrical shells will be covered.

4.5.1 Governing Equations

Consider a circular cylinder of radius r. The curvilinear coordinate system which defines its

reference or mid-plane surface is (Figure 4-6)

y = rsin 2

y2 = r cos2

y3 = 41 (4.23)

Next look at the strain-displacement, stress-strain, and equilibrium equations. In all cases,

the Donnell approximations [10] are used. The strain-displacement equations are

E01 = U0,,

1o  1

1o

2 = U2,1 + U1,2  (4.24)

for the strains, and

K 11 = 03 , 1 1

1o
22 2 •"u 3 ,22

1 o
Ka = r3,2 (4.25)
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Figure 4-6: Cylindrical Shell Coordinates

for the curvatures and twists. Note that the last of equations 4.24 is in terms of engineering

strain, not tensor strain. This may be inconsistent with the notation, but engineering strain

seems to be used in most other works.

Now come the six stress-strain relations:

N11  01 U3,11
N22  = [ l  Ut,+tt [B] 2

N/22 r r+ [ .

or, more succinctly N12  {N} = [A]{u - [B {

{M} = [B]{ - [D] (4.27)
u, + A2 2U3,12

(4.26)

or, miore succinctly

{N} = [A]{ 0 } -[B]{n}

{M} = [B]E 0} -[ [DI{K (4.27)

i1

4

• I J 1



4.5. SHELL THEORY

Finally, the five equilibrium equations, along with the compatibility equation, are

Ni1 ,1 + -N12, 2 = 0r
1

N12,1 + -N22 ,2 = 0
r

1 1
N13,1 + -NI23,2 - -N 22 + q3 = 0

r r

1
111,1+ -N12,2 - N13  = 0

r

1
MA2, 1 + -N22,2 - N23 = 0

r

1 1 1
-- U03 11 + E2, 1 1 + -E 1 ,2 2 - -E 12 ,1 2 = 0

q3 is a pressure loading, normal to the (1.~2 plane. N13 and

and can be eliminated by differentiating the fourth and fifth

the third equation. The result is

N23 are transverse shear terms,

equations and substituting into

2 1 N22  q3 0MI11,11 + Mt2,12 + T2 22,22 - + 3 = 0 (4.29)

To get to the governing equations, partially invert equations 4.27 as in [9]:

{M}

= [a]{N} - [b]{n}

= [b]T {N} - [d]{;} (4.30)

[a] = [A]- 1

[b] = [A- 1B] = [aB]

[d] = [BA- 1B - D] = [bT B - D] (4.31)

Equations 4.30 have six dependent variables, {N} and {K}. However, {n} contains only one

dependent variable, uJ. {N} can be reduced to a single dependent variable by introducing the

(4.28)

where
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Airy stress function U such that

Nil

N22

N12

1

= U,211

1
7.1 U,12
r'

(4.32)

The strains and moment resultants are now found by substituting equations 4.25 and 4.32

into equations 4.30.The results are

0

Ell

0E12

U 22

U,11

r

and

M112 = [b] T I

+ [b] I

22

r

0U3 ,1 1
0
o

U3 22

S12
r~

(4.33)

(4.34)

U3,11
0

U3 22
W,

2u
0
3.12
r

The two governing equations are now found be substituting into the equilibrium/comnpatibility

equations. First substitute equation 4.33 into the last of equations 4.28, the compatibility equa-

tion, to get

2222 ,1111  2a 1 U,1112r

2a 1122 + a1212 11
r2

2a,112 a1111  0
r231 1222 + --;4- U,2222 + b1122u3,1111

22212 - b1211 o 1 1 1 1 + b22 2 2 - 263333 o
+ r U3, 1 112 +2 3 ,11 22

2b11 1 2 - 61 2 2 2 o b1122 -o 1
+ r3 u,122 + -'- z3,2222 - -U3,11 = 0 (4.35)

for the first of tile governing equations. Next, equation 4.34 is substituted into equation 4.29

to get

b2211 U,1111 +
2b2212 - b1 211  b111l + b2222 - 2b3333

7 U,' I 2 + U,1122
r r2

CHAPTER 4.
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2bn112 - b1222 bn122 o 4d1112 0+ - b 1222 71222 + 2 U 2 2 2 + di 111u,1111 + - U1 31112

2(d1122 + 2d1212 ) 0 4d2212 o d2222 o
S 2 3 ,1 12 2 + -3 3 ,1222 + --7 U 3 ,222 2

-1UII = -q3 (4.36)7-

for the second of the governing equations.

4.5.2 Special Cases

As was shown in Section 4.3.3, certain laminates elindlate some of the components of A, B,

and D. These same laminates also lead to simplifications in the governing equations. We are

interested in two cases: the antisymmetric laminate; and the balanced, symmetric laminate.

In the former case, the governing equations reduce to

2a1122 + a11n 2 nni
a2222U,1111 + a122 a1212 U, 1122 + ,22 22

2b2212- b12 11 0 2b1112 - b1222 0 01
U3,1112 + 3 3, 1222 - - U3,11

= 0 (4.37)

and

2b2212 - b1211 2b1112 - b1222U, 1112 + 2b 112  U,1222 + dr1111 ,1111
r r3

2(d122 + 2d212) 0 d2222o 1
+ 2  u)3,1122 + 4 U3, 2 2 2 2 - U,11 = -q3 (4.38)

In the latter case, the governing equations reduce to

2ai122 + az212 a111 1 0
a2222 U,Il1l + 22 U,1 12 2 + - U,2222 - ,1 = 0 (4.39)

r r r

and
0 2(D1 122 + 2D1 212 ) 0 D222 2 o 1D11i11U3,1i + r2 u3 11 22 + -r4 U3,2222 - ,ll=q (4.40)r.
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4.5.3 Stresses and Strains

The final step is to determine

surface strains are{ :E2
0E12

the stresses and strains in the laminate. From [4], the reference

a1111

a1122

a1112

bllll -

b2211

61211

21122

a2222

a2212

y3

a1112

a2212

a1212

b1122

62222 - y3

b1222

U.22

U,11

r

b11 12

b2212

b1212 - ]3
u0

3,11

r

(4.41)

and the stresses in a lamina are

I + [[f(i)]- y3[E[]]]

[e(')] = [EGl]][a(i)]

and

[f()]= [El-Icbi)]

4.5.4 Solution of the Governing Equations

The governing equations (4.35 and 4.36) are obviously too complex to solve analytically. A

numerical solution must therefore be obtained. The actual solution was considered outside the

scope of this thesis, but a brief discussion is included as an aid to further work.

Two possibilities exist for numerical solutions: finite elements, which don't require the gov-

erning equations; and finite differences. Finite element solutions are discussed in Appendix C.

Finite difference solutions will be covered here.

The properties of the wound composite are a function of position on the cylinder, and

depends on the location with respect to the diamond pattern. This variation is easily allowed

(i)11
01 W

22

(i)
12

= [e('] {(T22

U 11

r

where

u0U3,11
U
o

2u~ 12r
r

(4.42)

(4.43)

(4.44)
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for with either element or difference techniques. In the latter, the grid points are spaced such

that they "catch" all of the variations in material properties. In this way, the solution accurately

reflects the behavior of the material: areas where material properties change rapidly (near the

crossovers) are treated differently than areas where the properties are constant. Compare this

to the mosaic and fiber undulation models, where the changes are "smeared out" into effective

properties.

Another advantage of the discrete solution is that material failure modes can be investigated.

A list of common failure models was given in Chapter 1. These models require a knowledge of

the stress state at any point on the composite, something not available with the area-averaging

techniques.

Finally, the discrete models would also allow modelling of localized imperfections. For exam-

ple, the void content may be higher near the crossovers than elsewhere on the wound composite,

and a high void content would adversely affect the strength of the composite. Including these

imperfections would probably improve the accuracy of the model.

Assembly of differencing grids can be automated, much like meshes can be generated for

finite element solutions. The major difficulty lies in choosing an appropriate differencing scheme.

Calcote [4] presents difference equations for the partial derivatives encountered in the composite

plate equations. These same difference equations can-be applied to the shell equations without

modification. A more complete set of difference equations can be found in [8].

4.6 Stability

When subjected to a loading, a shell can fail in one of three ways: 1) material failure; 2) Euler

or column buckling; and 3) shell buckling. The latter two modes will be examined here.

4.6.1 Euler Buckling

The Euler buckling equation for an isotropic column is

cr2 EI
Per = 1 (4.45)
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where c is a constant which depends on the boundary conditions. For a composite column, the

Euler equation becomes [11]
fr2Al1/

Per = (4.46)
4ktpl J2

where C is the length of the column and I the moment of inertia of the cross-section.

4.6.2 Shell Buckling

For composite cylinders, shell buckling usually begins with a local instability. Thus, variations

in material properties-such as the weavings of wound composites-can be very important.

The model selected will have to be adaptable to the variable geometry of wound shells.

We are also looking for a model which gives the proper curve shape for the buckling loads

over a range of laminates. All models incorporate an empirical factor to account for the large

discrepancies between theory and practice. Therefore, the magnitudes of the predicted buckling

loads are not as important as the relative size of the loads from one cylinder to the next.

One of the simplest models is

= • -A • A2222  D1111 (4.47)
r A-m2

where 7 is an empirical factor with a recommended value of 0.2 [11]. One immediate problem

with this equation is that the buckling load is independent of B. Thus, the following laminates

all have identical buckling loads: [±O]s, [FO]s, [±+]2T, and [T1]2T.

Another model, slightly more complex but with the same problems as the one above is given

by Vinson and Sierakowski [42], and is a slightly modified version of the model in [27]. The

main difference between these two models is the shape of the failure curves for different layups:

Figure 4-7 shows the buckling loads for a [-O]s cylinder made from AS4/3501-6.

Two important points about these curves are:

1. Both are symmetric about 0 = 450: the first is exactly symmetric, the second is approxi-

mately symmetric.

2. Both models are roughly equivalent in the range 20*0 < 70*.

These curves have been normalized to have the same value at 0 = 45*-about 22,000 psi,
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the average value of the experimental failure load of the 45* cylinders. The normalization is

accomplished simply by adjusting the empirical factors.

Now let's consider models which allow variations in B. There are several choices here, none

of them very simple. The two most common seem to be one based on Fliigge's equations,

presented by Cheng and Ho [6]; and one based on the energy method, presented by Khot [23].

The latter was chosen for this work, because it requires much less computer time than the

former.

Khot finds the potential energy of an anisotropic shell subjected to an applied axial end

load. Taking the variation of the energy and equating it to zero yields the natural boundary

conditions, the equilibrium conditions, and the compatibility condition. An assumed radial

displacement is then substituted into the potential energy equation. Finally, the buckling load

is obtained by minimizing the total potential energy with respect to the displacement functions.

The classical buckling load is given by the equation

act = R1 [R2/w + R3w + R4] + Rs/w (4.48)

where the Ri are given are functions of the A, B, and D matrices, as shown in Appendix A.

This buckling load has been nondimensionalized-the buckling load ctl in lb/in is found from

act = (&c/r/2)(aiill /d 2222 )'1/ (4.49)

where r is the radius of the midplane of the cylinder.

This expression gives buckling loads based on the ratio of axial buckle waves to circumfer-

ential buckle waves; the critical buckling load is found by minimizing 4.48 with respect to the

constants a (given in Appendix A) and w:

SIR R2 + R 1 (4.50)

The result of the minimization is

Rll/w + wR12 + Rls = 0 (4.51)
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Solving equations 4.50 and 4.51 gives the value of a which minimizes equation 4.48, and hence

gives the buckling load.

Equations 4.50 and 4.51 can be easily solved using Newton's method. The problem was

set up using TK Solver Plus3 on a Macintosh SE. Solution of the nonlinear equations took

under a minute with a reasonable initial guess for a. Results of the calculations are shown in

Section 5.3.3.

One important property of this model is that, although it is not independent of B, it is

independent of the sign of B. Thus, it gives:

ac 1(B) = ac'(-B) (4.52)

This helps justify the use of IBI in Section 4.4.1 (mosaic model).

3Trademark of Universal Technical Systems, Inc.



Chapter 5

Results

5.1 Experimental Approach

To test the theories of the previous sections, I examined 45 tubes with 15 different combinations

of wind angle and repeat, as shown in Table 5.1. Each tube was given a code number of the

form TmRn.p, where m was the wind angle, n was the repeat, and p was a number 1 through

3 to give each tube a unique code.

Fifteen tubes of at least 30 in. length were wound on aluminum mandrels, and three 8 in.

tubes were cut from each longer tube. Details of the mandrel preparation and the input files for

the winding patterns are presented in Appendices B and D. All of the tubes were made from

Hercules AS4/3501-6, 12K tow-preg. Table 5.2 shows the material properties of this composite

for a 65% fiber volume fraction. These properties were calculated using the micromechanics

equations of section 4.2 and the constituent properties shown in table 5.3.

Wind I Wind Wind
Code Angle Repeat Code Angle Repeat Code Angle Repeat

T30R1.1-3 30 1 T45R.1.-3 45 1 T60R1.1-3 59 1
T30R3.1-3 30 3 T45R3.1-3 45 3 T60R3.1-3 61 3
T30R5.1-3 30 5 T45R5.1-3 45 5 T60R5.1-3 61 5
T30R7T.1-3 30 7 T45RT.1-3 46 7 T60R7.1-3 61 7
T30R9.1-3 30 9 T45R9.1-3 45 9 T60R9.1-3 61 9

Table 5.1: List of Tubes
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Property Value

EL (illsi) 22.317
ET (Msi) 1.397

vLT 0.249

VTL 0.01559
GLT (MAsi) 0.962

Table 5.2: Properties of AS4/3501-6, 65% lV

Fiber Properties Matrix Properties

EL (Msi) 34 E (Msi) 0.62
ET ( Msi) 2 v 0.34

VLT 0.2 G (Msi) 0.231
GLT (Msi) 4

Table 5.3: Constituent Properties

The tests consisted of simple axial compression to failure, and were performed on al MTS

880. Simple compression grips were used, with a pivoting platen as the top grip (Figure 5-1).

Aluminum endcaps were bonded to the tubes to prevent brooming of the cylinder ends and to

give a more even loading. Appendix B contains design information for the endcaps.

Special care was taken to insure that the ends of the tubes were as close to parallel, and as

square to the cylinder walls, as possible, to prevent any bending moments from being introduced.

Before testing, each tube was placed on a granite table and the height around the edge of the

endcap measured (Figure 5-2). The differences between the high and the low measurements

were noted, and are listed in Table 5.4. In most cases, the difference is less than 0.010 in.

Load and stroke were recorded for all tests. Two axial extensometers were also used in the

first test, of tube T60R3.1. This tube had the greatest difference in measured height around the

endcap-21.0 x 10- 3 in. The extensometers were placed at the mid-length of the tube, below

the high and low measurement points. The slopes of the extensometer readings were nearly

identical, so a bending moment was not being introduced. Since the height differences of the

other tubes were not as severe as this one, the extensometers were not used for the remaining
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Figure 5-1: Test Fixture Schematic
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Figure 5-2: Measuring Heights of Tubes with Endcaps

Table 5.4: Height Differences Around Endcaps

5.1. EXPERIMENTAL APPROACH

Tube Iha Tube Ah Tube _Ah

T30R1.1 5.5 T30R1.2 2.0 T30R1.3 3.0
T30R3.1 14.0 T30R3.2 2.5 T30R3.3 4.5
T30R5.1 4.0 T30R5.2 2.5 T30R5.3 8.0
T30R7.1 2.5 T30R7.2 4.5 T30R7.3 4.0
T30R9.1 8.0 T30R9.2 6.5 T30R9.3 4.5
T45R1.1 6.5 T45R1.2 4.0 T45R1.3 6.0
T45R3.1 8.0 T45R3.2 16.0 T45R3.3 22.0
T45R5.1 6.0 T45R5.2 4.5 T45R5.3 11.0
T45R7.1 6.5 T45R7.2 6.0 T45R7.3 9.5
T45R9.1 10.0 T45R9.2 4.0 T45R9.3 5.5
T60Rl.1 3.5 T60R1.2 5.0 T60R1.3 3.5
T6OR3.1 21.0 T60R3.2 2.0 T60R3.3 9.0
T60R5.1 9.0 T60R5.2 4.5 T60R5.3 3.0
T60RT.1 4.5 T60R7.2 5.0 T60R7.3 8.0
T60R9.1 5.5 T60R9.2 8.5 T60R9.3 3.5

aAh in 0.001 in.

-
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5.2 Physical Characterization

One major problem with using a prepreg tow is determining the bandwidth. Dry tows have a

fairly constant bandwidth, and tend to spread out as they are laid down on the niandrel, which

helps to minimize the variations. Prepreg tows, however, have varying bandwidths, and the

tow does not spread out as it is laid down.

For the material used here, the typical bandwidth was about 0.16 in, but varied from 0.14 in.

to 0.19 in. This creates a difficulty in determining the winding pattern and related parameters,

especially degree of interweaving. A few sample tubes were wound, and a bandwidth of 0.16 in.

seemed to give the best pattern (least amount of gaps and overlaps). Therefore, a bandwidth

of 0.16 in was used to generate all of the winding paths. However, the pattern-generation

software (FiberGrafiX from Entec) makes adjustments in the bandwidth to more closely match

a "theoretical" value generated by the program. This accounts for the variations in bandwidth

seen in Table D.1. The values of L£t, C'min, £maij, lZmax, and I shown in Table 5.5 were

calculated using the bandwidths and wind angles from Tables 5.1 and D.1. For comparison,

the FiberGrafiX values of A. and m2 are also listed in Table D.1.

Figure 5-3 shows a plot of I versus RT for the three wind angles. I increases towards 1.0 as

7? increases. Note that the ratio of the I's for different wind angles is constant with respect to

repeat, i.e.
I(01, 1E) Z(091, 2) sin (1

= m •(5.1)
1(0 2, I ) Z(02, Z2) sin 02

In addition to bandwidth, the thickness of the cylinders was also difficult to characterize.

Even though the tubes were wrapped with release film and shrink tape during cure, they still

show large variations in thickness. In general, the tubes are thickest along the major crossovers

and thinnest in the laminar regions.

Ten measurements were made on each cylinder: four direct thickness measurements; two

inner diameter measurements; and four outer diameter measurements. Figure 5-4 shows where

1The extensometers were accidentally destroyed by one of the technicians during an unrelated test. Otherwise,
more strain data may have been taken.
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Table 5.5: Physical Parameters of Wound Cylinders

these measurements were made. The direct thickness measurements are the least accurate-

they give a maximum rather than average or typical thickness, as shown in Figure 5-5. The

outer diameter measurements are somewhat more accurate. By varying the height at which the

O.D. measurements are made, they can be taken in both thick and thin regions to give a range

of values. Finally, the inner diameter measurements are very accurate. Because the mandrels

were not flexible, the inside surfaces of the tubes were very smooth.

For later calculations, the thickness used is

ODAVG - IDAVG
tet = 2 (5.2)

where ODAVG and IDAVG are the average outer diameter and inner diameter measurements

for a cylinder. This method, rather than the direct thickness method, was chosen because it

uses the most accurate and typical measurements available. Table 5.6 shows the variations of

these measurements with wind angle and repeat. The average thickness for all of the cylinders

was 0.29 in. Ply thicknesses were assumed to be equal, i.e. tply = tcyl/4.

The remaining important physical parameters are resin and void content. Funding was

Tube £,t(in)) £min(in) £maj(in) I lx Z
T30R1 0.2772 6.2832 5.1642 19.6299 0.0509
T30R3 0.2772 2.0944 1.5366 19.6299 0.1528
T30R5 0.2772 1.2566 0.8111 19.6299 0.2547
T30R7 0.2772 0.8976 0.5001 19.6299 0.3566
T30R9 0.2772 0.6981 0.3274 19.6299 0.4585
T45R1 0.2244 6.2832 2.9172 14.0000 0.0714
T45R3 0.2244 2.0944 0.8228 14.0000 0.2143
T45R5 0.2244 1.2566 0.4039 14.0000 0.3571
T45R7 0.2246 0.8976 0.2088 13.5083 0.5182
T45R9 0.2244 0.6981 0.1247 14.0000 0.6429
T60R1 0.1852 6.2832 1.7025 10.1931 0.0981
T60R3 0.1555 2.0944 0.4250 11.2022 0.2678
T60R5 0.1555 1.2566 0.1928 11.2022 0.4463
T60R7  0.1555 0.8976 0.0933 11.2022 0.6249
T60R9 0.1555 0.6981 0.0380 11.2022 0.8034
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Figure 5-4: Measurement Locations
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Calipers/ \4

Inner Surface
VJUuI 3URLUCU

Figure 5-5: Inaccuracy in Thickness Measurements

Table 5.6: Thickness Measurements

(2

Tube t (in) Tube t (in) Tube t (in) tv, (in)
T30R1.1 .029 T30R1.2 .028 T30R1.3 .028 .028
T30R3.1 .026 T30R3.2 .028 T30R3.3 .027 .027
T30R5.1 .027 T30R5.2 .025 T30R.5.3 .028 .027
T30R7.1 .028 T30R7.2 .028 T30R7.3 .029 .028
T30R9.1 .028 T30R9.2 .028 T30R9.3 .028 .028
T45R1.1 .030 T45R1.2 .029 T45R1.3 .032 .030
T45R3.1 .031 T45R3.2 .031 T45R3.3 .029 .030
T45R5.1 .029 T45R5.2 .030 T45R5.3 .030 .030
T45R7.1 .033 T45R7.2 .029 T45R7.3 .031 .030
T45R9.1 .031 T45R9.2 .030 T45R9.3 .030 .030
T60R1.1 .026 T60R1.2 .027 T60R1.3 .025 .026
T60R3.1 .028 T60R3.2 .029 T60R3.3 .029 .029
T60R.5.1 .029 T60R5.2 .028 T60R5.3 .027 .028
T60R 7.1 .030 T60R7.2 .029 T60R7.3 .030 .030
T60R9.1 .028 T60R9.2 .030 T60R9.3 .030 .029

I

/ ~hcu Q~rClu

4
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not available to make these measurements, so any variations in these parameters cannot be

considered. The tow-preg was shipped with a 35% resin content.

5.3 Test Results

5.3.1 Qualitative Results

Two types of failure curves were seen, as illustrated by Figures 5-6 and 5-7. The 30* and 60*

cylinders were both linear to failure, as in the first figure. The failure mode in these cylinders

was best characterized as a localized shell buckling. In some cases, a clear dimple could be seen

while the tube was still loaded after failure. Cracks propagated out from this dimple, generally

following the major and minor crossovers. These cracks extended through the entire thickness

of the composite.

On the 600 tubes, the cracks did not propagate up or down the cylinder very much-they

mostly stayed near the latitude of the dimple. A typical crack would start at the dimple, run

around the tube, and end near its starting point. On the 30* tubes, however, the cracks followed

the minor crossovers along the entire length of the tube, being stopped only by the endcaps.

These cracks were not very jagged.

The 450 tubes were nonlinear to failure, and failed from a delamination of the outer ply.

The outer-ply fibers were visibly bowed out from the surface of the composite, and cracks often

formed under or near these delaminations. Like the 300 and 60* cylinders, the cracks extended

through the entire thickness of the composite.

Finally, the 30* and 60* tubes were fairly quiet until the moment of failure, when a large

crack was heard. This indicates that the material was not failing locally prior to the ultimate

failure. But the 450 tubes were much noisier prior to ultimate failure, even at fairly low load

levels.

Pictures of some of the failed specimens were taken, but they don't show much. Two of the

better pictures appear in Figures 5-8 and 5-9. The former shows a 45* specimen: the bowing of

the outer ply fibers is apparent. It is difficult to see the pattern markings, but the bulge on the

left (the horizontal part) follows a major crossover. At the point where the minor crossovers

meet (the "X"), the crack moves upward, roughly following the minor crossover.
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Figure 5-6: Linear Failure Curve
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Figure 5-7: Nonlinear Failure Curve
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The latter picture shows a typical 600 specimen. The crack is much cleaner than the crack

of the 450 specimen-this was generally true of the 60* and 30* cylinders. Again, the crack

seems to follow both the major and minor crossovers, making its turn at an "X" point. A

dimple cannot be seen in this picture.

Some other typical failures are sketched 2 in Figures 5-10 through 5-14. In these sketches, it

is easier to see how the cracks follow the winding patterns. Figure 5-10 shows a failure typical

of the 600 specimens: a dimple forms near a major crossover, and a crack propagates around

the cylinder, staying at roughly the same axial coordinate. In several cases, deformation along

the cracks was large enough to be visible.

The next three figures show failures common to the 45* specimens (for some reason, these

gave the most variety). Figure 5-11 shows one type of crack and the shredding that accompanied

it. The crack initiates on a major crossover, then follows two minor crossovers upwards. The

fibers along the minor crossovers have sheared, as shown in the inset (see also Figure 5-8).

Figure 5-12 is similar, but the crack is spiral and follows a single minor crossover. In some

cases, the crack begins or ends along a major crossover.

Figure 5-13 shows the last type of failure seen in 450 specimens. The outer ply has bulged

out along a single major crossover. This is similar to the bulging on the left of Figure .5-8, but

extends all the way around the cylinder. This looks like it may be a shell buckling, but is more

likely an outer ply buckling.

Finally, Figure 5-14 shows the typical failure for 30* specimens. The cracks followed the

minor crossovers, often along the entire length of the tube. Most of the cracks were very clean,

as in Figure 5-9, but in a few cases shredding was seen near the "X" at the meeting of major

and minor crossovers.

In general, the crossovers, or weavings, seem to act as barriers to crack growth. This helps

explain why moderate amounts of interweaving increase strength, as will be seen in the next

section.

2Figures are based on sketches made during testing.
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Figure 5-8: Picture of 45, Cylinder After Failure
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Figure 5-9: Picture of 300 Cylinder After Failure
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Figure 5-10: Dimple and Crack of 60* Specimen

5.3.2 Quantitative Results

Ultimate loads were taken as the highest load attained prior to ultimate failure (Figures 5-6

and 5-7). For the 30* and 600 specimens, this was the last point before failure. For the 45*

specimens, this point occurred slightly before ultimate failure. Since neighboring points were

very close to each other in the maximum load region, a curve was not fitted to this region of

the 45'0 load/stroke data.

Ultimate loads were converted to stresses by calculating the typical cross-sectional area of

the cylinders

A = rDtsyl (5.3)

where D = IDAVG +tcyj is the midplane diameter. Figures 5-15 through 5-17 show the ultimate

stresses versus the degree of interweaving for each wind angle. Note the large amount of scatter

in the 300 and 450 cases; the 60* cases show relatively little scatter.

The 30* and 600 specimens show the most variation in strength with degree of interweaving.

This variation can be quite significant: the 60* cylinders show an 80% increase in strength from

I = 0.0981 to I = 0.4463. On the other hand, the 45* specimens show little or no variation

with interweaving.

Dimple
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Figure 5-11: Crack of 450 Specimen
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Figure 5-12: Spiral Crack of 450 Specimen
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Major c.o.

( )~

Figure 5-13: Outer Ply Buckling of 45* Specimen

Figure 5-18 shows all three sets of data on the same plot. The curves are not theoretically

derived: they are simply weighted fits to the points, so the trends can be more easily seen. There

appears to be an optimal degree of interweaving for each wind angle which gives a maximum

strength, but this value is not the same for each angle. For the 30* cylinders, it is around

I = 0.2; for the 60* cylinders, it is around I = 0.45.

Figure 5-19 is another plot of the ultimate stresses, but this time plotted against repeat.

Now the peaks fall closer together-all are in the region 3 5 Z < 5. This may indicate that

the failure load is a function of the winding pattern rather than the amount of weaving. That

is, the number of diamonds and their distribution on the cylinder may be more important than

the relative amounts of interweaving.

Axial modulus was also measured. Because strain data could not be taken, the strain was

approximated as

/= (5.4)

where C was the initial length of the cylinder (between the endcaps) and Al the change in length

'A pllýI /\
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Figure 5-15: Ultimate Stress of the 300 Cylinders
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Ultimate Stress vs. Interweaving, 0 = 450
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Figure 5-17: Ultimate Stress of the 600 Cylinders
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Ultimate Stress vs. Interweaving
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Figure 5-18: Combined Plot of Ultimate Stresses vs. Interweaving
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Ultimate Stress vs. Repeat.
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Figure 5-19: Combined Plot of Ultimate Stresses vs. Repeat
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Axial Modulus vs. Interweaving
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Figure 5-20: Combined Plot of Axial Moduli vs. Interweaving

(taken from the stroke readings). This method of measuring strain is not very accurate, but no

attempt was made to model the effect, so this should at least show any general trends.

Figures 5-20 and 5-21 show this modulus data plotted against interweaving and repeat (note

the two different scales on each graph). Again there is a lot of scatter, and none of the curves

appear very similar. The 450 cylinders show the most variation in modulus; the 30* show very

little. This is opposite to the trend seen in the strength data.

5.3.3 Analysis

The previous sections show that interweaving significantly affects the compressive properties

of filament-wound cylinders. In terms of failure loads, the magnitude of the effect depends on

both the amount of interweaving and the failure mode. Several models to predict these effects
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Axial Modulus vs. Repeat
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are proposed in Chapter 4. Let us now see how accurate these models are, beginning with the

simplest.

One model not mentioned in Chapter 4 is the purely empirical approach, suggested by Tsai

[39]:

The predictions of elastic constants and strength of fabrics, filament-wound and

braided structures can be made using classical micro and macro mechanics with ap-

propriate empirical correction factors3 . We propose to replace the woven composite

by a, multidirectional laminate consisting of the fiber angles. Then the microme-

chanics formulas for the stiffness and strength are applied to the plies as before.

This model would be useful if a limited number of correction factors could be found to describe

all wound composites. But the data in the previous section indicates that this is probably not

possible.

The 30* and 60* specimens both showed similar variations in strength with interweaving:

the former shows a 20% spread from low to high failure load; the latter an 80% spread (based on

the raw data). Both curves are also somewhat bell-shaped. But the former peaks near I = 0.2,

the latter near I = 0.4. If the measure of interweaving-is repeat, then they both peak at about

the same point, 4 < R < 5, but the latter then shows an increase in strength around 1Z = 8

which the former doesn't show.

Thus, a single empirical constant cannot describe two cylinders when the only difference

between them is wind angle. It becomes even more complicated when the 45* cylinder is

considered, which shows almost no variation in strength with interweaving. The trend seems to

be towards an empirical constant for each wind angle and degree of interweaving, i.e. a series

of tests for each specimen.

The next simplest models considered were the Vinson and Eckold buckling equations (Sec-

tion 4.6.2). Neither of these equations can account for interweaving (they are independent of

B), but they are extremely sensitive to variations in thickness. Thus, they should at least tell

us if thickness alone is the main factor behind the spread in the observed failure loads.

First, Figure 5-22 shows the buckling loads predicted by these models for [±30*]s, ([45*]s,

3 Emphasis mine.
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Ultimate Stress vs. Interweaving
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Figure 5-22: Buckling Loads Predicted by Simplest Models, Compared to Experimental Data

and [±6 0*]s layups, plotted on the same graph as the experimental data4 . These calculations

use the average thickness for all of the cylinders (0.029 in). As these models stand, they are not

even good predictors of a typical or average buckling load for either the 30* or 60* cylinders.

We could change the empirical factor so the curves lie near the average of either of the data

sets, but then we are back to a purely empirical approach.

Including the variable thicknesses of Table 5.6 produces the results in Figures 5-23 through 5-

25. Although some variation in buckling load is now seen as the degree of interweaving changes,

those variations are insignificant when compared to the variations in the data. In fact, the

predicted values seem to move opposite the experimental values: an increase in the experimental

4Once again, the models are normalized to the average value of the failure loads of the 450 cylinders. Although
these cylinders did not appear to have buckled, they are chosen for the normalization because their failure loads
are nearly constant.
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Simple Buckling Models with Thickness Variation, 0 = 300
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Figure 5-23: Simple Buckling Model
for 0 = 30*
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--- Vinson
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with Thickness Variation, Compared to Experimental Data

value is matched by a decrease in the corresponding decrease in the theoretical value, and vice

versa.

The last buckling model considered, and the most complicated, is the energy method. It

can incorporate both thickness variations and interweaving. The latter factor can be included

in one of two ways: by the mosaic models; or by the fiber undulation model. In keeping with

the progression from simplest to more complicated, we begin with the mosaic model.

Recall that the mosaic model uses the same A and D matrices obtained for a [0]2 lanminate,

but replaces B with

B = (1 - I)B

The results given by the energy method with this B3, plotted with the experimental data and
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Simple Buckling Models with Thickness Variation, 0 = 450
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Figure 5-24: Simple
for 0 = 45*

Buckling Model with Thickness Variation, Compared to Experimental Data
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Simple Buckling Models with Thickness Variation, 0 = 60P
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Figure 5-25: Simple Buckling Model with Thickness Variation, Compared to Experimental Data
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Buckling Load by Energy Method, 0 = 300
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Figure 5-26: Energy Method Compared to Experimental Data, 0 = 300

normalized as in the simple models, are shown in Figures 5-26 through 5-28. Once again, the

average thickness of 0.029 in is used. The predicted buckling loads show a smooth increase from

a minimum at I = 0 to a maximum at I = 1. This is the same behavior reported by Brito [1]

(see page 24, item 3). However, it does not match the observed behavior of the composite

cylinders in this study. Even accounting for thickness variations does not help much (Figures

5-29 through 5-31), though this adjustment does not appear as detrimental to the curve shapes

as it was for the simpler models.

This time, however, the model might benefit from a different normalization. Remember,

the normalization to the average failure load of the 45* cylinders was used only because those

failure loads were relatively constant, even though the failure mode was not buckling. Now

let us look at the plots of the 30* and 60* data with a new normalization. Let the empirical
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Figure 5-27: Energy Method Compared to Experimental Data, 0 = 450
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Buckling Load by Energy Method, 0 = 600

30000

25000

20000

15000

7

0.0 0.2 0.4 0.6 0.8

Figure 5-28: Energy Method Compared to Experimental Data, 0 = 60*
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Energy Method with Thickness Variation, 0 = 300
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Energy Method with Thickness Variation, 8 -= 450
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Figure 5-30: Energy Method
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constant be 7 = 0.2, the value recommended in [11].

Figures 5-32 and 5-33 show this new normalization. The predicted values are now close

to both sets of experimental data. A slight decrease in 'y would allow both theoretical curves

to intersect both sets of experimental data. Note that the energy method puts the 600 values

above the 300 values, whereas the experimental data is just the opposite. And for the 60*

prediction with thickness variations, the slope between the first two points roughly matches the

slope between the first two sets of experimental points.

This new normalization allows us to conclude that the 30* and 60* cylinders did, in fact,

fail by shell buckling. The mosaic model does not accurately account for interweaving, but at

least the model gives a rough estimate for the failure load. Furthermore, the 45* cylinders fail

well below their predicted buckling load', indicating some kind of material failure.

The problem still remains of duplicating the bell-shaped curves seen in the experimental

data. The buckling load, as predicted by the energy method, is inversely proportional to 1B1.

When B = B (I = 0), the buckling load takes on its lowest value; when B3 = 0 (I = 1), the

buckling load takes on its highest value. The theoretical curves rise monotonically from their

minimum to their maximum, and no local extremum are predicted.

The variations in the data are also much greater than the total variation achieved by varying

B alone. However, the energy method is highly dependent on the values of A and D: if either

goes to zero, then the buckling load goes to zero. The fiber undulation model predicts a decrease

in the values of the components of A and D. Substituting these new A and D matrices into

the energy method will give a correspondingly lower buckling load, which can be of the same

ma.gnitude as the observed variations.

However, the final solution is not that simple. The undulation method does not allow an

increase in A or D, so all contributions to ant increase in the predicted buckling load must come

from decreases in B. But the buckling load varies much faster with A and D than it does with

B. The result is that altering these three matrices can achieve something like the bell-shaped

curves observed in the data, but the variations from maximum to minimum are only on the

order of a few percent.

The only way to continue with the current model is to find some justification for allowing

5Assuming the same y can be applied to these cylinders.
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Energy Solution with y= 0.2

Data, 0 = 600
Data, 0 = 300
-- -Energy, 0 = 600

- -Energy, 0 = 300

Repeat

Figure 5-32: Energy Method with 7 = 0.2, for 300 and 60* Cylinders
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5.3. TEST RESULTS

Energy Solution with y= 0.2 and Thickness Variation

V Data,= 600

h Data, = 300

- - - Energy, 0 = 300

0

Repeat

Figure 5-33: Energy Method with 7 = 0.2 and Thickness Variation
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118 CHAPTER 5. RESULTS

increases in A and D, or to find some other strengthening mechanism which can be incorporated

into the mdoel. This analysis will have to wait for a future project.

Since the observed failures all began as localized failures, the ultimate usefulness of these

models may be limited. Both the mosaic model and the fiber undulation model use area-

averaging of properties as their basis. They "smear out" local material defects and thereby fail

to account for any imperfections. An accurate model may have to include these imperfections.



Chapter 6

Conclusions and Recommendations

This thesis began with a list of five specific goals. These goals were stated in the introduction,

and are repeated here for convenience:

1. Provide a summary of the literature dealing with the structural analysis of filament-wound

composites.

2. Develop a mathematical description of the "degree of interweaving."

3. Show experimentally the effects of interweaving on the compressive strength and modulus

of filament-wound cylinders.

4. Determine if a simple model, based on CLPT, can be used to predict these effects.

5. Provide recommendations for developing more complex models in future projects.

The first four goals were accomplished in the earlier chapters; the last will be completed at the

end of this chapter. But first, let us summarize the results of this work, and show how they

meet the goals listed above.

The first goal was covered in Chapter 2 with a review of the appropriate literature. In

accomplishing the third goal, this thesis has added to those earlier works a set of empirical data

for axial compressive loads. The current results agree with some of the earlier results:

1. Axial compressive strength increases to a maximum value at moderate values of inter-

weaving, then decreases as the interweaving continues to increase.
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2. Interweaving seems to have no effect on the strength of the 450 cylinders. This is related

to the observation that the effect of interweaving depends on the failure mode.

3. Interweaving also affects the axial compressive modulus of the cylinders, though the pat-

terns are not as clear as the patterns with strength.

There were also some differences noted in this work:

1. At very high values of interweaving, strength may actually begin to increase again, as

observed in the 60* specimens.

2. Some of the variations seen in strength (and perhaps modulus) may be explained by

variations in physical parameters, such as thickness.

3. Failure modes under identical loading conditions may vary with different wind angles

(though this may have nothing to do with interweaving.).

4. The behavior of the cylinders does not appear to move smoothly from that of an anti-

symmetric laminate to that of a homogeneous laminate.

The second goal dealt with the ambiguity in the various definitions of "degree of interweav-

ing." This topic was covered in detail in Chapter 3. Usually interweaving is equated with the

term repeat. But the maximum repeat varies with wind angle-for the cylinders wound here,

lZa for the 300 cylinders was around 20, whereas ,ma for the 600 cylinders was only around

11. The repeat was non-dimensionalized at the end of Chapter 3 by defining the degree of

interweaving as

Rmax

Thus, I varied from 0 to 1 for all cylinders.

With this definition of interweaving, some simple failure models were examined, hence

accomplishing the fourth goal. Although the simple approaches do not accurately model the

observed behavior of the wound composites, they at least give an indication of what factors

must be included in more complex models.

The new definition interweaving was incorporated into the nmosaic model, an area-averaging

modification to lamination theory. The result was an effective bending-stretching coupling
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matrix,

B = (1 - I)B

The new B could then be used in traditional buckling models. The simplest models consid-

Tred, which are commonly used in practice, are independent of B and therefore cannot account

.or interweaving (at least as it is defined here). A more complex buckling model derived using

the energy method was then used. Although it did predict rough failure loads for the 30*0 and

60' specimens, the interweaving modification could not account for the observed variations in

the empirical data.

The fifth and final goal stated above was to provide recommendations for future work. It is

appropriate to close with that list:

1. Although more data is needed, the analytical and numerical models should be developed

in more detail before further experiments are conducted. Enough data exists to show

the general effects that interweaving has on composite behavior, but the mechanisms of

those effects are still not understood. We need to know if variations in thickness are more

important than, say, void content or bandwidth, so experiments with appropriate controls

can be designed.

2. The energy method may still be useful if a mechanism can be found for allowing increases

in the A and D matrices. The crossovers seemed to act as barriers to crack growth, and

it may be possible to introduce a factor which accounts for this behavior.

3. Different failure models should be considered. The 45* cylinders failed below their pre-

dicted buckling load, indicating a possible material failure (this conclusion is also sup-

ported by the lack of variation in failure load with interweaving). Therefore, a tensor

or maximum stress/strain failure model may be useful. This would involve solving the

governing equations with a finite difference scheme, or developing a finite element model

(Appendix C).

4. Variations in physical parameters should be examined in more detail. In particular, the

effect of deviations in thickness should be studied. Since all of the ultimate failures began

as local failures, these variations in thickness may be very important to understanding
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wound composites. Some of the new winding simulation software can output thickness

contours of finished parts. This data could be incorporated into a finite element or finite

difference solution. Variations in resin and void content should also be examined.

5. The fiber geometry should be modeled more carefully, especially near the crossovers.

Most of the failures initiated near the major crossovers, so these regions are of particular

importance. The path of the fibers through the woven areas should be documented if

possible. These shapes should then be incorporated into the failure models.

6. The peaks in failure load occur at approximately the same repeat values, not interweaving

values as expected. This implies that the number and distribution of "diamonds" may be

more important than the relative amount of interweaving. An imperfection model, which

assumes a distribution shape for imperfections, may be a good choice for future research.

Khot's article [23] on the energy solution also includes an imperfection solution. A more

complete coverage of the subject is given in [36]; a literature review is given in [37].
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Appendix A

Buckling Parameters

The shell buckling equation of Section 4.6.2 (equations 4.48 through 4.51) is given in terms of

the functions Ri. These functions depend on the matrices a, b, and d defined in Section 4.5

(equation 4.31). Because the dependencies are so complex, additional parameters are also

defined.

The Ri are

R1  = 1/(HI - 4aH)
R2 = [HiH3/a + HH2 + 4H 2 H3H4

R3 = Hia/2

R 4 = -HiH3 - 2aH2H4

Rs = H5/2a

R = R2[4H22 + 8aH 2 - 2HIH6]

R7 1- HH1H32 + 4H3H43 + 4H2H3v + 4H2H4H7
2 a2

aH6H2+ 2H1H317} + HsH4 + 2H1H4v+]

Rs = H/a + H6a/2

R9 = -[ 6H3 + H1 +2H2H4 +2HH+2a3H4 + 2avH2]

Rio = -H5 /2a 2 + (1/2a)(2p1 / 2 + 20a)

RiB = RIRT + R2R6 + R10
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R12 = R1 Rls + R3 R6

R13 = R 1R91+ R 4R 6  (A.1)

The Ii are

H1 = a +aa+ 1

112 = a/3 + 7

H3 = r na2 + a +A

114 = va + (

H5 = 1+2ap1' / 2 +Oa 2

116 = 2a+a (A.2)

And the parameters denoted by Greek characters are

a = (2az122 + az212)(allu1a2222)- 1/2

-1/4 -3/4
/ = a2212a111 1 a2222

-1/4 -3/4
7 = a1112a2222 a1111

v = (2b1222 - b, 112 )(a2222d 2222 )- 1/2 (a112-l1/4

\ a2 222 )-1/4

= (2b1211 - b2212)(a2222d2222)/ 2 (2222 )-1/4
b1122 (a1111 1/2

Sa2222  d2222

A = b2211(al11d 2222 )- 1/2

0 = (bllll + b2222 - 2b12 12 )(ad22 2d 2222)- 1/ 2

p = (di1 22 + 2d122)(dlld2222) -1 / 2

== (andllnlldl )/(a 2222d2222) (A.3)

Finally, we get to the buckling parameter a. It is given in citekhot:buck as

a = - 2
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where

It = P(a2222/ai1111)'/4  (A.5)

and p is the wavelength ratio, i.e. the number of circumferential waves over the number of

axial waves.



Appendix B

Mandrel and Endcap Design

B.1 Mandrel Preparation

Stock aluminum cylinders of about 60 in. length, 2.0 in. outer diameter, and 0.125 in. wall

thickness were used for mandrels. Before being used for the first time, the mandrels were sanded

with fine sandpaper, washed with alcohol and water, then heated and coated with Carnuba wax.

Before each winding, the mandrels were sprayed with a silicone mold release. Although

this is usually enough preparation to allow the composite cylinders to slip off the mandrel once

cured, the cylinders would occasionally stick. Therefore, a layer of 3 mil mylar was wrapped

around the mandrel, and it in turn was sprayed with mold release.

The composite was wound directly onto the mylar. A hot air gun was used to give the resin

some tack and to prevent slipping. After the cylinder was wound, a release film was wrapped

over the winding, and then a layer of shrink-tape was wrapped over that (Figure B-1).

The cylinders were then placed in a rotating oven and cured under the following cycle:

1. Ramp up to 210*F over 1 hour.

2. Hold for 1 hour at 210 0F.

3. Ramp up to 350 0F over 1 hour.

4. Hold for 8 hours' at 3500 F.

'Only 2 hours are required for the cure, but a 6 hour post-cure is recommended. It was simply built into the
cure cycle.
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Shrink Tap

Figure B-1: Cylinder Prepared for Cure

5. Ramp down to room temperature over 4 hours.

The shrink-tape and release film were then removed from the cylinders, and the composite

cylinder removed from the mandrel. The mylar would usually slip off with the composite

cylinder, but was easily removed from the tube because of the coating of mold release.

Finally, the cylinders were sent to the shop to be ground into 8 in. lengths. The smaller

tubes were cut from the center of the large cylinders, avoiding the turn-around regions.

B.2 Endcap Design

Endcaps were made to support the ends of the compression specimens. This prevented end

failures and helped assure a more uniform load distribution. The endcaps consist of three

parts, as shown in Figures B-2, B-3, and B-4. Figure B-5 shows an endcap assembled on a

cylinder.

The plugs fit snugly inside the composite cylinder. The holes in the plugs and rings prevent

pressure from building up in the specimen during compression. The inner surface of the ring is

slightly angled to give a small inward loading, and thus more firmly grip the cylinder.

A highly viscous, low temperature cure resin was used to bond the endcaps to the test
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specimens. Mold release was sprayed on all parts before bonding. After tests were completed,

the endcaps were cut off the cylinders and baked at about 500*F to burn off the resin. The

endcap parts were then buffed clean using an abrasive pad-3M grill cleaners seemed to work

the best.
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Figure B-2: Endcap Plate
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1.000"
1.000"

e- 2.000" -

Tolerance = +/-0.1"
Do not need to finish

rounded face.
Flat faces parallel to

0.001".

Figure B-3: Endcap Plug
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Figure B-4: Endcap Rings
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Figure B-5: Assembled Endcap
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Appendix C

Finite Element Solution

It seemed obvious that a finite element analysis of the filament-wound cylinders should be

attempted. However, the software was only available for about a month, so the analysis could

not be completed. Some of the preliminary results may be useful for future research, so they

are summarized here.

A simple two-dimensional repeating unit was examined under a compressive load. The mesh,

loadings, and boundary conditions are shown in Figure C-1. The mosaic model was used, with

zero tlhickness for the crossovers. Eight node quadrilateral and six node triangular composite

shell elements were used. Analysis was done with the NISA II/DISPLAY II program.

Two interesting effects were seen on this simple repeating unit:

1. A stress concentration appeared in the center of the unit (Figure C-21).

2. Shear stress was zero along the boundaries between [±8] and [:F] layups, where B changed

signs.

The latter effect was expected, but the former was not. The stress concentration would explain

why the cylinders always failed at the major crossovers.

A simple convergence analysis was then performed. As mesh density increased, the size of

the stress concentration decreased (though not its magnitude), and the width of the boundary

regions between [IO] and [:90] layups also decreased. Otherwise, the contours remained fairly

constant.

SActual stress contour plots were not available for inclusion in this thesis.
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Figure C-1: Repeating Unit Mesh with Boundary Conditions and Loading
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Figure C-2: Simplified Stress Contour of Repeating Unit
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To see if the same patterns occurred for higher repeats, a three-by-three "mesh" of repeating

units was set up (Figure C-3). Similar contours were observed, with some minor differences

along the originally free edges which were now in contact with other repeating units.

Lastly, the three-by-three mesh was mapped onto a cylinder and loaded as in the experiments

conducted herein. Surprisingly, the stress concentrations disappeared, and the stress state

became almost constant.

At this point, the lease ran out on the software, and no further work could be accomplished2 .

Obviously, much remains to be done with the finite element -solution. The meager results

presented here at least show the importance of using a cylindrical geometry from the start.

Once a good mesh is developed, it should be possible to create a repeating-unit substructure

(or super-element), which can be used for easily meshing different repeats. This was looked at

briefly with ABAQUS, using its mapping commands to create a single repeating unit for all

wind angles and radii.

The finite element program can then be used to examine the buckling loads of the cylinders.

Some programs, such as NISA II, also include composite failure models such as Tsai-Wu and

maximum stress.

The finite element method can also be used for micromechanics. If details of the fiber

undulations can be determined, then meshed, it may be possible to more accurately model

the boundary regions near the crossovers, either with another finite element model or with an

analytic model.

2And just when it was getting interesting!
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Figure C-3: Mesh for Repeat of Three
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Appendix D

FiberGrafiX Software

FiberGrafiX' is the name of the software package EnTec distributes with its filament winders.

It is used to generate winding patterns with a minimal amount of input.

For this work, the Helical module was used. Winding parameters such as part diameter

and wind angle are entered into the program, and FiberGrafiX uses these to generate the fiber

path. The program also generates a text file with all of the parameters; a complete listing of

these files appears at the end of this appendix.

Some of the parameters, such as turn around distance and headstock dome rotation, are

calculated by FiberGrafiX TM , and are not of interest in this work. Other parameters, especially

the bandwidth, are entered by the user but may be slightly modified by the program. Table D.1

lists the values of B, N, and m2 generated by FiberGrafiX2 .

FiberGrafiX also limits the possible repeats for different bandwidths and wind angles. Wher-

ever possible, programmed angles were kept to the exact values of 30*, 45*, and 60*; in a few

cases, however, the angle had to be changed by f±1. These cases are also listed in table D.1.

1FiberGrafiX and EnTec are are trademarks of Engineering Technology, Inc.
2These are also given in the files at then end of the appendix; they are tabulated here for convenience. Note

that FiberGrafiX calls m2 "K."
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Table D.1: FiberGrafiXTM Values of B, N, and m2

D.1 FiberGrafiX Parameter Files

T30R1

K (SKIP INDEX) : 1

N (CIRCUITS/LAYER) : 34

NUMBER OF CIRCUITS : 68

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 7.029412

: YES

DEG

END

BAND WIDTH : 0.160041

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : 1

ENVELOPE OFFSET : 4

INCHES

INCHES

INCHES

INCHES

INCHES

Tube 1 (in) I I n?2 _o

T30R1 0.160041 34 1 30
T30R.3 0.160041 34 11 30
T30R5 0.160041 34 7 30
T30R7 0.160041 34 5 30
T30R9 0.160041 34 15 301
T45R1 0.158674 28 1 45
T45R.3 0.158674 28 9 45
T45R5 0.158674 28 11 45
T45R7 0.161654 27 23 46
T45R9 0.158674 28 3 45
T6OR1 0.179782 18 1 59
T60R3 0.160324 19 6 61
T60R.5 0.160324 19 4 61
T60R7 0.160324 19 8 61
T60R9 0.160324 19 2 61
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HEADSTOCK DOME ROT : 378.822116

TAILSTOCK DOME ROT : 378.822116

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 478.147908

CALC. TAILSTOCK DOME ROT: 478.147908

END

PART DIAMETER : 2

WIND ANGLE : 30

PART LENGTH : 36

TURN AROUND DISTANCE : 4.60098

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T30R3

K (SKIP INDEX) : 11

N (CIRCUITS/LAYER) : 34

NUMBER OF CIRCUITS : 68

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 7.323529

: YES

DEG

END

BAND WIDTH

BAND THICKNESS

0.160041

: 0

INCHES

INCHES
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AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : I

ENVELOPE OFFSET : 4

HEADSTOCK DOME ROT : 431.763292

TAILSTOCK DOME ROT : 431.763292

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 478.147908

CALC. TAILSTOCK DOME ROT: 478.147908

END

PART DIAMETER : 2

WIND ANGLE : 30

PART LENGTH : 36

TURN AROUND DISTANCE : 4.60098

INCHES

INCHES

INCHES

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T30R5

K (SKIP INDEX) : 7

N (CIRCUITS/LAYER) : 34

NUMBER OF CIRCUITS : 68

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 7.205882

: YES

DEG
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END

BAND WIDTH : 0.160041

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : 1

ENVELOPE OFFSET : 4

HEADSTOCK DOME ROT : 410.586822

TAILSTOCK DOME ROT : 410.586822

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 478.147908

CALC. TAILSTOCK DOME ROT: 478.147908

END

PART DIAMETER : 2

WIND ANGLE : 30

PART LENGTH : 36

TURN AROUND DISTANCE : 4.60098

INCHES

INCHES

INCHES

INCHES

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T30R7

K (SKIP INDEX) : 5

N (CIRCUITS/LAYER) :

NUMBER OF CIRCUITS :

NUMBER OF LAYERS : 2

INCHES
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BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 7.147059

: YES

DEG

END

BAND WIDTH : 0.160041

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : 1

ENVELOPE OFFSET 4

HEADSTOCK DOME ROT : 399.998586

TAILSTOCK DOME ROT : 399.998586

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 478.147908

CALC. TAILSTOCK DOME ROT: 478.147908

END

PART DIAMETER 2

WIND ANGLE : 30

PART LENGTH : 36

TURN AROUND DISTANCE : 4.60098

INCHES

INCHES

INCHES

INCHES

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T30R9

K (SKIP INDEX) : 15

INCHES
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N (CIRCUITS/LAYER) : 34

NUMBER OF CIRCUITS : 68

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 7.441176

END

BAND WIDTH 0.160041

BAND THICKNESS 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : 1

ENVELOPE OFFSET 4

HEADSTOCK DOME ROT : 452.939763

TAILSTOCK DOME ROT : 452.939763

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) : NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 478.147908

CALC. TAILSTOCK DOME ROT: 478.147908

END

PART DIAMETER : 2

WIND ANGLE : 30

PART LENGTH : 36

TURN AROUND DISTANCE : 4.60098

: YES

DEG

INCHES

INCHES

INCHES

INCHES

INCHES

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES
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END

T45R1

K (SKIP INDEX) : 1

N (CIRCUITS/LAYER) : 28

NUMBER OF CIRCUITS : 56

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N) YES

M (REVS/CIRC): 11.035714 DEG

END

BAND WIDTH : 0.158674 INCHES

BAND THICKNESS : 0 INCHES

AXIAL OFFSET (START POSITION) : 10 INCHES

EYE HEIGHT : 1 INCHES

ENVELOPE OFFSET 4 INCHES

HEADSTOCK DOME ROT : 499.030708 DEG

TAILSTOCK DOME ROT : 499.030708 DEG

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) : NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18 INCHES

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 543.6009 DEG

CALC. TAILSTOCK DOME ROT: 543.6009 DEG

END

PART DIAMETER : 2 INCHES

WIND ANGLE : 45 DEG
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PART LENGTH : 32 INCHES

TURN AROUND DISTANCE : 3.020005 INCHES

END

T45R3

K (SKIP INDEX) : 9

N (CIRCUITS/LAYER) : 28

NUMBER OF CIRCUITS : 56

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N) YES

M (REVS/CIRC): 11.321429 DEG

END

BAND WIDTH : 0.158674 INCHES

BAND THICKNESS : 0 INCHES

AXIAL OFFSET (START POSITION) : 10 INCHES

EYE HEIGHT : 1 INCHES

ENVELOPE OFFSET :4 INCHES

HEADSTOCK DOME ROT : 550.45928 DEG

TAILSTOCK DOME ROT : 550.45928 DEG

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18 INCHES

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 543.6009 DEG

CALC. TAILSTOCK DOME ROT: 543.6009 DEG
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END

PART DIAMETER : 2

WIND ANGLE : 45

PART LENGTH : 32

TURN AROUND DISTANCE : 3.020005

INCHES

DEG

INCHES

INCHES

END

T45R5

K (SKIP INDEX) : 11

N (CIRCUITS/LAYER) : 28

NUMBER OF CIRCUITS : 56

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 11.392857

: YES

DEG

END

BAND WIDTH : 0.158674

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : I

ENVELOPE OFFSET 4

HEADSTOCK DOME ROT : 476.799681

TAILSTOCK DOME ROT : 476.799681

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

INCHES

INCHES

INCHES

INCHES

INCHES

DEG

DEG

INCHES
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CALC. HEADSTOCK DOME ROT:

CALC. TAILSTOCK DOME ROT:

END

PART DIAMETER : 2

WIND ANGLE : 45

PART LENGTH : 32

TURN AROUND DISTANCE : 2.265004

INCHES

DEG

INCHES

INCHES

END

T45R7

K (SKIP INDEX) : 23

N (CIRCUITS/LAYER) : 27

NUMBER OF CIRCUITS : 54

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 11.851852

: YES

DEG

END

BAND WIDTH : 0.161654

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : 1

ENVELOPE OFFSET : 4

HEADSTOCK DOME ROT : 593.087757

TAILSTOCK DOME ROT : 593.087757

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) : NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

407.70072

407.70072

DEG

DEG

INCHES

INCHES

INCHES

INCHES

INCHES

DEG

DEG
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FIBER PAYOUT PER SECOND : 18 INCHES

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 562.915211 DEG

CALC. TAILSTOCK DOME ROT: 562.915211 DEG

END

PART DIAMETER : 2 INCHES

WIND ANGLE : 46 DEG

PART LENGTH : 32 INCHES

TURN AROUND DISTANCE : 3.020005 INCHES

END

T45R9

K (SKIP INDEX) : 3

N (CIRCUITS/LAYER) : 28

NUMBER OF CIRCUITS : 84

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N) : YES

M (REVS/CIRC): 11.107143 DEG

END

BAND WIDTH : 0.158674 INCHES

BAND THICKNESS : 0 INCHES

AXIAL OFFSET (START POSITION) : 10 INCHES

EYE HEIGHT : 1 INCHES

ENVELOPE OFFSET : 4 INCHES

HEADSTOCK DOME ROT : 425.371109 DEG

TAILSTOCK DOME ROT : 425.371109 DEG

RADIAL MOTION?(Y/N): YES
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YAW MOTION?(Y/N) : NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18 INCHES

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 407.70072 DEG

CALC. TAILSTOCK DOME ROT: 407.70072 DEG

END

PART DIAMETER : 2 INCHES

WIND ANGLE : 45 DEG

PART LENGTH : 32 INCHES

TURN AROUND DISTANCE : 2.265004 INCHES

END

T60R1

K (SKIP INDEX) : 1

N (CIRCUITS/LAYER) : 18

NUMBER OF CIRCUITS : 36

NUMBER OF LAYERS : 2

BAND ADVANCE DONES?(Y/N) : YES

M (REVS/CIRC): 17.055556 DEG

END

BAND WIDTH : 0.179782 INCHES

BAND THICKNESS : 0 INCHES

AXIAL OFFSET (START POSITION) : 10 INCHES

EYE HEIGHT : I INCHES

ENVELOPE OFFSET : 4 INCHES
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HEADSTOCK DOME ROT : 539.304115

TAILSTOCK DOME ROT : 539.304115

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 518.346802

CALC. TAILSTOCK DOME ROT: 518.346802

END

PART DIAMETER : 2

WIND ANGLE : 59

PART LENGTH : 30

TURN AROUND DISTANCE : 1.730301

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T60R3

K (SKIP INDEX) : 6

N (CIRCUITS/LAYER) : 19

NUMBER OF CIRCUITS : 38

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 18.315789

END

BAND WIDTH

BAND THICKNESS

: YES

DEG

: 0.160324

: 0

INCHES

INCHES
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AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT 1

ENVELOPE OFFSET 4

HEADSTOCK DOME ROT : 553.615213

TAILSTOCK DOME ROT : 553.615213

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 561.878214

CALC. TAILSTOCK DOME ROT: 561.878214

END

PART DIAMETER : 2

WIND ANGLE : 61

PART LENGTH : 30

TURN AROUND DISTANCE : 1.730301

INCHES

INCHES

INCHES

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T60R5

K (SKIP INDEX) : 4

N (CIRCUITS/LAYER) : 19

NUMBER OF CIRCUITS : 38

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 18.210526

: YES

DEG
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END

BAND WIDTH : 0.160324

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : 1

ENVELOPE OFFSET : 4

HEADSTOCK DOME ROT : 534.667845

TAILSTOCK DOME ROT : 534.667845

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) : NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 561.878214

CALC. TAILSTOCK DOME ROT: 561.878214

END

PART DIAMETER : 2

WIND ANGLE : 61

PART LENGTH : 30

TURN AROUND DISTANCE : 1.730301

INCHES

INCHES

INCHES

INCHES

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T60R7

K (SKIP INDEX) : 8

N (CIRCUITS/LAYER)

NUMBER OF CIRCUITS

UN MBER OF LAYERS :

INCHES
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BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 18.421053

: YES

DEG

END

BAND WIDTH : 0.160324

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT : 1

ENVELOPE OFFSET : 4

HEADSTOCK DOME ROT : 572.562582

TAILSTOCK DOME ROT : 572.562582

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 561.878214

CALC. TAILSTOCK DOME ROT: 561.878214

END

PART DIAMETER : 2

WIND ANGLE : 61

PART LENGTH : 30

TURN AROUND DISTANCE : 1.730301

INCHES

INCHES

INCHES

INCHES

DEG

DEG

INCHES

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES

END

T60R9

K (SKIP INDEX) : 2
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N (CIRCUITS/LAYER) : 19

NUMBER OF CIRCUITS : 38

NUMBER OF LAYERS : 2

BAND ADVANCE DOMES?(Y/N)

M (REVS/CIRC): 18.105263

END

BAND WIDTH : 0.160324

BAND THICKNESS : 0

AXIAL OFFSET (START POSITION) : 10

EYE HEIGHT 1

ENVELOPE OFFSET : 4

HEADSTOCK DOME ROT : 515.720477

TAILSTOCK DOME ROT : 515.720477

RADIAL MOTION?(Y/N): YES

YAW MOTION?(Y/N) NO

Z AXIS MOTION?(Y/N): NO

WINDING MODE?(P/H) : P

FIBER PAYOUT PER SECOND : 18

HEADSTOCK DOME TYPE/FILE : ELIPSE

TAILSTOCK DOME TYPE/FILE : ELIPSE

CALC. HEADSTOCK DOME ROT: 561.878214

CALC. TAILSTOCK DOME ROT: 561.878214

END

PART DIAMETER : 2

WIND ANGLE : 61

PART LENGTH : 30

TURN AROUND DISTANCE : 1.730301

: YES

DEG

INCHES

INCHES

INCHES

INCHES

INCHES

DEG

DEG

INCHES

DEG

DEG

INCHES

DEG

INCHES

INCHES
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