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ABSTRACT

The behavior of waves on the surface of an axisymmetric film
produced by the impingement of a vertical jet has been investigated. The
theoretical study is composed of analytical work and numerical experiments.
The flow was modeled by the inviscid Euler equations with the appropriate
nonlinear boundary conditions. The first of three nonlinear wave analyses is
a numerical study of the shallow water wave equations. Initial data tested
showed the outgoing characteristic decays rapidly, while the ingoing breaks.
Secondly, a Stokes wave expansion is assumed as a perturbation on an

arbitrary fluid depth to include nonlinear dispersive effects. An average
Lagrangian is calculated, and the variational principle of water waves leads
directly to modulation equations. A stability criteria is summarized as a kH
vs. Ak? map. It is found that long waves become unstable. Lastly, a possible
mechanism for splattering is considered. A multiple scale analysis applied to
the water wave equations leads directly to a variable coefficient KP equation.
For axisymmetric waves, the equation reduces to a variable coefficient K-dV
equation. It is found that for slow radial variations the equation allows
cnoidal wave solutions for the region close to the jet. As the film thins, the
amplitude to width ratio increases turning them into a train of solitary
waves. Dispersion ceases to be a major effect; hence, the propagation becomes
hyperbolic. Numerical solution shows that solitary waves of small amplitude
propagate without breaking, but any of large amplitude breaks.

Thesis Supervisor: Dr. John H. Lienhard AV;
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1. Introduction

Jet impingement is a very common physical phenomenon that occurs

in everyday life. Take for example an open fuaset discharching a jet of fluid

onto a horizontal sink. The impingement of this vertical circular jet of fluid

creates a very thin radial film, whose depth suddenly increases at a certain

location to an almost constant thickness. This sudden increase is known as a

circular hydraulic jump or a standing circular wave. Most of this

phenomenon is affected by viscosity except for a region near the stagnation

zone (see figure 1a) where the flow is essentially inviscid. This region extends

to the radial position r, (see figure 1a) where the growing viscous boundary

layer on the surface of the plate reaches the free surface of the film. By

increasing the Reynolds number of the incoming flow, it is found

experimentally that the region can be enlarged.

Figure la shows the hydrodynamic evolution of the spreading film

flow and figure 1b is a photograph of the actual physical phenomenon. As we

can see from figure la, the flow is extremely complicated with a series of

regions governed by different types of fluid flows. When the incoming flow

is perturbed by creating disturbances on the surface of the jet we encounter

another extremely interesting phenomenon known as splattering. The

physical mechanism is still not well understood, but observations indicate

that when disturbances are created on the jet surface, they will be transported

onto the thin film. Once on the film, the disturbances are observed to

propagate as wave trains that develop into either unstable large amplitude

cylindrical waves that eventually breakup into droplets and splatter into the

air or else they simply propagate without breaking as finite amplitude waves.
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This phenomenon is depicted on figure 2a. Photographs showing two types

of actual physical processes are presented in figures 2b and 2c. Since these

waves are transported through the inviscid region of the flow, we attempt to

study the wave motion in this region. The fluid is modelled as inviscid,

irrotational, isothermal, nonconducting, and constant property.

The methods of analysis used herein are the following:

1. Nondispersive nonlinear waves

2. Nonlinear dispersive of Stokes waves with surface tension.

3. Nonlinear long-wave evolution

The first case is essentially a numerical study of hyperbolic waves on a

nonuniform axisymmetric flow. Here we find that solitary wave type

disturbances break in the typical hyperbolic fashion.

The second analysis uses Whitham's averaged Lagrangian theory

(Whitham's Linear and Nonlinear Waves, 1974) to analyze a modulated

wave train of Stokes waves on a steady nonuniform flow characterized by the

steady film thickness, H(r), and the steady radial velocity U(r). We derive the

modulation equations that govern the transport properties of the wave train.

From the analysis, we obtain a nonlinear dispersion relation that includes

surface tension effects; we also derive a stability criterion that includes the

effects of gravity, surface tension, and arbitrary film thickness. The stability

corresponds to the hyperbolic stability of the modulation equations. We also

look at specific cases by specifying the density and surface tension of the fluid,

and thus obtaining a map of H(r) versus the wave number k.
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In the last analysis, we derive an evolution equation for the

development of a wave disturbance on the surface of a nonuniform

axisymmetric flow, again characterized by H(r) and U(r). For certain values of

H and U, this equation reduces to the nearly concentric Korteweg-deVries

equation (ncK-dV). We devote the rest of the investigation to studying this

general evolution equation. The three cases studied include: slowly varying

periodic cnoidal waves, slowly varying solitary waves, and nondispersive

waves. Ignoring dispersive effects in small enough amplitude disturbances

leads to hyperbolic propagation without breaking, while for large enough

amplitudes it leads to breaking.

Also, we find that periodic wave trains are possible only in regions

close to the jet and that as r increases the waves turn into solitary waves.

Finally, we show that slowly varying solitary waves are also solutions of the

evolution equation. We again note that all the analyses are based on a long

wave approximation, since the film thickness to disturbance wavelength ratio

is very small.

These analyses de not predict splattering per se; rather, they attempt to

identify the mechanism by which waves propagate, and the conditions which

can result in sharpening of initially smooth disturbances. This mechanism

can be summarized as a simple nonlinear filtering process that takes periodic

wave trains and turns them into solitary waves propagating down the surface

of an inviscid axisymmetric thin film.
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Figure 1b: Photograph of a laminar jet impinging on a horizontal surface, showing
the circular hydraulic jump.



16

1 |
LA
v —

| )

 yp
\. - sm

«1 -

Pipe

 oe

 ys

mpatf
Stagnation ‘Region of

zone before splattering  splattering

®
@

e
-

 5» &gt;

a

9££
Ts  4

Ean
&gt;

Ld
oo oo oO &gt; ra Fy 4

{h(r) = u(r,z) |

Region after splattering

Figure 2a: Perturbed jet and splattering mechanism.



po
Co»

Figure 2b: Photograph of a turbulent jet showing the wave motion of non-breaking
waves on the thin film.



18

Figure 2c: Photograph of a turbulent jet showing the development of large
amplitude splattering waves.
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2. Derivation of Equations of Motion

[t is convenient to derive the inviscid equation of motion from a

variational principle, so that its Lagrangian can be used later for analyzing

nonlinear water waves in a cylindrical geometry. We define the Lagrangian as

h
2 3

L - 0+ Loh + of + Lo) + laa + 0 [1412+ Lif
i

where ®(r,z,0,t) is the potential, h(r,0,t) is the free surface position p, g, o are

the density, gravitational body force, and surface tension respectively. And we

introduce the integral

{2 8, T2 —~

f [ | Lrdrdodt£1 9, I

(N

and its first variation

3]- ov
3] 3)

We note that this variational principle leads to the inviscid equations of

motion as follows

J
} | 1e00aQO

where dQ = drdo.

After integrating by parts, rearranging, and collecting like terms, we have



2)

h h h

| | ssf oi | |ao 3 cso | | cay 2 Loy50dzQ 0 Q r 0 Q do 0 _

| | dQdf r,{0)5(0)] - | | AQ rE®(h]hi + yh, + Lapghy - @,|Q Q 2 2=h

| oo [ ood + Logg + @., 60d:

f [sodfo, +l(vef + &amp; Tee + hres “0 5)1

where V is the gradient operator in cylindrical coordinaics

The first three integrals integrate out to the boundaries of Q and

vanish if d3® is chosen to vanish at the boundary. Now requiring that (4)

vanish for appropriate 8® and 8h, and applying the usual variational

argument (see for example Whitham's Linear and Nonlinear Waves, 1974)

with the following choices:

1

AT A
Ar,

dh &lt;0

= on z=h and z=0: Laplace's eq

on z=h: Dynamic Boundary Condition @z =h

3 &gt; 0 on z=h: Kinematic Boundary Condition @ z = h

Tr »~
J 0 on

 ~ ¢p v -0 on

D&gt; 0 on

7

z = h: Boundary Condition atz=10

7 =)

Leads directly to:
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Vo=0  Vxt (6)

along with the boundary conditions at z = h,

DP, (VD) + gh - he + 3 Hr =0 (7)

h,+VO-Vh=0, (8°

and the boundarv condition z = 0,

¥, . =

(9)

These are the inviscid water wave equations. We note that the

variational principle is one of stationary total pressure, where the surface

pressure due to the curvature of the free surface has also been accounted for.

The objective of this investigation is to attempt to solve the above

equations in some region of space and time where long waves can be

analyzed. Before continuing with the analysis, we non-dimensionalize the

variables as follows:

[f Ar
Uo “| Ar [z] =hg

[ t ~(®] 52, Ug 18] az

where h, is the characteristic film thickness, Ug is a characteristic speed of the

incoming jet and A, Ay are the characteristic wavelengths in the r and 6

directions respectively. We also define the following non-dimensional
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parameters: inverse Froude number; inverse Weber number; and two

parameters measuring the dispersive effects of waves in the radial and the

azimuthal directions.

Si-tesat

M = £0 a

Uys: Fr

1] 19

1 __ 0

Wen,  pU2 hy

 1 __ohg
We 2pA, U2 hy

3 A
Ag

1 ur
We Wey,

(1C

The long wave analysis requires that the two shallow water parameters pu

and B be much smaller than O(1).

Typical values of the above parameters can be found for a water jet at 20

m/s and having a diameter d=6.3 mm. For r/d ~3, we have hy ~ Es = 0.26 mm.

A typical wavelength is A_ _

This implies that M=6.4x 10-6

Wer. =6.7x 104

d= 0.04 = o(1)

Another case of interest is Uy=1 m/s with d=1 mm which leads to

h,=4.2x10-5 m. In this case M = 4 x 10-4

Wer =17
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n= 0.04 = o(1)

We take B to be of the same order as L.

Observation of the disturbances present on real jets ( which are A ~d)

show that 4 much smaller than one is a reasonable assumption. Observations

of natural waves on laminar sheets ( with a strobe light) also suggest p = o(1)

is viable.

With the above definitions, we can write

(Vh) = une +By
2 9]

(11°

The different streachings in r, z and 6 introduce the crucial steps in the

expansions of the equations. In the non-dimensional variables, the problem

is reformulated as

2

D,, + u 0. +Lo, +Eag =( (127

in the domain, r &gt; 0 0 &lt;h 0&lt; 0 &lt; 2p, and for all t, with the boundary

conditions

2 2
2 B°.2 2 B- — _ovat + Bak Lalo nn Eig of) 0 @z=h (13)

2
Boa h, + D;hy +5Dh

 hb

I. -
 -0 @z=0

=P,; @z=h (11’

(1%J



-

ct

We pose the solution to Laplace's equation as a formal expansion in z and

upon application of the boundary condition at z=0, we have

d= |coshyz8)dlr 6, J = i + L228" + Lys’ +. Jo ;L—0 (16)

ther

2 2

Fo for) Boman? Bo
£2 3 (17J

and the operator coshuzdis defined by its Taylor expansion when p is

assumed small compared to one. Now the derivatives of ® become

Dy =O; +Lu225%,) +---

®, =c= 0p + Lu2250)+...

©, =u 0) + Lutz0)

27212~ 1a~ 1 MzLog-Log+LEZ{Gok+

BDrT

LE

ry 7)

20)

ft1)

with 1 — 0. This implies that the flow is independent of z to O(1).

Substituting the above expressions into the free surface boundary

conditions and collecting terms up to order u2, B2, p2u2, reduces the problem
-

2 2

but | oF + Eg + Lond ols) a a) + Mh +L{s%) ~ 0
T T

‘“y)
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and

2 2

he-+ duh + gh-1{5%)+ i (5%), Lp(a’) + LAER] -0 (23)

with ul J 0

Since ® is the potential we define the radial and azimuthal velocities as

D, and 1g respectively.

Ne differentiate the first equation, (22), with respect to r and introduce

the depth-averaged radial and azimuthal velocities defined by

hu —-

h

2 {cosh uzd]¢ dz ~ ho, + 120757), , u—0

h

web 2 5
w= tga 1zd8]¢ dz ~ Bho + Lu20(7gs)| , H—0 (25)

Yi)  4

and find their inverse, ¢, and ¢g, in terms of u and v to be

De ~ u 4 Luthu +4) © u-0

By 4 Lu2hv, +4) |, u—0

(2A)

(2
—

s

 J)

A consistency relation is obtained from equations (26) and (27) as

(tv) = Bu; LL—&gt;+ } PlJ

Upon substitution of (24), (25), (26), and (27) into (22) and (23) we obtain the

depth-averaged radial momentum equation
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og + 2) Mn lo 15 Blawg ea) also

anc ‘he continuity equation

rh), + (rhu), + Pirhvi =0 (30°

To make this a consistent system, we require the relation already derived in

equation (28)

rv) B Vr Py==0 (37°4

Equations (29), (30), and (31) are the unsteady, cylindrical, nonlinear,

long wavelength, dispersive water wave equations. This is the system that

we choose to work with in determining the propagation of wave disturbances

on the film. Clearly, this system is valid for a region where u= o(1) and we

note that no other restrictions have been imposed on the other non-

dimensional parameters. In applying this system, we assume that the mean

flow is obtained from these equations by setting p= 0(1) where p=h_ /l andl

is a characteristic length of the flow field, such as the radial position where

the viscous boundary layer reaches the free surface. Such a mean flow is

essentially unrestricted, in the sence of the normal potential flow of an

impinging jet (see next section). Different types of wave motion on this mean

flow can be analyzed by considering different regions of space and time, and

we look at some.of these in the subsequent sections.
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3. Steady Axisymmetric Flow

We begin by analyzing the steady impingement of an axisymmetric jet

of fluid onto a flat surface located at z = 0. The evolution of the free surface of

the thin film formed will be studied in the region where the film is still

governed by the inviscid flow equations. A boundary layer forms growing

from the stagnation point at r=0 to a location downstream where it reaches

the free surface of the film. This implies that any wave analysis will only

apply in the region away from r=0, since the flow would be singular there,

and up to the point where the boundary layer reaches the free surface (see

figure 3).

In the case of steady axisymmetric flow the water wave equations

provide a steady state that can be subsequently perturbed. The system of

equations (29-31) up to O(1) reduces to

vhie TS
-

1 hy) _Ly + Mh + ly + 2) =Le?

A
nyu)|=

c=,/ 1 +40
pU2d

0= gd“

(32 J

(33

Here 1 is the characteristic radial length, which we can take as the

location where the viscous boundary layer reaches the free surface, c is the

nondimensional head of the incoming flow and Q is the incoming

dimensionless mass flow rate. Note that for large Ug surface tension effects

are negligible; hence c~1. By ignoring surface tension effects in equation (32)
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(since 1/We is very small compared to one O(10-4) ) the flow becomes

essentially a momentum driven flow, which can be solved in closed form to

this order of approximation.

The above svstem results in the solution of a cubic algebraic equation

for  nh and 11

21 Q
ag tMa-1e?=0 (34

Whose roots are

revier

u; = 2cos!. ~ 2° J: 0S (om) + {20 |an/3| |

h:
a

. ar cos!Leos i(-m) + (0, 27/3, 4/3)

m= 33/2 Md? 1
32 T

(XL
hn

1
a

(35 5

(3¢=]

(3™"y

(38)

The index i=1,2,3 represents the three roots of the cubic. The i=1

solution represents the spreading radial film, the i=2 is not a physical

solution and i=3 gives an major increase in the film thickness. The i=3 root

resembles what we can call an inviscid hydraulic jump. This discontinuity

does not predict the location of the physical jump since the viscous shear is

not accounted for in the momentum balance. For a thin film, the radial

length scale, 1, is larger than the jet diameter and the inverse Froude number
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is O(10-3 to 10-6), hence m&lt;&lt;1 seems like a good approximation. We

therefore have the limiting solution (relevant root, i=1)

nr
 Jd  Ul 0 (39°

This is the classical approximation for an axisymmetric jet hitting a flat

surface under negligible gravitational effects. However, when gravitational

effects are still negligible, but viscosity becomes important as in the case of

very thin films, we can use Watson's similarity solution which gives the

surface speed and position of a fully viscous film as
_ame QQ

ulr) 87 (3 + 13)

h(r) = = ye + 2)

(aryti1&amp;-

(4: \

ty

{2
\

r

n=1.40218

1 =(0.3243)dRe}/3

And Rey = Ud | is the Reynold's number based on the jet diameter
\

In terms of d and r, h becomes:

— 2air) = 0.1713&amp;2)+s.147(e2) (4 2)

According to Watson's analysis, the location at which the viscous

poundary layer reaches the free surface is

0.1833dRe.
! 7

We therefore take | =r), so that the indeterminacy of 1 is finally resolved.
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Thus any wave analysis will be limited to the region where r &lt; r,. The

present analyses are best for very high Reynolds number jets. We note that

laminar jets with Rey &gt; 10° are easily produced in the laboratory.
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4. Unsteady Nondispersive Axisymmetric Flow

When considering the equations to be functions of r and t only and

with negligible dispersion and negligible surface tension effects, we obtain the

radial shallow water wave equations for axisymmetric flow

The equivalent

mom  Mn -
TT ey

a, + uu, + Mh, =0

(hr), + (chu), = ()

conservation equations are

2 + IMrh2} = LMh?2(thu) +(rhu +Mrh ) =1Mh

(40 J

(44
x

1

(45°

continuity:

(rh), + (thu), = 0 (46)

In order to analyze this nonlinear system, we apply the method of

characteristics and find,the system's preferred directions by combining (45)

and (46) into its Riemann invariant form. The system becomes

4(2/Mh+u)=-WMh
dr _ , + yMh
dt

4/)

(487

0 J
where d== +(u + YMRS

The Riemann "invariants" of the system are

R, =2YMhtu (49)
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These are not really invariants since the right hand side of equation

(47) is non-zero. The characteristic speeds are

™ 5 -u+ ‘Mh (50

Here the + refers to outgoing and incoming waves respectively.

To analyze this system we notice that the right hand side of the

Riemann invariants will depend on the integral

1. 3) nt
(51).

ho

taken along the characteristics. It turns out from numerical evidence (see r-t

plane on figure 9) that when the integral is taken along c, near the head of

the wave the range of integration diminishes, thus making this contribution

relatively small compared to that of the c,. This suggests that R is almost

constant along the c¢ characteristic.

H2 - CE y

2YMh-u=2¥Mhg-ug=Fy (527

Eliminating YMh from above and substituting into the R_ equation we obtain

a single first order equation for u which requires integration along the c_

characteristic.

The equation for u becomes

JuU4 (2+ LE + (Fo + ul = 0 (53°

and whose exact solution is
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u(Fo + up = S49) (54)

where Gd?) is a function of integration and © = 1 (r,t) is the characteristic

variable (t is the " time " along the r-t characteristic) to be determined from

dt = 2 ~ 2. - 6u , AU 5

dr (Bu+Fp) Fy F2 Fo
[37

A uniformly valid approximation to O(1) is

u _Gdv
F3 rF§

with

=20 86D, TFo pt (7) (56&gt;

where Gi(t) is a second function of integration. From (52), we have

WME = Fy + OY
Fr

(57)

The functions Gyt)and Gi(t) can be determined from the initial

conditions. However, we do not calculate these since that requires a higher

order of approximation. We merely note that these are only the geometrical

acoustics form of h and u.

We now look at the full hyperbolic problem defined by equations (45)-

(48) and solve the initial value problem numerically using a second order

ENO scheme ("essentially non-oscillatory," see Harten and Osher 1987). In the

numerical calculations, we first look at steady solutions of the equations, and

we find these lead to a hydraulic jump downstream of the stagnation point.

Once this steady shock wave is located, we analyze the behavior of prescribed
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initial data on the spreading film. The initial conditions that were tested

correspond to a sech-squared disturbance whose amplitude and phase obey

the solitary wave solution of the Korteweg and de Vries equation.

2 2Ja’sech” 4+ - 1)

where a is the amvlitude of the disturbance and rg is the radial location of

the peax.

First, we look at the time evolution of a steady shock starting from a

given initial profile. Figure 3a shows the formation of a hydraulic jump from

an arbitrary initial film thickness. The surface is a mesh plot showing the

film thickness as a function of time and radial position. In figure 3b we show

the numerical convergence of the solution towards a specific jump location.

This plot corresponds to the projection of figure 3a on to the height versus

position plane for different values of time. The jump is essentially a standing

hyperbolic wave that forms a typical hyperbolic discontinuity at the shock

location. The downstream data that we specified were the flowrate and the

final film thickness ( typical values were O(1) ). We do not pay too much

attention this solution of the hydraulic jump, since it is predicted from a

model that neglects shear stresses.

Although this hydraulic jump does not include the effect of viscosity,

we can still see the large change of height from a radially decreasing thin film

to an almost constant height region. Figures 4a and 4b are the corresponding

plots for the velocity field. From these we can see the acceleration of the flow

until a critical condition is reached at the jump, at which point the flow slows

from supercritical to subcritical. We again note that this prediction of the



35

hydraulic jump is not physically significant since we have neglected the effect

of viscosity which is of utmost importance in the case of thin films.

However, our interest focuses only on the dynamics of the thin film formed

upstream of jump. Consequently, we confine our numerical domain to the

region ahead of the discontinuity.

Once an exact solution is reached, in other words a steady state

solution, we can perturb the unsteady equations by looking at the dynamics of

localized disturbances such as an initial solitary wave profile with compact

support. We begin with the dynamics of a solitary wave initial condition.

Figure 5a shows a height versus position versus time mesh, from which we

can see the splitting of the "soliton" into two waves of smaller amplitude.

The diagonal disturbance in the figure is a numerical pressure wave that

stabilizes the flow. These waves travel along the c, and c_ characteristics, and

we can see that as in the approximate analytic solution the c_ characteristic is

the important one. The c, characteristic runs along the flow direction and

thus radial spreading takes over and diffuses the disturbance into the film.

However the c_ characteristic runs into the flow and steepens until a shock is

formed. Hence breaking in the typical hyperbolic fashion, occurs in finite

time. Figure 5b shows the time development of the initial disturbance. From

this plot we see that after the "soliton" splits the c, characteristic decays to the

right and the c_ forms a shock whose amplitude develops into a sharp peak

that is eventually washed down by the flow.

Figure 6a shows the interaction of a two solitary wave initial

conditions. The dynamics of each wave are similar to those of a single one

for initial times. They each split into two waves, c, and c. However, the c,

from the left wave eventually collides with the c_ from the right wave, thus
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giving birth to a new localized wave of smaller amplitude. This is due to the

fact that the c, was already decaying via the radial spreading of the film. This

new wave will again split into two new c,* and c¢* and its dynamics are

similar to the ones of a single wave disturbance. This is the case because the

c.* will never cross the path of the c_ from the left wave disturbance and both

c,* and c, from the right wave will decay into the flow. Both c_from the left

wave disturbance and c_* will break in finite time, but the c*forms a weaker

shock since its amplitude is smaller than that of the c. This is easier to

visualize by looking at figure 6b , which is a position versus time plot, or an

r-t plane of the wave interactions. From here we can see how c_ from the left

wave disturbance forms an envelope of characteristics, in other words a

shock. The c* forms a weaker shock that diffuses back into the flow. Again

the diagonal disturbance that we see is a numerical pressure wave that is

artificially introduced for stabilizing the flow. Thus by studying this

hyperbolic approximation we can predict the breaking of finite amplitude

disturbances, but of course this breaking mechanism refers to the typical

hyperbolic shock formation. In order to better understand this process, we

need to include dispersive effects along with surface tension effects.
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5. Nonlinear Dispersion of Axisymmetric
Water Waves, Including Effects of Surface
Tension.

In order to analyze the effect of dispersion on radial water waves, we

look at periodic modulations on the surface of the film and study the

equations governing the modulated wave train. The analysis applies

Whitham's general theory of averaged Lagrangians (see Linear and

Nonlinear Waves, 1974) to the propagation of Stokes waves on a nonuniform

radially spreading axisymmetric film. Thus instead of working with the

water wave equations, we work directly with the variational principle (in

dimensional form) proposed by equations (1) and (2).

Following from Whitham's (1967) paper on nonlinear dispersion of

water waves without surface tension in a planar geometry, we generalize his

problem by including surface tension effects and applying his technique to a

cylindrical geometry.

A uniform periodie wave train is specified by certain parameters such

as amplitude, wave-number, etc. The theory treats non-uniform wave trains

in which these parameters vary slowly in space and time, in the sense that the

changes in one wavelength and in one period are relatively small.

In this section, the modulation equations for the slow variations of

amplitude, wave-number, etc. will be established for arbitrary depth. The

wave train is calculated by a Stokes expansion in powers of the amplitude;

however, the expansion breaks down for long waves, and these are covered

separately in the next sections.
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For finite depth, variations in mean height and mean fluid velocity

occur, and they are coupled nonlinearly with variations of the amplitude and

wave-number. These four quantities are the fundamental parameters of the

non-uniform wave train analysis.

The uniform periodic solution of the water wave equations (in

rectangular coordinates x,t) takes the form

h ? )

 Od =Bx-v + 6,2)

A = kx - Ot

(58)

where k, 0,B, yY are constant parameters. Here k, o, 8 are wave-number,

frequency, and the phase function respectively. The term Bx - yt must be

allowed in @, since it is only the derivatives of ® that represent periodic

physical quantities. Physically, Bis the mean velocity, and y corresponds to

absorbing the Bernoulli constant into the potential. Mathematically B, y act

like a pseudo wave-number and frequency in ® corresponding to the real

wave-number and frequency (k,w) in 0.

We study the propagation of non-uniform temporally periodic

sinusoidal) wave trains characterized by an amplitude a

For non-uniform wave trains in a cylindrical geometry, the

generalized form of the solution is provosed as

h= hoe.r.t)

k= 0,

B=v,

® =wir.t) + D0,r.t,2)

a = - 0,

EA Cu
CE (59)
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The pair (k, w) are the wave-number and frequency. The term vy acts

like a pseudo-phase, since in the Lagrangian in (1) only the derivatives of ®

represent periodic physical quantities. The parameter B is the mean of the

radial velocity and vy is related to the mean height of the waves. Now we take

all quantities to be slowly varying functions of space and time. The functions

h and @ are 2rn periodic in the phase function 6.

Ne define the average Lagrangian over one period to be

Ly

I 4.} Lde2n | (61ge

and since the space and time scales are considered long compared with the

wavelength, the averaged variational principle

| [= rdrdt - U (61°J

provides the required Euler equations. Note that in terms of q,r,t Laplace's

equation, equation (6), becomes

D,, +k2Dgg + O[D, +L @. +..)=0

where terms describing the slow variations in r have been neglected.

We expand, to the same order of approximation as Laplace's equation,

h and F into their Fourier series in the phase function 6

h = Hirt) + h(e,r,t} (62)+

Hir,t) = Hr) + n(r,1)
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»vhere

d=y+ 3 ¢™6,r tosh nkz
n=1

h(e,r,t) =a c0s0 + a; cos 20 +. -

o™o,r,1) =An sin n@

(63

(6
Fl

J

£JO 3)

Here H is the steady undisturbed profile, n represents non-periodic

variations from the undisturbed depth, and ® has been chosen to satisfy

Laplace's equation to first order along with the zero flux condition at z=0.

The two new sets of variables an and A, are amplitude parameters. The

main one of these, we define as aj= a. The parameters a and 11 ( both of

which are supposed to be small compared to one) are the other two important

quantities that describe a modulated wave train.

To the same order of approximation the derivatives of ® and h become:

5

D,  yy Zi
n=1

“ao! cosh nkz +

d= B y; + k 5)
pe ¢g cosh nkz + ...

&amp;, = Y nk¢™ sinh nkz + ...
n=1

h,= khg+..

‘¢ .)

(67:2

(68/

(GC7
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where the "+ ..." represents terms neglected due to the slow dependence of

the parameters on r and t. After substitution of (62), (63) and (66)-(69) into (1)

we obtain the approximate Lagrangian

= (157 + Let +f Bc olofsintLkt[icoso26
11.242 sinh 2kh 11.244 sinh 2kh _+ JCSZD +b] + Lig L2Kh-b)

(2 . o 2 . .

+ Li2goot ILsinh 3kh sinhkh] . Lig ILsinh Jich sinhkh
0) PI 2 ;+ Li2g Itsinh4h . h + kf iLsinh 4kh h]

de Ol
nN!

+ Lend) +
a (‘0 J

Now, to calculate Z, we substitute equations (64) and (65) into (70) and

substitute the result into (60). The average of L over one period is

o ~

I= Lg - JH &gt; Len? i’ Lgal 3 Lgaj - CN + €2A2]

Ta.Here »

side A + 2e1nA1A + eal] + 91 + Lica + 2a. ry
of .)

e1 = Lka cosh kH + Lk?aaj sinh kH + Lic%a3 cosh kH

ey = lka, cosh 2kH + 1x252 sinh 2kH

e11 = Lka sinh 2kH + Ly2q2 sinh kH + lka,

e12 = ka cosh 3kH

ey = Lsinh 4kH (72)
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The Stokes expansion is in powers of ka, and it is not uniformly valid

as kH—0. It also requires that ka be small compared with (kH)3. The

fundamental parameters in the problem are ( w,k,a ) and (y, 8 , MN). All the

other quantities a, and Ap can be eliminated by taking the variations with

respect to them, since they are independent of each other.

The Euler equations from the averaged variational principle (61) are

~

iyyy

SH

dA:

50:

SV:

2%) - 23) =0

°c) -2(3y) =0

L, =)

Ti=0
La =0

7)(7.

1)

(
\ 5)

i  6)

fra

wa 7)

To complete the system we introduce the consistency relations to eliminate 6

ANG \1£

k 00 _
ot or

B dy
ar t5-=0

(7¢-]

 nr
/")

The variations with respect to A; and A, lead to

7. -0)
w-Bk€11A1 + €12A7 Pe =0 (80Y

and
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on ©L,=0 : epAj+exnA;- oes =0 (81

Solving (80) and (81) for A; and Ay, we have

o-Bkre; ep, - iAr k? | e2€11 - €%,

A -€1€12@ Bk €2€11 |
-v12€22€11 12 k2 e?

(IR-}

(8o

Substituting (82) and (83), back into (71) and combining the A; and A; terms

we obtain

2 ) +8 : + ka +ka3]

[ vhere

~ 1

: led, (22-120 3TYa2a+(1+4T2)a3
4 kT 4T? 2T

+... \(84

T = tanh kH

To eliminate a; we simply take the variation with respect to a;

1

and solving for a; we obtain the following relation

ay _ (37)Bi)k
a? olor (1) - KT] 549K) (8°

Substitution of (85) into (84) leads to
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~ 27

Z=0c + o[LB"yf + pg »Loud 14Ak2) -opi].

4 Loa? gf1+1k2)-oa

1 2 gk? oT 101 2). = |or) SF | 14k? 142k?
i | 5 | (1+2K2) +...Xo

i
A (85)

where A =o/pg. This is a useful version of the Lagrangian for calculating

modulation quantities required in the Euler equations (76) - (79).

the

In order to obtain the modulation equations, we first need

following partial derivatives

Top = - YS) + 0(a4)
On

k -~ 13

I = BH + 1422)rTga? + Ofa4)

to calculate

R a
‘9

IR \

4

(X¢9)

(O()’

along with the variation with respect to H

I t)

from these

y= 1g” + gH + LE oe Lud) - ( 130i)4 | (91)
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where the following definitions have been made

0 = gkT(1+0k2) |, ©,- @

fw E14)

2g_ StCp sinh 2kH | 143k2

dag
and Cg = 3k (97)

(93
~

*

 gy 2)

Note that (91) is a Bernoulli type equation for the pseudo phase as coupled to

the mean height.

T'o obtain the dispersion relation we take the variation with respect to a

3

 ly

~ 2 _

(0B) _1+2DKE | Eo)
3 3

(95)

wher~

E = Lga2{1+\k2) (QR)

and

_ 1+)k2 1+L\k?
9T%-10T ATE + i

DoH .k)= —— LV 1+AKEJ \1+Ak®/
srr. [22]1+Ak2

(97°

This provides the nonlinear dispersion relation and we note the

dependence of frequency on amplitude, a, as well as on B and H The
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parameter E, which is proportional to the energy density, is introduced as a

more convenient small amplitude parameter to work with.

Therefore with the above definitions the modulation equations can be

WT1 en as

o[fE], 9(R.= IE] _Se ar Pred] 0
ok dw_
 ta =0

or]. Ol pH + EE]=rH] 2B + Z =0

 PB dv_
5 T=0

(96;

9) A

 0)“A

(10°')

At this point, it is convenient to separate H and 8 into their steady and

unsteady components. Hence, we expand all quantities containing H about

H(r) and retain only linear terms in h and expand B about U(r) ,the

unperturbed steady flow (1-6. B = U(r) +B),

We have

T = tanh kH(r)

w} = gkT{1+Ak?) ’ cp ==2 dw
and Cg = Sk

To Gl +Lin 12] + ue

Do = Dg + O(n)

Bao=c, -1 143k?
OT aA (102)
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When expanding any function to O(1), we merely drop all over bars

and evaluate quantities at H.

Making use of the new definitions and keeping terms to linear order in

1, B, and E, the dispersion relation becomes

22 . Dok kBo. ,
® = dg + fk + GB REVn+ (iC.2)’

In order to analyze the fourth order system (98)-(101), we make one

final definition purely for algebraic purposes

A = 2 = wave momentum (104
.

/

Substituting (91), and (102)-(104) into the system (98)-(101), we obtain

the following modulation equations

2).2[Fecfi]-0
ol) + 2r{pr + un + Bn +A =0

x 2 + Blk + ap + Bon + Dok?A|=0

2B 9 B + +Boal-o

fF .5)

“36)4 1

(ic7)

(10 )

These equations determine to first order in A, 1, and B the evolution of

the wave momentum, A, mean wave elevation, 1 , wave-number, k, and

mean radial velocity, PB.
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In order to study the stability of a Stokes wave train, we need to

examine the characteristic forms of (105-108). The stability is decided by the

equation type of the full set (105-108) which is fourth order in (A kn,B).

The system can be rewritten as

ne+ Une + HB, + A; + IE +(rU)m +Al =0

deg dcg (U+cg) dwg bd _Ag+ (U+cg)Ar + Sek + 2u, + ct + pil Hk A=0

Be + UB, + gn, + (Boa, + (32) Ak: + (30) AH, =0

(10%)

(110)

(111)

+ U +B + cg +52) + ADoKk
~ |B dwg (kBo) -+ kB; + al + Dgk2A, + kU, [20 + (Doi) * H | ne =0 (112)

where nonlinear terms like AA; and so on have been neciected for the

calculation of the characteristic speeds.

To find the characteristic forms of the system (109-112), we compose a

linear combination: L; times (109), L, times (110), and L3 times (111) added to

(112). The composition is

aC Bo kBo Ligk, + KU +cg+V +L tA REL + Ln. +n{U + a + 3 |

Dol | Lj | LaBg LH kl =+ LiA+A{U +c, +3 tot abe | +L B, + BJU +L 1 kJ RHS (113)

Ly  1 OYE

v= 8 + [Bo] n + (Dok)A

The combinations can be written in terms of a characteristic speed c
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ke +cke + Ly(Mc + cn) +LofA + cA;) + La(B, + cB;) = RHS (114)

which requires that Ly, Ly, L3, and c satisfy the system of algebraic equations

~~

-r LJ dc BoA
+ Cg tVHLy PA +L

dBo
dk
H

U-c 0 g

H 0 U-c

po

a
L1 Dok?

kBo
H

}

| | | k

3)To

(11:D)

where

co=U+c,

Solving this system of equations, we have the condition that ¢ must satisfy

[2B
(co-cH(c-UR-gH] + (co-c] SHc-U+Bo)A + W(c-UR-gH)

Og= -Dok{ {c-UP+ gH) +g+ 220c-U) teBf =0
 =

 | 7)

The resulting multipliegs are

L, = K(c-U)Bg + gH]
(c-UP - gH

19Bo
[,=CCotv “3k | (c-U) + =deg. dc _A-:  H-tgH (c-U?

]c-U) + Bg
bs = - gH

11:-

~~

a)

Now to solve for ¢ we look at the limits as A —0 and find that coc, is a

double root which corresponds to linear wave theory where the double
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characteristics collapse onto one. Note that the errors in (114) are O(A2).

Therefore, for the roots when A—0, we get c, plus a correction. These are

given approximately by

~

No

0 _ 2et Stil am, #1 Bde UlgH - (co-UP  |
-
3"

}S11

c= coty/ YAR (Mk2 KH)

wheaor »

ace _ 1 Vek 14M) Lgak2.30 24 kr LTHLIME Lid (14577) (120)
ok 4 2 (1402)? THhig2 2 T -

and D, was defined in (97) and B, in (102) and F(Ak2,kH) is defined below in

equation (122).

dcg
Due to surface tension, jx changes sign and so does the bracketed term

in (119); hence the radicand is negative for certain regions of kH and Ak?

co.spa

The terms inside the bracket arise from the nonlinear coupling of frequency

with amplitude and from the coupling of mean height n with mean velocity

B. Also note that the correction to cg is ofA) and not O(A).

The other roots that we find as we let A —0 are

c= U +Yeh + OA) A&gt; (1277
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These correspond to the simple nonlinear shallow water wave theory

(corresponding to equation (48) linearized about a steady state). The correction

to these roots is of O(A) and does not produce any kind of instability since the

roots are real. The equations derived so far are first order in A, 1, B, since the

waves are of very small amplitude.

To answer the question of the stability of the Stokes nonuniform wave

train, we simply determine when the characteristic speeds become imaginary.

This implies that the radicand should be negative. If the radicand is positive

the waves would propagate in a typical hyperbolic fashion; otherwise, the

equations are elliptic and modulation tends to grow. This does not

necessarily imply that the motion will be unbounded. We conjecture based

on results for rectangular geometries (Whitham's Linear and Nonlinear

Waves, 1974) , that the next stage would be the development of modulations

where the envelope of the wave develops into a sequence of solitary waves.

In order to look at the critical regions of stability we set to zero the

radicand appearing in the equation that determines the characteristic speeds

and obtain a stability map of kH versus Ak2. We note that in the absence of

capillary effects (A=0) we recover Whitham's stability result (Whitham 1967)

of kH=1.36 as the critical threshold for purely gravitational waves.

The neutral stability of the modulation is determined from the zeros of

the function

_6E-3E2 ef 143FE, Q)= pax - afi - 13 =
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|1 sgl efi) 15 18g!
a Jou ops). 125,4 q T oe |

("22)

and

F(E,Q)=0

where, for simplicity, we have defined (§,Q) = (Ak2,kH)

The regions where F(§,Q) turns from negative to positive correspond to a

change of type of the modulation equations. The system equations turns from

elliptic to hyperbolic. Thus, the zeros of F(§,Q) define the neutral stability

curves and the wave train propagates in a typical hyperbolic fashion for F(€,Q)

greater than zero.

Figure 7 is a plot of the mentioned curve F(§,Q)=0. Notice that the

critical value is kH=1.36 in the absence of surface tension. Region I represents

the typical deep water ifistability. However in the case of finite surface tension

effects, we find that for large kH and moderate Ak2, greater than about 0.4, we

move into a stable hyperbolic region (region II). This region again turns

elliptic as Ak? increases so that region III is entered. Region IV is again stable

for any Ak? but becomes unstable as kH is increased or decreased enough so

that we return to region III . As kH is decreased, we reentered the unstable

region III but we quickly enter region V which is again stable for all Ak2

except in the bubble defined by region VI which again turns elliptic for small

enough Ak2. In other words, for long enough wavelengths the wave train
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becomes unstable; we tend to think that this mechanism leads to solitary

wave modulations.

Region VII is again stable and corresponds to the classic limit of kH

tending towards zero. The intersection of regions I, II, III, and VII is an

unstable saddle point where dynamics are very intricate, depending on the

region from which one is traversing it.

Since we are interested in the case of water waves, for which

A=7.54x10-6 meters squared, we look at a map where the 1 dependence is

extracted and the contour becomes one of H versus k.

Figure 8a shows the stability regions for water waves in a graph of the

critical dependence of H on k.

One of the main features to observe is that as k tends to zero H tends to

a finite value of about 0.0048 meters which was not obvious from figure 7.

Again the regions of stability are marked on the figure with an S for stable

and a U for unstable regimes. Our interest is in the limit as H approaches

zero, and we notice that in this limit waves are unstable for waves having

wavelengths in the order of 2.8 cm or longer. However as k increases and H

decreases we see that waves of small amplitude could also become unstable.

Therefore we conclude that small amplitude waves or "ripples" can become

unstable depending on the film thickness. However, we should be reminded

that this instability could imply that a small periodic modulated wave train

could develop into a train of solitary waves.

Figures 8b, 8c, and 8d show stability maps for different values of A. We

conclude that by changing the value of surface tension to density ratio
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changes, we are able to change the cut-off wave number for region VII. Note

that A can be changed by adding surfactants, changing the density or the

temperature of the fluid, or by using a different fluid (or by lowering g, as in

micro-gravity applications.)

By decreasing A, the cut-off wave number increases. This implies that

the critical wavelengths are smaller for thinner films. As A increases to order

10-5 m2, the cut-off wave number decreases, making the instability become

important for thicker films on the order of 0.8 cm, but stable for very thin

films except again in the limit of extremely large wave numbers (see figures

8b, 8c, and 84).

In order to understand what happens when the modulations become

unstable we need to include higher order dispersive effects in the expansions

as well as in the calculation of the averaged Lagrangian. However, instead of

doing this, we choose to look at a long wave analysis applied to the reduced

inviscid equations (29)-(31).
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6. Derivation of an Evolution Equation

We analyze the evolution of a disturbance on the surface of a radially

spreading film whose thickness is considered to be a slowly varying function

of the spatial dimension, in the sense that changes over one wavelength and

one period are relatively small. However, the steady state solution is

considered to be of order one in amplitude when compared with the

disturbance. By assuming long, nearly one dimensional wave disturbances,

we have the two small parameters already introduced in equation (10)

A Coan

A
p=

AG (12°Y)

which account for dispersive effects in the radial and azimuthal directions

respectively. Expanding the inviscid water wave equations, (12)-(15) in these

parameters, we derive the simplified version of the equations for the velocity

field (u(r,0,t), v(r,0,t)) and the film thickness h(r,8,t). The momentum

equation in the radial direction is

Uy+
J 2
Lu? + v2) + Mh + (8%) ALE onfup 3 =r + u2| -Mh3{5%h)| +...=0

\
a,
i

 2: i4)

to order 1 in pu. The continuity equation

th) + (thu), + Piehvg = (} (12.py;

is an exact equation with u and v defined in equations (24) and (25). Along

with the consistency relation
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equations (124-125) determine the system to ous, u2 p, 8%) These

equations are identical to (29)-(31).

To study disturbances on a steady film characterized by H(r) and U(r),

where H(r) is the steady film profile and U(r) is the steady radial velocity

distribution as obtained from equations (35) and (36), we perturb these

quantities with small but finite amplitude disturbances. However, since the

film spreads radially, we need to scale the amplitude of the disturbance as

well as the time and space coordinates so that we can achieve a balance of all

effects. By considering waves traveling mainly in the radial direction we can

introduce a phase-shifted time coordinate, x, that takes into account the steady

fluid velocity. We also introduce a slow length scale, t, to account for the

slow flow dependence on position. In order to find a solution that would

take into account radial spread, nonlinearity, and dispersion, we must look

for non-trivial scalings that combine all three effects. The method is similar

to that of singular perturbation theory, in this case we have an amplitude and

a shallow water parameter that must be combined in some non-trivial

fashion. Hence, we propose the scaled field variables:

h = H+Ah A -_ Cy’ 3 [)

a—U+ Au

J  uk
— “hg —

; 27)

as well as the scaled independent variables

{ = MM G(r) t)
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7 = ekpir

g = £Pu90 (128 J

where x is the phase-shifted time coordinate that acts as a length scale, and t

is a slow radial coordinate that acts as a time scale and G(r) is an unknown

function to be determined from the analysis. This scaling happens to be

valid for our purpose since we are interested in analyzing disturbances on

the film away from the stagnation point. The § coordinate takes into account

slow azimuthal variations of the disturbances. We further specialize to the

case where

2- = O(l)

or equivalently

3 = Bol 12% }

where B, is an O(1) constant.

In equations (127-129), € represents an amplitude parameter; however,

we have not yet specified its relative magnitude. For now, we assume that

both m and e are much smaller than one.

These scalings are equivalent to a multiple scale analysis in the variables x

and 1. Here, any function of r becomes a slowly varying function of 1.

With these new independent variables, derivatives transform as

9 _ en m9
ot Hox

\.Ho
»WW)
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(Note that primes refer to differentiation with respect to r or equivalently

with respect to 1.)

All exponents need to be determined from the equations of motion.

G(r) is a function that takes into account the fact that the steady state is non-

uniform. We further impose the condition that G(0) = 0 so that we can map

the value of x =0 to the point (r,t) = (0,0).

Substitution of (128), (129), (130), (132), and (133) into (125), (126), and

(127) leads to the momentum equation:

(uG- Duy + MG'h, + 520i (Un), + Mh] + AG uuy + eZ YLMH? iwefhes
ho

+ 2H2G ktm im22GUn+GUuhee2u2422(Uru+LU+(Ua)

eu rola) =oi A 1.2)LS

 nN

Balancing the nonlinear term with the dispersive term requires that

3a a 2)
In 2m+2 = A

The continuity equation becomes

(GU - 1)h, + GHu, + AG (hu),

 gleny jm (Hu); + (Uh), + Hu+Uh . EP a ve 2: pores] vol a )=0, A—0 (134)

which yields the requirements

vu
wy

 | +b+q = A
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gk-ny,j-m =A (12.5)

The consistency relation becomes

Gv, - Bo(Agp-enskyambritly, + eu ve » 4 =0 f° 75)1.

with the conditinn

“Nn  -op-K, «m+b-q-1-j = A (7)15

Solving for the exponents from the above requirements , we have

A any, 2m+2

and

ie om
fo

iy]n p — “3

i=3m+2 gq=-m-2

1 = 3n

b = 3(m+1) (4 »

+)

for arbitrary n and m as long as A — 0. This result does not impose any

additional requirements on the size of e.

From the above relations, we see that A can be used as an expansion

parameter once the non-trivial scalings of the amplitudes have been taken

into account. The final form of the scaled variables is

h—H +Ah(x,t,E)

a—U +Au(x,1,E)

i—0"v(x,1.8) (13¢ )
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where h,u, and v are now O(1) quantities with the independent variables

scaled as

X

T =

£ =
-

2 (G(r) -

3/2
Ar

0

0__
JA? ‘14(3

The governing equations are now:

the momentum equation,

(UG'- 1)u, + MGh, +
Al(Uu +Mh), + Guu, + (MHZ. _1 e.g [G Pee + Ola%) = 0 , A—0

ho (141)

the continuity equation,

(uG-1)n, + GHu, +

A|(Hu+Uh), +(Hu+Uh) +BoH— p Ghul] +ola?) =0, A-0 (142)

and the consistency relation.

Gvy Bo + Ave + Y + ola?) =0 ,A-0 1A3)

We now look for solutions of the above equations by expanding the

order one quantities u, h, and v into their Taylor series expansions about A =

0. For any function

1.4) = f(x; 0) + Afa(x;0) +ola? (144*!
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Therefore, let

1=u+ Aull) +...

h=h+Ah{D +...

v=v 3 Al) +... (145°

Substituting the above expansions into the governing equations,

collecting terms in powers of A, and requiring that the coefficients of all

powers of A vanish exactly furnishes a sequence of problems for u(®, h(n), and

vn)

We now solve the first two problems in the sequence.

The (1) Problem:

UG-1)hy + HG, = 0

'UG-1)u, + MG'h, =0

G Vy Gy 0

16)Id

1.47)

(18)£

The solution to this set of equations can be expressed in terms of the

unknown function h so that

= Mh
MH

Co MB,Gvx _s| Mb},

1 A:\ &lt; P))

(15: 2)
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and

rr

G(r) = dr
] U(r)-£YMH(r)

(151
\

J

where "- +" stands for minus or plus

To this order we have completely determined the phase function G(r)

with the condition G(0) = 0. We note that U- + YMH are the linearized

versions of the characteristic speeds of the hyperbolic shallow water wave

equations, as found previously in equation (48). We also notice that, if M is

negligible, the characteristic speeds collapse onto a single speed equal to the

mean flow speed. Hence, in a purely momentum driven flow, waves will

propagate predominantly in one direction. In that case, the mean flow speed

is much greater than the gravity wave speed (found here) and disturbances of

this type are swept downstream rapidly.

The order one problem is not sufficient to fully determine the three

unknown functions, hence we look at the next order problem to evaluate h.

The O(A) - problem:

' , , Vv '

AGW + (UG-1){) + (Urn + (UMAhe+1)+BoH—+MG, | =0

 1 h(D) 'W1) MUh ‘M2 2)(UG-1)ull) + MGH{ (Mn MUL) | GME (1 MEG, =o (1..3)

159)

—
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0. pt (1) _ v]—Gv{ Bo + [vet] 0 (15D

Since we are interested mainly in determining h, we eliminate ul) and

h(D) from the first two equations. For the two equations to be consistent the

following relation between h and v must be satisfied.

Hv
2c H IM MEH _1 BoHve _ 155

vin
‘AJ LO

c+ = U- + YMH

This condition together with the results from (149-151) provides a single

evolution equation for h(x,7,E) :

hoypl2c - HO) 4 [3MHy + [MHz 1 2 ES=2h, +Brn{2 Ho) + [2M] inh + ME{Lp Svar) £8 MH =0
|0)

Equation (156) is valid for arbitrary € and y as long as A—0.

This evolution equation is the desired condition that completes the

O(1) problem. In other words, we have found an equation that provides the

evolution of nonlinear ( i.e. finite amplitude), dispersive, long wavelength

disturbances in nonuniform axisymmetric fluids.

Equation (156) is an extremely rich equation, that has the nearly

concentric Korteweg-deVries equation (ncK-dV) as well as the cylindrical

Korteweg-deVries equation (CK-dV) as special cases. In general, equation
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(156) is called a variable coefficient Kadomtsev-Petviashvili (KP) equation

(Santini 1981).

For example, consider the case of nearly concentric ripples propagating

on a quiescent constant depth fluid. This implies U=0 and we can normalize

c = +1 and Gr) = = r. Equation (156) reduces to

(2h; + D+ 3ph, + + -Vw Pea) Lhe =0 157

which is the ncK-dV equation, first derived by Johnson (1980).

if we impose axisymmetry in the above case, we have

2h, + h + 3hh, t + - Mer pres (15¢)

which is the CK-dV equation (Johnson, 1980). This equation describes

concentric ripples on still shallow water.

Another special case is the one in which the flow is momentum

driven

Mit « U = c ~[] N WH  (0

Gir) = | 4+ OYNH) | YMH- 0 (1b3)

The evolution equation becomes

2 MH
2h, - si +L +3{MH hh, + IMI? - Ld Mes (PIMH, =0

2H © HU? ut 3 3 MWen, . 2

(16 1)
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In the case of the inviscid far field (from equation 39) U is almost a

constant and H is inversely proportional to ©. We normalize U to one, H to

1/agt (0g = ap/A&gt;? ); G(r) becomes

Glr)~r+2./ Mp /M
Gr) ~rtx2 ot , ~ —-0

The equation for h is

h3h (avg 2n +f MLL.1 sp [3 he _20: + + {3 ooM 1 i lo ; 512 in - huss] Bo 00 502 0

(161)

We can rescale the variables as follows:

1 comin. 1)

aZPM*P Wen,
{ mE — or — X

 LYM V12pey 14

[ — (MWena72 =

bo
-

-
«

—
Bo

o Mn
—&amp;

M V6Wep, 1/2
16°J

and we have

3h 112 1-1 __1 1p, =(20 +304 3012hh, + 4 3 ens) + —Lohgy= 0 16. \

]

which is the same as (161) but rescaled so that it is parameter independent.



"

 po \

The rest of the analysis is devoted to the study of certain limits of the general

evolution equation (156).
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6.1. Variational Principle for the Variable
Coefficient Kadomtsev-Petviashvili Equation

Before continuing with the analysis of the general equation (156), it is

interesting to note that our evolution equation belongs to the class of

variable coefficient K-P equations (Santini, 1981). Note that the variable

coefficient K-P equation can be derived from the variational principle

5) = () 4c» gy

Jt1

where the Lagrangian L is defined as

L PP. - Lyp3 + LHP?xI' 1 LvP} + 1APSy - Lh + in °PxQ ( 6!1

and P and Q are potential functions; v, A and A are functions of 1, and i is the

imaginary number.

The variational equations of the above Lagrangian are:

SP:

Prr + VP5P 12xPxx -TA Qex + APxxxx = 0
‘.| 6.3)

oO:

Q +i 1/2 16"/)

This system can be reduced to the single equation

vhere

(¢e + vCCx + A xxx + Alege =0

{ =P,

v3)1

(16%&gt;
7
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and these relate to the original variables as

ry ~
o =

re

1 "4

2.
~

 (Me lH) As

v=t OH |2 33/4172

BYMH
+2 (17. ry

{ satisfies the variable coefficient K-P equation. The variable coefficient

K-dV equation can be derived by specializing to exponentially decaying one

dimensional waves (Ablowitz and Segur, 1979).

Even though knowledge of a Lagrangian is extremely useful (since we

can then apply all the powerful tools of the average Lagrangian theory for

modulated wave trains), we choose to study the equations in a more direct

way. Instead of looking at the exact modulated equations that can be derived

from (165 and 168), we use perturbation techniques to study certain

asymptotic limits of (168).
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6.2 Axisymmetric Dispersive Disturbances

For the case of axisymmetric disturbances, we examine the full

evolution equation (156) and look for solutions that decay for large values of

Xx. The equation becomes

h,pl2¢_H4[3yMH MH(1p2. _ 1[2h +14 {2 Ho + (IV Joh, 2 | (MEL - St hoes | ~0

and for solutions that decay exponentially as x —+, we have

n,opl2¢ _ HL [3YWMA, + [IMH(12 1 _2he +0 +h{X Hos Joh 2 | (EL Me oo 0

(171)

17.~. J

This is the equation that we choose to study in sections 6.2 and 6.3. We

can transform (172) to a more compact equation by the following amplitude

scal r a.

1
 pl /2
LT h
- 1/4

17"
5

%)
a

The corresponding evolution equation for h is the variable-coefficient

Korteweg and de Vries equation

n- A vVNNx + 2 sere =0 i
*17 3)

rhe.

y=ti_ IMH
2 ~3yg3/4.1/2

A =2 IMH(1y;2 - bord

13)

1mk
\ 3)

for general H(t) and c(1).
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In order to analyze the variable-coefficient K-dV, we note that v and A

are slowly-varying functions of t. With this in mind, we look at slowly-

varying modulated wave trains by introducing slow scales to describe the

modulated quantities and a fast scale to describe a rapidly-varying phase. It

should be noted that the K-dV equation is itself a model equation that

describes the evolution of a weakly nonlinear, weakly dispersive wave.

We study both slowly varying periodic solutions and slowly varying

solitary wave-like solutions. Slow modulation problems are based on a

small parameter that is intrinsic to the problem. In the case of the thin film,

we can choose the parameter appearing in the steady state solution H(ar) or

equivalently H( noa™ 21). We therefore let the small parameter be

~

et?
wad 2 ce |

(= 77)¥

6.2.1. Slow Periodic Modulations of the

Variable Coefficient Korteweg and de Vries
Equation

The governing equation reduces to the variable coefficient K-dV

equation (174)

1v + VNMy + Ayyy = 0

where v and A are functions of 1, and are defined in equations (175) and (176).

Note that we have changed the notation in the K-dV equation (174) from zt to

y, and from x to x in order to introduce the symbols tT and x as the slow

variabies.
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We choose the fast and slow time scales

2 = =~~

 co

T=€y =0r

X (178)

where © is the phase function, and € is a small parameter defined in (177).

With the new independent variables the derivatives transform as follows:

dy 09 OF

oy, 00 ox
fe)
af

here

 mw —- 5. and k=0,

Equation (176) becomes

Mg + kving + Anggg + ee + VNNx + 3Mk2N gx 3:kk,Nee))

4 Ae 3kN gy + 3kxNox + KxxNe) +A&amp;Mxxx =( (130)

The method of solution follows by expanding mn into an infinite series

in powers of €.

n= 2, en®™.x) , e&lt;&lt;1
“=

(1R 1)

In order to analyze slow periodic modulations, we impose the

condition that all the n(™ in the expansion for 1 be periodic in 8. Requiring
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that all n{ have the same period as N{®=1n ensures that the expansion be

uniformly valid.

Substituting (181) into (180) and equating the coefficients of like powers of €

to zero, we obtain a sequence of problems for n(®.

The O(1) - problem fo

Ng + kvng + Ak3Ngeg = 0 (18.iBR |

This is a local steady state K-dV equation, whose general periodic solutions

are cnoidal waves. We therefore write down its general solution as

n = Nx.t) + ox,7)cn? [¥x,7)0;p(x,7)]  13)4

where p is the modulus of the Jacobian elliptic function, and 0 &lt; p &lt; 1. The

case p = 1 gives the solitary wave solution, and p = 0 the zero period and zero

amplitude cnoidal wave. The modulation parameters B, a, vy, and p are

related to w, k, v, and A. The goal now is to determine these relations. We

begin by setting ¢ = y8 and by calculating the derivatives of 1.

Ng = - 2Y0L CNPSNOd:iP

Neo = - 2Y?a -sn?50 vol sng + psn + cng - 2p2cn2osnie)

Ness = - 3¥al-snpcnedno + 2p2sn3ocnedng - pXen3psnodno) (154)

where sno, cng, and dng are all Jacobian elliptic functions. After substituting

(184) into (182) and if Nn, as in equation (183), is to be a solution of (182) for all

O then

_o _12Ak?
p2y2 Vv

(185°
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and

w = kvl + 4y2k3(-1+2p2)

To these we add the consistency

| =»
 yy ¥ "Dv

relation that eliminates ®

(18¢)

(18 ~\
“ J

To close the system, three more conditions can be determined from the

O(e) problem by ensuring that n be periodic with the same period as 7.

The O(e) - problem is

one) + {nn + Aen). = [ne + vim + 3(k2ngy + Kketlolo) (188

and if we require that the wave profile decay to zero as it travels then must

take a particular form. This implies that

 ] &gt; x.7) (18BY

nl) 0

and from (188) we see that the right hand side (RHS) gives

e+ VT|,=0 4
—+
; ¢20)

aT

.+VvIT,=0 131)
fF

This equation decouples from the rest and hence determines I'(x,t)

from any initial value of I. The implicit solution of the Cauchy problem is

Co Mxg,70) (19
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where xo(x,t) and to(x,t) are determined from the family of characteristic

curves

K &lt;o + (X00) vdt SEE
1“19:

Hence if I'(x,, 19) is zero, I'(x, 1) would be zero for all time.

Another conservation equation can be deduced by integrating (188)

over a complete period. This implies

»2TT

A de [n. + vin =( (19 1)

which is equivalent to

3 2n 3 2n
= yo 240 =pw | nde + 2 N“de =0 A1¢

where the symbol "21 " represents any complete cycle rather than the actual

value of the period. We now define the following quantities:

[h= ~
= cn?od9 0=ELE {1-p?K]

=| cnt pdg = -L{(2-3p7(1-p2)K + 2292 - 1)E]

rK

= cnb =odo = 420? - Ula +31So? —&amp;

(19¢ }

t107)

/(1¢
-Y

2)
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where K(p) and E(p) are the complete elliptic integrals of the first and second

kind, respectively. With these definitions and combining (191) with (195) we

WTI!

Tr 2 0lay, 1a” |=5 9 Ly, + : I49 | + vs, yot] y Y
(199)

To obtain the final modulation equation we let n(1) = ngF(6,x,1) and integrate

 del-om + iofm(V) + dic
rf

("10 7)

The O(e) equation becomes

2 -MgF + kvingF + Ak¥NggeF + 2NgeFg + NeFoo]

st
Worms Ime + vinx + 3Mk2ngy +kkyNo)e) iil 1)

and integrated over 6 and making use of the O(1) equation we have

A 211g9Fg + NgFge) = - (Nx + v0 - 3Mk2ng, + kag) (202)
nN

r9

[f we now multiply by ne and integrate over one period we have

2x 0 2n 0
3Ak? ={meFolio = | To [ (Ne + VIN) dO - nf Mo [ (k?ngy+kkxngld®dO

0 0 0 n nN

(03)

This equation reduces to
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3 2n 3 2n 3 2n
=91 1n2 91 1n340-3A 9,2 2400 2 ou | 37 do 2 2) Ned 1‘

This is the required secular condition that closes the system of

modulation equations. Combining the integrals I (p) with the mean flow

equation (191) and making use of the conservation equation (199), we reduce

(204) to

01 ar |, 911 vlo2r. L 103Vr 32221. |. 1 Vo? _heat + va LEE, + 3 v Ig - SAK a Is +} YLT =( (205)

The above equations describe the slow modulations of a periodic wave

train of cnoidal waves in terms of the wave-number, k, the modulus of the

Jacobian elliptic function, p, and the amplitude of the wave a. If we now

specialize to the case in which the parameters are all functions of tT only, this

implies that we look for solutions to the parameters that are solely dependent

on the radial position, and not on the time.

he | 1 I. -{ (20¢ 7

and

olg ar. —I,[=0=%], =¢g7 8 y
of; a2, 1. 2.oh Zr] 0-02 =,

#4
“

F
,

v
o 3

~

7)

IR)
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or combining the above with the dispersion relation and the amplitude-

width relation, we get

a _ 1p) Lipo)
oop Ip(po)~ La(p)

Ibo,fv ho Lp) Lipo)Yo PV vo ja Ipo) Lip)

2 1

3 p2

(200~%

']

 0)

371) Tq

and

A _2o Po B®) Lipo)
V. Vo 52 Bp) Lp)

(21:
~

%)

where the subscript refers to quantities evaluated at some initial time.

The last equation provides an implicit relation between the modulus

of the Jacobian elliptic and the ratio A/v. Hence, we know p(A/v) or equally

p(t). Since I' is constant we may set its value to zero because we are

considering 1 to be a disturbance on a steady profile. Therefore,

I'=0

From the equation for @ we can determine the phase function © by

integration, so that

gen

ya

* 2

[forthTo p?
(214)
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with p(t) given implicitly by

loth]
(2-3p2f1-p2)k + A2p2- 1)g] - wan (214

From (214) we infer that as p varies from one to zero the 1,/p%I; is a

monotonically increasing function that quickly approaches infinity as p tends

to zero. This implies that A/v increases as p—0, and for the case of an inviscid

film A/v is decreasing function of tT. Thus for small values of 1, p tends to

zero which implies that periodic wave trains with modulated wavelengths

would be observed in this region of space. However, as 7 increases, p tends to

one and the wave trains degenerate onto solitary waves. In other words, the

nonuniform film acts as a filtering mechanism that takes propagating ripple-

like disturbances and turns them into modulated solitary waves running

down the film.

We can conclude that oscillatory solutions are only possible for small

values of tT. Thus, for regions far from the stagnation point, we look at

solitary wave-like solutions. In the next section, we take a closer look at

cylindrical solitary wave disturbances.

6.2.2. Solitary Wave
Variable Coefficient

Equation

Modulations of the

Korteweg de Vries

The question of finding slowly varying solitary wave solutions to the

variable coefficient K-dV has been considered by many authors such as Ko

and Kuel (1978), and Grimshaw (1979) among others. Thus, we merely

outline the method of solution and quote the main results from the
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references. From here, we proceed to apply them to the case of a radially

spreading film. The method used is very similar to that employed for

periodic waves, except that we now consider a solitary wave which is no

longer periodic.

Again expanding h in powers of €, as in equation (181), we obtain an

J(1)- problem:

Mg pp Liv{n?2n2k + Ak3N gp = 0 215

whose solitary wave solution is

1 =1 + a sech? {0+6p) (216
3

 Fr

where 0 is the first correction to the phase

Direct substitution of (216) into (215) leads to the dispersion relation

and to the amplitude-width relation

© = vkT+La)

2 = ofA

,

(2. 3)

The third modulation equation is the consistency relation for

eliminating © between k and ®, namely,

Kr + 0). 1) t
{ma

Led 2)

In order to determine the rest of the modulation equations, we

continue the expansion to the next order.

[Tie O(g)- problem is
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amg) + lfm + MnGy = {Me + vim, + Mkknoke] (220)

We seek a solution for 1(1) such that n{1) tends to a constant as 8 — +°,

[t follows at once from equation (220) that

[r+I =0 (221)

Thus, as expected, the mean quantity I" satisfies the 'shallow water’

approximation to the K-dV equation; which again decouples I' from the

modulation equations and provides I'(x, 1) based on its initial value at (x,, Tq).

[n order to determine the last relation, we follow an approach similar

HO the previous section, which is to let

(1) = n Ho x.t (")*2)

which, after making use of (215), leads to

I nr —3 7

Jn
2Ng0Fg + NeFop] = {M+ + vinx + 3k(kNoos (22 7

Upon integration from zero to 0, multiplication by ng, and integration

from -©° to +90 leads to the last secular condition. Explicitly, this is

[ déne | ME 2neeF, + NgFog) dO = | dons {Ne + vim + 3Ak(knglo, JdO (224)
—oo 0 -co 0

By noticing that the first integration of the LHS leads to a perfect

differential, which vanishes at the boundaries the LHS equals zero. After

evaluating the double integrals of the RHS, we have

do? rv rel lo’ + Yr =
ot] ¥ ox| vy 3 vy a

M7"-)
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Combination of equations (217) and (219) with (225) can be rearranged

in the following form:

da? 1,19 a? all _AE] vr + ale + vl ky =0 (226°

This is the required modulation equation. Notice that to this level in

the expansion, we have determined a, I’, v¥, k, w, but not 8g. Examining the

form of (226) and combining it with the amplitude-width relation we see that

the grouping

2 — 11 2) “ass
ky V

(22 \

]

is a function only of a and t. Thus equation (226) is an evolution equation

for a since I' is a given function of x and 7.

We summarize the modulation equations as

30") ofr + 2ai2 8)" eft)"as
7k
== + VT + LA2J + VT + 1a2 k-=0

[ = | 20.20) along x = xo + I(x0,%0) [ veg

W = vki C+ 1A?)

(2:4)

 29)£ LA

 ary
b —-/ 7)

(93e)

where A = al/2
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Our interest again is on the case in which these quantities are

functions of 1 only, since the undisturbed film is changing only with radial

position and not with time. This implies

 =o
% -0 C  rT=1{r0)

x (23+

Again we can set k=1 and B=0, since 1 is a disturbance on a steady film

with B=0 initially. With these values we have

ot 2/3 T 43
d= x 120] Hd

Vo To A

 = aft)la)

Y _ Ga fla] ypEa y

(234®’

“24)

(23)

the phase function, the amplitude, and the width as functions of t.

In order to calculate 6p we need to study the next order problem, but it

suffices to look for solutions that are only functions of 6 and t. Hence, the

ole?) problem is

on + frm@+ Aen), = nt) + vien(1 hl) (2"2)

To solve for 6p , we first must solve the O(e)-problem completely for

n{1)(0,1) and then apply the same technique used to determine the last

secular condition, or equation (225). Namely



Y
Lg

oo 0 oo 0

dong | on? + kvm + An) ldo = | dene | Jn) + vin(Un{! ao
oo 0 - 0

(2 7)

Rather than to carry out the lengthy calculations, we simply quote the

results from Ko and Kuehl (1978), in which they find that

T §

y 2o-oo] sf fe
En

(23§ }

IY Co :

where Yo = Tore and the first order correction is to mn is
0

2(1) =n L{ptanh-1 - 41+) - 402 + 60 - e290 + D|tanh o)
(239)

where we let ¢ = fe + 60), and D is an arbitrary function of integration that

can be calculated from the next order problem.

Summarizing the above results, the disturbance to the mean flow is

N = asech?y{0 + 6) + en(1)
" &amp;

7. ) A 0)

where the argument of the sech-squared is

{0 + 8) [2 af rs
1/3 [*

a3
x. 100A0" | vB43 1/3 1/3

] Vo To A
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offal” of « a Tg 241

The amplitude and the width are respectively

a = of)Pia] (24
\

-)

= laf Cpr (z 3)

The Oe) correction is given by equation (239), and the slowly varying

functions v and A are given

vo__ ,

ve
"14

WMH
v=1 ~313/4,112 (04F J

Note that the only place in the solution of equations (240) - (243) where

there is M dependence is in the phase function, through the following

in: TI al

T

yas
Ta

4 Af
r

n

2)
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Since M is very small, the solution is practically independent of the

Froude number. However, M becomes important in regions of weak

dispersive effects (A — 0) .

Finally, the transformations

aquation (140) as

X
R} 42
, 16(r)-1

to paysical variables are given from

i’ 12

1
1

,A—&gt;(

Gir)=| —dr
. U-+YMH

where we have eliminated € in favor of the original nondimensional

parameters. Here M, Wey, , and pu are defined by equation (10), U and H are

given by equations (35) and (36) or by any pair (UH) satisfying the steady

equations, and c is given by equation (155) ( U, H are the same as little u, h in

equations (35) and (36) ).

This is the required solution to O(e?) . We now study the dynamics

represented by the analytic solution on the following figures. First, we

analyze the motion of a solitary wave travelling in the direction of flow on a

monotonically decreasing film.

Figures 9a shows the spatial and temporal evolution of a modulated

solitary wave on the surface of a monotonically decreasing radial film ( initial

conditions were taken at an arbitrary radial location.) We also observe, from

figures 9b and 9c, that as time and radial distance increase, the amplitude to

width ratio increases showing how the wave develops into a narrow larger

amplitude wave. In the limit as r approaches the jet , we see that the
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amplitude decreases considerably and the motion seems to resemble that of

infinitesimal waves. This observation is in full agreement with the periodic

analysis, since in the limit as r tends towards the origin, the modulus of the

cnoidal wave tends to zero making the Jacobian elliptic function degenerate

into sinusoidal waves. Figure 9d contains an r-t plane showing the surface

contours of the modulated solitary wave on the same monotonically

decreasing film. We again see, from figure 9d, that the nonuniform film

induces a filtering mechanism that turns small amplitude modulated waves

into narrower and steeper amplitude solitary waves. This can be seen by

noticing that the crest contours converge rapidly to a narrow larger

amplitude soliton that travels down the film. As was mentioned in equation

(246), the Froude number does not play an important role in the dynamics of

the wave disturbance (as long as A is non-zero). In other words, the

characteristic speeds collapse onto one, namely, the mean flow speed. This

makes the disturbances travel only in the direction of the flow.

In order to understand the effect of a non-monotonic film, we

substitute into the analytic solution a profile similar to the one derived by

Watson for the outer inviscid flow. Thus, we look at a the influence of a

downstream film with a quadratic radial dependence. Figures 10a and 10b

show the spatial and temporal evolution of a solitary wave on this type of

film. We observe, that as the wave travels down on the decreasing part of the

film, it evolves in the same way it did in figure 9a. However, as the wave

passes through the minimum film thickness, the amplitude to width ratio

begins to decrease back to the original ratio. This is again in full agreement

with the predicted behavior from the periodic analysis, which specifies that as

the film thickness increases the modulations become periodic. For this
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particular case, it just happens that as r increases past a certain point the film

thickness ceases to decrease and begins to increase, hence making the solitary

waves turn back into periodic waves of smaller amplitude. This effect can also

be observed in Figure 10c, which is an r-t plane for the corresponding

nonuniform film. Figure 11 shows a snapshot of the slowly varying solitary

wave on the surface of a radially thinning film superimposed on the

undisturbed film.

The analysis breaks down in a region where A, the coefficient of hyyy,

tends to zero. At that point, the equation can be approximated by a hyperbolic

version of the variable-coefficient K-dV. This case is treated in some detail in

the next section. This condition corresponds to minimizing dispersion,

namely when the film thickness satisfies

ge. 1
3 MWe, (247)

The dispersion coefficient is proportional to that in equation (247), this

implies that its magnitude could become negative at which point

disturbances would become depression waves. We do not analyze this type of

motion in the present investigation.
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Figure 9a: Spatial and temporal evolution of a modulated solitary wave on the
surface of a monotonically decreasing radial film.
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Figure 9b: Time evolution of the same modulated solitary wave as in figure 9a,
plotted on the same axis (h vs. 1).
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monotonically decreasing film.
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Figure 10a: Spatial and temporal evolution of a modulated solitary wave on the
surface of a strictly non-monotonically decreasing radial film (specifically,
we look at the influence of a film with a downstream quadratic r

dependence).
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Figure 10b: Time evolution of the same modulated solitary wave as in figure 10a,
plotted on the same axis (h vs. 1).
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Figure 10c: r-t plane showing the surface contours for a modulated solitary wave on
the surface of a strictly non-monotonically decreasing radial film
specifically, we look at the influence of a film with a downstream
quadratic r dependence).
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Figure 11: Modulated solitary wave on the surface of a radially thinning film (the
figure shows the wave profile at a fixed time superimposed on the
undisturbed film).
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6.3. Axisymmetric Nondispersive Disturbances

The full equation reduces to a simpler problem in the presence of

negligible dispersion on the (x,§) plane. This is the case for a region of space

where the coefficient of hyxx is much smaller than one, hence producing

minimal dispersion which leads to axisymmetric disturbances (assume B=0.)

The problem becomes one of a hyperbolic type and the full evolution

equation leads to

9 (L 2¢|Hp4[3MH |-ooh + LZ Hon (30 Ihe |~0 4-0  8 -

/)

and for vanishing h and bounded hg, hy, ¢', H' as x = «~, we have

L1H 9£[3 Hop, [Lo +Hnt] c2H 2)| / 4,

Now, multiplying h by the amplification factor, we get the modified

amplitude

n
1/2

CT h
Trl/4 ja J)

the problem reduces to the simpler equation

TT2 33/4012 nx =0 Ve
- BeoN)

implicit solutions may be found by the method of characteristics as

dn 0 rr -y
so 1)

dr

along the family of characteristic curves described by
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dt 2 C3Y3/4gl12
&lt;-

t +=te
»2)

Thus, the Riemann invariant n=n(xo,to0) is an implicit function of ©

and x given bv

X

T

tot Enfrorto) [ SE
To

(253°

here (x,t,) are the initial values of (x,t), but x is a function of r and t, from

equation (140); hence at t=0, X, is a function of 1, .

We note that the amplification factor for the general hyperbolic wave is

h = nol EL) “eof /2 LY
\

7

This is a generalized Green's Law for axisymmetric disturbances. If ¢c and H

are both constants we obtain the typical 1-1/2decay law for cylindrical waves.

Also if U = 0 then c is proportional to YH and we obtain

| = nolL) 2)Hq T
(D/~% J

which resembles the normal Green's law for infinitesimal waves (Lamb, 1932,

S153).

Wave breaking occurs on any characteristic x,, to, such that the Jacobian

of the transformation vanishes, which is equivalent to the crossing of

characteristics as in the case of shock waves.

(n other words,
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SN-  HN

Then t= 1*(t ) is the first crossing of characteristics and it corresponds to

) a

ol

™(%0)

1/2 tx0,%0) =-% ply
? 9 (257!

The wave disturbance shocks in the typical hyperbolic fashion.

The film thickness is given from equations (254) and (255)

_ HAh [2 [See] *htxo

"a long»

T

x = xo % 3n(x0,70)| —MHdr
0

The breaking condition thus corresponds to

3

HA
rs 5/4xoxo -,To) TE |To c3

&gt; T (ME
&gt;

-&gt;)

In the case of concentric nondispersive waves on still shallow water

the evolution equation reduces to the nondispersive CK-dV with ¢ =- +1,

| MH =1 and H = 1 as was proposed on equation (157). We have

h = )0) h(x0,10| 1 sd)£0

which is the typical decay law of cylindrical waves, and the characteristic

family of curves is given by
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1
&lt;

2

Breaking corresponds to

(tn) =Al 0) =1q1 +1 LF3 a] EF
— 1)

Similarly, for the momentum driven flow, equation (161), with

~~ =1andH=1/1,

a! TLE

1
3/4wo! h(to,x0)

X =Xpx 2304 - 7 34h(10,x0)

(26. "n
-/

(26: X
vi

With the above characteristics, the breaking criterion leads to

(10) = “ 1 do main2 13/2h, (10,%0)]
4/3

-

4)

In order to visualize these results, we numerically integrate the initial

value problem of equation (250), by using an ENO scheme (Harten and Osher,

1987)

The integration is carried out for a region in the inviscid far field where a

modulated solitary wave has already developed, as from section 6.2 and figure

9, and where dispersion is negligible compared to nonlinearity.

We study the amplitude dependence of the initial prescribed data for a

fixed Froude number. Figure 12a shows the time evolution of an initial

solitary wave profile of very small amplitude (0.1). We note that the profile
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steepens without breaking. Thus, waves of very small amplitude can be

sustained by the film.

see

Figure 12b is an r-t plane for the modulated wave of figure 12a. We can

from the contours ahead of the wave that the profile does not break.

Figure 13a and 13b are time evolution plots of disturbances with

amplitudes 0.25 and 0.5, respectively. We see from figure 13a that the profile

has steepened to almost its maximum slope before breaking, and from figure

13b, we see that the profile has already formed a shock, and its amplitude has

begun to diminish.

For even larger amplitude, figure 14a presents the evolution of a

solitary wave profile of unit amplitude. Again, we see the steepening,

breaking and diminishing of the profile. Figure 14b is an r-t plane of the

evolution of the wave profile shown in figure 14a. A three dimensional plot

of the spatial and temporal evolution of the wave disturbance is presented in

figures 15a and 15b for the same unit amplitude wave.

It is interesting to note that for the small amplitudes, 0.1 and 0.25, the

peak amplitude seems to be preserved. This could be the case since the waves

do not shock at any location and hence do not loose any energy as they

propagate. On the other hand, for larger amplitudes ( 0.5 and 1.0 ), the waves

steepen and shock. Thus dissipating their potential energy, and this is why

the amplitude diminishes as they travel.
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Figure 12a: Time evolution in the h vs. r plane of an initial modulated solitary
wave profile. For this small amplitude (0.1), notice that the profile
steepens but does not break (note that the profile is not superimposed on
the undisturbed film).
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Figure 12b: r-t plane for the same modulated solitary wave as in figure 12a.
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Figure 13a: Time evolution in the h vs. r plane of an initial modulated solitary
wave profile. For increasing amplitude (=0.25), notice that the profile
steepens almost to a maximum slope, but still no breaking occurs (note
that the profile is not superimposed on the undisturbed film).
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Figure 13b: Time evolution in the h vs. r plane of an initial modulated solitary
wave profile. For increasing amplitude (=0.5), notice that the profile
steepens and breaks in the typical hyperbolic fashion (note that the profile
is not superimposed on the undisturbed film).
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Figure 14a: Time evolution in the h vs. r plane of an initial modulated solitary
wave profile. For even higher amplitudes (=1), the wave profile breaks in
the typical hyperbolic fashion , and it is dissipated by the flow (note that
the profile is not superimposed on the undisturbed film).
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showing the evolution of the modulated solitary wave (viewed from the
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the t=5 plane).
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7. Conclusion

The behavior of wave disturbances on the surface of an axisymmetric

nonuniform film produced by the impingement of a vertical round jet

against a flat surface has been investigated. The research is a theoretical study

composed mainly of analytical work along with numerical experiments to

support the analysis.

In the analysis, we first find a steady state solution to the inviscid Euler

equations, and this solution is then perturbed in three different ways:

1. The hyperbolic initial value problem for the axisymmetric

shallow water wave equations is solved numerically.

2. A Stokes wave expansion, for small amplitude, is assumed as a

perturbation on an arbitrary fluid depth in order to include

nonlinear dispersive effects.

3. A multiple scale analysis, based on the slow changes of the liquid

film relative to the disturbance wavelength, is performed on the full

dispersive water wave equations in order to derive an evolution

equation for the wave disturbance.

From the first of these analyses, we find that solitary wave initial

disturbances split along the characteristic directions and lose energy as they

propagate on the nonuniform film. We also find that this type of initial data

breaks in finite time. Of course, the breaking corresponds to the typical

hyperbolic shock formation at the crossing of characteristics. The numerics
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also show that collisions between cylindrical "solitons" are not amplitude

preserving as in the case of planar geometry.

The Stokes wave expansion is used to calculate an averaged

Lagrangian from the variational principle for water waves. This average

Lagrangian provides a system of equations that govern the slow modulation

of the Stokes wave train. By finding the characteristic forms of the system, we

determine a stability map, kH versus Ak?. The instability corresponds to a

change of type of the equations from hyperbolic to elliptic when the

characteristic speeds become imaginary. We conclude that long waves can

become unstable, in the sense that modulations will grow large in finite time.

However, the analysis does not predict the subsequent development of the

wave envelope for larger times.

By using multiple scale analysis, we derive an evolution equation for

the development of nearly concentric wave disturbances on the surface of a

radially flowing film. The equation belongs to the class of variable coefficient

KP equations, and it reduces to the variable coefficient K-dV equation for

axisymmetric disturbances. We analyze slow periodic modulations of the

variable coefficient K-dV and find that these types of waves are confined to

regions of increasing depth. The analysis predicts that small amplitude

periodic cnoidal waves degenerate onto solitary wave trains as they propagate

down the film. By analyzing solitary wave modulations, we find that they

indeed belong in the region of decreasing depth and that as they propagate

down the film, the amplitude to width ratio increases considerably. In the

case when dispersive effects stop affecting the wave propagation, the equation

becomes the hyperbolic version of the variable coefficient K-dV. This happens

when the film thickness balances with the capillary length. We find that, for
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fixed Froude numbers, waves of amplitude smaller than a certain critical

value will propagate on the film without breaking, but any profile with

amplitude larger than the critical ( for the case under study the critical value

was found to be 0.25 ) will steepen until it breaks.

These analyses do not predict splattering per se; rather, they attempt to

identify the mechanism by which waves propagate, and the conditions which

can result in sharpening of initially smooth disturbances. This mechanism

can be summarized as a simple nonlinear filtering process that takes periodic

wave trains and turns them into solitary waves propagating down the surface

of an inviscid axisymmetric thin film.
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