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Abstract

Transition metal oxides comprise a fascinating class of materials displaying a vari-
ety of magnetic and electronic properties, ranging from half-metallic ferromagnets like
CrO2, ferrimagnetic semiconductors like Fe304, and antiferromagnetic insulators like
rocksalt-structured FeO. The accessibility of multiple electronic configurations and
coordination of cations in these oxides enables the control of magnetism by external
stimuli. One such stimulus is the insertion of Li+ , as occurs during the discharge
cycle of a lithium battery. This can lead to the change in valence and locations of
the metal cations within the structure therefore a change in magnetic moment.

Fe3O4 and CrO2 are of considerable interest, primarily because they demonstrate
room-temperature magnetism and high spin polarization.Previous studies focussed
on use of these materials as cathodes and characterization of lithiated compounds
made through solid state chemical synthesis or via chemical lithiation. In this work,
changes in magnetization and structure of pulsed laser deposition (PLD)-grown Fe304
(magnetite) thin films, FesO4 nanoparticles, and CrO 2 nanoparticles have been inves-
tigated upon electrochemical lithiation.

The reasonable electrical conductivity of magnetite opens the possibility of mod-
ifying the saturation magnetization by inserting Li + ions into thin films grown on
conducting substrates. A substantial decrease in M8 (up to 30%) was observed in
PLD-grown thin films. Significantly larger reduction in moment (up to 75%) was
observed in commercially available nanoparticles upon addition of 2 moles of Li per
formula unit, along with changes in remanence and coercivity. The smaller drop in
M8 observed in thin films is attributed to a kinetic effect due to high density and
greater diffusion lengths in PLD-grown films.

The electrochemical lithiation process has also been applied to needle-shaped par-
ticles of chromium dioxide and a model has been proposed to explain the observations.
The effects of cycling and discharge-charge rate on these CrO2 particles have been
studied. It has been shown that the process may be partially reversible for low Li
contents. The effects of increasing the temperature of cycling and decreasing the
length of the CrO2 particles have been explored. These changes in magnetic moment



may be rendered useful in magnetomechanical or magnetoelectronic applications.

Thesis Supervisor: Caroline A. Ross
Title: Professor of Materials Science and Engineering
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Chapter 1

Introduction and Motivation

Transition Metal Oxides (TMOs) comprise a fascinating class of materials that

display a wide range of magnetic and electronic properties. These range from half-

metallic ferromagnets like CrO2 to antiferromagnetic insulators such as rocksalt-

structured FeO. Magnetic transition metal compounds have been exploited in many

applications over the years, from microwave devices to magnetoelectronics [5, 6, 7, 8].

In recent years, there has been a renewed interest in this area. In particular, oxides

such as Fe3O4 and CrO2 are being studied as candidates for spin injection in mag-

netoelectronic devices due to the high degree of spin polarization in these materials

and due to the low-loss nature of spin-polarized current. Spin transition ceramics and

coordination polymers, in which a Low Spin (LS) to High Spin (HS) transition can

be triggered by temperature (or light or pressure), are in demand for applications in

energy absorption [9, 10].

1.1 Magnetism in Transition Metal Oxides

Magnetism in TMO's such as Fe30 4 is due to coupling of spins of cationic 3d

electrons via superexchange mediated by the intervening anion. As an example, let

us consider the structure of the ferrimagnetic spinel Fe3 0 4. Here, the spontaneous

moment arises from the difference in moments on the A (tetrahedral) and B (oc-

tahedral) sublattices. The moments due to the Fe3+ ions in the structure cancel



out, leaving the moments on the Fe2+ ions in the B sublattice. Here a difference in

the moments of the individual ions (dipoles) creates the magnetism. In other cases,

for example the defect spinel maghemite, that can be written as (Fe3+)sa (Fe3+5/ 3

¢ 1/3)16d 04, it is the difference in the number of ions (i.e. the number of dipoles)

due to vacancies 4 on B sites that creates the ferrimagnetism. There can be other

sources of magnetism in oxides, for example the "parasitic magnetism" observed in

hematite a-Fe20 3 due to canting of moments on the Fe3+ ions in the basal plane of

the hexagonal structure. This gives rise to the weak moment in the otherwise an-

tiferromagnetic hematite. In Fel_-O, the presence of iron vacancies means that the

moments do not exactly cancel out as expected to by solving for the ground state.

In this thesis, we are interested in the first type of magnetism (ferrimagnetism) and

in particular, in developing ways of changing the magnetic properties reversibly. It

is expected that the magnetic properties could be modified by changing the number

of available electrons or the bond length between ions. The accessibility of multiple

electronic configurations and coordination of cations in these compounds enables the

tuning of magnetism by an external stimulus, such as a change in the environment,

or of temperature or pressure.

1.2 Electrochemistry

The conversion of electrical energy into chemical energy, which is the basis for

electrochemical phenomena, can be used to control the magnetism of oxides. One

such example is the insertion of Li+ ions into the structure, which can reduce the

valence states of cations, alter the metal-oxygen-metal (M-O-M) bond angles and M-

O bond distances, and possibly also the coordination of transition metal ions in the

structure. Since the magnetic properties of these oxides are largely determined by

the oxidation state and geometrical arrangement of the magnetic ions, this offers us

the possibility of controling the magnetic properties electrochemically. This can be

investigated experimentally by electrochemical discharge of a Li battery consisting of

the transition metal oxide as cathode.



1.3 Iron Oxide and Chromium Dioxide

The work in this thesis is focused on iron oxide and chromium dioxide. Mag-

netite, Fe30 4, is the oldest magnetic material known to man. However, it has many

interesting properties that pique curiosity even today. It is a room-temperature ferri-

magnet with a high Curie temperature and a high degree of spin polarization, which

makes it attractive for spintronics. Magnetite is a well-studied spinel, which is still

under intense scientific scrutiny for its interesting physics and wealth of applications

which include microwave devices, ferrofluids and spintronics. Fe30 4 has also been re-

searched as a thin film cathode for rechargeable Li-ion batteries. The spinel structure

consists of cations in tetrahedral and octahedral interstices within a face centered cu-

bic packed anion lattice. Magnetite crystallizes in the inverse spinel structure (Fd3m

space group), where Fe2+ ions occupy the 16d octahedral sites and Fe3+ ions are dis-

tributed equally among tetrahedral (8a) and 16d sites. This means that 1/8 of the

64 tetrahedral sites and 1/2 of the 32 octahedral sites are occupied.

Magnetite has good electronic conductivity, due to hopping of electrons between

octahedral sites. Also, close-packed oxygen arrays such as spinels have room- temper-

ature Li+ mobility [11]. This mixed ionic-electronic conductivity makes Fe30 4 a viable

cathode material. Li+ mobility can be enhanced by vacancies in the structure, as oc-

cur in maghemite y-Fe20 3, which can be thought of as iron-deficient magnetite with

vacancies (0) in 16d octahedral sites, and can be written (Fe3+)8a (Fe3+5/ 3 01/3)16d

04.

CrO2 is another interesting material because it is the only known stoichiometric

binary oxide that has the useful property of being a ferromagnetic metal [12]. It

has therefore been studied extensively by researchers [12, 13, 14, 15, 16, 17, 18, 19].

Most transition metal oxides are either antiferromagnetic insulators or ferrimagnets,

but CrO2 possesses a curious mix of electronic conductivity and ferromagnetism [14]

because the Cr d bands are divided into two sub-bands. The first sub-band is a weakly

interacting localized d state below the Fermi level. These d states provide the local

atomic moments [14]. The other band is a hybridized d band close to the Fermi level



which provides metallicity. This makes CrO2 a half-metal, with a spin polarization

(measured by Andreev reflectometry) in the range 80-97% at temperatures close to 1

K [12, 15, 16, 17].

Additionally, the presence of room-temperature magnetism in CrO2 is a desirable

property; the Curie temperature is 392 K. However, CrO2 is metastable under ambi-

ent conditions. It has been successfully grown as a good quality thin film via chemical

vapor deposition [17]. Historically, CrO2 has been used in particulate magnetic record-

ing tapes, and also as an oxidizing agent in various chemical reactions. It is considered

as a potentially useful material for applications in spintronics [5, 6, 7, 8].Despite be-

ing a metastable compound, CrO2 has been studied extensively, and has been used

in magnetic tape recording media [12, 13, 14, 15, 16, 17, 18, 19].

1.4 Motivation

In this section, the overall motivation for the thesis will be outlined.

To date, there has been little study of the effects of electrochemical lithiation

on the magnetic properties of chromium dioxide. Also, studies on Fe30 4 for its

use as a material for cathodes of Li batteries have focused on its suitability as a

battery material, and have not systematically tested the effects of the process on the

magnetic properties. We therefore aim to explore the effect of lithium insertion in

these materials, in particular the reversibility and magnitude of changes in saturation

moment.

The ability to reversibly manipulate the magnetic properties of materials by ex-

ternal stimuli is of considerable interest in the development of sensors, actuators and

other magnetic devices. The requirement for room temperature chemical magnetic

switching necessitates some practical considerations. First, we are constrained to look

at materials that have their Curie and Neel temperatures at or above room tempera-

ture. Ideally, there should be a substantial change in magnetic moment, and therefore

we should use materials that have large moments to begin with. This narrows down

the possibilities. Most of the known metallic oxides are antiferromagnetic. The ex-



ceptions are the ferromagnetic oxides EuO and CrO2 and the ferrimagnetic spinels

Fe30 4 and 'y-Fe20 3. Out of these, CrO2 (Tc = 395 K), Fe30 4 (TN = 858 K) and

7-Fe20 3 have ordering temperatures above room temperature. CrO2 has been grown

by Chemical Vapor Deposition [10] but so far single-phase CrO2 films have not been

grown by Pulsed Laser Deposition. Transition metal oxides are very promising for

such applications, primarily because of the accessibility of multiple electronic config-

urations due to a multitude of valence and spin states and coordination of the cations

therein. In particular, compounds with manganese, chromium, cobalt and ruthenium

could be exploited, as these elements exist in multiple valence states.

The materials for the purpose of this thesis were narrowed down to Fe30 4 and

CrO2, primarily due to two reasons. Firstly, these satisfy the preconditions of room-

temperature magnetism and high saturation magnetization. Secondly, these are well-

researched in the literature, and have many practical applications.

The objective of the thesis is to create large (and preferably reversible) changes

in the room-temperature magnetic properties of nanoscale transition metal oxides

by using a process that is similar to the discharge/charge process in a rechargeable

lithium battery. The Li+ ions are inserted into the oxide lattice during discharge and

de-intercalated during charging. The insertion of lithium leads to a change in the

valence states of the Fe ions and a corresponding change in the overall magnetization

of the ferro/ferrimagnetic material. For example, the insertion of Li+, as occurs during

the discharge cycle of a lithium battery, can lead to the reduction of metal cations

and a change in magnetic moment. Another objective of this thesis is to gain better

understanding of the physics of the lithium insertion process in these materials, in

particular, the effects on intrinsic magnetism.

1.5 Applications

There could be several applications of chemically switchable magnetism.

One example is programmable magnetoelectronic devices, such as reversible "magnetic"

switches, in which a device is switched between low and high states of magnetization.



This could possibly be used for creating an additional state for bits in magnetic media

or magnetic random access memories. Present day magnetic devices rely on defin-

ing the bit state by the magnetization state being "up" or "down" (in the case of

perpendicular magnetic recording media) or "left" or "right" in plane (in the case

of the more classic longitudinal configuration, or in MRAMs). In addition to this,

if we were able to reversibly turn on/off the magnetism, this could be potentially

useful in creating an additional degree of freedom for information storage because it

allows for manipulation of the spin state. However for this to happen, there has to be

integration of a solid state Li battery (eg. doped conducting oxide-Transition Metal

Oxide-BCP electrolyte-Li multilayer dots) into storage media. It may then be pos-

sible to switch between not only up and down states or intermediate magnetization

states, but also into a state of zero magnetization, for example by sweeping a voltage

applied on the (multilayer) bit at constant discharging and charging currents.

Such a solid state electrochemical device might have inherent limitations on the

switching speed (write/erase time) and the endurance, which is the number of write

cycles for a given byte. These may not compare favorably with present day MRAM

technology (Table 1.1), especially the prototype MRAMs involving spin transfer

torque (STT), which exhibit sub-ns switching speeds and almost unlimited (>1015)

endurance [201. However, there could potentially be benefits in issues pertaining to

power requirements. These practical aspects will be discussed in more detail in Chap-

ter 6.

A second example of an application for a material that shows reversible changes in

Table 1.1: Existing and prototype memory technologies
MRAM STT Flash(NOR) Flash(NAND)

Write/erase time 3-20 ns 2-20 ns 1 jLs/10 ms 1 ms/0.1 ms
Write power high low very high very high

Voltage 3 V 0.15 V 6-8 V 16-20 V
Endurance >1015 >1015 105 105

magnetic properties in response to a chemical stimulus is to incorporate the mate-

rial as submicron/nanoparticles in a magnetic fluid. The electrochemical processes



may be accelerated due to kinetic considerations. The tuning of magnetism in these

materials via a change in the chemical composition can lead to another interesting

application. The fluid can then be triggered to switch reversibly between a relaxed

and stiff state within a reasonably fast time. These would be similar to electrorheo-

logical or magnetorheological fluids, with the only difference being that the switching

and the resultant change in stiffness could be achieved without application of large

electric or magnetic fields as triggering mechanisms, which maybe very useful in cer-

tain applications such as for dynamic armor. This work could also potentially be used

in magnetic actuation, wherein the Li insertion and de-insertion processes could be

used as stimulus for actuation.

A third application is as a new type of sensor for Li+ ions, since a small amount

of Li could potentially create large detectable changes in magnetism. Such sensors

can possibly be used for monitoring lithium levels in blood serum samples to prevent

overdose during therapy. Although other alkali metal and alkaline earth metal ions

such as Na+, K+ , Mg 2+ and Ca 2+ may act as interferents, the much larger size of

these ions compared to Li + might help in yielding good selectivity for Li ions.

In summary, the aim of the thesis is to study the effect of electrochemical lithium

insertion on the magnetic properties of thin films and nanoparticles of Fe30 4 and that

of submicron-sized/nano particles of CrO2. The thesis has been organized as follows.

In the next chapter, the theory of magnetism in oxides is described, followed by the

thermodynamics and kinetics of the electrochemical lithiation process. In Chapter 3,

the experimental methods used in the thesis are summarized. Chapter 4 describes the

experiments on growth and characterization of thin films of Fe30 4. Chapters 4 and

5 comprise the results from applying the electrochemical lithiation process on Fe3O 4

and CrO2 and also models for explaining the same, based on the oxidation state of

the cations. Finally, a summary of the thesis, with some ideas for future work, is

presented in Chapter 6.





Chapter 2

Theory

In this chapter, the fundamentals of magnetism of transition metal oxides (TMOs)

shall be reviewed. In section 2.1, the quantum mechanical derivation of magnetism of

TMOs will be briefly reviewed and followed by a discussion of application of crystal

field theory to these compounds. The limitations of the crystal field theory will

be outlined, which leads us to a discussion of the Goodenough-Kanamori theory

of magnetism in transition metal oxides. This will be followed by a discussion of

the various kinds of exchange and superexchange interactions, which is crucial to

an understanding of magnetic properties of these materials. There will also be a

description of the application of Goodenough rules for predicting the ground state

magnetic ordering in these compounds.

This will serve as the basis for understanding the magnetic properties of the two

main materials that form the core of the thesis, namely Fe30 4 and Cr0 2, which will

be presented in sections 2.2 and 2.3. In the last section of the chapter, a theoretical

overview of electrochemical lithium insertion and its relevance to the thesis will be

presented.



2.1 Magnetism in Transition Metal Oxides

2.1.1 Introduction

Theory of magnetism in oxides is an extension of the application of quantum

mechanics to a system of non-interacting and indistinguishable electrons, which is

the simplest case for a multi-electron system. The origin of magnetism in metallic

oxides can be explained as follows. Individual magnetic dipoles, which are created

due to the moment of paramagnetic cations sitting on lattice sites, are coupled via

quantum-mechanical exchange that causes the moments to be parallel or antiparallel

to minimize the energy.

Unlike metals, where the moments are coupled by direct exchange, in oxides,

superexchange plays an important role with the p-orbitals of the diamagnetic oxygen

anions acting as intermediaries. This is because the metallic cations are typically

too far apart for direct exchange. The saturation moment at absolute zero, when

the system is at its magnetic ground state, is then determined by the moments of

the individual dipoles and the strength and sign of the exchange interactions. The

ordering temperature is dependent on the strength of the exchange interactions.

The magnetic moment of individual dipoles is decided by the electronic configu-

ration of the cations. The sign of exchange interactions are a result of the interplay

of electronic configuration of the cations and the bond angles between them. The

strength of the exchange interactions is determined by the bond distances and the

number of nearest neighbors. The relative strengths of the exchange interactions

between cations of different coordination are particularly important in deciding the

preferred ground state in systems with geometric frustration, where the system has

ground state degeneracy. In the case of oxides, the wavefunctions are localized and

atom-like, and this permits a simplistic treatment compared to metals.



2.1.2 Crystal Field Theory

Crystal field splitting is an important phenomenon that is central to understand-
ing of magnetic behavior of various systems, especially ionic solids. It is central to
the understanding of transition metal oxides, whose bonding is significantly ionic in
character. Crystal field theory is an ionic bonding model that was developed to ex-
plain the properties of metal ions in crystal lattices. It explains many of the basic
features of transition metal compounds, including their magnetic properties.

The distribution functions of the d-orbitals of the metal ion are shown in Figure
2-1.

z

z
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Figure 2-1: Spatial distribution of different d orbitals [1]

Crystal Field Theory assumes that the magnetic electrons in oxides are well-
localized and that they are not subject to hopping or do not have an itinerant char-
acter. In cubic crystals, crystal field theory predicts that the presence of the ligands
leads to a partial removal of the degeneracy due to electrostatic effects and a split in
the d-orbitals as shown in Figure 2-2 (for the octahedral case) and Figure 2-3(for
the tetrahedral case)[1]. Crystal field splitting energies are usually of the order of 1
eV. This is easily explained by considering the example of the octahedral site. Two of
the d orbitals, d2 and dX2_ 2 point in the direction of the oxygen ions, and therefore
experience a greater electrostatic repulsion than the other three orbitals. This causes
a split of the d-orbitals as shown in Fig. 2-2 . A similar argument can also be used



to explain the tetrahedral splitting. The interplay between crystal field splitting and
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Figure 2-2: Octahedral Crystal Field Splitting
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Figure 2-3: Tetrahedral Crystal Field Splitting

exchange energy A E.e gives rise to an interesting possibility. If A Ee >10 Dq, then

the low spin state is stabilized and Hund's rule breaks down. This has been exploited

in the development of spin transition materials which rely on using pressure or light

to create high spin-to-low spin transitions [9, 10].

In non-cubic (lower symmetry) systems, there can be further splitting of the e,

and t2g orbitals. For example, in tetragonal systems, the t2g orbitals are split into

twofold-degenerate and non-degenerate levels, and the eg orbitals are also split into

two. Due to such symmetry considerations, the analysis of ground state magnetic

properties of non-cubic crystals is more complicated.



Furthermore, as outlined in the following sections on the Goodenough-Kanamori

theory, the assumption of electron localization is not entirely true of metallic oxides.

A notable example is in the case of CrO2, which would be discussed in subsequent

sections. Also, there are several other sources of the splitting other than pure electro-

static effects. Covalent mixing is one of the principal effects, which contributes to a

much larger split in the d states compared to electrostatic effects in many cases [19].

2.1.3 Goodenough-Kanamori Theory

Traditional band theory satisfactorily explains the behavior of delocalized elec-

trons such as outer s and p electrons. This is accomplished by using the standard

Hartree-Fock hypothesis which reduces the many-body problem to the more tractable

problem of a single electron in a periodic potential, which is then solved and combined

through the Slater determinant [19]. This theory yields the direct exchange energy

or potential exchange energy:
N

J i = 1 4 *(1)4 *(2)[e 2/r121D i(2) 4 j(1) (1)
j=1

where (D i and 1 j are one-electron wave functions, e is the electronic charge and

r12 is the distance between electronic spins [19].

However, such a treatment fails to adequately explain the magnetic and electronic

properties of TMOs, since this would involve description of more tightly bound d

electrons and assuming fully delocalized electrons in this case is an oversimplifica-

tion. Band theory also does not satisfactorily take into account electron (Coulomb)

correlations between electrons of opposite spins on adjacent lattice sites. Crystal field

theory, on the contrary, assumes that the electrons are fully localized at the atomic

cores [19]. Outer 'f' electrons are the most tightly bound and screened from neighbor-

ing nuclei by s and p core electrons, and can be described by localized electron model.

However the outer d electrons, such as those in TMOs, are intermediate in charac-

ter and therefore in some transition metal oxides the outer electrons can exhibit the

properties of localized electrons, and in some others, they can exhibit the properties

of collective electrons [19]. This complicates the picture, because traditional band



theory and crystal field theory cannot be used without modification.

There are two kinds of metallic oxides. The first category of oxides have a large

cation-cation interaction due to small cation-cation separations. In these transition

metal oxides, the d electrons behave in a localized manner. This is true of most

3d transition metal oxides. This is why most of these are insulators, and this also

enables a simplistic treatment of magnetism in these through superexchange and

crystal field theory [19]. The other class of oxides have large cation-anion-cation

interactions due to covalent mixing of cationic d and anionic p orbitals. In these

oxides the electrons behave in a collective manner. There are a few oxides in which

both mechanisms coexist. The Hubbard model attempts to explain this intermediate

regime by discarding the Hartree-Fock assumption, starting with the many-electron

Hamiltonian and adding interaction terms into it, which take into account interactions

only among electrons of opposite spins on the same lattice site [19].

2.1.4 Energy Minimization

The ground state of a many-electron system is one that minimizes the total energy

of the system, which comprises the kinetic energy, the potential energy, the Coulomb

repulsion energy, the Hartree-Fock term and the exchange interaction terms [19].

The direct exchange energy term includes accidental electron correlations between

electrons of the same spin that arise out of Pauli's exclusion principle. Since the sum

of all the other energies other than the correlation energies and the Hartree Fock

term are small reductions to the positive Coulombic term, this means that for energy

minimization, the potential energy term should be as large as possible [19]. The

potential energy increases with increasing localization, while the kinetic energy term

shows the opposite trend. Depending on the strength of the interaction between the

cations, one dominates over another, and the electrons can behave in either localized

or collective ways [19].



2.1.5 Indirect exchange or "Superexchange" Energy

The interaction between any two spins (or ions that produce the spins) in an

oxide lattice is essentially through an indirect exchange mechanism involving the

intermediate anion. This is most easily observed in rocksalt-structured compounds

like FeO and MnO, wherein nearest neighbors are coupled parallel or antiparallel

to each other, but next nearest neighbors are always coupled antiparallel. These

ions are too far apart to participate in Heisenberg exchange through a direct overlap

of wavefunctions, and the coupling between such ions has to be via an indirect or

mediated exchange mechanism.

2.1.6 Double Exchange

The above discussion on superexchange can be extended to the case of non-integral

number of electrons per atom per partially filled band. This was first described by

Zener, and was given the term 'double exchange'. This was derived from the results

of the tight binding approximation. This mechanism involves hopping of electrons of

minority spin on a lattice of electrons with opposite spin (Fig. 2-4). This typically

occurs in mixed valence systems with half-filled or greater than half-filled orbitals

[19].
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Figure 2-4: An illustration of double exchange

From the above discussion, it is clear that regardless of whether the electrons

are itinerant or not, one can distinguish between two kinds of indirect exchange

mechanisms, correlation and delocalization.



2.1.7 Correlation Superexchange

Also known by the term 'semicovalent' exchange, this mechanism takes into ac-

count the simultaneous partial bond formation (pa or pir) on each side of the anion

that is in between two cations, and arises because the magnetic electrons are not

totally independent as is assumed in the Hartree Fock theory, and are in fact cor-

related. In the traditional Hartree-Fock analysis, Fermi correlations are taken into

account, which prevents electrons of the same spin to exist at the same spatial co-

ordinates. However, Coulomb correlations, which are a result of Coulomb repulsion

between electrons are neglected. These correlations are important in the analysis of

TMO systems [19].

2.1.8 Delocalization Superexchange

This interaction arises due to drifting (or "hopping") of an electron from one

cation to the other through the anion intermediary. The anion plays a significant

role in the case of 1800 cation-anion-cation bond angles, as it helps along the hopping

electron. In 90' bond angles, the role of the anion is less obvious and there is more

overlap of the orbitals of the cations, and therefore the direct exchange mechanism

may become significant.

The following sections describe application of Goodenough's theory, described

above, to explain the magnetic properties of Fe304 and CrO2, which are listed in

Table 2.1 [19].

Table 2.1: Some Physical Properties of Selected Transition Metal Oxides. Re is the
intercationic separation and R, is the 'critical' intercationic separation.

Structure R,,(A) R, Tt (0K) Magnetic Transport

Fe304 Spinel 2.97 2.95 850K Ferri. bFe=4 .1bB Half-metallic
_y-Fe20 3  Spinel 2.94 2.58 856 Ferri. AFe=2.5I/B Insulator

Cr0 2 Rutile 2.92 2.86 392 Ferro. Pc,=2•B Metallic



2.2 Magnetism of Fe30 4

Figures 2-5, 2-6, 2-7 and 2-8 show the unit cell of the spinel structure and

the structure when viewed along the different crystallographic axes. As described

Fd3m (227) 8. 4/8 4B 4 <90 0190 0/90.0> FetO4

Figure 2-5: The spinel structure

earlier, the ferrimagnetism of Fe30 4 is due to antiparallel alignment of the tetrahedral

(A) and octahedral (B) site cations on the spinel lattice as shown in Figure 2-5.This

is the magnetic ground state which can be arrived by application of the rules outlined

(please refer to the appendix).

If we write out the formula of magnetite in detail, it is: (Fe3+)A(Fe2+Fe3+)BO 4.

The B-O-B bond angles are 90 degrees, while the A-O-B bond angles are 125 degrees,

and there are no A-O-A bonds. The interactions that need to be considered are

d5-d5 , d5-d' and d6-d6, shown schematically in Figs. 2-9, 2-10 and 2-11 for 90

degree direct exchange interactions, where the role of the anion is not so significant.

The superexchange interactions between d5-d5 , d5-d6 and d6-d6 ions are summarized



Figure 2-6: The spinel structure looking along [100]

in Table 2.2 [21]. Above the Verwey transition, which involves a large change in

Table 2.2: d5 -d5 , ds-d 6 and d6-d6 superexchange interactions
bond angles

for 180 and 90 degree

Bond Angle Mechanism Orbitals Interaction
1800 Correlation eg-po-eg Strong AF
1800 Correlation t2,-plr-t2, Weak AF
1800 Delocalization eg-pa-eg Strong AF
1800 Delocalization t2g-pr-t2g Weak AF
900 Correlation e,-s-e, AF
900 Correlation eg-pa-pr-e, AF
900 Correlation t2g-pO-pU-t2g Strong FM
900 Delocalization (direct) eg-eg Weak AF
900 Delocalization (direct) t2g-t2g AF except dS-d' (strong FM)
900 Delocalization (direct) e,-t2g AF

resistivity, there is hopping of electrons between Fe2 + and Fe3+ ions and this gives rise

to the conductivity of magnetite through electronic exchange due to charge disorder.



Figure 2-7: The spinel structure looking along [0101

This means that the situation shown in 2-4 comes into play, and this gives rise
to ferromagnetic B-B ground state [21j. Below the Verwey transition, all the three
interactions would have to be taken into account.

These interactions would be dominant especially for 90 degree bond angles, where
direct cation-cation overlap would be large. Therefore it is valid for B-O-B interac-
tions in spinel. However for bond angles greater than 90 degrees, the anion plays a
much bigger role and superexchange mechanisms such as those described in the above
table need to be considered [21].

Therefore, for temperatures above the Verwey temperature but below the Curie
temperature, A-B interactions in Fe30 4 turn out to be strongly antiferromagnetic
due to superexchange, while B-B interactions are weakly ferromagnetic. Therefore
the magnetic ground state is one in which the A site ions couple parallel to each
other, and are antiparallel to the B site ions, which are coupled parallel to each other



Fd3m (227): 8 4J4.48 4 <90 0,0,0/90.0> MgAI 204

Figure 2-8: The spinel structure looking along [001]
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Figure 2-9: Fe3+-Fe3+ hopping in Fe30 4 (All hopping scenarios favor antiparallel
alignment of spins)

amongst themselves. This results in the ferrimagnetism of Fe3 O4 [19].

Finally, a note about ab-initio (GGA+U) calculations on LixFe3O4 (0<x<2).

These have shown that degenerate magnetic ground states (AE-1 meV at OK) exist

for LiFes O 4. For Li2Fe304, the ground state magnetic moment is zero [22].
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Figure 2-10: Fe2+-Fe3+ hopping in Fe30 4 (Leads to ferromagnetic exchange due to
hopping of minority spin)
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Figure 2-11: Fe2+-Fe 2+ hopping in Fe30 4 (All hopping scenarios favor antiparallel
alignment of spins)

2.3 Magnetism of Cr0 2

Cr0 2 is a half-metallic ferromagnet with the rutile structure (P42/mnm space

group, c/a=0.6596) in which the octahedrally-coordinated Cr4+ spins are coupled

parallel to each other on a tetragonal lattice [23]. In CrO2 , half of the octahedral

sites are occupied by Cr 4+ ions. The Cr 4+ ions form a set of edge-sharing octahedra

along the c-axis and a set of corner-sharing octahedra along the a- and b-axes (Figures

2-12, 2-13, 2-14).The ferromagnetism of CrO2 is a result of parallel coupling between

localized t2g electrons due to double exchange between electrons in the quarter-filled

lr* band [19]. This ferromagnetic interaction dominates over the antiferromagnetic

superexchange interaction between the localized t2g electrons because of the lifting of



degeneracy due to tetragonal symmetry [19]. The electronic and magnetic properties

Figure 2-12: The rutile structure, looking along [100]

of CrO2, and its half-metallicity are because the Cr d bands are divided into two sub-

bands [12]. The first sub-band is a weakly interacting localized d state below the

Fermi level. These d states provide the local atomic moments. The other band

is a hybridized d band close to the Fermi level which provides metallicity. This is

the source of the half-metallicity of CrO2. It is unlike metals like Cu or Cr where

conduction electrons are s electrons that are highly delocalized and thus free to move

through the lattice, or in Co and Fe where the atoms are located close enough for the

electrons in the d- bands to hop from atom-to-atom due to significant overlap.

The electronic and magnetic properties of CrO2 and its half-metallicity have been

well studied [12]. The spin polarization of CrO2 measured by Andreev reflectometry

is in the range 80-97%. This is because the metallic d sub-band consists of parallel

spins, while the other sub-band is empty, and thus theoretically CrO2 is expected to

have complete spin polarization at the Fermi level.

iw.:·;-· -·I-: .,* - -i- :·rl-· ;·* --rc.rl·.



Figure 2-13: The rutile structure, looking along [010]

The ferromagnetism of CrO2 has been intensively studied [12, 13, 14, 15, 16, 17, 18,

19]. It is very unique for a transition metal oxide. Most transition metal oxides have

highly localized d states that make them insulators. In CrO2, however, due to its half-

metallicity, the conduction electrons belong to a delocalized (or partially localized)

d- sub band. Thus, in CrO2, the atom-like character of the metallic d-sub band

and the presence of the oxygen framework leads to interesting effects. It is proposed

that unlike metals, where the delocalization of electrons leads to the ferromagnetic

ground state due to exchange energy stabilization, in CrO2, the conduction electrons

are not delocalized but 'itinerant', which means that the electron-electron repulsion

Hamiltonian is large enough to keep the electrons localized around the individual

cations. Furthermore, the cations are farther apart than they would be in a metal

because of the presence of the anion framework. Therefore, it is a double exchange

mechanism via the intervening oxygen anions that contributes to the magnetism of

Cr0 2 [18].



Figure 2-14: The rutile structure, looking along [001]

In CrO2, the interactions that need to be considered are the d2-d2 90 degree

interactions, since the bond angles are 80 degrees and can be approximated to 90

degrees for the purposes of analysis. Since the eg orbitals are empty, the t29 -t2g

interactions alone need to be considered. As described above, direct cation-cation

interactions are the most important in bond angles that are close to 90 degrees. In

CrO2, there is lifting of the degeneracy of t 2g orbitals as shown in Figure 2-15. This

simplifies the picture, because the localization of one of the d2 electrons in t2g gives

rise to only one possibility, that of hopping of the electron in t2g*, which is part of the

7r* band, into the orbital of the neighboring ion. The situation would be different if the

ions involved were d3 ions, such as Cr3 +. In this case, out of the possible scenarios for

hopping, only some are energetically favorable. These scenarios can lead to competing

alignment tendencies for neighboring spins, as shown in Figures 2-16 and 2-17, and

as will be further explained in Chapter 5. In such a situation, the alignment which

leads to energy minimization upon most number of hopping scenarios can be regarded



as the magnetic ground state.
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Figure 2-15: Cr4+ (d2)-Cr4+ (d2) itinerant electron hopping in rutile

AF

Figure 2-16: Cr3+(d 3)-Cr4+(d 2) itinerant electron hopping in rutile

AF

Figure 2-17: Cr 3+ (d3 )-Cr3 + (d3 ) itinerant electron hopping in rutile

2.4 Electrochemical lithiation: Thermodynamics,

Kinetics and Mechanisms

In this section, the basic concepts of lithiation will be reviewed, with the example

of LiCoO 2 from the literature, which serves the purpose of illustrating the mechanism

•, _mL



of lithium diffusion [24, 25].

The fundamental driving force for Li diffusion is a difference in chemical potential

and not the concentration (as predicted by Fick's law). The equilibrium voltage,

defined by the difference in electrochemical potential of Li between anode and cathode,

is the open circuit voltage [24].

V (x) = , (2)

where •ca2 thode (x) is the electrochemical potential of the cathode (function of lithium

content), ~pnode is the electrochemical potential of the anode, z = Ionic charge of the

anodic metal (1 for Li), and F = Faraday's constant = 96485 C.

As Li is intercalated, the chemical potential difference between anode and cathode

decreases, and this leads to a decrease in the voltage. The chemical diffusion coef-

ficient D,, that is often reported in the literature, is different from the self diffusion

coefficient:

DC = ODj (3)

where 0 is a thermodynamic factor that takes into account the deviation of the

chemical potential of Li from that of an ideal solution [24]:

0 In (4)
Dj is like the self/tracer diffusion coefficient, but it also includes correlations

between Li ions.

LixCoO 2 is a well-studied cathode material for lithium batteries. It crystallizes in

the layered (NaFeO 2) hexagonal structure, in which Li and Co ions occupy alternate

sheets between layers of oxygen ions. In LixCoO 2, there are two possible mechanisms

for migration into adjacent octahedral sites - Oxygen Dumbbell Hop (ODH) and

Tetrahedral Site Hop (TSH), depending on whether the target site is a single vacancy

or an associated vacancy (such as a divacancy) respectively [24]. The activation en-

ergy is much lower for the TSH (0.23-0.6 eV vs 0.8 eV) than ODH. First-principles

electronic structure methods and Monte Carlo simulations have been used to pre-

dict the dominant diffusion mechanism. These calculations take into account both

thermodynamic considerations (Li-Li interactions) and kinetic factors (eg. activation

barriers). These studies have shown that ODH will dominate only at infinite dilution



of vacancies (x close to 1). In real systems, there are always vacancies, so the TSH

mechanism almost always dominates [24].

Motohashi et al recently demonstrated synthesis of the fully delithiated compound,

CoO 2, via electrochemical oxidation and measured its magnetic properties [25]. They

showed that the CoO2 phase consists of triangular lattice layers of CoO2 stacked

one on top of another, and suggested that CoO 2 is a Pauli paramagnetic metal with

itinerant electrons [25]. This literature will be compared to results obtained for CrO2

in Chapter 5.

The above discussion can also be extended to be applicable for most lithium tran-

sition metal oxides with the layered structure. Figure 2-18 shows the variation in

activation energy barrier for Li ion migration for different lithium transition metal

oxides [2]. It is clear that going towards the right in the d transition metal series in-

creases the activation energy barrier and thus decreases Li ion mobility. Research has

so
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Figure 2-18: Calculated Activation Energies for various layered lithium transition
metal oxides [2]

been done on the effect of substitution of non transition metal cations, in particular,

on Li ion mobility and rate capability. It has been found that the most important

factors for the activation energy (or migration) barrier and thus Li ion mobility is the

Li slab distance (c-axis lattice parameter), which determines the compressive stresses



experienced by Li in the intermediate tetrahedral site, and the electrostatic repulsion

between the Li and the transition metal cation in that position [2]. It has been found

that the latter can be reduced by substitution of lower valence cation, such as by

substituting Ni into LiMnO2.

Another factor that influences Li ion mobility is the nature of the vacancy net-

work. Recently researchers have found that the olivine structure of LiFePO 4 pro-

vides a 1D pathway for Li diffusion and high rate capability suited for high power

applications[26]. This means that there may be scope for high rate capability in the

rutile structure which also has a 1-D channel along the c-axis, unlike the spinel, which

has a 3D network of vacancies. The relevant literature will be discussed in Chapter

5.

There are certain crystal structures that show good reversible capacities for Li

insertion. Apart from the layered structure, described above, the anatase, spinel and

olivine structures have been considered to be good cathode materials and have been

researched from this point of view [26, 27, 28]. Recently it has been shown that there is

the possibility of using nanocrystalline rutile electrodes in high power lithium batteries

[29, 30, 31]. Of the structures mentioned here, only the spinel and rutile structures

are known to show room-temperature ferromagnetic and ferrimagnetic ordering, with

saturation moments that are significant enough for practical applications involving

such chemical tuning of magnetism.

Chemical and electrochemical lithiation studies have been done on Fe3O4 and

-y-Fe203 powders [11, 32, 33]. These studies were done initially for the purpose of

investigating the suitability of LithiumllIron oxide cells for high temperature lithium

batteries. These will be detailed in Chapter 4. There appears to be very few reports

on Li insertion into rutile-structured CrO2 . The relevant literature will be discussed

in chapter 5.



Chapter 3

Experimental Methods

3.1 Pulsed Laser Deposition

Pulsed Laser Deposition (PLD) is a physical vapor deposition technique that is

widely used to grow oxide thin films. It is a method that is particularly suited for

growing multicomponent oxides, and one whose popularity grew in the late 1980's

accompanying the quest for high-T, superconductors. The experimental setup for

Pulsed Laser Deposition is shown schematically in Figure 3-1.The iron oxide films

were grown using a pulsed laser deposition system that consisted of a Lambda Physik

LPX 325icc laser with A = 248 nm. The laser is focused onto the target surface using

a lens and is scanned over the surface of the target to prevent uneven erosion.

Laser ablation is a multistep process, one that includes the following steps [34].

1. Absorption accompanied by formation of a molten layer (Knudsen layer) and

vaporization (which exerts a large recoil force and ejects molten droplets)

2. Propagation of melt front

3. Formation of plasma containing atomic and molecular species

4. Receding melt front

5. Completion of solidification, until the next pulse arrives



Figure 3-1: A Schematic of Pulsed Laser Deposition

6. Interaction of the laser with the plume.

Depending upon the fluence of the laser, these processes occur at the target to

varying degrees. At the fluence levels that are typically used in PLD (1-5 J/cm2),

the melt depth is quite large, and significant vaporization also occurs simultaneously

[34].

3.1.1 Process Variables/Parameters

There are several process parameters in PLD which can be used to control the

deposition rate (the thickness of the film deposited per unit time, in nm/min) and

crystallinity of the films. These will be described next.

1. Laser repetition rate: This is usually varied between 5 Hz and 100 Hz. The

higher the laser repetition rate, the faster the deposition. The typical deposition

rate in PLD is ' 10 A/s. Also the roughness of the films is increased as higher

repetition rates are used.



2. Chamber Pressure: The chamber pressure is controlled by the following two

parameters:

* Gas flow rate in sccm: The higher the flow rate of gas, the higher the

pressure. This is usually kept between 1 to 10 sccm.

* Gate Valve opening (%): For systems with gate valve control, larger open-

ing leads to lower pressures.

3. The target-substrate distance: The larger the distance between the target and

the substrate, the more collisions atomic and ionic species undergo before they

reach the substrate, hence resulting in lower velocities and lower deposition

rates. This is due to scattering of material in the plume preventing it from

hitting the substrate.

4. Laser Energy (mJ): Higher laser energies can result in higher mobility of species

adsorbed on the substrate due to higher laser fluence at the target surface, and

thus better crystallinity and/or epitaxy.

5. Number of pulses: This can be used to control the thickness of deposited films,

typically between 10,000 and 100,000.

6. Substrate Temperature: Since solid state diffusion is thermally activated, this

can also have a substantial effect on mobility of adsorbed species and higher

substrate temperatures generally result in better crystallinity. It is also often

a critical parameter for phase control, since there could be unwanted phase

transformations at certain temperatures.

3.1.2 Processing-Structure-Property Correlation

1. Crystallinity and epitaxy: In general, smaller crystallite sizes result from lower

substrate temperatures and lower laser energies. As mentioned in the previous

section, for good crystallinity and also for epitaxial growth, low deposition rates

and high temperatures are usually required. Therefore, lower laser repetition



rates and higher substrate temperatures are desirable. The deposition rate is

also higher in vacuum than in oxygen pressure, because the ablated species

undergo fewer collisions, and because the plume shape is much narrower.

2. Growth of metastable phases: PLD is suited to grow certain metastable phases

due to the non-equilibrium nature of the process. However, it is preferable to

minimize the deposition and annealing times in order to achieve growth of such

phases. An example is the growth of maghemite films by PLD, where it has been

found that using high repetition rates enhances stability of maghemite through

reduction of deposition time [35, 36]. Lower deposition rates lead to formation

of the more stable hematite phase and reduction in magnetic moment. It is also

important to limit substrate temperatures to less than 500 'C and to minimize

annealing times for stabilizing the maghemite phase.

3. Stoichiometry: Obtaining the correct oxygen stoichiometry in oxide films is

important to minimize the effects of oxygen vacancies and to obtain the cor-

rect valence state of cations. This requires using appropriate oxygen pressure

which can be optimized empirically. Maintaining oxygen stoichiometry can be

a problem especially for multicomponent oxides. In these cases, it is sometimes

desirable to flush the chamber with oxygen to create higher pressures ('1 torr)

for deposition. The oxygen pressure during cooling is also important. It is bet-

ter to cool under oxygen pressure if the film has been grown in oxygen, or in

vacuum if the deposition was in vacuum.

3.2 Vibrating Sample Magnetometry

3.2.1 Principle

Vibrating Sample Magnetometry has been one of the popular methods for mag-

netic measurements since its invention by Foner in 1955, partly due to its simplicity

[37). It is shown schematically in Fig 3-2.



Vibrating Unit

Figure 3-2: A schematic of Vibrating Sample Magnetometry

The operating principle of Vibrating Sample Magnetometry is Faraday's law of

magnetic induction. The vibration of a sample placed in a magnetic field perpendic-

ular to the direction of the applied field causes varying flux across the magnetized

sample, and this induces a voltage in a set of pickup coils. This voltage is fed to a

digital signal processor, and fed to a gain circuit, where it is amplified and converted

into a reading of the magnetic moment by calibrating against a known standard. The

VSM used for this thesis is the KLA Tencor/ADE Magnetics VSM 1660.

V=-- N (5)
dt

where N is the number of turns in the pickup coils, and 4 is the magnetic flux.

3.2.2 Experimental Setup

The VSM in the Magnetic and Magnetoresistive Characterization Laboratory is

designed for applied fields upto 1.3 T and for measurement temperatures in the range



100 to 900 K. It consists of the following components.

1. The Electromagnet: This consists of a set of copper coils wound around a

magnetic iron core, and supplies the external magnetic field used to magnetize

the sample.

2. Pick-up Coils: The VSM uses inductive sensing via flux integration through a

set of pickup (detection) coils and an inductive sensor. The radius of the pickup

coil, r, is an important quantity.

3. The Vibrating Unit: In the VSM 1660, the sample is vibrated at a frequency of

70 Hz in the z direction. Most conventional VSMs employ a transverse geometry,

in which the sample is vibrated in a direction transverse to that of the applied

field [38].

4. Digital Signal Processor: This is the unit that enables readout of magnetization

values. It takes as input, the amplified signal from the pickup coils and factors

in the pickup coil sensitivity for calculation of the sample magnetization.

5. Furnace: The furnace in the VSM is designed to go upto 900 K under a flow

rate of 15-20 scfh of He.

3.2.3 Instrument Parameters

1. Gas Flow rate: The VSM 880 has a 1660 temperature controller that has facility

of control of the sample temperature by heating up argon gas. Helium can also

be used, but the lower heat capacity of argon enables better heating.

2. Coil Spacing: This is a very important parameter especially for optimizing the

signal-to-noise ratio. This is particularly important for measurement of low mo-

ment samples. The signal can also be potentially improved by adding additional

detection coils to the VSM. However, this method does not guarantee a better

signal-to-noise ratio, because the thermal noise is directly proportional to the



volume of the coils, while the signal does not scale as rapidly [38].

3. Applied Field: The VSM 880 has a range of 13 kOe for the applied field. For

applied fields close to the high range, smaller coil spacings may need to be used.

4. Pickup coil sensitivity: This is an important parameter that helps us keep track

of changes in the system. In the normal mode of operation, with the coil spac-

ing around 20mm, this would be between 30-70 emu/V. Large changes may

indicate problems that may need to be resolved. The geometry of the setup

and the pickup coils is such that the sensitivity is proportional to the number

of flux lines per unit area, and this varies as the inverse square of distance from

the pole pieces of the electromagnet. Therefore, for larger sized samples and for

larger coil spacings, there will be significant changes in the sensitivity. Bowden

found that the detection coil system could be setup to obtain a saddle point

that is large (several millimeters) in spatial extent, thereby minimizing sample

positioning errors and sample size effects, and this is ensured in most commer-

cial VSM equipment [39].

5. Noise: There can be several sources of noise. There is usually significant drift in

the gain circuit, which can be 0.5 to 1% in the VSM 1660. The two main types

of noise from the hardware are the Johnson noise of the wire of the pickup coils

and the field noise [37, 40]. Feldman et al have given the following expression

for the signal-to-noise ratio:

77 = (S/4kTRav)1/ 2 S/R 1/2  [41] (6)

Here S is the pickup signal, R is the resistance of the coil and dv is the bandwidth

of the detector. The noise in any measurement can usually be minimized by increasing

the number of averages per reading because it goes as the square root of the number



of averages. However, one should take care not to use too many number of averages.

This has the drawback of increasing the drift and coherent noise of the system even

though the random and incoherent noise is reduced. Typically, 30-50 averages are

sufficient for most measurements.

3.2.4 Static and Dynamic Reproducibility

Static reproducibility refers to the accuracy in measurements of the same sample

when measured twice without making any changes to the instrument setup. This is

a function of the noise in the surroundings in addition to system noise, and is better

when the vibration unit and the gain circuit have been warmed up by continuous use.

It is recommended that the VSM be in operation for 4-5 hours to get good static

reproducibility and to minimize drift of the gain circuit. The VSM 1660 has a static

reproducibility of approximately 0.5%.

Dynamic reproducibility refers to the repeatability of a measurement once a sam-

ple has been taken out and placed back into the sample loading assembly. This is

a function of the sample size and orientation. Since the error in sample positioning

is larger for larger samples and for samples loaded in plane, therefore the dynamic

reproducibility is also poorer in these cases, and is of the order of 1.5% for relatively

large samples (>10mm 4).

3.2.5 Shape, Orientation and Size Effects

Out of plane measurements are subjected to lesser sample positioning error, since

the sample is placed farther away from the pickup coils than if it was in-plane. Also,

generally there is lesser field non-uniformity in out of plane measurements. Ideally,

the sample used for measurement should be ellipsoidal in shape, because that ensures

uniformity of magnetization and magnetization fields, and well-defined demagneti-

zation factors [38, 42]. However, this is not practically feasible. Instead, sample

positioning errors in commercial VSMs are minimized by using a set of even num-

bered symmetric coils and by loading the sample at the saddle point of the sensitivity



function G (r) [38].

O"G/O xn = 0, anG/& yn = 0 and anG/8 zn = 0 for all odd n (7)

3.2.6 Error Analysis

In a well-calibrated measurement, the main sources of error are the static re-

producibility error and sample positioning error. The latter can be minimized by

performing the sample positioning calibration every time a sample is loaded for mea-

surement. This becomes a difficult task for smaller moment samples due to the low

signal-to-noise ratio. However, it has been reported in the literature that the dif-

ferences in voltage sensed by the pickup coils are - 1% for a sample that has been

moved around 5mm away from the saddle point [39].

3.2.7 Curie Temperature Measurements

Curie temperature measurements of samples can be done either at remanence or

at saturation. Although measuring samples at saturation helps in determining the

temperature dependence of magnetization more accurately, if the aim of the exper-

iment is to accurately determine the Curie temperature of a sample, the remanent

magnetization state is more useful. This is because the effects of short range ordering

of moments above the Curie temperature are canceled out if the measurements were

done at zero applied field. The ADE VSM 1660 has a Model 883A temperature con-

troller that enables control of temperature through the EasyVSM software through

the "Temperature Scan" menu. The sample is loaded using alumina ceramic paste to

the sample holder.

3.3 Electrochemical Lithiation

Figure 3-3 shows a schematic of the experiments.
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Figure 3-3: A schematic of the electrochemical lithium insertion process

3.3.1 Preparation of Porous Electrodes

For the experiments on nanoparticles and micron-sized powders, composite cath-

odes were used. The electrode slurry was prepared by mixing the active material

(FezO 4 or CrO2) with appropriate amounts of conducting additive Super P carbon

(TIMCAL inc.) and poly (vinylidene fluoride) (PVDF) binder in N-methyl pyrroli-

done (NMP) solution. The slurry was cast onto an Al foil and dried in a vacuum

oven overnight. The electrode disks (area = 1.77 cm 2) were punched and dried in a

vacuum oven at 70 'C for 6 hrs before storing them in an argon-filled glove box (oxy-

gen level less than 1ppm and water level less than 1.5ppm). For the experiments on

PLD-grown thin films of iron oxide, the films grown on copper were used as cathodes

instead of the porous composite cathodes described in this section.

3.3.2 Calculation of capacity and discharge currents

The gravimetric discharge capacity C (in mAh/g) is calculated from :

C= 10 n F  [32] (8)

where n = the number of Li ions that enter the structure per formula unit, F = Fara-

A1 b t t•- +-
su srlateiL



day constant = 95,600 Coulombs/mole, and M = molecular weight of the lithiated

compound (in grams/mole).

The active weight of the electrode (weight of the film or that of the active material

in the porous electrode) multiplied by the gravimetric capacity gives the electrode

capacity in mAh. The weight for the PLD films was calculated by using the volume

of the films assuming theoretical density. The current that has to be withdrawn

during discharge can be calculated by dividing the electrode capacity by the time of

discharge in hours. Here it is assumed that 1 equivalent of Li carries 1 C of charge.

3.3.3 Preparation of cells

Assembly of the cells in the glove box involved stacking layers of the FeaO4 or

CrO2 and Li foil electrodes, and two pieces of Celgard separator in between (Celgard

Inc, USA). 1M LiPF 6 in a 1:1 EC:DMC solvent (Merck, TECHNO, SEMICHEM

Co. Ltd., Korea) was used as the electrolyte. A schematic of the cells used in the

experiments is shown in Figure 3-4. The cells were allowed to rest overnight in the

glove box before electrochemical testing.

3.3.4 Electrochemical schedules

These cells were subjected to electrochemical lithiation and delithiation via gal-

vanostatic experiments at constant current in which they were discharged (i.e. Li+

insertion into the cathode) and then charged (Li + de-insertion) at rates between C

and C/100 using a Solaritron 1470 Battery Tester [43, 44]. A rate of C corresponds

to an applied current of 'C' mA per gram of active material and is equivalent to the

insertion of 1 mole of lithium ions per formula unit every hour. 'C' is also the the-

oretical capacity calculated in Section 3.3.2, assuming that the theoretical capacity

corresponds to 1 mole of Li inserted into each formula unit of the structure. Similarly,

a rate of C/10 implies that, with no kinetic limitations, it would take 10 hours to

introduce 1 mole of Li+ into each formula unit of the structure.
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Figure 3-4: A schematic of the cell assembly

3.3.5 Disassembly of cells

At the end of discharge, the coin cells are uncrimped within the glovebox and the

electrolyte is washed off with solvent (DEC) to remove LiPF 6 so that the formation

of HF when the lithiated sample comes into contact with the atmosphere is avoided.

For some samples, magnetic measurements were obtained at different time intervals

after lithiation, to see the effects of exposure to atmosphere.

3.3.6 Structural and Magnetic Characterization

The films and nanoparticles were characterized for magnetic properties by Vibrat-

ing Sample Magnetometry (VSM) and for thickness by profilometry. Structural char-

acterization was carried out by 0-20 and Glancing Angle X-ray diffraction (XRD),

Electrolyte

1



Scanning Electron Microscopy (SEM) and Wavelength Dispersive Spectroscopy. The

structural characterization and magnetic property measurements were done pre- and

post-lithiation. The lithiated samples are subject to degradation in atmosphere, so

they were analyzed within an hour of lithiation, and the XRD measurements were

performed in an inert He atmosphere.

Room temperature magnetic measurements were done on the cathodes pre- and

post-lithiation using an ADE 880 Vibrating Sample Magnetometer by applying fields

in the range between -10 kOe and 10 kOe. Structural changes were tracked by 6-20

X-ray diffraction using a Rigaku RU300 X-ray generator and 185mm diffractometer

in helium flow immediately post-lithiation. The Curie temperature was measured

by cycling the cathodes in a furnace immediately post-lithiation under helium flow.

External magnetic fields of up to 6 kOe were applied for saturation.





Chapter 4

Magnetic and Structural

Investigation of Electrochemically

Lithiated Magnetite Thin Films

and Nanoparticles

4.1 Introduction

This chapter is concerned with analyzing the effects of electrochemical lithiation

on Fe3 0 4, which crystallizes in the inverse spinel structure. Lithium spinels have

been researched with a view to using them as cathode materials in lithium batteries

[45, 46, 47]. Among the chemically synthesized lithium iron oxides, there are two

main compounds, LiFeO 2 and LiFesO 8, which have been under scrutiny as cheaper

and more environmentally friendly alternatives to LiCoO 2 and LiNiO 2 as battery cath-

odes and also as a substitute for garnets in microwave devices [33, 48, 49, 50]. These

have been made by calcination of mixtures of Li2CO3 and Fe2O0, ion exchange reac-

tions or by hydrothermal synthesis methods [49, 51, 52, 53, 54, 55, 56, 57]. LiFeO 2

crystallizes as a disordered rocksalt phase (Fm3m space group). Researchers have

also synthesized layered LiFeO 2 and also the orthorhombic phase of LiFeO 2 which is



isostructural to LiNiO 2. LiFesOs crystallizes in the inverse spinel structure (Fd3m

space group) at higher temperatures, wherein the 16d octahedral sites are symmet-

rically equivalent. This is a disordered fcc structure (3-LiFe 5Os), in which the Li +

and Fe3+ ions are randomly distributed in the 16d octahedral sites. Nanocrystalline

P-LiFe5Os synthesized through hydrothermal methods has been shown to have a

saturation magnetization of 25 emu/g. It transforms to an ordered primitive cubic

structure at lower temperatures where there is ordering on the 16d sites. The higher

temperature phase can be preserved by quenching after solid state synthesis [45].

C

K

Figure 4-1: 8a, 16c and 16d sites in spinel

Chemical and electrochemical lithiation studies have been previously performed

on Fe30 4 and -y-Fe20 3 powders [11, 32, 33]. These studies were done initially to

investigate the suitability of iron oxide as a cathode material for high temperature



lithium batteries. The AB 20 4 spinel structure provided a 3-D framework for the

interstitial diffusion of Li ions. This was surprising because coulombic interactions

between guest ions in interstitial 8a sites (small circles in Fig. 4-1) or vacant 16c

octahedral sites (centers of empty octahedra in Fig. 4-1); and ions on the A or

B sites prevent simultaneous occupation of these sites [27]. The lithiation reaction

has been understood to occur through a mechanism that involves a transformation

into a rocksalt structure [Li A]16c[B 2]16dO4 through cooperative displacement of 8a

cations into vacant neighboring 16c octahedral sites due to electrostatic repulsion

with Li+ ions [3, 11, 27, 58, 59]. The spinel phase is retained in the regime x<0.13,

but for 0.27<x<0.60 there exists a two-phase mixture of spinel (Fd3m space group)

and rocksalt (Fm3m space group) [3, 591. LiFe3O 4 synthesized by solid state reaction

of Li2CO3 and a-Fe203 crystallizes in the rocksalt (Fm3m) structure [59]. Another

study on Li.Fe30 4 (0<x<l) synthesized by solid state reactions indicated that the

saturation magnetization varies linearly with lithium content for annealed samples,

while the non-annealed samples do not show any regular variation in M8 [3]. This

study also showed that chemically synthesized LiFe30 4 is paramagnetic at room tem-

perature. There can be high Li+ ion conductivity in rock-salt based structures [60].

In nanosized rocksalt transition metal oxides, lithiation may also involve formation

of Li20 and extrusion of Fe to form metallic nanoparticles [50], but this occurs for

higher values of x for magnetite, for example at x>2 [32]. Mossbauer and atomic

absorption spectroscopy studies on chemically lithiated FesO 4 suggest that there may

not be any extrusion of iron even for Li contents close to x=2 [11].

The conversion reaction is written as

Li + Fe304 --4 Li20 + Fe (9)

Fontcuberta et al studied the magnetic properties of the lithiated phase Lio.6Fe30 4

[11]. At 4 K, the magnetic moment of Li0.6Fe30 4 is 0.93 IB per formula unit compared

to 4 p•s for Fe30 4. The ordering temperature (Curie temperature) of the lithiated

phase is around 150 K, considerably lower than that of Fe30 4 , which is 860 K. The

ordering temperature is lowered because the lithiated phase has its Fe ions in the



octahedral 16c and 16d sites. The strong A-O-B antiferromagnetic interactions that

give rise to the high ordering temperature in the spinel are absent, and the weaker

B-O-B interactions dominate. The ordering temperature of the lithiated phase is also

less than the Niel temperature of 198 K for wustite, Fel_-O, which also crystallizes

in the rocksalt structure. This is because there are fewer nearest neighbor Fe ions in

the lithiated phase compared to Fel_,O [11]. We can thus expect the magnetization

to decrease as the spinel is lithiated. This should, in principle, result in complete

disappearance of the magnetic moment at room temperature, since the rocksalt phase

is expected to have a Curie temperature of 150 K [11].

In spinels, the Li ions have a preference to go into the tetrahedral 8a sites. The

diffusion pathway for Li ions is through 8a-16c-8a channels in the structure. Therefore

normal spinels, in which there are no ions other than Li in the tetrahedral sites, are

more receptive to Li ion insertion. For example, it has been found that Li4Ti50 12,

which is a normal spinel, has excellent discharge capacity ( 105 mAh/g) and undergoes

minimal strain upon Li insertion [45]. The Li4Ti501 2-LiFe5 O8 solid solution also has

good reversible capacity because LiFe5sO has a good lattice match with Li 4Ti50 12

[45]. However, the discharge capacity decreases with increasing Fe content because of

the formation of an inverse spinel structure, in which the presence of octahedral site

cations leads to shortening of the 0-0 distance and impediment in diffusion of Li ions

through the 8a-16c-8a channels [45]. The magnetic properties of this solid solution

at the iron-rich end has been studied by researchers [53]. This literature will be put

in context of the results in Section 4.3.

The aim of the study was to study the effect on magnetic properties of inserting

different amounts of Li into commercially available Fe304 nanoparticles by discharging

them down to different voltages and to propose a model for the same.

4.2 Experimental Details

This section describes the methodology used for experiments on thin films grown

by Pulsed Laser Deposition, and those on nanoparticles of Fe30 4.



4.2.1 Growth, characterization and lithiation of iron oxide

thin films

Thin films of iron oxide (Figure 4-2) were grown by PLD on single crystal Si,

MgO and polycrystalline polished Cu substrates from a hematite (a-Fe20 3) target,

using a KrF excimer laser at 248 nm wavelength. In previous work, it was found that

at chamber pressures of the order of 10- 4 Pa and substrate temperature of 500 OC,

the phase that grows is maghemite, -y-Fe203 [35, 36, 61]. However, the stoichiometry

of the target is not reproduced exactly in the film, and the composition of the films

is intermediate between Fe203 and Fe3O4. Based on these results, the films for this

study were grown with laser energies of 300-500 mJ/pulse, laser repetition rates of 50

Hz, substrate temperatures between 300-500 OC and at chamber pressures in the range

10- 4 to 10- 5 Pa. A high repetition rate of 50 Hz is used to prevent transformation

of the metastable maghemite to stable hematite, which occurs above 400 "C. An

example of XRD data (Cu Ka radiation, 0-20 geometry) from two films is given in

Figure 4-3, in which the higher substrate temperature yields a single-phase spinel

structure film. Film thicknesses were 100-200 nm, and the films on Cu substrates had

a (111) preferred orientation.

Iron oxide films grown on copper were lithiated electrochemically. Coin cells of the

form LiI1MLiPF 6 (EC:DMC)-Iron oxide were assembled in an Argon filled glove box

(oxygen level < 2ppm and moisture level < 1ppm). The cells were tested for open

circuit voltage and discharged galvanostatically at rates of C/50-C/200 to voltage

cutoffs of 1.2 V-0.8 V vs. Li/Li+. The current density used for these experiments

was 1 /pA/cm2. The films were analyzed for structure and magnetic properties

post-lithiation.

4.2.2 Experiments on Fe3O4 nanoparticles

Composite thick film cathodes roughly 30 ym in thickness were prepared by cast-

ing a mixture of magnetite nanopowders (Alfa Aesar, mean size 65 nm), SUPER PTM

conductive carbon black and poly- (vinylidene fluoride) (PVDF) in the weight ratio



11:6:3 on aluminium substrates, and punching out circular disks [43]. The starting

magnetite powders contain hematite, corundum-structured a-Fe203 as an impurity,

which is estimated to be around 15% from the ratio of intensities of XRD peaks and

measurement of saturation magnetization M8 [43]. The cathodes were dried, weighed,

assembled into cells in an argon-filled glovebox and subjected to galvanostatic elec-

trochemical discharge to voltages in the range 1.0 to 1.7 V. This resulted in samples

with lithium contents between x=0.01 and x=2. Details on the procedure can be

found in [43].

For the experiments on nanoparticles, composite cathodes were used. The elec-

trode slurry was prepared by mixing FesO4 powder (Alfa Aesar, USA) with 30 wt%

Super P carbon (TIMCAL) and 15 wt% poly (vinylidene fluoride) (PVDF) in N-

methyl pyrrolidone (NMP) solution. The slurry was cast onto an Al foil and dried in

a vacuum oven at 120 oC for 12 hrs. The electrode disks (area = 1.76625 cm 2) were

punched and dried in a vacuum oven at 70 oC for 6 hrs before storing them in an

argon-filled glove box (oxygen level less than 1ppm and water level less than 1.5ppm).

2016 coin cells were assembled in the glove box, which consisted of the Fe30 4 and Li

foil electrodes, and two pieces of Celgard separator (Celgard Inc, USA). 1M LiPF6 in

a 1:1 EC:DMC solvent (Merck, TECHNO, SEMICHEM Co. Ltd., Korea) was used as

the electrolyte. The coin-cells were allowed to rest overnight in the glove box before

electrochemical testing. The coin-cells were galvanostatically discharged to different

voltages between 1.7 V and 0.9 V at C/100 (current density = 2.16 mA/g and 2-3.5

pA/cm2) using a Solartron 1470 battery tester. The intensity of (111), (220), (311)

and (440) spinel peaks and the main (104) hematite peak were tracked for the samples

lithiated to different extents.

4.3 Results and Discussion

The results from experiments on thin films and nanoparticles of iron oxide are

summarized below.



4.3.1 Electrochemical Lithium Insertion into Fe203-_ thin

films

A SEM image of a film grown on Si at a temperature of 500 'C, and a laser

repetition rate of 50Hz in vacuum is shown in Fig. 4-2. The film is dense and

Figure 4-2: SEM of film on Si (50Hz, 500 'C, 8x10 - 4 Pa)

polycrystalline, with surface roughness due to faster growth of some grains. This

morphology was observed to persist upon lithiation. XRD shows that the intensity

of the (311), (220) and (440) spinel peaks decrease upon lithium insertion. The

reduction of intensity of the spinel peaks is consistent with the transformation into

the rocksalt phase upon lithiation. However, since the major peaks of the lithiated

rocksalt phase overlap with the copper and also the (111) spinel peak, it is difficult to

quantify the percentage of the rocksalt phase that forms. The saturation moment of

the films decreases by up to 30% upon electrochemical discharge. An example of the

effect of lithium insertion on the magnetic hysteresis loop of an iron oxide film grown

on Cu at 500 "C, 50 Hz in vacuum is shown in Fig. 4-4. The variation of saturation

magnetization with lithium content is summarized in Fig. 4-5. The formation of

the lithiated phase is expected to reduce the overall moment of the film, because the

rocksalt is paramagnetic at room temperature. In addition, if Fe nanoparticles form

by extrusion, their subsequent oxidation in atmosphere would form antiferromagnetic

hematite or superparamagnetic magnetite or maghemite particles, which would also
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Figure 4-3: XRD of films grown in vacuum on Cu at 300 oC and 500 OC with laser
repetition rate of 50 Hz , indexed to the spinel structure. The film grown at 300 OC
shows a non-spinel peak at 35.80.

reduce the moment of the film. Ideally, the moment of the film would drop to zero

following completion of any of these reactions, but in this experiment the greatest

decrease in moment was approximately 30% over a range of lithiation conditions.

This suggests that there is a kinetic limitation to the lithium insertion, presumably

as a result of the high density of the film, which limits contact with the electrolyte

to the top surface of the film, and thereby limits the lithiation to the surface region

of the film. This point will be discussed further in Section 4.5.

4.3.2 Electrochemical Lithium Insertion into Magnetite Nanopar-

ticles

With a view to understanding the possible kinetic limitations of lithiation of thin

films, investigations were carried out on commercial nanoparticles with a mean size

of 65 nm. In these experiments, composite cathodes were used that comprised 55

wt% active material (Fe3O4), 30 wt% conducting additive, and 15wt% PVDF. X-ray
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Figure 4-4: Magnetic hysteresis loops of a film grown on Cu before and after discharge
to 0.9 V at room temperature. The film was grown at 500 'C, 50 Hz repetition rate
and at a chamber pressure of 6x10 - 4 Pa.
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diffraction data of the starting nanopowders is shown in Figure 4-6. The peaks index

to the spinel structure. However, peaks from hematite are also present, with a volume

fraction of roughly 15%.
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Figure 4-6: XRD pattern of nanocrystalline magnetite powder (before discharge).

Discharge curves for different discharge rates are shown in Figure 4-7. An op-

timum discharge rate of C/100 was chosen because there is no further significant

upward shift of the voltage profiles upon decreasing the rate beyond C/50. The effect

of electrochemical lithium insertion on the saturation moment is summarized in Fig-

ures 4-8 and 4-10. This data shows that the saturation moment is maintained up

to approximately x = 1, and beyond this the moment drops rapidly with Li content.

An example of hysteresis data is shown in Figure 4-8, where the hysteresis curves

are plotted for a sample before and after discharge down to 0.9 V. The coercivity and

loop shape are largely unchanged but the M, has decreased by 53.4%. The large

drop in saturation moment beyond x=1 in these experiments indicates the formation

of substantial fractions of non-magnetic phase. This most likely consists of the lithi-

ated rocksalt phase, which is paramagnetic at room temperature. The decrease in
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moment with increasing lithium content may be a result of a decrease in Curie tem-

perature with increasing x. Additionally, if Fe is extruded from the structure at high

Li content, its subsequent oxidation could lead to superparamagnetic nanoparticles of

magnetite or maghemite, or antiferromagnetic particles of hematite or wustite, any

of which would reduce the room-temperature moment of the sample. Measurements

of the temperature dependence of the magnetization of the samples can distinguish

between these possible mechanisms, and these will be described in Section 4.3.5.

4.3.3 Structural Investigation

The XRD data are shown in Figure 4-9. It is expected that the spinel peaks

change in relative intensities as lithiation proceeds, due to formation of the rocksalt

structure from the spinel framework [11]. The ratios of (220), (311), (440) peaks of

the spinel and the hematite (104) peak to the (111) spinel peak intensity are shown

in Figure 4-9 as a function of lithium content. It is clear that the hematite phase

is transformed, since this peak decreases in intensity and vanishes completely by

x=2. The hematite/(111) peak ratio decreases from 26.0 at x=0 to 0.5 at x=1. Also

the magnetite (311)/(111) ratio decreases from 36.6 at x=0 to 2.85 at x=2. The

(220)/(111) peak ratio decreases from 9.0 at x=0 to 0.6 at x=2. The decrease in

the (440)/(111) and (220)/(111) intensity ratios is in agreement with the mechanism

proposed in the literature which involves cooperative displacement of Fe ions from

the tetrahedral sites into octahedral sites [27].

4.3.4 Room-Temperature Magnetic Properties

The results of room-temperature magnetic measurements on lithiated nanopar-

ticles are summarized in Figure 4-10. It is clear that the saturation magnetization

decreases as lithiation proceeds, dropping to 29.2% of the original value at x=1.99.

We note that there is not much change in the saturation moment in the regime x=0

to x=1. There is negligible change in the remanence MT/Ms, except for a small rise

in the beginning and beyond x=1.5. The coercivity shows no change until x=1.5,



0.0 0.5 1.0 1.5 2.0

x in Li Fe 0,X 3

Figure 4-9: Intensity ratios of various spinel and hematite peaks as function of lithium
content. The lines serve as a guide to the eye.
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4.3.5 Curie Temperature

The results of Curie temperature measurements are summarized in Fig. 4-11.

The curve for the cathode prior to lithium insertion has an upward slope around 720

K. This anomalous behavior is seen in some samples, while in others it is absent.

These features disappear upon cooling back down, so this is probably a result of

an irreversible phase transformation upon heating. The source of this anomaly is

unclear. However, Xu et al. point out that the annealing of superparamagnetic

particles can contribute to an anomalous increase in magnetization with increase in

temperature [62]. It is possible that presence of a small fraction of superparamagnetic

particles in our starting powders could cause such behavior. However, the Curie

temperatures unexpectedly remain close to that of bulk magnetite, which is 860 K,

even though the moment decreases. This suggests that a fraction of the material is

not transformed completely into the rocksalt phase, due to kinetic limitations. The

cores of the nanoparticles probably remain unlithiated .

E

0

N

Temperature (K)

Figure 4-11: Summary of Curie Temperature measurements on samples discharged
to different extents. Here xLj denotes the number of moles of lithium inserted.



There are two main differences between the data for nanoparticles shown in Fig.

4-10 and that for samples synthesized by solid state reaction reported in the liter-

ature [3]. Neto et al report a monotonic decrease in Ms with lithium content for

annealed samples [3], whereas these experiments show negligible changes in Ms un-

til x= 1. The Curie temperature remains close to that of Fe304, whereas chemically

sythesized LiFe30 4 is paramagnetic at room temperature [3]. This suggests a different

mechanism at work compared to that reported by Neto et al. These aspects will be

considered next.

4.4 Model for M, - x in LiFe3O 4

We will now describe the possible mechanisms for the redistribution of ions in

magnetite during Li insertion. These models are valid only for small x, and suggest

different dependences of M on x, which will be compared with experimental data.

4.4.1 Topochemical reduction without cooperative displace-

ment of ions

In this model, the Fe ions remain in their original positions, but a fraction x of

octahedral Fe3+ is reduced to Fe2+. The formula is:

[(Fe+)al]A (Fe2+) 16dT Fe3+x) 16dT (Fe2+) 16d (Li+) 16c B

Ms = [4 + 5(1 - x) + 4x] - 5 = 4 - x B per F.U. (10)

Therefore M decreases linearly with x.

4.4.2 Cooperative displacement of 8a Fe3+ ions into 16c sites

This is a more realistic scenario, since diffusion of Li ions through 8a tetrahedral

sites would cause displacement of tetrahedral Fe3+ ions into neighboring 16c sites due



to electrostatic repulsion. Although Fe2+-Fe2+ (d6-d6) and Fe3+-Fe3+ (d5 -d5) B-B

interactions are antiferromagnetic and introduce frustration into the system, limiting

the model to low x values simplifies the picture. At low x, since there are very few

16c Fe cations, we can assume that:

1. Any 16c Fe will have only 16d Fe as its nearest neighbours (NN), and therefore

16d-16d and 16d-16c interactions would dominate over 16c-16c.

2. Overall, the dominant interactions are the A-B interactions which are antifer-

romagnetic in spinel and much stronger than B-B interactions.

3. Since the Curie temperature does not change much upon lithiation, it is rea-

sonable to assume that the room temperature saturation magnetization is close

to that at 0 K. The individual magnetic moments of Fe3 + and Fe2+ are 5 and 4

AB respectively.

4. There is preferential reduction of octahedral ions (16c ions) upon lithiation since

the divalent ions that are formed upon lithiation being larger in size would prefer

the bigger octahedral sites.

This results in:

[(Fetx)8aIA[(Fe2 + )16dT(Fe 2+)16c (Fe3+)16dT (Li+)16c]B

Ms = [5 + 4-4x] - 5(1 - x) = 4+x pB per F.U. (11)

From the voltage-charge curves, it appears as though the first plateau-like feature

appears at x-0.2. We may assume that until this point, there is no displacement

of Fe ions within the structure, and there is cooperative displacement of the ions

beyond this. The resultant model is plotted along with the results for PLD-grown

films and nanoparticles in Fig. 4-12. The model proposed by Neto et al is shown

for comparison. It is clear that the PLD films and the nanoparticles show markedly

different behavior. The behavior of the nanoparticles appears to be in reasonable



agreement with our model in the limit of small x, although the choice of x=0.2 as the

point of commencement of the displacement of tetrahedral Fe3+ ions into octahedral

16c sites limits the applicability of the model. It is also not clear why the particles

and thin films exhibit these differences in magnetic behavior.
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Figure 4-12: Comparison of experiments on NPs and PLD films to model. Results
from a report in the literature on solid-state synthesis of lithium iron oxide is shown
in the dotted line [3].

This suggests that the hematite impurity present in the nanoparticles might have

a significant effect. X-ray diffraction measurements (Figure 4-9) indicate that the

hematite phase disappears at lithium concentrations between x=0.63 and x=0.95. For

the sake of simplicity, one may assume that the hematite reacts completely by x=0.63.

The impurity hematite will also undergo a transformation from the hcp (corundum)

structure to a ccp (rocksalt) structure [33, 48]. Furthermore, researchers have shown

that the spinel-to-rocksalt phase transformation is suppressed in nanosized y-Fe20 3

[63]. It is possible that nanosized magnetite undergoes a similar topochemical reaction

mechanism and suppression of the spinel-rocksalt phase transformation and this may

also explain the observed changes in Ms. A more rigorous model for the magnetic
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behavior should take into account the reaction of hematite with lithium until x=0.63

since there might be competition between the Li insertion reaction into magnetite

and the monophasic insertion reaction into hematite in the initial stages[33, 48].

However, the points of onset and completion of the reaction of hematite with

lithium, and that of displacement of the tetrahedral Fe ions into octahedral sites are

not clear and this complicates the picture. The high Curie temperatures suggest that

there may be some unreacted Fe30 4 and the presence of hematite as impurity phase

makes it difficult to estimate the percentage of unreacted phase.

Further, the calculated energies (GGA+U) for monophasic reaction with LiFe3O4

are 0, -1.69 and -0.3636 eV for x=0, 0.5 and x=1.0 respectively, while those for iron

extrusion are -1.15, -1.07 and -1.19 eV for x=0, x=1 and x=2 respectively [22]. This

suggests that at every stage, iron extrusion can be a competitive process to the

reaction with spinel [22].

The exact nature of the mechanism responsible for the observed changes in Ms-

x behavior is thus unclear, and is an unanswered question. It could be worthwhile

to repeat these experiments on single-phase particles of Fe3 0 4 (without hematite

impurity) to distinguish between these mechanisms. Mossbauer or EXAFS studies

could also be useful to elucidate the exact mechanism. This will be discussed further

in section 6.3.

4.5 Kinetic effects in PLD-grown thin films

This section discusses a simple model for describing some of the kinetic limitations

in thin films outlined in Section 4.3. The geometry of diffusion in nanoparticles and

thin films of PLD is shown in Fig. 4-13. It is assumed that the rate limiting step

for the nanoparticles is solid state diffusion, whereas for the thin films, it could be

either grain boundary diffusion or diffusion through the interior of the grains. Kinetic

effects arising from diffusion through the liquid electrolyte and the Solid-Electrolyte

Interface (SEI) have been ignored in this analysis. The lithiation process is modelled

in terms of an effective diffusion coefficient D for diffusion of lithium ions. The times
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Figure 4-13: Schematic showing pathway for solid state diffusion of Li in (a) PLD-
grown thin films (b) Nanoparticles of Fe3 04

for completion of diffusion through the films and nanoparticles can be calculated

through the relation:

L = v (12)

where D is the effective diffusion coefficient for Li ions in Fe30 4, t is the time

required for diffusion; and L is the diffusion length. This yields:

tNP = r2/D (13)

where r is the radius of the nanoparticles.

There are two possible situations for diffusion in the thin films:

(a) Fast grain boundary diffusion: In this case, diffusion into the interior of the film

from the grain boundaries is the rate limiting step.

tTF = (0.5w) 2 /D (14)

where w is the width of the columnar grains in the thin film (Figure 4-13).

Therefore the ratio of the times required for complete diffusion through the films and

nanoparticles is:

tTF/tNp = (0.5w/r)2  (15)

This gives a ratio of 2.4 assuming a 100 nm columnar width of the grains and 32.5

nm radius of the nanoparticles.

(b) Slow grain boundary diffusion: Since the grain boundaries extend through the

thickness of the films (Figure 4-2), the total diffusion length is equal to the thickness

of the film.

__



tTF = (d)2 /D (16)

In this case, the ratio of the times required for complete diffusion through the films

and nanoparticles is:

tTFtNP = (d/r)2  (17)
This gives a ratio of 9 for the times required for diffusion through the films and

nanoparticles (assuming 100 nm thick films).

From the above discussion it is clear that there are greater kinetic limitations in the

films compared to the nanoparticles.

4.6 Comparison to battery literature

In this section, the electrochemical measurements observed for Fe3O4 nanoparti-

cles will be compared to the literature.

Ito et al obtained large capacities (- 400 mAh/g) by using FesO 4 fine particles

as the cathode material upon discharge to 1.0 V [64]. However, it is to be noted

that in our experiments we restricted the experiments to a capacity of 2 moles of Li

per formula unit (or 230 mAh/g) coinciding with onset of iron extrusion [32]. The

voltage-charge plot shown in Figure 4-7 is similar to the signature curve reported

in lithium battery literature on use of Fe3O 4 as a conversion electrode [32, 64, 65].

From these plots, it is clear that there are two distinct regimes. The first is a sloping

regime (between 1.7 to 3 V) and the second one is a flatter region (between 1.0 to

1.7 V). This suggests that there may be two distinct mechanisms in operation in

these regions, although open circuit voltage measurements would perhaps be a more

rigorous way of elucidating the different mechanisms than the voltage-charge plots

discussed here.

4.7 Conclusion

Fe203-, thin films grown by pulsed laser deposition (PLD) and commercially

available magnetite nanoparticles were subjected to galvanostatic electrochemical dis-



charge at room temperature. Both systems show a substantial decrease in saturation

magnetization M8 and a reduction in intensity of the 311, 220 and 440 X-ray reflec-

tions. We have observed a change in M8 of up to 30% for thin films and 75% for

nanoparticles by discharging down to 0.9 V versus Li/Li+. This decrease may be

due to formation of a paramagnetic lithiated phase. The smaller drop observed in

thin films is attributed to a kinetic effect because the high density of PLD-grown

films limits lithiation to just the surface of the film. In magnetite nanoparticles, the

porosity of the composite cathode and the larger surface area of the particles would

result in better contact between the electrolyte and the oxide, and reduced kinetic

limitations.

The magnetization is expected to decrease due to formation of paramagnetic lithi-

ated phase. However, this should result in zero net room temperature magnetization

upon completion of the phase transformation due to low ordering temperature of the

lithiated phase. Although a substantial decrease in M8 was observed upon inser-

tion of more than one mole of Li per formula unit into Fe3 0 4 nanoparticles, room-

temperature magnetic measurements and Curie temperature measurements suggest

that there are negligible changes in magnetization until x=1. There could be two

possible explanations for this. Firstly, the spinel-rocksalt phase transformation may

possibly be suppressed due to small size of the particles. Secondly, the presence of

hematite as the impurity phase could also be a reason since it could be reacting with

lithium in the early stages, and delaying the onset of the reaction of lithium with the

spinel.





Chapter 5

Electrochemical Control of the

Magnetic Moment of Cr0 2

5.1 Introduction

Since the advent of research into chemical and electrochemical lithium insertion

into chromium oxides [66, 67], researchers have looked into the possibility of using

these oxides for Li batteries. There are a few reports on Li insertion into CrO2, which

shall be discussed in the following paragraphs [12, 13]. However, there have been

no reports on the effect of lithiation on the magnetic properties of CrO2 . Among

the chemically synthesized lithium chromium oxides, LiCr 3Os have been the subject

of recent investigations, owing to their good rechargeability and energy density [67].

This is partly because the mechanism involved may be intercalation-deintercalation

similar to that observed in the CoO2-LiCoO 2 system. Electronic structure studies

indicate that there may exist ferromagnetic ordering in certain phases of Cr 3 0s and

LiCr3O8 [67]. It has been suggested that lithium intercalation in this material system

proceeds not through reduction of the valence of chromium, but instead through a

regulation of the degree of covalency of the Cr-O bonds [67]. However, the application

of this system towards chemical switching of magnetism is limited owing to their low

ordering temperatures.

Insertion of lithium into Cr0 2 produces compounds of formula Li.CrO2. In its



most stable crystal structure at x=1, LiCrO2, is a Heisenberg antiferromagnet with

a N6el temperature of 62 K [68]. In general, LiMO 2 compounds, where M is a tran-

sition metal, have a layered structure in which the Li and M ions occupy octahedral

sites within an fcc oxygen lattice [69, 70]. In LiCrO2 the Cr3 + ions occupy points on

a two-dimensional triangular lattice separated by sheets of lithium and oxygen [71].

LiCrO 2 is isostructural with LiNiO 2, in which Li and Ni are segregated into layers

perpendicular to the <111> direction, and there is a small distortion of the fcc lattice

[72]. The LiCrO2 compound is therefore a rhombohedrally-stacked 2-D triangular lat-

tice antiferromagnet, with frustrated antiferromagnetic ground state magnetic order.

There has been little work on lithium deintercalation and intercalation in LiCrO 2

[73]. Deintercalation in LixCrO2 was found to be possible only between x=0.8 and

x=1.0, and the reversibility was extremely poor [74].

Experiments on lithium intercalation have demonstrated a higher capacity (charge

storage) in amorphous CrO2 compared to crystalline CrO2 (150 mAh/g and <50

mAh/g, respectively) [75, 76], but there has been no report on the effects of Li

content on magnetic properties. One of the key parameters determining the kinetics

and reversibility of electrochemical Li insertion in CrO2 is the diffusivity of the Li

ions. While CrO2 has not been studied in detail, more information is available on

TiO 2 in the rutile structure [77, 78, 79, 80, 81].

The TiO2 rutile structure provides a highly anisotropic framework for diffusion

of Li ions, with the diffusion coefficient being 5 orders of magnitude greater in the

c-direction (10-6 cm 2/s) compared to the a- and b- directions [78, 79]. In TiO2, in-

serted lithium ions are expected to occupy octahedrally-coordinated sites, which are

favored by approximately 0.7 eV over tetrahedral sites [77]. The limited diffusivity in

the ab planes restricts the capacity of rutile for Li insertion [77, 79] at room tempera-

ture. Early work on lithium insertion into rutile-structured TiO2 suggested that while

anatase TiO2 has good reversible capacity, rutile-structured TiO2 requires larger dis-

tortion of the crystal lattice and therefore lithium insertion into rutile is mainly a

surface effect [53]. This was earlier rationalized due to the highly dense nature of the

rutile structure. The evidence was inconclusive, and it has been suggested that the



difficulty is more due to blocking of the c-channel due to sluggish diffusion in the ab

plane and due to Li-Li interactions than purely thermodynamic effects [31, 78, 79].

However, as the Li content increases, and the tetravalent ions are reduced into larger

trivalent ions, the lattice expands in the ab plane and this could enhance the diffu-

sion along the c-axis [79, 80]. However, this may not necessarily improve the overall

kinetics since the ab diffusion is slow. Larger Li contents have also been introduced

at higher temperatures, for example 1 mole of Li per formula unit of TiO 2 at 120 oC

[81].

Researchers have tried to compare the experimental results on lithiation of TiO2

with Hartree-Fock calculations using suitable a posteriori approximation corrections

for electron correlations [82, 83]. In one such study, the difference in Mulliken charge,

3d population and local spin moments upon Li insertion into different polymorphs

of TiO2 were calculated [82]. These studies used structures for the fully lithiated

compound LiTiO2 by deriving from experimentally observed phases for intermediate

Li composition. The Mulliken charge (which refers to the partial atomic charge

calculated based on the LCAO method) serves as a measure of the difference in

electronic density and thus changes in electronic and magnetic properties upon Li

insertion [82]. These suggest that the rutile polymorph is most stable form of TiO2

and the orthorhombic polymorph is most stable form of LiTiO2. They show that due

to significant covalency, the effective charge on the cations is reduced and there is

formation of a local moment of 1 IB at the Ti sites [82]. There is no literature for

calculations on CrO2 for similar comparison.

This prior work suggests that the electrochemical Li-ion insertion process may be

useful for creating large and reversible changes in the magnetic moment of CrO2. In

the first half of this chapter, the effect of Li insertion on the magnetic properties of

550 nm x 45 nm CrO2 powder is reported and correlated with structural changes. Of

particular interest is the extent of reversibility of both the electrochemical behavior

and the magnetic properties.

The second part of the chapter describes the experiments on reversible changes

in magnetic properties of 400 nm x 45 nm CrO2 particles due to electrochemical



lithium insertion, forming LixCrO2 where x<1. The significance of these experiments

is exploration of the possibility of obtaining better reversibility (due to better strain

accommodation) and also of enhanced kinetics (due to smaller Li diffusion path) in

CrO2 nanoparticles of slightly reduced size. The investigation on effects of galvanos-

tatic electrochemical cycling on the magnetic properties of these CrO2 nanoparticles

focused in particular on the effect of the rate of Li+ insertion.

5.2 Experimental Details

This section describes the experimental procedures, starting with those for the

investigation on 550 nm x 45 nm CrO 2 particles.

The details of the preparation of positive electrodes (cathodes), and electrochemi-

cal schedules have already been described on page 57. Electrochemical cells (type TJ-

AC, Tomcell Co. Ltd., Japan) were used for electrochemical measurements. Needle-

shaped particles of CrO2 with approximate dimensions of 550 nm x 45 nm (DuPont

MagtrieveTM) estimated from a scanning electron micrograph, Fig. 5-1, were used to

make the composite cathodes, which contained a mixture of CrO2: superP TM carbon

: PVDF with a weight ratio of 80:10:10 [43, 44]. The mixture was cast onto a 20

pim-thick aluminium substrate, forming a layer either 79±1.5 Am or 159±2 Am thick.

The substrates were cut into disks and formed into cells with a Li metal anode and 1

M LiPF 6/ethylene carbonate/ diethyl carbonate electrolyte. The current applied to

the cells was 3.2 mA per gram of CrO2, corresponding to the insertion of 0.01 mole

of lithium ions per formula unit of CrO2 every hour. The applied voltage was kept

below 4.5 V to avoid electrolyte decomposition and above 0.9 V to avoid reaction

with the carbon and binder materials.

The cells were characterised magnetically before and after electrochemical cycling

using a vibrating sample magnetometer at room temperature. The bulk magnetiza-

tion M8 of the starting CrO2 powders was 90 emu/g at 10 kOe. CrO2 powders are

difficult to saturate, and a size-dependent magnetization has been reported [84], but

our value for M, agrees well with reported values. A high-field paramagnetic slope



(3-11 x 10-6 emu/Oe) observed in the hysteresis curves of the cathodes above 6 kOe

that originated from the additives and the aluminium substrate was subtracted from

the measurements. This slope subtraction procedure had only a small effect (3-4%) on

the calculated change in saturation magnetization caused by lithiation. X-ray diffrac-

tion of opened cells was carried out in 0-26 geometry using a diffractometer with

Cu Ka radiation. The starting powders contain some trace Cr203 estimated to be

<1% from the ratio of XRD peak intensities. The CrO2 phase may decompose upon

exposure to the atmosphere, since it is metastable at ambient conditions [85]. This

was evident in some samples that were exposed to the atmosphere for a prolonged

period after overnight vacuum drying at 120 OC, in which XRD peaks corresponding

to the orthorhombic oxy-hydroxide CrO(OH) phase were found. In order to avoid

unwanted reactions, the cathodes were stored and assembled into coin cells inside a

glovebox prior to the experiments.

Electrochemical Li+ insertion of '-400 nm x -45 nm needle-shaped CrO2 particles

(MicroMagnetics, Inc.) was carried out in type TJ-AC cells (Tomcell Co. Ltd.,

Japan). These particles were made into composite cathodes using a weight ratio

of 80:10:10 of CrO2 :polymeric binder:conductive carbon. Details on preparation of

cathodes and cells can be found in section 3.3.3. The discharge process used here

produced samples with a nominal composition of Li of up to 0.5 moles per formula

unit at the rate of C/100. For the discharge steps, a termination voltage of 0.9 V

was used, and 4.5 V was used as the termination voltage for the subsequent charging

steps. The cathodes were characterized pre- and post-lithiation by Vibrating Sample

Magnetometry (VSM) and 8-28 X-ray Diffraction.

5.3 Results and Discussion

The results from experiments on 550 nm x 45 nm chromium dioxide particles and

nanoparticles of CrO2 are summarized in this section.
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5.3.1 Electrochemical insertion of Li into 550 nm x 45 nm

CrO2 particles at room temperature

Room temperature lithiation of CrO 2 led to a decrease in the saturation magne-

tization of up to 70% (Figure 5-2). A m imum of 0.5 moles of Li per formula unit
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of Cr0 2 (x=0.5) could be inserted at room temperature during the electrochemical

discharge process. The changes in magnetic moment correlate with structural changes

apparent from X-ray diffraction measurements (Figure 5-3). The Cr0 2 (101) rutile-

100

Applied Field (Oe)

Figure 5-2: Magnetic hysteresis loops for Li.CrO2 with different Li contents x, nor-
malized to the magnetization of pristine CrO2.

structure peak broadens for x=0.1, and shoulder peaks appear at lower angles for

x=0.4 and 0.5 (Fig. 5-3). This suggests an inhomogeneous expansion of the rutile

lattice as lithiation proceeds. No peaks from the layered LiCrO 2 phase appeared up to

x=0.5. Although the highest intensity peak from this compound would be obscured

by a broad background peak from the other materials in the electrode, no other peaks

from the compound could be identified. Peaks from the disordered rocksalt phase,

observed previously upon lithiation of rutile-structured TiO2 [86], were also not ob-

served up to x=0.5. The shoulder peak is thus attributed to a nonferromagnetic

Li+ and Cr3+-rich rutile phase. This is consistent with a report in the literature on

chemical lithiation of CrO 2 at room temperature involving a topochemical reaction

mechanism [87].
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Figure 5-3: Comparison of (110) (left) (101) (middle) and (211) (right) x-ray peaks
for samples discharged to different lithium contents x = 0.1, 0.4 and 0.5 at 20 oC,
compared to the peak from the pristine CrO2 sample. All peaks are shown with the
same vertical scale.

5.3.2 Electrochemical reversibility of Li.CrO2 at room tem-

perature

The reversibility of the Li insertion was examined by discharging samples (insert-

ing Li) up to different values of x and then charging the samples (removing Li) to

return to a nominal composition of x=0. This discharge-charge cycle was repeated

up to four times. Fig. 5-4 shows the discharge-charge curves for x= 0.1, 0.2 and 0.3.

The system shows near-perfect electrochemical reversibility at x=0.1, but a decrease

in final voltage is observed upon cycling, which suggests that there is some struc-

tural degradation. For x=0.2, there is reasonably good electrochemical reversibility.

The sample for x=0.3 shows poor electrochemical reversibility and in this case, the

discharge capacity is higher than charging capacity. The corresponding structural

changes are indicated in Fig. 5-3. As noted above, Li insertion lowers the CrO2

peak intensity, broadens the peaks, and introduces additional low-angle shoulders at

x=0.3 or higher. Li removal partly reverses these changes and results in an x-ray

pattern close to that of the pristine powder, even for x=0.3. For example, a sample

discharged to x=0.3 shows a shoulder peak adjacent to the broadened (101) peak, but

(01)



0

4

2

0

6

w 2

4

U 2

X III LI x..,r 2I

0.0 0.1 0.2 0.3 0.4

0 40 80 120

Q (mAh/g)

Figure 5-4: Charge and discharge cycles of CrO2 samples at a current of 3.2 mA/g
at room temperature showing the variation of cell voltage E with charge flow Q:(a)
x = 0.1 (b) x = 0.2, and (c) x = 0.3, where x represents the maximum Li content
inserted into each sample.

after cycling four times between x=0 and x =0.3 and returning to x=0, the shoulder

peak is absent. The peak broadening is not fully reversible, for example the sample

cycled four times to x=0.3 has a FWHM for the (101) peak of 0.490, compared to

0.330 for the pristine powder and 0.840 for the discharged state. These results suggest

that Li insertion creates some irreversible inhomogeneous strain in the lattice.
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Intermittent discharge measurements (Fig. 5-5) supported the XRD observations.

In these measurements, Li insertion is periodically interrupted by zero-current periods

of relaxation lasting 5 hrs each. The open-circuit voltages (OCVs) observed after

five hours of relaxation decrease as a function of x in LiXCrO 2 with a relatively

small polarization (- 200 mV) in the low x limit. Also, much larger slope in the

OCV-x curve was observed for x<0.05 than for higher lithium contents. This is

consistent with the existence of predominantly a single phase, as suggested by XRD.

The significantly large polarization (- 1000 mV) in the region x>0.2 may indicate a

change in the nature of the lithiation reaction at higher Li contents.

x in Li CrO2
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Figure 5-5: Intermittent charge curves of a CrO2 sample at a rate of 3.2 mA/g at
room temperature. The sample was charged multiple times, each one separated by a
5 hour off period. Open circles indicate the open circuit voltages measured after each
5 h current-off period.

Figure 5-7 shows the magnetization as a function of Li content for different

numbers of discharge-charge cycles. Even for x = 0.1, a single complete discharge-

charge cycle leads to a drop in magnetization of 15% (Fig. 5-7). Although the process



is electrochemically reversible up to x = 0.1, the magnetization is not reversible to

the same extent. In contrast to the electrochemical cycling results, the magnetization

changes are not fully reversible even for x=0.1 (Fig. 5-6), where a single complete

discharge-charge cycle leads to a drop in magnetization of 15%.

-10000 -5000 0 5000
Applied Field (Oe)

10000

Figure 5-6: Comparison of magnetic
insertion of x=0.1 moles of Li (open
to x=0 (solid circles).

properties before lithiation (solid squares), after
squares), and after removing Li (charging) back

A larger drop in magnetization (Fig. 5-7) was obtained for three discharge-charge

cycles, indicating that electrochemical cycling leads to progressively higher structural

degradation. The irreversibility is more pronounced for higher x, where little of

the magnetic moment is recovered on removing the Li from the structure. Figure

5-7 summarises the relation between magnetization and x for several experiments

including different numbers of discharge-charge cycles.

5.3.3 Electrochemical cycling of LixCrO2 at 60 'C

As mentioned in the introduction, the kinetics in this system are poor at room

temperature, as is evident from the large polarization obtained upon electrochemical
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Figure 5-7: Summary of magnetization measurements of CrO2 after electrochemical
cycling. The samples were subjected to different number of discharge-charge cycles
and left in the discharged (lithiated) state or the charged (delithiated) state. The
solid points indicate room temperature data while the open points refer to 60 OC
measurements. For example, "20 'C 3.5 cycles, lithiated" refers to a sample that has
been subjected to three discharge-charge cycles at 20 oC, followed by a discharge to
leave it at composition x. The shaded area of the graph indicates complete electro-
chemical reversibility. The lines represent model predictions for samples discharged
once (triangular symbols).

cycling. Improvement in the kinetics of lithiation may be expected to increase the

amount of lithium that can be inserted, and the reversibility of the structural and

magnetic changes. Samples were subjected to 1-2 electrochemical cycles at 60 oC

in which Li amounts varying between x=0.5 and x=0.9 were inserted. Li insertion

beyond x=0.9 was limited by the cell reaching the voltage cutoff of 0.9 V. In Figure

5-8, the discharge-charge curves at room temperature and at 60 oC are plotted for

comparison. There is less polarization at 60 "C, implying a reduced kinetic limita-

tion and enabling insertion of much higher amounts of Li than is possible at room

temperature.

Structurally, cycling at 60 oC also leads to broadening of the (101) peak and devel-
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Figure 5-8: Charge and discharge cycles of CrO2 samples at a current of 3.2 mA/g
at 60 'C (solid curve) showing the variation of cell voltage E with charge flow Q: (a)
x = 0.5 (b) x = 0.9, where x represents the maximum Li content inserted into each
sample. The data obtained at room temperature for x = 0.3 are shown for comparison
in (b) (dotted line).

opment of a shoulder peak at x=0.5 (Fig. 5-9), which decreases in intensity but does

not fully disappear upon charging back to the unlithiated state. At x=0.75 and x=0.9,

however, the shoulder peak is retained on charging back to x=O. The broadening of

the (101) peak indicates that there is progressive destruction of long-range order in

the rutile lattice, and the broadening becomes increasingly irreversible beyond x=

0.5.. The resultant changes in magnetization with Li content at 60 'C are summarized

in Fig. 5-7. The magnetization is <5% of its initial value when the lithium content

reaches x=0.75. However, the reversibility of the change in magnetization is still quite

limited, and the electrochemical reversibility evident in the charge-discharge curves,

which extends until at least x=0.5 at 60 oC, is not matched by the reversibility of the

magnetization.

The M,(x) behavior in the range x=0.2 to x=1 is approximately linear (Fig. 5-

(a)
charge

discharge

(b)

. *. -.. ...

at room temperature
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Figure 5-9: Comparison of the (110) (left), (101) (middle) and (211) (right) rutile
peaks for different final charged and discharged states at 60 oC. Here the samples were
either discharged once ("lithiated") or discharged and charged back ("delithiated").
The pristine sample has been normalized to fit to scale for each individual peak.

7). A possible explanation for this is the presence of two rutile-structure phases, as

suggested by the x-ray diffraction data above x=0.2: one magnetic, and the other with

no net moment. This is also supported by an intermittent discharge measurement

that suggests two different Li insertion mechanisms in the low and intermediate x

regimes(Fig. 5-5). The change in the voltage across the sample during the 5h

relaxation period is modest (- 200 mV) for x<0.1 but increases to - 1 V for larger

x, indicating a change in the kinetics of the Li insertion.

5.3.4 Modeling

To analyse the effects of Li insertion on the magnetization, we assume that the

rutile framework is undisturbed upon lithiation and we consider the t2g-t2g interac-

tions alone, since the eg orbitals are empty. In CrO2, the degeneracy of the t2g states

is lifted due to tetragonal symmetry. As a result, there exist dyz+dzx and dyz-dzz

degenerate excited states above the dxy ground state [18]. Therefore each Cr4+ ion in
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the lattice has one localised electron in d,, and an itinerant electron that has equal

probability of occupying each of the excited states.

The source of the ferromagnetism is the parallel coupling of spins due to hopping of

the itinerant electron between neighboring Cr4+ (d2 ) ions. We assume that insertion

of a Li+ ion leads to reduction of a Cr 4+ ion (of moment 21aB) into a Cr3 + ion (3AUB)

for charge balance, and that there is no competing charge compensating mechanism,

such as the filling of oxygen vacancies. The reduction of Cr4+ to Cr 3+ creates d2-d3

and d3-d3 nearest-neighbor pairs, which leads to antiparallel coupling of spins through

superexchange interaction between the t2g orbitals.

At low Li concentrations, one can assume that d2-d2 and d2-d3 are the dominant

interactions. This gives a ground state wherein the Cr 4+ ions are coupled parallel to

each other, and are coupled antiparallel to the small number of Cr3+ ions present.

Neglecting the parallel coupling between neighboring Cr3+ ions, since such pairs would

be present in very small concentrations, we expect a decrease in magnetic moment

of 5 PsB for each Li+ ion that is incorporated into the structure. This corresponds to

a change in moment of 1629 emu/cm3 at 0 K, or equivalently a 250 % decrease in

magnetization, for each mole of Li per formula unit of CrO2. A line with this slope

is shown on Fig. 5-7, and is in good agreement with the initial slope of M8 vs. Li

content x.

The decrease in M8 with x may alternatively be a result of a decrease in Curie

temperature with lithiation. To exclude this possibility, the Curie temperature of

three lithiated samples was compared with that of the pristine powder. As seen in

Figure 5-10, the Curie temperature decreases only by about 10 'C upon inserting

0.2 moles of Li per formula unit, which cannot account for the large changes in room-

temperature Ms. As the Li content increases, d3 -d3 and d3-d2 interactions become

more dominant, both of which are antiparallel. This suggests that the structure will

have little or no net magnetization as it approaches x=1. A loss in moment may also

arise from the gradual disruption of the crystalline rutile structure at high x, evident

from the x-ray diffraction data.

Finally, the irreversibility of the magnetic and structural properties, compared
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Figure 5-10: Curie temperature measurements for four CrO2 samples, pristine (solid
squares), discharged to x = 0.1 (solid circles) or 0.2 (open inverted triangles), and
cycled to x=0.1 then back to x=0 (open triangles). The figure shows the remanent
magnetization after saturation at 8 kOe as a function of temperature.

with the electrochemical cyclability, is attributed to structural changes or amorphiza-

tion during the discharge/charge cycles.

5.3.5 Partially reversible changes in magnetic properties of

400 nm x 45 nm CrO2 particles through electrochemical

cycling

The magnetic hysteresis of the nanoparticles after different electrochemical cycling

is summarized in Figure 5-11. Lithiation reduces the saturation magnetization from

its initial value of 475 emu/cm3 , while leaving the coercivity largely unchanged at

450 Oe. Data are given for three electrochemical rates, C, C/10 and C/100. Samples

were lithiated at constant current until the voltage reached 0.9V, corresponding to

final Li contents of x = 0.06, 0.17 and 0.16 in the formula LiCrO2 for rates C, C/10

and C/100 respectively. At rate C/100, the magnetization dropped to 30% of its
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Figure 5-11: M-H curves for samples after lithiation and then after delithiation.
Data are given for different electrochemical discharge rates C, C/10 and C/100. The
lithiation steps result in Li contents of (after discharge 0.15, after charge back 0.06)
for a rate of C, (discharge 0.38, charge 0.17) for C/10 and (discharge 0.50, charge
0.16) for C/100.

initial value. A faster Li insertion rate leads to a smaller amount of Li inserted for

a given voltage cut-off, and a smaller drop in magnetization. Additional samples

were identically lithiated to 0.9V then were delithiated up to a voltage of 4.5V. The

saturation magnetization recovers partially upon delithiation.

The saturation magnetization is shown in Figure 5-12(a) as a function of final Li

content x. The magnetization drops rapidly with increasing Li content. The amount

of magnetization recovered on delithiation (i.e. the reversibility of the process) is on

the order of 10% of the bulk Ms. In Figure 5-12(b), the saturation magnetization

is plotted as a function of discharge rate. Higher rates lead to a smaller decrease in

magnetization, though the amount of magnetization recovered on delithiation does

not vary systematically with rate.

Figure 5-13 shows current-voltage loops for the discharge-charge cycle of several

samples. The cell voltage of each sample starts at 3.5V, then decreases as charge
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Figure 5-12: Plot of magnetization (a) as a function of lithium content in the dis-
charged state and (b) as a function of rate for samples terminated at 0.9 V or x=0.5,
whichever occurs first.

flows (the charge Q is measured in mAh per gram of CrO2) until the cell reaches the

cut-off voltage of 0.9V. Higher charge flow rates result in steeper discharge curves,

i.e. a more rapid change in voltage for a given amount of charge that has flowed.

This explains why smaller lithium contents are introduced at higher rates for a fixed

cut-off voltage. During the delithiation part of the cycles, the voltage rises, but the

loops do not close, indicating that the discharge-charge cycles are not reversible, and

Li remains in the structure even after the charging process.
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Figure 5-13: V-x plots comparing different rates of discharge
of 0.9 V.

for a termination voltage

Structural changes may be followed in Figure 5-14, which shows x-ray diffraction

spectra for several samples. The pristine sample shows peaks characteristic of the

rutile structure. These peaks are maintained at all values of Li content investigated

here, but they become broader at higher x, and shoulder peaks appear near 250 and

550. Delithiation only partially restores the structure, sharpening the peaks and

reducing the intensity of the shoulder peaks. These changes are similar to those

observed in 550 nm x 45 nm particles (Section 5.3), and correlate with the magnetic

changes. By comparison with section 5.3.2, we assume that the shoulder peaks

correspond to a Li-rich rutile-structure phase that forms at high Li contents.

The change in saturation magnetization with Li content for nanoscale CrO2 par-

ticles resembles the results obtained for 550 nm x 45 nm CrO2 particles tested at

constant discharge rate of C/100 (Section 5.3), and there appears to be little im-

provement in the reversibility of magnetic properties except possibly at higher values

of x. This indicates that kinetic effects, related to the rate of diffusion of Li through
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Figure 5-14: XRD plots (a) comparing different values of x (b) different rates of
discharge. The asterisks indicate Al substrate peaks from the cathode assembly.

the bulk of the Cr0 2 , are not the dominant factors that limit the reversibility of the

lithiation process in this system. The magnetic results for the nanoparticles can be

interpreted in terms of the formation of one Cr3 + ion for each Li+ introduced in the

structure similar to the model that was described in Section 5.3.4.

5.3.6 Comparison to Literature on Rutile-Structured TiO2

Li insertion into rutile-structured TiO 2 , which is isostructural to CrO2, is more

well-studied, and has been considered for electrochromic applications in addition to

being considered as a Li battery electrode [88]. In the following paragraphs, literature

on Li insertion into rutile TiO 2 (space group R3m) will be discussed and compared

to our results on CrO2.
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Li insertion into single crystal rutile TiO2 showed that insertion into rutile is neg-

ligible within the voltage window of 1.5 to 3 V and primarily a surface phenomenon,

later confirmed by EXAFS and XANES to be a 5 nm surface layer [88]. However,

Kavan et al have shown that lithium insertion into rutile occurs, but at lower volt-

ages and that mesoscopic rutile has reasonably reversible insertion capacity compared

to single crystal rutile TiO2, although still only half of that of anatase TiO2 in the

voltage range 1.2 V to 3 V [53]. Li insertion into rutile TiO 2 at 120 oC showed that

the rutile structure is retained up to x=0.25, and there is subsequent transformation

to a rocksalt phase at x=0.5. Recent studies have shown that one Li per formula

unit can be inserted into nanocrystalline rutile TiO2 in the voltage range 1 to 3 V

compared to only x=0.06 for 5 to 10 pim powders of rutile TiO2 , and there is an irre-

versible phase transformation into the rocksalt LixTiO2 phase. The initial discharge

capacity increases with decrease in particle size, but the charge profiles remain largely

invariant with crystallite size [31, 53]. This is consistent with the expectation of im-

provement in electroactivity with decreasing particle size due to shorter transport

length for transport of Li and electrons, higher electrolyte-electrode contact area and

better strain accommodation [29, 31, 53]. Hu et al have also shown that it is possi-

ble to reversibly accommodate 0.5 moles of Li per formula unit of nanometer-sized

rutile TiO2 (10 nm dia and 30-40 nm in length) with good capacity retention and

high rate capability, compared to only 0.1-0.25 for micrometer-sized rutile [29]. The

demonstration of Li insertion into rutile at 120 oC shows that it is thermodynamically

favorable, and there may be kinetic restrictions that may limit the insertion capacity

even at slow rates such as C/300, which may be overcome by an enhancement of the

in-plane diffusivity by thermal activation [29, 31]. This is seen in our results on CrO2

wherein the lithiation reaction can be done to a much larger extent at 60 C than at

room temperature.

Further, it has been observed that there are three distinct regions in the discharge

curves, namely an initial sloping regime upto x=0.35 in nanometer-sized rutile TiO2 ,

in which there is monophasic Li insertion; a voltage plateau at 1.4 V; and a third

sloping region between 1 and 1.4 V. It is postulated that the initial sloped region in
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the discharge curves for rutile TiO2 may be due to surface storage of Li, as evidenced

by a linear relation between specific surface area and the sloped capacity [29]. The

1.4 V plateau disappears in samples discharged down to 1 V, but appears in samples

cut off at 1.4 V, suggesting that deep Li insertion between 1.4 and 1 V leads to

an irreversible structural transformation [29, 31]. But this happens only at high

lithium contents (x>0.5). It has been shown that this is due to formation of a

nanocomposite of crystalline and amorphous rutile at these compositions. This work

has also demonstrated the possibility of extremely high rate (up to 30C) performance

of nanometer-sized rutile electrodes [29]. The voltage-charge behavior of CrO2 at

room temperature appears to be similar to that of TiO 2 (Fig. 5-8), albeit at higher

voltages. There appear to be distinct regimes, the initial sloping regime, a voltage

plateau at 3 V , a third sloping region between 2 V and 3V, and a voltage plateau

at 2 V.

5.3.7 Comparison to Literature on the CoO 2-LiCoO 2 system

Comparing our results on CrO2 to the reports on delithiated LiCoO 2, we find that

the starting OCVs for CrO 2 is 4V, which is less than that (4.7 to 5.2 V) for fully

delithiated LiCoO2 [25, 89]. Upon charging back, we find that the end voltages are

closer to the values reported for CoO2 . The rapid decrease of voltage during the initial

stages of discharge is similar to the features observed during the de-intercalation of

LiMn 20 4 and LiCoO 2. The dip-peak-dip in the dV/dx curve at x=0.5 and the two

broad peaks at x=0.15 and x=0.33 seen for CoO 2 corresponding to appearance of a Li

ion ordered phase, are missing [25]. Since XRD results do not show the appearance

of superlattice peaks, this possibility can be ruled out.This suggests that such Li

ordering phenomena does not occur in CrO2 and points to an alternative mechanism

at work.
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5.4 Conclusion

This study shows that it is possible to create large changes in the magnetization

of 550 nm x 45 nm CrO2 via electrochemical lithium insertion at room temperature

or at 60 'C. In the low Li regime, below about x = 0.2 in Li , CrO2 , a large change

in magnetization of 20±2% per 0.1 Li/formula unit is obtained, and is in reasonable

agreement with a model (which predicts a 25% change) for the reduction of Cr 4 +

to Cr3+ to balance charge as Li+ is inserted. The change in magnetization is partly

reversible, especially at low Li contents (for x<0.1). Electrochemically and struc-

turally, the changes appear to be reversible for x<0.1, and the partial reversibility of

the magnetic changes may indicate the presence of defects such as vacancies in the

structure after the discharge-charge cycling, to which the magnetic moment is very

sensitive. The kinetics and reversibility of the process are improved at 60 oC, and Li

contents up to x=0.9 could be inserted into the structure. At these concentrations

the room temperature moment is reduced to <5% of its initial value. This decrease

is irreversible, due to disruption of the rutile crystal structure of the CrO2.

The changes in magnetic and structural properties of 400 nm x 45 nm chromium

dioxide nanoparticles were also investigated upon subjecting them to Li+ insertion by

galvanostatic electrochemical cycling. The results have been compared qualitatitively

to the experiments on 550 nm x 45 nm particles of chromium dioxide. The changes in

M, are similar in magnitude to results on 550 nm x 45 nm CrO2 particles. The rutile

structure is preserved on Li insertion, though the peaks become broader and shoulders

appear at high Li contents. The effect of rate of testing of these nanoparticles has

been shown to be effectively similar to that of inserting lower amounts of Li into the

structure, and the extent of reversibility of magnetic properties is similar to the 550

nm x 45 nm particles, particularly for smaller x. The lithiation reaction can be done

to a much larger extent at 60 "C than at room temperature and this demonstrates

that the kinetic limitations of Li diffusion in rutile due to small ab-plane diffusivity

can be overcome by thermal activation, similar to TiO2. The voltage-charge plots

of CrO2 at room temperature appears to be similar to that of TiO2, but at higher
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voltages.

The lithiation mechanism could be different from lithiation of CoO 2, which is the

fully delithiated compound in the CoO2-LiCoO 2 system commonly used in lithium

batteries. For example, there is no evidence for formation of ordered phase that has

been observed in the CoO2-LiCoO 2 system. These partly reversible or irreversible and

dramatic changes in magnetic moment may be useful in applications such as magnetic

actuation, or programmable magnetoelectronic devices, where it may be desirable to

'switch' the magnetization of a material between different values. Moreover, the

change in magnetic properties with Li insertion may be used as a sensitive probe to

determine the extent of the electrochemical and structural reversibility.
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Chapter 6

Conclusion

6.1 Summary

This thesis has shown that it is possible to use electrochemical lithiation to induce

large changes in the saturation magnetization (M,) of 550 nm x 45 nm and 400 nm x 45

nm particles of ferromagnetic CrO2, and nanoparticles and thin films of ferrimagnetic

Fe3 04

In the case of room-temperature lithiation of 550 nm x 45 nm chromium diox-

ide particles, for x < 0.2 in Li.CrO2, a change in magnetization of 20+2% per 0.1

Li/formula unit is observed, and these changes have been explained with a model for

the reduction of Cr 4+ to Cr 3+ . The change in M, is partially reversible at low Li

contents (for x<0.1). The changes appear to be electrochemically and structurally

reversible for x<0.1. The kinetics and reversibility of the process can be improved

by conducting the experiments at 60 'C. At 60 oC, Li contents up to x=0.9 could be

inserted into the structure, resulting in a room temperature moment that is <5% of

its initial value. This decrease is irreversible, due to disruption of the rutile crystal

structure.

The changes in magnetic and structural properties of 400 nm x 45 nm chromium

dioxide particles induced by electrochemical cycling have been compared qualitatively

to experiments on 550 nm x 45 nm particles. The effect of increasing the rate of cycling

has been shown to be similar to that of inserting lower amounts of Li. The extent of
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reversibility of magnetic properties is similar to that for 500 nm x 45 nm particles,

particularly for small x.

For Fe30 4 nanoparticles, the magnetization is expected to decrease due to forma-

tion of paramagnetic rocksalt phase. Room-temperature magnetic measurements and

Curie temperature measurements suggest that there are negligible changes in magne-

tization until x=1, beyond which there is a monotonic decrease in M,. Although the

exact nature of the mechanism is not clear, the M,-x behavior may be explained by

possible suppression of the spinel-rocksalt phase transformation due to small size of

the particles, and reaction of the impurity hematite phase with lithium in the early

stages.

In Fe203_- thin films grown by pulsed laser deposition (PLD), a change in M,

of up to 30% was obtained by discharging down to 0.9 V versus Li/Li+ . This is

smaller in magnitude compared to nanoparticles of Fe30 4 . The smaller drop in M,

is attributed to kinetic effects resulting from the high density and greater diffusion

lengths in PLD-grown films. Such changes in magnetic properties on electrochemical

cycling may be useful in applications such as dynamic rheology or magnetoelectronic

devices, where it may be desirable to 'switch' the magnetization of a material between

different values.

6.2 Contributions of the thesis

The effects of electrochemical lithiation and cycling on structural and magnetic

properties of CrO2 have been measured. It has been shown that the process has a

reversible electrochemical capacity of 30-60 mAh/g and that it is possible to get high

(initial) discharge capacity ( 150 mAh/g) in crystalline CrO 2 at room temperature

(compared to earlier reports on capacity <50 mAh/g) by discharge down to 0.9 V.

It is possible to increase the (initial) discharge capacity in crystalline CrO2 upon

thermal activation (60 oC). The discharge process leads to a monotonic decrease in

the saturation moment of CrO 2 with negligible changes in coercivity and remanence.

The magnetic behavior was explained based on a model that takes into account
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reduction of cation valence, and can be used to explain the M versus x behavior for

low x (x<0.1).

Electrochemical reversibility need not guarantee reversibility of magnetic proper-

ties. Intermittent charge-discharge experiments have shown that there may be three

different pathways for Li insertion in the voltage regimes 1-2 V, 2-2.7 V and 2.7-4.0

V. The effect of rate has been tested on magnetic properties and structure of needle-

shaped 400 nm x 45 nm particles of CrO2 , and it has been shown that it is similar

to inserting lower amounts of Li into the structure at constant voltage cutoff. There

exists the possibility of high rate capability. The effect of reduction in particle size

has been explored qualitatively. It has been shown that the limiting factors may

be some intrinsic kinetic limitations in rutile, such as the blocking of c-channel by

already inserted Li ions and high anisotropy in diffusivity.

The effect of lithiation on structure and magnetic properties has also been demon-

strated on nanoparticles of magnetite. The lithiation process has been studied on thin

films of Fe30 4 grown on conducting substrates by Pulsed Laser Deposition.

In summary, this thesis explored the use of electrochemical lithiation-delithiation

for control of magnetic properties of CrO2 and Fe30 4 nanoparticles and thin films

and demonstrated the possibilities and limitations of the same.

6.3 Recommendations for Future Work

There are some outstanding scientific questions that can be addressed by further

experiments. As mentioned in Chapter 4, spectroscopic studies such as Mdssbauer or

X-ray absorption (EXAFS or XANES) could be undertaken on LixFe3 0 4 (0<x<2).

These techniques provide information on the valence state and also the chemical envi-

ronment of the cations in the structure and therefore could be used to determine the

onset of the displacement of 8a Fe ions to 16c sites, formation of the rocksalt structure,

and to differentiate the different possible mechanisms. It may also be worthwhile to

perform ab-initio calculations (GGA) on LiCrO2 (0<x<1) to determine the magnetic

ground states.
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Other materials worth investigating for this effect include cubic ferrites such as

CuFe20 4 , MgFe20 4 and CoFe20 4. CuFe20 4 and MgFe20 4 are particularly interesting

choices. CuFe20 4 crystallizes in the inverse spinel structure, while MgFe20 4 has been

shown to be a mixed spinel with a high inversion parameter [90, 91]. These possess low

net magnetization since the moments of the octahedral and tetrahedral Fe cations are

aligned antiparallel with each other. Lithiation will create an imbalance of moments

through reduction of octahedral Fe3+ ions into Fe2+. The Mg2+ and Cu 2+ ions are

expected to remain invariant upon lithiation since reduction of these to metal is

less energetically favorable. These are examples of systems where magnetism can

possibly be turned 'on' through electrochemical lithiation. CoFe20 4 might also be an

interesting choice because its high magnetocrystalline anisotropy might be useful for

applications. Magnetic perovskite compounds could also be considered. Bi(FeNi)O 3

is an example. The magnetic ordering in this compound depends on whether there is

B-site ordering or random arrangement of ions [92]. Finally, Ti substitution in CrO2

may also be worth considering to improve capacity since TiO2 Li battery electrodes

have been shown to have good reversible capacity.

A number of devices, such as microfluidic or solid state devices could be con-

structed based on these results. The following section discusses some ideas for the

same. For applications in dynamic rheology, a possible way to apply this process

is chemically, instead of electrochemically, using a microchannel shaped as shown

in Figure 6-1 wherein controlled amounts of lithiating and delithiating agents are

supplied through independently controlled valves into a microreactor containing the

active material, which itself would be a suspension (magnetorheological fluid) contain-

ing micron(or sub-micron)-sized particles of the transition metal oxide. The lithiated

and delithiated material can then be relayed to the application site that requires dy-

namic tuning of rheology. These streams can either be kept separate or combined

into a single channel depending upon the application. However, there are some chal-

lenges that would need to be overcome before this can be feasible. Firstly, suitable

chemistry needs to be found for the lithiating and delithiating compounds, because

the chemicals need to be stable in the carrier media that are typically used in magne-
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Figure 6-1: Schematic of a microfluidic device employing the effect

torheological fluids. These may include compounds like n-butyl lithium for lithiation,
and N0 2BF 4 for delithiation. Secondly, the individual particles may have to be en-
gineered on the nanoscale to enable fast reaction rates. MR fluids presently used in
magnetoviscous applications use applied fields of 500 Oe or 40 kA/m to produce the
required changes in flow behavior of micron-sized Fe particles. This corresponds to
a magnetic induction of 1.2 T or 1000 kA/m. As a comparison, the use of such
electrochemically stimulated changes in magnetization on these materials, would, at
best, produce changes in magnetization 500 kA/m (approximately equal to the sat-
uration magnetization of Fe3 0 4 and CrO2). However such a method would have the
merit of not requiring the application of large magnetic fields, and therefore maybe
useful in certain applications.

For applications as Li ion sensors, CrO2 may be a promising candidate since a large
Ms-x slope of 1629 emu/cc/mol of Li was obtained upon lithiation. This corresponds
to a slope of -300 emu/g/mole of Li. Factoring in the weight of the active material
used in the porous electrodes (-10 mg), the resultant change in M8 is -3 emu/mole
of Li. Since most magnetometers have a sensitivity of -10 - 5 emu or better, this
effect can possibly yield good sensitivity and low detection limits for Li ions. For
comparison, lithium sensors based on ion selective electrodes (ISE) and ion selective
field-effect transistors (ISFETs) have ionic sensitivity of - 50 mV/pLi and detection

limits of - 10-' mol/l [93, 94, 95].
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Solid state magnetic devices employing this effect would need to be designed

similar to a thin film Li battery. This would perhaps involve a multilayer stack as

shown in Figure 6-2 for CrO2. The multilayer stack could be built on a substrate

Figure 6-2: Schematic of a solid state device employing the effect

like TiO 2 (rutile), with doped TiO 2 or RuO2 serving as the cathode current collector.

A block copolymer film, spun coat on top of the active Cr0 2 layer and the anode

current collector, can serve as the electrolyte. The cathode current collector can be

grown by MOCVD, while CrO2 has been grown successfully by researchers by CVD

using chromyl chloride as precursor.

This is a long-term view of the applicability of this work, which would need

(de)magnetizing or switching currents (constant) of roughly 10 pA/cm2 assuming

a 10nm thick patterned CrO2 film, full theoretical capacity and a charge-discharge

rate of 10C. This is very low compared to the power requirements in MRAMs, which

typically require current densities of 107-108 A/cm2 for spin transfer torque based

switching. However, as mentioned in Chapter 1, these devices would be severely lim-

ited in terms of switching time (Table 6.1). In rutile-structured nanoelectrodes of

TiO2 , researchers have achieved capacities of 70 mAh/g at a discharge/charge rate of

30C [29]. Assuming that a similar rate can be achieved with CrO2, this corresponds

to an extremely slow switching time of 30 s. In principle, this could be made 108

(Dc/Dab) times faster if the anisotropy of Li diffusion in rutile be fully exploited.

This could yield a switching time -300 ns, and is listed as the best case in Table 6.1.

This might be achieved by reproducing the experiments in a solid-state lithium bat-

tery with (001) oriented CrO2 patterned thin films. This is based on the assumption

that the rate of diffusion in rutile is limited by the ab plane diffusivity which is 8
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orders of magnitude slower than the c-axis diffusivity [77].

This effect is thus clearly not suitable for high speed applications, although it

may compare favorably in terms of speed to Flash (NAND) technology. Furthermore,

present day lithium batteries have a life of 300-500 cycles, which is the number of

discharge-charge cycles that they can be used for without fading of capacity. This

is very unsatisfactory for memory devices. For comparison, Flash memories have

an endurance (number of write cycles) of 105 while MRAMs have almost infinite

endurance. Therefore, at best, such devices can be used for low endurance applications

(<10000 cycles for a given byte). A key requirement for such practical applications

Table 6.1: Comparison with existing and prototype memory technologies
MRAM STT Flash(NOR) Flash(NAND) Li device

Write/erase time 3-20 ns 2-20 ns 1 ps/10 ms 1 ms/0.1 ms 300 ns(best)
Write power high low very high very high low

Voltage 3 V 0.15 V 6-8 V 16-20 V 1-4 V
Endurance >1015 >1015 105 105 300-500

is the need to enhance reversibility of the effect by avoiding destruction of rutile

framework (amorphization/phase transformation) due to the strain created by Li-

ion insertion. The strain created by the electrochemical process could possibly be

managed by using strained epitaxial films. For example, if a (001) oriented film with

in-plane (ab) tensile stresses were to be used, it might make the lithium insertion

process easier, since lithium insertion would allow relaxation of the tensile stresses

by expansion of the lattice. However this could make the delithiation process more

difficult since that involves compression in the (ab) plane. The effect of stresses

on the lithiation-delithiation process in CrO2 is an unanswered question that merits

investigation especially for solid state application of this effect.

Another approach for building solid state devices may involve using nano architec-

tured electrodes that have been recently developed for high power density conversion

electrode applications. These electrodes can be made by depositing the active material

onto nanostructured current collectors (copper nanorods) that are electrodeposited

into the pores in anodized porous alumina membranes. These provide the advantage
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of short diffusion lengths without compromising the need for proper electrical contact

between the particles of the active material [65].

Finally, it is possible to envisage use of ions other than Li to accomplish the same

effect. Protonation (insertion of H+ ions), a process used in Proton Exchange Mem-

brane Fuel Cells and electrochemical supercapacitors, is one such process [96, 97, 98].

The small size of diffusing species (protons) could potentially result in lesser struc-

tural damage, improved kinetics and better reversibility. CrO2 might be a promising

material in this regard, since rutile-structured RuO2 and V-substituted RuO2 have

been used as cathodes for electrochemical capacitors [97, 98].
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Appendix A

Prediction of magnetic properties

of oxides

The following sections give more details on prediction of magnetic properties of ox-

ides through the application of Goodenough rules [21]. Tables are available in Ref.

[21], which can be used to determine the orientation of moments in different cases

(d5-d5 , d3 -ds , for example) arising due to both delocalization and correlation mecha-

nisms. These tables deal with octahedral configuration of the cations, and the bond

angles dealt with are 90 and 180 degrees. However for most cases that are of interest

(for example in spinels), the cation-anion-cation angles encountered are intermediate

between 90 and 180 degrees. For intermediate angles, Goodenough suggests inter-

polation by looking at the extreme bond angles. For example, if the orientation is

antiparallel for the 1800 case, and parallel for the 900 case, then it is suggested that

somewhere between 1250 and 1350, there is the transition from parallel to antiparallel

type of behavior.

A.1 Application of Goodenough's rules

The prediction of magnetic behavior of a system via Goodenough rules involves the

following steps:

I. Application of Goodenough rules to get the sign of the exchange coefficients.
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This involves: (a) Writing down the electronic configurations of the d-orbitals of the

magnetic cations, taking into account crystal field splitting and spatial configurations

(i.e. tetrahedral (A) or octahedral (B)) and identifying the cation-anion-cation angles.

(b) Arriving at the relative orientations (parallel or antiparallel) of the cation spins for

each type of cation-anion-cation combination: This may involve interpolation from

the orientations obtained at 900 and 1800 in case the angle involved is intermediate

between 90 and 180 degrees. In some cases, such as ds-d5 , d3-d5 , etc. the relative

orientation at 90 and 180 degrees can be obtained from the tables in Goodenough's

book [21]. In other cases, one can predict it by going through the following steps:

(i) Considering all possible superexchange mechanism between all combinations of

orbitals (i.e. eg-eg, e,-t2g and t2g-t2g). In each case, the relative spin orientation of

the ions can be predicted to be the one that maximizes hopping probability of an

electron jumping from one ion to the next (between the orbitals in question). The

maximum hopping probability corresponds to the situation in which energy of the

resultant electronic configuration of the ion (to which the electron has hopped) is

minimal. It should be noted that the spin of an electron is preserved upon hopping.

Mechanisms that involve the overlap of orthogonal orbitals need not be considered.

Examples are: 1. 180' cation-anion-cation delocalization interaction between eg and

t2g orbitals.

2. 90' and 1800 cation-anion-cation correlation interaction via s- orbital (of oxygen)

between t2g-t2g and t2g-eg orbitals.

(ii) The overall interaction between a particular pair of cations can be arrived at

by taking into account contributions from various superexchange mechanisms. For

example, if most of the interactions are antiparallel, the overall interaction is antifer-

romagnetic for that particular cation-anion-cation combination. (i.e. Jij is negative).

II. Solving for the spin groundstate. The relative spin orientations obtained by

application of Goodenough may not be realizable in practice due to geometrical frus-

tration. This is the case in complicated crystal structures, like the spinel. In such

cases, we need to use the predictions of Goodenough rules in conjunction with crys-
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tal structure information to get the spin ground state (the alignment of spins that

would lead to the minimum energy). This determines whether the system behaves as

a ferromagnet, antiferromagnet or a ferrimagnet.

As an example, let us suppose that, from the application of Goodenough's rules, it

is inferred that all the exchange coefficients are negative (i.e. favor antiferromagnetic

exchange); then the overall tendency is for the ions to align antiparallel to each other

(to minimize the pairwise energy). Crystal structure information can then be used

to say which pairs of ions would be parallel or antiparallel to minimize the overall

energy.

Factors that should be considered here are:

1) Bond distances: Ions that are separated by smaller distances interact more strongly

than those that are farther apart, and hence contribute more to the overall energy.

Therefore such pairs of ions should have antiparallel spins.

2) Number of nearest neighbors of each type of ion: If there are more A-B nearest

neighbor pairs than A-A and B-B, for example, then A and B ions should be aligned

antiparallel to achieve minimum energy. Therefore, in the spin groundstate, A and B

should be antiparallel. From this the spin orientations of the other cation pairs could

be arrived at, and hence the spin ground state.

Once the spin ground state is arrived at, it is relatively easy to say what the

magnetic behavior of the compound is, though arriving at the spin ground state itself

could be a non-trivial task for complicated crystal structures.
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