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Abstract

This doctoral dissertation presents a comprehensive computational approach to describe
quantum mechanical systems embedded in complex ionic media, primarily focusing on the
first-principles representation of catalytic electrodes under electrochemical conditions. The
accurate electrostatic description of electrified metal-solution interfaces represents a persis-
tent challenge for ab-initio simulations and an essential requisite for predicting the electrical
response of electrochemical convertors-i.e., the correspondence between the macroscopic
voltage and the microscopic interfacial charge distribution.

The approach consists of controlling the electrode voltage via its conjugate extensive
variable, namely, the charge of the system. As a preliminary to the study of electrified in-
terfaces in ionic media, we analyze charged slabs in vacuum subject to periodic boundary
conditions. We show that the corrective potential (defined as the difference between the
exact open-boundary potential and the periodic potential obtained from a Fourier transform)
varies smoothly over space, allowing for its determination on a coarse mesh using optimized
electrostatic solvers. Because this scheme takes into account exact open boundary conditions,
its performance is considerably superior to that of conventional corrective methods. Extending
this computational scheme, we present an efficient approach to model electrochemical sys-
tems under realistic conditions, based on a first-principles description of the interface region
and on a continuum representation of the ionic solvent. We demonstrate that the ionic-
solution contribution to the electrostatic potential-the ionic solvent reaction field--can be
computed independently at low cost simultaneously using fast Fourier transforms and multi-
grid techniques, and highlight the importance of adopting adequate electrochemical boundary
conditions to correctly predict the electrical response of electrode-electrolyte interfaces.

In order to probe and validate the electrochemical model, we study the vibrational Stark
effect-i.e., the influence of the applied voltage on the vibrational properties-for carbon
monoxide adsorbed on transition metal surfaces, a phenomenon whose description requires
an accurate representation of the interfacial electric field. We start out the analysis by
examining the vibrational properties of CO adsorbed on clean and ruthenium-covered platinum
substrates. The calculated C-O stretching frequencies are found to be in excellent agreement
with experimental measurements despite the frequent qualitative failures of local and semilocal



exchange-correlation functionals in predicting adsorption energies for CO on transition metals.
We then introduce an orbital-resolved force analysis to clarify the electronic origins of the C-O
red shifts, and present a sensitivity analysis to assess the influence the HOMO and LUMO
hybridizations on the calculated frequencies, thereby establishing the remarkable accuracy of
conventional density-functional theory methods in determining the vibrational properties of
adsorbed CO. Based on these results, we apply the electrochemical model to provide the first
comprehensive ab-initio description of the vibrational Stark effect for CO on transition metal
surfaces, finding excellent agreement with spectroscopic measurements.

As related projects, we have implemented a molecular-dynamics algorithm for metallic
systems and developed a self-interaction correction method to rectify the tendency of density-
functional theory calculations to overestimate binding energies.

The present computational electrochemistry toolkit open promising perspectives for the
application of first-principles methods to assist the microstructural engineering of electro-
chemical convertors.

Thesis Supervisor: Nicola Marzari
Title: Associate Professor of Materials Science and Engineering
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CHAPTER 1
Introduction

1.1 Origin and Development of Electrochemistry

IN 1771, THE ANATOMIST AND PHYSICIAN Luigi Galvani conducted a series of experi-

ments on animal tissue, thereby establishing the electrical origin of muscular contraction.

Subsequently, in a seminal treatise entitled De Viribus

Electricitatis in Motu Musculari Commentarius (Memo-

randum on the Role of Electric Forces in Muscular Mo-

tion) [1], Galvani postulated the existence of an innate

vital force termed animal electricity or galvanism. Firmly Luigi Galvani (1737-1798)
1

opposea to Ualvani s theory, pnysics professor Alessandro
Volta claimed that the newly evidenced form of electric-

ity does not come from muscular tissue but results from

the immersion of two metals of different temper in a moist

environment. Volta's reinterpretation was promptly con- Alessandro Volta (1745-1827)

tested by Galvani.

The vivid scientific debate that confronted Galvani to Volta at the end of the eighteenth

century is often considered to mark the birth of electrochemistry, an interdisciplinary science

that has stood, from its very inception, at the frontier between biology, physics, and chemistry.



CHAPTER 1 URIGIN AND L1EVELOUMEINT'I UOi EILEuliturniHEiviiirt

In the early nineteenth century, electrochemistry rapidly evolved into a well-established

discipline owing, above all, to the experimental achievements of Michael Faraday.

From studying electrically driven chemical decomposi-

tion, Faraday developed a phenomenological theory of elec-

trolysis and enunciated a set of laws relating the amount of

electricity passing through an electrical cell to the quantity

fC b d it thA n^Aa nnrl nn the rcthode----
VI bUU LdlILt: U•PV.JILIII6J UII LI"r, Va"1 u.. nllu v7 L. J r, vu

Michael Faraday (1791-1867)
two designations whose introduction is commonly attributed

to Faraday.
In 1884, Svante Arrhenius published his doctoral disser-

• . . , • , , i 1-. i . I - .

tation entitled Recherches sur la Conductibilite G~alvanique

des Electrolytes (Research on the Galvanic Conductivity

of Electrolytes) [2] and proposed a microscopic theory for
1889 bQQ s~ed o~n

Svante Arrhenius (1859-1927) ii dLU dUCU 3U . I

Arrhenius' results, Walther Nernst derived and evidenced

the existence of a hitherto unknown electrostatic driving

force for ionic transport in electrolytes, which he termed

electrolytic pressure of dissolution. The fundamental con-

tributions from Arrhenius and Nernst laid down the plat-
Walther Nernst (1864-1941)

form for the modern theory of electrolytic solutions in-

troduced by Peter Debye and his research assistant Erich

Hueckel in 1923. The Debye-Hueckel theory provides a reliable representation of ionic inter-

actions in solution and is widely used to this day.

Despite the success of the Debye-Hueckel theory for

describing ionic interactions in electrolytes, the current

understanding of solvated electrode surfaces-the Gouy-

Chapman-Stern theory-remains questioned. Difficulties

in describing solvated electrodes arise out primarily from

the complex structure of the interphase region separating Peter Debye (1884-1966)

the electrode and the electrolyte, commonly referred to as

the electrical double layer-a terminology popularized by Helmholtz. The experimental val-

idation and theoretical extension of the Gouy-Chapman-Stern double-layer model constitute

two essential challenges in modern electrochemistry.

Ilnterestingly enough, Arrhenius barely passed his doctoral examination, receiving the lowest admissible

grade.

~_ _ _._~~ . ~~-. ~c~~.~,,,..,,,, ~~ -r~T ~~m~A~TT1711 ~Tnm~~LI
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H 2  Figure 1-1: Principle of operation
-C I I . .

UI d PIoLtII eLetrLIUlyLt Im•eMIrldlIe

fuel cell (PEMFC). At the anode,
hydrogen is oxidized into H+ , lib-
erating electrons. At the cathode,
oxygen is reduced to form water.
This electrochemical process gener-
ates electricity and heat. (Courtesy
B. C. Wood [5].)

r,,,1 e"

In recent decades, a number of experimental methods for the characterization of electro-

chemical surfaces have been developed. These techniques can be categorized into two classes.

The first class, which includes cyclic voltammetry and impedance spectroscopy, proceeds by

relating the total current flowing through the cell to the rate of an electrochemical pro-

cess taking place at the electrode-electrolyte interface. The second class consists of probing

solvated interfaces by surface-sensitive spectroscopy. Among the existing in-situ spectro-

scopic techniques--e.g., radiotracing, ellipsometry, surface plasmons, surface-enhanced Ra-

man spectroscopy, Fourier transform infrared spectroscopy [3]--optical sum-frequency gener-

ation (SFG) has recently gained considerable interest [4].

Simultaneously to the evolution of experimental techniques, conventional continuum the-

ories for the description of electrified solid-liquid interfaces are now supplemented by a range

of first-principles methods of increasing predictive ability. Particularly, density-functional the-

ory (DFT) has emerged as one of the most successful approaches for studying molecular

adsorption on metal surfaces.

1.2 Challenges in Fuel-cell Microstructural Engineering

Fuel cells are electrochemical convertors of potential high environmental benefit that provide

electricity and heat by catalytic conversion of a fuel, such as hydrogen or methanol. The

general principle of a hydrogen proton electrolyte membrane fuel cell (PEMFC) is illustrated

in Figure 1-1.

Besides PEMFCs, there exist several types of fuel cells, which primarily differ by their

21
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Type Ion Electrolyte Operating Nominal Nominal Applications
temperature efficiency power

PEMFC H+  polymer 30-1000 C 40-60% 1 W-250 kW transportation, portable devices
DMFC H+  polymer 20-1300 C 40% 1 W-10 kW portable devices
PAFC H+  phosphoric acid 2000C 35-40% 10 kW-1 MW power stations

AFC OH- potassium hydroxide 50-2000 C 45-60% 1 kW-25 kW spacecraft

SOFC 02- ceramic 500-10000C 50-65% 1 kW-10 MW power stations

MCFC CO- molten carbonate 6500 C 45-60% 100 kW-10 MW power stations

Table 1.1: Technical characteristics of conventional fuel-cell technologies.

nominal power, their operating temperature, and the electrochemical reaction involved. A
comparison of fuel-cell technologies is presented in Table 1.1. It should be noted that low-
temperature PEMFCs and direct methanol fuel cells (DMFCs) are principally suited for trans-

portation and portable applications, while intermediate- and high-temperature alkaline fuel

cells (AFCs), solid oxide fuel cells (SOFCs), molten carbonate fuel cells (MCFCs), and phos-

phoric acid fuel cells (PAFCs) are typically employed as stationary co-generators.

Paradoxically, the introduction of fuel-cell technology

is by no means recent: the principle of fuel cells was iden-
tified as early as 1839 by William Grove who accidentally
observed catalytic electricity generation while conducting
electrolysis experiments with platinum electrodes. In 1843,

Grove designed the first fuel cell (the gas voltaic bat- William Grove (1811-1896)

tery). Despite early development, fuel cells were prema-
turely abandoned in favor of internal combustion engines due to their relative lack of perfor-
mance, at a time when environmental sustainability, among other crucial concerns, was not
a priority. It was only in the 1960s-after a dormant phase of more than one century-that
NASA and General Electrics revived fuel-cell technology for the supply of electricity (and
drinking water) in manned space vehicles.

In spite of significant progress in the engineering of fuel-cell components-such as the
introduction of the Nafion electrolyte membrane (DuPont, 1967) or the development of finely
dispersed carbon-supported catalysts-fuel-cell technology is only slowly reaching the stage
of commercial viability. Notably, the deployment of fuel cells has been hindered by the surging
cost of precious metal catalysts.

In addition to material cost constraints, the nominal power of fuel-cell systems is subject
to intrinsic limitations. The energy and power densities per unit mass of conventional energy

22
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104

5

2

Figure 1-2: Ragone diagram-- io
power density versus energy density 5

per unit mass--of energy storage wfo
and delivery technologies (Tester et 2

al. [6]).
5

2

10

Energy density Whkg

technologies are reported in logarithmic scale in Figure 1-2. One prominent feature of the
diagram is the high energy storage and delivery performance of gasoline internal combustion
engines-this fact explains their traditional predominance in the energy sector. In compari-
son, fuel cells exhibit intermediate power densities despite high energy densities. Two major
power-density limitations can be identified [7]: ohmic losses (irreversible losses due to the
resistance to proton transport in the electrolyte and to the electrical resistance of the cell),
and activation losses (irreversible losses due to the necessity of bringing the fuel cell under
slight off-equilibrium conditions in order to drive the electrochemical reaction). Activation
losses were first evidenced by Tafel in 1905 and can be characterized by the Butler-Volmer
equation: ( _nF_ t _ ( nFlact

i= i+- = i0o exp (a -T io exp -(1 - a) RT (1.1)

where rTact is the activation voltage drop (activation overvoltage), n is the number of electrons
involved in the electrochemical reaction, a is the charge-transfer coefficient that quantifies the
relative proportion of overvoltage effectively engaged in driving the electrochemical process
at each electrode, i is the total current density, i+ is the forward anodic current, i_ is the
backward cathodic current, and io is the exchange-current density prefactor that characterizes
the intrinsic activity of the catalyst. Figure 1-3 illustrates the influence of the activation
overvoltage on the operation of a hydrogen fuel cell. Among the possible options for reducing
activation losses (e.g., changing the operating temperature, varying the concentration and the
purity of the reactants, or increasing the specific surface area by microstructural optimization),

23
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T/act > 0 V

rlact = 0 V = 0 V
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>0V

Figure 1-3: Influence of the activation overvoltage rlact on the kinetics of the hydrogen oxi-
dation reaction. At the open-circuit voltage (7act = 0), the forward current i+ and backward
current i_ cancel out: the cell does not supply any electrical current. Applying a positive
overvoltage breaks the electrochemical equilibrium and drives the catalytic conversion.

a privileged route consists of raising the exchange-current density by improving the catalytic

properties of the electrode materials.

Besides catalytic performance, the chemical stability of fuel-cell components under severe

pressure, temperature, and acidity conditions constitutes a primary concern. Several degrada-

tion processes may limit the durability of a fuel cell: infinitesimal amounts of strongly adsorbed

impurities may dramatically poison the electrodes; acidity conditions can cause the electrode

to dissolve in the electrolyte; radical attack can lead to the decomposition of the electrolyte-

membrane; among other detrimental factors. The characterization of complex degradation

phenomena and the design of chemically resistant materials represent fundamental challenges

in fuel-cell research.

1.3 Towards First-principles Electrochemistry

Confronted with daunting-and oftentimes contradictory-material design constraints, fuel-

cell engineering is increasingly relying on bottom-up approaches based on a strong interplay

between theory and experiment. In that respect, first-principles simulations have become in-

strumental. Density-functional theory calculations are now routinely employed for the predic-

tion of electrode surface structures, the elucidation of catalytic trends, and the interpretation
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of spectroscopic experiments.

Notwithstanding the increasing relevance of density-functional theory simulations, sev-
eral methodological limitations restrict their more widespread use in fuel-cell research and

electrochemistry. First and foremost, modeling solvated interfaces subject to a constant elec-

trical potential represents a persistent challenge. Growing out of the compelling necessity of

achieving a realistic first-principles description of electrochemical surfaces, this thesis presents

and applies novel computational approaches extending the applicability of density-functional

theory calculations in electrochemistry.

This dissertation focuses chiefly on CO poisoning, a phenomenon that imposes important

limitations to the performance of low-temperature PEMFC and DMFC electrodes. The central

purpose of this work is to investigate the vibrational properties of carbon monoxide adsorbed

on platinum and platinum-ruthenium surfaces under varying electrical-potential conditions

in order to help the spectroscopic recognition of CO adsorption sites on transition-metal

electrodes and the elucidation of important chemical mechanisms related to CO poisoning.
The outline of this doctoral dissertation follows:

* The second chapter starts out with presenting density-functional theory and density-

functional perturbation theory. The remainder of the chapter describes the ensemble

density-functional theory minimization scheme and introduces a parameter-free method

for eliminating electronic self-interactions in density-functional theory calculations.

* The third chapter addresses periodic-image errors arising out from the use of periodic

boundary conditions to describe systems that do not exhibit full three-dimensional peri-

odicity, and presents an efficient method to calculate the properties of charged surfaces

in vacuum.

* The fourth chapter introduces a first-principles model for predicting the electrical re-

sponse of electrified metal-liquid interfaces subject to an applied voltage. The approach

is based on a density-functional theory description of the interface region and a contin-

uum representation of the semi-infinite ionic solvent.

* In the fifth chapter, we study the vibrational properties of CO adsorbed on clean and

ruthenium-covered platinum surfaces, finding excellent agreement with SFG measure-
ments notwithstanding well-known qualitative discrepancies in the predicted adsorption
energies. In order to establish the accuracy of density-functional calculations in deter-
mining adsorbate vibrational properties, we introduce an orbital-resolved force analysis,
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and present a sensitivity analysis for the calculated intramolecular frequencies based on

hybridization penalization methods.

* The sixth chapter is devoted to the prediction of the electrode-potential dependence

of the vibrational properties of CO on platinum and platinum-ruthenium substrates-a

phenomenon known as the vibrational Stark effect-with the ultimate aim of completing

the electrochemical interpretation of spectroscopic measurements.
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CHAPTER 2

Computational Methods

2.1 Density-functional Theory

SOLVING THE MANY-BODY SCHROEDINGER EQUATION generally proves to be a daunt-

ing task. Density-functional theory offers a practical formulation for studying the ground

state of electronic systems. This section provides a succinct presentation of the DFT ap-

proach.

In 1964, based on the fact that the properties of elec-

tronic systems are uniquely determined by their ground-

state charge density (first Hohenberg-Kohn theorem), 1 Ho-

henberg and Kohn introduced a variational alternative to

the many-electron Schroedinger equation. The fundamen-

tal variable ot this variational scheme is tne electronic den- Walter Kohn (b. 1923)
sity (second Hohenberg-Kohn theorem) [8]. The finite-

temperature extension of the Hohenberg-Kohn theorems

was proposed by Mermin the following year [9]. A practical self-consistent scheme was sub-
sequently devised by Kohn and Sham [10]. The Kohn-Sham approach, which introduces an
independent-electron mapping of the many-body problem, consists of considering the follow-

1The electronic ground state is assumed to not be degenerate.
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ing energy functional:

F[{fi}, {fi}] = E[{4'}, {fi}] - uS({fi})

Z- f, (, I f,(V2 ) + rr'I drdr' + v(r)n(r) + Exc[n]

+a fi In fi + (1 - fi) In(l - fi) (2.1)
i

where v is the ionic potential, n = Ei fl10•i 2 denotes the electronic charge density, Exc

stands for the exchange-correlation energy, and a is the electronic temperature of the Fermi-

Dirac broadening. (It should be mentioned that alternative formulations of the electronic

thermal distribution have been proposed for the essential purpose of numerical convergence

[11, 12].)

Minimizing the energy functional F for normalized wavefunctions, we obtain the self-

consistent Kohn-Sham equations:

^ effop (r) = (r)

v(r) + vxc(r)
(2.2)

n(r) = E> filIi(r)12

where heff is the effective single-electron Hamiltonian, Ei is the single-electron energy (due
to the wavefunction normalization constraint), EF is the Fermi energy (arising from fixing the

number of electrons N), and vxc[n] = 5Exc/6n denotes the functional derivative of the

exchange-correlation energy (explicitly, 6 Exc = f vxc[n](r)6n(r)dr). In Eq. 2.2, the Fermi

energy is chosen so that the sum of the electronic occupations equals the total number of
electrons.

It is important to realize that the precision of density-functional theory calculations is

determined by the quality of the exchange-correlation approximation. The minimal local

density approximation (LDA) [10] consists of employing the exchange functional derived by

Dirac in the context of the Thomas-Fermi-Dirac theory [13]:

E
ELDA[n] = -- - n' (r)dr (2.3)4 

r
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Several refinements to the local density approximation have been proposed ( local-spin density

approximation [13], Ceperley-Alder correlation [14], generalized-gradient approximations [15,
16], and hybrid exchange-correlation functionals [17, 18]).

To close this introduction, it is worth noting that density-functional theory borrows from

both the Thomas-Fermi-Dirac and Hartree-Fock methods. Indeed, as in the Thomas-Fermi-

Dirac model, the charge density is the fundamental variational variable, and similarly to the

Hartree-Fock method, density-functional theory provides a self-consistent scheme based on

single-electron orbitals.

2.2 Density-functional Perturbation Theory

2.2.1 Vibrational Properties from First Principles

Several methods can be employed to determine the vibrational properties of a system from

density-functional theory:

* Frozen-phonon method

The second derivatives of the density-functional free energy are evaluated by displacing

the atoms from their equilibrium positions. The eigenvalue problem

det {(mimj)-1 /20 2F/OR8ORj - w26IJ} = 0 (where m, is the atomic mass of Ith

ionic species) is then solved to obtain the vibrational frequencies.

* Molecular-dynamics spectral analysis

The vibrational spectrum is determined by performing a Fourier transform on the velocity
autocorrelation function (v(t)v(t + T))t.

* Density-functional perturbation theory (DFPT)

The second derivatives of the energy are calculated directly using a linear-response ap-
proach. This method is particularly advantageous for calculating the phonon frequencies
corresponding to a lattice perturbation corresponding to an arbitrary wavevector [19].

A brief description of density-functional perturbation theory is presented below.
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2.2.2 Density-functional Perturbation Theory Formalism

Density-functional perturbation theory consists of calculating the free-energy Hessian as:
22U 7) Uv(r) 0n(r)

R2F -= r v n(r) + dr, (2.4)
aRrR J RpR aORR (R)•R j

where use has been made of the free-energy minimality condition (Hellmann-Feynman theo-

rem). Following Ref. [20], the density variation can be written as:

On(r) *(r)AI, (r), (2.5)
R ia

where

A3Cr) = j, fi - OR1(0I j)l)j.(r). (2.6)

Oi,,j, equals 1 if Eio < Ej, and is null otherwise.

Calculating ApIi, by summation over all the occupied and unoccupied levels is cumber-

some, however. An efficient alternative consists of evaluating AIjj, using a linear-response

approach. The scheme proceeds by determining Az'i, as the solution of a problem of the
form:

{fheff + Q - i,}IAI'iiCo,) = Ii,), (2.7)

where Q = •'jajy,j)(0jy is introduced to insure that the Green's operator ij =

(ef f + _ Qi)-1 is not singular.

A plane-wave implementation for lattice perturbations of an arbitrary wavevector was

presented by Baroni et al. [19]. An extension of this method to the Vanderbilt ultrasoft

formalism [21] was proposed by Dal Corso [22].

2.3 Ensemble Density-functional Theory

2.3.1 Level-crossing Instabilities in Metals

Due to their nonvanishing density of states at the Fermi level, metallic and semiconducting

systems must be treated carefully. Indeed, when applying iterative algorithms to determine the

Kohn-Sham ground state of such systems, crossings between single-electron energies in the

vicinity of EF systematically occur. These level crossings cause sharp occupation variations,
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which results in significant electron-density fluctuations that strongly destabilize the self-

consistent procedure. Ensemble density-functional theory (eDFT) provides an effective way
to handle these instabilities.

2.3.2 Ensemble Density-functional Theory Formalism

Ensemble density-functional theory was introduced by Marzari, Vanderbilt, and Payne [23].
It essentially consists of adopting a matrix representation for the Kohn-Sham occupations:

fi -- fi (2.8)

Correspondingly, the Kohn-Sham free energy is rewritten as:

1 /() fn(r)n(r')d,
F[{}, {f,}l f2ij(, IV2 I¢V)) +J r--_-1 drdr'

2 jr - rr'

+ J v(r)n(r)dr + Exc[n] - uTr{S(f)}, (2.9)

where f = [fiJl denotes the occupation matrix and S(f) = -f in f - (1 - f) In(1 - f)

stands for the occupation-dependent Fermi-Dirac entropy function. A minimization over the

occupation variables is then performed to obtain a projected functional G[{i'}]:

G[{1f}] = min F[{ b}, {fij}] (2.10)

As discussed in Ref. [23], employing the projected functional G instead of the free energy

F leads to a more rapid evolution of the Kohn-Sham orbitals towards the electronic ground

state in static calculations and stabilizes molecular dynamics evolutions.

2.3.3 Ensemble Density-functional Theory Algorithm

The ensemble density-functional algorithm aims at minimizing the Kohn-Sham free energy
F with respect to the occupation matrix f under the constraint Tr(f) = N. This algorithm
proceeds as follows:
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CHAPTER 2 ENSEMBLE DENSITY-FUNCTIONAL THEORY

Ensemble Density-functional Theory (eDFT~ Algorithm - / ~ -1

It is worth noting that the free energy systematically decreases along the search direction
in the vicinity of f(n). This fact can be established by expressing the free energy derivative
as:

dF
da (0) = Tr[h(") - aS'(f("))]Af(") (2.11)

where the coefficients of the matrix h(") are defined as h0 ) = <(,~ P(fcn)l)j>. By defini-

tion, if() satisfies the non-self-consistent minimality condition:

h() -_S'(j(")) - CI = 0 (2.12)

dF
Consequently, substituting the preceding equation in the expression of the derivative dF (0),
we obtain:

dF(0) = rTr [(S'(f()) - S'(f(")))(•() f(j)) (2.13)

where use has been of the fact that Tr(f(")) = Tr(f(")). Hence, S being a decreasing function,

the derivative of the free energy at the origin of the search direction is always negative.
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1. Start with the initial occupation matrix f(n=o) _ [f(f=o)]

2. Find the non-self-consistent solution f(n) of a{F - eFTr(f)}/afl• eff = 0.

(The Fermi energy EF is chosen in such a way that Tr(f) = N.)

3. Define the search direction: Af(") = f(") - f(n)

4. Interpolate and minimize F(A) = F(f(") + AAf (n)) to obtain Amin.

(A proper choice for interpolating the energy E - aS is to use a function of the
form P - a Ej S(Qi), where P and Qj are third order polynomials.)

5. Update f: f(n+l) = f(n) + (AnAf(n).

6. Iterate from Step 2 unti e.
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2.4 Self-interaction Corrections

2.4.1 Self-interaction Errors in Mean-field Theories

The fundamental idea underlying the Kohn-Sham procedure is to recast many-body electronic

interactions into an effective mean-field potential. Since the effective potential is constructed
as a functional of the total charge density, each electron is implicitly immersed in a field that

includes a contribution from its own charge density, which gives rise to unphysical electronic
self-interactions.

Although self-interaction errors are present in most mean-field descriptions, they are of

particular significance for DFT calculations. Indeed, self-interaction is responsible for the well-

known tendency of conventional density-functional methods to delocalize electronic states.

This tendency results in frequent underestimations of the energy gap for insulators and semi-

conductors [24]. For the same fundamental reason, Koopmans' theorem, which identifies the

ionization potential of a molecule as the energy of its highest occupied orbital, cannot be

applied to density-functional theory. In addition, self-interaction is at the origin of orbital

overhybridization that ultimately translates into overestimated binding energies.

A number of schemes have been proposed to eliminate electronic self-interaction errors

in electronic-structure calculations. In the context of the Thomas-Fermi-Dirac theory, Fermi

and Amaldi introduced a corrective approach that relies on suppressing the electrostatic self-

interaction energy corresponding to the total electronic density rescaled by the number of

electrons. Extending the Fermi-Amaldi prescription to density-functional theory, the Perdew-

Zunger self-interaction correction (PZ-SIC) proceeds by subtracting individual electronic con-

tributions to the total energy functional. Several refinements of the Perdew-Zunger method

have been proposed. It is also important to note that a number of recently popularized first-

principles approaches-such as hybrid density functional theories (HDFTs) [18]-inherently

reduce self-interaction errors. In addition to these approaches, the LDA + U method intro-

duced by Anisimov et al. [25-28] consists of eliminating electronic overhybridization by adding

orbital Hubbard U contributions to the total energy, thus imposing a penalty on partially oc-

cupied electronic states. Subsequently, Cococcioni and de Gironcoli [29] demonstrated that
the U parameters could be rigorously determined from linear-response calculations.

In spite of its central importance in understanding the accuracy of electronic-structure
calculations, the concept of self-interaction is generally poorly defined. Although electronic
self-interactions are known to be present in local and semilocal density-functional approxi-
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mation while absent from the Hartree-Fock formulation [13], there exists no well-established

criterion to determine whether a given method is exempt from self-interaction errors. The

lack of explicit definition greatly complicates any attempt to evaluate, compare, and extend

existing corrective schemes.

This work presents a general formalism for analyzing electronic self-interaction in the
context of electronic-structure calculations and introduces a new scheme to eliminate self-

interaction errors. In the next section, we propose a formal, yet intuitive, criterion for elec-

tronic self-interaction and present a parameter-free LDA + Ua3 method to extend the PZ-SIC

scheme in the LDA + U formalism.

2.4.2 Defining Self-interaction

In mean-field descriptions of physical systems, self-interaction occurs when an element of

the system interacts directly with itself through the total effective field. In the context of

density-functional theory, self-interaction manifests itself in the dependence of the single-

electron Hamiltonian with respect to the occupation of a given electronic state. Therefore,

the following criterion for identifying electronic self-interaction can be proposed:

Explicitly, this condition can be written as:

acia

= 0, (2.14)
8fi

where 0i, f,, and ej, denote the electronic orbitals, the orbital occupations, and the orbital

energies, respectively.

According to Janak's theorem, the single-electron energy Ei equals the derivative of the

total energy with respect to the orbital occupation at the electronic configuration minimizing

the total energy:
BE dEE = = dE (2.15)
afia dfia
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given orbital does not vary when changing the occupation of that orbital, all
electronic orbitals and all other occupations remaining constant.

(non-self-interaction criterion)

CHAPTER 2 SELF-INTERACTION CORRECTIONS



Therefore, the condition of non-self-interaction can be recast as:

a2E = 0. (2.16)

Thus, self-interaction contributes an unphysical curvature to the dependence of the energy
with respect to orbital occupations. This central observation constitutes the basis of the linear-
response LDA + U method [29], which relies on adding occupation-dependent parabolic terms
to the energy functional in order to cancel the second derivatives of the energy with respect
to the electronic occupations.

In order to illustrate the implications of Eq. 2.16, we consider the finite-temperature
Hartree Fock theory, within which the total electronic energy EHF can be expressed as:

EHF = Zfu(ij _ 12 + v(r)Iia) + 1E ficfjU,(iol,joll r 1 r llia, j,)

2••1 fifjo,(ia, jal - r1jai, ia) (2.17)
ija

Varying the occupation fi, while fixing all other variational degrees of freedom, we obtain:

O2 EHF 1 1Of2  = (iu, ia 1 ia, ia) - (ir, i _a lia, ia) = 0 (2.18)
f Fr - r r-r'

Thus, we verify that the non-self-interaction criterion given in Eq. 2.16 is equivalent to a
well-known cancellation rule between the electrostatic and exchange self-interaction energies.

Additionally, for any independent-electron scheme, the ionization energy Ei, of a given
orbital can be expressed in terms of the single-electron energy cic (Slater's theorem):

i = 1 iE = Ecodfji, (2.19)

where the integral is evaluated along the minimal energy path connecting fi, = 0 to fi, =
1. Therefore, in the absence of self-interaction (Eq. 2.14)-and neglecting second-order
relaxation effects-the ionization energy can be directly obtained from Koopmans' theorem:

4i, 0 Eji. (2.20)
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The equivalence between Slater's theorem and Koopmans' theorem under satisfaction of
Eq. 2.14 confirms the significance of self-interaction for the physical interpretation of orbital
energies.

2.4.3 LDA + Uap• Method

Within the Perdew-Zunger approach, the corrected energy functional Epz is expressed as:

Epz = E - j EH[fa~li 2] -- Exc[f i~ l 2, 0], (2.21)
io ia

where E, EH, and Exc stand for the total energy, the Hartree energy, and the local (or

semilocal) spin density approximation for the exchange-correlation energy. Hence, the second

derivative of the orbital-dependent energy with respect to fi, can be expressed as:

2 Epz =fi (ia, il fxc[nT, n](r, r')Iiu, ia)

-(ia, ial[ fxc[f,0,cV)l, 2 , 0](r, r')Iia, ia), (2.22)

where fxc[nT, nf](r, r') = [62Exc/Jn,(r)Jn&,(r')],, denotes the exchange-correlation ker-

nel. As a consequence, the Perdew-Zunger self-interaction correction results in an exact
cancellation of Hartree self-interaction due to the linear dependence of the electrostatic po-

tential with respect to the electronic charge. However, it eliminates the exchange-correlation

self-interaction contribution only in the limit where fxc[nT,n ] can be approximated by

fxc[fia1l0l2, 0]. (This condition is satisfied, for instance, when the charge density in the

background of i•, is small.)

In order to extend the range of validity of the Perdew-Zunger scheme, we propose the

LDA + Uap, correction inspired by the LDA + U method. The LDA + Ua3/ consists of

expressing the total electronic energy as:

ELDA+UtaP = E - U U•f fijo + aifia, + /i,, (2.23)
ia

where the coefficients of the parabolic corrections Uij, ai,, and pi, are selected in order to

cancel self-interaction contributions to the total energy E at the current electronic configu-
ration. To express the self-interaction energy contribution from the orbital zi,, we write the
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total energy in function of fi, (all other variational parameters being kept constant):

E(fi) = E(O) + (f )df, (2.24)

where the derivative OE/afij(f) is equal to the expectation value of the Hartree and

exchange-correlation potential at fi = f. Thus, Eq. 2.25 can be rewritten as:

E(fi) = E(0) + (iuc - 1V2 + v + vHXC,i,(f)licr)df, (2.25)

where vHXC,i,(f) is the sum of the Hartree and exchange-correlation potentials evaluated at

fi, = f, all electronic orbitals and all other occupations remaining constant. In the absence
of self-interaction, the orbital-occupation dependence of the total energy becomes:

E(fio~) = E(O) + (ioj - 1V2 + V + vHXC,iG(O),ia) fio . (2.26)
2

Comparing Eq. 2.25 with Eq. 2.26, we obtain the expression of the self-interaction energy

AEi, associated with the orbital 0'i,:

AEjg(fio) = I (irI-VHXC,i(f) - VHXC,ia(O)iU)df. (2.27)

In agreement with physical intuition, Eq. 2.27 indicates that the self-interaction energy

corresponds to the integrated change in the total energy derivative when varying the orbital

occupation from 0 to fi,. As a result, the self-interaction correction coefficients Uji, ajo, and

0fl can be computed by matching the values of the self-interaction energy and derivatives

calculated at the occupation fia:

AEja = foi0 (ivHXC,iG,(f) - VHXC,ig(0)Iiu)df{ AEj/afj, = (ioalvHX - VHXC,i((O)Iia) (2.28)
a2AE,/8afi2, = (ia,ialIfHXCliiU,iU),

where vHXC = VHXC,i,(fie,) and fHxc = fHxc[nT, nil are evaluated at the current spin

densities nT and nT. It should be emphasized that the Uao self-interaction correction is exact
for all electronic configurations in the vicinity of the configuration at which AEi, and its
derivatives are calculated.
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LDA + Uap LDA + U

Energy functional E - fUifa + a-•iafiaf + Ii, E + Umaqma(1 - qm)
ia ma

Orbitals ji (Kohn-Sham) Om, (atomic)
Occupations 'fi, qma = fiaI(riol1ma)12

ia

U Ui = (ia, ialfHxclia, i0) Uma = (m, majlHXClma, ma)
1

a aia = (ialvHXC - VHXC,ia(O)lia) - Uifia, ama = Um,,a

S3i = (iaIvHxc,(ia) - VHXC,ia(O)lio)di Om, =0
10
- vUafi, - aaifia
2

Table 2.1: Comparison between the LDA + Uap and LDA + U methods.

The LDA + Uao3 functional share common features with the linear-response method

proposed by Cococcioni and de Gironcoli. A comparison of the two approaches is given in

Table 2.1. Within the linear-response approach, the Hubbard U coefficient corresponding to a

given atomic-like orbital 0m, of effective occupation qm, = E•• fial(0~0i ma ) 2 is expressed
as:

Uma = (mu, ma jV - 0 'mu, mu) (2.29)

where ^(r, r') = [6n,(r)/6vl,(r')],,, denotes the response function to the external potential,
and Xo(r, r') = [J6n(r)/6vYf (r')],,, stands for the response function to the mean-field
effective potential. The two response operators entering into Eq. 2.29 differing only by

the linear response of the Hartree and exchange-correlation potentials, the self-interaction

curvature Um, can be recast as:

Um -= (ma, malfHxclmu, mu), (2.30)

an expression similar to that in Eq. 2.28. However, it should be noted that at variance with

the LDA + Uc3P scheme, the LDA + U method relies on predefined atomic orbtials and

sets the self-interaction correction coefficients am, and /m, to be equal to -Umo and 0,

respectively, thereby replacing double-counting terms in the energy functional with effective

Hubbard interactions [29].

The main difficulty in directly minimizing the LDA + Uao energy (Eq. 2.23) lies in taking

into account the variational dependence of the self-interaction coefficients Us, aij, and /i,-

which requires calculating the third-order functional derivative of the exchange-correlation
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energy 63Exc/6n(r)6n(r')Jn(r"), in particular. To bypass this difficulty, we propose an

indirect self-consistent scheme that consists of selecting a reference electronic configuration
{fo~ 09}~ for calculating the self-interaction coefficients. Explicitly, the LDA + Uao energy

and Hamiltonian are expressed as:

ELDA+Uac, = E j- ' U,0(q9,)2 O0
ia

Seff _ v2 •o o ao 0,LDA+Ua -= 2 V + VHXC - io i0)Uiqb + a0(ia0I,LDA+Uc43 2L.J .

(2.31)

(2.32)

where qO, = >~j fj I (•lj,lol 2 is the effective occupation of the reference orbital 'o.

It is important to note

nearly equal, which results

fDA+Uf , 
1  2LDA+Uac4 2

that in the vicinity of the reference configuration, qo,9 and fio are
in the following approximation for the effective Hamiltonian:

+ v + VHXC + E liaU)(io0lvHxc~,.(O) - vHxcliJ0°(iO0I,
io"

where vHXC,i.(O) and vHXC = HXC,i,(fi0o) are calculated at the reference electronic con-

figuration. Eq. 2.33 offers an intuitive interpretation of the LDA + Uap self-consistent

procedure: provided that the current electronic configuration {fi~, ',} does not deviate sig-

nificantly from the reference configuration {fio, 4,9}, each orbital 0ia, % 09 is effectively
subject to a potential vf v + VHXC,i,(O) that does not include its own contribution. In

other words, the self-interaction correction substitutes vHXC,io(O) for VHXC = VHXC,ia(fia)

in the proximity of the self-consistent reference configuration.

We now present the LDA + Uao self-consistent algorithm. Let NSCF denote the number
of self-consistent field (SCF) steps between each update of the reference configuration.
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I flA -4- tI,'vA Alcroritlim

\, 5. Iterate trom Step 2 until SL- convergence is achieved.

Note that the current and reference electronic configurations become identical at con-

vergence. Therefore, the LDA + Uap• self-consistent algorithm ensures satisfaction of the

non-self-interaction condition (Eq. 2.16).

Step 2 of the algorithm requires calculating the kernel of the local or semilocal exchange-

correlation energy fxc. This calculation is performed using the method proposed by Dal

Corso and de Gironcoli in the context of phonon-dispersion computations [30]. Moreover,
the determination of the self-interaction coefficients necessitates calculating the Hartree self-

interaction energies f Ibi12(r) iPI2(r')/rl - r'ldrdr', which entails treating a system with a

net electrical charge. To eliminate periodic-image errors [31] in our plane-wave calculations,

we employed the density-countercharge method (DCC) introduced in the next chapter. Since

computing the fHXC and of vHxc,i, is relatively inexpensive and is only done every NscF

Kohn-Sham iterations, the overall cost of the LDA + UaP calculation is comparable to that

of standard LDA calculations.

As a final note, it is worth pointing out that the LDA + Uac algorithm can be modified to

exactly reproduce the PZ-SIC correction. The adaptation of the LDA + Ua3 to the PZ-SIC

scheme consists of changing the reference configuration {f °, '0} in the calculation of the

self-interaction coefficients (Step 2). Specifically, when determining the PZ-SIC coefficients

U9OPZ aOPZ and 3o9Z, the following substitutions must be made:

Sfo,, - 0 if (j, ') (i, ) (2.33)
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1. Select an initial reference electronic configuration {ffo, 'iI}.

2. Calculate the self-interaction coefficients U°•, a0, and /3° corresponding to the

reference electronic configuration {fo,, 1o }.

3. Perform NscF Kohn-Sham self-consistent steps with the LDA + Uac , updating

the effective occupations q,° = ••j fI (jo• • j 2)12 during each minimization.

4. Set the new reference electronic configuration to be equal to the current configu-

ration: {fil , I,} { fO, ,I,}.
-- . • I-, • ,a, ,-. /i- I•
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Figure 2-1: LDA + Uc•a, LDA, and ex-
act Born-Oppenheimer hydrogen energies
as the function of the fractional occupation
of the electronic orbital.
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In addition to computational efficiency, one of the main advantages of the above scheme

lies in the fact that it does not require additional orthogonality constraints in the electronic

minimization at variance with the PZ-SIC scheme.

2.4.4 Application to Archetypal Self-interaction Problems

In order to probe the performance of the LDA

hydrogen atom. The total energy of the atom

its electronic orbital is reported in Figure 2-1.

Ua3 scheme, we first consider an ionized

a function of the fractional occupation of

this calculation, we use a self-interaction-
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free hydrogen pseudopotential (generated by canceling the exchange-correlation term in the

effective Hamiltonian) and employ the local density approximation (Eq. 2.3). We observe that

the LDA ionization curve deviates significantly from the expected linear behavior [32]. Indeed,
at low fractional occupations, the LDA functional overestimates the stability of the hydrogen

ion, reflecting the predominance of the exchange energy (scaling as f4/3) over the electrostatic

contribution (scaling as f 2). At higher occupancy, the LDA functional underestimates the

absolute value of the total energy. In contrast, the ionization curve calculated using the LDA
+ Uao3 method is seen to follow the expected linear trend, reflecting the invariance of the

single-electron Hamiltonian with respect to the occupation f. It should also be mentioned

that at full orbital occupancy, the LDA + Uap3 electronic eigenenergy equals -1.0 Ry (in

accordance with Koopmans' theorem) while its LDA counterpart is calculated to be -0.47
Ry, confirming the limited physical relevance of uncorrected LDA single-electron energies.

We now compare the exact Born-Oppenheimer potential-energy curve of H+ [33] to LDA

and LDA + Ua,3 predictions (Figure 2-2). We observe that while the LDA energies are
overestimated by about 0.1 Ry in the vicinity of the equilibrium bond length, the LDA + Ua•3
values closely agree with those obtained from exact calculations. This agreement confirms

the accuracy of the Ua/ corrective approach for describing one-electron systems-in which
total-energy errors are entirely due to self-interaction effects.

As an additional illustration of the performance of the corrective approach, we consider the
potential energy of a H2 molecule as a function of bond length using the unrestricted Hartree-
Fock (UHF), the local spin-density approximation (LSDA), and the LSDA + Uap methods.
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The results are reported in Figure 2-3 (note that the self-consistent energy-minimization pro-

cedure becomes unstable around d(H-H) = 3 bohr, close to the Coulson-Fischer dissociation

limit [34]). Similarly to the H+ calculations, we note that the LSDA calculations underes-

timates the stability of the molecules. As expected, we also observe that in the absence

correlation contribution, the UaQ correction brings the potential energy in close agreement
with UHF results.

The above comparative analysis confirms the ability of the LDA + Uap method to correct

self-interaction errors in important benchmark cases. Furthermore, they demonstrate that

the three-parameter occupation-dependent Uac term is sufficiently flexible to achieve the

accuracy of orbital-dependent schemes--such as the Perdew-Zunger correction [32]-with a

significantly lower computational cost. These results establish the LDA + Uap approach as

a promising computational scheme to eliminate self-interaction errors in density-functional

theory calculations.
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CHAPTER 3

Electrostatics of Polarized and Charged

Systems in Periodic Boundary Conditions

3.1 Introduction

F IRST-PRINCIPLES CALCULATIONS frequently employ periodic boundary conditions to

predict materials properties. Besides constituting a natural choice when studying crys-

talline systems, periodic boundary conditions allow the use of highly optimized fast Fourier

transform (FFT) algorithms [35-37], which considerably reduce the computational cost as-

sociated with the resolution of electrostatic equations, and allow an efficient evaluation of

electronic kinetic energies and interatomic forces when used in conjunction with a plane-wave

basis set. Despite these algorithmic advantages, periodic boundary conditions require large su-

percells when studying aperiodic or partially periodic systems (e.g., isolated molecules, polymer

chains, and slabs) in an effort to minimize spurious electrostatic interactions between peri-

odic images [38]. Charged systems are particularly problematic, since conventional algorithms

automatically enforce charge neutrality by introducing an artificial jellium background [38].
(Note that the electrostatic energy of a charged system exhibiting three-dimensional periodic-

ity is infinite.) As shown by Makov and Payne, these artifacts induce significant errors scaling

as 1/L3 for the energy of neutral polarized systems and 1/L for that of charged systems,

where L denotes the size of the unit cell [31].

In addition to the Makov-Payne asymptotic correction [31], several schemes have been
devised to reduce periodic-image errors. Barnett and Landman proposed to eliminate periodic-
image interactions for cluster systems by restricting the plane-wave expansions of the wave-
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functions and of the charge density to a spherical domain in reciprocal space [39-41]. A gen-

eralization of this reciprocal-space approach was introduced by Martyna and Tuckerman [42].

The electrostatic-cutoff approach proposed by Jarvis, White, Godby, and Payne suppresses

periodic-image effects by damping the electrostatic potential beyond a certain interaction

range [43]. The corrective method introduced by BlIchl consists of using atom-centered

Gaussian charges and Ewald summation techniques to cancel periodic-image interactions [44].

In the local-moment-countercharge (LMCC) method developed by Schultz, a superposition

of Gaussians is employed as a local-moment model for calculating the Coulomb potential

analytically up to a certain multipole order, the remaining electrostatic contribution being

computed using conventional plane-wave techniques [45]. Considering atomic adsorption on

neutral slabs, Neugebauer and Scheffler proposed eliminating the adsorbate-induced polar-

ization through the introduction of a counteracting planar dipole between slab images [46].

Refinements of this method, based on the linear- and planar-average approximations proposed

by Baldereschi, Baroni, and Resta [47], were subsequently developed [48-50]. Extending this

approach to charged surfaces, the prescription of Lozovoi and Alavi relies on inserting a

Gaussian layer in vacuum to compensate for the excess charge and to allow electric-field

discontinuities across the layer [51].

In this work, we propose an alternative approach for correcting periodic-image errors and

show that exponential energy convergence with respect to cell size can be obtained at tractable

computational cost. The approach proceeds by calculating the electrostatic potential in real

space, exploiting the periodic solution of the Poisson equation computed using inexpensive

FFT techniques. In the following sections, we first discuss and characterize the difference

between the open-boundary electrostatic potential and its periodic counterpart, providing a

comparative basis for analyzing the relative accuracy of various corrective schemes. Second,

we present our correction method and assess its performance. Last, we extend the method to

the study of systems exhibiting one- or two-dimensional periodicity, beyond the conventional

linear- and planar-average approximations.
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Figure 3-1: (a) Open-boundary electrostatic potential v, (b) periodic electrostatic potential
v', and (c) electrostatic-potential correction vc.r. = v - v' for a pyridazine cation in a cubic
cell of length L = 15 bohr. The potentials are plotted in three orthogonal planes (Oxy),
(Oxz), and (Oyz) passing through the center of the cell.

3.2 Comparison of the Open-boundary and Periodic Po-
tentials

3.2.1 Definition of the Corrective Potential

The electrostatic potential v generated by a charge distribution p satisfies the Poisson equa-
tion:

V2v(r) = -47p(r) (3.1)
(atomic units are used throughout). In the absence of an external electric field, we can solve
Eq. 3.1 subject to open-boundary conditions (v(r) --* 0 as Irl -+ +oo). As a result, the
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electrostatic potential v can be computed via Coulomb integration:

= r -p(r') dr'. (3.2)

(Although this study focuses on open boundary conditions, it should be noted that the con-

tribution from an external field E can be incorporated by adopting the asymptotic boundary

conditions v(r) -- -E -r, which simply adds a term -E - r to the solution of the Poisson

equation.) A differential equation similar to Eq. 3.1 can be written for the periodic poten-

tial v', keeping in mind that periodic boundary conditions can only accommodate a net zero

charge (as seen from Gauss' law):

V 2v'(r) = -47r(p(r) - (p)). (3.3)

As a consequence, the periodic potential can be evaluated in the reciprocal-space represen-

tation as:
47r

v'(r) = p(g)e'g-r, (3.4)

where we set the arbitrary component v'(g = 0) = (v') to zero.

It should be noted that the open-boundary potential v and its periodic counterpart v' are

distinct. We define the corrective potential v"r as the difference v - v'. The potential vc"r"

must satisfy:
V 2 vcorr(r) = -4r (p), (3.5)

for which we specify Dirichlet boundary conditions: vcorr = v - v' at the cell boundaries.

(Note that the solution of this elliptic boundary value problem [52, 53] is uniquely defined.)

Eq. 3.5 indicates that the curvature of the corrective potential is a constant. It should also be

noted that, apart from the value of the average (p), Eq. 3.5 is independent of the structural

details of the charge density p. Instead, these details are entirely embedded in the Dirichlet

boundary conditions, which reflect the electrostatic contributions from compensating jellium

and from the surrounding images.

In order to illustrate the implications of Eq. 3.5, we consider a pyridazine cation in a

periodically repeated cubic cell. The open-boundary potential v, the periodic potential v',

and the corrective potential v"•c are shown in Figure 3-1. First, we observe that the potential

v' is shifted down in energy with respect to v, due to the fact that the average (v') is null by

construction. In addition to this energy shift, the potential v' is significantly distorted. This
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charged platinum slab.
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distortion results from satisfying the periodicity conditions. Most importantly, we observe that
the corrective potential v"r varies smoothly over space. The smooth spatial dependence of
vcOrr contrasts markedly with the strong variations in v and in v'. Performing a polynomial
regression, we can verify that the potential vo ' r is quadratic to good approximation in the
proximity of the cell center with departures from parabolicity restricted to the vicinity of the
periodic boundaries.

To further examine the characteristics of vc " , we consider the adsorption of carbon
monoxide molecules on neutral and charged platinum slabs. Following Neugebauer and Schef-
fler, the electrostatic correction is calculated along the z-direction within the planar-average
approximation (that is, from the xy-average of the charge distribution) [47]. The validity of
this approximation is discussed in the last section. For CO molecules adsorbed on a neutral
slab (Figure 3-2a), the periodic potential is shifted up in energy and tilted with respect to
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Figure 3-3: Corrective potential
v °" for a cubic lattice of point
charges and its parabolic approxi-
mation in the vicinity of the origin.
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the open-boundary potential. The potential correction is seen to be linear, in agreement

with the analysis of Neugebauer and Scheffler [46]. For CO molecules adsorbed on a slab of

surface charge r (Figure 3-2b), the real-space potential diverges as 47rr1zI. In this case, the

periodic potential v' undergoes a significant energy downshift, which decreases the energy of

the positively charged slab. Moreover, we observe that v' is significantly curved in the slab

region. Consistent with these observations and with Eq. 3.5, the corrective potential vcorr is

found to be parabolic everywhere in the unit cell.

3.2.2 Quasiparabolic Behavior of the Corrective Potential

In order to complete the analysis of the corrective potential, we consider a point charge q = +e

in a periodically repeated cubic cell of length L, as illustrated in Figure 3-3. The corrective
potential generated by the uniform jellium and the surrounding point charges is denoted v~rr.

Note that v" rr cannot be calculated directly as the difference between the potential of a lattice
of point charges v6 and the point-charge potential 1/r since the representation of a point
charge in reciprocal space requires an infinite number of plane-wave components. Instead, to
obtain v •r' , we can exploit the cubic symmetry of the system, writing the corrective potential
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as:

vo~or(r) = vor(r = 0)
T2

+V2vO r(r = 0) + O(|r14). (3.6)

This parabolic expansion, valid up to third order, confirms that the point-charge correction
v2o"r is almost quadratic in the vicinity of r = 0. For noncubic lattices, due to inversion

symmetry, the point-charge corrective potential takes a more general form:

v~r (r) = v'o (r = 0)
a21 corrv+ (r = 0)r + O(Irl4), (3.7)

2 ar

where (ra) are the coordinates of r along the principal axes. Thus, the corrective potential
in a noncubic lattice is also quasiparabolic.

Turning now to an arbitrary distribution p, we can express the electrostatic correction
V"C  by superposition:

var(r) = J~°~v (r - r')p(r')dr'. (3.8)

As a consequence, defining rmax as the distance beyond which the parabolic expansion (Eq.

3.6) ceases to be valid, the corrective potential v"' r can be considered as nearly parabolic,
provided that the spread of the distribution is tolerably lower than rma=.

3.2.3 Connection with Existing Schemes

Having justified the general characteristics of the electrostatic-potential correction, we now
determine the terms in the expansion of Vr (Eq. 3.6). The potential at the origin v• r"(r =

0) can be written in terms of the Madelung constant a0 [54] of a cubic lattice of point charges
in a compensating jellium background:

o(r = 0) = (3.9)

(The calculation of the Madelung constant of a jellium-neutralized assembly of point charges
is discussed in Appendix A.) Note that vorr(r = 0) is positive, reflecting the stabilizing
contribution from the jellium compensation. The value of V 2V•~rr(r = 0) is then determined

51

CHAPTER 3



CHAPTER 3 COMPARISON OF THE OPEN-BOUNDARY AND PERIODIC POTENTIALS

Point Countercharge
PCC (Makov-Payne)

0.4

a0q
L

0.35

Gaussian Countercharge
GCC (LMCC/Bl6chl)

0.4

a,/Lq

L

0.35

0 5 10

coordinate z (bohr)

0.4

0.35

0.3

0 5 10

coordinate z (bohr)

15 0 5 10

coordinate z (bohr)

Figure 3-4: Point-countercharge (PCC), Gaussian-countercharge (GCC), and density-
countercharge (DCC) corrective potentials for a pyridazine cation C4H5N+ in a cubic cell
of length L = 15 bohr. The corrective potentials are plotted along the z-axis perpendicular
to the plane of the molecule, as defined in Figure 3-1. The PCC and GCC corrections are

calculated up to dipole order. The spread of the Gaussian countercharges is a = 0.5 bohr.

from Eq. 3.5:

V 2Vcorr (r = 0) = L4 (3.10)

Hence, the point-charge correction can be expanded as:

corr = a 0 2r 14)v0o (r) = L r2 + O(r14).
L 3L3

(3.11)

The terms in this parabolic expansion bear a strong resemblance to those entering into the

Makov-Payne correction [31]. This correspondence is discussed further in Sec. 3.2.4.

The above expansion allows us to approximate the electrostatic correction induced by

a set of compensating charges. Indeed, introducing N charges, we can define a parabolic

point-countercharge (PCC) potential cr as:

N

Vco (r) = qn
n=l

L W (r - rn) 2

kL-3L3
(3.12)
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This expression may be rewritten:

S4oq 27rg 47r 2rQ
vpC"(r) = o -q -,r2 + 4 r- - (3.13)L 3L3  WL-3 3 '

where q = ~, q is the total charge, p = En qnrn denotes the total dipole moment, and

Q = n, qnr 2 stands for the total quadrupole moment of the countercharge distribution.
Eq. 3.13 indicates that parabolic PCC schemes can correct periodic-image errors up to

quadrupole-moment order. Note that no more than Nma, = 7 countercharges are sufficient

to obtain the most accurate parabolic correction (one charge for q, two for p, and four for

Q). To obtain higher-order PCC corrections, one would need to determine more terms in the

expansion of the point-charge correction, beyond the parabolic contributions. An example of

accurate calculations using harmonic expansions can be found in Ref. [55].

An alternative approach is to employ countercharges whose corrective potential can be

computed handily. A popular choice is to use Gaussian densities, as proposed by BlIchl [44].

Repeating the preceding analysis for a Gaussian density of charge q = +e, we can expand the

Gaussian corrective potential vc  as:

corr a:/L 2w
v•or = L 27r 2 + (jrj14), (3.14),,L = L 3L3

where a,/L is the Madelung constant of an assembly of Gaussians of width a immersed in a

compensating jellium in a cubic cell of length L. It is more convenient, however, to write the

corrective potential directly as:

vr (r) = 'v,(r) - ,",L(r)
erf(r/a) 3  4e-a2y 2/4eig.r, (3.15)

where v, is the electrostatic potential of an isolated Gaussian charge, and V,.L is the potential

corresponding to a periodically repeated Gaussian in a jellium background. The sum in the
right-hand side of the equation converges very rapidly, and can be calculated using FFT
techniques. Superimposing N compensating charges, the Gaussian-countercharge (GCC)
corrective potential c can be expressed as:

N

vGCC(r) = qvtr(r - rn). (3.16)
n=l
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This results in the following approximation for the open-boundary potential v:

v(r) ' v'(r) + vro c(r). (3.17)

We underscore that this scheme is equivalent to the Gaussian scheme introduced by Blochl [44]

and the LMCC method proposed by Schultz [45]. The equivalence with LMCC approach can
be established by recasting Eq. 3.17 as:

Sv(r) BC(r) + vGCC(r) (318)
VPBc(r) = v'(r) - v'cc(r),

where vGcc(r) = Eqq,v,(r - r,) is the electrostatic potential generated by the isolated

countercharge distribution, and v'cc(r) = E qnv',L(r - r,) is the corresponding periodic

potential.

We are now in a position to compare the corrective potentials •.crr and ,GrTc with

the potential vco'' , obtained as the direct difference between the open-boundary potential
and its periodic counterpart. For our comparative analysis, we refer to the exact corrective
potential vc 'r as the density-countercharge (DCC) potential. The DCC potential is obtained

by evaluating the Coulomb integral defining v at each grid point in the unit cell. (A cheaper
alternative to this procedure is presented in the next section.) The PCC, GCC, and DCC
potentials for a charged pyridazine cation in a cubic cell of length L = 15 bohr are plotted in
Figure 3-4. The PCC and GCC corrections are computed up to dipole order. First, it should
be noted that the maximal energy of the PCC potential is slightly above its GCC counterpart,
reflecting the fact that the Madelung energy of an array of point charges immersed in a
jellium is higher than that of a jellium-neutralized array of Gaussian charges (cf. Appendix
A). In addition, the maximal DCC energy is found to be approximately 0.05 Ry above 0oq/L,

indicating that the dipole PCC and GCC corrections tend to underestimate the energy of

the system. Moreover, the parabolic PCC potential is not as steep as its GCC counterpart,

suggesting that the energy underestimation will be more significant for the GCC correction.

Owing to the cubic symmetry of the cell, the PCC and GCC potentials display the same

curvature in each direction of space, equal to one third of -47r(p). In contrast, the curvature

of the DCC potential is not uniform, due to the nonspherical nature of the molecular charge

density. This shape dependence suggests that the accuracy of the GCC correction could be

improved by optimizing the geometry of the Gaussian countercharges.

In summary, we have shown that the PCC (Makov-Payne), GCC (LMCC), and DCC cor-
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Figure 3-5: Electrostatic energy of
two Gaussians of unit charge and
unit spread calculated via (a) real-
space integration, (b) reciprocal-
space integration with the PCC en-
ergy correction given by Eq. 3.21,
and (c) reciprocal-space integration
with the Makov-Payne energy cor-
rection given by Eq. 15 in Ref.
[31]. The Gaussian charges are po-
sitioned at ro = (-5, -5, -5) and
rl = (5, 5, 5) (corresponding to a
quadrupole moment Q of 153 a.u.).

rections belong to the same class of periodic-image corrections. The analysis of the corrective

potential has established that the parabolic PCC correction cannot eliminate periodic-image

interactions beyond quadrupole order. Difficulties inherent in the GCC scheme have also been

evidenced. To overcome these limitations, an efficient implementation of the DCC correction

is presented in Sec. 3.3.

3.2.4 Energy Correction

To conclude this preliminary analysis, we give the expression of the energy correction AEcorr

in terms of the corrective potential v"'r. The total electrostatic energy of the system being

equal to:
(3.19)E = J v(r)p(r)dr,

the corrective energy can be expressed as [48]:

AEcorr = 1 . r (r)p(r)dr.2 (3.20)

it is worth mentioning that in the case of a single point countercharge q = f p(r)dr, the
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PCC energy correction can be written as:

AEcorr = qv'orr(r)p(r)dr2 0
_ c0oq2  7rqQ
2L 3L3  (3.21)2L 3LW

The first term corresponds to the Madelung energy correction, as proposed by Leslie and

Gillian [38]. Note that the second term differs from Eq. 15 in Ref. [31] by a factor 1/2. The

validity of the energy correction given by Eq. 3.21 is illustrated in Figure 3-5.

3.3 Implementation of the Density-countercharge Cor-

rection

3.3.1 Density-countercharge Algorithm

In the preceding section, the corrective potential v"r = v was calculated directly by

subtracting the periodic potential from its open-boundary counterpart. The computational

cost of this direct method is prohibitively high, on the order O(N 2) (where N is the number

of grid points), corresponding to the evaluation of Coulomb integrals at each point of the grid.
In this section, we present a scheme that reduces this computational burden. The scheme

exploits both the Poisson equation for vc"'rr (Eq. 3.5) and the fact that vo' is smoothly
varying.

First, we note that taking into account appropriate boundary conditions, Eq. 3.5 can

be solved efficiently using multigrid solvers [56-61]. Multigrid algorithms typically scale as

O(N log N), that is, comparable to the scaling of an FFT computation. Hence, the overall

cost of the calculation can be reduced from O(N 2) to O(N5 /3 ), corresponding to the expense

arising from the determination of the boundary conditions. Although a similar approach may

be employed to directly solve the electrostatic equation defining v (Eq. 3.1), we empha-

size that Eq. 3.5 allows a considerable reduction in numerical error in the finite-difference

evaluation of the electronic Laplacian--since v"rr is much smoother than v.

Further exploiting this idea, it is possible to solve Eq. 3.5 on a grid much coarser than

that used to discretize the charge density. To illustrate this fact, we consider a pyridazine

cation in a periodic cubic cell of varied size (Figure 3-6). The total energy of the system is

calculated using density-functional theory [62]. An energy cutoff Et = 250 Ry is applied to
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the plane-wave expansion of the charge density. The total energies are corrected using the

DCC scheme by solving the electrostatic equation of vcorr on a coarse grid for several values

of the energy cutoff, denoted E•g. Reducing the energy cutoff E~' from 250 to 40 Ry, the

corrected energies are observed to depart by less than 5 x 10- 3 Ry from their converged values

for cell sizes greater than 13 bohr. The ability to decrease the number of grid points without

a significant loss of accuracy enables a substantial reduction of the additional computational

cost from O(N5 /3 ) to O(M 5/3 ), where M is the number of coarse-grid points. Note that

diminishing the plane-wave energy cutoff from 250 to 40 Ry at L = 15 bohr reduces the cost

of the boundary-condition calculation by a factor 29 /73s x 1/100.

Before presenting the algorithm, we draw attention to the fact that the DCC scheme relies

on the central idea that most of the structural characteristics of the open-boundary potential

v can be removed by subtracting out its periodic counterpart v'. The residual veorr (that is,

the amount by which v' fails to reproduce v) is smooth and can be determined on a coarse

grid at low computational cost. Additional computational savings come from the ability to
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avoid updating the potential v1 "rr at each step of the self-consistent-field (SCF) calculation,
but instead at fixed interval between electronic iterations.

The DCC algorithm for a typical electronic-structure calculation can be described as fol-

lows. Let Ncor' denote the number of SCF steps between each update of the corrective

potential.

IBCC Al rnrithm

\ 8. Iterate from Step 2 until reaching SCF convergence.

Note that we employ real-space tricubic interpolation techniques in order to avoid oscilla-

tory distortions inherent in Fourier-transform interpolation schemes. We also underscore that

the DCC algorithm can be efficiently parallelized, since its most expensive step (namely, the

calculation of the Dirichlet boundary conditions) scales linearly with the number of processors.

The above procedure can be adapted to one- and two-dimensional systems by considering

the linear or planar average of the charge density for calculating the corrective potential [47].

(The validity the linear- or planar-average approximations will be discussed in the final section.)

The computational cost of this approach is moderate, on the order of O(M'/ 3) and O(M)

for one and two dimensions, respectively.

It should also be mentioned that the DCC algorithm can be used in combination with

multipole-expansion methods for a rapid evaluation of the Dirichlet boundary conditions (Step
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1. Start from an initial charge distribution p on the fine grid.

2. Calculate the periodic potential v' corresponding to p.

3. Transfer p and v' on the coarse grid (tricubic interpolation [63]) to obtain the

coarse-grid density , and coarse-grid periodic potential i'.

4. Calculate the real-space potential 5 at the boundaries of the coarse grid from 3 to

obtain the Dirichlet boundary conditions or = ij _ i'.

5. Solve v 2 °corr = -47r(p) (multigrid techniques) to obtain the corrective potential
VcorrT

6. Transfer ic ° rr on the fine grid (tricubic interpolation) to obtain vorr, and calculate

V = Vcorr + v/.

7. Perform N"• electronic SCF steps.
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Figure 3-7: Total energy as a func- -8•.825
tion of cell size for a neutral pyri-
dazine molecule without correction -89.83

and corrected using the PCC, GCC,
and DCC schemes. The PCC and -89.835

GCC corrections are calculated up
to quadrupole order. The inset -89.84

shows a pyridazine molecule in a cell
of size L = 15 bohr.

12 14 16 18 20

cell size L (bohr)

4). The accuracy of this approach depends on the precision of the multipole expansion at the

boundary of the supercell. (A mathematical discussion on the long-range accuracy of multipole

expansions is presented in Sec. 3.4. of Greengard's dissertation [64].) The performance the

multipole-expansion approach is reported in Appendix B.

3.3.2 Applications

The energy of a pyridazine molecule as a function of cell size L for each countercharge

correction is reported in Figure 3-7. For this neutral species, the uncorrected energy shows

a characteristic minimum at L = 14 bohr before slowly approaching its asymptotic value. In

contrast, the corrected energies are seen to converge monotonically towards their common

energy limit. Although the three schemes demonstrate comparable convergence, it should be

noted that the PCC method is slightly more accurate. In addition to further validating the

energy expansion given by Eq. 3.21, this comparison suggests that the PCC correction can be

preferred for studying neutral species, with the notable exception of elongated systems (e.g.,

polymer fragments or terminated nanotubes).

We now consider the energy of a pyridazine cation as a function of cell size (Figure

3-8). We use energy cutoffs of 35 and 250 Ry for expanding the wavefunctions and the

charge density, and select a coarse-grid cutoff of 35 Ry for calculating the DCC correction.

Expectedly, the uncorrected energy converges very slowly with respect to L (at 19 bohr, the

energy error is still larger than 0.15 Ry). The PCC and GCC corrections substantially improve

the convergence of the total energy, reducing periodic-image errors by one order of magnitude.

Using the DCC scheme, the energy is observed to converge even more rapidly, reflecting the

exponential disappearance of energy errors arising from charge density spilling across periodic
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Figure 3-8: Total energy as a func-
tion of cell size for a pyridazine
cation without correction and cor-
rected using the PCC, GCC, and
DCC schemes. The PCC and GCC
corrections are calculated up to
quadrupole order. The inset of the
top graph shows a pyridazine cation
in a cell of size L = 15 bohr.

cells: at a cell size of 15 bohr, which is barely larger than the size of the molecule, the DCC
energy is converged within 10- 4 Ry. The performance of each scheme as a function of the
total computational time is shown on a logarithmic energy scale in Figure 3-9. Each curve
corresponds to cell sizes in the range 12-19 bohr. For meaningful comparison with the DCC
scheme, the PCC and GCC corrective potentials are also updated at fixed SCF intervals.
We observe that the computational cost of the corrected calculations is comparable to that
without correction for a considerable improvement in accuracy. For this charged system, the
DCC approach constitutes the most advantageous alternative, improving the energy precision
by two orders of magnitude over the PCC and GCC corrections for cell sizes above 15 bohr.
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Figure 3-9: Accuracy of the total energy as a function of computational time for an isolated
cation without correction and using the PCC, GCC, and DCC schemes for cell sizes in the range
12-19 bohr. For each scheme, the corrective potential is updated every five SCF iterations.

Figure 3-10: Total energy as a
function of transverse cell size for
a polyvinylidene fluoride (PVDF)
chain without correction, and using
the GCC and DCC schemes.
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Figure 3-11: Convergence of the
opposite Fermi energy -EF as a
function of transverse cell size for
a Pt(100) slab without correc-
tion, and using the GCC and DCC
schemes.
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The performance of the DCC and GCC corrective schemes for a neutral polyvinylidene
fluoride (PVDF) chain is reported in Figure 3-10. The comparison shows a significant im-
provement of energy convergence for both schemes. As shown in the inset, the performance
of the DCC scheme is perceptibly superior to that of the GCC scheme. We emphasize that
for systems exhibiting one dimensional periodicity, the additional computational cost due to
the electrostatic correction is moderate, on the order of O(M) at most.

The DCC scheme can also be used in the calculation of work functions, as it solves
energy-reference issues by automatically setting the vacuum level to zero. Figure 3-11 depicts
the convergence of the opposite Fermi energy of a Pt(100) slab as a function of transverse
cell size. The wavefunction, charge-density, and corrective potential energy cutoffs are 25,
200, and 150 Ry, respectively. We use a shifted 5 x 5 x 1 mesh with a cold-smearing
occupation function [12] (smearing temperature of 0.03 Ry) to sample the Brillouin zone.
Without correction, the relative error in the Fermi energy stays above 100% for all cell sizes
in the considered range. Using the GCC scheme, the convergence of the Fermi level improves
greatly: at 150 bohr, the relative error reduces to approximately 0.1 eV. Employing the DCC
corrective scheme, the calculated Fermi energy is converged within 2 meV at 60 bohr and 0.1
meV at 150 bohr. Thus, the DCC scheme allows to directly determine the work function of a
metal as the opposite of the calculated Fermi energy using supercells of minimal size. A similar
convergence improvement is obtained for the work function of carbon nanotubes [65]. Besides
improving the convergence of total energies, the DCC approach can be employed to correct
structural and vibrational properties [66], and to calculate linear-response characteristics with
a reduced computational effort [66-68].
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3.4 Beyond the Linear- and Planar-average Approxima-

tions

3.4.1 Treating systems with partial periodicity

In the preceding sections, we have assumed that the corrective potential of a one- or two-
dimensional system can be obtained by homogenizing the system along its periodicity direc-
tions, as initially proposed by Baldereschi, Baroni, and Resta [47]. This approach, referred to
as the linear- or planar-average approximation, has been frequently employed in electronic-
structure calculations [46-48,51,69].

Alternative schemes adapting the Ewald method to evaluate conditionally convergent
lattice sums [70] or generalizing the FMM approach [71, 72] have also been proposed for
systems exhibiting partial periodicity. Such schemes are particularly suited to localized-orbital
calculations but are of relatively limited applicability for plane-wave implementations. Here,
we propose an efficient method to calculate the electrostatic potential for partially periodic
systems, taking into account the full three-dimensional structure of the charge distribution.

In addition to presenting this methodological extension, we discuss how to assess the validity
of the linear- and planar-average approximations a priori in terms of structural characteristics
of the system.

3.4.2 DCC Scheme for One-dimensional Periodicity

To introduce the DCC approach for one-dimensional systems, we first study the electrostatic
problem corresponding to an isolated sinusoidal-density line:

p(r) = 6(2)(r±) exp(igzz), (3.22)

where 6(2) stands for the two-dimensional Dirac delta function and r 1 denotes the transverse
coordinates (x, y). Making the ansatz v(r) = G(rL; g,) exp(igzz) for the Green's function,
we obtain:

(V 2 - g2)g(r±; g,) = -47r6( 2)(r±). (3.23)
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1(r

p(r±; 0)
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v(r ; 0)

2Ko( Ir± - r' I)

v(r ; )

Figure 3-12: Fourier-decomposition calculation of the electrostatic potential v(rL, z) =
Zgz v(r±; gz)ei'zz for an infinite polyvinylidene fluoride (PVDF) chain. (1) The longitu-
dinal Fourier transform of the charge density is calculated to obtain the contributions from
each axial wavevector gz; (2) the electrostatic potential generated by each Fourier component
of the charge density is calculated using Green's functions; (3) the electrostatic potential is
then transformed back to real space.
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The solution of this generalized electrostatic problem can be written as:

S (r; 0) = -2 In rI, (3.24)
G(r±; gz) = 2Ko(gzr±l ) for gz = 0

where K0 is the modified Bessel function of the second kind. Note that Ko(gzlril) =

- In Iril + ... when gzlr±l approaches zero, reflecting the fact that a sinusoidal-density line

can be considered as uniform when seen from a distance much smaller than its wavelength.

Knowing the electrostatic potential generated by a single line (the Green's function charac-

terizing the generalized electrostatic problem), the potential of an arbitrary one-dimensional
charge distribution can be determined analytically, as illustrated in Figure 3-12. The gen-
eral procedure consists of calculating the one-dimensional Fourier transform of p to obtain
its longitudinal Fourier components p(r±; gz) (step 1). Each individual components is then

convoluted with the electrostatic potential generated by a sinusoidal density, as expressed in

Eq. (3.24) to obtain the Fourier components v(r±; gz) of the open-boundary potential (step

2):
v(r±;0) = -2 In Ir - r' p(r; ;0)drl,

vJ f(3.25)
v(r±; g) =2 Ko(gzlr - r'I)p(r'; gz)dr' for gz0 # 0.

Finally, the open-boundary potential is transformed back to real space (step 3). We under-

score that this procedure directly extends the linear-average approximation since the linear

average of the charge density corresponds to the first term of the one-dimensional Fourier

decomposition. Thus, averaging the charge density along the axis of periodicity amounts to

restricting the Fourier series to its gz = 0 term.

To estimate errors resulting from this truncation, we analyze the asymptotic behavior of

v(r±; gz # 0) at large gzjr±l:

7r e - 9z-r i

v(r±; gz) i when g lr| l> 1. (3.26)

From Eq. 3.26, the validity of the linear average approach can be assessed by calculating

the ratio of the cell size in the transverse direction L± (that is, the distance between peri-
odic replicas) to the typical wavelength All characterizing longitudinal inhomogeneities in the
system. For large values of the dimensionless parameter Li/AII, periodic-image interactions
are predominantly due to the logarithmic first-order contribution v(r±; 0) corresponding to
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the linear average of the charge density. Thus, as expected intuitively, the linear-average

approximation is valid in this situation. In contrast, when All is comparable to the distance

L± between periodic images, higher-order Fourier components v(r ±;gz) corresponding to

9z - 27r/A 11 must also be taken into consideration.

Despite its merit in discussing the validity of the linear-average approximation, determining

the open-boundary potential using the preceding approach requires expensive summations for

each point r± of the two-dimensional grid and for each longitudinal wavevector gz. Along

the same methodological lines as those of the DCC algorithm, a substantial reduction of

computational cost can be achieved by exploiting the periodic potential v', whose longitudinal

Fourier components can be computed inexpensively using FFT techniques:

v'(r±; 0) = Z P-p(g)eig'rl
g.fo ,L (3.27)

v'(r;gz) = 47r p(gi + g,~)eig -'r for g, z 0.
1 '(r;9i) • 9gL + 9z2

After coarse-grid interpolation, the component of the open-boundary potential v(rj; gz) can

be calculated at the boundaries of the domain, yielding Dirichlet boundary conditions for the

smooth corrective components vc"r(r±; gz) = v'(r±; gz) - v'(r 1 ; g,). The corresponding

g--dependent electrostatic problems read:

S V 2vcorr (rl; 0) = - 47(p) (3.28)
(V 2 - g2)cor r (r; g) = 0 for g, 0

These differential equations can be solved using efficient multigrid techniques. Once calcu-

lated, the longitudinal Fourier components of the electrostatic correction are added to those

of the periodic potential, thereby recovering v(r±; gz). Finally, the potential v(r) is computed

via an inverse Fourier transform.

3.4.3 DCC Scheme for Two-dimensional Periodicity

The electrostatic potential of a slab can be calculated in real space using a scheme similar

to that presented above. The formalism is to a great extent analogous to that developed

by Lang and Kohn for studying interactions between localized external charges and metallic

surfaces [73], and to the Green's function approach recently proposed by Otani and Sugino

[74]. The prescription consists of performing two-dimensional Fourier transforms to obtain the
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Figure 3-13: Total energy as a
function of transverse cell size for a
-[CH 2CF2]3-[CF 2CH2]3- polymer
chain without correction, corrected
using the density-countercharge
scheme with full Fourier decompo-
sition (DCC), and by limiting the
density-countercharge decomposi-
tion to the linear-average g = 0
component (DCC/LA).
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charge-density profile p(z; g1l) associated with each wavevector g1l = (gx, gy) parallel to the

surface. Solving the electrostatic problem for sinusoidal density layers, the two-dimensional

Green's functions G(z; gll) can be written as:

g(z;o)

G(z; g1l)
-21rjzj,

e-gll Izl
= 27r for g11  0.

911

(3.29)

Hence, as in the one-dimensional case, the density-average approximation is valid provided

that the geometrical parameter Lj_/A1 is large-this criterion is identical to that derived by

Natan, Kronik, and Shapira [49]. In addition, the above expressions allow one to determine

the corrective potential of a two-dimensional system by integrating the differential equations:

d2 vcorr(Z; 0) = -4r(p)

(~ - gi)vrr(z;gll) = 0
(3.30)

for g9: 0

Parenthetically, it is important to note that Eq. 3.30 can be solved analytically, taking

into account the boundary conditions calculated by superposition-that is, by convoluting

the longitudinal components of g and p (similarly to Eq. 3.25), then subtracting out the

components of v'. Therefore, the additional cost of the two-dimensional DCC correction is

negligible.

3.4.4 Applications

The convergence of the total energy with respect to transverse cell size for a fluoropolymer

chain -[CH 2CF2]3 - [CF 2CH2]3- of long periodicity All _ 24 bohr is depicted in Figure 3-
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giF ure 3-14: Force on one

of the fluorine atoms along a
transverse lattice direction as a
function of transverse cell size for a
-[CH 2CF2] 3-[CF 2CH23- polymer
chain without correction, corrected
using the density-countercharge
scheme with full Fourier decom-
posing (DCC), and by limiting the
aensity-countercharge decomposi-12 14 16 18 20 22
tion to the linear-average g = 0cell size LL (bohr)

component (DCC/LA).

13. We employ ultrasoft pseudopotentials [21] with energy cutoffs of 50 and 500 Ry for the
plane-wave expansions of the electronic wavefunctions and charge density, respectively. The
energy cutoff for calculating the corrective potential is 80 Ry. We use a shifted 1 x 1 x 2 mesh
with cold-smearing occupations [12] (smearing temperature of 0.02 Ry). Within the linear
average approximation (DCC/LA), the corrected energy closely coincides with the uncorrected
energy due to the absence of polarization in the longitudinal average of the charge density.
For the cell parameters considered, the geometrical ratio L_/AII varies from 0.5 to 0.9, that
is, beyond the range of validity of the linear average approximation. As a result, we observe
that the DCC/LA energy converges slowly towards its asymptotic value. In contrast, the
DCC scheme with full Fourier decomposition significantly improves the convergence of the
total energy (at 16 bohr, the accuracy of DCC energy is approximately 5 x 10- s Ry whereas
that of the uncorrected and DCC/LA energies is approximately 10- 3 Ry). Figure 3-14 depicts
the convergence of the force on one of the fluorine atoms. Similarly to the convergence of
the total energy, the atomic-force convergence is seen to improve substantially by applying
the DCC correction: at 16 bohr, the DCC force is converged within less than 10- 4 Ry/bohr,
while that obtained without correction or using the DCC/LA scheme are converged within
10- 3 Ry/bohr. We underscore that the additional computational cost of the DCC correction
is moderate. Indeed, at 16 bohr, the additional computational cost is -8%.

To conclude this study, we consider the electronic density response of a graphene sheet
subject to a perturbation field. Figure 3-15 reports the dependence of the linear-response co-
efficient X(gll) = On(gll)/Ov(gll) with respect to the interplane distance L_ for a longitudinal
sinusoidal perturbation of wavevector gll = 1 bohr-1. The wavelength of the perturbation
field being large (All = 157 bohr), the uncorrected response coefficient does not convergence
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Figure 3-15: Longitudinal
density response coefficient -0.002
X(gI1) = an(gjl)/Ov(gll) as a
function of transverse cell size 0.004

for a graphene sheet without
correction, and corrected using the -_nnn
density-countercharge scheme with 20
full Fourier decomposition (DCC).
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cell size LL (bohr)

until reaching cell sizes on the order of hundreds of bohrs. Contrary to uncorrected calcula-

tions, the DCC-corrected linear response shows considerable convergence improvement with a

negligible increase in computation cost. For comparison, at an interplane distance of LI = 50

bohr, the relative error in the uncorrected linear-response coefficient X(g1l) is on the order of

25%, while it is lower than 1% using the DCC correction.

3.5 Conclusion

We have studied the analytical properties of the corrective potential, defined as the difference

between the electrostatic potential and its periodic counterpart, unifying the Makov-Payne

(PCC) and LMCC (GCC) schemes in the same class of periodic-image corrections and suggest-

ing possible improvements for both methods. Based on these properties, we have shown that

the periodic-image errors can be eliminated at a moderate computational cost of O(M5 /3 ),
where M is the number of points of the mesh used in the calculation the corrective poten-
tial, which is generally about two orders of magnitude smaller than the number of points
of the charge-density grid. The resulting density-countercharge (DCC) scheme owes its im-
proved efficiency to the determination of the exact boundary conditions characterizing the
electrostatic potential. In several cases of interest, we have shown that the DCC algorithm
represents a beneficial compromise between cost and accuracy. The validity of the linear- and
planar-average approximations routinely employed in the study of partially periodic systems
has also been discussed. An efficient scheme going beyond these conventional approximations
for inhomogeneous systems has been proposed and validated.

Relevant applications for the DCC algorithm include the study of molecular adsorption
at solid-vacuum interfaces in the constant-charge regime, the determination of structural
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parameters, the correction of vibrational spectra, the inexpensive calculation of work functions,

and the determination of linear-response properties with a reduced computational effort.
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CHAPTER 4

Electrified Metal Surfaces in Ionic Media

4.1 Introduction

T HE ELECTRICAL RESPONSE OF ELECTROCHEMICAL CONVERTORS, such as fuel cells,
batteries, or electrochemical capacitors, is to a large extent governed by polarization and

charge-separation phenomena taking place at the interfaces separating the electrodes from
the electrolyte termed electrical double layers [75]. Therefore, predicting the electrical char-
acteristic of an electrochemical system primarily involves elucidating the voltage dependence
of the charge distribution inside the double-layer interface [76].

Despite recent advances in the description of electrochemical interfaces from first principles

[51,74,77,78], determining the potential dependence of the interfacial charge still represents a

challenging problem characterized by length scales that are orders of magnitude greater than

the typical sizes accessible to conventional density-functional theory simulations. As a matter
of comparison, the polarized charge distribution across the electrode-electrolyte interface can
extend as far as thousands of nanometers in dilute electrolyte solutions [79], while the size
of typical density-functional theory calculation domains do not exceed tens of nanometers.
This inherent restriction precludes a direct first-principles description of important phenomena,
such as the dependence of the electrode catalytic activity as a function of the applied electrical
potential [77] or the potential dependence of adsorbate vibrational properties-the vibrational
Stark effect--on electrode surfaces [80].

In order to surmount these important limitations, we propose a modified Poisson-Boltzmann
model that builds on the solvation scheme introduced by Fattebert and Gygi [58], and extends
the approach recently proposed by Otani and Sugino [74]. The main interest of this model is
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its ability to predict the electrical response of an electrochemical interface embedded in an ef-

fectively semi-infinite ionic medium, provided that adequate boundary conditions are imposed

at the frontier of the simulation cell. Another notable advantage of this approach lies in the

fact that it directly extends standard diffuse-layer models [75,79] by allowing a first-principles

description of the metal region, thereby offering a direct comparison with well-established

theories.

We first introduce the conventional theoretical framework for studying metal-solution in-

terfaces. Second, we provide a comparative overview of recently proposed first-principles

models for studying electrified surfaces. Third, we describe the solvation algorithm, showing

that the solvent reaction field can be calculated independently at low computational cost. In

the fourth section, we present the diffuse-layer method and draw attention to the particular

importance of boundary conditions in calculating the differential capacitance of electrochem-

ical interfaces.

4.2 Theory of Electrochemical Interfaces

4.2.1 Electrical Potential of Metal Electrodes

The electrode potential is a measure of the energy required to displace an electron from the

bulk of the metal electrode to the bulk of the ionic solvent. Explicitly, we can define the

potential of an electrode E as [75]:

S = W - E C = Vs - VM - Ec, (4.1)

where W = Vs - VM denotes the electrostatic work done in moving an electron from the

metal to the solvent, and Ec stands for the chemical energy of an electron in the metal. The

chemical energy Ec equals the sum of all the non-electrostatic contributions to the energy of an

electron in the metal [75]. In the context of density-functional theory, these contributions can

be directly identified as the kinetic and exchange-correlation energies of the highest occupied

metal electronic states. As a consequence, the chemical energy corresponds to the difference

between the Fermi energy EF and the electrostatic potential of the electron in the metal:

EC = EF - VM. (4.2)
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(a) Explicit solvent model

III

(b) Implicit solvent model

VS
1F

Figure 4-1: Determination of the absolute electrode potential ' using (a) an explicit solvent
model, and (b) an implicit solvent models. Within the explicit model, the potential S is
calculated from the dynamical averages of the solvent electrostatic energy (Vs) and of the
metal Fermi energy (EF).

Substituting Eq. 4.2 into Eq. 4.1, we can express the electrode potential as the difference

between the electrostatic energy of an electron in the bulk of the solvent and the Fermi energy

of the metal, as expected intuitively:

8 = Vs - CF. (4.3)

While the preceding expression defines the absolute potential of an electrode, experimental

measurements of the electrode potential are generally referenced to the potential of a noble-
metal electrode under electrochemical equilibrium with a solvent in standard conditions of
temperature, partial pressure, and ionic activity. The referenced electrode potential S' is
related to the absolute electrode potential S through:

E' = E - Eo.  (4.4)

One of the most widely used reference electrode is the standard hydrogen electrode (SHE),
which typically consists of a platinum surface in contact with an aqueous solution containing
H+ . The accurate determination of the absolute SHE potential is still the subject of active
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research. Current estimations of the absolute SHE potential £o(H 2/H+) lie in a relatively

large energy range [75]:

4.44 eV < Eo(H 2/H+) < 4.78 eV. (4.5)

It should be noted that evaluating the electrode potential from first-principles simulations

requires determining the value of the effective electrostatic energy of an electron in the solvent

Vs. The definition of Vs in the context of explicit solvent models is not straightforward [78].

In contrast, implicit solvent models allow a direct determination of Vs as the asymptotic value

of the electrostatic potential in the bulk of the ionic continuum (Figure 4-1).

It should be emphasized that Eq. 4.3 is similar to the definition of the work function V

for surfaces in vacuum:

4 = V1/0 - EF, (4.6)

where Vo is the vacuum electrostatic energy measured at a large distance from the surface.

Note that the electrode work function is only determined for neutral interface as a result of

the linear divergence of the electrostatic potential outside charged surfaces. In contrast, the

electrostatic potential of a charged electrode in contact with an ionic solution does not diverge

due to ionic screening inside the electrolyte. Hence, even in the case of charged interfaces,

the electrode potential £ is defined.

From Eq. 4.3 and Eq. 4.6, the potential of a neutral electrode-the potential of zero

charge pe,,,-is related to the electrode work function through:

SpzC = 4 - Xs. (4.7)

where Xs = Vs-Vo is commonly referred to as the dipole potential (or surface potential) of the

solvent. The energy Xs corresponds to the supplementary electrostatic work for taking a metal

electron across the polarized solvent layer. Experimental correlations between the potential of

zero charge and the electrode potential for various single-crystal electrodes indicate that the

solvent dipole potential Xs is moderately affected by surface orientation but depends mainly

on the electronic nature of electrode material (i.e., on whether the electrode is made of a s-,

p-, or d-metal) [3,79].

4.2.2 Capacitance of Metal Electrodes

The capacitance of an electrode-electrolyte interface relates the local state of charge of the

electrode surface to the applied external potential. The specific differential capacitance of a
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(a) Helmholtz-Perrin

metal (E = co)

(b) Gouy-Chapman

(E = cQ)

Vs=0

Figure 4-2: Charge-density and electrostatic-potential profiles for the Helmholtz-Perrin, Gouy-
Chapman, and Stern double-layer models.

double-layer interface C is defined as:

dSC--
dE' (4.8)

where a is the surface charge, and £ is the electrode potential.
Experimental measurements of electrode capacitances indicate that the electrical response

of electrode-electrolyte interfaces is strongly nonlinear. In particular, at low ionic concentra-
tions, the differential capacitance typically shows a sharp minimum at the potential of zero
charge. This steep decrease can be explained by considering the electrical response of the
ionic solvent. Three standard theories for describing the ionic contribution to the electrode
capacitance-namely, the Helmholtz-Perrin, the Gouy-Chapman, and the Gouy-Stern double-
layer theories-are presented in next the section.

4.2.3 Standard Double-layer Models

In the conventional double-layer models described below, the metal electrode is represented
by a polarizable continuum of infinite dielectric constant cM = +oo. Consequently, the
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Cd T = 300 K T = 373 K

(zd = 1) LD (A) Cd,pzc (F/m 2 ) LD (A) d,pzc (F/m 2)
0.1 M 9 1.43 11 1.28

0.01 M 30 0.45 34 0.41
0.001 M 96 0.14 107 0.13
0.0001 M 305 0.04 340 0.04
0.00001 M 964 0.01 1074 0.01

Table 4.1: Debye length LD and difFuse-layer capacitance at the potential of zero charge
Cad,pz of the Gouy-Chapman and Stern models as a function of the ionic concentration cd at
300 K and 373 K.

electrostatic potential is equal to VM everywhere inside the metal. The chemical energy

contribution cc is neglected. The ionic solution is modeled by a countercharge distribution

immersed in a uniform solvent medium of dielectric constant es.

The Helmholtz-Perrin model is presented in Figure 4-2a. It consists of representing the

ionic countercharges by a thin charged layer--the outer Helmholtz plane--located at a dis-

tance LH from the surface. The intermediate solvent region that separates the metal layer

from the outer Helmholtz plane is referred to as the Helmholtz layer. Taking the origin of the

transverse z-axis to be at the position of the metal-solvent interface and selecting the energy

reference to be the electrostatic energy in the bulk of the solvent (Vs = 0), the potential

profile v(z) across the double layer can be written as:

v(z) = -VM = 47rLH/cs if z < 0
v(z) = 4ro(LH - z)/EC if 0 < z < LH (4.9)

v(Z) = 0 if LH < Z.

Thus, in the absence of chemical-energy contribution, the absolute electrode potential can be

expressed in terms of the surface charge as:

S= 4 LH. (4.10)

As a result, the differential capacitance of the Helmholtz-Perrin model equals:

CH = (4.11)
47rLH

The main limitation of the Helmholtz-Perrin model is that it predicts a linear dependence of the
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surface charge as a function of the applied voltage, contradicting experimental observations.

In order to correct this crucial discrepancy, the Gouy-Chapman model (Figure 4-2b) con-

sists of representing the countercharge profile as a diffuse Boltzmann distribution of ions in

thermal equilibrium with its electrostatic surrounding. Explicitly, the diffuse ionic distribution

Pd can be expressed in terms of the electrostatic potential v as:

Pd = ZdCd (e - z dV/kBT - ezdv/kBT) , (4.12)

where Cd is the concentration of the ionic solution, Zd is the ionic valence (the anion and
cation valences are supposed to be equal), kB is the Boltzmann constant, and T is the solvent

temperature. As a consequence, the potential in the ionic solution satisfies the electrostatic
equation:

d2v 87r ZdV(Z)
(z) = -ZdCd sinh . (4.13)dz2s kBT

Integrating Eq. 4.13 with vanishing-electric-field boundary conditions (dv/dz --* 0 as z -

+00) and using standard trigonometric relations, we obtain:

dv 321rcdkBT ) ih Zdv(z)
dzsinh (4.14)

(Note that the potential and its derivative are of opposite sign, in agreement with the fact

that the ionic solution shields the electric field.) By determining the magnitude of the electric

field at the electrode-electrolyte interface (z = 0) in function of the surface charge (Gauss'

law), we can rewrite Eq. 4.14 as:

1

2EscdkBT 2 .zVga = - l sinh . (4.15)( ) 2kBT

As a result, the differential capacitance of the diffuse-layer model can be expressed as:

CD = CD,pz cosh(zdC/2kBT)

(ESCDpzccz 
(4.16)

where CD,pzc is the value of the diffuse layer capacitance at zero charge. Alternatively, the
capacitance at the point of zero charge can be written as CD,pzc = Es/4rLD, where the
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Debye length LD is the characteristic screening length in the double layer:

1

LD -= . (4.17)

It should be noted that the Debye length also appears in the low-potential--or long-range--

linearization of Eq. 4.14:

dv v(z)-z (z) (z when 8 -- 0 (or z -- +oo). (4.18)
dz LD

In this regime, the electrostatic potential vanishes exponentially across the diffuse ionic layer

with a characteristic decay length equal to LD.

Typical values of the Debye length and of the double-layer capacitance at the potential

of zero charge obtained from the Gouy-Chapman model for a monovalent ionic solution are

reported in Table 4.1. At ambient temperature, the Debye length equals 9 A, 96 A, and 964

A for solution concentrations of 0.1 M, 0.001 M, and 10-' M, respectively: diluting the ionic

concentration by a factor of one hundred decreases the differential capacitance by one order

of magnitude. We emphasize, once more, that the large values of the screening length LD
preclude a direct treatment of the ionic solvent in density-functional theory simulations. The

computational method presented in Sec.4.5 overcomes this essential limitation.

The Gouy-Chapman model predicts a nonlinear dependence of the surface charge as a

function of the electrode potential. The double-layer capacitance reaches a characteristic

minimum at zero charge, thus reproducing experimental trends. Nevertheless, the Gouy-

Chapman differential capacitance is largely overestimated when the electrode potential devi-

ates from the potential of zero charge. The Stern double-layer model-also referred to as the

modified Gouy-Chapman theory--(Figure 4-2c) improves on the Gouy-Chapman description

by inserting an Helmholtz layer of thickness LH between the metal and the diffuse layer,

thereby excluding ions from the direct proximity of the metal surface. Hence, the Stern dou-

ble layer can be identified as consisting of an Helmholtz solvent layer placed in series with a

Gouy-Chapman diffuse layer. From this analogy, the Stern capacitance CH,D can be expressed

as:
1 1 1

CD -I + -. (4.19)
CH,D H capacitance as a function of the electrode potentialD

As a result, the dependence of the Stern capacitance as a function of the electrode potential
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can be written as:
Es LD

CH,D = - , (LH + cosh(zd/2kBT) (4.20)

Note that the capacitance CH,D reaches a minimum at the potential of zero charge, similarly

to the Gouy-Chapman model. For large deviations from the potential of zero charge, the
capacitance of the Stern double layer equals that of the Helmholtz layer CH, reflecting the

rapid decay of the electric field in the ionic layer at high electrode voltages.

As a final note, it is worth mentioning that contrary to the idealized picture proposed

by Stern, the capacitance contribution from the metal and from the Helmholtz layer is not
negligible. In order to take into account the electrode-potential dependence of CM,H, a

microscopic description of the metal surface covered by solvent overlayers in the presence of
adsorbed and solvated ions is necessary. Therefore, the first-principles description of solvated
metal surfaces represents a fundamental complement to the theoretical understanding of

electrode-electrolyte interfaces.

4.3 Review of First-principles Studies

Recently, several schemes have been proposed to model electrochemical interfaces subject to
an applied voltage. Studying oxygen reduction on transition-metal surfaces, N0rskov et al.
proposed to model the influence of the electrode potential by shifting the energies of all the

electronic states of metal character by a constant amount AS = £ - Epze [77]. As pointed

out by Norskov et al., this approach neglects the interaction of the surface electric field with

the molecular adsorbates. This interaction can significant affect the value of the adsorption

energy, especially when the induced surface polarization is strong [77]. In the same study,

Norskov et al. underscore that developing a detailed first-principles model for electrical double

layers constitutes one the principal challenges for achieving a realistic description of molecular

adsorption on electrified surfaces.

The double-reference model proposed by Taylor, Wasileski, Filhol, and Neurock consists
of calculating the electrode potential of a charged metal surface in contact with water. The
electrode potential is obtained by reference to the potential of a neutral surface, which is
itself determined with respect to a precalculated vacuum energy [78]. In this model, the
excess charge of the system is compensated by a uniform jellium background representing
the ionic countercharge distribution. The jellium density being inversely proportional to the
volume of the supercell, the capacitance obtained from this scheme depends on the size of
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the simulation cell [78]. Additionally, as already mentioned, the determination of the average

electrostatic potential in the solvent is problematic, as it involves considering number of

dynamical configurations [78].

The scheme of Lozovoi and Alavi consists of determining the potential of a periodically

repeated charged slab by introducing a countercharge layer in the vacuum region, thus defining

the value of the reference potential and eliminating periodic-image interactions [51]. Similarly

to the Helmholtz-Perrin thin-layer theory, the Lozovoi-Alavi model predicts a linear relation

between the electrode potential and the surface charge.

The model introduced by Otani and Sugino consists of studying interfaces in the presence

of a counterion density immersed in a solvent continuum [74]. The counterion density is

obtained by solving a nonlinear electrostatic problem similar to that defined by Eq. 4.13.

In their study, Otani and Sugino emphasize the influence of boundary conditions to describe

solvated surfaces. (The significance of boundary conditions for metal-vacuum interfaces is

also highlighted in a recent study by Lozovoi and Alavi [81].) The necessity of imposing

adequate electrochemical boundary conditions in order to correctly predict the charge-voltage

response of electrical double layers is discussed further in Section 4.5.
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4.4 Solvation Model

4.4.1 Electrostatics in Dielectric Media

The electrostatic potential v induced by a charge distribution p immersed in a polarizable

medium satisfies the following differential equation:

V 2v = -47r(p + pp), (4.21)

where pp = -V.P is the charge distribution corresponding to the polarization density P [58].
In the linear-response regime, the induced polarization is related to the electric field E = -Vv
through:

P = XE (4.22)

where X denotes the susceptibility of the medium. Substituting Eq. 4.22 into Eq. 4.21, we
obtain the Poisson equation:

V - Vv = -47rp, (4.23)

where c = 1 + 47rX is the dielectric constant of the polarizable continuum.

Correspondingly, the electrostatic energy can be expressed as:

E 1 v(r)p(r)dr2 j

S e/(r)jVv(r) 2dr. (4.24)

In the continuum solvent model introduced by Fattebert and Gygi, the dielectric constant
E is taken to be locally dependent on the charge density p: the dielectric constant is equal to
cs in regions of low charge density, while it approaches unity at higher density. As proposed
by Fattebert and Gygi, the density dependence of the dielectric constant can be chosen to be
a smooth analytical function of the form:

ES -1 1- (p/Po) 2

E(p) = 1 2 + + (p/p)2 (4.25)

where po is the charge-density cutoff defining the transition between the solvent and the
metal, and / is the exponent characterizing the smoothness of the transition. The analytical
behavior of the dielectric constant is illustrated in Figure 4-3.
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Figure 4-4: Electrostatic potential 0.75
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It is important to note that in the context of density-functional theory calculations, the

charge-density dependence of the dielectric constant contributes an additional term to the

effective electronic Hamiltonian. This additional contribution vs can be expressed as [58]:

vs(r) = 1 v(r)2 (r). (4.26)

4.4.2 Definition and Analytical Characterization of the Corrective

Solvation Potential

The Poisson equation in the presence of a surrounding polarizable medium can be solved

efficiently using multigrid techniques [56-61]. In Figure 4-4, we compare the calculated po-

tential to that of a periodically repeated Pt(100) slab in vacuum, obtained using conventional

FFT techniques. Following the analysis presented in Chap. 3, we define the corrective po-

tential vu " as the difference between the potential of the solvated systems and its periodic

counterpart:
vcorr = v - v' (4.27)

The potential vcorr is seen to be constant inside the slab and in the bulk of the solvent. The

two regions are connected by a smooth transition corresponding to the contribution from

the solvent surface dipole (cf. Sec. 4.2). This observation suggests that the electrostatic

potential v of solvated systems can be calculated by taking advantage of the periodic potential

v' straightforwardly obtained from a fast Fourier transform. An efficient computational scheme

exploiting this idea is presented in the next section.
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Figure 4-5: Corrective polarization charge density p, and corrective solvation potential vc"'r
for a solvated Pt(100) surface varying the value of the exponent f defining the smoothness
of the dielectric transition. The value of the charge density cutoff Po is set to 0.0005 bohr -3 .

4.4.3 Computation of the Corrective Solvation Potential

As discussed in Chapter 3, the periodic potential obtained from a Fourier transform satisfies
the following differential equation:

V 2v' = -47r(p - (p)), (4.28)

where (p) denotes the average of the total charge density inside the calculation cell, reflecting
the contribution from the compensating jellium background. Substituting Eq. 4.28 into Eq.
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4.23 and using the definition of the corrective potential, it can be shown that v"rr verifies

the following differential equation:

V -.Vv"' = -4((p) + p',) (4.29)
p = V -XVv',

where p' is the polarization charge density induced by the periodic potential. (Note that the

Laplacian operator includes the dielectric constant c, since the polarization charge density p,
is calculated from the periodic potential v'.) Typical profiles of the polarization charge density

as a function of the smoothness parameter 3 are plotted in Figure 4-5. It is worth noting that

decreasing the value of the exponent 0 tends to raise the dipole potential Xs = -Espz. Thus,
for a given value of the charge-density cutoff Po, the solvation parameter / can be direcly

connected to a relevant electrochemical observable. Additionally, it should be mentioned that

the corrective potential vc"Or can be separated into two contributions: the first contribution

corresponds to the corrective potential induced by the jellium background for periodic systems

in vacuum; the second contribution is that from the polarization charge density of the solvent,
commonly referred to as the solvent reaction field.

From the differential equation characterizing the electrostatic correction (Eq. 4.29), one

can calculate the corrective solvation potential vr"' using an algorithm similar to that em-

ployed in the density-countercharge (DCC) method, the essential idea of which is to solve the

corrective-potential differential equation on a coarse mesh with adequate boundary conditions.

An application of this computational scheme is presented below.

4.4.4 Application

The convergence of the total energy of a solvated water molecule as a function of the number

of grid points using the direct approach (Eq. 4.23) and the corrective-potential method

(Eq. 4.29) is reported in Figure 4-6. The energy obtained from the direct approach is

seen to converge slowly with respect to the resolution of the calculation mesh: for a grid of

M = 89 x 89 x 89 points (equivalent to a plane-wave cutoff of Et = 350 Ry), the error

in the total energy is larger than 0.2 Ry. This relatively poor precision contrasts with the

rapid convergence obtained by calculating the corrective potential v"co from Eq. 4.29. For

comparison, at M = 45 x 45 x 45 points (Ec•t = 100 Ry), the total energy is converged

within 5.10- 3 Ry. This performance comparison clearly illustrates the interest of the corrective

approach to determine the electrostatic potential of solvated systems.
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Figure 4-6: Total energy as a function of the resolution of the Poisson-solver grid for a
solvated water molecule using (a) the corrective-potential method (Eq. 4.29), and (b) the
direct resolution method (Eq. 4.23). The differential operator is approximated via a first-order
finite-element discretization.

4.5 Modified Poisson-Boltzmann Diffuse-ionic-layer Model

4.5.1 Electrostatics in Ionic Media

We now present the modified Poisson-Boltzmann scheme for calculating the profile of the

electrostatic potential across a metal-solution interface in the presence of a diffuse ionic dis-

tribution. The electrostatic potential is obtained by solving the Poisson-Boltzmann problem:

V -cVv = -47r(p + Pd), (4.30)

where Pd stands for the ionic countercharge density. In the present model, the density-

dependent dielectric constant c is determined from Eq. 4.25, and the countercharge distribu-
tion is chosen to be:

Szd•d •-•za/kT _ zg/k)if P < P1
Pd = ZdCd (eZdv/kBT ezdv/kBT if P P (4.31)0 if p > p,
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where the parameter pi sets the the boundary of the countercharge region. The energy

reference is chosen to be the energy in the bulk of the solvent Vs.

Parenthetically, it is important to note that in the long-range or high-dilution limit Eq.

4.30 can be recast as:
V c- Vv + ESK 2 v = -4xip, (4.32)

where the density-dependent wavevector i can be expressed in terms of the Debye length LD:

if p < p,
K= pLD (4.33)

0 if p > pl

We underscore that Eq. 4.32 yields a constant interfacial capacitance as a function of the

applied electrode potential. Hence, contrary to the Debye-Hueckel theory for describing ionic

species in solution [82], the linearized form of the Poisson-Boltzmann equation is generally

inadequate for predicting the electrical response of double-layer interfaces.

4.5.2 Diffuse-ionic-layer Algorithm

As proposed by Otani and Sugino [74], the nonlinear problem defined by Eqs. 4.30 and

4.31 can be solved via a self-consistent procedure. Our scheme consists of determining the

corrective potential v"'Cr as the solution of the following self-consistent equation:

V. - Vv" = -47r((p) + p', + Pd) (4.34)

The main advantage of this approach is that it allows the use of optimized linear multigrid

solvers [56-61] despite the nonlinear nature of the electrostatic equation. Note that in most

cases, no more than five self-consistent iterations are necessary to converge the corrective

solvation potential vc"r within 10- 10 Ry at each grid point.

We employ this scheme to calculate the electrostatic profile of a Pt(100) slab of surface

charge a _ 0.1 C-m- 2 immersed in a monovalent ionic solution of concentration cd = 0.0001

M at ambient temperature. Homogeneous Dirichlet boundary conditions are imposed to the

electrostatic potential v. The profile of the electrode potential as a function of cell size is

reported in Figure 4-8a. We observe that the convergence of the electrostatic profile is very

slow due to the poor screening of the electric field in the dilute electrolyte.

In order to improve the convergence of the electrostatic profile with respect to the size
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Figure 4-7: Determination of the electrochemical boundary conditions for solvated interfaces.
Graph a illustrates the calculation of the potential shift AVo at the boundaries z = ±L/2 by
equating the electrostatic-potential derivatives that are obtained from Gauss' law and from
the electrochemical boundary condition. Changes in the electrostatic-potential profile as a
function of the potential shift are depicted in graph b.

of the calculation domain, adequate boundary conditions must be applied to the electrostatic
potential. Boundary conditions specific to solvated electrodes can be derived from the stan-
dard double-layer models. Indeed, at a long distance from the interface, the electrostatic
potential is related to the electric field through Eq. 4.14. In what follows, the boundary
conditions defined by this asymptotic relation will be referred to as electrochemical boundary
conditions.

In order to impose electrochemical boundary conditions at the boundary of the supercell,
we employ the method that is illustrated in Figure 4-7. The procedure consists of applying a
constant energy shift AVo to the electrostatic potential v in order to simultaneously satisfy
Gauss' law and electrochemical conditions at the cell boundaries. It is important to note
that in applying Gauss' law, the total charge in the unit cell must be calculated taking into
account charge redistribution in the ionic layer. Once the adequate energy shift AVo is found,
the potential is relaxed with fixed boundary conditions. The procedure is repeated until
convergence of the electrostatic profile.
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Figure 4-8: Electrostatic-potential profile for a Pt(100) surface immersed in a dilute ionic
solvent imposing (a) homogeneous Dirichlet boundary conditions (v(+L/2) = 0), and (b)
electrochemical boundary conditions (Eq. 4.14).

Figure 4-9: Electrode potential as
a function of transverse cell size
for a Pt(100) surface immersed
in a dilute ionic solvent imposing
(a) homogeneous Dirichlet bound-
ary conditions (v(+L/2) = 0), and
(b) electrochemical boundary con-
ditions (Eq. 4.14).
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Exploiting the corrective-potential scheme presented in Sec. 4.4 and the potential-shift

method outlined above, we introduce a diffuse-ionic-layer (DIL) algorithm for solving the mod-

ified Poisson-Boltzmann self-consistent problem subject to electrochemical boundary condi-

tions. The DIL algorithm is described below:

DIl Algnrithm

\,.LV. .IIIVJULt LIIt L'I IcLrctU ec-IUoLdLI JULtIILIdI U - U T v

This computational procedure can be efficiently incorporated in most electronic-structure

self-consistent-field (SCF) schemes with a moderate increase in computational cost: in the

calculations presented above, the additional computational cost is of r8%. One key advantage
of the algorithm is that, similarly to the DCC scheme, it offers the option of updating the
corrective potential at fixed interval between SCF iterations, which results in a significant
gain in efficiency. The improved convergence of the electrostatic profile v as a function of
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1. Start with an initial charge distribution p and an initial potential v on the fine

grid. Calculate the periodic potential v' in vacuum (FFT techniques), the density-

dependent dielectric constant c, and the polarization charge density p,.

2. Interpolate p, v, v', E, and pP on a coarse grid (tricubic interpolation [63]) to

obtain f, 0, V', E, and fP.

3. Determine the potential shift AVo to satisfy Gauss' law and the electrochemical

boundary condition (dichotomy procedure).

4. Calculate the diffuse ionic density id on the coarse grid.

5. Set the boundary condition for the corrective potential (jcorr = 0 + AVo - V').

6. Solve V - EVcV" = -47r((p) + p, + Pd) (multigrid techniques) to obtain the

corrective potential 5corr

7. Update the electrostatic potential i = V' + 0"r

8. Iterate from Step 3 until convergence.

9. Transfer the electrostatic correction Vcorr to the fine grid (tricubic interpolation)
to obtain v" '.

in C . . h ^ d,.,. , ln,. ii; , . • .; .l r. 1 ,,orr
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cell size obtained by imposing electrochemical boundary conditions is illustrated in Figure

4-8b. A comparison of the convergence of the electrode potential is reported in Figure 4-9.

We observe that while the error in S is on the order of 0.5 eV using homogeneous Dirichlet

boundary conditions, the potential rapidly converges within a few meV using electrochemical

boundary conditions.

To close this section, we draw attention to the electrostatic energy contribution Ed from

the ionic solvent outside the calculation cell. This energy contribution can be written as:

Ed ~- 1 pd(z)v(z)dz. (4.35)
2 IL 1+

Using the long-range linearization of the Gouy-Chapman electrostatic problem (Eq. 4.18) at

sufficiently large unit cells, the electrostatic energy Ed can be approximated as:

Ed d CdSLDkBT (1 - cosh zdv(L/2) (4.36)

where S is the area of the unit cell in the xy-plane.

4.5.3 Applications

The charge-voltage and capacitance-voltage characteristics of a Pt(100) interface as a func-

tion of the ionic concentration are depicted in Figures 4-10 and 4-11. The metal electrode is

modeled using an eleven-layer-thick slab. The size of supercell in the transverse direction is of

80 bohr. We employ ultrasoft pseudopotentials with plane-wave energy cutoffs of 40 and 400

Ry. The Brillouin zone is sampled using a 5 x 5 x 1 mesh with cold-smearing occupations

(the smearing temperature is 0.05 Ry). The parameters of the DIL model are selected to be

Fs = 78, kBT = 0.0025 Ry, Po = 0.0005 bohr-3a, pi = 0.0001 bohr - 3 , and 3 = 1.25.

Using homogeneous Dirichlet boundary conditions, we observe that the electrical response

of the platinum electrode remains linear for all concentrations in the range 0.0001 to 0.1 M

(Figure 4-10a). This behavior contrasts with the significant decrease in the charge-voltage

slope occuring at the potential of zero charge for electrodes subject to electrochemical bound-

ary conditions (Figure 4-10b). The significance of electrochemical boundary conditons is also

highlighted in Figure 4-11. Indeed, the contribution from the ionic layer-which causes a

marked drop in electrode capacitance at low concentration-is almost completely suppressed

when homogeneous Dirichlet boundary conditions are imposed. These results confirm the
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MODIFIED POISSON-BOLTZMANN DIFFUSE-IONIC-LAYER MODEL

(a) Dirichlet BC

-1 -0.5 0 0.5 1

electrode potential E - pz,, (V)

(b) Electrochemical BC

-1 -0.5 0

electrode potential £

0.5

- Spze (V)

Figure 4-10: Surface charge as a function of the electrode potential for a Pt(100) surface
immersed in an ionic solvent imposing (a) homogeneous Dirichlet boundary conditions, and
(b) electrochemical boundary conditions.
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Figure 4-11: Differential
capacitance as a function
of the electrode potential
for a Pt(100) surface im-
mersed in an ionic sol-
vent imposing (a) homo-
geneous Dirichlet bound-
ary conditions, and (b)
electrochemical boundary
conditions.
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importance of electrochemical boundary conditions to study electrical double layers in dilute

ionic solutions.

4.6 Conclusion

This study has presented a modified Poisson-Boltzmann diffuse-ionic-layer (DIL) model for

studying electrified interfaces under electrochemical conditions, particularly focusing on im-

portant length-scale limitations for the description of the ionic electrolyte. We have shown

that the electrostatic contribution from the ionic solvent can be calculated independently

at low computational cost using multigrid techniques and taking advantage of the periodic

solution of the electrostatic problem. We have also emphasized the necessity of imposing

adequate electrochemical boundary conditions to properly describe the predominant electri-

cal response of ionic layer at the point of zero charge. The DIL algorithm improves on

recently proposed methods by allowing a direct and inexpensive first-principles representation

of electrified-metal-solution interphases beyond high-concentration conditions..
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CHAPTER 5

Vibrational Recognition of Adsorption Sites

for Carbon Monoxide on Platinum-Ruthenium

Surfaces

5.1 Introduction

UEL CELLS ARE ENERGY CONVERSION SYSTEMS of potentially high environmental ben-

efit [6] that provide electricity and heat by catalytic conversion of a fuel, such as hydrogen

or methanol. Despite their advantages, several technological obstacles have hindered the de-

ployment of fuel-cell systems. For low-temperature fuel cells that use platinum as electrode

material, one major limitation is CO poisoning, whereby CO occupies active sites on the plat-

inum catalyst and prevents fuel oxidation [83]. Typically, in polymer electrolyte membrane

fuel cells (PEMFCs), CO concentrations must be brought below 10-50 ppm to maintain an

acceptable catalytic performance. For comparison, CO concentrations are generally on the

order of thousands of ppm in reformed hydrogen fuels [84, 85]. CO poisoning is even more

problematic for direct methanol fuel cells (DMFCs) since CO is always present in critical

amounts as an intermediate in methanol oxidation [86].

Ruthenium islands on platinum catalysts have been shown to considerably attenuate CO

poisoning [87-89], although the microscopic details of this phenomenon are not completely
understood. Two main mechanisms have been proposed to explain this improved tolerance
to CO. Within the bifunctional mechanism model, adsorbed OH species generated by wa-
ter dissociation at the platinum/ruthenium edge promote the oxidation of CO (the promo-
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tion effect) [86, 88-92]. According to an alternative view, ruthenium modifies the electronic

structure of neighboring platinum atoms, reducing their affinity for CO (the ligand/intrinsic

effect) [86, 92]. To investigate further these mechanisms of central interest to fuel-cell tech-

nology, it is necessary to elucidate the nature of the chemical interaction between CO and

bimetallic surfaces.

In most cases, density-functional theory provides a reliable description of molecular ad-

sorption and dissociation on transition metals [93-98]. However, CO adsorption on transition-

metal surfaces is unexpectedly problematic. Indeed, at low CO coverage, local and generalized-

gradient density-functional calculations predict CO adsorption on Pt(111) to take place at

the fcc site, contradicting low-temperature experiments, which unambiguously indicate atop

adsorption. This well-known qualitative discrepancy (the "CO/Pt(111) puzzle") [99] pre-

cludes an accurate description of important phenomena, such as the surface diffusion of CO

adsorbates and the thermal population of CO adsorption sites. Similar qualitative errors have

been reported for CO adsorbed on rhodium and copper surfaces [99-101], and a wide body

of literature exists on the subject [102-113].

In this work, we highlight and rationalize the accuracy of density-functional calculations

in predicting the stretching frequencies of CO adsorbed on platinum and platinum-ruthenium

surfaces, notwithstanding the failure in predicting the most stable adsorption site. We first

present density-functional theory and density-functional perturbation theory results for the

energetic, structural and vibrational properties of adsorbed CO. Second, we introduce a novel

orbital-resolved force analysis to clarify the electronic origins of the C-O frequency shifts as a

function of the adsorption site. Last, we rationalize the accuracy of the stretching-frequency

predictions by analyzing the influence of donation and backdonation using a GGA + molecular

U model recently introduced by Kresse, Gil, and Sautet [102].

5.2 Theoretical Basis

The (111) transition-metal surface is modeled using a periodically repeated slab composed of

four layers, each layer containing four atoms per supercell. A V3- x 2 adsorption structure

corresponding to a coverage of 1/4 of the monolayer (ML) is adopted for the CO over-

layer. Atomic cores are represented by ultrasoft pseudopotentials [21] (cf. Appendix C).

The exchange-correlation energy is calculated within the Perdew-Burke-Ernzerhof generalized-

gradient approximation (PBE-GGA) [16]. The size of the vacuum region separating the peri-

odic slabs is ; 13 A. We use a shifted 4 x 4 x 1 mesh with cold-smearing occupations [12]
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RESULTS CHAPTER 5

site atop bridge hcp fcc
Eads (eV) 1.61 1.71 1.72 1.74

(1.30)2
d(C-O) (A) 1.153 1.177 1.188 1.189

(1.15±0.05) 3  (1.15±0.05) 3

d(M-C) (A) 1.864 2.029 2.116 2.121
(1.85±0.1) 3  (2.08±0.07) 3

h(C) (A)' 2.017 1.543 1.380 1.373
8(CO) (deg)' 1.4 1.4 0.5 0.4
v(C-O) (cm- 1) 2050 1845 1752 1743

(2070) 4  (1880) 4  (1760) 4  (1760) 4

v(M-C) (cm- 1) 584 413 358 344
(470)5 (380) s

bending modes 392 393 329 328
(cm- 1) 386 346 315 300
other modes 0 to 230 0 to 231 0 to 196 0 to 186
(cm- 1)

'h(C) denotes the distance from C to the first
CO. 2Ref. [115]. 3Ref. [116]. 4Ref. [4]. 5Ref. [1

surface layer, and 8(CO) denotes the tilt angle of

Table 5.1: Adsorption energies, structural properties, and vibrational frequencies calculated
using density-functional theory and density-functional perturbation theory for CO adsorbed
on clean Pt(111) surfaces.

(smearing temperature of 0.4 eV) to sample the Brillouin zone. Energy cutoffs of 24 and

192 Ry are applied to the plane-wave expansions of the wavefunctions and charge density,

respectively. As discussed in Ref. [99], the system is not spin-polarized. Using the above slab
thickness and calculation parameters, we verify that the adsorption energies are converged
within less than 10 meV and the atomic forces within a few meV/A.

The bond length and stretching frequency of CO in the gas phase are calculated to be
1.140 A and 2140 cm-' (experimental values are 1.128 A and 2170 cm-'). The PBE-GGA
lattice parameter and bulk modulus of platinum are 3.993 A and 2.36 Mbar, in good agreement
with experimental values of 3.923 A and 2.30 Mbar [114]. All our calculations use fully relaxed
configurations.
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site atop hcp fcc atop hcp fcc
slab 1 ML Ru/ 1 ML Ru/ 1 ML Ru/ 2 ML Ru/ 2 ML Ru/ 2 ML Ru/

3MLPt 3MLPt 3MLPt 2 MLPt 2MLPt 2MLPt
Eads (eV) 2.24 2.27 2.15 1.96 2.05 1.88
d(C-O) (A) 1.161 1.196 1.192 1.161 1.201 1.190
d(M-C) (A) 1.892 2.132 2.104 1.922 2.122 2.111
h(C) (A)1 2.014 1.375 1.412 1.970 1.318 1.437
O(CO) (deg) 1  3.3 0.9 2.6 4.1 0.6 1.44
v(C-O) (cm-') 1979 1702 1724 1969 1666 1739

(1970)2 (1970)2
v(M-C) (cm- 1) 510 356 358 482 355 351
bending modes 412 258 221 396 315 251
(cm-') 409 247 215 389 301 231
other modes 0 to 208 0 to 205 0 to 201 0 to 265 0 to 254 0 to 226
(cm- 1)

lh(C) denotes the distance from
CO. 2Ref. [4].

C to the first surface layer, and 8(CO) denotes the tilt angle of

Table 5.2: Adsorption energies, structural properties, and vibrational frequencies calculated
using density-functional theory and density-functional perturbation theory for CO adsorbed
on ruthenium-covered Pt(111) surfaces.

5.3 Results

We report the results of our density-functional calculations in Tables 5.1 and 5.2. For platinum

surfaces, the calculated atop binding energy Eads(atop) = 1.61 eV is consistent with that

reported in Ref. [118] (1.55 eV in the same adsorption structure). As a matter of comparison,

the experimental heat of adsorption at 1/4 ML CO is 1.30 eV. The relative adsorption energy

Eads(atop) - Eads(fCC) is calculated to be 0.13 eV, in accordance with the gradient-corrected

relative adsorption energies (ranging from -0.10 to -0.25 eV) reported in Ref. [99]. As

expected, our density-functional calculations favor CO adsorption at the threefold fcc and hcp

adsorption sites for platinum and platinum-ruthenium surfaces, confirming the aforementioned

disagreement with experiments. (Note that bridge adsorption of CO on platinum-ruthenium

surfaces is predicted to be energetically unstable.) Despite this noteworthy failure, the bond

length d(C-O) is calculated to be 1.153 A at the atop site and 1.177 A at the bridge site

on platinum, in good agreement with experimental bond lengths (1.15+0.05 A at both the

atop and fcc sites). Similarly, the distance d(Pt-C) from the carbon to its nearest platinum

neighbor, calculated to be 1.864 A at the atop site and 2.029 A at the fcc site, is always
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within experimental error (experimental bond lengths are 1.85+0.1 A and 2.08±0.07 A at
the atop and fcc sites, respectively). Note that both bond lengths increase with coordination.

The full phonon spectra for CO adsorbed at the atop, bridge, hcp, and fcc sites on platinum
and platinum-ruthenium surfaces are calculated using density-functional perturbation theory
(DFPT) [19]. Within this approach, the full dynamical matrix of the system is computed
exactly by solving the self-consistent linear-response problem describing the electron response
to atomic perturbations of arbitrary wavelength. The DFPT spectra reported in Tables 5.1
and 5.2 exhibit some common and expected features. The highest vibrational frequency in the
range [1700 cm- 1, 2100 cm- 1] corresponds to the localized C-O stretching mode. The second
highest frequency v(M-C) in the range [300 cm- 1, 600 cm-'] is related to the stretching of
the metal-carbon bond. This mode is followed by two CO bending modes with frequencies

lying 20-200 cm-' below v(M-C). All the other modes involving displacements of the heavy
metal atoms are found in the frequency range [0 cm- 1, 300 cm-1].

We now focus on the dependence of the C-O stretching frequency as a function of
the adsorption site. Upon atop adsorption on platinum, the predicted v(C-O) is reduced
from 2140 cm- 1 to 2050 cm - 1, corresponding to a red shift Av(C-O) of -90 cm - 1. For
comparison, the experimental stretching frequency, as obtained by means of sum-frequency
generation (SFG) spectroscopy [4], decreases from 2170 cm- 1 to 2070 cm- 1, corresponding

to Av(C-O) = -100 cm- 1. The frequency shifts are even more marked at high-coordination

sites: v(C-O) is predicted to be 1845 cm- 1, 1752 cm- 1, and 1743 cm- 1 at the bridge,
hcp, and fcc sites, corresponding to red shifts of up to -397 cm- 1. These DFPT stretching

frequencies show remarkable agreement with their SFG counterparts: v(C-O) = 1830 cm- 1 at
the twofold bridge site, v(C-O) = 1760 cm' at the threefold hcp and fcc sites, corresponding

to a maximum red shift of -410 cm- 1. Accurate DFPT frequencies are also obtained for

CO adsorbed on platinum-ruthenium bimetallic surfaces. Indeed, the calculated stretching
frequencies 1979 cm- 1 (1 Ru ML) and 1969 cm- 1 (2 Ru ML) at the atop site compare very
closely to the SFG result of 1970 cm- .

In conclusion, all calculated CO stretching frequencies deviate by less than 2% from the
measured ones, irrespective of the adsorption site and nature of the metal surface. The
correct prediction of the frequency red shifts allows the direct recognition of CO adsorption
sites and confirms that CO preferentially occupies atop sites on platinum-ruthenium bimetallic
surfaces. This very close agreement with experiment is made more remarkable by the lack of
accuracy of the PBE-GGA adsorption energies. In the remainder of this work, we show how
this accuracy can be rationalized in terms of the hybridization of the CO molecular orbitals
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gas phase atop bridge hcp fcc
f27r /2 + f27r/2 0.00 0.25 0.37 0.41 0.41
f5a 1.00 0.92 0.92 0.92 0.92
f, /2 + fi, /2 1.00 1.00 0.99 0.99 0.99
f4a* 1.00 1.00 1.00 1.00 1.00
f3a 1.00 1.00 1.00 1.00 1.00
bond order 3.00 2.35 2.16 2.09 2.09

Table 5.3: Molecular occupations and bond order for CO in the gas phase and for CO adsorbed
on platinum.

with the metal bands.

5.4 Discussion

5.4.1 Electronic Origins of the Frequency Shifts

The hybridization of the metal d bands with the 27r* lowest unoccupied molecular orbitals

(LUMOs) and the 5a highest occupied molecular orbital (HOMO) plays a predominant role

in the adsorption energy of CO on transition metals. According to the Blyholder model [119],
these electronic interactions result in electron donation (i.e., partial depletion of the 5ar orbital)

and electron backdonation (i.e., partial filling of the 27r* orbital). It has been shown that the

trends of the adsorption energies of CO on transition-metal surfaces can be correlated to the

amounts of donation and backdonation (Hammer-Morikawa-Norskov model) [93]. Among

the suggested solutions to the "CO/Pt(111) puzzle"--e.g., nonequivalent GGA description

of different bond orders [103], incorrect singlet-triplet CO excitation energies [104], effect of

metal semicore polarization [105]-Kresse, Gil, and Sautet have proposed that the inaccuracy

of density-functional calculations in determining the most stable adsorption site is due to an

overestimation of the interaction between the 27r* orbitals and the metal bands, resulting

from an underestimation of the HOMO-LUMO gap [102]. As discussed in the next section,

this interpretation recovers the essential features of CO adsorption on transition metals: it

identifies the tendency of local and generalized-gradient DFT to delocalize and overhybridize

electronic states. Nevertheless, as shown below, the site-dependence of the C-O bond length

and vibrational frequency is not affected by the LUMO and HOMO hybridizations. In other

words, the hybridizations that subtly determine the relative CO adsorption energies do not
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(a) Atop DOS

g (eV-1) gx (eV-1) g9x (eV- 1)

(b) Fcc DOS

g (eV-1) 9x (eV-1') 9gx (ev-1)

Figure 5-1: Total density of states, density of states projected on the Pt atomic orbitals, and
density of states projected on the CO molecular orbitals for atop and fcc adsorption of CO
on Pt(111).
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(a) Atop FDOS

(b) Fcc FDOS

-100 0
,(C-O) (A-')

-50 0 -50 0
(C-o) C-o) (A-')(D x

Figure 5-2: Total force density of states, force density of states projected on the Pt atomic
orbitals, and force density of states projected on the CO molecular orbitals for atop and fcc
adsorption of CO on Pt(111).
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Figure 5-3: Correlation between bond length and intramolecular frequency for CO on clean
and ruthenium-covered Pt(11) surfaces.

influence the structural and vibrational predictions.

To establish this fact, we first introduce a spectral force analysis. The main objective of

this analysis is to separate and assess the contribution from each CO molecular orbital to

the force F acting on a given atom. The central quantity we introduce is 4I,x(e), the force

density of states (FDOS) of the orbital X, which is defined as the x-resolved density of states

weighted by the wavefunction contribution to the force F1 acting on atom I. To be more

explicit, the FDOS of a given CO molecular orbital X can be expressed as:

IDI'JE) = ZFiI(XJ4'i)I2 6(E -,Ei), (5.1)
i

where 0i denotes the electronic wavefunction, ei is the electronic energy, and
F,,i = -f, f 1J 12av/aR, is the wavefunction contribution to the force FI. (The calcu-
lation of the overlap (XI'|) in the ultrasoft formalism is detailed in Appendix D.) It should be
noted that, by summing the integrated FDOS 4 I,x(E) over a complete set of orbitals satisfying
orthonormality, one obtains the total electronic force acting on atom I. As a consequence,
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the FDOS can be quantitatively connected to relevant observables. Additionally, by projecting

the force density of states along the normalized atomic displacements A c o- corresponding to

the C-O stretching mode, we obtain the force density of states along the stretching mode

c-°o(c) = E Ac-0 - VI,x(c), to be heuristically identified as the orbital contribution to the

intramolecular force.

The orbital-projected density of states (DOS) gx(E) = Xli)126(c - Ei) is commonly

used to provide an insightful picture of the electronic hybridizations that take place when CO is

adsorbed on platinum. Similarly, Oc-o(E) describes the influence of electronic hybridizations

on the force along the C-O stretching mode. The projected densities of states gx(E) and

projected force densities of states Vc-O(E) for different adsorption sites are plotted in Figures

5-1 and 5-2. A detailed analysis of the orbital-resolved densities of states is given in Ref. [102].

For the purpose of our study, we emphasize the following features. When CO adsorbs on

Pt(111), the 4u* and 5a orbitals hybridize with the metal d+2 band, generating 46* and

56 states with mainly adsorbate character (adopting the terminology of Ref. [120], the tilde

symbol denotes hybrid states). These 4j* and 56 states are found in the energy ranges [-12

eV, -9 eV] and [-9 eV, -5 eV] relative to the Fermi level. Above -5 eV, the 5a orbital and

the dz2 band generate a d, band with predominant metal character. This interaction results

in a partial depletion of the 5a HOMO (electron donation). In addition, the interaction

between the 17r and 21r* orbitals and the d,, and dyz bands produces 1l states in the range

[-9 eV, -5 eV] and a broad dj, band above -5 eV, causing partial occupation of the 27r*

LUMOs (electron backdonation) [119]. The changes in molecular orbital occupations due to

CO adsorption are reported in Table 5.3.

In order to understand how the generation of these hybrid states affects the intramolecular

force, we turn to the FDOS (Figure 5-2). The graphs are plotted according to the convention

that bonding states (i.e., opposed to the stretching of the C-O bond) correspond to negative

values of Oc-o. First, we note that the bonding contribution from the 3a state does not vary

with the adsorption site, confirming that the 3a state retains a strong molecular character.

Additionally, we observe that the 53 and 1i states are bonding while the 46* is antibonding,

as expected intuitively. In the energy region above -5 eV, another contribution appears. This

contribution corresponds to high-energy wavefunctions located inside the platinum slab, as ev-

idenced by the absence of any molecular-orbital force contribution above -5 eV. Nevertheless,

due to their metal character, the contribution of these high-energy wavefunctions is mostly

canceled by the positively charged platinum cores. Consequently, the local contribution from

the hybrid states of strong molecular character prevails.
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Besides these observations, the main feature of the FDOS graphs is the predominant
bonding contribution between -9 eV and -5 eV. At the atop site, the curve displays a sharp
negative peak which corresponds mainly to the 17r orbital-resolved contribution t4o°(E). At
the fcc site, both the magnitude and the relative share of the peak are reduced, clearly indicat-
ing that the 1i states have more influence on the change in intramolecular bonding than any
of the other hybrid wavefunctions. The 1i states maintain a predominant 17r character at the
atop site, whereas at high-coordination sites this molecular character is significantly reduced
due to a stronger hybridization with the substrate. Therefore, the 17r bonding contribution
to the intramolecular force decreases with site coordination. As intramolecular bonding de-
creases, the C-O bond length increases. The predominance of the 17r bonding contribution is
confirmed by the density-distribution analysis initially introduced by Zupan, Burke, Ernzerhof,
and Perdew [121], as discussed in Appendix E.

For CO adsorbed on transition metal surfaces, the intramolecular bond length and the
intramolecular stretching frequency are strongly correlated. An extensive study of Gajdog,
Eichler, and Hafner [122] showed a linear correlation between d(C-O) and v(C-O) for CO
adsorbed on close-packed transition metals: v(C-O) shifts down in frequency as d(C-O) in-
creases. As illustrated in Figure 5-3, a similar trend is observed for CO adsorbed on ruthenium-
covered platinum surfaces. Therefore, the increase in C-O bond length at high-coordination
sites, which reflects a decrease in 1wr bonding contribution, is accompanied by a reduction of
the C-O stretching frequency.

While the preceding is consistent with the interpretation given in Refs [119, 120, 122], it
is important to make one central observation: although the LUMO 27r* filling is a reasonable
measure of the amount of hybridization between the lwr, 27r* orbitals and the metal dx,, dz
bands, filling the 21r* orbitals does not directly weaken the bond, as evidenced by the very low
values of (44Z) in the energy range [-9 eV, -5 eV]. This interpretation helps explaining the
fact that the CO adsorption energies do not show a well-defined relationship with the C-O
stretching frequency [123, 124].

The main conclusion of this section is as follows. At variance with the CO adsorption
energies, electron backdonation and electron donation have little direct bearing on the in-
tramolecular forces. Their immediate effect on the molecular bond length and stretching
frequency cannot account for the observed shifts. Instead, the changes in bond length and
stretching frequency are primarily related to the hybridization of the 17r molecular orbitals.
This provides important indications as to why the structural and vibrational properties of CO
adsorbed on platinum and platinum-ruthenium surfaces are accurately predicted. The GGA
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+ molecular U study presented in the next part provides additional quantitative evidence in

support to this conclusion.

5.4.2 Influence of Donation and Backdonation on the Accuracy of
the Frequency Predictions

As mentioned above, the failure of density-functional calculations in predicting CO adsorption

energies is traceable to an overhybridization of the CO molecular orbitals with the metal

bands [102, 125]. To assess the influence of this overhybridization on the accuracy of the

calculated adsorption energies, bond lengths, and vibrational properties, we have performed a

sensitivity analysis. This analysis consists of controlling and varying the HOMO and LUMO

hybridizations, while monitoring the variations of the mentioned observables. To this end, we

have used the GGA + molecular U approach introduced by Kresse, Gil, and Sautet [102]. This

approach (inspired by the LDA + U method [28]) consists of adding an orbital-dependent

term to the GGA energy functional, thus imposing a penalty on orbital hybridization.

We employ the following GGA + molecular U energy functional:

EGGA+U = EGGA + • Tr{f 2 .*,o(I - f2r*,a)} + fsa,a(1 -5,
01 a

where fs,, is the occupation of the 5a orbital of spin o and f2n*,a is the occupation matrix

associated with the 21r* and 21* orbitals of spin o. The parameters U2,* and U5a penalize

noninteger occupations of the 27r* and 5a orbitals: U2r* reduces 27r* backdonation while U5a

reduces 5o donation, as illustrated in Figure 5-4. The parameters U2r* and U5s can also

be interpreted as shifting the effective single-electron energies. Heuristically, U. modifies the

single-electron energy ex by an amount Ux(1/2 - fj). Thus, U2R. increases the 27r* energies,

whereas U5a decreases the 5a energy, causing the HOMO-LUMO gap to increase.

The present functional differs slightly from that introduced by Kresse, Gil, and Sautet. The

GGA + molecular U energy in Eq. 5.2, whose expression is based on the matrix formulation

introduced by Cococcioni and de Gironcoli [29], is invariant with respect to the choice of

the x- and y-axes. In other words, an arbitrary rotation of the molecular orbitals does not

affect the GGA + molecular U energy. Additionally, the functional allows the freedom to vary

both the amount of electron backdonation and that of electron donation. The necessity of

simultaneously varying backdonation and donation will be discussed later.

Although a molecular U term is admittedly a simplified energy correction, it reproduces
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(a) Atop DOS vs. U2,.
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Figure 5-4: Density of states projected on the CO molecular orbitals as a function of U2,.*
and Us5 controlling the hybridization of the LUMO and HOMO orbitals for atop adsorption
of CO on Pt(111).
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the essential features of the energetics of CO adsorption [102]. The cluster calculations of

Gil et al., based on the B3LYP hybrid functional [18], confirm that the inaccuracy of the

GGA energies can be ascribed to an overhybridization of the 27r* molecular orbitals [125].

This conclusion is supported by the recent periodic-slab B3LYP calculations of Neef and

Doll [106, 107]. Moreover, experimental studies indicate that the adsorption energy of CO

on platinum shows a linear dependence with respect to the energy of the center of the metal

d bands,35 in agreement with the theoretical model developed by Hammer, Morikawa and

Norskov [93]. However, the coefficient of proportionality is overestimated within density-

functional calculations, indicating that the interaction between the 2wr* orbitals and the metal

d bands is excessive.

We thus proceeded to calculate the energetic, structural, and vibrational properties for

CO adsorbed on platinum. Stretching frequencies are now obtained by diagonalizing the two-

by-two dynamical matrix associated off-equilibrium displacements of the carbon and oxygen

atoms in the direction normal to the surface. Due to the large atomic mass of platinum,

the resulting stretching frequencies deviate by less than 1 cm- 1 from the full DFPT phonon

frequencies.

The results of the calculations are presented in Figure 5-5, and in Appendix F, along

with methodological details. As expected, adsorption energies decrease with increasing pe-

nalization on the hybridizations of the HOMO and LUMOs. Consequently, both donation and

backdonation favor CO adsorption, in agreement with Ref. [102]. Moreover, we observe that

electron backdonation tends to decrease the relative adsorption energy Eads(atop) - Eads(fcc),

confirming that 21r* backdonation favors CO adsorption at high-coordination sites, as demon-

strated by Anderson and Awad [126]. Additionally, the effect of U5s on the relative binding

energy is much weaker than that of U2~.. This result supports the hypothesis that the failure

of density-functional calculations in predicting the most stable adsorption site is principally

related to an overestimation of 27r* backdonation [100-102].

Considering now the structural and vibrational properties, we observe more complex U2 .*-

and U5,-dependencies. The effect of electron donation must clearly be taken into account

when analyzing the sensitivity of the calculated stretching frequencies. Note that the invari-

ance of the stretching frequency with respect to U27. for CO adsorbed at the atop site, as

already observed in Ref. [100] for copper surfaces, can be explained by the fact that the U2 .*-

axis is tangent to the contour line v(C-O) = 2050 cm- 1. Despite this fact, the dependence of

v(C-O)(atop) with respect to U5a is appreciable, supporting the idea that 27r* backdonation

alone does not control the site-dependence of the C-O stretching frequency.
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Figure 5-5: Adsorption energy and intramolecular stretching frequency as a function of U2,.
and Us5 controlling the hybridization of the LUMO and HOMO orbitals for atop and fcc
adsorption of CO on Pt(111).
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To conclude this section, we report the results of our sensitivity analysis (Figure 5-6).

Large ranges for U2 -*and U5s are selected: 0 eV < U2n. < 5 ev and -10 eV < U5s < 10

eV. Note that the parameter U2·. is kept positive since the GGA + molecular U calculations

clearly indicate that 27r* backdonation is overestimated. We emphasize that these energy

ranges correspond to large shifts in the single-electron energies (up to AC2,* = 1 eV and

|Ac5 ,1 = 4 eV) and to large variations of the adsorption energies (up to IAEadsI = 1.5

eV). Thus, the relative variations of the adsorption energies are comparable to their absolute

values. Despite these sizable variations of the adsorption energies, we observe little variations

of the bond lengths and stretching frequencies:

1.127 A < d(C - O)(atop) < 1.165 A
1.173 A < d(C - O)(fcc) < 1.199 A
1933 cm-1 < v(C - O)(atop) < 2055 cm - 1

1666 cm-1 < v(C - O)(fcc) < 1878 cm -1

These small variations account for the remarkable accuracy of the bond lengths and
stretching frequencies calculated within PBE-GGA. In particular, they justify the correct or-
dering of the C-O stretching frequencies despite important qualitative errors in predicting the
relative CO adsorption energies. These results provide strong support to the conclusion of
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the preceding section: the variations of d(C-O) and v(C-O) are not directly due to electron
donation and backdonation, but rather to the hybridization of the 17r orbitals.

5.5 Conclusion

This study has evidenced that the PBE-GGA predictions for the stretching frequencies of CO

adsorbed on platinum are in excellent agreement with SFG experiments despite the well-known

failure of local and generalized-gradient calculations in predicting the most stable adsorption
site. Similar agreement is obtained for CO adsorbed on platinum-ruthenium bimetallic sur-
faces, allowing the direct recognition of CO adsorption sites.

Our orbital-resolved force analysis has demonstrated that the variations of bond length
and stretching frequency as a function of the CO adsorption site are principally due to the
17r hybridization, rather than the 27r* and 5o hybridizations. Using the GGA + molecular U
approach, we have performed a sensitivity analysis to quantify the influence of the 27r* and

5o hybridizations on the structural and vibrational properties for CO on platinum. The effect
of 27r* backdonation has been shown to be small and comparable to that of 5o donation,

contradicting the widespread idea that backdonation controls the frequency shifts.
These results explain the remarkable accuracy of the PBE-GGA frequency predictions

despite errors in the hybridizations of the 2rx* and 5a orbitals. Furthermore, they suggest
a promising way to connect density-functional calculations with experiments in some of the
most problematic cases of molecular adsorption on transition metals.
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CHAPTER 6

Vibrational Stark Effect for Carbon Monoxide

on Platinum-Ruthenium Surfaces

6.1 Introduction

IN RECENT DECADES, A WIDE RANGE of in-situ techniques for the microscopic charac-

terization of electrode-electrolyte interfaces have been developed. Notably, vibrational

spectroscopy has delivered unique insight into the structure and catalytic activity of electro-

chemical surfaces under operating conditions. These accurate spectroscopic measurements

are now frequently analyzed in light of increasingly predictive first-principles models, thereby

providing a detailed chemical interpretation of experimental observations.

Among the systems recurrently studied in electrochemical spectroscopy, CO adsorbed on

transition metal surfaces has attracted considerable attention. It is revealing to note that

the theoretical interpretation for the site dependence of the C-O stretching frequency was

at the origin of Blyholder's electron donation model. This model and its extensions [93] are
widely employed to this day in the description of adsorbate-substrate interactions and in the
elucidation of catalytic trends.

Notwithstanding the remarkable performance of density-functional theory calculations in
predicting the site-dependent C-O red shifts, the vibrational response of CO as a function of
the applied electrode voltage (the vibrational Stark effect) is still not completely understood.
First-principles simulations have primarily focused on the influence of an externally applied
electric field on the vibrational properties of adsorbed CO [127-129]. A notable exception to
this trend is the recent study of Lozovoi and Alavi who considered the local influence of an
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excess surface charge [81].

In this work, we propose a computational scheme that extends the approach of Lozovoi

and Alavi by relating the surface charge to the difference of voltage across the electrical

double layer. The model relies on the DIL model presented in Chap. 4. The outline of this

study is as follows. First, we provide an overview of existing density-functional theory mod-

els for calculating the electrode-potential dependence of adsorbate frequencies. Second, we

present density-functional theory predictions for the vibrational Stark shifts of CO adsorbed on

clean and ruthenium-covered platinum surfaces. The last section provides an electrochemical

interpretation of the results.

6.2 First-principles Vibrational Stark Effect Studies for

CO on Transition Metals

Following a series of important theoretical contributions from Ray and Anderson [130], Hol-

loway and Norskov [131], and Korzeniewski et al. [132], the Hartree-Fock cluster simulations

of Bagus et al. [133] constitute one of the first ab-initio studies of adsorbate vibrational Stark

shifts for CO on transition metal surfaces. From their first-principles calculations, Bagus et

al. concluded that the vibrational Stark shifts predominantly originate from the electrostatic

interaction between the adsorbate dipole and the applied field. Chemical effects were indeed

found to have little direct bearing on the predicted tuning rates [133,133,134]. The assertion

of Bagus et al. was reexamined in subsequent first-principles studies, which concluded that

electric and chemical contributions are in fact inseparable [135, 136].

A systematic assessment of the reliability of density-functional theory cluster models was

undertaken by Garc(a-Hernandez et al. [127]. For neutral adsorbates, the study demonstrated

the relatively good convergence of the calculated Stark shifts as a function of the size of

the cluster. Using hybrid density-functional theory, the field-dependent Stark tuning slope

dv(C-O)/dF for atop adsorption of CO on a 13-atom platinum cluster was predicted to be

104 cm-1.A/V.

These results were first confirmed by the generalized-gradient density-functional theory

study of Koper et al. [128], in which values of 102 and 125 cm-'.A/V were reported for CO

adsorbed at the atop and hollow adsorption sites on a Pt13 cluster, respectively. Subsequently,

using a refined generalized-gradient cluster model [129], Wasileski, Koper, and Weaver calcu-

lated the field-dependent Stark slopes to be 120 and 130 cm-1.A/V at the atop and hollow
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sites, respectively [137]. Wasileski et al. ascribed the large discrepancy between UHV and
electrochemical measurements to the electrostatic contribution from the ionic solvent. (This
disagreement will be discussed further in Sec. 6.4.

In a recent periodic-slab study, Lozovoi and Alavi calculated the Stark tuning slope by
adding a fractional amount of charge to the system, thereby generating an electric field at the
surface of the metal [81]. In order to compensate the excess surface charge, a thin layer of
static charges was inserted between the periodically repeated slabs [51]. Using this approach,

the frequency-field slope was calculated to be 45.2 cm-l.A/V at a coverage of 1/4 of the
monolayer (in the 2 x 2 adsorption structure) for CO at the atop site on Pt(111). This
result is in good agreement with the value dv(C-O)/dF = 56 cm-l.A/V obtained from UHV
measurements [138]. A double-layer model that completes the approach of Lozovoi and Alavi
is presented below.

6.3 Stark-shift Predictions for CO on Platinum and Platinum-

Ruthenium Surfaces

6.3.1 The Electrode Charge as Fundamental Parameter

Before presenting predictions for the C-O Stark shifts on clean and ruthenium-covered plat-
inum surfaces, we underscore that at variance with experiments in which one typically controls

intensive thermodynamic variables (e.g., the pressure P applied to the system), one gener-

ally work with fixed extensive variables (e.g., the volume V of the system) when performing

first-principles calculations.

Therefore, the approach that we adopted here consists of controlling the electrical
conditions-that is, the electric field for ultra-high-vacuum experiments, and the electrode
voltage for electrochemical measurements-by varying the corresponding extensive quantity,
namely, the charge of the system. As mentioned in the previous section, a similar methodology
was employed by Lozovoi and Alavi [81] in the case of electrified metal-vacuum interfaces.

6.3.2 Vibrational Stark Effect under Ultra-high-vacuum Conditions

In this study, we adopt a periodic-slab model to determine the field-dependent Stark tuning
slope dv(C-O)/dF for CO adsorbed on clean and ruthenium-covered platinum surfaces. In
order to eliminate periodic-image errors arising from the use of periodic boundary conditions,
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Figure 6-1: (a) Intramolecular stretching frequency v(C-O), and (b) intramolecular bond
length d(C-O) for CO adsorbed at the atop, bridge, and fcc sites on Pt(111).

d d d d
site slab -v(C-O) -v(C-O) -d(C-O) - d(C-O)do dF d dF

(cm- 1 .m2/C) (cm- 1.A/V) (A-m2/C) (A
2
/V)

atop 3 ML Pt 519 45.9 -0.091 -8.05 -10 -

(UHV Exp, 56)1
(DFT, 45.2)2

bridge 3 ML Pt 517 45.8 -0.102 -9.03- 10- 3

fcc 3 ML Pt 531 47.0 -0.106 -9.38 10- 3

atop 4 ML Pt 519 45.9 -0.093 -8.23 -10 - 3

atop 1 ML Ru/3 ML Pt 572 50.6 -0.108 -9.56.10 - 3

'Ref. [138]. 2Ref. [81] (1/4 ML, periodic slab, PBE generalized-gradient approximation).

Table 6.1: Field-dependent and charge-dependent slopes of the intramolecular stretching
frequency v(C-O) and bond length d(C-O) at the point of zero charge for CO adsorbed on
clean and ruthenium-covered Pt(111) surfaces.
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we employ the density-countercharge (DCC) correction (cf. Chap. 3). As extensively dis-

cussed in Chap. 3, applying this approach to charged systems with two-dimensional periodicity

amounts to introducing a parabolic correction to the electrostatic potential.

The metal surface is modeled using three- and four-layer-thick slabs. Each layer contains

four atoms per supercell. The structure of the CO adlayer is V x 2 corresponding to

a coverage of 1/4 ML. We employ the generalized-gradient Perdew-Burke-Ernzerhof (PBE-

GGA) [16] functional as an approximation to the exchange-correlation energy. We use ultrasoft

pseudopotentials [21] for the ionic cores. The Brillouin zone is sampled with a shifted 3 x

3 x 1 mesh and cold-smearing occupations [12] (smearing temperature of 0.03 Ry). The

wavefunction and charge-density energy cutoffs are 25 and 200 Ry, respectively. The PBE-

GGA lattice parameter for platinum is calculated to be 3.993 A. For this elongated system,
the DCC correction is calculated within the planar-average approximation (cf. Chap. 3).

The intramolecular stretching frequencies are obtained via frozen-phonon calculations-i.e.,
by diagonalizing the dynamical matrix associated with off-equilibrium normal displacements

of the carbon and oxygen atoms. It was verified that this frozen-phonon approach yields

stretching frequencies within 2% of their full-phonon counterparts (cf. Chap 5).

The surface-charge dependence of the CO structural and vibrational properties are pre-

sented in Figure 6-1 and in Table 6.1. In order to facilitate comparisons with previous studies,
we also report the results in terms of field-dependent Stark tuning slopes. Note that a surface

charge of o = 1 C/m2 corresponds to an electric field of F = 47ra = 11.29 V/A (the relation

between surface charge and surface electric field will be examined further in the Sec. 6.4).

First, we observe that augmenting the surface charge tends to increase the C-O stretching
frequency and to decrease the C-O bond length. In addition, the stretching-frequency and
bond-length variations tend to become less marked as the surface charge increases, in agree-

ment with previous studies [81,129,139]. The field-dependent frequency slope is calculated to
be 45.9 cm-l.A/V for CO adsorbed at the atop site on Pt(111), in very close accordance with
the value dv(C-O)/dF = 45.2 cm-l'.A/V reported by Lozovoi and Alavi [81]. We also note
that the Stark slope does not vary when increasing the slab thickness from three to four mono-
layers. As already alluded to, the periodic-slab field-dependent slopes are significantly lower
than those obtained from cluster calculations (ranging from 100 to 120 cm-l.A/V [127-129])
and are found to be in good agreement with the UHV experimental value 56 cm- 1 .A/V [138].
The field-dependent slopes at the bridge and fcc sites on clean platinum surfaces are calcu-
lated to be 45.8 and 47.0 cm-'.A/V, respectively. The UHV Stark tuning rates for CO on
Pt(111) are thus only moderately affected by site coordination. For CO adsorbed at the atop
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Figure 6-2: Electrode-potential dependence of the intramolecular stretching frequency for CO
adsorbed at the atop site on Pt(111). The concentration of the diffuse ionic solution is Cd =
0.1 M.

site on Pt(11) covered with 1 ML of ruthenium, the frequency-field slope is calculated to be
dv(C-O)/dF = 50.6 cm-l.A/V, corresponding to a notable increase in the Stark tuning rate

of about 10%, in qualitative agreement with the cluster calculations reported in Ref. [128].

As a final note, it should be mentioned that the field dependence of the C-O bond length is
only roughly correlated to that of C-O the stretching frequency with a proportionality factor

of approximately -5300 cm-1/A. Note that this factor is significantly lower in absolute value
than the stretching frequency vs. bond length correlation slopes typically measured for CO
on neutral transition metal surfaces-ranging from -7000 to -8000 cm-1'/A (cf. Refs [122]
and [129], and Fig. 5-3).

6.3.3 Vibrational Stark Effect under Electrochemical Conditions

We now consider the electrical response of CO-covered Pt(111) interface under electrochemi-
cal conditions. The electrode potential corresponding to a given surface charge is determined
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from the profile of the electrostatic potential across the charged metal-solution interface. (As
explained in Chap. 4, the electrostatic potential is calculated as the difference between the
electrostatic energy in the bulk of the solvent and the Fermi energy of the metal.) The double-
layer electrostatic profile is computed using the solvation model introduced by Fattebert and
Gygi [58] and the diffuse-ionic-layer (DIL) algorithm presented in Chap. 4.

The system is modeled using a symmetric five-layer-thick Pt(111) slab (ABCBA layer
stacking) with CO covering each lateral face in the /3 x 2 adsorption structure. Similarly to
the UHV calculations above, we employ the PBE-GGA functional, ultrasoft pseudopotentials,
and plane-wave cutoffs of 25 and 200 Ry. The Brillouin zone is sampled using a 4 x 4 x 1
mesh with cold-smearing occupations. For the solvation model, the dielectric constant of the
aqueous solvent is set to cs = 78. In calculating the density-dependent dielectric constant F,
the charge density is smeared in the directions parallel to the surface (Gaussian spread of 5
bohr) in order to eliminate penetration of the implicit solvent into the adlayer. The charge-
density cutoff delimiting the solvation shell Po, and the smoothness exponent controlling the
magnitude of the solvent dipole are set to 0.0005 bohr- 3 and 1.25, respectively. These
solvation parameters are close to those used in previous studies [58, 59]. The charge-density
cutoff defining the depth of the ionic penetration was selected to be pi = 0.0001 bohr -3 . As
discussed in Sec. 6.4, value of the ionic cutoff yields a double-layer thickness in agreement
with experimental measurements.

The dependence of the C-O stretching frequency as a function of the electrode potential
is depicted in Fig. 6-2. The vibrational Stark tuning rate is predicted to be y(C-O) = 28.9
cm- 1 at the potential of zero, in excellent agreement with the SFG Stark tuning rate of 28
cm- 1 (0.1 M H2SO 4) [4]. This calculation constitutes the first accurate prediction of the
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C-O vibrational Stark tuning rate using a comprehensive first-principles model.

Additionally, the charge-potential response for a CO-covered platinum surface in contact

with an ionic solution of concentration Cd = 0.1 M is presented in Figure 6-3. At this

relatively high ionic concentration, the electrical response of the system is observed to be

closely linear, reflecting the rapid decay of the electric field in the ionic layer. From these

results, the differential capacitance of the surface is calculated to be C = 0.0455 F/m2 at

the point of zero charge. Consequently, the frequency-charge slope is calculated to be 635
cm-l.m 2/C, which is close to UHV value of 519 cm-l1 m2/C. The agreement between the

predicted Stark slopes in vacuum and under electrochemical conditions is rather surprising due

to long-standing discrepancies between UHV and in-situ experiments [81,128, 129, 137,138].
This concordance is discussed further in the next section.

6.4 Electrochemical Origin of the Vibrational Stark Ef-

fect

In order to elucidate the accuracy of the Stark shift predictions, we first analyze the electrostatic-

potential profile of a positively charged CO-covered platinum surface immersed in an ionic

solution (Figures 6-4). Using the same notation as those in Chaps. 3 and 4, v denotes the

electrostatic potential of the system, v' stands for the potential of the periodically repeated

system in vacuum, and the difference v"r = v - v' refers to the corrective potential corre-

sponding to the electrostatic contributions from the excess surface charge and from the ionic

solvent. First, we observe that the electrostatic correction vcorr is curved inside the slab and

converges to a constant in the bulk of the solvent. In the transition region, a significant po-

tential drop due to the response of the polarizable continuum occurs. As illustrated in Figure

6-5, the curvature of the corrective potential inside the metal slab is directly related to the

surface charge, in agreement with the analytical study presented in Chap. 4. The parabolic

behavior of the corrective potential inside the slab region is identical to that observed for

charged surfaces in vacuum (cf. Chap. 3). The close similarity between the corrective po-

tentials in UHV and electrochemical environments confirms the common electrostatic origin

of the vibrational Stark shifts under UHV and electrochemical conditions.

We now analytypicall disagreement between UHV and electrochemical predictions by com-

paring the electrostatic profile of a charged platinum surface covered with CO (Figure 6-6a)

with that obtained for a neutral surface vpzc. The difference between v and vPz is plotted in
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Figure 6-4: Electrostatic potential v, periodic potential v', and electrostatic correction v corr

averaged in the xy-plane parallel to the interface for CO adsorbed at the atop site on a
charged Pt(111) surface in contact with a diffuse ionic solution. The charge of the surface is
o = 0.014 C/m2 (corresponding to -0.05 e per supercell). The concentration of the diffuse
ionic solution is Cd = 0.1 M.

Figure 6-5: Electrostatic correction
vcorr averaged in the xy-plane par-
allel to the interface for CO ad-
sorbed at the atop site on a charged
Pt(111) surface in contact with a
diffuse ionic solution. The charge of
the surface uo is varied from -0.014
C/m2 to +0.014 C/m2 .
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Figure 6-6: (a) Electrostatic potential v of a charged CO-covered platinum surface, (b)
electrostatic-potential variation v - Vpzc with respect to the point of zero charge, and (c)
charge-density variation p - Ppzc with respect to the point of zero charge for CO adsorbed at
the atop site on a Pt(111) surface in contact with a diffuse ionic solution of concentration 0.1
M. Note that the contributions from the ionic solvent are not included in the charge-density
profile.
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Figure 6-6b. As expected intuitively, the excess surface charge induces an important shift in
the electrostatic potential inside the metal slab. The magnitude of the shift corresponds to
the difference between the electrode potential E and the potential of zero charge gpz,. This
noteworthy feature constitutes a direct confirmation the model introduced by Norskov et al.,
which consists of including the electrode voltage by shifting the energies of the metal electrons
by a constant amount AS = £ - Spzc [77]. In addition, we observe that the surface charge
generates an electric field at the metal-solution interface. The size of the double-layer region
LH obtained with the selected value of the solvation parameter pi equals approximately 3 A,
in agreement with typical estimates of the double-layer thickness [75, 77, 129]. Nevertheless,
it is fundamental to note that the electric field is not linear in the adlayer region, as evidenced
by the presence of a significant amount of excess surface charge on the CO adsorbate (Figure
6-6c). This nonlinear behavior translates into a notable reduction in the intramolecular elec-
tric field FH = (& - pze)/LH in comparison with the long-range electric field FUHV = -4wo

measured in UHV experiments. As a matter of comparison, for a charge of 0.014 C/m2

corresponding to a bias of 0.31 V, the electric field FH and FuHv are evaluated to be 0.10
and 0.16 V/A, respectively. This observation rationalizes the discrepancies between UHV and
electrochemical Stark tuning measurements.

6.5 Conclusion

We have employed a periodic-slab model to study the vibrational Stark effect under UHV
and electrochemical conditions. In both cases, the local surface electric field was modified by
adding a given amount of surface charge and by applying adequate electrostatic corrections.
At variance with cluster studies, the predicted Stark shifts are found to be in very good
agreement with both UHV and electrochemical spectroscopic measurements.

By comparing the electrostatic-potential profiles of isolated and solvated electrified slabs,
we have evidenced the common electrostatic origin of the surface-charge dependence of the
adsorbate vibrational properties. In addition to offering a direct confirmation and extension of
the model recently proposed by N0rskov et al. [77], our electrostatic-profile analysis clarifies
the long-standing discrepancy between UHV and electrochemical vibrational Stark tuning
measurements.

This study highlights the interest of the modified Poisson-Boltzmann DIL model for the
microscopic elucidation of important electrochemical trends.
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CHAPTER 7

Concluding Remarks

THIS DISSERTATION FOCUSES on the development and validation of a comprehensive ap-

proach to study quantum mechanical systems under realistic electrochemical conditions.

The methodology consists of controlling the applied voltage by varying the electronic

charge of the system. As a prelude to the simulation of electrified surfaces in ionic solvents,
we have studied fundamental aspects of the electrostatics of polarized and charged systems

in periodic boundary conditions. We have shown that the difference between the periodic

potential, straightforwardly obtained from a Fourier transform, and the exact potential can

be characterized analytically. In light of this observation, we have presented an efficient

density-countercharge (DCC) scheme to describe charged species and electrified interfaces

in vacuum. This periodic-image correction scheme owes its improved accuracy to the exact

determination of the open boundary conditions characterizing the electrostatic problem.

We have then analyzed and incorporated the electrostatic contributions from the aqueous

solvent and from the counterions, thereby reproducing realistic electrochemical conditions.
The resulting diffuse-ionic-layer (DIL) model, which relies on a density-functional theory de-

scription of the interface region and on a modified Poisson-Boltzmann representation of the
semi-infinite ionic solvent, allows the direct prediction of the electrical response of electro-
chemical interfaces. In the presentation of the DIL model, we have emphasized the importance
of imposing adequate electrochemical boundary conditions to overcome length-scale limita-
tions and properly relate the microscopic state of charge of the surface to the macroscopic
difference of voltage across the double-layer interphase.

In implementing these novel computational approaches, particular effort has been de-
voted to overcoming inherent accuracy and efficiency limitations by simultaneously exploiting
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highly optimized fast Fourier transform and multigrid algorithms. The DCC and DIL correc-

tive schemes have been shown to constitute beneficial alternatives to existing computational

methods. Summarizing, one of the central methodological conclusions of this study is as

the following: the electrostatic description of electrochemical systems from first-principles

computations requires adopting appropriate boundary conditions.

As a probe of the predictive performance of the DCC and DIL schemes, we have analyzed

the vibrational properties of CO on clean and ruthenium-covered platinum surfaces. In the first

stage of this analysis, we have highlighted the remarkable precision of generalized-gradient

density-functional theory calculations in describing the adsorption-site dependence of the C-O

stretching frequency, notwithstanding well-known qualitative errors in the predicted adsorp-

tion energies. The excellent accuracy of semilocal density-functional theory calculations in

determining the vibrational properties of adsorbed CO has been rationalized by introducing an

orbital-resolved analysis of the force density of states and by performing a sensitivity analysis

to evaluate the influence of donation and backdonation on the calculated observables. The

orbital-resolved force analysis has established that the site-dependence of the C-O frequency

is mainly related to the hybridization of the low-lying 17r orbitals. The sensitivity analysis has

demonstrated that the influence of backdonation is small and comparable to that of donation,

contradicting the widespread idea that backdonation controls the frequency shifts.

Based on these results, we have studied the electrode-potential dependence of adsorbate

vibrational properties--the vibrational Stark effect--for CO adsorbed on transition metals,

a subject that has attracted considerable attention and for which fundamental questions

persist. At variance with previous studies, the calculated vibrational Stark shifts, obtained

from the DCC and DIL periodic-slab models, were found to be in very good agreement with

both ultra-high-vacuum and electrochemical experiments. This simultaneous concordance is

made more remarkable by the long-standing discrepancy between UHV and electrochemical

measurements. By comparing the electrostatic-potential profiles of isolated and solvated

electrified slabs, we have highlighted the common electrostatic origin of the vibrational Stark

effect in vacuum and under operating conditions, and provided important indications as to

the electrostatic origins of the discrepancy between UHV and electrochemical Stark shifts in

terms of delocalization of excess surface charge onto the CO adlayer.

As related projects, we have implemented an ensemble density functional theory (eDFT)

molecular-dynamics scheme for simulating metallic systems. Additionally, we have developed

a parameter-free LDA + Uap method to efficiently eliminate self-interaction errors with the

ultimate aim of correcting the propensity of density-functional theory calculations to overhy-
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bridize electronic states-a tendency that ultimately translates into overestimated adsorption
energies.

The present computational electrochemistry toolkit extends the applicability of density-
functional theory in electrochemistry and open promising perspectives for the direct application
of first-principles methods to guide the microstructural optimization of fuel cells and the
development of efficient electrochemical convertors.
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Madelung Constants and Gaussian Potentials

In this appendix, we determine the Madelung constants of periodic point charges immersed

in a compensating jellium background in one, two, and three dimensions for lattices charac-
terized by a single geometric parameter L. A compilation of high-precision values for these
fundamental constants is generally not found in the literature.

These values are computed using the asymptotic expansion of the Madelung constant

a,/L of an array of Gaussian charges of spread a in a compensating jellium, which is defined
as:

V7L = (v'(0) - v',L(O0))Ld-2, (A.1)

where d is the spatial dimension. To obtain the expansion of a,/L in the limit alL -- 0, we

may write V',L(O0) as:
L 2  a 2

/',L(0 ) = d Wd(•-), (A.2)
orL(0) = L2  L2

2  47" gr2 -2
wa( 2) = 4 exp(- 2), (A.3)

g'O 2 4 L 2

where Qd is the volume of d-dimensional unit cell, and g' = Lg denotes the dimensionless
wavevector. Differentiating wd with respect to a2/L 2 , we obtain:

dwd _ 92 a2

d(a2/L2) 4 L2

= • -7r exp( ).2 (A.4)L ) "  (A.4)
g'
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Z.52
Figure A-1: Convergence of the
Madelung constant as a function of 2.9

the geometric parameter L/a for a
cubic unit cell using the approxi-
mation given by Eq. A.6. Note 2.85

the negligible contribution of the
complementary-error-function term E 2.8
beyond L/a = 3 and the improve-
ment in convergence brought about 2.75

by the term ra 2/L 2. 0 2.5 5 7.5 10 12.5 15
L/c

In the limit a/L -+ 0, this derivative becomes:

dWd - d d/2 e-u 2du + ... (A.5)
d(a22/L 2) d- L2  Rd

Integrating this expression, we obtain the asymptotic expansions of v~',L(O) and a,/L listed in

Table A.1.

Hence, the Madelung constant &o can be calculated with high accuracy from the expansion

of a/L. In the case of a cubic lattice of point charges, we obtain:

ao a,/L + L2 nerfc( In)
n$O

S - 2/4- + - -  erfc( Inl) (A.6)
go n5o

where n = (i, j, k) denotes an integer vector. Figure A-1 illustrates the rapid convergence of

the Madelung constant calculated from Eq. A.6 for a cubic cell. This expression converges

noticeably faster than the expression frequently found in the literature:

1 47_29 2/4 2L 1 L
o •e•E2 - -1: -erfc( Inl)- (A.7)

Although a similar procedure can be applied without additional difficulty for any dimensionality,
we draw attention to the fact that in two dimensions, a,/L is not equal to the Madelung
constant a in the limit a/L -÷ 0, due to the logarithmic divergence of the potential. For
a more complete discussion of the two-dimensional case, we refer the reader to the study of
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3D 2D 1D
lattice 0o lattice a lattice ao

cubic 2.837 297 479 squared 2.621 065 852 linear -_r/3
body-centered 3.639 233 449 hexagonal 2.786 075 893
face-centered 4.584 862 074

v e((r) = -erf() va(r) = - In() + Ei(- 2) v,(z) = -2•r(zerf() + a -+
_L Xo L /.a2g2 -z

nvL(r) =1 47o e-_2g2/4+ig-r VL (r) 4re~ -o 29/4+ig'r v'-L() = 14g0 -a 2 g2/4+ig "z

a VL() 7a L = + -- *( )L
.0

-
2 wa

2

oL() = O - L2 +l -.- O( )L = In( L) - M-Lo- - 2+
2  o2+

S +.... n -a - +... L2 /L(O) = - L + "

Table A.1: Madelung constants in one, two, and three dimensions computed using the pro-
cedure described in Appendix A, along with the quantities used in the calculation. Ei denotes
the exponential integral and y = 0.577 215 665 is the Euler constant.

Cichocki and Felderhof [55]. As a final remark, we note that the one-dimensional Madelung
constant can be determined analytically from the relation:

+o r2

n2= (2 =6
n=1

where ( stands for the Riemann zeta function.
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Multipole-expansion Method

The performance of the multipole-expansion adaptation of the DCC scheme--the multipole-
countercharge (MCC) correction-for a pyridazine cation is compared to that of the PCC
and GCC schemes in Figure B-i. The size of the calculation cell ranges from 12 to 19 bohr.
The parameters used in these calculations are those detailed in Sec. 3.3.2. Note the good
performance of the MCC approach, which improves the energy accuracy by almost one order
of magnitude in comparison with the PCC and GCC schemes for cell sizes above 17 bohr.

Figure B-1: Accuracy of the to-
tal energy of a pyridazine cation as
a function of computational time
using the PCC, GCC, and MCC
schemes for cell sizes in the range
12-19 bohr. The labels D (dipole)
and Q (quadrupole) indicate the or-
der of the multipole expansion. For
each scheme the corrective poten-
tial is updated every five SCF iter-
ations.
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Details on the Pseudopotentials

The ultrasoft pseudopotentials were generated using Vanderbilts method [21] (for ruthenium),

and the optimization scheme proposed by Rappe, Rabe, Kaxiras, and Joannopoulos [140] (for

platinum, oxygen, and carbon). The parameters used for generating the pseudopotentials
follow:

* Platinum

The reference configuration for the platinum pseudopotential is [Xe] 4f14 5d9 6sl. The
electronic states are obtained solving the scalar relativistic Kohn-Sham equations. The

potential cutoff radius is r, = 2.4 bohr. Pseudization is performed using two ultrasoft

projectors for the s channel and one ultrasoft projector for the d channel. The all-

electron wavefunctions are matched to their frozen-core counterparts at cutoff radii of

2.4 bohr and 1.8 bohr for the s and d states, respectively.

* Ruthenium

The reference configuration for the ruthenium pseudopotential is [Kr] 4d7 5sl. The

electronic states are obtained solving the scalar relativistic Kohn-Sham equations. The
potential cutoff radius is r, = 2.4 bohr. Pseudization is performed using two ultrasoft
projectors for the s channel and two ultrasoft projectors for the d channel. The all-
electron wavefunctions are matched to their frozen-core counterparts at cutoff radii of
2.4 bohr and 2.0 bohr for the s and d states, respectively.

* Oxygen
The reference configuration for the oxygen pseudopotential is [He] 2s2 2p4. The elec-
tronic states are obtained solving the scalar relativistic Kohn-Sham equations. The
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potential cutoff radius is r, = 1.6 bohr. Pseudization is performed using two ultrasoft

projectors for the s channel and two ultrasoft projectors for the p channel. The all-

electron wavefunctions are matched to their frozen-core counterparts at a cutoff radius

of 1.6 bohr.

* Carbon

The reference configuration for the carbon pseudopotential is [He] 2s2 2p2. The elec-

tronic states are obtained solving the scalar relativistic Kohn-Sham equations. The

potential cutoff radius is r, = 1.7 bohr. Pseudization is performed using two ultrasoft

projectors for the s channel and two ultrasoft projectors for the p channel. The all-

electron wavefunctions are matched to their frozen-core counterparts at cutoff radii of

1.6 bohr and 1.7 bohr for the s and p states, respectively.
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Ultrasoft Overlaps

The Vanderbilt ultrasoft formalism [21] consists of replacing the density operator fh(r) with:

-US(r) = A(r) + ) Ai(r) (D.1)
I

where A•j(r; ri, r 2) = •n,m QI,n,m(r)*,.,(rl)3 t,m(r2) is the charge-augmentation contribu-

tion from the ionic core I. Correspondingly, the overlap operator S becomes:

S = i + S (D.2)
I

where SI(ri, r 2) = Zn,m f QI,n,m(r)dr3;J,n(rl)fI,m(r2) is the ionic contribution to the over-

lap operator. The ultrasoft pseudopotential of the ionic core I is the sum of a local part

VI (r) and a nonlocal part , NL(ri, r 2 ) = n,m D,n,m13,n(rjl)0j,m(r2) •

This ultrasoft formalism considerably improves the convergence of density-functional al-

gorithms with respect to the energy cutoffs applied to the plane-wave expansions of the

wavefunctions and charge density. However, to calculate the overlap (XISI1VI) between the

molecular orbital X and the wavefunction 0, it must be borne in mind that the overlap opera-

tors SX and S•, corresponding to X and V' are distinct since the molecular orbital is calculated
without the platinum slab. The procedure employed here consists in including fictitious plat-
inum cores in the calculation of the molecular orbital. These fictitious cores are obtained by
setting the local and nonlocal part of the platinum pseudopotential to zero, while keeping the
contribution to the overlap operator unchanged. The resulting operator Sfi" being identical
to Sip, the overlap coefficient can be calculated as (Xficd f • ) (Xfict1 ,1 ) where Xf ct
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is the molecular orbital calculated in the presence of the fictitious platinum cores. The primary

advantage of this procedure is that it only requires changing the pseudopotentials.
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Density-distribution Analysis

As an additional confirmation to the predominance of the 17r contribution in the C-O in-
tramolecular force, we have calculated the density distribution and density-gradient distri-

bution [121] projected on each CO molecular orbital X. We define the projected density
distribution as:

g,x(rs) = fil( i)21 i(r) 26(r - r(r))dr, (E.1)

where r, is the Seitz radius. We propose a similar definition for the projected density-gradient
distribution:

g3,x(s) = X fl|(xl 4)l12 f /li(r)2(s - s(r))dr, (E.2)
i

where s = IVnJ/2kFn is the reduced density gradient. The derivatives of the distribution

functions along the C-O stretching mode A(C-o)gn,x = d(C-O)agn,x/Od(C-O) (n=1,3) are
plotted in Figure E-1.

Considering A(C-°)g91,(rs), we observe that increasing d(C-O) tends to decrease the
electronic charge in spatial regions of high electronic density. This trend is particularly marked
for the 17r molecular orbitals, confirming their predominance in the intramolecular force. The
predominant 17r contribution can also be seen in the A(C-o)g 3,(s) graph. It is important
to note that the 17r orbitals result in a significant increase in charge-density homogeneity.
According to the bond-expansion criterion derived by Zupan, Burke, Ernzerhof, and Perdew
(Eq. 9 in Ref [121]), this observation confirms that the 17r orbitals are strongly bonding.
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5

Figure E-1: Derivative of the
density distribution function
A(c-o)g1,x(rs) and derivative of
the density-gradient distribution
function A(C-o)g3,x(s) along the
C-O stretching mode for each
molecular orbital X.
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GGA + molecular U Force Density of States

The calculation of the FDOS within GGA + molecular U can be performed along the same

general lines as the method presented in Chapter 5, the only modification being in the ex-

pression of the wavefunction contribution to the force Fj,i,. In the ultrasoft formalism and

in the absence of molecular U contribution, the wavefunction contribution to the force can

be written as [22,141]:

(Fl,ia)GGA = -fia((ial- - irask •i)- (F.1)

Adding the molecular U term, the force contribution becomes:

(F•,ia)GGA+U = (FI,ia GGA U- Tr (I - 2f7r2na) d

U5 -(1 - 2fs5,G) df5O ~~ I (F.2)
2 01¢ a

where f2=*,i, = [ia(1oi 2*)(2*21|SIV1ia)] p denotes the contribution from the wavefunc-
tion OjO, to the 27r* occupation matrix f2,*,a and f5a,i, = fi, |•ijsj5o) (5olrSII,) is the

contribution from 'i, to fs,,,. Note that the derivatives must be calculated keeping Oi.

fixed.

The main computational difficulty in determining the derivatives of the occupation coeffi-

cients is the evaluation of the response of the molecular orbitals X to the atomic displacements
Dx/dRI. These responses can be obtained by performing a separate calculation for an iso-
lated CO molecule using the same linear-response approach as that employed in the phonon
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Atop FDOS vs. U5a
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calculation [19]. The projected and total FDOS spectra as a function of the hybridization

parameters for CO adsorbed at the atop site on Pt(111) are reported in Figures F-i and

F-2. The observed trends confirm that large shifts in the LUMO and HOMO single-electron

energies do not affect the predominance of the 17r contribution. For positive values of U2,.
and U5~, the magnitude of the peak in the 17r FDOS increases due to the stronger molec-

ular character of the lr orbitals. Note that this increase in the 17r bonding contribution is

accompanied by an increase in the antibonding contribution from the metal bands. Similar

compensation effects in the electronic forces can be observed for negative values of the hy-

bridization parameters. In particular, for U2r. equal to -5 eV corresponding to an unphysical

overestimation of the 27r* hybridizationthe decrease in the bonding contribution from the 17r

orbitals is partially offset by the decrease in the antibonding contribution from the d bands.

This observation provides a more specific understanding of the invariance of the stretching

frequency as a function of the HOMO and LUMO hybridizations.
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