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ABSTRACT

Due to the highly regulated environment, it is difficult to implement changes to a

pharmaceutical process. Even small change request approvals can require months of effort for

pharmaceutical companies and regulatory agencies. This resource intensive process discourages

continuous improvement and often results in outdated and inefficient manufacturing processes.

In response to the growing need for improvement, the FDA issued a guidance to industry that

provides a framework for acquiring improved process understanding and product quality in the

manufacturing industry. The guidance is aimed at encouraging the use of process analytical

technology (PAT) to monitor key quality attributes continuously during the process and enable

early fault detection. The goal is to transition from the current method of quality through end of

process testing to a new method of quality by design (QbD). In 2005 Novartis Pharma formed a

unique collaboration with the FDA in an attempt to demonstrate the benefits and concepts of

QbD. A cross-functional team was formed with the goal of developing a case study for one

Novartis process that will serve as a model for future implementation of PAT and QbD.

During a six month internship, I worked with the Global PAT team members to help

ensure the successful implementation of the QbD tools outlined in the FDA Guidance. The

internship focused only on the drug substance manufacturing process. Specifically, I was

responsible for collecting and analyzing process data during the manufacturing campaign,

coordinating the commissioning of an on-line NIR probe and PSD analyzer, and identifying and



proposing future benefits of PAT applications to Novartis Pharma. I also conducted a throughput

analysis after observing manufacturing operations and analyzing the process data collected

during the campaign.

My thesis provides a background of the QbD/PAT initiative and includes a thorough

literature search to benchmark the progress other pharmaceutical companies have made at

applying QbD/PAT. I discuss in more detail the Novartis PAT project, and my specific

contribution including the results of the NIR and PSD installation and validation, full scale

Design of Experiment activities, Multivariate Data Analysis modeling, and process throughput

analysis. I conclude with an analysis of barriers to implementation and provide recommendations

for future implementation to other processes and plants at Novartis.
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1. Introduction

1.1. Objective

Due to the highly regulated environment, it is difficult to implement changes to a

pharmaceutical process. Even small change request approvals can require months of effort for

pharmaceutical companies and regulatory agencies. This resource intensive process discourages

continuous improvement and often results in outdated and inefficient manufacturing processes.

In response to the growing need for improvement, the FDA issued a guidance to industry that

provides a framework for acquiring improved process understanding and product quality in the

manufacturing industry. The guidance is aimed at encouraging the use of process analytical

technology (PAT) to monitor key quality attributes continuously during the process and enable

early fault detection. The goal is to transition from the current method of quality through end of

process testing to a new method of Quality by Design (QbD). Novartis would like to be an

industry leader by being one of the first companies to implement the new FDA guidance on

QbD. Competitors are also implementing similar programs, and Novartis knows that to remain

competitive they need to be fast to react to the guidance and implement new Process Analytical

Technologies to their manufacturing processes. Therefore, in 2005 Novartis Pharma formed a

unique collaboration with the FDA in an attempt to demonstrate the benefits and concepts of

QbD. Novartis formed a Cooperative Research and Development Agreement (CRADA) with the

FDA, with the goal of submitting a revised New Drug Application (NDA) using the QbD

principles by the end of 2007. A cross-functional team was formed with the goal of developing a

case study for one Novartis process that will serve as a model for future implementation of PAT

and QbD.

The goal of the project was to achieve real-time release and continuous improvement for

drug product and drug substance manufacturing. This was to be achieved through the

implementation of QbD and PAT principles as outlined in the FDA Guidance to Industry. The

intention is to prove the concept of QbD and PAT by focusing on one pilot project that will

create standards and set the path for implementation to other products in the future. The project

ties into the overall corporate goals to be the '"Toyota of Pharma" and achieve the overall lowest

COGS in industry. The intent of my thesis is to summarize the key findings, both technical and



managerial, from my involvement on this project team and to offer recommendations for future

implementation of QbD and PAT within the pharmaceutical industry.

1.2. Current state of pharmaceutical manufacturing

1.2.1. Manufacturing Process

Currently the majority of pharmaceutical manufacturing consists of batch processing with

fixed manufacturing setpoints. A typical pharmaceutical process consists of four key steps:

manufacturing of crude material (creation of active substance), intermediate product

(purification), drug substance (preparing IP for final processing), and drug product (final

processing, i.e. tablet formation). Each of these steps is broken down into a multitude of sub-

steps such as crystallization, drying, milling, and wet-granulation. The process parameters, such

as temperature, pressure, etc. are run at a specific set-point and must be controlled within a

narrow, validated range. Statistical process control (SPC) methods are typically utilized to

monitor the process (Kourti, 2006). Since only a few tablets out of several million are tested at

the end, drug manufacturers are usually expected to conduct extensive in-process material

testing. After each step, and in some instances sub-steps, samples are collected and analyzed

offline to ensure that the product quality specifications have been met for that step. The batch

will not proceed until the quality results are verified from the previous step. Generally, if any of

the in-process or end of process testing is out of the specification, the entire batch is scrapped

and typically not reworked (Yu, 2007). It could be said that the current strategy for

pharmaceutical manufacturing is one of "quality-by-testing". The product quality is ensured by

raw material testing, a fixed manufacturing process, in process material testing, and end product

testing.

1.2.2. Validation Procedure

The traditional pharmaceutical validation requires that the manufacturing process be

repeatable. This is typically demonstrated by testing three consecutive batches using offline

analytical techniques. The requirements for validation are pre-determined before the validation

runs based on the development and process scale-up data. The three validation batches must all



fall within these specifications. Once the validation has been completed, manufacturers are not

permitted to make changes without filing supplements with the FDA. Drug manufacturers

typically perform only limited characterization on the causes and effects of process variability

outside of the validated range. As Hinz (2005) quotes "Because of the effort involved and the

associated costs that are required to maintain compliance with government agency requirements,

manufacturers avoid making any process changes after phase II clinical trials, thus locking in

production methods and costs at an early stage". Often, the manufacturing process may drift once

it is in production. This typically results in time and resource-intensive investigations to find the

causes of the deviations. Even if the result of these investigations is that the manufacturing

process or setpoints should be changed, it is very difficult to do so. Anytime a change is

requested to make a process more efficient, a manufacturer must file data and documents

verifying that the new process does not impact product quality (Yu, 2007). This leads to a

cumbersome process for both the manufacturer and the FDA who needs to review the

supplemental documentation. It is estimated that the industry submits about 4000 manufacturing

supplements to the agency each year (Wechsler, 2002). The time and money associated with

filing a process change discourage manufacturers from updating their process and has created

capacity constraints at the FDA.

1.2.3. Performance metrics

The highly regulated environment ultimately results in inefficient manufacturing

processes and the use of outdated methods and equipment. A KPMG study reported that 72% of

drug recalls are a result of manufacturing defects (Cook, 2007). Capacity utilization levels have

been estimated to be less than 15% and batch quality failures range from 5 to 15% (Scott, 2008).

In some products, waste has been reported to be as high as 50% (Winkle, 2007). In comparison,

the semiconductor industry maintains waste well below 1% (Femia, 2005). The average cycle

time is 95 days, and the writing of non-conformance reports for batch failures can increase cycle

time by 50% given that root causes for failure are usually not well understood. (Scott, 2008).

Inventory turns in the pharmaceutical industry are 3-5 versus 50 for world class manufacturers in

other industries (Femia, 2005). A benchmark analysis of the pharmaceutical industry was

performed for St. Louis University's Pharmaceutical Research Manufacturing Project that was

launched in 2002. Data were collected from 19 pharmaceutical manufacturers and 42 facilities



and is summarized in a 462 page report (Macher, 2006). As can be seen in Figure 1 the average

monthly yield reported by the respondents varied between 20 to 80%, and the reported number of

product or process deviations per compound varied between 0 and 150. It is clear that there is

substantial room for improvement of pharmaceutical manufacturing processes.

Figure 1 Actual Yield and Process Deviations Reported by Pharmaceutical Companies
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Source: St. Louis University's Pharmaceutical Research Manufacturing Project (Macher, 2006)

1.2.4. Why Change is Necessary

The profit margins in the pharmaceutical industry have historically been so high that

there has been little incentive to invest in improving the manufacturing process. For example, in

2001, the pretax margins at the top 10 global pharmaceutical companies averaged over 26%

(Sellars, 2002). However, the pharmaceutical industry is now facing increasing pressure to

reduce costs. Neway (2003) describes these pressures as including:

Skyrocketing R&D costs: The pharmaceutical industry is one of the most research intensive

industries in the world. Pharmaceutical industries invest approximately 3-4 times more into

R&D, relative to sales, than traditional manufacturing companies (Cohen, 2005; NSF,2003). The

cost to develop a new drug has increased substantially over the past 30 years, from $138 M in

1975 to $802 M in 2001 (PhRMA Industry Profile, 2008). The increased cost of developing a



new drug can be attributed to multiple factors, including higher failure rates, longer and larger

clinical trials, and a shift towards development of more complex drugs. However, despite the

increased spending on R&D, approvals of new innovative drugs (new molecular entities) have

decreased dramatically. Figure2 shows the trends in pharmaceutical productivity from 1970 to

2005.

Figure 2 R&D Productivity in Pharmaceutical Industry

Source: NME approval data adapted from FDA Center for Drug Evaluation and Research; R&D spending

data adapted from PhRMA Industry Profile, 2008.

Decreased periods ofpatent exclusivity: In June 2003 President Bush signed a bill that limited

patent extensions to pharmaceutical companies. The "Greater Access to Affordable

Pharmaceuticals Act" limits the number of 30-month patent extensions that pharmaceutical

companies can receive to only 1 (U.S. Congress, 2003). This closes a loophole in the 1984

Hatch-Waxman Act that allowed companies to receive multiple extensions to their initial

pharmaceutical patents.

Increasing generics market: Patents of several blockbuster drugs have recently lost, or will soon

lose, patent protection. Between 2007 and 2012 more than three dozen drugs, equating to

combined revenues of over $67 billion, will lose patent protection (Martinez, 2007). When a

drug comes off patent, generic manufacturers can produce the drug at a fraction of the cost. In



general, once the first generic enters the market the price for the drug falls by 20%, and then can

drop by as much as 90% as other generics enter the market (Nocera, 2006).

The industry is finally realizing that in order to remain competitive, they need to start

investing in their manufacturing process. They can no longer afford to lose revenue from their

products because of long start-up and scale-up times, lost batches, process instability, and

product recalls. Ajaz Hussain, the Deputy Director of the FDA's Office of Pharmaceutical

Science, states that "In the current state, innovation and continuous improvement in

pharmaceutical manufacturing is discouraged to a large extent by uncertainty"(Hussain, 2005).

Janet Woodcock MD, the Chief Medical Officer of the FDA, has said "What we need to do is to

start modernizing everything. That's the way out" (Woodcock, 2007).

1.3. PAT Initiative

In August 2002, recognizing the need to improve the manufacturing processes in the

pharmaceutical industry, the FDA launched a new initiative entitled "Pharma cGMP' s for the

21st Century: A Risk-Based Approach." The goal of this initiative is to enhance and modernize

the regulation of pharmaceutical manufacturing and product quality. The FDA also hoped that

the initiative would help change the perception that the FDA is resistant to change and hence

stifles innovation and continuous improvement. The overall theme is that the FDA is proposing a

move from the current state of quality by testing, to a "desired state" of quality by design. In the

words of W. Edwards Deming, "Quality comes not from inspection, but from improvement of

the process".

Quality-by-design is defined as a "systematic, scientific, risk-based, holistic and

proactive approach to pharmaceutical development" (Winkle, 2007). It begins with predefined

objectives and emphasizes product and process understanding. Product and process performance

characteristics are scientifically designed to meet specific objectives, not derived from

performance of test batches. During QbD development of a product, the development team

seeks to determine the multivariate relationships among material, manufacturing process, and

environmental variables that affect the product quality. The increased process knowledge allows

for the scientists to define the "design space", i.e. ranges within which the process will

consistently ensure a predefined quality at the end of the process. Once the relationship between



process variables and product quality is understood, the product quality can be controlled in real-

time by adjusting process variables. This will allow for the elimination of offline testing and real-

time release will be possible.

Table 1 highlights the differences between the current state of pharmaceutical manufacturing and

the desired state once Quality-by-Design has been implemented.

Table 1 Comparison of Current state and Desired State

Aspects Current QbD

Pharmaceutical Empirical, Random, Focus on Systematic, Multivariate
Development optimization experiments, Focus on control

strategy and robustness

Manufacturing Fixed Adjustable within design space,
Process supported by robust quality systems

Process Control Some in-process testing PAT utilized, Process operations
tracked and trended

Product Primary means of quality Part of the overall quality control
Specification control, based on batch data strategy, based on desired product

performance

Control Strategy By testing and inspection Risk-based control strategy, real-
time release

Source: Presentation by Helen Winkle (2007)

1.3.1. PAT Framework

Process Analytical Technology (PAT) has been defined by the FDA as a system to

design, analyze, and control pharmaceutical manufacturing processes through the measurement

of critical process parameters and quality attributes (FDA, 2004). PAT is a tool that can be used

to achieve quality by design, and is an "enabler of the real goal: the understanding, variation

reduction, and control of critical process parameters in the business context of maximizing

value" (McCormick, 2006).

The pharmaceutical community was asked to take on responsibility of drafting a guide to

assist companies with the implementation of QbD. In 2004, the Office of Pharmaceutical Science

in the Center for Drug Evaluation and Research (CDER) issued the "Guidance for Industry PAT-

A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality



Assurance." (FDA, 2004) This guidance was intended to create a framework that would assist

industry with practical application of PAT in order to achieve quality-by-design. The guidance

was not intended to be mandating, but rather attempt to create a regulatory environment that

fosters innovation. The framework consists of four main components- multivariate tools, process

analyzers, process control tools, and knowledge management IT systems. Implementation of

these tools will allow scientists and engineers to develop the scientific and mechanistic basis of

process understanding, and move away from the current method of purely correlative models.

Multivariate tools for design, data acquisition and analysis enable the identification and

evaluation of product and process variables that may be critical to product quality and

performance. Instead of performing traditional one-factor-at-a-time experiments, multivariate

methods allow for efficient identification of critical interactions of product and process variables.

These multivariate methods include statistical design of experiments (DoE), response surface

methodologies, and multilinear regression analysis.

Process analyzers measure the physical, chemical, and biological properties of materials. Data

collection using online or inline process analyzers can be nondestructive, require minimal sample

preparation, and have rapid or real-time response when compared to traditional methods.

Although many forms of process analyzer exist, the most common forms of process analyzers

are Near Infrared Spectroscopy, X-ray diffraction, FT-IR Process Analyzers, Particle Size

Analyzers, and Light-Induced Fluorescence. The process analyzers can either be implemented at-

line, online, inline, or offline:

At line: sample removed from process stream and then analyzed in close proximity to

process equipment

Online: sample diverted from the process, analyzed, and returned to process stream

Inline: sample is not removed from process stream and can be invasive or noninvasive

Offline: sample is removed, isolated, and analyzed away from process in laboratory

Process control tools are used to monitor and actively manipulate a process to ensure control.

Process analyzers can be integrated into a process control application to measure critical process



parameters and product attributes and adjust accordingly in real-time in order to achieve desired

in-process and finished quality specifications.

Continuous improvement and knowledge management tools - Integration of PAT (process

analyzers, multivariate analysis, and process control tools) results in the generation of a large

volume of data which must be converted from data to knowledge. These tools collect, analyze

and present data in a manner that can be easily understood by process operators and engineers.

1.3.2. Benefits of QbD and PAT

The obvious main benefit of PAT is the increase in process understanding and control.

However, strategic implementation of QbD and PAT can also offer substantial benefits to a

company in terms of reduced operating and quality costs. Although difficult to quantify how

these translate into cost savings, a recent estimate of potential worldwide cost savings from

efficiency improvements is suggested to be as high as $90 billion (Benson, 2004).

* Reduced Cost of Quality

As mentioned above, average batch failure rates in the pharmaceutical industry are

around 15% (2.5 sigma). Product quality inspections bring the defect rate of product introduced

to the market to approximately .003% (5.5 sigma). The cost of these quality programs is

significant and therefore brings the cost of quality, on average, to 25% of sales (Schneider,

2006). The cost of quality is significant due to a multitude of variables including time-based

endpoints, process variability, raw material variability, sampling time, sampling errors, and

sample preparation (Scott, 2008). G.K. Raju, director of the MIT Pharma Manufacturing

Initiative, has said that manufacturers often spend more time on quality control testing than on

actual manufacturing (Weschler, 2002). Improved process understanding and control can greatly

reduce this cost of quality by reducing the rates of defects in the process. One estimate is that the

potential savings from PAT-driven reduced cost of quality will be over $1 billion for each of the

top 10 pharmaceutical companies (Schneider, 2006).



* Decreased cycle time:

Replacement of offline testing with online methods would reduce production cycle time

by eliminating the long lag period between steps waiting for offline analytical results. It has been

reported that only 3 days, out of an average 35 day cycle time, consist of value-added activities

(Dean, 2001). Another report estimated that only about 2% of a typical quality control check

time is spent testing the material (Raju, 2001). A cycle time reduction to the industry best

practice of six days would decrease inventory in the system and save inventory carrying costs,

which average $76 million for each of the top ten pharmaceutical companies (Schneider, 2006).

* Enabler of Continuous Manufacturing

Additionally, this move from reliance on end-point testing to real-time analysis is a

necessary pre-cursor for achieving continuous manufacturing, a goal that Novartis is

aggressively pursuing. In continuous manufacturing, the process is run start to finish with no

intermediate stops between process steps. Continuous manufacturing requires significantly less

square footage and equipment to produce the same volume of product, which translates to

substantial CAPEX savings. It has been proposed that continuous manufacturing will reduce the

building volumes from new facilities by up to 65% from current levels (Crosby, 2008). It is

estimated that even a 50% reduction in CAPEX at each of the top ten pharmaceutical companies

would translate to $0.8-1.6 billion per year (Schneider, 2006). Continuous manufacturing also

allows for enhanced manufacturing flexibility to respond to rapidly evolving market needs.

* Decreased process development time

For new products, a benefit of PAT is the ability to use multivariate methods and online

analyzers to reduce the time required to scale-up a process and perform validation. This

translates to decreased time to market which is highly valuable in the competitive pharmaceutical

industry.

* Increased ability to make process change

A flexible process will reduce the number of manufacturing supplements required for

post market changes, as companies will begin to rely on process and risk understanding. This



will remove one of the hurdles that companies faced when trying to improve their manufacturing

processes.

* Decreased regulatory agency burden

Additionally, implementation of QbD and PAT will benefit the FDA and other regulatory

agencies as the time spent on reviewing applications and supplements will decrease and therefore

free up resources. Nasr from the FDA has said that "Resource requirements will go down

because the QbD approach and regulatory flexibility will result in a reduction in the number of

supplements. So the resources that we currently use to review supplements will be available for

new applications" (McCormick, 2006).

1.4. Levels of QbD Implementation

I propose a 5 level classification system of Quality-by-Design implementation. This

classification is my own and most likely not used in other sources. However, for the remainder of

my thesis I will refer to the five levels of QbD implementation as proposed and described below:

Level 1. Online monitoring of process data using online sensors. This is typically

referring to process inputs (or control variables), such as temperature, pressure, and

speed.

Level 2. Replacing offline quality measurement with online measurement using process

analyzers that measure product quality in real time. Implementation of this step is

independent of step 1. Therefore, you can have online process analyzers that measure

product quality without monitoring the input process parameters online.

Level 3. Understanding relationship of input parameters on output parameters by

performing DoE at the laboratory scale, pilot scale, and/or full scale. This step is

necessary in order to establish a design space in which the process can operate robustly

and consistently produce quality product. This step can be performed independent of step

1 and 2, however it is necessary to use either online or offline process analyzers to

measure the product quality.



Level 4. Incorporating online process data into multi-variate model that will predict

product quality. Once this is model is validated, the majority of product testing (either

online or offline) can be eliminated. The multi-variate model incorporates input variables

from the very beginning of the process (i.e. crude material) to the end. Therefore,

incoming raw material specifications and process data are used to predict the final

product quality for each step. The product quality data are then carried into the

subsequent step as an input variable to the model. Achieving this level of

implementation is highly dependent on steps 1 as the online data are needed for

incorporation into the model. Additionally, if the multi-variate model is going to be used

to trend a process and real-time, then an understanding of acceptable operating ranges for

the key variables must be determined through DoE (step 3). Achieving real-time release

requires extensive model validation and monitoring of all measurement devices.

Level 5. Controlling process in real-time using MVDA and feed-back loops. This is the

ultimate goal of QbD as it minimizes deviations by employing immediate corrective

action when a process in abnormal. Achieving this level is dependent on steps 1, 3, and

4. In order to implement feedback control loops, an in-depth understanding of the

relationship between input and output variables must first be determined through DoE.

1.5. Literature search

1.5.1. Demonstrated use in other industries

Process analysis, monitoring, and control have been in use for over 40 years in several

industries including the petrochemical, polymer, and chemical industries. These industries all

followed the path that the pharmaceutical industry is starting out on now. They saw the need for

real-time quality measurements and developed real-time analyzers. The Universal Oil Products

first analytical and control instrument group was formed in 1959, and given the mission of

developing on-line analyzers (Kourti, 2006). After the industry became capable of collecting

real-time measurements of quality properties and of other process variables, automatic process

control techniques were developed. In 1961, a paper was published in Applied Statistics

suggesting that computers could allow for multivariate analysis of variables in industrial



applications (Thomas, 1961). However, it wasn't until about 15 years ago that industries really

started to incorporate multivariate statistical analysis to monitor and trend the process

performance in real-time. Over the last 15 years, several industries have managed to improve

process performance and reduce cost through multi-variate-statistical analysis.

1.5.2. Pharmaceutical industry

The pharmaceutical industry lags far behind these other industries in implementing PAT

and QbD principles to production. A Wall Street Journal article (Aboud, 2003) quotes that "the

pharmaceutical industry has a little secret: Even as it invents futuristic new drugs, its

manufacturing technology lag far behind those of potato-chip and laundry-soap makers".

The industry understanding of PAT is quite varied. Some view it as only a way to measure

quality by replacing offline analysis with online analysis and many companies are just focusing

on applications of technology such as NIR. A literature review of over 80 articles focused on

applications of process analyzers in the pharmaceutical sector, 58 focused on the application of

NIR to processes such as granulation, compression, and milling (Scott, 2008). There is one

review article by Yu (2003) does offer a very in-depth overview of examples of PAT

applications, including sensor technologies, experimental design, and MVDA to crystallization

processes. Often literature reflects the benefits of a particular piece of technology without any

emphasis on or referral to the 'broader' goals that are at the heart of PAT initiative. It is this

narrow focus within the industry that led Ajaz S. Hussain, deputy director of the Office of

Pharmaceutical Science at the FDA to say "you've got to remember that PAT is not about just

throwing in-line sensors at a production line. It is more about understanding the sources of

product variability during production and controlling your processes in a flexible way to allow

you always to produce a quality product" (Maes, 2006).

In the summer of 2004, Pharmaceutical Technology posted a brief on-line survey to

better understand the awareness and attitudes of PAT within the pharmaceutical industry

(McCormick, 2005). The 65 responses demonstrated only a moderate understanding of PAT

concepts and implementation. Over 60% of respondents believed that PAT would yield

improvements in quality, reduce rejects and increase equipment efficiency. However, 49% said

that their organization does not have an awareness of the FDA PAT guidance or an established



PAT team. This survey clearly shows that there is a disconnect between the perceived benefits

and implementation efforts within pharmaceutical companies.

The majority of pharmaceutical companies are currently only at phase 1 or phase 2. The

focus of most PAT implementation has been on replacing offline testing with online testing (Yu,

2004; Maes, 2007). However, the future vision of the FDA quality-by-design initiative is to have

quality built into the process. The pharmaceutical industry has a long way to go before it will be

at the level achieved by many other industries. There is a need for increased communication

between the FDA to close the gap between the high-level guidance and practical, validatable

implementations in the factory.



2. Pilot QbD Project

2.1. CRADA and CMC Pilot Applicants

The FDA instituted a pilot program, managed by the Office of Drug Quality Assessment

in July 2005. Twelve large pharmaceutical companies were asked to volunteer to demonstrate

their "quality-by-design, product knowledge, and process understanding of the drug substance

and drug product in a new drug application" (FDA, 2005). The goal is for industry to help shape

the FDA guidelines on future QbD submissions. Although not part of this program, Novartis did

enter a similar CRADA with the FDA in order to demonstrate the feasibility of applying QbD

principles to a manufacturing process.

2.2. Team Composition

The project leader realized early on that it was critical to have a multi-functional team in

order to successfully implement PAT. Therefore, the team consisted of members from Research

and Development, Process Engineering, Manufacturing, IT, Quality Assurance, and Regulatory.

Additionally, outside vendors and consultants were involved with the equipment installation and

validation. There were over 30 key team members, spread across multiple sites in Switzerland,

New Jersey, and France. The team leader was the director of the Global PAT division, and

reporting directly to him were two senior scientists- one in charge of the PAT drug substance

team (Chemical Operations) and the other in charge of the PAT drug product team

(Pharmaceutical Operations). I believe that the team composition was critical to the success of

PAT implementation as it involves cross-functional teamwork and support from upper

management.

2.3. Scope

A product was chosen that was relatively simple with a well understood process. The

rational, as explained by Cook (2007), is that by starting with a simple, relatively easy to

understand process, QbD implementation is more manageable. The product had already been

approved and on the market, therefore a supplemental filing is required. The manufacturing

process involves both drug substance and drug product manufacturing. Drug substance



manufacturing, which consists of crystallization and milling, purifies the crude material and

prepares it for further processing. The Drug Product process transforms the drug substance into

the final tableted form sold to consumers. Figure 3 shows a high-level breakdown of the process.

Figure 3 Overview of Manufacturing Process

It was decided by the process team to not include crude (primary synthesis)

manufacturing into the project scope. This is because crude manufacturing is a more basic

process that is currently performed on older equipment onto which would have been difficult to

install new technologies. Therefore, only drug substance and drug product manufacturing were

included in the scope of the project (small box in Figure 3). My specific involvement included

only drug substance manufacturing (large box) and therefore I will only be discussing these

process steps throughout the thesis. However, many of the challenges of implementing QbD and

PAT to drug substance manufacturing were also present in drug product manufacturing.

Therefore, the recommendations that I make are not unique only to drug substance

manufacturing, but to the entire process.



2.4. Team Approach

The team decided to implement a seven step approach to implementing PAT:

M Step 1: Identify variables that could impact product quality though a risk-based

analysis (FMEA)

N Step 2: Understand relationship of these variables to product quality through

systematic experiments (DOE) at lab scale to define design space

M Step 3: Implement PAT in manufacturing to monitor process variables in real

time

0 Step 4: Use Multi-Variate Data Analysis to build a model that will predict

product quality based on the process data

N Step 5: Develop control strategy that will ensure consistent product quality

N Step 6: Eliminate end of product testing and have real-time release of drug

product

N Step 7: Encourage continuous learning through data collection and analysis

The team approach encompasses all five QbD layers. Figure 4 outlines the current control

strategy and future control strategy envisioned for intermediate and drug substance

manufacturing. In order to achieve the future control strategy, supporting PAT technologies

need to be implemented. Additionally, in order to have continuous process verification and

continuous release, it is necessary to have a well characterized process and defined design space.

Therefore, for each process step an FMEA and design of experiment must be performed at the

laboratory and pilot scales in order to propose the acceptable operating parameters at the

commercial scale.



Figure 4 Overview of Manufacturing Control Strategy
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In order to achieve the ultimate goal of continuous process verification, Levels 1-5 of
QbD need to be implemented. The first step required the added capability for the process data to
be recorded electronically and stored in a database. Although not a simple task to move a plant

from being manual to automated and to connect all process data in a process historian database,
this was not within the scope of my internship or thesis as it was completed before I arrived. In
the following chapters, I will however discuss the specific procedures and challenges faced by
Novartis in attempting to implement levels 2-4 of QbD.



3. Level 2 Implementation - NIR

3.1. Current Process

3.1.1. Process Description

The intermediate product is produced in Switzerland at a Multi-Purpose Production

facility. The purpose of this step is to purify the crude material using an activated charcoal

treatment. The IP production consists of four primary unit operations: Charcoal treatment,

recrystallization, centrifugation, and drying. Each unit operation is further broken down into a

series of steps, which are described in Figure 5.

Figure 5 Overview of Intermediate Production Process
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3.1.2. Control strategy

The process, before implementation of PAT, was controlled in a rather manual

fashion. The equipment that was used was the same that had been used when the plant was

built in the early 1960's. The current control strategy is to set a parameter, such as

temperature, through manual valve adjustments. The process parameters are manually

recorded in a batch record. At the end of the batch, a printout of the process trends is



obtained and analyzed to ensure no process deviations occurred during the process.

However, no electronic data are recorded or stored and therefore cannot be retrieved at a

later time. Parameters that are deemed "quality critical" in the initial filing and therefore

necessary to control throughout the process include pressure, temperature, stir speed, and

amount of raw materials added.

3.1.3. Testing

The only IPC that occurs during for drug substance manufacturing is the loss on

drying test at the end of the cycle. It specifies that the loss on drying at the end of the

drying cycle must be below 0.2%. Loss on drying is a measurement of how much liquid

(water+solvents) evaporation there is when the sample is dried for a set amount of time in

a dryer. The equation for calculating LOD is: LOD= (weight before-weight after)/ (weight

before). LOD does not measure the actual water and ethanol concentrations; it is only an

indicator of the actual concentrations. Previous studies had shown that when the LOD was

less than 0.2%, that the actual water and solvent concentrations were within the acceptable

product quality limits. The drying process endpoint is time-based. Only after ten hours is

a sample withdrawn from the dryer and analyzed. If the LOD is within specification then

the dryer is emptied into containers and shipped to the milling facility. As only one sample

is taken, the water and solvent evaporation trend is not measured or known during the

drying process. At the end of the drying process, a sample is taken and tested for product

impurities and actual solvent concentration using Karl Fischer and HPLC.

3.2. NIR Description

3.2.1. Technology

Near-infrared spectroscopy (NIR) instruments are some of the most widely utilized

Process Analytical Technologies in pharmaceutical manufacturing. NIR has historically been

widely used in the laboratory as an analytical technique to identify material composition. It has

also been used to monitor particle size changes, moisture content, blending homogeneity, and

completeness of reactions. The specific application described here is to monitor liquid (water +



solvent) concentration during the drying operation. NIR can be used to measure liquid in either

the solid or the vapor phase.

The technology is based on measuring the intensity of the absorption of near infra-red

light by a sample. A near infrared light beam is pointed at the sample using a fiber optic probe

and the reflected signal is processed for reflective characteristics. The NIR absorption spectrum

is due to the vibrations that each functional group generates in the NIR spectrum (780-2500 nm).

NIR offers a distinct advantage over other spectroscopy techniques in that it allows analytical

measurements to be made without the need to perform any sample preparation and is non-

invasive, and therefore is ideal for on-line and at-line measurements. The apparatus contains a

probe that is connected to a spectrometer. The spectrometer transforms the raw spectral data

using chemometrics (Fourier Transform) to identify the exact composition of the raw material.

Then, a model is built that predicts the water and solvent concentration based on the

transformation of the raw spectral data. A paper by Reich (2005) explains the technology in great

detail, including the basic principles, theory, and practice of chemometric data processing.

For this process, the NIR probe was installed at the bottom of a spherical dryer for

measurement of liquid in the bulk. The probe is not in direct contact with the material, but

instead the infrared light beam shines through a sight glass. In order to prevent build-up of

material onto the sight glass, an N2 purge was implemented to remove material from the sight

glass after every spectral measurement.

3.2.2. Benefits

This technology offers substantial benefits both in terms of quality, safety, and cost. On-

line dryer monitoring has the potential to eliminate the need for multiple in-process sampling

during drying because the end of drying can be determined automatically through the online

analysis. Because the drying endpoint is determined through online measurements, the need for

offline sampling is eliminated. This improves quality because the potential for over-drying and

under-drying is minimized. Over-drying can cause loss of desired hydrate forms, a change in

polymorphic form, as well as processing complications such as fracturing of crystals leading to

smaller-than-desired particle sizes (Parris, 2005). Under-drying can result in an excess of solvent

that could have potential safety implications for the patient. Manually collected samples are



susceptible to changes in physical conditions like humidity and segregation, which will lead to

inaccurate moisture analysis.

Often, the vapors are hazardous and physical handling of wet samples can raise safety

and hygiene issues for the operators. Secondly, when the sample is taken at the Novartis facility,

it typically takes between 30-60 minutes to run the sample to the lab and analyze it using the

LOD method. Since the drying operation is not completed until the offline analysis results show

that the solvents are below the acceptable limit, processing delays occur as operators wait for the

results from the offline analysis.

Online monitoring significantly reduces the overall required testing time. Han and

Faulkner (1996) reported that the traditional method required 15 minutes to measure moisture

content (LOD) and an additional 30 minutes for the analysis of the active ingredient. However,

the NIR reflectance method required less than a minute for moisture content, identification, and

assay analysis. This reduced time translates to direct cost savings through decreased cycle time

and expensive laboratory analysis.

3.3. Use of NIR by other companies

Inline or online NIR has been implemented by many companies for use in several process

steps including granulation, blending, drying, crystallization, and compression. NIR can be used

to analyze a multitude of attributes such as moisture content, particle size, blend homogeneity,

and chemical composition.

A specific example of a company using NIR to monitor drying operations is

GlaxoSmithKline (Parris, 2005). They used NIR to monitor the composition of the vapor-phase

gases that are drawn from the dryer. The product was wetted with two solvents, dichloromethane

and n-heptane. They used Simca P+ software to perform the following data analysis: 1) Correct

spectra for baseline shift using 1st order derivatives, 2) Apply principle component analysis

(PCA) to reduce dimensionality of dataset, 3) Plot the scores of first principle component to

create the overall-all drying profile over time. After successfully monitoring several batches,

GSK realized that the drying was actually completed in less than six hours, significantly less

time than the 12 hours that they had previously been drying the product. GSK was able to

eliminate sampling for off-line testing and rely only on the online data. Additionally, the process

engineers were able to see the immediate effects of agitation on the drying process. This



increased process knowledge provided by the online data enabled them to optimize the drying

process.

3.4. Validation

Much literature exists on what key elements need to be considered when validating NIR

spectroscopy for PAT application. An article by Scott and Wilcock (2008) summarizes in great

detail the findings from 5 different papers relating to NIR validation. In the following section,

the specific approach that Novartis used to validate the online NIR method is discussed.

3.4.1. Validation Procedure

The installation and subsequent validation of the NIR probe into the dryer was a

collaboration between the process engineers, manufacturing personnel, and the equipment

vendors. In order to replace offline testing with the online method, it had to be proven that the

online method could consistently and reliably measure both the water concentration and the

solvent concentration during the drying process. In order to do this, a cross-validation between

the online and offline method had to be performed. There were a total of 11 dryer batches. It was

decided to use the first eight batches to calibrate the model, and the last three batches to validate

the model. The project team decided to take a three step approach to accomplish the validation:

1. Acquisition of calibration samples

In order to calibrate the model, multiple offline samples were collected during the

entire drying process. Samples were collected before drying, and at 30 minutes, 1 hour,

1.5 hours, 2 hours, 5 hours, and 10 hours. Because samples were to be measured in the

probe manufacturer's laboratory, the samples were held in sealed containers until the

validation runs were completed. All samples were analyzed at the same time, so some

samples were held for up to three weeks before being measured. The samples were then

measured for water and ethanol concentration using the approved offline HPLC and gas

chromatography methods.



2. Model Development

The raw NIR data had to be converted into a model that would predict both water

and solvent concentration. To do this, the equipment vendor used multiple calibration

standards to develop a model. This model was then used to predict water and solvent

concentration based on the raw NIR data obtained during the calibration runs.

3. Model Validation

The validation was to be deemed successful if the offline and online measurement

were statistically equivalent. Determining how to set the acceptance criteria proved to be

rather challenging as there was not a standard protocol for cross-validating the method.

The sensitivity of both the online and offline methods was taken into account. We

referred to the validation protocol of the offline method to find the sensitivity of the

offline method. There is a higher sensitivity at lower solvent concentrations, meaning that

the offline method is more accurate when the solvent concentration is lower. Therefore, it

was decided to break the validation into two parts, during the initial drying when the

water and ethanol concentrations are greater than 0.7% and during the end of drying

when they are less than 0.7%. The validation would be deemed successful if the

difference between the online and offline method was less than 3x the sensitivity of the

offline test, as determined during the initial method validation test. The sensitivity of the

offline was calculated to be 0.5% when the actual concentration is greater than 0.7% and

0.1% when the actual concentration is less than 0.7%.

3.4.2. Validation Results

The method validation was initially unsuccessful for two reasons, the mechanical issues

with the probe installation and the sample storage conditions. These two issues are described in

more detail below.

Probe Installation: Careful monitoring of the raw NIR data revealed that the raw spectral

data did not change after the first 15 minutes of the drying process. Figure 6 shows a sample of

the raw data from one of the first several model calibration runs.



Figure 6 Raw NIR spectra from Drying Process
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As can be seen, the OH and H20 peaks (7000nm and 5200 nm wavelength) do not change

at all during the first 10 minutes and have disappeared completely after approximately 15

minutes, indicating that the material was dry at this time. The scientific experts knew that it was

impossible for all of the water and solvents to evaporate after such a short time. Therefore, we

had to do a root cause analysis to determine the cause for the abnormal spectral data. We realized

that the nitrogen purge on the probe was not functioning properly. Therefore, the spectrometer

was measuring the dry crust on the probe glass, instead of the bulk material inside of the dryer.

Several corrective measures were taken in order to resolve the problem. The length of each N2

flush was increased from 3 seconds to 10 seconds. The frequency was increased in order to

prevent buildup on the glass. Additionally, the pressure of the N2 line was increased. After

implementing these corrective actions, the same trend was observed in a subsequent calibration

run. It was determined that the purge line was clogged again. While the dryer was loading, back

pressure on the dryer pushes material into the flush line. We can't change the pressure

differential in the dryer, but we were able to add a constant positive pressure on the line by

having a continuous nitrogen flow during the dryer loading period. These three corrective



measures- increased flush time, increased flush pressure, and constant positive pressure on the

line during loading eliminated the line clogging.

Sample Evaporation

In order to cross-validate the online measurements with the offline measurements, offline

samples were taken periodically and stored for subsequent offline analysis as described above.

However, in order to ensure that there was no evaporation between the time the sample was

withdrawn and measured, a control experiment was performed. In this experiment, 5 different

samples were measured at various time points. The initial samples (either taken at time=0 or after

30 minutes) were taken from the dryer, sealed in containers, and stored. Each sample container

was measured 2 to 3 times between 0 and 4 weeks. It is clear that there was significant

evaporation during the holding period, as shown in Figure 7. Additionally, the rate of

evaporation was dependent on the initial water and solvent concentration of the sample. Those

with higher initial concentrations evaporated at a faster rate during the holding period than those

with lower initial concentrations.

Figure 7 Sample Container Evaporation
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This obviously affected the model calibration results since the samples were not

measured offline until completion of all validation batches (holding period ranging from 1-4

weeks). As can be seen in Figure 8, the longer the sample was held, the larger the deviation

between online (NIR) and offline (Karl-Fischer, KF) measurements. The sample from Batch #1

was held for multiple weeks, whereas the sample from Batch #4 was held for less than a week

before offline measurement. The data in Figure 8 were generated by Solvias.

Figure 8 Comparison of Online to Offline Results
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Figure 9 NIR Model Prediction for H20

The process protocol required drying for 10 hours, and so the implementation of the online probe

enabled significant cycle-time reduction. Additionally, since the process parameters such as

pressure, temperature, and agitation speed were also measured, online monitoring of water and

solvent concentration will allow for further optimization of the drying process.

3.6. Feasibility of Use in Production

The NIR is a valid tool that should be implemented in to production runs. Several factors

need to be considered when validating an online NIR method to replace an offline measurement.

First of all, the optimal position of the probe within the dryer must be researched. Measuring the

vapor concentration instead of the bulk concentration of liquid offers substantial benefits. As

seen in our case, direct contact with the API can coat or foul the probe or sight glass with a small

amount of material that is not representative of the bulk, which leads to unrepresentative results.

The solvents in the vapor phase are present in inert N2, which is not present in the spectral data.

When monitoring the bulk material, the API spectra are present which can complicate the

analysis. However, it may be desirable to monitor the bulk material for a number of reasons.

There might be scientific reason for measuring the API, for instance if the NIR method is

replacing the test to measure product quality. If measuring the solid-phase, preventative
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measures must be taken in order to ensure that the probe is indeed measuring the bulk

concentration. The probe should be placed in an area of the dryer where there is unlikely to be

material build-up. A purge should be implemented to clear the sight glass of excess material, and

finally a positive pressure should be applied at all times to the purge line to prevent material

from clogging.

When performing the cross-validation, care must be taken to ensure that there is no

evaporation of the samples taken for offline analysis. In order to prevent this, ideally the offline

analysis should be performed immediately after the sample is withdrawn from the reactor. If this

is not feasible, then it is critical that the samples be stored in airtight containers preferably in a

refrigerator. Both of these issues are discussed by Moffet et al. (2000), who noted that the sample

containers and probe installation are important factors to be considered when validating an

online NIR probe.
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4. Level 2 Implementation- Laser Diffraction Probe

4.1. Current Process

Achieving the correct particle size is critical as the particle size affects both the

manufacturing process and performance of the final product. Attributes such as ease of

compaction and drug dissolution profile are often impacted by the particle size dissolution of the

intermediate product. Therefore, the last step of Drug Substance Manufacturing is to reduce the

particle size through micronization in an opposed jet fluidized bed mill. After micronization is

complete, the batch is blended before being filled into multiple containers. The resulting X50 and

X90 values after micronization and blending must be within the specified limits of < 6 pmi and

<15 pm). X50 and X90 refer to the values at which 50% and 90%, respectively, of the particles

measured are smaller than the value. The current process control procedure is to monitor the key

operating parameters: classifier speed, feed dosing rate, and nozzle pressure continuously and

automatically during the entire milling operation. The current quality control procedure is to take

a representative sample from the containers and measure the particle size offline in a separate

laboratory facility.

4.2. PSD

4.2.1. Technology

Because of the criticality of accurately controlling the particle size, online monitoring and

control using PAT technologies is desirable. In February of 2007, a Malvern Insitec D Online

Particle Size Analyzer was installed. The motivation for installing the online PSD probe is to

replace the offline measurement method to achieve real-time release and ultimately use the

process knowledge gained through the online PSD to eliminate the PSD testing completely. The

technology applied by the Insitec Probe to measure particle size is known as laser light

diffraction. Light from a laser is shone into a cloud of particles which are suspended in a

transparent gas (true only for dry dispersion). The particles scatter the light, with smaller

particles scattering the light at wider angles than the larger particles. The scattered light is

measured by a series of photodetectors, and the diffraction pattern can be correlated to the



particle size based on light Mie' s theory of diffraction. Figure 10 shows a detailed picture of the

instrument.

Figure 10 Malvern Insitec Particle Size Analyzer

Source: Malvern User Manual

The following is a description from Malvern Instruments explaining how the system

works. The tip flute, or sampling accessory, (1) is located in the process powder stream. The

powder from the process stream is aspirated by the air venturi (2) which dilutes the powder and

cools it. The venturi effect occurs when gas is discharged through a nozzle, creating a pressure

drop that pulls the sample from the main process stream into the bypass loop. The powder exits

the venturi as a fast moving turbulent air jet which breaks up any loosely bound aggregates. The

conditioned powder is then transported to the measurement zone (3) where the laser beam is

located before being returned to the process line (4).

As can be seen in the figure above, the particles are not measured inline, but rather online

through a separate sample stream. Therefore, careful consideration must be applied in order to

ensure that the sample stream particle size distribution is representative of the overall process

stream. The air pressure differential will affect the representativeness of the bypass stream.
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The RTSizer@ software acquires data from the probe at 10 second intervals. The data are

converted to particle size information, allowing the viewing, manipulation, and reporting of

results

4.2.2. Benefits

As mentioned above, the quality testing is performed after the material has been unloaded

into containers. Therefore, there is an inherent risk involved in unloading the material before

knowing if the process specifications have been met. If the particle size is not adequate, the

material will need to be re-micronized and blended which takes a substantial amount of time.

The time required to transfer and analyze the sample in a separate facility is also time

consuming. Additionally, there are issues with knowing whether the blending was in fact

successful in homogenizing. The current testing procedure is to take a sample from each of the

containers and rely on statistics to prove that the entire batch is in fact homogenous. There is

much value, in terms of time and process knowledge, to be added by installing online PAT to

measure the particle size in real-time during the entire milling operation.

4.3. Validation

4.3.1. Scope

The scope of the method validation is limited only to the online particle sizer for use

during the micronization step in production. As the ultimate goal of the QbD initiative is to have

a broad "design space" in which the process can operate, the online method needed to be

evaluated over this entire design space region. More specifically, the online method had to be

validated for multiple process conditions within the proposed design space (i.e. different

pressures and classifier speeds). There are several limitations to validating the online analyzer for

multiple process conditions. The particle size distribution in the sample stream, and hence level

of representativeness to the bulk material, is dependent on the airflow rate. Experiments in the

production scale had shown that the optimal sample air flow rate at normal operating conditions

is 11 m3/hr. This experiment was completed by testing various airflow rates between 10.0 and

14.0 m3/hr and determining at which airflow rate the online and offline X90 values were most

comparable (airflow rates disguised by using correction factor to protect confidentiality). Since



the particle size distribution within the mill affects the distribution of the sample stream, there is

an optimal sample flow rate for each process condition in the mill. However, due to time and

capacity constraints, it is not feasible to change the airflow rate to the optimal setting for each

point within the design space. Therefore, only the airflow rate that was deemed optimal for

normal operating conditions is used for every process condition. As this effects the accuracy of

the online measurement, the scope of the validation is limited only to the region within the

design space where the predefined acceptance criteria are valid.

4.3.2. Method

Sample collection:

The newly installed sampling port on the mill allows for samples to be collected during

the mill operation and later tested offline. For each process condition, samples were collected

every 20 minutes and analyzed offline. The X90 and Xso average and standard deviation of the

steady state samples (those taken once fluidized bed level has stabilized) were calculated and

used in the statistical test for the acceptance criteria. The RTSizer® software was used to

calculate the average and standard deviation of the online Xso and X90 measurements for each

time period that corresponds to when the offline measurement was taken.

Tested parameters:

- Accuracy of online Xso0 value when compared to offline Xso

- Accuracy of online X90 value when compared to offline X9o

Test statistic:

For the validation to be deemed successful, the 95% CI for the ratio of the corrected

online value to the offline value for each condition must be entirely contained within the interval

of 0.8 to 1.2. The justification for establishing this test statistic was that the process scientists

determined that the online value could be used as an acceptable replacement to the offline value

as long as the online value was within 20% of the offline value with a 95% confidence level.

Therefore, the 95% confidence interval of the ratio of online to offline PSD was constructed for

each process condition using the formula below:



Equation 1 Statistical Test for Cross Validation of PSD methods

95 % Confidence Interval: x ± 2.201* s /I-

n

onlinei + 0.5 - r-
Where, ri - , x = = sample mean

offlinei  n

r -nx)2

s= sample standard deviation = , i=1n= sample size (12), and 2.201 = upper 97.5% quantile of the

student t distribution with 11 degrees of freedom ifa different sample size was used then this number was changed

to the correct value).

It is important to note that for the test statistic to be applicable the data must be

approximately normally distributed. A correction factor of 0.5 pm was applied to the X50 values,

based on the correlation that was calculated from previously collected data during a trial run. It is

to be expected that the online results would be slightly lower than the offline results since the

offline method utilizes a wet preparation that results in slightly larger particle sizes. Therefore, a

correction factor will most likely be applied when using an online particle analyzer, especially

for extremely small particle sizes where the impact of the wet preparation will be more

prominent.

4.3.3. Results

The conditions within the mill were not constant during the duration of each batch.

Therefore, validating the online method individually for each batch, or process condition, proved

difficult since the 10-12 samples taken during each batch were not homogenous. Instead, the data

for all samples (10-12 samples/batch x 9 batches) were grouped together and analyzed. When

the online values are plotted against the offline values for each measurement, a clear linear

relationship can be observed. Figure 11 shows the values with the corresponding regression line

equations.
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There are clearly two distinct populations in the data. The reason for these outliers is

attributed to the effect of power consumption. The power consumption within the mill is a

function of the solid load (dosing speed) within the mill, the nozzle pressure, and the classifier

speed. The power consumption level varied for each condition tested. It was determined that the

accuracy of the online particle sizer is dependent on the solid load, as measured by the power

consumption, within the mill. When the mill was not filled to an adequate level, indicated by the

power consumption being below approximately 30%, the online and offline values were

significantly different. Figure 12 shows the results of the online and offline values compared to

the power consumption within the mill.

Figure 11 Comparison of Offline to Online PSD Results
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Figure 12 Accuracy of Online Analyzer vs. Power Consumption X50
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As can be seen in the data, at low power consumptions there is significantly more

variability in the measurement accuracy. Based on this information, it was decided to analyze

the data based on power consumption instead of individual ratio for each process condition. The

test statistic holds true when all samples taken when the power consumption was greater than

30% are analyzed together. Table 2 shows the resulting test statistic results.

Table 2 Test Statistic Results

X50 X90
N= 76 76
Average= 0.955 0.952
StDev 0.072 0.185
alpha 0.05 0.05
tcrit= 1.992 1.992
Lower 95%
CI 0.938 0.909
Upper 95%
CI 0.971 0.994

Instead of using the ratio of online to offline another way to interpret the data would be to

analyze the absolute difference between the online and offline values. Given that this method

will be used in production, it is important to think of the most practical applications of the

technology. The ratios of online to offline were quite variable because of the low values being
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measured. When the particle size is only 3 jtm, a differential of only 1 pm results in a 33%

measurement error. However, from a practical standpoint, having an online measurement that is

1-2 plm higher or lower from the actual value may be insignificant. This is up to the process

experts to decide when implementing this method into production. Based on the data collected

during this experiment, the measurement error between online and offline X90 values are always

within 2 ptm if the power consumption is greater than 30%. The measurement error between

online and offline X50 values is within 0.5 pm if the power consumption is greater than 30%.

Therefore, it could be proposed to use the online X90 values as a reference for the offline values,

but to ensure that the online reading is always at least 2 pm from the upper specification limit.

Figure 13 shows the absolute difference between online and offline Xso0 and X90 values for power

consumption values greater than 30%. As can be seen in Figure 13, the absolute difference

between online and offline X50 and X90 values is less than 0.5 pm and 2.0 pm respectively

Figure 13 Offline-Online vs. Power Consumption (>30%)
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4.4. Increased Process Knowledge

The online particle size analyzer can also be used to monitor the particle size as a

function of process conditions. The increased process knowledge allows for the optimization of

the process. In this case, we were able to determine that the variability seen in the X90 values

was caused by the variability in the power consumption values. The cycle time of the process

could be reduced by increasing the feed rate at the beginning of the process.

The previous feed strategy was to start and stop the feeding based on the power

consumption of the mill. As the feed is loaded at a constant rate, the power consumption

increases. Once the power consumption reaches a maximum limit of 26%, the feeding stops. As

the level in the fluidized bed decreases, the resulting power consumption also decreases. Once

the power consumption reaches a minimum limit of 23%, the feeding is initiated again. This

process continues for the entire operation of the mill, and results in frequent starting and stopping

of the feed. The average time the feed is on and off is approximately 2.5 minutes. Figure 14

shows the relationship between power consumption, feed rate, and particle size for a typical run.

Figure 14 Process Trends during Milling

30

25

15

10

5

0

01:55:12 02:02:24 02:09:36 02:16:48 02:24:00

3.8

3.6

3.4

3.2

3 --- Dosing Speed
8 Power Consumption

2.8 -- )0

2.6

2.4

2.2

2



The range of 23-26% was implemented because historically this is what other processes

at Novartis have used. Power consumptions greater than 26% have not been tested at the

commercial scale at Novartis. However, other pharmaceutical manufacturers frequently achieve

power consumptions of greater than 50% during milling. We tested reducing the frequency of the

interruptions by increasing the operating range for the power consumption. The motivation was

to determine the feed dosing speed that would result in steady-state feed dosing and power

consumption during the milling operation.

We were able to notice that as the power consumption increased, the particle size

decreased. Given that the feed rate could be increased to fill the mill faster at the beginning of

the run, the cycle time could be reduced significantly. At a high speed rate of 55 rpm for the first

15 minutes, the power consumption quickly surpasses the critical value of 30%. By maintaining

a constant feed rate of 21 rpm, the power consumption, feed dosing, and particle size remain

relatively constant. Figure 15 shows the optimized process.

Figure 15 Optimized Milling Process
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Additionally, the particle size analyzer allowed for knowledge regarding the average

particle size throughout the entire milling process. Instead of only taking a few samples for

offline analysis once the process was completed, the online method collected between 2000-3000

samples during the duration of the process. The RTSizer® program then calculated the average

particle size distribution and displays the data in a way that is easy to interpret. Figures 16 shows

the cumulative particle size distribution for 25 batches. It is easy to see that there is one outlier

batch, however the remaining batches are relatively consistent. By analyzing orders of magnitude

more samples during the milling process, the online particle sizer allows for easier detection of

abnormal batches.

Figure 16 Cumulative Particle Size Distribution Summary
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4.5. Feasibility of Use in Production

The following action items are recommended for the future validation and

implementation of the online particle sizer into production:

1) Validation

For future validation of the online method, the magnitude of the difference between

offline and online values should be used instead of using the ratio of offline to online in the test

statistic. Instead of validating the use of the online method for each batch condition, the author

would instead propose to validate the online method for certain power consumption ranges. For

example, perform the statistical test for different power consumption ranges such as 20-25%, 25-

30%, 30-35%, 35-40%, >40%. For each condition for which the statistical test holds true, then

the online method can be used in place of the offline method. This will be easier for the

operators to use in production. If the power consumption is within a certain validated range, then

they can rely on the online method for particle size measurements.

Based on the correlations described above, the following test statistic is proposed:

Equation 2 Optimized Statistical Test for Cross-validation of PSD methods

95% Confidence Interval on the mean difference must be entirely contained within the interval of X50: -0.5

to 0.5 prm* and X90: -2 to 2 pm*.

(*If the process scientists would like to have more accuracy than these values can be changed).

95% Confidence Interval: x 2.201"* s /-

Where, ri = onlinei -offline i + CF, x = sample mean
n

s= sample standard deviation = and 2.201 = upper 97.5% quantile of the

student t distribution with 11 degrees of freedom ifa different sample size was used then this number will be

changed to the correct value), CF= correction factor=0.5 ipm for X50 and 0 for X90



The author proposes the following steps be taken in order to validate this method:

1. Perform second DoE experiment and collect offline samples at 30 minute intervals during

the batch processing

2. For each offline sample collected, calculate the corresponding online value by taking the

average online reading for + 3 minutes from time of offline sample. This time interval

was chosen because it takes approximately 3 minutes to take an offline sample.

3. Compute the difference between online and offline measurements for each sample.

4. Determine if the data range is normally distributed (prerequisite for computing

confidence interval)

5. Divide the samples into data groups based on power consumption within the mill at the

time sample was taken.

6. Run statistical test for each power consumption range using all measurements that were

taken when the power consumption was within given range.

7. If the test statistic is true, then the online method can be validated for that power

consumption range.

If it is desired to have 99% confidence instead of 95 % confidence, then the multiplier of

2.201 will need to be changed. Instead of using the 97.5% quantile of the student t distribution

with 11 degrees of freedom, the 99.5 % quantile should be used. This value can be calculated in

Excel using the following formula: = tcrit (a, v-l), where a = 0.01 and n= sample size.

Alternatively, if one would like to validate the online method for a given range of particle

sizes, the test same test statistic could be applied. However, instead of comparing values for

various power consumption ranges, the test would be performed for all values that fall within

certain online particle size ranges, i.e. X90= 2-3 gm, 3-4 inm, 4-5 pmi, etc. Once the ranges for

which the online method give accurate readings has been determined, the operator would know

that whenever the online particle size is between a certain validated range, the method is deemed

accurate.

2) Use the online PSD as a replacement for the offline method only for consistent process

conditions when there is little variability in the actual particle size in the batch



It is clear that the sampling airflow rate for the bypass stream affects the accuracy of the

online PSD analyzer and must be taken into consideration when using the instrument in

production. The sampling flowrate can be optimized for a given particle size distribution to

provide accurate online and offline measurements. However, if the particle size varies greatly

between batches, the online measurement may not be accurate. For X90 particle sizes between 3-

5 im, a sampling flowrate of 5.5 m3/hr was previously found to be the most optimal. However,

at this flowrate, the online values are higher than offline values at low particle size distributions

(X90 < 3 pm), and the online method is usually lower than offline at high particle size

distributions (X90 > 5 pm). Based on this observation, validating the online method vs. particle

size is a reasonable choice.

3) The online method can be used to monitor particle size trends during the processing of

the batch.

There is a linear relationship between the online and offline methods. This will be useful

to measure the homogeneity of the batch and potentially eliminate the blending step currently

performed at the end of the batch. This step typically requires 1-2 hours of processing time and

therefore elimination would translate into both cost and time savings. A statistical method will

need to be developed to test for homogeneity based on the online data. It could also be concluded

that as long as all online values recorded during the batch are below the critical value, then there

is no need to blend the batch after processing. The online method is also useful to monitor the

effect of certain process conditions on the particle size.



5. Level 3 Implementation - Design of Experiments

In order to understand the sources of product quality variability, the impact of each

process input must be evaluated. Those that are considered quality critical parameters can then

be further evaluated in order to identify interactions between variables and to establish

acceptable operating ranges. A systematic approach to identifying these quality critical

parameters and establishing operating ranges is to perform DoE. Through DoE, multiple

parameters can be tested simultaneously, and statistical methods can be used to identify the

parameter main effects and interactions. The goal is to achieve a mechanistic understanding of

the process, i.e. the effects of each input variable on product quality are well characterized and

understood.

5.1. Design space development

There are two main experimental objectives for which DoE can be used- screening and

optimization. Screening is used to identify main effects of key variables and to determine the

ranges that the parameters should be tested. Typically, screening designs to not require many

experiments to complete and therefore a low resolution design can be used, i.e. fewer

experiments required per variable tested. Optimization is a follow up study in which the

interaction between key variables is tested in order to identify the optimal operating conditions.

Optimization is more complex than screening, and therefore requires a higher resolution design.

There are many different experimental designs that are utilized to meet these objectives.

The three most commonly used are fractional factorial, factorial, and composite designs. Table 3

shows examples of the three designs used in DoE. The top row is an example of a full factorial

design with three factors, in which all combinations of the factors are tested. This design can test

for main effects and interactions and is therefore used in both screening and optimization. In a

fractional factorial, only a fraction of the total combinations are used. As this design has low

resolution, it is primarily utilized in screening experiments where there are a large number of

factors to screen and only main effects need to be determined. The composite design consists of

the corner factorial experiments, center point experiments, and axial (or star) experiments. These

designs are used extensively in optimization studies as quadratic terms can be estimated.

Typically, two ranges are tested for each variable, plus 1 centerpoint condition. It is desirable to



perform at least 2-3 replicates for each condition in order to estimate the measurement

variability.

Table 3 Example of Experimental Designs used in DoE

Source: Erikkson, Umetrics Textbook.

In this pilot case, extensive studies were performed at the pilot scale by the development

group (primarily Michael Juhnke) in order to gain process understanding and propose a design

space for the commercial scale based on the scale-up of the pilot scale design space established.

First, a Failure Mode and Effects Analysis (FMEA) of the milling process was conducted in

order to identify the key variables that needed to be investigated. A main effects screening

fractional factorial DoE was performed covering the 5 key variables that were identified. The

response variables for these experiments were the resulting particle size distribution, i.e. X5so and

X90. The results show that classifier acceleration had the strongest effect on particle size, and

feed rate of IP and nozzle pressure had statistically significant effects, but smaller compared to

classifier acceleration. Figure 17 shows the results of the main effects screening.
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Figure 17 Milling Screening DoE Results
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A follow up optimization DoE to test for statistically significant interactions between the

three main effects identified classifier acceleration as clearly the strongest effect for controlling

particle size. Nozzle pressure also was identified as having a strong effect on particle size,

whereas feed rate was identified as having a negligible effect.

5.2. Full Scale Design Space

5.2.1. Proposal

Based on the results of the pilot scale optimized DoE, a full scale DoE was proposed

based on scaling parameters and model prediction equations. When proposing the full scale

design space, a 25% safety factor was used in order to account for uncertainty with the accuracy

of the scaling equations. The technical boundary for the proposed design space is as follows

(Numbers disguised by applying correction factor to protect confidentiality):

* Nozzle pressure between 5.3 and 8.3 bar

* Classifier rotation speed between 1500 and 3000 rpm

* All other quality critical parameters at setpoint

ýH
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Within these process conditions, the particle size was predicted to be within the

acceptance criteria based on the results of the pilot scale data. In order to confirm the commercial

scale design space, the team statistician decided to use a central composite design with star

points, which allows the linear by linear interaction between nozzle pressure and acceleration to

be estimated. The star points for acceleration also allow for the quadratic term to be estimated,

therefore requiring five different levels (---,--,0-,0,0+,++,+++) of classifier speed to be included

in the design. Seven additional runs (those labeled information) were tested in order to

supplement the fitted equation and to help test for the edge of failure. Table 4 shows the

experimental design and purpose of each condition. The nozzle pressure and classifier

acceleration setpoints are coded to protect confidentiality.

Table 4 Description of Full-scale Experimental Design

Run
Number

1

Nozzle Classifier
pressure acceleration

Type (bar) (m2/s2)
Center 0 0

Purpose
DOE

Material
Source

Commercial

I Error estimate I Commerciall

14 Factorial Rep I - I - I Error estimate I Pilot Plant

In order for the design space confirmation to be deemed successful, all batches within the

proposed design space had to produce material within the acceptable ranges. The quality test was

performed using the normal testing procedure where one sample is collected after the milling and

blending is completed and analyzed offline.

l

I
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5.2.2. Implementation in production

The ranges that needed to be tested for the full scale design space confirmation were

outside of the previously validated ranges. Therefore, it was desirable not to use commercial

material for all batches. Instead, regular commercial batches were used to test some of the

conditions, and pilot plant material was used to test the extreme conditions. Given that each

process condition did not need to be tested for the entire time required to mill one batch, each

batch was divided into smaller batches that were each used to test one process condition. This

method can be used for milling operations where the quality parameter, particle size, can be

monitored in real-time and therefore it is not necessary to complete the entire batch at each

process condition. This minimizes risk and saves time and material. For each condition tested,

the online trends for all process parameters were monitored in order to ensure that the classifier

speed, feed dosing, and nozzle pressure were all maintained at the pre-defined setpoints.

Although the online particle size was monitored during each run, the final product quality testing

was done offline as the online method had not yet been validated at the time of the study.

5.2.3. Results

All of the conditions tested produced material with acceptable quality. However, the

confirmation was not successful as defined in the protocol as parameters that were considered to

be non-critical at the pilot scale were in fact critical at the commercial scale. Based on the data

acquired during this full-scale confirmation study, several conclusions can be drawn regarding

the operation of the milling process.

The mill must be filled to a certain level in order for the particle size to be of

acceptable quality

It was observed that if the mill was not filled, the resulting particle size and variability is

exceptionally high. Although product level within the mill cannot be directly monitored,

both power consumption and mill pressure are direct indicators of the solid load within

the mill. The baseline power consumption when the mill is empty is approximately 20%.

In order for the mill to be efficient, the power consumption must be higher than this

baseline value. When the mill is filled up to a certain level, frequent particle-particle



interaction results in reduction of the particle size. As can be seen in Figure 18, the online

particle size increased significantly when the power consumption fell to the baseline

value.

Figure 18 Power Consumption Effect on Milling Performance - 1
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The screw feed rate and resulting power consumption have a significant effect

on particle size. The particle size is not consistent when the classifier speed and

nozzle pressure are the same between two batches, if the feed rate and resulting

power consumption are different. This is shown in experiments #1 and #6. For

both batches, the classifier speed was and nozzle pressure were held constant at

the center points. However the feed rate and power consumption were different

for the two batches. In experiment #1, the feed rate was increased to 30 rpm and

the power consumption was maintained at approximately 30%. For experiment #6

the feed was held constant at 21 rpm. At this feed rate, the mill was not filled and

the power consumption remained at the baseline level of 19%. The process trends



for batch experiment #1 are shown in Figure 19. When compared to experiment

#6 (Figure 18) it is evident that the particle size varies significantly depending on

the power consumption even when the classifier speed and mill pressure are the

same.

Figure 19 Power Consumption Effect on Milling Performance -2
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Mill pressure and power consumption are directly correlated. In order to

monitor the solid load within the mill, either mill pressure or power consumption

can be monitored. The two are directly correlated, as shown in Figure 20. In the

future, the milling process could be controlled by ensuring that the power

consumption and/or mill pressure are within acceptable limits.
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Figure 20 Power Consumption vs. Mill Pressure
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5.3. Lessons learned

Parameters that are deemed insignificant at the lab or pilot scale may prove to be
significant at the commercial scale. When scaling up a process in which mechanical forces

are important, such as in milling, the results at pilot scale may not be predictive of the

commercial scale results.

* The operational limitations of the full-scale equipment must be considered when proposing
the design space. It may not be possible to operate the full-scale mill at the conditions

proposed by the development group and scaled from the pilot scale equipment. When the

mill was operated at low pressure and high classifier speed during experiment #5, the mill

nozzles clogged and the milling operation had to be stopped. The mill had to be taken apart

in order to remove the power from the piping. In order to continue operating the mill, the

pressure had to be raised to by 0.5 bar or the classifier speed reduced to the center point

value.
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5.4. Future recommendations

For this particular case, it is recommended that the design space definition should be

revised to include the process parameter solid load within the mill. As solid load cannot be

directly monitored, either the power consumption or mill pressure should be considered as these

are both direct indicators of the solid load within the mill. These two parameters, power

consumption and mill pressure, cannot be directly controlled but are directly correlated to the

screw feed rate at each process condition. Therefore, the design space should include not only

classifier speed and nozzle pressure, but feed rate as well. The power consumption or mill

pressure should be monitored for each process condition in order to define the limits in which

acceptable quality product is produced. When defining the conditions to test at large scale, the

operational limitations of the full-scale equipment must be carefully considered.

For future DoE experiments, it is advisable to only run the commercial scale DoE for

scale-dependent operations such as milling as it is difficult to predict commercial scale results

based on the pilot scale data. In order to minimize the risk of producing out-of-specification

material, it is recommended to use material that is not intended for commercial use for the DoE

study. If this is not feasible, then the commercial batches should be split into smaller sub-

batches. However, if a qualified/representative scale-down model does exist for a particular unit

operation, then the screening and follow-up DoE should be conducted at the laboratory and/or

pilot scales.
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6. Level 4 Implementation- Multi-Variate Data Analysis

6.1. Description

Historically, each process parameter has been monitored individually using statistical

process control (SPC). Control charts are generated for each critical process parameter to ensure

that the process is in control. However, with multiple variables to monitor, this process can be

cumbersome. Additionally, finding the root cause when there is an abnormal event may prove

difficult since many of the parameters are correlated. This makes it difficult to isolate and correct

the source of the problem. Combining these multiple control charts into a single chart can be

achieved by using multi-variate methods. Multi-variate analysis reduces the dimensionality of a

system by using principle component analysis. Principle component variables are calculated

using the weighted averages of each process variable. The first principal component accounts for

the largest source of variability, the second to the next largest source of variability and so on.

Typically, only 3-4 principal components are required to describe the variability in a system.

Each principle component is then plotted against each other to visualize the process performance

and detect outliers.

The second main multivariate tool most commonly used is partial least squares (PLS). It

is a regression extension of PCA, which models the association between input variables (X) and

the output variables (Y). Although PCA is sufficient for process monitoring, PLS is necessary

when building a model to predict quality based on process data. A more in-depth description of

PCA and other multi-variate methods can be found in the article by Balboni (2003) and in the

Umetrics text book (Ericsson, 2006).

Multivariate analysis can be used for three purposes: monitoring, prediction, and control:

Monitoring- Batch progress monitored in real-time allows for early fault detection.

Prediction- Build a correlative model from previous data that can predict quality of

current batch.

Control- Adjust process conditions to control the batch quality in real time.

Although prediction based on a model and control through feedback loop implementation

are required for real-time release, batch monitoring is exceptionally useful as it allows for early



fault detection and reduces the number of control charts needed to only 1. When MVDA is used

only to monitor the batch, quality testing is still required. However, once the model has been

built and qualified, offline quality testing can be removed because the model will predict and

ensure final product quality. It is important to note that an MVDA model is purely a correlative

model that utilizes previous data to predict the final product purity of the current batch. In order

to develop a mechanistic model that predicts product purity based on the process variables,

predictive equations need to be established through intensive DoE studies.

The following section explains the implementation of MVDA in order to monitor the

crystallization process and provides recommendations on how this tool can be used. There are

several different software programs that will perform this analysis. One that is widely utilized

and is relatively easy to use is Simca P+ by Umetrics. In this pilot project the Simca P+ Batch

program was used.

6.2. Implementation

6.2.1. Data filtering

The most difficult aspect of the MVDA analysis was deciding what unit operations

should be incorporated into the model. In the batch recipe, each step has an operation number

that is used for communication between the vessel and the SCADA. All unit operations can be

incorporated into the model, but non-critical parameters can complicate the model and lead to

inaccurate modeling of the process. Therefore, only parameters that are known to impact quality

should be included. A comprehensive analysis was completed for each process step in order to

determine what unit operations should and should not be included into the model. In general,

steps that involved pre-heating of the empty vessel, or chilled holds that were known not to

impact product quality were excluded. The reason for this is that often non-critical steps are

performed at different times based on equipment and operator availability. However, this does

not impact product quality and therefore does not need to be included into the model. An

example of a batch recipe for the crystallization step is shown in Table 5. It was decided that

although data for all 9 steps would be recorded, only steps 5 through 7, heating, Anti-solvent

addition, and crystallization, were selected as quality relevant operations and therefore the

MVDA analysis only included these four operations.



Table 5. Crystallization Batch Recipe Steps

Operation
Operation Name Number
Pressure Test 1

Inertization 2

Pre-heat vessel 3

Product Addition 4

Heat 5

Antisolvent Addition 6

Hold 7

Discharge to Centrifuge 8

6.2.2. Data formatting issues

Once it was decided what unit operations, or recipe numbers, should be included into the

model, the data had to be formatted in such a way that the software would be able to analyze it.

The data query and formatting was initially done manually for this proof of concept phase, but

ultimately an automatic query and formatting process will be implemented.

For batch processes, the data need to have time columns for every continuous process

variable, including controlled and uncontrolled variables. Additionally, columns need to be

created for discrete variables such as raw material product quality and/or initial conditions from

the previous step if these are to be included in the model. Each row represents a different time

point, and each batch should be listed sequentially. Figure 21 shows a picture description of the

batch data, and an example of how the data need to be formatted for each batch in order to be

imported into Simca P+ can be found in Appendix A. Additionally, in formatting the data for

Simca P+, the following points need to be considered:

* Data can be in Excel or .cvs formats

* Small amounts of missing data can be tolerated

* For each batch, data should be collected at the same timepoints.



Figure 21. Picture of MVDA data Format
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6.3. Proof of Concept

In order to prove the concept of MVDA, all parameters for each unit operation were

analyzed using Excel and Simca P+. Then, the two results were compared to ensure that any

abnormalities identified using Excel were also captured with Simca P+. Although there are a

multitude of ways in which to interpret the MVDA data, it was decided to use the scores

contribution plots. This plots the principle components as a function of time. Each new batch can

be compared to the performance of previous batches in order to easily detect when a batch is

abnormal. The analysis discussed here was done retrospectively, after all batches had been

completed. However, in future production use, the data from each batch will be monitored in

real-time during the evolution of the process.

For each unit step, the data were formatted and imported into Simca P+. Figure 22 is an

example of the principle component chart for step 5 of the crystallization process- heating. As

can be seen there are two abnormal batches, A and B, as represented by the black and the blue

lines. The score contribution plot can be opened by clicking on the time point where the

abnormality occurred. By viewing the score contribution plot for A at time = 23 minutes, shown

in Figure 21, one can quickly notice that the source of the abnormality is a drop in the jacket

temperature (T61).



Figure 22 Principle Component Chart

ProcsoParm_ChockerFule_CLEAN.M4:1_6
Scores [Comp. 11

20 30 40 0o

$7 (,smoothd hnwdhl

Figure 23 Score Contribution Chart T= 23 Minutes
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By viewing the score contribution plot for batch A at time = 46 minutes, it is clear that

the drop in jacket temperature later resulted in a drop of pressure (P10), and the two other

measured variables (T30 = vapor temperature and T10= temperature in the vessel).

Figure 24 Score Contribution Chart T=46 Minutes
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The excel charts for all four variables are shown in Appendix A.

From the individual Excel trend charts, it is difficult to determine which parameter

caused the abnormality. However, using MVDA one can easily determine that it was a drop in

the jacket temperature that caused the other variables to be abnormal. This is a very simplified

example, but it does demonstrate how MVDA can be used to simplify batch monitoring and

enable for easy, real-time root cause identification of process abnormalities. In this case, the raw

material attributes were not monitored, nor were the unit operations linked together. The ultimate

goal is to build a model that would incorporate all critical process variables and raw material

attributes, and link all unit operations to achieve a holistic view of the entire process.

O
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6.4. Future implementation issues

MVDA is a critical enabler of achieving Quality by Design. However, it requires

substantial collaboration from scientists, process engineers, IT experts, and statisticians. To fully

achieve the benefit previous unit operations must be linked to subsequent unit operation in order

to achieve "holistic" fingerprint for entire process. Ideally, the process should be in control from

the first raw material testing to the final tabletting. In order to implement MVDA into

production, the following steps need to be achieved:

1. Development of standard, simple data query method to pull relevant data from historian

and input into Simca P+.

2. Development of standard procedures for how to validate the data queries from the PI

historian, the model, and the feedback control

3. Linking process steps by importing the "scores" from each unit operation as input

variables for the following unit operation

4. Development of procedure for handling large amounts of data like raw NIR data for the

drying step. This data need to be formatted in such a way, using a program such as

Matlab or Simca P+, to convert raw data into feasible form for MVDA that won't

overwhelm the model.

5. Method for how to synchronize batches of different durations.

Novartis' experience accomplishing these tasks has demonstrated that linking these

layers is complicated. However, other industries have been successful in implementing

MVDA to achieve real-time release, and therefore the rest of the pharmaceutical industry

should be able to overcome these implementation challenges as well.



This page has been intentionally left blank



7. PAT and Lean Process Optimization

7.1. Overview

There is a link between PAT and lean optimization. With PAT, a more thorough process

understanding is achieved through the analysis of the online data. By analyzing the data collected

during a campaign, one can clearly see where process variability occurs and attempt to eliminate

the root cause. A throughput time analysis of two campaigns was completed in order to find

process inefficiencies and use lean manufacturing principles to propose an optimized process.

Implementation of lean manufacturing into pharmaceutical processes is slowly catching on, and

Lewis (14) provides a extensive summary and recommendations of lean implementation in the

pharmaceutical industry. The analysis included recording unit step times based on the existing

batch records, and observing plant operations to gain a better understanding of the work required

to complete each unit step. The following sections summarize the analysis, and offers

recommendations in order to ensure successful and sustainable implementation of the new

"leaned" process.

7.2. Analysis

Step and Batch Times

The first step in applying lean principles is to perform an internal benchmarking analysis

to identify the minimum cycle time and maximum throughput for a process. The data for this

analysis were acquired from the batch records for 25 previous batches. The start and stop times

for each unit step were recorded and subsequently the average, standard deviation, and minimum

step times were calculated. The average and standard deviation were calculated with and

without extreme outliers (more than 3a away from average) included. Figure 25 displays the data

in graphical form.



Figure 25 Average Unit Step Times
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Note: Antisolvent addition time changed to protect confidentiality.

As can be seen in Figure 25, the process variability is primarily attributed to variability in

the holding times between unit operations. The actual unit operations, such as heating or water

addition, show little to no variability between batches. This is to be expected since unit operation

times are carefully monitored and controlled by the operators. The exception to this is the

centrifugation time which is dependent on operator skill level and therefore the total

centrifugation time varies. These data demonstrate that the process is well controlled, and batch

time variability is attributed to differences in the holding times.

The average individual batch time was calculated as the elapsed time from start of liquid

loading in the first half of the batch until the discharge of the dryer is completed. The batch times

are shown in Figure 26. The batch time rages from 50 to 74 hours, with the average being 64

hours.
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Figure 26. Average Total Batch Time
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Observations:

The following observations were made while watching the operations on the plant floor

and discussing improvement options with operators and various technical experts.

1. While the production schedule is clearly defined, the detail timing of each unit operation is

not. The operators are required to complete a predetermined number of batches per week

(typically between 5-7); however, on any given day there is no visualization standard by which

to track whether or not the operations are ahead or behind schedule. With a schedule clearly

listing the responsibilities of each shift and each person, focus can be improved to ensure the

'waste time' can be removed from the process. A schedule will also provide a benefit to the

operators by helping them to keep track of the start and end times of each unit operation, and



therefore make shift changeovers easier. It will also provide a metric by which to measure the

performance in more detail.

2. The heater required to heat the filter prior to filtration is shared by three different processes.

Since these three processes require a different temperature setpoint for the heater (ranging from

50-65 C), the heater can only be used for one process at a time. The operators are trained not to

begin heating in vessel A until the filter has been preheated. The heater is often not available,

thereby causing a process delay while waiting for another filter to finish heating. This process

delay averages 3 hours, although holds as long as 15 hours were recorded during the 2007

campaigns.

3. The procedure for sampling the dryer and testing the loss on drying requires approximately 30

minutes, of which during this time the operator is fully occupied. For all batches produced, the

LOD result after 10 hours of drying was <0.04, which is well below the limit of < 0.2%.

4. The steps for which the operator must be present the entire time are the loading of vessel A,

the centrifugation (B) and the unloading of dryer (D). Therefore, with only one operator these

steps cannot be completed concurrently and must be considered when developing a detailed

operator schedule. The remaining steps require the operator to be present only for short intervals

to record data into the batch record or to progress the recipe forward.

7.3. Lean Proposal

Based on the above mentioned analysis and observations, I recommend the following proposal

be implemented:

1. Eliminate the filter pre-heating. This will eliminate the holding time between loading

and heating, as the operators will no longer have to wait for another process to be finished

using the heater before they can proceed with the heating. The average current wait time

between these two steps is currently 3 hours, so this will reduce the overall cycle time. The

current starting concentration of product in the process is approximately 17.1 % and the

temperature setpoint for filtration is 65 OC. Table 6 shows the solubility profile for the

active product between 20 and 70 oC (data generated by E. Ndzie at Novartis). The



solubility profile clearly shows that the solution is undersaturated and can be filtered at

temperatures well below 65 oC without precipitation occurring. Based on these data, the

pre-heating of the filter is not required and the filtration can proceed at room temperature.

At a minimum, the acceptable filtration range can be broadened to include the temperature

used in other processes therefore eliminating the holding time.

Table 6. Solubility vs. temperature of product in a mixture of THF/Ethanol

Temperature Solubility (mass

(0C) percentage)

70 23.8

60 21.4

50 20.2

40 18.8

30 19.1

20 19.6

2. Eliminate the end ofprocess testing for the drying step and shorten the drying time

from 10 hours to 2 hours. Data collected from the July campaign demonstrate clearly that

the LOD of the sample after 2 hours is less than <0.05 %. Table 7 shows the measured

LOD after 2 hours of drying for 8 batches. The current IPC requires that the LOD be less

than 0.2%. Based on the data presented below in Table 7, I propose that the drying time can

be reduced to 2 hours. The newly installed NIR probe that measures residual solvent

concentration during the drying cycle will provide further assurance that the drying is

completed after 2 hours.



Table 7. Loss on Drying after 2 hours drying time

Batch 2 hr LOD (-%)
A 0.04

C 0.03
B 0.04
E 0.04
F 0.04
GH 0.0413 A*

4. Implement the following drumbeat proposal. Based on the January and July

campaign data, the current average step times (with outliers eliminated) were

calculated and shown in Table 3. T1 and T2 refer to the first and second halves of

each complete batch. The second step, crystallization, is performed in two separate

vessels and therefore the batches are split into halves and combined later during the

drying step. Additionally, the average downtime between equipment uses was

calculated and the results are shown in Table 8. With these step times, it takes on

average 67 hours to complete one full batch and the overall cycle time is 40 hours.

Overall refers to the average time to complete a batch when calculated as total

batches per campaign/# of total hours. This number is lower than average batch time

due to the staggered scheduling. This equates to a throughput of approximately 4.2

batches/week. A representative time schedule for a full batch utilizing the optimized

schedule can be found in Appendix B.



Table 8. Average Process Unit Step Times

Time between Vessel A cycles
Inert and prepare
Wait before loading
Loading Vessel A
Hold time before disolution start
Heating
Chill
Hold before transfer
Transfer to crystalizer

Ethanol line wash
Filter cleaning
Wait time in crystalizer before crystalization
Heatina
Anti-solvent addition
Cooling

Hold before centrifuge
Charge to centrifuge
Centrifugation
Mother liquid and condensate discharge
First discharge to start of drying
Drying
Dryer chill and hold
Dryer discharge and condensate empty

10
0.17
1.5
4.0
1.5
1.5

0.25
0.3
0.5

1.0
2.0
1.5

0.75
5.0
4.5

9.0
6.0
7

0.1
16.5
10.5
2.5
1.5

5
0.17
1.5
4.0
1.5
1.5

0.25
0.3
0.5

1.0
2.0
1.5

0.75
5.0
4.5

5.0
6.0
7

0.1
6.5
10.5
2.5
1.5

Note: Antisolvent addition time disguised to protect confidentiality.

Table 9. Average Equipment Downtime

Vessel TI-T2 T2-T1
A 7 12
B N/A 15
C 6 19
D N/A 5

In order to optimize the cycle time, the wait times between unit operations can be

minimized. The proposed unit step times are shown in Table 10 and consequential

equipment downtimes in Table 11. The values in grey are the same as the current process,

and those in white have been changed. The justification for each change is based on the
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current process data and is described below. The times that have been changed are based

on either the minimum recorded time for that unit operation during the January and July

campaigns, or slightly greater than the minimum time recorded to allow for some

flexibility. Additionally, the equipment usage is scheduled so that downtime between

equipment uses is minimized. With this optimized schedule, one full batch can be

completed in 40 hours and the overall cycle time is 21.5 hours. This equates to a

throughput of 7.8 batches/week. This presents a 46 % overall cycle time reduction and 86%

throughput increase from the current process. A representative time schedule for a

complete batch utilizing the optimized schedule is located in Appendix B.

Table 10. Proposed process step times and justification

TI T .IT I tifiatid nn

Time between Vessel A Cycles
Inert and prepare
Wait before loading

oL ading Vessel 
A 

z.u 
Z.u Ivianimum 

acnIowa 
alunng zuw campaigns

Hold time before disolution start 0.30 I 0.30 Filter pre-heating eliminated, no need to hold

Heating 1.0 1.0 IMinimum achieved during 2007 campaigns was 0.3 hr

Chill I 0.1 I 0.1 IMinimum achieved durina 2007 campaians was 0.05 hr I

Hold before transfer
Transfer to crystalizer

Ethanol line wash
Filter cleaning
Wait time in crystalizer before crystalization
Heating
Anti-solvent addition
Cooling

Hold before centrifuge 2.0 2.0 >1 hr between use

Charge to centrifuge 5.0 5.0 Minimum achieved during 2007 campaigns was 4.15 hr

Centrifugation 6.0 6.0 Minimum achieved during 2007 campaigns was 4.75 hr

Mother liquid and condensate discharge
12 hours based on optimal schedule time, 4.5 hours is

First discharge to start of drying 12 6 minumum achieved during 2007 campaign

Drying 2 2 Justified from LOD data

Dryer chill and hold I

Dryer discharge and condensate empty 1 1 Minimum time achieved during 2007campaigns was 0.8

Note: Antisolvent addition time disguised to protect confidentiality.

-
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Table 11. Proposed equipment downtime

Vessel T1-T2 T2-T1
A 3.2 6.2
B N/A 5.5
C 3.2 6.2
D N/A 1.3

Gantt Charts for both the current and proposed processes are shown in Appendix C. A

more detailed view of the Gantt chart for the proposed process is also located in Appendix

C. The Gantt chart demonstrates that the schedule is organized in such a way that the

loading of vessel A, centrifugation, and the unloading of dryer D are never scheduled

concurrently (highlighted with diagonal pattern). Therefore, the proposed schedule should

only require one operator at all times to be dedicated to the production. The spreadsheet

used to create these Gantt Charts can easily be updated for the current production schedule

by imputing the start time of the first batch into cell B2. This tool will be made available

for the technical assistants, shift supervisors, and process managers to use.

7.4. Action Items for Implementation:

1. Batch record revision. In order to implement the broadened filtration temperature range

and shortened drying time, the batch record must be revised and approved.

2. Training- Training should be provided for all operators who will be working on this

process. They need to know why the schedule was implemented, why it is important and

how they are now expected to work differently. Additionally, they should be educated on

why it is no longer important to heat the filter to 65 oC or to dry the product for 10 hours.

3. Incentive based system- To support the implementation of the drumbeat an incentive

based system for the operators could add value, since the operators will be required to work

more efficiently and have more responsibility with the new schedule. This incentive could

be something as simple as recognition at the end of the week or, could be a small monetary

award to thank them for their hard work if they are able to maintain the drumbeat during

their shift work.



4. Clear communication channels- The schedule needs to be updated frequently and

posted where the operators can clearly see it at the operating stations for the vessel A,
centrifuge C, and dryer D. There also needs to be a logbook that the operator can write in if

any un-anticipated disturbances occur that cause the operations to fall behind schedule.

This will serve two purposes- it will ensure that the operators record all issues so that they

are not held accountable for occurrences that were unavoidable. Secondly, it will help the

process managers to determine the feasibility of the proposed drumbeat and to identify any

additional areas for future process improvements.

7.5. Impact Analysis

Implementing this optimized schedule will obviously impact the plant floor operations in

the production facility. Although the implementation will have a positive impact overall, the

operators may not be satisfied with the proposal as it will require them to be busier and have

more responsibilities. Therefore it is very important that the benefits of the implementation, both

operational and financial, be communicated clearly to the operators and shift supervisors.

7.5.1. Operations Impact:

1. Production schedule will be clearly defined for each day, enabling easier resource allocation.

It will be the responsibility of the Technical Supervisor or Process Manager to ensure that the

schedule is updated daily and posted where operators easily have access to it. If production falls

behind schedule, it will be the responsibility of the operators to clearly document the reasons for

the production delay.

2. Operators will be held accountable for the work that is required to be completed during their

respective shifts.

3. Technical experts and process managers will know the status of each batch at any given point

in time. If someone needs to be present during a specific step, the process manager will be able

to tell them exactly when the drying is expected to start.



4. The future implementation of Multi Variate Data Analysis (MVDA) analysis will be easier

with reduced process time variability. Additionally, for products for which extended hold times

can impact product quality, the product quality will be improved.

5. Operators will be able to complete the batches in 50% of the current time, therefore enabling

further capacity for other products by reducing throughput time

7.5.2. Capacity Increase

The average batch size for this product is 368 kg. For each batch produced,

approximately 7.5 m3 of reactor capacity is required (3 x 2.5 m3). Table 12 displays the most

recent production forecast and the corresponding capacity increase that results from reducing the

overall batch time from 40 hours/batch to 21.5 hours/batch.

Table 12. Production Forecast and Corresponding Capacity Requirement

Year 2008 2009

Current production forecasts (tons) 22.5 25
Batches /IP 45 50

Current Campaign time Requirement
(weeks) 10.71 11.90

Optimized Campaign time
Requirement (weeks) 5.76 6.40

Time Reduction (weeks) 4.96 5.51

Capacity Increase (m3) 0.71 0.79

Note: Production forecast data and number of batches disguised to protect confidentiality

The increased capacity impacts the total utilization. For 2009, the total production time is

estimated to be 27 weeks, of which production for this product consumes 12 weeks. With the

optimized process, the total production time for 50 batches will be reduced to 6.4 weeks. As can

be seen in Table 13 and 14, the 2009 utilization will decrease from 85% to 74% if the total

production time is reduced by 5.5 weeks.



Table 13 Current Capacity Utilization for Line 4

Action
Production
Setup/ Cleaning
Maintainance
Idle time

Total Utilization

Weeks

15
2
8

52

Percentage
52%
29%
4%

15%

850oA

Table 14. Proposed Capacity Utilization for Line 4

2009
Action Weeks Percentage
Production 41%

Setup/ Cleaning 15 29%

Maintainance 2 4%

Idle time 13.5 26%

Total Utilization 52 74o/

7.5.3. Financial Impact

There are no additional costs to implementing this proposal as there is no need for

additional personnel or equipment. When doing the financial analysis, there are two different

costs savings to consider. The first are the direct product costs savings, such as labor, energy, and

equipment depreciation, resulting from a reduced cycle time. The second, and more indirect, are

the avoided investment costs and inventory costs. By increasing the capacity of the plant, future

investments to accommodate increased demand are delayed. In-process inventory is reduced

because high-value drug intermediates are converted into final product faster. These savings can

be quite substantial; in one estimate (Lewis, 2006) decreasing the cycle time of a process from

35 days to 24 days saved 11 days of inventory which translates to cost savings of over $3

million.

Direct Cost Savings:

Direct cost savings only account for the savings in labor, energy use, and equipment

depreciation. The NPV can be calculated based on the future demand forecast, the cost per hour

2009
I



of plant operation (labor, energy use, equipment depreciation), and the total time savings per

batch. Labor is considered to be a variable cost in this analysis because it is assumed that the

operators can work on a different product when not working on this product. The time savings is

shown in Table 15 and an example of an NPV calculation of these savings is shown in Table 16.

Table 15 Time Savings

Reactor 22 12 10
Crystallizer 54 30 24
Centrifuge 16 12 4

Dryer 34 20 14
Labor 64 36 28

Energy 126 74 5

Table 16. NPV Analysis

Total Batches 45 50 55 60 65
Cost Savinas/batch

Vessel
Vessel
Vessel
Vessel

Labi
Energ

Total Savings/batch
Total Savings/year
NPV Total Savings

Total NPV savings SFr. 752,732

Note: Cost savings data removed to protect confidentiality. Disguised NPV is approximate to actual NPV.

Note: NPV calculation uses a discount rate of 7.5%

7.6. Future Recommendations

An IT infrastructure was installed that collect the data from each piece of equipment in

real time and store them on a PI historian. This enables one to measure the progress of a batch

during each unit operation, and therefore to have a better understanding of process variability.

With this information, the process managers can determine if and how the process variability can

be eliminated. There may be processes in which the hold time does affect the product quality. By

ensuring that each batch has the same intermediate hold times, product quality would be



improved. Therefore, it could be beneficial to incorporate the optimized schedule into the control

recipe. The time evolution for a "golden batch" would be stored in the recipe and if the current

batch significantly deviates from the standard then an alarm will sound. For example, if the

batch is held longer than expected between recrystallization and centrifugation, an alarm would

sound that would notify the operator. If there is an unavoidable reason why the operator cannot

proceed with the centrifugation, the recipe would require that he enter the reason (i.e.

centrifugation of previous cycle ongoing) into the SCADA. This will make it easier for

operators to follow the schedule and also allow the process managers to understand bottlenecks

in their process. These findings provide significant opportunities for optimization that do not

require many resources and offer notable time and cost savings.



8. Barriers to PAT Implementation

The challenges facing PAT implementation within the pharmaceutical industry have been

discussed frequently. In fact, Ajaz Hussein says that it won't be until the year 2020 that all

pharmaceutical companies, including the small players, are implementing PAT technologies

(McCormick, 2007). The major challenges appear to be the lack of infrastructure within the

current manufacturing facilities, perceived regulatory barriers, cost of implementation, and

industry mindset and concerns. Most of these challenges can be classified as either a strategic,

cultural, or political challenge.

8.1. Strategic Challenges

The biggest barriers to PAT implementation are reluctance to invest in manufacturing and

risk aversion. The return on investment is not immediate and often PAT implementation will be

NPV negative initially (Neway, 2003). This is because the costs of the equipment, IT hardware

and software, and personnel time required to implement PAT are substantial, and it is often hard

to quantify the benefits of PAT in financial terms.

Defining business drivers and potential benefits from a PAT initiative is essential for a

successful project. However, it is easy to make the scientific case, but much harder to make the

business case. The high cost of investment and low initial return results in a lack of senior

management support. One must stress that PAT is not just about comparison of cost of the

current laboratory method with the cost of a replacement analyzer. Much bigger gains can be

achieved through PAT, and it is necessary to clearly put into numbers how reduced cycle times

and costs add value.

Project managers and engineers are also concerned that the increased data generation and

process knowledge resulting from implementation of PAT may expose deficiencies in

manufacturing processes. Because the online data may expose flaws that were previously

unidentified, companies fear that they might face penalties from the FDA even though their

process is operating correctly and producing product of acceptable quality (Neway, 2003).



8.2. Cultural Challenges

The plant that produces the active pharmaceutical ingredient for the pilot project is over

60 years old, and many of the processes and equipment were old as well. With PAT, new

computers, probes, and IT infrastructure were installed. In this pilot case, some operators were

very excited about the new technology, but I don't think it was communicated clearly to them

what the purpose of it was. Many operators, especially the older ones, would prefer to have

manual operations over the new automated operations. One operator told me "if something goes

wrong I know how to fix it if all I have to do is turn a valve, but I don't know how to

troubleshoot a computer recipe". In general, pharmaceutical manufacturing is very resistant to

change given that it is such a highly regulated environment. Many people in manufacturing are

asking why it is necessary to update the process. It is very hard to convince someone of the

benefits of spending all of this time and money when the process is already producing acceptable

quality product. Many people have the mentality of "if it's not broke, why fix it?" It has been

built into the culture, not only at Novartis but of the pharmaceutical industry, that the current

manufacturing processes are sufficient and that all products must be extensively tested. It is

difficult to convince them otherwise. Therefore, culture change within an organization is

necessary. In order to fully realize the benefits of QbD, a focused team with representatives from

all functions impacted by PAT must be formed and dedicated to the project. Early feedback is

important, especially between development, manufacturing, and QA.

8.3. Political Challenges

A company trying to implement PAT into the organization is likely to face some

opposition, especially from the operators and from the QA functions. The plant operators might

fear that with more technology, they will be required to do more work or that their job won't be

needed. In this pilot case, the implementation of the new project required the operators to do a lot

more work- more frequent sampling to calibrate the NIR probe, entering raw material numbers

into the computer, and ensuring every 5 minutes that the N2 flush on the dryer was operating.

However, I don't believe they fully understood why they needed to be doing this extra work and

what the clear benefits were.



There is also likely to be a political issue between the quality assurance (QA) group and

the project management. The QA group will likely be reluctant to eliminate end-of-product

testing. I noticed that scientists from the QA group were hesitant to believe that the online data

are sufficient to prove product quality even though the process experts and project managers

thought otherwise. They constantly questioned the risk of not catching a product quality

deviation by using the online method only. There may be an issue with concern for their job

security, which consists of running the labs that analyze all of the product samples.
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9. Conclusions

9.1. Current state of Pharmaceutical Industry

Most companies in the pharmaceutical industry are currently at phase 1 or 2 of

implementation. Once you have achieved level 4, the requirement to measure quality attributes

online is not needed. If you can prove that your process is in control, as defined by the design

space, measuring quality online becomes an added security measure but is not necessary. Ali

Afnan from the FDA commented that quality analysis alone is monitoring only, not control, and

thus should be considered an alternate method (Afnan, 2004). For example, with the milling

operation it is known based on lab-scale and full-scale data that only classifier speed and nozzle

pressure affect particle size. If it can be proven through online monitoring that the nozzle

pressure and classifier speed are both within the pre-defined acceptable ranges (determined

through DoE) throughout the entire process, then measuring particle size online is not necessary.

Industry and FDA must work together to progress from phase 1 to phase 3 - 5. This is being

achieved through increased partnership and more flexible validation requirements.

Replacement of offline with online product quality measurements is most beneficial

when the process is being run at the same conditions. That is, before the design space has been

developed and the process is running at the fixed process conditions. Often, online measurements

are sensitive to the process conditions. Therefore, an online probe may be accurate at normal

operating conditions, but once the process is run at a different point within the design space, the

online measurement may not be accurate. We noticed this with the online laser diffraction probe.

The settings of the probe were optimized at normal milling conditions; however when the milling

conditions changed the accuracy of the probe decreased significantly. This supports the

recommendation that online quality measurements are not necessary, and potentially not

possible, when the process is being run within a flexible design space.

Online product quality measurements do however provide engineers with the ability to

see in real-time the effect of variable process input on product quality. Therefore, online product

quality measurements are extremely beneficial during the process optimization phase in the lab

or pilot scale.



9.2. Validation of New Technologies

Standard procedures are needed. Even though many companies have achieved Phase 2 of

implementation, there is no standard procedure on how best to cross-validate the methods.

Companies are relying on internal statisticians and process experts, but the process could be

streamlined if standard procedure established. I made recommendations in sections 3 and 4

above on how these technologies could potentially be validated, but I believe that by combining

the collective knowledge of industry and the FDA a standard set of guidelines could be issued

that would make the process more efficient. In general, the questions that should be answered in

the standard procedure are:

1. How many samples need to be taken for the cross-validation?

2. What statistical test should be used?

3. Does the test need to be performed over the entire proposed design space?

There also exists much uncertainty on how to perform and confirm/validate full-scale design

space. Recommendations need to be made on what ranges should be tested at the full scale. More

specifically, the following questions need to be answered:

1. Should the ranges be based on the lab and pilot plant data, or on the actual sensitivity

of the full-scale equipment (i.e. propose 3x operating range for equipment).

2. How many points within design space need to be covered in order to validate the entire

design space?

3. How is successful validation measured? Does the exact product quality result need to

be predicted before-hand based on lab and pilot data? This is often challenging due to scale

effects. If the expected product quality for each condition can not be specified before the

validation occurs, then is a confirmation sufficient?

9.3. Challenges in Full-scale Design Space Confirmation

There exists much uncertainty on how to perform and confirm or validate the full-scale

design space. Full scale design space confirmation is necessary, but difficult. Even in cases

where scale-down model is representative, scale-factors may come into play that were not

anticipated. For steps that are equipment dependent and have many mechanical factors at play

(i.e. milling, blending), full-scale confirmation plays an even more important role. If applying



QbD to established, approved process that must be operated within the pre-validated range, this

can become difficult to do. Multiple options exist:

- Confirm design space only within narrow operating range that has already been

approved.

- Cover the full range of design space (need to plan deviations), and set material

aside until quality is proven significant. Trade-off between cost of raw materials,

and predicted accuracy of design space based on lab-scale data (probability of

OOS quality).

Development of good scale-down model is critical otherwise lab-scale DoE data are not

useful. Plus, representative scale-down modeling will pave the future path towards continuous

manufacturing. If representative scale-down model does not exist, then DoE experiments should

be done only at full scale. This will obviously come at significant cost because material will not

be able to be used if quality is not met. Additionally, it will be challenging to perform a high-

powered DoE since the number of runs will be limited by material availability and other resource

costs. However, if a representative scale-down model does not exist then performing lab scale

DoE is not a value added activity.

9.4. QbD Implementation Considerations

Allocating between products in development and products in manufacturing offers the

opportunity to balance short-term and long-term value contribution in company's product

portfolio.

In Development- As stated in the FDA PAT guideline, applying QbD is easiest and most

valuable when applied to a process that is in development. DoE studies can be performed

early on and full-scale design space confirmation can be completed during pre-validation

batches without the constraint of already approved operating ranges. However, the FDA

will need to change their stance on how validation is done. Instead of doing 3 batches at

the same conditions, multiple batches within proposed design space will need to be used

to validate the design space. QbD will also offer the ability to quickly develop the



manufacturing process, scale-up to a robust process, and perform validation. Each

successive product development effort will be more efficient as the knowledge set is built

upon past experience. Therefore, the earlier companies start implementing QbD

principles into their process development, the quicker they will see the advantages and

decrease the product development timeframe.

Approved processes: With an approved process, the 1st and 2nd layers of PAT

implementation are the easiest, i.e. replacing offline method with online method and

monitoring online data. It is more difficult to perform DoE experiments and get full

power of QbD because of the requirement to operate within previously approved process

ranges. I also believe that it is too tedious to retrospectively perform design of

experiments at the lab-scale in order to optimize the process. However, money can

be saved by replacing offline with online product quality measurements. Priority should

be placed on high-volume products or highly variable products to achieve most benefit

from PAT implementation. Gerd Fischer of Sanofi-Aventis has said that products for a

PAT pilot project should amount to more than 100 tons per year for API and more

than 1000 batches per year for drug products (Fischer, 2005).

9.5. Implementing Lean Principles

Many companies tend to fall victim to the "legacy process" mentality. That is, steps and

tests are performed even when they may not be necessary. There is always an urgency to get the

product to market, and often a similar process to one that has already been developed for an

existing product is applied to new products. This "works-before, let's do it again" attitude can

often result in sub-optimal processes. Time and cost savings can be achieved by simply revisiting

processes, performing a throughput analysis, and questioning why certain steps and tests are

performed. Cycle time variability and bottlenecks can be identified and achieved through an

analysis of historical data for each unit operation. An optimized process schedule can be

developed by determining the minimum time required for each process step. Running the process

on a "drumbeat schedule" offers significant benefits in terms of operations and cost savings.

Lewis (2006) documents the benefits of internal benchmarking and lean optimization. These

benefits do not require substantial investments in technology to achieve. Instead, only value



stream mapping, variability root-cause analysis, and other basic lean principles need to be

applied to the process.

9.6. Enabler of Continuous Manufacturing

PAT and QbD are necessary precursors and enablers of continuous manufacturing, in

which materials are modified and tested continuously to minimize delays in movement from start

to finish during the process. Continuous manufacturing offers a significant advantage as it

requires less square footage and equipment, and will greatly reduce cycle time. In order to

move to the future vision of continuous manufacturing, the next major foreseeable

technology disruption in pharmaceutical manufacturing, companies MUST implement

PAT, QbD, and Lean Manufacturing. Continuous manufacturing relies fully on online

process control and full understanding of input and output parameters. Additionally, the process

must be extremely lean and run on a drumbeat. Therefore, finding the sources of variability

within the process, eliminating them, and establishing a process drumbeat are necessary

precursors to continuous manufacturing. If this is seen as next technical disruption, companies

will need to adopt continuous manufacturing to remain competitive. Continuous manufacturing

is 10-15 years away, but the time to start incorporating PAT, QbD, and Lean into processes is

now.



Glossary
API= Active Pharmaceutical Ingredient

DoE = Design of Experiments

CDER= Center for Drug Evaluation and Research

CRADA= Cooperative Research and Development Agreement

DS= Drug substance

DP= Drug product

FDA = Food and Drug Administration

FMEA = Failure Modes and Effects Analysis

GC= Gas Chromatography

HPLC= High Pressure Liquid Chromatography

IP= Intermediate Product

IPC= In-process control

LOD= Loss on Drying

MVDA = Multivariate Data Analysis

NDA= New Drug Application

NIR = Near Infra-Red

NPV= Net present value

PCA = Principal Component Analysis

PLS = Partial Least Squares

QA = Quality Assurance

QC= Quality Control

QbD = Quality by Design

PAT = Process Analytical Technology

PSD = Particle Size Distribution

SCADA = Supervisory Control and Data Acquisition

SPC= Statistical Process Control
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Appendix A. MVDA

Example of data formatting for batch processes
:ontrolled Process Variables
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Source: Adapted from Umetrics website
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Uni-variate Excel Charts
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Vessel A Pressure
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Start
Inert and prepare 7/12/07 10:10
Wait before loading 7/12/07 10:10 7/12/07 11:40
Loading Vessel A 7/12/07 11:40 7/12/07 15:40
Hold time before heating start 7/12/07 15:40 7/12/07 17:10
Heating 7/12/07 17:10 7/12107 18:40
Chill 7/12/07 18:40 7/12/07 18:55
Hold bfore transfer '7/12/07 18:40 7/12/07 18:582
Transfer to crystalizer 7/12/07 18:58 7/12/07 19:28;
Ethanol line wash 7/12/07 19:28 7/12/07 20:28
Pitir tleanin 7/12/07 20:2 7/12DI/072:28R

me in crystalizer before crystalization'7/12/07 20:28 7/12/07 21:58
g 7/12/07 21:58 7/12/07 22:43

aent addition 7/12107 22:43 7/13/07 3:43
7/13/07 3:43 7/13/078:13i

afore centrifuge 7/13/07 8:13 7/13/07 17:13
to centrifuge 7/13/07 17:13 7/13/07 23:13

Ugation '7/13/07 17:13 7/14/07 0:13
liquid and condensate discharge 7/14/07 0:13 7/14/07 0:19
scharge to start of drying 7/13/07 18:10'7/14/07 14:09

7/14/07 14:09 7/15/07 0:39
hill and hold 7/15/07 0:39 7/15/07 3:09
lischarge and condensate empty 1 7/15/07 3:09 7/15/07 4:39
Id prepare 7 7/13/07 3:28 7/13/07 3:38,

Nait before loading 7/13/07 3:38 7/13/07 5:08
.oading Vessel A 7/13/07 5:08 7/13/07 9:08
-Iold time before disolution start 7/13/07 9:08 7/13/07 10:38
-Heating 7/13/07 10:38 7/13/07 12:08
'hill 7/13/07 12:08 7/13/07 12:23

iold bfore transfer '7/13/07 12:08 7/13/07 12:26,
Transfer to crystalizer 7/13/07 12:26 7/13/07 12:56
Ethanol line wash 7/13/07 12:56 7/13/07 13:56!

eaning 7/ 1/VI 13:005 7!/1 13 i:
ie in crystalizer before crystalization'7/13/07 13:56 7/13/07 15:26

7/13/07 15:26 7/13/07 16:11
.ent addition 7/13/07 16:11 7/13/07 21:11

7/13/07 21:11 7/14/07 1:41
fore centrifuge 7/14/07 1:41 7/14/07 6:41
to centrifuge 7/14/07 6:41 7/14/07 12:41
gation 7/14/07 6:41 7/14/07 13:41
iquid and condensate discharge 7/14/07 13:41 7/14/07 13:477
charge to start of drying 7/14/07 7:39 7/14/07 14:09-

7/14/07 14:09 7/15/07 0:39
iill and hold 7/15/07 0:39 7/15/07 3:09
scharge and condensate empty 7/15/07 3:09 7/15/07 4:39

Note: Anti-solvent addition time disguised to protect confidentiality
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Appendix B

Drumbeat schedule Current

Batch 1 T1 A

Step
Time

Finish days hours (days)

Batch
time
(hours)

Batch 1

11
I--€

0.01
0.06
0.17
0.06
0.06
0.01
0.01
0.02
0.04
0.081
0.06
0.03
0.21
0.19
0.38
0.25
0.29
0.00
0.83
0.44
0.10
0.06;
0.01
0.06
0.17
0.06
0.06
0.01
0.01
0.02
0.04
0.08
0.06
0.03
0.21
0.19
0.21
0.251
0.29
0.00
0.27
0.44
0.10
0.06

0.17
1.5C
4.0C

1.5c

0.25
0.3C
0.50
1.00
2.00
1.50
0.75
5.00
4.50
9.00
6.00
7.00
0.10

19.97
10.50
2.50
1.50

0.17
1.50
4.00
1.50
1.50
0.25
0.30
0.50
1.00
2.00
1.50
0.75
5.00
4.50
5.00
6.00
7.00
0.10
6.50

10.50
2.50
1.50

_ ___ _

- - - - - -
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Drumbeat Schedule- Optimized

Start
Batch 1 T1 A Inert and prepare

Wait before loading
Loading Vessel A
Hold time before heating start
Heating
Chill
Hold bfore transfer
Transfer to crystalizer
IEthanol line wash

eaning
ne in crystalizer before crystalization

ent addition

fore centrifuge
to centrifuge
gation
liquid and condensate discharge
;charge to start of drying

hill and hold
scharge and condensate empty

Batch 1 T2 d prepare
Wait before loading
Loading Vessel A
Hold time before disolution start
Heating
Chill
Hold bfore transfer
Transfer to crystalizer
Ethanol line wash
Filtar rlraninr

e in crystalizer before crystalization

ent addition

ore centrifuge
o centrifuge
]ation
quid and condensate discharge
charge to start of drying

ill and hold
scharge and condensate empty

Step
Time

Finish days hours (days)
7/12/07 10:10

7/12/07 10:10 7/12/07 10:10
7/12/07 10:10 7/12/07 12:10
7/12/07 12:10 7/12/07 12:28
7/12/07 12:28 7/12/07 13:28
7/12/07 13:28 7/12/07 13:34

"7/12/07 13:28 7/12/07 13:46
7/12/07 13:46 7/12/07 14:16
7/12/07 14:16 7/12/07 15:16
7/12/07 15:16 7/12/07 16:16

'7/ 12 /0 7 15:16 7/12/07 15:46
7/12/07 15:46 7/12/07 16:16
7/12/07 16:16 7/12/07 21:16
7/12/07 21:16 7/13/07 1:46

7/13/07 1:46 7/13/07 3:46
7/13/07 3:46 7/13/07 8:46

S7/13/07 3:46 7/13/07 9:46
7/13/07 9:46 7/13/07 9:52
7/13/07 4:43`7/13/07 20:00

7/13/07 20:00 7/13/07 22:00
7/13/07 22:00 7/14/07 0:00

7/14/07 0:00 7/14/07 1:00
"7/12/07 19:16
7/12/07 19:26
7/12/07 19:26
7/12/07 21:26
7/12/07 21:44
7/12/07 22:44

"7/12/07 22:44
7/12/07 23:02
7/12/07 23:32

7/13/07 0:32
S7/13/07 0:32

7/13/07 1:02
7/13/07 1:32
7/13/07 6:32

7/13/07 11:02
7/13/07 13:02

"7/13/07 13:02
7/13/07 19:02

"7/13/07 14:00
7/13/07 20:00
7/13/07 22:00

7/14/07 0:00

7/12/07 19:26'
7/12/07 19:26
7/12/07 21:26
7/12/07 21:44
7/12/07 22:44
7/12/07 22:50
7/12/07 23:02
7/12/07 23:32

7/13/07 0:32
7/13/07 1:32
7/13/07 1:02
7/13/07 1:32
7/13/07 6:32

7/13/07 11:02
7/13/07 13:02
7/13/07 18:02
7/13/07 19:02
7/13/07 19:08
7/13/07 20:00
7/13/07 22:00

7/14/07 0:00
7/14/07 1:00

0.01
0.00
0.08
0.01
0.04
0.00
0.01
0.02
0.04
0.04
0.02
0.02
0.21
0.19
0.08,
0.21
0.25
0.00
0.64
0.08
0.08
0.04
0.01
0.00
0.08
0.01
0.04
0.00
0.01
0.02
0.04
0.04
0.02
0.02
0.21
0.19
0.08
0.21
0.25
0.00
0.25
0.08
0.08
0.04

Note: Anti-solvent addition time disguised to protect confidentiality
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Batch
time
(hours)

0.17
0.00
2.00
0.30
1.00
0.1

0.30
0.50
1.00
1.00
0.50
0.50
5.00
4.50
2.00
5.00
6.00
0.10

15.27
2.00
2.00
1.00

• . .. ·, ,• m ~ a
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Appendix C.

Gantt Chart for Current Schedule.

Gantt Chart for Optimized Schedule



Gantt Chart for Optimized Schedule Magnified
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