
Diastolic Arrays: Throughput-Driven

Reconfigurable Computing

by

Myong Hyon Cho

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF
IMay 2008o3

May 2008

TECHNOLOGY

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author.
Department of Electrical Engineering and Computer Science

May 20, 2008

C ertified by
Srinivas Devadas

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by

MASSACHUSETTS INSTITUE
OF TEOHNOLOGY

JUL 0 1 2008

LIBRARIES

Arthur C. Smith
Chairman, Department Committee on Graduate Students

Diastolic Arrays: Throughput-Driven Reconfigurable

Computing

by

Myong Hyon Cho

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2008, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, we propose a new reconfigurable computer substrate: diastolic ar-
rays. Diastolic arrays are arrays of processing elements that communicate exclusively
through First-In First-Out (FIFO) queues, and provide hardware support to guar-
antee bandwidth and buffer space for all data transfers. FIFO control implies that
a module idles if its input FIFOs are empty, and stalls if its output FIFOs are full.
The timing of data transfers between processing elements in diastolic arrays is there-
fore significantly more relaxed than in systolic arrays or pipelines. All specified data
transfers are statically routed, and the routing problem to maximize average through-
put can be optimally or near-optimally solved in polynomial time by formulating it
as a maximum concurrent multicommodity flow problem and using linear program-
ming. We show that the architecture of diastolic arrays enables efficient synthesis
from high-level specifications of communicating finite state machines, providing a
high-performance, off-the-shelf computer substrate that can be easily programmed.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

First, I would like to express my sincere gratitude to Professor Srinivas Devadas for

his extraordinary guidance and support throughout this research. His great insight

has always inspired me and with his supervision I have never felt like I was lost. I also

thank Professor Edward Suh who have so kindly helped me in this research as well

as in every aspects of my graduate life. I thank Joel Emer, Vijay Ganesh, Mieszko

Lis, Michael Pellauer, Bill Thies and David Wentzlaff for helpful comments on this

research.

I also would like to thank all of Computation Structures Group people. I greatly

thank Chih-chi Cheng for his help in application experiments and Michel Kinsy for

the simulator development, and above all, for their being good friends. I send my

heartfelt gratitude to Charles O'Donnell who helped me find everything I need, Alfred

Ng and Murali Vijayaraghavan who gave me wonderful feedback, and Jaewook Lee

who has been my mentor in graduate school. I warmly thank Mieszko Lis again, this

time for greeting me everytime in Korean language.

I cannot thank enough to my parents and family who always helped me in every

possible way. I truly thank them for their encouragement and their love. I also thank

all of my friend, especially my girl friend Myunghee who has always been by my side

even from the other side of the planet. Last but not least, I would like to extend my

special gratitude to Samsung Scholarship who financially supported me during my

master study.

Contents

1 Introduction

2 Background and Related Work

2.1 Computing Substrates

2.2 Interconnection Network and Multi-commodity Flow Problem . . .

3 Motivating Applications

3.1 Computational Model

3.2 Example: H.264 Decoder

3.3 Example: Performance Modeling

3.4 Other Applications

4 Diastolic Architecture

4.1 Microarchitecture Overview

4.2 PE and PE-to-PFIFO Interface

4.3 Physical FIFOs (PFIFOs)

4.3.1 Buffer Allocation for Virtual.FIFOs

4.3.2 Scheduling for Composite-path Routes

4.3.3 Arbitration of VFIFOs with the Same Destination .

4.3.4 Data Reception Protocol

4.4 Performance Optimization: Timestamp

4.5 Diastolic Architecture Simulator

23

.. 23

.. 24

. 27

.. 28

29

. 30

. 31

. 32

. 32

. 33

. 34

. 34

.. . . . 35

. 37

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6 Experimental Results

6.1 H.264 Decoder

6.2 Processor Performance Modeling

7 Conclusion and Future Directions

5 Synthesis Flow

5.1 Synthesis Overview

39

39

Application Specification

Profiling

5.3.1 High-level Profiling

5.3.2 Bandwidth Profiling

5.3.3 Buffer Profiling

Module Grouping and Partitioning

PE Compilation

PE Placement

Routing and Buffer Allocation of Virtual FIFOs

5.7.1 Multi-commodity Flow Linear Program .

5.7.2 Buffer Allocation Linear Program

5.7.3 Alternative Routing Algorithms

Configuration

Minimizing Latency of Virtual FIFOs

: : : : I I -

List of Figures

3-1 High-level Module Description of H.264 Decoder 24

3-2 FIFO size vs. Data Throughput of H.264 Decoder Modules: Entropy

Decoder and Inter-prediction 26

4-1 A PE Architecture and a Single-path and a Composite-path Route of

a VFIFO 30

4-2 The PFIFO to PFIFO Interface 35

4-3 Optimization through Explicit Synchronization by Timestamp 37

5-1 Synthesis Flow for Diastolic Arrays 40

5-2 H.264 Specification after Module Group and Partition 44

5-3 Configuring Marking and Acknowledgement Algorithms for Composite-

path Routes 53

6-1 Throughput Demand of each VFIFO in H.264 Decoder 56

6-2 Routing results of H.264 decoder for different link bandwidths 57

6-3 Routing Results of H.264 Decoder for a Different Placement and with

the Link Bandwidth of Figure 6-2(d). 58

6-4 Buffer allocation of H.264 decoder for the route of Figure 6-2 (c). . . 59

6-5 Throughput Demand of each VFIFO in Processor Performance Modeling 60

6-6 Synthesis Result of Processor Performance Modeling 61

6-7 Average PE Substrate Cycles per System Cycle and the Maximum and

the Average Latencies for each VFIFO 61

List of Tables

3.1 Profiling Results of H.264 Decoder Modules for a Standard Input . 25

4.1 Basic Instructions for VFIFO Communication 31

5.1 Profiling for the Synthesis for Diastolic Arrays 42

6.1 Buffer Requirements for VFIFOs in H.264 Decoder 58

Chapter 1

Introduction

Many computer substrates have been proposed which share the characteristic of hav-

ing two-dimensional arrays of processing elements interconnected by a routing fabric.

Although having the same characteristic, different architectures show very different

area-power-performance tradeoffs because their processing elements and routing fab-

rics are very different to each other. At one end of the spectrum, for example, Field

Programmable Gate Arrays (FPGAs) have many tens of thousands of computing el-

ements that are single-output programmable logic functions interconnected through

configurable wires. And at the other end, recent multicore processors have multiple-

issue 64-bit processors communicating via high-speed bus interconnect. Other ar-

chitectures also use homogeneous and heterogeneous processing elements of varying

complexity connected by multifarious on-chip networks.

This thesis proposes a diastolic array system 1 which is a reconfigurable substrate

that is meant to serve as a coprocessing platform to speed up applications or parts of

applications that are throughput-sensitive and latency-tolerant. We will argue, in this

thesis, that various applications such as movie decoders and processor performance

modeling can be implemented on diastolic array systems more easily and efficiently

than on other computing substrates such as FPGAs and multicore processors.

FPGAs are popular for prototyping applications as well as low-volume production.

1The adjective diastolic is used to refer to the relaxation of the heart between muscle contractions.
Data transfers in diastolic arrays have more relaxed latency requirements than in systolic arrays,
hence the name.

They avoid the long turnaround time of an Application-Specific Integrated Circuit

(ASIC), but have 10-30X area overhead in relation to ASICs and 3-4X performance

overhead [24]. Synthesis to FPGAs is a matter of mapping combinational logic and

registers to Configurable Logic Blocks (CLBs), and then performing global routing

and detailed routing of potentially millions of wires. Routing a wire from one location

to another requires configuration of switchboxes, potentially making wires long and

slow. The sheer number of wires and the limited bandwidth of the routing channels

exacerbate the routing problem. Synthesis to FPGAs can often fail due to routing

congestion even though there are many Configuration Logic Blocks (CLBs) that are

unused.

Multicore processors such as Quadcore x86 processors and multicore digital signal

processors with hundreds of cores have entered the commercial marketplace. Pro-

cessors in multicores are typically connected via high-speed bus interconnect. These

multicores can take advantage of thread-level parallelism in web applications or data

parallelism in video applications. Processes can be compiled to run mostly inde-

pendently on the different cores and to communicate with each other through the

high-speed interconnect. However, significant programming effort is required to ex-

ploit fine-grained parallelism in these architectures.

On the other hand, diastolic arrays are coarser-grained than FPGAs and data

communication is defined through high-level design of applications resulting in a

synthesis flow that is simpler than in FPGAs. On the other hand, diastolic arrays are

finer-grained than multicores and can exploit parallelism more easily. Data transfers

in a diastolic array are all statically routed and are allowed a varying number of

clocks depending on the length of, and congestion in, the transfer path comprising

a sequence of physical FIFOs. FIFO control implies that a module idles if its input

FIFOs are empty, and stalls if its output FIFOs are full. FIFOs (that have room

for more than one value) average out data-dependent variances in each module's

execution and communication, and the performance of the design will be determined

by the module with the maximum average latency, not the worst-case input that

causes the longest latency in a module.

To be more specific, a diastolic array has programmable processing elements with a

simple ISA, running on a fast substrate clock. Diastolic array processors communicate

exclusively through First-In First-Out (FIFO) queues attached to a network 2 , and

"physical" FIFOs, the routing logic embedded in each processing element, provide

hardware support to guarantee bandwidth and buffer space for all data transfers. The

architecture of diastolic arrays enables efficient synthesis from high-level specifications

of communicating finite state machines so average throughput is maximized.

To program diastolic arrays, the designer writes high-level specifications of appli-

cations that describes FSM modules that manipulate data and which communicate

exclusively via FIFOs. During synthesis to diastolic arrays, some FSM modules are

grouped or partitioned, and modules are assigned to processing elements (placement)

while the FIFOs used for communication between modules, named "virtual" FIFOs,

are realized as a sequence of physical FIFOs (routing). Then, modules are compiled

into instructions for processing elements (compilation), and the physical FIFOs are

statically configured to implement the correct virtual FIFO routing, while guaran-

teeing bandwidth and buffer space (configuration). For a class of designs, including

acyclic stream computations, given a placement, finding routes for all the virtual

FIFOs that produce maximum throughput for the design is a maximum concurrent

multi-commodity flow problem. An optimal flow under given hardware bandwidth

constraints can be found in polynomial time using linear programming. For gen-

eral designs with tight feedback, heuristic routing methods can be used to maximize

throughput.

This thesis is structured as follows. First, Chapter 2 briefly summarizes related

work in reconfigurable logic and interconnect networks. Case studies in Chapter 3

show that averaging data-dependent variances is critical to achieve high throughput

for applications such as H.264 decoding and processor performance modeling, moti-

vating a diastolic array architecture. Rather than having pipeline registers separating

modules as in conventional designs, the use of FIFOs and associated FIFO control

2The interconnect architecture can vary; we will focus on mesh networks here. However, our
algorithms apply to general network topoligies.

can result in significantly better average-case performance, provided the FIFOs can

store a small number of intermediate values. A candidate architecture for a diastolic

array is presented in Chapter 4. The synthesis flow is presented in Chapter 5. Chap-

ter 6 provides preliminary experimental results on H.264 and processor performance

modeling benchmarks. Finally, Chapter 7 draws conclusions.

Chapter 2

Background and Related Work

2.1 Computing Substrates

There has been extensive research into computing substrates such as systolic arrays,

network-overlaid FPGAs and other FPGA variants, coarse-grained processing plat-

forms, and multicore architectures. Their characteristics and differences to diastolic

arrays will be briefly summarized in this section.

Systolic arrays [22, 23] have been used to efficiently run many regular applica-

tions such as matrix multiplication. These SIMD processors contain synchronously-

operating elements which receive and send data in a highly regular manner through a

processor array so that the application works at the slowest rate of processors. To the

contrary, the timing of data transfers in MIMD diastolic arrays is much more relaxed

than in systolic arrays due to FIFO control and the maximum average performance

is attained provided the FIFOs have enough buffer space.

Time-multiplexed and packet-switched networks have been overlaid on FPGAs

and tradeoffs in implementing these networks and the performance of these overlaid

networks has been studied [20]. Modern FPGAs such as those in the Virtex family

from Xilinx have optimized carry chains, XOR Lookup Tables, and other features.

Commercial synthesis tools can take advantage of these features to produce better

implementations. A diastolic array uses time-multiplexing in the processing elements

and interconnect and FIFOs for communication and is therefore significantly different

from FPGAs, while remaining homogeneous, which results in a very different synthesis

flow.

In addition, systems like the Xilinx CORE Generator System [38] provide param-

eterizable Intellectual Property (IP) cores for Xilinx FPGAs that are optimized for

higher density. These cores include DSP functions, memories, storage elements and

math functions. The CoWare Signal Processing Worksystem (SPW) [9] tool interfaces

with the Xilinx CORE Generator System and this integration enables custom DSP

data path development on FPGAs using SPW. Jones [19] presents a time-multiplexed

FPGA architecture for logic emulation designed to achieve maximum utilization of

silicon area for configuration information and fast mapping, with emulation rate, i.e.,

performance, being only a minor concern. High density is achieved by providing only

one physical logic element, and time-multiplexing configuration information for this

logic element to provide several virtual logic blocks. Trimberger [36] also presents

time-multiplexed FPGAs, where multiple FPGA configurations are stored in on-chip

memory. This inactive on-chip memory is distributed around the chip, and accessible

in such a way that the entire configuration of the FPGA can be changed in a single

cycle of the memory.

Regarding the granularity of processing elements, many coarse-grained reconfig-

urable logics have been proposed. MathStar's Field Programmable Object Arrays

(FPOA's) [27] are heterogeneous, medium grain, silicon object arrays with 1GHz in-

ternal clock speed and flexible I/O interconnect. FPOAs target high performance DSP

and multi-gigabit line-rate data processing and bus bridging applications. There are

six or more different types of silicon objects. Each silicon object has a loadable con-

figuration map that contains both operation and communication instructions. Other

medium or coarse grain processing platforms with a few hundred cores include the

eXtreme Processing Platform (XPP) [2] and multicore DSPs from Picochip [12] which

facilitates bus-based interconnect. MATRIX [28] is a reconfigurable chip with an ar-

ray of 8-bit processing elements working like a dynamically programmable FPGA.

The MATRIX network is a hierarchical collection of 8-bit busses as well. Diastolic

arrays use a mesh-based routing network with FIFOs rather than using bus-based

interconnect.

While diastolic arrays have some similarity to multicore architectures, they are

simpler than commercial multicores or architectures such as Raw [37] and Tilera [13],

and also target a smaller class of throughput-sensitive, latency-insensitive applica-

tions. Raw uses software to control inter-processor communication and has relatively

small FIFOs between processor tiles. Unlike Raw, diastolic arrays allow sharing of

physical FIFOs by virtual FIFOs in a non-blocking way for data transfers. Tilera

has five different networks that interconnect tiles including a static network, whereas

diastolic arrays implement a single logically static network that supports sharing of

flows, split flows and buffer allocation.

There are many other multicore systems that have been studied. TRIPS [34] uses

significantly larger cores that are 16-issue, and Asynchronous Array of simple Proces-

sors (AsAP) [40, 39] is a multicore processor for DSP applications, which primarily

targets small DSP applications with short-distance communications. AsAP consists

of a 2-D array of simple processors connected through dual-clock FIFOs in a Globally

Asynchronous Locally Synchronous (GALS) fashion. The FIFO sizes in AsAP are

appreciably smaller than those in diastolic arrays, these FIFOs are mainly used to

interface two clock domains and hide communication latencies rather than optimiz-

ing average case performance as in diastolic arrays. The main purpose of FIFOs in

diastolic arrays is not GALS, but a diastolic array implementation under GALS is

also possible.

Additionally, Synchroscalar [30] groups columns of processors into SIMD arrays,

and makes heavy use of statically configurable interconnect that can be used as a bus

or similarly to a mesh. Ambric [4] uses a circuit-switched network as opposed to a

packet-switched network, to avoid the cost of switches and buffers. Channels are set

up by configuring the network much like in a FPGA, and synthesis to the Ambric chip

is similar to FPGA synthesis, though significantly faster due to structure provided by

the designer [3]. There is a small amount of buffering in the channel, and processors

stall if they cannot write into the channel or if there is no data available.

2.2 Interconnection Network and Multi-commodity

Flow Problem

Many types of on-chip interconnect networks have been studied. Dally's virtual chan-

nels were introduced to avoid deadlock in multiprocessor interconnection networks

[10] and the use of virtual channels for flow control allocates buffer space for virtual

channels in a decoupled way from bandwidth allocation [11]. On the other hand,

diastolic arrays guarantee bandwidth as well as buffer space in a coupled way, and

implement multiple-hop, flow-controlled logical channels. Similarly, iWarp [16] could

set up fine-grained, buffered direct paths, but only in a regular systolic topology.

The multicommodity problem is a network flow problem with multiple commodi-

ties flowing through the network, with different source and sink nodes, and is solvable

in polynomial time using linear programming (LP) [8]. Multicommodity flow has been

used for global routing of wires with buffering, e.g., [33], [1]. Multicommodity flow

has also been used for physical planning on on-chip interconnect architectures (e.g.,

[6]), to optimize latencies and power consumption network-on-chip architectures (e.g.,

[17]), and to explore FPGA routing architectures (e.g., [18]). Multicommodity flow

has also been used in internet routing of packets (e.g., [29]) and wireless routing (e.g.,

[5]).
We are using multicommodity flow to determine single-path or composite-path

routes for data transfers in an on-chip interconnection network for maximum through-

put. Virtual FIFOs in diastolic arrays connect arbitrary pairs of processing elements

through physical links shared by multiple virtual FIFOs, making the routing prob-

lem with throughput constraints a typical multicommodity flow problem. The buffer

space allocation for a given route is also solvable by using LP.

Numerous approximation schemes that are faster than using LP have been devel-

oped, e.g., [26]. Also, multicommodity problems with auxiliary conditions such as

unsplittable flow or integer throughput have been studied, e.g., [21]. Our problem

usually has significantly fewer commodities and we can directly use LP rather than

approximation methods. Other algorithm variants such as unsplittable multicom-

modity problem can be used in the synthesis step (cf. Section 5.7.3). We can also

produce integral weights for the round-robin schedulers by appropriately multiplying

any non-integral solutions to stay optimal or very close to optimal.

Chapter 3

Motivating Applications

In this chapter, two motivating applications are described in a high-level computa-

tional model where all communication is via FIFOs. We examine these applications

to show that diastolic arrays can enable flexible implementation of applications and

achieve high performance.

3.1 Computational Model

A design is represented as multiple processing modules (finite state machines) con-

nected through point-to-point virtual FIFOs. Each virtual FIFO connects a fixed

source-destination pair for one input-output pair; if two modules need multiple con-

nections, each connection gets its own virtual FIFO. The virtual FIFOs provide means

for efficient communication and synchronization among processing modules with fo-

cus on average case performance. For example, FIFO-based communication naturally

supports simple synchronization through waiting on inputs and backpressure; a pro-

cessing module stalls if either an input FIFO is empty or an output FIFO is full.

Many interesting applications can be specified under this computational model;

H.264 decoder and processor performance modeling are described below in detail.

We note that this model can be generalized to "multicast" virtual FIFOs, where a

single source sends packets to multiple destinations. However, we will not describe

this generalization in this thesis.

3.2 Example: H.264 Decoder

H.264 is widely being used for video compression and there is surging demand for

efficient H.264 decoder hardware. Figure 3-1 shows a specification of H.264 decoder;

each module has data-dependent latencies. The entropy decoder module and the

inter-prediction module will be examined, which will show that an architecture which

targets average case latency has a performance benefit over a conventional pipelined

design that assumes the worst case.

Figure 3-1: High-level Module Description of H.264 Decoder

The entropy decoder module in H.264 decoder performs context-adaptive variable

length decoding (CAVLD) that uses 20 different code tables. Each image block from

the input stream requires access to different code tables and the number of table

lookups varies significantly across inputs. Because the table lookup and following

computations take up the majority of time in entropy decoding, one can assume that

the latency of the entropy decoder module is proportional to the number of table

lookups for each input (image block). In the inter-prediction module, the latency is

dominated by the number of pixels it reads from reference frames, which depends

on the input block's offset from the reference block (motion vector). Therefore, the

latency of inter-prediction module is again highly dependent on the input block and

can be different for each input.

Table 3.1 shows the profiling results of both modules for a standard input stream

'toys and calendar', illustrating the large difference between the worst-case latency

and the average-case latency.

Table 3.1: Profiling Results of H.264 Decoder Modules for a Standard Input

If each module is completely decoupled through infinite size FIFOs, the average-

case design on a diastolic array will have 40% to 80% lower latency (or higher through-

put) compared to the pipelined design that always performs the maximum number

of operations, i.e., performs 32 lookups in the entropy decoder and reads the entire

reference frame in the inter-predicton module.

In practice, however, the throughput could be lower than the average case if the

FIFO is not large enough because individual module latencies vary from input to

input. The simulation results of the throughput of each H.264 module as a function

of a FIFO buffer size are shown in Figure 3-2. The simulation assumed that all

of other modules have a fixed throughput that is the same as the target module's

average. The figure also shows the estimated throughput for a conventional pipelined

design where the maximum number of operations are performed regardless of the

input.

From the results, the performance of the single-entry FIFO design is seen to be

worse than the pipeline design for inter-prediction, and better for entropy decoder.

In the inter-prediction module, this is because a producer in the single-entry FIFO

design in this simulation stalls until a consumer finishes using it, thus serializing the

producer and the consumer. On the other hand, in the pipeline design of the inter-

Entropy Decoder Inter-prediction
#lookups Occurrence % Data read (bytes) Occurence %

0-5 43.5% 0~239 0.01%
6~11 38.6% 240~399 9.3%
12~17 14.4% 400-559 19.6%
18~23 3.0% 560~719 67.5%
24~ 0.4% 720~ 0.4%

Average 7.56 lookups Average 589.3 bytes
Maximum 32 lookups Maximum 954 bytes

prediction module, a producer is assumed to be able to write into pipeline registers at

the same cycle when a consumer is reading the register value produced in the previous

cycle. As a result, the total latency of the single-entry FIFO design could be worse

than the pipeline design if the sum of average latencies of the producer and the con-

sumer is larger than the worst-case latency of the producer and the consumer. From

Table 3.1, the average amount of data read in inter-prediction is greater than half of

the maximum amount. Therefore, the sum of average latencies of the producer and

the consumer becomes larger than the worst-case latency, and hence the performance

of the single-entry FIFO design is worse than the pipeline design. However, in the

entropy decoder module, the average number of lookups in entropy decoder is only

about 24% of the worst case, and therefore the performance of the single-entry FIFO

design is better than the pipeline design.

Note that if FIFOs have more than one entry for data, there are no such serial-

ization effects and the results clearly illustrate the benefit of the average-case design

over the pipelined design. The figure also shows that the throughput increases as

buffer size grows before saturating, which demonstrates that it is important to have

a large enough FIFO in order to achieve the best possible throughput.

Entropy decoder Inter-Prediction

MooM ..--.-----.- . .ooo.-120.0m.

.......... -. - O % ...

0M ...i.... j 2...00%.

0 20 40 60 80 100 120 140 160 180 0 200 400 00 00 1000 1200 1400

Buffer Sine (yte) Buffer Size (Byte)

-- FIFO Design -Pipeline Design - FIFODesign -Pipeline Design

Figure 3-2: FIFO size vs. Data Throughput of H.264 Decoder Modules: Entropy
Decoder and Inter-prediction

From these experiments, it is clear that the average-case design can have sub-

stantial performance benefit over a worst-case design. Unfortunately, implementing

FIFOs on conventional reconfigurable substrates such as FPGAs is very expensive

due to the routing overhead connecting FIFO buffers and logic, which results in sig-

nificant performance loss in each module. As a diastolic array has dedicated hardware

to support FIFO-based communication between computing elements, designers can

efficiently exploit the benefit of average-case design.

3.3 Example: Performance Modeling

Performance modeling estimates the performance of a hardware design so that archi-

tects can evaluate various alternatives at an early stage of the design. Fast perfor-

mance modeling is important because it enables a designer to explore more design

choices for more complex designs. Traditionally, performance modeling has been done

purely in software. However, to further speed up performance modeling, recent work

such as HAsim [32, 31] and FAST [7] use FPGAs to implement performance modeling

in hardware.

The goal of performance modeling is simply to obtain timing information of a

target system, not to faithfully emulate the target system cycle by cycle. Therefore,

a performance model may take multiple substrate clocks (FPGA or array processor

clocks) to perform a single-cycle operation on the target machine. For example, an

associative cache look-up can be implemented with a single-ported SRAM in multiple

cycles by checking one cache line in each cycle as long as the model counts one model

cycle for all these look-ups. The latency of such a cache module varies dramatically

depending on the input: one cycle if there is a hit in the first line that is checked

or many cycles to check every line in the set in the case where an access eventually

incurs a cache miss. Therefore, the performance modeling application has significant

differences between the average-case latency and the worst-case latency.

In the same way that a diastolic array improves H.264 performance, it can also

improve the performance of the performance modeling application by only performing

necessary operations with an average-case design. The architecture will be able to

achieve much greater performance than FPGAs thanks to the FIFO support for the

average-case design and its word-level granularity.

3.4 Other Applications

Another interesting application for diastolic arrays is processor emulation. Unlike per-

formance modeling, processor emulation faithfully simulates all cycle-by-cycle hard-

ware operations of target systems. Even though processor emulation needs to perform

all operations in the design, each module in a processor will have a different number

of operations to perform depending on the input. As a result, average-case design

can still be greatly beneficial.

H.264 encoder is also a very interesting application for diastolic arrays as it has

more modules and more complex data flow than H.264 decoder. Many DSP appli-

cations such as IEEE 802.11a/11g wireless LAN transmitter (cf. Section 5) are also

well-suited to the architecture for similar reasons. In general, if an application can

be modularized to a number of modules and the latency of each module significantly

varies depending on input and the average latency is much less than the worst-case la-

tency then a diastolic array can provide performance benefits over traditional systolic

arrays or pipelines.

Chapter 4

Diastolic Architecture

This chapter describes a candidate diastolic array architecture. The architecture

provides guarantees of bandwidth and buffer space for all data transfers through:

* Non-blocking, weighted round-robin transfers of packets corresponding to dif-

ferent virtual FIFOs (VFIFOs) from one physical FIFO (PFIFO) to a neighbor,

* Ratioed transfer of packets corresponding to the same VFIFO from a PFIFO

to its neighbors and in-order reception of said packets at PFIFOs to enable

composite-path data transfers where sub-paths split and reconverge (cf. Figure

4-1(b)), and

* Allocation of PFIFO space to particular VFIFO packets to avoid deadlock and

to maximize throughput.

Section 4.1 depicts the overall architecture of diastolic arrays. The processing

element and the interface between processing elements and PFIFO are described in

Section 4.2, and Section 4.3 shows how PFIFOs work and communicate with other

PFIFOs.

Additionally, Section 4.4 describes optional hardware support for data synchro-

nization through FIFO connections, using a notion of system time. It should be noted

that system time is only for performance optimization and not essential for through-

put guarantee and deadlock avoidance. Section 4.5 briefly introduces the diastolic

architecture simulator.

A single-path VFIFO A composite-path VFIFO

(a) Processing Element (PE) (b) A VFIFO mapped on PFIFOs

Figure 4-1: A PE Architecture and a Single-path and a Composite-path Route of a
VFIFO

4.1 Microarchitecture Overview

A diastolic array realizes the high-level computation model with a grid of processing

elements (PEs) each with an attached PFIFO as shown in Figure 4-1 (a). In this archi-

tecture, all PEs operate synchronously using a single global substrate clock. PFIFOs

are connected to neighboring PFIFOs and support many VFIFOs with synchroniza-

tion mechanisms; from the PE's perspective, PFIFOs appear as many VFIFOs. In

our candidate architecture, PEs are simple MIPS-like processors and the PFIFO net-

work consists of 4 nearest-neighbor connections. In this architecture, each PFIFO

can take up to 5 inputs (4 neighbors and the PE) and produce up to 5 outputs in

each clock cycle. PFIFOs in the periphery of the PE grid interface with I/O pads in

one direction. I/O logic will attach VFIFO ID's to packets if they are not given by

the external source so they can be routed to the appropriate destination.

Figure 4-1 (b) illustrates how a VFIFO is implemented with multiple PFIFOs - a

single-path and a composite-path VFIFO marked by black arrows. In both examples,

the VFIFO connects the top-left PE (producer) and the bottom-right PE (consumer).

PFIFOs need to route VFIFO packets along single- as well as composite-path routes

(cf. Section 4.3). The synthesis tool statically determines the routing and maps each

VFIFO to corresponding PFIFOs along possibly multiple paths where each individual

path has a pre-determined rate or flow (cf. Section 5.7).

4.2 PE and PE-to-PFIFO Interface

Our initial PE design is based on a MIPS-like 32-bit 5-stage in-order processing core.

The ISA for computation is almost identical to the MIPS ISA with a branch delay

slot allowing the use of a standard MIPS compiler backend to generate efficient PE

code. We use the gcc backend for MIPS in our synthesis framework. The main

difference between the PE and a traditional MIPS core is in its support for VFIFO

mechanisms; our PE supports additional instructions for VFIFO communication.

Table 4.1 summarizes the additional PE instructions.

Instruction Operands Descriptions
deq Rt, Rs Dequeue data from VFIFO $Rs and write to Rt (blocking)
deqi Rt, imm Dequeue data from VFIFO imm and write to Rt (blocking)
enq Rt, Rs Enqueue $Rt to VFIFO $Rs (blocking)
enqi Rt, imm Enqueue $Rt to VFIFO imm (blocking)
drdy Rt, Rs $Rt+-1 if data is ready from VFIFO $Rs, 0 otherwise
drdyi Rt, imm $Rt<-1 if data is ready from VFIFO imm, 0 otherwise
erdy Rt, Rs $Rt+-1 if VFIFO $Rs can accept data, 0 otherwise
erdyi Rt, imm $Rt<--1 if VFIFO imm can accept data, 0 otherwise

Table 4.1: Basic Instructions for VFIFO Communication

In each cycle, a PE can dequeue a 32-bit value from a VFIFO, by using a blocking

instruction deq and deqi specifying a VFIFO number and a destination register. If

data of the VFIFO is ready in the attached PFIFO, this instruction dequeues data

from the VFIFO and updates the destination register. Otherwise, the instruction will

stall the processor until data becomes ready.

Before issuing blocking dequeue instructions, the PE may first check the status of

the VFIFO by drdy or drdyi instructions and use branch instructions to use dequeue

instructions only if data is ready. This explicit check allows the PE to continue its

computation instead of just waiting when no data is ready for a VFIFO.

In any given cycle, the PE can write a value to a particular VFIFO with a blocking

enqueue instruction enq and enqi specifying a data value and a VFIFO number. This

instruction enqueues the value (in a register) into the VFIFO if the attached PFIFO

has an available entry for that VFIFO. Otherwise, the instruction stalls the PE until

the VFIFO becomes available.

The PE can also use erdy or erdyi instructions to check the availability of target

VFIFO before using blocking enqueue instructions. When the PFIFO attached to

the PE says that it can accept data for the specified VFIFO, it reserves buffer space

for the VFIFO because data of other VFIFOs may fill empty buffer space before the

PE actually sends data to be enqueued.

4.3 Physical FIFOs (PFIFOs)

PFIFOs implement the VFIFOs and synchronization mechanisms through backpres-

sure and idling. In addition to the PE-to-PFIFO interface described in Section 4.2,

a PFIFO has to fulfill two main goals:

* Allocate buffer space for VFIFO packets that cannot be used by other VFIFOs

to guarantee deadlock avoidance and maximum transfer rate.

* Route packets corresponding to each VFIFO with appropriate rates. The routes

may be single- or composite-path routes, with the latter requiring increased

PFIFO complexity. When transferring data for a VFIFO, a PFIFO must ensure

that the receiving PFIFO has space available for the corresponding VFIFO.

PFIFOs perform the following four steps in order to achieve these goals.

4.3.1 Buffer Allocation for Virtual FIFOs

Each PFIFO has one data memory that is shared among all VFIFOs mapped to

the PFIFO. The synthesis tool statically partitions a large part of this data memory

amongst VFIFOs by setting the pointers in the configuration table. Each VFIFO

assigned to a PFIFO has a partition size of at least one packet and these partitions

are exclusively used for each VFIFO while the remaining data memory can be shared

by all of the VFIFOs. In this way, the synthesis tool can guarantee that each virtual

FIFO has the necessary number of FIFO entries to avoid deadlock no matter what

the traffic pattern is. Further, when hardware resources allow, the synthesis tool

allocates buffer space to achieve the maximum transfer rate for each VFIFO across

the corresponding PFIFOs. The synthesis tool determines the buffer allocation for

deadlock avoidance and maximum transfer rate with information given by application

specification and profiling results (cf. Section 5.8).

4.3.2 Scheduling for Composite-path Routes

In each substrate cycle, all PFIFOs try to send out packets to their next hops. Ob-

viously, PFIFOs need to know to which PFIFO packets for each VFIFO should be

sent. The configuration table in each PFIFO stores information about each VFIFO

that maps to this PFIFO as given by the synthesis tool, and each entry of the table

contains the VFIFO ID, and a list of possible previous and next PFIFOs. When a

VFIFO has a single-path route or a PFIFO is not a split point of the VFIFO, there

is only one possible next PFIFO specified in the configuration table.

However, if a PFIFO corresponds to a split point for a composite-path VFIFO

route, then the PFIFO need to choose one from a number of possible next PFIFOs in

each substrate cycle. The routing step during the synthesis computes the predefined

ratios of the flow rates for the different directions, and the PFIFO sends out packets

for the VFIFO in each direction in a deterministic order to control the flow rates.

For example, if there are two possible next PFIFOs A and B at a split point and the

routing specifies that A requires two times more bandwidth than B, then the PFIFO

sends the first two packets for the VFIFO to A, and sends the next packet to B,

repeatedly.

As packets are routed in deterministic order, they can be received in order at

the reconvergent PFIFO. At a PFIFO that is a reconvergent point for a VFIFO, an

acknowledgement algorithm allows an incoming packet from multiple neighbors to

come in at appropriate ratios so as to guarantee in-order communication through

this PFIFO, and to ensure that deadlock due to out-of-order packets will not occur. 1

The ratios in the acknowledgement algorithms depend on the throughput ratios of the

split and reconvergent flows and are determined after the routing step as described in

Section 5.8. PFIFOs are then configured with appropriate weights for the round-robin

send algorithm and ratios for the acknowledgement algorithms.

4.3.3 Arbitration of VFIFOs with the Same Destination

After the process described in Section 4.3.2, next hops for all packets in each PFIFO

are known. As multiple VFIFOs may share the same channel to another PFIFO,

a PFIFO may have many packets corresponding to different VFIFOs which are to

be sent to the same destination for a given cycle. In this case, the PFIFO selects

one VFIFO for each subsequent hop in a weighted round-robin fashion and forwards

its data. This is done in a non-blocking fashion; if there is no data available for a

VFIFO, the next VFIFO is selected. The algorithm does not wait for data to become

available. The weights are determined after the routing step (cf. Section 5.7) to meet

the desired flow rates and applied in the configuration step (cf. Section 5.8).

4.3.4 Data Reception Protocol

To ensure that the receiving PFIFO does have an entry available for the particular

VFIFO, the PFIFO uses a two-phase protocol. In the first cycle, the PFIFO sends

data with an associated VFIFO ID to the next hop. However, the PFIFO does not

immediately remove the entry from its data memory. In the second cycle, the receiving

PFIFO replies through a dedicated wire whether the data was accepted or not; the

receiver rejects the data if there is no space remaining for this VFIFO's packet. The

sending PFIFO removes data only after it receives a positive acknowledgement in the

second cycle. This two-phase protocol is pipelined to allow a new data transfer every

cycle, and is illustrated in Figure 4-2.

1A later packet should not use up space in a reconvergent PFIFO on a composite path and block
an earlier packet.

- l Data

> Control

PFIFO1 PFIFO2 PFIFO1 PFIFO2 PFIFO1 PFIFO2

vF a END :DONE EN i

]]j[[Z.·oi I I IX ZT
cycle = 0 1 cycle = 1 cycle = 2

PFIFO1 chooses VFIFO1 and sends a. PFIFO1 now chooses VFIFO2 and sends c. PFIFO1 chooses VFIFO1 again and sends b.

I PFIFO2 accepts a and sends DONE signal. I PFIFO2 Is full, so it sends FULL signal.
PFIFO1 removes a from its buffer. PFIFO1 will send c again in the next turn.

Figure 4-2: The PFIFO to PFIFO Interface

4.4 Performance Optimization: Timestamp

In addition to the basic diastolic architecture illustrated in the previous sections,

the candidate architecture examined in this thesis has optional hardware support to

optimize performance for some types of applications using timestamping.

Conceptually, the system time in diastolic arrays is similar to clock cycles in

synchronous circuits. In synchronous circuits, combinational logic takes updated

inputs and produces new outputs in each clock cycle. In a diastolic array, in each

system time slice, a processing module reads a set of input FIFOs and produces

results for a set of output FIFOs. Note that one unit of system time may correspond

to multiple clock cycles of a diastolic array chip (substrate cycles); a processing module

can take multiple substrate cycles to produce outputs from inputs, and this number

can vary depending on the input data.

In H.264 decoder application, for an instance, each module processes one mac-

roblock 2 per one system "clock". As each module may take different number of

substrate cycles for a system clock, modules need to be synchronized according to

system time.

If the number of data produced and consumed at each system time is constant

for all PEs, synchronization is automatically achieved through FIFO connections be-

cause after consuming a fixed number of data packets a consumer will always proceed

2A macroblock in H.264 is a small rectangular block of pixels which is the minimum unit of
decoding process.

to the next system cycle. However, if any producer sends out different numbers of

data packets depending on input, or any consumer takes different numbers of data

packets, then there needs to be an explicit mechanism for system time synchroniza-

tion. For example, the size of macroblock in H.264 decoder varies for each system

time, depending on input video streams. Therefore, any consumer taking pixels of

macroblocks does not know how many data packets it should take from its producer

for a given system time unless there is auxiliary information or control telling it when

to stop taking data.

One simple way to achieve synchronization without architectural support is to

use "end" packets for each VFIFO, which indicate that there will be no other data

for a given system time. This is done by software very simply, but one additional

packet needs to be transferred to its consumer for every VFIFO, for every system

time. Most other software schemes for the synchronization cost the diastolic array

network bandwidth as well as PE computation time.

Timestamping provides hardware support for system time synchronization. It lets

PFIFOs handle the synchronization instead of PEs so that the computation time of

PEs and especially the PE-to-PFIFO communication time at the consumer side can

be significantly saved. In this scheme, each PE individually tracks the current system

time and attaches a time-stamp to each FIFO packet, which indicates when the

receiving PE should use the packet. At the consumer side, a PE specifies its system

time and the attached PFIFO determines whether arrived data can be consumed, or

whether it needs to wait for incoming data, or whether there will be no data for the

given system time. For this purpose, each VFIFO has its own counter for the system

time (VFIFO time in the figure). If the VFIFO time is greater than its current time,

it indicates to a consumer that the producer does not have more data for the current

time and to a producer that the consumer does not need more data. This scheme

increases communication bandwidth for timestamps. However, the information for

synchronization is integrated in data packets so that PEs can be properly synchronized

while only transferring necessary data through FIFOs.

This architecture also supports explicit synchronization operations by both pro-

VFIFO time = 3

producer consumer
deqRdy?

time = 3 time = 3

wait -data for time 3 may come later.
i) the consumer doesn't know whether data for time 3 will come.

VFIFOtime=3 c4

producer T 1FF consumer
time = 4 time =3

ii) the producer proceeds to time 4 and sends proceed signal to VFIFO.

VFIFO time =4

producer I consumer
deqRdy?

time = 4 time=3 1 4

none - confirm there is no data for time 3
iii) the termination of the producer allows the consumer to proceed.

a) Termination by producers

VFIFO time = 7

producer e --Fd? consumer
deqRdy?

time= 7 - time = 3
L J rdy

i) data is ready for the consumer.

VFIFO time = 7

producer +-- consumer
06 ~proceed-

time = 7 discard time = 4

ii) CASE 1 -the consumer proceeds with discard option.

VFIFO time = 7

producer *-- consumer
proceed-

time = 7 hold time -= 4

ii) CASE 2 - the consumer proceeds with hold option.

b) Termination by consumers

Figure 4-3: Optimization through Explicit Synchronization by Timestamp

ducers and consumers without transferring data (see Figure 4-3). Both producers and

consumers can explicitly notify a VFIFO to increment the VFIFO time. Additionally,

a consumer can choose whether a FIFO should keep data for the past time slices. If

the consumer indicates that it would not need old data then the FIFO will discard all

data with an old time-stamp. The performance benefit due to explicit synchroniza-

tion can be significant especially when the consumer decides not to take any data for

a certain period of system time because a number of packets can be discarded in the

PFIFO, without spending any substrate cycles of the PE. An example of this case

is the ALU module in the processor emulator application: if the module resolves a

branch and knows it should discard the following instructions, it just explicitly moves

to the next valid system time and the PFIFO discards every invalid instruction.

4.5 Diastolic Architecture Simulator

The candidate diastolic architecture was simulated by a cycle-accurate software sim-

ulator written in the C++ language. The simulation framework provides diastolic

array components such as PFIFOs, PEs and I/Os, and a simulation file uses these

components to define an array network and fetch the configuration bits for a target

application to each component. The PE components are connected to another simu-

lator, which is a 5-stage pipelined MIPS simulator for this candidate architecture.

This simulator allows fast microarchitectural exploration of diastolic arrays by

turning on or off some of the features described in this chapterm, such as composite-

path routing or timestamping. This simulator can also perform the profiling steps in

the synthesis flow by using ideal FIFO connections rather than PFIFO connections,

as described in Section 5.3.

Chapter 5

Synthesis Flow

While we described a candidate diastolic architecture in Chapter 4, various PE mi-

croarchitectures and PFIFO network topologies can be supported with the synthesis

flow described in this chapter.

The challenge when targeting an architecture with nearest-neighbor communica-

tion is efficiently mapping applications that exhibit significant long-distance commu-

nication. This problem is made tractable in diastolic arrays by statically allocating

both bandwidth and buffer space for communication that can be shared by many

logical channels, allowing us to focus on maximum average throughput, while largely

ignoring communication latencies.

5.1 Synthesis Overview

The synthesis flow for diastolic arrays is illustrated in Figure 5-1. The input for

synthesis is an application specification that is a high level description of the hardware

design (cf. Section 5.2). Functional modules in the specification are grouped or

partitioned by synthesis tools so each module corresponds to a PE of diastolic arrays

(cf. Section 5.4). This generates PE descriptions and VFIFO specifications and PE

descriptions are compiled to configuration bits for each PE (cf. Section 5.5). From

VFIFO specifications, the PE placement step explores candidate placements which

are used in VFIFO routing (cf. Section 5.6). After a feasible or the best route is

From Profiling
II

Highe"vel
Profiling Result I

______________I

Configuration

Figure 5-1: Synthesis Flow for Diastolic Arrays

found, PFIFO buffers are allocated to VFIFOs (cf. Section 5.7), and finally PFIFO

configuration bits are generated according to the synthesis results (cf. Section 5.8).

Note that module grouping and partitioning, VFIFO routing, and buffer allocation

step take additional input from different types of profiling results. The profiling is

done by software simulation and provides information about the target application

so the synthesis tool can optimize the performance. Section 5.3 will describe each

profiling step.

Module Group &
Partition

~Flo

5.2 Application Specification

Synthesis begins from a specification of the hardware design as finite state machine

(FSM) modules described in C that communicate via virtual FIFOs (VFIFOs). The

specification will also provide minimum VFIFO sizes that ensure that the design does

not deadlock. We will assume that for VFIFO i, zi packets are required, with pi bits

in each packet. In most cases, zi is determined by the maximum number of packets

that the VFIFO needs to hold in order to synchronize PEs. For example, if a producer

sends out up to 3 packets per system time (cf. Section 4.4) and its consumer takes

data from 5 system times ago, the VFIFO between them may need to hold 15 packets

in order to synchronize them.

The application specification is simpler than synchronous data flow [25], and sim-

ilar to an intermediate output of a parallelizing compiler such as StreamIt [35] after

parallelism extraction, but could also be directly written by a designer. Minimum

requirements for FIFO sizes can be determined by compilers such as StreamIt [15].

Modules in the specification may be grouped or partitioned during the synthesis flow.

Therefore, modules in the specification does not have a one-to-one matching with PE

hardware.

A high-level view of the specification of an H.264 decoder application was previ-

ously shown in Figure 3-1. The goal of synthesis is to maximize average throughput,

which requires that bandwidth and buffer space be properly allocated to all VFIFOs.

The H.264 decoder example will be used to illustrate each synthesis step throughout

this chapter.

5.3 Profiling

Profiling can provide important information about the performance of target appli-

cations which cannot be attained from their specifications. There are three different

profiling steps performed through the synthesis flow for diastolic arrays. Table 5.1

summarizes those profiling steps.

Profiling Step Computational Node VFIFO Connection I Purpose

High-level Profiling High-level module, isolated Ideal To group or partition modules
Bandwidth Profiling PE, correlated Ideal To determine demanded throughput
Buffer Profiling PE, correlated shared link PFIFOs To determine buffer requirement

(individual buffer)

Table 5.1: Profiling for the Synthesis for Diastolic Arrays

5.3.1 High-level Profiling

High-level profiling takes the application specification described as communicating

high-level modules and determines how much computation each module performs.

This information is used for module grouping and partitioning so that after grouping

and partitioning each PE has a similar amount of computation time. In high-level

profiling, each high-level module is simulated separately on an array PE and a his-

togram of module latency over different module inputs is produced, which gives a

range of latency as well as an average. Module latencies are computed as processor

cycles per packet produced - each module produces data packets that correspond

to a VFIFO. This is converted into cycles per bit produced. The case study of en-

tropy decoder and inter-prediction modules in Section 3.2 is an example of high-level

profiling.

5.3.2 Bandwidth Profiling

Bandwidth profiling takes place after module grouping and partitioning. At this time

all PEs and the entire network are simulated; consumers should wait until producers

send out data so the throughput of each VFIFO in bandwidth profiling reflects pos-

sible correlations between VFIFOs. However, the VFIFO connections are assumed

to be ideal: each VFIFO has a very large buffer 1 and VFIFOs do not share physical

links and have minimum latency. If there is a target system throughput, then the

output of the system is pulled at this rate. 2 In this step, profiling computes a rate

IThe buffer size is not infinite because a FIFO with infinite buffer size will decouple the rate
before its producer and after its consumer when the producer is faster.

2For H.264 decoder, the target system throughput was set to decode HDTV video stream
(1920x1088) in real time.

distribution and average transfer rate di in bits per second for each VFIFO i, which

is a key measure used in the routing step. These rates are correlated and depend on

the target system throughput if specified. Because the VFIFO connections are ideal

and the performance is unaffected by routing (either by latencies or by congestion),

these rates become the optimal goal for the routing step.

5.3.3 Buffer Profiling

The last profiling step is buffer profiling which provides a distribution of buffer size

and average buffer size mi in bits for each VFIFO i that is required for sustaining the

average transfer rate di. This is derived from the variation in occupied buffer sizes

during simulation.

The simulation for buffer profiling takes account of the PFIFO network; VFIFOs

have various latencies and physical links between PFIFOs are shared by multiple

VFIFOs. Unlike the actual diastolic architecture, however, VFIFOs do not share

the memory of PFIFOs. Each VFIFO is assumed to have a large dedicated buffer.

Therefore, the average buffer size measured during buffer profiling is not affected by

other VFIFOs.

If a producer is always faster than its consumer in a given producer-consumer

pair, then the buffer of the corresponding VFIFO always becomes full and mi has

no actual bound. In this case, the minimum buffer size of the VFIFO that does not

affect other rates is chosen.

5.4 Module Grouping and Partitioning

Based on the high-level profiling results, modules are grouped or partitioned. Group-

ing involves assigning two or more modules to the same PE, while partitioning involves

splitting a module across multiple PEs in order to exploit parallelism and reduce the

effective average latency.

Module grouping is done if there are more modules than the number of available

PEs, or if there is tight feedback between modules whose latency can affect through-

Figure 5-2: H.264 Specification after Module Group and Partition

put. 3 When two modules are run on the same PE, their latencies will increase to

their sum. If the inverse of this combined latency is equal to or more than the VFIFO

rates corresponding to each of these modules, the modules can be grouped together.

Grouped modules are executed in interleaved fashion on a PE. If a module does not

have inputs available it cedes to the next module. After a module execution, if there

is no space available in the PE's FIFO for the result, the module will stall until space

is available. 4

If it is impossible to obtain the target system throughput, the modules whose

latencies are too high are targets for partitioning. Partitioning mostly depends on

the parallelism that can be extracted from actions described in the specification.

For example, if a module performs actions A, B, C and D, where B depends on

A, and D depends on both C and A, we can execute actions A and B on a PE,

and C and D on a different PE, possibly improving average latency, since C and A

3If a tight feedback connection cannot be removed by module grouping, the synthesis tool tries

to minimize its latency (cf. Section 5.6 and Section 5.9).
4The actual latency becomes larger than the sum because of increased congestion in the VFIFOs

sharing the same PFIFOs and context switching costs.

can be simultaneously executed. Note that partitioned modules introduce additional

VFIFOs that communicate between PEs, and a partition has to be carefully selected

to optimize the resulting average latency which depends on the additional FIFO

latency. Modules are not partitioned if a large number of additional FIFOs are

required. Automatic partitioning is a difficult problem that corresponds to parallelism

extraction, and is not a focus of this thesis.

An example of a module grouping and partitioning result for the H.264 decoder

is shown in Figure 5-2. The intra-prediction module and deblocking module were

grouped together, and the inter-prediction module was partitioned across PEs. The

high-level profiling results showed that the inter-prediction module needs a lot of com-

putation time; the partitioning was done by extracting parallelism in the module, and

the grouping was done to eliminate tight feedback. After grouping and partitioning,

the profiling step is run again to determine the new module and VFIFO latencies.

5.5 PE Compilation

After the module grouping and partitioning step, the system has a set of PEs with

corresponding modules. Modules are compiled to each PE in a decoupled way and

the results of the compilation provide each PE with scheduling information and ex-

ecutables. The PEs in the diastolic architecture have an ISA that is a subset of the

MIPS ISA and modules are described in the C language. The gcc backend for the

MIPS-II processor was used in the experiments of Chapter 6.

All communications to other PEs are through PFIFOs with FIFO control, which

the compilation step is aware of only at the level of writing and reading data values

to and from the VFIFO. A PE will wait on a given read (dequeue) instruction when

there is no data available, or on a write (enqueue) instruction when the output FIFO

is full. Therefore, the compilation step need not know about the routes and the timing

of data communication of VFIFOs.

5.6 PE Placement

The primary goal of the placement step is to find a placement of the modules such that

a feasible route can be determined for each of the VFIFOs. A feasible route is a set of

routes comprising a route for each of the VFIFOs that has enough bandwidth for each

FIFO's average transfer rate di obtained through bandwidth profiling, and therefore

allows the system to achieve maximum average throughput. The heuristic used in

placement to maximize the likelihood of achieving a feasible route is to minimize the

total number of hops across all the VFIFOs, weighted by the criticality of the FIFOs

(cf. Section 5.9), and inversely weighted by the required amount of buffering for the

FIFO (cf. Section 5.7.2). A simple greedy algorithm with various weights is used to

generate many candidate placements.

For acyclic specifications, such as stream computations without feedback [35, 15],

there are no hard requirements on the communication latency of VFIFO packets. It

is important to note that there may be false cycles in the specification, because a

module is a collection of computations. For example, a module that reads off-chip

memory, i.e., sends an address to off-chip memory and is returned a data value that is

computed on, can be viewed as two different modules that communicate with memory

through FIFOs; the first executes a read, and the second receives the value. A read

operation thus does not represent a true cycle.

In the H.264 application, modules both write and read off-chip memory. A mac-

roblock (16x16 pixels) is a data element in a VFIFO and will require processed mac-

roblocks from a previous frame, which is stored in off-chip memory. If the frame

is a HDTV (1920x1088) frame, then one frame previously means 8160 macroblocks

previously. Thus, even though there is a write to memory that is followed by a

read, these two operations are so far apart that this feedback can be ignored during

throughput-driven synthesis.

If feedback across modules occurs within a few substrate clocks, then the latency of

communication paths can affect system throughput. An example of such feedback is a

bypass path in a pipelined processor. The latency of communication can be included

in the module latency, but we wish for other communication and decisions made

during synthesis to not adversely affect this latency. We will need communication

paths with minimum latency in the implementation (cf. Section 5.9), in addition to

guaranteeing bandwidth and buffer space for all communications. To minimize the

latency of such critical communication paths, their producers and consumers must be

placed as close to each other as possible.

In the next two sections, we assume that we have acyclic specifications, and then

generalize our methodology.

5.7 Routing and Buffer Allocation of Virtual FI-

FOs

The route for each VFIFO is determined after module placement. The routing step

chooses paths for each virtual FIFO that require multiple hops using the transfer

rates for each VFIFO. A VFIFO route can correspond to multiple paths through the

mesh network, each with the same source and same destination. A route with multiple

paths is referred to as a split flow. The source processor sends data at pre-determined

ratios through multiple paths, and the data elements are received and processed in

order at the destination processor. In addition, intermediate PFIFOs may need to

collect packets for a given VFIFO and send them out at pre-determined ratios - the

reconvergent points of Section 4.3.

5.7.1 Multi-commodity Flow Linear Program

We can formulate the search for a feasible route as a maximum concurrent multi-

commodity flow problem, where the commodities correspond to the data packets in

each VFIFO. This problem is solvable in polynomial time using linear programming

(LP) (cf. Section 2.2).

Definition 1 Maximum concurrent multi-commodity flow: Given a flow net-

work G(V, E), where edge (u, v) E E has capacity c(u, v). There are k commodities

K1 , K2,..., Ki, defined by Ki = (si, ti, di), where si and ti are the source and sink,

respectively for commodity i, and di is the demand. The flow of commodity i along

edge (u, v) is fi(u, v). Find an assignment of flow, i.e., V(u, v) E E fi(u, v) Ž> 0,

which satisfies the constraints:

k

Capacity constraints: E fM(u, v) 5 c(u, v)
i=1

Flow conservation:

Vi, Vu # si, ti E fi(w,7u) = E fM(U,w)
(w,u)EE (u,w)EE

Vi E f (s, w) = E fi(w, i) 5 di
(i(,w)EE (w,ti)EE

and maximizes the minimal fraction of the flow of each commodity to its demand:

T m= (as,w)E fi(Si,W) (5.1)
1<i<k di

In the routing problem for diastolic arrays the commodities are the data elements

in the VFIFOs, so k is the number of VFIFOs. The capacities for the edges in

the network are equal to the bandwidth of the link between adjacent PFIFOs in the

diastolic array architecture. The link bandwidths c(u, v) are all equal to L by default,

but may be set to lower values when we have critical FIFOs whose latency affects

system throughput because they are in tight feedback loops (cf. Section 5.9). The

source for commodity i is the source processor in the given placement for VFIFO i,

and similarly the destination. The demand di for VFIFO i is the average transfer

rate for that FIFO obtained through profiling. Of course, we would like for T to be

1.

The only known polynomial-time solution to multi-commodity flow problems is to

use linear programming (LP). In practice, approximation algorithms that are more

efficient than LP are used, which can provide near-optimal or optimal results. We do

not explore these algorithms in this thesis.

5.7.2 Buffer Allocation Linear Program

We still need to incorporate the requirements on buffer sizes for deadlock avoidance

and to achieve the di rates. After we run LP and obtain the fi(u, v)'s, we have a

flow for each VFIFO i, i.e., a set of paths with particular rates on each link in the

diastolic array. We can run another linear program to perform buffer allocation along

each chosen VFIFO route.

We first determine the PFIFOs in the PE's that correspond to each VFIFO's

commodity flow.

Vu, Vi if f 3v s.t. (fi(u, v) > 0 or fi(v, u) > 0) gi(u) = 1

Note that for a given flow the gi's are constants that are either 1 or 0, corresponding

to whether or not packets from the VFIFO will reside in the PFIFO corresponding

to PE u.

The buffer size in PE u that we wish to allocate to VFIFO i in terms of the

number of packets is denoted li(u), and these are the variables in the LP. The available

buffering in a PE u is b(u) bits. In our candidate architecture, these are all equal to

M bits, however, critical FIFOs (cf. Section 5.9) may be assigned some of the buffer

space prior to running the LP. Recall that mi is the average buffer size required for

VFIFO i to sustain its transfer rate di, as obtained by the buffer profiling step (cf.

Section 5.3.3), zi is the number of packets in VFIFO i that ensures that deadlock will

not occur and pi is the packet size for the virtual FIFO packet in bits (cf. Section

5.2).

Definition 2 Optimal Buffer Allocation: For each VFIFO i, we are given a

buffer size requirement mi and a set of PFIFOs gi(u) = 1 that are on the VFIFO's

route. We are given available buffer sizes b(u) for each PE u. Find an assignment of

buffers li(u) for each VFIFO i that satisfies:

k

PFIFO Buffer Limit: Vu Epi li(u) < b(u)
i=1

Deadlock Avoidance: Vi, Vu 4l(u) _ gi(u)

Vi E l(w) 2> zi
w:gi(w)=1

Allocation: Vi pi - li(w) 5 mi
w:gi(w)=1

and maximizes the minimal fraction of the allocated buffers of each commodity to its

demand for buffering:

U = min Pi - :g,(w)= l4(w) (5.2)
1<i<k mi

The deadlock avoidance requirement comes from the specification; there should

be at least pi bits worth of dedicated space available in each PFIFO that is used

by a VFIFO to route its packets, and further the set of PFIFOs implementing the

VFIFOs should provide zi packets worth of space. Since the PFIFOs in the diastolic

array will accept packets from VFIFOs whose limit has not been exceeded, while

possibly rejecting packets from other VFIFOs, deadlock will not occur in the array

implementation. There is a limit on the number of VFIFOs that can be mapped

to a PFIFO due to the deadlock requirement, and because the configuration tables

(cf. Section 4.3) are finite in size. We assume large tables and therefore the first

requirement is more stringent.

On top of the deadlock avoidance requirement, we would also like to allocate

enough buffer space for each VFIFO so the transfer rates can be met, while ensuring

fair allocation across VFIFOs (cf. Eqn. 5.2).

Note that the li(u)'s corresponding to gi(u) = 0 can be set to zero. Of course,

we need the li(u)'s to be integers, so the values will be truncated or rounded up the

solution to the LP is obtained.

Given a user-specified amount of CPU time, we choose many solutions with cor-

responding maximum T for the first LP, to maximize U. We also repeat this process

for many placements, and pick the maximum T, followed by the maximum U.

5.7.3 Alternative Routing Algorithms

Searching for a feasible route as a maximum concurrent multi-commodity flow prob-

lem satisfies all demands or determines the best throughput solution in polynomial

time. However, it does not guarantee the best solution with regard to latencies be-

cause it does not attempt to find shortest paths for each commodity. Further, paths

may be split which introduces additional latency in shorter paths due to in-order

communication constraints.

When a target application has tight feedback loops which cannot be eliminated

by module grouping, communication latencies affect the throughput and the max-

imum throughput guarantee of the routing algorithm does not hold. To minimize

latency, heuristics for unsplittable multi-commodity flow can be used [21]. In one

such heuristic, the shortest path for each commodity is found by Dijkstra's shortest

path algorithm where each link is weighted by the reciprocal of its current residual

bandwidth capacity. After the shortest path is found for a commodity, the rate of

the commodity is subtracted from the bandwidth capacity of the links on the path.

Our research group is exploring these heuristics in ongoing work.

The latency of each commodity depends on the order in which commodities are

routed. The commodities whose latencies significantly affect system throughput have

higher priorities. Unlike in the LP-based formulation, the shortest-path algorithm

needs to perform binary search to get the best fraction of demanded throughput that

the network can support when there is no feasible route. Also, because there are

no composite-paths generated by the algorithm, any commodity with a throughput

larger than the bandwidth capacity of physical links should be divided into multiple

commodities.

5.8 Configuration

Once we have found a feasible route, or settled on a throughput less than the maxi-

mum, the final step is to generate configurations for each processor and PFIFO. The

PEs are configured with the compiled code of the modules that will execute on the

PE.

The flow rates determined by the LP are made integral with appropriate multi-

plications to keep the ratios as close as possible in the case where an integral flow

is not provided by LP. Each link in each PFIFO is first configured with the set of

VFIFOs that share this link. Each link is configured to send out packets in a weighted

round-robin fashion over all the VFIFOs that share this link. If a PFIFO is a split

point for a VFIFO, the marking algorithm for incoming packets is configured with

appropriate ratios for the different links that this VFIFO's packets will depart the

PFIFO on. At reconvergent PFIFOs including the destination, packets correspond-

ing to each VFIFO are received in order, by choosing the packets from different links

using an acknowledgement algorithm, as elaborated in the following paragraph.

A PFIFO may split a flow of packets two to four ways. Consider the example

of Figure 5-3. For a three-way split in ratio aR : bB cT, the marking algorithm

at PFIFO S will mark the first a packets to the right, the next b packets to the

bottom, and the next c packets to the top, repeatedly. Note that these a packets

will contend for bandwidth in the link to the right with other VFIFO packets, and

a weighted round-robin send algorithm will periodically send these packets out. The

right sub-flow is represented as abE indicating that the first a packets from the source

were picked, the next b packets were sent somewhere else, etc; this pattern repeats

indefinitely. The right sub-flow is split again in PFIFO V in the ratio alT : a2 B; the

patterns generated will be alb-7b, and Tja 2&b. At PFIFO Q, the sub-flows ag•a2 and

dbc converge. The acknowledgement algorithm at Q will pick al packets from the

bottom and c packets from the left, repeatedly. This produces a sub-flow represented

as aitbc. The acknowledgement algorithm at destination PFIFO D will pick al

packets from the left, a2 + b packets from the bottom, and c packets from the left,

repeatedly.

Figure 5-3: Configuring Marking and Acknowledgement Algorithms for Composite-
path Routes

As a final step of configuration, buffer space constraints for each VFIFO that is

assigned to a PFIFO are specified.

5.9 Minimizing Latency of Virtual FIFOs

As described in Section 5.7, all VFIFOs are guaranteed bandwidth and buffer space

during synthesis, but we make no guarantees about latency. Virtual FIFOs with

longer paths (many hops) will have greater latency. This will not matter when there

are no tight feedback paths.

While we cannot make latency guarantees about all VFIFOs or even a large num-

ber of FIFOs, we can provide minimum latencies for a few critical FIFOs, associated

with feedback and identified during profiling whose increased latency will directly de-

grade performance. These FIFOs are given the highest weights during the placement

step (cf. Section 5.6), so their lengths are minimized. Prior to the routing LP step, a

direct route is chosen for each of these FIFOs, with no splits to avoid packet reorder-

ing at the destination. The bandwidth of each of the links in the route is reduced by

the corresponding di, and the buffer space in each of the n PFIFOs comprising the

chosen VFIFO route is reduced by max(mi/n, pi). The two LP's are run as before to

produce routes and buffer allocations for the remaining VFIFOs.

Our research group is exploring a combined heuristic bandwidth and buffer allo-

cation algorithm in ongoing work.

Chapter 6

Experimental Results

This section will illustrate the synthesis results of the two examples described in

Chapter 3, H.264 decoding and processor performance modeling. The synthesis result

of processor performance modeling was also simulated by the diastolic architecture

simulator described in Section 4.5.

6.1 H.264 Decoder

The high-level profiling result of H.264 decoder application shows that inter-prediction

occupies most of the computation time and has parallelism that can be extracted.

Also, the specification shows a tight feedback loop between the intra-prediction mod-

ule and the deblocking module both of which have relatively little computation time.

Therefore, the inter-prediction module was partitioned to enhance throughput by in-

creasing parallelism, and the intra-prediction and the deblocking modules are grouped

so the total number of used PEs is 9. The module grouping and partitioning result

was shown in Figure 5-2.

After modules are grouped and partitioned, the throughput demand of each

VFIFO in the design was determined in the bandwidth profiling step. The profiling

assumed the system throughput matches the throughput of HDTV video decoder,

and the substrate clock was assumed to be 1 GHz. Figure 6-1 shows the throughput

demand.

7MB/s)

47MB/s)

Figure 6-1: Throughput Demand of each VFIFO in H.264 Decoder

A four-by-four two dimensional mesh network was used for the H.264 decoder

and a number of candidate placements were generated as described in Section 5.6.

For each placement the capacity and the flow conservation constraints were generated

and this LP problem was solved by ILOG CPLEX. Figure 6-2 provides routing results

for different link bandwidths. The throughput of each route is indicated. When the

link bandwidth is 200MB/sec, a feasible route without composite paths was found.

Composite paths allow the routing algorithm to fulfill the throughput demand with

smaller link bandwidth, such as 100MB/sec (Figure 6-2(b)) and 60MB/sec (Figure

6-2(c)). In Figure 6-2(b), for example, the route from C4 to C9 is split because the

link between them cannot deliver more than 100MB/sec. 1 However, if the link

bandwidth is too small, the routing algorithm will determine that there is no feasible

route, and reports the best route for the given network as shown in Figure 6-2(d).

Of course, different placements result in different routes. For example, Figure 6-3

illustrates how a placement can give a better routing result than another. When there

'In Figure 6-2, split points are marked by white squares and reconvergent points by white circles.

sl [39 7MBld~

39.7 U.4

i4i.47ii132HI 130.11 tI L9.17 i
F--7[ý 30.1 39.7 04

E

D000
(a) Link Bandwidth 200MB/sec
Minimum Throughput Ratio 1
15 Total Paths (no split path)

0DZ00
(b) Link Bandwidth 100MB/sec
Minimum Throughput Ratio 1

16 Total Paths (split path in thick and gray)

r f----'---- n r -"-I I

El
1.63

S18.131 13.7 '

0000D
(c) Link Bandwidth 60MB/sec
Minimum Throughput Ratio 1

18 Total Paths (split path in thick and gray)

D000
(d) Link Bandwidth 40MB/sec

Minimum Throughput Ratio 0.74
21 Total Paths (split path in thick and gray)

Figure 6-2: Routing results of H.264 decoder for different link bandwidths

is no feasible route as in Figure 6-2(d), the placement that maximizes the minimal

fraction of the throughput is chosen from amongst the generated candidate placements

(cf. Section 5.6).

The total synthesis time is very fast - a few seconds for this example. The time

required to synthesize a Verilog description of H.264 to a FPGA is approximately

46 minutes for logic synthesis and 52 minutes for place and route [14]. Efficient

synthesis is enabled because the specification deals with packets rather than bits,

because compilation to processors is fast, and because the synthesis algorithms used

El

El

]4
)I]M4 Hii

Ir ·
aa~

F20.47H L0 1-[824 ko.8724
L---l II

[13.
::.SJ I L

- -
-

here are efficient.

SlI II I I

I

Minimum Throughput Ratio 0.85
20 Total Paths (split path in thick and gray)

Figure 6-3: Routing Results of H.264 Decoder for a Different Placement and with the

Link Bandwidth of Figure 6-2(d).

After finding a feasible or the best route, the synthesis tool allocates buffers for

VFIFOs in each PFIFO. Taking the route in Figure 6-2 (c), Table 6.1 summarizes zi,

pi and mi values given by the specification and the buffer profiling result as described

in Section 5.3.3. 2 The result from the buffer allocation step described in Section 5.7.2

is given in Figure 6-4.

virtual FIFO pi (bits) mi (bits) zi (packets
s1 128 .512 1
s2 512 1536 1
s3 680 2024 1

s4 680 2024 1

s5 680 2024 1

s6 680 2024 1

s7 768 1536 1

s8 15552 31104 1

s9 3072 6144 1

s10 1024 2048 1

s11 1024 2048 1

s12 512 1024 1

s13 512 1024 1

s14 3072 6144 1
s15 96 384 1

Table 6.1: Buffer Requirements for VFIFOs in H.264 Decoder

2mi was obtained from the profiling step, and zi and pi from the specification.

17 A

*-ýT]
i

I · p--q

,s lY. s1 I IS3:680*4:6805: 68095:68099: 3082 93:680
%10 1024 s10: 1024
;11: 1024 812 512
12. 512
*13:512
;14: 3072
si5: 96

*4: 680
s5:680 5-6:680
6: 680 s12: 512

,13:512

Figure 6-4: Buffer allocation of H.264 decoder for the route of Figure 6-2 (c).

6.2 Processor Performance Modeling

In the particular design of processor performance modeling used in the experiment,

data flow in the target processor includes tight feedback between PEs unlike in the

H.264 decoder. Hence, the latency of feedback VFIFOs can significantly affect the

system throughput. Figure 6-5 shows the application specification with throughput

demands determined by bandwidth profiling.

During placement and routing, some VFIFOs corresponding to tight feedback

were specified to have minimum latency in order to reduce their impact on system

throughput as described in Section 5.9. The result on the same four-by-four mesh

network after placement, routing and buffer allocation are shown in Figure 6-6.

As described in Section 5.3.2, bandwidth profiling assumes the VFIFOs are ideal

and their latencies are the minimum possible. However, some feedback VFIFOs in

Figure 6-6 go through three PFIFOs so their latencies increased. The actual latencies

could be worse as many VFIFOs share the same physical links. Because these are

tight feedback VFIFOs, these increased latencies may affect system throughput so

the actual performance could be degraded even though the synthesis tools guarantee

that the network can handle the maximum throughput with the given route.

fete

in

Figure 6-5: Throughput Demand of each VFIFO in Processor Performance Modeling

However, increased latencies in virtual FIFOs corresponding to tight feedback may

not immediately degrade the performance because the computation time of each PE

can hide those latencies. For example, even if the latency of a tight feedback VFIFO is

10 substrate cycles, the consumer may need to do some computation that costs more

than 10 substrate cycles and when it eventually tries to dequeue from the feedback

VFIFO data will be ready to be consumed. This gives synthesis tools some margins

in dealing with the latencies of tight feedback VFIFOs.

The simulation results show that although the worst-case latency is three times

larger than the ideal case, the overall throughput was not affected because the laten-

cies were hidden by the much longer computation time of each PE. Figure 6-7 depicts

the maximum and the average latency of each virtual FIFO on the right, and the

average number of cycles used for computation per target system cycle on the left.

While packets are going through the network, each PE is processing local data and

is not blocked. This illustrates that our throughput-driven approach can be used to

bind the length of critical paths to be within PE computation times.

s2:32, s3:32
s4: 64, s6: 32
s7: 64. 88: 64

s1: 32
s2: 32

-4L

-4

-J

s7: 64
s8: 64

S 29 I Til 1 II t 1 s9:128 1
III

s3: 32
s13: 39

-

-4

1
s10: 32
sl1: 32

s14: 32 s7: 64, s8: 128 1 s12:64
s10: 32, 811: 32

O s12:32,
813:32

814:64

All virtual FIFOs have demanded throughput

Figure 6-6: Synthesis Result of Processor Performance Modeling

so

40

U
Q 30

4 o 20 -

.........

C1 C2 C3 C4 C5 C6 sl s2 s3 s4 s5 s6 s7 s8 s9 s1Osllsl2sl3sl4

Figure 6-7: Average PE Substrate Cycles per System Cycle and the Maximum and

the Average Latencies for each VFIFO

O maximum
0 average

I

" i
I

V ~-~i--7---T r-`--7-~-7~-=7- i--7---------i

Chapter 7

Conclusion and Future Directions

The synthesis flow for diastolic arrays requires specifications written as functional

units communicating via FIFOs connections, and generates configurations for pro-

cessing elements and physical FIFOs interconnecting them. As illustrated in the

previous chapters, this synthesis flow enables significantly easier implementation and

optimization than conventional reconfigurable substrate synthesis flows.

Diastolic array architectures provide appropriate hardware mechanisms to ease

the tasks in the synthesis flow. A diastolic array architecture provides multiple FIFO

connections between processing elements by sharing physical links and data buffers.

Processing elements are decoupled from the detailed actions of data communication;

all a processing element needs to do is to send or to receive data from its attached

physical FIFO unit which orchestrates all data channels the processing unit may have.

Computational resources of processing elements are not wasted to manage network-

ing. We also can obtain a fast substrate cycle because processing elements and their

corresponding physical FIFOs are close to each other and all data communications

within a substrate cycle are between a processing element and a physical FIFO or

between adjacent physical FIFOs.

One can implement FIFOs and processors using BRAM and CLBs on an FPGA

and use the diastolic array synthesis result. However, FIFOs implemented on FPGAs

are quite expensive primarily because a number of long wire connections are required.

Therefore, a custom hardware implementation of a diastolic array is necessary to

enable the easier and faster development of high-performance applications.

Before implementing such a custom hardware implementation of a diastolic array

and a complete synthesis flow that can be applied to various types of applications, we

first need to characterize what applications are readily and naturally expressible as

finite state machines interacting through FIFOs. Automatic methods for partitioning

based on conventional parallelism extraction methods will enlarge the class of designs

that are efficiently synthesizable onto diastolic arrays. Applications where average

throughput varies significantly for internal FIFOs will likely require reconfiguration

and incur increased overhead.

Second, we need to evaluate the variants of synthesis algorithms applied to the var-

ious applications. For example, we have described a synthesis flow with several steps

and there is clearly interaction between the steps. It may be better to heuristically

solve a more complex problem that integrates the multicommodity flow and buffer

allocation LPs, than optimally solve each of the problems in sequence as described.

A more integrated strategy of dealing with low-latency feedback is also desirable. For

example, computations involving low-latency feedback paths can be grouped together

into a PE, so only a few low-latency paths need to be handled by the placement step.

Another interesting topic relates to the static configuration of the VFIFO net-

work. The static configuration that the synthesis tools generate heavily depends on

the profiling results, trying to satisfy the system throughput observed by profiling

steps. However, it may be difficult to represent the characteristics of some applica-

tions through simple profiling. In this case, adaptively switching between multiple

configurations can help improve the overall performance. Adaptive switching will

require augmentation to the diastolic array architecture.

The next step of the project is to more comprehensively evaluate candidate archi-

tectures on different applications such as parallel stochastic simulation and detailed

processor performance modeling, prior to undertaking a hardware implementation.

The architectural tradeoffs will be fully explored so the microarchitecture of the first

diastolic array architecture can be fixed. This exploration includes the tradeoffs corre-

sponding to supporting composite-path routes or only supporting single-path routes,

support for "multicast" virtual FIFOs, hardware optimizations such as timestamps,

and also varying the ISA, FIFO or memory sizes.

Bibliography

[1] Christoph Albrecht. Global routing by new approximation algorithms for mul-
ticommodity flow. IEEE Trans. on CAD of Integrated Circuits and Systems,
20(5):622-632, 2001.

[2] J. Becker and M. Vorbach. Coarse-grain reconfigurable XPP devices for adap-
tive high-end mobile video-processing. In Proceedings of the International SOC
Conference, pages 165-166, 2004.

[3] Michael Butts, Anthony Mark Jones, and Paul Wasson. A structural object
programming model, architecture, chip and tools for reconfigurable comput-
ing. In FCCM '07: Proceedings of the 15th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 55-64, 2007.

[4] Mike Butts. Synchronization through Communication in a Massively Parallel
Processor Array. IEEE Micro, 27(5):32-40, Sept/Oct 2007.

[5] Antonio Capone and Fabio Martignon. A Multi-commodity Flow Model for
Optimal Routing in Wireless Mesh Networks. Journal of Networks, 2(3), June
2007.

[6] Hongyu Chen, Bo Yao, Feng Zhou, and Chung-Kuan Cheng. Physical Plan-
ning Of On-Chip Interconnect Architectures. In Proceedings of the International
Conference on Computer Design, 2002.

[7] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William H. Rein-
hart, D. Eric Johnson, and Zheng Xu. FAST Methodology for High-Speed
SoC/Computer Simulation. In International Conference on Computer-Aided De-
sign, November 2007.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press/McGraw-Hill, 2001.

[9] CoWare. CoWare Signal Processing Worksystem (SPW).

[10] William J. Dally and Charles L. Seitz. Deadlock-Free Message Routing in Mul-
tiprocessor Interconnection Networks. IEEE Trans. Computers, 36(5):547-553,
1987.

[11] W.J. Dally. Virtual-channel flow control. IEEE Transactions on Parallel and
Distributed Systems, 03(2):194-205, 1992.

[12] Andrew Duller, Gajinder Panesar, and Daniel Towner. Parallel Processing - the
picoChip way! In Communicating Process Architectures, pages 299-313, 2003.

[13] David Wentzlaff et al. On-Chip Interconnection Architecture of the Tile Proces-
sor. IEEE Micro, 27(5):15-31, Sept/Oct 2007.

[14] Kermin Fleming, Chun-Chieh Lin, Nirav Dave, Arvind, Gopal Raghavan, and
Jamey Hicks. H.264 Decoding: A Case Study in Late Design-Cycle Changes. In
Proceedings of the Sixth ACM-IEEE International Conference on Formal Meth-
ods and Models for Codesign (MEMOCODE'2008), 2008.

[15] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting Coarse-
Grained Task, Data, Pipeline Parallelism in Stream Programs. In International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2006.

[16] Thomas Gross and David R. O'Hallaron. i Warp: anatomy of a parallel computing
system. MIT Press, Cambridge, MA, USA, 1998.

[17] Yuanfang Hu, Yi Zhu, Hongyu Chen, Ronald Graham, and Chung-Kuan Cheng.
Communication latency aware low power NoC synthesis. In Proceedings of the

4 3rd Design Automation Conference, pages 574-579, 2006.

[18] Yuanfang Hu, Yi Zhu, Michael B. Taylor, and Chung-Kuan Cheng. FPGA Global
Routing Architecture Optimization Using a Multicommodity Flow Approach. In
Proceedings of the International Conference on Computer Design, 2007.

[19] D. Jones and D. M. Lewis. A time-multiplexed FPGA architecture for logic emu-
lation. In Proceedings of the 1995 IEEE Custom Integrated Circuits Conference,
1995.

[20] Nachiket Kapre, Nikil Mehta, Michael deLorimier, Raphael Rubin, Henry
Barnor, Michael J. Wilson, Michael Wrighton, and Andre DeHon. Packet
Switched vs. Time Multiplexed FPGA Overlay Networks. In IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM 2006), 2006.

[21] Stavros G. Kolliopoulos and Clifford Stein. Improved approximation algorithms
for unsplittable flow problems. In 38th Annual Symposium on Foundations of
Computer Science, page 426, 1997.

[22] H. T. Kung. Why Systolic Architectures? In Computer Magazine, January 1982.

[23] H. T. Kung. Systolic Communication. In International Conference on Systolic
Arrays, May 1988.

[24] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 26(2):203-215, Feb. 2007.

[25] Edward A. Lee and David G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Trans. Computers,
36(1):24-35, 1987.

[26] Tom Leighton, Clifford Stein, Fillia Makedon, Eva Tardos, Serge Plotkin, and
Spyros Tragoudas. Fast approximation algorithms for multicommodity flow prob-
lems. In Proceedings of the 25th Annual ACM Symposium on the Theory of
Computing, pages 101-111, 1991.

[27] MathStar. Field Programmable Object Array.

[28] Ethan Mirsky and Andre DeHon. MATRIX: A Reconfigurable Computing Archi-
tecture with Configurable Instruction Distribution and Deployable Resources. In
IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM
1996), 1996.

[29] D. Mitra, J.A. Morrison, and K.G. Ramakrishnan. Virtual private networks:
joint resource allocation and routing design. INFOCOM '99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies, 2:480-
490, 21-25 Mar 1999.

[30] John Oliver, Ravishankar Rao, Paul Sultana, Jedidiah R. Crandall, Erik Cz-
ernikowski, Leslie W. Jones IV, Diana Franklin, Venkatesh Akella, and Fred-
eric T. Chong. Synchroscalar: A Multiple Clock Domain, Power-Aware, Tile-
Based Embedded Processor. In ISCA, pages 150-161, 2004.

[31] M. Pellauer, M. Vijayaraghavan, M. Adler, J. Emer, and Arvind. Quick Perfor-
mance Models Quickly: Timing-Directed Simulation on FPGAs. In International
Symposium on Performance Analysis of Systems and Software (ISPASS 2008),
April 2008.

[32] Michael Pellauer, Muralidaran Vijayaraghavan, Michael Adler, Arvind, and Joel
Emer. A-ports: an efficient abstraction for cycle-accurate performance models
on fpgas. In FPGA '08: Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays, pages 87-96, 2008.

[33] Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: a tech-
nique for provably good algorithms and algorithmic proofs. Combinatorica,
7(4):365-374, 1987.

[34] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. K. Kim, D. Burger, S. W.
Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP using polymorphism in
the TRIPS architecture. In International Symposium on Computer Architecture
(ISCA), pages 422-433, June 2003.

[35] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-
guage for Streaming Applications. In International Conference on Compiler
Construction, 2002.

[36] S. Trimberger. Scheduling Designs into a Time-Multiplexed FPGA. In Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pages 153-160, 1998.

[37] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring
it all to software: Raw machines. In IEEE Computer, pages 86-93, September
1997.

[38] Xilinx. Xilinx Core Generator.

[39] Zhiyi Yu. High Performance and Energy Efficient Multi-core Systems for DSP
Applications. PhD thesis, University of California, Davis, 2007.

[40] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai,
Jeremy Webb, Eric Work, Tinoosh Mohsenin, Mandeep Singh, and Bevan Baas.
An asynchronous array of simple processors for DSP applications. In Proceedings
of 2006 IEEE International Solid-State Circuits Conference (ISSCC), February
2006.

