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Abstract

When time-variant noisy two-way channels are protected by coding, they may be

used to provide essentially noiseless feedback, with delay. Service messages can be

automatically exchanged between terminals, and transmission altered in such a way

that the average communication rate is increased, given fixed receiver computers.

The system is somewhat similar to human communication, in that typical errors

are corrected, while grievous ones initiate a request for retransmission. One-way

experimental data are presented to complement the approximate theoretical analysis.
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I DEFINITION OF THE PROBLEM

The problem with which we are concerned is that of providing substantially error-

free two-way digitalized communication over noisy channels. We assume that at each

terminal there exists a decoding computer of fixed computational capacity; our objec-

tive is to maximize the number of decoded digits per second available at the computer

outputs. Although generalization is possible, in order to fix ideas we also assume

initially that the two communication links are Binary Symmetric Channels, abbreviated

BSC.

II. ONE-WAY ENCODING AND DECODING

*
For transmission rates Rt less than the channel capacity C, we know that the

attainable decoder probability of error, Pe, for each one-way link approaches zero

exponentially as the encoder constraint length n increases; otherwise, P is bounded

away from zero. 1, 2 In a very real sense, achieving accurate communication over

noisy one-way channels becomes impossible as Rt approaches C.

It is instructive here to consider an encoding-decoding scheme for which the

decoding problem exhibits in fine structure much the same type of behavior: when the

channel perturbation of some particular transmission is typical, decoding is easy; as

the perturbation increases, decoding becomes difficult. The Peterson procedure 3 for

decoding Bose-Chaudhuri codes4 is of this class, as is the Gallager low-density parity

check code.ll In particular, so also is the sequential search procedure for decoding

convolutional codes, 5 to which we now direct our attention. With convolutional codes,

each successive information digit i in an infinite sequence influences the next n trans-

mitted digits, where n is the code constraint length. Thus the set of allowable trans-

mitter sequences divides at each information position into two parts, consistent

respectively with i = 0 and i = 1.

The sequential decoding procedure operates briefly as follows. The decoder is

able to construct each allowable transmitter message at will, digit by digit. Given a

segment of received message of length n, it searches through the set of all allowable

messages, trying to construct one that is a "close" replica of this segment. The

receiver uses, in fact, a set of progressively relaxed criteria to define "close." If it

is successful when using the most stringent criterion, it decodes the first information

digit of the received sequence as the corresponding first information digit used in con-

structing the trial transmitter sequence. Otherwise, the decoder proceeds to the next

most stringent criterion, and so on. The procedure terminates with the first success

and the first information digit in the received segment is thereby decoded. The decoder

*Except when it is explicitly stated to the contrary, all quantities are per symbol
rather than per second.
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successively repeats this process for each information digit embedded in (the infinite)

received sequence.

For a BSC, the probability of receiving npl transmission errors out of n decreases

rapidly for Pi greater than the channel transition probability po . It is possible for

large n to exploit this fact by choosing the decoding criteria in such a way that the
.th

(unconditional) probability of terminating on the j criterion is approximately

P. = (l-x) x j - 1 (O<x<l 1) (1)
j

where x can be freely chosen to minimize the task of decoding. Furthermore, if any

particular information digit is decoded on the jth criterion, and the constraint length n

is large, we expect for a judicious choice of x that the next information digit will be
th .th thdecoded on either the (j-1)h, jth, or (j+l) criterion. This follows from the fact that

.ththe perturbing noise pattern segment when decoding the (i+l) t information digit isobtained by lopping off the first few digits of the ith pattern, and adding a new tail.

Thus we are led to representing the decoding procedure approximately as an infinite

Markov process, as shown in Fig. 1. The probability parameter p reflects the sta-

bility of the decoding problem from digit to digit, and should increase asymptotically

to one as n is made larger.

P- P- P- P_ P_

(- O )

(P+P_) P P P P

Fig. 1. Infinite Markov representation. The assignments [0O < p < 1; p+ = (l-p);

P_ = l- (l-(1p)] yield the state probabilities P = x1 (l-x). Each operation
J

of the Markov process corresponds to the decoding of an information digit.

When the process is in state j, a digit has just been decoded on the jth cri-
terion; the decoding complexity measure for decoding the next digit is N..

J

It is convenient to estimate the amount of computation required to decode an infor-

mation digit in terms of the average number of trial digits, belonging to allowable

transmitter segments whose first information digit is incorrect, that the decoder will

construct before finding a "close" sequence. If the previous digit has been decoded on

criterion j in our Markov representation, it can be shown by a slight modification of

previous work 5 that a rough bound on computational labor so estimated is given by

N. =AnBx- jB (2)
21
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where A is a coefficient independent of n and x, n is the constraint length of the

convolutional code, and B is the ratio of Rt and the quantity [1 - log2 (1 + /4p o(l-p) )].

The average computation estimate is given by

00

N = PjNj (3)

j=l

which converges for B < 1 to

-B
B x-xN = AnB (l-x) 1-B (4)

1 1-B1-x

Since x is a free design parameter, we may choose it to minimize the last factor in

Eq. 4. Then

x l/l-B (5)

N=AnB (1B1/1-B B -B/1-B 
1-B (6)

- 1
lim N = A; lim N = An(e-1)- (7)
B-E B-1 -E

where E is a positive infinitesimal. The convergence limit, B = 1, corresponds to a

transmission rate Rt that is always greater than 1/2 of the channel capacity. For

B < 1, N grows less rapidly than linearly with n.

Finally, it is important to point out that the results stated above obtain only when

no decoding errors have been made. When an error does occur, the number of com-

putations thereafter is always very large, and successive digits are also very likely to

be decoded in error. However, since the probability of making a first error goes

exponentially to zero with increasing constraint length n,5 we can choose n to make it

as small as we like.

Let us now tacitly assume that no decoding errors have been made, and that the

decoder has always available undecoded received message upon which to work. Let

Rr denote the average receiver decoded output rate in digits per second; and M, the

fixed computational capability of a decoder in trial-sequence digits constructible per

second. Then, on the average, the data rate at the channel input must be -<Rr for our

computer-limited communication system, and the ratio M/Rr measures the computa-

tional cost of the communication. For the one-way coding considered thus far, the

estimate of this ratio is simply

M N (8)
r

In the sequel we consider strategies for exploiting two-way channels to decrease this

ratio. Before doing so, however, it is advantageous to look more closely at the actual

operating characteristics of the one-way system.
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III. EXPERIMENTAL VALIDATION OF ONE-WAY MODEL

The decoding procedure described above seems eminently plausible, but, on account

of statistical dependencies, it cannot be fully analyzed in a rigorous manner. In order

to validate the effectiveness of sequential decoding experimentally, Horstein5 ' 6 has

simulated a one-way Binary Symmetric Channel and the encoding-decoding system on

the IBM 704 computer.

In these experiments, the transmission rate Rt and code constraint length n were

held constant at 1/3 and 72. The actual channel transition probability po was varied

between . 01 and .06, while the transition probability p, which the decoder was pro-

grammed to expect, was taken (in an attempt to determine the sensitivity of the pro-

cedure to a prior channel estimates) to be . 01 or . 02. The main experimental results

are summarized in Table I, in which the units of N are taken to be the construction of

a single trial transmitter digit and its comparison against a received digit. A total of

24, 000 information digits was decoded, all without error. This is not too surprising:

even for po = . 06, the block-code probability of error at n = 72 is well overbounded by

.000413, and only 4000 digits were decoded at this transition probability. For com-

pleteness, the rate parameter B is also tabulated.

Several interesting points about these data deserve mention. First of all, the

results are somewhat (but not disastrously) sensitive to differences between the

expected and actual channel transition probabilities. Furthermore, the approximate

minimization of Eq. 5 does not, of course, yield a true minimum, although it does

provide a good starting point for experimental minimization. (The fact that N is less

in row 2 of Table I than in row 1 is an interesting aberration, but is not germane to the

present discussion. A full explanation 5 ' 6 requires detailed consideration of the

decoding algorithm.) Finally, the concept of sequential decoding, and also certain

procedural short-cuts that cannot easily be introduced into the mathematical formula-

tion, are demonstrated to be computationally reasonable. All in all, the picture with

regard to average computation is encouraging.

In spite of this pleasant long-term average behavior, however, the one-way sequen-

tial decoding procedure suffers from considerable variability. In Fig. 2 a typical

sample of the actual short-term (10-digit) average decoding computation requirements

for a run of 1000 successive information digits is plotted. For this sample, po = . 04,

p' = .02, and N = 22. Peak demands (up to 290 computations per decoded digit)0o
occurred in clusters having a base duration of approximately nRt = 24 digits, as

expected.

In order to investigate the validity of the Markov representation of Fig. 1, it is

interesting to consider the criteria-level occupancy of this same sample of 1000 suc-

cessive decoding operations. In Table II we tabulate the number of times the decoding

decision was made at each level, and the number of up, return, and down level transi-

tions. In addition to the transitions incorporated in Table II, there were three strangers:
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Table I.

PO P 0 o Rt/C N B

.01 .01 .352 11.6 .451

.02 .01 .388 8.8 .517

. 02 .02 .388 11.7 .517

.04 .01 .440 43.8 .637

.04 . 02 .440 20.7 .637

.06 . 02 .496 73.2 .757

Table II.

Criterion Level Up Return Down
Level Occupancy Transitions Transitions Transitions

1 909 11 898 0

2 60 9 41 10

3 21 4 10 6

4 9 1 5 2

5 1 0 0 0

5
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Fig. 2. Short-term (10-digit) average computation load. Experimental
results (po=. 04, p'=. 02) for 1000 successive decoded digits (for

these digits, N = 22).

150

z
J I00

z

3 50

100 200 300 400 500 600 700 800 900 1000

Fig. 3. Waiting line for 1000 successive decoded digits. (Solid line:
= 1.25; dashed line, X = 2. 0.) The ordinate scale is in units

of information digits.
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one from 3 to 1, one from 4 to 2, and one from 5 to 2. The one-level transition restric-

tion on our Markov representation appears to be well justified.

Assignment of experimental values to the criterion parameter x and the stability

parameter p is somewhat difficult. The values x = 1/3 (cf. the value, from Eq. 5, of

x = .288) and p = 2/3 appear to be reasonable approximations for purposes of obtaining

a rough feeling for the problem. The root of the difficulty lies in the purposeful exalta-

tion of criterion 1 in the programming of the decoder, a mathematical elaboration on

the decoding strategy considered here that results in a reduced value for N.

Variations in decoding demand complicate efficient utilization of the decoding com-

puter. Unless the computational capability of a decoder exceeds the peak computational

requirement, a waiting line of undecoded traffic will, with probability one, eventually

build up and overflow any fixed computer storage. Let > 1 be the ratio of average

computational requirement N to computational capability M. Then the frequency of

storage overflow decreases as is increased, although the efficiency of computer

utilization decreases also. As an example of waiting-line behavior, Fig. 3 plots

waiting lines ( = 1.25 and = 2.0) for the same representative example of 1000

successive decoded digits that we have considered before.

IV. NOISELESS FEEDBACK WITH DELAY

One straightforward way to solve this overflow problem and constrain the magnitude

of the variations in decoding computation would be to use a noiseless feedback channel

to request retransmission of those received message passages that impose inordinately

high computation demands. In some respects, such a procedure is suggestive of the

ARQ system. 7,8 Bearing in mind that the output of a decoder can be made substantially

noiseless, let us for the moment assume that such an error-free reverse channel is

available. It is convenient first to consider a non-Markovian decoder in which suc-

cessive criteria-level occupancies are statistically independent, but still occur with the

probabilities Pj given by Eq. 1.

Let us adopt the following strategy. Whenever the decoder is unsuccessful in

decoding a digit with the k th criterion, it sends back a repeat-request over the feed-

back channel. In general, there will be some delay of, say, T s seconds (proportional

to the constraint span n of the code) before the retransmission is available at the

receiver. We then have the following situation. With probability Pj, the decoder will

spend approximately Nj/M seconds decoding an information digit. With probability

k

Ps = - P= xk (9)

j=1

the decoder will be turned off for T s seconds. The (estimated) average number of

7



output digits per second (if we assume that undecoded traffic is otherwise always

available) is, therefore,

R =r

k

'Pi
j=l

k

M 2, P.N. +P T
j=l

(10)

If we let

k

'Rk i P-i
J= l

Nk
and (for the moment) arbitrarily set T = 7nRt M, we have, finally, for the estimated

computational cost per decoded digit

M 1 + 7nRtPS
R k 1 -P

r s
(12)

It is now possible to choose the repeat level k so as to minimize this cost measure.

A little thought will make it clear that not only is the variability of the computational

load curtailed by this strategy, but also that our average cost is decreased. In partic-

ular, for high transmission rates Rt, such that B >-1 and N goes to infinity, Nk is

still finite. For low rates Rt, where B - E, there is infinitesimal advantage, since the

probability P 1 of terminating on the first criterion goes to one.

When we consider using noiseless feedback in connection with the Markov decoding

xk

(P+P ) P P P P

Fig. 4. Finite Markov representation.

8
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representation, the statistical dependency that accentuates the waiting-line problem in

one-way channels now works to our advantage by further improving the average com-

putational cost. We again move into state s (repeat-request) when we are unsuccessful

in decoding at criterion level k, and move back down from s into any state j with

probability Pj (since the channel disturbances are without memory). The resulting

finite Markov decoding representation is therefore as shown in Fig. 4.

The state-occupancy probabilities Q for this finite Markov process are no longer

the old probabilities P. Instead, we now have

1 - xk-j+ l k
QP - x - (k-j+l) x

Qj = Pj D (13)

and

1 -x

Qs Ps D (14)

where

q = 1 - p (the stability parameter) (15)

and

2k+1 k kl
D = - (1+k xk-+kx +qx x (16)

Although these expressions are somewhat complicated, it is possible to show that, for

all k and x,

Qj+i Pj+1

Qs <Ps; Q1 >P 1 ; Qj P (17)

where the equality signs hold in the limit x - 0 or k -. These are exactly the charac-

teristics that one would seek in attempting to reduce both the mean and variability of

the computation load. When Eqs. 13-16 are substituted in Eq. 11, we have

An -B 1 -xk -B) k __ x-=N Bx [I-x 1-x)(k+l)j x

+ ) kxkx) x (18)

( - x k ( l- B) k x 1- B ) k

This expression can now be introduced into Eq. 12, with Qs substituted for Ps, and the

cost measure M/Rr minimized with respect to k and (granted sufficient energy) x.

Although our Markov representation seems to incorporate most of the dominant

qualitative features of the actual decoding process, it is sufficiently inaccurate quanti-

tatively that an overabundance of numerical work is scarcely justified. The limited

9
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Table III.

nRt 33

(q=. 333)

B=0

1

B= 1 -E

B= 0

1
nRt = 67 B = 

(q=. 150)

B= -E

No
Feedback

A

( )

3A-)

( )

1.72 An -
E

( )

A

( )

3ASn

( )

1.72 An-
E

Statistically
Independent

Feedback

A

( )

2. 99 A-

(9)

14. 6An

(7)

A

( )

2. 99 As

(10)

15.7 An

(8)

10

Markov
Feedback

A

( )

2. 97 A

(5)

9. 10OAn

(4)

A

( )

2. 96 A4rn

(5)

8. 76 An

(4)

.
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data, partially minimized, that are presented in Table III suffice to point out the major

results. In this table are entered the estimates of , and (where appropriate),
r min

in parentheses, the minimizing value of k. The data are computed for various condi-

tions of feedback, transmission-rate parameter B, and information-digit constraint

span nRt .

The first noteworthy point in connection with these data is that the substantive gain

in average cost with feedback is restricted to values of Rt such that B > 1/2; for B - 1

the gain is effectively infinite. Furthermore, this gain is quite insensitive to any

increase in the null duration T s implied by a reduction in the probability of error

(increased n). In fact, the Markov feedback gain may even improve slightly if the

stability parameter p increases fast enough with n. For the data presented, p was

taken as .667 (q=. 333) for nRt = 33, and as .850 (q=. 150) for nRt = 67.

Second, the variability of the computational demand, measured in terms of the

optimum repeat-request level k, is increasingly curtailed as B increases. Again,

for B < 1/2, this does not appear to be a major effect because the probability of ever

needing a criterion greater than k is small - even in the absence of feedback. On the

other hand, it is indeed fortunate that the remedies of feedback are most effective in

exactly those circumstances (B>1/2) in which they are most needed.

The final point, which can be of considerable import, is that the probability of error

is reduced when feedback is employed. Only those high-error channel-transition pat-

terns that carry the correct message within the k t h criterion of an incorrect message

can lead to a decoder mistake; the limbo beyond k leads only to a repeat-request.

Thus for a given channel and tolerable Pe the information digit constraint span nRt of

the code, and hence the basic complexity of the computers, can be reduced.

V. DERIVED NOISELESS FEEDBACK

Next, let us consider in more detail the problem of deriving noiseless feedback

from a noisy channel. Given a sufficiently large code constraint length n, the encoded

data can eventually be recovered with negligible error, for Rt < C. It is clear that our

procedure should therefore include the insertion of the retransmission request as a

service bit into the backwardgoing information stream, before encoding; this service

bit is then itself protected from the vagaries of the channel.

It is most convenient to envision a fully synchronous system, and to identify these

service bits by their location within the information stream. Insofar as possible, we

desire to minimize the dead time between repeat-request and retransmission. Let us

therefore usurp the first bit in each span of nRt information digits for service purposes,

and adopt the convention that "0" means continue, and "1" means retransmit. The

effective information rate of the system is thereby reduced by the generally negligible

factor 1 - nR We note in passing that closer spacing of service bits would be of little
t
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benefit in reducing dead time, since a delay of at least n transmitted digits (nRt infor-

mation digits) is already implied by the use of redundant coding.

The probability of decoding the service bit incorrectly goes to zero exponentially

with n, and can safely be neglected for significantly large n. The cogent problem to

be considered is not whether a repeat-request will be interpreted in error, but how

long it will take the distant receiver to recognize it; in order to decode the retrans-

mission, the near receiver must know at what time it starts. Since the feedback chan-

nel may itself give rise to decoder delays and the initiation of repeat-requests, we are

led to seek a strategy whereby each terminal reacts identically to either the receipt or

the transmission of a service "1". We must also provide a span of time, beyond that

necessary to receive all of the n digits of encoded transmission that are constrained

by a service digit, for the decoder to process this segment of received message; and

this time span must be sufficiently in excess of the duration of decoding peaks to allow

a certain amount of averaging over residual computational variations. Since our model

is fully synchronous, it is both possible and more convenient to measure time in

"number of information digits" than in seconds; a decoding time allowance of 2nRt

digits, after complete segment receipt, appears to be as small as is reasonable.

In this regard, the effect of statistical dependence is to degrade rather than improve

the efficiency of feedback.

One feedback strategy meeting the requirements discussed above is embodied in

the following rules, which are applicable independently to each terminal:

1. If, when a service bit is due to be transmitted, the receiver either has not yet

completely decoded the third preceding block of nRt information digits or has decoded

a service 1 therein, then the service bit is to be a "1". Otherwise, it is to be a "0".

2. Immediately upon initiating a service "1", a terminal is to retransmit, starting

from 7 blocks of nRt information digits back. Its receiver is to elide the offending

block of received message, plus the next 4 blocks.

The effect of these rules is illustrated diagrammatically in Figs. 5 and 6. The

abscissa has units of information digits, and each block, labeled a, b, etc., spans

nR t of them. The appropriate service bit is written at the beginning of each block.

Underneath each block division mark, in parentheses, is the identification letter of the

received message segment that is due to have been decoded by that time. The symbol

X represents a receiver-recognized failure to successfully decode that block, either

on account of waiting-line build-up or failure of the k t h criterion. The curved arrows

trace the action of the transmitters, and the straight arrows represent the elision by

the receiver of received message. Figure 5 depicts the situation when a service "1"

is successfully decoded; Fig. 6, when there are overlapping repeat-requests initiated

*It is this time allowance, in conjunction with the feedback rules, that lead to the
choice of Ts following Eq. 11. If propagation time is significantly large, T s must be

increased accordingly.
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Fig. 5. Implementation of two-way strategy: repeat-request decoded.
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Fig. 6. Implementation of two-way strategy overlap.
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at opposite ends. A little thought makes it clear that other conditions of overlap also

lead to the re-establishment of information-digit synchronization and the continuation

of error-free communication.

In order to maintain decoding synchronization, we have found it necessary to sup-

plement the kth-state feedback criterion with a waiting-line criterion. This procedure,

of course, serves also to solve the waiting-line overflow problem. The question of the

optimum criterion level for initiating a repeat-request becomes less critical, and is

substantively superseded by the question of determining the optimum lag to schedule

between the receipt of a difficult message segment and the transmission of a repeat-

request. This, it would appear, is a problem best suited for experimental evaluation.

VI. TIME-VARIANT SYSTEMS

Although the gain in computatiorial efficiency with feedback is negligible for trans-

mission rates Rt such that B < 1/2 - which, in fact, may well be a good design oper-

ating point - the gain at greater values of B is still important. Even if we transmit

digitally at a constant information rate, when the channel is real we expect that its

capacity (and hence B) will fluctuate slowly with time. Eventually, should the fluctu-

ation be so severe that C drops below Rt, then decoding errors would encroach; but,

long before this happens, a system that is computer-limited would fall irrevocably far

behind in decoding the received message: B approaches the convergence limit of

unity before Rt approaches C.

The classical engineering procedure with time-variant channels has been to design

conservatively: when the channel is poor, communication is still good; when the

channel is good, communication is perfect, but slower than it need be; and when the

channel is bad, the error-rate becomes intolerable and communication is abandoned.

The exploitation of a code-protected feedback channel, however, seems capable of

adding another dimension to system design. In the first place, over real channels,

communication rates that are a significant fraction of channel capacity imply (in the

absence of coding) error rates that are significantly large. Coding and decoding

schemes that correct all probable error patterns, however, permit these higher rates

to be used. It is primarily in this objective that the scheme considered here differs

from other feedback work, 7-10 which is aimed primarily at error-detection rather than

error-correction. Furthermore, with terminal and computer facilities of fixed clock

rate, the redundancy ratio of codes can be adjusted by flexible automatic programming

in such a way that operation is always near the limit of the equipment's computational

capabilities. The difficulty of decoding is itself a most appropriate channel measure-

ment. Thus it seems reasonable to augment the repeat-request strategy with other

service bits, requesting an increase in transmitter rate should the decoder be under-

loaded, or a decrease should it be overloaded.

Terminal equipments that, say, double the effective communication provided by a

14
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channel are economic whenever they cost less than does duplicating the channel. The

intriguing prospect unfolds of designing communication systems that automatically

operate, substantially without error, at whatever maximum rate the condition of the

channel and the capital investment in terminal equipment permits.

15
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