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Abstract

Computers cannot fully understand spoken language without access to the wide range
of modalities that accompany speech. This thesis addresses the particularly expressive
modality of hand gesture, and focuses on building structured statistical models at the
intersection of speech, vision, and meaning.

My approach is distinguished in two key respects. First, gestural patterns are
leveraged to discover parallel structures in the meaning of the associated speech.
This differs from prior work that attempted to interpret individual gestures directly,
an approach that was prone to a lack of generality across speakers. Second, I present
novel, structured statistical models for multimodal language processing, which enable
learning about gesture in its linguistic context, rather than in the abstract.

These ideas find successful application in a variety of language processing tasks:
resolving ambiguous noun phrases, segmenting speech into topics, and producing
keyframe summaries of spoken language. In all three cases, the addition of gestural
features — extracted automatically from video — yields significantly improved perfor-
mance over a state-of-the-art text-only alternative. This marks the first demonstra-
tion that hand gesture improves automatic discourse processing.
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Title: Associate Professor

Thesis Supervisor: Randall Davis
Title: Professor






Acknowledgments

This thesis would not be possible without the help, advice, and moral support of

many friends and colleagues.

Coauthors and collaborators: Aaron Adler, S. R. K. Branavan, Harr Chen,

Mario Christoudias, Lisa Guttentag, and Wendy Mackay.

Conscientious readers of theses and related papers: Aaron Adler, S. R.
K. Branavan, Emma Brunskill, Sonya Cates, Mario Christoudias, Pawan Deshpande,
Yoong-Keok Lee, Igor Malioutov, Gremio Marton, Dave Merrill, Brian Milch, Sharon
Oviatt, Tom Ouyang, Christina Sauper, Karen Schrier, Sara Su, Ozlem Uzuner, Elec-

tronic Max Van Kleek, Matthew Walter, Tom Yeh, and Luke Zettlemoyer.

Brainstormers, co-conspirators, and sympathizers: Kunal Agrawal, Chris-
tine Alvarado, Chih-yu Chao, Erdong Chen, Joan Chiao, Brian Chow, Andrew Cor-
rea, James Cowling, Trevor Darrell, Rodney Daughtrey, Todd Farrell, Michael Fleis-
chman, Bill Freeman, Mark Foltz, Harold Fox, Ted Gibson, Amir Globerson, Alex
Gueydan, Tracy Hammond, Berthold Horn, Richard Koche, Jean-Baptiste Labrune,
Hui Li, Louis-Philippe Morency, Tahira Naseem, Radha Natarajan, Michael Oltmans,
Jason Rennie, Charles Rich, Dan Roy, Bryan Russell, Elifsu Sabuncu, Justin Savage,
Metin Sezgin, Lavanya Sharan, Vineet Sinha, Mike Siracusa, Benjamin Snyder, David
Sontag, Belinda Toh, Lily Tong, Benjamin Turek, Daniel Turek, Dan Wheeler, Valerie
Wong, and Victor Zue.

Special thanks:  The Infrastructure Group (TIG), Nira Manokharan and Marcia
Davidson, for helping me focus on research by taking care of everything else; Diesel
Cafe and the Boston Public Library; Frank Gehry, whose egomaniacal and dysfunc-
tional building propped up many stalled lunch conversations; an army of open-source
and free software developers; Peter Godfrey-Smith, for advising my first thesis; and

Angel Puerta, for getting me started in computer science research.

And of course: My thesis committee was an academic dream team. Michael
Collins and Candy Sidner shaped this thesis through the example of their own work

long before I asked them to be readers on my committee. Their perceptive and consci-

)



entious suggestions made the thesis immeasurably better. Regina Barzilay’s infectious
enthusiasm for research and tireless efforts on my behalf extended to bringing a draft
of one of my papers to the hospital while going into labor. Randy Davis met with me
weekly for the past six years; among many other things, he taught me to identify the
big picture research questions, and then to refuse to accept any obstacle that might
prevent answering them. Most of all I want to thank my family, for teaching me to
expect only the best from myself, while never missing an opportunity to remind me

not to take myself too seriously.



7

Contents

1 Introduction 15
1.1 Gesture and Local Discourse Structure . . . . . ... ... ...... 19
1.2 Gesture and Global Discourse Structure . . .. ... ... ...... 20
1.3 Contributions . . . . ... .. ... ... 22

2 Related Work 24
2.1 Gesture, Speech, and Meaning . . . . . . .. ... ... ........ 25

2.1.1 The Role of Gesture in Communication . . . . .. ....... 25
2.1.2 Computational Analysis of Gestural Communication . . . . . 32
2.1.3 Classifying and Annotating Gesture . . . . . . ... ... ... 34
2.2 Multimodal Interaction . . . . . . .. ... ... L. 38
221 MultimodalInput . . . . ... ... ... ... ........ 38
2.2.2 Multimodal Output . . . . .. ... ... ... ......... 39
23 Prosody . . . . . ... e 40
2.3.1 Prosodic Indicators of Discourse Structure . . ... ... ... 41
2.3.2 Modality Combination for Prosody and Speech . .. ... .. 42

3 Dataset 43

4 Gesture and Local Discourse Structure 47
4.1 Introduction . . . ... ... ... 48
4.2 From Pixels to Gestural Similarity . . . ... ... ... ....... 51



4.2.1 Hand Tracking from Video . . . . . . .. ... ... ... ... 51

4.2.2  Gesture Similarity Features . . . . ... ... ... ... ... 54
4.3 Gesture Salience. . . . . . . ... 57
4.3.1 Models of Modality Fusion . . . . . . .. ... ... ... ... 29
4.3.2 Implementation . . . . . .. ... ... ... ... ... 62
4.4 Gestural Similarity and Coreference Resolution . . . . ... ... .. 63
4.4.1 Verbal Features for Coreference . . . . .. ... ... ... .. 63
442 Salience Features . . . . ... ... ... ... ... ... .. 67
4.4.3 Evaluation Setup . . . . .. ... ... 69
444 Results. . . . . .. 76
445 Global Metric . . . . . . ... oL 7
44.6 Feature Analysis . . .. ... ... ... ... .. ... .. 80
4.5 Keyframe Extraction . . . . . . ... ... ... ... L. 81
451 Motivation . . . . . ... oL 82
4.5.2 Identifying Salient Keyframes . . . . . . . ... ... .. ... 83
4.5.3 Evaluation Setup . . . . ... ... ... ... ... ... 84
454 Results. . . . . ... .. 89
4.6 Discussion . . . . ... L 90
Gestural Cohesion and High-Level Discourse Structure 92
5.1 Introduction . . . . . . . . . ..o 93
5.2 A Codebook of Gestural Forms . . . ... ... ... .. ... .... 96
5.2.1 Spatiotemporal Interest Points . . . . . . . ... ... ... .. 97
0.2.2 Visual Features . . . . . .. ... .. oo 98
5.2.3 Gesture Codewords for Discourse Analysis . . . . .. ... .. 99
5.3 Discourse Segmentation . . . . . .. ... L. 100
5.3.1 Prior Work . . . . ... ..o 101
5.3.2 Bayesian Topic Segmentation . . . . . . ... ... ... ... 103
5.3.3 Evaluation Setup . . . .. .. ... ... oL 106
534 Results. . . . . . .. 109



5.4 Detecting Speaker-General Gestural Forms . . . . . ... ... .. ..

5.4.1
5.4.2
5.4.3
5.4.4
5.5 Discuss

An Author-Topic Model of Gestural Forms . . . ... ... ..
Sampling Distributions . . . . ... ... ... ... ......
Evaluation Setup . . . ... ... ... ... .. ... .....
Results. . . . . . ... .

370 R

Conclusion
6.1 Limitations . . . . . . . . . . e e e e
6.2 Future Work . . . . . . . . .. e

Example Transcripts

A.1 Corefer

ence Example . . . ... ... ... .. o

A2 Segmentation Example . . . ... ... ... ... ... ... ...,

Dataset Statistics

Stimuli

References .

127
128
130

133
133
135

138

141



1-1

1-2

1-3

4-1

List of Figures

In this example, the speaker is describing the behavior of a piston, hav-
ing seen an animation of the diagram on the right. Each line shows an
excerpt of her speech and gesture, and highlights the relevant portion
of the diagram. The speech expresses the spatial arrangement awk-
wardly, using metaphors to letters of the alphabet, while the gesture

naturally provides a visual representation. . . .. ... .. ... ...

An example of two automatically extracted hand gestures. In each
gesture, the left hand (blue) is held still while the right (red) moves up
and to the left. The similarity of the motion of the right hand suggests
a semantic relationship in the speech that accompanies each gesture:
in this case, the noun phrase “this thing” and “it” refer to the same

semantic entity. . . . . . . . ... L Lo Lo

Two frames from a comic book summary generated by the system

described in Chapter 4 . . . . . . . . ... . ... ... ... ...

Kendon’s taxonomy of gesture . . . . . . .. ... ... ... ...,

An excerpt of an explanatory narrative in which gesture helps to dis-

ambiguate coreference . . . . . . . ... Lo

16

18

20

35



4-3

4-4
4-5
4-6

4-8

4-9

An example of a pair of “self-adaptor” hand motions, occurring at two
different times in the video. The speaker’s left hand, whose trajectory is

indicated by the red “x,” moves to scratch her right elbow. While these

gestures are remarkably similar, the accompanying speech is unrelated. 50

An example image from the dataset, with the estimated articulated
model (right). Blue represents foreground pixels; red represents pixels
whose color matches the hands; green represents image edges.

An excerpt of an explanatory narrative from the dataset . ... ...
Results with regularizatidn constant . . . .. ... .. ... ......
Global coreference performance, measured using CEAF scores, plotted
against the threshold on clustering . . . ... ... .. ... ... ..
An analysis of the contributions of each set of gestural similarity fea-
tures. The “plus” column on the left of the table shows results when
only that feature set was present — this information is also shown in the
white bars in the graph. The “minus” column shows results when only
that feature was removed — this information is shown in the shaded
bars. As before, the metric is area under the ROC curve (Auc).
Example of the first six }frames of an automatically-generated keyframe

SUIINATY . & v v v v v e e e e e e e e e e e e e e e e e e e

An example of the scoring setup . . . . . ... ... ... ... ....

Distribution of gestural and lexical features by sentence. Each dark
cell means that the word or keyword (indexed by row) is present in
the sentence (indexed by the column). Manually annotated segment
breaks are indicated by red lines. . . .. ... ... ..........

The visual processing pipeline for the extraction of gestural codewords

from video . . . . . . ... e

52
70
78

79

80

85
87

95

96

Circles indicate the interest points extracted at this frame in the video. 98

A partial example of output from the Microsoft Speech Recognizer,

transcribed from a video used in this experiment . . . . . . . ... ..

11



5-7

C-1
C-2
C-3

C-5
C-6

The multimodal and verbal-only performance using the reference tran-
script. The x-axis shows the logarithm of the verbal prior; the gestural
prior is held fixed at the optimal value. . . . . . . .. ... ... ... 109
The three rows show examples of interest points that were clustered
together; all three include upward motion against a dark background.
The center panel of each row shows the time when the interest point
is detected; the left and right panels are 5 frames before and after,
respectively. . . . .. .. 115
A plate diagram showing the dependencies in our model. Filled circles

indicate observed variables, empty circles indicate hidden variables, and

rounded rectangles indicate priors. . . . . . . . . ... ... 118
Proportion of gestures assigned to the topic model, perrun . . . . . . 123
Latching box . . . . . .. . .. ... ... .. 142
Candy dispenser . . . . . . . . . . ... 142
Pinball machine . . . . . . . .. ... 143
Piston . . . . . . . . 143
Star Wars toy . . . . . . ... 144
Tom and Jerry cartoon . . . . . . . . ... ... .. 144

12



4.1
4.2

4.3
4.4
4.5

4.6

4.7
4.8
4.9

5.1

0.2

List of Tables

The set of gesture similarity features . . . . .. .. ... ... ....
The set of verbal features for multimodal coreference resolution. In
this table, i refers to the antecedent noun phrase and j refers to the
anaphor. . . . . . . . ..
The set of gesture features for multimodal coreference resolution . . .
Summary of systems compared in the coreference evaluation . . . . .
Coreference performance, in area under the ROC curve (AUC), for sys-
tems described in Table 4.4 . . . .. ... ... ... ... ...
P-values of the pairwise comparison between models. “ns” indicates
that the difference in model performance is not significant at p < .05.
The parentheses in the left column explain the abbreviations in the top
line. . . . . . . . e
CEAF global evaluation scores, using best clustering threshold

Agreement counts for the two raters, in numbers of frames . . . . . .

Comparison of performance on keyframe selection task . . . . . . ..

For each method, the score of the best performing configuration is
shown. P, and WD are penalties, so lower values indicate better per-
formance. . . . ... ...
Segmentation performance using TEXTSEG, with pre-specified number

of segments . . . . .. ... ...

109



5.3

5.4

3.5

B.1

B.2

B.3

Segmentation performance using TEXTSEG, with automatically deter-
mined number of segments . . . . .. ... ... L.
Segmentation performance using MINCUTSEG, with pre-specified num-
berof segments . . . . . .. ... ... L.
Proportion of gestures assigned to the topic-specific model, with 95%

confidence intervals . . . . . . . . . . .. ...

Corpus statistics for the dataset used in the experiments from Chap-
ter 4. All videos were used in the coreference evaluation; asterisks
indicate videos that were used in the keyframe evaluation. . . . . . .
Corpus statistics for the experiments on discourse segmentation in Sec-
tion 8.3 . . . ..
Corpus statistics for the experiments on speaker and topic-specific ges-
tures in Section 5.4. To avoid including motion from the speaker en-
tering or leaving the scene, only data between the start and end times

are included, as indicated in the right two columns of the table.

14

112

113

123

139

139

140



Words are but vague shadows of the volumes we mean.

Theodore Dreiser

Introduction

Speech is almost always accompanied by a range of other behaviors, including move-
ments of the face, body, and hands (Rimé & Schiaratura, 1991). Of all these co-speech
behaviors, hand gestures appear to be especially reflective of the speaker’s underlying
meaning (e.g., Figure 1-1). Many psychologists hypothesize that gesture is an integral
part of spoken communication, helping to convey crucial semantic content (McNeill,
1992). If so, it is natural to ask whether automatic natural language processing
systems can better understand speech by incorporating hand gestures. Can hand
gestures fill in the gaps when words give only a “vague shadow” of the intended
meaning?

Attempts to incorporate hand gestures in automatic language processing have
been stymied by a number of practical and conceptual challenges. Gesture conveys

meaning through a direct, visual medium — quite unlike speech, which is fundamen-
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speech +  gesture = meaning

“Think of the
block letter C”

“Then there’s a T-
shaped thing”

“So there’s a
wheel over here”

Figure 1-1: In this example, the speaker is describing the behavior of a piston, hav-
ing seen an animation of the diagram on the right. Each line shows an excerpt of
her speech and gesture, and highlights the relevant portion of the diagram. The
speech expresses the spatial arrangement awkwardly, using metaphors to letters of
the alphabet, while the gesture naturally provides a visual representation.

16



tally symbolic (Kendon, 2004). Thus, gesture does not easily lend itself to a compact,
formal representation. The majority of co-speech gestures have neither predefined nor
intrinsic meaning; rather, they are interpretable only in the surrounding linguistic con-
text. Gesture is commonly believed to be highly idiosyncratic, so that its meaning
may also vary widely by speaker. Finally, communicative gestures are only a fraction
of the total set of hand motions that occur during speech. Automatic systems must
be able to disattend other movements that may be semantically meaningless, such as

when the speaker adjusts her glasses or hair.

To address these challenges, this dissertation offers two main ideas. First, I focus
on identifying patterns between gestures, which are leveraged to discover parallel pat-
terns in the discourse structure. Unlike previous research (e.g., Chen, Liu, Harper,
& Shriberg, 2004; Cassell, Nakano, Bickmore, Sidner, & Rich, 2001), I do not at-
tempt to assess the semantic or pragmatic contribution of individual gestures or
movements. Speaker-specific idiosyncrasies and the modulating effects of linguistic
context may make the form of individual gestures difficult to interpret directly. But
even if individual gestures cannot be decoded, the relationships between gestures may

be comprehensible.

As an example, Figure 1-2 shows automatically-extracted hand trajectories for two
short gestures that occur roughly 30 seconds apart. It is hard to imagine inferring any
meaning from these two trajectories when taken in isolation, but it is clear that the
path of motion in the right hand is repeated quite closely. This repetition can serve
as a clue for linguistic analysis. In this case, the second gesture (shown in the right
panel) is accompanied by the ambiguous anaphoric pronoun “it,” which refers back
to the noun phrase “this thing,” uttered during the performance of the first gesture
(in the left panel). Recognizing the similarity of this pair of gestures can facilitate
linguistic analysis even when the meaning of each individual gesture is unknown.

The second key idea is to build models of gesture without relying on gestural
annotations. From a practical standpoint, annotating the form of gesture for a corpus
of any reasonable size would be extremely time-consuming. Moreover, no annotation

scheme formal enough for computational analysis has yet been shown to be sufficiently

17



X right — X right
O left O left
%‘xy L ) o
£ .
"this thing clicks back..." "and then it clicks over..."

Figure 1-2: An example of two automatically extracted hand gestures. In each ges-
ture, the left hand (blue) is held still while the right (red) moves up and to the left.
The similarity of the motion of the right hand suggests a semantic relationship in the
speech that accompanies each gesture: in this case, the noun phrase “this thing” and
“it” refer to the same semantic entity.

18



flexible to describe all relevant aspects of a gesture’s form. On a conceptual level,
our ultimate goal is not to describe characteristics of gesture but to solve language
processing problems that are critical to end-user applications. Thus, it seems best to
learn directly from linguistic annotations whenever possible.

I avoid the need for gestural annotation by building custom statistical learning
models that explicitly encode the relationship between gesture and speech. Such mod-
els are capable of learning about gesture by exploiting features of the language. This
idea is applied in two ways: by leveraging linguistic annotations, and in a completely
unsupervised framework. In both cases, gesture and verbal features are combined
in a single joint model, maximizing the ability of each modality to disambiguate the
other when necessary.

These two strategies — focusing on patterns between gestures, and learning models
of gesture in the context of language — constitute the core technical innovations of
this thesis. I demonstrate the applicability of these ideas to discourse processing on

both local and global levels.

1.1 Gesture and Local Discourse Structure

In the previous section, the gestural trajectories shown in Figure 1-2 were used as
an example of how gesture can help to disambiguate the relationship between the
accompanying noun phrases. The problem of determining whether a pair of noun
phrases refer to the same semantic entity is called coreference resolution, and may
be considered a local-scale discourse phenomenon. Chapter 4 demonstrates that the
similarity of the gestures accompanying a pair of noun phrases can help to predict
whether they corefer.

To obtain maximum leverage from gestural similarity, is important to ensure that
the hand movements being compared are indeed meaningful gestures. For any given
hand motion, we may assess its salience — a measure of whether it is likely to be
communicative. Gesture similarity and salience are learned using a novel architec-

ture called conditional modality fusion — an application of hidden-variable conditional

19



A

® |So this moves up. And it - everything moves -

1

T —

And this top one clears this area here, and goes
P |all the way up to the top...

2

Figure 1-3: Two frames from a comic book summary generated by the system de-
scribed in Chapter 4

random fields (Quattoni, Wang, Morency, Collins, & Darrell, 2007). This model op-
erates without labels for gesture similarity or salience, learning directly from corefer-
ence annotations. The resulting system resolves noun phrases more accurately than
a state-of-the-art baseline that uses only verbal features. Moreover, modeling gesture
salience substantially increases the predictive power of gesture similarity information.

Gesture salience is then applied to another local discourse processing task: ex-
tracting keyframe summaries from video. The model of gesture salience learned on
coreference is transferred directly to the keyframe summary task, again without any
labeled data for summarization. The resulting system produces “comic books” in
which the transcript is augmented with keyframes showing salient gestures (Figure 1-
3). These comic books cohere well with human-generated summaries, outperforming

state-of-the-art unsupervised keyframe extraction baselines.

1.2 Gesture and Global Discourse Structure

Gesture similarity is a property of pairs of gestures; in Chapter 5, this idea is extended
to larger sets of gestures, under the name of gestural cohesion. This term draws a
deliberate parallel to the well-known phenomenon of lexical cohesion, which measures
the self-consistency of word use within a discourse segment (Halliday & Hasan, 1976).

Lexical cohesion has been found to be an effective feature for high-level discourse

20



analysis, particularly for the task of topic segmentation: dividing a text into topically-
distinct segments (Hearst, 1994). Chapter 5 investigates whether gestural cohesion

can be used in the same way.

Lexical cohesion is an effective feature for discourse analysis because word choice
is one way that semantics is conveyed in text and language. Thus, a change in the
distribution of lexical items is predictive of a change in the intended meaning. Given
the hypothesis that meaning is also conveyed via gesture, it seems reasonable that the
distribution of gestural forms may predict segmentation in the same way. For each
dialogue, a “lexicon” of gestural forms is acquired through unsupervised clustering.!
The observed words and gestural forms are then combined in a novel, unsupervised
model for segmentation. A Bayesian framework provides a principled way to combine
the modalities: separate sets of language models are learned for gesture and speech,
and the priors on these language models control the relative influence of each modal-
ity on the predicted segmentation. The resulting system produces more accurate

segmentations than are obtained using only speech information.

Finally, the lexical representation constructed for topic segmentation is applied
to answer a more fundamental question about gesture: to what extent do different
speakers use the same gestural forms when describing a single topic? Even assuming
that gestures convey semantic meaning, their form is shaped by the speaker’s mental
imagery, which may be highly idiosyncratic. Is it possible to show that for some
topics, many speakers will use the same representational gestures? I build a lexicon
of gestural forms across multiple speakers, and apply a hierarchical Bayesian model to
quantify the extent to which the distribution over forms is determined by the speaker
and topic. This yields the first quantitative evidence that the use of gestural forms

to communicate meaning is consistent across speakers.

1Unlike the traditional sense of the term “lexicon,” the gestural forms here do not necessarily
have any pre-defined meaning.
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1.3 Contributions

The main contribution of this thesis is a predictive analysis of the relationship between
gesture and discourse structure. While previous research has identified correlations
between gesture and discourse phenomena (e.g., Quek, McNeill, Bryll, Duncan, et
al., 2002), this thesis presents systems that predict the discourse structure of unseen
data, using gestural features that are automatically extracted from video. Moreover,
adding gesture to state-of-the-art text-based systems yields significantly improved
performance on well-known discourse processing problems. This demonstrates that

gesture provides new and unique information for discourse processing.

A second contribution is the focus on relationships between gestures, which are
used to detect parallel patterns in the discourse structure. This approach is the first to
successfully uncover gesture’s contribution to the underlying narrative semantics. It
is a departure from earlier efforts in multimodal natural language processing, which
tried to identify individual gestures and intonation patterns that act as pragmatic
discourse cues (e.g., Chen et al., 2004; Shriberg, Stolcke, Hakkani-Tur, & Tur, 2000).
This dissertation focuses on three specific gestural patterns: similarity, cohesion, and
salience. Models for each pattern are learned from automatically extracted features
without labeled data. These models are then demonstrated to be predictive of dis-

course structure.

Finally, the machine learning models themselves constitute an important contri-
bution. The use of custom models that explicitly encode the role of each modality
differs from previous research, which relied on generic machine learning methods (e.g.,
Chen et al., 2004). The models employed in this thesis are capable of learning about
gesture in its linguistic context, rather than in the abstract. This permits learning
about gesture directly from linguistic annotations. In addition, these models provide
a principled approach to modality combination. Chapter 4 applies these ideas in a
supervised, discriminative framework, using a novel hidden conditional random field

architecture; Chapter 5 presents two novel unsupervised Bayesian models.

The remainder of the thesis is organized as follows. Chapter 2 assesses related
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work on gesture, discourse processing, and other attempts to integrate non-verbal
modalities into automatic language processing. Chapter 3 describes a novel gesture-
speech dataset that makes this research possible. Chapter 4 applies the ideas of
gestural similarity and salience to the local discourse problems of coreference resolu-
tion and keyframe extraction. The mechanism is conditional modality fusion, a novel
discriminative technique for modality combination, which learns to identify salient
gestures and filter away non-communicative hand motions. Chapter 5 develops the
notion of gestural cohesion, with an application to topic segmentation. In addition, I
use a novel hierarchical Bayesian model to demonstrate that the relationship between
gestural forms and the discourse topics can generalize across speakers. Finally, the
main ideas and contributions of the thesis are summarized in Chapter 6, where I also

discuss limitations and directions for future work.
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Related Work

This thesis builds on diverse streams of related work. First, any computational ac-
count of gesture and discourse should be informed by psychology and linguistics.
These fields provide theoretical models of how gesture and speech combine to create
meaning, as well as experimental results that shed light on how humans use these
modalities to communicate. Section 2.1 summarizes relevant contributions from this
area, and notes prior computational work that builds on psycholinguistic models of

gesture.

The remaining portions of this chapter describe implemented systems that employ
gesture or other non-verbal features. Section 2.2 describes multimodal interfaces
and dialogue systems in which human users interact with computers using gesture
and sometimes speech. Section 2.3 describes the application of prosody to natural

language processing — a parallel line of research that faces similar challenges to those
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dealt with in this dissertation.

2.1 Gesture, Speech, and Meaning

From the 1970s on, there has been increasing interest in the study of gesture from
the psychological and linguistic communities. This has been fueled largely by the
hope that gesture can provide clues to the organization of language and thought in
the human mind (Kendon, 2004). In the course of trying to answer these high-level
questions, psychologists and linguistists have developed valuable ideas and results
that inform my research. In this section, I describe studies of gesture’s communicative
function, prior attempts to formalize these ideas in a computational framework, and

briefly mention a few notable taxonomies and annotation systems for gesture.

2.1.1 The Role of Gesture in Communication

Gesture has long been understood to be closely linked to speech (Condon & Ogston,
1967; Kendon, 1972). The form and timing of gesture and speech mirror each other
in ways that are obvious even from casual observation.! However, our understanding
of the communicative role of gesture remains incomplete at best, particularly with
respect to how gestures are understood. Indeed, psychologists continue to debate
whether representational gestures affect the listener’s comprehension at all. I briefly
summarize arguments on both sides of this debate, and then review experimental

results showing specific semantic and pragmatic functions played by gesture.

Do Listeners Understand Gestures?

While there can be little doubt that listeners understand certain, specialized ges-
tures (e.g., navigational directions accompanied by pointing), some researchers have
expressed skepticism about the communicative function of spontaneous, representa-

tional gestures. Part of the motivation for such skepticism is that gesture is employed

1The synchrony between speech, gesture, and other physical movements is surprisingly tight,
incorporating even eye blinks (Loehr, 2007).

25



even in situations where it cannot possibly be viewed — for example, in telephone
conversations, or when speaking to the blind (Rimé & Schiaratura, 1991). Such ex-
amples show that at least some gestures are not intentionally produced for the viewer’s
benefit. Are such gestures produced merely out of habit, or is there some other mo-
tivation? Some researchers argue that representational gestures are primarily for the
benefit of the speaker, rather than listener. In particular, Krauss (2001) argues that
by acting out an action or idea via gesture, the speaker may find it easier to produce

the associated verbal form.

There is evidence for the view that gesture aids speech production. When told
not to gesture, speakers becomes substantially more dysfluent, as increasing numbers
of filled pauses (e.g. “um”) are placed within grammatical clauses (Rauscher, Krauss,
& Chen, 1996). The authors argue that this suggests the absence of gesture leads
to difficulty with lexical retrieval. Speakers experience additional difficulties when
discussing content with a spatial component, speaking more slowly and producing

more dysfluencies overall.

Such findings are not limited to cases in which speakers were explicitly forbidden
or prevented from gesturing. Goldin-Meadow, Nusbaum, Kelly, and Wagner (2001)
observe that the absence of gesture increases the speaker’s cognitive load regardless
of whether speaker was instructed not to gesture or simply chose to produce speech
without gesture. These results — as well the failure of some studies to show that
listener comprehension benefits from gesture (Krauss, Morrel-Samuels, & Colasante,
1991) — lead Krauss (2001) to conclude that representational gestures primarily serve

to aid the lexical retrieval of spatially-associated terms.

In other settings, gestures do appear to aid comprehension. Goldin-Meadow
(2003) describes a series of studies showing that children can benefit from observing
gestures produced by their teachers; furthermore, when students make errors, their
gestures can reveal additional information about where they went wrong. Using videos
of scripted scenarios, Kelly, Barr, Church, and Lynch (1999) find that comprehension
improved significantly when both gesture and speech were present. Interesting, when

asked to recall just the spoken communication, listeners often added information that
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was actually communicated with gesture and not speech. This suggests that not only
did the listeners draw information from gesture, they also encoded this information in
a way that did not distinguish between spoken and gestural communication. Finally,
electroencephalography (EEG) studies demonstrate that subjects register neurophys-
iological indicators of surprise when viewing videos in which the gesture and speech
convey contradictory information (Kelly, Kravitz, & Hopkins, 2004). This supports
the view that people attempt to interpret the semantics of the gestures that they

observe.

While this debate is relevant to our main interest in gesture and automatic dis-
course processing, from a computational perspective we may remain agnostic about
the extent to which listener comprehension benefits from viewing representational
gestures. Human language processing is robust, and may succeed even when various
cues are removed (Whitney, 1998).2 Automatic natural language processing systems
do not benefit from the same common-sense reasoning and background knowledge
available to humans. Thus, even if representational gestures are generally redundant
with speech — and thus, rarely necessary for human listeners — they may still be of

great value to computer systems for the forseeable future.

Gesture and Local Semantics

We now explore a series of studies that identify specific types of semantic phenomena,
that are sometimes communicated with gesture. One such case is word-sense disam-
biguation: Holler and Beattie (2003) find that speakers are more likely to produce
representational gestures in conjunction with homonyms (one example from the paper
is “arms,” meaning either the body part or weapons) than with other words. While
the meaning of homonyms may be deducible from the larger discourse context, such
disambiguation requires additional cognitive effort on the part of human listeners,

and may pose substantial difficulties for automatic systems.

2However, evidence from eye tracking suggests that even in cases when people can deduce meaning
without gesture, listeners use gesture to interpret the utterance more quickly than when only speech
is available (Campana, Silverman, Tanenhaus, Bennetto, & Packard, 2005).
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One type of information often conveyed by gesture that is apparently not deducible
from the associated speech is the physical size of semantic entities. Beattie and
Shovelton (2006) ask subjects to describe a set of cartoon narratives, and find that
size is often communicated via gesture, and very rarely communicated redundantly
in both speech and gesture. This suggests that size would not be deducible from
the surrounding speech without the presence of gestures. Moreover, they find that
speakers are more likely to communicate size via gesture when the size is particularly
important to the overall story, as judged by a separate set of raters who were familiar

with the underlying narrative but did not view the speakers’ explanations.

Similarly, gesture may be used to differentiate spatial relations between objects.
Lausberg and Kita (2003) find that when describing the spatial configuration of two
objects, the horizontal position of each object is expressed via the hand that is used to
represent it. Similarly, Melinger and Levelt (2004) find that some speakers use gesture
to disambiguate spatial relationships when describing an abstract arrangement of
colored nodes — however, they find that roughly half of the speakers in their study
never used gestures. Those speakers who did gesture also produced significantly
more ambiguous speech, suggesting that they were intentionally using gesture as a
disambiguating modality. The idea that verbal ambiguity could predict the likelihood
of salient gestures influenced the use of verbal features to help assess gesture salience

(Section 4.4.2).

Both Kendon (2004) and McNeill (1992) note examples in which speakers assign
spatial regions to individual characters or entities, and then refer back to these regions
when the entities are mentioned again. A more systematic study of this phenomenon
is presented by So, Coppola, Licciardello, and Goldin-Meadow (2005), who show that
speakers tend to use gestures to communicate coreference when describing cartoon
narratives. The observation that spatial location may disambiguate noun phrases
helped motivate my work on noun phrase coreference (Chapter 4), which uses spatial
location as one of the features that predicts gestural similarity.

Aside from the word sense disambiguation study (Holler & Beattie, 2003), in all of

the cases discussed thus far, gesture is used relationally. For example, when describing
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spatial arrangements, gestures are (presumably) not taken to indicate the absolute
position of the object, but rather the position of the objects relative to each other. In
this thesis, I have focused on how gestures reveal a relationship of semantic identity.
However, these studies suggest that gesture also provides an imagistic representation
of the specific ways in which entities are dissimilar — for example, in their size and
placement. The exploitation of such contrastive gestures is an interesting avenue for

future research.

Gesture and High-Level Discourse Structure

Chapter 5 deals with gesture and topic-level discourse structure. There, I identify
two main types of cues that predict topic segmentation: inter-segmental boundary
cues, and intra-segmental cohesion. Boundary cues are essentially pragmatic: they
convey information about the locations of segment boundaries, and not about the
content within the segment. This dissertation concerns gestures that communicate
the speaker’s underlying meaning, and so has focused on intra-segmental gestural
cohesion — the repetition of gestural forms throughout a topically-coherent segment.
However, it is important to note that psycholinguistic research suggests that ges-
ture communicates discourse structure in both ways, suggesting future research on
computational models that unify both types of cues.

An explicit, quantitative study of nonverbal cues for discourse segment bound-
aries was undertaken by Cassell et al. (2001). They begin by noting that “changes in
the more slowly changing body parts occur at the boundaries of the larger units in
the flow of speech,” an observation presented earlier by Condon and Osgton (1971).
Put another way, not only are gesture and speech tightly synchronized, but this syn-
chronization occurs on multiple levels, such that small linguistic units (e.g., phrases)
are synchronized with fast moving body parts (e.g., hand and fingers) and large dis-
course units (e.g., topic segments) are synchronized with slower-moving parts (e.g.,
the torso). Cassell et al. therefore hypothesize that whole-body posture shifts should
be indicative of discourse segment boundaries. Using manual annotations of speaker

posture in twelve videos, they find that posture shifts occur much more frequently at
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segment boundaries, although some shifts still occur within segments. They exploit
this correlation to generate realistic gestures in an animated avatar; to my knowl-
edge no one has attempted to build a system that detects segment boundaries using

posture shifts.

Gestural cues have also been observed for more fine-grained discourse phenomena.
Kendon (1995) describes four conventionalized gestures that are used in Southern
Italy, each of which conveys information about the role of the associated speech in
the surrounding discourse. These include four specific gestures: “the purse hand,”
indicating that the associated utterance is a question; “praying hands,” often in-
dicating that the speaker asks the listener to accept the utterance as given; “the
finger bunch,” which often indicates that a statement is a high-level topic, rather
than a comment; and “the ring,” which tells the listener that a precise piece of in-
formation is being communicated. These gestures provide information on the level
similar to the “dialogue acts” annotated in DAMSL (Core & Allen, 1997): descrip-
tions of the meta-linguistic role played by sentence-level utterances. In this sense,
such conventionalized gestures may provide a sort of pragmatic visual punctuation
of discourse. However, Kendon notes that the Southern Italian linguistic community
is well-known to have a large number of conventionalized gestural forms; analagous

discourse-marking gestures may not exist in other linguistic communities.

The most relevant psycholinguistic work with respect to gestural cohesion derives
from David McNeill’s concept of catchments: recurring gestural themes that indi-
cate patterns of meaning (1992, 2005). McNeill shows, though example, how unique
iconic and metaphoric gestures accompany specific ideas, and how these gestures re-
cur whenever the associated idea is discussed. Catchments may also display subtle —
but semantically crucial — variations. In one of McNeill’s examples (2005, pages 108-
112), speakers describe a “Sylvester and Tweety” cartoon, in which Sylvester (a cat)
crawls up a drain pipe two times: once on the outside, and once on the inside. In this
example, speakers often uses similar gestures, but modulate the second instance to
indicate that the action is now on the inside of the drain — moreover, this information

is communicated in gesture even when one of the speakers forgets to mention it in
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the speech.

McNeill argues that gesture also conveys meaning through layers of catchments,
simultaneously providing information at the levels of narrative (the story), metanar-
rative (statements about the story), and paranarrative (statements about the speaker
herself). In one such example, overlapping catchments occur at each layer, yielding

extremely complex gestural forms (2005, pages 173-177).

While McNeill and his collaborators have demonstrated many compelling exam-
ples of catchments, there is little systematic data on how often catchments occur.
There are other questions as well: which features of the gestural modality do catch-
ments tend to employ? What governs the mapping between semantic concepts and
gestural features? What sorts of ideas tend to be expressed via catchments, rather
than (or in addition to) spoken language?

The answers to these questions bear obvious significance for any computational
account of gestural catchments. A complete computational treatment of catchments
would require automatically detecting the full set of gestural features that may be
used to express catchments, and identifying the specific features that are relevant in
any given gesture. Implementing the layered model — in which catchments occur at
the narrative, metanarrative, and paranarrative levels — requires going even further,
assigning gestural features to each layer of communication. No complete computa-
tional implementation of gesture catchments has yet been attempted, though some

preliminary efforts will be discussed in Section 2.1.2.

Despite these challenges, this dissertation can be viewed as a partial implementa-
tion of the idea of catchments — indeed, the first such implementation that success-
fully predicts discourse phenomena on unseen examples. In Chapter 1, I emphasized
a strategy of detecting patterns between gestures, rather than decoding individual
gestures — this is directly inspired by the idea of catchments. By detecting similar
pairs of gestures, this dissertation shows that at least some catchments can be recog-
nized automatically from raw visual features. Chapter 4 goes further, showing that
such automatically detected catchments can be used to make accurate predictions

about noun phrase coreference. Chapter 5 extends this idea from pairs of gestures
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to larger sets, demonstrating a predictive relationship between catchments and topic

boundaries.

2.1.2 Computational Analysis of Gestural Communication

Prior computational research on gesture in human-human speech has rarely empha-
sized predictive analysis of linguistic phenomena from signal-level gesture features,
as this dissertation does. Nonetheless, this work provides valuable insights as to
what types of gestural features can be detected from video, and how automatically-
extracted and hand-annotated gesture features correlate with language.

Francis Quek and colleagues have published a series of papers that explicitly ad-
dress the idea of catchments. Quek, McNeill, Bryll, Duncan, et al. (2002) demonstrate
how automatic hand tracking can supplement a manual discourse analysis. The pa-
per provides automatically extracted hand positions and velocities for a portion of
a single dialogue, and couples this with a close analysis of the associated discourse
structure. While this does not go as far as showing how discourse structure might
be predicted from the gestural features, it points the way towards the sorts of visual
features that would be necessary for such an approach to succeed.

Explicitly referencing McNeill, Quek advocates a “Catchment Feature Model,” in
which a variety of salient visual features could be extracted from gesture and then
applied to multimodal linguistic analysis (Quek, 2003). These include: detecting
static “hold” gestures (Bryll, Quek, & Esposito, 2001), symmetric and anti-symmetric
motion (Xiong, Quek, & McNeill, 2002), oscillatory motion (Xiong & Quek, 2006),
and the division of space into semantically meaningful regions (Quek, McNeill, Bryll,
& Harper, 2002). Quek and his coauthors give examples in which such features appear
to correlate with linguistic phenomena, including topic segmentation (Quek et al.,
2000), speech repairs (Chen, Harper, & Quek, 2002), and filled pauses (Esposito,
McCullough, & Quek, 2001). My thesis builds on these ideas by showing that similar
gesture features can predict discourse phenomena on unseen data.

Another way in which my thesis extends this line of work is through the application

of machine learning methods. In the cited papers from Quek et al., detectors for each
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gestural feature are constructed by hand. In many cases, these detectors include a
large number of hand-tuned parameters — for example, Bryll et al. (2001) list twelve
manual parameters for the static hold detector. Because these parameters are tuned
on small datasets, it is unclear how closely the observed correlation between gesture
features and discourse structure depends on their precise settings. In particular, such
an approach may not scale to datasets that include multiple speakers and topics. For
this reason, I have emphasized applying a learning-based approach, and in particular,

learning about gesture in the context of a specific language processing task.

A learning-based approach to gestural communication is applied by Chen et al.,
who investigate the connection between gesture and sentence boundaries. While sen-
tence boundary detection is not a discourse-level linguistic task, this work is clearly
relevant. In their first paper on this topic, Chen et al. (2004) show that automatically
extracted hand gesture features are predictive of sentence boundaries, improving per-
formance above transcript-based features. They also investigate the connection with
a third modality — prosody — and find that adding gesture does not yield significant
performance gains over a system that combined verbal and prosodic features. Thus,
with respect to sentence boundaries, there appears to be substantial overlap between
the prosodic and gestural modalities. Their second paper replaces automatically
extracted gesture features with hand annotations, and does obtain a statistically sig-
nificant improvement over a system using verbal and prosodic features (Chen, Harper,

& Huang, 2006).

Chen’s research, while highly relevant to this dissertation, differs in a few illustra-
tive respects. As noted, sentence segmentation is not a discourse-level phenomenon
(since discourse, by definition, concerns the semantic relationships across sentences).
As a result, the task faced by Chen et al. is somewhat different: rather than inferring
the speaker’s meaning, they query gesture for clues about how the speech is syntacti-
cally organized. As a result, they do not attempt to identify patterns of gestures that
form a catchment structure, but instead search for individual gestures that serve as a
sort of visual punctuation. Since prosody is known to play a similar role, particularly

with respect to sentence boundaries (Shriberg et al., 2000), it is unsurprising that
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they discovered a high degree of overlap between prosodic and gestural features on
this task.

To summarize, my dissertation is influenced by prior computational research on
the communicative impact of hand gesture, but extends this work in two key ways.
Quek et al. helped to inspire the principle that meaning can be found in patterns of
gesture, rather than individual gestures. However, they did not attempt to show that
such patterns could be learned from data, and they did not demonstrate a predictive
relationship between gestural patterns and linguistic phenomena. Chen et al. did take
a machine learning-based approach, in the context of sentence segmentation. How-
ever, rather than searching for meaning in patterns of gesture, they treated gesture as
a sort of visual punctuation, and thus found high redundancy with prosodic features.
This thesis combines the strengths of both approaches, and is thus the first to show

that gestural patterns can predict discourse structure.

2.1.3 Classifying and Annotating Gesture

In this thesis, I have generally avoided taxonomies or annotations for gesture. This
is not because such formalisms have no value, but because I believe that such an
approach induces a substantial startup cost for gesture research: designing an anno-
tation scheme that is concise enough to be tractable yet detailed enough to be useful,
and then producing a sufficiently large dataset of annotations. Nonetheless, existing
annotation systems can shed light on the nature of gesture, and on our approach and
dataset. This section briefly discusses two frequently-referenced taxonomies from the

literature, and a recently-published annotation scheme.

Movement Phases

Kendon (1980) provides a hierarchical taxonomy of gesture with respect to its kine-
matic and temporal properties, shown in Figure 2-1. At the top level is the gesture
unit, a period of activity that begins with an excursion from rest position, and ends

when the hands return to repose. The gesture phrase is what is traditionally con-

34



Gesture Unit

Gesture Phrase

T

Prepairatlon Stro|ke Retraction 1 Movement

Hold Hold f Phrases

(pre-stroke) (post-stroke)

Figure 2-1: Kendon’s taxonomy of gesture

sidered to be a single “gesture” — for example, pointing at something while talking
about it, or tracing a path of motion. At the lowest level are movement phases: mor-
phological entities that combine to create each gesture phrase. Every gesture phrase
must have a stroke, which is considered by Kendon to be the content-carrying part
of the gesture. In addition, there may also be a prepare phase, which initiates the
gesture, and possibly a retract phase, bringing the hand back to rest position. A hold
refers to a static positioning of the hand in gesture space, either before or after the
stroke.

On the level of movement phases, Kendon’s taxonomy provides a fine-scale tem-
poral segmentation of gesture. An annotation according to this taxonomy could not
be used to capture a gesture’s semantics, as the taxonomy does not describe the
gesture’s form. However, the taxonomy does specify the stroke and hold phases as
the most relevant portions of a gesture. This idea is relevant to the notion of ges-
ture salience explored in Chapter 4, particularly the concept that the distance of the
hands from rest position is predictive of the communicative role of the gesture. A
fine-grained notion of salience, reflecting the distinctions proposed by Kendon, would

be an interesting departure point for future research.

Types of Gesture Phrases

McNeill (1992) defines several types of gesture phrases: deictic, iconic, metaphoric,

and beat. The following definitions are quoted and summarized from Cassell (1998):
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e “Deictics spatialize, or locate in physical space...” Deictics can refer to actual
physical entities and locations, or to spaces that have previously been marked

as relating to some idea or concept.

e “Iconic gestures depict by the form of the gesture some features of the action
or event being described.” For example, a speaker might say “we were speeding

all over town,” while tracing an erratic path of motion with one hand.

o “Metaphoric gestures are also representational, but the concept they represent
has no physical form; instead the form of the gesture comes from a common
metaphor.” For example, a speaker might say, “it happened over and over

again,” while repeatedly tracing a circle.

o “Beat gestures are small baton-like movements that do not change in form with
the content of the accompanying speech. They serve a pragmatic function, oc-
curring with comments on one’s own linguistic contribution, speech repairs and
reported speech.” Speakers that emphasize important points with a downward

motion of the hand are utilizing beat gestures.

This list nicely summarizes the various ways in which gestures can communicate
information. However, as McNeill himself notes (2005, pages 41-42), the list should be
thought of more as a set of dimensions of expressivity, rather than mutually exclusive
bins. As discussed above, gestures are capable of communicating narrative, meta-
narrative, and para-narrative information simultaneously. Thus, it is not difficult to
find examples of gestures that occupy multiple places in this taxonomy: for exam-
ple indicating a location in space (acting as a deictic) while simultaneously giving
temporal emphasis (acting as a beat).

The data and methods in this dissertation emphasize deictic and iconic gestures.
In the dataset described in Chapter 4, the presence of visual aids led speakers to
produce a large number of deictic gestures (for a quantitative analysis, see Eisen-
stein & Davis, 2006), referring to specific areas on the diagram. No visual aids were
permitted in the dataset from Chapter 5, and the resulting gestures were more of-

ten representational — iconic and metaphoric, by McNeill’s taxonomy. Because the
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dialogues focus on mechanical devices, iconics seem more likely than metaphorics,

though no quantitative analysis of this dataset has yet been performed.

McNeill’s taxonomy describes the communicative function of gesture rather than
the communicative content. As with Kendon’s taxonomy, even a perfect annotation
will not tell us what the gestures actually mean. Moreover, it seems doubtful that
the communicative function of a gesture can be evaluated without consideration of
the surrounding linguistic context — a single form might appear as deictic or iconic
depending on the accompanying speech. In a sense, McNeill’s taxonomy describes
more than gesture — it describes the role gesture plays in language, which cannot be
understood without consideration of the speech itself. Indeed, viewers have difficulty
reliably distinguishing deictic from iconic gestures when not permitted to consult the

audio channel (Eisenstein & Davis, 2004).

FORM

Martell, Howard, Osborn, Britt, and Myers (2003) propose an annotation system
named FORM, which describes the kinematic properties of gesture. FORM system-
atizes gesture in a variety of ways, such as dividing gesturing space into discrete bins,
and categorizing all possible hand shapes. High quality FORM annotations — whether
obtained through automatic or manual transcription — may ultimately facilitate ges-
ture research by abstracting over some of the signal level noise in video. However,
extracting communicative content from such a representation still poses some of the
same problems faced when dealing with video directly: perceptually similar gestures
may be appear to be quite different in the FORM representation, and only a few of
the features in the representation will be relevant for any given gesture. These issues,
coupled with the substantial implementational challenge of extracting a FORM rep-

resentation from video, led me to avoid using FORM annotations in this dissertation.
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2.2 Multimodal Interaction

Thus far, the area in which gestures have found the greatest application in imple-
mented software systems is in multimodal user interfaces. Multimodal input permits
users to control computer applications using speech and some sort of gestural modal-
ity — typically a pen, but in some cases, free-hand gestures. In general, both the
language and gestures permitted by such systems are constrained by a limited vo-
cabulary and fixed grammar. After reviewing some notable examples of multimodal
input, I briefly present some relevant systems for multimodal output generation. In
such research, information is conveyed to the user via avatars that are capable of
both speech and gesture. Any such effort encodes theories about how modalities can

combine to create meaning, raising interesting connections with this dissertation.

2.2.1 Multimodal Input

Multimodal input processing was pioneered by the “Put-That-There” system, which
combined speech and pointing gestures (Bolt, 1980). Gestures were performed by
manipulating a small cube augmented with tracked beacons, and the user was able to
specify objects with a combination of words and pointing gestures, “e.g., move that

»

to the right of the green square.” The user’s goal was to create and move colored

geometric objects around a map.

Thus, from a very early stage, multimodal input research emphasized utilizing
gesture to ground ambiguous pronouns with spatial reference. Subsequent systems
extended this idea to more complex gestures. For example, QuickSet (Cohen et al.,
1997) permitted deictic pen gestures indicating regions or sets of objects, and also
recognized sketches of predefined symbols — though these cannot truly be said to be
“gestures” in the same sense taken throughout this dissertation. A second innovation
of QuickSet was the introduction of unification-based semantic parsing techniques to
build a frame representation jointly from speech and gestural input (Johnston et al.,
1997). However, this approach requires that users speak and gesture according to a

fixed grammar, and is thus inapplicable to our interest in human-human dialogue.

38



More flexible probabilistic approaches were later considered (Chai, Hong, & Zhou,
2004; Bangalore & Johnston, 2004), though even these assume that the universe of
possible referents is known in advance. While perfectly reasonable in the case of
human-computer interaction, this assumption is generally implausible for discourse
between people.

All of the systems described thus far in this section permit gesture only through
pens or tracked pointers.®> Sharma et al. argue that to move towards control by
free hand gestures, we must design recognition algorithms that handle the gestures
that occur in unconstrained human-human dialogue (Kettebekov & Sharma, 2000).
As a basis for this work, they constructed a dataset of video recordings of weather
forecasts; this was motivated in part by the professional recording quality, which
facilitates hand tracking. According to Poddar, Sethi, Ozyildiz, and Sharma (1998),
many hand motions in this dataset are well-described by a relatively small taxonomy:
points, contours, and regions. Interestingly, even at this level of description, gesture
processing is facilitated by taking the surrounding language into account: recognition
was improved by both the transcipt (Sharma, Cai, Chakravarthy, Poddar, & Sethi,
2000) and the speaker’s prosody (Kettebekov, Yeasin, & Sharma, 2005). This provides
support for the view that the interpretation of co-speech gesture depends critically

on the surrounding language.

2.2.2 Multimodal Output

While this dissertation focuses on processing natural multimodal language as input,
a parallel track of research works to generate realistic-looking gesture and speech. As
mentioned above, Cassell et al. (2001) describe a system that produces plausible pos-
ture shifts and gaze behaviors, based on the discourse structure. Nakano, Reinstein,
Stocky, and Cassell (2003) present an empirical study of human-human interaction,
showing a statistical relationship between hand-coded descriptions of head gestures

and the discourse labels for the associated utterances (e.g., “acknowledgment,” “an-

3An extension of QuickSet to free hand gestures is presented by Corradini, Wesson, and Cohen
(2002).
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swer,” and “assertion”). They then demonstrate that these findings can be encoded
in a model to generate realistic conversational “grounding” behavior in an animated

agent.

These systems generate gestures that convey metanarrative content: information
about the role that each utterance plays in the discourse. In contrast, Kopp, Tep-
per, Ferriman, and Cassell (2007) investigate how to produce gestures that convey
narrative meaning directly. They present an animated agent that gives navigation
directions, using hand gestures to describe the physical properties of landmarks along
the route. In this system, the hand gestures are dynamically generated to reflect
the characteristics of the semantic entity being described. As noted by Lascarides
and Stone (2006), gestural form is generally underspecified by semantics, as there are
multiple ways to express the same idea. One way to further constrain gesture genera-
tion is to produce gestures that observe the catchment structure proposed by McNeill
(1992) and exploited in this dissertation. At this time, I am aware of no gesture

generation system that attempts to implement this idea.

2.3 Prosody

Parallel to our interest in gesture, there is a large literature on supplementing natural
language processing with prosody — a blanket term for the acoustic characteristics of
speech, e.g. intonation and rhythm, that are not reflected in a textual transcription.
Incorporating prosody into discourse processing poses similar challenges to those faced
with gesture. Like gesture, prosody is a continuous-valued signal that does not easily
lend itself to combination with the discrete representations usually employed for text.
However, while this dissertation focuses on extracting narrative content from gesture,
prosody has been used only at a metanarrative level, giving explicit cues of semantic

and discourse structure.
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2.3.1 Prosodic Indicators of Discourse Structure

Pierrehumbert and Hirschberg (1990) proposed that “intonational structures” help
to group constituents for a compositional semantic analysis: a smooth intonational
contour over a set of constituents suggests that they can be combined, while sharp
discontinuities suggest a natural boundary point. This idea was applied to semantic
processing using combinatory categorial grammars by Steedman (1990). In this line of
research, prosodic contours act as intonational parentheses or commas: punctuation
that serves to reveal the underlying combinatory semantic structure. Later research
applied the idea of prosody-as-punctuation to statistical syntactic parsing (Gregory,

Johnson, & Charniak, 2004; Kahn, Lease, Charniak, Johnson, & Ostendorf, 2005).

Prosodic features have also been applied to inter-sentential discourse analysis.
For example, Grosz and Hirshberg (1992) showed that phrases beginning discourse
segments are typically indicated by higher-than-normal pitch, and were preceded by
unusually long pauses. Parentheticals — short digressions from the principal discourse
segment topic — are indicated by a compressed pitch range. The relationship between
these prosodic cues and discourse boundaries was more systematically investigated
by Swerts (1997). In more recent research, similar prosodic features have been applied
to topic and sentence segmentation, surpassing the performance of systems that use
only textual features (Shriberg et al., 2000; Kim, Schwarm, & Osterdorf, 2004). The
literature on prosody thus parallels Kendon’s (1995) identification of gestural forms for
specific discourse acts, and Chen’s (2004, 2006) use of gesture as a sentence boundary
cue. Rather than searching for a prosodic expression of the narrative semantic content,
these researchers have identified pragmatic cues about the narrative structure.* While
such an approach may be extensible to gesture, this would ignores gesture’s capability

to express narrative content directly through the gestural form.

4One exception is a recent effort to perform cohesion-based segmentation using only acoustic
features (Malioutov, Park, Barzilay, & Glass, 2007). However, this work does not show that acoustic
features yield an improvement over manual transcripts, so the acoustic features may be approximat-
ing standard lexical cohesion, rather than contributing additional information.
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2.3.2 Modality Combination for Prosody and Speech

Another distinction from prior work on prosody relates to modality combination.
Most of the papers on prosody train separate prosodic and textual classifiers, and
then combine the posterior distributions (e.g., Y. Liu, 2004). Typically, this involves
taking a weighted average, or multiplying the posteriors together, although one may
also use the posterior probability from one classifier as a feature in another classifier.
This approach, labelled late fusion in Section 4.4.3, was also used for gesture-speech
combination by Chen et al. (2004, 2006). Alternatively, early fusion combines features
from both modalities into a single feature vector — this technique was compared with
various late fusion alternatives by Shriberg et al. (2000) and Kim et al. (2004).

Late fusion approaches often outperform early fusion because they explicitly ac-
knowledge the differences between modalities; however, adding or multiplying poste-
rior probabilities is ad hoc and theoretically unjustified. Such techniques may have
been necessary because much of the research on prosody uses “off-the-shelf” machine
learning components that were not originally intended to handle multiple modalities
with very different characteristics. For example, Shriberg et al. (2000) model prosody
with a decision tree because there is no obvious way to add prosodic features directly
to an HMM-based language model.

In contrast, this dissertation employs custom models that explicitly encode each
modality separately in the model structure. In the coreference task from Chapter 4, I
employ a conditional model in which the potential function gates the gesture similarity
features, while allowing the verbal features to be used in all cases. In the discourse
segmentation task from Chapter 5, gesture and speech are modeled in a generative
Bayesian framework; separate Dirichlet priors permit a different amount of smoothing
in each modality. The application of custom, structured approaches to the model-

combination problem is one of the major contributions of this dissertation.
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Dataset

This chapter describes the set of video recordings used to perform the experiments
in this dissertation.! The elicitation procedure for this dataset reflects a desire for
balance between ecological validity and tractability for automatic processing. The re-
sulting speech and gesture is spontaneous and unscripted but is shaped to be relevant
to the main questions of this dissertation by the tasks and scenarios that were as-
signed to the participants. In particular, participants were asked to give instructional
presentations, yielding speech and gesture that should be similar to classroom lec-
tures and business presentations. The applicability of this dataset to other linguistic

settings is an important topic for future research.

1This dataset is a subset of a larger effort performed collaboratively with Aaron Adler and Lisa
Guttentag, under the supervision of Randall Davis (Adler, Eisenstein, Oltmans, Guttentag, & Davis,
2004). Portions of the dataset are available at http://mug.csail.mit.edu/publications/2008/
Eisenstein_JAIR/
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At the time of this writing, there exist some linguistic corpora that include visual
data, but none are appropriate for this dissertation. The AMi corpus (Carletta et
al., 2005) includes video and audio from meetings, but participants are usually seated
and their hands are rarely visible in the video. The VACE corpus (Chen et al., 2005)
also contains recordings of meetings, with tracking beacons attached to the speakers
providing very accurate tracking. This corpus has not yet been released publicly.

Both AMI and VACE address seated meeting scenarios; however, gesture may be
more frequent when speakers give standing presentations, as in classroom lectures
or business presentations. There are many such video recordings available, but they
have typically been filmed under circumstances that frustrate current techniques for
automatic extraction of visual features, including camera movement, non-static back-
ground, poor lighting, and occlusion of the speaker. Rather than focus on solving
these substantial challenges for computer vision, a new multimodal corpus was gath-

ered in a manner that attempted to avoid such problems.

Participants Fifteen pairs of participants joined the study by responding to posters
on the M.I.T. campus. The group included seventeen females and thirteen males,
with ages ranging from 18 to 32; all participants were university students or staff. As
determined by a pre-study questionnaire, all but six of the participants were native
speakers of English. Of the remainder, four described themselves as “fluent,” one

”»

as “almost fluent,” and one spoke English “with effort.” Participants registered in
pairs, eliminating a known confound in which strangers often limit their gestures due

to social inhibition in the early parts of a conversation.

Topics Each pair of participants conducted six short discussions. For each discus-
sion, they were assigned a specific topic to ensure that the data would be meaningful
and tractable. Five of the six topics related to the structure or function of a phys-
ical device: a piston, a pinball machine, a candy dispenser, a latchbox, and a small
mechanical toy. The remaining topic was a short “Tom and Jerry” cartoon. These

topics were chosen to encourage the use of concrete, representational gestures. How-
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ever, the participants were given no explicit instructions about gesture. Diagrams for

each topic are shown in Appendix C.

Procedure At the beginning of the experiment, one participant was randomly se-
lected from each pair to be the “speaker,” and the other to be the “listener.” The
speaker was given prior knowledge about the topic of discussion — usually in the form
of an explanatory video — and was required to explain this information to the listener.
The listener’s role was to understand the speaker’s explanations well enough to take
a quiz later. The speaker stood behind a table, while the listener was seated.

The discussions were videotaped and were conducted without the presence of
the experimenters. Discussions were limited to three minutes, and the majority of
speakers used all of the time allotted. This suggests that more natural data could have
been obtained by not limiting the explanation time. However, in pilot studies this led
to problematic ordering effects, where participants devoted a long time to the early
conditions, and then rushed through later conditions. With these time constraints,

the total running time of the elicitation was usually around 45 minutes.

Materials For the piston, pinball machine, candy dispenser, and latchbox, the
speaker was privately shown a short video showing a simulation of the device; for the
“Tom and Jerry” case, the speaker was shown the relevant cartoon; for the mechanical
toy, the speaker was allowed to examine the physical object.

A variety of experimental conditions were considered, manipulating the presence
of explanatory aids. In the “diagram” condition, the speaker was given a pre-printed
diagram (all diagrams are shown in Appendix C, page 141). In the “no aid” condition,
the speaker was not given any explanatory aids. Data from the “diagram” condition
is used in Chapter 4, and the “no aid” condition is used in Chapter 5. There was also
a “drawing” condition, in which the speaker was given a tracked whiteboard marker.
Data from this condition is not used in this thesis.

The pinball machine was always presented first, as a “warmup” task, in the “dia-

gram” presentation condition. The latchbox, candy dispenser, and piston were coun-
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terbalanced against presentation conditions. No diagram was available for the cartoon
and toy, so these were never assigned to the “diagram” condition. Except for the pin-
ball machine, the order of presentation was counterbalanced against both the topic

and presentation condition.

Recording and Annotations Speech was recorded using headset microphones.
An integrated system controlled the synchronization of the microphones and video
cameras. Speech was transcribed manually and with the Windows XP Microsoft
Speech Recognizer. Audio was hand-segmented into well-separated chunks with du-
ration not longer than twenty seconds. The chunks were then force-aligned by the
SPHINX-II speech recognition system (Huang, Alleva, Hwang, & Rosenfeld, 1993),
yielding accurate timestamps for each transcribed word.

Video recording employed standard consumer camcorders. Both participants wore
colored gloves to facilitate hand tracking. An automatic hand tracking system for this
dataset is described in Section 4.2.1 (page 51). The extraction of spatio-temporal
interest points is described in Section 5.2 (page 96).

Various linguistic annotations were applied to the dataset. Section 4.4.3 (page 69)
describes noun phrase coreference annotation; Section 4.5.3 (page 84) describes the
annotation of salient keyframes; Section 5.3.3 (page 106) describes the annotation of
topic segmentation. Detailed statistics about the dataset can be found in Appendix B

(page 138).
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Gesture and Local Discourse Structure

This chapter describes the application of gesture to two local discourse processing
problems: noun phrase coreference resolution, and the extraction of keyframe sum-
maries. [ show that models of gesture similarity and salience can be learned jointly,
using labels only for noun phrase coreference. The resulting multimodal classifier
significantly outperforms a verbal-only approach, marking the first successful use of
gesture features on this problem. Modeling gesture salience is shown to further im-
prove coreference performance; moreover, the learned model of gesture salience can
be transferred to the keyframe extraction problem, where it surpasses competitive

alternatives.!

1Some of the work in this chapter was published previously (Eisenstein, Barzilay, & Davis, 2008c;
Eisenstein & Davis, 2007; Eisenstein, Barzilay, & Davis, 2007).
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“This bar comes all the way down..."  “Then it comes down again...”

Figure 4-1: An excerpt of an explanatory narrative in which gesture helps to disam-
biguate coreference

4.1 Introduction

Coreference resolution is the task of partitioning the noun phrases in a document or
dialogue into semantic equivalence classes; it has been studied for over thirty years
in the Al community (Sidner, 1979; Kameyama, 1986; Brennan, Friedman, & Pol-
lard, 1987; Lappin & Leass, 1994; Walker, 1998; Strube & Hahn, 1999; Soon, Ng, &
Lim, 2001; Ng & Cardie, 2002). Resolving noun phrase coreference is an important
step for understanding spoken language, with applications in automatic question an-
swering (Morton, 1999) and summarization (Baldwin & Morton, 1998). This task is
widely believed to require understanding the surrounding discourse structure (Sidner,

1979; Grosz & Sidner, 1986).

There are several ways to indicate that two noun phrases refer to the same semantic
entity. Most trivially, it may be reflected in the orthography of the noun phrases. For
example, consider the trio of noun phrases: “the big red ball,” “the big round ball,”
and “the round, red ball”; the surface forms alone suggest that these noun phrases are
likely to corefer. In other cases, coreference may be indicated by semantically similar
but orthographically distinct words, e.g., “the man with the inappropriate clothing”
and “Mr. Ugly-Pants” both indicate that the referent is a man who is poorly dressed,

but more sophisticated linguistic processing is required to make such an inference.
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With anaphoric pronouns, the surface form typically conveys little semantic infor-
mation — in English, only the gender and number may be communicated. In text, the
pronoun usually refers to the most recent, or most prominent, prior compatible noun
phrase. However, the presence of hand gesture radically alters this situation. Gesture
may be used to highlight the similarity between a pronoun and a previously spoken
noun phrase, raising the prominence of noun phrases that otherwise would not be
potential targets for coreference. Gestural similarity may be conveyed by assigning
spatial locations to semantic entities (So et al., 2005), and then referring back to
those locations. Alternatively, the similarity may conveyed through repeated motion

patterns (McNeill, 1992).

Figure 4-1 shows an example in which gesture helps to explicate a coreference
relation. Several sentences occur between the anaphoric pronoun “it” and the original
noun phrase “this bar.” However, the similarity of the gestures — in this case, both
the location and organization of the hands — indicates that the noun phrases indeed

refer to the same entity.

Thus, in the multimodal setting, gesture can be crucial to understand the speaker’s
meaning. Moreover, even when gesture is not the only cue to noun phrase coreference,
it can reduce the burden on linguistic processing by acting as a supplemental modal-
ity. In either case, our goal is to identify similar gestures, which can be used as a
clue to the semantic relationship of co-articulated noun phrases. In this way, gesture
and speech combine to reveal meaning, without requiring the interpretation of indi-
vidual gestures. Interpreting individual gestures requires reconstructing the visual
metaphor governing the mapping between gestural features and semantic properties.
This is especially difficult because the relationship between gesture and meaning is
underspecified (Lascarides & Stone, 2006), permitting multiple gestural realizations
of a single idea. By focusing on identifying similar gestures, the inherent difficulties
of recognizing and interpreting individual gestures can be avoided.

While gestural similarity may be a useful clue for uncovering discourse structure,
not at all hand movements are intended to be informative (Kendon, 1980). For exam-

ple, “self-adaptors” are self-touching hand movements, such as adjusting one’s glasses
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Figure 4-2: An example of a pair of “self-adaptor” hand motions, occurring at two
different times in the video. The speaker’s left hand, whose trajectory is indicated by
the red “x,” moves to scratch her right elbow. While these gestures are remarkably
similar, the accompanying speech is unrelated.

or hair. Such movements are believed to have little direct communicative function,
although they may function as proxies for stress (Beattie & Coughlan, 1999). Fig-
ure 4-2 shows two examples of a self-adaptor, which is repeated in a highly consistent
form. It is probably inappropriate to draw inferences about the semantics of the
co-articulated speech based on these hand movements. Thus, the idea of leveraging
similarity of hand motion requires a qualification — we are interested in the similarity

of salient gestures.

This chapter explores the connection between gestural similarity, salience, and
meaning. Section 4.2 describes the extraction of a set of visual features used to
characterize gestural similarity. Section 4.3 describes a novel gesture-speech combi-
nation technique called conditional modality fusion; it is distinguished from previous
techniques in that it attempts to identify and isolate the contribution of salient ges-
tures, ignoring spurious movements such as self-adaptors. Section 4.4 describes the
application of these ideas to noun phrase coreference resolution, finding significant
improvements over the speech-only case. Gesture salience is then exploited to auto-
matically produce keyframe summaries in Section 4.5; these summaries are consistent

with keyframes selected by human annotators. Finally, the ideas in this chapter are
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summarized in Section 4.6.

4.2 From Pixels to Gestural Similarity

Gesture may be described on a myriad of dimensions, including: hand shape, location,
trajectory, speed, and the spatial relation of the hands to each other. This section
describes a set of features that characterize gestural similarity along some of these di-
mensions. The communicative power of the gestural medium derives from its inherent
flexibility, and attempts to completely systematize the various ways in which gesture
may convey meaning seem doomed to failure. The feature set presented here is thus
limited, but has two desirable properties: the features can be extracted automatically
from video, and are shown to be effective for language processing in the second part
of this chapter. The development of additional gesture similarity features is always

an important area of future research.

4.2.1 Hand Tracking from Video

The feature set used in this section is based on hand tracking, meaning that it is
necessary to obtain estimates of the locations of the speaker’s hands. This is done
by estimating the pose of an articulated upper body model at each frame in the
video, using color, motion, and image edges as cues. Search is performed using the
particle filter — a sampling-based technique that enforces temporal smoothness across
the model configuration. The system described in this section is implemented using
OpenCV 2 a library of image processing and computer vision algorithms. More details

on the video recording can be found in Chapter 3.

Articulated Upper-Body Model

An instantiation of the articulated upper-body model is shown in the right panel
of Figure 4-3. The model contains shoulder and elbow joints, a “twist” parameter

allowing the entire body to rotate in the depth plane, and position on the x-axis.

Zhttp://www.intel.com/technology/computing/opencv/
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Figure 4-3: An example image from the dataset, with the estimated articulated model
(right). Blue represents foreground pixels; red represents pixels whose color matches
the hands; green represents image edges.

For each of these six parameters, the value, velocity, and acceleration are estimated.
There are also six fixed parameters describing the dimensions of the articulated parts,

which are tuned by hand for each speaker.

Visual Cues

The articulated model is fit to the video by leveraging color, motion, and edge cues.
Speakers wore colored gloves, enabling the construction of a histogram of the expected
color at the hand location; the likelihood of each model configuration was affected
by how closely the observed color at the predicted hand location matched the known
glove colors. Because the speaker was known to be the only source of motion in the
video, pixels that differed from the background image are likely to be part of the
speaker’s body. Thus, the likelihood of each model configuration was also partially
determined by how well it “covered” such estimated foreground pixels. A Canny
filter (Forsyth & Ponce, 2003) was used to detect edges in the foreground portion of
the image; the model configuration was also rated by how well its predicted edges

lined up with these observed edges. Finally, a prior on model configurations enforced

92



physiological constraints: for example, reducing the probability of configurations with

extreme joint angles.

Particle Filter

Using these cues and constraints, it is possible to search for model configurations that
fit each individual frame in the video. However, more robust and rapid search can
be performed by considering the video as a whole, leveraging temporal smoothness.
This is done using a particle filter (Arulampalam, Maskell, Gordon, & Clapp, 2002),
which maintains a set of weighted hypotheses about the model configuration. These
weighted hypotheses are known as particles; the weights indicate an estimate of the
probability that the hypothesized configuration is the true model state.

At each time step, particles may randomly “drift” to slightly different configura-
tions, accounting for system dynamics. The particles are then reweighted, based on
how well the hypothesized configuration matches the new observation. After reweight-
ing, the set of particles is stochastically resampled; at each sampling step, the prob-
ability of a given particle being selected is proportional to its weight. Resampling
tends to eliminate particles whose configuration does not match the observations,
and creates multiple copies of those that do. The resulting online estimator is similar
to the Kalman Filter, but better adapted to the non-Gaussian observation noise that
typically affects vision applications (Arulampalam et al., 2002). The specific form of
the particle filter employed here follows Deutscher, Blake, and Reid (2000).

Performance and Limitations

An informal review of the system output suggests that both hands were tracked ac-
curately and smoothly more than 90% of the time, when not occluded. As shown in
Figure 4-3, the system was able to correctly track the hands even when other parts
of the articulated model were incorrect, such as the elbows; this is likely due to the
strong cues provided by the colored gloves. It is difficult to assess the tracker perfor-
mance more precisely without undertaking the time-consuming project of manually

annotating the correct hand positions at each frame in the video. The main cause
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Pairwise gesture features

FOCUS-DISTANCE the Euclidean distance in pixels between the average hand position
during the two NPs

DTW-AGREEMENT | a measure of the agreement of the hand-trajectories during the two
NPs, computed using dynamic time warping

SAME-CLUSTER true if the hand positions during the two NPs fall in the same cluster
JS-p1v the Jensen-Shannon divergence between the cluster assignment like-
lihoods

Table 4.1: The set of gesture similarity features

of error appears to be the lack of depth information. In particular, difficulties were
encountered when speakers flexed their elbow joints in the depth dimension. Due to
our single camera setup and the general difficulty of estimating depth cues (Forsyth
& Ponce, 2003), such flexions in the depth dimension gave the appearance that the
arm length itself was changing. Deutscher et al. (2000) show that this problem can

be addressed with the use of multiple cameras.

4.2.2 Gesture Similarity Features

This section describes features that quantify various aspects of gestural similarity,
listed in Table 4.1. Features are computed over the duration of each noun phrase.
yielding a single feature vector per NP. While it is not universally true that the
beginning and end points of relevant gestures line up exactly with the beginning
and end of the associated words, several experiments have demonstrated the close
synchrony of gesture and speech (McNeill, 1992; Loehr, 2007). The effectiveness of
other gesture segmentation techniques is left to future work.

The most straightforward measure of gesture similarity is the Euclidean distance
between the average hand position during each noun phrase - the associated feature
is called FOCUS-DISTANCE. Euclidean distance captures cases in which the speaker is
performing a gestural “hold” in roughly the same location (Kendon, 2004). However,
Euclidean distance may not correlate directly with semantic similarity. For example,
when gesturing at a detailed part of a diagram, very small changes in hand position

may be semantically meaningful, while in other regions positional similarity may be
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defined more loosely. The ideal feature would capture the semantic object of the
speaker’s reference (e.g., “the red block”), but this is not possible in general because
a complete taxonomy of all possible objects of reference is usually unknown.
Instead, a hidden Markov model (HMM) is used to perform a spatio-temporal
clustering on hand position and speed. This clustering is used to produce the SAME-
CLUSTER and JS-DIV features, as explained below. The input to the model are the
position and speed of the hands; these are assumed to be generated by Gaussians,
indexed by the model states. The states of the HMM correspond to clusters, and
cluster membership can be used as a discretized representation of positional similarity.
Inference of state membership and learning of model parameters are performed using
the traditional forward-backward and Baum-Welch algorithms (Rabiner, 1989).
While a standard hidden Markov model may be suitable, reducing the model’s
degrees-of-freedom can increase robustness and make better use of available training
data. Reducing the number of degrees-of-freedom means that we are learning simpler
models, which are often more general. This is done through parameter tying: requiring
some subsets of model parameters to take the same values (Bishop, 2006). Three

forms of parameter tying are employed:

1. Only one state is permitted to have an expected speed greater than zero. This
state is called the “move” state; all other states are “hold” states, and their
speed observations are assumed to be generated by zero-mean Gaussians. Only
a single “move” state is used, because position seems most likely to be relevant

for static gestures.

2. Transitions between distinct hold states are not permitted. This reflects the
common-sense idea that it is not possible to transition between two distinct

positions without moving.

3. The outgoing transition probabilities from all hold states are assumed to be
identical. Intuitively, this means that the likelihood of remaining within a hold

state does not depend on where that hold is located. While it is possible to
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imagine scenarios in which this is not true, it is a reasonable simplification that

dramatically reduces the number of parameters to be estimated.

Two similarity features are derived from the spatio-temporal clustering. The
SAME-CLUSTER feature reports whether the two gestures occupy the same state for
the majority of the durations of the two noun phrases. This is a Boolean feature that
indicates whether two gestures are in roughly the same area, without need for an
explicit discretization of space. However, two nearby gestures may not be classified
as similar by this method if they are near the boundary between two states or if both
gestures move between multiple states. For this reason, the similarity of the state
assignment probabilities is quantified using the Jensen-Shannon divergence, a metric
on probability distributions (Lin, 1991). JS-DIV is a real-valued feature that provides
a more nuanced view of the gesture similarity based on the HMM clustering. Both
SAME-CLUSTER and JS-DIV are computed independently for models comprising five,
ten, and fifteen hold positions.

Thus far, our features are designed to capture the similarity between static ges-
tures; that is, gestures in which the hand position is nearly constant. These features
do not capture the similarity between gesture trajectories, which may also be used to
communicate meaning. For example, a description of two identical motions might be
expressed by very similar gesture trajectories. The DTW-DISTANCE feature quanti-
fies trajectory similarity, using dynamic time warping (Huang, Acero, & Hon, 2001).
This technique finds the optimal match between two time sequences, permitting a
non-linear warp in the time dimension. Dynamic time warping has been used fre-
quently in recognition of predefined gestures (Darrell & Pentland, 1993).

The continuous-valued are binned using WEKA’s default supervised binning class,
which is based on the method of Fayyad and Irani (1993).3 This method recursively
partitions the domain of an attribute value by adding cut points. Cut points are
placed so as to minimize the class label impurity on each side of the cut. For example,
in binning the FOCUS-DISTANCE feature the method first divides the attribute domain

at the point that best separates positive and negative labeled examples. Additional

3The specific class is weka.filters.supervised.attribute.Discretize.
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cut points are added until a termination criterion is reached, based on the minimum

description length (Bishop, 2006).

Finally, note that feature set currently supports only single-hand gestures. The
articulated upper body model makes it possible to estimate the distance of each hand

from the body center. The more distant hand is used in all cases.

4.3 Gesture Salience

Section 4.1 introduced the hypothesis that gesture similarity is an important cue
for analyzing discourse structure. However, not all hand movements are meaningful
gestures. The psychology literature suggests that human viewers consistently identify
a subset of hand motions as intentionally communicative, and disattend other, non-
communicative movements (Kendon, 1978). A key claim of this thesis is that the

same ability should be incorporated in multimodal discourse processing systems.

Hand movements that are relevant to the speaker’s communicative intent will
be referred to as salient. Our goal is to learn to estimate the salience of the hand
movements that accompany critical parts of the speech — in the case of coreference,
the focus is on noun phrases. As stated, the definition of salience implies that it is
a property that could be annotated by human raters. In principle, such annotations

could then be be used to train a system to predict salience on unseen data.

However, such labeling is time-consuming and expensive. Rather than addressing
salience generally, it may be advantageous to use a more functional definition: salient
gestures are hand movements that improve automatic language processing. As we
will see, restating salience in this way permits it to be estimated without labeled data
and situates the concept of gesture salience within the context of a specific language
processing problem and feature set. For example, a given gesture may be irrelevant to
coreference, as it may be communicating something other than noun phrase identity.
Alternatively, a gesture may be salient for the relevant discourse processing task but

may communicate in a way that cannot be captured by the available features. In
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both cases, it would be better to treat the gesture as not salient for the purposes of
natural language processing.

This section describes a novel approach to assessing gesture salience, called con-
ditional modality fusion. This approach does not require an annotated training set
and gives an estimate of salience that is customized both for the task and feature set.
Conditional modality fusion learns gesture salience jointly with the target language
processing task — in this case, noun phrase coreference. Gesture salience is modeled
with a hidden variable; gesture features influence the coreference label prediction only
when the hidden variable indicates that the gestures are salient. Thus, in maximizing
the likelihood of the training data — which does not include labels for gesture salie