
A Micropower DSP for Sensor Applications

by

Nathan J. Ickes

B.S., Massachusetts Institute of Technology (2001)

M.Eng., Massachusetts Institute of Technology (2002)

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

May 23, 2008

Certified by...................................
Anantha P. Chandrakasan

Professor
Thesis Supervisor

Accepted by.

Terry P. Orlando
Chair, Department Committee on Graduate StudentsMASSACHUSETTS INSTITUTE-

OF TEGHNOLOGY

JUL 0 12008

LIBRARIES

A Micropower DSP for Sensor Applications

by

Nathan J. Ickes

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering

Abstract

Ultra-low power systems, such as wireless microsensor networks or implanted medical
devices, are driving the development of processors capable of performing increasingly
complicated computations using mere microwatts of power. This thesis describes the
design of a micropower DSP intended for medium bandwidth microsensor applications
(such as acoustic sensing and tracking) which achieves 4 MIPS performance at 40 pW
(10 pJ per instruction) operating at 450 mV and fabricated in 90 nm CMOS. Energy
efficiency optimizations include a custom CPU instruction set, a miniature instruction
cache with a novel replacement strategy, hardware accelerator cores for FIR filter and
FFT operations, and extensive power gating of both logic and memory.

The tradeoffs of cache size, line length, and replacement policy for very small
(a few hundred words or less) caches are explored, as are the design implications of
optimizing the cache for minimum energy without regard to performance (since on-
chip memory access is already single-cycle). A replacement policy designed to reduce
thrashing in miniature instruction caches is presented.

Efficient control of power-gated circuits requires consideration of the minimum off
time, or break-even time. An energy model for determining the break-even time is
developed, which correlates with measurements of the power-gated domains on the
DSP.

The energy savings obtained from hardware accelerators for FIR filtering and FFT
operations are measured, and a model is developed to predict the actual net power
reduction in a real system, including factors such as sampling rate, leakage power,
latency requirements, and power gating overhead.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Professor

Acknowledgments

I would like to begin by thanking Professor Anantha Chandrakasan for his guidance

and support as my advisor. Anantha has been exceptional at giving me the freedom to

identify research problems that particularly interest me, and finding me the resources

to pursue those problems, as well as providing insight on how to identify particularly

interesting and worthwhile problems.

I would also like to thank Professors Arvind and Sam Madden for serving on my

thesis committee, and for their advice, insights, and enthusiasm that have help shape

this thesis. I am particularly grateful for their input on ways to make this work more

interesting to a broader audience including the architecture and sensors communities,

in addition to the circuits community.

Daniel Finchelstein and I worked together on two previous generations of the DSP

chip described in this thesis, and in the process the two of us identified many of the

design issues that shaped the architecture of this third generation DSP. During the

design of these earlier chips, Daniel worked out solutions to many, many tool and

design flow issues, which I am extremely grateful not to have had to solve myself. I

would also like to thank Vivienne Sze, Denis Daly, Fred Chen, Naveen Verma, and

David Wentzloff for sharing their expertise.

Joyce Kwong and Yogesh Ramadass read initial drafts of portions of this thesis

and provided insightful feedback.

This work was sponsored by the DARPA PAC/C program, the Focus Center

Research Program, and Texas Instruments. Fabrication of the pAMPS DSP was

donated by ST Microelectronics.

Nathan Ickes
May, 2008

Contents

1 Introduction 17

1.1 Microsensor Applications 17

1.2 The pAMPS DSP 21

1.2.1 DSP Chip Architecture 22

1.2.2 Performance 24

1.3 Thesis Contributions 27

1.4 Thesis Organization 28

2 Power Gating 31

2.1 Implementation 32

2.1.1 On-Chip Circuitry 32

2.1.2 Power Management Unit 35

2.1.3 Off-Chip Circuitry 36

2.2 Break-Even Time 37

2.3 Simulations of On-Chip Switches 47

2.4 Conclusions 48

3 CPU 51

3.1 Survey of Related Processor Architectures 52

3.2 pAMPS CPU Architecture 54

3.2.1 Instruction Set Organization 55

3.2.2 Pipeline . 57

3.3 Measurements and Benchmarking 57

7

3.4 Conclusions

4 Memory Architecture

4.1 DSP Memory Model

4.2 Instruction Caching.............

4.2.1 Related Work

4.2.2 Benchmarks

4.2.3 Direct Mapped Sector Caches . .

4.2.4 Energy Modeling and Analysis ..

4.2.5 Cache Management with Optimal

4.2.6 Realizable Allocation Algorithms

4.2.7 Measured Cache Performance . .

4.3 Banked Memory

4.3.1 Memory Arbiter

4.3.2 Stack Pointer Limit Exceptions

4.4 Combining Banked Memory and Caches

4.5 Conclusions

.°...°o.

... ...

. .. °o.

.......

.

.

Replacement

.

.

.

..... .

5 Accelerator Cores

5.1 Related W ork

5.2 Characterizing Energy Savings ..

5.3 Minimum Duty Cycle and Power Gating

5.4 Characterizing the pAMPS Accelerators

5.4.1 FIR Filtering

5.4.2 FFT Architecture

5.4.3 Direct Memory Access

5.5 Conclusions

6 Conclusion

6.1 Thesis Conclusions

6.2 Future Work

8

63

63

64

67

69

70

78

81

91

93

96

98

100

100

102

105

106

108

112

118

119

124

130

132

135

135

136

A Instruction Set 139

A .1 Notation 139

A.2 Condition codes 139

A.3 Branches 140

A.4 Arithm etic 142

A .5 Logical 144

A .6 Shifts .. . 145

A.7 Multiplication 147

A .8 Loads . 147

A .9 Stores . 150

A .10 O ther . 151

B On-Chip Peripherals 155

B.1 ADC Interface 155

B.2 DM A Engine 156

B.3 FFT Accelerator 158

B.4 FIR Accelerator 159

B.5 General-Purpose I/O 160

B.6 Power Management Unit 162

B.7 Real-Time Clock 164

B.8 SPI Ports 165

B .9 Tim er . 166

B.10 UART 169

List of Figures

1-1 Acoustic tracking application 20

1-2 pAMPS sensor node architecture 22

1-3 DSP block diagram 22

1-4 DSP die photo 24

1-5 DSP test board 25

1-6 Energy per cycle, as a function of voltage 26

2-1 Breakdown of leakage power by power domain 34

2-2 DSP power domains 34

2-3 Power gating implementation with off-chip power switches 36

2-4 Experimental setup for measuring break-even time 38

2-5 Measurement of break-even time 39

2-6 Model for power gating circuit 40

2-7 IDS and RDS versus VDS 41

2-8 Virtual supply node voltage decay 42

2-9 Energy transfer during a power-gating cycle 43

2-10 Determining CGD, CGS, and CL by linear fitting. 45

2-11 Agreement between the model and measurements 46

2-12 Effect of switch energy on break-even time 47

2-13 Power gating implementation with on-chip power switches. 48

2-14 Break-even time for on-chip switches 49

3-1 Programmers model 55

3-2 Instruction encoding 56

3-3

3-4

3-5

3-6

CPU pipeline architecture

Code density and execution time comparisons

Variation in instruction energy across the pAMPS instruction set.

Comparison of measured and estimated average energy per instruction

4-1 DSP memory map

4-2 Structure of a direct-mapped cache

4-3 Line change rate

4-4 Memory traffic reduction with a sector cache

4-5 Hit rates for direct-mapped caches

4-6 Net instruction fetch energy

4-7 Fitted values for Eaccess and Ewrite

4-8 Cache energy model versus simulation

4-9 Idealized, fully-associative cache performance

4-10 Belady's algorithm is not valid for sector caches

4-11 Comparison of cache replacement policies

4-12 Ratio of declined / accepted line replacement decisions .

4-13 Comparison of cache replacement policies

4-14 Effect of loop queue length on hit rate

4-15 Instruction fetch energy for a cache with loop protection

4-16 Measured impact of cache on energy per cycle

4-17 Banked memory power savings

4-18 Measured SRAM access energy by bank

4-19 Total memory energy for selected memory architectures .

5-1 Power-gated operation of an FIR filter accelerator

5-2 Filter power as a function of input sample rate

5-3

5-4

5-5

5-6

Dependence of actual accelerator power reduction on the sampling rate. 119

FIR filter architectures 121

FFT accelerator implementation 126

Butterfly ordering 127

....... 65

.. 71

....... 72

.. 74

.. 75

.. 76

.. 80

.. 82

. 84

. 86

. 88

. 89

.. 90

.. 92

. 94

. 95

.. 97

.. 99

. 101

. 116

. 116

5-7 Signal processing pipeline with DMA 130

List of Tables

1.1 Energy harvesting techniques 18

1.2 Comparison of the pAMPS DSP with other micropower processors .. 26

2.1 Variables for power gating analysis 33

2.2 Power gating parameters 46

3.1 Comparison of processor architectures 52

4.1 Variables for memory architecture analysis 66

4.2 Benchmark statistics 70

4.3 Optimization for maximum hit rate versus minimum energy 87

5.1 Variables for accelerator core analysis 109

5.2 Comparison of FIR accelerator architectures 122

5.3 FIR accelerator statistics 123

5.4 FFT accelerator statistics 128

5.5 DMA engine statistics 131

Chapter 1

Introduction

Power efficiency is today a universal constraint in computer system design, either due

to heat dissipation limits or battery lifetime concerns. Ultra-low power applications,

such as wireless microsensor networks, or implanted medical devices, are driving the

development of processors capable of performing increasingly complicated computa-

tions using mere microwatts of power.

1.1 Microsensor Applications

Microsensor networks may consist of many--perhaps hundreds or thousands-of minia-

ture sensor nodes scattered throughout an area of interest and linked by a wireless

network. The network of sensors collaborates as a whole, combining measurements

made by each individual node and delivering high-quality observations to a cen-

tral base station. The large number of nodes in a microsensor network results in

high-resolution, multi-dimensional observations and fault-tolerance superior to more

traditional sensing systems. This makes them attractive for a wide range of ap-

plications, such as inventory tracking, environmental monitoring, machine-mounted

sensing, medical monitoring, and building climate control. For many applications, a

primary advantage of microsensor networks is the spatial diversity of the data col-

lected by the network as a whole. This diversity can be exploited to reveal details

about the network's environment that would not necessarily be visible using a single

Table 1.1: Energy harvesting techniquesa
Energy Source Technology Power Output
Machine vibration Electromagnetic 2.3 pW/cm3 [5]
Falling rain Piezoelectric 1 nJ/drop [6]
Human body heat Thermoelectric 250 pW [7]
Indoor lighting Photovoltaic 10 pW/cm 2 b

aData courtesy of Yogesh Ramadass.
bMeasured from an amorphous silicon solar cell (Trony SC1025IDS) taken from

an inexpensive calculator.

large sensor. Alternatively, the sensor network may be used to imitate a single very

large sensor, one that might be impractically large to build or deploy [1, 2].

The desirability of extremely small, yet long-lived sensor nodes makes extreme

power efficiency the central issue in microsensor design. Many applications call for

battery lifetimes measured in years. Achieving a one-year battery life with a 1 Ah

lithium coin cell (3 V, 4cm3 , 11 kJ [3]) requires limiting average power consumption

to approximately 3501pW, and many applications would benefit from nodes with

significantly smaller volumes and longer lifetimes. The Holy Grail of microsensor

design is a self-powered node, scavenging energy from ambient solar, thermal, or

mechanical sources. (Table 1.1 compares the obtainable power for several energy

scavenging techniques.) While at least one viable solar powered microsensor node has

been demonstrated [4], it is physically large and limited to outdoor applications where

it receives direct sunlight. With commercially available microsensor nodes currently

consuming watts or milliwatts or power, many potential microsensor applications are

not yet viable and await the development of new node architectures with orders of

magnitude lower power consumption.

While the space of microsensor applications is extremely wide and varied, the

following characteristics are fairly common: [8, 9]

Low duty cycle. In most applications, nodes operate with an extremely low duty

cycle. Events of interest to the network may be spaced minutes, hours, or days apart,

meaning that nodes can be idle over 99% of the time. Minimizing standby power

consumption is critical, as standby energy may greatly exceed active energy.

Event driven. Microsensor applications are largely event driven: the work profile

consists mainly of short interrupt event handlers. Typical events handled by nodes in-

clude sending or receiving radio data, and collecting measurement data. To maximize

node lifetime, these events must be handled quickly and efficiently.

Localized data processing. In medium- and high-bandwidth applications, signifi-

cant energy can be saved if preliminary signal processing and data analysis occurs

within the network. For instance, nearby nodes might aggregate their data streams

using beamforming algorithms, thereby reducing the amount of data that must be

sent to the network basestation. Beamforming can be computationally intensive, and

implementing such algorithms may significantly increase the peak processing capabil-

ity required on each node.

Unpredictable performance requirements. Performance demands on any given node

are variable and unpredictable before deployment. Local variations in node density

can modulate the distance between adjacent nodes, for instance, creating variations

in the nodes' required radio transmission power. The ambient noise level on sensor

readings can change, creating variations in the amount and type of signal processing

required.

Microsensors have been an active area of research for several years. Early archi-

tectures based on off-the-shelf components, such as the Berkeley Mote [10] platform,

are commercially available, and descriptions of a number of custom microsensor chips

have been published [11-14]. Much of the early work on microsensors focused on very

low-bandwidth applications, such as environmental sensors that monitor slow-varying

quantities such as temperature or light level. In such applications, individual sensor

nodes perform almost no actual computation: the raw measurements recorded by

each node's sensors are transmitted to the network basestation, or stored in the node

for later retrieval. Most or all data analysis takes place offline, outside the microsensor

network. The principle tasks of the software running on each node include handling

low-level hardware events (such as timer interrupts) and implementing the network

protocol stack and power management strategy.

The MIT pAMPS (micro, adaptive, multi-domain, power aware sensors) project

compute line-of-bearing
to target

STarget

Each node contains
three micropnones.

.\ * Node locations are
known

each
Fficient
>y nodes

(a)

(b)

Figure 1-1: Acoustic tracking application

(for which the DSP described in this thesis was designed) targets a more compu-

tationally intensive application space. pAMPS microsensors are designed for acous-

tic tracking and other applications requiring sensor sampling rates of 1 - 100 kS/s

and significant post-acquisition signal processing, such as filtering, compression, or

spectral analysis. Nodes built from off-the-shelf components for these applications

consume from tens of milliwatts to more than a watt of power when active [15-18].

The goal of the pAMPS project is to demonstrate a node architecture optimized for

these applications with sufficiently low power consumption to enable self-powered

operation.

dT1I 1 4 4. 4- 4dt • t - _ 1

Figure 1-1 illustrates an example acoustic tracking microsensor application. Nodes

are scattered at known locations throughout a region of interest. Each node is

equipped with an array of three microphones, spaced 50 cm or so apart, at the corners

of an equilateral triangle. Most of the time, the nodes are in a deep sleep state to

save energy, but when a node detects a loud enough sound, it wakes up and begins

recording from its microphones. The first task of an awakened node is to determine

(from the frequency spectrum of the recorded signal) whether the sound source is

interesting, as defined by the task for which the network was deployed. Perhaps the

network is being used to track certain types of vehicles, or to track the movement and

behavior or certain species of wildlife, based on their calls. If a noise is deemed inter-

esting, each node that detects the noise computes the line of bearing from its location

to the source of the noise, based on the phase differences of the signals recorded from

the node's three microphones. The line of bearing results are then radioed to the

network basestation, where the location of the sound source can be determined by

triangulation.

The key signal processing algorithms for this application include a Fourier trans-

form, and a line-of-bearing estimation (such as the algorithms described in [19,20]).

Additionally, some filtering of the raw microphone data is likely important, in order

to reduce the effects of noise at frequencies that are not relevant to the application.

1.2 The pAMPS DSP

The basis of this thesis is a 4 MIPS, 10 pJ per instruction DSP designed to form the

core of a pAMPS sensor node. We now introduce the DSP, describe its features, and

summarize its measured performance. In each of the remaining chapters of this thesis,

we will examine a particular subsystem of the DSP in detail, discussing the design

decisions that were made, and the theory behind those decisions.

The block diagram for a complete pAMPS node, built around our custom DSP

chip, is shown in Figure 1-2. The node consists of three primary components: the DSP,

a custom 12-bit 100 kSPS ADC [21], and a commercial ZigBee radio (the ChipCon

Mi

IL4- I I I I4J L 1L l
Voltage Regulators--------------------------------------II

Figure 1-2: pAMPS sensor node architecture

CC2420). A serial EEPROM is provided, for nonvolatile code and data storage. The

node's power source is a small battery, and multiple voltage regulators are used to

generate the different voltages required by each component.

1.2.1 DSP Chip Architecture

Figure 1-3 illustrates the architecture of the DSP chip itself. The key features of the

DSP include:

Figure 1-3: DSP block diagram

* A 16-bit RISC CPU with a custom instruction set designed specifically to ease

instruction decoding and simplify the pipeline control logic, in order to minimize

the execution energy per instruction.

* 60 kB of on-chip memory (SRAM), utilized for both program and data storage.

To reduce access energy, the memory is divided into nine smaller blocks. There

are no system-wide busses. Instead a crossbar-like arbiter circuit routes mem-

ory transactions generated by the CPU and DMA engine to the appropriate

peripheral device or memory block.

* A miniature 64 word instruction cache reduces the memory access rate, and

significantly decreases the average instruction fetch energy.

* Accelerator cores for FIR filter and FFT operations are implemented as memory-

mapped peripherals. (Additional accelerators could be easily added in future

versions of the chip.) The FIR filter accelerator implements up to a 16-tap sym-

metric filter, and can perform automatic downsampling (generating one output

sample for every n input samples), making it suited for use as a digital anti-

aliasing filter. The FFT core computes Fourier transforms on 64-, 128-, 256-, or

512-point complex inputs or 128-, 256-, 512- or 1024-point real-valued inputs,

with 16-bit precision.

* A DMA engine is included, for efficiently copying data between various compo-

nents of the DSP, particularly between the accelerator cores and main memory.

* On-chip peripherals include an RS-232 UART (for debugging purposes), two

SPI interfaces (for communicating with the radio and an external EEPROM),

a timer system with input- and output-compare functionality, a real-time-clock

for timing long-duration events, and a simple power-management unit.

* The CPU, accelerator cores, and each of the nine memory banks are all power

gated, using external power switches.

I MII I I I -I II -11 1 1 fH

Figure 1-4: DSP die photo

The DSP is implemented in ST Microelectronics' 90 nm low-power CMOS process

technology, and contains approximately 6.3 million transistors (6 million of which are

contained in the on-chip memory). Figure 1-4 shows a photo of the DSP die, with the

locations of the processor and memory components identified. The chip dimensions

are limited by the number of I/O pads; all of the active circuitry located at the center

of the die area. (Since was a test chip and ease of debugging was more important than

minimizing die area, no attempt was made to minimize the number of I/O signals.)

1.2.2 Performance

Testing and characterization of the DSP was conducted using the test board shown in

Figure 1-5, which incorporates all of external components from Figure 1-2 necessary

Voltage Regulators CC2420 Radio

I

Figure 1-5: DSP test board

to create a complete sensor node. An actual node would be considerably smaller than

the test PCB, which includes extra components (such as an FPGA) and connectors

to facilitate testing.

Figure 1-6 shows the measured energy per clock cycle and maximum clock speed

for the DSP, as the power supply for the logic portions of the chip is scaled from

800mV down to 440mV (the lowest voltage the DSP will operate at, at any clock

speed). The power supply for the on-chip memory banks was fixed at 800 mV. During

these measurements, the CPU was executing a 16-tap FIR filter (implemented in

software, not using the FIR accelerator). The FIR and FFT accelerator cores, along

with all but two of the memory banks, were powered off.

At 0.8 V, the DSP operates at 50 MHz and 22 pJ per instruction. The optimal,

minimum-energy-per-cycle operating point occurs at 450 mV and 3.95 MHz, where

the DSP consumes 10.3 pJ per cycle (41 pW).

As the supply voltage is decreased, dynamic (cx CV2) energy consumption de-

creases correspondingly. Because the memory voltage is not scaled, the portion of the

5

0

0.4

40

30

20

10

10

0.80.5 0.6 0.7

Voltage (V)

Figure 1-6: Energy per cycle, as a function of logic voltage. (The memory voltage is fixed
at 0.8 V.) Maximum operating frequency is also plotted (dashed line), against the right-side
axis.

total dynamic energy per cycle due to the memory does not change, and therefore

the total dynamic energy per cycle flattens out at low voltages, where the constant

memory energy dominates over the shrinking logic energy. Although static leakage

power also decreases with voltage, the increasing clock period causes a net increase

in leakage energy per cycle as the voltage decreases. This results in the observed

minimum energy point at 450 mV.

The efficiency (energy per instruction) and performance (maximum clock fre-

Table 1.2: Comparison of the pAMPS DSP with other micropower processors

Optimal operating point: Voltage Clock Frequency Energy/instruction
(V) (MHz) (pJ)

Smart Dust [11] 1.0 0.50 12
SNAP/LE [12] 0.6 28 24
Subliminal [22] 0.4 1.6 2.7
Sub-Vth MSP430 [23] 0.5 0.43 27.3
uAMPS (this work) 0.45 3.95 10.3I \ /

quency) of the pAMPS DSP are compared against other recently published microp-

ower processors in Table 1.2. Although other processors have achieved lower en-

ergy per instruction, the pAMPS DSP nonetheless significantly advances the pareto-

optimal frontier, achieving either lower energy or higher speed than other published

architectures. It is important to note, however, that energy per instruction and max-

imum clock speed are only two of many measures of processor performance. Table

1.2 does not, for example, illustrate the benefit of accelerator cores, or power gating,

or consider the amount of program and data memory included in each architecture.

(Memory access energy accounts for a significant portion of the average instruction

energy, and larger memories have higher access energies.) Furthermore, the aver-

age energy per instruction depends significantly on the workload being measured,

and there are, as yet, no standard benchmark suites for micropower processors. We

opted to use an FIR filter as our energy characterization benchmark, because it rep-

resents a significant processing task which thoroughly exercises our CPU, including

the multiplier and barrel shifter units. For simpler workloads, the average energy

per instruction may be lower (we have measured as little as 6 pJ), particularly if the

instruction cache hit rate is very high.

Many of the measurements we will present in the following chapters were per-

formed at the characterization point identified in Figure 1-6, corresponding to 5 MHz

and 0.5 V, which is only slightly less efficient (11.8 pJ/instruction) than the lowest en-

ergy operating point. Operating at 5 MHz facilitates communicating with the DSP's

bootloader program via RS-232 at a standard baud rate. Increasing the voltage to

0.5 V (slightly above the minimum voltage required for 5 MHz operation) increases

reliability by reducing susceptibility to power supply noise.

1.3 Thesis Contributions

The main contributions of this thesis are in the following four areas.

1. Memory power optimization. This work represents the first micropower pro-

cessor design to explicitly focus on minimizing memory power throughout the

architecture. Memory power has been addressed not only in the memory im-

plementation itself, but in almost all components of the design, including the

CPU instruction set and the accelerator cores.

2. Instruction cache design. This work also represents the first use of a non-

trivial instruction cache in a micropower processor. We explore the tradeoffs of

cache size, line length, and replacement policy for very small (a few hundred

words or less) caches, and the design implications of optimizing for minimum

energy without regard to performance (since on-chip memory access is already

single-cycle). A replacement policy designed to reduce thrashing in miniature

instruction caches is presented.

3. Modeling of power-gating. Efficient control of power-gated circuits requires con-

sideration of the minimum off time, or break-even time. We measure the break-

even time for each of the power-gated domains of the DSP, and develop an

energy model for a power-off/power-on cycle, which matches well with mea-

sured data.

4. Hardware accelerators. We present a framework for assessing the energy savings

delivered by an accelerator core and then use that framework to evaluate the

accelerator cores implemented on the pAMPS DSP. We also develop a model for

determining the effective power savings obtained from an accelerator as part of

a complete application, and test that model using a simple application running

on our DSP.

1.4 Thesis Organization

The chapters that follow each concern one particular portion of the pAMPS DSP

design. Chapter 2 discusses the use of power gating, including the importance of the

minimum off time, or break-even time. In Chapter 3 the CPU and its instruction set

is described and compared against other architectures, both commercial and custom.

Chapter 4 considers the memory system, particularly focusing on the design of the

tiny instruction cache. Chapter 5 deals with the accelerator cores. Finally, the

contributions and conclusions of this work are summarized in Chapter 6.

Chapter 2

Power Gating

The low duty cycle nature of microsensor applications makes minimizing idle mode

power a high priority. Clock gating, which is inserted automatically and transparently

by modern synthesis tools, can greatly reduce dynamic power consumption in idle

logic. However, this does not reduce leakage power, which then becomes the dominant

source of idle-mode power consumption, particularly for deep-sleep states and modern

sub-100 nm process technologies.

Power gating is a well-known mechanism for reducing idle-mode leakage power,

but in practice is complicated to implement and, despite over a decade of publica-

tions on the subject [24-28], has not yet become a common ASIC design technique.

Mainstream synthesis and layout tools are only beginning to support multiple voltage

domains and do not yet support automatic insertion of power-gating devices into a

design. The control of power gating is complicated because, except for small circuit

blocks, power cannot be turned on and off on a cycle-by-cycle basis as is the case in

clock gating. Some amount of planning ahead is required before powering off a logic

block, to ensure that power can be restored in time before the logic is needed again.

An obviously important characterization of the performance of a power-gating

design is the leakage reduction ratio: by what factor is leakage reduced when the

power is turned off? To achieve a high reduction ratio, the power gating switch must

be a significantly better (i.e., lower leakage) device than the transistors in the circuitry

being power gated. One way to accomplish this is to use a higher threshold voltage

device for the power switch: this is known as MTCMOS [24]. Alternatively, boosting

the gate voltage to the power switch can permit shrinking the switch to achieve lower

off-mode leakage, without increased voltage drop during power-on mode. [29]. In the

pAMPS DSP, both of these techniques are used, though unlike in true MTCMOS,

the switches are off-chip.

A second-and much less studied or reported-metric of power gating performance

is break-even time, or minimum off time: the minimum time a circuit must be powered

off in order to achieve any net energy savings, after accounting for the energy expended

turning the circuit off and on.

In this chapter we first discuss how power gating was implemented on the pAMPS

DSP, and then describe a method for measuring break-even time experimentally and

a simple circuit model based on the experimental results.

2.1 Implementation

The modular nature of our DSP's architecture is well suited to coarse-grained (module

level) power gating. We implemented twelve independent power domains, consisting

of each of the nine memory banks, the FFT and FIR accelerator cores, and the CPU.

These are the largest modules in the pAMPS architecture, and together account for

more than 90 % of the total leakage power, as shown in Figure 2-1. The remaining

non-power-gated logic on the DSP constitutes a thirteenth, always-powered domain

(the "core" category in Figure 2-1). This domain includes the memory arbiter, as

well as the DMA engine, boot ROM, and other small modules (timers, serial ports,

ADC interface, etc.) which were too small to warrant power gating individually.

2.1.1 On-Chip Circuitry

As shown in Figure 2-2, the twelve power-gated domains of the DSP are implemented

as islands inside the always-on "core" domain. Each domain can be powered on or off

independently of all the other domains. No signals pass directly from one power-gated

domain to another. The interfaces between power domains are always between one

Table 2.1: Variables for power gating analysis
Name Description

CGD Gate-drain parasitic capacitance of a power switch transistor
CGS Gate-source parasitic capacitance of a power switch transistor
CL Effective virtual-supply node capacitance of the module being power

gated

Eswitch Energy required to turn a power switch on (or off, in the case of a PFET)
Erecharge Energy required to charge the virtual supply node back to VDD when the

power-gated module is turned back on.

f Frequency at which power switch is turned on and off (in the break-even
time experiment)

Psw Power drawn from the switch drive power supply (averaged across an
entire power-gating cycle)

PDD Power drawn from the VDD supply (averaged across an entire power-
gating cycle)

Pleak Leakage power of the power-gated module when powered switch is on

Q1 Charge drawn from CL when the power switch is turned off
Q2 Charge lost from CL due to leakage, while the power switch is off
Q3 Charge returned to CL when the power switch is turned on
QDD Total charge drawn from the VDD power supply over the course of a

complete power-gating (on/off) cycle
Qswitch Total charge drawn from the Vsw power supply over the course of a

complete power-gating (on/off) cycle

tbe Break-even time: minimum time that a power-gated module must remain
powered off in order to save any net energy

Vv Voltage of the virtual supply node

domain that is always powered, and one that is power gated.

In order to allow the memory power domains to operate at a higher voltage than

the logic portions of the chip, voltage level converters are used on every memory in-

put signal. The level converter, as shown in the inset portion of Figure 2-2, is of a

differential-cascode voltage switch (DCVS) design. This traditional design is simple,

but its drawbacks are that it is relatively slow and has high dynamic power consump-

tion (compared to more exotic level converter designs), due to the contention caused

by the cross-coupled PFET devices. However, the total number of level converters

used (294 total among all the memory domains) is small, and only a very small frac-

4 kB Banks

8 kB Banks

Bank 8

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

(1.9%)

(1.8%)

(1.8%)

(4.4%)

(4.9%)
(5.2%)

(4.4%)
(4.7%)
(4.5%)

- Core (8.3%)
(not power gated)

- CPU (6.5%)

FIR (2.7%)

FFT (48.8%)

Figure 2-1: Breakdown of leakage power by power domain, for the entire DSP chip.

tion of these will toggle on any given cycle. The level converter was designed to

convert from an input voltage as low as 0.5 V to an output voltage as high as 1.0 V.

When a power domain is turned off, the inputs and outputs of that domain are

isolated, using the AND gates shown in Figure 2-2. The input isolation gates prevent

toggling input signals from propagating into the power gated module and causing

Figure 2-2: The twelve gated power domains of the DSP form islands within the thirteenth,
always-on "core" domain. Inputs and outputs of each gated domain are isolated using AND
gates whenever that domain is powered off. DCVS-style level converters (inset) enable the
memory domains to operate at a higher voltage than the logic portions of the chip. (Shaded
transistors in the level converter represent high Vth devices.)

unnecessary dynamic power consumption. The output isolation gates serve to ensure

that midrange voltages which may be present on the outputs of the domain when it

is powered down are resolved to a legal voltage before being propagated.

When a domain is powered off, the internal state of its circuitry is lost. This

means that memory banks can only be powered off when their entire contents are

no longer needed, and logic domains must be reinitialized when powered back on.

Mechanisms have been proposed in the literature for retaining the state of flip-flops

when logic is powered off [26]. However, a disadvantage of any form of state-retention

is a necessary increase in leakage power during the off state. We opted to forgo any

automatic state retention during power-down, because the CPU as well as the FIR

and FFT accelerators each contain relatively little state that must be retained (at

most about 400 bits), and this can be saved and restored manually, through software.

2.1.2 Power Management Unit

A very simple power management unit (PMU) provides an interface for software

running on the CPU to manually control which domains are powered on. The PMU

is implemented as a set of memory-mapped registers that may be read or written by

the CPU. Power to each module is controlled by a power-enable register in the PMU:

each bit in the register corresponds to one'of the power domains.

Power gating of the CPU requires some additional assistance from the PMU, as

the CPU power-up process cannot be entirely controlled in software like it is for the

FIR and FFT accelerators. An extra interrupt mask register in the PMU selects

which interrupt sources may trigger a wakeup of the CPU from the powered-off state.

Wakeup of the CPU is triggered when an interrupt request (such as a timer event)

matching the wakeup interrupt mask occurs. Power and clock to the CPU are enabled

immediately and the CPU reset signal is asserted. After a programmable number of

clock cycles (to allow the CPU voltage to stabilize), the CPU reset is released and

code execution begins at a special "warmstart" vector. Code located there restores

the state of the CPU (i.e., the register file contents) from memory and then resumes

execution at the point where it left off when the CPU was powered down.

ver switch gate driver)

Vsw VDD

uitry

Figure 2-3: Power gating implementation with off-chip power switches

2.1.3 Off-Chip Circuitry

The power switches for each of the gated domains are implemented off-chip, us-

ing discrete NFETs. While external switches are in some ways an unattractive

implementation-they increase the PCB component count, require additional I/O

pins, and cannot be custom sized to the circuitry they are controlling-their advan-

tages are they provide extremely high off-resistance, and they allow easy access for

making measurements.

Figure 2-3 illustrates the power switch implementation. NFET power switches

were chosen due to availability (at the time of the design) of parts with lower threshold

voltage and lower gate capacitance. Given the 0.5 V target operating voltage for the

DSP, utilizing a PFET device with a threshold voltage of less than -0.5 V would

have required driving the gate below the ground rail of the chip, in order to turn the

switch on. With an NFET switch, the gate drive voltage must be at least VDD + Vth

relative to the system ground in order for the switch to turn the switch on. A Vishay

SI1912EDH device was chosen, which has a specified threshold voltage of Vth = 0.45 V.

Discrete level converters (Fairchild FXLP34P5X) are used to drive the gates of

the power switches, converting between the DSP I/O voltage (2.5 V) and the desired

gate drive voltage. Using the level converters allowed experimentation with the gate

drive voltage in order to achieve optimal performance, and also created a convenient

means for measuring the energy consumed driving the switches (see Figure 2-4).

The gate drive voltage was determined experimentally by incrementally raising the

gate voltage until no further increase in the output voltage to the DSP was measured.

The gate voltages determined this way were 1.1 V for the logic-only domains (CPU

and FIR, at VDD = 0.5 V) and 1.4 V for the SRAM domains (FFT and RAMO-RAM8,

at VDD = 0.8 V).

We were unable to measure the leakage reduction ratio when the power switches

are turned off because the off-mode leakage currents were too small to measure reli-

ably. We estimate the off-mode leakage for each domain to be less than 10 pA, which

would roughly correspond to a leakage reduction of five orders of magnitude.

2.2 Break-Even Time

When a power domain is turned off and then back on, significant energy is consumed

driving the gate of the power switch, recharging the domain to its operating voltage,

and restoring the internal state of the power-gated circuitry. If the power-off interval

is overly short, this overhead energy can exceed the energy saved from power gating

the load. A key parameter of any power-gating implementation is therefore the break-

even time: the minimum time that a module must remain powered off, in order for

the energy savings during the off period to exceed the overhead energy associated

with powering it back on.

As our power gating implementation relies on software for manually restoring state

after power-on, for simplicity we neglect the state restoration energy in this chapter

and deal only with the circuit-level switch and recharge energies. We will come back

to the state-restoration issue in Chapter 5.

Determining the break-even time experimentally is relatively easy, and does not

require any understanding or modelling of the underlying behavior of the power-

gating circuit. Figure 2-4 shows the experimental setup. A function generator--set

to output a 50 % duty-cycle square wave-is connected to the power enable signal (the

input of the external level converter) for one domain of our DSP, and we measure the

average switch (Psw) and load (PDD) power as functions of the function generator

frequency f. The raw power measurements (for the FIR accelerator domain of the

VIo Vsw VDD

Ven

vv

LkRun I I -- Tria'd

aChl z9.00 um ioomv 1M140.0oJ ý Chi 1.441

Chl -Width
83.17pjS

Ch2 High
526mV

Ch2 Low
26.n0mV

(a) (b)

Figure 2-4: Experimental setup for measuring break-even time. The power enable signal
for the power domain under test is driven with a variable-frequency square wave, while the
average power consumption from the Vsw and VDD supplies is measured. The oscilloscope
screen capture in (b) shows voltage waveforms recorded for the enable signal and the virtual
supply node, Vv.

DSP) are shown in Figure 2-5(a). The break-even time tbe is 1/(2 fbe), where fbe is

the function generator frequency at which Psw + PDD equals the leakage power Pleak

of the load when powered on continuously. The measured break-even time for each of

the DSP's power domains is reported in Table 2.2. In general, the lower the leakage

power, the longer the break-even time.

In order to interpret and eventually model the operation of our power-gating

circuit, it is more convenient to work in terms of energy and time, instead of power

and frequency. Figure 2-5(b) illustrates the same experimental results, reformulated

in energy terms as follows. During each cycle of the power enable signal, energy is

drawn from Vsw to charge and discharge the gate of the power switch. The switch

energy per cycle is
Psw

Eswitch =-

Note that the the measurements in Figure 2-5(b) show that the switch energy is

generally invariant of toff (but does increase slightly for very short off times-this

effect will be explained later).

During the power-on portion of the cycle, the energy consumed by the load is

toPlk (and because the duty cycle is 50 %, to, = tff). During the power-off portion

of the cycle, the energy consumed by the load is zero (the off-resistance of the switch

; " i - - · ;i "

. i 'd

i · ·' · l··,eL-.i···· · · · L'··;·' . . ·.7I

Cnh3 zuumv jf4l loomv _ _ 25 Apr 2008

0.75

. 0.5

0.25

0

' I " I I

o Psw
* PSW + PDD

0

0 0

- I* PDD o -
o

o

44 .

1/tbe .i o00 0

. 4 , o O ,
"

0

0

00

Pleak

Psw

200

"' 150

100

50

n

0 1 2 3 4 5 6 0 100 200 300 400

Frequency (kHz) Off Time (ps)
(a) (b)

Figure 2-5: Measuring tbe experimentally. In (a), the raw power measurements are plotted
to show how tbe can be determined directly from the experimental results. The break-even
point occurs when the total power consumption Psw + PDD while power gating matches
the leakage power Pleak when no power gating is performed.

In (b), the results of the same experiment are expressed in terms of energy per on-off
cycle. The break even point occurs when the switch and recharge energy associated with a
given power-off period toff matches the energy Pleak ' tof that would have been consumed if
the load had not been power gated.

is essentially infinite). When the power switch is turned on, a brief pulse of power is

drawn from VDD to charge the load back up to the power supply voltage. The integral

of this power pulse, Erecharge is measurable by calculating the amount by which the

energy drawn from VDD per cycle exceeds the amount expected during the power-on

portion of the cycle.
PDD

Erecharge - tofPleak

As a function of toff or f,

Erecharge(t off) = 2t ofPDD - tofFPleak

Erecharge(f) f 2ff 2f

I Ir Ir
I I ' I ' I

o Eswitch

o Eswitch + Erecharge

tbe

g0000o or -recharge
ooo O0000000000000ooooooooooo 0ooooo8o 08

E sw itc h

II·IIIIIIII

+ Jl'l

,·

toB,
·'

ete~~

I I I I I I I

Power

Virtual

Figure 2-6: Model for power gating circuit

Again, in Figure 2-5(b) the experimental results show Erecharge initially grows with

tof, but saturates at some asymptotic value.

In energy terms, the break-even time can be defined as the minimum off-time for

which the sum Eswitch(toff) + Erecharge(toff) is less than the leakage energy saved during

the off period.

[Erecharge(toff) + Eswitch(toff)]tob = tbePleak

Figure 2-6 shows a simplified schematic of the power gating circuit, including

the main parasitic capacitances, CGD and CGs, of the power switch. The circuitry

being power gated has been reduced to a single capacitor CL, representing the effective

power-to-ground capacitance of the virtual power supply node and any internal nodes

in the logic-1 state, and a resistor RL, representing the leakage paths through the load.

Subthreshold leakage current in an off (VGS - 0) transistor is a weakly exponential

function of the drain-source voltage, due to drain-induced barrier lowering (DIBL).

BSIM3 [30] models the leakage current as

ID = Ioexp (VGS - VT + 7 VDS exp
nkT/q kTlq)

As shown in Figure 2-7 for both single-transistor SPICE simulations and actual mea-

surements from complete circuit blocks, representing subthreshold leakage (VGS = 0)

as a fixed resistance is only a fairly crude model. The effective resistance RL =

VDS/IDs changes significantly with VDS, particularly for very small VDS. The change

is not monotonic: as VDS decreases, RL initially increases, then sharply decreases.

V..., Vn n

- NFET (SPICE) - PFET (SPICE)

1.25

1

0.75

0.5

0.25

0
0 0.25 0.5 0.75 1 0

Vos (V)
(a)

Figure 2-7: (a) Leakage current as a function of

0.25 0.5 0.75

VDs (V)
(b)

VDD. (b) Effective resistance

If we record with an oscilloscope the voltage Vv on the virtual supply node after

the power switch is turned off, as shown in Figure 2-8, the non-linearity of RL is

apparent. Compared to an exponential decay curve, the decay of Vv is first slower,

then faster, corresponding to a decrease in RL as Vv decreases. Also apparent in

Figure 2-8 is a significant step change in Vv at t = 0. The step change occurs when

the power switch is turned off, and the step change in the switch gate voltage VG is

coupled to Vv through CGs.

The step change and decay rate of Vv, together with the capacitances CGD, CGS,

and CL explain the changes in Es.tch and Erecharge with respect to toff. To show this,

we conduct a step-by-step accounting of the energy transfers that occur during a

complete power gating cycle. The resulting model matches the observed behavior of

our system, and can be used to extract the capacitance values CGD, CGS, and CL

from the measured data.

A complete power-gating cycle can be broken down into four phases, as shown

FIR 0 SRAM ----- Resistor Model

0.8

S0.6

• 0.4

0.2

n~

0 500 1000 1500 2000 2500 3000

Time (ps)

Figure 2-8: Virtual supply node voltage (Vv) decay after the power switch is turned off
at t = 0. The measured voltage is shown as line (a). The example exponential decay curve
(b) shows that the decay of Vv is initially slower, but eventually faster than exponential.

in Figure 2-9. Each phase represents charging or discharging some capacitors in the

circuit, and we assume the power-on and power-off periods are long enough that each

charge transfer goes to completion (the voltages reach steady-state). Some overlap

between the phases is tolerable (and even expected), but due to the superposition

principle, this will not affect our energy accounting.

We start with the circuit in the power-on state (phase 0), with the power switch

turned on (VG = Vsw) and the virtual supply node (Vv) at VDD.

In phase 1, the power switch is turned off. Charge flows to discharge the gate

side of the power switch parasitics (CGS and CGD) from Vsw to ground. Most of this

charge is drawn from VDD, but some of it will come from the load capacitance CL

because the power switch will open before VG reaches zero. The exact amount of

charge drawn from the load cannot be predicted from our simple model, so we simply

parameterize it as Q1. The charge drawn from the load causes the step change of

-- Q in the virtual supply voltage that was visible in Figure 2-8. The voltage change

- Measured (a)
t = 0: Power switch turns off Exponential (b)

- ------- ---. - VDD = 0.8

Vqtep = 0.30 V

Q1+Q2
: CL

CL, CL

- - - -

Vsw VD D
CGo

EN-f IVG

* CLs -Vv

CL [JRL

Phase 1:

Disable EN-

CL

AVG = -Vsw
Qsw = 0
QDD = CGDVsw + (CGs(Vsw - Q) - Q1)

Vsw VD D
CG A Vv = -_Q

Phase 2: CL

Decay EAVG = 0
DCGs Qsw = 0

CL, [• QDD = 0

Q2

Phase 3:

Enable L

Phase 4:

Recharge

AVv =
AVG = Vsw
Qsw = CGDVsw + CGS(Vsw - CL

QDD = -cGDVsw - (Cos(Vsw -) - Q3)

AVV =
AVG =

Qsw =

QDD =

C
0

L CL CL

-- CG(Q1 + Q2 - Q3)CL 3 1 2 3)
(Q1 + Q2 - Q3) + -C u(Q + Q2 - Q3)CL \511~~\1J

Figure 2-9: A power-gating cycle, broken down into phases for energy analysis. Initially
(phase 0) the power switch is on. In phase 1, the power switch is turned off. In phase 2,
the virtual supply node voltage decays due to leakage current through RL. In phase 3, the
power switch is turned on again. In phase 4, the virtual supply node is charged back up to
VDD.

Phase 0:

Initial

AVv

A VG
Qsw
QDD

=0

=0

= 0

=0

Vw VDD

_CG

ENI
5 CGS

CL, LRL

on CGS during this phase is Vsw - 1, and the charge drawn from VDD is CGDVSw

(for CGD), plus CGs(Vsw -) - Q1 (for CGS).

In phase 2, the virtual supply node voltage decays as the charge on CL and CGS

dissipates due to leakage current in the power-gated circuitry. The amount of charge

Q2 lost from CL depends on how long the circuitry is left powered off, so Q2 is left as

another parameter of the model. The change in Vv is -_.

In phase 3, the power switch is turned on again. Charge is drawn from Vsw to

charge the switch parasitic capacitors. Some of this charge is pushed back into VDD,

offsetting the charge that was drawn from this supply in phase 1. As in phase 1, a

portion Q3 of the charge passing through CGS is absorbed in the load capacitance,

causing another step change in the virtual supply voltage of 3 volts.

In phase 4, the virtual supply node is charged back up to VDD. The charge that

must be returned to CL is Q1 + Q2 - Q3. An additional charge of '-j(Q1 + Q2-

Q3) must be delivered to CGS, and this charge is in turn reabsorbed by Vsw. In

reality there is some overlap in time between phases 3 and 4 because the switch turns

on before VG reaches Vsw. However, as previously stated, due to the principle of

superposition we can analyze the phases as though they occurred sequentially, and

the net energy change will be the same.

Totalling up the charge delivered by each supply over the entire cycle, and multi-

plying by the supply potentials yields the net energy delivered by each supply.

Esh = Vsw Qsw = (CGS + CGD)s2 - CGSV C +Q2 (2.1)

Erecharge = VDD QDD = (CG CL)VDD Q2 (2.2)

The charge Q3 cancels out of both equations. The voltages - and +Q2 can be

determined by observing the decay of V.v Q1+Q2 represents the total decay of Vv,

VDD - Vv(t) at the moment when the switch is turned back on at time t. 1 represents

the decay of Vv at time t, minus the step change that occurs at t = 0 when the switch

is turned off.

160

155

150

145

140

135

1 Rn

20

R 15

10

5

0
0.35 0.4 0.45 0.5 0 0.05 0.1 0.15

CL (V) (V)
(a) (b)

Figure 2-10: Determining CGD, CGS, and CL by linear fitting.

The capacitances CGD and CGS can be determined from a linear fit of Es8,tch versus

L, as shown in Figure 2-10(a). Then, CL is determined from the average

CL=(Erecharge - CGSVDD c L

Figure 2-11 illustrates how well equations 2.1 and 2.2 predict Eswitch and Erecharge.

Table 2.2 summarizes the data for all of the power-gated domains on the DSP.

Because the decision to use off-chip power switches prevented us from optimizing

the switch sizes to the circuits being power gated, our power switches are larger than

necessary, resulting in a correspondingly larger than necessary Esitch. We end this

analysis, therefore, by examining what would happen to the break-even time if Estch

were reduced. Figure 2-12 shows that generally tbe reduces linearly with Esitch. If

Eswitch can be made small enough, then the break-even point occurs before Vv has

decayed fully and Erecharge has reached its asymptotic maximum. This results in a

further reduction in tbe, as evidenced by the increased sensitivity of tbe to Eswith for

I * I

o Measured
- Fit

170

160

150

140

130
100 200 300

tof (s)
(a)

3000 100 200

tof (ps)
(b)

Figure 2-11: Agreement between the model and measurements for Eswitch (a) and Erecharge
(b).

Table 2.2: Power gating parameters
8 kB 4kB

CPU FIR FFT SRAM SRAM

VOLTAGE

V•DD (V) 0.5 0.5 0.8 0.8 0.8
Vsw (V) 1.1 1.1 1.4 1.4 1.4

POWER

Pleak (pW) 0.99 0.43 3.02
ENERGY (to = oo)

Eswitch (pJ) 155 151 254 253 240
Erecharge (pJ) 34 21 243 297 133

TIME

tbe (ps) 175 380 108 1792 1871
CAPACITANCE

CGD (pF) 64 65 57 61 61
CGs (pF) 92 90 92 87 85
CL (pF) 263 265 293 318 221

400

300

200

100

0 25 50 75 100 125 150

Eswitch (PJ)

Figure 2-12: tbe as a function of Eswitch.

Eswitch < 25 pJ in Figure 2-12.

2.3 Simulations of On-Chip Switches

To estimate the break-even times that could have been achieved using on-chip switches,

the design of an on-chip switch for the CPU power domain was analyzed in simula-

tion. An NFET was used in a footer configuration (between the power-gated module

and ground) as shown in Figure 2-13, to maximize the gate-source voltage that could

be applied to the switch without exceeding the oxide breakdown voltage.

Choosing an optimal size for an on-chip power switch transistor requires balancing

off-mode leakage power (a smaller switch will have less leakage when turned off) and

performance degradation (a smaller switch will have a larger voltage drop when turned

on) [28]. From the derivative of the frequency-versus-voltage curve in Figure 1-6, in

order to limit the performance degradation at an operating voltage of 0.5 V the voltage

drop across the power switch must be less than 1 mV.

A gate drive voltage of 1.0 V was selected for the power switch, because this voltage

VD D

Figure 2-13: Power gating implementation with on-chip power switches.

is required by the I/O pad drivers, and is therefore already available. Two threshold

voltages are available in the our process technology: standard (SVT) and high (HVT).

We consider power switch implementations using both threshold voltages.

From transistor-level simulation, the peak instantaneous current drawn by the

CPU is roughly 1 mA at VDD = 0.5 V. The on-resistance of the power switch can

therefore be no more than 500 Q to limit the voltage drop to 1 mV. An HVT power

switch must be 44 % wider than a SVT switch with the same on-resistance, which

results in a corresponding increase in Eswtch for the the HVT switch, as shown in

Figure 2-14. However, the leakage current for the HVT switch is significantly lower

than for the SVT switch. When powered off, the leakage power of the CPU domain

is reduced by 580 x when an HVT switch is used, compared to 87 x for an SVT

switch. The break-even time for the HVT switch is only 12 % longer than for the

SVT switch (Figure 2-14). For both switches, the break-even time occurs well before

the virtual-ground node has fully (dis)charged

2.4 Conclusions

Power gating is implemented on the pAMPS DSP at the module level, allowing indi-

vidual memory banks, accelerator cores, or even the CPU to be powered off if they

will be idle for an extended period. Discrete, external NFETs are used for the power

switches, which offer extremely high off-resistance but require significant energy to

turn on and off for each power gating cycle. The switch energy directly impacts the

break-even time: the minimum time that a module must remain powered-off in order

15

10

•9

0 5 10 15 20

Off Time (ps)

Figure 2-14: Break-even time for on-chip switches.

to save any net energy. Our power-gating implementation is therefore well suited

for applications with "bursty" workloads, where idle times are long and minimizing

idle-mode power consumption is most important, and is less suited for low-rate, con-

tinuous workloads, where the agility to take advantage of brief idle periods in between

computations is most important.

We have described a method for measuring break-even time experimentally, and

an energy model based on the experimental results. For our module-level power gating

implementation, we measured break-even times ranging from hundreds of microsec-

onds for logic domains to milliseconds for memory domains (which have much lower

leakage than the logic domains, due to the use of high-threshold voltage devices for

the memory bitcells). These timescales, corresponding to hundreds or thousands of

clock cycles at 5 MHz are appropriate for controlling power-gating through software,

which should permit the design of more sophisticated control algorithms than could

be implemented purely in hardware.

-- Eswitch (SVT)

Eswitch (HVT)

- Eswitch + Erecovery (SVT)
- Eswitch + Erecovery (HVT)

tbe = 10.5 ps (SVT)

tbe = 11.8 s (HVT)

K;.,,,,..,, I,,

Chapter 3

CPU

At the center of the pAMPS DSP is a general-purpose processor core, with a custom

instruction set architecture (ISA). We opted to create our own ISA, rather than co-opt

an existing one (and its toolchain) from a commercial processor because no existing

architecture we found had all the attributes we consider important for an efficient,

micropower processor. No commercial processor (with an openly documented ISA)

we know of achieves close to 10 pJ per instruction.

An ISA is only as good as its compiler, and the more radical the ISA, the more

radical the compiler must be to generate efficient code for it. In order to focus on

circuit design, rather than compiler design, we modified the standard GNU tools

(GCC, GAS, etc.) to support our architecture. GCC performs most of its optimiza-

tions independent of the code-generation back end, so even a simple back end inherits

sophisticated optimization passes.

This chapter begins with a survey of existing commercial and academic processor

architectures, from which many ideas in the pAMPS ISA were inspired or borrowed.

The key features of the pAMPS ISA are then described. (A full reference of the

pAMPS instruction set can be found in Appendix A.) Finally, performance benchmark

and energy profiling results for the CPU are presented.

Table 3.1: Comparison of processor architectures

Commercial- Research---------,

- --

PROCESSOR SPECIFICATIONS

Voltage (V) 1.8 1.8 1.8 1.0 0.6 0.2 0.5 0.5Clock Freq. (MHz) 25 4 4.15 50 50 28 0.14 0.43 4.0

PROCESSOR SPECIFICATIONS

Data width (bits) 8 8 16 32 32 12 16 8 16 16
Inst. length (bits) 8-24 16-32 16-48 16-32 16 17 16-48 12 16-48 16
Cycles per inst. 1-8 1-5 1-5 1-3+ 1-2 1 1-2 1 1-5 1
Registersd 2+1 32 12+4 8+8 16 15+1 8 12+4 8+8
Branch offset (bits) 8 7 10 8/11/22 11 6 10 11
Multiplier no yes noe yes yes no no no no yes
Barrtmel shifter no no no yes yes no yes yes no yes
Pipeline stages 3? 3 3 4 na1121A 3 3 3
Voltage (V) 1.8 1.8 1.8 1.0 0.6 0.2 0.5 0.5
Process tech. (nm) 90 250 250 180 130 65 90
Gate count 33-60k 3.7k 6.5k
Clock Freq. (MHz) 25 4 4.15 50 80 0.50 28 0.14 0.43 4.0
Energy/inst. (pJ) 40 12 0.66 2.9
ADDITIONAL SPECIFICATIONS (COMPLETE CHIP)

frog. mem. (bytes) 64k 64k 4k many holes 4k table where data was
Data mem. (bytes) 4k 4k 256 1k 4k
Energy/cycle (pJ) 300 720 350 47 250 24 27 10.3

aSilicon Labs C8051F93x series.
bAtmel ATmega644P
'Texas Instruments MSP43OC1121A
dn+m indicates n general purpose registers and m special purpose registers
eSome other models include a hardware multiplier as a memory-mapped peripheral.
not applicable: asynchronous design.
9Program memory is 1k 17-bit words.
hCombined program/data memory.

3.1 Survey of Related Processor Architectures

Table 3.1 surveys a range of processor architectures comparable to our DSP (either

in performance or power consumption), including a number of commercial processors

commonly used for microsensor applications, and a number of custom architectures

from the literature. Regrettably, there are many holes in the table where data was

not available.

The Intel 8051 is the oldest architecture (originally released in 1980) in the ta-

ble, and is the only accumulator-based architecture in a field of load-store machines.

Despite its age, the 8051 remains a popular architecture, and multiple low-power im-

plementations of it have been produced, such as the Silicon Labs part described in

Table 3.1, which operates down to 0.9 V (although power numbers are only published

for 1.8 V).

The Atmel AVR and Texas Instruments MSP430, both of which have a Har-

vard architecture (like the 8051), were once by far the most popular processors for

microsensor systems (e.g., [10]). Both are designed to be C compiler friendly (and,

unlike the 8051, are supported by the GCC compiler), with large register files. Cortex-

M3 (based on the ARM Thumb 2 instruction set) and M-CORE are 32-bit datapath

architectures, but with 16-bit instruction sets.

Among the custom microsensor processor architectures, Smart Dust [11] is the ear-

liest. Power-reduction features of this chip included extensive clock gating, guarded

ALU inputs to reduce glitches, a short pipeline (no pipelining of datapath), and sin-

gle cycle per instruction operation. Smart Dust operates at 1 V, which is lower than

normal for a 0.25 pm process, but well above subthreshold.

The remaining custom architectures in the table, except for the pAMPS DSP, all

operate at or below Vth. SNAP/LE [12,31] is an asynchronous architecture, with an

interesting message coprocessor that performs sophisticated event handling without

need of a software operating system. Subliminal 2 is a second generation architecture

by Nazhandali et al., which claims the lowest energy per instruction, lowest volt-

age, and lowest clock speed in our table. Between the first and second generations,

Subliminal changed from variable-length instructions to fixed length and from accu-

mulator to load-store, and reduced the energy per instruction by a factor of three (in

the same process). In designing the pAMPS ISA, we independently arrived at these

same decisions.

Finally, an ultra-low-voltage version of the MSP430 architecture by Kwong et

al. [23] illustrates how subthreshold operation can bring a commercial architecture

down to the tens of picojoules per instruction range.

3.2 iAMPS CPU Architecture

To achieve low energy per instruction, our primary design strategy was to minimize

the complexity of the control logic in the processor. To this end, two key design tenets

were established at the beginning of the ISA design process.

* All instructions execute in one clock cycle (CPI=1)

* All instructions have the same 16-bit length.

Executing every instruction in one clock cycle results in a simple pipeline model, where

one instruction is issued on every cycle, and instructions are retired in order. Since

the instruction length matches the memory width, one instruction can be fetched on

every cycle (except for one rare condition, in which case a no-op instruction is injected

into the pipeline while the instruction fetch unit is stalled for one cycle'). This is

similar to the M-CORE architecture, except that M-CORE allows some exceptions

(loads, sores, multiplication, division, and branches) to the one-cycle-per-instruction

rule. There is no branch delay slot in the pAMPS ISA, and bypassing is used to

prevent load delays, so the compiler need not perform any instruction scheduling.

A second design goal was to minimize the number of data memory accesses. As

will be seen from the energy profiling results in Section 3.3, load and store opera-

tions consume roughly twice as much energy as other instructions. We selected a

load/store architecture in an effort to reduce memory traffic. Stack-based, accumu-

lator, and register-memory architectures all perform at least one memory access per

ALU operation. The pAMPS register file comprises eight general-purpose registers,

plus an additional eight special-purpose registers (multiplier results, stack pointer,

subroutine/exception return address, etc.) usable only by a subset of all instructions

(similar to the Thumb ISA). Figure 3-1 illustrates the programming model. Instruc-

tions are provided to copy data between general- and special-purpose registers. Other

1 Such stalls occur when a data memory operation from a load or store instruction accesses
the same memory bank where instructions are being fetched from. Since each memory bank can
perform only one memory operation per cycle, instruction fetch is stalled for one cycle while the
data memory read or write is performed. This condition is easily avoided by keeping instructions
and data in different memory banks.

General Purpose Registers
r7 General Purpose r15
r6 General Purpose r14
r5 General Purpose r13
r4 General Purpose r12
r3 General Purpose rll
r2 General Purpose r10
rl General Purpose r9
rO General Purpose r8

Special Purpose Registers
Condition Codes

Exception Return Pointer
Stack Pointer Limit

Stack Pointer
Linkage Pointer

Multiply Result 2
Multiply Result 1
Multiply Result 0

15 0 15 0

Program Counter
pc

15 0

Figure 3-1: Programmers model

instructions (such as stack operations and multiplications) are hardwired to use spe-

cific registers, thus saving space in the instruction encoding. The program counter is

a separate register, only modifiable by branch and jump instructions.

The processor contains three functional units: an ALU implementing add, sub-

tract, and bitwise logical operations (AND, OR, XOR, NOT), a barrel shifter, and a

multiply-accumulate (MAC) unit. The MAC consists of a 16 x 16-bit single-cycle mul-

tiplier and a a 48-bit accumulator register. The accumulator is readable and writable

as special purpose registers r8, r9, and r10.

3.2.1 Instruction Set Organization

Instructions are encoded in only eight different instruction formats, as shown in Figure

3-2. Fields common to multiple formats appear in the same place in each format. Be-

cause most instructions can use only the eight general-purpose registers as operands,

there is sufficient space in the instruction encoding to employ three-operand instruc-

tions for the most common arithmetic and logical operations (add, subtract, AND,

OR, XOR), thereby reducing the number of register-to-register copy instructions nec-

essary. In close agreement with [32], we found that the advantage of 3-operand

instructions versus 2-operand instructions (where one of the source operands is over-

i. m branches, stack pointer adjustments

reg a imm stack accesses, constant generation, peripheral register access

reg a reg imm b load store with immediate offset

reg a reg b reg c 3-operand arithmetic (add, sub, and, or, xor), load/store indexed

reg a reg b 2-operand arithmetic (shift, carry, saturate)

reg a shift imm shift by immediate

rega jump, test

oreturn, enable/disable interrupts/cache

Figure 3-2: Instruction encoding

written with the result of the computation) is about 10%, both in code size and

execution time.

In some cases, limiting every instruction to one 16 bit word and one cycle required

splitting instructions that would have otherwise required multiple words or multiple

cycles into multiple, individual instructions. For example, on some architectures,

such as the MSP430, loading a 16-bit constant into a register is a two-cycle, two-

word instruction, with the first word of the instruction specifying the load constant

operation, and the second word containing the constant value to load.

Assembly Encoding

I I F t
Load Ox452A into r3: mov #452Ah,r3 01000000010011addr

I 10001010001000101001011O addr+2

In the pAMPS instruction set, this task is implemented using two separate instruc-

tions, each of which contains an 8-bit immediate field and loads half of the constant.

(One instruction loads the MSBs and the other the LSBs.)

Assembly Encoding

idl r3, 0x45 10111 1101000101 add&
Load Ox452A into r3: ldh r3, Ox2A 10110 1 10100010 addr+2

Besides simplifying the pipeline control logic, an additional benefit of this approach

is that 8-bit signed constants can be loaded in only one cycle.

The use of a dedicated stack register enables the implementation of special stack

operation instructions (load/store from stack, increment/decrement stack pointer)

with larger constant fields than could be encoded if an arbitrary general purpose

register was used as the stack pointer. Special load and store instructions provide

direct access to the data memory address range encompassing the control registers for

the on-chip peripherals, eliminating address generation overhead for these frequently

accessed locations.

For a complete reference of the pAMPS instruction set, see Appendix A.

3.2.2 Pipeline

The pAMPS CPU employs a three-stage (fetch, execute, and write back) pipeline,

illustrated in Figure 3-3. This was the shortest possible pipeline possible, due to the

built-in output registering of the SRAM macros used for data and program storage.

A four stage pipeline was investigated, but was abandoned before complete, as energy

estimates indicated it would consume about 50 % more energy than the three-stage

design, not counting significant additional logic required to properly handle interrupts

in the longer pipeline. Nazhandali et al. also found three stages to be optimal [32]. In-

creasing the pipeline depth potentially decreases the energy consumed per instruction

by shortening the critical path (thereby allowing more instructions to be executed per

second, mitigating the effect of leakage) and by reducing glitching. However, these

effects are offset by increased dynamic power, due both to the flip-flops required to

implement the additional pipeline registers and to the additional logic required to

handle stalls, bypassing, and exceptions in the more complex pipeline.

3.3 Measurements and Benchmarking

Unfortunately, there is to date no standard suite of benchmarks for microsensor pro-

cessors. Nor does there seem to be an established benchmark suite for microcontrollers

in general. An obvious reason is that microsensor and microcontroller programs tend

to involve extensive, low-level interaction with nonstandard on-chip peripheral de-

vices, and thus porting them to other architectures is more complicated than simply

recompiling the source code.

LFetch--] Execute IL Memory/ __
writeback

Figure 3-3: CPU pipeline architecture

We selected a few small, computational tasks that could be compiled and run on

most of the commercial architectures mentioned in Section 3.1 as a makeshift bench-

mark suite for evaluating the pAMPS ISA. The benchmark tasks are examples of

tasks that a microsensor application may be required to perform, such as error check-

ing, data compression, and encryption. Comparison of code densities and execution

times with the AVR, MSP430, Thumb, and M-CORE architectures, as shown in Fig-

ure 3-4), demonstrates that our instruction set matches up well with the established,

commercial instruction sets, despite the fact that little time has been spent so far

optimizing the pAMPS compiler back end for best code generation. For this test we

used the GCC compiler2 for each architecture. Cycle counts are from the simulators

built into the GNU debugger (GDB), except for the AVR architecture, for which we

used Avrora [33]. Code density was measured when optimizing for space (-Os), exe-

cution time when.optimizing for speed (-03). Thumb and M-CORE, with their 32-bit

datapaths, have a significant advantage for the tea benchmark, which mostly consists

of 32-bit shift operations. Otherwise, the pAMPS architecture clearly performs on

par with the commercial instruction sets.

The energy consumption of each instruction in the instruction set can be measured,

as described in [34], by measuring the CPU power consumption while it executes the

2Version 3.2.3 for the MSP430 and version 4.0.3 for all other architectures

M Thumb M M.CORE M AVR

800

600

400

200

0
crcl6 rle tea(+10) crcl6 rle

(a) (b)

Figure 3-4: Comparison with commercial architectures, in terms of code
execution time (b).

tea(+10)

density (a) and

target instruction over and over in a loop. We used loops consisting of about 30

copies of the target instruction (with varying operands), followed by a branch back

to the beginning of the loop. An important limitation of this method is that it does

not accurately characterize the instruction decode energy, since the same instruction

is being executed over and over again, but we can still detect interesting trends in

the data.

Figure 3-5 illustrates the instruction energy profiling results for the pAMPS CPU.

Some instructions could not be profiled because they could not be placed in a loop

(e.g., return from subroutine, return from interrupt, software interrupt). The instruc-

tions have been divided into groups, based on function. The branch instructions were

profiled twice, differentiating taken and untaken branches. Untaken branches are

among the least energy-expensive instructions, on par with the truly trivial instruc-

tions such as nop, or instructions which simply set or clear one bit in the condition

code register. Taken branches consume roughly the same energy as arithmetic op-

[MSP430] pAMPS

,,
3Ou

U Core E CPU E Cache f0 Memory

Load and Store

lni

Branches
(Taken) Arithmetic

I P -0h s I

tiplication

Simple

(Untaken)
I

a

erations (as expected, since the ALU is used to generate branch targets), logical

operations, and other simple instructions such as copying data between registers.

Multiplication instructions are somewhat more energy expensive than instructions

that use the ALU or shifter. Finally, for load and store instructions, the data mem-

ory access energy more than doubles the energy cost relative to other instructions.

Approximately 2pJ of the energy per instruction consumed in the core power

domain (memory arbiter and on-chip peripherals) is attributable to global clock tree

power and could be at least partially eliminated with better clock gating in a future

version of the chip. We relied entirely on automatically inserted clock gating, which

only affects the last few levels of the clock tree, leaving much of the global clock tree

toggling on every cycle.

The instruction profiling results can be used to estimate the energy consump-

tion of a given program from an instruction trace of that program obtained from

an instruction-level simulation-though the accuracy of such an estimate is limited,

because inter-instruction effects are not accounted for. Figure 3-6 compares esti-

mated and measured average energy per instruction for five benchmarks. All five

I

W CPU+Cache - Memory - Other

12.5

10

h 7.5

h 5

2.5

0

* -e

Error: crcl6 swcopy hello blink idle

CPU+Cache -28% -26% -19% -25% 17%
Memory -29% -45% -84% -27% -33%
Core -18% -29% -24% -4% -4%
Total -25% -35% -32% -18% 5%

Figure 3-6: Comparison of measured and estimated (from the instruction profiling results
shown in Figure 3-5) for five different benchmarks.

benchmarks are small enough to fit entirely within the instruction cache, so cache

miss energy need not be accounted for. In general, the energy per instruction is

underestimated by 20 - 30 %.

3.4 Conclusions

Based on our survey of existing architectures, low-voltage, or even subthreshold op-

eration is essential for achieving sub-10 pJ per instruction efficiency, but architecture

also has an essential role to play in achieving the lowest energy per instruction.

The principle characteristic of the pAMPS ISA design is a strict adherence to

a fixed-length, single-cycle instruction set, simplifying instruction decoding and the

pipeline control logic. Benchmark comparisons show that this was accomplished while

~CL

-
0 - - - -

achieving code density and execution time on par with comparable commercial archi-

tectures. The CPU alone consumes roughly 3 pJ per instruction, with multiplications

requiring slightly more energy, and trivial operations like untaken branches requiring

somewhat less. Due to the additional memory access energy, load and store instruc-

tions consume roughly twice as much energy overall as all other instructions.

Chapter 4

Memory Architecture

Memory is the dominant source of both leakage and dynamic power consumption

in modern low-power embedded microprocessors. Of the 6.3 million transistors on

our DSP die, 95 % are in SRAM memories, making memory the dominant source of

leakage power. As Figure 3-5 illustrated, load and store instructions consume twice as

much energy as other instructions, just due to the memory access energy. Targeting

both the standby power and access energy of the memory system is therefore one of

the most effective means of reducing the overall system energy usage.

In this chapter we consider two different mechanisms for reducing memory power

in micropower processors: 1) instruction caching, and 2) power-gated, multi-bank

memory. While both these techniques are also used in higher-power systems, the

constraints of a sub-10 pJ/instruction class system require a different approach to

their implementations. The already low access energy and minimal latency of on-

chip memory leaves room for only an extremely small cache. We therefore consider

carefully how to best manage small caches, with an emphasis on minimizing energy

instead of maximizing performance.

4.1 DSP Memory Model

Due to the prohibitive energy cost of off-chip I/O (estimated at tens of picojoules per

pin per transition, not counting static power), all memory for the DSP is implemented

on chip, in the form of SRAM. SRAM is used for both data and program storage.

On power-up, a bootloader program copies program data from an external serial

EEPROM into the on-chip memory for execution.1 The bootloader program is stored

in a 138-word ROM (implemented using standard cell logic).

Because instructions and data are both stored in SRAM, we implemented one

unified memory space, instead of separate instruction and data spaces. This creates

significant flexibility by not forcing a fixed partitioning of memory between instruc-

tions and data. Additionally, there is no need to implement special load and store

instructions for accessing constant data stored in instruction memory. The principle

disadvantage of a unified memory-the so-called "von Neumann bottleneck" that oc-

curs when instruction fetching is stalled to accommodate load or store operations-

does not affect our design, because the banked memory architecture (described in

Section 4.3) allows data and instruction accesses to occur simultaneously, as long as

they target different memory banks.

The 16-bit datapath width of the DSP led us to adopt a 16-bit address space.

This results in a maximum 64kB of addressable memory, but eliminates the need

for extended-precision registers and functional units in the processor for storing, gen-

erating, and manipulating address values.2 The DSP provides 60 kB of combined

program and data memory; the final 4 kB of the address space is used for the boot

ROM and for memory-mapped control registers for the on-chip peripherals. Figure

4-1 illustrates the DSP's complete address space.

4.2 Instruction Caching

The impact of caching on memory system power is well known in PCs and embedded

processors, but very few microcontrollers or micro-power processors to date incorpo-

rate caches. We surmise that this is because such systems generally contain only small,

'Program data can also be loaded using an RS-232 interface, or through the GPIO pins (for
example, using a pattern generator).

2For an example of a comparable system which uses 24-bit addresses to address up to 16 MB of
memory (mostly off-chip), see [35].

Peripherals (512B)

Boot ROM (512B)

Undefined (3kB)

SRAM Block 8 (4kB)

SRAM Block 7 (4kB)

SRAM Block 6 (4kB)

SRAM Block 5 (8kB)

SRAM Block 4 (8kB)

SRAM Block 3

SRAM Block 2

SRAM Block 1

SRAM Block 0

(8kB)

(8kB)

(8kB)

(8kB)

OxFFFF

Undefined (160 B)
OxFF6O

UART (32B) oW40
High-Speed Timer (32 B) oxF2o

SPI Port 2 (32B) Ox

SPI Port 1 (32 B) oFEPEo
Real-Time Clock (32 B) 0•c0

Power Management (32B) O.o

GPIO (32 B) o••
FIR Accelerator (32B) oxn

FFT Accelerator (32B) oo
DMA engne (32B) OF2o

ADC Interface (32 B) ovo

Figure 4-1: DSP memory map. Of the 64 kB address space, 60 kB is dedicated to general-

purpose SRAM. The remaining addresses are assigned to the bootloader ROM and memory-

mapped control registers for the on-chip peripherals.

on-chip memories, which already have single-cycle access times, and therefore derive

no performance benefit from caching. As we will show, the lack of performance im-

provement does not mean we cannot achieve an energy improvement through caching.

In fact, the lack of a performance impact permits the use of energy optimizations that

would normally result in unacceptable performance decrease.

In this section, we specifically explore the design of a instruction caches for mi-

^ rr

OxFO0O

OzEO00

OxDOOO

OxC000

OxAOOO

Oz8000

0x6000

OX400C

Ox2OOO

Vu"

,

I

uxrrrr

A -ý~v

tV %

II

Table 4.1: Variables for memory architecture analysis
Name Description

aread Ratio of the read energy of a memory to the length of the memory

Eaccess Cache access energy for a cache hit
Ecache Cache energy per access (average, including energy due to cache writes)
Efetch Instruction fetch energy
Emem Memory access energy
Eread(e) Energy required to read one word from an £-word memory

Edaa Energy consumed by reading one entry from the data store of a cache

Etad Energy consumed by reading one entry from the tag store of a cache
E.valid Energy consumed by reading one entry from the valid store of a cache
Etag The energy cost of changing the tag of one line of a cache, including the

energy to update the tag and valid stores
Ewrite Energy consumed writing a word of data into the cache (and updating

the associated valid bits), assuming a tag match occurred
Eurt e Energy consumed by writing one entry to the data store of a cache
Ewte Energy consumed by writing to one entry in the tag store of a cache
Er,,de Energy consumed by setting one valid bit

fa Memory access rate (including instruction and data accesses)

kcycles Number of instruction fetches in a given benchmark
kmisses Number of cache misses incurred for a given benchmark
kreplacements Number of tag replacements incurred for a given benchmark
ku-te, Number of cache writes incurred for a given benchmark

£ Number of lines in a cache

Pleak Leakage power
PmuX Memory bank multiplexer/demultiplexer power consumption
Pn Average power consumption for an n-bank memory

rhit Cache hit rate
re The average number of sequential instruction fetches targeting the same

cache line, before a different cache line is accessed

w Cache line width, in words

cropower, single-chip processors. We focus on instruction caches because instruction

fetches occur on every cycle, demonstrate a great deal of locality, and are read-only.

In evaluating our designs, we consider principally the impact on net energy per cycle.

We find that a properly designed cache can reduce instruction fetch energy by

up to an additional 50 - 90 %, depending on the processor workload. We also find

that the optimal cache size for this design space is surprisingly small: around 64 to

128 words. Because of the small capacity, we prefer a flip-flop, rather than SRAM,

implementation, for reduced dynamic power (and possible lower voltage operation).

Because of the small cache capacity, preventing thrashing of the cache in the

common case where the working set exceeds the cache capacity is critical. We describe

a mechanism for preventing thrashing in small, direct-mapped caches. Along the way

we also explore the theoretical performance bounds of small caches, including with

optimal replacement policies and full associativity.

4.2.1 Related Work

Many ideas have been published for reducing memory system energy (though few

have considered the micropower domain). We limit our discussion here to instruction

caches.

In tagged cache architectures, such as direct-mapped or associative caches, the

mapping between locations in the cache contents and locations in the backing mem-

ory is based on address. Each cache line is "tagged" with the common MSBs of

the addresses that are mapped to that line. Storing these tags requires additional

memory in the cache, and significant logic is required to compare the tags against

instruction addresses from the CPU to determine if a hit occurs. Because each cache

line is mapped independently, tag caches have the flexibility to cache multiple, non-

sequential memory regions simultaneously (such as a subroutine and a loop which

calls it).

Filter caches [36] are small, fast, tagged, LO caches designed to reduce memory

system power by reducing the access rate seen by a larger, higher access energy L1

cache. Because the L1 cache is almost as fast as the LO filter cache, LO misses do not

increase memory latency significantly, while each LO hit may save significant energy.

However if the LO hit rate is too low, then both performance and power may suffer.

The pAMPS instruction cache is in essence a filter cache, with fast on-chip memory

substituting for the L1 cache.

Loop caches [37,38] are non-tagged caches that a employ control-flow based map-

ping, instead of address-based mapping. The M-CORE loop cache [39,40], for exam-

ple, monitors the instruction stream for backward branch instructions that indicate

looping. When a loop is detected, the sequence of instructions that make up the loop

is recorded in the cache, where it can then be played back for successive iterations

of the loop. The loop cache is essentially a single-line cache and can can only be

allocated to one loop at a time. Unlike normal tagged caches, the loop cache is not

thrashed by a loop that is larger than the cache. In the event that a loop exceeds

the size of the cache, the beginning of the loop (up to the capacity of the cache) is

cached and the remaining loop instructions are fetched from main memory as normal.

Loop caches are only effective at caching loops, and do not benefit other sources of

repetitively executed code, such as subroutine calls and exception handlers.

Software caches [41] are another form of non-tagged cache, where frequently ac-

cessed instructions are mapped by the compiler to a special, small memory bank with

low access energy. Multiple subroutines can share the cache, being copied in and out

as needed, using DMA transfers (though this can result in stalling the software for

an extended time while the cache contents are updated). Since the cache is allocated

at compile time, software caching does not work well with dynamically loaded code.

Implementing the hardware portion of a software cache is trivial, but the compiler

support required is complex. The 4kB memory banks of the pAMPS DSP could

be considered software caches, since they have lower access energy than the other

8 kB banks. (We have not, however, developed the compiler support to automatically

allocate code or data to these banks.)

A hybrid of tagged and software caches is the use of compiler-inserted hint in-

structions for improving cache replacement decisions. Examples include the keep/kill

instructions in [42], as well as the PowerPC, UltraSPARC, and Cyrix architectures.

4.2.2 Benchmarks

A suite of five workloads was used to benchmark the cache designs considered in this

work.3 This a is a very small suite, and the workloads are all very different: our

intent is not to attempt to characterize the "average" microcontroller workload, but

rather to explore a range of different workloads. The benchmarks are as follows:

* crcl6 computes a cyclic redundancy check on 160 words of random data. The

algorithm is implemented as a short subroutine called within the main loop for

each word of data. The code size is small and, correspondingly, the algorithm

achieves high hit rates even with very small caches.

* swfft computes a 128-point real-valued Fourier transform. (The transform is

computed in software, not using the DSP's hardware FFT accelerator core.)

The algorithm primarily consists of several moderate-sized nested loops.

* tea encrypts and decrypts 128 bytes of data using the Tiny Encryption Algo-

rithm [43]. The encryption and decryption algorithms are both relatively large,

simple (non-nested) loops.

* irq consists entirely of interrupt handlers servicing an RS-232 UART, multi-

ple DMA channels, and a timer system generating events at three different

frequencies from a single hardware timer. Unlike the previous computational

workloads comprised of long-running loops, the event-driven irq trace consists

of many short blocks of code mixed together, with much less locality.

* swfft+irq combines the swfft workload running in the foreground with the irq

interrupt handlers running in the background. The result is a mix of long

running loops frequently interrupted by short interrupt handlers

The benchmarks are all written in .C and were compiled with a custom port of the

GCC-4.0.3 compiler for our DSP. Table 4.2 contains basic statistics for each of the

workloads. The benchmarks algorithms are all relatively small: hundreds of bytes
3 As in Chapter 3, we are forced to create our own benchmark suite, since there are no established

ones.

of code and tens of thousands of cycles. A real system would combine multiple of

these size building block algorithms to form a full-scale application. Generally, the

cache footprint of the benchmarks exceeds the capacity of the caches we will be

considering. We therefore expect that a full-fledged application made up of multiple

of these algorithms could reasonably be analyzed by considering each algorithm in

turn. The algorithms will not interact much in the cache because each algorithm will

occupy the entire cache when it is running.

4.2.3 Direct Mapped Sector Caches

We begin with an analysis of a simple direct-mapped cache, which will serve as a

baseline for further optimization.

As shown in Figure 4-2, the cache consists of three memory arrays: a data store,

used to hold the cached instruction words; a valid-flag store, containing one bit for

each word in the data store indicating whether or not the respective location in the

data store contains valid data; and a tag store, used to indicate which addresses are

mapped to each data store location. Note that the data and valid-flag stores do not

depend on the line width, the number of lines, or the replacement policy: all of that

is determined by the implementation of the tag store (and associated tag-replacement

Table 4.2: Benchmark statistics
crcl6 swfft tea irq swfft+irq

Runtime (cycles) 14338 25452 97805 16482 59512
Code size (bytes) 104 806 620 880 1456
Mean block lengtha 6.46 42.2 89.6 9.87 19.0
Ideal hit rateb 0.996 0.984 0.997 0.978 0.989
Address toggle ratec 2.18 2.04 2.03 2.11 2.12
Instruction toggle rated 6.62 6.62 6.14 6.25 6.60
Load operationse 0.02 0.23 0.28 0.23 0.30
Store operationse 0.01 0.11 0.05 0.15 0.15

aAverage number of sequential instructions between changes in flow
bHit rate with an arbitrarily large cache (cold-start misses only)
cAverage number of address lines toggling per cycle
dAverage number of instruction bits toggling per cycle
eAs a fraction of the total instruction count

Instruction Address

hit?

Figure 4-2: Structure of a direct-mapped cache

logic, which is not shown in the figure).

The data, tag, and valid stores would normally be implemented as SRAMs. How-

ever, in this work, we elect to use flip-flop based memories (synthesized using standard

cells) instead. At the array sizes we are considering for caches (a few kilobits), SRAM

and flip-flops provide about the same access energy.4 Also, flip-flops will operate at

lower voltages than the standard SRAM macros, allowing us to run the cache at the

CPU voltage and further reduce the cache access energy.

In order to maintain single-cycle memory latency, even during cache misses, the

tag and valid stores are read asynchronously. This allows the hit/miss decision to be

made as soon as the instruction address from the CPU is valid, and in time to enable

the main memory on the same clock cycle if a miss is detected. Since instruction fetch

is part of the critical path on the DSP, this implementation results in a reduction in

the maximum clock frequency. However, as we will show, the extra delay is a small

percentage of the critical path.

4 SRAM still has the decided advantage in leakage and area, however, neither of these is as

important as dynamic power, in our system. As shown in Figure 1-6, the leakage energy per cycle
is much less than the dynamic energy.

40

20

10

n

8 16 24 32 40 48 56 64

Line Width (Words)

Figure 4-3: The rate at which a workload changes from line to line of a direct-mapped
cache depends on the width of the line, but the relationship is not simple (or monotonic).
Data is plotted for arbitrary line widths, but in practice, only the power-of-two (circled
points) are efficiently implementable.

Implementing the tag store in static logic is particularly beneficial in reducing the

tag comparison energy. Since the tag is the most-significant portion of the instruction

address, the tag bits change relatively infrequently, resulting in low switching activity

in the tag comparison logic. Furthermore, the tag store read logic only consumes

dynamic power when the line number field of the current address changes. Figure

4-3 illustrates how the number of cycles between line changes varies with line widths

from 1 to 64 words. While in practice, efficient hardware implementation requires

that the line width be a power of two, in the figure we plot the line change frequency

for arbitrary line widths to illustrate that the frequency is a rather chaotic function

of the line width: small changes in line width have large, unpredictable effects on the

line change rate. We infer that, correspondingly, small changes in the program code

(e.g., loop length) would have a similar, unpredictable impact. Therefore, we do not

attempt to construct a model for the line change frequency, but simply note that by

only reading from the tag store when the tag field of the current address changes, we

can expect to realize a several-fold reduction in tag store power. We will see that as

a result, the tag logic consumes a relatively insignificant portion of the cache access

energy-for all but very short line widths.

Because we are concerned with energy and not latency, we utilize a sector cache

design, which reduces memory traffic. In a sector cache, each cache line is divided into

multiple subblocks or sectors which can be loaded independently. When a miss occurs,

instead of fetching an entire cache line, only the requested subblock is loaded into

the cache. A subblock that is never accessed is never loaded from memory, thereby

resulting in reduced memory traffic compared to a non sector cache. (See [44] for a

general analysis of sector caches.)

To minimize memory traffic, we utilize a subblock size of one word, so each miss

results in only fetching one word from main memory. No speculative fetching occurs

(words are fetched only when they are immediately needed), and thus no advantage is

made of spatial locality within the instruction stream. To support multiple subblocks

per cache line, every subblock must have its own valid flag. This overhead is relatively

small, however, as the valid flag store is still much smaller than the data store (one

bit per location for the flags, compared to 16 bits per location to hold the actual

instruction data).

An alternative to a sector cache would be to implement a multi-word wide main

memory, so that entire cache lines can be fetched from memory in one read operation.

The total number of words fetched from memory will be greater with this implemen-

tation than with a sector cache, because some of the lines fetched will contain words

that are never actually executed. The multi-word memory implementation is advan-

tageous, from an energy standpoint, only if the read energy per word is sufficiently

less than for a single word wide memory to compensate for the memory traffic reduc-

tion of a sector cache. The relative reduction in memory traffic for a sector cache can

be calculated as

(normal cache miss rate x line width) - sector cache miss rate
normal cache miss rate x line width

73

60

40

20

0
2 4 8 16 32

Line width (Words)

Figure 4-4: Memory traffic reduction ratio resulting from sector caching. (Data was
obtained from simulating 64-word, direct-mapped caches with varying line widths.)

which is plotted in Figure 4-4 for line widths from 2 to 64 words and for each workload

in our benchmark suite. For a line width of 4 (which we find to be roughly optimal),

a sector cache is provides a memory traffic reduction of 5 - 15 %.

Instruction traces taken from the benchmarks described previously were analyzed

to determine the hit rate achieved by cache sizes n ranging from 16 to 256 words, as

shown in Figure 4-5. Each cache size was simulated with varying line widths, ranging

from one word (n lines per cache) up to half the total cache size (two lines per cache5).

These simulations reveal that the hit rate depends predominantly on the total size of

the cache, and only secondarily on the organization (number of lines) of the cache.

The hit rate does increase somewhat for a fixed cache size when the number of lines

in the cache is increased. The effect is most prominent in caches that are almost large

enough to contain the entire working set (the hit rate is neither extremely high nor

extremely low).

The direct-mapped cache was implemented as a parameterized Verilog model, and

5Due to the way the Verilog model was written, the number of lines must be at least two.

0.8

0.6

0.4

0.2

1 2 4 8 16 32 64 128 256 512

Number of Lines
(a) crcl6

[128]

1 2 4 8 16 32 64

Number of Lines
(b) swfft

128 256 512

1

0.8

0.6

0.4

0.2

1 2 4 8 16 32 64 128 256 512

Number of Lines
(c) irq

1 2 4 8 16 32 64 128 256 512

Number of Lines
(d) swfft+irq

Figure 4-5: Hit rates for various cache configurations for four of the benchmarks: crcl6,
swfft, irq, and swfft+irq (a-d). Each line indicates a different total cache size as the number

of lines (and correspondingly, the line width) is varied. The numbers in brackets indicate

total cache size, in words.

0.8

0.6

0.4

0.2

1

0.8

0.6

0.4

0.2

0

I I I I I I I

6]

[128]

[64]

[32]

[16]
I I I

S I I I I

[15[128] [

[64]

- I[32]

[[16]

I n
i il

i I I I I I I I

4]

0 2][161 1

Leakage - Other Tags = Valid Data = Miss

1.5

1.25

1

0.75

0.5

0.25

0
WW4"h WýW&W 00ý104M wmwý-W4" "WOWWW&WP
oXXx WaXXX &oaXXX "&"MXXX 0 bO&XXX

SXX (a) crc6XXX XXX
(a) crcl6

0-IM&W Wý-W&W MWWW&W wmwýW&W WOWWW&W
oXXX WoXXX &Woxxx W&MOXXX OXXX XXX
XWO XXOD XXXOW 0XXX.(O)XXXswf• • O ru h XuLON XXp••p

W sw OD

(b) swfft
1.5

1.25

1

0.75

0.5

0.25

0
WWA6" WýW&W MWýAW&W WWOWWW&Wa)ra~hoXXX uoXXX auXXX uauXXX• •uu XXXo~xxx bo)xxx &Woxxx W&Wa0 xxx OW&~xxx
XWO XXOý XXXC ODXXXoo *(XXX) r

w ir a qO

(c) irq

ýAW4W WýW&W *WýAO&W "ýOw UrO-04"oxxx b'oxxx 4W-~xxx ba baxxx ýA "A"0X X XOXXX W XXX &% XXXX ODXXX X 0OXXa,
X W XX W&M XXX XW6 OD 0) t4 & XXX46Or rU O rU OA ••O XXP••P

w swf3 a i

(d) swfft~irq

Figure 4-6: Net instruction fetch energy for the crcl6, swfft, irq, and swfft+irq (a-d)
benchmarks, for various cache configurations. Energy is normalized relative to a main
memory access, so bars shorter than 1.0 represent a net energy savings. Cache configurations
are denoted as £xw, where £ is the number of lines and w is the line width in words.
Configurations are grouped by total cache capacity: 16, 32, 64, 128, or 256 words.

1-.5

1.25

S 1

0.75

0.5

0.25

n

1.5

1.25

1

0.75

0.5

0.25

· ·

synthesized for each of the configurations described in Figure 4-5. Power consumption

was calculated using Synopsys PowerCompiler, using switching activity annotated

from gate-level simulation of each cache configuration and interconnect parasitics

estimated from physical prototyping with PhysicalCompiler. Finally, the effectiveness

of each configuration at reducing instruction fetch energy was evaluated using the

model

Efetch = (1 - rhit)Emem + Ecache (4.1)

where rhit is the hit rate, Emem is the access energy for main memory (a single 64kB

SRAM), and Ecache is the cache access energy (including writes to the cache) computed

from the dynamic and leakage powers reported by PowerCompiler for an access rate

of 40 MHz.

Figure 4-6 illustrates the effective fetch energy for each cache configuration, nor-

malized to Emem, so values less than 1.0 represent net energy savings over having

no cache. (Results from the tea benchmark are omitted, since they are very similar

to the swift results.) The upper bound on the size of the cache is 256 words: 512-

word and larger caches achieve high hit rates, but provide no energy savings because

Ecache > Emem. A 128-word cache is the best all-around choice, at least for this

benchmark suite.

In this low-power process technology, leakage accounts for only 1 - 4 % of the cache

access energy. The valid store also represents a small portion of the access energy,

1 - 15 %. Most of the access energy is consumed in the data store (40 - 95 %). For

configurations with a large number of very short lines, the tag store energy can be

as much as 40 % of the access energy, but is typically 5 % or less for configurations

with a line width of four words or more. Finally, it is worth noting that the cache

power for each configuration varies depending on the hit rate. (This can be seen by

comparing power for the same cache configuration on different benchmarks.) Lower

hit rates result in higher cache power due to more frequent writes to the data, valid,

and tag stores.

Synthesis of the Verilog cache model was done without any timing constraints,

allowing the tools free rein to minimize power. The propagation delay of the cache

(measured from when an address is received from the CPU to when the memory

enable becomes valid) is 4 - 8 ns. Adding a timing constraint would likely reduce

that significantly, with only a minor effect on energy. In the final DSP design (which

includes an 16x4 cache), the cache accounts for 7% of the critical path.

4.2.4 Energy Modeling and Analysis

Consider a cache with £ lines of w words per line. When a cache access occurs, the

log 2 Cw LSBs of the address are used to access the valid and data stores. The tag

store is also accessed using the line-number field of the address, though as previously

noted, these bits change less frequently than every access. If the tag matches and the

accessed cache word is valid, then a hit has occurred and the data read from the data

store are returned to the CPU as the requested instruction. The energy dissipated in

this case is
Ea =s - read + r Eread+ 1Eread

Eacce = Edata - valid -Ertag

where re is the line change rate illustrated in Figure 4-3.

In the event of a cache miss, it is usually advantageous to store the data returned

by main memory into the cache so that future accesses to this address will result in

hits. However, if the address is not reused quickly or frequently enough, it might be

advantageous to not cache the address, thereby saving the energy required to write

to the cache and avoiding evicting other addresses. Servicing a cache miss without

modifying the state of the cache is known as bypassing.

Suppose a memory request results in a tag match, but the particular word (sub-

block) is invalid. Adding the word to the cache requires writing to the data store and

setting the corresponding flag bit in the valid store.

- -write Eiwrite
Ewrit = Edata -- Evalid

The energy savings from each future access to this word that hits in the cache is the

main memory access energy, Emem. To achieve any net energy savings, we need to

have at least k hits before this word is evicted from the cache, where

Erit v Ewrite + Ewrite
k =Eite data valid

Emem Emem

If Ewite < Emem (which is almost certain, since the data and valid stores together

are much smaller than the main memory), then k < 1, and every instruction is worth

writing to the cache if it will be used at least once more before eviction.

Suppose a memory access results in a tag mismatch. Caching the data then

requires changing the selected line's tag, storing the new data in the data store, and

setting the valid bit for that word while simultaneously clearing the valid bits for all

the other words in that line. The cost of changing a tag, Etag, is the energy required

to change the tag field bits and clear the associated valid bits.

Etag = ite + wE de

Measuring Eaccess, Eurite, and Etag is somewhat problematic, even for simulated

designs. One approach is to simulate a large number of randomly generated traces

and then perform a least-squares fit to the model

Ecache = kcyclesEaccess + kwritesEwrite + kreplacementsEtag (4.2)

where kqycles, kwrites, and kreplacement, are the number of cache accesses, words written

to the cache, and tag replacements, respectively. In practice, however, this method

does not work well because kwrite, and kreplacements are highly correlated (p ; 0.99 for

most cache configurations). One solution is to combine Etag into Ewrite and use the

simpler model

Ecache = kcyclesEaccess + kwritesEurite (4.3)

instead. Figure 4-7 illustrates the values of Eacces, and Ewrite obtained by fitting

equation 4.3 to simulations of 100 randomly-generated 10,000-cycle instruction traces

0.6

0.5

0.4

0.3

0.2

0.1

n

small to see.)

for each cache configuration. (Eaccess and Ewite are reported in units of Emem.) Eaccess

is roughly proportional to the cache capacity, but increases significantly for very short

line widths, due to the increased cost and frequency of reading from the tag store.

Ewrite follows a similar pattern of being relatively constant for moderate to large line

widths and increasing for small line widths, where Etag and the tag replacement rate

become significant. (Small line widths result in more cache lines for a given cache

capacity, and therefore, a larger tag store and correspondingly higher Etag.)

For the purposes of designing an energy-optimal replacement algorithm we still

wish to estimate Etag. The degree of correlation between kwrites and kreplacements de-

creases with increasing w. We were able to achieve a reasonable fit to equation 4.2

for those cache configurations having the minimal number of lines (two) for a given

cache size (and thus the maximal line width for that size). Increasing w also increases

Etag, because w valid bits must be cleared each time a tag is changed. Thus these

Etag values represent worst-case bounds for all configurations with the same cache

capacity. Eaccess, Ewrite and Etag (normalized to Emem) for these configurations are

shown in the inset graph in Figure 4-7. Etag is significantly larger than Ewite.

Combining equations 4.1 and 4.3, the total instruction fetch energy is

Efetch = kmissesEmem + kcyclesEaccess + kwritesEwrite (4.4)

The predictive accuracy of this model for four real benchmarks is illustrated in Figure

4-8. The relative error ranges from -25 % to 14 %. The error magnitude is generally

smaller for smaller cache sizes.

4.2.5 Cache Management with Optimal Replacement

From Figure 4-6, the net energy savings obtained by instruction caching is limited by

the hit rates that can be achieved with such small caches. Miss energy,

Emiss = (1 - rhit)Emem

is the dominant energy drain for many small capacity configurations. If hit rate could

be improved without increasing the cache size (by an improved cache management

algorithm, for example), significant additional energy savings would result with these

small caches.

We now consider several off-line, optimal replacement algorithms. These algo-

rithms are not implementable in hardware (because they make replacement decisions

based on knowledge of all future accesses), but are nonetheless useful to study because

they represent a theoretical upper-bound on the energy savings obtainable, and they

can offer insight into the design of better, realizable replacement algorithms.

We begin by asking the question "What is the theoretical maximum energy savings

obtainable with n words of cache?" For the moment, we will ignore the overhead of

cache management entirely. Let us consider a fully-associative cache with a capacity of

n words and a line width of one word. Any word in this cache can be independently

allocated to any memory address at any time. If we can determine the optimal

M Access I Write

rOOIh0 46" W"rODP PI" MWPh -AM&NDr~hcXXX ,'•XXX ,PhQ~tXXX ~t X •,,XXXMox,, "XX X X~ x x Ax W =X..,xXtO0& XX&ooX XXXwo-. X X X .WM=XXX~ c
(a) crc6 x

(a) crcl6

1--W4W) Wr03-M4N MW"M&W 3 r-O"ý-31PD4 WI-MW"M&Wh

X X X X 0," Ox x x •,•"X XX x'MOX

(b) swfft

0.8

0.6

0.4

MXXXx Wmx x ,x bxx x .m',-,xxx 01Ak)xxx *xxx ",XXXX x',aOxxx W.t'"xXx W.&*.xxx
X X.•oo XXXWo OW-A, .XXX•, QOXXX"..".. XtW XXl•,,o XXX0o5W X ",oa OW, X X

(c) irq (d) swfft+irq

Figure 4-8: Cache energy estimated with the model from equation 4.3 (bars) compared
with actual simulated cache energy (crosses) for the crcl6, swfft, irq, and swfft+irq bench-
marks (a-d). Energy values have been normalized to Emem.

0.6

0.4

0.2

x Simulation

set of allocations, this cache will therefore achieve the highest possible hit rate for

an n-word cache. Belady's well-known MIN algorithm [45] is a provably optimal

replacement algorithm for fully associative caches with mandatory replacement. MIN

works as follows: when a miss occurs, look into the future in the instruction stream

and determine the time of next use tnext(i) for each element i in the cache. Replace

the element i for which tnet (i) is greatest. MIN is trivially extended to allow optional

replacement (bypassing) as follows: in addition to calculating tnext(i) for all cache

elements, also calculate tnet (a) for the address a causing the miss. If tnext (a) > tnext (i)

for all i C {1... n}, do not evict any cache elements, and do not cache a. We will

refer to this optional-replacement MIN extension as MIN-OPT.

Figure 4-9(a) illustrates the hit rates (rhit) achieved on each of our benchmarks by

MIN-OPT replacement with an £-word capacity, one word per line, fully associative

cache for £ = 1... 256. Ignoring the overhead of cache management circuitry, we

combine rhit with a first-order read energy model for a flip-flop memory (where read

energy is proportional to £, the number of words in the memory: Er~d(£) = arad) to

obtain a lower bound on the fetch energy.

Efetch = (1 - Thit(£))Emem + Eread(f)

Efetch - 1 - ahit() read

Emem Emem

which is plotted in 4-9(b). Achieving any net energy savings (E < 1) requires aEmem

hit rate of at least

r hit > aread
Emem

which is the dotted line plotted in Figure 4-9(a).

The minimum fetch energy occurs when Efetch = 0, which in turn implies

d aread

de Emem

The derivative d ht is plotted in Figure 4-9(c). The dashed line indicates the thresh-

old ard/Emem. The circled points throughout Figure 4-9 indicate the minimal fetch

irq -a- swfft+irq O Optimum

50 100 150 200 250

Cache Size e (Words)

(a)

1

0.75

0.5

0.25

0

0.02

0.01

0

0 32 64 96 128 160

Cache Size £ (Words)

(b)

192 224

0 32 64 96 128 160 192 224

Cache Size £ (Words)

(c)

Figure 4-9: (a) Hit rate and (b) net instruction fetch energy (normalized to Emem) for
an idealized fully-associative cache model. Circled points indicate the optimum cache size
for each benchmark. The dotted line in (a) indicates the minimum hit rate necessary to
achieve any net energy reduction. The optimal cache size occurs when the derivative of the
hit rate reaches aread/Emem, as shown in (c).

1

0.75

0.5

0.25

0

256

256

-- crcl6 -0- swfft -~x- tea

energy points for each benchmark. Note that for our Emem and ard values, the opti-

mal hit rate for most of the benchmarks is essentially 1. In other words, the optimal

cache size is just large enough to fit the entire benchmark. (There is no advantage

to implementing a small cache with a lower hit rater but also lower access energy.)

The optimal hit rate decreases as Emem decreases or aread increases-that is, as the

difference between the cache and memory access energies shrinks.

For the loop-dominated benchmarks (crcl6, swfft, tea), Arhit has a distinctly stair-

step shape, with each step corresponding to a different sized loop in the benchmark.

If a loop is larger than the cache size, then incrementally increasing the cache size will

increase the hit rate proportional to the number of iterations of that loop. Once the

cache becomes larger than a loop, that loop will be completely cached and will not

contribute to Arhit. The interrupt-intensive benchmarks have somewhat smoother

derivatives.

Next we consider optimal management caches with multiple words per line. The

MIN algorithm is not applicable to sector caches, because it does not account for

partially valid cache lines. In essence, with a sector cache, the cost of changing a

cache line is not constant, but depends on the current number of valid words in that

line. Consider, for example, a 2-line, 2-word-per-line associative cache. Suppose we

flush the cache, and then fetch the following addresses: 1, 2, 3, 5, 5, 3, 1, 2. As

illustrated in Figure 4-10, Belady's algorithm will opt to replace the line containing

{1, 2} in order to cache 5; however, replacing the line containing {3} results in an

additional hit. The non-optimality of MIN in general with variable replacement cost

is shown in [46].

We do not currently know of an efficient algorithm for determining the optimum

replacement decisions for a sector cache. Hosseini [46] proved that the optimal re-

placement problem is NP-complete when both cache element sizes and replacement

costs are nonuniform, and conjectures that it is also NP-complete when either element

size or replacement costs are nonuniform. Brehob et al. [47] compare the replacement

decision problem with interval scheduling and imply that an efficient algorithm exists,

though we did not find it in the reference they cite.

Optimal
Address 1 2 3 5 5 3 1 2

Hits 0 0 0 0 1 1 2 3
State27

Belady's MIN
Address 1 2 3 5 5 3 1 2

Hits 0 0 0 0 1 2 2 2

State

Figure 4-10: Belady's algorithm is not valid for sector caches.

For small enough benchmarks, the optimal replacement problem can of course be

solved by an exhaustive search of the decision tree. Hosseini [46] describes such an

approach for a similar problem (web caching), using best-first search and dynamic

programming (saving solutions to subproblems that may be needed again later in the

search). When we applied their method to the sector caching problem, we found the

memory requirements were too great. The extra valid bits in a sector cache greatly

increase the number of possible cache states, and as a result paths in the search space

are less likely to converge, reducing the benefit of dynamic programming. A depth-

first search was used instead, which requires less memory because it only explores one

branch of the search space at a time.

By restricting ourselves to direct-mapped sector caches, we were able to compute

the optimal replacement decisions for each of our benchmarks. Direct mapping shrinks

the search space in two ways. First, the branching factor is only two (each miss can

either be bypassed or cached in one specific line of the cache). Second, there is no

interaction between replacement decisions for different cache lines. The lines (and

the addresses mapping to them) can therefore be analyzed independently, reducing

the depth of the search tree.

In order to determine the optimal cache replacement decisions to minimize energy,

Table 4.3: Comparison of optimization for maximum hit rate versus minimum energy for
a 2x16 cache.

crcl6 swfft tea irq swfft+irq

Optimized for hit rate
Hits 13014 9893 32706 5165 30116
Cache writes 31 127 68 1164 3829
Tag replacements 3 9 5 82 254

Optimized for energy
Hits 13014 9893 32706 5163 30116
Cache writes 31 127 68 1035 3813
Tag replacements 3 9 5 77 253

and not just maximize hit rate, we use

Efetch = kmissesEmem + kcyclesEaccess + kwritesEwrite + kreplacementsEtag

as a cost function when evaluating replacement decisions. However, because Ewrite

and Etag are less than Emem, in practice there is little difference between optimizing for

energy versus hit rate. Table 4.3 compares hit rate, word write, and tag replacement

statistics with and without accounting for Ewrte and Etag for a 2x16 cache. Only

the interrupt-intensive benchmarks (where the tag replacement rate is much higher)

show any difference at all, and even there, the differences are trivial.

Figure 4-11 compares the hit rates achieved by a fully-associative 1-word-per-

line cache and a direct-mapped, 4-words-per-line cache, both with optimal, off-line

management. 6 A direct-mapped cache with mandatory replacement is also shown,

for comparison. For small cache sizes (less than m128 words), there is relatively

little difference between the fully-associative and direct-mapped caches, when both

are managed optimally. With such small cache sizes, capacity misses dominate over

conflict misses. This justifies our decision not to explore hardware implementations

of associative caches.

As cache size decreases, the number of replacement opportunities that are de-

clined by the optimal algorithm increases dramatically, as shown in Figure 4-12. An

6A fairer comparison would have 4 words per line for the fully associative cache, but we are
unable to determine the optimal replacement decisions for this configuration.

0.8

0.6

0.4

0.2

0

Cache Size (Words)

(a) crcl6

" 0.4

0.2

64 0 32 64 96

Cache Size (Words)

(b) swfft

1

0.8

0.6

0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256

Cache Size (Words) Cache Size (Words)

(c) irq (d) swfft+irq

Figure 4-11: Comparison of replacement policies on four different benchmarks. The
policies are fully-associative cache with MIN-OPT (FA-Ideal); direct-mapped with ideal
replacement (DM-Ideal); and direct-mapped with mandatory replacement (DM). Note the
different x scales for different benchmarks.

128

1

0.8

0.6

0.4

0.2

0

S10
3

• 102

0 101

100

10-1

0 32 64 96 128 160 192 224 256

Cache Size (Words)

Figure 4-12: Ratio of declined to accepted line replacements for a direct-mapped cache
(line width 4) with optimal replacement. (Note the logarithmic y-axis.)

optional-replacement policy is therefore doubly important for energy efficiency: it

increases hit rate and also decreases energy spent changing the cache contents.

Figure 4-13 illustrates the allocation of cache lines over a small portion of the swfft

benchmark, for multiple cache-management algorithms. In (a), a direct-mapped cache

with mandatory replacement suffers from severe thrashing, because the inner loop of

the benchmark is significantly larger than the cache. Only the cache lines that are

not mapped to multiple locations in the loop contribute any hits. The optimal off-line

algorithms (b, c) allocate the available cache capacity to a portion of the loop, caching

as much of the loop as possible and ignoring the remainder of the loop once the cache

is full. (The loop-protection algorithm in (d) is shown here for completeness: it will

be described in the next section.)

10
4

(a) 8x8, DM

(b) 64 x 1, FA-Ideal

(c) 8x8, DM-Ideal

(d) 8x8, DM-LP

Figure 4-13: Traces of a portion of the swfft benchmark using a 64-word cache, showing
cache allocations and hits achieved by (a) a direct mapped cache with 8 words per line, (b)
a fully associative cache with one word per line and optimal, optional replacement, (c) a
direct mapped cache with 8 words per line and optimal, optional replacement, and (d) a
direct mapped cache with 8 words per line with optional replacement controlled by a loop
protection queue of length 4 (described in Section 4.2.6). Green dots represent hits, red
dots represent misses, and the gray bars indicate the allocations of cache lines.

IL •

4.2.6 Realizable Allocation Algorithms

One approach to designing an implementable optional-replacement policy is to tar-

get thrashing. We propose here an entirely automatic mechanism, known as loop

protection, which does not require modifying or otherwise annotating the instruction

stream. Loop protection implements the following heuristic: lines that are part of a

recently executed loop should not be evicted.

Loops are automatically detected by monitoring the instruction stream for taken

backwards branch (TBB) instructions. (This idea was taken from the M-CORE loop

cache [39].) When a TBB is detected, the upper bound U of the loop is indicated by

the address of the branch instruction, and the lower bound L of the loop by the branch

destination. In order to optimally handle nested loops (inner loop instructions should

not be evicted by outer loop instructions), it is necessary to keep track of the last

several sets of loop bounds. This is accomplished with a loop queue, which consists

of two m-element FIFOs, into which the upper and lower loop bounds are written

each time a TBB is detected. The queues only need to be wide enough to store the

tag and line number portions of the bounds.

When a cache miss due to a tag mismatch occurs, the current tag ti associated with

the selected cache line is concatenated with the line number i, and compared with

each pair of bounds Lj, Uj within the queue. If for any queue position j E {1.. m},

L j 5 tilli < Uj, then the cache line i is currently mapped to a portion of loop j, and

should not be evicted. 7

Consider a simple loop which is larger than the cache capacity. During the first

iteration, instructions will be loaded into the cache as they are executed. Once the

cache capacity is reached, later instructions in the loop will begin replacing earlier

ones. At the end of the first iteration, the cache will be full of loop instructions,

ranging from the end of the loop back as far as the cache capacity allows. The TBB

at the end of the first iteration will load the bounds of the loop into the loop queue,

protecting any loop instructions that are currently in the cache. During the second

iteration, instructions at the beginning of the loop will result in misses, but will

7We use the symbol II to represent bitwise concatenation. Thus, tilli = ewti + i.

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0
0 32 64 96 128 0 4 8 12 16

Cache Size (Words) Queue Length
(a) (b)

Figure 4-14: (a) Comparison of hit rate as a function of cache size for loop-protected
(DM-LP), ideal (DM-Ideal) and mandatory (DM) replacement policies. The line width was
fixed at 4 words, and the loop queue length was also 4. (b) Effect of loop queue length on
hit rate for a 16x4 cache.

not be loaded into the cache because doing so would require evicting lines already

holding instructions that are part of this loop. If the initial contents of the loop queue

prevented some instructions from being cached during the first loop iteration, after a

few iterations these old loop bounds will be pushed out of the queue, enabling all of

the cache lines to be mapped to the current loop.

In the case of nested loops, after the inner loop completes, outer loop instructions

can be cached as long as they do not evict inner loop instructions. While only loops

formed with TBB instructions are automatically protected using this scheme, it is

easy to implement a special hint instruction which manually places arbitrary entries

in the loop queue. Hints can then be used to protect subroutines, exception handlers,

and other repetitively-executed non-loop code.

Figure 4-14(a) compares the hit rates (as functions of cache size) achieved on

the swfft workload by three different replacement strategies: mandatory replacement,

v

loop protection, and optimal replacement with an off-line algorithm. For workloads

composed primarily of loops, particularly loops large relative to the cache size, loop

protection achieves hit rates almost equal to the theoretical maximum for a direct-

mapped cache.

In Figure 4-14(b), we consider the effect of changing the loop queue length. A

queue of length one is sufficient to achieve most of the benefit of loop protection,

at least for large-loop-intensive workloads. Larger queue lengths benefit small-loop-,

subroutine- and interrupt-intensive workloads like irq, where multiple code segments

can fit in the cache at once.

The Verilog cache model from Section 4.2.3 was extended to include a loop queue.

Based on Figure 4-14(a), we elected to implement a queue of length 4. The fetch

energy simulations of Figure 4-6 were repeated for this improved cache, and the

results are shown in Figure 4-15. The energy overhead of the loop queue is negligible,

accounting for less than 1 % of the fetch energy on average and 5 % in the worst case.

The improved hit rate with loop protection therefore translates directly to net energy

savings. Up to a 58 % fetch energy reduction is achieved, with the typical reduction

being about 10 % to 40 % across 16-, 32- and 64-word caches. For larger caches, where

the miss rate without loop protection is near zero, loop protection results in a roughly

10 % increase in fetch energy, because the miss rate is slightly increased.

In conclusion, loop protection succeeds in increasing hit rate for loop-intensive

workloads, and also decreases tag replacement frequency (reducing cache energy).

The overhead of the added circuitry (the loop cache) is minimal.

4.2.7 Measured Cache Performance

The cache design actually implemented on the pAMPS DSP chip is a 64 word with a

line width of four words and a simple direct-mapped replacement policy. (The DSP

design was finalized before the loop protection policy had been developed.) The cache

is part of the CPU power domain, so it is power gated with the CPU and operates at

the same voltage as the CPU.

Figure 4-16 illustrates the measured impact of the instruction cache on total DSP

Leakage Other Queue Tags = Valid Data Miss

--

-e

0zkM
o

1.5

1.25

1

0.75

0.5

0.25

0
WaXXX &WoXXX W.bW3

XXX O&WXXX
XX& (XXX cr cl6XXXW) MXXXW

O X W • X 4 XX
&W

WW&WWW cr O D

(a) crc16
1.5

1.25

1

0.75

0.5

0.25

0
Omxxx W*Xxx &Warxxx W&Wmxxx C; UxxxXXX uXXX aXXX N XXX c(iXXX
XW&O XX&OD XXXOWO ooXXXrWo 70XXXco'
W WM WW OW X W&OW& XX &rWW&W r Oq

(c) irq

oxxx kaxxx 4"*XXX WXXxX "XX• X
3

XXX
XW&OD XX&ý XXXXOý(wXXXfwcft

(b)ý swf0 OD

(b) swfft

WW&WP WWM40 00ý r10&wNrOrDlP
QXXX •OXXX PUXXX NlNXXX auuXXXoxxx WXXXtm XXX x xxOXxx CtXXX X

(d) swft0OX X X+irq
(d) swfft+irq

Figure 4-15: Simulated net instruction fetch energy for a direct mapped cache with a
4-element loop protection queue. For comparison, the total instruction fetch energies for
the original direct mapped cache configurations are indicated with crosses.

1.5

1.25

1

0.75

0.5

0.25

0

x

Xx
XXXc

Li hIRm
OXXXoxxx
x W&000ýao

1.25

1

0.75

0.5

0.25

0

M CPU+Cache - Other M Memory

swfir swfft

0.99 0.47

tea thrash

0.60 0.00

Figure 4-16: Measured impact of instruction caching on energy per cycle. Memory energy

is reduced by 1.4 - 14 x with the cache enabled. The DSP was operating at 5 MHz with

the logic at 0.5 V and the memory at 0.8 V.

energy per cycle for five different benchmarks. Enabling the cache reduces the aver-

age memory energy per cycle for the first four benchmarks by 3.7-8.4 pJ, a factor of

1.4-14 x. Note that the memory energy measurements include data memory accesses,

which are not cached. The variation in memory energy reduction between the bench-

marks is due both to differences in hit rate, and differences in data memory access

rate. The CPU energy (including the cache) increases by roughly 0.5 pJ per cycle

when the cache is enabled. Disabling the cache does not entirely eliminate switching

activity in the cache, however, so the cache access energy is actually somewhat higher

than 0.5 pJ.

The fifth benchmark (thrash) in Figure 4-16 was specifically designed to achieve

a hit rate of zero, in oder to demonstrate the worst-case impact of the instruction

cache. Enabling the cache for this benchmark causes a 1 pJ increase in the combined

cache and CPU energy per cycle. The memory and core energies are not affected.

Hit rate

crcl6

1.00

4.3 Banked Memory

The primary motivation for implementing a banked memory system is reducing av-

erage power consumption in the memory. Banking provides two mechanisms for

power reduction: smaller SRAM arrays have lower access energy, reducing dynamic

power, and multiple banks permit power gating of idle memory segments. (As pre-

viously discussed, a third advantage of banking is that it permits multiple memory

accesses-such as instruction fetches and DMA transfers-to occur simultaneously,

as long as each transaction targets a different bank, thereby eliminating a significant

potential performance bottleneck.)

Determining the optimal number and size of the banks requires balancing access

energy and leakage power. Smaller banks have lower access energy, but having a large

number of banks increases leakage power, due to duplicated periphery logic (address

decoders, sense amps, etc.). Too many banks can also increase access energy, if the

multiplexing/demultiplexing logic for selecting between banks becomes too complex.

The optimal bank configuration therefore depends on the expected average access

rate.

The key parameters for the SRAM macros used to implement each bank are

leakage power (Pleak) and the read (Eread) and write (Ewrite) access energies. Average

power for the entire memory can then be expressed as

P,(fa) = nPleak(//n) + faacEwrte(i/n) + fa(1 - a)Erad(f/n) + Pmux(n, fa) (4.5)

where f is the total memory size, n is the number of banks, fa is the access rate, a is

the fraction of accesses that are writes, and Pm,,(n, fa) is the power consumed by the

bank multiplexer/demultiplexer logic. The exact a value is not particularly critical, as

Eead and Erite are generally similar. We assume a = 0.1 (10 % of accesses are writes),

based on simulations of several benchmark programs. (Note that if an instruction

cache is used, this will increase a, by filtering out many instruction fetch reads.)

We also neglect the multiplexer/demultiplexer power for simplicity: Pm,,(n, fa) = 0.

Simulation suggested that this circuitry would contribute only about 5 % to the overall

-e- 64kB (n = 1)

-+- 8kB (n = 8)
1

I 0.5

0

-0.5

-1

32kB (n = 2)

-+ 4kB (n = 16)

16kB (n = 4)

-A- 2kB (n = 32)

0.01 1000.1 1 10
Access Rate fa (MHz)

Figure 4-17: Power consumption for a 64kB memory, implemented using various bank
sizes. Power for each implementation has been normalized relative to a single 64 kB bank.
The single-bank implementation is efficient only for very low access rates (less than 170 kHz).
For higher access rates, arrays composed of 8 kB, 4 kB, or even 2 kB banks are more efficient.

memory access energy. Benini et al. [48] similarly found for their banked memory

design the decoder logic accounted for 1.1% of energy on average, and the wiring

between banks for 7.1 %.

We can evaluate various bank configurations by plotting the relative power savings

of an n-bank memory over a monolithic (n = 1) design, (P1 - Pn)/P 1 , as shown in

Figure 4-17. The leakage-minimizing monolithic configuration is only optimal for very

low access rates (less than 170 kHz). As access rate increases, the optimal number

of banks also increases. For the highest access rates, a bank size of 2 kB provides an

overall 2 x energy savings relative to a monolithic 64 kB memory.

Picking an optimal memory configuration would be as simple as determining the

proper value of fa-except that no single fa value will accurately characterize a real

system at all times. Instruction fetching accounts for the majority of memory accesses,

since a new instruction is fetched on essentially every clock cycle when the CPU is

active. Most instruction fetches will hopefully be handled by the instruction cache,

but the hit rate can vary dramatically depending on the application. The clock speed

of the DSP ranges from 50 MHz at 0.8 V down to 4 MHz at 0.45 V. The duty cycle

of the processor can also vary, from 100 % down to less than 1%. Therefore, fa can

range over three orders of magnitude, and can be expected to change dramatically

during the course of operation.

In response to the unpredictability of fa, a heterogeneous memory architecture

was settled on for our DSP, initially with seven banks of 8 kB and two banks of 2 kB.

The main 8 kB banks would provide optimal or near-optimal storage for access rates

below 10 MHz, while the 2 kB banks provide low access-energy storage for frequently

accessed data and instructions (such as the program stack, or commonly used sub-

routines). Before tapeout, the foundry released a new memory compiler with reduced

access energy, and as a result, we changed the bank arrangement to six banks of 8 kB

and three banks of 4 kB. We have described the bank size analysis using data from

the older memory compiler, because we do not have full data from the new compiler.

Figure 4-18 shows the actual measured access energy for each memory bank. A side

effect of using the improved memories with reduced access energy is that the memory

arbiter energy makes up a higher percentage of the total access energy (20 - 25 %)

than planned.

4.3.1 Memory Arbiter

On our DSP, memory accesses have three possible origins: the CPU instruction bus,

the CPU data bus, or the DMA engine. As previously described, the arbiter permits

multiple simultaneous memory accesses, as long as the destination of each access is a

different memory bank. The access origins are prioritized, so that if multiple trans-

actions are attempted on the same cycle for the same memory bank, one transaction

will be allowed to proceed, and the other transactions will receive wait signals, stalling

their respective processor core. The arbiter is hardwired to give lowest priority to the

DMA engine (DMA operations occur in the background) and highest priority to the

Arbiter M SRAM

0.5

0

00 00 00
W- o

00 00 00

(a) Read

o b

00 0o0 0

vv

00 00 00

(b) Write

Figure 4-18: Measured SRAM access energy for each bank: (a) reads, (b) writes. Energy
has been normalized relative to the average read energy for an 8 kB bank. The average
read and write energies of the 4kB banks are 17 % less than for the 8 kB banks. The
write energy varies much more between banks than does the read energy. The variations
roughly correlate with the physical distance between the bank and the CPU. The logic
overhead (including address and data multiplexing and access arbitration) for each access
is 20 - 25%.

CPU data bus (Giving the CPU databus highest priority allows some simplification in

the CPU logic, because load and store operations never stall). Other prioritizations

could also be justified, however.

In order to simplify the arbiter logic and thus reduce its energy overhead, some

access paths were omitted. The boot ROM cannot be accessed by the DMA engine

or the CPU data bus. The peripheral control registers cannot be accessed by the

CPU instruction bus. Also, the peripheral registers are treated as one memory bank

by the arbiter, so only one peripheral register access is allowed each cycle.

4.3.2 Stack Pointer Limit Exceptions

An important design goal was to provide a mechanism for powering memory banks on

and off as the demands of the software change, in real time. The original plan was for

all accesses to powered down banks to generate exceptions in the CPU, alerting the

processor to power up the appropriate memory bank before continuing. Implementing

these memory abort exceptions precisely proved to be overly complicated, so a simpler,

more efficient scheme (requiring much less logic in the CPU) was implemented.

A stack limit comparison register was added to the CPU. Since the stack grows

downward, whenever the stack pointer register becomes less than the stack limit

register (indicating that the stack has grown beyond the bounds of powered memory

banks), an exception is generated. The ABI for our processor stipulates that all stack

accesses must use a non-negative offset from the stack pointer. The stack pointer

register therefore always represents a lower bound on stack addresses.

The stack limit exception is easier to implement than a memory exception, because

it occurs after a successful arithmetic operation (modifying the stack pointer register),

rather than after an unsuccessful memory operation. There is no need to backup and

restart an instruction after the exception.

The disadvantage of this mechanism, compared with complex general memory

abort exceptions, is that it does not protect non-stack memory accesses. Thus, it is

up to the operating system or application code to manage power gating for the heap

and for statically allocated data.

4.4 Combining Banked Memory and Caches

We have seen that instruction caching and memory banking both promise significant

memory power savings of roughly the same magnitude. It is possible to combine both

techniques in the same system for even greater power reduction. However, interactions

between the two techniques reduce their effectiveness when combined, so that the total

energy reduction is less than the product of the reductions when each technique is

used individually. The filtering effect of a cache reduces the main memory access rate,

100

1.5

n

0

+ + + + +

Banks: 64kB xl 64kB xl 2kB x32 2kB x32 2kB x32
Cache: None 32x4 (DM) None 32x4 (DM) 16x4 (LP)

Figure 4-19: Comparison of total memory energy across the benchmark suite for selected

memory architectures. Configuration A: monolithic 64kB SRAM with no cache, B: with

instruction caching, C: with banking but no cache, D and E: with caching and banking.

The numbers at the top of each bar indicate total memory energy per cycle relative to the

baseline configuration (A) for that benchmark. y-axis units are the read access energy for

a 64 kB SRAM.

thereby increasing the optimal bank size and decreasing the energy savings available

from banking. Conversely, the reduced access energy provided by banking drives the

optimal cache size smaller (in order to reduce the cache access energy), resulting in a

lower hit rate.

The individual and combined effect of instruction caching and memory banking

are illustrated in Figure 4-19, which compares total memory system energy per cycle

for the best-in-class configurations of all the techniques discussed so far. Memory

system energy is broken down into SRAM leakage, access energy due to load and

store operations, cache energy, and instruction memory energy (due to cache misses).

In the baseline configuration (configuration A, a single 64 kB SRAM and no cache),

101

memory energy is dominated by instruction fetching (67 - 95 % of the energy per

cycle). Adding a cache (configuration B) dramatically reduces the instruction fetch

energy, reducing the total memory energy by 31 - 78 %. The cache configuration

shown (32 lines of 4 words) represents the best all-around choice for the benchmark

suite. Loop protection was not employed for this configuration. Implementing a

banked memory architecture (configuration C) with 32 2 kB banks results in a 50 %

memory energy reduction relative to the baseline configuration. The reduction does

not depend on the actual memory access pattern and is therefore the same for all

benchmarks. This workload ambivalence is an advantage of banking over caches,

though for some workloads caches may achieve a significantly higher energy reduction.

Combining caching and multi-banking, as in configurations D and E results in

additional savings relative to either technique alone, although the additional savings

is not as dramatic as the original factor of roughly 2 x. In configuration D, a 32x4

cache (with mandatory replacement), combined with a 2 kB bank size results in overall

55 - 79 % energy savings. Finally, configuration E employs loop protection to boost

the hit rate of a smaller (16 x 4) cache to achieve lower total memory energy for several

of the benchmarks (though the energy for the other benchmarks increases slightly,

due to an increase in fetch energy caused by a reduced hit rate).

4.5 Conclusions

The measured results in Figure 4-16 show conclusively that instruction caching can

significantly decrease memory energy per cycle in a micropower processor, achieving

up to a 14 x reduction. We are unable to measure the effectiveness of memory banking

(since we did not fabricate a chip with a monolithic memory to compare to), but

our analysis suggests banking contributes a further 2 x reduction in memory access

energy.

Since the access energy for on-chip memories is relatively small, achieving any

energy savings requires using a very small cache with an even lower access energy.

Determining the optimal cache size (for maximum instruction fetch energy reduction)

102

is a matter of balancing hit rate and cache access energy, both of which increase with

cache size. The optimal instruction cache size for our DSP is around 64-128 words.

The cache cannot be made much larger than this, or the cache access energy will

exceed the memory access energy.

Since the cache is so small, capacity misses are more common than conflict misses,

and there is little advantage to implementing an associative cache over a direct-

mapped one. Thrashing is often problem for such a small cache, however. The

proposed loop protection algorithm is very effective at preventing thrashing, giving

near-optimal hit rates for loop-based workloads.

While instruction caching benefits only instruction fetch memory accesses, reduc-

ing memory access energy by dividing the memory into smaller banks benefits both

instruction and data memory accesses. The optimal bank size depends on the aver-

age memory access rate, and is a tradeoff between increasing leakage power (due to

duplicated peripheral circuitry for each bank) and decreasing access energy (due to

shorter word and bit lines), as the number of banks increases.

103

104

Chapter 5

Accelerator Cores

Common data manipulation algorithms frequently involve inherently simple oper-

ations not efficiently implementable on general-purpose processors. For example,

the fast Fourier transform (FFT) requires sorting either its inputs or outputs into

bit-reversed order. In addition to the cost of computing the bit-reversed addresses

(for which most general-purpose processors lack a dedicated instruction), this entails

extensive (and, as has been shown in previous chapters, energy-expensive) copying

between memory locations. The energy cost is particularly regrettable because no es-

sential computation is being performed: with custom hardware the reordering could

be accomplished at zero cost merely be rearranging the address lines when the input

data is read.

Signal processing operations, such as Fourier transforms, are prime candidates

for acceleration using dedicated, algorithm-specific hardware. Other common mi-

crosensor tasks which are obvious candidates for acceleration include encryption,

data compression, network protocol processing, and operating-system tasks (such

as event handling and task scheduling), all of which have been addressed in the liter-

ature [12, 14, 49-51].

The pAMPS DSP, being designed for acoustic sensing applications, incorporates

accelerators for both FIR filtering and FFTs. The accelerators are implemented as

memory-mapped devices. Additional accelerators could be easily added to support

other algorithms.

105

In this chapter, beyond describing the accelerators that were implemented on the

DSP, we consider where the energy savings associated with using an accelerator comes

from, and how the raw savings from an accelerator translates into net energy savings

for a real application. After summarizing related work, we develop an algorithm-

generic framework for evaluating accelerator cores. The accelerator cores implemented

on the pAMPS DSP are then examined in the context of this framework.

How much energy reduction is possible by employing an accelerator depends as

much on the efficiency of the baseline processor as it does on the efficiency of the

accelerator. While energy reduction ratios of multiple orders of magnitude have been

posted for accelerators in high-performance systems (e.g., desktop PC class), we find

that in the domain of energy-optimized micropower processors, energy reduction ra-

tios of up to about 10 x are more realistic, at least for numerical algorithm accelera-

tors, such as those implemented in the pAMPS DSP. In the energy-constrained world

of microsensors, this nonetheless represents an important savings.

5.1 Related Work

Hardware accelerators are far too ubiquitous to discuss in general. (Virtually every

PC, for example, contains an accelerator in the form of a graphics processor.) We

therefore limit our consideration to low-power systems, particularly where accelerators

are employed for energy efficiency reasons.

A fundamental design consideration is whether to integrate an accelerator into

the main processor core (as a coprocessor, for example, where it may share an in-

struction stream with the main processor), or to keep the accelerator independent

(implemented as a memory-mapped peripheral, for example). Accelerators for high-

performance systems are often implemented as coprocessors, tightly coupled with the

main processor core, and controlled by instructions in the main processor's instruc-

tion stream-for example, the speech recognition accelerator in [52] (which achieved

an energy improvement of 104 x compared to a baseline Pentium 4 software imple-

mentation). Lower performance systems, where memory latency is less problematic,

106

are more likely to forgo the complexity of a coprocessor interface. Memory mapped

accelerators have the advantage of greater independence from the main processor core

(which may facilitate power gating, for example), but may need to duplicate resources

already available in the processor (register files, for example).

Hodjat and Verbauwhede [53] implemented an AES encryption accelerator for a

LEON (SPARC V8 clone) based system, and compared both memory-mapped and

coprocessor-interface versions of the accelerator. They found the coprocessor interface

to be 70 % faster and 35 % more energy efficient than the memory-mapped interface,

but much of this difference seems to be attributable to the lower I/O bandwidth of the

memory-mapped interface. They report a speedup of 64 x and an energy reduction

factor of 49 x for their accelerator, relative to software, when implemented on an

FPGA.

In an example of an accelerator integrated into the processor of a true micropower

system, Kim et al. implemented a lossless data compression accelerator [51] as part of

a 16-bit, 24 pW, 4MHz micropower RISC processor intended for biomedical (EKG)

sensing. The accelerator is highly integrated into the CPU core, and consists of an

auxiliary 16 x 16 register file with built-in logic for doing bitwise operations on the

entire register file at once, as well as a few special purpose instructions. When not

being used for compression, the auxiliary register file is usable as general purpose

registers. The authors claim a 20 x speedup using the accelerator hardware, but

unfortunately do not report the energy savings.

Some models of the commercial MSP430 processor by Texas Instruments include

a 16-bit hardware multiplier, which is implemented as a memory-mapped periph-

eral [54]. Multiplication operands are written to memory-mapped registers, and the

results are read out a few cycles later. Since multiplication even with the accelerator

takes several cycles, the overhead of the load and store instructions (compared to a

single multiply instruction) is minor. No energy measurements appear to be docu-

mented, but the hardware multiplier speeds up 16 x16-bit multiplications by 6.4 x,

from 77 to 12 cycles. [54,55] Implementing multiplication outside of the processor core

is an unusual design, but has several apparent advantages. Not adding additional in-

107

structions to the CPU instruction set not only avoids backwards-compatibility issues,

but also prevents the logic that would have been required to decode those addi-

tional (infrequently used) instructions from increasing the energy consumption per

instruction for all other instructions. An external multiplier is also easily power gated

(though the MSP430 documentation does not indicate that they have actually im-

plemented this). While the MSP430 only supplies a multiplication accelerator, the

"functional unit as memory mapper peripheral" model could easily be applied to

other uncommon but expensive mathematical operations, such as division, square

root, floating point operations in general, and trigonometric functions.

5.2 Characterizing Energy Savings

The benefit of an accelerator core, from an energy standpoint, can be quantified as

the energy reduction factor (ERF), comparing the energy costs of performing a given

computation with and without the accelerator.

software (unaccelerated) implementation energy E,,
accelerator implementation energy Eacc

If we consider a complete system (including processor core, memory, and other pe-

ripherals), then the energy savings obtained by using a hardware accelerator can

come from two places: intrinsic savings in performing the actual computation (e.g.,

reduced cycle count and control logic overhead), and extrinsic savings from reduced

utilization of global resources (e.g., reducing the number of main memory accesses).

Specifically, we define the intrinsic energy (Eint) for a given computation to be the en-

ergy consumed by the relevant processor core (either the CPU or an algorithm-specific

accelerator) during that computation, and the extrinsic energy (Eext) to be the en-

ergy consumed by the rest of the system, but which is caused by the computation in

question.

For example, computing a 128-point FFT with the pAMPS CPU (not using the ac-

celerator) requires 4.59 ms (22 949 cycles at 5 MHz). If FFT operations are computed

108

Table 5.1: Variables for accelerator core analysis
Name Description

acyc Runtime reduction (number of cycles) achieved by an accelerator
aext Extrinsic energy reduction factor for an accelerator
aint Intrinsic energy reduction factor for an accelerator
apwr Power reduction factor for an accelerator

/3 Ration of extrinsic energy to intrinsic energy for a given computation

Eacc Energy consumed to perform a given computation, when an accelerator
core is utilized

Ebuf Energy required to store the input data to a computation in memory, so
that the computation can be performed later (e.g., when an accelerator
core is available)

Eext Extrinsic energy for a computation: energy consumed outside of the CPU
or accelerator, but which is attributable to the computation in question

(e.g., memory access energy)
Eint Intrinsic energy: energy consumed by the CPU or accelerator core while

performing a given computation
Estartup Energy required to prepare a powered-off accelerator core for use, includ-

ing power-up energy and initialization energy
Es, Energy consumed to perform a given computation in software (no accel-

erator)
ERF Energy reduction factor

fc The rate at which a given computation is performed
fc,min The minimum rate at which an accelerator must be utilized in order to

offset the idle power of the accelerator

L The latency of a system, defined as the time from the moment when the
inputs to a computation are ready, to the moment when the computa-
tion is actually started

n The length of a buffer used to hold the inputs of computations which are
being deferred until an accelerator core is available. Also the number
of points in an FFT.

nb The number of butterfly operations required for an FFT

Pidle Power consumed by an accelerator when idle between computations

tidle Idle time between computations

tidle,max The maximum average time an accelerator can remain idle between com-
putations before its idle power exceeds any energy savings from utilizing
the accelerator.

109

back-to-back, continuously, the average power consumption of the CPU, memory, and

core domains is 24.6 pW, 42.7 pW, and 16.6 pW, respectively. The intrinsic energy

(energy consumed by the CPU) for each FFT operation is

Eint = 24.6 IpW x 4.59 ms = 113 nJ

If all of the memory and core power is caused by the FFT operations (e.g., there are

no concurrent DMA transfers occurring), the extrinsic energy per FFT operation is

Eext = (42.7 pW + 16.6 1W) x 4.59 ms = 272 nJ

An interesting characteristic of a given computation is the ratio of extrinsic to

intrinsic energy.
Eext

Eint
The 0 value for an unaccelerated computation can be a guide for designing an accel-

erator. If «<<1 (intrinsic energy dominates), the accelerator design should focus on

reducing the actual computation energy-by exploiting parallelism, using specialized

functional units, for example. If />1 (extrinsic energy dominates), minimizing ex-

ternal activity-using large local memories, for example-is most important. For our

128-point FFT,
272 nJ

= =2.4
113 nJ

An accelerator may reduce intrinsic energy, extrinsic energy, or both. If aint

and aext represent the scaling of intrinsic and extrinsic energy obtained by using an

accelerator,

Eint(accelerator) = CintEint (software)

Eext (accelerator) = o extEext (software)

then the overall energy reduction factor can be expressed as

Eint + Eext 1 + /
ERF =

tintEint + CaextEext aint + aext/

110

Accelerators commonly reduce not only the energy required for a computation, but

also the time. We define the speedup factor a,,cyc for an accelerator as

accelerator runtime
acyc= software runtime

Factoring the change in runtime out of aint leaves

Oint
Opwr -

O cyc

where apwr represents scaling of the average power consumption of the processing

module. Generally, minimizing ap,, is not of primary importance; apr may be

greater than one (for example, if the accelerator exploits parallelism to perform the

computation faster) if acyc is low enough that aint < 1. It is conceivable, though

uncommon, for an accelerator to have aint<l but acyc>l: the accelerator would be

slower than a software implementation, but would use sufficiently less energy per

cycle to still yield a net internal energy savings. An example might be an accelerator

operating in the subthreshold regime to compute a non-time-critical operation slowly,

but very efficiently, in the background.

Continuing our FFT example, using the pAMPS FFT accelerator, a 128-point

FFT requires 157 ps (47 ps for the actual transform, plus 110 us to copy the data into

and out of the accelerator). The accelerator power is 177 pW, the CPU power 4.9 pW,

the memory power 23.3 pW, and the core power 23.1 pW. The intrinsic energy for

the accelerator is thus

Eint = 177 pW x 157 ps = 27.8 nJ

and the extrinsic energy is

Eext = (4.9 pW + 23.3 pW + 23.1pW) x 157 ps = 8.0 nJ

111

The speedup achieved by the accelerator is

1 4.59 ms
- -29x

acyc 157 ps

(or 97 x, if we do not count the data copying time). Intrinsic energy has been reduced

by
1 133 nJ
- - 4.7 x
aint 27.8 nJ

and extrinsic energy is reduced by

1 272 nJ
-34 x

aext 8.0 nJ

Together the factors accyc, ap, and aext describe where an accelerator's energy

savings comes from. Does it perform the computation faster than a software imple-

mentation (acyc<1), perhaps by using more hardware to exploit parallelism (ap,> 1)?

Does it perform the computation using simpler hardware than a full general-purpose

CPU (ap,<1)? Or does it employ extra local memory in order to reduce memory

traffic or other system resource use (aext<l)? Usually, some combination of these

factors are true.

For ease of interpretation, we will generally report accelerator performance in

terms of the inverses of the a values. For example, if ai,t = 0.5 for an accelerator,

than the intrinsic energy reduction is reduced by a factor of 1/aint = 2 x.

5.3 Minimum Duty Cycle and Power Gating

Adding accelerator hardware increases the overall power of the system, even when the

accelerator is not being used. If the accelerator is well designed, its idle power (Pidle)

will be almost entirely due to leakage. Consider a stereotypical workload, shown

below, where computations are triggered at a fixed rate fc.

t acc Pidle tidle 1 f
0; tacc P6id1e _

112

Each time a computation is performed using the accelerator instead of software, AE =

E,, - Eacc energy is saved; however Pidle tile energy is lost during the idle time

between computations. The maximum average idle time for the accelerator in order

to maintain any net energy savings is

E,, - Eacc
idle,max PidlePidle

If the accelerator is effective (ERF is reasonably large) and is well designed so that

its idle power is much less than its active power (through clock gating, for example),

then tac << tidle and the minimum rate at which the accelerator must be used is'

1 Pidle
fc,min - (5.1)

tidle,max Esw - Eacc

Power-gating an accelerator between computations can mitigate the energy wasted

due to accelerator idle power. Due to the energy overhead required to power up the

accelerator, it is often beneficial to buffer computations in a queue so that when the

accelerator is powered on multiple computations can be performed back-to-back, with

no idle time. The power-up energy is then amortized over multiple computations.

The number of computations that can be queued may be limited by available

memory, or by real-time responsiveness constraints. If computations are generated

at a rate fc, and the latency (defined as the time between when a computation is

generated and when it is actually started) is required to be less than L, then the

maximum queue length n is limited to nma = LLfcj computations. An example

buffered workload is shown below.

n. l/f
dL-1

Estartul time

owe r Lpe -oe o
Initialize accelerator] LPerform n computations

The cost of powering up and initializing the accelerator, E•attp, is the sum of

IThe precise condition for the approximation to be valid is that Pidle/lPace < ERF-1. To see this,
if tidle < (Esw - Eacc)/Pidle, then tidlePidle • Esw - Eace = Eacc(ERF - 1). Since Eacc = taccPacc,
then ~k < fPa-(ERF- 1). If p i ,z 0, then tac M 0 and fŽ 2 1 1/tidle.tacc - Pidle Pace(ERF-1) taec+tidle

113

4
I I YhrF ~ Ph·~ rff

power switch activation energy Eswitch, the energy Erecharge required to charge up

the power supply rails in the accelerator, and any additional energy Einit required for

re-initializing the accelerator after power-up (i.e., restoring state that was lost during

power down). The total power for the power-gated accelerator scenario is

P(f, n) = f (Estan• + Eacc + Ebf)

where Ebuf is the energy associated with storing a computation in the queue and

retrieving it later. We can now compute the net power reduction from using the

power-gated accelerator

AP = fc (Es, - Eacc - Ebuf - Estartup/n)

and the minimum buffer size necessary to achieve any net energy savings

nmin = Estatup (5.2)
E,, - Eacc - Ebuf

A simple test program was developed to demonstrate these models. The compu-

tation of interest in this example is a 16-tap FIR filter, which can be performed on

the pAMPS DSP either in software, or using the filter accelerator (which will be de-

scribed in detail in Section 5.4.1). In this test application, input data samples for the

filter are generated at a programmed rate by the DSP's ADC interface. The outputs

of the filter are simply written to an output queue in main memory, where in a real

application, they could be processed further.

Four different versions of the application were tested.

1) Using software running on the CPU to perform the filtering

2) Using a hardware accelerator for the filtering, with the accelerator powered
continuously

3) Using a power-gated filter accelerator

4) Without any filtering (the ADC samples were written directly to memory)

114

The code for the four versions is identical, except for the implementation of the filter.

The fourth version served as a baseline to isolate just the power associated with the

filtering operation in each of the other versions.

Figure 5-1 shows an oscilloscope screen capture of the power-gated accelerator

implementation in operation. The ADC interface logic on the DSP automatically

triggers ADC conversions (top trace). When a conversion is complete, the CPU is

woken from the idle mode: it copies the conversion result from the ADC into the queue

in memory, and immediately returns to idle mode (clocks stopped in the CPU). When

the queue becomes full, the CPU remains active to power up the FIR accelerator.

At a clock speed of 5 MHz, the accelerator is ready to be initialized within one clock

cycle of the power being turned on. Because no state is retained in the accelerator

during power down, the CPU loads the tap coefficients, as well as the previous 15

input samples (to prime the filter) into the accelerator. The sample points in the

buffer are then written to the accelerator, and the filtered output points are written

back to memory. (The queue length at the 5 kS/s sample rate shown is n = 50.) The

CPU is able to return to idle mode for a few clock cycles during each filter operation.

When the queue has been emptied, the accelerator is immediately powered down.

Because the four versions of the test program are identical except in the filter

implementation, the power associated with the filtering operation can be isolated by

subtracting the measured total system power for the fourth (non-filtering) version

from the measured power for each of the first three versions. Figure 5-2 shows the

filter operation power as a function of the ADC sampling rate fe, from 0.1 kS/s to

12 kS/s, for each of the three filter implementations.

Each implementation is optimal (lowest power) over some range of sampling rates.

The software implementation has the highest energy per filter operation (and thus

the highest slope in Figure 5-2), but has no overhead (P(f,=O) = 0), and is thus

the optimal implementation for the lowest sampling rates. The filter power for this

115

x 1

ADC: conversion cycles

.idle
CPU activity

S
.. o 0 .5 V

FIR accelerator VDD

Off
. 1

c .l [2.00 V 1C2
lE L ... V i

2.00 V JMj200s A[Ch3 I 260

D[69.6096

Chl Freq
5.061kHz

Ch2 +Duty
1.721 9

Ch3 +Width
273.29s

22 May 2008
17:30:09

Figure 5-1: Oscilloscope screen capture illustrating power-gated operation of an FIR filter
accelerator.

3

2.5

0.5

0
2 4 6 8 10 12

Sample Rate (kS/s)

Figure 5-2: Power consumed by a 16-tap symmetric filter as a function of input sample
rate. Three implementations are shown: 1) software (no accelerator), 2) hardware acceler-
ator without power gating, and 3) hardware accelerator with power gating.

116

1 II 1 Triq'dTSk Run I

implementation is directly proportional to the sampling rate.2

P(1) = fcEsw

The always-on accelerator implementation has the lowest slope, but a significant

constant overhead due to the additional idle power of the accelerator.

P(2) = fcEac + Pidle

For the power-gated accelerator implementation, the filter power depends on both

the sampling rate and the buffer length or latency.

P(3) = fc(Eacc + Ebc(E + Eb + f) + startup
n L

In Figure 5-2, the buffer length changes with the sampling frequency, so as to maintain

a constant latency of L = 10 ms.

The model parameters, obtained by least-squares fitting the measurements, are as

follows.

Software energy Es, 580 pJ
Accelerator energy Eacc 69 pJ
Accelerator idle power Pidle 1.0 1W
Accelerator startup energy Estartup 2.0 nJ
Buffer energy Ebuf 96 pJ

The break-even point between the software implementation and the always-on ac-

celerator implementation occurs at f, = 2.0kS/s, as given by equation 5.1. The

break-even point between software and the power-gated accelerator occurs at

f = Estartup -= 490 S/s
L(E,, - Eacc - Ebuf)

2 The idle power of the CPU or other system components between filter operations is not included,
because we are considering only the energy involved with the filter computation. In a real application,
the CPU would likely have additional work to do between filter operations, after which the CPU could
be idled or powered down entirely. We assume that offloading the filter operation to an accelerator
will not significantly change the CPU workload or how the CPU is power-managed between filter
operations.

117

which also corresponds to the minimum buffer length (nmin = 4.9) given by equation

5.2.

The always-on accelerator implementation has a large overhead, P(fe=O) = Pidle,

but requires the least energy per filter operation and is thus the optimal implementa-

tion at the highest sampling rates. It becomes inefficient to power-gate the accelerator

when the sampling rate reaches

Pidle - Estartup/L
f- E = 8.8 kS/s

Ebuf

Increasing the latency would move the line for the power-gated implementation

downward, decreasing the sample rate below which the software implementation is

advantageous, and increasing the sample rate above which keeping the accelerator

always on is advantageous.

If instead of fixing the latency we had fixed the queue length, then the line for

the power-gated filter implementation would have increased slope (depending on the

queue length) and pass through the origin. The power-gated accelerator implemen-

tation would then be preferable to the software implementation at all sampling rates,

though the latency would be very large at very low sampling rates.

Although the raw energy reduction factor per filter operation for the accelerator

is ERF= _ -= 8.4 x, the effective power reduction depends on the sampling rate,Eacc

as shown in Figure 5-3. The full ERF may not be achievable in practice: for example,

at 5 MHz this sample application has a maximum throughput of 43 kS/s (limited by

the ADC interface), which corresponds to a filter power reduction of only 6.2 x.

5.4 Characterizing the pAMPS Accelerators

We have identified a number of parameters describing the effectiveness (ERF, acy,

apwr, aext) and utility (fe, fmin) of a generic accelerator core. This section will de-

tail the implementation of the accelerators on the pAMPS DSP, and examine their

effectiveness and utility in terms of those parameters.

118

8

0

. 4

2

101 102 103 104 105 106 107

Sample Rate (S/s)

Figure 5-3: Dependence of actual accelerator power reduction on the sampling rate.

5.4.1 FIR Filtering

Filtering is a nearly ubiquitous component in any signal processing application. FIR

filters are commonly used because of they are inherently stable and can easily be

designed to prevent phase distortion. An Nth-order FIR filter is simply an N + 1

point convolution
N

y[k] = (x * h)[k] = hix[k - i]
i=O

where x[k] are the input samples, ho... hN are the filter tap coefficients, and y[k] are

the filtered output samples. A symmetric filter has hi = hN-i, so the summation can

be factored to
(N-1)/2

y[k] = hi(x[k - i]+ x[k - N + i])
i=O

(assuming N is odd), thereby reducing the number of multiplications from N + 1 to

(N + 1)/2. A similar simplification for anti-symmetric filters (hi = -hN-i) is obvious,

and hereafter we will use the term "symmetric" to refer to both symmetric and anti-

symmetric filters. Symmetric FIR filters are very common in practice, because they

119

I 1 l'Tl 1 ' '''1 1 I I 1 - 1 1I1

ERF = ~ = 8.4 xEace *

Accelerator
(always on)

-N

Achievable power reduction: 6.2 x

- Sample rate limit: 43 kS/s

I ------------·-------; ---------- ------------------ --
. .Accelerator

(power gated)

.......... . -Sr------- .

-.. Software.. --. -: -~ • _; . . . --- -" ° ! ,

have linear phase.

A baseline software implementation of a 15th-order symmetric FIR filter was hand

coded in assembly, using fixed-point math. The symmetry of the filter taps is ex-

ploited, so only eight multiplications are required to compute each output point.

Each pair of taps is computed in five instructions, with an additional five instructions

to rescale (by right-shifting) the output value, plus four instructions of loop overhead,

for a total of 49 instructions per sample point. Input sample data and tap coefficients

are all kept in main memory, so computing each filter output value requires reading

24 words (16 input samples and 8 unique tap coefficients), and writing one word (the

output sample). The entire filter loop code fits within the 64-word instruction cache

of the CPU, so the cache hit rate is nearly perfect (98•% after processing 128 sam-

ples). Measured on the actual chip (at f = 5 MHz and VDD = 0.5 V), the software

filter implementation consumes 550 pJ per sample point, with an extrinsic/intrinsic

ratio of 3 = 1.6. With 0 close to one, an accelerator for this computation should

address both intrinsic and extrinsic energy consumption.

We evaluated three FIR accelerator architectures, which are shown in Figure 5-

4. Architecture (a) employs a single multiply-accumulate (MAC) structure that is

reused for each unique tap coefficient. An Nth-order filter thus requires N + 1 cycles

per data sample, or (N + 1)/2 cycles for a symmetric filter. Two small flip-flop

memory arrays hold up to 16 input sample values (in a circular queue), and up to 8

tap coefficients, allowing up to 7th-order asymmetric and 15th-order symmetric filters

to be implemented. Control logic computes, on each clock cycle, the appropriate

addresses for the input data and coefficient memories. The filter order is determined

by the control logic, and can be easily and efficiently scaled.

Architecture (b) is the classic transposed form for a symmetric FIR filter, with

one multiplier per unique tap. The transposed form results in a short critical path

(one MAC operation) that does not depend on the filter order. The architecture can

be programmed for a reduced filter order by loading zeros into some of the coefficient

registers. Operand isolation logic could be employed to further reduce switching

activity in the unused multipliers and adders, but the leakage and area of the unused

120

write

eadyinpu

(a)

coef

data

(b)

data in

data out

data out

(c)

Figure 5-4: FIR filter architectures: (a) sequential, as implemented on the DSP chip, (b)
transposed form with programmable coefficients, (c) transposed form with fixed coefficients.

MAC elements will still be significant, especially if the filter must be designed to

accommodate much higher order filters than are commonly used in practice.

Architecture (c) is the same transposed form as (b), but with non-programmable

tap coefficients. The fixed coefficients not only eliminate the need for the coefficient

registers, but also allow much of the multiplier logic to be collapsed. This architec-

ture is obviously not suitable for a general-purpose accelerator, but was considered

121

Table 5.2: Comparison of FIR accelerator architectures

Data is from simulation with VDD = 0.5 V. Energy numbers are per sample point.
(a) (b) (c)

Architecture Software Sequential Transpose Transpos
Programmable Programmable Programmable Fixed

Cycles/sample 49 8 1 1
Intrinsic energy (pJ) 245 20.1 12.6 5.38
1/acyc - 6.1 49 49
1/apwr - 1.94 0.385 0.900
1/aint - 12.2 19.5 45.6

Max frequency (MHz) - 5.69 7.33 9.11
Leakage (nW) - 159 528 198
Area (Normalized) - 1.0 3.3 1.4

only to explore how much additional energy savings is possible when the exact filter

configuration is fixed at hardware design time.

The three architectures were synthesized with Synopsys PhysicalCompiler and

simulated, using the same filter coefficients and input data as for the software filter

implementation that was described earlier. Table 5.2 summarizes the results. The

sequential and programmable transposed form architectures achieve comparable re-

ductions in intrinsic energy per sample (1/aint) of 14 x and 16 x, respectively. The

fixed coefficient architecture of course yields the highest energy reduction, 49 x. The

accelerators were simulated in isolation (not as part of the entire pAMPS DSP),

so only intrinsic energy is compared. The memory traffic required is the same for

each architecture: one read to load each input sample, and one write to store each

output sample. The extrinsic energy reduction would therefore be similar for each

architecture.

The accelerators were optimized for energy without regard to clock speed. All

three architectures have roughly the same critical path (one MAC operation), and

thus all three have roughly the same critical path length. The fixed coefficient archi-

tecture is 24 % faster than the transpose architecture with programmable coefficients.

The maximum clock rate for the programmable, transpose architecture is 29 % faster

than for the sequential architecture, due to the additional control logic required by

the sequential architecture. In all three cases, at 0.5 V leakage makes a negligible con-

122

e

Table 5.3: FIR accelerator statistics

Energy measurements are per sample point, for a 16-tap symmetric filter.
Software Accelerator

Cycles 49 10
Memory reads/writes 24a/1 1/1
Intrinsic energy (pJ) 207 35.9
Extrinsic energy (pJ) 339 94.3
Total energy (pJ) 546 130
/ 1.6 2.6
Leakage (nW) - 388
Area (pm2) 23 300

aAn additional 49 instruction fetches are performed per sample, but these will generally be
handled by the instruction cache.

tribution to the total power, so the energy per operation is essentially independent

of the clock period.

The programmable, transposed-form architecture has roughly three times the area

and leakage of the sequential architecture. The leakage difference will be less con-

sequential if the accelerator is power gated, but the larger accelerator will require a

correspondingly larger power switch, and will have a longer break-even time.

The sequential architecture (a) was selected for implementation in the DSP. This

architecture has lower area and leakage than a transpose architecture, and the flex-

ibility of the sequential architecture to efficiently implement variable filter lengths,

asymmetric filters, and to perform efficient downsampling was judged to outweigh the

slight energy-efficiency advantage of a transpose architecture.

Table 5.3 lists statistics for the complete FIR accelerator core, as implemented on

the pAMPS DSP. The final accelerator is somewhat more complicated than the bare

filter engines illustrated in Figure 5-4, hence these numbers are higher than those for

architecture (a) in Table 5.2. The complete DSP implementation requires two addi-

tional clock cycles per sample point in order two write the input sample data into the

accelerator and read the output sample data. (An N-tap filter thus requires N/2 + 2

cycles per sample point.) The complete accelerator also includes an output scaling

unit, which generates the final 16-bit output value from the 35-bit accumulator by

123

shifting right by a programmed amount, with saturation. Finally, the accelerator

includes a decimation function, to facilitate digital anti-aliasing (through oversam-

pling of the ADC, low-pass filtering, and downsampling). When k-to-1 decimation is

enabled (k E {1...32}), one output sample is computed for every k input samples

written into the filter. The intermediate input samples are simply written to the

input sample buffer: no computation is performed.

The filter accelerator achieves a speedup of 4.9 x, relative to the software imple-

mentation. The power consumption of the accelerator is only marginally less than

that of the CPU, so the net intrinsic energy reduction is comparable to the speedup

factor. The speedup and energy scaling factors for the filter accelerator are as follows.

Speedup 1/acyc 4.9 x
Processor power reduction 1/apw 1.2 x
Intrinsic energy reduction 1/aint 5.8 x
Extrinsic energy reduction 1/aext 3.6 x
Overall energy reduction factor ERF 4.2 x

Measurement of the power-gating parameters for the FIR filter has already been

described in sections 2.2 and 5.3; the numbers are repeated below for reference.

Idle power Pidle 1.0 pW
Recharge energy Erecharge 125 pJ
Switch energy Eswitch 60 pJ
Initialization energy Einit 1.8 nJ
Total startup energy Estartup 2.0 nJ
Minimum fc (always on) fc,m in 2.0 kS/s
Minimum buffer length nmin 4.9

Reloading the filter coefficients and repriming the filter after every power-up results

in a relatively large startup energy, equivalent to filtering 15 data points. This could

be addressed by using data-retention flip-flops [26,56] to preserve the accelerator state

during power down, at the cost of increasing power consumption when the accelerator

is powered down.

5.4.2 FFT Architecture

The pAMPS FFT accelerator computes transforms on 64-, 128-, 256-, or 512-point

complex inputs, or 128-, 256-, 512- or 1024-point real-valued inputs, with 16-bit

124

precision. Real-value n-point FFTs are preformed using an 2-point complex FFT (in

O(n log n) time) followed by minor (O(n) time) post-processing, as described in [57].

(See also Figure 5-6.)

A baseline software implementation of the FFT was written in C and compiled

with GCC (version 4.0.3), using a custom ported back-end to generate code for the

pAMPS processor.3 Optimization was enabled with the -03 option. Execution time

for an n-point transform is approximately 23n log 2 n+17n cycles. The code comprises

1072 bytes of instructions, plus 2048 bytes for the twiddle factor tables, and achieves

an instruction cache hit rate of 47 % (roughly independent of n).

The FFT accelerator design was adopted from the ultra-low voltage FFT processor

described in [58]. Bit-precision scaling was not implemented: only 16-bit transforms

are supported. Also, the accelerator does not operate at subthreshold voltages, due

to the use of standard SRAM macros. Figure 5-5 illustrates the FFT accelerator

architecture, including details of the butterfly datapath and local memory implemen-

tation. The datapath computes an entire butterfly in one cycle. Local memory holds

the complete dataset during computation, so that once the input values are written

into the accelerator, no further main memory accesses are necessary for the duration

of the transform computation.

To prevent overflow errors, the butterfly datapath generates (and the local memory

stores) 17-bit results. An overflow into the 17th bit on any butterfly computation sets

a flag in the control logic. The state of the overflow flag at the start of each iteration

of butterflies determines whether the 16-bit datapath inputs are taken from the high

or low 16 bits of the 17 bits read from the memory. Each iteration with overflows

therefore causes the final transform results to be divided by a factor of two. The

overflow flag state after each iteration is saved, so that software can determine the

overall scaling of the transform results.4

The local 512x34 memory (17 bits each for real and imaginary components) is

divided into four 128 x 34 banks, so that two values can be read and two values can be

3The software implementation does not perform the rounding and overflow-compensation func-
tions that are built into the accelerator, as these cannot be coded in C with reasonable efficiency.

4The overflow handling mechanism was developed by Daniel Finchelstein.

125

(b)

Figure 5-5: FFT accelerator implementation: (a) general architecture, (b) butterfly dat-
apath, including additional logic for the real-value post-processing stage, (c) memory.

126

XLIJ = x14

x[3] = 26

x[5] = xlo

X[1] = z2
X[6] = X12
_ rcl

- low, odd parity - - - low, even parity ---- high, odd parity - - - high, even parity
* ~t

XL L] = X7 = ý1

X[6] = X6 = X(
X[5] X5 = X*o
X[4] = X X4 X
2X[3] =X3 = X2
vrl _ v _ v,

*[4]J "-X24 -I- J 5 •-"- -8 -" ---- -....- - - - - -- -
"

-
- - - it tlj = -A 2 - 132[4] X8 + - -Air---s------- - 14-- f--[= X-0--X[2] = X0 = X13

x[0]=zo +jx 0 " -1 ' ' X[0] -" Xo = 25

Iteration 1 Iteration 2 Iteration 3 Real-value
1 Complex Transform I adjustment

Figure 5-6: Ordering of the butterfly computations so as to minimize hazards. Hazards
occur when adjacent butterflies access the same memory bank. A simplified 16-point real-
valued transform is shown here. The real input values xo ... x15 are packed into an 8-point
complex transform (x[0] ... x[7]). The output values X[O] ... X[7] contain only half of the
full transform coefficients (Xo... X15), but the missing coefficients are redundant since the
transform of a real-valued signal is symmetric.

written on each clock cycle. Data addresses are split between the four banks based

on the MSBs and parity of the addresses. This results in each butterfly computation

operating on values from two different banks, so both values can be fetched at the

same time. The butterfly operations are specifically ordered, as shown in Figure 5-6

(for a simplified 16-point transform), so that sequential butterflies involve disjoint

sets of memory banks. This allows processing one butterfly per clock cycle, with

the results from one butterfly being written back to two memory banks while the

inputs to the next butterfly are read from the other two banks. (The memory banks

are standard, single-port SRAMs, which can perform either a read or write on each

cycle.) A small number of hazards are unavoidable, as shown in Figure 5-6, and

result in stalling the datapath for one cycle. In particular, a stall is unavoidable

before the last iteration of the complex transform, where the high and low halves

of the transform are combined. Multiple stalls are also unavoidable during the real-

value post-processing stage, as these butterflies do not match the same pattern as

the normal FFT butterflies. The accelerator achieves an average throughput of 1.05

cycles per butterfly, a speedup of 95 x relative to the software implementation.

127

'

''

Table 5.4: FFT accelerator statistics
Software Accelerator

Cycles 9 9 .5 - nb 1.05 nb
Intrinsic energy (pJ) 500 nb 140. nb
Memory reads/writes 31 nb / 13 -nb n / n
Extrinsic energy (pJ) 1200 nb 62 n
Total energy (pJ) 1700. nb 160 -nb
P 2.4 0.21
Leakage (pW) - 6.51
Area (pm2) - 175 000

The operating voltage of the FFT accelerator is limited by its use of SRAM for

local storage, and the accelerator will not operate at as low a voltage as the CPU,

FIR accelerator, and other logic-only portions of the DSP. The FFT accelerator is

reliable down to 0.8 V, matching the main memory SRAMs. Although no voltage

level converters were used between the FFT accelerator and the remainder of the

chip, the FFT works reliably with the accelerator at 0.8 V and the CPU and core

logic at 0.5 V.

Energy and runtime comparisons between software and the accelerator are tab-

ulated in Table 5.4, based on measurements on actual silicon at 5 MHz, with main

memory and the FFT accelerator powered at 0.8 V and the CPU and other logic at

0.5 V. Energy and runtime for both implementations depend on the length of the

transform in question, and are generally proportional to nb, the number of butterfly

operations. For an n-point transform,{ n log2 n complex input transform
nb (n/2) log2 (n/2) + (n/2) = in log2 n real input transform

Extrinsic energy for the accelerator is due entirely to copying data into and out of the

local memory at the beginning and end of the transform, and is thus proportional to

the length of the transform.

Computing an entire butterfly each clock cycle requires four 16 x 16 multipliers and

numerous adders, making the FFT accelerator much larger and power-consuming

128

than the CPU (even including the CPU instruction cache). Also, the accelerator

operates at a higher voltage than the CPU. This cancels much of the accelerator's

95 x improvement in processing time. The full energy scaling factors are as follows.

Speedup 1/acyc 95 x
Processor power increase apwr 26 x
Intrinsic energy reduction l/aint 3.7 x
Extrinsic energy reduction 1/aext (4.8 log2 n) x
Energy reduction factor ERF 10.6 x

Buffer and startup energies for the FFT accelerator were estimated, rather than

measured directly. Unlike with the filter accelerator, the FFT accelerator has very

little state to maintain between operations, and thus initializing the accelerator after

power-up is very inexpensive: all that is required is a write to a single register to set the

transform type (real or complex input) and the number of points. The initialization

energy is estimated at 30 pJ (three instructions at 10 pJ per instruction). The energy

required to buffer an FFT operation will be dominated by the cost of writing and

later reading the n input values to memory. Ebuf is thus estimated at n times the

cost of one load and one store instruction (15 pJ each).

Idle power Pidle 7.2 pW
Maximum average idle time tidle 1.5 -nb ms
Recharge energy Erecharge 680 pJ
Switch energy Eswitch 60 pJ
Initialization energy Einit a 30 pJ
Buffer energy Ebuf _ 30 - n PJ
Minimum buffer length nmin 1

The small startup energy for the FFT accelerator removes the necessity of buffering

multiple transforms before powering-up the accelerator. The rate at which the accel-

erator can be efficiently power-gated is set only by the break-even time discussed in

Section 2.2.

The FFT is an exampled of an accelerator that contains much more circuitry

than a general-purpose processor, but makes up for it by being much faster. While

providing a significant 10 x energy reduction, the FFT accelerator is almost 100 x

faster than our software implementation. Power consumption of the FFT is increased

(by an estimated 2.6 x) by the need to operate at a higher voltage than the CPU,

due to the use of SRAMs for local data storage.

129

Figure 5-7: The pAMPS DMA engine supports a complete signal processing pipeline-
from the ADC interface, through the filter and FFT accelerators, and into main memory-
without involving the CPU. A fourth DMA channel is available for serving serial I/O
peripherals (e.g., for a radio interface).

5.4.3 Direct Memory Access

A direct memory access (DMA) engine can be considered an accelerator for the

trivial-but common-task of copying data from one location to another, such as

between peripherals and memory. Efficient data shuffling is especially important for

the pAMPS DSP, due to its memory-mapped accelerators.

The 11AMPS DSP includes a DMA engine supporting up to four transfers ("chan-

nels") in progress at the same time. Only one channel is active on any given clock

cycle. Four channels are implemented, so that two channels can be used for copying

data from the ADC interface into the FIR filter accelerator and copying the filter

results to memory, a third channel can service the FFT accelerator, and the final

channel can be used by a radio interface (through an SPI port). As shown in Figure

5-7, the DMA engine enables an ADC • FIR = FFT •= MEM processing pipeline

to operate without any intervention by the CPU.

A simple memory-to-memory block copy, implemented in software on the CPU,

requires four instruction cycles per word copied (assuming no loop unrolling).

loop: Idinc r3, rO ; rO contains the source pointer
stinc r3, rl ; rl contains the destination pointer
addi r2, -1 ; r2 contains the number of words to copy
bne loop

130

LJUUIU

Table 5.5: DMA engine statistics

Values are per word transferred. Measured at 5 MHz, 0.5 V.
Software DMA

Cycles 4 2
Intrinsic energy (p J) 19 1.8
Memory reads/writes 1/1 1/1
Extrinsic energy (pJ) 35 26
Total energy (pJ) 54 28
P 1.9 14
Idle powera (pW) - 1.0
Areab (pm2) 29 362

aFrom simulation, with VDD = 0.5 V
bEstimated using physical prototyping in PhysicalCompiler

The DMA engine performs this copy at two cycles per word, alternating between

reading from the source on one cycle and writing to the destination on the next cycle.

More importantly, less energy is expended per cycle, because the DMA engine is

significantly simpler than the CPU. Table 5.5 compares software- and DMA-based

block copy operations (tested using a block length of 512 words). Although the DMA

engine is only twice as fast as the CPU, it reduces the intrinsic energy by a factor

of 10. Extrinsic energy cannot be significantly reduced, of course, since the memory

accesses are the actual operation being accelerated. A small (26%) reduction in

extrinsic energy was measured, which is probably a result of reduced memory address

glitching generated by the DMA engine, compared with the CPU.

The DMA engine achieves an energy reduction factor of 1.9 x, almost identical to

its speedup factor of 2 x. The energy scaling factors are as follows.

Speedup 1/acyc 2.0 x
Processor power reduction 1/ap, 5.2 x
Intrinsic energy reduction 1/aint 10 x
Extrinsic energy reduction 1/aext 1.4 x
Energy reduction factor ERF 1.9 x

The DMA controller is not power-gated. Not having its own isolated power domain,

the DMA power cannot be measured directly on the actual chip. In simulation at

0.5 V, the idle power of the DMA engine is 1.03 pW (220 nW of which is leakage). The

minimum memory-to-memory DMA activity required to justify the DMA idle power

131

is 39.6 kwords/s-a duty cycle of 1.6 % given a DMA bandwidth of 2.5 Mwords/s at

5 MHz. Few applications will utilize this much DMA activity on a continuous basis,

so in a future version of the DSP, we would likely opt to power gate the DMA engine

so that it can be turned off when not needed. Also, the idle power of the engine could

likely be reduced with more aggressive clock gating.

5.5 Conclusions

In the realm of micropower processors, a hardware accelerator may provide a large

(multiple orders of magnitude) speedup over software, but the energy savings are

likely not as large. Based on the pAMPS DSP accelerators, energy reduction fac-

tors of 2 - 10 x are reasonable to expect for numeric algorithms. Although this

is much lower than the energy reductions that have been achieved by accelerators in

higher performance systems, it is expectable because micropower processors are them-

selves highly optimized for energy efficiency, and therefore software implementations

of algorithms on micropower processors waste less energy than the same algorithms

running on higher-performance processors. Accelerators for bit manipulations algo-

rithms (e.g., encryption, compression, error correction) might achieve higher energy

reduction factors, because general purpose processors are usually limited to operat-

ing on whole words at a time, and much less efficient at processing individual bits.

(In [58], a StrongARM processor is reported to consume 59pJ performing a 1024-

point FFT. Relative to this baseline, the pAMPS FFT accelerator achieves a 144 x

energy reduction per transform.)

The energy reduction afforded by an accelerator may be the result of the acceler-

ator doing more useful work per cycle than a software implementation (reducing the

number of cycles required), or by expending less energy per cycle, and/or by reducing

the activity and energy consumption generated in parts of the chip outside of the pro-

cessor (another variation on the theme of this thesis of minimizing memory energy).

The overall power reduction achieved from an accelerator in a real system depends

on the frequency with which the accelerator is used: the idle power of the accelerator

132

between computations counteracts the energy saved during each computation. Unless

an accelerator is going to be used constantly, it should be power gated. When the

accelerator is used relatively constantly, but at a low rate, it may be advantageous

to queue data waiting to be processes, so that the accelerator can perform many

computations at once, each time it is powered on.

133

134

Chapter 6

Conclusion

6.1 Thesis Conclusions

At 4 MIPS and 40 pW, the pAMPS DSP achieves its design goal of delivering the

performance required to implement acoustic sensing applications at power levels that

enable self-powered (energy harvesting) operation. This was achieved not just through

very low voltage (0.45 V) operation, but also by architectural optimizations specifi-

cally tailored for the micropower domain.

Memory access energy is the largest source of power consumption in a complete

micropower processor, but has been mostly overlooked in previously published papers

that often only report CPU energy consumption. Four different mechanisms are used

to reduce memory power in the pAMPS DSP. Dividing the memory into multiple

banks reduces the access energy for each bank by approximately 2 x. Employing an

instruction cache reduces the memory access rate due to instruction fetching, resulting

in up to a 14 x measured reduction in memory power (depending on the cache hit

rate). Utilizing accelerator cores for filter and FFT operations reduces the number

of data memory accesses incurred for those computations, resulting in up to a 48 x

reduction in extrinsic (memory) energy for a 1024-point FFT. Finally, power gating

inactive memory banks reduces memory leakage power proportional to the number

of banks that are powered off.

Utilizing the pAMPS accelerator cores, FIR filter and FFT operations are per-

135

formed 5 - 95 x faster and with overall 4 - 10 x less energy than software imple-

mentations of the same algorithms. Because micropower processors like the pAMPS

CPU are designed to be energy-efficient, it is unrealistic to expect the accelerators

to provide energy reduction ratios of multiple orders of magnitude (as have been

demonstrated with higher-performance systems), at least for numeric algorithms. Al-

gorithms that are particularly inefficient to implement on a general-purpose CPU

(such as encryption, compression, or other bit-manipulation intensive tasks) would

likely show greater energy reductions from acceleration.

The idle power overhead of adding accelerators to our DSP is mitigated by power

gating the accelerators when they will be idle for extended periods of time. Whether

an accelerator core should be powered off between operations depends on the rate

at which the accelerator is being utilized, and the amount of latency that can be

tolerated for queueing operations as they arrive so they can be processed all at once.

Leakage power is often a significant factor in high-performance 90 nm and smaller

processes. However, because we fabricated the DSP in a process optimized for low-

power rather than high speed, leakage power is well controlled and only significant

during idle periods. From the performance versus voltage plot in Figure 1-6, the

dynamic energy per cycle is 10 x larger than the leakage energy. When the DSP is

active, therefore, optimizations which minimize dynamic power are most important.

When components of the DSP are idle, leakage power is mitigated through power

gating. Off chip power switches afford high leakage reduction, but lead to long break-

even times. Measured break-even times for our chip range from about 500 cycles

to many thousands of cycles, long enough for power management by software. On-

chip switches (with much reduced switch energy) will result in shorter times possibly

requiring hardware-based management.

6.2 Future Work

During the design of the DSP, many good ideas were abandoned due to time con-

straints and the need to keep the project focused. Were we to design a second-

136

generation of this chip, the following are some of the changes we would make.

* On-chip power switches. Implementing the power-gating switches on-chip would

streamline the design, reducing the number of off-chip components, allow the

switches to be sized according to the load they were powering (reducing the

break-even time), and enabling power-gating to be applied at a finer granularity.

For example, individual functional units (the multiplier and barrel shifter in the

CPU) could be power gated, as well as each of the on-chip peripherals.

* Improved clock gating. We relied almost entirely on automatically inserted clock

gating, which affected only the lowest levels of the clock tree, leaving most of

the tree toggling on every cycle-which consumes 2 - 3 pJ per cycle. Man-

ually inserting module-level clock gating could eliminate most of this wasted

energy. A worthy challenge would be controlling the module-level clock gates

automatically, so that they were transparent to software.

* Low-voltage SRAMs. We used standard, foundry-supplied SRAM macros, which

were not designed for low-voltage operation. As a result, the SRAM portions of

the DSP must be powered at a higher voltage than the logic portions. Utilizing

custom SRAMs designed to operate at lower voltages [59-63] could reduce the

number of power supply voltages required, and would significantly reduce the

all-important memory access energy.

This thesis concentrates on hardware design, and assumes that control of power

management features such as power gating can be accomplished in software. Effec-

tively controlling all of the various power management knobs that can be implemented

in hardware is a growing problem. Exposing these controls to the compiler, operat-

ing system, or user software theoretically enables greater energy savings by allowing

the control algorithms to be customized to each different user application. In prac-

tice, this is an unreasonable demand on the software developers. Encapsulating the

control of hardware power management features within the hardware, making power

management as transparent as possible to software, is a better way to ensure those

features are actually used, and not just ignored.

137

A key missing feature of all micropower processors published to date-including

the 1pAMPS DSP-is on-chip non-volatile memory (e.g., flash memory). Utilizing

non-volatile memory for program storage would open new opportunities for optimiz-

ing the memory system power, such as power gating portions of the instruction mem-

ory holding infrequently executed code. The quantum-mechanical effects involved in

programming flash memories require high voltages (r 10 V), but the read mechanism

is similar to SRAM. It should be possible to design flash memories that readback at

very low voltages.

138

Appendix A

Instruction Set

A.1 Notation

ra, rb, rc Any general purpose register, rO through r7

rh Any special purpose register, r8 through r15

kn, s An n-bit signed constant

kn,u An n-bit unsigned constant

kperiph The address of a peripheral control register

mem16 [x] The 8-bit memory location at address x

mem8 [x] The 16-bit memory location at address x

A.2 Condition codes

The condition code register (r15) contains seven active flags (Z, N, C, V, I, F, and

Q), plus seven saved flags (Ze, Ne, C0 , Ve, le, Fe, and Qe) that are used to preserve

the state of the active flags during exceptions.

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- Qe Fe Ile Ve Ce Ne Ze - Q IF I V C N Z
Reset - 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0

Access - rw rw rw rw rw rw rw - rw rw rw rw rw rw rw

Z-Zero
Indicates that the result of the last operation was zero

N-Negative
Indicates that the result of the last operation was negative

139

C-Carry
Indicates that a carry out of the MSB occurred during the last operation

V-Overflow
Indicates that an overflow occurred during the last operation

I-Interrupt Enable
When clear, interrupt requests are ignored

F-Cache Freeze
When set, the cache lines are locked. A cache miss due to a tag mismatch will
not cause the affected line to be evicted.

Q-Cache enable
When set, the cache is enabled

When an exception occurs, the Z, N, C, V, I, F, and Q flags are copied into the

the Ze, Ne, Ge, Ve, I, F, and Qe slots, and the I flag is cleared. When a return-

from-exception (rfe) instruction is executed, the Z, N, C, V, I, F, and Q flags are

restored from their saved values in Ze, Ne, C, Ve, I', Fe, and Qe.

A.3 Branches

B-Unconditional branch
Syntax: b k11,s
Encoding: 0000o01kkkkkkkkkkk

Operation: pc t= pc + 2k

Skips the next k - 1 instructions. (k = 1 is essentially a no-op. k = 0 results in
an infinite loop.)

BCC-Branch if carry clear

Syntax: bcc kll,s
Encoding: o o01 ilkkkkkkkkkkk
Operation: If C, then pc #= pc + 2k

If the C flag is clear, the next k - 1 instructions are skipped. Alias: bgeu

(unsigned branch if greater than or equal)

BCS-Branch if carry set

Syntax: bcs k11,,
Encoding: o lO 101kkkkkkkkkkk
Operation: If C, then pc = pc + 2k

If the C flag is set, the next k - 1 instructions are skipped. Alias: bltu (unsigned
branch if less than)

140

BDNE-Decrement and branch if not equal

Syntax: bdne ks8,
Encoding: o 1 1 1 a aaIk k k k k k k kk

Operation: If ra = 0, then
ra = ra - 1
pc • pc - 2k

If the contents of the general-purpose register ra are not zero, ra is decremented
by one, and control skips backward by k instructions. (Only backward branches
are supported.)

BEQ-Branch if equal

Syntax: beq kll,s
Encoding: o 0 0 1ool k k k k k k k k k k k

If Z, then pc = pc + 2k

If the Z flag is set, the next k - 1 instructions are skipped.

BGE-Branch if greater than or equal

bge kIl,s
Encoding: 100110kkkkkkkkkkk

If N = V, then pc = pc + 2k

If the N and V flags are either both set or both clear, the next k - 1 instructions
are skipped.

BGT-Branch if greater than

bgt kll,s
l0 0 1 1 1lk k k k k k k k k k ki

If N = VA Z, then pc <= pc + 2k

If the N and V flags are either both set or both clear and the Z flag is clear,
the next k - 1 instructions are skipped.

BGTU-Branch if greater than (unsigned)

bgtu kIll,
10 1 0 0 1lk k k k k k k k k k ki

If ZA C, then pc = pc + 2k

If the Z and C flags are both clear, the next k - 1 instructions are skipped.

BL-Unconditional branch and link
bl kil,s
l0 0 0 0 llk k k k k k k k k k ki

lp ' pc + 2
pc = pc + 2k

Skips the next k - 1 instructions, saving the address of what would have been
the next instruction in lp (rll).

141

Operation:

Syntax:

Operation:

Syntax:
Encoding:
Operation:

Syntax:
Encoding:
Operation:

Syntax:
Encoding:
Operation:

BLE-Branch if less than or equal

Syntax: ble k11,s
Encoding: ooloIlkkkkkkkkkkk

If Z V N, then pc t= pc + 2k

If either of the Z or N flags are set, the next k - 1 instructions are skipped.

BLEU-Branch if less than or equal (unsigned)

bleu k11,,
10 1 0 0 01k k k k k k k k k k k|

If Z V C, then pc €= pc + 2k

If either the Z or C flags are set, the next k - 1 instructions are skipped.

BLT-Branch if less than
Syntax: bit k11,s
Encoding: o 0 1 0ook k k k k k k k k k kk

If N, then pc = pc + 2k

If the N flag is set, the next k - 1 instructions are skipped.

BNE-Branch if not equal

bne kIl,s
l0 0 0 1 1lk k k k k k k k k k ki

If Z, then pc = pc + 2k

If the Z flag is clear, the next k - 1 instructions are skipped.

BVC-Branch if overflow clear
Syntax:
Encoding:

bvc k11,,
10 1 1 0 1lk k k k k k k k k k kl

Operation: If V, then pc #= pc + 2k

If the flag is clear, the next k - 1 instructions are skipped.

BVS-Branch if overflow set
Syntax:
Encoding:

bvs k11,s
[01100kkkkkkkkkkk

Operation: If V, then pc = pc + 2k

If the V flag is set, the next k - 1 instructions are skipped.

A.4 Arithmetic

ADD-Add
Syntax: add ra rb rc
Encodina: I1 1 1 10 Ia alb b bc c cC0 00

Operation: ra €= rb + rc

Adds the contents of registers rb and rc and stores the result in register ra. The

142

Operation:

Syntax:
Encoding:
Operation:

Operation:

Syntax:
Encoding:
Operation:

Z, N, C, and V flags are all updated.

ADDC-Add with carry

Syntax: addc ra rb
Encoding: I1 1 1 1 1la a alb I b l 0 1 1 01

Operation: ra #= ra + rb + C

Adds the contents of registers ra and rb, along with the C flag, and stores the
result back in ra. The N, C, and V flags are updated based on the results of
the addition. The Z flag is cleared if the result is not zero, but is not changed
if the result is zero.

ADDI-Add immediate
Syntax: addi ra k8 ,s
Encoding: 1 o 0laaalkkkkkkkk
Operation: ra .= ra + k

Adds the 8-bit signed immediate k to the contents of general-purpose register
ra, and stores the results back in ra. The Z, N, C, and V flags are all updated.

ADDS-Add to stack pointer

Syntax:
Encoding:
Operation:

adds ra
1 1 1 1 la a all 1 0 1 1 1 1 1

sp #= sp + ra

Adds the contents of register ra to the stack pointer (r12).

ADDSI-Add immediate to stack pointer

Syntax:
Encoding:
Operation:

addsi kjll,
0 1 1 101kkkkkkkkkkk

sp 4= sp + k

The 11-bit signed constant k is added to the stack pointer (r12).

CMP-Compare

Syntax:
Encoding:
Operation:

cmp ra rb
1 1 1 1 11a a alb b bl 0 1 0 1

ra - rb

Subtracts the contents of register rb from register ra and updates the Z, N, C,
and V flags accordingly. The results of the subtraction are not saved.

CMPI-Compare with immediate

Syntax: cmpi r
Encodina: I1 1 0

)a ks,,
00aaalkkkkkkkkl

Operation: ra - k

Subtracts the signed, 8-bit constant k from the contents of general-purpose
register ra, but does not store the result back into ra. The condition codes Z,
N, C, and V are updated based on the result of the subtraction.

143

''

'I

NEG-Negate

Syntax:
Encoding:
Operation:

neg ra rb
11 1 1 1 lIa a alb b b1l 1 0 0 1

ra = -rb

Stores the twos-complement inverse of rb in ra.

SUB-Subtract
Syntax: sub ra rb rc
Encoding: I1 1 1 0o la a alb b blc cll 0

Operation: ra -= rb + rc

Subtracts the contents of register rc from rb and stores the result in register ra.
The Z, N, C, and V flags are all updated.

SUBC-Subtract with carry

Syntax: subc ra rb
Encodina: II 1 1 1 1 1a a ab b b1O 1 1 1 0

Operation: ra = ra - rb - C

Subtracts the contents of register rb and the C flag from register ra, and stores
the result back in ra. The N, C, and V flags are updated based on the results
of the addition. The Z flag is cleared if the result is not zero, but is not changed
if the result is zero.

SUBS-Subtract from stack pointer

Syntax:
Encoding:
Operation:

subs ra
1 1 1 1 1aa 1 1 1 1 1 1

sp 4- sp - ra

Subtracts the contents of register ra from the stack pointer (r12).

A.5 Logical

AND-Bitwise AND
Syntax: and ra rb rc
Encodina: 1I 1 1 0 11a a alb b blc c c0 11

Operation: ra = rb V rc

Performs a bitwise AND of the contents
register ra. The Z flag is set if the result

rb and rc, and stores the result in
zero, and cleared otherwise.

CLRBIT-Clear bit
Syntax: clrbit ra k4,u
Encoding: 1 a 1 1 1 0 a aak k k k l 0 1 1

Operation: ra 4= ra A 1 <K k

Clears bit k of register ra.

144

•J

•J

IAND-Invert and AND
Syntax: iand ra rb
Encoding: 1 1 1 1 1a a ab b bll 1 1 1 1

Operation: ra +- ra A rb

Performs a bitwise AND of the contents of ra and th bitwise inverse of rb, and
stores the result in register ra. The Z flag is set if the result is zero, and cleared
otherwise.

INV-Bitwise inverse
Syntax: inv ra rb
Encoding: 1 1 111a a ab bb 0 1 0 1 1

Operation: ra = r-b

Stores the bitwise inverse (NOT) of the contents of register rb in register ra.

OR-Bitwise OR
Syntax: or ra rb rc
Encoding: 11 1 0 lOla a abbbbccc 1 1

Operation: ra €= rb A rc

Performs a bitwise OR of the contents of rb and rc, and stores the result in
register ra. The Z flag is set if the result is zero, and cleared otherwise.

TSTBIT-Test bit
Syntax: tstbit ra k4,u
Encoding: 111 1 1 o1a a alk k k kl 0 0 1

Operation: ra A l < k

Sets the Z flag based on the state of bit k of register ra.

XOR-Bitwise XOR
Syntax: xor ra rb rc
Encoding: I1 1 1 1 0oa a a b b c c c 0 0

Operation: ra €= rb E rc

Performs a bitwise exclusive OR of the contents of rb and rc, and stores the
result in register ra. The Z flag is set if the result is zero, and cleared otherwise.

A.6 Shifts

ASR-Arithmetic shift right
Syntax: asr ra rb
Encoding: 11 1 1 1 aa bbb b10 0 0 1 0
Operation: ra €= ra >> rb

Shifts the contents of register ra right by the number of bits specified in register
rb (modulo 16), filling in the MSBs with whatever was the original state of the

145

.4

MSB. The result is written back to register ra. The Z and N flags are updated
based on the result of the shift.

ASRI-Arithmetic shift right by immediate

Syntax:
Encoding:
Operation:

asri ra k4,u
11 1 1 10la a alk k k k0O 0 0 1

ra = ra >> k

Shifts the contents of register ra right by k bits (filling in the MSBs by replicating
the original MSB so that the sign is not changed) and stores the result back in
register ra. The Z flag is set if the result is zero, and cleared otherwise.

LSL-Shift left
Syntax:
Encoding:
Operation:

lsl ra rb
11 1 1 1 a a ab b b10 1 0 1

ra ý= ra <K rb[3 :o]

Shifts the contents of register ra left by the number of bits specified in register
rb (modulo 16), filling in the LSBs with zeros. The result is written back to
register ra. The Z and N flags are updated based on the result of the shift.

LSR-Logical shift right

Syntax:
Encoding:
Operation:

lsr ra rb
11 1 1 1 la a alb b bll 0 0 1 0

ra - ra > rb

Shifts the contents of register ra right by the number of bits specified in register
rb (modulo 16), filling in the MSBs with zeros. The result is written back to
register ra. The Z and N flags are updated based on the result of the shift.

LSRI-Logical shift right by immediate

Syntax:
Encoding:
Operation:

lsri ra k4,u
11 1 1 1 Oa a aa k k k k1 0 0 11

ra <= ra > k

Shifts the contents of register ra right by k bits (filling in the MSBs with zeros)
and stores the result back in register ra. The Z flag is set if the result is zero,
and cleared otherwise.

ROLI-Roll left by immediate

Syntax:
Encoding:
Operation:

roli ra k4,u
1 1 1 1 Ol1 aalk k k kll 1 0 1

(see description)

Rotates the contents of register ra left by k bit. (The k MSBs are moved to the
LSBs and all the other bits are shifted left k bits.) The result is written back
into ra. (There is no roll right instruction, as right rolls can be accomplished
by rolling left by 16 - k bits.)

146

A.7 Multiplication

MAC-Multiply and accumulate

Syntax:
Encoding:
Operation:

mac ra rb
11 11 ia a alb b b1 0 01

{mr2, mrl, mr0} 4= ra x rb + {mr2, mrl, mr0}

Performs a signed multiplication of the contents of registers ra and rb and adde
the results to the three multiplication result registers, mrO, mrl, and mr2.

MACU-Unsigned multiply and accumulate

Syntax:
Encoding:
Operation:

macu ra rb
11 1 1 1 1 aa abbb b1l 0 0 1

{mr2, mrl, mrO} = ra x rb + {mr2, mrl, mrO}

Performs an unsigned multiplication of the contents of registers ra and rb and
adde the results to the three multiplication result registers, mrO, mrl, and mr2.

MUL-Multiply

Syntax:
Encoding:
Operation:

mul ra rb
1 1 1 1 1ia a ab b b10 1 1 0 1

{mr2, mrl, mrO} I= ra x rb

Performs a signed multiplication of the contents of registers ra and rb and stores
the results in the multiplication result registers mrO and mrl. Register mr2 is
cleared.

MULU-Unsigned multiply

Syntax:
Encoding:
Operation:

mulu ra rb
1 1 1 1 11a a alb b b1 1 1 0 1

{mr2, mrl, mrO} = ra x rb

Performs an unsigned multiplication of the contents of registers ra and rb and
stores the results in the multiplication result registers mrO and mri. Register
mr2 is cleared.

A.8 Loads

LDB-Load byte

Syntax:
Encoding:
Operation:

Idb ra rb
11 11 Ia a alb b bl 1010
ra = mem8[rb]

Loads general-purpose register ra with the zero-extended contents of the byte
memory location addressed by general-purpose register rb.

147

LDH-Load high byte with immediate

Syntax:
Encoding:
Operation:

ldh ra k8s,
1 o 1 1oa a alk k k k k k k k

ra = {k, ra[7: 0]}

Sets the most significant eight bits of general-purpose register ra to the contstant
k. The least significant bits of ra are not affected.

LDI-Load with register offset

Syntax:
Encoding:
Operation:

Idi ra rb rc
1 1 1 a a abbb ccc 00

ra -= meml6[ra + rb]

Loads general-purpose register ra with the contents of the memory location
addressed by adding the contents of general-purpose registers rb and rc.

LDIB-Load byte with register offset

Syntax:
Encoding:
Operation:

Idib ra rb rc
1 1 1 0 0oa a abbb bcc0 1

ra = mems [rb + rc]

Loads general-purpose register ra with the zero-extended contents of the byte
memory location addressed by adding the contents of general-purpose registers
rb and rc.

LDINC-Load with postincrement

Syntax:
Encoding:
Operation:

Idinc ra rb
11111 aa bbb 1 1 1 1 0

ra = meml6[rb]
rb = rb + 2

Loads general-purpose register ra with the contents of the memory location ad-
dressed by general-purpose register rb. The contents of rb are then incremented
by two.

LDINCB-Load byte with postincrement

Syntax:
Encoding:
Operation:

ldincb ra rb
1 1 1 1 1a a alb b b1 0 0 0 1

ra = mems[rb]
rb = rb + 1

Loads general-purpose register ra with the zero-extended contents of the byte
memory location addressed by general-purpose register rb. Register rb is then
incremented by one.

148

LDL-Load low byte with immediate

Syntax:
Encoding:
Operation:

1dl ra ks,s
1 o 1 1 11a a alk k k k k k k k
ra e= sign extend(k)

Sets the contents of general-purpose register ra to the sign-extended 8-bit con-
stant k.

LDO-Load with immediate offset

Syntax:
Encoding:
Operation:

Ido ra rb ks5,,ev
11 1 0 10la a alb b blk k k k k

ra .= meml 6 [rb + k]

Loads general-purpose register ra with the contents of the memory location
addressed by adding the 5-bit unsigned constant k to the contents of general-
purpose register rb

LDP-Load from peripheral address

Syntax:
Encoding:
Operation:

ldp ra kperiph
1 1 oola alkkkkkkkk

ra <= memn16 [k]

Loads the general-purpose register ra with data read from the peripheral con-
trol register at memory address k. The constant k must be even and in the
range OxFE00 through OxFFFE. (Only the constant k - OxFE00 is encoded in the
instruction.)

LDSH-Load high register from stack

Syntax:
Encoding:
Operation:

Idsh rh kg,u,ev
11 0001 lh h hhhk k k k k k k k
rh = meml6[sp + k]

Loads the special-purpose register rh with the contents of the memory location
addressed by adding the 9-bit unsigned, even constant k to the stack pointer
(r12).

LDSL-Load low register from stack

Syntax:
Encoding:
Operation:

ldsl ra k9,,,ev
1 0 0 oooola a ak k k k k k k k

ra = mem16[sp + k]

Loads general-purpose register ra with the contents of the memory location
addressed by adding the 9-bit unsigned, even constant k to the stack pointer
(r12).

149

A.9 Stores

STB-Store byte

Syntax: stb ra rb
Encodina: I 1 1 1 la a al bbb 0 0 1 01
Operation: mem8 [rb] = ra

Stores the low eight bits of the contents of ra at the address in register rb.

STI-Store with register offset

Syntax:
Encoding:
Operation:

sti ra rb rc
1 1 1 oa a aaabbbc cc 1 0

mem 16 [rb + rc] = ra

Stores the contents of general-purpose register ra at the memory location ad-
dressed by adding the contents of general-purpose registers rb and rc.

STIB-Store byte with register offset

Syntax:
Encoding:
Operation:

stib ra rb rc
11 1 0 0l a a abbb c cc 1 1

mems [rb + rc] e= rc

Stores the least-significant byte of general-purpose register ra at the byte mem-
ory location addressed by adding the contents of general-purpose registers rb
and rc.

STINC-Store with postincrement

Syntax:
Encoding:
Operation:

stinc ra rb
11 11 1laa alb bb 0 0 0 0 11
meml6[rb] 4= ra
rb -= rb + 2

Stores the contents of general-purpose register ra at the memory location ad-
dressed by general-purpose register rb. Register rb is then incremented by two.

STINCB-Store byte with postincrement

Syntax:
Encoding:
Operation:

stincb ra rb
11 1 11a a alb b bl0 1 0 0 1
mems[rb] 4= ra
rb e= rb + 1

Stores the least-significant byte of general-purpose register ra at the memory lo-
cation addressed by general-purpose register rb. Register rb is then incremented
by one.

150

.I

STO-Store with immediate offset
Syntax: sto ra rb ks,u,ev
Encoding: 1 1o0 1 1laaalbbblkkkkkI

Operation: meml6[ra + k] = rb

Stores the contents of general-purpose register ra at the memory location ad-
dressed by adding the 5-bit unsigned constant k to the contents of general-
purpose register rb.

STP-Store to peripheral address

Syntax: stp ra kperiph
Encoding: i o 1 o0 1aa alkkkkkkkk
Operation: mem 16[k] = ra

Stores the contents of general-purpose register ra to the peripheral control regis-
ter at memory address k. The constant k must be even and in the range OxFE00
through OxFFFE. (Only the constant k - OxFE00 is encoded in the instruction.)

STSH-Store high register to stack

Syntax: stsh rh kg,u,ev
Encoding: 11 00 1 11hhhlkkkkkkkk

Operation: mem 16[sp + k] = rh
Stores the contents of special-purpose register rh to the memory location ad-
dressed by adding the 9-bit unsigned, even constant k to the stack pointer (r12).

STSL-Store low register to stack

Syntax: stsl ra k9,u,ev
Encoding: 110 0 1 oloaaalkkkkkkkk
Operation: mem16 [sp + k] = ra

Stores the contents of general-purpose register ra to the memory location ad-
dressed by adding the 9-bit unsigned, even constant k to the stack pointer (r12).

A.10 Other

CEI-Disable interrupts

Syntax: cei
Encoding: 11 1 1 1 0 0 0 1

Operation: I -= 0

Clears the I flag, disabling all

1111111

interrupts.

CEQ-Disable cache

Syntax: ceq
Encoding: 111 1 1 0 1 0 0 1 1 1 1111

Operation: Q €= 0

Clears the Q flag, disabling the instruction cache.

151

FLUSH-Flush cache
Syntax: flush
Encoding: 1 1 1 1 0 1 0 1 1111111

Operation: (see description)

Invalidates the contents of the instruction cache. (Clears all of the valid flags.)

FREEZE-Freeze cache
Syntax: freeze
Encoding: r111110 110 1111111

Operation: F -= 1

Sets the F, locking the contents of the cache.

J-Jump

Syntax: j ra
Encoding: 1 1 1 1 11iaa aa• 0 0 1 1 1 1 1i

Operation: rpc <= ra

Jumps to the location in register ra,

JL-Jump and link

Syntax: jl ra
Encoding: 11 1 1 1 1 a al 0 0oo 1 1 1 1 11

Operation: reglp - pc + 2
pc -= ra

Stores the location of the next instruction (pc + 2) in the linkage pointer register
lp, and then jumps to the location in register ra.

MOVHL-Move (low register to high register)

Syntax: movhl rh rb
Encoding: 1 1 1 1 llh hhhlbbb0 1 1 1 11

Operation: rh -= rb

Copies the contents of register rb into register rh.

MOVLH-Move (high register to low register)

Syntax: movlh ra rh
Encoding: 1 1 1 1aaaahhhl 0 111

Operation: ra €= rh

Copies the contents of register rh into register ra.

MOVLL-Move (low register to low register)
Syntax: movll ra rb
Encoding: I1 1 1 1 •aaabbb bO 0 1 1 11

Operation: ra = rb

Copies the contents of register rb into register ra.

152

NOP-Null operation

Syntax: nop
Encoding: 1 11 1 1 1 1 1 1 1 1 1 111111

Operation: (none)

Does nothing.

RET-Return from subroutine
Syntax: ret
Encoding: 1 11 1 1 1 1 0 1 1 1 1 1 1 1 1

Operation: pc €= lp

Resumes execution at the address in the linkage pointer register, lp.

RFE-Return from exception

Syntax: rfe
Encoding: 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1

Operation: CC[7:0] €= CC[l 5 :S]
pc -= erp

Copies the high eight bits of the condition code register (15) into the low eight
bits of that register, and then resumes execution at the address stored in

SEI-Enable interrupts

Syntax: sei
Encoding: 11 11110011111111
Operation: I # 1

Sets the I flag, enabling interrupts.

SEQ-Enable cache

Syntax: seq
Encoding: 1111111 0 0 1 1 11111

Operation: Q ' 1

Sets the Q flag, enablging the instruction cache.

SWI-Software interrupt

Syntax: swi
Encoding: 1111100l 1 1 1 1 1 1 1
Operation: (see description)

Causes an exception to be taken and execution to jump to the address Ox001C.

SXT-Sign extend

Syntax: sxt ra rb
Encoding: 11 1 1 1 1| a aab b b 0 0 1 0 1

Operation: ra #= sign extend(rb[7:o])

Sign extends the contents of register rb and stores the result in register ra.

153

THAW-Thaw cache
Syntax: thaw
Encoding: 1 1 1 1 1 1 1 1 10 1 1 111 1
Operation: F 4= 0

Clears the F flag, unlocking the contents of the cache.

WAIT-Wait for interrupt

Syntax: wait
Encoding: [1111100111111111
Operation: (see description)

Stops the CPU clock until an unmasked interrupt request occurs.

154

Appendix B

On-Chip Peripherals

B.1 ADC Interface

The ADC interface is designed to control a custom external ADC part, described

in [21]. Conversions can be initiated manually (using the RY bit in the interface

configuration register) or automatically at a rate programmed by the sample rate

register.

Configuration and Status (OxFE00)

Bit 15 14 13 12 11 10 9 8 7 6 5
SRY undefined AS PR

Reset 0 --- 0 x x x
Access rw ----- rw rw rw rw

CRD-Conversion clock divider (bits 6-0)
Controls the frequency of the clock supplied to
clock is obtained by dividing the system clock
one. (fade = fsys/(CRD + 1))

4 3 2
CRD

x x X
rw rw rw

the external
by the value

1 0

x x
rw rw

ADC. The ADC
in this field plus

PR-Precision (bit 7)
Selects 8-bit precision when 0 or 12-bit precision when 1

AS-Autosample (bit 8)
When set, conversions are initiated automatically at the rate specified by the
sample rate register

RY-Data ready/manual sample trigger (bit 15)
This bit will read one if there is a valid conversion result that has not been read
yet waiting in the sample data register. Writing a one to this bit will initiate

155

I

a conversion manually. This bit is automatically cleared when the sample data
register (OxFEO6) is read.

Sample rate register (OxFE02)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3

Reset x x x x x x x x x x x x x
Access rw rw rw rw rw rw rw rw rw rw rw rw rw

2 1 0

x x x
rw rw rw

When autosampling is enabled, conversions will be initiated at a rate determined by
dividing the system clock by the value in this register.

Offset register (OxFE04)

Bit 15 14 13 12 11 10 9

Reset x x x x x x x
Access rw rw rw rw rw rw rw

8 7 6 5 4 3 2 1 0

x x x x x x x x x
rw rw rw rw rw rw rw rw rw

The value in this register is subtracted from the raw conversion result (e.g. to remove
a dc offset).

Sample data register (OxFEO6)

Bit 15 14 13 12 11 10 9

Reset x x x x x x x
Access r r r r r r r

8 7 6 5 4 3 2

x x x x x x
r r r r r r

Contains the measurement result from the most recent conversion.

B.2 DMA Engine

The DMA engine supports up to four transfers at once. Each channel is controlled by

its own set of of four registers: registers OxFE20-OxFE26 control channel 0, registers

OxFE28-OxFE2E control channel 1, registers OxFE30-OxFE36 control channel 2, and

registers OxFE38-OxFE3E control channel 3. Only one channel can be active on any

given clock cycle. The channels have a hard-wired priority order, with channel 0

having the highest priority and channel 3 the lowest.

Configuration and Status (OxFE20, OxFE28, OxFE30, OxFE38)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EN undefined DBYI SBY ID IS DTR STR

Reset 0 - - - 0 0 0 0 0 0 0 0 0 0 0 0
Access rw - - - rw rw rw rw rw rw rw rw rw rw rw rw

156

1 0

x x x
r r r

I I

I I

STR-Source trigger (bits 3-0)
Selects the signal used to control when transfers occur, according to the table
below.

ADC sample ready
FIR input ready
FIR output ready
FFT ready for input
FFT output ready
SPI1 transmitter ready
SPI1 received data ready
SPI2 transmitter ready

SPI2 received data ready
UART received data ready
UART transmitter ready
undefined
undefined
undefined
undefined
None (trigger immediately)

DTR-Destination trigger (bits 7-4)
Selects the signal used to control when transfers occur, according to the same
table as for the source trigger

IS-Increment source (bit 8)
When this field is one, the source pointer is incremented (by one if the source
is byte-wide, by two if the source is word wide) after every transfer.

ID-Increment destination (bit 9)
When this field is one, the destination pointer is incremented (by one if the
destination is byte-wide, by two if the destination is word wide) after every
transfer.

SBY-Source is byte-wide (bit 10)
When one, the source is byte-wide; when zero, the source is word-wide

DBY-Destination is byte-wide (bit 11)
When one, the destination is byte-wide; when zero, the destination is word-wide

EN-Channel enable (bit 15)
When set, the channel is enabled. A transfer can be paused by clearing this bit
while the transfer is in progress. The transfer will resume when the bit is set
again.

Count (OxFE22, OxFE2A, OxFE32, OxFE3A)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Number of values to transfer. (When read, gives the number of values left to transfer.)

157

Source Pointer (OxFE24, OxFE2C, OxFE34, OxFE3C)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Source address for the transfer

Destination Pointer (OxFE26, OxFE2E, OxFE36, OxFE3E)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Destination address for the transfer

B.3 FFT Accelerator

The FFT accelerator performs 128-, 256-, 512-, and 1024-point real-value Fourier

transforms, and 64-, 128-, 256-, and 512-point complex Fourier transforms. The

configuration register must be written to initiate a transform computation. Then the

input data values are written in order to the data register. The transform computation

begins automatically once the last input value is loaded. When the transform is

complete (stage 3, as reported by the status register), the output data is read from

the data register.

Configuration (OxFE40)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
undefined CPX LEN

Reset - - - - - - 0 0 0
Access -- - w w w

LEN-Transform Length (bits 1-0)
Sets the number of in the transform points, according to the following table

Real 0 128 points 1 256 points 2 512 points 3 1024 points
Complex 0 64 points 1 128 points 2 256 points 3 512 points

CPX-Transform type (bit 2)
Sets the type of transform

158

Status (OxFE40)

Bit 15 14 13 12 11 10 9 8
undefined I

Reset - - - - 0 0 0 0
Access - - - - r r r r

STG-Stage (bits 1-0)
Indicates progress of the transform

0 Idle
1 Reading input data
2 Computing transform
3 Output data ready

OVF-Overflow flags (bits 11-2)
Indicates whether overflow occurred
output values are divided by two for

Data (OxFE42)

Bit 15 14 13 12 11 10

Reset x x x x x x x x

Access rw rw rw rw rw rw rw rw

7 6
OVF

0 0
r r

5 4 3 2 1 0
I STG I

0 0 0 0 0 0
r r r r r r

on each of the butterfly stages. The final
every bit that is set in this field.

9 8 7 6 5 4 3 2 1 0

x x x x x x x x
W 1W 1W 1W 1W 1W 17W 1W

Input data for the transform is written to this register. When the transform is com-
plete, the results are read from this register.

B.4 FIR Accelerator

Configuration and Status (OxFE60)

Bit 15 14 13 12 11 10 9
OY IY undefined

Reset 0 0
Access r r .

NTPS-Number of taps (bits 2-0)

8 7 6 5 4 3 2 1 0
TYP - NTPS

- - - 0 0 - 0 0 0
- - - rw rw - rw rw rw

TYP-Filter type (bits 5-4)
Sets the type of filter to implement
0 Asymmetric 1 Symmetric 2 undefined

IY-Input ready (bit 14)
Indicates that the accelerator is ready for a new
the sample data register.

I

3 Anti-symmetric

input sample to be written to

OY-Output ready (bit 15)
Indicates that an output sample is ready to be read from the sample data
register. Reading from the sample data register automatically clears this flag.

159

L

Scaling and Decimation (OxFE62)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
undefined DECI undefined SCALE

Reset - - - 0 0 0 0 0 - - 0 0 0 0 0
Access - - - rw rw rw rw rw - - r w rw rw rw rw

SCALE-Scale factor (bits 4-0)
The data values read from the sample data register are formed by shifting the
contents of the internal 25-bit accumulator right by the number of bits specified
by this field.

DECI-Decimation factor (bits 12-8)
Sets the number of input samples that must be written between each output
sample computation. When zero, an output sample is computed for every input
sample; when one, an output sample is computed for every other input sample,
etc.

Coefficient (OxFE64)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
I Coefficient

Reset x x x x x x x x x
Access w w w w w w w w w

Sample Data (OxFE66)

Bit 15 14 13 12

Reset x x x x
Access rw rw rw rw

X X X X X X X
W W W W W W W

11 10 9 8 7 6 5 4 3 2 1

X X X X X X X X X X X
rw rw rw rw rw rw rw rw rw rw rw rw

B.5 General-Purpose I/O

Sixteen pins are available for general-purpose I/O. Each pin can be individually con-

figured as either an input or an output. Each pin can be configured as a level-sensitive

interrupt request line. (All GPIO interrupts share a single interrupt vector, however.)

GPIO pins can be configured to generate timer input capture events, or to be con-

trolled by timer output compare events.

Input/Output (OxFE80)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GPIO state

Reset x x x x x x x x x x x x x x x x

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

160

·my_

I
I

Direction

(0xFE82)

t iB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direction control
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

IRQ (OxFE84)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Setting a bit in this register configures the corresponding GPIO pin as a level sensitive
interrupt request signal.

Sense (OxFE86)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

For any GPIO pin configured as an interrupt request signal, determines whether the
request is active low (the corresponding bit in this register is clear) or active high
(the corresponding bit is set).

OC1 Mask (OxFE88)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

If the timer OC1 signal is set, GPIO outputs are driven with the bitwise OR of this
register and the GPIO output register.

OC2 Mask (OxFE90)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

If the timer OC2 signal is set, GPIO outputs are driven with the bitwise OR of this
register and the GPIO output register.

IC1 Mask (OxFE92)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

The IC1 signal to the timer module is formed by bitwise ANDing this register with
the state of the GPIO pins, and then ORing all of the bits together.

161

_.v

IC2 Mask (OxFE94)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw

0 0 0 0 0 0 0
rw rw rw rw rw rw rw

The IC2 signal to the timer module is formed by bitwise ANDing this register with
the state of the GPIO pins, and then ORing all of the bits together.

B.6 Power Management Unit

Interrupt Mask (OxFEAO)

Bit 15 14 13 12 11 10 9 8
undefined UTX URX SP2 SP1

Reset - - 0 0 0 0
Access rw rw rw rw

7 6 5 4 3 2 1 0
I FIO I FII IADC FFT IRTC I GIO I TIM IDMAI

0 0 0 0 0 0 0 0
rw rw rw rw rw rw rw rw

DMA-Enable DMA interrupts (bit 0)

TIM-Enable timer interrupts (bit 1)

GIO-Enable GPIO interrupts (bit 2)

RTC-Enable RTC interrupts (bit 3)

FFT-Enable FFT interrupts (bit 4)

ADC-Enable ADC interrupts (bit 5)

FII-Enable FIR input interrupts (bit 6)

FIO-Enable FIR output interrupts (bit 7)

SP1-Enable SPI1 interrupts (bit 8)

SP2-Enable SPI2 interrupts (bit 9)

URX-Enable UART receive interrupts (bit 10)

162

0 0
rw rw

UTX-Enable UART transmit interrupts (bit 11)

Wakeup Mask (OxFEA2)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
F BOOT WS - WAKMSK

Reset * * 0 - 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw r - rw rw rw rw rw rw rw rw rw rw rw rw

WAKMSK-Wakeup mask (bits 11-0)
Determines which interrupt sources can wake the CPU from power-down.

WS-Warmstart flag (bit 13)
This flag is cleared by a chip-level reset, and is set whenever the CPU is powered
down.

BOOT-Boot mode (bits 15-14)
This field contains the state of the boot mode pins on reset.

Clock Enable (OxFEA4)

Bit 15 14 13 12 11 10 9 8

I undefined VIRRFTIIRE1FTE44
Reset - - - 0 0 0 0 0

Access - - - rw rw rw rw rw

MEM-Memory bank enables (bits 8-0)

FFTEN-FFT enable (bit 9)

FIREN-FIR enable (bit 10)

FFTRS-FFT reset (bit 11)

FIRRS-FIR reset (bit 12)

Power Enable (OxFEA6)

7 6 5 4 1 0
MEM

0 0 0 0
rw rw rw rw

0 0 0 0
rw rw rw rw

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PUI undefined FIRP FTfI MEM

Reset 0 - - - - 0 0
Access rw - - - - rw rw

0 0 0 0 0 0
rw rw rw rw rw rw

MEM-Memory power enable (bits 8-0)

163

0 0 0
rw rw rw

FFTP-FFT power enable (bit 9)

FIRP-FIR power enable (bit 10)

CPUP-CPU power enable (bit 15)

B.7 Real-Time Clock

The real-time clock (RTC) consists of a 32-bit counter clocked at 32.768 kHz, and a

32-bit compare register.

Configuration (OxFECO)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset

I undefined E
0 - - 0

Access r - -

E-Interrupt request enable (bit 0)

I-Interrupt request flag (bit 15)

Temp (OxFEC2)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset x x x x x x x x x x x x x x x x

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Used store/supply the upper 16 bits during reads/writes of the 32-bit counter and
compare registers.

Counter (OxFEC4)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Counter Register

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Compare (OxFEC6)

Bi.t 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Compare Register

164

Reset x x x x x x x x x x x x x x x x

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

-- vv

_vv

B.8 SPI Ports

Configuration (OxFEEO, OxFF00)

t iB 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCRATCH PD JPWR PHS I POL RATE
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RATE-Clock Rate (bits 6-0)

POL-Clock Polarity (bit 7)

PHS-Clock Phase (bit 8)

PWR-Power Enable (bit 9)

PD-Pullup Enable (bit 10)
For MISO

SCRATCH-Scratch pad (bits 15-11)

Status (OxFEE2, OxFF02)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
undefined RF TF I

Reset- --------- 0 0 0
Access --------- -r r r

I-Idle (bit 0)

TF-Transmitter FIFO full (bit 1)

RF-Receiver FIFO full (bit 2)

Data (OxFEE4, OxFF04)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
undefined Data

Reset --.- - - x x x x x x x x
Access - ------ rw rw rw rw rw rw rw rw

Data-Data (bits 7-0)

165

-- w

Chip Select (OxFEE6, OxFFO6)
Bit 15 14 13 12 11 10 9 8

I undefined
Reset - - -

Access - -

CS-Chip Select (bit 0)

2 1 0
I PW I CS I

- 0 0
- w rw

PW-Power Enable (bit 1)

B.9 Timer

The timer consists of a free-running counter, two output compare registers, and two

input capture registers. The counter, compare, and capture registers are all 32 bits

wide, although only the low 16 bits of each register are directly accessible. Whenever

one of these registers is read, the high 16 bits of the register are copied into a tem-

porary register (OxFF22) where they can be read out later. Similarly, during a write

to any of these 32-bit registers, the contents of the temporary register are copied into

the high 16 bits of the register being written. In C programs, these registers can

be accessed directly as though they were 32 bits wide: the compiler automatically

generates the necessary reads or writes of the temporary register.

When the RUN bit in the configuration register is set, the counter increments on

every system clock cycle. The counter can be read or written to at any time. When

the counter overflows from OxFFFFFFFF to Ox00000000, the OVF flag is set in the

status register, which may be configured to generate an interrupt request.

When the counter register is equal to one of the output compare registers, an

output compare event occurs, and the corresponding OCx flag in the status register is

set (which may cause an interrupt request). Output compare events can be configured

to automatically toggle GPIO pins: see the GPIO module documentation for details.

When an input capture event occurs (as defined in the GPIO module), the cur-

rent contents of the counter register are copied into the corresponding input capture

register, and the the corresponding ICx flag is set in the status register (which may

cause an interrupt request).

166

1

Configuration (OxFF20)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CO1 SO21CO1SOl undefined RUNloVMI IC2M IC1M OC2M OC1M

Reset 0 0 0 0
Access w w w w

- - 0 0
- -- W

OC1M-OC1 Mode (bits 1-0)
Determines what happens when an output compare 1 event occurs
0 Nothing happens
1 An interrupt is requested
2 An interrupt is requested and the OC1 controlled GPIO pins are set
3 An interrupt is requested and the OC1 controlled GPIO pins are cleared

OC2M-OC2 Mode (bits 3-2)
Determines what happens when an output compare 2 event occures

0 Nothing happens
1 An interrupt is requested
2 An interrupt is requested and the OC2 controlled GPIO pins are set
3 An interrupt is requested and the OC2 controlled GPIO pins are cleared

IC1M-IC1 Mode (bits 5-4)
Determines what kind of transitions on the
event

0 IC1 events are disabled
1 A falling edge will cause an IC1 event
2 A rising edge will cause an IC1 event
3 Any edge will cause an IC1 event

IC2M-IC2 Mode (bits 7-6)
Determines what kind of transitions on the
event
0 IC2 events are disabled
1 A falling edge will cause an IC2 event
2 A rising edge will cause an IC2 event
3 Any edge will cause an IC2 event

IC1 GPIO pins will cause an IC1

IC2 GPIO pins will cause an IC2

OVM-Overflow Mode (bit 8)
When set, the OVF flag will cause an interrupt request. When clear, the OVF
flag can still be polled, but will not generate interrupt requests.

RUN-Main counter enable (bit 9)
When set, the counter register increments on every system clock cycle. When
clear, the counter register is disabled to save power.

SO1-Set OC1 pins (bit 12)
Writing a 1 to this bit will cause the OC1 controlled GPIO pins to be set

CO1-Clear OC1 pins (bit 13)
Writing a 1 to this bit will cause the OC1 controlled GPIO pins to be cleared

167

0 0
w w

0 0
w w

0 0
w w

0 0
w w

S02-Set OC2 pins (bit 14)
Writing a 1 to this bit will cause the OC2 controlled GPIO pins to be set

CO--Clear OC1 pins (bit 15)
Writing a 1 to this bit will cause the OC2 controlled GPIO pins to be cleared

Status (OxFF20)

Bit 15 14 13 12 11 10 9 8 7 6 5
IC2 IC1 OC2 OC1 undefined

Reset x x 0 0
Access r r r r

OC1F-OC1 Interrupt Flag (bit 0)
When set, indicates an OC1 event has occurred.
the status register is read.

OC2F-OC2 Interrupt Flag (bit 1)
When set, indicates an OC2 event has
the status register is read.

IC1F-IC1 Interrupt Flag (bit 2)
When set, indicates an ICI event has occurred.
the status register is read.

IC2F-IC2 Interrupt Flag (bit 3)
When set, indicates an IC2 event has occurred.

4 3 2 1 0
OVF IC2F ICIF C2 CI

0 0 0 0 0
r r r r r

Automatically cleared when

occurred. Automatically cleared when

Automatically cleared when

Automatically cleared when
the status register is read.

OVF-Overflow Flag (bit 4)
When set, indicates the counter register has overflowed from OxFFFFFFFF to
Ox00000000. Automatically cleared when the status register is read.

OC1-OC1 State (bit 12)
Indicates the state of the OC1 controlled GPIO pins

OC2-OC2 State (bit 13)
Indicates the state of the OC2 controlled GPIO pins

IC1-IC1 State (bit 14)
Indicates the state of the IC1 GPIO pins

IC2-IC2 State (bit 15)
Indicates the state of the IC1 GPIO pins

Temp (OxFF22)
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Reset x x x x x x x x x x x x x x x x

Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Temporary Register

168

Counter (OxFFF4)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Main Counter

Output Compare 1 (OxFFF6)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Output Compare 1 Match Register

Output Compare 2 (0xFFF8)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Output Compare 2 Match Register

Input Compare 1 (OxFFFA)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Input Compare 1 Match Register

Input Compare 2 (OxFFFC)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Input Compare 2 Match Register

B.10 UART

Configuration and Status (OxFF40)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
undefined RR TR TB TE RE

Reset ----------- x x x 0 0
Access ----------- r r r rw rw

169

RE-Receiver enable (bit 0)

TE-Transmitter enable (bit 1)

TB-Transmitter busy (bit 2)

TR-Receiver ready (bit 3)
When high, data is ready to be read from the receive data register.

RR-Transmitter ready (bit 4)
When this flag is high, data can be written into the transmit data register.

Baud Rate (OxFF42)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset x x x x x x x x x x x x x x x x
Access rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Data (OxFF44)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
undefined

Reset - ----- x x x x x x x x
Access -. ------ rw rw rw rw rw rw rw rw

Data Register (bits 7-0)

170

Bibliography

[1] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, "Instrumenting the world with
wireless sensor networks," in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 4, 2001, pp. 2033-2036.

[2] K. Bult, A. Burstein, D. Chang, M. Dong, M. Fielding, E. Kruglick, J. Ho,
F. Lin, T. Lin, W. Kaiser, H. Marcy, R. Mukai, P. Nelson, F. Newburg, K. Pister,
G. Pottie, H. Sanchez, O. Stafsudd, K. Tan, S. Xue, and J. Yao, "Low power
systems for wireless microsensors," in International Symposium on Low Power
Electronics and Design (ISLPED), 1996, pp. 17-21.

[3] "Panasonic CR2477 datasheet." [Online]. Available: http://www.panasonic.
com/industrial/battery/oem/

[4] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, "Design
considerations for solar energy harvesting wireless embedded systems," in Infor-
mation Processing in Sensor Networks (IPSN), 2005.

[5] "Perpetuum PMG17 datasheet." [Online]. Available: http://www.perpetuum.
co.uk

[6] R. Guigon, J.-J. Chaillout, T. Jager, and G. Despesse, "Harvesting raindrop
energy: Experimental study," Smart Materials and Structures, vol. 17, no. 1, p.
015039 (6pp), 2008.

[7] V. L. Tom, Torfs, P. Fiorini, and C. V. Hoof, "Thermoelectric converters of
human warmth for self-powered wireless sensor nodes," IEEE Sensors Journal,
vol. 7, no. 5, pp. 650-657, May 2007.

[8] R. Min, M. Bhardwaj, S.-H. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and
A. Chandrakasan, "Energy-centric enabling technologies for wireless sensor net-
works," IEEE Wireless Communications, vol. 9, no. 4, pp. 28-39, August 2002.

[9] R. Min, M. Bhardwaj, N. Ickes, A. Wang, and A. Chandrakasan, "The hardware
and the network: Total-system strategies for power aware wireless microsensors,"
in IEEE CAS Workshop on Wireless Communications and Networking, 2002.

[10] J. Hill and D. Culler, "A wireless embedded sensor architecture for system-level
optimization," UC Berkeley Technical Report, 2002.

171

[11] B. A. Warneke and K. S. Pister, "An ultra-low energy microcontroller for smart
dust wireless sensor networks," in International Solid-State Circuits Conference
(ISSCC), February 2004.

[12] V. Ekanayake, I. Clinton Kelly, and R. Manohar, "An ultra low-power processor
for sensor networks," in Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2004, pp. 27-36.

[13] L. Nazhandali, B. Zhai, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant,
T. Austin, and D. Blaauw, "Energy optimization of subthreshold-voltage sen-
sor network processors," in International Symposium on Computer Architecture
(ISCA), 2005, pp. 197-207.

[14] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and D. Brooks, "An ultra
low power system architecture for sensor network applications," in International
Symposium on Computer Architecture (ISCA), 2005, pp. 208-219.

[15] M. Bajura, B. Schott, J. Flidr, J. Czarnaski, C. Worth, T. Tho, and L. Wang,
"An integrated, modular, power-aware microsensor architecture and application
to unattended acoustic vehicle tracking," International Society for Optical En-
gineering (SPIE), 2005.

[16] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel, "The Intel mote
platform: a bluetooth-based sensor network for industrial monitoring," in Infor-
mation Processing in Sensor Networks (IPSN), 2005, p. 61.

[17] R. Adler, M. Flanigan, J. Huang, R. Kling, N. Kushalnagar, L. Nachman, C.-Y.
Wan, and M. Yarvis, "Intel Mote 2: An advanced platform for demanding sensor
network applications," in Embedded Networked Sensor Systems (SenSys), 2005,
pp. 298-298.

[18] "Stargate datasheet." [Online]. Available: http://www.xbow.com/Products/
Product_pdffiles/Wireless_pdf/Stargate_Datasheet.pdf

[19] R. Riley, B. Schott, J. Czarnaski, and S. Thakkar, "Power-aware acoustic process-
ing," in Information Processing in Sensor Networks (IPSN), 2003, pp. 566-581.

[20] M. Stanacevic and G. Cauwenberghs, "Micropower mixed-signal acoustic local-
izer," in European Solid-State Circuits Conference (ESSCIRC), 2003, pp. 69-72.

[21] N. Verma and A. P. Chandrakasan, "A 2 5pw 100ks/s 12b ADC for wireless micro-
sensor applications," in International Solid-State Circuits Conference (ISSCC),
2006.

[22] B. Zhai, L. Nazhandali, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant,
D. Blaauw, and T. Austin, "A 2.60pJ/inst subthreshold sensor processor for
optimal energy efficiency," in VLSI Circuits, 2006, pp. 154-155.

172

[23] J. Kwong, Y. Ramadass, N. Verma, M. Koesler, K. Huber, H. Moormann, and
A. Chandrakasan, "A 65nm sub-Vt microcontroller with integrated sram and
switched-capacitor dc-dc converter," in International Solid-State Circuits Con-
ference (ISSCC), 2008, pp. 318-319.

[24] S. Mutoh, T. Douskei, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada, "1-
V power supply high-speed digital circuit technology with multithreshold voltage
cmos," IEEE Journal of Solid-state Circuits, pp. 847-854, August 1995.

[25] J. Kao, A. Chandrakasan, and D. Antoniadis, "Transistor sizing issues and tool
for multi-threshold cmos technology," in Design Automation Conference (DA C),
1997, pp. 409-414.

[26] S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe, and J. Yamada, "A 1-V
high-speed MTCMOS circuit scheme for power-down application circuits," IEEE
Journal of Solid-State Circuits, vol. 32, no. 6, pp. 861-869, June 1997.

[27] H. Mizuno and T. Kawahara, "ChipOS: Open power-management platform to
overcome the power crisis in future lsis," in International Solid-State Circuits
Conference (ISSCC), 2001, pp. 344-345, 463.

[28] M. Anis, S. Areibi, and M. Elmasry, "Design and optimization of multithreshold
CMOS (MTCMOS) circuits," IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 22, no. 10, October 2003.

[29] F. Li, Y. Lin, and L. He, "Fpga power reduction using configurable dual-Vdd,"
in Design Automation Conference (DAC), 2004, pp. 735-740.

[30] Y. Cheng and C. Hu, MOSFET Modeling & BSIM3 User's Guide. Kluwer
Academic Publishers, 1999.

[31] C. K. IV, V. Ekanayake, and R. Manohar, "SNAP: A sensor-network asyn-
chronous processor," in Asynchronous Circuits and Systems, 2003, pp. 24-33.

[32] L. Nazhandali, M. Minuth, B. Zhai, J. Olson, T. Austin, and D. Blaauw, "A
second-generation sensor network processor with application-driven memory op-
timizations and out-of-order execution," in Compilers, Architectures and Syn-
thesis for Embedded Systems (CASES), 2005, pp. 249-256.

[33] B. L. Titzer, D. K. Lee, and J. Palsberg, "Avrora: scalable sensor network
simulation with precise timing," in Information Processing in Sensor Networks
(IPSN), 2005, pp. 477-482.

[34] A. Sinha and A. P. Chandrakasan, "JouleTrack: a web based tool for software
energy profiling," in Design Automation Conference (DAC), 2001, pp. 220-225.

[35] R. A. Ravindran, R. M. Senger, E. D. Marsman, G. S. Dasika, M. R. Guthaus,
S. A. Mahlke, and R. B. Brown, "Increasing the number of effective registers in a
low-power processor using a windowed register file," in Compilers, Architecture
and Synthesis for Embedded Systems (CASES), 2003, pp. 125-136.

173

[36] J. Kin, M. Gupta, and W. H. Mangione-Smith, "The filter cache: an energy
efficient memory structure," in International Symposium on Microarchitecture,
1997, pp. 184-193.

[37] A. Gordon-Ross, S. Cotterell, and F. Vahid, "Exploiting fixed programs in em-
bedded systems: A loop cache example," IEEE Computer Architecture Letters,
vol. 1, no. 1, 2002.

[38] S. Cotterell and F. Vahid, "Tuning of loop cache architectures to programs in
embedded system design," in International Symposium on System Synthesis,
2002, pp. 8-13.

[39] L. H. Lee, B. Moyer, and J. Arends, "Instruction fetch energy reduction using
loop caches for embedded applications with small tight loops," in International
Symposium on Low Power Electronics and Design (ISLPED), 1999, pp. 267-269.

[40] - , "Low-cost embedded program loop caching-revisited," University of
Michigan, Tech. Rep. CSE-TR-411-99, 1999.

[41] R. A. Ravindran, P. D. Nagarkar, G. S. Dasika, E. D. Marsman, R. M. Sen-
ger, S. A.Mahlke, , and R. B. Brown, "Compiler managed dynamic instruction
placement in a low-power code cache," in International Symposium on Code
Generation and Optimization, March 2005, pp. 179-190.

[42] P. Jain, S. Devadas, D. Engels, and L. Rudolph, "Software-assisted cache re-
placement mechanisms for embedded systems," in International Conference on
Computer Aided Design (ICCAD), November 2001, pp. 119-126.

[43] D. J. Wheeler and R. M. Needham, "TEA, a tiny encryption algorithm," in
Internationa Workshop on Fast Software Encryption, 1994, pp. 363-366.

[44] J. B. Rothman and A. J. Smith, "Sector cache design and performance,"
Computer Science Division (EECS), University of California, Berkeley, Tech.
Rep. UCB/CSD-99-1034, 1999. [Online]. Available: http://www.eecs.berkeley.
edu/Pubs/TechRpts/1999/CSD-99-1034.pdf

[45] L. A. Belady, "A study of replacement algorithms for virtual storage computers,"
vol. 5, no. 2, pp. 78-101, 1966.

[46] S. Hosseini-Khayat, "On optimal replacement of nonuniform cache objects,"
IEEE Transactions on Computers, vol. 49, no. 8, pp. 769-778, 2000.

[47] M. Brehob, S. Wagner, E. Torng, and R. Enbody, "Optimal replacement is NP-
hard for nonstandard caches," IEEE Transactions on Computers, vol. 53, no. 1,
pp. 73-76, 2004.

[48] L. Benini, L. Macchiarulo, A. Macii, and M. Poncino, "Layout-driven mem-
ory synthesis for embedded systems-on-chip," IEEE Transactions on Very Large
Scale Integration Systems (VLSI), vol. 10, no. 2, pp. 96-105, April 2001.

174

[49] R. Haukilahti, "Energy characterization of a RTOS hardware accelerator for
SoCs," in Swedish System-on-Chip Conference, Falkenberg, Sweden, March 2002.

[50] J. Goodman and A. P. Chandrakasan, "Low power scalable encryption for wire-
less systems," Wireless Networks, vol. 4, no. 1, pp. 55-70, 1998.

[51] H. Kim, S. Choi, and H.-J. Yoo, "A low power 16-bit RISC with lossless compres-
sion accelerator for body sensor network system," in Asian Solid-State Circuits
Conference (ASSCC), 2006, pp. 207-210.

[52] B. Mathew, A. Davis, and Z. Fang, "A low-power accelerator for the sphinx 3
speech recognition system," in International Conference on Compilers, Architec-
ture and Synthesis for Embedded Systems (CASES), 2003, pp. 210-219.

[53] A. Hodjat and I. Verbauwhede, "Interfacing a high speed crypto accelerator to an
embedded CPU," in Asilomar Conference on Signals, Systems and Computers
(ACSSC), vol. 1, 2004, pp. 488-492.

[54] MSP430xlxx Family userGuide. Texas Instruments Inc., February 2006.

[55] K. Venkat, "Efficient multiplication and division using MSP430," Application
Note SLAA329, 2006. [Online]. Available: http://focus.ti.com/lit/an/slaa329/
slaa329.pdf

[56] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda,, H. Fukuda, and J. Yamada,
"A 1-V multithreshold-voltage CMOS digital signal processor for mobile phone
application," IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1795-
1802, November 1996.

[57] H. Sorensen, D. Jones, M. Heideman, and C. S. Burrus, "Real-valued fast fourier
transform algorithms," IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 35, no. 6, pp. 849-863, 1987.

[58] A. Wang, "An ultra-low voltage fft processor using energy-aware techniques,"
Ph.D. dissertation, Massachusetts Institute of Technology, 2003.

[59] B. H. Calhoun and A. Chandrakasan, "A 256kb sub-threshold SRAM in 65nm
CMOS," in International Solid-State Circuits Conference (ISSCC), 2006, pp.
2592-2601.

[60] N. Verma and A. P. Chandrakasan, "A 65nm 8T sub-Vt SRAM employing sense-
amplifier redundancy," in International Solid-State Circuits Conference (ISSCC),
2007, pp. 328-606.

[61] B. Zhai, D. Blaauw, D. Sylvester, and S. Hanson, "A sub-200mV 6T SRAM
in 0.13/pm CMOS," in International Solid-State Circuits Conference (ISSCC),
2007, pp. 332-606.

175

[62] T.-H. Kim, J. Liu, J. Keane, and C. H. Kim, "A high-density subthreshold SRAM
with data-independent bitline leakage and virtual ground replica scheme," in
International Solid-State Circuits Conference (ISSCC), 2007, pp. 330-606.

[63] I. J. Chang, J.-J. Kim, S. P. Park, and K. Roy, "A 32kB 10T subthreshold
SRAM array with bit-interleaving and differential read scheme in 90nm CMOS,"
in International Solid-State Circuits Conference (ISSCC), 2008, pp. 388-389,622.

176

