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Abstract

In this thesis, we study capacity planning in a general supply chain that contains
multiple products, processes, and resources. We consider situations with demand
uncertainty, outsourcing contracts, and option contracts. We develop efficient and
practical algorithms to address the following three questions: which suppliers should
the manufacturer select, which types of contracts should it use, and how much ca-
pacity should it reserve. Through the model and algorithms, we study the properties
of, and draw managerial insights about the optimal capacity planning strategy.

First, we propose a model to study the single period capacity planning problem.
We provide closed-form representations of the optimal capacity planning strategy for
two special supply chain structures. We then develop a stochastic linear programming
algorithm to solve the general single period problem and show that our algorithm out-
performs the alternative algorithms by means of an empirical study. With the model
and algorithm, we then study the effects of demand uncertainty, prices, common pro-
cesses, and option contracts on the optimal capacity planning strategy. We conclude
with a discussion on how to include lot size constraints into the model.

Second, we develop a decomposition method for the single period capacity plan-
ning problem under the assumption that each process has only one dedicated resource.
The algorithm provides both a feasible solution and an upper bound on the profit
of the capacity planning problem. We test the effectiveness of the feasible solution
and the tightness of the upper bound in the single period problem through a series of
randomly generated test cases. The result shows that the algorithm performs fairly
well with an average error of 1.48% on a set of test cases.

Third, we extend the capacity planning model into a multi-period setting. We
solve a special case of the multi-period problem by transforming it into a shortest-
path problem. We use the algorithm for the single period problem, the decomposition
method, and the result from the special case to develop an efficient heuristic algorithm
to solve the general multi-period problem. The same algorithm also generates an
upper bound of the problem. We then test the heuristic algorithm and upper bound
through several sets of test cases. Each test case is a 12-period capacity planning



problem with 7 products, 14 processes, 14 resources, and 4 contracts for each resource.
We can solve these problems with an average error of 1.17%.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science, Professor of Mechanical
Engineering and Engineering Systems
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Chapter 1

Introduction

In today's competitive economic environment, customers do not just prefer but de-

mand manufacturers to provide quality products in a timely fashion at competitive

prices. To satisfy this requirement, manufacturers need to plan necessary and suffi-

cient capacity to meet market demands. However, capacity planning is a very chal-

lenging task for many manufacturers.

Demand Uncertainty. For most industries, it is very difficult to accurately

forecast the demand for new products. In an emerging industry, manufacturers de-

vote substantial efforts to studying the applications and benefits of new technologies.

However, when a technology is new, firms have little information on the commercial

uptake of new products and, therefore, have poor forecasts of the product demand.

For example, GlobalStar, one of the key players in the emerging mobile satellite ser-

vices industry during the 1990s, expected between 500,000 and 1,000,000 users in

1999, the first year of its operation; these numbers were confirmed by many other

independent analysts. However, the actual number of users was only 100,000, which

is significantly lower than the expectation.

Demand forecasts for new products can also be inaccurate in existing industries.

Customers' tastes and preferences are hard to predict and will change over time.

Therefore, the historical demand patterns for an existing product might not always

be a good reference for the next generation of products. For example, when Mercedes-

Benz first introduced its M-class cars in 1997, it forecasted its annual demand to be



about 65,000 vehicles. This forecast was, in fact, too low and the firm expanded

its capacity to 80,000 vehicles during 1998-1999, which was also insufficient to meet

demand [34].

The cost of misplanning capacity can be very high for manufacturers. In the case

of GlobalStar, because the demand forecast was overly optimistic, the company filed

for bankruptcy protection with a debt of 3.34 billion dollars in 2002 after three years

of operations [38]. Therefore, it is important for the manufacturers to take demand

uncertainties into consideration when they are planning their capacity.

Large Scale. Manufacturers face the difficulty of planning resources for multiple

products at the same time. Due to competition and the wide range of applications of

a new technology, the manufacturer needs to produce a variety of generic or custom-

made products to meet the requirements of its customers. Such variety in products

adds complexity to a manufacturer's supply chain. Different products might share

common manufacturing processes or use common components. Because of the linkage

between the products, the manufacturer needs to plan its capacity for producing mul-

tiple products together. However, finding the right level of capacity for all products at

the same time is a large scale problem. A manufacturer, therefore, would benefit from

efficient and practical algorithms for solving large scale capacity planning problems.

Outsourcing Contracts. A manufacturer needs to incorporate outsourcing into

its capacity planning strategy. Traditionally, a manufacturer acquires capacity by

building in-house manufacturing facilities. However, this approach has several draw-

backs. First, a manufacturer needs to bear the risk of the high fixed cost associated

with building the facilities. Second, a manufacturer needs to manage the in-house

facilities itself. Third, a manufacturer cannot take advantage of the technology devel-

oped by the contract suppliers. Fourth, the contract suppliers can usually provide the

capacity at a lower cost by leveraging the benefits of economies of scale. Therefore,

instead of building the capacity themselves, firms have started to outsource their

manufacturing processes and "rent" capacity from the suppliers through capacity

contracts.

Currently, outsourcing manufacturing is a common practice in some industries and



expected to play an increasing role in providing capacity and expertise to manufac-

turers. For example, in the biopharmaceutical industry, a manufacturer can develop

the formulation of a drug in-house, use a supplier to test the drug, and outsource

the mass production of the drug to another supplier. A partial list of contract man-

ufacturers in the biopharmaceutical industry is given in Appendix A.1. In another

example, the electronic industry, a manufacturer can outsource the design and fabri-

cation of the different components of a product to different suppliers and perform the

final assembly and testing by itself. The top 10 electronic contract manufacturers in

2006 are listed in Appendix A.2, and their total revenue is 148,255 million dollars.

When a manufacturer outsources its manufacturing processes, it is important for

the firm to secure the availability and price of the capacity. Some of the major

manufacturers, such as Hewlett-Packard, Ford, Cisco, and Dell, have suffered serious

consequences from lack of supply and volatile prices [28]. To assure the supply of

capacity, a manufacturer can establish contracts with its suppliers to specify the price

and amount of capacity that it will need. However, when the demand is uncertain and

the structure of the supply chain is complex, it is not obvious how the manufacturer

should specify these capacity contracts.

Moreover, planning capacity with outsourcing contracts has a different structure

from that of traditional capacity planning. In the traditional approach, after the

manufacturer acquires the capacity, it is a sunk cost and cannot be reserved. On

the other hand, under outsourcing capacity contracts, the manufacturer can rent or

reserve the capacity from its suppliers for certain time periods. Therefore, a manu-

facturer can temporarily increase or decrease its capacity by signing contracts with

the right durations. For example, we can look at Li & Fung Limited, an export

trading company in Hong Kong that manages supply chains and capacity for major

brands and retailers worldwide. The company owns just a few production facilities,

but has a network of nearly 10,000 international suppliers. To fulfill an order from

its customer, Li & Fung reserves capacity beforehand from selected suppliers. The

agreements between Li & Fung and its suppliers specify the starting time of the use

of the capacity, the amount of capacity that is required, and the time to deliver [26].



The capacity planning problem with flexible outsourcing contracts like the ones used

by Li & Fung has not received much attention in the literature.

Option Contracts. In addition to demand uncertainty, large problem size, and

outsourcing contracts, manufacturers can also benefit from models and tools that can

incorporate option contracts into capacity planning. A manufacturer might establish

a fixed-price capacity contract with its suppliers to rent a fixed amount of capacity.

The manufacturer needs to pay for the capacity whether or not it uses the capacity. In

practice, the supplier's cost of capacity might have two components: a fixed cost and

a variable cost. For example, equipment costs and the monthly salaries of workers are

fixed costs, while power consumption and employee overtime payments are variable

costs. An option contract separates these two types of costs. With option contracts,

the manufacturer buys the rights to use a fixed amount of capacity with an upfront

fixed payment. If it decides to execute its rights and use these capacities, it needs to

pay an exercise price for each unit of capacity that it actually uses.

Option contracts have been in practice for a long time. The manufacturer will

often make a deposit to its supplier once both sides agree on a contract. When the

supplier delivers the products, the manufacturer will pay the remaining payment. If

the manufacturer withdraws from the contract, the deposit will serve as the penalty

cost. In these situations, the deposit is equivalent to the upfront payment in an option

contract, and the difference between the full payment and deposit will be the exercise

price.

There are several reasons why both manufacturers and suppliers might prefer

an option contract, rather than a fixed-cost contract. For the manufacturer, option

contracts can serve as a tool to reduce the risk of committing upfront to a certain

amount of capacity at a fixed price. As discussed in the context of outsourcing

contracts, the manufacturer might want to secure the availability and price of the

capacity. However, when demand is lower than expected, committing to buying a fixed

amount of capacity will result in excess capacity. Moreover, if the price of capacity

falls, the manufacturer will pay more than its competitors to make the products.

Using option contracts can reduce the risk of weak demand and price volatility. For



example, Hewlett-Packard has implemented a Procurement Risk Management (PRM)

system to utilize option contracts and has realized $425 million savings in cost over

a six-year period [28].

From the other side, a supplier can secure higher revenue by taking advantage of

option contracts. Since an option contract can serve as a hedging tool to protect the

downside of its operation, the manufacturer might be willing to pay more for each

unit of option capacity, which means that the reservation price plus the exercise price

is higher than the fixed-price contract price. Moreover, since the manufacturer bears

lower risk, it might purchase more capacity. As a result, the supplier can gain more

revenue. Therefore, a method to incorporate option contracts into capacity planning

will also be one of the manufacturers' primary interests.

In this thesis, we present a mathematical model and tools to help manufactur-

ers plan their capacity under demand uncertainty for a general large scale supply

chain structure. Moreover, we consider outsourcing contracts and option capacity

contracts. We have developed efficient and practical algorithms to address the fol-

lowing three questions: which suppliers should the manufacturer select, which types

of contracts should it use, and how much capacity should it reserve. Using the model

and algorithms, we study the properties of, and draw managerial insights about, the

optimal capacity planning strategy. Therefore, our research help managers to make

these complex capacity planning decisions in a more systematic and effective way.

Structure of the Thesis. The thesis is organized as follows. In Chapter 2,

we propose a framework to study the single period capacity planning problem. We

derive closed-form solutions for two special supply chain strictures. We then compare

five different algorithms for solving the general problem and show that the one we

develop outperforms the others through a series of test cases. We also study the

properties of the optimal capacity planning strategy. Finally, we consider a variant

of the problem by adding constraints on the order size. In Chapter 3, we develop

an efficient decomposition method that can provide both a feasible solution and an

upper bound of the capacity planning problem. We examine the effectiveness of the

feasible solution and tightness of the upper bound through a series of test cases.
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Figure 1-1: An example of capacity planning problem.

In Chapter 4, we extend the model to a multi-period setting and present an efficient

heuristic algorithm to solve the multi-period problem. We then show that the heuristic

algorithm performs fairly well through several sets of test cases. Finally, we discuss

the future directions of our research and conclude the thesis in Chapter 5.

1.1 An Example

We illustrate the problems to be addressed in this thesis with the following example.

A biomedical manufacturer has three major products: A, B, and C. Each product

requires three processes: formulation, testing, and packaging. The manufacturer ac-

quires capacity for each process through contracts with third-party suppliers. The

structure of the supply chain of the manufacturer is given in Figure 1-1. Since the

formulation processes of the products are different from each other, the company must

use dedicated suppliers to provide the capacity for the product-specific formulation

processes. However, there is some commonality between the testing and packaging

processes: product A and B have the same packaging process, and product A and

C have the same testing process. The company has three suppliers that can provide

capacity for the testing and packaging processes. Because of the similarity in tech-

nology and cross-training of human capital, the capacity for testing and packaging

PRodctiCProdutA



processes is more flexible compared to that for the formulation process. As a result,

the capacity from these suppliers can be used by multiple processes: Supplier S5 can

provide capacity for the testing and packaging processes of product C, supplier S1

can provide capacity for the testing and packaging processes of products A and B,

and supplier S3 can provide capacity for all the testing and packaging processes. The

manufacturer only has partial knowledge of the demands (e.g. the probability distri-

bution) and it needs to plan its capacity for the next 12 months under the demand

uncertainty. Each supplier submits a list of available contracts to the manufacturer.

Given these inputs, how should the manufacturer choose the types and sizes of con-

tracts to maximize its expected profit? The manufacturer also needs to have the

ability to find the optimal capacity planning strategy in a timely fashion so that it

can explore different configurations, when it designs its supply chain or when the

environment changes. This thesis provides the mathematical foundation and efficient

algorithms for manufacturers to achieve these goals.

1.2 Related Literature

The research in this thesis is related to the literature in four areas: Newsvendor

Network and Assembly to Order (ATO) Systems, Traditional Capacity Planning,

Option Contracts, and Stochastic Programming.

Newsvendor Network and Assembly to Order (ATO) Systems. Van

Mieghem and Rudi [31] propose a newsvendor network that is closely related to the

model that we use. In their model, the authors consider a supply chain that contains

multiple products and multiple stocks. The manufacturer consumes the stocks to pro-

duce the products through activities. The stocks are subject to inventory constraints

and the activities are subject to capacity constraints. They study a joint capacity

investment and inventory management problem in their model. The capacity invest-

ment decision is made at the beginning of the planning horizon and remains in effect

ever after. At the beginning of each period, the manufacturer will make the inventory

procurement decisions depending on the stock level. The authors show that a sta-



tionary base-stock inventory policy is optimal for the lost sales case. They also show

that the capacity planning problem is concave, and therefore concave optimization

algorithms such as subgradient methods can be used to find the optimal capacity

plan.

In contrast to their work, our model does not incorporate inventory but allows

the manufacturer to establish different types of contracts with its suppliers. These

contracts can be different in duration, price, and structure (such as fixed-cost contract

and option contract). Therefore, our capacity planning problem has a very different

structure in a multi-period setting. Moreover, their paper focuses on the structure

of the optimal inventory replenishment policy, while we emphasize the algorithms

for solving the capacity problem. For the single period problem, we discuss different

concave optimization algorithms, which include the sub-gradient method suggested

by Van Mieghem and Rudi. We show that the algorithm that we propose has a

superior performance.

In terms of modelling the supply chain, the model that we propose in this thesis

shares some commonality with the assemble-to-order (ATO) systems in the supply

chain operation literature. An ATO system contains multiple products and multiple

components. The system only keeps inventory on the component level. When demand

arrives, it will assemble products using the necessary components. ATO systems

capture some of the essential characteristics of a real life supply chain, such as common

processes (e.g. Gerchak, et al. [15], Hillier [19], and Kulkarni, et al. [23]) and flexible

resources (e.g. Fine and Freund [13], Van Mieghem [32], and Labro [25]). For a

detailed survey and discussion of ATO systems, please refer to Song and Zipkin [30].

There are several major differences between ATO systems and our supply chain

capacity model. First, our model has a multi-stage structure that allows both flexible

resources and common processes. Second, we incorporate option contracts into the

model. Third, our model focuses on capacity planning with different outsourcing

contracts, while ATO systems mainly study inventory policies.

Traditional Capacity Planning. There are a wide variety of models used for

multi-period capacity planning; these models vary depending on their assumptions



on how capacity is acquired and how it can be modified over time.

We can divide the existing literature into two categories, depending on whether

capacity can or cannot be reduced after the acquisition. In the first category, after the

manufacturer acquires the capacity, the new capacity level remains effective until the

end of the planning horizon. At the beginning of each period, the manufacturer will

decide whether it wants to expand its capacity or not and how much it will expand

if it decides to do so. Capacity expansion is an active research area. Van Mieghem

[35] gives a survey of the literature on capacity expansion. Ahmed, et al. [1] study

the capacity planning problem in a supply chain with a single product and multiple

resources. They model the demand uncertainty as scenario trees. They propose a

branch and bound algorithm to solve the problem. Zhang, et al. [40] consider a

multi-product and multi-machine supply chain in the semiconductor industry. They

assume that the demands have a certain structure and show that the problem can be

solved as a max-flow min-cut problem. Ahmed, et al [2] apply a branch and bound

method to solve a two-stage, multi-product, and multi-process capacity planning

problem. Barahona et al. [5] study a tool purchasing problem in semiconductor

manufacturing. Similar to Ahmed, et al [2], they consider a two-stage decision process:

First, the manufacturer decides the tool purchasing schedule at the beginning of the

planning horizon when the demand is uncertain. Second, the demand is realized and

the manufacturer allocates tools to fabricate the products. The authors develop a

heuristic stochastic integer programming algorithm to solve the problem and test it

with a real life application at IBM. Shirodkar and Kempf [29] discuss how they apply

a capacity planning model at Intel to make procurement decisions. Intel's assembly

and test factories use different types of substrates to make the devices. The firm

purchases the substrates from different suppliers. Each factory consumes multiple

types of substrates, and each supplier can provide multiple types of substrates. The

authors study and develop models to help Intel make the procurement decisions.

Our work adapts a two-stage decision model similar to the one used by Ahmed,

et al [2] and Barahona et al. [5]. However, our model differs from the ones cited

above in terms of the capacity acquisition method. In our model, instead of owning



the capacity, the manufacturer gains the rights to use the capacity for certain periods

from its suppliers through contracts of different durations and prices. When a contract

finishes, the manufacturer does not need to pay for the capacity anymore.

In the second category, the manufacturer can reduce the capacity level at any

time. Huh et al. [21] examine a capacity planning problem in the semiconductor

industry where they allow tools to be retired if necessary. They propose a cluster-

based heuristic algorithm to solve the problem. Angelus and Porteus [4] study a single

product capacity planning and production management problem. In their model,

capacity can be added or removed at each period. Under certain assumptions, they

give an explicit solution for the capacity level.

In contrast, we require the manufacturer to determine the capacity contracts at

the beginning of the planning horizon. As we have discussed, since the manufacturer

does not own the capacity, reserving the capacity at the beginning to secure the supply

and price is crucial to the firm. In the middle of a contract, both the manufacturer

and supplier cannot change the terms such as the price and the quantity. In this

thesis, we do not allow the manufacturer to modify the contracts after it has made

the decisions at the beginning. We will discuss how one might relax this restriction

in Chapter 5.

In addition to the flexibility of modifying the capacity plan, our model makes

different assumptions on the inventory policy compared to those in the existing liter-

ature. Some of the existing literature on the multi-period capacity planning problem,

such as Angelus and Porteus [4], Van Mieghem and Rudi [31], and Barahona et al.

[5], takes inventory into consideration. In our model, the manufacturer does not build

and store inventory. However, since the manufacturer can engage into a contract that

spans multiple periods, the capacity decisions for different periods are related with

each other.

Therefore, our model is significantly different from the traditional capacity plan-

ning problems in terms of the assumption on the flexibility of modifying the capacity,

the assumption on inventory policy, and incorporating option contracts.

Option Contracts. The consideration of option contracts in supply chains is a



more recent research topic. Cheng et al. [11] derive the optimal order decision for the

manufacturer and the optimal pricing decision for the supplier in a single product,

single supplier, and single period supply chain. Yazlali and Erhun [39] consider option

contracts in a single product, dual supply, and multi-period problem. They use a two-

stage decision process: first, the manufacturer reserves capacity for the whole planning

horizon by signing a portfolio of contracts; second, it orders from the suppliers based

on the contracts. Under certain assumptions on demands and prices, they show that

for the second stage problem, a two-level modified base-stock policy is optimal, and,

for the first stage, a reserve-up-to policy is optimal. Martinez-de-Albniz and Simchi-

Levi [27] analyze the optimal option contract for a case of single product and multiple

suppliers in the presence of a spot market. In their model, they also adapt a two-stage

decision process. The manufacturer decides the quantity and portfolio of contracts

at the beginning of the planning horizon. The duration of each contract is the whole

planning horizon. The authors then study the optimal replenishment policy given the

portfolio and conditions of the spot market. They show that the portfolio selection

problem is a concave maximization problem. Fu, et al. [14] examine a single-period

procurement problem with option contracts. Their model incorporates random spot

price and demands. They show that option contracts can be very valuable for both

the manufacturer and supplier. Nagali et al. [28] apply option contracts in HP's

procurement risk management, and the system that they implemented has realized

more than $425 million cost savings in a six year period. However, they do not provide

details on the specific models that are used for evaluating these option contracts.

There are two major differences between our work and the existing literature

studying option contracts: first, we incorporate contract durations into our model;

second, we consider a more general supply chain structure that contains multiple

products and multiple processes. However, our model takes the external market

conditions as given and does not consider inventory. Finally, we see that our research

can help to extend some of the existing models that contain a single supplier to a

more general setting. In Chapter 3, we propose a decomposition method to separate a

general supply chain into sub-problems; each sub-problem contains only one supplier.



After the decomposition, the results from the literature can be applied.

Stochastic Programming. Finally, our work is also related to the literature

studying algorithms for stochastic linear and integer programming. Higle and Sen

[17], [18] propose and summarize several stochastic linear programming algorithms

to solve a general capacity planning problem. We adapt some of these techniques in

our algorithm for solving our single period capacity planning problem. We show that

the algorithm we propose has a better performance than the ones that Higle and Sen

suggest through a series of randomly generated test cases. Higle and Sen [18] provide

an excellent review of how to apply stochastic linear programming to solve large

scale capacity planning problems. It is common that a capacity planning problem

involves integral decisions. In these situations, the integral decisions can be modelled

as integer decision variables. In [1], [3], and [5], the capacity expansion decisions are

binary integer variables (e.g. variables can be either 1 or 0). In [2], [5], and [24], the

capacity can only be purchased in integer units. In [2] and [5], the capacity can only

be allocated in integer units. Stochastic integer programming is used in this literature

to solve the capacity planning problems involving integer decision variables.

As contrasted with this literature, our model considers capacity contracts with

different durations. In addition to deciding which contract the manufacturer should

buy, we also need to decide the order of the contracts. Therefore, we cannot apply the

traditional stochastic integer programming algorithms to our multi-period problem.

As a result, we propose a new algorithm that takes advantages of the special structure

of our problem.



Chapter 2

Single Period Capacity Planning

Problem

In this chapter, we will study the single period capacity planning problem. The single

period problem itself has significant applications. For example, in some situations,

the capacity planning is an one-time event and therefore can be modelled as a single

period problem. Moreover, as we will show in Chapter 4, the method that we develop

for solving the single period case can be used in the algorithm to solve the multi-period

capacity planning problem.

This chapter is organized as follows: In Section 2.1, we outline a mathematical

model for the single period capacity planning problem. We then look at two special

cases and derive closed-form solutions for the optimal strategies for these cases in

Section 2.2. After that, in Section 2.3, we examine five algorithms to solve the

general single period capacity problem and show that the one we develop has a better

run time through a series of randomly generated test problems. In Section 2.4, we

discuss the properties of optimal capacity planning strategies. Finally, in Section 2.5,

we consider a variant of the single period problem: the capacity planning problem

with constraints on the order size.
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Figure 2-1: A supply chain network with 3 products, 5 processes, and 7 resources.

2.1 Model

2.1.1 Mathematical Model

We consider a multi-product and multi-stage supply chain consisting of M products, J

processes, and K resources. A sample supply chain network with three products, five

processes, and seven resources is given in Figure 2-1. The production of each product

requires a certain amount (possibly zero) of each type of process. The solid links

joining products and processes in Figure 2-1 signify this relationship. For example,

product 1 requires processes 1, 2, and 5. In practice, a process can be either an

operation such as assembly, testing, or packaging or a type of material or component

or a sub-system that is required to produce the product. A resource provides capacity

for one or more processes. The dashed links joining processes and resources in Figure

2-1 signify that the resource has the capability to deliver the process. For the network

given in Figure 2-1, the firm can get capacity for process 1 from resource 1 or 3

and resource 3 can provide capacity to processes 1, 2, and 4. A resource might be

an assembly line with the capability to assemble a single product type. A flexible

resource might be an assembly line capable of assembling several different product

types. We might also imagine a resource with capability to provide more than one

type of process; for instance, a resource might do both assembly and test for a single



product type. Without loss of generality, we assume that the production of one unit

of product requires one unit of each of its required processes; we also assume that one

unit of each process requires one unit of capacity from one of its resource options.

The supply chain structure that we propose for the single period problem is fairly

general and can capture different types of interdependency between products, pro-

cesses, and resources. First, to produce a product requires capacities from all of its

processes. Therefore, the capacity levels of different processes of the same product are

closely related to each other. Second, different products can share common processes

and flexible resources can provide capacity to different processes. These common pro-

cesses and flexible resources link the capacity planning decisions of different products

together. One of our goals is to account for these interdependencies within capacity

planning.

In addition to a general supply chain structure, we also consider two alternatives

for procuring or reserving capacity for each resource: A firm can reserve capacity on a

resource with a fixed-price capacity contract; alternatively a firm can reserve capacity

on a resource with an option contract where there is a smaller upfront reservation

price and then a variable exercise price for the use of this capacity. For instance,

under a fixed-price capacity contract, the price for one unit of capacity is 1 dollar.

Under an option contract, the firm might pay a fixed price of 30 cents initially to

reserve one unit of the capacity. If the firm decides to use the capacity that it has

reserved, it needs to pay another 80 cents per unit. Given these alternatives, the firm

wants to determine the amount of each resource to use, as well as the contracts, so

that the resulting supply chain can maximize the firm's expected profit.

We assume that any demand that cannot be filled is lost, and there is no penalty

cost for not meeting demand. We also assume a two-stage sequential decision process.

In the first stage, the firm determines the types and sizes of the contracts for each

resource; in effect the firm decides its capacity plan. In the second stage, demand is

realized and the firm decides how to allocate its production capacity to meet demand.

To the extent that the firm employs options contracts, it will decide how much of each

option to exercise. Also, the firm decides how to utilize the capacity of each flexible



resource across the applicable processes.

For naming convention, we use bold letter to indicate a vector. For input param-

eters, we denote:

A An J x M matrix such that

A( ) 1, if product m requires process j;
0, otherwise.

B An J x JK matrix such that

B(j, (j, k)) = 1, if resource k can provide capacity to process j;

0, otherwise.
H A K x JK matrix such that

H(k, (j, k)) = 1, if resource k can provide capacity to process j;{ 0, otherwise.
D A vector of random variables, with probability density function,

that represents the demand of products. (Vector of size M)

d A realization of random demand D. (Vector of size M)

r Unit profit for filling product demand. (Vector of size M)

p Unit price of resources under fixed-price contract. (Vector of size K)

q Unit reservation price of resources under option contract. (Vector of size K)

e Unit exercise price of resources under option contract. (Vector of size K)

Without loss of generality, we assume that for each resource k, pk < qk + ek and

Pk > qk. If Pk Ž qk + ek, the manufacturer will not use any fixed-price capacity

from resource k. Similarly, if Pk < qk, the manufacturer will not reserve any option

capacity. We also assume that the demand vector is non-negative, e.g. D > 0.

For decision variables, we denote:

zm Amount of product m that is produced and sold to meet demand. (Scalar)

z Amount of products that are produced and sold to meet demand.

(Vector of size M)

zjk Amount of resource k provided under a fixed-price capacity contract that is

used to provide capacity to process j. (Scalar)

x The vector of Zjk . (Vector of size JK)



yjk Amount of resource k provided under an option capacity contract that is

used to provide capacity to process j. (Scalar)

y The vector of Yjk • (Vector of size JK)

c The amount of fixed-price capacity that the firm has reserved.

(Vector of size K)

g The total amount of capacity, including fixed-price and option capacity,

that the firm has reserved. (Vector of size K)

We now formulate the second stage problem as a single-period production planning

problem with the objective to maximize the profit of the firm. We are given the

demand realization d as well as c, the amount of each resource reserved with fixed-

price contract, and g, the total amount of each resource reserved. We note that g-c is

the amount of each resource reserved with an option contract. We have the following

linear optimization problem:

r(c, g, d) = max r(c, g, d, x, y, z) = lz - e'Hy (2.1)
z,y,z

s.t. z < d

Az < B(x+ y)

H < c

H(x + y) < g

X, y, z >_ 0

The objective function of Problem (2.1) is the net revenue that the manufacturer will

gain under given capacity level c and g and demand d. For the second stage problem

this is the revenue from selling z, net of the additional cost from exercising the option

contracts in the amount of y. The first set of constraints restricts the amount of

product sold to be less than the demand; we note that d - z represents the amount

of demand that is not met. The second set of constraints says that the amount of

products produced can not exceed the total available capacity; the left hand side is

the amount of process capacity required to produce z and the right hand side is the

available process capacity given the allocation decisions x and y. Finally, the third



and fourth set of constraints assures that the resource availability is not exceeded.

The left hand side of the third set represents the resource usage under the fixed-price

contract, while the left hand side of the fourth set is the total resource usage for the

allocation decisions.

By solving this optimization problem, we can find the revenue maximizing produc-

tion level for a given demand realization and the given capacity planning decisions.

Let (e*, y*, z*) be an optimal solution of Problem (2.1); (e*, y*, z*) is a function of d,

c, and g. The firm ultimately wants to find the optimal capacity planning strategy

under demand uncertainty by solving the following first-stage problem:

max II(c, g, D) = E[ir(c, g, D)] - p'c - q(g - c) (2.2)
c,g

s.t. c g

c, g 0

The objective function of Problem (2.2) represents the expected total profit, which

is equal to the expected total net revenue from the second stage, minus the first-stage

reservation cost of the capacity. The first set of constraints ensures that the amount

of fixed-price capacity reserved is no more than the amount of total capacity reserved.

Proposition 1 II(c, g, D) is concave in (c, g).

Proof: Let (c', gl) and (c2, 92) be two feasible capacity planning strategies. Let

A be a scalar that 0 < A < 1. Then, capacity planning strategy

(c3, g3) = (Ac1+ (1 - A)C2,Agl + (1 - -)g 2)

is also feasible. For any demand realization d, let (xi, yi, zi) be an optimal solution

of Problem (2.1) given capacity planning strategy (ci, i). Fix a scalar A E [0, 1] and

consider the production level

(X3, y, Z3) = (AX1 + (1 - A)•', AyI + (1 - A)y2 , A•Z + (1 - A)2).



We can verify that (2x, y3 , z3) is a feasible solution of Problem (2.1) given demand

realization d and strategy (c3 , g'). Therefore

7r(C 3 ,g3 ,d) Ž r(c3,g3 ,d,yxe3 ,l3 i)

72z --e'Hy'

= A(i'z I - e'Hy1 ) + (1 - A)(rtz2 - e'Hy2 )

= A(cl, g, d) + (1- A)ir(c 2,72,d)

Therefore, 7r(c, g, d) is concave in (c, g) for any given d. Since taking expectation

will maintain concavity, E[ir(c, g, D)] is concave in (c, g). Therefore

11(c3, g3, D) = E[r(c3 , 3 , D) - p'c3 - q(g 3 - c3 )

_ A (E[7r(cl, gl,D)] - p'c1 
- (g' - cl))

+(1 - A) (E[r(c2, g2, D)] - p'c2 - q( 2 _ C2))

= AII(c, g', D) + (1 - A)II(c 2, g2, D).

Therefore, II(c, g, D) is concave in (c, g). Q.E.D.

Proposition 1 guarantees that every local optimal solution for Problem (2.2) is a

global optimal solution and that the algorithms given in Section 2.3 will converge.

2.1.2 An Example

We now conclude the model section with a numerical example. Let us consider that

a computer manufacturer produces two types of laptop, namely A and B. Laptop A

requires three manufacturing processes or inputs: the manufacture or procurement

of chipset A, the manufacture or procurement of display A, and Assembly & Test-

ing (A&T). Similarly, each laptop B requires chipset B, display B, and Assembly &

Testing.

Laptop A is an entry level laptop selling at 700 dollars. Laptop B is a mid-range
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Figure 2-2: Single period numerical example: A manufacturer supply chain network
containing two laptops, six processes, and six capacity providers.

Laptop A Laptop B

Price ($) 700 1000
Mean 2200 1000
STD 200 100

Table 2.1: Single period numerical example: table of product prices and demand
information.

price laptop selling at 1000 dollars. The major difference between laptop A and B is

that they use different chipsets. Chipset B is better than chipset A. The demand of

both laptops follows a normal distribution with their mean and standard deviation

given in Table 2.1.

The manufacturer uses contract suppliers to perform the manufacturing processes.

It currently has six contract suppliers from which to choose: Foundry 1, 2, 3, 4 and

Contract Manufacturer (CM) 1, 2. The capability of each supplier is given in Figure

2-2. For instance, contract manufacturer 2 (CM 2) is qualified to do the assembly

and test for Laptop B, whereas contract manufacturer 1 (CM 1) is qualified to do

assembly and test for both laptops. Similarly, Foundry 2 is flexible and can produce

both chipsets, whereas Foundry 1 (Foundry 4) can only supply Chipset A (Chipset

B).

Il
I

I
1

Laptop B

I

II



Fixed Unit Price Unit Reservation Price Unit Exercise Price
Case 1 Case 2 Case 1 Case 2

Foundry 1 90 85 10 10 85
Foundry 2 100 80 30 30 80
Foundry 3 200 160 50 50 160
Foundry 4 98 78 28 28 78
CM 1 115 100 25 25 100
CM 2 110 90 30 30 90

Table 2.2: Single period numerical example: table of capacity prices.

The manufacturer has two ways of contracting with each supplier. The price

structure of each supplier for two different scenarios is given in Table 2.2. For Case

1, the unit reservation price is higher than the unit exercise price. The prices of the

resources in Case 2 are the same as Case 1 except the unit reservation price and the

unit exercise price are swapped.

The manufacturer can reserve capacity from each supplier with a fixed-price ca-

pacity contract. For instance, in Case 1, Foundry 1 quotes a fixed unit price of $90.

Thus, if the manufacturer were to reserve 200 units of capacity, it would pay Foundry

1 $1800; Foundry 1 will then commit to provide the manufacturer with upto 200 units

of Chipset A over the demand period. To keep things simple, we assume the only

cost is the upfront fixed cost of $1800.

Alternatively the manufacturer can reserve capacity from a supplier with an option

contract where there is a smaller upfront fixed cost and then a variable cost for the

use of this capacity. For instance, in Case 1, the manufacturer might purchase an

option contract with Foundry 3 for 300 units of capacity. The manufacturer would

pay Foundry 3 an upfront cost of 300 x $160 = $48, 000 to reserve this capacity.

Later, when it needs to make the actual procurement decisions, the manufacturer can

decide how much of the capacity to use (up to 300 units) and for what mix of products

(i.e., display A or display B). The manufacturer pays an additional $50 per unit for

each unit of capacity that it actually uses. We note that the fixed-price contract

is effectively an option contract with a zero exercise price - as we don't require the

manufacturer to use all of the fixed-capacity, and there is no additional cost for not



using this capacity.

Given the demand distributions (Table 2.1), network structure (Figure 2-2), and

cost structures of the suppliers (Table 2.2), the manufacturer wants to determine:

1. Which suppliers should it use?

2. What types of contract should it use for each supplier? Only fixed-price con-

tract? Only option contract? Or Both.

3. How much capacity it should buy?

The firm needs to consider the trade-offs between different factors:

1. Demand is uncertain and the manufacturer will want to have enough process

capacity to meet any demand outcome, up to some level.

2. To deliver a product the manufacturer must have sufficient capacity for all of its

processes - having enough chipsets is not very useful if one is short of displays.

3. The resource options vary in terms of cost and flexibility. For instance, the

capacity from Foundry 2 is more expensive relative to that from either Foundry

1 or 4; but the capacity at Foundry 2 is flexible as it can produce either display.

The model that we propose in this section and the algorithms that we will examine

in the coming sections will help the manufacturer to answer these questions and

understand the trade-offs.

For this example, the results of our algorithm are given in Table 2.3. For Case 1,

the manufacturer should

1. use all six suppliers.

2. only use a fixed-price contract from Foundry 1, Foundry 2, and CM 1.

3. use both types of contract from the other suppliers.

A similar conclusion can be drawn for Case 2. This example also shows that for

both cases the sums of total capacity for Foundry 1, 2, and 4, the total capacity for

36



Fixed-Price Capacity Option Capacity Total Capacity
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Foundry 1 1977 1667 0 491 1977 2158
Foundry 2 364 378 0 0 364 378
Foundry 4 757 823 79 0 836 823

Foundry 3 3023 2871 154 488 3177 3359

CM 1 2341 2115 0 370 2341 2485
CM 2 774 805 62 69 836 874

Table 2.3: Single period numerical example: results.

Foundry 3, and the sum of total capacity for CM 1 and CM 2 are equal to each other.

Foundry 1, 2, and 4 provide capacity for the chipsets; Foundry 3 provides capacity for

the display; CM 1 and 2 provide capacity for the A&T. Since to produce a product

requires all three processes, the total capacity reserved for these processes are the

same.

This example also illustrates the complexity of the optimal strategy. We expect

that the manufacturer will reserve more capacity in Case 2, since the unit reservation

prices of all resources are lower than Case 1. However, from the optimal solutions we

can see that the manufacturer should not reserve any option capacity for Foundry 4 in

Case 2, while in Case 1 it should reserve 79 units of option capacity. This is due to the

interdependency between Foundry 1, 2, and 4. In Case 2, since the unit reservation

price for Foundry 1 is much lower than the reservation price for Foundry 4, Foundry 1

has a more attractive option contract. Therefore, the manufacturer should buy more

option contract from Foundry 1 and less option contract from Foundry 4. We will

look at more examples to show the complexity of the optimal strategy in Section 2.4.

Finally, we can compare the optimal solutions with some alternative capacity

plans. We consider the capacity strategies obtained from the following two plans

1. Ignoring option capacity.

2. Solving the capacity problem of each product separately.



SCase 1 Case 2
Plan Expected Profit Improvement(%) Expected Profit Improvement(%)

Optimal 1,179,849 - 1,203,485 -
1 1,178,842 0.09% 1,178,842 2.09%
2 1,150,848 2.52% 1,189,287 1.19%

1 & 2 1,148,253 2.75% 1,148,253 4.81%

Table
plans.

2.4: Single period numerical example: comparisons with the other capacity

0

Product

Processes

Resources

Figure 2-3: A supply chain network with single product and dedicated resources.

The expected profits that the manufacturer can get from using these capacity plans

are given in Table 2.4.

2.2 Two Special Cases

Before we examine the algorithms to solve the general single period capacity planning

problem, we will first study two special cases of the problem: single product with

dedicated resources and single process with dedicated resource.



2.2.1 Special Case I: Single Product with Dedicated Resources

Let us consider the first special case where the network contains one product and

dedicated resources. Figure 2-3 shows such a supply chain with a single product

that requires three processes and each process has a dedicated resource to provide

capacity for it. As there is exactly one resource for each process, we will view these

as synonymous and will use the terms interchangeably. For this special case, we

can derive a closed-form representation for the optimal capacity planning strategy.

Without loss of generality, we assume that we number the resources such that

Pi-q p - qj if i < j (2.3)
ei ej

The ratio Pg is non-negative and less than 1. The bigger the ratio, the more

attractive the option contract would be.

Proposition 2 Assume D is a vector of continuous random variables and r > Ej ej.

For a supply chain with single product and dedicated resources, a capacity planning

strategy (c, g) is optimal if there exists an integer 1 < V, _ J + 1 such that all of the

following conditions are satisfied:

g3 =g, V j (2.4)

Pr(D > cj) = 27 , Vj > (2.5)

cj = g, Vj < (2.6)

Pr(D > g) = q= j = Qj  (2.7)
+ ej

Si•f-jiJ > " J (2.8)

Proof: By Proposition 1, II(c, g, D) is concave in both c and g. Therefore, the

first order necessary conditions will also be sufficient conditions for optimality. If

r > Ej ej, for given capacity plan (c, g) and product demand d, the maximal profit



is as follows:

J

7(c,g,d) = rmin{d,min{gYj}} - - [min{d, gj} - min{d, cj}] ej (2.9)
j=1

We can show by contradiction that under the optimal planning strategy gj is the

same for all j. Thus, we let

gj = g, V j,

and we can rewrite Problem (2.2) as

-E rmin{D,g}
J

- E(cjpj + (g - cj)qj)
j=1

- : [min{D, g}
j=1

- min{D, cj}]

s.t. cj < g, V j

Since the constraints are linearly independent, the lagrange multipliers exist. Then,

we can consider its Lagrange function

L(g, c, p)
J

-- ED rmin{D,g} - 1-(cjpj + (g - cj)q,)-
j=1

J 1 J
[min{D,g} - min{D, cj}] ej + i (cj - g)

j=1 j=1

By the first order necessary conditions, we have

OL
ac = pj - qj - Pr(D > cj)ej + ,Ij = 019cj

L J

=g E qj
j=1

+ Pr(D > g) ( ej - r)

(2.10)

(2.11)

- l j = 0
j=1

(2.12)

From Equation (2.11) we have

Pr(D > c,)=  , V j
ej

Then we will have two cases:

arg min
g,g



Case 1: There exists a process i such that ci < g. Define i to be the process with

the smallest index such that ci < g. If ci < g then, pi = 0. Therefore,

Pr(D > ci) = Pi -qi
ei

Now, assume that these exist a j > i such that cj = g. Since

pj - qj > Pi - qi
ej ei

and jyj > 0,

Pr(D > cj) = p 3 - q  
1 > p - q= Pr(D > ci)

ej ei

This implies cj < ci. However,

g=cj ci< g,

and this is a contradiction. Therefore,

9 < g,
I g,

if j Ž i;
if j < i.

(2.13)

We note that the second part of Equation (2.13) follows because we chose i to

be the smallest index such that ci < g. Moreover, for all j such that c3 < g,

pyj = 0 and

Pr(D > c,) = Pj - qj
ej

If we let ¢ = i, we have shown that conditions (2.5) and (2.6) hold. Since

lij = 0 for all j _ i, from Equation (2.12) we have

q3 + Pr(D > g)
j=1

(2.14)J? -) -1Se - r - E py=0.
j=1 j=1



From Equation (2.11) and (2.13), we have

pj = -p 3 + qj + Pr(D > g)ej, V j < 0. (2.15)

Then by Equation (2.14) and (2.15), we can re-express Equation (2.12) as

J

9q + Pr(D > g)
j=1

ej - r)

'0-1

+ 1 (pj - qj - Pr(D > g)ej) = 0
j=1

Simplifying the equation above we get,

+ Pr(D > g) / )JZe,- r)=0

Therefore,

Pr(D > g) = = Pi+ EJ=U qj
which is condition (2.7). Finally, since c <g for all i , thenej

which is condition (2.7). Finally, since ci < g for all i > 0, then

Pi- qi= Pr(D > ci) > Pr(D > g) = 1 j + E j = qj

r -Jj= ej

which shows condition (2.8) holds for i = 0.

Case 2: cj = g for all j. By Equation (2.11) and (2.12) we have

Pr(D >g) ea - r)(Jj=1
J

+ E(pj
j=1

- qj - Pr(D > g)ej) = 0.

This implies

Pr(D > g) =Z-J 1Pj
r

For this case, 4 = J + 1 and we can be verify that all of the conditions are

satisfied.

Q.E.D.

From Proposition 2, we can make a number of observations. First we see that all

J

pj + E qj
j=0j= 1

Ej= +
j=1



processes will reserve the same amount of total capacity, given by g. Since produc-

ing the product requires all processes, reserving more capacity for some but not all

processes is a waste as the excess capacity can never be used.

Second, we see that we can interpret the optimal planning strategy in terms of the

newsboy problem. To determine g, suppose we know how to partition the resources

based on whether or not they will buy an option contract. Namely, we assume for

resources 1, .... , - 1, we only invest in a fixed-price contract, while for resources

0, ... , J, we invest in both a fixed-price contract and an option contract. Then in a

newsboy context, we can see that the cost of overage is given by

'0-1 J
C0= Epj±+ Eqj,

j=1 j=v

which equals the upfront investment to reserve the last unit of capacity. This is the

incremental cost when demand falls below g. The underage cost is

#-1 J
Cu = r - E pj - E(qj + ej),

j=1 j=O

which equals the incremental revenue net of the costs for all of the resources. This is

the lost profit when demand exceeds g. Thus the critical ratio for determining g is

given by (2.7), namely the traditional critical ratio for the newsboy:

Co i-j=l Pj + EjJ = qj
Pr(D > g) = C=o + C r -

where we have assumed that we are given the partition of resources.

Now to get insight into how to construct the partition, we consider each resource

independently. Suppose we were to buy both a fixed-price contract and an option

contract for resource j, subject to the fact that the total capacity is fixed at g. We

wish to determine how much to buy of the fixed-price contract. For resource j, the

overage cost is

Coj = p3 -q3



as this represents the upfront premium that is paid for fixed-price contract relative

to an option contract, and equals the amount that would be lost if this capacity is

not needed. The underage cost is

Cj = qj + ej - pj

which is equal to the cost premium to serve demand from the option contract relative

to the fixed-price contract. Thus, the critical ratio for determining the size of the

fixed-price contract for resource j is given by:

Pr(D > cj) = _ p -
Coj + cj ej

which corresponds to (2.5). If this equation suggests buying more than g units of

capacity, then we should not buy an option contract for resource j and we should

reduce its fixed-price contract to g. In effect, this is what is enforced by Equation

(2.6) and (2.8). Finally sorting the resources, as prescribed by (2.3), provides a simple

way to find the partition.

Also, we see from condition (2.5) that for those processes that do buy an option

contract, the optimal fixed-price capacity is independent of r, the price of the prod-

uct. We also observe that from condition (2.7) that the optimal total capacity is

independent of the prices of the fixed-price contract for the resources for which we

buy option contracts.

For each process, the optimal strategy has a similar structure to that given by

Martinez-de-Albeniz and Simchi-Levi in [27]. They study the replenishment policy

and portfolio selection strategy for a single product that has a single process supply

chain in the presence of a spot market. In their model, there are multiple option

contracts available for the single process. For a single period model, they give a closed-

form solution to the portfolio selection (capacity investment) problem. Our result of

the optimal level of fixed-price capacity is similar to the result that they have for their

single period problem. However, in our model, the manufacturer needs to acquire

the capacity for multiple processes at the same time. Therefore, our results for the



optimal level of total capacity differ from those in Martinez-de-Albeniz and Simchi-

Levi, especially with regard to the partition property for separating the processes

between those that use an option contract and those that do not.

A supply chain with a single product and dedicated resources is a very important

case. Proposition 2 provides a closed-form solution for the optimal capacity planning

strategy for this class of supply chain. This proposition not only reveals some inter-

esting insights of the optimal strategy but also provides an effective way to find the

optimal strategy. Moreover, it will also help us to develop an upper bound for both

the single period problem (in Chapter 3) and the multi-period problem (in Chapter

4).

We can also extend the special case to a more general setting, where each process

can have multiple dedicated resources. For each process j, define Kj to be

K, = {kIB(j, (j, k)) = 1}.

Cj is the set of resources that can provide capacity for process j. Note that for

k1, k2 E kj, if Pkl > Pk2, then the manufacturer will not reserve any fixed-price

capacity from resource k'. Therefore, we can assume that for each process, only one

resource offers fixed-price capacity. We also note that for k 1, k2 E KCj, if ekl < e2 and

qkl < qk2, then the manufacturer will not reserve any option capacity from resource

k2. Therefore, without loss of generality, we assume that for each process j,

ej,kl < ej,k2 and qj,kl > qj,k2, if k1 < k2. (2.16)

or equivalently

qj(ej) is a strictly decreasing function of ej.

Define Oj,k, k = 1,... , Kj to be the amount of option capacity reserved with re-

source k, which is associated with process j. Define oj,o to be the amount of fixed-price



capacity reserved for the process j. Given oj, define

k

wj,k = oj,i, k = 0, ... ,Kj.
i=O

Set wj,_1 = 0 and ej,o = 0. Let g3 be the total capacity that the manufacturer reserves

from the resources for process j. By the same argument given in this section, gj are

the same for all j. The optimal capacity plan is given as

argmin II(o, g) = -E r min{D, g} - ej,k [min{D - wj,k-1, O,k]+ - E E q,kOj,k•
j=1k=O j=lk=O

s.t. Wj,Kj < g, j = 1, - , J,

Wj,k-1 j,k, k = 1, - ', K,K V j. (2.17)

Note that min{D - wj,k-1, Oj,k = min{D - wj,k-1, Wj,k - Wj,k-l} = min{D, wj,k} -

Wj,k-1. Therefore, we can rewrite Equation (2.17) as

j Kj
arg mm II(o, g) = -E rmin{D, g} - 1: e,k [min{D, wj,k} -- Wj,k-l +O,g

O[g j=1 k=O

1 Z qj,k(w ,k - 1Wk)]
j=1 k=O

s.t. wj,Kj < g, j= 1,..., J,

Wj,kl-1 Wj,k, k = 1, , - K, V j. (2.18)

The first question that we study is which resources the manufacturer should use.

Let us fix all the decision variables except wj,k, then

I0(o, g)
w = qj,k+l - qj,k + Pr(D > wj,k)(ej,k+1 - ej,k).

By setting dII(o, g)/&wj,k to 0, we get

Pr(D > Wj,k) - q,k - q,k+l (2.19)
ej,k+1 - ej,k

Equation (2.19) specifies a threshold, lj,k, between using option contract k and k + 1.



For the demand below the threshold, it is better to use option contract k; for the

demand above the threshold, it is better to use option contract k + 1. The constraint

Wj,k-1 • Wj,k, k = 1,..., Kj, Vj in Equation (2.18) requires ýj,k-1 :• j,k. By Equation

(2.19), this requires that qj(ej) is convex in ej for each process j. If qj (ej) is not convex

in ej, then the manufacturer will not use all the option contracts in the optimal

capacity plan. To determine which option contracts the manufacturer should use, we

have the following proposition.

Proposition 3 Let Qj(ej) be the convex envelop of qj(ej), if the point (ej,k, qj,k) Qj,

then ofk = 0.

Proof: The proof follows directly from the definition of convex envelop. If

(ej,k j,k) Qj, then we can construct a new option contract (eF,k, jk) that is a

linear combination of option contracts k - 1 and k + 1 such that ej,k = ej,k and

qj,k < q,k. Therefore, in the optimal capacity plan, the manufacturer will not use the

option contract k and o*,k = 0. Q.E.D.

Proposition 3 suggests an algorithm to find the optimal capacity plan given the

total capacity g.

Algorithm 1:

Step 1: For each process j, rule out all the resources that is not on the convex

envelop Qj.

Step 2: For each process j, name the remaining resources according to Equation

(2.16). Find the threshold 6j,k for k = 0, ..- , Kj - 1.

Step 3: For each process j, find the resource kj such that <,kj-1 < 9 !g ,k. The

optimal capacity plan given the total capacity g is

Pr(D > wj*,(g)) = q•, - qj"+, for i = 0,... , k - 1,
Wj,i+l - for i

Wi,(g ) = g - Wj,k,- 1 (g), for i = kj - 1,.., Kj.
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Figure 2-4: A supply chain network with single process and dedicated resource.

Since we can find the optimal capacity for given total capacity g using Algorithm

1, we can then apply convex search algorithms to find the optimal total capacity g*.

2.2.2 Special Case II: Single Process with Dedicated Re-

source

We will now consider the second special case: a network with a single process and

a single dedicated resource. An example of such a network is given in Figure 2-4.

Without loss of generality, we assume ri > rj if i < j. For this class of supply chains,

we can also obtain a closed-form solution of the optimal capacity planning strategy,

which is given in the following proposition:

Proposition 4 Assume D is a continuous random vector and r2 > e for all i. For a

supply chain network with a single process and dedicated resource, a capacity planning

strategy (c, g) is optimal iff it satisfies one of the following two sets of conditions:

Set 1:

Pr (z M, Di > c) = (2.20)

q + ePr (EiZ Di > g) - Zil [riPr (E=1 Dj > g > Dj) = 0
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(2.21)

(2.22)c<g

Set 2:

P - E 1• TiP (g 1D, > g> i Dj)]= 0

c=g

(2.23)

(2.24)

Proof: By Proposition 1, it will be sufficient to show that one of the two sets of

conditions is in fact the first order necessary condition for Problem (2.2). For any

(c , g, d), we can write

min{dl, g}ri

- min
IM Ii= 1

M

+ g}
i=2

d, g I

(max 0, g
i-=-z
j= 1

dI ri - max S0, g
- min di, c e.

Therefore, we can write Problem (2.2) as follows

arg min
c,g

-E[ir(c, g, D)] + pc + q(g - c)

s.t. c < g.

Since lagrange multiplier exists, we can write the lagrange function

L(c, g, D) = -E[ir(c, g, D)] + pc + q(g - c) + 4(c - g).

From the first order necessary condition, we get

0L
Oc• =p-q-ePr c

M)
< EiD +/ +=0

i=1

i(c, g, d) j=-
j= 1

dj}

(2.25)



and

= -rlPr(g < DI) + E r, -Pr g > EDj + Pr g> D

i=2 j=1 j=1

+q + ePr (g < oi - = 0 (2.26)
i=1

Case 1: If c < g, then p = 0. Then, Equation (2.25) implies condition (2.20) and

Equation (2.26) implies condition (2.21). Therefore, the first order necessary

condition is equivalent to the first set of conditions.

Case 2: If c = g, then from Equation (2.25) and (2.26) we have

-rPr(g < D 1) + ri -Pr g > D ±Pr g > D)))
i=2 j=1 j=1

+q+ePr g<Y ZDi +p-q-ePr g(< Di =0
i= 1 i=1

Simplifying the equation above will get condition (2.23). Therefore, the first

order necessary condition is equivalent to the second set of conditions.

Q.E.D.

The first (second) set of conditions is the necessary and sufficient conditions for

an optimal planning strategy with (without) the purchase of an option contract. If

it is better for the manufacturer to reserve a positive amount of option capacity,

the optimal policy will have similar structure to that found in Proposition 2 for the

process using an option contract. Equation (2.20) is the same as for Proposition 2.

For Equation (2.21), the first two terms are the incremental cost for increasing the size

of the option contract; the third term is the incremental revenue from increasing the

size of the option contract. The first order condition just equates the incremental cost

with the incremental benefit, under the assumption that we use the option contract.

Similarly, if it is better not to use an option contract, the incremental cost (revenue)

for increasing the size of the fixed-price contract is given in the first (second) term of

Equation (2.23). Equating them gives us the first order condition. Therefore, to find



the optimal level of total capacity, we need to solve Equation (2.21) or Equation (2.23)

depending on whether it is better for the manufacturer to reserve option capacity or

not.

By examining the optimal strategy given in Proposition 4, we see that if it is

optimal for the firm to reserve option capacity, the optimal fixed-price capacity is in-

dependent of the prices of the products and the optimal total capacity is independent

of the price of fixed-price capacity. We have observed a similar property for the class

of a supply chain with single product and dedicated resources. However, as we will

discuss in Section 2.4, these properties are not true in a general supply chain network.

Finally, as we will discuss in Section 4.2, the multi-period extension of this special

case will be an important component of the algorithm for solving the multi-period

capacity planning problem.

2.3 Solving the Single Period Capacity Planning

Problem

Unlike the special cases we have studied in the previous sections, it is very difficult to

derive a closed-form solution for the optimal capacity planning strategy in a general

supply chain setting. Therefore, in this section, we will study different algorithms for

solving the general single period capacity planning problem (2.2) and compare their

performances.

2.3.1 Sampling

Through the rest of this paper, we will use sampling to model demand uncertainty.

Given any probability or empirical distribution of the demand, we randomly draw

a set of demand realizations and denote this set by S. In effect, we will model the

given demand distribution by the sample; that is, we assume demand comes from a

discrete distribution defined on the sample space, where each sample point is equally

likely to occur. Let L be the size of the sample set. In this section, we will give some



guidelines for picking the number L.

Let us assume that we have selected a set of demand samples S with size L.

Denote 7rL(CL, gL, dL) to be the maximum objective function value of Problem (2.1)

by replacing the expectation over the original demand distribution with the average

over the L sample points and IIL(C*, gL) be the corresponding maximum objective

function value of Problem (2.2). We would like to find a bound on the probability

that II(c*, g*) - IIL(CL, g*)1 is smaller than a positive scalar E. We will give two

bounds based on two different inequalities: Hoeffding inequality [20] and Chernoff

inequality [41].

Bound Based on Hoeffding Inequality

We assume that for any given c, g, and d, we can identify a lower and upper

bound on the expected net revenue,

iTmin • Tr(c, g, d) i Trmax.

In practice, 7rmin and 7rmax can be the minimum and maximum profit that the man-

ufacturer can gain. By Hoeffding Inequality, we have

Pr(I 7r(c, g, D) - 7rL(c, g, D) > E) < 2exp 2( L, > 0. (2.27)

Therefore,

Pr(|7r(cL, gL, D) - TrL(CL, gL, D) > E) 2exp ) , E > 0 (2.28)

and

Pr(i7r(c*, g*, D) - rL(c*, g*,D) > E) < 2exp 2 2 )2 , E > 0. (2.29)

Since (c*, g*) is the optimal solution of problem II and (c*, gl) is the optimal solution

of problem IIL, we have

II(c*, g*) 2> I(cL, gj) (2.30)



and

IIL(cL, gL) > II (*, g*). (2.31)

From Equation (2.31), we have

II(c*, g*) - IIL(C*L, g) II(c*, g*)- IIL (C*,g*). (2.32)

Similarly, from Equation (2.30), we have

II(c*, g*) - IIL(C*, g*) II(c!, g1) - IIL(C*L, g). (2.33)

By Eqs. (2.28), (2.29), (2.32) and (2.33), we get

Pr( II(c*, g*) - IIL(c, g*L) < E)

Ž Pr( I(c, g*)- IIL(c*, g*)[ <e AND III(c, gD) - IIL(CL, g*L)| e)

= Pr(II(c*, g*) - IIL(C*, g*) < e) + Pr( II(cL, gL) - IIL(C*L, 9L)I • E)

-Pr(Ill(c*, g*) - IIL(c*, g*)j < E OR |II(c4, g;) - IIL(C*L, gL) E)

> Pr(I1I(c*, g*) - IIL(c*, g*)I e) + Pr(]II(C*, g*) - IIL(cT, g#)) • E) - 1

Ž2 1 - 2exp 2(lrm fEm) 2 ) -1
2(7r... - 7.min)2

= 1- 4exp 2 (2-Ein)2 (2.34)

Equation (2.34) suggests a guideline to pick a suitable sample size given the knowledge

of the bound on the expected profit. For example, let's assume that the difference

between maximum profit and minimum profit is $35000. If the manufacturer uses

500 samples, the probability of having a sampling error that is greater than $5000 is

at most 0.0243.

Bound Based on Chernoff Inequality

If the manufacturer has an estimate of the maximum standard deviation, aU, of

the expected profit, 7r(c, g, D), and knows that the expected profit is bounded, it can

bound the quantity II(c*, g*) - IIL(Cj, g2L)I using the Chernoff inequality.



By Chernoff inequality, we have

Pr(IIr(c*, g*, D) --rL(C*, gL, D)I > e) < 2exp 4( 2 , e > 0

and

Pr(7r (c*, g*, D) - rL(C*, *, D) E) _ 2 exp 42 , 6 > 0.

Following a similar argument given above, we have

Pr(lII(c*, g*) - IL(C!, g)I _ E) _ 1 - 4exp 4a2 ). (2.35)

As an example, if the standard deviation of the expected profit is $25000 and the

manufacturer uses 500 samples, the probability of having a sampling error that is

greater than $5000 is at most 0.027.

Finally, because we use sampling to model the uncertainty, we do not make any

assumption on the distribution of demand. In practice, the manufacturer can generate

the demand samples from some probability distributions or from the demand history.

2.3.2 Linear Program Model

We now present and discuss the first algorithm to solve the general single period ca-

pacity planning problem. We can view the two-stage problem given by (2.1) and (2.2)

as a stochastic optimization with recourse, and thus express it as one big deterministic

linear program and solve it with standard linear program methods. Given the sample

set S, we can formulate the equivalent deterministic linear program of Problem (2.2)

by substituting (2.1) into (2.2) and replacing expectation with the average of samples:

max E ('Zda- e'Hyd) - p'c - q(g- c) (2.36)
des

s.t. zd_ d, V dES

Azd 5 B(xd+ yd), V dE S

Hxd < c, V d E S



H(xd+ Yd) < g, dE S

cg

xd, yd, zd 0, V dE S

c, g> 0

where d denotes a demand realization in the sample set S and the subscript indicates

which demand realization that the production level decision variables are associated

with.

The size of Problem (2.36) can be very large for a moderate size supply chain.

Let N be the number of links between processes and resources. For any demand

realization d, Problem (2.1) has M + 2N variables and M + J + 2K constraints.

Therefore, the equivalent deterministic linear program (2.36) will have L(M + 2N) +

2K variables and L(M + J+ 2K)+ K constraints. Consider a supply chain with M =

10 products, J = 20 processes, K = 30 resources, and N = 40 links. If the sample size

is 500, then Problem (2.36) has 45,060 variables and 45,030 constraints. When the

size of the problem is large, the run time of this algorithm is very slow. We will discuss

its run time performance in Section 2.3.7. Moreover, as we increase the complexity

of the supply chain structure and the size of the sample space, Problem (2.36) grows

exponentially. Therefore, we need to develop other more efficient algorithms to solve

the problem.

2.3.3 Sub-gradient Method

Van Meighem and Rudi [31] suggest a sub-gradient algorithm to solve a different but

similar single period capacity planning problem. In their model, the firm can only

reserve fixed-price capacity but not option capacity. The main purpose of their paper

is to study the properties of optimal planning strategies. They proved the necessary

and sufficient conditions of the optimal solution and briefly mention that the problem

can be solved using a sub-gradient algorithm. Since our single period problem is

similar, we can develop a similar sub-gradient algorithm to our model.



We first consider the sub-gradients of Problem (2.2). For each demand realization

d, let A(c, g, d) be the associated dual variables of constraints Hx < c and y(c, g, d)

be the associated dual variables of constraints H(x + y) 5 g in Problem (2.1). Then

the sub-gradients of the objective function of Problem (2.2) are

Vcll = E[A(c, g, D)] - p+ q

and

Vgn = E[y(c, g, D)] - q.

We omit the proof since it is very similar to the one given in [31]. By Proposition 1,

II(c, g, D) is concave in (c, g). The first order conditions will also be the necessary

conditions for optimality. Therefore, we can use a sub-gradient method to find the

optimal solution. [31]

Sub-gradient Algorithm:

Step 0: Set s = 0. We start with a given initial feasible solution (co, gO).

Step 1: For capacity strategy c8 and g', solve the linear program (2.1) and find

the associated dual variables A(cS, gY, d) and y(c, g', d) numerically for each

sample demand vector d. Take the average of A(ce, eg, D) and y(c-, ge, D) over

D as an unbiased estimate of E [A(c", g', D)] and E [y(c", g', D)], and use them

to compute estimates of the sub-gradient VcaCI and Vgsll.

Step 2: If IVca III and Vgs II are smaller than some tolerance level, then stop. Oth-

erwise, adjust capacity in the direction of the sub-gradients:

gB+l = g + ±VglI

and

C8+1 = min {c + VcaII, 9g+1

where C is some step-size (or perform a line-search). Set s = s + 1 and return

to step 1.



At each iteration, step 1 of the sub-gradient algorithm will solve L linear programs

where L is the number of sample demand points that is used to estimate the sub-

gradients. The computational requirements at each step can be very intensive de-

pending upon the number of sample points. Therefore, if the sub-gradient method

requires a large number of iterations to converge, the algorithm will take a long time

to run. Unfortunately, the sub-gradient method can take a long time to converge,

due to the following reasons:

1. The convergence rate is constrained by the bottleneck processes. To produce a

product, the firm needs to plan the capacity of all processes for the product at

the same time. If one of the processes is short of capacity, the production is

constrained by the bottleneck process, which dictates the sub-gradient. Con-

sider the following example: The firm produces a single product that requires

two types of processes a and b. Resource 1 can provide fixed-price capacity to

process a at a cost of 5 per unit and resource 2 can provide fixed-price capacity

to process b at a cost of 4 per unit. The demand for the product follows a

uniform distribution between 100 and 120. The price for the product is 12 per

unit. The optimal capacity strategy will be 100 < cl = c2 < 120 for some value

of cl = c2. Now, suppose we start with initial point cl = 10 and c2 = 11. Since

cl < c2 < 100, Ve,1H = 12 - 5 = 7 and V,2II = 0 - 4 = -4. The sub-gradient

algorithm will adjust the capacity as follows:

[Cl,new, c2,new] = [Cl,ol d, C2,old] + C[7, -4]

We also observe that when c2 < cl < 100, the sign of the sub-gradient is

reversed. Thus, depending upon how we set the step size, the sub-gradient

algorithm can take a long time to converge as it will cycle back and forth

between these two sub-gradients.

2. The convergence rate is constrained by the non-uniqueness of the sub-gradient.

In a typical capacity planning problem, the number of processes is larger than

the number of products and the number of resources is larger than the number



of processes. Therefore, for some capacity planning strategies (c, g) and demand

d, the solution of the dual problem of (2.1) is not unique. Therefore, the sub-

gradient at some capacity strategies (c, g) is not unique. Following different

sub-gradients will have very different convergence rates.

3. The convergence rate depends heavily on the starting point.

4. The convergence rate depends heavily on the step size. [17]

5. Lack of good termination criterion. [17]

Reason 3, 4, and 5 have been shown to be true in many different problem contexts.

[17]. Even though the sub-gradient method might not be suitable for some instances

of our problem especially when the structure of the supply chain is complicated, it

gives an important insight of the problem: after evaluating the function II(c, g, D),

we can get the sub-gradients of H(c, g, D) with small extra computational effort. This

is because Problem (2.1) is a linear problem, therefore, the dual variables A and 7

of the problem are immediately available after we solve the problem [7]. Based on

this observation, we suggest the following algorithms as possible improvement on the

sub-gradient method.

2.3.4 Regular Supporting Hyperplane Algorithm

Another type of algorithm that uses the sub-gradient is the Supporting Hyperplane

Algorithm suggested by Veinott [36]. Let us consider a new problem:

min f (2.37)

s.t. f + E[ir(c, g, D)] - p'c- (g - c) > 0

c < g

We can show that (c*, g*) solves Problem (2.2) iff (c*, g*, f*) solves Problem (2.37)

with

f* + E[7r(c*, g*, D)] - pc* - q(g* - c*) = 0.



The supporting hyperplane algorithm can be used to solve Problem (2.37).

We assume we can identify upper and lower bounds on f, c, and g. Let ctpper (Cower)

and gupper(gower) be the upper (lower) bounds on the fixed-price and total capacities.

Let fuwer(fiower) be the upper (lower) bound of f. Let

VO = (c, g, f) : c E [owe,, upper], g E [gower, guper], f E [flower, fupperl]

Let s = 0, the algorithm consists of the following steps:

Regular Supporting Hyperplane Algorithm:

Step 1: Solve the linear program of minimizing f, subject to (c, g, f) E V8 , and let

(C., g', fl) be the optimal solution. If

f" + E[Tr( c, g', D)] - p' c - q(gs - cS) > -e.

where e is a small positive number chosen by the user, stop. Otherwise, go to

step 2.

Step 2: Use the simulation method given in the sub-gradient algorithm to calculate

the sub-gradient VcaII and Vg.II. Add a linear constraint to the set Vs:

f + II(c8, g, D) + [(c, g) - (c8, g')]'(Vcsl, VgflI) > 0 (2.38)

where 11(c-, g', D) is a constant, which equals E[Tr(c s, g', D)] -p'ý - q'(g'- ca).

Let the new set be V' +1 . Set s = s + 1 and go to step 1.

Geometrically, the supporting hyperplane method approximates the function II(c, g, D)

with hyperplanes. To construct the initial constraint set Vo, one can set Clower and

glower to be 0, cqer and gue, to be maximal capacity requirement to fill all demand,

flower to be the objective value of any feasible strategy, and fuper to be the maximal

profit that the firm can achieve. At each step, the algorithm adds a new supporting

hyperplane to the constraint set, based on the sub-gradient from the last solution

(supporting point). It then uses all the sub-gradients that it has calculated so far



to find the next supporting point. Since all previous calculated supporting hyper-

planes will be used, the algorithm overcomes problems 1 and 2 of the sub-gradient

algorithm. By the nature of the supporting hyperplane algorithm, it does not re-

quire a starting point or a step size. Finally, at each step -f 8 is an upper bound for

II(c*, g*, D). Therefore, the e in the stopping criterion in step 1 is an upper bound

for II(cS, g', D) - H(c*, g*, D)I.

Even though we expect the supporting hyperplane algorithm in general to have a

better convergence rate compared to sub-gradient method, it suffers from the problem

of slow start. Note that at each iteration, the algorithm needs to solve L linear

programs to find the supporting hyperplane where L is the number of samples. At

the beginning, the supporting point is likely to be far away from the optimal solution.

It might not be necessary to construct an accurate supporting hyperplane at points

that are far away from the optimum using all samples, since these hyperplanes are only

used to find an approximate location of the next supporting point. As the algorithm

proceeds, the supporting points get closer and closer to optimum, and we need more

accurate supporting hyperplanes. Since the regular supporting hyperplane algorithm

uses all samples regardless of which stage the algorithm is in, it wastes computational

power at the beginning and therefore has a slow start problem. To overcome this

problem, we can adapt a variation of the regular supporting hyperplane algorithm

from large-scale stochastic linear programming to solve Problem (2.2) [17] [18]. We

will describe this algorithm in the next section.

2.3.5 Stochastic Supporting Hyperplane Algorithm

To address the slow start problem of the regular supporting hyperplane algorithm,

we will adapt the technique suggested by Higle and Sen in [17] and [18]. In their

algorithms, instead of using all samples at each step, they incrementally increase the

number of sample points at each iteration.

Stochastic Supporting Hyperplane Algorithm:

Step 0: Set up the initial Vo as for the regular supporting hyperplane algorithm.



Set s = 0 and the initial demand sample set So = 0.

Step 1: Set s = s + 1. Randomly generate a demand observation w" independent of

any previously generated observations. Let Ss = S8-1 U ws. Construct the sth

supporting hyperplane using the same method given in the step 2 of the regular

supporting hyperplane algorithm. Define the sth supporting hyperplane at sth

iteration to be:

f + La + (P3)'c + ( >)'g 0

where a = fII(ce, g',D) - (c, g')'(Vcn, VgflI), Ed = d sE A(c8, g', d) -

p + g, and E( = • -f y(c s, gs, d) - q.

Step 2: Update the coefficients of all previously generated supporting hyperplane:

s s-l 1 s-l p q s- l q
O- 8 8 8 4 8 SS 

t  8 -- 8 7

where U is an upper bound on ir(c, g, D); for t = 1, - -, s - 1.

Step 3: Find the next supporting point using the same method given in the step 1 of

regular supporting hyperplane algorithm. If the algorithm does not terminate,

go to step 1.

We derive the update rules in step 2 in Appendix B. Note that the supporting

hyperplane constructed at iteration s uses s samples. Therefore, the supporting

hyperplanes from different iterations use different numbers of sample points. The

updating rules in step 2 modify the previously generated supporting hyperplanes to

incorporate this difference. For details of stochastic supporting hyperplane algorithm,

such as its convergence property, please refer to [18]. The stochastic supporting

hyperplane algorithm addresses the problem of slow start by incrementally increasing

the size of the sample set by one at each iteration. Even though in general the

algorithm will take more iterations to converge, the average computational effort

required in each iteration is less than the regular supporting hyperplane algorithm.

As a result, the performance of the algorithm increases significantly as we will see



in Section 2.3.7. However, adding one demand sample at each step means that the

algorithm needs to solve one more linear program for all future iterations. For our

problem, the computational requirement increases very quickly as the number of

iterations increases. Therefore, we have developed another algorithm based on the

stochastic supporting hyperplane algorithm to solve Problem (2.2).

2.3.6 Stochastic Supporting Hyperplane Algorithm with Pre-

solve Routine

The new algorithm contains two stages. We first choose a small subset of the sample

set and use the regular supporting hyperplane method to construct an initial poly-

hedra Vo. We then use the stochastic hyperplane supporting algorithm to find the

optimal solution. We now outline this algorithm:

Stochastic Supporting Hyperplane with Pre-solve Routine:

Stage I: Pick a subset S C S, solve the problem with the regular supporting hyper-

plane algorithm described in Section 2.3.4. Let V be the final polyhedra of the

master LP.

Stage II: Set Vo = V and use the stochastic supporting hyperplane algorithm de-

scribed in Section 2.3.5 to solve the capacity planning problem.

In stage I, the algorithm takes advantage of the fast convergence rate of regular

supporting hyperplane algorithm but with a reduced computational requirement at

each iteration by using a small sample size. We expect the solution from stage I to

be close to the optimum. The algorithm then uses stochastic supporting hyperplane

algorithm to refine the solution. Since the second stage problem starts with a good

stating point and initial constraint set, we expect that the stochastic supporting

hyperplane algorithm should converge faster compared to starting from scratch.



2.3.7 Algorithm Run Time Comparisons

After examining five different algorithms for solving the single period capacity plan-

ning problem, we now discuss their run time performances. We use a free linear

program solver, GNU Linear Programming Kit (GLPK 4.11), for all of the test cases.

This solver is slower than the commercial LP solver, CPLEX. However, the compu-

tational tests presented here show the relative performance comparison of the algo-

rithms. The test machine is an IBM x40 laptop with a 1.29 GHz Intel Pentium M

CPU and 760 MB of memory. All the tests were written in the C++ programming

language and performed in a Windows XP environment.

We consider a supply chain with 15 products, 30 processes, and 30 resources. We

generate random test cases according to the following rules. The demand of each

product follows a normal distribution with mean uniformly distributed between 100

and 120 and standard deviation 10. The price of each product is uniformly distributed

between 150 and 170. The price of fixed-price capacity, pk, is uniformly distributed

between 9 and 12. The cost of option capacity, qk, is uniformly distributed between

1 and Pk. The exercise cost of option capacity is set to pk x 1.1 - qk. A link joins

a product and process with probability 0.2 (e.g. Pr(A(j, m) = 1) = 0.2) and a link

joins a process and a resource with probability 0.2 (e.g. Pr(B(j, (j, k)) = 1) = 0.2).

We write a routine to check whether the supply chain generated is connected or not.

If not, we repeat the generation process until we have a connected supply chain. In

each case, we set the sample size to be 500, and we use the same 500 sample demands

for all algorithms.

We first test the linear program algorithm with a randomly generated test. The

linear program has 182,560 variables and 197,530 constraints. It takes the algorithm

10 hours 36 minutes 12 seconds to find an optimal solution. As we will show later

this run time is significantly slower than the other algorithms. For the sub-gradient

algorithm, we have discussed its shortcomings in Section 2.3.3. Furthermore, Higle

and Sen [18] show that the supporting hyperplance algorithm outperforms the sub-

gradient algorithm for solving large scale stochastic linear problems. Therefore, we



Test Case Regular Stochastic Pre-solve Pre-solve/Stoc. Pre-solve/Reg.

1 465 112 51 45.45% 10.97%
2 380 128 44 34.38% 11.58%
3 373 140 67 47.86% 17.96%
4 678 152 93 61.18% 13.72%
5 791 513 130 25.34% 16.43%
6 679 392 79 20.15% 11.63%

7 259 119 40 33.61% 15.44%

8 239 43 36 83.72% 15.06%

9 315 125 45 36.00% 14.29%
10 260 75 36 48.00% 13.85%
11 473 104 71 68.27% 15.01%

12 262 72 47 65.28% 17.94%

13 259 58 37 63.79% 14.29%
14 534 147 71 48.30% 13.30%
15 314 278 43 15.47% 13.69%
16 386 100 51 51.00% 13.21%
17 464 115 50 43.48% 10.78%
18 442 163 44 26.99% 9.95%
19 293 110 40 36.36% 13.65%
20 554 144 68 47.22% 12.27%

21 534 215 72 33.49% 13.48%
22 267 62 34 54.84% 12.73%
23 299 117 41 35.04% 13.71%
24 340 79 39 49.37% 11.47%
25 274 80 44 55.00% 16.06%
26 334 58 44 75.86% 13.17%
27 231 60 29 48.33% 12.55%
28 410 102 50 49.02% 12.20%
29 423 140 45 32.14% 10.64%

30 553 114 50 43.86% 9.04%
31 311 103 43 41.75% 13.83%
32 451 136 37 27.21% 8.20%
33 488 220 43 19.55% 8.81%
34 472 179 51 28.49% 10.81%
35 440 214 79 36.92% 17.95%
36 515 295 77 26.10% 14.95%
37 174 99 31 31.31% 17.82%
38 552 211 55 26.07% 9.96%
39 484 103 74 71.84% 15.29%
40 294 74 34 45.95% 11.56%

Table 2.5: Run time (in seconds) comparison of Regular Supporting Hyperplane
algorithm, Stochastic Supporting Hyperplane algorithm, and Stochastic Supporting
Hyperplane algorithm with Pre-solve Roi•4ne.



Regular Stochastic Pre-solve Pre-solve/Stoc. Pre-solve/Reg.
Average 406.7 143.8 52.9 43.35% 13.23%

STD 138.5 93.2 20.1 16.14% 2.53%
Min 174.0 43.0 29.0 15.47% 8.20%
Max 794.0 513.0 130.0 83.72% 17.96%

Table 2.6: Run time comparison statistics.

will focus on comparing the performances of the three types of supporting hyperplane

algorithms presented above.

For the three supporting hyperplane algorithms, we set the terminating error

percentage to be less than 1%. We select a set of 100 samples randomly and use it in

the stage I of the stochastic supporting hyperplane algorithm with pre-solve routine.

For 40 randomly generated test cases, the results are given in Table 2.5.

We see that for all test cases, the algorithm using pre-solve routine has the best

runtime. The statistics of the runtime comparisons are given in Table 2.6. The av-

erage runtime of the algorithm using pre-solve for these test cases is 13.23% of the

average runtime of the regular supporting hyperplane algorithm and 43.35% of the

average runtime of the stochastic supporting hyperplane algorithm. For the maxi-

mum improvement, the runtime of the algorithm with pre-solve routine is 8.20% of

the runtime of the regular algorithm and 15.47% of the runtime of the stochastic

algorithm.

2.4 Properties of Optimal Strategy

After examining the algorithms for solving the single period capacity planning prob-

lems, in this section we will study the properties of the optimal strategies.

2.4.1 Effects of Unit Profits and Unit Prices

We first study the effects of the unit profits and unit prices on the maximal profit that

the manufacturer can obtain. We state the first result in the following proposition.



Proposition 5 Let II(c*, g*, D, r, p, q, e) be the optimal total profit of capacity plan-

ning problem (D, A, B, H, r, p, q, e), then the following statements are true:

1. If 'r r, then HII(~2*, *, D, 9, p, q, e)> II(c*, g*, D, r, p, q, e).

2. If - p, then HII(*, 7*, D, r, p, q, e) < I(c*, g, D, r, p, q, e).

3. If 4. q, then I(*, j*, D, r, p, j, e) II(c*, g*, D, r, p, q, e).

4. If - e, then II(-*, ~j, D, r, p, q, Z) < II(c*, gD, r, p, q, e).

Proof: We will only show the proof of the first statement and the proofs of

others are very similar. Let (c*, g*) be the optimal capacity planning strategy for

problem (D, A, B, H, r, p, q, e). For a demand realization d, let (* (d), y*(d, ), z*(d))

be an optimal production level of problem (D, A, B, H, r, p, q, e) with optimal ca-

pacity planning strategy (c*, g*). Clearly, (c*, g*) is a feasible solution of problem

(D, A, B, H, 9, p, q, e) and (x*(d), y*(d), z*(d)) is a feasible production level of prob-

lem (D, A, B, H, i, p, q, e) with capacity planning strategy (c*, g*). For the same

demand realization, d, let (* (d), y (d,), *(d)) be an optimal production level of

problem (D, A, B, H, 9, p, q, e) with capacity planning strategy (c*, g*). Since >- r,

7r(c*, g*, d, ed* (d), y (d), * (d), f) - 7r (c* , 6 , d (d), y* (d), z*(d), )

> 7r(c*, g*, d, *(d), y*(d), *(d), r)

Let (-*, #*) be the optimal planning strategy for problem (D, A, B, H, f, p, q, e). Then

we have

II(-*,*, D, 9, p, q, e) II(c*, g*, D, 9, p, q, e)

= E[r(c*, g*, D,~ *, ~, )] - p'c* - qd(g* - c*)

> E[r(c*, g*, D,* , y*, i*, r)] - p'c* - q(g* - c*)

= II(c*, g*, D, r, p, q, e).

Q.E.D.



Proposition 5 shows the monotonic properties of the total profit on the unit profit

and unit price. However, one assumption here is that when the unit profit and unit

price change, the demands remain unchanged. This assumption might not hold in

the reality. Therefore, if the demands change once the manufacturer adjusts the unit

profit and unit price, the monotonic properties shown in Proposition 5 might not hold

anymore.

Lemma 1 For the following two types of supply chain:

1. a supply chain with a single product and dedicated resources and

2. a supply chain with a single process and dedicated resource,

the following statements are true:

1. For those resources that have an option contract in the optimal capacity plan,

the optimal fixed-price capacity remains the same if the price of the product

increases.

2. The optimal total capacity remains unchanged if the prices of the fixed-price

contract for the resources having option contracts decrease.

Lemma 1 follows immediately from Proposition 2 and Proposition 4. As we have

discussed in Section 2.2, when the firm reserves a positive amount of the option

capacity under the optimal plan, e.g. g* > c*, we determine the fixed-price capacity

c* so as to balance the expected marginal underage and overage costs, where the

underage cost reflects the fact that we have option capacity available to meet excess

demand. For the special cases listed in Lemma 1, neither the underage nor the overage

cost depend on the unit profit r. Therefore, as r increases, c* remains the same. In

a general case, however, these costs might change as r changes. Therefore, Lemma 1

might not hold anymore. To illustrate this, let's consider the following example which

contains 5 products, 9 processes, and 9 resources. The structure of the supply chain

is given in Figure 2-5. The demand for each product follows a normal distribution



Products

Processes

Resources

Figure 2-5: A supply chain with 5 products, 9 processes, and 9 resources to demon-
strate the effects of unit profit and unit price on optimal capacity planning strategies.

N(120, 10). We set

r = [30, 50, 46, 41,25], pk = 10 V k, qk = 8 V k, and ek = 3 V k.

We plot the change of optimal strategy for resource 1 as unit profit of product 1

increases in Figure 2-6. We can see that both the optimal total capacity and the

fixed-price capacity increase as the unit profit increases and g* > c*. As the price of

product 1 increases, the priority of product 1 in terms of order fulfillment increases.

Therefore, the underage and overage costs change. As a result, both the optimal total

capacity and the fixed-price capacity change.

2.4.2 Effect of Changes of Demands

The effect of changes of demands on the optimal capacity plan is complex. Let us

consider the following counter intuitive example. Let (c*, g*) be an optimal solution

of the capacity planning problem (D, A, B, H, r, p, q, e). Let D be another random

demand vector that differs from D only in its first moments, that is D = D +

A, where A is a known positive deterministic vector. Let (-*, *) be the optimal

solution of capacity planning problem (D, A, B, H, r, p, q, e). The parameters of the

two problems are the same except that in the second problem the manufacturer

receives extra deterministic demand.
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Figure 2-6: Effects of product profit, r, on optimal capacity planning strategy.

One might expect that the optimal capacity plan for the second problem is first

to adapt the optimal capacity plan for the first problem and then fill A using the

cheapest way. Formally, if we let I be a J x K matrix such that

I(jk)= I 1, if pk = min{pn I B(j, (j, n)) = 1};

0, otherwise.

If I(j, k) = 1, it means that using resource k is the cheapest way to provide capacity

for process j. One might expect that Z* = c* + I'AA and #* = g* + I'AA. However,

this does not hold in general.

We consider the supply chain given in Figure 2-7 that consists of two products,

one process, and one resource. The prices of the two products are: r, = 1.5 and

r2 = 1.1. Since there is only one process and one resource, we will view them as

synonymous and use the terms interchangeably. The price of the fixed-price capacity

Oph Capd vs. Unit MIb---
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Figure 2-7: A supply chain with two products, one process, and one resource.

Scenario cl = 111 c = 112

Prob. Demand Filled Demand Filled Demand Extra Cost Extra Rev.

0.25 d =50,d2 =102 z 1 = 50, z2 = 51 z 1 = 50, z2 = 52 1 1.1

0.25 d = 50,d 2 = 101 zl = 50,z 2 = 51 zl = 50, z2 = 52 1 1.1

0.25 d,10,d2 =102 z= 10,z2 = 101 =10,z2 = 102 1 1.1
0.25 dl = 10,d 2 = 101 z 1 = 10,z 2 = 101 z1 = 10,z 2 = 101 1 0

Table 2.7: Comparison between the capacity plan cl = 111 and cl = 112.

Scenario cl = 11 cl = 12

Prob. Demand Filled Demand Filled Demand Extra Cost Extra Rev.

0.25 d 1 =50,d 2 = 2 z1 =11,z2 = 0 z1 =12,z 2 =0 1 1.5

0.25 d 1 =50,d2 =1 1 =11, z2 =0 z1 =12, z2 =0 1 1.5

0.25 di = 10, d2 =2 z1 = 10, z2 =1 z1 = 10, z2 =2 1 1.1

0.25 d1 =10,d2 =1 z 1 =10, z2 =1 z=10, z2 = 1 1 0

Table 2.8: Comparison between the capacity plan cl = 11 and cl = 12.



is pi = 1 and there is no option capacity. The demand for product 1 is either 50 or

10, and each occurs with probability 0.5. The demand for product 2 is either 2 or 1,

and each occurs with probability 0.5. The optimal capacity plan is to reserve cl = 12

and the maximum expected net revenue is 5.325.

Now, we assume that the manufacturer receives extra 100 units of demand for

product 2. With all the other parameters remain the same, the new optimal policy is

cl = 111 but not 112. We compare the two capacity plans in Table 2.7. The capacity

plan cl = 112 costs the manufacturer 1 dollar more and gains an extra expected net

revenue of 0.25 x 3.3 = 0.825 dollar. Therefore, it is not optimal.

To gain insights into this example, we also need to compare the capacity plans

cl = 11 and cl = 12 in the original problem. We give the comparison in Table 2.8. In

this case, the capacity plan cl = 12 costs the manufacturer 1 dollar more but gains an

extra expected net revenue of 0.25 x 4.1 = 1.025 dollar. Therefore, it is better than

the plan cl = 11. From these two comparisons we see that after the manufacturer

reserves more capacity in response to the increment in the demand, the allocation of

this capacity depends on the prices and demands of the products. The manufacturer

might use all of the new capacity to fill the extra demand. This dynamic complicates

the decisions and, therefore fails our intuition.

2.4.3 Common Process and Option Capacity

In our model, there are three types of flexibility that the manufacturer can use to

cope with the demand uncertainty: common processes, flexible resources, and option

contracts. In this section, we will discuss the effects of using common processes and

option contracts through a series of examples. Finally, we will draw some managerial

insights into how to use these flexibilities.

Consider a supply chain given in Figure 2-8 that contains two products, four

processes, and four resources. Each process has a dedicated resource and we will view

them as synonymous and use the terms interchangeably.



Figure 2-8: A supply chain with two products and four processes.

D2

Figure 2-9: Replacing the process 2a and 2b in Figure 2-8 with a common process
with the same price.

:··



Both products have the same unit profit. The unit prices of the fixed-price capacity

are

[P, P2a,2b ,p3] = [10, 50,50, 10].

The demand of each product follows normal distribution with mean and standard

deviation:

E[D 1] = 502; a(Di) = 99; E[D2] = 496; a(D 2) = 99.

To study the effects of common processes and option contracts, we will consider the

following four scenarios:

1. The optimal capacity strategy for the supply chain given in Figure 2-8.

2. The same problem in scenario 1 except that we replace processes 2a and 2b with

a common process with the same price. The supply chain after the replacement

is given in Figure 2-9.

3. The same problem in scenario 1 except that we add an option contract to process

2a and 2b. The option contract has a unit reservation price 5 and unit exercise

price 50.

4. We combine scenario 2 and 3.

We will compare the change to the maximum expected profit in the four scenarios

as we increase the unit profits for both products from 66 to 150. The results are given

in Table 2.9. We use the maximum expected profit in scenario 1 as the reference point.

We then quantify the benefit gained in the other scenarios as the percentage increase

in profit compared to the reference. We have plotted the benefits versus profit margin

in Figure 2-10. From this example, we have the following observations:



Profit Margin S1 S2 S3 S4 S2 vs. S1 S3 vs. S1 S4 vs. S1

66 1.54% 3,849 3,849 3,849 3,996 0.00% 0.00% 3.81%
67 3.08% 4,584 4,584 4,585 4,804 0.00% 0.04% 4.81%
68 4.62% 5,329 5,329 5,355 5,629 0.00% 0.49% 5.63%
69 6.15% 6,085 6,085 6,158 6,472 0.00% 1.20% 6.36%
70 7.69% 6,850 6,850 6,979 7,326 0.00% 1.87% 6.94%
80 23.08% 14,902 15,039 15,858 16,319 0.92% 6.41% 9.50%
90 38.46% 23,418 23,842 25,222 25,704 1.81% 7.70% 9.76%
100 53.85% 32,268 32,900 34,799 35,287 1.96% 7.84% 9.36%
110 69.23% 41,286 42,131 44,471 44,967 2.05% 7.71% 8.92%
150 130.77% 78,399 79,902 83,580 84,141 1.92% 6.61% 7.32%

Table 2.9: The benefits of using common processes and option contracts.

I

Prolt Maqn (%)

Figure 2-10: Comparing the benefits of using common process and option capacity.



1. The benefits of using common process and option contract are small when the

profit margin is low. The benefits increase and then decrease as the profit margin

increases.

The benefit of common process comes from risk pooling. In this example, when

the profit margin is very low, the loss from excess dedicated capacity is higher

than the gain from the risk pooling on the common process. Therefore, the

benefit of using common process is small.

The benefit of using option contract is to reduce the overage cost (from the

excess capacity) when the demand is low. When the profit margin is very low,

the reduced overage cost is still too high compared to the underage cost (from

the unfilled demands). Therefore, the option contract is also not very effective.

When the profit margin is high, the underage cost is more significant compared

to the overage cost. The manufacturer is willing to bear the cost of excess

capacity as to not fill demands. Therefore, any savings from reducing common

process capacity or reducing the cost of excess capacity become less significant

when the profit margin is high.

2. Using an option contract with small reservation price is more effective than

using common process.

In Figure 2-10, the red line representing the benefit of using option contract

is always above the blue line, which represents the benefit of using common

process. We assume that the option contract has a 10% reservation price. The

effective price of the option capacity, which is the sum of reservation price

and exercise price, is 10% more than the price of the fixed-price capacity. In

this case, option capacity can help the manufacturer to increase the expected

profit by as high as 7.84% in the case where the profit margin is 53.83%. This

example shows that an option contract with a small upfront price can be very

effective. As the reservation price increases, the benefit of using an option

contract decreases. For example, if we hold q + e = 55 and increase q from 5 to

25, the profit drops from 34,799 to 32,915. The increase in the expected profit



C1  C2a C2b C3  91 g2a I2b 93

Combined 437 760 - 426 437 863 - 426
Only option 406 378 367 397 406 406 397 397

Only common 384 763 - 378 384 763 - 378

Table 2.10: Studying the effects of common processes and option capacity: the opti-
mal solutions of different strategies.

is 2.00%, which is slightly better than the 1.95% increase achieved from using

a common process. If we further increase the reservation price to 40, the profit

drops to 32,287. The percentage increase in profit is only 0.06%.

3. When the profit margin is low, the strategy of using common process and an

option contract with small reservation price together can gain extra benefits

compared to using these two strategies separately.

Implementing both strategies, using common process and option contract, at

the same time is better than just deploying one of them. Furthermore, there is

a synergy in that the manufacturer gains an extra benefit by combining these

two strategies at low profit margins. In Figure 2-10, the green line is the sum

of the benefits of using common process and option contract separately. When

the profit margin is lower than 40%, the benefit of combining two strategies,

represented by the purple line, is higher than the green line. The gap between

these two lines is the extra benefit that the manufacturer gets. Moreover, this

extra benefit can be significant. For example, when the profit margin is 4.62%,

using common process and option contract can increase the profit by 0% and

0.49% respectively. However, the combined strategy can achieve a 5.63% profit

increase. To see the reasons behind this phenomenon, we can look at the optimal

solution of the different strategies in Table 2.10. We note that in the combined

strategy, the manufacturer first buys more capacity and second uses a larger

portion of option capacity. The effectiveness of an option capacity depends

on two factors: the price structure and the standard deviation of the demand.

After replacing the process 2a and 2b with a common process, the standard



deviation of the demand for the common process in larger than the standard

deviation of the original dedicated process. Therefore, using common process

amplifies the effectiveness of the option contract. On the other hand, the option

contract makes the capacity for the common process more flexible. As a result,

using the option contracts also amplifies the effectiveness of the risk pooling

effect. Therefore, the combined strategy achieves a much higher percentage of

profit increase.

2.5 Capacity Planning with Order Size Constraints

In practice, the capacity might only be procured or reserved in discrete or bulk units.

This requires that the decision variables, c and g, to be integer multiples of some

base unit. Having integer decision variables will increase the difficulty of solving the

problem. In this section, we will discuss how to find the optimal capacity planning

strategies with order size constraints.

2.5.1 Algorithm

Let wk be the order size of resource k. The firm can only reserve capacity from

resource k in integer multiples of wk. We define a componentwise product between

two vectors as follows:

c = [C1W,..-, ckWk]'.

The optimal production level problem given capacity planning strategy (c, g) can be

written as:

max Tr(c, g, d,x , y, z) = rz - e'Hy (2.39)
zy,z

s.t. z< d

Az < B(x + y)



Hx < c w

H(x + y) < go w

, y, z> 0

And the firm will solve the following problem to find the optimal capacity planning

strategy with order size constraints:

max E[Tr(c, g, D, *,y*, z*)] -p'(c w) - q'((g - c) w) (2.40)
c,g

s.t. c g

ck, g are non-negative integers for all k.

One way to solve the problem is to add integer constraints to linear problem (2.36)

and apply the standard mixed integer algorithm such as branch and bound algorithm.

However, as we have seen in Section 2.3, the linear problem approach to solve the

general problem might take a long time itself. Adding integer constraints will further

complicate the problem. We will now propose an algorithm that can take advantage

of the stochastic supporting hyperplane algorithm that we have developed.

We note that Problem (2.39) is the same as the original optimal production level

Problem (2.1). However, Problem (2.40) is not concave in c or g because of the

integer constraints. Therefore, we can not directly apply the supporting hyperplane

algorithm. To overcome this problem, we have the following algorithm:

Algorithm for Solving the Capacity Planning Problem with Order Size

Constraints

Step 1: Solve Problem (2.2) without integer constraints using stochastic supporting

hyperplane algorithm and let Vo be the resulting constraint set of Problem

(2.37) and (c*, g*) be the optimal solution. Set s = 0.



Step 2: Solve the problem,

min f (2.41)
c,g,$

s.t. (c, g, f) e V8

c = a 0 w for some vectors a with all components being

non-negative integers

g = b G w for some vectors b with all components being

non-negative integers

and let (cs, gs, f") be the optimal solution. If -f" - II(ce, g', D) < e, where E

is the error bound given by user, then stop.

Step 3: Add a new supporting hyperplane with supporting point (c", g') to the set

V" and let the new constraint set be V"+1 . Set s = s + 1 and go to Step 2.

2.5.2 Error Bound

Let (c*, g*) be the optimal solution of the mixed integer problem (2.40) and (c', g', f')

be the solution of our algorithm. Then we have the following proposition.

Proposition 6

H(c*, g*, D) - HI(c', g', D) < -f' - H(c',, g', D). (2.42)

Proof: Let (c*, g*) be the optimal solution of the mixed integer problem (2.40)

and (c', g', f') be the solution returned by the algorithm for solving the capacity

planning problem with order size constraints.

Let V' be the set of supporting hyperplanes returned from the algorithm. Let f*

be the optimal solution of the following problem:

mmin f (2.43)
f



s.t. (c*, g*, f) E V'

Therefore, -f* > II(c*, g*, D). Since (c*, g*, f*) is a feasible solution of Problem

(2.41),

-f' 2 -f*.

Therefore,

n(c*, g*, D) - (c', g')
< - H(c' g', D)

< -f' - (c', d, D)

Q.E.D.

In the algorithm, if the user picks e as the terminating error bound, Proposition

6 guarantees that II(c*, g*, D) - H(c', g', D) is less than e.



Chapter 3

A Decomposition Method

In Chapter 2, we developed algorithms to solve the single period capacity planning

problem. We now present a decomposition method that can separate the capacity

planning problem into multiple subproblems. After the decomposition, the new op-

timization problem will provide an upper bound and a feasible solution and lower

bound to the original problem.

This decomposition method is important in both the single period and multi-

period setting. First, even though we have proposed an efficient algorithm to solve

the single period problem, when the size of the problem is large, finding the optimal

capacity strategy still requires a considerable amount of computational power. In

these cases, the decomposition method provides a good feasible solution that we can

calculate efficiently. Moreover, the upper bound generated by the method provides a

criterion to evaluate the quality of the feasible solution.

Second, as we will see in Chapter 4, finding an optimal solution for the multi-period

capacity planning problem is very difficult. The decomposition method proposed in

this chapter is a crucial step in the approximation algorithm that we use to solve

the multi-period problem. Moreover, as in the single period case, the method also

provides an upper bound to check the accuracy of the approximation algorithm for

the multi-period problem.

We will illustrate the method in the single period case in this chapter and will

extend it to the multi-period case in chapter 4. Through the rest of this chapter,
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Figure 3-1: A supply chain with two products and three processes/resources.

we will use the following assumption. The decomposition method we propose in this

chapter requires this assumption.

Assumption 1 All processes have only dedicated resources.

3.1 A Decomposition Method Leading to a Feasi-

ble Solution and an Upper Bound

The original single period capacity planning problem with Assumption 1 is not separa-

ble because different products might share the same processes. One possible intuitive

approach to decompose the problem is to ignore the risk pooling effect on the shared

processes. A shared process might be separated into multiple identical (in terms of

price structure) but independent processes such that each one of them is used by one

and only one product. However, such a relaxation can not provide an upper bound

of the problem. Moreover, as we will see in Chapter 4, since different processes of

the same product are still linked together after the decomposition, this method does

not help to resolve or simplify the contract selection of different processes in the

multi-period case. Therefore, we will propose another way to transform the problem.

To illustrate the decomposition method, we consider the following example. Figure

3-1 shows a supply chain with two products and three processes. In this supply chain,

to produce product 1, we require both process 1 and 2 and to produce product 2,

we require both process 2 and 3. Now, we relax the constraint that requires both

D1 rl
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Figure 3-2: An upper bound to the supply chain given in Figure 3-1.

process 1 and 2 to produce product 1 to obtain the revenue from product 1. Rather

we permit these processes to operate independently, with each being rewarded with

a fraction of the revenue for product 1. Similarly, we allow process 2 and process 3

to produce product 2 independently. The supply chain after the relaxation is given

in Figure 3-2. Now, we can independently use process 1 and 2 to produce product

1. However, the product 1 produced from process 1 has a new price l 1,1rl and the

product 1 produced from process 2 now has a new price 32,1r1. Similarly, 0 2,2r2 and

03,2r2 are the prices for the new product 2 after the relaxation.

We first notice that solving the relaxed problem gives a feasible capacity plan for

the original problem. Furthermore, we will show that if we set

/1,1 + 32,1 = 1 and /2,2 + /3,2 = 1,

the solution to the relaxation provides an upper bound to the original problem.

Because of Assumption 1, the relaxation decomposes the original problem into

subproblems such that we have one subproblem for each process.

We now formalize the decomposition method described above. Let us recall the

problem for single period capacity planning:

max ir(c, g, d,z, y, z) = rz - e'Hy
X, y, z

s.t. z< d

Az < B(z+ y)



Hx < c

H(x+ y) < g

X, y, z> 0

and

max II(c, g, D) = E[r(c, g, D,x *, y*, z*)] - p'c - (g - c)
c,g

s.t. c< g

c, g> 0

For each product m, define

3m = {j I A(j, m) = 1}

Therefore, Jm is the set of processes that product m requires. Let Jm = IJmL. Let

{1, ... , Jm} be the indices of the processes in Jm. Therefore, pj where j E Jm refers

to the price of fixed capacity for the jth process in Jm. To simplify the presentation,

we will not always identify the process by its product, i.e. j E Jm, as this should be

clear from the context. Similarly, for each process j, define

Mj = {m I A(j, m) = 1}

Mj is the set of products that require process j.

For each product m and process j, let jl,m be a fixed real number. Then, for each

process j, we consider the following optimization problem:

max
xj ,yj ,zm:mEMj , 3j

s.t.

Oj(Cj,gj9, d,Xj,yj,Zm:m•Mj,fj) = E 3,mrmzm - eyj (3.1)
mEMj

zm < dm, V m E M3

SZM< Xj + yj
mEM_
Xj • Ci



xj + yj < gj

xj,yj > 0

zm> 0, VmEMj

and

max ej(cj,gj, D, Oj) = E[ej(cj,gj, D, x, yD , z:meM 3)] - jCj - - C)
cj,gj

s.t. cj < gj (3.2)

c, gj > 0.

Define
J

0(c, g, d, x, y,z,) =z , 0 (cj, gj, d, x, yj, zm:mEMj, 3j). (3.3)
j=1

We now consider a new optimization problem

max 9(c, g, D, 7) = E[O(c, g, D, *,y*, z*, i )] - p'c - q'(g- c) (3.4)
c,g

s.t. c g

c, g 0

We can separate Problem (3.4) into J independent subproblems:

J

e(c,g,D,/ ) = E• •(cj,g3 ,D, ~)
j=1

Moreover, each subproblem (3.2) is essentially the same as the special case we pre-

sented in Section 2.2.2 which has a closed form solution. Therefore, we can solve

Problem (3.4) effectively. We now show that if we choose , properly, Problem (3.4)

provides an upper bound for Problem (2.2).

Proposition 7 Let (-*, ~) be the optimal capacity planning strategy for Problem

(3.4). If for each product m,

E 3j,m = 1, (3.5)
3EJm



then 8(Z*,g*, D, p) > II(c*, g*, D), where (c*, g*) is the optimal solution to Problem

(2.2).

Proof: Let (c*, g*) be an optimal solution of Problem (2.2) given demand dis-

tribution D. Since (V*, y*) is a feasible solution of Problem (2.2), we have

II(c*, g*,D) Ž >H(V*,4*, D).

Let (cj, gj, d,7 ,yj, -7*:mEMj) be an optimal solution of Problem (3.1) under ca-

pacity planning strategy (cj, gj) and Cj be the corresponding constraint set. Let C =

Uj Cj. Since Problem (3.3) is separable and each subproblem is equivalent to Problem

(3.1), C is the constraint set of Problem (3.3). Let (c, g, d, Z(d), y*(d), z*(d)) be an

optimal solution of Problem (2.1) given (c, g, d). Since we have relaxed the constraint

that to produce a product requires all of its processes, we can show that any feasible

solution to Problem (2.1) is also a feasible solution to Problem (3.3). Therefore, for

any given realization d, the constraint set of Problem (2.1) is a subset of C. As a

result, for a given demand realization d, (x* (d), y*(d), z (d)) is a feasible solution of

Problem (3.3) and (x(d), y(d), z*:mEM(d)) is a feasible solution of Problem (3.1).

Then, given d we have

Oj(cj,gj, d,>,_,":mEMm j) Ž ,mrmzn - ejy*. (3.6)
mEMj

Because Equation (3.6) holds for all d, we have

E[9(c, g, D, , *, V ,I ] Ž E 3j,mrmz, - ejy) . (3.7)

If

Z 13j,m = 1,
.iEJm

then

E[ir(c,g,D, , y*, z*)] = E [ rmzý- - e y~ (3.8)
m=1 j=1
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=- E Z (E t rnzn) - Z ejy;]

= E E j,mrmzn - ejy;)
j=1 -me.M

From Equation (3.7) and (3.8), we have

E[O(c, g, D,-2*, 1,, 0)] E[wr(c, g, D, , y*, z*)]. (3.9)

By Equation (3.9), we have

E[O(c, g, D, -*, , *-, )] - p'c- d(g- c) > E[7r(c, g, D, *, y*, z*)] -p'c- 4(g- c).

Therefore,

O(c*, g*, D, 0) 2 II(c*, g*, D). (3.10)

Since (E*, *) is the optimal solution of Problem (2.2),

e(Z*,7*, D,/ ) > O(c*, g*, D, P). (3.11)

Therefore, combining Equation (3.10) and (3.11), we have

O(E7*, , D, p) II(c*, g*, D).

Q.E.D.

Proposition 7 says that if we choose O's that satisfy Equation (3.5), we will get

an upper bound of the original problem after the decomposition. However, there are

infinitely many choices of / that satisfy Equation (3.5) and some ps will give tighter

upper bounds than the others. The next problem that we will address is how we

should pick the ps.

The analysis given in the section is related to the resource directive decomposi-

tion [37] method in deterministic linear programming. Different from the traditional

resource directive decomposition method, we apply a decomposition method to a



stochastic linear problem. Therefore, the decomposition is a relaxation and does not

guarantee the optimality after the decomposition. Moreover, in the following sec-

tions, we suggest an efficient algorithm to pick the weight factors. The algorithm

takes advantage of the special structure of our problem.

3.2 Picking the Weight Factors

In this section, we will propose a heuristic algorithm to find a good /. We call a

optimal, if E(V*, T*, D, /) is the least upper bound of II(c*, g*, D). The algorithm

given in this section cannot guarantee the optimal choice of /. However, as we will

show in Section 3.2.2, it provides both a good feasible solution and an good upper

bound for the original capacity planning problem.

3.2.1 Algorithm

We have derived the closed-form solution for the single period capacity planning

problem that contains a single product and multiple processes in Section 2.2.1. Can

we find the weight factor / such that for this special case, the original problem and

the problem after the decomposition have the same solution? If so, this provides a

heuristic method to pick the weight factor. There two benefits for using this heuristic

method: first, the upper bound generated by this heuristic method is tight for the

special case with a single product and multiple processes and we will prove this

in Proposition 9; second, the / given by this heuristic method has a closed-form

representation.

We will use an example to illustrate this. We consider a simple supply chain given

in Figure 3-3 that consists of one product with unit price 50. To produce the product,

it needs both process 1 and 2. Process 1 has price structure (pl,qi, el) = (10,9,2)

and process 2 has price structure (P2, q2, e2) = (9, 8, 2). After the decomposition, we

have two products, la and lb, and they have the same demand. The unit price for

product la is pr and unit price for product lb is (1 - /)r. We plot the maximum

expected profit, as a function of 0, of the problem after the decomposition in Figure
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Figure 3-3: An example of decomposition to illustrate the effect of 3.

3-4. We can see that for all 0 the maximal expected profit of the supply chain after

the decomposition is an upper bound on the maximal expected profit of the original

supply chain. When # = 0.527, the problem after the decomposition and the original

problem have the same solution and, therefore, the upper bound is tight. We now

show how to find the closed-form representation of the optimal / for the special case

that contains one product and dedicated processes.

There are two important insights that we can draw from this example. First, /

should be proportional to the price of the process. Process 1 is slightly more expensive

than Process 2. Therefore, the price of product la is slightly higher than the price

of product lb and, therefore, the optimal 3 is slightly bigger than 0.5. Second, the

optimal total profit is convex in 0. Therefore, effective search algorithms for convex

optimization problems can be applied to find the optimal Pf. We will devote the rest

of this section to formalize the method that we have described and discuss how to

search for the optimal P in Section 3.3.

Without loss of generality, we assume that for all i, j E Jm

pi - q > p - qj , if i > j.
ei ej

For each product m, define

J + 1 if pj -Qjm< 1 Pjrm m± J1 em - r

min i l -  > l ,J• = J otherwise.
f ei r- = j

(3.12)

S



Total Profit v.s.

2

0-

'6

Figure 3-4: Different
bound is tight.
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p will have different upper bound. When 3 = 0.527, the upper



Also, for each product m, we define the following ratio

_ 3ml p. + Ej=>m q,
am = r m = (3.13)rm - -'d= m ej

Proposition 8 If for each j and m such that A(j, m) = 1, we set

- q+ ifj>+ e

j,m = mmrm rm' - m, (3.14)
Pj otherwise.

amrm

then

O(V*,y*, D, p) > II(c*, g*, D)

Proof: If for each j and m such that A(j, m) = 1, we set

+q if+

jm Omrm rm - m

-i otherwise.
amrm

then

S3j,m = zb P:l + ± j=g qj jg e
jErJm Omm amrm rm

Srm
- 

ZJsPm e( Jm + eSj=0m e j=1 --j r.- Ej=¢M eIm

rN 3 m m) rm

= 1.
3 'jm j + =jJ m

Sj=1 .=,Om qj r±j= 1 if j >qj

rm -m

for each j and m such that A(j, m) = 1 will provide an upper bound of the problem.



Q.E.D.

Equation (3.14) suggests a heuristic method to pick the ps. Even though this

method cannot guarantee the optimality of 0, it provides a good upper bound for the

original capacity problem. We will study the tightness and scalability of the upper

bound with this 3 in the next section.

3.2.2 The Tightness and Scalability of the Upper Bound

Proposition 8 suggests that if we choose ps satisfying Equation (3.14), we will get an

upper bound. We will now verify that this indeed is a good upper bound. We see

that according to Equation (3.14), , is proportional to the price of the process: more

profit will be assigned to the process with a higher cost. This is consistent with the

first insight that we get from the previous example. We now prove that the , given

in Proposition 8 is optimal for the special case with a single product and dedicated

processes.

Proposition 9 If we set Os using Equation (3.14), then for the single period supply

chain that contains one product and dedicated processes,

E(*, *, D, 0) = II(c*, g*, D).

Proof: Note that if we apply the decomposition algorithm with the ps given in

Equation (3.14) to a supply chain contains a single product and dedicated resources,

each sub-problem is a supply chain with one product, one process, and one resource.

We can apply Proposition 2 from Chapter 2 to find the optimal solution of the sub-

problem. Since there is only one product, we omit the subscript m. We consider

the subproblem associated with process k. Let (ak, ^k) and (ct,g*) be the optimal

solution of the subproblem and the optimal solution of the original problem. There

are two cases:

Case 1: If k >2 , then the new price, rk, of the product associated with process k



after the decomposition is

(qk ek qk
rk= -+- = - + ek.

\ar r a

Therefore,
= a. (3.15)

rk - ek

Since k _> V, by Equation (3.12) and (3.13)

A q - > • P = a. (3.16)
ek e r--j e.

From Equation (3.15) and (3.16), we have

Pk -q k qk> (3.17)
ek rk - ek

We now have a single product and single process capacity planning problem.

By Proposition 2, we have a closed-form solution for this problem. Based on

Proposition 2, Equation (3.17) implies that the optimal capacity plan will use

option capacity, and the solution is given as:

Ak > Ck,

p>A - qkPr(D > Ck) Pk k
ek

and O--I

Pr(D > k) = qk _ = p = q
rk - ek r - ej

This, in fact, is the optimal capacity plan for process k in the original capacity

planning problem: ck = ck and gk = Ak.

Case 2: If k < 4, then the new price, rk, of the product associated with process k

after the decomposition is
Pk Pk

k -r = -
ar a
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Since k < ) - 1,
Pk - qk < -1 - q-

ek eb-1

Now, by the definition of i, since 0 - 1 < b,
pip - qi - •--•1 E __)-l 1m -1 Jm

P0-1 -- q-I < j pJ + -j' 1 q3
i- Je

eT_1 r -- lej= _1 ej

This implies that

P-I - q-i < P3 ~ ~~=- 1 qj ± P-I - qV--i

o r - Jm-1n ro - -j=V- I ej +- e0-1

Combing Equation (3.18) and (3.19), we have

_ -1 Jj= Pj + Ej= q
r - Ej=•=ej

(3.19)

Pk - qk <
Sa (3.20)

By Equation (3.20), we get

qk Ž Pk - aek. (3.21)

Therefore, by Equation (3.21),

qk _

rk - ek

Pqk qk
a_ a> a.

- ek pk - aek
(3.22)

Combing Equation (3.18) and (3.22), we have

Pk - qk qk

ek rk - ek
(3.23)

Then, similar to Case 1, Equation (3.23) implies that the optimal capacity plan

for the capacity planning problem for process k after the decomposition will not

reserve any option capacity. By Proposition 2,

ck -= k,

(3.18)



A EI_ Pj + Ej, qjPr(D > •k) = = - .7=
rk - J=

and

Cj; = a, g7 = 9j_

Since in both cases, c* = 6 and g =

o(,*, D*, PD,,) = II(c*, g*, D).

Q.E.D.

We will examine the tightness of the upper bound for a general supply chain

through a computational experiment. Table 3.1 lists the results of 40 randomly

generated test cases. The settings of the parameters of these test cases are the same

as the ones given in Section 2.3.7 except that each process uses only one dedicated

resource (e.g. Assumption 1 holds). We can see that the maximal percentage error

of the upper bound is 2.66% and the average percentage error is 1.48%. Therefore,

from these test cases, we see that the gap between the upper bound and optimal

value is small. Table 3.1 also lists the total expected profits of the feasible strategy

generated by the decomposition method, which is a lower bound. The maximal

percentage error and average percentage error of this approximate solution is 1.62%

and 0.81%. This suggests that this sub-optimal capacity planning strategy is indeed

a good approximation of the optimal strategy.

Another question that we are interested in is how the upper bound algorithm

performs as the size of the problem increases. To answer this question, we will consider

the following example which is given in Figure 3-5. The supply chain has n identical

products and n + 1 identical processes. Product j - 1 and j share process j, for each

j = 1, 2,.-. , n. The prices of the products are 55, and the price structures of the

resources are: p = 10, q = 8, and e = 3. The demand of each product is a normally

distributed random variables with mean 120 and standard deviation 10. We increase

the size of the supply chain by adding more products and processes while maintaining

the same structure. The results are given in Table 3.2. We see that even though the



Test Csae Lower Bound Optimal Upper Bound L. B. Err. (%) U. B. Err. (%)
1 146723 147704 149600 0.66% 1.28%
2 152326 153901 156566 1.02% 1.73%
3 139513 140971 143637 1.03% 1.89%
4 148558 149928 152283 0.91% 1.57%
5 147784 149152 151368 0.92% 1.49%
6 157781 158884 160946 0.69% 1.30%
7 167504 168639 170341 0.67% 1.01%
8 157834 158723 160634 0.56% 1.20%
9 157625 158676 160874 0.66% 1.39%
10 157281 158367 160448 0.69% 1.31%
11 143344 144521 146961 0.81% 1.69%
12 142045 143201 145604 0.81% 1.68%
13 148853 149779 151824 0.62% 1.37%
14 153720 155252 157982 0.99% 1.76%
15 147932 149023 151143 0.73% 1.42%
16 161809 162710 164526 0.55% 1.12%
17 155365 156453 158485 0.70% 1.30%
18 149283 150417 152541 0.75% 1.41%
19 142271 143644 146388 0.96% 1.91%
20 160772 161976 164184 0.74% 1.36%
21 123531 125550 128606 1.61% 2.43%
22 154571 156040 157960 0.94% 1.23/%
23 161914 162991 164790 0.66% 1.10%
24 157914 158858 160899 0.59% 1.28%
25 153325 154388 156154 0.69% 1.14%
26 147893 149188 151793 0.87% 1.75%
27 159611 160924 163206 0.82% 1.42%
28 172441 173563 175228 0.65% 0.96%
29 135962 137940 141097 1.43% 2.29%
30 153495 154364 156212 0.56% 1.20%
31 159224 160191 162177 0.60% 1.24%
32 147988 149177 151325 0.80% 1.44%
33 119238 121049 124266 1.50% 2.66%
34 129972 131481 134512 1.15% 2.31%
35 161692 162368 163755 0.42% 0.85%
36 116893 118052 120425 0.98% 2.01%
37 175952 176964 178616 0.57% 0.93%
38 162712 163840 165786 0.69% 1.19%
39 148083 149291 151685 0.81% 1.60%
40 180917 181767 183507 0.47% 0.96%

Table 3.1: Test Results: lower bound and upper bound for single period capacity
planning problem and their percentage errors.
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Figure 3-5: An example to illustrate the error of the upper bound as the size of supply
chain increases.

# of Products Lower B. Optimal Upper B. L.B. Error U.B. Error
2 7,979.58 7,982.38 8,032.28 0.04% 0.63%
3 12,031.65 12,038.20 12,110.51 0.05% 0.60%
4 16,049.78 16,059.32 16,153.84 0.06% 0.59%
5 20,074.93 20,084.96 20,199.45 0.05% 0.57%
6 24,077.34 24,093.88 24,232.68 0.07% 0.58%
7 28,105.63 28,122.84 28,289.74 0.06% 0.59%
8 32,180.95 32,200.25 32,392.10 0.06% 0.60%
9 36,203.02 36,228.38 36,437.85 0.07% 0.58%

10 40,235.19 40,260.34 40,491.64 0.06% 0.57%

Table 3.2: Test result: percentage error as the size of problem increases.

absolute error increases as the size of problem increases (as shown in Figure 3-6), but

the error percentage remains stable (as shown in Figure 3-7). Therefore, these test

cases provide some evidence that the algorithm is scalable in terms of problem size.

3.3 Searching for the Weight Factors

The final problem that we want to address is how we can further improve the upper

bound by finding a better P. We consider the following proposition:

Proposition 10 e(c*, g*, D, P) is convex in 0, for , that satisfies Equation (3.5).
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remains at the same level.

Proof: Let P1 and 02 be two matrices satisfying Equation (3.5) and A be a scalar

E [0, 1]. Let /3 = A 1p + (1 - A)p2. Then, for each m,

-m (1- ))= E 1.

Therefore, /3 also satisfies Equation (3.5). Now, let (c', g), (C2, g2 ), and (c 3, g3)

be the optimal solutions of Problem (3.4) for given P/, /32, and /3. Since 3 =

Ap1 + (1 - A)P/2, we have

EO(3 , g3 , D, 33) = E[O(c, g, D,x *, y*,z*, 3)] -p 3 (g 3 - C3)

SI I I I

Ut I I I 1 I -I I I

4 6 7 9 10



= E mrmzm - ey)1 - p'c3  _ C3)

(1 A) (E F ( F /j2,mrmzm - ejyj p'c3  
C--3)

= AO(c3, g3 , D, 31) + (1 - A))(c 3, g3, D, 32)

< A•(cl, gl, D,ý 1) + (1 - A)(c 2, 2, D, / 2).

Q.E.D.

By proposition 10, all stationary points of E(c*, g*, D, 3) will be a global minima.

As we have discussed before, E(c*, g*, D, P) is separable and we have developed ef-

ficient methods for solving each of the subproblems. Therefore, we have an efficient

algorithm to evaluate E for any given P. Thus, we can use an effective algorithm for

convex optimization to find the optimal P that minimize E(c, g, D, /).

We will discuss one of these algorithms: Block Coordinate Descent method. The /
satisfying Equation (3.5) has a block structure: for each product m, -jEJem 3j,m = 1.

We rewrite / in terms of blocks (31,- - , /3M) where 3m = {j,m I j E Jm}. Therefore,

we can apply the following algorithm to find the optimal 0:

Block Coordinate Descent Method for Searching /3:

Step 1: We start with a given /3. Set s = 0.

Step 2: For m = 1 to M,

0 s l  = argmin (c S , g9,D, (P,- -- 7Sl, 2, _ s+1,' -. /P/))

s.t. wj=1

Step 3: Set 03+1 = (P/3+1, ... , P+1, ... P,/31).

If 0(c-, gs, D, 38) = e(cs+', gs+l, D, 8"+1), stop. Otherwise, set s = s + 1 and

go to step 2.
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Case U.B. Opt. U.B. L.B. Optimal U.B. Imprv. U.B. Gap L.B. Gap
1 51,919 51,862 50,726 51,079 0.11% 2.34% 0.69%
2 240,851 240,560 237,167 238,552 0.12% 1.54% 0.58%
3 167,802 167,591 165,903 166,498 0.13% 1.14% 0.36%
4 333,460 333,312 330,784 331,452 0.04% 0.81% 0.20%
5 210,881 210,751 209,307 209,669 0.06% 0.75% 0.17%
6 184,413 184,148 182,380 182,739 0.14% 1.11% 0.20%
7 67,495 67,458 66,430 66,809 0.06% 1.59% 0.57%
8 235,379 235,248 233,729 234,282 0.06% 0.70% 0.24%
9 275,597 275,390 273,201 273,585 0.08% 0.88% 0.14%
10 239,552 239,336 235,491 237,007 0.09% 1.71% 0.64%
11 167,580 167,517 165,770 166,139 0.04% 1.09% 0.22%
12 154,500 154,378 152,034 152,701 0.08% 1.61% 0.44%
13 165,112 165,014 163,496 164,078 0.06% 0.98% 0.35%
14 190,372 190,117 187,536 188,467 0.13% 1.50% 0.49%
15 179,718 179,533 177,712 178,266 0.10% 1.12% 0.31%
16 313,616 313,583 311,539 311,603 0.01% 0.67% 0.02%
17 145,682 145,585 143,881 144,249 0.07% 1.25% 0.26%
18 136,057 135,801 133,583 134,326 0.19% 1.84% 0.55%
19 71,308 71,193 70,880 70,951 0.16% 0.60% 0.10%
20 58,513 58,466 56,916 57,521 0.08% 2.78% 1.05%

Table 3.3: Performance of the Block Coordinate Descent method.

The algorithm finds the best # for one product while holding the fs associated with

the other products constant. For an analysis of Block Coordinate Descent Method,

please refer to [6]. Finally, Proposition 8 suggests a good starting point for the search

algorithms.

We test the performance of the Block Coordinate Descent method through a series

of randomly generated test cases. We consider a supply chain with 7 products, 14

processes, and 14 resources. We generate random test cases according to the following

rules. The demand of a product in each period is a normal random variable with

randomly generated mean and standard deviation 10. The formula for generating the

demands is given as follows:

N(0, 1) x 10 + U[100, 120] x (U[0, 2] + 0.5),
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where N(0, 1) is the standard normal distribution and U[0, 2] is the uniform distri-

bution between 0 and 2. The price of each product is uniformly distributed between

150 and 300. The price of fixed-price capacity, Pk, is uniformly distributed between

9 and 20. The cost of option capacity, qk, is uniformly distributed between 1 and Pk.

The exercise cost of option capacity is set to Pk x 1.1 - qk. A link joins a product

and process with probability 0.3 (e.g. Pr(A(j, m) = 1) = 0.3) and a link joins a

process and a resource with probability 0.3 (e.g. Pr(B(j, (j, k)) = 1) = 0.3). In each

case, we set the sample size to be 500. The termination error percentage is 0.5%. The

results are given in Table 3.3. The column "U.B." and "L.B." record the upper bound

and feasible solution returned from our algorithm. The column "Opt. U.B." records

the upper bound after applying the Block Coordinate Descent Method. The column

"Optima" records the optimal solution of the capacity planning problem. Finally,

U.B. - Opt. U.B.
U.B. Imprv. = Optimal

U.B. - Optimal
U.B. Gap =

Optimal

and
Optimal - L.B.

L.B. Gap =
Optimal

These test cases illustrate two points:

1. The gap between the upper bound given by the decomposition method and the

optimal upper bound is small for these cases.

2. The upper bound generated by the decomposition method is not tight for these

cases. For each test case, the upper bound error % is greater than the %

improvement obtained from the Block Coordinate Descent method.

A manufacturer might use the approximation algorithm and upper bound when

the size of the supply chain and demand samples are large. In these situations, finding

the optimal capacity planning strategy is computational infeasible. The manufacturer

can use the approximation algorithm to find a sub-optimal capacity planning strategy
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and then use the upper bound to check whether the strategy is indeed a good one or

not.

Finally, the decomposition method presented in this section also suggests that

capacity planning can be done locally under the condition that the sub-optimal strat-

egy described above provides a good approximation to the optimal capacity plan-

ning strategy. The manufacturer can first calculate the ps using Equation (3.14).

Given the ps, the manager of each process can plan the capacity without knowing

the capacity decisions for the other processes. When the demand and/or price of a

product changes, the manufacturer only needs to recalculate the capacity plans for

the processes that are required to produce the product by solving the capacity plan-

ning problems (e.g. (3.2)) for these processes. When the cost structure of a process

changes, the manufacturer only needs to adjust the capacity plans for all the pro-

cesses that share some products with this process; the capacity plans of the others

can remain unchanged. The performance of these local planning methods depends

on the performance of the approximation algorithm, which can be verified using the

upper bound presented in this section.

Using local planning can save some overhead costs of changing the capacity strat-

egy of all the processes and can respond quickly to the change of environment. The

approximation algorithm suggests an effective method to perform local planning. The

manufacturer can evaluate the benefits and costs of using local planning through the

upper bound that we have proposed and then decide whether it is a suitable strategy

for the firm or not.
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Chapter 4

Multi-Period Capacity Planning

Problem

In the previous chapters, we have studied the single period capacity planning problem.

We now discuss how to extend the single period model to a multi-period setting.

In practice, a contract will have a duration. In the existing literature that studies

capacity contracts, there are two different ways to model the duration of a contract.

If the contracts require a long term commitment, after the firm signs the contract

to acquire capacity from its supplier, the firms reserve or buy the same amount of

capacity in each period until the end of the planning horizon. On the other hand, if

the contracts are short term, the firm can reserve different amounts of capacity for

different periods. For example, Huang, et al. [24], Barahona et al. [5], and Martinez-

de-Albniz and Simchi-Levi [27] consider long term contracts while Yazlali and Erhun

[39] use one-period short term contract.

In the context of the design of a new supply chain, the firm does not own the

capacity itself but reserves capacity from its suppliers. The contract does not need

to be for either the short term such as one period or the long term such as to the

end of the planning horizon. The firm and its suppliers can reach agreement on a

duration that is beneficial to both parties. For instance, a supplier might want to offer

a contract with median duration and better price to encourage the firm to commit.

For the firm, signing a long term contract might be too risky; on the other hand,
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short term contracts might be too expensive. In this chapter, we will study how the

firm should plan its capacity when it has the flexibility to choose the durations of the

contracts.

4.1 Model

4.1.1 Mathematical Model

In the single period problem, we can specify each contract with three terms: per-

period unit price of the fixed-price capacity, per-period unit price to reserve the option

capacity, and per-period unit exercise price of the option capacity. In a multi-period

setting, we will add another specification, which is the contract duration. For example,

a supplier quotes a three-month contract with fixed-price $50, option reservation price

$5, and option exercise price $50 to the manufacturer. The manufacturer decides to

reserve 100 units of fixed-price capacity and 20 units of option capacity under this

contract. It must pay the price of 100 units fixed-price capacity ($50 x 100 = $5000)

and 20 units option capacity ($5 x 20 = $100) in each of the three consecutive months

starting with the first month of the contract. The manufacturer then has 100 units of

fixed-price capacity and 20 units of option capacity for each of the three consecutive

months.

The prices of the contract can depend on the duration. To encourage a longer

commitment, the prices might decrease as the duration of the contract increases. In

these situations, the multi-period capacity planning problem involves another type of

tradeoff between the flexibility (or duration) of the contract and its price. Contracts

with shorter duration have more flexibility while contracts with longer duration offer

lower prices.

Let T be the length of the planning horizon. Resource k offers contracts with

durations in the set Tk = (Tk,1, ... , Tki, .. }. To simplify the notation, we assume

that for any resource all contracts have different durations. This assumption can be

relaxed and all the results still follow. Without loss of generality, we assume that
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Figure 4-1: Using three capacity contracts with duration 2, 1, and 3 periods to cover
a horizon of six periods.

Tk,i < Tk,j if i < j. Therefore, we specify the set of contracts that resource k offers

as {(pk(Tk,i), qk(Tk,), e(Tk,i)) I Tk,i E Tk}.

Given the contracts that each resource offers, we assume that the firm will choose

for each resource a sequence of contracts Tk = {Tk, 1k,' , Tk,. -} that satisfies the

following conditions:

1. Contract Tk,i has duration tk,i and it covers from period Zl tkj + 1 to period

";=

1 t1kjt

2. Ej tk,i = T for all k.

The first condition says a contract starts after the previous contract finishes. Condi-

tion 2 specifies that the manufacturer does not reserve capacity beyond the planning

horizon. We call a sequence feasible if it satisfies these two conditions. One im-

plicit assumption here is that for each period, we have only one contract active for

each resource. In addition to deciding the sequence of the contracts for each re-

source, the manufacturer needs to decide the corresponding sizes: {Ck,1, . , Ck,i, ** "

and {gk,1,"', .. k,i,' .. }. We note that we permit zero capacity contracts at zero cost,

which allows the firm to not use a resource for any subset of periods. Figure 4-1 gives

an example of a valid sequence of contracts to cover a horizon of six periods. The

first contract will cover the first two periods. Since the first two periods are cover

by the same contract, the fixed-price and total capacity reserved for each of these

two periods are the same, which are c2 and g2. Similarly, a contract with duration 1

period is used to covered period 3 and a contract with duration 3 periods is used to

cover the rest of the horizon.
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To simplify the notation and the representation of the multi-period capacity plan-

ning problem, we will write a feasible sequence of contracts for resource k as follows:

Tk= Tk,1, '- Tk,i, --}, where Tk,i has duration tk,i and Ei tk,i = T

{ck,1," * ,Ck,T} and k,i = Ck,j if 3 a such that i,j e [_- tk,l + 1, =1 tk,1]

{gk,1, ,gk,T} and gk,i = k,j if 3 a such that i, j E [I=r tk,l 1, =1 tk,l]

We use superscript to indicate time period. Given that the firm has decided its

capacity planning strategy, the sequence and sizes of the contracts for each resource,

and given a multi-period demand realization vector d, we can write the multi-period

production planning problem as:

T T

max ir-(T, c, g, d,z, y, z) = r' zi -Z(e()'HyH (4.1)
xy, i=1 i=1

s.t. z< di , Vi

Az < B(x +y), V i

H& < d, Vi

H(? + y) g, V i

Similar to the single period case, in a multi-period setting, the firm's ultimate purpose

is to choose the strategy to maximize its expected profit with expectation taken over

the distribution of the multi-period demand random vector:

T T

max fi(T, c, g, D) = E [ii(T, c, g, D, z,*, y*,z*)] - -(pi)'ci - (q )'(g - ci)
T,C,g i=1 i=1

s.t. ci < g, V i (4.2)

Tk are feasible for all k.

We assume that unfilled demands are lost and unused capacity cannot be saved for

future usage. We also assume that the manufacturer will not use any unused capacity

to build and store inventory. Even though we do not allow inventory, the multi-period
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capacity planning problem is not separable since the firm can use a contract to cover

multiple periods.

We assume that the manufacturer needs to decide the sequence and sizes of the

contracts for each resource at the beginning of the planning horizon. To this extent,

we also assume that it has a demand forecast for each period at the beginning of

the first period. In practice, capacity decisions usually need to be made with a

much longer lead time than the planning horizon. In these situations, our two-stage

decision process matches with the reality. Moreover, as we have discussed in the

introduction, since the manufacturer doesn't own the capacity, it is important for

it to secure the price and supply of the capacity by signing contracts at an early

stage. However, this is a restrictive assumption and it would be interesting to study

the capacity planning problem in a dynamic setting. We will discuss the dynamic

capacity planning problems in Chapter 5.

A strategy in multi-period problem contains two types of decisions: the sequence

of contracts to be used and the amount of capacity to acquire after choosing the

sequence of contracts. There are an exponential number of combinations of contracts

that the manufacturer can choose from. To evaluate one strategy, the firm needs to

solve a large scale stochastic linear program, e.g. Problem (4.1), to find the optimal

contract sizes. Therefore, the multi-period problem is much more complex than the

single period problem.

In the following sections, we will develop an efficient heuristic algorithm that can

find a good capacity plan for the multi-period problem under Assumption 1. The same

heuristic algorithm will also provide a good upper bound to verify the effectiveness

of the capacity plan.

4.1.2 An Example

To illustrate the multi-period capacity planning problem, we consider the supply

chain given in Figure 4-2. Since each process has only a dedicated resource, we view

process and resource as synonymous. The manufacturer needs to plan its capacity for

the next 12 months. The expectations of the demands during the planning horizon
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Figure 4-2: A supply chain with two products and three processes/resources.

II 1 I 2 I 3 I 4 5 1 6 I 7 I 8 1 9 I 10 1 11 I 12
E[D I] 70 100 180 210 240 240 230 180 1100 70 60 50
E[D 2] II 240 230 180 100 70 60 50 70 1100 180 210 240 1

Table 4.1: Multi-period example: demand information.

-4-Product 1
20 Product 2

-a-Sum400

50

1 2 3 4 5 7 8 9• 10 1.1 12

Figure 4-3: Multi-period example - demand patterns.
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Duration 1 3 6 12
Fixed Price 10 9.5 9 8.5

Reservation Price 8 7.5 7.25 6.75
Exercise Price 3 2.5 2.25 2.25

Table 4.2: Multi-period example - contracts' durations and prices.

are given in Table 4.1. We also plot the demand trends in Figure 4-3. Product 1 is

introduced to the market at the beginning of the first month. Its demand grows with

time and reaches its peak at the fifth month. After that, the market is saturated

and the demand starts to drop. Product 2, on the other hand, is a mature product

at the beginning and as time passes by, it phases out. At the seventh month, the

manufacturer introduces a new version of product 2 and it starts to gain more demand

from then on. The standard deviations of the demands of both products at each period

are 10.

Both products are sold at $65. All processes have the same price structure. Each

process offers contracts in four different durations: 1 month, 3 months, 6 months,

and 12 months. The corresponding prices of the fixed-price and option contract are

given in Table 4.2. The contracts with longer duration have lower per-period prices.

Given the supply chain structure (Figure 4-2), demand information (Table 4.1),

and contract information (Table 4.2), the manufacturer needs to make the following

decisions:

1. what sequence of contracts that it should use for each process,

2. what types of contract (fixed-price and option) that it should use, and

3. how much capacity it should reserve or buy for each type of contract.

Decision 2 and 3 are the same as in the single period case while decision 1 is unique to

the multi-period problem. Since the example only contains dedicated resources, the

manufacturer does not need to choose suppliers. However, similar to the single period

problem, the firm still faces the other trade-offs that involve demand uncertainty,

common process, coordination among the processes of the same product, and option
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capacity. Moreover, the manufacturer needs to consider the trade-off between contract

flexibility and prices. Should it use shorter contracts to match the demand or should

it take advantage of lower prices by using longer contracts?

For this example, the sequences of the contracts for the processes suggested by

our algorithm are given in Table 4.3:

1. For process 1, the manufacturer should use two 1-month contracts to cover the

first two periods. It can then obtain a 6-month contract to cover month 3

to month 8. Following another 1-month contract in month 9, it should get a

3-month contract to cover the rest of the planning horizon.

2. For process 2, the manufacturer should take full advantage of the low price from

a longer contract and secure the capacity for 12 months with the 12-month

contract.

3. For process 3, the manufacturer should use a 3-month contract to cover month

5, 6, and 7. For the other months, it should use 1-month contracts.

The quantity of the fixed-price and option contract for each process are given in

Figure 4-4, 4-5, and 4-6. We see that the contracts reserved for process 3 vary to

match the demands. On the other hand, the contract reserved for process 2 is fixed

over the horizon and doesn't fluctuate with the demand. We also notice that for the

contracts with a long duration, the option capacity component is significant. We will

discuss this in Section 4.5.

Finding the right level of flexibility, in terms of shorter contracts and/or in the use

of option contracts, is a complex problem that needs to consider demand variability,

product profits, contract durations, and contract prices. In the remainder of this

chapter, we will look at an efficient algorithm that can help the manufacturer to

make these decisions.
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1 2 3 4 5 6 7 8 9 10 11 12
Process 1 69 99 247 247 247 247 247 247 105 72 72

Process 2 3225325 325 325 325 325 325 325 325 325 325 325

Process 3 242 236 166 115 74 74 74 83 110 199 217 248

Table 4.3: Multi-period example - the sequences

for all processes suggested by our algorithm.
of contracts and capacity strategies

Multi-period example - the sequence
1 suggested by our algorithm.

of contracts and capacity strategy
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Multi-period example - the sequence
2 suggested by our algorithm.

Multi-period example: the sequence
3 suggested by our algorithm.

of contracts and

of contracts and

capacity strategy

capacity strategy
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4.2 Special Case: Multiple Products and One Pro-

cess.

We first consider a special case where there are multiple products, one process, and

one resource. In this section, we will present an efficient algorithm to solve this special

case. Since there is only one process and one resource, we will drop the subscript j.

The capacity planning problem is then given as:

T T

max r(T, c, g, d, z, y, zmeM) = r z - e'  (4.3)
X,Y,ZmEM i=1 mEM i=1

s.t. zm 5 d, V i,

xi + y < gi, Vi

xy' ,z > 0, Vi

and

T T

max II(T, c, g, D) = E [#(T, c, g, D, x*, y*,*)] - Ep-c - E q_(g - 6)(4.4)
i=1 i=1

s.t. c <s gz, Vi

T is feasible.

We can transform Problem (4.4) into a directed shortest path problem. For each

period i, we denote a vertex vi. Denote vo to be the vertex representing period 0. Let

A = {vo,--- , VT) be the set of vertices. Let ITI be the cardinality of set T. There

are ITI types of contracts and each of them has a different duration. At vertex vi, for

each contract T, such that t, + i < T, where t, is the duration of contract TI, we add

a link joining vertex vi and vi+t,. Let 9 be the set of links.

We now show how to find the cost for each link. We consider a link joining vertex

vi and vj, where i < j. Let T2 be the corresponding contract for the link. We consider
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the following optimization problems:

3 1
max Al(c,g, d) = E rm", - et E Y- (4.5)
XyZ s=i+l mEM s=i+l

s.t. zm < d', s = i+l,.-.,j and m E M

S z' <z'+y', s=i+l,...,j
mEM

x 8 +y 8<  g, s=i+1,...,j

x, y, , Z• 0, s = i+1, . ,

and

max A, (c, g) = E [A1 (c, g, D)] - ctlpt - (g - c)tlql (4.6)
cg

s.t. c < g,

c,g > 0.

Problem (4.6) is a linear program. Moreover, similar to the single period case, Prob-

lem (4.6) is concave and only has two decision variables, (c, g). Therefore, we can use

the algorithm that we have proposed in Section 2.3 for the single period problem to

solve Problem (4.6).

Let ai,j be the optimal objective value of Problem (4.6). We denote the cost of

the link joining vi and vj to be -aij. We will then have the following proposition.

Proposition 11 Let (A, 6) be a directed graph that is constructed as above. Let P

be a shortest path from vo to VT. For the 1th link on the shortest path joining vertices

vi and vj, define a contract T, with duration j - i that covers from period i + 1 to j.

We set the arc cost a,ij to be equal to -At(c , g,*), A,(c*, gg*) is the objective value of

Problem (4.6), where (ct, gf) is an optimal choice of (ct, g). Then the capacity plan-

ning strategy {(TI, c*, g*), .. . , (T , c, g), . . . } is an optimal solution of Problem (4.4).

The correctness of Proposition 11 follows from the way that we construct the
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shortest path problem. By this proposition, we can solve the shortest path problem

on (A, £) to find an optimal solution of Problem (4.4). This special case together

with the decomposition idea presented in Chapter 3 provide the building blocks to

solve the general multi-period problem.

4.3 Solving the General Multi-period Problem

The main difference from the single period case is that the multi-period capacity

planning problem needs to decide. the sequence of the contracts. The amount of

capacity that needs to be reserved depends on the contract sequence that the firm

has chosen. If we fix the sequence for each process, finding the optimal contract sizes

is a stochastic linear programming problem that is very similar to the single period

capacity planning problem, which we can solve using the algorithm that we proposed

in Section 2.3.

The difficulty of solving the multi-period problem lies in the fact that there are

a large number of combinations of contract sequences that the firm can choose from.

The algorithm that we proposed for the single period problem is effective, but it still

requires a considerable amount of computational power. Therefore, in this section

we will develop an efficient heuristic algorithm for the general multi-period capacity

planning problem under the assumption that each process only has one dedicated

resource (e.g. Assumption 1 from Chapter 3 holds).

The idea is to separate the decision of choosing the contract sequence from finding

the optimal contract sizes. The algorithm consists of the following steps:

1. We use the decomposition method proposed in Chapter 3 to separate the original

multi-period capacity planning problem into independent sub-problems, with

one multi-period problem for each process.

2. We solve each multi-period sub-problem to find a feasible contract sequence for

each process. This provides an initial feasible solution.

3. We fix the contract sequence for each process and then find the optimal contract
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sizes. This provides an improvement to the initial solution.

We now formalize the algorithm. Recall that in the decomposition algorithm

presented in Chapter 3, we distribute the revenue of each product into each process

based on the prices of the contracts for the process. We will use the same method

to separate the multi-period problem. However, in the multi-period problem, each

process has multiple sets of prices, with one for each contract duration. Therefore,

for each process, we will use the average prices over all the contract durations in the

decomposition method. Let

1 1 1

II3 Tj,iETj ITjI Tj,iETj 3 ITil TjiETj

pj, qj, and ,j are the average unit price of fixed-price capacity, average unit option

reservation price, and average unit option exercise price for process j. Without loss

of generality, we assume that for all i, j E 3Tm

A -qi >j-qj,
I> ,if i > j.

For each product m, we define

Jm,+ 1, if pJ,-Jm < -,lP .
i'm -•

1  
Jm eJm - rm

min{ji .> J, otherwise.I IIei rm-E-j= i e

For each product m, we define the following ratio

rm - Ej=j ej

For each product m, Pm and Ym are the multi-period counterparts of Pm and am in

the decomposition algorithm in Chapter 3. The difference is that we use the average

prices of the processes in Pm and Zm.

Given 7m and Um for all products, we will have the following heuristic algorithm

for solving the general multi-period capacity planning problem under Assumption 1.
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Heuristic Algorithm for Solving Multi-period Problem:

Stage I: (Finding the sequences of the contracts and a feasible solution) For

each process j, do the following steps:

Step 1: For each m E Mj, let

rmj = qj + e3.
am

Step 2: Solve the multiple products and single process multi-period capacity

planning problem (4.4) using the algorithm developed in Section 4.2. Let

(T2*, c,, g*) be an optimal solution.

Stage II: (Improving the feasible solution) Fix T = (7j* I J = 1, ... , J}. Solve

Problem (4.2) for given T with the stochastic supporting hyperplane algorithm

with pre-solve routine for the single period problem.

In stage I, rm,j is the ratio of the revenue of product m that is assigned to process

j. In stage II, after we fix the contract sequences, the optimization problem of finding

optimal contract sizes is a stochastic linear program that is similar to the single period

capacity planning problem. In particular, it is a two-stage optimization problem. For

each capacity plan, (c, g), and demand realization, d, finding the production levels to

maximize the profit is a linear optimization problem. The first stage problem, which is

finding the optimal capacity sizes to maximize the expected profit over multi-period

random vector D, is a concave optimization problem. Since for each process, the

contract sequences are fixed, we know which contract will be used in each period. For

the periods that are covered by the same contract, we use one set of decision variables,

(c, g), to enforce that the same capacity will be chosen in each period. This, however,

will not affect the algorithm to solve the problem.

After stage I of the algorithm, we will have a feasible solution, (T*, c*, g*). In stage

II, the algorithm fixes the sequences, T*, and finds the optimal sizes of the contracts.

Since the sequences found in stage I of the algorithm might not be optimal, the
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algorithm can not guarantee optimality. To access its performance, we need to derive

an upper bound of the multi-period problem.

4.4 An Upper Bound

We have shown that the decomposition method we have proposed in Chapter 3 pro-

vides not only a feasible solution but an upper bound for the single period capacity

planning problem. In this section, we will extend the method to a multi-period set-

ting. In fact, we use the decomposition method in stage I of the proposed heuristic

algorithm to solve the general multi-period capacity planning problem in Section 4.3.

Therefore, after stage I of the heuristic algorithm, we have not only a feasible solution

but also an upper bound of the problem.

We now provide a mathematical justification that the method indeed generates

an upper bound in the multi-period case. For product m, process j, and period i,

we define 4,m to be a fixed real number. We consider the following optimization

problems:

max
xYj ,Zj ,m:mEMj

s.t.

Oi(T 7Ci7 j 7 i Y 7Z~~E~ 7""r."Te

Sdzm, VmE M, i= 1,...,T

mEMj

x•c, i=1, ,T. T

x + < , iV mE i=, 1 .,

z>20, Vme hMj, i=1,. -,T

and

3 (Tj, cj, g,, D,I3) =

(4.7)

max
, cj ,g
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T T

E[9j(7;, cj, g,, D, xj, jz) - pc,' -E q~(g -c.)
i=1 i=1

s.t. c; < g, i = 1, ..-,T (4.8)

c6,gŽ 2>0, i= 1,"',T

Tj is feasible.

Equation (4.7) and (4.8) are the multi-period counterparts of Equation (3.1) and

(3.2). They are the optimization problems to find the optimal contract sequence and

capacity sizes for a sub-problem after the decomposition.

Similarly, we define the multi-period counterparts of Equation (3.3) and (3.4) as

J

(T, c,g, d,x, y,z,) = j(Tj, cj, gy , dj,xj, yj, z:EMj, 3j) (4.9)
j=1

and
J

E(T, c, g, D,) = ~ j(Tj, cj, g , D, 3j). (4.10)
j=1

These are the optimization problems after the decomposition. We then can extend

Proposition 7, 8, and 10 into a multi-period setting.

Proposition 12 If for each product m

Z ),m =1, V i= 1,-.-,T (4.11)
jEJrm

then e(T*, I*,*, D, 0) > Il(T*, c*, g*, D), where (T*, *,T*) is the optimal solution

of Problem (4.10).

For each process j, suppose we define pj, qj, and ej as positive real numbers such

that

qj < p3 < qj + e3 .

pj, qj, and ej are the dummy or arbitrary prices for process j. One choice can be

using the average prices over all the contracts as we did in the heuristic algorithm
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given in Section 4.3. Without loss of generality, we assume that for all i, j E Jm

p -q > PJ - q, if i > j.
e p ej

For each product m, define

Jm+ 1, if pJm-qjm < E-T'1.
min i -I  > j= iJ=-; , otherwise.

ei r-_EJ ej

Also, for each product m, we define the following ratio

am j=1 m ._ (4.13)
rm - Lj=Om ej

We then have the following proposition:

Proposition 13 For each process j and m such that A(j, m) = 1, if we set

3j,m = + ej (4.14)
amrm rm

then (1(T*, *, *, D,) Ž) Ii(T*, c*, g*, D).

Technically, one can use different dummy prices and O's in different periods. As

long as these dummy prices 3's satisfy Equation (4.12), (4.13), and (4.14), the heuris-

tic algorithm will provide an upper bound to the problem. However, through a series

of test cases, we will show that using the same 0 for all periods provides a good upper

bound.

Finally, we have

Proposition 14 b(T*, *, D, 0) is convex in p for f that satisfies Equation (4.14).

We skip the proofs of these propositions since they are very similar to their coun-

terparts in the single period problem.
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During the stage I of the heuristic algorithm given in Section 4.3, we set

01 = +-3 Vi=I,.. ,T.
amrm rm

where pj, qj, and ej are the average price of fixed-price contract, average option

reservation price, and average option exercise price for process j. These O's satisfy

Equation (4.14) and, therefore, by Proposition 12, the heuristic algorithm provides

an upper bound to the multi-period capacity planning problem.

4.5 Simulation Results

In the last section of studying the multi-period capacity planning problem, we will

access the effectiveness of the feasible solution and the tightness of the upper bound

generated by our heuristic algorithm through several sets of test cases.

4.5.1 Test Cases Set I

We first test the heuristic algorithm and the upper bound with a series of randomly

generated test cases. The purpose of this test case is to see whether the algorithm

can handle an arbitrary randomly generated test case. The supply chain contains

7 products, 14 processes, and 14 resources. The planning horizon is 12 periods. A

link joins a product and process with probability 0.3 (e.g. Pr(A(j, m) = 1) = 0.3).

Therefore, on average, each product has 4.2 processes. Each process has one dedicated

resource. (e.g. Assumption 1 holds)

The price of each product is drawn from a uniform distribution between 90 and

300, U[90, 300], and does not change during the planning horizon. The demand of a

product in each period is a normal random variable with randomly mean generated

using the equation

U[100, 120] x (U[O, 2] + 0.5),

where N(0, 1) is the standard normal distribution and U[0, 2] is the uniform distribu-

tion between 0 and 2, and standard deviation 10. The random mean is to make the
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Test Case Upper Bound L.B. (Stage I) L.B. (Stage II) Error 1 Error 2
1 2,483,546.46 2,468,392.44 2,465,094.85 0.61% 0.61%
2 2,394,320.75 2,357,421.35 2,375,587.45 1.55% 0.79%
3 2,043,868.69 2,003,346.63 2,022,023.93 2.00% 1.08%
4 1,993,805.29 1,971,762.12 1,979,577.58 1.11% 0.72%
5 2,166,160.90 2,128,124.32 2,145,013.19 1.77% 0.99%
6 2,211,052.61 2,199,631.34 2,195,965.66 0.52% 0.52%
7 2,123,398.37 2,084,819.65 2,104,994.97 1.83% 0.87%
8 2,190,897.34 2,153,455.11 2,171,868.80 1.72% 0.88%
9 1,701,365.48 1,656,352.74 1,671,653.21 2.69% 1.78%
10 1,829,860.87 1,791,223.88 1,809,531.30 2.14% 1.12%
11 2,640,927.51 2,628,109.55 2,622,219.53 0.49% 0.49%
12 2,985,632.64 2,968,501.49 2,963,897.74 0.58% 0.58%
13 2,188,717.78 2,148,047.04 2,167,121.27 1.88% 1.00%
14 2,136,158.83 2,103,736.04 2,120,432.48 1.53% 0.74%
15 2,174,388.97 2,149,120.58 2,156,085.91 1.17% 0.85%
16 2,113,909.16 2,046,332.41 2,083,342.59 3.24% 1.47%
17 2,347,750.33 2,320,086.51 2,328,738.35 1.19% 0.82%
18 2,498,375.49 2,466,197.72 2,480,468.00 1.30% 0.72%
19 2,604,573.37 2,580,315.64 2,586,975.22 0.94% 0.68%
20 2,314,434.66 2,289,079.17 2,295,462.86 1.10% 0.83%
21 1,734,822.69 1,708,874.70 1,719,531.13 1.51% 0.89%
22 1,924,675.12 1,901,229.18 1,899,456.05 1.23% 1.23%
23 1,655,698.55 1,632,984.93 1,642,122.71 1.38% 0.83%
24 2,280,561.56 2,269,747.72 2,263,592.38 0.48% 0.48%
25 2,112,209.18 2,080,822.34 2,079,590.78 1.51% 1.51%
26 2,366,356.78 2,348,906.54 2,349,139.19 0.74% 0.73%
27 2,462,377.79 2,432,675.38 2,444,430.41 1.22% 0.73%
28 1,975,885.64 1,958,265.54 1,961,730.67 0.90% 0.72%
29 2,250,434.37 2,194,936.68 2,219,381.51 2.50% 1.40%
30 2,207,470.52 2,191,356.12 2,191,129.98 0.74% 0.74%
31 1,891,005.39 1,850,118.67 1,870,039.09 2.19% 1.12%
32 2,608,564.41 2,589,269.32 2,589,360.76 0.75% 0.74%
33 1,777,993.68 1,744,348.93 1,760,864.34 1.91% 0.97%
34 2,053,558.49 2,033,223.98 2,035,520.57 1.00% 0.89%
35 2,257,567.80 2,215,874.55 2,230,411.49 1.87% 1.22%
36 2,736,309.07 2,719,452.35 2,718,618.07 0.62% 0.62%
37 1,940,960.31 1,900,610.28 1,920,815.59 2.10% 1.05%
38 2,391,125.96 2,370,158.24 2,374,307.29 0.88% 0.71%
39 2,462,064.01 2,448,751.88 2,446,685.36 0.54% 0.54%
40 2,535,908.13 2,518,775.94 2,519,704.52 0.68% 0.64%

Table 4.4: Multi-period test set I results
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demands not stationary. Therefore, the formula for generating the demand is given

as follows:

N(0, 1) x 10 + U[100, 120] x (U[0, 2] + 0.5). (4.15)

Each process has four contract durations: 1-period, 3-period, 6-period, and 12-

period. The unit price of the fixed-price 1-period capacity, Pl-period, is uniformly

distributed between 9 and 12, U[9, 12]. The price of the option capacity, q1-period,

is uniformly distributed between 1 and P1-period. The price to exercise the option

capacity is pl-priod x 1.1 - Q1-period. The price of the fixed-price capacity, the price

to reserve the option capacity, and the price to exercise the option capacity with

3-period duration are 90% of their 1-period counterparts. Similarly, the prices of the

capacity with 6-period duration are 90% of their 3-period counterparts and the prices

of the capacity with 12-period duration are 90% of their 6-period counterparts.

We randomly generate 40 test cases and in each case we use 500 sample demands.

The terminating error used by the stochastic supporting hyperplance algorithm in

stage II of the heuristic algorithm is 0.5%.

We define Error 1 as

Error 1= Upper Bound - Lower Bound (Stage I)
Lower Bound (Stage II)

and it signifies the maximal gap between the upper bound and the feasible solution

obtained at stage I of the heuristic algorithm. Similarly, we define Error 2 as

Upper Bound - Lower Bound (Stage II) X 100%Error 2 =x 100%
Lower Bound (Stage II)

and it signifies the maximal gap between the upper bound and the feasible solution

obtained at stage II of the algorithm. The results of these test cases are given in

Table 4.4. We summarize the statistics of Error 1 and Error 2 in Table 4.5.

From these results, we see that the feasible solution obtained at stage II is at least

as good as the feasible solution obtained at stage I. This is because at stage II we

improve the feasible solution from stage I by finding better contract sizes. Finally, we
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Average STD Minimum Maximum
Error 1 1.35% 0.67% 0.48% 3.24%
Error 2 0.88% 0.29% 0.48% 1.78%

Table 4.5: Multi-period test set I statistics

Slalig Point

Figure 4-7: Test set II demand pattern.

see that both feasible solutions perform fairly well in these test cases. In particular,

the best feasible solution from our algorithm (which is the one obtained at stage II)

has a maximal error less than 1.78% for these test problems.

4.5.2 Test Cases Set II

In test set I, the demands in different periods are independent of each other. In

practice, the demand of a product might follow a pattern. We will incorporate this

into the second set of test cases. We consider a basic demand pattern given in

Figure 4-7. The figure plots the demand expectations over time. In test set II, the

expectation of the demand of a product follows this basic pattern but with a randomly

selected starting time. The starting time of a product is an integer generated from

the uniform distribution between 1 and 12. Once time reaches point 12, the pattern

will continue at point 1 again. For example, if the product demand pattern starts at

point 3, the demand expectations for the 12-period horizon are given in the Figure
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Test Case Upper Bound L.B. (Stage I) L.B. (Stage II) Error 1 Error 2
1 2,220,875.05 2,197,374.22 2,204,298.55 1.07% 0.75%
2 1,820,467.28 1,791,086.83 1,804,414.39 1.63% 0.89%
3 1,849,816.70 1,811,127.16 1,826,780.58 2.12% 1.26%
4 1,862,508.07 1,818,627.52 1,836,907.26 2.39% 1.39%
5 1,501,790.50 1,425,630.41 1,462,517.52 5.21% 2.69%
6 1,860,200.26 1,805,789.10 1,833,393.48 2.97% 1.46%
7 1,907,669.79 1,850,650.33 1,884,928.64 3.03% 1.21%
8 1,980,639.40 1,922,467.02 1,954,121.66 2.98% 1.36%
9 1,564,783.21 1,533,766.24 1,543,009.10 2.01% 1.41%
10 1,928,277.42 1,873,433.61 1,900,714.43 2.89% 1.45%
11 1,661,543.47 1,631,649.59 1,645,069.79 1.82% 1.00%
12 1,469,706.39 1,431,471.32 1,453,741.71 2.63% 1.10%
13 1,989,994.06 1,966,449.57 1,975,519.32 1.19% 0.73%
14 2,250,694.49 2,221,790.46 2,232,433.86 1.29% 0.82%
15 1,673,039.09 1,629,135.14 1,650,760.61 2.66% 1.35%
16 1,824,120.62 1,776,410.14 1,809,271.19 2.64% 0.82%
17 1,889,576.04 1,862,799.62 1,872,648.47 1.43% 0.90%
18 1,750,001.04 1,685,781.88 1,717,299.01 3.74% 1.90%
19 1,894,197.21 1,873,691.20 1,880,176.19 1.09% 0.75%
20 1,686,882.06 1,647,184.35 1,673,620.82 2.37% 0.79%
21 1,070,772.54 1,011,322.94 1,038,815.64 5.72% 3.08%
22 1,843,727.08 1,771,433.65 1,801,964.11 4.01% 2.32%
23 1,834,977.92 1,756,590.34 1,791,352.93 4.38% 2.44%
24 2,074,227.25 2,022,467.66 2,051,490.02 2.52% 1.11%
25 1,910,700.69 1,883,052.87 1,897,355.71 1.46% 0.70%
26 1,803,831.21 1,768,291.24 1,784,339.64 1.99% 1.09%
27 1,749,538.08 1,713,476.69 1,732,218.06 2.08% 1.00%
28 2,106,467.52 2,078,877.06 2,091,720.24 1.32% 0.71%
29 1,919,851.20 1,908,141.86 1,905,516.58 0.61% 0.61%
30 1,686,164.71 1,639,476.53 1,661,109.66 2.81% 1.51%
31 1,621,859.54 1,599,760.29 1,609,819.08 1.37% 0.75%
32 1,825,858.76 1,807,307.94 1,812,429.17 1.02% 0.74%
33 1,736,249.83 1,708,086.65 1,720,048.47 1.64% 0.94%
34 2,079,572.83 2,025,598.70 2,056,253.08 2.62% 1.13%
35 2,269,876.88 2,240,109.84 2,253,511.47 1.32% 0.73%
36 1,919,502.95 1,904,279.64 1,906,073.12 0.80% 0.70%
37 1,653,764.42 1,635,748.11 1,638,013.21 1.10% 0.96%
38 2,034,174.32 2,017,160.11 2,020,050.48 0.84% 0.70%
39 1,956,769.55 1,927,348.78 1,942,119.64 1.51% 0.75%
40 2,097,396.83 2,067,656.05 2,081,768.37 1.43% 0.75%

Table 4.6: Multi-period test set II results
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5.

Figure 4-8: Test set II - The demands of a product that starts at point 3.

Average STD Minimum Maximum
Error 1 2.19% 1.18% 0.61% 5.72%
Error 2 1.17% 0.58% 0.61% 3.08%

Table 4.7: Multi-period test set II statistics

4-8. We use this method to simulate products at different stages of their life cycles.

The standard deviation of the demand for each product in each period is 10. The

other settings for the parameters in test set II are the same as the ones in test set I.

The results and statistics of the test set II are given in Table 4.6 and Table 4.7.

Similar to test set I, we see that the feasible solution obtained at stage II is superior

to the feasible solution from stage I. Moreover, this test case also shows that the

heuristic algorithm performs well: the average gap between the solution that the

algorithm generated and the optimal solution is less than 1.17% and the maximal

gap is less than 3.08%.

4.5.3 Test Cases Set III

Test set III is designed to show the effect of option contracts on contract durations.

We take the setting of test set II and make the following modifications:
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Scenario 1: Fix the price of each product to be 150 and set the prices of the 1-period

contracts to be: Pl-period = 10, ql-period = 8, and el-period = 3.

Scenario 2: Fix the price of each product to be 150 and set the prices of the 1-period

contracts to be: P1-period = 10, ql-period = 3, and el-eriod = 8.

The prices of the capacity with 3-period duration, 6-period duration, and 12-period

duration are 90% of their 1-period, 3-period, and 6-period counterparts. For each

test case, we generate the random supply chain structure and the demands of the

products. We then solve the case for both scenarios. For each test case, we define the

following measurements:

Count,,, = Number of contracts in scenario x with duration y,

Option contract sizes in scenario x with duration yRatio =
'Rato - Total contract sizes in scenario x with duration y

For example, the first test case in scenario I uses 18 contracts with duration 1, 4

contracts with duration 3, 13 contracts with duration 6, and 5 contracts with duration

12. Therefore, Countl,, = 18, Count1,3 = 4, Count,,6 = 13, and Count1 ,4 = 5.

Among the 18 contracts with duration 1, 22.15% of the capacity are option capacity.

Therefore, Ratio1,1 = 22.15%.

We also define the following aggregate measurements for each scenario:

Number of periods in scenario x covered by the contracts with duration y
ou , Total number of periods

Ratio,,y = Average of Ratiox,y over 40 test cases.

The statistics for the heuristic algorithm in both scenarios are given in Table 4.8.

We note that the heuristic algorithm performs better in scenario 2 than scenario 1.

This is because both Error 1 and Error 2 depend on the cost of deviating from the

upper bound. Since the prices of the products are the same in both scenarios, if the

deviation from the optimal solution results in a lost sale, the penalty is the same

for both scenarios. On the other hand, since the manufacturer pays less to reserve

129



Average STD Minimum Maximum
Scenario 1: Error 1 4.22% 1.52% 2.01% 7.89%
Scenario 1: Error 2 2.34% 0.74% 1.32% 4.26%
Scenario 2: Error 1 1.21% 0.35% 0.58% 2.05%
Scenario 2: Error 2 0.79% 0.11% 0.58% 1.09%

Table 4.8: Multi-period test set III statistics

Scenario %Count,,i %Count.,3 %Count.,6  %Counts,12
1 16.07% 14.82% 31.96% 37.14%1
2 2.95% 4.55% 13.04% 79.46%

SRatio.,1 Ratio,,3 Ratio,,3 Ratio,12 1
1 13.99% 18.89% 22.09% 27.19%
2 27.23% 48.28% 33.42% 56.59%

Table 4.9: Multi-period test set III contract usage statistics.

the option capacity in scenario 2, if the deviation from the optimal solution results

in excess capacity, the cost is lower in scenario 2 than scenario 1. Therefore, the

heuristic algorithm performs better in scenario 2 than scenario 1.

We now discuss the effect of option contracts on contract durations. We list the

contract usage of scenario 1 and 2 in Table 4.10 and 4.11 and summarize the statistics

in Table 4.9. From these results, we have two observations:

1. Scenario 2 uses more option contracts than scenario 1. For all y, ratiol,y <

ratio2,. Since the manufacturer pays less to reserve the option capacity in

scenario 2, the cost of reserving excess option capacity is lower. Therefore, the

manufacturer tends to buy more option capacity.

2. Scenario 2 uses more contracts with long duration than scenario 1. In particular,

scenario 2 covers 79.46% of the periods with the 12-period contract and 56.59%

of this capacity is option capacity. Option contract can be used to reduce the

risk from a long term contract. Therefore, when the reservation price of the

option capacity is low, the manufacturer can sign a long term contract with a

significant amount of option capacity to take advantage of the lower cost and
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Case Count1, 1 Count1,3 Count1,6 Count1,12 Ratio, 1 Ratiol,3 I Ratiol,6 Ratiol,12 I
1 18 4 13 5 22.15% 30.23% 27.97% 29.69%
2 24 8 8 6 25.98% 20.81% 23.34% 28.95%
3 51 7 10 3 0.00% 25.74% 29.31% 33.56%
4 21 5 10 6 13.76% 31.40% 8.74% 26.89%
5 30 6 8 6 25.51% 32.59% 17.56% 26.74%
6 39 9 13 2 5.05% 24.84% 10.09% 11.07%
7 18 8 9 6 22.43% 13.91% 11.11% 31.80%
8 36 6 9 5 27.67% 22.93% 19.92% 35.67%
9 30 16 5 5 20.69% 1.50% 44.05% 17.39%
10 15 5 7 8 22.30% 15.90% 17.07% 36.36%
11 18 12 17 1 6.44% 7.71% 10.68% 18.40%
12 45 11 13 1 26.32% 22.68% 12.62% 41.47%
13 30 8 11 4 39.50% 11.90% 16.68% 29.08%
14 24 6 5 8 0.00% 16.68% 32.90% 26.30%
15 12 8 2 10 0.00% 20.76% 26.76% 20.49%
16 18 8 11 5 18.78% 30.71% 29.66% 8.51%
17 21 7 11 5 0.00% 24.78% 24.20% 20.27%
18 15 5 11 6 4.57% 31.45% 15.46% 18.16%
19 12 4 6 9 6.66% 27.70% 10.93% 23.91%
20 33 7 11 4 8.95% 24.96% 10.33% 29.48%
21 21 5 6 8 20.82% 36.72% 27.36% 18.59%
22 30 6 8 6 23.15% 16.78% 42.98% 42.98%
23 24 10 5 7 0.00% 15.97% 34.96% 25.99%
24 21 3 5 9 4.71% 35.42% 24.73% 24.70%
25 30 8 11 4 10.19% 14.59% 29.64% 36.36%
26 24 6 15 3 9.70% 21.55% 27.79% 23.70%
27 6 2 8 9 1.61% 23.12% 34.19% 26.46%
28 36 8 12 3 12.76% 7.67% 11.28% 22.46%
29 30 10 10 4 0.00% 15.69% 30.75% 26.35%
30 42 6 14 2 21.23% 13.20% 22.22% 25.24%
31 33 17 4 5 14.65% 17.94% 28.80% 35.12%
32 27 11 6 6 24.04% 8.09% 25.93% 12.71%
33 39 13 7 4 0.00% 23.36% 31.42% 12.93%
34 33 13 10 3 23.46% 24.70% 22.93% 28.00%
35 39 15 8 3 29.97% 35.15% 30.35% 32.88%
36 3 1 9 9 2.40% 0.00% 27.08% 40.21%
37 33 9 10 4 26.78% 28.02% 20.31% 29.67%
38 24 14 7 5 0.00% 12.33% 17.95% 26.24%
39 39 15 4 5 2.91% 0.00% 28.38% 43.45%
40 36 10 9 4 0.00% 20.06% 19.07% 39.94%

Table 4.10: Multi-period test set III scenario 1 contract usage.
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Case Count2,1 Count2,3 Count 2,6 Count2,12 Ratio2,1 Ratio2,3 Ratio2,6 Ratio2,12
1 0 0 4 12 - - 50.74% 78.14%
2 15 5 5 9 3.80% 36.32% 21.54% 48.94%
3 3 9 5 9 31.52% 44.74% 22.80% 78.79%
4 6 2 4 11 31.64% 47.84% 36.72% 30.31%
5 9 3 3 11 33.13% 51.23% 41.17% 39.62%
6 12 4 6 9 45.60% 53.91% 24.63% 72.67%
7 3 1 1 13 37.81% 50.71% 36.19% 42.48%
8 9 7 5 9 28.00% 59.82% 20.47% 55.09%
9 3 1 1 13 36.69% 52.64% 40.33% 78.92%
10 3 1 1 13 37.08% 51.77% 28.78% 50.58%
11 0 0 10 9 - - 42.99% 80.15%
12 24 8 8 6 15.05% 42.52% 25.63% 75.46%
13 3 3 4 11 23.58% 52.63% 25.38% 44.64%
14 3 3 2 12 40.29% 40.97% 40.39% 39.52%
15 3 1 1 13 35.76% 45.28% 39.95% 39.46%
16 12 4 4 10 16.18% 36.28% 23.48% 59.75%
17 9 3 3 11 22.02% 44.39% 38.43% 70.62%
18 3 1 5 11 36.70% 48.17% 40.24% 64.91%
19 3 1 1 13 35.09% 53.34% 40.45% 34.12%
20 12 4 6 9 47.27% 46.81% 34.29% 73.37%
21 0 2 1 13 - 55.75% 34.57% 76.76%
22 3 7 4 10 45.79% 57.16% 36.31% 41.99%
23 3 1 1 13 34.68% 45.03% 38.72% 49.18%
24 3 1 1 13 34.23% 53.04% 42.60% 55.87%
25 3 3 6 10 37.17% 54.91% 27.87% 79.84%
26 3 3 8 9 32.63% 55.74% 26.12% 39.71%
27 0 0 6 11 - - 47.88% 34.01%
28 6 4 5 10 36.96% 41.07% 38.66% 50.34%
29 9 3 3 11 27.73% 31.05% 34.85% 80.11%
30 6 4 7 9 21.82% 53.25% 37.85% 63.19%
31 0 2 3 12 - 58.89% 37.53% 67.09%
32 0 0 0 14 - - - 25.05%
33 3 1 1 13 22.82% 51.41% 27.49% 78.46%
34 3 3 6 10 37.17% 54.91% 27.87% 79.84%
35 3 1 1 13 16.76% 28.73% 37.52% 77.89%
36 0 0 6 11 - - 39.91% 43.31%
37 3 1 3 12 7.16% 50.32% 39.51% 20.35%
38 6 2 2 12 33.96% 55.36% 30.91% 61.17%
39 0 0 0 14 - - - 48.82%
40 9 3 3 11 19.00% 44.26% 20.78% 64.03%

Table 4.11: Multi-period test set III scenario 2 contract usage.
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does not need to bear a large risk. We have observed the same behavior in the

example given in Section 4.1.2.
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Chapter 5

Conclusions and Future Directions

5.1 Conclusions

In this thesis, we present a model to study capacity planning in a general supply

chain that contains multiple products, multiple processes, and multiple resources.

The model incorporates rental like capacity contracts and option contracts that can

have different price structures and durations.

We first consider the capacity planning problem in a single period setting. We

derive closed-form optimal capacity plans for two special cases of supply chains. For a

general single period capacity planning problem, we propose an efficient algorithm to

find the optimal capacity plan and test its performance with other existing algorithms

empirically. We then study the properties of the optimal capacity plan and see how

the capacity plan changes as the parameters of the supply chain or the structures of

the contracts change. We also discuss how to incorporate order size constraints into

the model.

We then propose a decomposition method that can separate the original capacity

planning problem into sub-problems, under the assumption that each process has only

one dedicated resource. Each sub-problem in the decomposition contains only one

process. The decomposition method provides both a feasible solution and an upper

bound to the original capacity planning problem. We examine the effectiveness of the

feasible solution and the tightness of the upper bound through a series of test cases.
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Finally, we study the multi-period capacity planning problem under the assump-

tion that the manufacturer does not store inventory. For the case where each process

has only one dedicated resource, we present a heuristic algorithm to solve the prob-

lem. We also propose a method to find an upper bound of the problem. We then test

the heuristic algorithm and upper bound using several sets of test cases.

5.2 Future Directions

The work in this thesis opens the door to many research directions.

Capacity Planning with Demand Forecast Updates. One of the major

assumptions that we have made in this thesis is that the manufacturer follows a

two-stage decision process: first, it decides the contract sequences and sizes for the

whole planning horizon based on the initial demand forecasts; second, it learns the

demands for the entire horizon and allocates capacity to fill the demand at each period.

However, in practice, the manufacturer might have the opportunity to improve the

demand forecasts over time and revise the contracts that have not started using the

new demand forecasts. In these situations , if we assume that the lead time to commit

a contract is Ht, the actual decision process at each period would be as follows:

* At the beginning of the period, the manufacturer decides and signs all the

contracts that will start in -i periods using the available information. This

information can include the current forecasts of the future demand, the demand

progression information, the demand history, etc.

* The manufacturer observes the demand and other information revealed during

the period. It then updates the information set to include the new data.

This is a multi-stage dynamic capacity planning problem with demand forecast up-

dates.

The heuristic algorithm that we have proposed for the two-stage multi-period

capacity problem in this thesis can serve as a heuristic algorithm for the multi-stage

dynamic problem. The specific steps are as follows:
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* At the beginning of each period, based on the current demand forecasts, the

manufacturer uses the heuristic algorithm to find a capacity plan. It then

commits all the contracts in the plan that will start in 7- periods.

* The manufacturer observes the demand and other information revealed during

the period. It then updates the demand forecasts.

This algorithm might not provide an optimal strategy for the dynamic capacity

planning problem. It is an interesting research problem to examine the performance of

this algorithm and develop new algorithms to solve the multi-stage dynamic capacity

planning problem with forecast updates.

Capacity Planning with a Rolling Horizon. In this thesis, we assume there is

a fixed planning horizon T. In practice, the capacity planning is a rolling process:after

each period is over, a new period will be appended to the end of the current planning

horizon. We can add the rolling process to the two-stage model studied in this thesis

or the multi-stage dynamic model mentioned above. In either case, our heuristic

algorithm given in Chapter 4 provides a heuristic algorithm to solve the problem

with a rolling process. Studying the capacity planning problem with a rolling horizon

is another interesting research direction that one might study.

Capacity Planning with Initial Setup Costs. Another assumption that we

have made in the thesis is that there is no setup cost for each contract. If this

assumption does not hold, the manufacturer needs to pay a fixed cost for using a

contract. In these situations, the single period capacity planning problem will be a

stochastic mixed integer program rather than a stochastic linear program. It will

be an interesting research problem to develop algorithms to take the initial contract

setup costs into consideration.

Combining the Decomposition Method with other Models. We have

discussed in the literature survey section that people have proposed models to solve

problems that contain a single product or process. For example, Martinez-de-Albniz

and Simchi-Levi [27] and Yazlali and Erhun [39]. These models have more complex

demand and price structures and allow the manufacturer to store inventory. On
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the other hand, one of the contributions of our work is introducing a decomposition

method to divide the capacity planning problem that contains multi-product and

multi-process supply chain into sub-problems where each sub-problem has only one

process. It will be beneficial to study how to use our decomposition method to expand

the existing models to a more general setting.

Industrial Study. Finally, we are looking for industrial case studies to validate

and improve our model. Through these studies, we can test our algorithms in real

applications.
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Appendix A

List of Contract Manufacturers

A.1 A Partial List of Contract Manufacturers in

the Biopharmaceutial Industry

1. Albemarle Corporation

2. Avecia, Inc.

3. Bachem Holding Ag

4. Baxter Pharmaceutical Solutions LLC

5. Ben Venue Laboratories

6. Bioreliance Corporation

7. Biovectra DCL

8. Boehringer-Ingelheim

9. Cambrex Corporation

10. Cardinal Health Contract Manufacturing

11. Chesapeake Biological Laboratories
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12. DPT Laboratories, Ltd.

13. DSM Pharmaceuticals, Inc.

14. Degussa AG

15. Dowpharma

16. Draxis Health, Inc.

17. Genzyme Pharmaceuticals

18. Girindus AG

19. Glatt Air Techniques, Inc.

20. HollisterStier Contract Manufacturing

21. Hospira One 2 One

22. Laureate Pharma

23. Lonza Group Ltd

24. Lyne Laboratories

25. Mallinckrodt Pharmaceuticals

26. Patheon, Inc

27. Rhodia Pharma Solutions

28. Wellspring Pharmaceutical
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A.2 Top 10 Electronics Manufacturing Services (EMS)

Companies in 2006

141

Rank Name Total Revenue 2006 ($ M)

1 Foxconn 40,527

2 Flextronics 17,708

3 Asustek 17,196

4 Quanta Computer 16,503

5 Solectron 11,200

6 Sanmina-SCI 10,955

7 Jabil 10,300

8 Celestica 8,800

9 Inventec 7,890

10 TPV Technology 7,176
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Appendix B

Deriving the Updates Rules in the

Stochastic Supporting Hyperplane

Algorithm

In this appendix, we look at the update rules in step 2 of the stochastic supporting

hyperplane algorithm given in Chapter 2. The derivation is based on the method

given by Higle and Sen in [18].

In step s, if we use all the sample points in the set S' to construct the supporting

hyperplane at (cS- 1, gS-1), the constraint to be added as given in (2.38) is

f+ - 7r(cs-',gs-1, d) - p'c-l - q(g-lI - cs-l)

s dEs,

,1 - 1  -1
+ [(c' g) - (C c g, d)- p+ q, - Y(c" 9, d)- q >0

dess dEss

Simplifying the equation above, we get

1
f-+ - (Cs-l ,gs- , d)

S dEss

A(cds i, e-1, d), 1 E y(cs ,S CES' S dES-9
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+(c, g)' S A(cs-1, g - 1, d) - p+ q,- E (cs-',g-, d) - q
dEss dEss

>0

If we separate the terms associated with w', which is the demand sample generated

in step s, we get

s-l [ 1
f+ s s-1 EdC8

(1
s-1 dES8-1

+(c, g)' s-(1 S-1

1
A(C s - l, I f - 1

1 d),11 Es-1s
des-1

1
E A(c-l, g-, d) - p + q, s-i

aESS-1

Y(CS-1, gS-l1

S (c-', g"-', d)-
dEss-1

1
+ I[7r(cs-1, q-,1 S) - (cs- 1 , g- 1)'(A(cs-lY - 1 ý 9W), -y(cs-l, 9 ,1 w))

+(c, g)' (A(c-', gs wc) - p + q, y(c 1', g Y, w) - q)] 0

(B.1)

By the definitions of a, 3, and (, Equation (B.1) can be written as

1
+-8

f + a a + (c, g)'(!,s-l,-1i + (c, g)'(-p + q, - q)
S -S1 8 )

[7r(C1S-1 Ie-1 
s ) -+(cs-, g -1)'(A( cs-l, -. -cs- l-' , ))

+(C, g), ((cs' , -1, Lis) 7 -Y (C' g, ws))] >_ 0 (B.2)

Now if we set (c, g) = (c"- l , g-l), the last three terms of the Equation (B.2) will be

- [1(cS-1, gS-l1, s)

If we replace this with its upper bound U, we get

as_1 + (c, g)'(Os-1, (s_1,) + -(c, g)'(-p +S - - -
1

q, -q) + -U > 0
S

Equation (B.3) uses the hyperplane at (c' - 1, gS-) in step s - 1 to construct a relax-
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d)

q)]

s-1
f+- 8

(B.3)

7(C
s- 1

, -l, d)

-(Cs-1, Igs-l)



ation of the supporting hyperplane at the same point in step s. A similar relaxation

is applied to all the hyperplanes generated before step s.
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