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ABSTRACT

At ever-increasing rates, we are using wireless systems to communicate with
others and retrieve content of interest to us. Current wireless technologies such
as WiFi or Zigbee use forward error correction to drive bit error rates down
when there are few interfering transmissions. However, as more of us use wire-
less networks to retrieve increasingly rich content, interference increases in un-
predictable ways. This results in errored bits, degraded throughput, and even-
tually, an unusable network. We observe that this is the result of higher layers
working at the packet granularity, whereas they would benefit from a shift in
perspective from whole packets to individual symbols.

From real-world experiments on a 31-node testbed of Zigbee and software-
defined radios, we find that often, not all of the bits in corrupted packets share
fate. Thus, today’s wireless protocols retransmit packets where only a small
number of the constituent bits in a packet are in error, wasting network re-
sources. In this dissertation, we will describe a physical layer that passes infor-
mation about its confidence in each decoded symbol up to higher layers. These
SoftPHY hints have many applications, one of which, more efficient link-layer
retransmissions, we will describe in detail. PP-ARQ is a link-layer reliable re-
transmission protocol that allows a receiver to compactly encode a request for
retransmission of only the bits in a packet that are likely in error. Our experi-
mental results show that PP-ARQ increases aggregate network throughput by a
factor of approximately 2x under various conditions. Finally, we will place our
contributions in the context of related work and discuss other uses of SoftPHY
throughout the wireless networking stack.

Thesis supervisor: Hari Balakrishnan
Title: Professor
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Introduction

OVER THE PAST CENTURY, the development of wireless technology has
fundamentally changed the way we obtain information and communicate
with others. Wireless technology profoundly impacts our personal, social,
and professional lives: we now take for granted the presence of cellular tele-
phones, wireless-enabled mobile computers, and wireless handheld devices.

In this century, all signs point to the continued existence and expanded
influence of wireless technology in our daily lives. The wireless telecom-
munications and data industries are large and continue to experience rapid
growth [100, 105] as demand for more and richer wireless content contin-
ues. Technological innovation is proceeding at a swift pace in both academia
and industry, with the introduction of new technologies such as software-
defined radio [25, 80, 99], mesh networks [2], and advances in high-speed,
low-power radio frequency circuit designs [68,92].

However, there is a factor pushing against the growth of wireless net-
works: wireless spectrum is fundamentally a shared and scarce resource.
Proliferating numbers of nodes and demand from each node act to increase
interference in the network, driving the performance each node experiences
downwards. In this work we focus on techniques for increasing network
throughput, allowing network designers to provide more and better service
with fewer resources.

1.1 AN INTRODUCTION TO THE PROBLEM

Bit errors over wireless channels occur when the signal to interference and
noise ratio (SINR) is not high enough to decode information correctly. In ad-

19
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FIGURE 1-1—A collision between two packets, each sent from a different sender,
as viewed by a nearby receiver. We plot the phase of each sample the receiver
measures. The bits in ranges (a) and (c) are likely correct, while the bits in range
(b) are more likely errored, as evidenced by the higher variance of the symbol
samples shown below the packets.

dition to background noise, poor SINR arises from interference caused by
one or more concurrent transmissions in the network, and varies in time even
within a single packet transmission. The reason for this is that the wireless
medium is fundamentally a shared medium, with some amount of energy
from each transmission reaching not just its intended receiver, but other re-
ceivers in its vicinity. We can observe interference qualitatively in the packet
“collision” of Figure 1-1 where the samples of Sender 1’s signal in region
(b) are much noisier than Sender 1’s samples in region (c), causing many
of the former samples to be “pushed” above or below the dashed horizontal
decision boundaries shown in the figure, resulting in bit errors.

Modern wireless systems use a variety of sophisticated physical-layer
techniques to combat channel impairments such as background noise, chan-
nel attenuation, and multipath fading. Examples of these techniques include
advanced modulation techniques such as Orthogonal Frequency Domain
Modulation (OFDM) and spread-spectrum modulation [6,41,97], and error-
control coding [18, 70]. These techniques make good individual links be-
tween pairs of nodes possible, but they fall short of our goal of mitigating
the effects of interference in a network viewed as a whole.

To see why quantitatively, consider the bit error rate versus SINR curve
shown in Figure 1-2.! The physical layer techniques mentioned earlier (in-
cluding channel coding in this example) can drive link bit error rate down

Data source: Harris Corp. 802.11b baseband processor at 5 Mbits/s [45].
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FIGURE 1-2—A 3 dB loss in signal to interference plus noise ratio (SINR) from
an interfering transmission of about the same strength as the intended transmission
results in a two-order increase in bit error rate.

to 1076 or below, as indicated by the rightmost data point on the curve of
Figure 1-2.

However, consider what happens when an interferer begins sending in
the vicinity and its transmission arrives at the receiver with approximately
the same received signal strength as the transmission the receiver intends
to receive. The interfering transmission reduces the SINR of the intended
transmission by approximately 3 dB,? resulting in the approximate two-
order increase in bit error rate at the left-most data point in Figure 1-2.
The resulting bit error rate, 2 X 10>, yields (on average) one bit error in
each 1500 byte packet, even after the channel coding that 802.11b applies.
This reflects a catastrophic operating point for a network, because current
wireless protocols discard packets containing any bit error, causing network
throughput to drop.

Of course, it is a well-known fact that the wireless medium is shared,
deriving from the principle of superposition of electromagnetic waves from
the electromagnetic theory [98]. As a result, many ways of sharing the wire-
less medium have been invented. These techniques also sometimes go by

’The 3 dB reduction in SINR holds in a regime where the power of the interfering
transmission is significantly larger than the power of the background noise in the network.
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FIGURE 1-3—Status quo physical layers implement a “wired” abstraction which
drops frames with any number of bit errors, and passes only the data bits themselves
up to higher layers.

the names “medium access control” or “multiple access” protocols. One of
the most popular techniques for sharing the wireless medium is called car-
rier sense multiple access (CSMA), and we describe it in detail in the next
chapter.

As designers of large, busy wireless networks, it helps to examine the
problem at a larger scope. To maximize the capacity of a multihop wireless
mesh network, we desire to both increase the amount of spatial reuse in
the network and decrease the amount of interference that each transmission
experiences. We also note a tension between these two goals: increasing
spatial reuse means permitting more concurrency between transmissions,
while decreasing concurrency reduces interference between transmissions.
Medium access control protocols, as we will see in the next chapter, often
make mistakes when balancing these two factors, and the result is either
errored packets or a lack of concurrency in the network.

The wired abstraction. The way that most current wireless systems [50,
51,52, 53, 54] handle these inevitable mistakes is to interpose what we will
refer to as a wired abstraction over the physical layer, represented by the
dotted line in Figure 1-3. The wired abstraction’s purpose is to make the
error-prone wireless physical layer appear error-free to higher layers. The
mechanism it uses to accomplish this is to apply some amount of channel
coding to the link, but then to simply drop the decoded frame if any part of
it is errored.

When the wired abstraction drops a packet containing one or more bit
errors, higher layers generally need to retransmit that packet. Retransmitting
entire packets works well over, for example, wired networks where bit-level
corruption is rare and a packet loss implies that all the bits of the packet
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FIGURE 1-4—Bits in a packet do not share fate: the distribution of correct bits
in errored packets is roughly uniform, indicating that many bits in packets whose
checksum fails are in fact correct.

were lost (e.g., due to a queue overflow in a switch). In these situations, we
say that the bits in a packet “share fate” with each other. In wireless net-
works, however, the bits in a packet most often do not share fate. Because
wireless channels are hard to model and predict, instead often only a small
number of bits in a packet are in error while the rest are correct. Data shown
in Figure 1-4 from a large spread-spectrum network with carrier sense mul-
tiple access enabled underscores this point. Consider the fraction of bits in
a packet that are correct when at least one bit is errored. We find from the
figure that this quantity is uniformly distributed across packets. The wired
abstraction discards those correct bits, wasting network capacity.

To summarize the problem: even with the use of error-control coding
and robust modulations, current systems are built on sharing protocols that
make mistakes in the face of interfering transmissions, and rely on link-
layer retransmissions to present the wired abstraction to higher layers. Thus
bit errors cause wasteful retransmissions of the entire packet when the wired
abstraction drops it. As a result, presenting the wired abstraction to higher
layers generally entails sacrificing significant capacity.

1.2 APPROACH

This dissertation presents the design, implementation, and evaluation of
techniques to improve aggregate network throughput by reducing the num-
ber of bits transmitted.

23



Key insight. The key idea that impacts each of the architectural compo-
nents and protocols we propose in this dissertation is to shift the way we
reason about wireless networks, at all layers of the network stack, from a
packet-centered view to one that reasons about individual symbols. In the
context of our discussion, we use the term “symbol” to mean the unit of
information granularity at which the physical layer makes decisions. This
concept may correspond to actual physical layer symbols e.g. in the case
of an uncoded transmission, or it may correspond to codewords in a coded
transmission. Thus instead of presenting the wired abstraction to higher lay-
ers, we propose a physical layer design that occasionally lets errors occur
and delivers partial packets up to higher layers.

There are several challenges in realizing this vision and making it prac-
tically useful.

1. How can a receiver tell which bits are correct and which are not?

2. Since most physical layers require the receiver to synchronize with the
sender on a preamble before decoding a packet’s contents, wouldn’t
any corruption to the preamble (caused, for instance, by a packet colli-
sion from another transmission) greatly diminish the potential benefits
of the proposed scheme?

3. How exactly can we use the bits we recover from partially-incorrect
packets to improve end-to-end performance of various network- and
link-layer protocols?

1.3 CONTRIBUTIONS AND RESULTS

Our design contributions, shown in Figure 1-5, fall into two broad cate-
gories: architectural design and protocol design. Our key architectural con-
tribution is a new interface for the physical layer called the SoftPHY inter-
Jace and its implementation on a few common radio standards.

1.3.1 Design contributions

The SoftPHY interface. The SoftPHY interface allows the receiver to de-
termine, with no additional feedback or information from the sender, which
bits are likely to be correct in any given packet reception using hints from the
physical layer. The key insight in SoftPHY is that the physical layer should
pass up information about how close each received symbol or codeword was
to the symbol or codeword the physical layer decided upon. Higher layers
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FIGURE 1-5—Contributions of this dissertation. At the physical layer, we have
implemented three distinct receivers for 802.11a, Zigbee, and DQPSK, along with
the postamble decoding techniques described in Chapter 4. We have implemented
the SoftPHY interface of Chapter 3 for each receiver. At the link layer, we have
designed and developed PP-ARQ), a protocol for reliable retransmissions using the
SoftPHY interface.

can then use this information as a hint, independent of the underlying details
in the physical layer. We show that SoftPHY has applications across many
higher layers of the networking stack.

Postamble decoding. Postamble decoding allows a receiver to receive
and decode bits correctly even from packets whose preambles are unde-
tectable due to interference from other transmissions or noise. The key
idea is to replicate the information in the preamble and packet header in
a postamble and a packet trailer, allowing a receiver to synchronize on the
postamble and then “roll back” in time to recover data that was previously
impossible to decode.

The PP-ARQ protocol. Using the above two techniques, we have de-
signed partial packet ARQ (PP-ARQ), a link-layer reliable retransmission
protocol in which the receiver compactly requests the retransmission of only
the select portions of a packet where there are bits likely to be wrong. In re-
sponse, the sender retransmits the bits and checksums for those ranges, so
that the receiver can eventually be certain that all the bits in the packet are
correct. The receiver’s request encoding uses a dynamic programming al-
gorithm that minimizes the expected bit overhead of communicating this
feedback, balancing that against the cost of the sender retransmitting bits
already received correctly. PP-ARQ uses windowed asynchronous stream-
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ing techniques to recover from feedback loss and amortize packet header
overhead.

1.3.2 Experimental contributions

Implementation work. We have implemented and integrated each of our
three contributions for IEEE 802.15.4 [54], the Zigbee standard, and our im-
plementation is compatible with that specification (see Section 3.2.2, page
57). The SoftPHY and postamble decoding architecture contributions can
recover partial packets from unmodified Zigbee senders, while the PP-ARQ
protocol requires sender side modifications.

We have also implemented the SoftPHY interface for a convolutional-
ly-coded OFDM system with the same structure as IEEE 802.11a [52] (see
Section 3.2.3, page 63), and in an uncoded DQPSK receiver (Section 3.2.1,
page 54).

Performance results. Our techniques can improve performance in both
access point-based networks and wireless mesh networks. Chapter 5 shows
experimental results that confirm this: in that chapter, we describe a 31-node
indoor testbed consisting of Telos motes with 2.4 GHz Zigbee radios from
Chipcon and six GNU Radio nodes. Our results show approximate 2x gains
over the status quo in aggregate end-to-end throughput using PP-ARQ.

We compare our techniques to other ways of determining which bits are
likely to be correct, such as fragmented packet checksums. Finally, we com-
pare PP-ARQ to an idealized protocol that has no overhead and unlimited
knowledge about which bits were received correctly. We analyze and fully
account for the gap between PP-ARQ’s performance and this idealized pro-
tocol’s performance.

The underlying premise in this work is that significant performance
gains can be obtained by the combination of a more aggressive, higher-rate
physical layer and being more flexible about the granularity of error recov-
ery in wireless networks. In Chapter 6, we give reasons why SoftPHY may
enable even bigger performance gains in future work.

1.4 CONTENTS OF THIS DISSERTATION
In the next chapter we present background information on the mechanism

of carrier sense in the same type of wireless networks we evaluate our con-
tributions. In Chapter 3 we propose a new interface for the physical layer
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called the SoftPHY interface. Then in Chapter 4 we discuss the packet syn-
chronization and detection problem, and introduce postamble decoding, a
new method for more robust packet detection and synchronization.

The following two chapters, 5 and 6, describe novel uses of the SoftPHY
interface. Chapter 5 describes a novel protocol called PP-ARQ for retrans-
mitting only the bits in a packet most likely in error. In the following chapter,
we describe other uses of the SoftPHY interface in medium access control,
opportunistic bit-wise forwarding in a mesh network, and bit-rate adapta-
tion. Chapter 6 concludes the dissertation, examining alternate approaches
and reflecting on the choices we made in the design of the system.
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2

Background

IN CHAPTER 1 WE NOTED that the wired abstraction constrains perfor-
mance in wireless networks. This is due in large part to an unfortunate in-
teraction between the wired abstraction and protocols to share the wireless
medium between different senders. Situated at the link layer, the job of the
medium access control (MAC) protocol is to share the wireless medium be-
tween each sender. MAC mistakes and tradeoffs, however, result in either
errored bits in packets or a loss of concurrency in the network. Both types
of mistakes lead to a loss of network capacity.

Chapter overview. In this chapter, we survey protocols to share the wire-
less medium, tracing the development of the carrier sense multiple access
used in many of today’s wireless and mesh networks. We then briefly dis-
cuss other ways of sharing the wireless medium before taking a quantitative
look at the mistakes that carrier sense makes, using two different testbed
configurations. The first is a 60-node wireless sensor network communi-
cating with Chipcon CC1000 [116] narrowband FM radios. These radios
have a data rate of 38.4 Kbits/s. The second is a small-scale 802.11 testbed
using Atheros 5212 OFDM radios. Our experimental data show that while
carrier sense improves link qualities at all traffic loads, it leaves room for
the performance improvements we leverage in later chapters. We conclude
this chapter with a discussion of the problems that wireless sensornet traffic
patterns in particular create.
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2.1 MULTIPLE ACCESS IN ETHERNET AND ALOHANET

The ALOHANET packet radio network was designed by Norman Abram-
son at the University of Hawaii in the late 1960’s. Abramson saw the need
to interconnect the seven geographically-disjoint campuses of the Univer-
sity of Hawaii together. ALOHANET served as the means of sharing the
computer systems at the main campus with the six other campuses of the
university, all within a radius of about 300 km of each other. The intent
was for computer users to use ALOHANET for remote teletype access to
computer systems located at the main campus.

The sharing protocol that ALOHANET ran, ALOHA [1], is one of the
first examples of a communications network that uses a shared communi-
cations medium (in this case, the wireless channel) for communication. In
ALOHA, just transmit a packet when one is ready to send. Checksums at-
tached to each packet implement the wired abstraction concept we intro-
duced in Chapter 1, so stations discard corrupted packets. There are well-
known throughput analyses of ALOHA’s performance [9, 32, 66] under a
number of theoretical assumptions. ALOHA has inspired many subsequent
developments, both practical and theoretical, which we now examine.

One key development ALOHANET helped to inspire [115] is the wired
. Ethernet [76] local-area computer network. The original Ethernet used one
stretch of coaxial cable, into which physical taps were placed, one tap for
each computer connecting to the Ethernet. Ethernet transceivers listen to the
shared medium before every transmission to determine if there is a packet
transmission ongoing. If there is a packet transmission ongoing, then the
transceiver defers to the ongoing transmission; otherwise it begins its own.
This mechanism is called carrier sense, and we discuss it in more detail
below.

Collision avoidance and detection in Ethernet. Ethernet is a non-per-
sistent CSMA protocol [9]. In such protocols, the time immediately after
each transmission is divided into CW contention slots, whose duration is
several orders of magnitude smaller than the time it takes to send a data
packet. Immediately after a transmission or collision, each station picks a
random contention slot r € [1, CW]. During the contention slots prior to r,
each station carrier-senses the medium, deferring its pending transmission
if it hears the beginning of another transmission. At contention slot r, the
station begins its transmission. If two nodes pick the same slot, they both
transmit at the same time, causing a collision. When this happens, the col-
liding nodes double their value of CW. This is known as binary exponential
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backoff (BEB). By increasing CW, BEB protocols attempt to adapt to the
current active population size to make a collision-free transmission more
likely.

Ethemet also has a collision detection mechanism that can detect the
presence of concurrent transmissions while one is ongoing. The transceiver
listens to the reflection of its transmission off the end of the coaxial Ethernet
wire. It then compares the reflection to an appropriately-delayed version of
the transmitted signal and if the two differ, raises the “collision” line [77].
Saltzer [104] has observed that since each transceiver’s rate of current injec-
tion onto the wire is a known constant, the “collision detector” could also
examine DC voltage on the wire, which would increase in the presence of
more than one concurrent transmission. In a wireless transceiver, a similar
collision detector is much harder to design because antenna loss and signal
attenuation in space makes the received signal tens of decibels lower than
the transmitted signal in power.

Enforcing consensus in Ethernet. When an Ethernet station detects a
collision, it jams with wire with a carrier signal for one round-trip time,
to ensure that all other stations on the wire agree that there was a collision.
Hence, the Ethernet makes no attempt to reuse different spatial extents of the
wire medium. In contrast, and again because of attenuation, wireless proto-
cols have an opportunity! [109] for spatial reuse: using different parts of
space for simultaneous communications. We will see that this complicates
the problem of achieving good wireless network utilization.

2.2 THE MOVE TO WIRELESS NETWORKS

We now review how, with some degree of success, mechanisms from the
wireless ALOHANET and wired Ethernet were translated to and evolved in
wireless networks. We begin with a key observation made by Karn [63] and
affirmed by Bharghavan et al. [10].

2.2.1 Carrier sense is a heuristic in wireless

In a wireless network, unlike in the Ethernet, the location of transmitters and
receivers matters, because the probability of receiving a packet correctly de-
pends on the SINR at the receiver. Thus, the transmitter’s carrier sense line

"Though some wireless protocols, such as FAMA-PJ [29] use the same jamming mech-
anism to eliminate collisions, at the expense of some spatial reuse.
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(a) (b)

FIGURE 2-1—(a) a “hidden terminal” node configuration: carrier sense may not
schedule the two indicated transmissions to defer to each another, causing bit er-
rors. (b) an “exposed terminal” node configuration: carrier sense may schedule the
two indicated transmissions to defer to each other, whereas they could transmit
simultaneously with error, doubling throughput.

is at best a guess about conditions at the receiver. This guess can be correct if
the receiver and sender are close enough that they experience similar noise
and interference conditions. However in many cases, no correlation exists
between channel conditions at the sender and at the receiver. This lack of
correlation is often due to exposed and hidden terminals, the aggregate ef-
fect of distant nodes raising the noise floor, and capture.

Hidden terminals. First, carrier sense can permit transmissions to corrupt
each other when the senders are out of carrier sensing range of each other,
as in Figure 2-1(a). This is sometimes called a hidden terminal situation.

Exposed terminals. Second, it can prevent senders (e.g., S1 and S, in
Figure 2-1(b)) from transmitting simultaneously when their intended des-
tinations have a lower levels of mutual interference—an exposed terminal
situation. Unfortunately, carrier sense would only allow one transmission to
take place: whichever node lost the CSMA contention period would sense a
busy channel and wait for the other node’s transmission to complete.

Capture. In addition, receivers can sometimes decode transmissions even
in the presence of relatively strong interfering transmissions within the same
frequency band [112, 127]. In other words, this means that concurrent trans-
missions are possible by a set of nodes well within each others’ transmis-
sion range. This differs from the carrier sense assumption that only one node
should be transmitting in the receiver’s radio neighborhood. This suggests
that simply extending the carrier sense mechanism to the receiver does not
solve the problem.

Distant transmissions. Finally, carrier sense may be a poor predictor of
transmission success if interference comes from a large number of distant
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nodes rather than a few local neighbors [109]. When interference is local
and nodes are within each other’s transmission range, carrier sense or an
RTS/CTS exchange may be a good method of contending for the channel.
However, because a node’s interference range is much larger than its trans-
mission range, distant transmitters can easily impact local transmissions. In
aggregate, these distant transmitters raise the overall “noise floor” of the net-
work, reducing link quality. Carrier sense as described in Section 2.4 cannot
mitigate this type of interference.

2.2.2 The evolution of multiple-access in wireless networks

Noting the above problems with carrier sense, Karn proposed discarding
the carrier sense signal from radio transceivers in the MACA [63] pro-
tocol. MACA instead relies on a reservation strategy called the ready-to-
send/clear-to-send exchange (RTS/CTS exchange) to protect against inter-
fering transmissions.> When a station has a packet to send, it first sends
a short RTS message indicating its intention to send data. If and when the
intended receiver decodes the RTS, it sends a CTS message indicating its in-
tention to receive. Both the RTS and the CTS messages contain the duration
of the data transmission. If any other station not involved in the transmission
decodes either an RTS or a CTS message, it defers its transmissions for the
duration of the ongoing data transmission. For the RTS/CTS exchange to be
worth the overhead it incurs, the data messages have to be several orders of
magnitude longer than the control® packets.

MACAW [10] revised MACA to include Ethernet-like non-persistent
collision avoidance, combined with a mechanism for nodes to learn about
contention levels from other nodes in the wireless network. Instead of BEB,
MACAW uses a multiplicative-increase, linear decrease (MILD) algorithm
to adjust the contention window, and copies contention window values from
station to station.

Subsequently to MACAW, and in contradiction with what MACA and
MACAW suggest, Fullmer and Garcia-Luna-Aceves proposed the FAMA
family of MAC protocols, which combine Ethernet’s non-persistent CSMA
with the RTS/CTS exchange to yield better performance in the presence of
hidden terminals [30,31].

2This reservation strategy predates MACA itself; one of the first protocols to propose the
RTS/CTS exchange was split-channel reservation multiple access (SRMA) [119]. Apple
Computer Inc.’s Appletalk also used a similar reservation strategy in the wired domain.
3RTS, CTS, or in subsequent protocol descriptions, acknowledgment packets.

33



Wireless local-area networks. The development of commodity wireless
local-area networking chipsets mirrors the developments in the research lit-
erature. The IEEE 802.11 standard for wireless LANs [50], parts of the
the ETSI HIPERLAN [26] MAC protocol, and various sensornet MAC lay-
ers [94, 133] use carrier sense with non-persistent collision avoidance, and
most use BEB to adjust their contention levels to the amount of actual con-
tention in the network.

One drawback of RTS/CTS is that makes the tacit assumption of “all-
or-nothing” interference where either a transmission interferes with the in-
tended one and the packet is useless, or the transmission is completely in-
dependent of the other. Keeping in mind the SINR model of interference
above, however, we see that the all-or-nothing model poorly reflects re-
ality. Furthermore, there are situations where even under the assumption
of all-or-nothing interference, the RTS/CTS exchange does not suffice to
guarantee collision-free transmissions [31]. Finally, in a busy building-wide
(network diameter much larger than a radio range) 802.11 infrastructure net-
work, Judd finds that hidden terminals are much less common than exposed
terminals [61]. Furthermore, two randomly-chosen clients are as likely to
be exposed terminals with respect to each other as they are to connect to the
same access point. This and the bandwidth overhead associated with con-
trol messages could be why RTS/CTS is almost never used in extant 802.11
networks.

At their core, these randomized carrier sense multiple access (CSMA)-
based MAC protocols attempt to adapt to the active population size of con-
tending nodes. Typically, each node maintains a slotted contention win-
dow with collisions (i.e., unsuccessful transmissions) causing the window
to grow in size, and successful transmissions causing it to shrink. Each node
transmits data at a slot picked uniformly at random within the current con-
tention window.

2.3 OTHER PERSPECTIVES

Of course, CSMA is not the only way of sharing the wireless medium.
Senders may instead use time-division multiplexing (TDM), dividing time
into timeslots one data packet’s duration in length (in general, TDM as-
sumes equally-sized data packets). Each sender then gets a transmission op-
portunity in timeslots allocated to it by some mechanism, and must remain
silent in the remainder of timeslots. In general, TDM is highly suboptimal
for bursty traffic workloads [118], but performs rather well for constant-rate
workloads where there is a constant demand from each sender. There are
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FIGURE 2-2—(Proakis [97]) Direct sequence spread spectrum (DSSS) modulation
of a data signal with bit time 7},. DSSS spreads the data signal in frequency by
multiplying the data signal (lower) with a spreading chip sequence (upper) of period
T and chip time 7.

proposals that mix TDM and CSMA medium access [82, 101], and propos-
als for allocating TDM time-slots that try to maximize throughput [16].

Senders may also choose different frequency bands on which to trans-
mit; this is called frequency-division multiplexing (FDM). Both TDM and
FDM have the drawback of leaving spectrum unused when traffic patterns
are bursty.

As an alternative to simple division of time or frequency senders may
simultaneously transmit waveforms in the same frequency bands, using sig-
nals that can be decoded independently from each other under some con-
ditions. One way of accomplishing this is called code division multiple ac-
cess (CDMA). CDMA uses direct sequence spread spectrum modulation
(Figure 2-2) where senders use mutually-orthogonal spreading sequences.
This idea, along with power control between each mobile and the base sta-
tion and a carefully-planned base station deployment allow CDMA cellular
phone networks to achieve efficient sharing of the wireless medium. In fact,
from an information-theoretic perspective, CDMA with multi-user decoding
(Section 2.7) comes closest to achieving wireless capacity in the two-user
case [32, 120]. Unfortunately, mesh networks in general lack the element of
careful planning that goes into cellular phone networks, making it difficult
to adapt CDMA for this purpose. Most mesh networks instead use CSMA
because of its simplicity.

35



2.4 A CLOSERLOOK AT CSMA

In this section we examine the theory and mechanisms behind the carrier
sense used in Zigbee and 802.11 radios. In the course of this development,
we give some insight into why carrier sense sometimes makes channel ac-
cess decisions that result in lower aggregate throughput in the network.

There are two primary ways that modern radios implement carrier sense;
first, by computing a correlation between the input signal and the preamble,
and second, by measuring changes in received energy.

2.4.1 Signal detection theory

This technique relies on the inclusion of known data in each packet; this
data is referred to as preamble. In Chapter 4 we provide more detail on the
synchronization process (which is needed for the correlation computation)
and additional details specific to Zigbee and 802.11. We now briefly survey
the theory behind this method, adapting the discussion in Oppenheim and
Verghese [87] to the specifics of our problem.

Suppose we observe an input signal y[k] from the RF downconverter.
We want to decide between two hypotheses:

H, (preamble absent) : y[k] = w[k]

H, (preamble present) : y[k] = pl[k] + w[k] @D

Under hypothesis H,, the input signal is simply noise w[k] with no
preamble transmission present, and the carrier sense circuitry indicates “car-
rier sense free.” Under hypothesis Hj, the input signal is the sum of noise
and a preamble signal p[k] of length L, and the carrier sense circuitry indi-
cates “carrier sense busy.”

Under certain assumptions on the noise statistics, it can be shown [6,
87,121] that the decision rule to minimize the probability of error consists
of the following steps, as shown in Figure 2-3. First, the input signal y[k]
passes through a filter with response equal to a time-reversed version of the
preamble. Then, a sampler measures the output of the filter just after the
preamble, at time ¢ = L. Finally, a threshold device compares the sampled
output against a threshold y.

There are two key points to note from the foregoing discussion. First, the
filtering step simply computes a correlation between the preamble and the
input signal, since the output of the filter p[k] = Y ; y[ila[k—i] = X ; y[k]plk].
We make use of these concepts in our discussion of postamble decoding in
Chapter 4.
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FIGURE 2-3—Sampling and thresholding the output of a linear, time-invariant fil-
ter with impulse response matched to the preamble yields minimum probability of
error detection under certain assumptions on the noise statistics.

Second, there are two types of errors that our decision process can make:
declaring “H,” when in fact a preamble is present (a missed preamble), and
declaring “H,” (a false alarm) when in fact no preamble is present. The de-
cision process compares the sampled correlation to a threshold y, which can
be adjusted to trade off between the two types of error. Raising y increases
the probability of a miss, which increases the number of hidden terminals
carrier sense fails to detect (see Section 2.2.1). Lowering y increases the
probability of a false alarm, which increases the number of exposed termi-
nal pairs carrier sense prohibits from transmitting at the same time (again
see Section 2.2.1).

2.4.2 Energy detection

The Energy detect indicator is a carrier sense mechanism common to many
extant radios. It is based on signal strength readings obtained from the radio
front end. Over the periods that there are no incoming transmissions, senders
time-average instantaneous signal strength readings into a quantity called
squelch (o). Squelch can be interpreted the “noise floor” of the network: the
signal strength of background noise. Just before a transmission, the sender
makes its carrier sense decision with a comparison between p and . If p >
o, then carrier sense is busy. Otherwise, carrier sense is idle and the sender
may begin transmission. Alternately, some radios use a fixed threshold for
o, commonly referred to as the carrier sense threshold [114].

2.5 AN EXPERIMENTAL EVALUATION OF CSMA

As discussed above, carrier sense is a fundamental part of most wireless
local area- and sensor network radios. As increasing numbers of users and
more demanding applications push wireless networks to their capacity lim-
its, the efficacy of the carrier sense mechanism becomes a key factor in
determining wireless network capacity.
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In this section, we present experimental results from both a large, dense
60-node sensor network deployment and a small-scale 802.11 deployment.
Our results quantify how well carrier sense works and expose its limitations.

2.5.1 Experimental design

Sensornet design and implementation. Our first experimental setup is
a 60-node indoor wireless sensor network testbed. Each node is a Cross-
bow Mica2, which has an Atmel ATmegal28L microcontroller with 4 KB
of RAM, 128 KB of flash, and a CC1000 radio [116]. The radio operates at
433 MHz, transmits at 38.4 Kbits/s, and uses frequency shift keying (FSK).
Each node is attached to a Crossbow MIB600 interface board that provides
both power and an Ethernet back channel for programming and data collec-
tion. We have deployed these nodes over an area of 16,076 square feet on
one floor of our office building, with liberal coverage throughout the floor
and a higher than average density in one corner of the floor. We use Mote-
lab [126] to manage the testbed.

Our sensornet nodes run a variant of B-MAC [94] on the Chipcon CC-
1000 [116] radio. B-MAC uses energy detection (see Section 2.4.2) to sense
carrier. Each sender in the following experiments uses energy detect mech-
anism to sense carrier before transmitting, but in the runs without carrier
sense, we modify B-MAC to record and ignore the carrier sense reading
just before transmitting. In the runs with carrier sense, B-MAC records and
follows the carrier sense reading, deferring transmission if carrier sense in-
dicates busy.

802.11 experimental design. The second experimental setup is a small
testbed consisting of three indoor 802.11 nodes in close proximity. Two
nodes act as senders and are placed at about six meters apart. The receiver:
is placed approximately 12 meters from each of the senders. Each node is
equipped with an Atheros 802.11 a/b/g combo card driven by the madwifi
driver [72]. The radios use a punctured convolutional code of rate R = %
over OFDM modulation [53]. In contrast to the sensornet radios, the 802.11
radios use the signal correlation method (see Section 2.4.1) to detect carrier.

2,5.2 Carrier sense improves link delivery rates

Experimental setup. The purpose of this experiment is to evaluate the
efficacy of carrier sense in a large, dense sensor network. In this experiment,
the sensornet nodes transmit data in three traffic patterns:
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Traffic pattern  Frequency of occurrence Link delivery rate

CS free CS busy CS free CS busy
One-by-one 56% 43% 81% 80%
All send 1 pkt/s 53 46 67 57
All send 4 pkts/s 22 78 46 14

TABLE 2.1—Frequency of carrier sense free and busy, and link delivery rate in a
large-scale Mica2 testbed with the energy detection carrier sense method.

1. One-by-one: nodes take turns transmitting, each node transmitting
only when no others are transmitting.

2. 1 pkt/s: all nodes transmit data at a constant rate of one packet/sec per
node, with a small random backoff before transmitting.

3. 4 pkts/s: same as above, at the rate of 4 packets/sec per node.

Experimental results. We begin with a high-level view of our experimen-
tal results, measuring the fraction of time that carrier sense is busy or free
under each of the above traffic workloads; table 2.1 summarizes the data.
Reading the table, when nodes take turns transmitting one at a time, carrier
sense reports that the medium is busy 43% of the time. Furthermore, in the
aggregate, the one-by-one link delivery rate does not depend on what the
energy detect carrier sense line indicates. This means that in a quiet net-
work, carrier sense is generating false alarms (Section 2.4.1) at a rate of
43% in situations where the sender could transmit but will instead defer. At
moderate traffic loads (one packet/s), we see the same effect, at a somewhat
less-pronounced intensity. At moderate and high loads, link delivery rates
plummet, because in this experiment, nodes are not deferring when carrier
sense indicates busy.

Figure 2-4 shows the distribution of link delivery rates across links that
are most likely to be useful to higher-level protocols (greater than 60% link
delivery rate). The same trends shown in the figure hold for the bottom 60%
links. Figure 2-4 shows that the probability of a single transmission succeed-
ing increases when sensors perform carrier sense. As the amount of traffic
in the network increases, however, link quality decreases sharply, even with
carrier sense enabled. Furthermore, the more traffic in the network, the more
carrier sense improves link quality. Carrier sense improves link quality by
a small amount when each node offers 1 pps, but by a significant amount
when each node offers 4 pps. At low loads, the channel is idle most of the
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FIGURE 2-4—The complementary cumulative fraction of node pairs that achieve
link delivery rates greater than 0.6 in the sensor network testbed. “CS on (off)”
means that sensors perform (do not perform) carrier sense as described in Sec-
tion 2.4.

time, and we hypothesize that therefore most losses are path losses, which
carrier sense cannot prevent. At high loads, the channel is busy most of the
time, and therefore carrier sense sometimes helps avoid the many collisions
that occur.

2.5.3 Limitations of carrier sense

We now establish, in our 802.11 testbed, at which bit rates carrier sense is
ineffective due to the capture effect described above in Section 2.2.1. We
discover that carrier sense can be ineffective at low data rates when the
capture effect is most prevalent. Consequently, the standard carrier sense
algorithm can lead to many erroneous predictions and wasted transmission
opportunities in practice.

We place two 802.11 senders (A and B) in close proximity such that they
are well within communication range of each other at all bit rates. Because
the typical carrier sense range is greater than communication range, the two
senders are also well within carrier sensing range of each other. We modified
the driver to disable randomized backoff, which gives the effect of disabling
carrier sense and allows two senders to transmit packets simultaneously.

The results in Figure 2-5 show low packet delivery rates at high bit
rates. Due to mutual interference from the simultaneous transmissions, the
receiver fails to decode most data frames transmitted by either sender. As
bit rate decreases, however, we observe that the receiver often captures one
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FIGURE 2-5—Packet delivery rate in the 802.11 network for two simultaneous
senders, each transmitting at the saturation rate at the selected bit rate. Carrier sense
is effectively disabled in this experiment.

of the senders (B), thus achieving a very high frame delivery rate from B.
The degree of capture is surprisingly large at low bit rates: the link between
sender B and the receiver achieves a delivery rate of over 80% for bit rates
1,2, 5.5, and 6 Mbits/s.

The capture effect is attributed to the relative difference of the received
signal strength between the two senders’ transmitted frames. In our experi-
ments, the average RSSIs of A and B are —57.2 dBm and —48.8 dBm respec-
tively. In general, the probability of capture increases as the ratio between
the RSSI of the captured signal and the RSSI of the drowned-out signal in-
creases. Also, the minimum required signal ratio for capture to take place
decreases as bit rate decreases.

Current carrier sense schemes are oblivious to the capture effect. Con-
sequently, they mispredict transmission failures and wastes potential trans-
mission opportunities when they exist. In our experiments, if randomized
backoff were enabled (thereby, allowing carrier sense to take full effect) and
we assume that the intended destination of A and B’s transmissions are dif-
ferent, then sender B would have deferred its transmissions due to sender
A’s transmissions, even though the receiver could capture B’s transmissions
at low bit rates.

We can improve network efficiency by designing a carrier sense mech-
anism such that it is capture-aware: it should make transmission deferral
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FIGURE 2-6—Packet delivery rate as a function of squelch and instantaneous sig-
nal strength just prior to transmission. All nodes send data at a rate of 4 pps/node
with energy-detect carrier sense enabled.

decisions based on the bit rates being used and the packet delivery rates
observed at all of the nearby receivers. For example, if A’s intended re-
ceiver can capture B’s transmissions, carrier sense should be used to defer
B’s transmission to prevent it from interfering with A’s transmission. On
the other hand, if A’s intended receiver can tolerate a parallel transmission
from B without significantly affecting A’s delivery rate, carrier sense should
be suppressed to make efficient use of the available transmission opportu-
nities. In related work [123], we explore these ideas, showing a substantial
performance gain.

How often do carrier-sensing senders miss transmission opportunities?

Recall that just before sending a packet, transmitters using the energy detect
method of carrier sense (Section 2.4) compare their current squelch o with
the instantaneous signal strength p. To gain more insight into how and why
energy detect works, we now examine delivery rates explicitly parameter-
ized as functions of p and o
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FIGURE 2-7—Packet delivery rate as a function of squelch and instantaneous sig-
nal strength just prior to transmission. All nodes send data at a rate of 4 pps/node,
ignoring the energy-detect carrier sense decision. The dark points above the diago-
nal line are transmission opportunities that carrier sense misses.

In Figure 2-6, senders wait until p < o before transmitting. In Fig-
ure 2-7, senders record p and o, but do not wait for p to fall below o before
transmitting. The figures show average link delivery rates as a function of p
and o-. In both datasets, we consider only links with an overall loss rate of
less than 20% (these links are of most use to higher layers).

First, note that carrier-sensing senders make no transmissions above the
diagonal line p = o in Figure 2-6. When we ignore the carrier sense line
(Figure 2-7), we see that senders can achieve high link qualities above the
diagonal p = . This suggests that the energy detect method of carrier sense
is forgoing some good transmission opportunities, an observation shared by
others [14,24]. In Chapter 6 we discuss some ways of capitalizing on these
transmission opportunities.

2.5.4 Abandoning carrier sense

Figure 2-8 shows the distribution of achieved throughput over all links in
the sensor network. At 1 and 4 pps, enabling per-packet carrier sense results
in greater throughput than disabling it altogether. This is because while per-
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FIGURE 2-8—The achieved link throughput distribution in the sensor network
when each node offers 1 packet/s.

packet carrier sense may slow down an individual transmission, our exper-
iments take this into account and transmit such that the nominal transmis-
sion rate is equal to the actual transmission rate. At 8 pps, however, some
carrier-sensing nodes cannot keep up with the offered load, because they
spend too much time deferring. As a result, throughput suffers and conse-
quently, nodes achieve higher throughput with carrier sense disabled. Thus
even though carrier sense improves link quality at high loads, under ex-
tremely high loads, the improvement in link quality might not be worth the
time it takes in deferral.

* * *

Sensor networks often exhibit a “collection” traffic pattern where traffic
in the network funnels in to an access point. We now take a look at the
problem of wireless loss in the context of sensor networks.

2.6 WIRELESS SENSORNET “CONGESTION COLLAPSE”

Provisioning a wireless sensor network so that congestion is a rare event
is extremely difficult. Sensor networks can deliver myriad types of traffic,
from simple periodic reports to unpredictable bursts of messages triggered
by external events that are being sensed. Even under a known, periodic traf-
fic pattern and a simple network topology, congestion occurs in wireless
sensor networks because radio channels vary in time (often dramatically)
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FIGURE 2-9—The achieved link throughput distribution in the sensor network
when each node offers 8 packets/s. Under extreme load, disabling carrier sense
improves throughput.

and concurrent data transmissions over different radio “links” interact with
each other, causing channel quality to depend not just on noise but also on
traffic densities. Moreover, the addition or removal of sensors, or a change
in the report rate can cause previously uncongested parts of the network to
become under-provisioned and congested. Last but not least, when sensed
events cause bursts of messages, congestion becomes even more likely.

In wired networks and cellular wireless networks, buffer drops and in-
creased delays are the symptoms of congestion. Over the past many years,
researchers have developed a combination of end-to-end rate (window) ad-
aptation and network-layer dropping or signaling techniques to ensure that
such networks can operate without collapsing from congestion. In addition
to buffer overflows, a key symptom of congestion in wireless sensor net-
works is a degradation in the quality of the radio channel caused by an
increase in the amount of traffic being sent in other parts of the network.
Because radio “links” are not shielded from each other in the same way that
wires or provisioned cellular wireless links are, traffic traversing any given
part of the network has a deleterious impact on channel quality and loss
rates in other parts of the network. Poor and time-varying channel quality,
asymmetric communication channels, and hidden terminals all make even
well-regulated traffic hard to deliver. In addition, under traffic load, multi-
hop wireless sensor networks tend to severely penalize packets that traverse
a larger number of radio hops, leading to large degrees of unfairess.
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FIGURE 2-10—Congestion collapse in a testbed deployment with no congestion
control strategy. Channel and buffer loss rate as a function of per-node offered load.

2.6.1 Metrics for sensornet wireless loss

This section diagnoses the two key symptoms of congestion collapse in
wireless sensor networks. The following results are derived from our Mica2
wireless sensor network testbed, described in Section 2.5.1. Every node gen-
erates data at a constant rate, which other sensors forward over a multihop
network to a single sink. As the offered load increases, loss rates quickly in-
crease. Figure 2-10 shows network-wide loss rates for various offered loads,
separating losses due to wireless channel errors from losses caused by a lack
of buffer space. We see that channel losses dominate buffer drops and in-
crease quickly with offered load. This dramatic increase in loss rates is one
of the two symptoms of congestion collapse.

The second symptom of congestion collapse is starvation of most of the
network due to traffic from nodes one hop away from the sink. Figure 2-11
illustrates this phenomenon. Given a percentage of packets p received from
a given node at the sink, the complementary CDF plots the fraction of sen-
sors that deliver at least p percent of their data to the sink. We see that as the
offered load increases, a decreasing number of nodes get a disproportion-
ately large portion of bandwidth.

Congestion collapse has dire consequences for energy efficiency in sen-
sor networks, as Figure 2-12 shows. When offered load increases past the
point of congestion, fewer bits can be sent with the same amount of energy.
The network wastes energy transmitting bits from the edge towards the sink,
only to be dropped. We call this phenomenon livelock.
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FIGURE 2-11—Congestion collapse in a testbed deployment with no congestion
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FIGURE 2-12—Congestion collapse in a testbed deployment with no congestion
control strategy. Network-wide bits successfully transmitted per unit energy.
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2.7 RELATED WORK

Capacity of multihop networks. In a seminal paper [42], Gupta and Ku-
mar show that in an n-node multihop wireless network with a SINR-based
interference model, throughput available to each node scales as ® (%) un-
der optimal circumstances. Their work suggests that it may be advantageous
to favor localized traffic patterns, rather than traffic traversing a larger por-
tion of the network. This underscores the importance of traffic pattern, as
well as medium sharing, in the performance of the network.

In a small-scale 802.11 testbed, Li et al. observe multihop interference
which limits the end-to-end throughput a short forwarding chain of 802.11
nodes can achieve [69]. They note that because the radio causes some degree
of interference to receivers whose packets it cannot detect via carrier sense,
using carrier sense does not solve the problem. Padhye et al. make similar
observations of pairwise interference between links, in an empirical study
of interference in an 802.11 testbed [57].

More recently, Yang and Vaidya [132] examine the choice of the carrier
sense range and its effect on capacity, taking into account MAC layer over-
head. We share their observations about the impact that carrier sense and
varying traffic loads have on overall network capacity. We propose to ex-
perimentally evaluate the simulation results in their work at both large and
small scales.

Wireless sensornet congestion. As part of CODA [124], Wan et al. pro-
pose to detect congestion in a wireless sensor network using a technique
called channel sampling. When a packet is waiting to be sent, the sensor
samples the state of the channel at a fixed interval. Based on the number of
times the channel is busy, it calculates a utilization factor. The node infers
congestion if utilization rises above a certain level. We speculate that con-
gestion control may be able to improve network capacity when carrier sense
fails.

Medium access control. Whitehouse et al. present a collision detection
and recovery technique for wireless networks that takes advantage of the
capture effect [127]. Their technique detects packet collisions by search-
ing for a preamble sequence throughout packet reception and recovers by
re-synchronizing to the last detected preamble. We note that capture is a
phenomenon that few protocols make explicit use of and that it might be
exploited to make a more informed channel access decision.
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Cali et al. analyze CSMA from the standpoint of throughput. They pro-
pose replacing the uniform-distribution contention window of 802.11 with
a p-persistent backoff protocol [13]. By estimating the population size, they
choose p to maximize system throughput when all nodes always have a
packet ready for transmission. They show that 802.11 yields suboptimal
throughput under this workload, and that their algorithm can approach opti-
mal throughput under the same conditions.

Tree-splitting collision resolution [9,36,35] resolves collisions after they
occur. Tree-splitting schemes require nodes participating in the contention-
resolution protocol to assume that transmissions sent to other nodes in the
same phase of contention resolution were successfully received. Since in-
terference is a property of the receiver, this assumption is not always true,
especially in a multihop network. Tree-splitting schemes also incur the per-
formance penalty of a probable collision the first time many nodes become
backlogged.

There are also proposals to use receiver-based feedback of channel con-
ditions in making transmission decisions to improve the performance of
CSMA. E-CSMA [24] uses observed channel conditions at the transmitter
(RSSI, for example), and receiver-based packet success feedback to build a
per-receiver probability distribution of transmission success, conditioned on
the channel conditions at the sender at the time of transmission. Then a node
makes a transmit/defer decision based on transmitter channel conditions just
before sending a packet.

Tuning the carrier sense threshold. Fuemmeler et al. [28] study the
choice of carrier sense threshold (defined in Section 2.4) and transmit power
for 802.11 mesh networks. They conclude that senders should keep the prod-
uct of their transmit power and carrier sense threshold equal to a fixed con-
stant.

Zhu et al. present an analytical model for deriving an optimal carrier
sense threshold [134], but their model does not take into account MAC layer
overhead. The authors also propose a distributed algorithm that adapts the
carrier sense threshold of an 802.11 mesh network, and present simulation
results validating its efficacy.

Desilva et al. [21] found that carrier sense can unnecessarily suppress
an 802.11 receiver from responding to RTS messages. They observe that a
successful reception of a RTS message is a good indication that subsequent
transmissions from the RTS sender can overcome the current noise levels
observed at the receiver, even when the noise level is within carrier sensing
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range. To increase efficiency, they propose 802.11 receivers use a different
threshold for carrier sense prior to transmitting a CTS message.

Multiuser detection and interference cancellation. Conventional recei-
vers, which are the focus of this dissertation, treat transmissions other than
the one that they intend to receive as noise, so henceforth we refer to the
signal to noise plus interference ratio (SINR). It is possible, however, to
treat transmissions other than the one the receiver desires to decode not
as noise, but as transmissions [97]. To that end, Verdid showed that the
maximum-likelihood K-user sequence detector consists of a bank of per-
user matched filters followed by a Viterbi algorithm that takes all users into
account [122]. Unfortunately the maximum likelihood K-user receiver has
high complexity, making it impractical. Subsequently, many suboptimal but
practical interference cancellation schemes have been proposed for CDMA
systems (see [125], for example), but commodity wireless local area net-
working hardware continues to use conventional receivers.

* * *

With the goal of maximizing network capacity, we have highlighted the
existing problems of carrier sense. We have presented experimental results
showing inefficiencies in two separate network testbeds, the first a large-
scale deployment of narrowband FM radio sensor nodes, and the second a
small-scale deployment of spread spectrum 802.11 radios.

In the next chapter we introduce our approach to the problems outlined
so far, a new interface to the physical layer that sheds the wired abstraction,
enabling higher-layer protocols to work at the sub-packet granularity.
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3

The SoftPHY
Physical-Layer Interface

WE NOW INTRODUCE a new physical layer interface called the SoftPHY
interface. The SoftPHY interface is an extension to the physical layer that
allows more information to flow upwards while maintaining the “digital ab-
straction” which divides the physical layer from higher layers. In Chapters 5
and 6 respectively, we use the SoftPHY interface as a key building block
upon which we address the problems introduced in Chapter 1, and many
other problems in wireless networking.

Chapter overview. In this chapter, we begin with a short summary of
status quo problems, then present the SoftPHY interface and discuss how
it fits into the layered architecture of a wireless networking stack. Then
in Section 3.2, we go into significant technical detail as we describe our
Zigbee and 802.11-like implementations of the SoftPHY interface. In the
process, we describe how coded and uncoded communications systems in
general (including those using cutting-edge concatenated and soft decision
decoders) may implement the SoftPHY interface to realize gains in per-
formance. We finish the chapter with experimental results from the afore-
mentioned systems showing the general utility of SoftPHY hints, including
SoftPHY hints in a communications system with structure identical to the
IEEE 802.11a [52] physical layer.

Précis of status quo problems. In many current data communications
systems [50, 52, 51, 53, 54], the physical layer outputs only a packet con-
taining a sequence of bits after demodulation and channel decoding: we say
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it presents a digital abstraction to higher layers. Additionally, the physical
layer or layers close to it checksum the packet, discarding packets with any
bit errors. This wired abstraction is rather limiting, since even after applying
substantial channel coding, higher layers frequently lose packets, especially
in the case of packet collisions.

3.1 DESIGN OVERVIEW

The SoftPHY interface consists of the digital abstraction with two simple
modifications. In the following discussion, we will denote the granularity in
bits with which the physical layer makes codeword or symbol decisions as
b.! In increments of b bits, the physical layer assembles all the received bits,
and passes the frame through the wired abstraction and up to the link layer.
The SoftPHY interface modifies this interface in the following two ways.

1. The SoftPHY interface removes any checksum-based packet filtering
that the physical and/or link layers may have implemented, effectively
removing the wired abstraction described in Chapter 1.

2. For each group of b bits passed up, the SoftPHY interface also passes
up a measure of confidence in the correctness of those bits on a stan-
dard scale.? We call this confidence the SoftPHY hint associated with
those b bits decoded.

The details of how the physical layer calculates the SoftPHY hint depend
on the modulation and coding in use. However, most demodulators and de-
coders can be easily modified to maintain this information, as we show in
the next section.

Maintaining the digital abstraction. One benefit of the status quo lay-
ered receiver architecture is that the physical layer provides a digital abstrac-
tion, isolating layers above it from underlying implementation complexity,
and allowing either the physical layer or the networking stack above it to
be modified without changing the other. While a variety of physical layer
implementations can provide the SoftPHY interface, the semantics of Soft-
PHY hints are tied to the details of the physical layer, potentially violating
the digital abstraction.

!This quantity is easily identified in most receivers, and in particular, in each of the
receivers we discuss in Section 3.2.

2This measure of confidence is called side information or soft information in the litera-
ture (see esp. [6,97]).
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However, layers above the SoftPHY interface are not aware of how Soft-
PHY hints are calculated: the hints are computed on a scale that is standard-
ized across different physical layers. Thus, while SoftPHY hints themselves
are PHY-dependent, layers above the physical layer use SoftPHY hints in
a PHY-independent manner, retaining the benefits of the physical layer’s
digital abstraction.

SoftPHY and coding. One way that a communications system can add
redundancy is to use a modulation with a large separation between constel-
lation points relative to the amount of noise in the channel. Another way a
communications system can add redundancy is to apply channel coding to
the communications channel. This usually involves encoding the informa-
tion at the transmitter before modulating it, and decoding the demodulated
information at the receiver after demodulating it, both of which we describe
below in Sections 3.2.2 and 3.2.3. Independent of the way (via modulation
or via coding) that the communications system introduces redundancy, we
show in this chapter that SoftPHY hints can leverage this redundancy for
performance gains.

Independent of the coding in use, the decoder may either use “hard”
symbol decisions &; or the “soft” symbol samples yi from the demodulator
(see Figure 3-1 on page 55). The former case is called hard decision decod-
ing (HDD), and the later is called soft decision decoding (SDD). Whichever
choice the receiver makes with regard to hard or soft decision decoding,
the communications system retains a large coding gain whose magnitude
depends on the amount of redundancy the code adds. For bit error rates
between 107 and 102 (the typical operating points of the communications
systems we are concerned with), SDD yields the same bit error rate as HDD,
at an SINR lower by approximately 2.5 dB [97]. Independent of the SDD
versus HDD design choice at the decoder, we show in this chapter that Soft-
PHY hints can leverage the redundancy inherent in a channel code.

End-to-end principles in SoftPHY. While the physical layer generates
SoftPHY confidences to each group of b bits, it performs no further pro-
cessing on the SoftPHY values. Higher layers thus retain the flexibility to
choose how to interpret the SoftPHY hint associated with each b-bit group.
This design choice reflects an application of the end-to-end principle in sys-
tems design [103]. Higher layers would not retain the flexibility they need,
for example, in a design which quantized the SoftPHY hints into two levels,
“good” and “bad,” before passing them up to higher layers.
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In addition, the present design allows higher layers to adapt their de-
cisions on how to handle each bit based on multiple observations. For ex-
ample, higher layers may compute the variance of SoftPHY hints over a
time window, and use this effective measure of SINR to adapt their deci-
sions [64, 131]. Or, as in Chapter 5, higher layers could threshold the Soft-
PHY hints, quantize them into two levels (“good” and “bad”), and then ob-
serve the correlation between a particular threshold and the correctness of
the hint, adapting the threshold dynamically.

* * *

We now examine the physical layer, describing in detail how to modify
three common receiver designs to pass SoftPHY hints up the network stack.

3.2 PHYSICAL-LAYER DESIGN

The first receiver design we consider is a physical layer without any coding
layered above the demodulator. Then in the following two sections, we show
how SoftPHY hints can be incorporated into systems that add redundancy
through coding. Section 3.2.2 shows how to implement SoftPHY hints in a
system with block coding; one important case of this is the Zigbee physical
layer implementation we used to evaluate our system for reliable retrans-
missions in Chapter 5. In Section 3.2.3, we describe how SoftPHY works in
a system with convolutional coding.

3.2.1 Uncoded communications

We begin by examining the digital receiver shown in Figure 3-1. This simple
receiver design forms the conceptual basis upon which more sophisticated
receivers build. The modulation we will consider in this section is mem-
oryless, meaning that the information sent in the nth signaling interval is
independent of the information sent in all other intervals.3

In this memoryless, uncoded communications system, we send one of
M signals s,(2), ..., sy(#) in each signaling interval. Each symbol encodes
b = log, M bits of information.

Figure 3-1 shows an uncoded digital receiver that has been augmented to
return SoftPHY hints. The first step in processing the incoming signal r(z) is

3More sophisticated modulations and the coding techniques we discuss later introduce
memory; see Proakis [97] for more information.
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FIGURE 3-1—SoftPHY in an uncoded receiver. For each output symbol constella-
tion point &;, the demodulator also produces a SoftPHY hint ¢ (defined in Equa-
tion 3.1) corresponding to the b bits encoded by &;.

to downconvert it from a signal modulated at a radio frequency (in the sys-
tems we are concerned with, typically tens of MHz to GHz) to a baseband
signal. The first two blocks shown in Figure 3-1 accomplish this. The re-
sulting signal is a complex-valued baseband signal. The structure that max-
imizes SNR at its output [6] is a filter #*(—¢) matched to the time-reversed
shape* of the transmitted signal as seen through the channel, h(f). where M
is the number of symbols in the signal constellation. After sampling the fil-
tered signal, the key element in the receiver is the slicer, which quantizes the
sampled signal to one of a few complex-valued symbol constellation points
a;. For each quantized symbol constellation point, we obtain SoftPHY hints

o = K. - 13 = yill. 3.1

This SoftPHY hint is the distance in signal space between the received con-
stellation point and the decoded symbol’s constellation point, scaled by a
constant factor K, that depends only on the modulation in use. This scaling
factor standardizes the range of the SoftPHY hints ¢, across different modu-
lations, so that higher layers need not concern themselves with the specifics
of how the signal constellation is arranged.

3.2.2 Block-coded communications

One popular way of adding redundancy to a communications system is us-
ing block coding. The basic idea behind block coding is to use only a set of
finite-length vectors to transmit; each one of these vectors is called a code-
word, and the elements of each codeword are called symbols.’> The common

*In this discussion we assume only one transmitted pulse shape, for simplicity.
SCodeword symbols are not to be confused with the channel symbols described in Sec-
tion 3.2.1, although the two concepts frequently coincide.
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case, which we consider in this section, occurs when there are two possible
symbols, 0 and 1, in which case we are using a binary code.

In a binary block code with length-n codewords there are 2" possible
codewords. Of these 2" possibilities, we select a subset of size M = 2*
to form the codebook {C,, ..., Cy}, a restricted set of codewords that the
transmitter may send over the channel to the receiver. At the transmitter, the
encoding process maps consecutive source data blocks of size k onto code
data blocks of size n. We refer to the resulting code as an (n, k) binary block
code of rate R = k/n. The sender then groups the code data into channel
symbols encoding k; > 1 bits each, and sends the channel symbols over the
air, modulated over some baseband transmit pulse shape.

Decoding block codes. In a hard decision decoding design, the decoder
uses the hard symbol decisions & from the demodulator (see Figure 3-1 on
page 55). The maximum-likelihood decision rule then becomes the follow-
ing. For each codeword C,, in the codebook (m = 1, ..., M), the receiver
computes the Hamming distance between the received symbols and C,,;:

n

dy @, Cp) = ). 5®Cpy (32)

i=1

where Cy; (i = 1, ..., n) is the ith symbol in the mth codeword. The receiver
decides on codeword r where

r = argmindy (4, C,). (3.3)

In the hard decision decoder, we define SoftPHY hint ¢ as
¢ = K. - (dnin — du (8, Cy)) (3.4

where dpy is the minimum Hamming distance between any two codewords,
and K. is a constant chosen to scale the SoftPHY hints to a standard scale.
Both these constants are dependent on the block code being used.

In lieu of HDD, a decoder can use soft decision decoding (SDD) [6]
which works directly on samples of received symbols y;, before they are
sliced, thus using more information to make its decisions. However, SDD
will still produce incorrect codewords at very low SINR, and thus does not
recover correct bits particularly well during packet collisions.

In a soft-decision decoding design, the decoder calculates the correla-
tion C between samples of received symbols y and each codeword C; (whose
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jth constituent symbol is c;;):6

C.C) = ) zcy. (3.5)

=

Like the maximum-likelihood HDD, the maximum-likelihood SDD re-
ceiver then decides on codeword r where

r=argminC(y,G). (3.6)
Then the SoftPHY hint ¢ is computed as
p= KC ’ (dmin - C(yCr)) (37)

Finally, we note that a hybrid approach is possible, where the receiver
makes the HDD maximum-likelihood decoding decision in Equation 3.3,
but computes the SoftPHY hint based on soft information, using Equa-
tion 3.7. This has the drawback of requiring more storage complexity in
the receiver, since the demodulator cannot discard soft symbol information
y immediately. We also note that HDD-based SoftPHY hints are tantamount
to SDD-based SoftPHY hints followed by a quantization step. We have im-
plemented both SDD and HDD-based SoftPHY hints, and find that in a large
Zigbee testbed, HDD-based SoftPHY yield significant performance gains
with a minimal overhead in receiver complexity, and have the advantage of
being easily represented in four bits of information.

The preceding two communication models apply to spread spectrum ra-
dio, a popular technique used to increase resistance to narrowband noise,
and decrease (but not eliminate) interference from other transmissions [6,
97,109]. In particular, the preceding two models directly apply to both IEEE
802.15.4 [54] (Zigbee) and IEEE 802.11b [51] (WiFi), two common direct
sequence spread spectrum radio standards, which we briefly discuss now.

IEEE 802.15.4 (Zigbee). Zigbee [54] uses a (32,4) binary block code,
with a code rate R = 1/8, and MSK modulation’ [97], so k; = 2. In spread
spectrum modulation, each coded data bit is called a chip, and the rate of
data chips differs from the rate of data bits. In the Zigbee system, chips are

®We note the existence of algorithms that implement the maximum-likelihood correla-
tion computation efficiently [128].

"MSK modulation is equivalent to offset QPSK (O-QPSK) modulation with half-sine
pulse shaping [89].
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sent at 2 Mchips/s, eight times faster than the uncoded data bits coming in
to the system at 250 Kbits/s. This shorter chip duration results in a spread-
ing of the data in frequency, hence the term spread spectrum. To compute
Zigbee SoftPHY hints, we leverage the fact that any 32-bit chip sequence
lies within a distance of 16 to a valid Zigbee codeword. We therefore set
K. = 1 in Equation 3.4, resulting in a SoftPHY hint ranging from zero (low
confidence) to 15 (high confidence) that can be represented compactly with
four bits of information.

We evaluate the SoftPHY hints from our Zigbee receiver implementa-
tion below in Section 3.3 and evaluate their performance in a reliable re-
transmission protocol in Chapter 5. The Zigbee receiver in those perfor-
mance evaluations uses hard decision decoding and the Hamming distance-
based SoftPHY hint. Koteng [67] investigates this and other Zigbee receiver
designs in depth.

IEEE 802.11b (WiFi). At its lowest two rates, 1 Mbit/s and 2 Mbits/s,
IEEE 802.11b [51] uses differential BPSK and differential QPSK modula-
tions, respectively, at 1 Msymbol/s. The symbols are spread by an 11-chip
Barker spreading sequence. At the receiver, the maximum-likelihood detec-
tor is a filter matched to the spread signal (a “chip-matched” filter), so the
receiver design and SoftPHY hints are identical in structure to the uncoded
receiver described above.

At 5.5 Mbits/s and 11 Mbits/s, IEEE 802.11b uses the same chipping
rate of 11 Mchips/s but uses complementary code keying [90] (CCK) to
code eight chips per symbol. CCK codes four or eight bits per symbol, for
5.5 Mbits/s and 11 Mbits/s respectively. Again, the maximum-likelihood
detector is a chip-matched filter.

3.2.3 Convolutionally-coded communications

Another popular way of adding redundancy to a communications system is
to employ convolutional coding. In this section we describe how convolu-
tional codes work and how they are typically decoded using the well-known
Viterbi algorithm. Then we will see how to use a slightly different decoding
algorithm to derive SoftPHY hints for convolutionally-coded data.

Convolutional coding works by passing input data A through a linear
shift register & bits at a time. The shift register contains k - (K — 1) registers,
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Output X={x;}

FIGURE 3-2—A convolutional encoder fora (k = 1, n = 2, K = 7) binary convolu-
tional code. This convolutional coder generates the maximal free distance convolu-
tional code with constraint length seven which IEEE 802.11a uses (see discussion
on page 63).

whose contents at time i we denote s;.2 Some number of taps are attached
to the inputs and various stages of the shift register, leading through combi-
natorial logic to the output of the encoder at time i, x;.

The convolutional encoder may be viewed as a finite state machine with
2kK-1) possible states.” For every k bits a; presented to the convolutional
encoder at each clock cycle, n bits x; are output, resulting in a convolutional
code of rate R = k/n. Figure 3-2 shows an example where the shift register
of K = 7 delay stages labeled “D” (including the input) clocks one bit into
itself in each clock cycle (k = 1), resulting in two output bits per clock cycle
(n = 2). Each of the & operators in the figure is a base-2 sum (exclusive or)
operation, and we denote the evolution of the input, state, and output in time
respectively as vectors A, S, and X.

This convolutional coding model is applicable to the IEEE 802.11a [52]
OFDM physical layer, which we describe in detail below. It also applies to
the most widespread IEEE 802.11g [53] OFDM physical layer, the “exten-
ded-rate PHY” (ERP).

The trellis diagram. 'We now introduce the key data structure used to rea-
son about convolutional codes, the trellis. Each stage of the trellis (along the
ordinate axis of Figure 3-3) consists of 2¢ 1 states, each represented by a
different point along the abscissa of the figure. Each of these states corre-
sponds to a possible state that the convolutional coder at the transmitter may
be in at any time. Originating from each state are 2* branches representing
all possible state transitions of the coder, given a particular input. In the trel-

8With the inclusion of the k current input bits, this results in kK bits of state at any
instant in time.

9Since the shift register’s succeeding state does not depend on the final k bits in the shift
register.
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FIGURE 3-3—Trellis diagram for a (k = 1, n = 2, K = 4) binary convolutional
code with maximal free distance dfe. = 6.

lis of Figure 3-3, k = 1, so there are two branches originating from each
node, the lower broken branch for a “0” bit input to the convolutional en-
coder, and the upper solid branch for a “1” bit input. Thus given an encoder
initially in the all zero state, there are one-to-one correspondences between
the encoder input data, the encoder’s state transitions, and paths through the
trellis diagram.

The key factor that determines a convolutional code’s error correcting
capability is the minimum Hamming distance between any two sequences
of coded bits [97]. This distance is called the free distance of the code, and
we denote it d... By computer search, R = 1/2 maximal free distance
codes are well known for various constraint lengths up to K = 14 [97], and
have identical trellis structure. In particular, the structure of the trellis in
Figure 3-3 is identical to the structure of the maximal free distance convo-
lutional code used in IEEE 802.11a with K = 7. We present the trellis for
the K = 4 code here for clarity of exposition.

Decoding convolutional codes. The most popular way of decoding con-
volutional codes is the Viterbi algorithm, an excellent summary of which is
given by Forney [27]. Given a number of observations made by a receiver,
the Viterbi algorithm selects the most likely transmitted sequence. Follow-
ing in part the discussion in Barry et al. [6], we summarize the Viterbi algo-
rithm here in order to compare it with the BCJR algorithm. We use the later
algorithm to generate SoftPHY hints for convolutional codes.

In our notation, we start with a vector of channel observations Yy, and
our goal is to select the vector of convolutional encoder states Sy which
maximizes the probability Pgy (So|Y)).

For each branch of the trellis in Figure 3-3, we define a branch metric
from trellis state p to state q at stage i

Y @) = fun (32 [%29) pa, (a®2), (3.8)
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FIGURE 3-4—Comparison between the Viterbi and BCJR algorithms for
maximum-likelihood sequence detection of binary convolutionally-encoded data:
for each transmitted bit, the BCIR algorithm returns the a posteriori probabilities
of whether a +1 bit or a —1 bit was transmitted.

where x9 is the encoder output upon a p — ¢ state transition. Given a
vector of observations Yy, the path metric for path S is

L+K-1

¥ (So) = s (Yol S0) ps(So) = [ | 7(ping, (39
i=0

where the path metric multiplies the branch metrics corresponding to the
branches that form the path Sy, i.e: So = {po, P1 = 90, P2 = q15 .
PrLik-2 = qrk-1}-

Define the partial survivor path for state p at time i as the partial path
beginning at i = 0 and zero state and leading to state p at time i, with
maximal path metric (we denote this metric as a;(p).

The key insight of the Viterbi algorithm is that to find the path with
the largest path metric, we need only remember the partial survivor path
for each possible state p at a given trellis stage i, because if the path with
the largest path metric did not contain the partial survivor path, we could
replace the path up to stage i with the partial survivor path and obtain a path
with larger metric, a contradiction. Thus we obtain the following Viterbi
recursion for computing the maximal partial path metrics:

@i1(q) = max {ai(p)yi(p.9)}. (3.10)

With this recursion we can make one pass through the trellis from right
to left, computing path metrics and forming the most likely path through the
trellis, which as noted above, has a 1-1 correspondence with the most likely
sequence of input data at the transmitter.
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The BCJR algorithm. Given the same set of observations at the receiver
as the Viterbi algorithm, the BCJR algorithm for sequence detection (Bahl,
Cocke, Jelinek, Raviv [5]) selects the sequence of most likely symbols that
the transmitter sent. Here we use the algorithm to decode the output of a
convolutional encoder, as observed across a noisy channel. We now sum-
marize the BCJR algorithm and compare it to the Viterbi algorithm; again
some parts of our exposition follow Barry et al. [6]. Then we show how we
can process the output of the BCIR algorithm to calculate SoftPHY hints ¢;
for the bits corresponding to each transmitted symbol.

The BCJR algorithm uses the same trellis structure introduced above,
but as shown in Figure 3-4, instead of an estimate of the most likely trans-
mitted data A, the BCIR algorithm outputs a posteriori probabilities (APPs)
Pagyy (£1]Yp) that give us a measure of the confidence the decoder has in
each symbol.

Suppose we form a set S, which contains all pairs of states (p, g) for
which a trellis transition from state p to g corresponds to encoder input
symbol a. Then we may express the desired APPs in terms of a posteriori
state transition probabilities:

Paayy (£1Yp) = Z Pr(s; = p,sii1 = qly). (3.11)
(p.9)ES,

We can then decompose the APP state transition probabilities into

oi(p,q) = ai(p) - vi(p,q) - Bi+1(q) (3.12)

where y;(p, q) is the Viterbi branch metric in Equation 3.8. It is also easy
to show that the @ and 8 metrics can be computed via the following recur-
sions [6]:

wa@= ), ap) %P9 (3.13)
all states p

B = ), (P9 Fin(@ (3.14)
all states ¢

The BCIR algorithm thus reduces to the following steps:

Step 1: Calculate the Viterbi branch metrics y; using Equation 3.8 on
page 60.

Step 2: Calculate forward and reverse metrics @; and §8; using
Equations 3.13 and 3.14, respectively.
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FIGURE 3-5—Postprocessing stages after the BCJR algorithm to generate data and
SoftPHY hints from a posteriori probabilities.

Step 3: Calculate a posteriori state transition probabilities using
Equation 3.12.

Step 4: Calculate APPs using Equation 3.11.

After we compute APPs using the BCIR algorithm, in the case of a
binary convolutional code, we can obtain SoftPHY hints ¢ by calculating
the log likelihood ratio of the two possible values of the encoder input a;:

o=1 ( Pagyy (+1 |Yo))

3.15
Py (—11Y0) (3-1)

Finally, we note that to achieve slightly reduced computational com-
plexity, SoftPHY can use the output of the Soft-output Viterbi (SOVA) [44]
algorithm, in the same manner as the BCJR output.

IEEE 802.11a WiFi. We have implemented the above channel coding
techniques in a communications system for GNU Radio [39] that mirrors the
design of IEEE 802.11a [52] WiFi except that it uses a smaller bandwidth
for its transmission, due to bandwidth constrains imposed by the USRP [25]
software defined radio.

802.11a uses the rate-1/2 convolutional encoder of constraint length
K =7 shown in Figure 3-2. To achieve different code rates, the coded data
X is punctured at some rate R),: a fraction R,, of coded bits are removed from
the coded data stream according to a puncturing pattern agreed-upon a pri-
ori by the transmitter and receiver. Then the coded data stream is mapped
to OFDM subcarriers, each of which operating using either BPSK, QPSK,
QAM-16, or QAM-64 modulation. This results in another degree of freedom
with respect to bit-rate control. The system interleaves the data onto non-
adjacent (in frequency) OFDM subcarriers to guard against a frequency-
selective fade causing adjacent subcarriers to fade simultaneously and cause
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FIGURE 3-6—BCJR-based SoftPHY confidence in 802.11a over a packet during a
packet collision over the later half of the packet.

runs of bit errors. A collision, however, still causes interference on all sub-
carriers, as we will illustrate below.

Our implementation consists of code written by the author and others. At
the receiver, we have incorporated BCJR code from the GNU Radio code-
base by Anastasopoulos, and have incorporated and contributed to the func-
tionality of the OFDM GNU Radio codebase by Rondeau et al.. To guard
against header and preamble corruption, especially using the techniques de-
scribed in Chapters 5 and 6 that recover parts of packets, 802.11a switches
to the lowest 802.11arate (BPSK with a R = 1/2 code) for header and trailer
transmission; we have implemented this functionality, writing new code to
implement rate-switching within a single transmission. We have also writ-
ten original code for the computation of SoftPHY hints as described above.
Finally, we have contributed code to adapt Anastasopoulos’s BCJR imple-
mentation to packetized data at changing modulation and coding rates, as
demanded by the 802.11a specification.

In Figure 3-6, we show the SoftPHY hints ¢ our code generates over
a single packet transmission. In practice, we expect that the SoftPHY hint
would be passed through a low-pass filter to compensate for short bursts
of noise and fast channel fading; the smooth curve in Figure 3-6 shows the
result. From both curves, we can clearly discern that the first half of the
packet is received with high confidence and the last half with low confi-
dence. In fact, this is a picture of a packet collision where the colliding
packet overlaps with the last half of the received packet, and the SoftPHY
hints accurately reflect this situation.
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100 feet

FIGURE 3-7—Experimental Zigbee testbed layout: there are 31 nodes in total,
spread over 11 rooms in an indoor office environment. Each unnumbered dot in-
dicates one of 25 Zigbee nodes. The six software defined radio nodes are shown
dark, labeled with numbers.

3.3 EVALUATION OF SOFTPHY HINTS

We now evaluate the predictive power of SoftPHY hints in two demand-
ing but very different environments. First, we evaluate how well SoftPHY
hints work in a multihop Zigbee network deployed over an entire floor of a
building, and second, we evaluate SoftPHY in a small network over a quiet
frequency band, at marginal signal to noise ratio. In both circumstances, we
next show that SoftPHY hints are a good predictor of received bits’ correct-
ness. We leave an end-to-end performance evaluation of a SoftPHY-based
protocol to Chapter 5.

3.3.1 SoftPHY hints in a busy network

We perform this experiment in the 31-node combined Zigbee/software radio
testbed shown in Figure 3-7. Thus, transmissions in this experiment must
contend with a large amount of interfering traffic from both the network
itself, and from background 802.11 traffic.

Implementation. Each Zigbee sender is a telos mote with a Chipcon CC-
2420 radio [117]. Senders run TinyOS' on the telos’s TI MSP430 micro-
processor. The CC2420 radio is a 2.4 GHz single-chip RF transceiver that
uses direct-sequence spread spectrum (DSSS) at a bit rate of 250 Kbits/s as
described in Section 3.2.2 on page 57.

10See http://tinyos.net.
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Each of the Zigbee receivers is a computer connected to a software de-
fined radio. The hardware portion of the receiver is a Universal Software
Radio Peripheral (USRP) [25] with a 2.4 GHz daughterboard; the remain-
der of the receiver’s functionality (demodulation and block decoding as de-
scribed in Section 3.2.2) is implemented in software. The DSSS despreading
function is approximately 1,500 lines of original code written in C++ in the
GNURadio [39] framework by the author, with parts derived from code by
Schmid [106, 107].

Experimental design. In our testbed, we have deployed 25 sender nodes
over eleven rooms in an indoor office environment. We also deployed six
receivers among the senders; in the absence of any other traffic, each re-
ceiver can hear between four and ten sender nodes, with the best links hav-
ing near perfect delivery rates. All 25 senders transmit packets containing a
known test pattern, at a constant rate. For each Zigbee codeword received,
we measure the SoftPHY hint ¢ associated with that codeword using the
computation in Equation 3.4.

Our experimental results below summarize data from Zigbee channel 11
at 2.405 GHz. Zigbee channel 11 overlaps with IEEE 802.11b channel 1,
which carries active WiFi traffic in our building. Thus the experimental re-
sults we report next were obtained in the presence of significant background
traffic. In addition, we have validated our experimental results on Zigbee
channel 26, which has no overlap with 802.11 channels. We used GNU Ra-
dio tools [39] to verify that there was indeed a high level of background
traffic on Zigbee channel 11 and indeed significantly less background traffic
on Zigbee channel 26.

Results. Figure 3-8 shows the distribution of Hamming distance across
each received codeword, separated by whether the codeword is correctly
or incorrectly received (we know this because packet payloads contain a
known test pattern). In the figure, data points represent averages of 14 runs
and all error bars indicate 95% confidence intervals, unless otherwise indi-
cated. Conditioned on a correct decoding, only about one in 100 codewords
have a Hamming distance of two or more. Conversely, fewer than one in 10
incorrect codewords have a distance of two or less.

This result shows that one way higher layers can interpret this SoftPHY
hint is by implementing a threshold test [65]. We denote the chosen thresh-
old n, so that the higher layer labels groups of bits with SoftPHY hint ¢ > 7,
“good” and groups of bits with ¢ < 7 “bad.” Under this interpretation, the
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FIGURE 3-8—Distributions of Hamming distances for every codeword in every
received packet, separated by whether the received codeword was correctly or in-
correctly decoded. Under the threshold rule, these CDFs can be reinterpreted as
curves plotting probability of misclassification.

curves in Figure 3-8 also give the probabilities of error for both types of
mistakes, for the following reason. Consider the correct cumulative distri-
bution function shown in the figure. Given a particular choice of n, the cor-
rect codeword CDF gives the fraction of codewords less than or equal to
n. These are the codewords that the classification rule will label “bad,” and
thus the CDF yields the probability of error. A similar, converse argument
shows that the complementary CDF yields the probability of mislabeling an
incorrect codeword “good.” Under the threshold rule then, the two curves
in Figure 3-8 also show the probability of misclassification for correct and
incorrect symbols, respectively.

We call the fraction of incorrect codewords that are labeled “good” the
miss rate at threshold . We see from Figure 3-8 that the miss rate is one
in ten codewords at 7 = 13, initially a cause for concern. The saving grace
is that when misses occur, it is highly likely that there are correctly-labeled
codewords around the miss, and so PP-ARQ will choose to retransmit the
missed codewords. Figure 3-9 verifies this intuition, showing the comple-
mentary CDF of contiguous miss lengths at various thresholds . We see
that a significant fraction of misses are of length one, and that long runs of
misses are extremely rare.

Finally, we note that the result presented in this section are invariant
across experimental runs that disable carrier sense, change the offered traffic
load to be higher or lower, or change the background traffic to be absent.
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FIGURE 3-9—The distribution of lengths of contiguous misses in every received
packet for various thresholds 7. Most misses are short, only a few bits length.

3.3.2 SoftPHY hints at marginal SINR

We now turn from networks with significant interfering transmissions to an
evaluation of SoftPHY hints in a quiet wireless channel at marginal SINR.
We have implemented the design in Figure 3-1 for a DQPSK receiver. In
this section, we evaluate these SoftPHY hints at marginal SINR. This rep-
resents the worst possible case for SoftPHY, because SoftPHY leverages
redundancy available in the communication channel.

Implementation. We have implemented a software-defined radio trans-
mitter and receiver using a combination of the USRP hardware with Cpp-
Sim [91] and Matlab. The transmitter uses grey-coded QPSK with square-
root raised cosine pulse shaping, for an aggregate data rate of 1.33 MBps.
The receiver synchronizes on the incoming signal, compensating for carrier
frequency offset, and then demodulates the signal, using differential detec-
tion of the QPSK modulation. The receiver computes uncoded SoftPHY
hints by using the received phase of the signal 6,. Since sin 6 ~ 6 for small
6, we approximate the second factor in Equation 3.1 with |6, — /a;| and set
K. = 4/m to normalize the uncoded SoftPHY hints to the same [0, 15] scale
as the Zigbee hints. There is no channel coding layer in this radio.

Experimental design. To perform these experiments, we utilized a fre-
quency band that does not overlap with 802.11 [113], the dominant source
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FIGURE 3-10—Bit error rate (BER) v. received signal to noise ratio for a DQPSK
receiver in a “quiet” network.

of RF interference in our environment.!! The experiments in this section use
a software radio-based DQPSK transmitter and receiver pair, whose imple-
mentation is described above in Section 5.4.

To simulate links with varying amounts of path loss, we send a stream
of packets between the two radios, modulating the transmit power of the
stream of packets (we hold transmit power constant for the duration of each
packet). At the receiver, we calculate the average received SINR for each
packet and check the correctness of each bit in the packet. We also compute
the SoftPHY hint for each symbol using Equation 3.1.

Results. Figure 3-10 shows the BER-SINR curve for the experiment. We
note the high BER for relatively-high SINR, hypothesizing that better clock-
recovery algorithms and of course coding would shift the curve left as is
commonly seen in commercial radio receivers.

We partition the data into “good,” “mid,” and “bad” transmissions ac-
cording to average SINR, as in Table 3.1. Figure 3-11 shows the cumulative
distribution of SoftPHY hints in each regime. We see that SoftPHY hints
are a good predictor of symbol correctness in the good regime, but an in-
creasingly poorer predictor of symbol correctness as SINR decreases, as
expected. We note that the SoftPHY hint ¢ we use here, per-symbol angu-
lar difference from the hard decision, is based on an uncoded modulation
considering each symbol independently, and we have achieved significantly

1'we used GNURadio tools to check for significant interference in our channel between
runs of these experiments.
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Label SINR BER

Good SINR > 21 BER < 1073
Grey-zone 13 <SINR <21 1073 <BER < 1072
Bad SINR <13 BER > 1072

TABLE 3.1—Experimental regimes for evaluating SoftPHY at marginal SINR.
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FIGURE 3-11—SoftPHY hints at marginal SINR in a quiet network. We present
three sets of data corresponding to each of the three regimes in Table 3.1.

better results in interference-dominated experiments with coded modula-
tions (see Figure 3-8).

These results (in the “bad” regime) illustrate the worst-case scenario
for SoftPHY, a low SINR transmission in a relatively static (little interfer-
ing transmissions) channel. Under these conditions, we see the diminishing
utility of SoftPHY hints. However, most mesh network traffic loads are the
opposite: highly varying SINR due to packet collisions. Finally, we note that
these results show a proof-of-concept in an alternative modulation.

* * *

In this chapter we have presented the SoftPHY interface, discussed sev-
eral important design considerations, and described several physical layer
design modifications for its implementation. One of the most important con-
tributions of the SoftPHY interface is the myriad ways it can be used. To
that end, in Chapters 5 and Chapter 6 we investigate several different uses
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for the SoftPHY interface, starting in Chapter 5 with an enhanced protocol
for reliable data retransmission.
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4

Postamble-based
Synchronization

IN MOST communications system designs, proper synchronization between
transmitter and receiver is necessary before communication can proceed.
In the systems we are interested in, synchronization occurs using a pream-
ble attached to the beginning of every frame transmitted on the air. The
preamble contains known data that assists the receiver’s synchronization
algorithm. The main contribution of this chapter is a postamble decoding
mechanism to improve this process in the face of interference in a busy
wireless network.

In Chapters S and 6 we use postamble decoding as the second key build-
ing block (in conjunction with the SoftPHY interface of Chapter 3) upon
which we address the problems introduced in Chapter 1.

Chapter overview. We begin with a brief introduction to the topic of syn-
chronization in digital receivers, describing three state-of-the-art synchro-
nization algorithms that we have implemented for Zigbee and/or 802.11a.
We then explain the need for a postamble, and describe the design of post-
amble-based synchronization and decoding in the context of each synchro-
nization algorithm. Finally, we present experimental data for each of the
three systems.

4.1 SYNCHRONIZATION IN DIGITAL COMMUNICATIONS

Synchronization is the process by which the receiver estimates and tracks
the frequency and phase of two unknown properties of the radio frequency-
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modulated signal that the transmitter sends over the air. From the perspective
of the receiver, the first unknown is the transmitter’s carrier signal, and the
second unknown is the transmitter’s symbol timing clock. Despite the fact
that both properties are nominally known in any communications system,
the receiver does not have precise knowledge of the frequency or phase of
either signal.

Three key design choices. The following three design choices set the con-
text for our discussion.

1. The synchronization designs we consider are frame-based (in contrast
to radio systems that use time-continuous transmissions). The choice
of frame-based transmissions follows from our choice of carrier-sense
multiple access to share the wireless medium in time.

2. Each frame in our system includes a short! sequence of known data
prepended to each frame, called a training sequence. The receiver can
then use its shared knowledge of this data to detect the presence of the
frame.

3. Our synchronization designs are implemented in all-digital logic (in
contrast to a receiver implemented using analog components). This
design choice reflects a trend (which started in the 1990s and possibly
earlier) towards shifting more functions from analog signal processing
to digital signal processing. This choice reduces the complexity of
filters in the analog receiver front-end design [79].

4.1.1 Symbol timing recovery

In this chapter, we use the term “symbol” to refer to physical-layer symbols,
the units by which the modulation (operating below any channel coding
layer) makes decisions. A receiver needs to perform symbol timing clock
recovery to determine when (i.e., with which frequency and phase) to sam-
ple each symbol in the incoming signal such that the probability of correct
detection is maximized.

The challenge in recovering the frequency and phase of the symbol tim-
ing clock lies in the problem of mapping the samples taken with the re-
ceiver’s symbol sampling clock (shown in the upper half of Figure 4-1)

MTypically on the order of 1% of the frame size.
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FIGURE 4-1—(Gardner [37]) To synchronize its symbol timing clock, the receiver
must map the samples it has taken with its sampling clock (with period T, shown
in the upper half of the figure) to the transmitter’s symbol timing clock (with period
T, shown in the lower half of the figure), optionally upsampling the symbols by a
small integer factor K to form the interpolated symbol clock with period T;.

to the transmitter’s symbol timing clock (shown in the lower half of Fig-
ure 4-1). The majority of the literature does not present the problem in this
way; two notable exceptions are Gardner’s tutorial paper [37] and the texts
by Meyr et al. [79] and Mengali and D’ Andrea [75]. The designs we present
in the next section take the foregoing considerations into account.

If the receiver is performing coherent detection, it also needs to perform
carrier frequency recovery to estimate the incoming carrier signal’s time-
varying frequency and phase.

4.2 IMPLEMENTATION

We have implemented three distinct synchronization algorithms for each of
the two standards (Zigbee and 802.11a) we have targeted.

4.2.1 802.11a (OFDM) synchronization

In this section, we describe the synchronization algorithm design for the
802.11a-like receiver we presented in Section 3.2.3. In brief, this receiver
emulates the structure of the 802.11a system: variable-rate convolutional
coding over OFDM modulation, except with a smaller signal bandwidth
due to USRP [25] data throughput constraints.

The OFDM synchronization algorithm we use is due to Schmidl and
Cox [108]; Ettus, Rondeau, and McGwier have implemented it and incor-
porated it into the existing GNU Radio code base [39]. As part of our
802.11a-like receiver design described in Section 3.2.3, we tuned the OFDM
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FIGURE 4-2—Correlation between the received OFDM signal and the pseudonoise
preamble sequence. A peak in the filtered correlation resets the symbol clock re-
generator, as shown here.

synchronization algorithm, in particular improving the peak detection sub-
system. The synchronization algorithm accomplishes both symbol timing
synchronization and frequency offset compensation, but the former is an
easier problem because OFDM symbols are lengthy in time; in contrast,
orthogonality between subcarriers may be destroyed by an uncompensated
frequency offset.

The Schmidl-Cox algorithm works as follows. The training sequence
contains two OFDM symbols, c; and c,. The first, c¢;, contains a pseudonoise
sequence on the even frequencies, and zeroes on the odd frequencies. By
Fourier symmetries, this results in an OFDM symbol that has two identi-
cal halves in the time domain [88]. The receiver samples the incoming sig-
nal and converts it to a baseband signal y;, such that each OFDM symbol
contains 2L samples. Then the synchronizer computes the following timing
metric:

2

B2 (s myiaem)

(Zyl;l_:}) |yd+m+L|)2

When aligned with ¢;, each term in the numerator of Equation 4.1 will
have approximately zero phase (since for complex z, zz* = |z]*), and so the
magnitude of the sum will have a large value. The denominator of Equa-
tion 4.1 normalizes M(d) to incoming signal power. The result, shown as
the grey curve labeled “Timing metric M(d)” in Figure 4-2, is a timing met-
ric that peaks at the beginning of training symbol ¢;, which we filter using
a moving-average filter to obtain the blue curve labeled “Filtered M(d)” in

M@d) =

4.1)
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FIGURE 4-3—Block diagram of the feedback-based Zigbee synchronization al-
gorithm. Using chip decisions ¢, from the decision device “DD,” the timing error
detector “TED” produces an error signal € which is used to update the sampling
phase offset 7.

the same figure. The peak detector logic we designed can then pick out the
location of ¢;, and reset the timing clock, as shown in the figure.

By averaging the phase difference between each sample of the first and
second halves of c;, the receiver can estimate the frequency offset up to
an integer multiple of 2/7, where T is the symbol time. The receiver uses
measurements from c¢; to disambiguate this frequency offset estimate; we
refer the interested reader to Schmidl and Cox [108, §4] for the details.

4.2.2 Zigbee synchronization

In this section we describe two synchronization designs for Zigbee. The first
design is based on a phase-locked loop, and is the design we used to evaluate
the system for reliable retransmissions described in Chapter 5.

Feedback loop design

In this Zigbee receiver, we use differential demodulation to detect each
MSK chip in a Zigbee codeword (see Section 3.2 for a high-level descrip-
tion of Zigbee spread spectrum coding). Referring to Figure 4-3, complex-
valued baseband data y, comes into the receiver at a sampling rate f; = K/T
where T is the symbol (chip) time.? The first stage of the receiver takes
the angle of each incoming sample (“arg” box), and differences values in
the stream K samples apart, resulting in a stream A¢, of angle differences
between samples one symbol-time apart.

The key insight to this receiver is a property of the MSK waveform that
samples one symbol-time apart have a phase-difference of either +7/2 or

2The Zigbee chip time is T = 0.5us.
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FIGURE 4-4—Block diagram of the Mehlan, Chan, Meyr (MCM) feedforward tim-
ing and frequency recovery algorithm as we have implemented it in a software radio
platform.

—m/2 [89]. Thus once we synchronize on the MSK waveform, the output of
the receiver, ¢y, is a symbol-rate stream of binary data.

To recover the timing of the MSK signal we use the popular Mueller
and Miiller decision-directed timing recovery algorithm [83, 19], depicted
in the dashed box of Figure 4-3. From the incoming data stream A¢, with
sampling offset 4, the decision device “DD” makes chip decisions c,, which
are output at symbol rate 1/7. The timing error detector “TED” takes the
chip decisions and incoming data stream and computes an error signal € as
follows:

& = Adrci — Adricy. 4.2)

The TED’s error signal is filtered (“Loop filter”) and used to update
the sampling offset 7. Design of the loop filter is a well-studied problem;
we refer the interested reader to Gardner’s text [38] for more information.
Implementation of the sampler component in digital logic is usually handled
with a fractionally-spaced digital interpolator; we refer the interested reader
to the texts by Meyr et al. [79, Chp. 15] and Mengali [75] for more details.

Feedforward design

In an updated design for synchronization on the Zigbee signal, we use a
feedforward timing and frequency recovery algorithm by Mehlan, Chan,
and Meyr [74]. The key observation here is two-fold. First, each of the chips
in a Zigbee codeword is modulated with minimum-shift keying [89] (see
Section 3.2 for further details) and second, when an MSK signal is passed
through a fourth-order non-linearity, the resulting signal has certain period-
icities that can be exploited for synchronization.

Figure 4-4 shows a high-level block diagram of the algorithm. The in-
coming baseband signal y(¢) is sampled and optionally interpolated to a fre-
quency K times the nominal symbol rate (see Figure 4-1. For the purpose
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of acquiring the packet preamble and initial synchronization, the MCM al-
gorithm assumes that T is an integer fraction of T3 The first structure in
Figure 4-4 delays the incoming data stream y;; = y(((k + ﬁ) T) by a sym-
bol time (K samples), takes the complex conjugate of the delayed data, and
multiplies (mixes) it with the original data stream. The result is a second-
order (quadratic) stream c,; whose angle is the difference between succes-
sive symbols, at each of K different sampling offsets i. The next structure in
the block diagram simply squares each element of this data stream, and the
result is demultiplexed and filtered with K independent window-averaging
filters, yielding K filtered streams at the right-hand side of Figure 4-4. We
then choose the timing offset i* corresponding to the filter whose output is
maximum among the K possibilities. It can be shown [74] that an accurate
frequency offset estimate for the incoming packet is

arg {—¥i,}
—
After selecting symbols at the right timing offsets as described above,

the receiver rotates the stream of symbols by A@T in order to correct for the
frequency offset between transmitter and receiver.

We have implemented the MCM algorithm in the USRP software ra-
dio [25], and used it to synchronize the USRP to transmissions from the
commercially-available Chipcon CC2420 Zigbee radio [117]. Once syn-
chronized, our receiver computes the correlation p, between the frequency-
corrected version of the incoming samples c; ;. and the differentially-encod-
ed known preamble sequence p; as follows:*

AQT = 4.3)

L
Pe= D Ch P (4.4)

I=1
The result is shown in Figure 4-5. We see distinct peaks in the correlation
output, corresponding to those points in time where a preamble or postam-
ble is present in the incoming data stream. As in the OFDM synchronizer
discussed above in Section 4.2.1 we can apply a simple peak detector algo-

3This assumption is valid for the short duration of preambles, and in practice, a PLL
would be used to track the symbol clock over the whole duration of the packet, as described
above in the previous Zigbee design.

“Note that differential detection here is not necessary, but simplifies testing: once the
symbol timing and frequency offset corrections have been applied, the receiver could detect
with the incoming samples y, ; directly.
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FIGURE 4-5—Correlation between the fixed training sequence and the samples
corresponding to the timing indices chosen by the MCM algorithm. Three packets
are clearly visible here, with correlation peaks at the beginning and end of each
packet corresponding to the preamble and postamble training sequences.

Training sequences [JHigh-SINR bits
B Low-SINR bits

FIGURE 4-6—In status quo systems, training sequences are present only in the
preamble of the packet. When packets collide, the training sequences overlap with
data from other packets, making them harder to detect.

rithm to the correlation output to find the start and/or end of each frame and
start the process of detecting and decoding the data in the frame.

4.3 THE NEED FOR A POSTAMBLE

Having described synchronization in detail for a number of different phys-
ical layer implementations, we now motivate the need for synchronization
based on a frame postamble. Referring to the diagram of two colliding pack-
ets shown in Figure 4-6, notice that the training sequence for the lower
packet overlaps in time with the body of the upper packet. This overlap
results in a lower SINR for the preamble training sequence of the lower
packet.

When the preamble coincides in time with other packets or noise, current
radio receivers will not be able to synchronize with the incoming transmis-
sion and decode any bits. In that case, the potential benefits of the SoftPHY
interface will be lower. We need a way to mitigate the effects of preamble
loss in the collision shown in Figure 4-6. In this example, a receiver would
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Start of frame Packet header  Packet trailer
TN ——

.y ——
delimiter PTST TT T T T 11 [¥]
Preamble training seq.
Postamble training sequence
End of frame delimiter

FIGURE 4-7—The packet layout for postamble-based synchronization. Training
sequences aid the receiver in detecting the presence of the packet, and start/end of
frame delimiters (“S” and “E”) assist in framing the packet.

not be able to decode any part of the lower packet, since its preamble was
not detected, while the upper packet would be detected and its bits delivered
by the SoftPHY interface.

4.4 THE POSTAMBLE-BASED APPROACH

Our approach to synchronizing on packets without an intelligible preamble
is to add a postamble to the end of each packet on which a receiver can
also synchronize. The postamble has a well-known sequence attached to
it that uniquely identifies it as the postamble, and differentiates it from a
preamble (“E” in Figure 4-7). In addition, we add a trailer just before the
postamble at the end of the packet, also shown in Figure 4-7. The trailer
contains the packet length, source, and destination addresses. Just as with
header data, the receiver uses the SoftPHY interface to check the correctness
of the trailer.

4.4.1 Postamble-based framing algorithm

We now describe how postamble-based framing and decoding works in our
Zigbee implementation (802.11a has a similar structure). Frames whose
preambles are detectable (indicated by the presence of a “start-of-frame”
marker following the detection of a training sequence) are processed in the
usual order, from left-to-right in time. The start-of-frame marker is labeled
“S” in Figure 4-8.

To recover the payload after detecting only a postamble (indicated by
the presence of an “end-of-frame” marker following a training sequence),
the receiver takes the following steps. The receiver continuously maintains
a circular buffer of samples of previously-received symbols (even when it
has not detected any training sequence). In our implementation, we keep as
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Postamble training sequence /. (St 1)

FIGURE 4-8—The postamble-based synchronization algorithm. When the receiver
detects an end-of-frame marker (“E” in the figure), it follows the steps outlined in
the text to decode as much of the packet as possible.

many sampled symbols as there are in one maximally-sized packet, K - §
where K is the number of samples per symbol (typically an integer between
two and eight) and S is the packet length in symbols. When the receiver
decodes an end-of-frame marker following the detection of a training se-
quence, it takes the following steps, illustrated in Figure 4-8:

Step 1: “Roll back” in the circular buffer as many symbols as there are in
the packet trailer.

Step 2: Decode and parse the trailer to find the starting location of the
frame in the circular buffer.

Step 3: “Roll back” in the circular buffer as many symbols as are in the
entire packet, and decode as much of the packet as possible.

The main challenge of postamble decoding is addressing how a receiver
can keep a modest number of samples of the incoming packet in a circular
buffer while still allowing the various receiver subsystems to perform their
intended functions. These functions include carrier recovery, symbol timing
recovery, and equalization. We meet each of these challenges in our three
implementations, as we now explain.

Postamble-based synchronization in the 802.11a OFDM receiver In
the design of Section 4.2.1, we maintain a circular buffer of S - K samples
as described above, and upon encountering a preamble, we run the OFDM
equalizer backward in the sample buffer as described in the next section.

Postamble-based synchronization in the Zigbee feedback loop receiver.
In the feedback-loop design of Section 4.2.2, the Mueller and Miiller al-
gorithm does not rely on the presence of a preamble, so we implement our
circular buffer with storage for exactly S binary symbols, which the receiver
examines upon encountering a postamble “end-of-frame” marker.
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Postamble-based synchronization in the Zigbee feedforward receiver.
The feedforward design of Section 4.2.2 will identify both preambles and
postambles, and the receiver may take a similar approach to the 802.11a
receiver, as described in the next section.

Complications from postamble detection Techniques for countering in-
ter-symbol interference (equalization) and compensating for a frequency
and phase offset often rely on estimating the channel impulse response [6].
Typically the preamble includes a known training sequence to enable the
equalizer to quickly estimate the channel’s response during synchronization.
The receiver updates this estimate as it processes the packet from left-to-
right in time. When we include the same training sequence in the postamble
(see Figure 4-8) we can amend step (3) of the postamble decoding algo-
rithm to post-process the samples of the body of the packet backward in
time, instead of forward in time. This step allows the phase-locked loop in
a feedback-based equalizer to track the channel impulse response starting
from a known quantity estimated from the postamble.

4.5 CODEWORD-LEVEL SYNCHRONIZATION

In this section we integrate the concepts from the Zigbee SoftPHY imple-
mentation (Section 3.2.2, page 57), Zigbee symbol synchronization (Sec-
tion 4.2.2), and postamble-based synchronization (Section 4.4). Recall from
Section 3.2.2 that each Zigbee codeword is composed of 32 MSK symbols.
To correctly decode a Zigbee codeword, the receiver must synchronize on
both the codewords as they are aligned in the stream of symbols, and the
symbols themselves. We accomplish this by testing all possible codeword
synchronization offsets for a preamble or postamble, and then decoding only
at the particular offset at which the preamble or postamble was detected. The
following discussion, however, shows that the postamble gives the codeword
synchronization process more resilience.

Figure 4-9 shows a receiver’s view of a single packet at two different
codeword synchronization offsets. The packet contains a known bit pattern,
against which we test each received codeword for correctness. The result of
each test is indicated by the presence or absence of the labeled box in the
figure.’ The upper plot in Figure 4-9 shows the packet arriving at the receiver
at time® 0, and achieving synchronization at time 10 (lower plot). When

SFor clarity, we show the result of every fourth codeword-correctness test.
®Measured in units of codeword-time, 16 us in our radios.
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Zigbee SoftPHY hint, offset #1
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Time (codewords)

FIGURE 4-9—Partial packet reception of a single packet, at two different codeword
synchronization offsets during a loss in codeword-level synchronization. We show
codeword correctness (box indicators) and each codeword’s associated SoftPHY
hint (curves). Despite uncertainty in physical layer codeword synchronization, the
SoftPHY hint indicates the correct parts of the packet to higher layers.

the PHY synchronizes on the packet, symbol timing recovery succeeds and
the receiver decodes approximately 40 codewords correctly (including the
preamble) before losing symbol or codeword synchronization. We see that
the SoftPHY hint remains at 15 for the duration of the correct codeword
decisions, and falls at time 47 when the burst of errors occurs. As described
in Chapter 3, the physical layer passes these SoftPHY hints up along with
all the data bits in the packet.

Later, at time 90 at the other synchronization offset (upper plot), the
receiver successfully synchronizes on and decodes a run of codewords ex-
tending to the end of the first packet. Since this packet data is at a different
synchronization offset to the preamble, it relies on its postamble in order to
frame-synchronize and pass up the partial packet reception and associated
SoftPHY hints.

4.6 RELATED WORK

The present work is the first we are aware of that integrates postamble de-
coding in the context of a larger system for recovering parts of packets, as
part of a large multihop wireless system. Detection is a well-studied area,
however, and there is a wealth of work relating to the basic concepts we
describe in this chapter.
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Code-aided turbo synchronization [46] and iterative timing recovery [7]
take the structure of coding into account in the synchronization process.
There have been a number of synchronizer designs that use these princi-
ples [84]. In an iterative or loop design, these techniques estimate the tim-
ing of the incoming symbols, and then make a soft decoding attempt at the
data using a soft-input, soft-output decoding algorithm like BCJR [5]. Then
these techniques use the soft outputs of the decoding algorithm to make a
better estimate of symbol timing, and use the updated timing estimates to
make a more accurate decoding attempt. The process continues in an itera-
tive fashion. These techniques are complementary to the use of a postamble
for packet detection because they rely a priori on detecting the presence of a
packet. They could be used in conjunction with postamble packet detection
for even better performance.

Also in the context of turbo decoding algorithms, Godtmann et al. [40]
independently propose several training sequence positioning schemes, in-
cluding preamble plus postamble, preamble-only, “mid-amble,” and dis-
tributing the training symbols throughout the body of the packet. The au-
thors investigate these schemes in the context of a turbo decoder, a receiver
design for decoding Turbo-coded data [8].

Gansman et al. [33] show that distributing the training sequence at the
beginning and end of the packet is optimal for the purpose of performing the
most accurate frequency offset correction possible. This result makes intu-
itive sense because the amount of frequency drift between any two points in
the packet attains its maximum at the beginning and end of the packet burst
transmission. In the same vein and with slightly more generality in their
results, Noels et al. [85] investigate the influence of the location of pilot
symbols on the Cramér Rao lower bound on the variance of a joint estimate
of carrier phase and frequency offset.

Whitehouse et al. [127] and independently, Priyantha [96] propose tech-
niques for avoiding “undesirable capture” in wireless networks. Undesirable
capture occurs when the weaker of two packets arrives first at a receiving
node, so that the receiver attempts to decode the earlier and weaker packet
and not the stronger and later packet, which corrupts the decoding attempt,
resulting in neither being decoded correctly. With the postamble, the re-
ceiver makes a decoding attempt on both packets.

Finally, beyond synchronization, direct sequence spread-spectrum ra-
dios face an additional problem of spreading code acquisition: aligning the
incoming data with the pseudorandom noise spreading sequence [95]. Since
the entire body of a direct sequence spread spectrum data packet is modu-
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lated using a known spreading sequence, Jeong and Lehnart propose using
all of the packet for the related problem of spreading code acquisition [60].
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5

Reliable Retransmissions
with SoftPHY

THE MECHANISMS we have thus far proposed, SoftPHY in Chapter 3 and
postamble detection in Chapter 4, work together in the following three ways.
They allow the receiver to (i.) detect more transmissions, (ii.) recover more
bits from the transmissions which are detected, and (iii.) determine which of
the received bits are likely to be correct and which are likely to be incorrect.
This and the next chapter focus on concrete uses for these mechanisms in
wireless networking protocols.

In this chapter, we examine the problem of how a sender and receiver
can use the above mechanisms to improve the throughput of an automatic
repeat request (ARQ) protocol that accomplishes link level reliable retrans-
missions. The protocol, partial packet ARQ (PP-ARQ) is a variant of ARQ
that uses partial packets, our term for the fragments of packets that the Soft-
PHY interface passes up to the link layer.

Chapter overview. We begin with a high-level picture of the PP-ARQ
protocol, outlining how a sender and receiver can work together to achieve
link-layer reliability. We then formulate the problem of how the receiver
can best retransmit partial packets as a dynamic programming problem in
Section 5.2. Next, we note the drawbacks of PP-ARQ thus far described as a
result of feedback channel utilization and header overheads, and propose our
final protocol, PP-ARQ with packet streaming as a solution in Section 5.3.
We then describe our implementation and present our evaluation in Sec-
tions 5.4 and 5.5, respectively. The chapter concludes with a look at work
related to PP-ARQ.
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5.1 THE PP-ARQ PROTOCOL

In Chapter 3 we introduced the SoftPHY interface, which passes up confi-
dences of each bit’s correctness to higher layers. However, in Section 3.3,
we saw that sometimes SoftPHY hints are incorrect under the threshold test
for labeling bits “bad” or “good.” Partial packet ARQ (PP-ARQ) is a proto-
col that builds on a SoftPHY-enabled physical layer, using checksums in a
novel way to ensure that the data passed up to the network layer is correct,
to the extent that the underlying checksum provides this confidence.

A naive way to approach the problem is for the receiver to send back the
bit ranges of each part of the packet believed to be incorrect. Unfortunately,
doing that consumes a large number of bits, because encoding the start of a
range and its length can take on the order of log S bits for a packet of size
S . Furthermore, as we note in Section 5.5, most error burst events in our
Zigbee experiments are small, 1/16th the size of a packet. Hence, we seek a
more efficient algorithm that reduces feedback overhead.

At a high level, we summarize the steps in the PP-ARQ protocol as
follows:

Step 1: The sender transmits the full packet with checksum.

Step 2: The receiver decodes the packet or part of the packet using Soft-
PHY and postamble detection as described in Chapters 3 and 4,
respectively.

Step 3: The receiver computes the best feedback as described in
Section 5.2.

Step 4: The receiver encodes the feedback set in its reverse-link acknowl-
edgment packet (which may be empty, if the receiver can verify the
forward link packet’s checksum).

Step 5: The sender retransmits only (a) the contents of the runs the receiver
requests, and (b) checksums of the remaining runs.

Step 6: The receiver combines the transmissions received thus far from the
sender.

This process continues, with multiple forward-link data packets and re-
verse-link feedback packets being concatenated together in each transmis-
sion, to save per-packet overhead.

Protocol overview. To motivate our discussion, we consider the exam-
ple in Figure 5-1. The sender sends its first transmission of the entire data
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FIGURE 5-1—An exemplary run of the PP-ARQ protocol, showing the first packet
transmission, receiver-side labeling of the packet using SoftPHY and the threshold
test, synchronous feedback, and the second packet transmission containing data bits
and partial-packet checksums.

packet, blocks 1-7 in the picture. Note that these data blocks are sent and
received using a status quo physical layers, that apply some amount of cod-
ing redundancy to the transmissions, but inevitably bits get corrupted, as
discussed in Chapter 1.

Upon receiving the first transmission, the receiver makes a packet decod-
ing attempt, labeling each block in the packet as either “bad” or “good” us-
ing the SoftPHY interface and the threshold test. Then, it builds a feedback
packet based on its labeling. The feedback packet asks for all of the “bad”
bits to be retransmitted, and asks for checksums over all of the “good” bits.
Once the receiver has computed its feedback packet, it replies to the sender
synchronously (within a fixed time bound), at which point the sender trans-
mits all of the “bad” bits requested (blocks one and two), and a checksum
of the “good” bits (C’) in its second transmission.

Upon receiving the second transmission, the receiver verifies the check-
sum C’ over blocks 3—-6, and combines the two transmissions of blocks one
and two in some manner. In our implementation we use a simple replace-
ment policy for combining multiple transmissions of the same block, but
more sophisticated techniques are available, which we discuss in Section 5.6
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below. Finally, once the receiver has assembled the two transmissions, it ver-
ifies the packet checksum C over the entire packet (1-6).

This high-level overview of the protocol brings to attention several other
questions. First, how does the receiver avoid asking for every single run of
“bad” bits in the packet when “bad” bits are finely interleaved with “good”
bits? Second, how does the receiver detect and recover from situations in
which bits labeled “bad” are in fact correct, or bits labeled “good” are in fact
incorrect? And finally, what happens when either of the checksums C or C’
fails, and with what frequency do either of those events occur? We answer
these questions in the following discussion, backing up our responses with
empirical evidence.

5.1.1 PP-ARQ at the receiver

Since the salient feature of bit error patterns is the length of the various
“good” and “bad” runs within a packet, we now introduce notation that re-
flects this. Recall from Chapter 3 that once the physical layer has decoded a
packet of length L, the receiver has a list of received symbols! S;, 1 <i < L,
and SoftPHY hints ;. After using the threshold test to label each symbol
“good” or “bad, it computes alternating run lengths A% = Aﬁ, AP = /l’]’.,
1 < j < Rof “good” and “bad” symbols, respectively, where a run is defined
as a number of symbols sharing one label (“good” or “bad”). We denote the
number of runs in the packet R.

The run-length representation. The receiver thus forms the run-length
representation of the packet as shown in Figure 5-2. This representation has
the form

BAS8A5 - 528 (5.1)
Here, /lﬁ is the list of symbols in the jth run of symbols all labeled “good,”
shown with light shading in the figure. Similarly, /l’; is the list of the jth run
of symbols labeled “bad,” shown with dark shading in the figure. Note the

ordering of “bad” and “good” runs, starting with a “bad” run, which may be
of length zero in the event that the packet starts with a “good” symbol.

Which bits to ask for? We call the groups of bits which the receiver does
and does not request retransmission of bad chunks and good chunks, re-
spectively. Clearly the union of all the bad chunks must contain all the bad

'Here we use the term symbol to mean the unit of granularity with which the physical
layer makes bit decisions, b in Chapter 3.
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FIGURE 5-2—The run length representation of a received packet, and associated
notation.

runs, but are there any other constraints on which bits to ask for? We now
show that assuming the correctness of SoftPHY hints, optimally-chosen bad
chunks must start on the boundary of a transition from “good” to “bad” bits,
and end on the boundary of a transition from “bad” and “good” bits.

Proof. We make the argument in two steps: first, we show that
a bad chunk may not begin nor end with “good” bits. Next
we show that bits immediately preceding and following a bad
chunk must be “good.” The two steps together prove the result.

To show the first step, consider a bad chunk that begins or ends
with a [ “good” bits. Assuming that the SoftPHY labels at the
receiver are correct, we could reduce the size of the conse-
quent forward-link retransmission by truncating the / “good”
bits from either the beginning or end.

To show the second step, first notice that the bad chunks the re-
ceiver asks for have to contain every “bad” run in the received
packet. Now consider a bad chunk with / “bad” bits immedi-
ately preceding or following it. If this is the case, we can form
a larger bad chunk by concatenating the / “bad” bits to it. Note
that the original chunking required the receiver to make two re-
quests for the same bits, one for the original and one containing
the [ “bad” bits. The resulting chunking choice will therefore
be more efficient, since the receiver only has to make a single
request. O

The feedback chunking. The receiver then forms a list C of chunks,
groups of runs numbering C < R which the receiver will ask the sender
to retransmit. Chunk c;, ;, contains all the “bad” and “good” runs in between
and including “bad” run i, and “bad” run ji, so each chunk starts and ends
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with “bad” runs. More precisely, for k € [1, C]:

C = {ewn) = AL, 028, - 25 (5:2)
For example, chunks c;; and c33 appear in Figure 5-2. Note that chunk c; ;
does not include /li, the last run of “good” symbols in the chunk. This run
of “good” symbols is the run whose checksum the sender will transmit, so
that its correctness may be validated.

Balancing feedback resolution with forward-link wastage. Note that
the requests the receiver makes need not just contain every “bad” run in
the packet. In general, the receiver might request that some good runs be
retransmitted as well, for the following reason. Suppose a number of small
“good” runs were interleaved with longer “bad” runs (4§ small and /12 large
for i < k < j). In this situation the amount of information needed to de-
scribe each of the “bad” runs’ offsets may exceed the number of “good” bits
contained in the chunk c; ; that would be transmitted a second time. Conse-
quently the receiver should request that the entire chunk be retransmitted.
On the other hand, suppose the “good” runs are long relative to the bad runs
(ﬂf large and /12 small for i < k < j). In this situation we would instead
favor asking for the individual chunks ¢, for each k € [, j] for the converse
reason: the amount of information that would be retransmitted if we did not
would be excessive.
The receiver thus has two choices for each chunk c; ; in the packet:

1. Merge the chunk, asking the sender to retransmit all “good” bits con-
tained within it.

2. Split the chunk at some chunk index k, asking the sender to retransmit
only the “bad” bits in ¢;; and ¢, ; respectively.

Feedback data layout. Once the receiver has made the choice of which
chunks to request from the sender, it sends the feedback data fragment
shown in Figure 5-3 communicating this information to the sender. The
feedback data fragment contains packet and transmission sequence numbers
so that the sender can identify the forward-link packet and transmission that
the feedback data fragment refers to. This is necessary because senders and
receivers may group feedback data fragments belonging to more than one
forward-link packet in the same transmission for the reasons described be-
low in Section 5.3. The feedback data fragment also contains all chunks’ (C
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FIGURE 5-3—Byte layout of the packet feedback element that the receiver trans-
mits to the sender.

bit: 0 8 16 24 32

T

FIGURE 5-4—Byte layout of the forward-link data transmission. Shaded fields in
this and subsequent packet layout figures indicate overheads unique to PP-ARQ,
which we measure in Section 5.5.

in Equation 5.2) beginning and ending symbol offsets, determined by the
dynamic programming algorithm discussed in the next section.

The receiver sends the feedback packet synchronously, in a prioritized
timeslot immediately after the forward-link data transmission, in the same
manner as IEEE 802.11 [50]. In the performance evaluation below we eval-
uate the feedback data overhead to PP-ARQ.

5.1.2 PP-ARQ at the sender

In its first transmission to the receiver, the sender transmits simply the data,
as shown in Figure 5-4. The first transmission of a given packet consists of
the packet sequence number, transmission sequence number (always set to
zero), the data length, followed by the data itself.

The sender buffers the current packet in memory, so that when it receives
a feedback packet, it can construct subsequent retransmissions, which we
now describe. From the feedback packet it receives, the sender reads each
of the chunks’ starting and ending offsets. Once the receiver has these off-
sets, it builds a forward-link data retransmission as shown in Figure 5-5.
The forward-link retransmission begins with the packet and transmission
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FIGURE 5-5—Byte layout of the forward-link data retransmission. The frag-
ments field contains multiple forward-link data retransmission fragments whose
structure is shown in Figure 5-6 below.

16 17 24 32

bit: 0

variable | fragment body

¥

FIGURE 5-6—Byte layout of the forward-link data retransmission fragment. The
fragment body field contains one of a good or bad fragment body, the former
Figure 5-7 illustrates, and the later the text specifies.

sequence numbers packet seqno and transmission segno respectively,
needed for the receiver to determine the data packet the retransmission cor-
responds to. The next field in the retransmission is a 16-bit count of the
number of fragments contained in the retransmission, which assists the re-
ceiver in parsing the fragments which follow. This field is followed by the
fragments themselves, arranged contiguously in the fragments field.

Each retransmission fragment (see Figure 5-6) contains a header with
a one-bit field T, representing the type of fragment, following by a 16-bit
start field indicating the bit offset within the packet at which the fragment
begins. All fragments in a given retransmission belong to the same packet.
The type of the fragment determines the contents of the fragment body
field which immediately follows the start field. Fragments can be one of
two types:

1. Good fragment (T = 0). The fragment body consists of a 32-bit
checksum taken over the (known correct) packet data at the sender,
beginning at the starting offset specified in the start field of the frag-
ment header in Figure 5-6 and ending at but not including the starting
offset of the succeeding fragment header, or the end of the packet if
the fragment is the last in the packet.
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FIGURE 5-7—Byte layout of forward-link retransmission bad fragment body (T =
1 in Figure 5-6). The good fragment body contents are described in the text.

2. Bad fragment (T = 1). The fragment body, illustrated in Figure 5-7,
begins with a 16-bit field length which indicates the length in bits of
the following data field. The data field contains retransmitted data
from the original packet, starting at the bit offset start in the con-
taining fragment header, and 1ength bits in length.

The dark fields in Figures 5-4, 5-5, 5-6, and 5-7 are metadata needed for
PP-ARQ’s internal bookkeeping. We measure their performance overhead
below in Section 5.5.

* * *

Figure 5-8 shows an example packet reception, with each possible chunk
labeled. We immediately see that many chunks are contained within larger
chunks, for example chunk c; 3 contains chunk c; ;. Furthermore, the opti-
mal solution for a chunk contains the optimal solutions for all the chunks
contained within in (otherwise we could improve the s). We also immedi-
ately see that many chunks overlap with each other (c; » and ¢, 3 for exam-
ple). These two properties, overlapping subproblems and optimal substruc-
ture, are the hallmarks of dynamic programming, the subject of the next
section.

5.2 TUNING FEEDBACK WITH DYNAMIC PROGRAMMING

As we noted in Section 5.1.1, the receiver has a choice of which chunking to
choose. We now show how to assign each chunking a cost function that indi-
cates the amount of additional bit-overhead that the chunking incurs. Once
we formulate a cost function, we can apply standard dynamic programming
(DP) techniques [17] to minimize the cost function and associated overhead.

A cost function for DP. We define the chunk cost function C of a chunk
ci,j in two steps. First, the base case in which i = j indicates a chunk that
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FIGURE 5-8—A motivating example for the PP-ARQ dynamic programming algo-
rithm. We annotate every possible chunk that the PP-ARQ DP algorithm considers
in this packet.

contains a single “bad” run of bits, such as ¢; ;, ¢;2, or ¢33 in Figure 5-8.
Then we consider larger chunks in the recursive case.

In the base case, the receiver must describe the length and offset of the
ith bad run to the sender. This takes approximately 2 log L bits on the for-
ward channel, where L is the packet length defined on p. 90. The receiver
also sends a checksum of the ith “good” run to the sender, so that the sender
can verify that it received the good run correctly. This takes min (/lf . K) bits
on the feedback channel, where « is the length of the checksum. The cost
function for the base case chunk is therefore

C (cis) = 2-log L + min (4%, x).. (5.3)

In the recursive case, the receiver must choose one of two options: either
split the chunk and request two of its sub-chunks individually, or merge
the chunk, incurring the penalty of retransmitting all “good” bits contained
within. In the former case, the receiver must also choose at which run / the
chunk is to be split.

In the case that the receiver chooses to merge the chunk, it incurs an ad-
ditional bit-overhead equaling 2 log L to describe the chunk offsets, plus the
number of good bits contained within the chunk. It also incurs the overhead
needed to send a checksum of the jth “good” run following the bad chunk:

-1
Comerge (1) = 2log L + ]Z A$ + min (24, ). (5.4)

I=i

In the case that the receiver chooses to split the chunk into two smaller
chunks, the cost is the sum of the costs of the two smaller chunks, minimized
over all possible choices of where to make the split, if j —i > 2. The cost in
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the splitting recursive case is therefore

Copiit (Ci,j) = islesijfll [C (cix)+C (Ck+1,j)} . (3.5)
Note that the costs of checksumming the kth and jth “good” runs are in-
cluded in the individual costs, so we do not include them in Equation 5.5.

The final cost in the recursive case for chunk c; ; is the minimum of the
costs of each alternative:

C (C i, j) = min {C merge (C i, j) ’ Csplit (Ci’ j)] . (56)

A bottom-up DP algorithm. Having defined the cost function, we present
in Figure 5-9 a dynamic programming algorithm that works “bottom-up,”
first from the base case at line 1 of chunks consisting of a single bad run,
and then in the recursive case, starting at line 4. BOTTOM-UP-PP-ARQ-DP
takes as input good and bad run lengths A® and AP, respectively, the number
of runs R, and the checksum size . The recursive case code starting on line 4
first computes the cost function in the splitting case (Equation 5.5) with the
for loop at line 9. It stores the result in split-cost and the split point that
generated that result in arg-split-cost. Then at line 13 it evaluates the cost
of merging the chunk instead (Equation 5.4), and chooses the minimum of
the two alternatives, implementing the minimization in Equation 5.6. It then
stores the results into the C and IT matrices for the chunk being evaluated.
BoOTTOM-UP-PP-ARQ-DP terminates when it completely fills in two ma-
trices: a cost matrix C that gives the costs of every possible chunking, and a
predecessor matrix II that gives the chunk splits or merges which yield the
optimum cost of a particular chunking.

We follow the execution of BOTTOM-UP-PP-ARQ-DP as it processes
the packet in Figure 5-8 on p. 96, showing the resulting cost and predeces-
sor tables in Figure 5-10. BOTTOM-UP-PP-ARQ-DP first fills in the bottom
elements of the cost and predecessor tables of Figure 5-10; to simplify our
exposition we normalize these costs to unity. Since chunks containing only
a single “bad” run should not be split (as argued in §5.1.1) we set base-
case chunks’ predecessor entries to undef accordingly. In the recursive case,
BoTTOM-UP-PP-ARQ-DP first examines chunk ¢, (i = 1, j = 2 in Fig-
ure 5-10), choosing to merge it, and setting I, , undef accordingly. When it
examines chunk c; 3 next it makes the opposite choice, splitting the chunk
and recording the split point, 2, in II, ;. This stands in agreement with in-
tuition, since there is a long run of “good” bits at that point in Figure 5-8.
In the final recursive step, BOTTOM-UP-PP-ARQ-DP examines chunk c, 3
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BOTTOM-UP-PP-ARQ-DP (A, A8, R, «)
1 forie[1,R]> Base case
2 do Ci; — C(cyy)
3 IL; < undef
4 forl€[1,R - 1]1> Recursive case: for increasing chunk lengths
5 do for i € [1, R] > Loop over start point
6 doje—i+!
7 split-cost « oo
8 arg-split-cost < 0

9 for k € [i, j — 1] > Loop over split point
10 do if C;x + Cy.1; < split-cost
11 then split—cost «— Ci,k + Cxn1 i
12 arg-split-cost — k
13 merge-cost < Cperge (c,; j)
14 if split-cost < merge-cost
15 then C;; « split-cost
16 IL;j « arg-split-cost
17 else C;; < merge-cost
18 IL; « undef

19 return (C,II)

FIGURE 5-9—Pseudocode for a dynamic programming implementation of PP-
ARQ. BOTTOM-UP-PP-ARQ-DP returns a predecessor matrix II that tells the
receiver which chunks to split and which to merge in order to form the receiver
feedback packet as described in Section 5.1.1.

FIGURE 5-10—PP-ARQ dynamic programming receiver-side feedback computa-
tion cost C and predecessor II matrices for the example packet reception shown in
Figure 5-8. In each cost matrix cell, Cperge is shown above Cgpir, and the choice
BOTTOM-UP-PP-ARQ-DP avoids is shown in parentheses. Base-case costs are
shown normalized to unity.
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GEN-FEEDBACK (IL, i, j)

1 ifII;; = undef

2 then return {(i, )}

3 else k « Hi J

4 return GEN-FEEDBACK (IL, i, k) o
GEN-FEEDBACK (IL, k + 1, j)

FIGURE 5-11—Pseudocode to generate a list of chunks for inclusion in the feed-
back message from the predecessor matrix produced by BOTTOM-UP-PP-ARQ-
DP.

(which corresponds to the entire packet), and it makes the same choice as
before, to split the chunk at 2.

Computational complexity. Note that because BOTTOM-UP-PP-ARQ-
DP operates on chunks, the cost and predecessor tables C and II have lin-
ear dimensions equal to the number of chunks in the packet, R. The base
case of BOTTOM-UP-PP-ARQ-DP, starting on line 1, loops through the
run lengths once, in time proportional to R. The recursive case, starting on
line 4, nests three loops at lines 4, 5, and 9, each of which contains up to R
steps, for a total complexity cubic in R. In the evaluation section below, we
empirically measure R.

Constructing the feedback message from II. To form its feedback mes-
sage, the receiver first runs BOTTOM-UP-PP-ARQ-DP to generate the
predecessor matrix II. Then the receiver runs GENERATE-FEEDBACK-
CHUNKING(II, 1, R) to generate a list of chunks for inclusion in the feed-
back message, as shown in Figure 5-3. GENERATE-FEEDBACK-CHUNK-
ING is shown in Figure 5-11; it is a simple recursive function that builds a
list of feedback chunks. If the predecessor matrix is undefined, GENERATE-
FEEDBACK-CHUNKING returns a pair of indices corresponding to the
merged chunk. Otherwise, GENERATE-FEEDBACK-CHUNKING recursively
calls itself with the two chunks indicated by the split point defined in II;,
returning the concatenation of the two lists.
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16 24 32

Transmissions tx [ ]

FIGURE 5-12—Byte layout of the streaming PP-ARQ forward-link packet: each
of the txcount constituent transmission fields follows the format in either Fig-
ure 5-4 (for the first transmission of a packet) or Figure 5-5 (for subsequent retrans-
missions).

5.3 ASYNCHRONOUS PACKET STREAMING

As we will show in the evaluation, PP-ARQ as described above does a
good job of reducing the size of retransmissions when bit errors occur. The
drawback, however, is that successive retransmissions become increasingly
smaller as the receiver gains more confidence in more of the constituent bits
of the packet, sets SoftPHY hints higher, and consequently labels more bits
“good.” As retransmissions become smaller, the fixed preamble, postamble,
and header overhead associated with each transmission increases relative to
the size of the data payload, decreasing throughput. We now present tech-
niques to address this problem.

Motivated by an increasing ratio of header length to payload length,
our goal is to combine data from different packets into one transmission,
amortizing the header overhead over the longer combined transmission. We
therefore use the sliding window algorithm [93] to simultaneously manage
the state associated with several packets, concatenating the partial retrans-
missions together on each successive transmission. Figure 5-12 shows the
resulting frame structure of each streaming PP-ARQ forward-link transmis-
sion. The frame consists of an eight-bit count txcount of the number of
constituent transmissions (denoted tx []). Each constituent transmission is
either an initial data transmission as shown in Figure 5-4, or a retransmis-
sion consisting of multiple fragments (shown in Figure 5-5).

Reverse-link feedback is handled in a similar manner, with fbcount
feedback fields fb[] contained in a single feedback transmission, as shown
in Figure 5-13. Each constituent feedback field (denoted b [] in the figure)
is a list of chunks, as shown in Figure 5-3.

Figure 5-15 shows an example of how PP-ARQ with streaming amor-
tizes header and preamble overhead. The sender by sending the first packet
to the receiver, which labels and packet and sends feedback to the sender
asking for a small “bad” run to be retransmitted. In its second transmission,
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FIGURE 5-13—Byte layout of the streaming PP-ARQ reverse-link packet. Each of
the fbcount constituent feedback fields follows the format shown in Figure 5-3.
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FIGURE 5-14—An example illustrating the operation of PP-ARQ versus PP-ARQ
with streaming in the presence of feedback channel loss.

the sender does exactly that, as well as concatenating onto that transmission
the data from the second packet.

Streaming acknowledgments also mitigate loss on the reverse channel,
as follows. Suppose a feedback packet is dropped as shown in Figure5-14.
In that case, without streaming acknowledgments, the sender would timeout
and retransmit the frame, losing the benefits of PP-ARQ. With streaming
acknowledgments enabled, the sender can continue transmitting packets as
shown in the figure, and when the receiver notices that the sender has not
received the feedback for packet 1, it can retransmit the feedback, at which
point the sender and receiver can continue progress on the first packet.

Sender-side protocol. To implement the sliding window algorithm, the
sender maintains two variables: LPS, the sequence number of the last packet
sent, and LPA, the sequence number of the last packet whose contents
were fully acknowledged. The sender also maintains a semaphore variable,
send_semaphore that starts initialized to WINDOW_SIZE, the maximum
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FIGURE 5-15—An example illustrating the operation of PP-ARQ with stream-
ing. In its second transmission, the sender combines a fragment of data from the
first packet (blocks 1 and 2) with the second packet’s data (blocks 8—10), reducing
header overhead.

window size for the sliding window algorithm, and maintains the invariant
that 0 < LPS—LPA < WINDOW_SIZE. The variable sendq manages the
run-length representations (Equation 5.1) of multiple packets at the sender.

Figure 5-16 shows pseudocode for the forward-link functionality at the
sender. Procedure PP-ARQ-SEND is run when the network layer hands a
packet to PP-ARQ at the link layer to send. PP-ARQ-SEND initializes a
buffer entry bufent with the packet’s data, packet sequence number, and
packet transmission count, and marks it as ready to send (lines 2-6). Then
in line 7 it enqueues the new packet onto the sender’s buffer sendbuf and
resumes the transmit queue if it is not already running.

When RESUME-XMIT-QUEUE executes, we walk through the send
buffer sendbuf and build a transmission x out of fragments of all the pack-
ets waiting in the sender buffer sendbuf. We start at line 1 by initializing
the number of constituent data packets in the transmission to zero. Then
we loop through the send buffer (line 2) looking for packets whose ready
to send field rts is TRUE. If we find any, we increment the number of con-
stituent data packets in our transmission, and add the needed data to the
transmission. At line 10 we finally send the transmission to the physical
layer, and then start a timer to wait for the acknowledgment to come back
from the receiver.

Figure 5-17 presents pseudocode for the sender’s processing of feedback
traffic from the receiver in lines 1-11. When the sender receives feedback
from the receiver, it walks through the feedback message, looking up the
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PP-ARQ-SEND (send_bytes)
1  WAIT(send_semaphore) > Decrements send_semaphore by one
2 LPS < LPS+1

3 bufent.data « send_bytes

4  bufent.pkt_seqno <« LPS

5 bufent.rts — TRUE

6 bufent.txcount « 0

7 sendbuf . ENQUEUE(bufent)

8 if send_timer. RUNNING() = FALSE

9 then RESUME-XMIT-QUEUE()

RESUME-XMIT-QUEUE()

1 tx.txcount « 0> See Figure 5-12
2 for bufent € sendbuf . ELEMENTS()

3 do if bufent.rts = TRUE
4 then rx.txcount «— m.txcount +1
5 if bufent.txcount > 0
6 then tx[tx.txcount] « GET-CHUNKS (bufent.data,
bufent.bad_chunks)
7 else tx[tx.txcount] < bufent.data > First transmit
8 msg.rts < FALSE
9 iftx.txcount > 0
10 then SEND(ZType-Data, tx)
11 send_timer. START (SEND-TIMEOUT, ACK_TIMEOUT)

SEND-TIMEOUT()
1 RESUME-XMIT-QUEUE()

FIGURE 5-16—Pseudocode for PP-ARQ’s sending functionality. This procedure
is executed by the higher layer at the sender only, and implements PP-ARQ, the
sliding window, and selective, streaming acknowledgments.
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PP-ARQ-RECEIVE (m)

1 if m.type = TYPE-FEEDBACK > Sender-side functionality

2 then for ; € [1, m.fbcount] > See Figure 5-13, p. 101

3 do for chunks € m.fb[i] > See Figure 5-3, p. 93

4 do gentry « sendq. LOOKUP(m.fb[i].pkt_seqno)
5 gentry.bad_chunks < m.fbli].bad_chunks

6 if LENGTH(gentry.bad_chunks) = 0

7 then gentry.acked = TRUE

8 SIGNAL(send_semaphore)

9 else gentry.rts « TRUE
10 send_timer .STOP()
11 RESUME-XMIT-QUEUE()

12 elseif m.type = TYPE-DATA > Receiver-side functionality
13 then fbpkt focount — 0

14 for i € [1, m.txcount] > See Figure 5-12, p. 100
15 do if nfe < m.tx[i].segno < lfa
16 then fbpkt fbcount «— fbpkt.fbcount +1
17 gentry < recvbuf. LOOKUP(m.tx[i].seqno)
18 COMBINE(gentry .data, m.tx[i].data)
19 (A", A, R) «— GEN-RUNLENGTH-REP (gentry.data)
20 (C,II) = BOTTOM-UP-PP-ARQ-DP (Ab, A& R, K)
21 chunks = GEN-FEEDBACK (II, 1, R)
> Fill in feedback; see Figure 5-3, p. 93
22 Jopkt foli].chkcnt «— LENGTH(chunks)
23 fbpkt foli].chunks « chunks
24 if CHECKS(chunks) and nfe = m.tx[i].segno
25 then NFE « NFE +1
26 LFA « LFA +1
27 recvbuf . REMOVE(m.tx[i].seqno)
28 if fbpkt.focount > 0
29 then SEND (TYPE-FEEDBACK, fbpkt)

FIGURE 5-17—Pseudocode for PP-ARQ’s receiving functionality, at both the
sender (receives feedback messages) and receiver (receives forward-link data mes-
sages). Together with PP-ARQ-SEND in Figure 5-16, this code implements the
PP-ARQ streaming acknowledgment protocol.
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send buffer entry corresponding to each constituent chunk. For each relevant
send buffer entry, the sender marks the bad chunks as such, incrementing the
SEND_SEMAPHORE if a packet has finished transmission.

Receiver-side protocol. Figure 5-17 presents pseudocode for the re-
ceiver’s functionality in lines 12-29. The receiver maintains a buffer of
packets “in-flight” between sender and receiver called recvbuf. Then start-
ing at the loop at line 14, the receiver parses the forward-link transmission,
looking up each fragment in the transmission (line 17), combining it with the
packet data in its receive buffer, and then running BOTTOM-UP-PP-ARQ
and associated helper functions (lines 18-21). The receiver then updates its
variables NFE (next frame expected) and LFA (last frame acknowledged)
at lines 25 and 26 if the combined packet meets checksum (tested by the
CHECKS procedure at line 24).

5.4 IMPLEMENTATION

In this section, we describe our PP-ARQ implementation as well as the soft-
ware infrastructure we have designed and developed to support our eval-
uation. We also point the reader to Section 3.3.1, p. 65 for a discussion
of our Zigbee SoftPHY implementation, which comprises approximately
1,500 lines of C++ code and is also a part of the following experiments in
Section 5.5.

Each Zigbee sender is a telos sensor network “mote” with a Chipcon
CC2420 radio [117]. Senders run TinyOS? on the telos’s TI MSP430 micro-
processor. The CC2420 radio is a 2.4 GHz single-chip RF transceiver that
uses direct-sequence spread spectrum (DSSS) at a bit rate of 250 Kbits/s (as
described in §3.2.2, p. 57).

Each of the Zigbee receivers is a computer connected to a software de-
fined radio. The hardware portion of the receiver is a Universal Software
Radio Peripheral (USRP) [25] with a 2.4 GHz daughterboard; the remain-
der of the receiver’s functionality (demodulation and block decoding as de-
scribed in §3.2.2) is implemented in software. The DSSS despreading func-
tion is approximately 1,500 lines of original code written in C++ in the
GNURadio [39] framework by the author, with parts derived from code by
Schmid [106, 107].

See http://tinyos.net.
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(118,5) (c'e,2) (0!2,5) (8!'c,10) (1!c,4) (b!1,10) (c!3,11)
(3'4,9) (9+,10) (e+,3) (0+,0) (4+,1) (a+,0) (1+,0)
(e+,0) (9+,0) (5+,0) (2+,0) (0+,0) (5+,0) (7+,0)

FIGURE 5-18—An excerpt from a Zigbee codeword-level packet trace from our
SoftPHY implementation (see §3.3.1, p. 65). Each pair is of the form (data, Ham-
ming distance). KEY TO SYMBOLS—!: incorrect data (followed by correct data);
+: correct data.

PP-ARQ implementation. We have implemented PP-ARQ in 1,051 lines
of Perl code, 610 of which implement the dynamic programming algorithm
described in Section 5.2, and the remainder of which implement the PP-
ARQ protocol described in Sections 5.1 and 5.3. Note that we did not im-
plement the sliding window algorithm [93] described in Section 5.3 as such,
but we did instrument the PP-ARQ code to keep track of the header over-
heads associated with each packet in order to correctly compute what those
overheads would have been under the sliding window algorithm.

Reference scheme implementation. We have implemented each of the
“reference point” schemes (described below in §5.5.2) in Perl code, totaling
approximately 600 lines of code.

Trace-driven simulation implementation. Parts of our evaluation in
Section 5.5 consist of trace-driven simulation results. The traces employed
for these simulations are collected using our Zigbee SoftPHY implementa-
tion, which consists of approximately 1,500 lines of C++ code (see §3.3.1,
p. 65 for a description of the Zigbee SoftPHY implementation). Conceptu-
ally, the traces are taken at the SoftPHY interface, which implies that they
are taken at the Zigbee 4-bit codeword granularity. For every 4-bit data nib-
ble, the Zigbee SoftPHY interface returns a corresponding integer between
zero and 15 indicating confidence. Therefore the trace consists of a sequence
of (4-bit data, 4-bit confidence) pairs, grouped into received frames.

Figure 5-18 shows an excerpt from one such trace. Each pair shows first
the received data, followed by correct data if the received data is incorrect.
The second tuple of the pair is a raw Hamming distance of the received
data to the closest codeword, and is used to compute the associated Zigbee
SoftPHY hint (see Equation 3.4, p. 56). We use the data in these traces
to drive the PP-ARQ simulation and other protocol simulations indicated
below.
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Postamble based synchronization implementation. In addition to pass-
ing up SoftPHY hints, the physical layer implementation described in Sec-
tion 3.3.1 performs postamble detection and synchronization using the “roll-
back” algorithm described in Section 4.4.1 (see in particular Figure 4-8,
p. 82). For each frame received, the physical layer tags it with one bit that
indicates whether the frame was detected via the preamble, or whether the
preamble was undetectable and the frame was detected via the postamble.
This “postamble” bit is available to our protocol simulations.

5.5 EVALUATION OF PP-ARQ

In this section we present a cumulative experimental evaluation of the three
main contributions of this work: PP-ARQ with streaming, the SoftPHY in-
terface, and the postamble mechanism. The main result of this section is an
evaluation of aggregate throughput improvements that these contributions
offer in a busy network where frequent collisions cause SINR to fluctuate.

Section overview. We begin our evaluation with a description of the over-
all experimental design in Section 5.5.1. Then in Section 5.5.2 we propose a
set of goals for our evaluation, which includes three protocols that serve as
meaningful reference points of PP-ARQ’s performance. Next, to motivate
the need for the flexible error recovery that PP-ARQ provides, we study the
lengths and placements of errors in our testbed in Section 5.5.3 We present
an end-to-end aggregate throughput performance evaluation in Section 5.5.4
and a study of the complexity of PP-ARQ at the receiver in Section 5.5.7.

We summarize our experimental contributions in Table 5.1. The top por-
tion of the table summarizes and references the major experimental contri-
butions of previous chapters, and the bottom portion of the table summarizes
the experimental contributions made in the present chapter.

5.5.1 Overall experimental design

In our testbed, we have deployed 25 Zigbee sender nodes (as described in
§5.4) over eleven rooms in an indoor office environment, as shown in Fig-
ure 5-19. We have also deployed six receivers (described in the same sec-
tion) among the senders. In the absence of any other traffic, each receiver
can hear between four and ten sender nodes, with the best links having near
perfect delivery rates. All 25 senders transmit packets containing a known
pseudorandom test pattern, at a constant rate, with a randomized jitter. The
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Experiment

Radio Section

Page

Result

802.11a OFDM

SoftPHY hints

SoftPHY hints
in a busy
network
SoftPHY hints
at marginal
SNR

§3.2.3

33.1

332

p. 64

65

68

A proof-of-concept showing
SoftPHY hints during one packet
collision in a USRP-based
OFDM receiver with the same
structure as IEEE 802.11a.
SoftPHY hints have good predic-
tive power of bit correctness in a
busy, multi-hop network.
SoftPHY hints have best predic-
tive power at high SNRs (BER
less than 1078 in radio system
@) but well for BERs as high as
1073

PP-ARQ
aggregate
throughput

PP-ARQ
efficiency

PP-ARQ
computational
requirement

PP-ARQ v.
Fragmentation

554

555

5.5.7

558

114

115

120

121

PP-ARQ improves aggregate and
per-link end-to-end throughput
by a factor of 2.1x in a busy, mul-
tihop base station topology.
PP-ARQ is 80% efficient com-
pared to a hypothetical protocol
that has a priori perfect knowl-
edge of which bits are correct,
and no overhead in requesting in-
correct bits.

PP-ARQ requires a very small
amount of dynamic program-
ming computation for most pack-
ets.

Under workloads with large
packets, PP-ARQ improves
performance by more than 30%
over an optimally hand-tuned
implementation of  802.11
fragmentation.

KEY—Q®: rate-1/2 convolutionally-coded OFDM (same structure as IEEE
802.11a); @: uncoded QPSK; ®: direct sequence spread spectrum MSK.

TABLE 5.1—A roadmap of the major experimental results contained in this dis-
sertation. Above: experimental results pertaining to SoftPHY hints and postamble
decoding. Below: experimental results pertaining to PP-ARQ.
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100 feet

FIGURE 5-19—Experimental Zigbee testbed layout: there are 31 nodes in total,
spread over 11 rooms in an indoor office environment. Each unnumbered dot indi-
cates one of 25 Zigbee nodes. The six software defined radio nodes are shown dark,
labeled with numbers.

Ch. 11 12 25 26
i |
802.11b ch. 1 802.11b ch. 11 | 3 MHz
N / 20 MHz Y1 :
Ay { \ . N ,
2405 2410 ¢ 2462 2475 2480 MHz

FIGURE 5-20—Selected Zigbee and WiFi channels in the 2.4 GHz ITU-R ISM
frequency band. We evaluate our proposals in Zigbee channels 11 and 26 with both
high and low background traffic volumes, respectively (figure not drawn to scale).

senders transmit at the same time, offering 6.9 Kbits/s/node unless other-
wise noted. This represents 2.8% of the raw link bandwidth of 250 Kbits/s,
or between 11%—28% of the raw link bandwidth at a given receiver.

Ambient RF environment. Our experimental results summarize data
from Zigbee channel 11 at 2.405 GHz as shown in Figure 5-20. From the
figure we note that Zigbee channel 11 overlaps with IEEE 802.11b chan-
nel 1, which carries active WiFi traffic in our building. Thus the experimen-
tal results we report below and in Chapter 5 were obtained in the presence
of significant background traffic. We also validated our experimental results
on Zigbee channel 26, with identical outcomes. Zigbee channel 26 over-
laps with no IEEE 802.11 channels, so we expect it to be much quieter than
channel 11. We used GNU Radio tools [39] to verify that there was indeed
a high level of background traffic on Zigbee channel 11 and indeed signifi-
cantly less background traffic on Zigbee channel 26.
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Statistical methodology. All data points represent averages of 14 experi-
mental runs, and all error bars indicate confidence intervals at the 95% level,
unless otherwise noted. We use Student’s t-test to compute the confidence
intervals, thus non-overlapping confidence intervals allow us to conclude
that an experimentally-measured difference is statistically significant.

5.5.2 Reference points for evaluation

We choose the following three protocols as meaningful reference points to
evaluate PP-ARQ against. For each, we describe the protocol and explain
its significance.

Packet checksum with ARQ

This scheme represents the status quo in IEEE 802.11a [52], 802.11b [51],
and 802.11g [53]-compliant commodity wireless local area networking
equipment, as well as IEEE 802.15.4 [54] sensor networking radios. Each
transmitted packet contains a 32-bit checksum appended to the end. Postam-
ble detection is turned off at the receiver.

For each incoming packet, the receiver computes the 32-bit CRC check
over the received packet payload and sends an acknowledgment packet if
it matches. Otherwise, the transmitter retransmits the packet in its entirety.
We call this scheme Packet CRC in the following.

Fragmented checksum with selective ARQ

We will show next that PP-ARQ improves performance significantly, but
one might ask whether it is necessary to achieve similar gains. One way to
approximate PP-ARQ is to adopt a technique similar to that proposed in the
IEEE 802.11 specification [50], splitting the packet into fragments whose
size is user-tunable, and sending multiple checksums per packet, one per
fragment, as shown in Figure 5-21. We call this scheme Fragmented CRC
in the following.

For each incoming packet detected by the preamble, the receiver com-
putes a 32-bit checksum over each fragment f and compares each to the
corresponding received checksum appended to f. Fragmented CRC deliv-
ers only those fragments with matching checksums, discarding the remain-
der. In the acknowledgment packet, there is a bitmap indicating the result of
each fragment’s checksum verification.
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FIGURE 5-21—The per-fragment checksum approach: the packet includes multi-
ple checksums, with each checksum taken over a different fragment of the packet.

This scheme allows the receiver to identify individual fragments that
are correct. If bit errors are concentrated in only a few bursts, then entire
fragments will checksum correctly, and the receiver would then only have
to recover the erroneous fragments from the sender. Ganti et al. [34] provide
a scheme to this effect.

SoftPHY best

In order to evaluate PP-ARQ, we wish to get a sense of how well it is per-
forming in absolute terms. To this end we can ask the following question.
How much end-to-end bits-per-second throughput does PP-ARQ deliver, as
a fraction of the rate that correct bits are being received?

The answer is a fraction that quantifies how efficient PP-ARQ is, com-
pared to a hypothetical protocol that has the following three properties. First,
the receiver has a priori, perfectly-correct knowledge of which bits were re-
ceived correctly and which were received incorrectly. Second, the receiver
can communicate to the sender (without any overhead) exactly which bits
were received incorrectly. And finally, there are no preamble or postamble
overheads, yet the receiver can detect the presence of packets using either.

5.5.3 Error patterns in the Zigbee testbed

In these experiments, we seek an understanding of the basic statistics un-
derlying the bit errors that our wireless testbed experiences. These figures
further motivate the need for PP-ARQ, and help in explaining some of the
performance trends we see later.

The length of bit errors. The basic design in this experiment is as given in
Section 5.5.1. For each received packet in an experiment run on that setup,
we check its known, pseudorandom payload, and measure the length / of
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Error burst length

FIGURE 5-22—Burst error statistics in our Zigbee testbed. The (lower) curve la-
beled “error burst events” is the complementary cumulative distribution of error
burst length. The (upper) curve labeled “errored bits” gives the fraction of bits that
come from an error burst of at least the length shown on the ordinate axis.

each error burst i contained in every received packet, aggregating the results
across multiple receivers.

The curve labeled “Error burst events” in Figure 5-22 shows the comple-
mentary CDF of random variable /, burst length. We see from the data that
most error bursts in our Zigbee experiments are small, with half between
one nibble and four bytes, and one of the remaining quarters between four
and eight bytes.

Using the statistics of the burst length variable, we proceed to answer
the different but related question: which error burst lengths are responsible
for which fraction of the errored bits? Answering this question informs our
design and evaluation of PP-ARQ. For example, if all the errored bits were
of very short length (at most 1-2 bytes), then the dynamic programming al-
gorithm that PP-ARQ uses would be heavily burdened from the many short
runs of “bad” and “good” bits, and would also tend to request many chunks
of the form ¢; ; where i < j (for example chunks c;; and ¢, 3 in Figure 5-8,
p. 96), retransmitting the correctly-received bits contained within.

To make the question precise, suppose that there are n; error bursts of
length / in the entire experiment. Then the fraction of errored bits coming
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FIGURE 5-23—Experimental distribution of bit error locations.

from error bursts of greater than length j is

Zz j+1 £ n;
Zzoi n
Performing the computation in Equation 5.7 results in the upper curve
shown in Figure 5-22, labeled “errored bits.” From the data and the data

labels in the figure, we can directly answer the key question posed earlier in
this section as follows.

JE= (5.7

1. Half of all errored bits come from burst errors of length 16 bytes or less,

2. one quarter of all errored bits come from burst errors of length 16—
32 bytes, and

3. the remaining bit errors are of length 32 bytes (about one quarter packet
length), with a rather long tail tending towards the entire packet length.

From these experimental answers, we can conclude that we should spend
an equal amount of effort correcting bit error runs of length less than one
quarter packet as we spend correcting bit error runs of greater than one
quarter packet in length.

The location of bit errors. In the case of the Zigbee physical layer we
use for our experiments, should we expect to dedicate more effort correct-
ing errors in some parts of the packet rather than others? Again utilizing the
basic experimental design of Section 5.5.1, we form a dataset containing
the starting offset of every bit error run. From this dataset, we generate the
cumulative distribution function of starting bit error locations, shown in Fig-
ure 5-23. We see that bit errors are uniformly distributed across the packet’s
length.
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FIGURE 5-24—Aggregate throughput comparison between Packet CRC (the sta-
tus quo), PP-ARQ, and an idealized protocol that delivers all correct symbols up
to higher layers with no retransmissions nor overheads. PP-ARQ achieves a 2.1x
speedup over the status quo.

These two results suggest that PP-ARQ will perform well, because it is
flexible with respect to both varying error lengths, and error locations.

5.5.4 “Client-AP” aggregate network throughput

We now measure the aggregate network throughput that all nodes achieve
in a “client-access point” topology where each client (unnumbered node in
the network testbed shown in Figure 5-19, p. 109) picks the access point
(numbered node in the same figure) to which it has the best frame delivery
rate.

We design the experiment as follows. Using symbol-level data from
the testbed SoftPHY packet traces (see §5.4, p. 106) collected from the
testbed, we run our PP-ARQ protocol implementation (see §5.4, p. 106).
Using the same traces, we also run Perl implementations of the Packet CRC
(8§5.5.2, p. 110) and SoftPHY Best (§5.5.2, p. 111) schemes, and measure
the throughput that each achieves. Since these protocols involve bidirec-
tional communication, we make the assumption that links are roughly sym-
metrical, and use the same sender-receiver packet trace to drive both direc-
tions of the protocol communication. De Couto et al. validate this assump-
tion to a large degree: they find that the best third of all links in their wire-
less testbed have an average difference between their forward and reverse
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FIGURE 5-25—Per-link PP-ARQ v. status quo absolute throughput. PP-ARQ con-
sistently doubles the reliable throughput achieved across each link in the network,
relative to the status quo.

direction packet delivery rates of only approximately 5%, with a maximum
difference of approximately 10% [20, §2.4].

Figure 5-24 shows the aggregate throughput of all nodes running PP-
ARQ and “SoftPHY best,” normalized to the aggregate throughput of all
nodes using “Packet CRC.” From the figure we see that PP-ARQ achieves a
2.1x speedup over “Packet CRC,” and is a normalized factor of 0.5x slower
than “SoftPHY best.” In the next section, we investigate which mechanisms
explain the 0.5x gap between PP-ARQ and “SoftPHY best,” and which
mechanisms explain PP-ARQ’s performance improvement.

When we measure the throughput that PP-ARQ achieves over each link,
we find that PP-ARQ’s speedup applies evenly across all links, with links
getting a benefit proportional to their status quo throughput; figure 5-25
shows this trend.

5.5.5 PP-ARQ efficiency

Taking the ratio of PP-ARQ and “SoftPHY best” performance figures from
Figure 5-24 yields an efficiency of 81%. We now determine which factors
account for this 19% overhead.

Feedback data overhead

One novel contribution of PP-ARQ is its use of the feedback channel to con-
vey information about which bits the receiver has correctly used. This use
of the feedback channel has overhead, which we quantify by measuring the
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FIGURE 5-26—Distribution of reverse-link per-packet PP-ARQ feedback data
sizes across all links (upper curve), and across only links in the “grey zone,” which
have a packet delivery rate of less than 70%.

number of feedback bits sent in the reverse direction (not including pream-
ble and postamble bits), and expressing that figure as a fraction of the total
bits sent in both directions (including preamble and postamble overhead):

Feedback bits sent
=4.5% 5.8
Total bits sent (both directions) 0 (5-8)

This figure represents the percentage overhead that the feedback data
alone (not including preambles and postambles) adds. While it is small in
the aggregate, we note that in the “grey zone” where link delivery rates are
less than 70%, this figure jumps to 29%.

To see why PP-ARQ feedback data overhead increases in the grey zone,
we measure the size of each feedback data payload. Figure 5-26 shows
the resulting distribution of the feedback data sizes. Looking at the curve
marked “all links”, we see that across all links in the experiment, 59% of
the feedback data fragments (see §5.1.1, p. 92) were 0.5% of the forward-
link packet size, 101 bytes. These feedback data correspond to cases where
the forward-link transmission was received correctly in its entirety, and the
only feedback data necessary is the header information in the feedback frag-
ment identifying the transmissions sequence number (see Figure 5-3, p. 93).
There is another mode in the feedback size distribution at 6% of the forward-
link packet size corresponding to roughly 30% of transmissions, and then
a small tail (10% of transmissions) with significant (greater than 10% of
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forward-link packet size) length. These larger feedback packets indicate
more complicated bit error patterns in the received forward-link packets.

We plot the feedback size distribution in the grey zone with the curve
in Figure 5-26 marked “grey zone.” The tail of the “grey zone” distribution
(feedback lengths above 10%) almost exactly matches the tail of the “all
links” distribution, suggesting that the worst links have the most feedback
overhead (a per-transmission overhead greater than 10% of the forward-
link packet size). Furthermore, the “grey zone” curve mirrors the “all links”
curve, with a downward shift caused by fewer small (0.5% forward-link
size) feedback transmissions. This further suggests that the small feedback
transmissions should be attributed to the best links. We conclude that worse
links cause PP-ARQ to send more feedback.

PP-ARQ specific headers

In order to parse forward-link transmissions as described in Section 5.1,
the PP-ARQ protocol reserves space in each data transmission for headers
(Figure 5-4, p. 93).

PP-ARQ specific header bits sent
Total bits sent (both directions)

= 0.68% (5.9)

Discarding bits labeled “good”

When the receiver labels a run of bits “good,” it requests transmission of
a checksum of those bits (see §5.1, p. 88). When it receives the checksum
(itself labeled *“good”), it then computes the checksum over the received
run of good bits, and verifies the result against the received checksum. If the
verification fails, then the received discards the “good™” run of bits, marking
them all “bad” and continuing the PP-ARQ protocol.

We measure how many bits in our experiments are marked discarded in
this way, as a fraction of the total bits sent in both directions:

Bits discarded
Total bits sent (both directions) 0.35% (.10)
Choosing to resend “good” bits

In our discussion of PP-ARQ’s dynamic programming (DP) in Section 5.2,
we noted that the DP algorithm often chooses to aggregate a request for two
or more “bad” runs of bits into one request for a run of bits that includes
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Source of overhead Overhead
Pct. of total Normalized factor

Preambles/postambles 17% 0.44x
Feedback channel data 4.5 0.1
PP-ARQ specific headers 0.68 0
Discarding bits labeled “good” 0.35 0
Choosing to resend “good” bits 0.25 0
Total 23 0.6

TABLE 5.2—A summary of the overhead sources and impacts that PP-ARQ in-
curs. The second column of the table tabulates the overhead as a percentage of
the total bits transmitted and received. The third column tabulates the overhead as
an improvement factor normalized to the performance of the Packet CRC scheme.
“PP-ARQ specific headers” refers to the shaded headers in Figures 5-3, 5-5, and
5-6 on pages 93-94.

some “good” bits. For example, PP-ARQ chooses chunk c, ; in Figure 5-8
(p. 96), retransmitting the “good” bits contained in that chunk.

We measure how many bits in our experiments PP-ARQ chooses to re-
transmit, as a fraction of the total bits sent in both directions:

“Good” bits intentionally resent
=0.25% 5.11
Total bits sent (both directions) 7 (5-11)

* * *

We summarize the different sources of overhead in Table 5.2. All to-
gether, the sources of overhead sum to 23% of the overall bits transmitted
and received, or a relative factor of 0.6x. Looking back at Figure 5-24, we
see that the computed performance of “SoftPHY optimal” minus this over-
head factor is within the 95% confidence interval of PP-ARQ’s end-to-end
performance. Thus, the sources of overhead listed in Table 5.2 explain the
performance gap between PP-ARQ and “SoftPHY optimal.”

5.5.6 PP-ARQ improvement

We now investigate the reason for PP-ARQ’s improvement over the status
quo. Every time a bit error occurs in the “Packet CRC” scheme, it has to
retransmit the entire packet, wasting many bits. Figure 5-27 shows the cu-
mulative distribution of retransmission sizes for the two schemes. The curve
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FIGURE 5-27—Distribution of forward-link retransmission sizes for each of the
two protocols we have evaluated thus far. PP-ARQ more than halves the median
status quo retransmission size.

labeled Packet CRC on the right shows a fixed distribution of 101 bytes ac-
cordingly.

We note also that the cumulative distribution of PP-ARQ’s retransmis-
sion size requests in Figure 5-27 almost exactly mirrors the complementary
cumulative distribution of burst error lengths in Figure 5-22 (p. 112). This
is expected because PP-ARQ requests not too much more than those bits
which are in error.

Isolating the performance contribution of the postamble

In Section 5.5.4 we compared the performance of PP-ARQ, which uses the
postamble as well as the preamble for packet detection, with the status quo,
which does not. This motivates the question of how much of PP-ARQ’s
gains are due to the postamble, and how much are due to protocol operation.

Using our SoftPHY packet traces (§5.4, p. 106), we measure the ex-
pected number of transmissions (ETX [20]) required to deliver one packet
across each link, with packets detected via the postamble included. Then
we repeat the same measurement for each link, with packets detected via
the postamble excluded.

In Figure 5-28 we show two views of a scatter plot with one data point
per link, placed at the two ETX values computed. Over each link, pream-
ble+postamble detection gives gains of 0%—33% over preamble-only de-
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FIGURE 5-28—Postamble detection improves the throughput of many links in the
“SoftPHY ideal” scheme, relative to the same scheme using only preamble detec-
tion. Left: linear scale detail; right: logarithmic scale.

tection. Therefore we attribute most of PP-ARQ’s improvement in Sec-
tion 5.5.4 to PP-ARQ’s protocol operation.

5.5.7 PP-ARQ receiver timing issues

When the SoftPHY-enabled physical layer receives a packet and passes it
up to the PP-ARQ algorithm (also running at the receiver), the PP-ARQ
dynamic programming algorithm needs to run at the receiver before the re-
ceiver can begin to transmit the feedback packet. The time in between these
two events is usually (depending on the details of the medium access con-
trol protocol) wasted. For example, IEEE 802.11 [50] gives the receiver of
a transmission priority by forcing nodes within range of the transmission to
defer by a fixed time interval.

One mitigating factor is that like other demanding baseband processing
that may take place at the receiver (Viterbi decoding of long constraint-
length codes, for example), the PP-ARQ DP computation can be performed
at the same time the radio is switching from receive to transmit mode (a
maximum of 2 us in 802.11a, 5 us in 802.11b/g). Nonetheless, we seek
to show in this section that the amount of processing required is not pro-
hibitive.

From our SoftPHY packet traces (§5.4, p. 106), we measure the number
of runs R in each received packet, as defined in Equation 5.1 on page 90.
Figure 5-29 shows the complementary CDF of R. The majority (80%) of
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FIGURE 5-29—Distribution of the number of “runs” R received in each packet, as
defined in Equation 5.1 on page 90.

received packets contain at most four runs, and 99 in 100 contain 32 or
fewer runs.

5.5.8 Comparing against fragmented checksums

We now present results comparing the SoftPHY interface and PP-ARQ pro-
tocol to the fragmented checksum scheme, as described in Section 5.5.2 on
page 110. Our results in this section are from trace-driven simulation, using
the traces described in Section 5.4, on page 106. We simulate a range of
different packet sizes realistic for a mesh network [110], attaching an IEEE
802.11-size preamble [50] to each packet.

We begin by tuning the fragment size of the fragmented checksum
scheme, in order to compare it most favorably against SoftPHY and PP-
ARQ.

Tuning the fragmented checksum scheme

Under the fragmented checksum scheme, how big should a fragment, ¢, be?
In an implementation, one might place a checksum every c bits, where ¢
varies in time. If the current value leads to a large number of contiguous
error-free fragments, then ¢ should be increased; otherwise, it should be
reduced (or remain the same). Alternatively, one might observe the symbol
error rate (or bit error rate), assume some model for how these errors occur,
and derive an analytically optimal fragment size (which will change with
time as the error rate changes). In either case, the fragmented checksum
needs tuning for the optimal fragment size. In this section, we investigate
the best case for per-fragment checksums, finding from traces of errored
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FIGURE 5-30—The impact of fragment size on the performance of the fragmented
checksum scheme. Postamble decoding is off, carrier sense on in this experiment.

and error-free symbols what the post facto optimal fragment size is and
using that value.

In these experiments, we post-process the traces to simulate a range of
packet sizes realistic for the Internet [110] (this technique is accurate in the
busy, collision-dominated network that we evaluate in this section).

To find the optimal chunk size for the fragmented CRC scheme, we com-
pare aggregate throughput as fragment size varies. The results are shown in
Figure 5-30. We see that when chunk size is small, checksum overhead dom-
inates, since there are many 32-bit checksums in each packet. Conversely,
large chunk sizes lose throughput because collisions and interference wipe
out entire fragments. We therefore choose a fragment size at the sweet spot
of 50 bytes (corresponding to 30 fragments per packet) for the following
experiments.

SoftPHY unreliable throughput

To gain further insight about PP-ARQ’s performance gains, we look one
layer deeper, at the unreliable throughput achieved at the SoftPHY interface.
These experiments measure unreliable throughput—correct bits per second
received without any of the retransmission overheads involved in an ARQ
protocol. Figure 5-31 compares the per-link distribution of throughputs at
medium offered load (where each node transmits at a rate equal to 2.8% of
the raw link speed) for each scheme. Since all bits in the packet share fate in
the packet-level checksum scheme, performance with or without postamble
decoding in that case is very close, and so for clarity we omit the curve for
packet-level checksum with postamble decoding.

Looking at per-link throughput in Figure 5-31 that almost one quarter
of all the links achieve no throughput in the status quo, because all of the
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FIGURE 5-31—Per-link throughput distribution achieved at the SoftPHY interface.
The per-node offered load is 2.8% of the link speed, close to channel saturation.

packets have some small number of bit errors. In contrast, the same lower
quartile of links with SoftPHY and postamble decoding enabled are able to
achieve up to four Kbits/s in unreliable throughput.

We also note that fragmented checksum yields a median 4x unreliable
throughput gain over the status quo, and that SoftPHY yields median 7x
unreliable throughput gain over the status quo, without the need for tuning
the fragment size, as noted above.

Furthermore, postamble decoding (labeled “+ post.” in Figure 5-31)
yields another additive gain over either SoftPHY or Fragmented checksum
in raw unreliable throughput, because these schemes can recover the cor-
rect bits from a packet whose preamble and/or body were undetectable and
corrupted, respectively.

A link-by-link comparison. The scatter plot in Figure 5-32 compares un-
reliable throughput for fragmented CRC on the x-axis with either SoftPHY
(top half) or packet-level CRC (bottom half). The first comparison we can
draw from this graph is the per-link throughput of SoftPHY compared with
fragmented CRC (top-half points). We see that SoftPHY improves per-link
performance over fragmented CRC by roughly a constant factor. This factor
is related to the fragment size, and may be attributable to fragmented CRC’s
need to discard the entire fragment when noise or another transmission cor-
rupts part of it.

123



—
(9]

Other scheme = Packet CRC
Other scheme = SoftPHY

<+

Other scheme unreliable
throughput (Kbits/s)

15

Fragmented CRC unreliable
throughput (Kbits/s)

FIGURE 5-32—Link-by-link comparison of unreliable throughput at the physical
layer boundary: each data point represents one link in one experimental run. The
per-node offered load is 2.8% of the link speed, close to channel saturation. Upper
half. SoftPHY v. fragmented CRC. Lower half: packet-level CRC v. fragmented
CRC.

The bottom-half points in Figure 5-32 compare fragmented CRC with
packet-level CRC. We see that fragmented CRC (and SoftPHY) far outper-
form packet CRC, because they only have to discard a small number of bits
instead of the entire packet when those bits are corrupted. The fact that most
of the lower-half points cluster near the x-axis means that the spread in the
unreliable link throughput distribution increases when moving to smaller
fragment sizes or SoftPHY. This is likely because collisions do not occur
the entire packet, but rather occur over a small piece of it.

Equivalent frame delivery rate

We now examine the rate at which each scheme described above delivers
correct bits to higher layers, once it has successfully acquired a packet (i.e.,
the physical layer has detected either a preamble or a postamble). We call
this rate the equivalent frame delivery rate, because it measures how ef-
ficient each scheme is at delivering correct bits to higher layers once the
physical layer successfully synchronizes.

Figure 5-33 shows the per-link distribution of equivalent frame delivery
rate in our network when each node offers a moderate traffic load (2.8% of
the raw link speed). Even when carrier sense and postamble decoding are
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FIGURE 5-33—Per-link equivalent frame delivery rate distribution with carrier
sense enabled, at moderate offered load (2.8% of the raw link rate, per node).

enabled, we see a large proportion of extremely poor links in the status quo
network, labeled “Packet CRC” in the figure.

Comparing Figure 5-33 with Figure 5-31, notice that in both figures,
just under 25% of links in the Packet CRC scheme attain no throughput and
no frame delivery rate. Since Figure 5-33 measures bit delivery rate after
successful synchronization, it rules out packet detection as the reason that
25% of links in Figure 5-31 attain no throughput.

Techniques for partial packet recovery increase frame delivery rate sub-
stantially, however. For both SoftPHY and the fragmented CRC scheme,
postamble decoding increases median frame delivery rate by the fraction
of bits that come from packets whose preamble was undetectable, roughly
10%. Comparing packet-level CRC with fragmented CRC, we see a large
gain in frame delivery rates because fragmented CRC does not throw away
the entire packet when it detects an error. The SoftPHY interface improves
on frame delivery rates even more by identifying exactly which portions of
the frame are correct and passing exactly those bits up.

Impact of carrier sense. We now repeat the experiment with carrier sense
disabled; Figure 5-34 shows the results. When carrier sense is disabled, at
least a small part of the packet is likely to be decoded incorrectly, resulting
in a dropped packet in the packet-level CRC scheme. This is reflected in the
very poor frame delivery rates of packet-level CRC. However, at moderate
offered loads, we see that it is not likely that very much of the packet is
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FIGURE 5-34—Equivalent frame delivery rate with carrier sense disabled, at at
moderate offered load (2.8% of the raw link rate, per node). These experimental
parameters is identical to those of Figure 5-33, except that carrier sense is disabled
in these results.

involved in a collision, because the frame delivery rates for PPR and frag-
mented CRC remain roughly unchanged between Figures 5-33 and 5-34.

Impact of increasing load. We repeat the experiment with carrier sense
enabled, but at a higher per-node offered load of 5.5% of the raw link band-
width. Figure 5-35 shows the results.

PP-ARQ v. Fragmented checksums

Figure 5-36 shows the aggregate received throughput across all links in the
testbed for packet-level CRC (the status quo), fragmented CRC, and PP-
ARQ. We see that PP-ARQ achieves roughly a 2x capacity improvement
over the status quo, without needing the fragment-size tuning described in
Section 5.5.8.

One significant cause of our performance improvements over the status
quo is the avoidance of retransmitting data that reached the receiver, but
was discarded due to a bad checksum. Figure 5-37 quantifies this intuition.
In the status quo (“Packet CRC” in the figure), retransmissions are always
packet-sized in length, and so we see only the modes of the packet dis-
tribution in the retransmit-size distribution. Fragmented CRC tuned with a
fragment size of 50 bytes breaks the retransmissions down into fragments
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FIGURE 5-35—Equivalent frame delivery rate, with carrier sense enabled, at a
high offered load (5.5% of the raw link rate, per node). These experimental param-
eters are identical to those of Figure 5-33 except that the per-node offered load is
increased from 2.8% to 5.5% of the raw link bandwidth.
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FIGURE 5-36—Comparison of the aggregate end-to-end delivery rate between
packet-level CRC, fragmented CRC, and the PP-ARQ implementation. Postamble
decoding is on in this experiment.
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FIGURE 5-37—Comparison of the distribution of retransmission sizes for packet-
level CRC, fragmented CRC, and the PP-ARQ implementation. Note PP-ARQ’s
long tail of short retransmit sizes.

of size 50 X k for positive integers k, resulting in the stair-step pattern in
the figure. However, fragmented CRC transmits no fragments smaller than
64 bytes. In contrast, PP-ARQ transmits a significant fraction of very small
packets (less than 64 bytes), the cause of its significant performance gains.
Note from Section 5.3 that PP-ARQ batches its retransmissions to avoid
preamble overhead on each of the smaller retransmissions.

Figure 5-38 shows how end-to-end delivery rate changes when we in-
crease the offered load to in the network. As well as raw offered load, we
show the percentage of link capacity each node offers in the figure. At higher
offered loads we see packet-level CRC performance degrading substantially.
There have been several recent studies that attempt to elucidate the causes
of this loss [2,112,113]. PP-ARQ’s end-to-end throughput increases despite
the overload, suggesting that only relatively-small parts of frames are actu-
ally being corrupted in overload conditions in the status quo.

The impact of carrier sense. In other work [123] and in Chapter 2 we
have shown that selectively disabling carrier sense (see Chapter 2 for a re-
view of how carrier sense works) can improve throughput.

One potentially confounding factor in our evaluation is the use and ef-
ficacy of carrier sense in the senders’ CC2420 radios: carrier sense can fail
due to hidden terminals or backoff slots smaller than the transmit-to-receive
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FIGURE 5-38—Comparison of end-to-end delivery rate in overload conditions;
PP-ARQ scales favorably compared to the status quo. Postamble decoding is en-
abled in this experiment.

turnaround time [23]. To address this factor, we examine aggregate through-
put for each scheme, with and without carrier sense. In Figure 5-39 we see
that carrier sense improves throughput by a statistically significant amount
over the status quo (“Packet CRC” with postamble decoding off). Noting
that carrier sense yields additive improvements for each scheme, we narrow
the design space of our evaluation to only include carrier sense on in the
remaining experiments.

[ Carrier sense on
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@@ Carrier sense off
Fragmented CRC &
R
SoftPHY l o
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Aggregate link-level throughput (Kbits/s)

FIGURE 5-39—The impact of carrier sense on aggregate link-level throughput.
Carrier sense improves throughput under each scheme, but PPR techniques yield
further improvements. Postamble decoding is off in this experiment.
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5.6 RELATED WORK

While each of the three ideas in PPR—SoftPHY, postamble decoding, and
PP-ARQ—is novel, as is their synthesis into a single system, these indi-
vidual ideas are related to and inspired by much previous work. We survey
closely related work in this section.

5.6.1 Rate adaptation

Rate selection algorithms have been extensively studied in 802.11 wireless
networks [11,48, 62, 86,102, 129]. Ahn et al. [3] propose an adaptive FEC
algorithm which dynamically adjusts the amount of FEC coding per packet
based on the presence or absence of receiver acknowledgments.

These algorithms work by examining frame loss statistics at the link
layer, and directing the physical layer to increase or decrease the rate of
the link according to some policy. The physical layer typically does this
by changing the modulation on the link, or adjusting the amount of channel
coding performed. In IEEE 802.11a and 802.11g, this is done by puncturing
(removing bits in a systematic manner from) the output of the convolutional
coder [97].

However, as a result of hidden interfering transmissions (see Chapter 2
for further discussion), it is extremely difficult to predict how much redun-
dancy a wireless link will need in such highly-variable conditions. Bit rate
adaptation algorithms take an empirical approach, commonly making “mis-
takes:” increasing the rate on a link until frames get dropped, and then de-
creasing the rate.

Our contributions impact bit-rate adaptation in several different ways.
First, with the SoftPHY interface, much more information is available to the
bit-rate adaptation algorithm, enabling better performance. PP-ARQ miti-
gates the penalty for choosing the incorrect rate by allowing receivers to
recover partially-received frames and efficiently retransmit only the parts
missing. We make further observations about bit-rate selection in general in
the next chapter.

5.6.2 Incremental redundancy and hybrid ARQ

In general, the term “Hybrid ARQ” refers to any scheme that combines
forward error correction and automatic repeat request. Type I hybrid ARQ
schemes [70] retransmit the same coded data in response to receiver
NACKS. Wireless local-area networking hardware supporting IEEE 802.11a
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Coding step

Interleaving step

FIGURE 5-40—Coding and interleaving data in preparation for applying incre-
mental redundancy in communications. Hexadecimal numbers refer to the order
with which the constituent bit-blocks are transmitted. Shading indicates the packet
position to which the data belongs.

[52],802.11b [51], and 802.11g [53] as well as IEEE 802.15.4 [54] wireless
sensornets all fall under this category.

Type II hybrid ARQ schemes [70] forego aggressive FEC while the
channel is quiet, instead sending parity bits on retransmissions, a technique
called incremental redundancy (IR) [73]. Metzner [78], Lin and Yu [71],
and Soljanin et al. [111] have developed incremental redundancy hybrid
ARQ schemes. IEEE 802.16e [55, §6.3.17], [56, §8.4.9.2.1.1, §8.4.9.7], the
“WiMax” wireless metropolitan area networking uses incremental redun-
dancy, as does the high-speed downlink packet access (HSDPA) third gen-
eration mobile telephony protocol for mobile broadband data delivery [47].

IR schemes combine coding with interleaving [6, Chp. 12] to spread the
bursts of errors associated with collisions and deep fades across the entire
packet. To illustrate the important concepts, we describe a simplified IR
scheme based on a trivial rate-compatible punctured code [43].

Each packet is first coded at some rate R.; here R, = 1/3; this step is
labeled “coding step” in Figure 5-40. Then, the sender interleaves the bits in
the packet by some permutation known a priori to both sender and receiver;
this is the “interleaving step” in the figure. The result of the coding step
is to add more redundancy to the bits in the packet, and the result of the
interleaving step is to locate information about non-neighboring regions of
the original packet at consecutive bit locations in the interleaved packet.
We show this schematically in Figure 5-40 by the degree of shading: light
shading denotes information from the leftmost bit in the original packet,
dark shading denotes information form the rightmost bit, with successive
gradations denoting the position of bits in between.

After the coding and interleaving steps, the data are ready for transmis-
sion; we refer to these data as the “transmit data.” The transmission process
is shown in Figure 5-41. The sender first transmits one-third of the transmit
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PR & decoding attempt

FIGURE 5-41—Incremental redundancy Hybrid ARQ. The sender applies some
amount of channel coding as shown in Figure 5-40, and then sends a different
set of interleaved bits in each successive transmission. One each transmission, the
receiver makes a decoding attempt using the received transmission and all previous
transmissions, sending “nacks” in response until it can decode the packet, at which
point it sends “ack.”

data over the air, where it may be corrupted; this is labeled “first trans-
mission” in Figure 5-41. Upon receiving the first transmission, the receiver
de-interleaves the data; the result is shown on the right-hand side of the fig-
ure. The receiver then makes a decoding attempt on the first transmission,
typically using the Viterbi algorithm in the case of convolutionally-coded
data. If the decoding attempt is successful (indicated by the successful veri-
fication of a packet-level checksum) then the receiver sends an “ack” to the
transmitter and delivers the packet to the higher layer. Otherwise, it sends
a “nack” (either via an explicit message or a simple timeout of an “ack”
message). Upon receiving an “ack” message, the sender moves on to the
next data packet; otherwise it sends the next third of the transmit bits to the
sender. Upon receiving the second group of transmit bits, the sender com-
bines the bits in both transmissions in its receive buffer (as shown at the
terminating end of the second transmission in Figure 5-41) and makes an-
other decoding attempt. The process continues until the sender runs out of
encoding bits (which may be never in the general case of a rateless code),
or the receiver makes a successful decoding attempt.

Comparing PP-ARQ with incremental redundancy

We first note that incremental redundancy (IR) alone enables none of the
other uses of the SoftPHY interface discussed in the following chapter and
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alluded to in Chapter 1. The pertinent comparison is therefore between PP-
ARQ and IR. PP-ARQ takes a fundamentally different approach from IR:
instead of coding and interleaving over the entire packet, it uses hints from
the physical layer about which codewords are more likely to be in error, and
retransmits just those codewords.

There are circumstances when the approach we advocate may outper-
form IR. For example, suppose that a burst of noise occurs on the channel
of a length such that to successfully decode the packet, the receiver requires
slightly more than one transmission’s worth of data in Figure 5-41. The IR
receiver will “nack” the first transmission, requiring the second before mak-
ing a successful decoding attempt. In contrast, PP-ARQ will retransmit just
enough bits to successfully reconstruct the packet, under the assumption that
the underlying bit rate adaptation algorithm has selected the best bit rate. To
address this drawback, IR could be modified in the vein of PP-ARQ to use
the feedback channel for telling the sender how much more redundancy to
transmit, instead of using fixed-size redundancy increments.

IR has the following two advantages over our approach. First, the in-
terleaving step in Figure 5-40 and the corresponding deinterleaving step at
the receiver spread bit errors out over the entire transmission, decoupling
performance from the statistics of bit errors. In contrast, PP-ARQ’s perfor-
mance depends on the statistics of bit errors; in particular, PP-ARQ works
best when errors occur in long bursts, making them easily encodable into
descriptions of runs. Second, in the high-BER regime, PP-ARQ incurs sig-
nificant feedback channel overhead, which IR avoids.

We leave the integration of PP-ARQ with bit rate adaptation and an
experimental performance comparison between PP-ARQ and IR as future
work. Another interesting open question is how the individual strengths of
PP-ARQ and IR could be combined.

5.6.3 Packet combining strategies

PP-ARQ uses a simple replacement policy to combine successive transmis-
sions. Also in the context of a single link, Chase combining [15] improves
on this strategy by storing the multiple soft values of each received symbol
in the packet and feeding them all to the decoder.

There are also many networked-systems designs in the literature that
use packet combining in various contexts in which there is receiver diver-
sity. Avudainayagam et al. [4] propose a scheme for exchanging soft infor-
mation between several receivers of a packet that minimizes the overhead
involved in the mutual sharing of information between the receivers. Woo et
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al. [131] propose a system for combining symbols from multiple receptions
of a packet at different wireless access points using a technique similar to
maximal ratio combining [97] of the soft information of each symbol. We
discuss this work in further detail in the next chapter. Dubois-Ferriére et
al. [22] propose a system for combining packets in wireless mesh networks
using hard decisions and a block coding strategy.

5.6.4 Soft-decision decoding

In short, soft-decision decoding (SDD) is a forward-error correction tech-
nique; SoftPHY is an expanded interface to the physical layer. SDD uses
soft information to decode data transmitted over the channel with error-
correction coding applied. Conventional SDD physical layers then pass up
just the resulting bits using the status quo physical layer interface instead of
the SoftPHY interface. While SDD improves bit error rates over individual
links in isolation, all the problems associated with wireless network design
noted in Chapter 1 still apply.

Note that we have implemented SoftPHY .in conjunction with SDD in
the 802.11a receiver design presented in Chapter 3. In cases like these, a
soft-input, soft-output (SISO) soft-decision decoder uses SDD and passes
up SoftPHY hints as described in that chapter.

5.6.5 Turbo coding

Turbo codes [8] combine two convolutional coders in parallel with an inter-
leaver in between, which shuffles the bits input to one of the encoders. The
turbo decoder operates in an iterative manner, passing the soft outputs from
one decoder to the other in each iteration (for details, see Proakis [97]).
The use of coding and SoftPHY together is possible in most cases, be-
cause all the physical layer need provide is soft outputs from the outermost-
layer decoder. This is not the case, however, in some Turbo decoders. There,
successive iterations of Turbo decoding cause the soft information about
each bit to “converge” to hard information, leaving no information to pass
upwards via the SoftPHY interface. While this type of receiver has found
a well-known use in the extremely low SNR regimes found in deep-space
satellite communication [18], it is typically not used in the wireless networks
we consider in this work, because communicating across very long (and
hence low SINR) links reduces the capacity of the network as a whole [42].
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6

Conclusion

THIS DISSERTATION has proposed two mechanisms that together define a
new interface to the physical layer, the SoftPHY interface. The previous
chapter proposed one use of the SoftPHY interface: increasing the reliable
throughput achieved over a link. However, there are many other uses, which
we explore in this chapter.

Chapter overview. We begin with a look at two proven uses of the Soft-
PHY interface in medium access control and network coding in Section 6.1.
We then offer some final thoughts to in Section 6.2.

6.1 OTHER USES OF SOFTPHY

We now discuss three other uses of the SoftPHY interface besides increas-
ing the reliable throughput over a wireless link. As these examples illustrate,
SoftPHY has had impact on protocol design across three layers of the wire-
less networking stack.

6.1.1 Medium access control

It is well-known that maximizing the number of successful concurrent trans-
missions is a good way to maximize the aggregate throughput in a wireless
network. Current contention-based channel access protocols generally at-
tempt to minimize the number of packet collisions, allowing concurrent
transmissions only when the nodes determine that they are unlikely to re-
sult in a collision. For example, in the popular carrier sense multiple access
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FIGURE 6-1—An example transmission from S to R with three abstract sender
cases: an in-range but conflicting sender CS, an exposed sender ES, and a hidden
sender HS.

(CSMA) scheme, before transmitting, a sender listens to the channel and
assesses whether a nearby node is transmitting. If no nearby node is trans-
mitting, the sender transmits immediately. If a nearby node is transmitting,
then the sender defers, waiting for some time after the end of the on-going
transmission. Then the sender repeats the same carrier sense—defer process.

Because a receiver’s ability to decode a packet successfully depends on
channel conditions near the receiver and not the sender, CSMA is at best
a sender’s crude guess about what the receiver perceives. This guess can
be correct if the receiver and sender are close enough that they experience
similar noise and interference conditions. However, it can also prevent a
sender (e.g., ES in Figure 6-1) from transmitting a packet when its intended
destination has a lower level of noise and interference—an exposed terminal
situation. In addition, researchers have observed that receivers can often
“capture” packets from a transmission even in the presence of interfering
transmissions [24, 112, 127], suggesting that simply extending the carrier
sense mechanism to the receiver does not solve the problem. We argue that
schemes like CSMA in which nodes use heuristics (such as “carrier is busy”)
to perform channel access are too conservative in exploiting concurrency
because they are “proactive”: nodes defer to ongoing transmissions without
knowing whether in fact their transmission actually interferes with ongoing
transmissions.

To improve throughput in a wireless network, we have proposed CMAP
[123], a link layer whose channel access scheme reactively and empirically
learns of transmission conflicts in the network. Nodes optimistically assume
that concurrent transmissions will succeed, and carry them out in parallel.
Then, in response to observed packet loss, they use the SoftPHY interface
to discover which concurrent transmissions are likely to work, and which
are likely to corrupt each other. This gives rise to a distributed data struc-
ture containing a “map” of conflicting transmissions (e.g., S to R and CS
to CR in Figure 6-1). Nodes maintain the map in a distributed fashion by
overhearing ongoing transmissions and exchanging lightweight information
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with their one-hop neighbors. Then, by listening to ongoing transmissions
on the shared medium to identify the current set of transmitters, and consult-
ing the conflict map just before it intends to transmit, each node determines
whether to transmit data immediately, or defer.

Of course, not all conflicting senders are in range of each other to over-
hear and make the transmit-or-defer decision because of the well-known
“hidden terminal” problem (HS in Figure 6-1). To prevent performance
degradation in such cases, a CMAP sender implements a reactive loss-based
backoff mechanism to reduce its packet transmission rate in response to re-
ceiver feedback about packet loss. Finally, note that any scheme that seeks
to exploit the exposed terminal opportunity shown in Figure 6-1 must cope
with link-layer ACKs from R to S being lost at S due to a collision with
ES’s transmission. CMAP tolerates ACK losses with a windowed ACK and
retransmission protocol.

In recent work [123], we present CMAP’s performance improvements
in a large 802.11a wireless network testbed using commodity hardware to
approximate the functionality provided by the SoftPHY interface.

6.1.2 Forwarding in a mesh network

SoftPHY has the capacity to improve the performance of mesh network
routing-layer protocols such as opportunistic routing [12] and network cod-
ing. Using PPR, nodes need only forward or combine the bits likely to be
correct in a packet that does not pass checksum, thus improving network ca-
pacity. Rather than use PP-ARQ, the integrated MAC/link layer that imple-
ments ExOR or network coding can directly work with SoftPHY’s output.
Alternatively, PP-ARQ could operate in the “background” recovering erro-
neous data, while the routing protocol sends the correct bits forward. Katti
et al. take the former approach [64], integrating network coding with an op-
portunistic routing protocol that forwards only bits that SoftPHY labels as
“good.”

6.1.3 Multi-radio diversity

SoftPHY can improve the performance of multi-radio diversity (MRD)
schemes [81] in which multiple access points listen to a transmission and
combine the data to recover errors before forwarding the result, saving on
retransmissions. Avudainayagan [4, 130] et al. develop a scheme in which
multiple nodes (e.g., access points) exchange soft decision estimates of each
data symbol and collaboratively use that information to improve decoding
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performance. For this application, SoftPHY hints provide a way to design a
protocol that does not rely on the specifics of the physical layer, unlike this
previous work. Thus, with SoftPHY, we may be able to obtain the simpler
design and PHY-independence of the block-based combining of MRD [81],
while also achieving the performance gains associated with using physical-
layer information. Woo et al. [131] propose a system for combining symbols
from multiple receptions of a packet at different wireless access points using
maximal ratio combining [97] of the soft information of each symbol.

6.2 FINAL THOUGHTS

In this dissertation, we started from an observation that in many wireless
systems, bits in errored packets do not share fate. We then progressed to de-
scribe the design, implementation, and experimental evaluation of systems
that use the SoftPHY interface (Chapter 3) and postamble-based decoding
(Chapter 4). The SoftPHY interface is a small (in implementation complex-
ity) modification to the physical layer to compute confidence information
about each group of bits passed up to higher layers. Postamble-based de-
coding scheme recovers bits even when a packet’s preamble has been cor-
rupted. The SoftPHY interface and postamble-based decoding help higher
layers perform better, as shown in Chapters 5 and the current chapter. Chap-
ter 5 introduced our first application of the SoftPHY interface, PP-ARQ,
which shows how a receiver can use this information together with a dy-
namic programming algorithm to efficiently request the sender to re-send
small parts of packets, rather than an entire packet. Finally, in this chap-
ter, we have surveyed a variety of protocols that benefit from the additional
information that the SoftPHY interface provides.

We have implemented all of the designs from Chapters 1-5 in three dif-
ferent radio systems: IEEE 802.15.4 (“Zigbee” low-power wireless), IEEE
802.11a/g (“WiFi” OFDM local-area networking), and an uncoded DQPSK
system. Our implementations are described in the above-referenced chap-
ters.

We have evaluated components on the GNU Radio platform for
802.15.4, the Zigbee standard, and evaluated the components and system
in a 31-node wireless testbed. Our results show a 2.1X improvement in
throughput over the status quo under moderate load.

We believe that SoftPHY has the potential to change the way physical
layer, link, and network protocol designers think about protocols. Today,
wireless physical layer implementations employ significant amounts of re-
dundancy to tolerate worst-case channel conditions. If noise during one or
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more codewords is higher than expected, existing physical layers will gen-
erate incorrect bits, which will cause packet-level checksums to fail and
require retransmission of the whole packet. Since interference fluctuations
are often large, and the penalty for incorrect decoding is also large, physi-
cal layers tend to conservatively include lots of redundancy in the form of a
high degree of channel coding or conservative modulation. Similarly, MAC
layers tend to be quite conservative with rate adaptation because the con-
sequences of errors are considered dire. The mind set seems to be that bit
errors are undesirable and must be reduced to a very low rate (though elimi-
nating them is impossible). As a result, they operate with comparatively low
payload bit-rates.

The SoftPHY interface reduces the penalty of incorrect decoding, and
thus for a given environment allows the amount of redundancy to be de-
creased, or equivalently the payload bit-rate to be increased. Put another
way, with SoftPHY it may be perfectly fine for a physical layer to design
for one or even two orders-of-magnitude higher BER, because higher layers
need no longer cope with high packet error rates, but can decode and recover
partial packets correctly.
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