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Abstract

Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel-
efficient vehicles, which use external sensory information and powertrains with mul-
tiple operating modes in order to increase fuel economy. Their main characteristic
is that the decision to charge and discharge the battery is made in part by using a
prediction of future road conditions. The increasing presence of GPS navigational
systems in the standard feature sets of the modern vehicles suggests that path pre-
dictive methods applied to HEVs constitute one of the most promising directions
towards the solution of serious problems of our era, such as the energy problem, the
increasing cost of oil, and the greenhouse gas emissions. In the current project we
are given a route and an HEV simulation model, and we aim to minimize the fuel
consumption of the vehicle along the route. Towards this direction, we adopt a novel
way of decomposing the route into a series of route segments connected to each other
and linking the origin to the destination. For each route segment, the road grade,
the segment length, and the nominal speed are available. Then, the main idea of our
method is to prescribe those set-points of the state of charge of the battery for each
road segment, that result in the most fuel efficient travel between the origin and the
destination.
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Chapter 1

Introduction

The increasing global need of energy, the decreasing sediments of oil, and the green-

house gas emissions are three of the most alarming problems of the contemporary

world. Combining the internal combustion engine of a conventional vehicle with the

battery and electric motor of an electric vehicle, Hybrid Electric Vehicles could be a

drastic solution to all the above concerns, given that they are environmentally-friendly

vehicles that can be two or three times more fuel-efficient than conventional vehicles.

At the same time they offer low emissions, with the power, range, and convenient

fueling of conventional vehicles, and they never need to be plugged into an external

battery charger. Instead, to recharge the battery different methods are employed,

such as converting kinetic into electric energy during regenerative braking or storing

any excessive power during efficient engine operation. The inherent flexibility and

the adequate performance of HEVs make them convenient for both fleet and per-

sonal transportation, which could facilitate massive usage of HEVs towards a drastic

solution to the problems of our era.

An important trend in the design of fuel-efficient vehicles is the use of external

sensory information and powertrains with multiple operating modes, a trend that

promises significant gains in fuel economy while meeting both performance and re-

source constraints. HEVs with path-forecasting are a special case of this class of

systems, whereby the decision to charge and discharge the battery is made in part

by using a prediction of future road conditions. The increasing presence of GPS nav-



igational systems in the standard feature sets of the modern vehicles suggests that

path predictive methods applied on HEVs constitute one of the most promising di-

rections towards the solution of the energy problem, the increasing cost of oil, and

the greenhouse gas emissions.

Much of the recent research in HEV control has focused on the use of road-

condition classifiers and model predictive controllers, that estimate the upcoming

road conditions in order to decide whether to charge or discharge the battery. Though

this route-predicting information can be incorporated into the state-of-the-art HEV

control systems, the amount of computational power and memory that would be

required for these systems to effectively utilize it, may be impractical. For instance, a

classifier system would require a sizable set of classifications to sufficiently represent

all of the possibilities of road characteristics over a long horizon, and a predictive

controller would require a significant amount of computational speed in order to

make decisions within an acceptable time frame. Though on-board computing power

is growing, it is still not sufficiently fast enough to address the above challenges.

In this project, we seek to reduce the computational complexity of controlling

HEVs by using Bellman's Dynamic Programming (BDP) and make the on-board

procedure quicker by realizing most of the control offline [11], [10]. Specifically we

are given an HEV simulation model and we consider a route which is decomposed

into a series of route segments connected to each other and linking the origin to the

destination. We present a novel way of optimally segmenting the route into segments

of unequal length in order to increase the efficiency of our algorithm. For each route

segment, the road grade, the segment length, and the nominal speed are available.

Our main objective is to prescribe, using dynamic programming, those set-points of

the state of charge of the battery for each road segment, that result in the most fuel

efficient travel between the origin and the destination.

The rest of the current thesis is organized as follows:

* In chapter 2 we discuss a range of existing approaches for optimally controlling

hybrid electric vehicles.



* In chapter 3 we give the necessary background on dynamic programming.

* In chapter 4 we present the simulation model we used and we describe our

method in detail.

* In chapter 5 we present some experiments with their results.

* Finally, in chapter 6 we summarize the conclusions and we suggest future work.





Chapter 2

A Range of Existing Approaches to

Optimally Controlling Hybrid

Electric Vehicles

Responding to the signs of the era, the global auto industry is showing an increasing

turn towards the development and improvement of Hybrid Electric Vehicles [4]. HEVs

are typically powered by two energy sources [5], an energy conversion unit, such

as a conventional internal combustion engine (ICE) or a fuel cell and an energy

storage device, such as batteries or ultracapacitors [15],[1]. The seamless integration

of these two powertrains and their corresponding components is essential in order

to preserve the vehicle's performance and at the same time achieve multiple design

objectives, such as high fuel economy and low emissions. To achieve these objectives,

the hardware configuration and the power control strategy are designed together. The

hardware configuration dictates to some extent what control strategies make sense.

Although comparing to the conventional vehicles these strategies add complexity to

HEVs , they achieve an optimal integrative operation of all the components with

undisputable fuel savings. In the following sections several existing HEV hardware

configurations and power control strategies are presented.[8]



2.1 Hybrid Electric Vehicle Configurations

The biggest distinction among hybrid configurations is whether the internal combus-

tion engine and the electric drive operate in parallel, series, or a combination of the

two. The last one is also called a split or dual configuration.

2.1.1 Series Configuration

In a series design [6], the primary ICE engine does not directly drive the wheels,

but it is connected to a generator that produces electricity and charges the battery.

Then the battery powers the wheels through an electric motor. It is clear that series

HEVs have no mechanical connection between the hybrid powertrain unit and the

wheels. The path that the power follows can be described as the following sequential

energy conversion: chemical (engine) - mechanical (generator) - electrical (battery)

- mechanical (electric motor - wheels). Despite some benefits, such as the facts that

the engine can continuously operate in its most efficient region and that we may need

no transmission, the series HEVs have some serious drawbacks, such as the fact that

they require large battery packs, the engine works hard to maintain battery charge

and the multiple energy conversions cause inefficiency.

2.1.2 Parallel Configuration

In a parallel design [5], [17], both the engine unit and the battery unit are connected

directly to the vehicle's wheels. Usually the engine unit is used alone for highway

driving and until a power threshold is reached, while the battery unit adds power

during high-demand periods, such as hill climbs, acceleration, and other. The paral-

lel configuration corrects the disadvantages of the series configuration. In addition,

the vehicle has more power because both the engine and the motor supply power

simultaneously and a separate generator is usually not needed because the motor

charges the batteries.



2.1.3 Series-Parallel Configuration

A third type which combines the benefits of both above options is the series-parallel

or split or dual configuration. The series-parallel configuration allows the engine

to directly drive the wheels and at the same time charge the energy storage device

through a generator, if needed. Both the engine and the battery can drive the car

alone, depending on the conditions. A series-parallel configuration is described in

detail in section 4.1.

2.2 General Rule-Based Control Methods

The general rule-based control strategies do not use any past or future route knowl-

edge, but they only rely on components maps and fuzzy intuitive control techniques,

in order to manage how much power is flowing to or from each component [16]. The

state of charge (SOC) of the battery, namely the stored energy divided by the maxi-

mum energy which can be stored in it, has to take values within a narrow region of

operation, in order to avoid fast corruption of the battery and the high cost for its

replacement. Very high or very low states of charge would have life-reducing impacts

on the battery. The above techniques set rules on both charging and discharging

the battery, subject to that constraint of keeping the SOC within that narrow range

which is considered safe for the preservation of the battery. For instance, in general

rule-based techniques the controller tends to bias the battery operation towards the

midpoint of the allowed SOC region, while a strategy which uses future route infor-

mation might allow complete discharging down to the lower SOC bound, because the

future road conditions, e.g. an upcoming downhill, are expected to offer recharging.

In other words, because of lack of route information, this SOC biasing within a re-

gion of safe operation is applied similarly on all the different types of cycles, although

some knowledge of the cycle of interest might suggest less conservative, but still safe

charging or discharging for maximum efficiency.



2.2.1 Charge-Sustaining and Charge-Depleting Operation

An important distinction among general rule-based contol strategies is whether they

adopt the charge-sustaining or the charge-depleting operation.

Charge-sustaining is a mode of operation, which is based on the above described

biasing around the midpoint of the safe SOC region. Specifically, the SOC fluctuates

usually within the narrow range 40% - 60%, having as general target the midpoint

50%. Discharge patterns consist of many shallow discharges which utilize only a

portion of the battery pack's chemical energy. Since charge-sustaining HEVs seldom

drive far on electric power alone, the battery pack can be relatively small, making

the vehicle more affordable, and improving efficiency by reducing weight. In a charge

sustaining HEV, the hybrid powertrain is capable of providing sufficient energy, in-

dependent of the storage device, to drive the vehicle just like it was a conventional

vehicle. The engine has to be adequately sized to meet the average power load and, if

operated under the expected conditions, will be able to maintain adequate electrical

energy storage reserves indefinitely. As long as the hybrid has fuel for the engine, the

vehicle will operate.

Charge-depleting refers to a mode of vehicle operation that is dependent on en-

ergy from the battery pack. It is the mode of operation of electric vehicles. Charge-

depleting vehicles allow their batteries to become depleted and cannot recharge them

at the same rate they are being discharged. Some HEVs (mostly plug-in HEVs)

start with a charge-depleting strategy, and switch to charge-sustaining mode after

the battery has reached its minimum SOC threshold. The hybrid power source in

a charge-depleting HEV is only able to provide recharging energy and cannot sup-

ply the necessary energy to drive the vehicle by itself. If a charge-depleting HEV

requires instantaneous power to accelerate and the hybrid power source is not capa-

ble of providing the whole amount of the needed power, the enginegenerator cannot

produce the required energy necessary to accelerate the vehicle. This system must

have additional energy from the battery to meet the power needs of the vehicle.



2.2.2 Local Optimization

Local optimization is a more systematic method which has still no-cycle knowledge,

but takes into account the instantaneous road power demands. The main idea of the

method is to assign an expected replacement cost to the battery usage and decide

how to derive for every operating point the total needed power from the two sources

in order to minimize their total cost. The total cost can be expressed as the sum

of the expected replacement cost of the energy of the battery and the cost of the

fuel that is consumed by the engine at the specific operating point. A technique

to roughly predict the fuel cost of recharging the battery could take into account

the instantaneous vehicle speed, which represents the kinetic energy that can be

recaptured later through regenerative breaking by the battery. Although this method

can be more efficient, it does not avoid completely the SOC biasing, because the

prediction of the battery recharging cost includes important uncertainties.

2.3 Route-Based Control Methods

The route-based control methods are the main object of the most recent research on

optimally controlling the HEVs. They are the most promising methods for achieving

maximization of fuel economy.

2.3.1 Pattern Recognition Approach

This approach consists of two procedures. The first procedure is an off-line classifica-

tion of all the possible driving patterns, during which an optimal tuning of significant

parameters is chosen after many simulations to represent each one of those patterns.

The parameters that are employed vary from method to method, but they usually

include the target SOC, a nominal power demand threshold and an SOC threshold to

trigger engine operation. The second procedure realizes on-board pattern recognition

based on the current and previous driving conditions [9]. Then, assuming that the

specific driving pattern will continue, the vehicle applies the optimal control tuning



that was off-line computed for the assumed driving pattern. The weakness of the

specific method is that the upcoming cycle may not coincide with the past pattern.

As a result, the current approach offers modest improvement.

2.3.2 Pattern Learning Approach

This method is also based on optimal parameter-tuning and on-board pattern recog-

nition. The difference here is that the off-board classification of driving patterns is

realized using statistical pattern learning through repetitive simulations [13], [181.

Specifically, multiple simulations are realized in order to characterize statistically the

different driving patterns. Then, a new component is added which combines the

driving environment, the style of the driver and the operating mode of the vehicle in

order to identify a driving situation, based on its statistical properties. Although this

approach is more fuel efficient than the pattern recognition method, its main draw-

back is that it requires a large amount of repeating simulations in order to obtain

representative statistical features and achieve reliable pattern learning.

2.3.3 Route Prediction Approach

This is the most recent and promising research direction towards maximizing fuel

economy of HEVs. While predicting the future driving conditions was very uncertain

some years ago given that it could only rely on doubtful and intuitive heuristics, it

has recently become possible thanks to the development of powerful systems, such as

GPS, ITS and GIS, which can provide the vehicle with the essential geographic and

traffic data. Specifically, information such as road grade, stop signs, traffic lights,

speed limits and traffic flow data can be offered to the vehicle and allow it to ef-

ficiently predict the future route. Then the predicted cycle can be used for global

optimization of the whole route. Most route prediction methods use route classifiers,

statistical traffic models [14], [8] and some form of segmentation of the entire route.

The segmentation is sometimes based on creating nearly equal-distance segments and

sometimes on forming segments with the same road characteristics or segments that



belong to the same route class. Some of the route prediction approaches realize multi-

ple parameter tunings in order to achieve the optimal parameter combinations, while

some other employ dynamic programming techniques [19], [3], [12], [7], which succeed

in significant reduction of computational cost. Dynamic programming, which was

abandoned in the past because of the weakness to predict the future route, can now

be reemployed as one of the most suitable methods to solve the global optimization

problem.





Chapter 3

Dynamic Programming- An

Essential Tool

Dynamic programming is an exact technique, which can be applied to a specific class

of problems, whose objective function represents an additive cost. Specifically, the

idea is to split the additive problem of interest into subproblems and use the optimal

solutions of the subproblems in order to compute the global optimal solution of the

initial problem [2]. Consequently, dynamic programming could be characterized as

a "divide and conquer" method. The general dynamic programming process can be

described in steps:

1. The problem is divided into subproblems. Every subproblem can be considered

as a stage of a procedure which leads sequentially to a feasible solution of the overall

problem. In other words, we can view every feasible solution of the primary problem

as a sequence of decisions taken at each stage. In the same sense, the total cost of a

feasible solution will be the sum of the costs of the partial stage decisions that led to

the specific feasible solution.

2. Every stage can be seen as a "moment" at which a new decision has to be

made. We can define the state as a summary of all relevant past decisions. The state

of every stage will affect the decisions of all the next stages.

3. Possible state transitions from stage to stage are determined. Let the cost of

each state transition be the cost of the corresponding stage decision.



4. A recursive cost function is defined, which starts from the terminal state and

moves towards the previous states (backward recursion). This function can be called

"cost-to-go" function, because it expresses the cost needed to move from the nth state

to the terminal state N+1. The "cost-to-go" function for the terminal state is fixed.

Let us consider the following optimization problem

min F(u) (3.1)
uEUN

where u the decision variable over which we wish to minimize the additive cost func-

tion F. The feasible set UN can be either discrete or continuous and the cost function

F either linear or nonlinear. Let us assume that the problem is physically divided

in N stages (Fig. 3-1), at each one of which a new quantity is added to the cost

function, and let u be an N dimensional vector whose components ul, U2, ... , UN E U

represent the decisions that should be made at each stage. According to the idea of

the Dynamic Programming we can consider N subproblems based on the N stages.

Then the optimal solutions of the subproblems will be used sequentially in order to

compute the optimal vector u.

To be more specific, we define a recursive cost function

J*(x,) = min {J*(Xn+l) + wn--n+l,u~} (3.2)
unEU

J*(xn) = min {J* (f(xn un)) + wn-n+l,u,} (3.3)
unEU

where xn+l = f(xn, un) the state of stage n + 1 which summarizes all the already

taken decisions (past decisions) in stages n+ 1, n+2, ...N, u n e U the control variable,

namely the decision that should be taken at stage n, f a function that gives us the

state of stage n+ 1 if we know the state x, of the previous stage n and the decision un

taken there and finally Wn-,n+l,~4, the cost to move from stage n to stage n + 1 when

the decision taken at n is Un. The sum of all the costs w_+nl,u, nI = 1,2, ..., N, is

the value of the objective function F. The recursion that Equation (3.3) represents is



. I { ((f x Ir)) 4 , -- .

=fixed

2

n •+1

N+1

Figure 3-1: Description of Bellman-Ford algorithm.

called Bellman-Ford algorithm. Explaining the above formulas in words, the optimal

cost J*(Xn) of every subproblem and every stage n is computed by minimizing over

all the sums of the optimal cost-to-go function J*(xn+1) at state n + 1 plus the cost

to move from state n to state n + 1, for all the possible decisions un that can be taken

at stage n. It is clear that the optimal solution u of the primary problem, that is the

one that results in the minimal cost to travel from the initial to the final state, will

be the sequence of the decisions un, n = 1, 2...N that led to the value J*(xi).

In case that the feasible set is continuous, its quantization is necessary in order

to make the state-space finite and tractable.





Chapter 4

Detailed Description of the

Method

The review presented in chapter 2 indicates some of the weaknesses of the methods

that have already been developed to optimally control hybrid electric vehicles. As

we saw there, general rule-based control strategies offer noticeable but still modest

fuel efficiency results. In pattern recognition methods, the usage of past driving

conditions as a precursor of the future is often misleading and can reduce their effi-

ciency. On the other hand, pattern learning approaches are more fuel efficient, but a

considerable computational price is paid. Route prediction approaches are the most

recently studied and most effective HEV controlling methods so far. We seek to

develop a method of this kind, which applies the dynamic programming algorithm

on a conveniently segmented route. The contribution of our method is exactly this

novel segmentation, which is implemented in a way that increases the effectiveness of

dynamic programming.

4.1 Necessary Background

Before we proceed to the formulation of our problem, it is necessary to familiarize

with the configuration of the hybrid electric vehicle whose operation we are interested

in optimizing, and relate this configuration to the scope of our problem.



APPS - accel. pedal position sensor
BPPS - brake pedal positio
VSC - vehicle system cont
TCM - transmission contro
BCM - battery control modi
O.W.C. - one way clutch

en

PRO

re VSC

wt

en

Figure 4-1: Series-parallel powertrain system.

In Fig. 4-1 we can see a typical series-parallel powertrain configuration with

its control system. The basic components of this configuration are the engine, the

battery, a power split device called planetary gear set, a generator and a motor. The

engine is connected to the generator through the planetary gear set, while the battery

is connected to the generator and the motor and can be recharged or discharged by

both of them. The planetary gear set splits the power produced by the engine and

transfers part of it to drive the wheels, and the rest to the generator to either provide

electric power to the motor or to recharge the battery.

In order to capture all possible operating modes and integrate the two power

sources (engine, battery) to work together seamlessly and optimally, and meet the

driver demand, a hierarchical and sophisticated vehicle control system is needed

(VSC). Inherent in this controller is a logical structure to guide the vehicle through its

various operating modes and a dynamic control strategy associated with each operat-

ing mode to specify the vehicle demands to each subsystem. As shown in Fig. 4-2, the

controller takes as inputs the environmental conditions, the driver's demands and the

current state of the vehicle, and gives as outputs the torque and speed commands for

the several components. Then, the operation of the powertrain system under these

commands must result in optimal fuel efficiency and desired performance.

.1-1.



Figure 4-2: HEV simulation model.

In the case of our controller, the driver's demand and the environmental conditions

inputs are included and summarized into a speed model and a value for the road grade.

Both will be inserted to the controller externally. On the other hand the current state

of the vehicle passes directly from the powertrain outputs back into the controller and

can be adequately described by the current SOC, the current engine speed and engine

torque, and the current motor speed and motor torque. In order to achieve optimal

fuel economy, what we mainly want to control are the transmissions from charging

to discharging mode and the durations of charging and discharging periods during

the trip. Ideally, we would like to prescribe the SOC of the battery at every moment

of the trip. The first challenge of this problem is that the trip is continuous and

the moments infinitely many, so it is impossible to prescribe completely the SOC

trajectory of the trip. Consequently, we choose to decompose the route into segments

and try to control the SOC at the end of each one of those segments.

4.2 Brief Statement of the Problem

4.2.1 Notation

We are given a route between an origin (0) and a destination (D), which is decom-

posed into a series of route segments connected to each other and linking the origin

to the destination (Fig.4-3). Let the route be decomposed into N segments. For



O

Figure 4-3: General problem - route segmentation.

each road segment i, i = 1, 2, ..., N, the average road grade gi, the average speed

vi and the segment length 14 are available. We assume a predicting model vi(t) of

the vehicle speed trajectory along the route based on the speed limits, the length 14

and the road type. Let wi be the fuel consumption along the ith segment, in other

words the segment's cost. Let also SOCi and SOCi+ 1 be the state of charge of the

battery at the beginning and the end of the ith segment respectively. It is obvi-

ous that wi depends on the length li, the grade gi, the vehicle speed vi (t) and the

SOC at the edges of the segment (SOCi, SOC+1). It also depends though on the

current vehicle state, which includes the engine speed and torque (Weng(i), Teng(i))

and the motor speed and torque (wm(i), Tm(i)) at the entrance of the ith segment.

Hence, wi can be written as a complicated nonlinear function of all these parameters:

Wi (1, gi, vi(t), Weng (i), Teng (i), U), (i), TMWi), SOCk, SOC+1).

4.2.2 Goal

Our goal is to minimize the total fuel consumption along the route:

N

min J= wi (14,g i,vi(t), Weng o(i), Teng(i),wm(i),Tm(i),SOC, SOCi+l), (4.1)
SOCs

i=1

subject to SOCmin < SOCj • SOCmax



where J will be the objective function, SOCi+1, i = 2, 3, ..., N+1, the control variables

of our optimization problem, as explained in section 4.1, and SOCmin, SOCmax the

minimum and the maximum value that the state of charge can take (section 2.2).

Therefore, our main objective is to create a controller capable of prescribing the set-

points for the SOC at the edges of each road segment, which result in the most fuel

efficient travel between the origin and the destination.

The second challenge of our problem is the fact that J is a very complicated non-

linear function. Consequently, we have to deal with a difficult nonlinear constrained

optimization problem, for which we need to apply one of the most powerful tools of

nonlinear optimization, namely dynamic programming.

4.2.3 Controller

As already mentioned in section 4.1, we need to build a hierarchical and sophisti-

cated controller (Fig.4-4). The controller is composed of two levels: a high-level

controller which plans the trip, by prescribing the SOC at the end of each road seg-

ment and a low-level controller that uses the predicted trip to compute an optimal

charging/discharging strategy to make the trip fuel efficient. The road segments may

not correspond to uniform units such as miles or yards, in order to provide more

efficient aggregation of the relevant road conditions.

Within each road segment, we employ the low-level controller (section 4.3). The

low-level controller is fixed and is implemented with a high-fidelity HEV model avail-

able within PSAT (Powertrain System Analysis Toolkit). We use it like a black box,

giving it inputs and taking its outputs. Specifically the PSAT model takes as inputs

the vehicle state (wen,(i), Teng(i), wm(i), rm(i), SOCi), the grade gi, the vehicle speed

vi(t) and a desired value for the SOC at the end of the segment (SOCi+1). Using

the cycle information and the state of the vehicle, the low-level controller applies an

energy management strategy (sections 2.1,2.2) in order to efficiently track the target

SOC value (SOCi+1 ) at the end of the current segment. The output of the controller

is the consumed fuel along the segment wi. In other words the low-level controller

can give us the expected fuel consumption wi along a segment i for every possible



Figure 4-4: Controller.

pair (SOCk, SOCk+1).

The high-level controller (Sec. 4.4) can be represented by the Bellman-Ford algo-

rithm (Fig.3-1). It can be called "planner" because it plans the trip, by prescribing

the SOC at the end of each road segment. If we imagine the given route as a series

of route segments connected to each other with nodes and linking the origin to the

destination, then the control will be updated at every node. Let i be the current

node, i = 1,2, ..., N+ 1 (counting from the origin to the destination), where i = 1 and

i = N + 1 represent the origin and the destination respectively. We assume that the

segment starting from node i takes the same index i. The controller has two domains

for its state x(i), the node i itself and the state of charge SOC(i) at the same node.

Furthermore, at node i the controller has one control input, the desired SOC for the



next node (SOCd(i)). So, the dynamics of the controller are given by:

x(i + 1) f (x(i), SOCd(i)), where x(i) and f a nonlinear func-
SOC(i)

tion, which generates every state from its precedent state.

After this brief analysis, it is easy to express our objective in the form of Bellman's

Equation:
J*(x) = min{ J*(f(x, SOCd)) + w}

SOCd (4.2)

J*(xf) = 0

where w is the expected fuel consumption if we travel from node i to node i + 1

and will be computed using the low-level controller. The latter equation stands for

the initial condition of our DP problem and it represents the fact that at the final

state xf = x(N + 1), that is the state at the destination, we do not need to move

any further, so the expected fuel consumption to the destination and thus the cost

function at xf are 0. Hence, we seek to construct the optimal control law SOC*(x)

that is the minimizer of Eq (4.2).

A considerable challenge of the current dynamic programming problem is the

fact that the state-space contains all possible values of (n, SOC) which are infinite,

because SOC is a continuous variable. But nonlinear optimization over an infinite

state space may be not tractable. As a solution to this problem we choose to quantize

the values of SOC in order to reduce the problem into a finite state space. Suppose

the quantization is SOC, E {SOC 1, SOC2 ,..., SOCn } with SOC1 < SOC2 < ... <

SOCn , then every node i is associated with all possible quantization values as shown

in Fig. 4-5. As a consequence, the number of all possible values that the expected

fuel consumption for each segment can take, is equal to the amount of all possible

combinations (SOCi, SOCi+I), with SOCi and SOCi+I1 quantized. The number of all

these possible combinations is obviously n2 and thus the expected fuel consumption

can take n2 different values {w w, ...- , w n2.
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Figure 4-5: SOC quantization.

4.3 Implementation of Low-Level Controller

As already mentioned in the previous section, the low-level controller that we used is

a high-fidelity HEV model available within PSAT. PSAT takes as inputs the average

grade gi, the vehicle speed vi(t), the SOC at the beginning of the current segment

(SOCi) and a desired value for the SOC at the end of the segment (SOCdi) and gives

the expected fuel consumption of the segment as an output. While the average grade

is a known constant and the SOC can only take n specific values, the speed trajectory

that the vehicle will follow along the segment is not fixed. Consequently, it is our

responsibility to create a reliable predictive speed model, based on the knowledge we

have about the length and the average speed of the segment. In this section we first

describe the PSAT model that we utilized and then we explain how we came up with

a predictive speed model.

4.3.1 PSAT Model

PSAT stands for Powertrain System Analysis Toolkit. It is an easy-to-use simulation

tool developed by Argonne under the direction of Ford, General Motors, and Daim-



lerChrysler and with the support of the U.S. Department of Energy. PSAT simulates

vehicle fuel economy and performance in a realistic manner, taking into account tran-

sient behavior and control system characteristics. A driver model follows any given

driving cycle, sending a power demand to the vehicle controller, which, in turn, sends

a demand to the propulsion components. Component models react to the demand

and feed their status to the vehicle controller, and the process iterates on a sub-second

basis to achieve the desired result, similar to the operation of a real vehicle controller.

Specifically for our problem, we used the model shown in Fig. 4-6, which is based

on the Toyota Prius model. It simulates a light HEV with series-parallel configuration

(Sec. 2.1).

Figure 4-6: PSAT model.

4.3.2 Predictive Speed Model

As we already pointed out, one of the inputs we feed into the PSAT controller, the

speed transient v (t), is not directly available. The only relevant information we have

at our disposal is the length and the average/nominal speed of each road segment.

Therefore, we had to invent a reliable model, capable of predicting the speed behavior



of the vehicle. What is important in our case is not the vehicle speed itself, but the

fuel that we expect to be consumed, independently of any rational deviation from the

predicted speed. In other words, the predictive model that we created does not aim to

accurately predict the speed curve. Something like that would anyway be impossible,

given that in real-time the speed is influenced by multiple external factors, such as

the traffic, the mood and personality of the driver, the time, the day and many other.

We wanted our model to be useful in the sense that, when we use its prediction as an

input to the low level controller, no matter how realizable this prediction is, it should

result in correct values for the expected fuel consumption on each road segment.

The main idea of our prediction method follows. We assume that for each segment

the speed trajectory consists of successive constant-speed periods of short but random

duration. During these short periods, speed can take values with high probability

around the nominal speed V,,vg and with lower probability far from it. More rigorously,

consider two random variables t and v which represent respectively the duration and

the speed of each one of the assumed constant-speed periods. Both variables follow

normal distributions (Fig. 4-7) around the mean values i and vavg respectively, where

i the average time interval over which the speed of the vehicle can be considered

almost constant and vav.g the average speed of the road segment. In case the normal

distribution generates negative values for our random variable, we reject all the values

till a positive value comes up again.

p(t) P(V)

It 7
V

Figure 4-7: Normal distributions out of which the duration and the speed of constant-

speed periods are drawn.

Furthermore, we assume that the speed trajectory of each segment begins with

1Jk I

OV3 O



either the speed of the preceding road segment or with speed equal to zero, if it is

the first segment of the route. The generation of constant-speed periods stops when

the total length of the segment is exceeded. In that case, we reject the last generated

period and we replace it with a new period whose constant speed is equal to the speed

of the rejected period and its duration is derived as the time needed to traverse the

remaining length with the latter speed.

So, let (ti, vi) be the ith pair generated from the two gaussian distributions of a

specific road segment, representing the ith steady-speed period. Let also Li = E vi -ti

be the traversed length by the end of the ith period. If Li > L, where L the total

length of the segment, then the pair (ti, vi) is replaced by (L-Li-, vi). It is obvious\ V
i  

•

that this last pair leads to the end of the segment, since Li = Li-1 + L-L Vi = Lvi

Hence, creating periods of random duration and random constant speed around

the nominal speed of the segment, we generate a random and fictitious speed model

for the specific segment. If we repeat this procedure many times and compute with

PSAT the fuel that is consumed for each one of the generated models along the spe-

cific road segment, then we can find the expected fuel consumption of the segment,

by computing the average fuel of all the models. In Fig. 4-6 two sets of 5 randomly

generated speed models for two different road segments are depicted. The first seg-

ment is the initial segment on its route because it starts from standstill (Fig. 4-8(a)),

while the second follows a segment of nominal speed 60miles/h (Fig. 4-8(b)).

Although the steep changes from one value to another of the produced speed

trajectories render them non feasible in real-time, the way they are generated and

the fact that the expected fuel consumption can be derived as the average of many

different possible routes shows that, although the route prediction does not represent

accurately a single possible cycle, it can give the reliable value for the expected fuel

consumption on any road segment.

4.3.3 Off-Line Fuel Consumption Table

In the previous subsections we saw how we can compute the expected fuel consump-

tion of a road segment, using a speed predicting method and the PSAT model. Specifi-
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(a) Starting from standstill, Vv,,g = 3Omiles/h, L =1.5miles.
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(b) Following a segment with average speed 60miles/h,vavg = 45miles/h, L = 2.4miles.

Figure 4-8: Examples of predictive speed models.
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cally, we explained how we generate several random cycles based on the characteristics

of the segment and how by averaging the fuel consumption of those cycles, we can

get the expected fuel consumption for any possible cycle on this segment. This way

we create off-line a table including the expected fuel consumption for every segment

i and for every possible combination (SOCi, SOCi+1), that is a table that contains

all the values f{w, w, ... ,w 2 }w2 for i = 1, 2,..., N. This off-line procedure is essential

for the high-level controller implementation, which needs the values {w , w , ... , w 2 },

i =1, 2, ..., N in order to optimize quickly and globally the total fuel consumption.

In Fig. 4-9 we give as an example the off-line fuel consumption table of a specific

road segment. We assume a three-level quantization of the SOC, that is SOC1 E

{SOC', SOC 2 , SOC3} = {40%, 50%, 60%}, where 40% - 60% the allowed range of

the SOC values. The rows of the table represent the initial SOC of the segment i

(SOC), while the columns stand for the different values of the SOC target at the end

of the road segment (SOCj+1 ). So, for example, for initial SOC 50% and final SOC

40% the expected fuel consumption is 0.07kg.

target 1,9C

rJ2'

Figure 4-9: Example of the off-line fuel consumption table for a specific road segment.

It is interesting to notice how the numbers are related to each other. First of all, we

can see that the numbers increase as we move from bottom-left to top-right. This is

also highlighted by the increasing darkness on the increasing direction of the numbers.

This is something we expected, because for example in order to change the charge of

the battery from 40% to 60% the vehicle needs much more fuel (0.25kg) and effort

than in the case where the SOC diminishes from 60% to 40%, where less effort from

the engine and less fuel is needed (0.02kg). Another interesting relationship among

the numbers is the fact that they are diagonally almost equal, where by diagonally

this time we mean from top-left to bottom-right. This shows that for similar changes



in the SOC, e.g. in case of increase or decrease by 10% or in case of no change, the fuel

consumption values are also similar, independently of the individual values of SOCj

and SOCj+I. The only thing that matters is the difference of these two quantities.

This fact indicates that for similar SOC changes the strategy of the vehicle is the

same.

Finally, we see that for a three-level quantization of the SOC (n = 3), the possible

values that the expected fuel consumption can take on each segment are indeed n2 - 9.

4.4 Implementation of High-Level Controller

As we discussed in section 4.2, for the implementation of the high-level controller we

employ the Bellman-Ford algorithm (Fig.3-1). We also saw that in order to apply

dynamic programming to our problem, we needed to build the off-line tables which

contain the fuel values {wil, wq, ... , w,ý2} for all the segments i = 1, 2, ..., N of the

route. Having those tables ready, the dynamic programming process can lead really

quickly to the optimal solution of our problem, that is to the optimal sequence of

SOCi's that will result in the minimum fuel consumption.

Let us describe in detail the Bellman-Ford algorithm as we applied it on our

problem. In order to facilitate our description we use as example a simple route

consisting of only 3 road segments. The route is shown in Fig. 4-10.

A D

. -0 ý I"

Figure 4-10: Example of a 3-segment route.

The tables of the expected fuel consumptions for the three segments are given

in Fig. 4-11. They were built using PSAT and the predictive speed model that we



discussed earlier.

Segment1 Segment2 Segment3

Figure 4-11: Expected fuel consumption tables for the 3 segments.

The dynamic programming process that we used consists of two parts. The first

part can be characterized as a backward procedure, because it travels through the

nodes starting from the destination and finishing at the origin (Fig. 4-12(a)). Simi-

larly, the second part is a forward procedure which traverses the nodes starting from

the origin and moving towards the destination (Fig. 4-12(b)).

Let us describe the whole process analytically. Starting from the destination we

apply the Bellman-Ford algorithm. As we already mentioned, the value of the cost

function at the destination is known and equal to zero, because we are already at

the final state xj = x(N + 1), where the expected fuel consumption to reach the

destination is clearly equal to zero. Moving backwards, we compute which is the

optimal fuel consumption to travel from each one of the nodes C, B and A to the

destination D, ignoring every time all the nodes of smaller index. In other words,

we solve 3 subproblems of the initial problem, where every time a different node is

considered to be the origin, and all the nodes lying on the left of the current origin

are ignored (Fig. 4-10).

Let us describe in detail Fig. 4-12(a). As a reminder, the rows of each table

represent the initial SOC of the segment i (SOCi), while the columns stand for the

different values of the SOC target at the end of the road segment (SOCj+1).

Considering node C as the origin of our trip, the minimum expected fuel con-

sumption is computed with the expression:

J*(xa) = mmin {J*(xf) + WC-D,SOCD} = (4.3)
SOCD
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(a) First part of dynamic programming procedure - backward.
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(b) Second part of dynamic programming procedure - forward.

Figure 4-12: Dynamic programming procedure - example.
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J*(C, SOCc) = min {J*(D, SOCD) + wC-.D,SOCD} (4.4)
SOCD

But we know that J*(xf = 0), so

J*(C, SOCc) = min {WCD,SOCD} (4.5)
SOCD

which means that, for every possible SOCc we only need to find the final state of

charge SOCD which results in the minimum fuel consumption. Referring to Fig.

4-12(a), for every row of the rightmost-bottom table, we choose the cell with the

minimum value. The corresponding column of the chosen cell represents the SOCD

that minimizes the fuel consumption for the trip C -+ D and the SOCc of the

examined row. So, for example, if SOCc = 50%, the optimal SOC target is SOCD =

40% and the minimum fuel cost is w3 = 0.31, which is obvious from the highlighted

cell.

Moving to node B, we revise the same procedure. The difference here is that in

the expression

J*(B, SOCB) = min {J*(C, SOCc) + WB-.c,socc} (4.6)
SOCc

J*(x 3) = J*(C, SOCc) has now different values for each possible SOC target (SOCc).

These are the values of J*(x 3) that we already computed in the previous step. So,

for every SOCc we add to the corresponding column of the upper-middle table the

optimal value J*(C, SOCc) that we computed in the previous step, that is the value

of the colored cell of the corresponding row of the previously examined table. So,

for example, for any SOCc (40%, 50% or 60%), we add to the first column of the

upper-middle table the value 0.35, which represents the minimum fuel consumption

if we travel from C to D, starting with SOCc = 40. This way, we can compute the

minimum fuel consumption on the path B -+ C, without recomputing anything on

segment 3. All the information we needed from segment 3 is included in the values

J*(x 3) = J*(C, SOCc). Now we understand the role of the state as a summary of all

past decisions.



The lower middle table just computes the sums of its above table. As we did before,

from each row we choose and highlight the cells with the minimum values, in order

to use them at the next and final step of the backward procedure. Applying exactly

the same idea we compute the minimum fuel consumptions for the path A - B and

for every possible SOCA.

Given that A is also the origin of our primary problem, the value of J*(A, SOCA)

is the optimal fuel consumption for the whole route, that is the minimum value of

the objective function J (Eq. 4.1). So, the only thing that is left to do, is to go

back and pick from all the nodes the SOC values that compose the optimal solution.

As mentioned before, this is a forward process, given that this time we start from

the origin and move towards the destination. Fig. 4-12(b) will help us understand

this procedure. Let us assume that the state of charge of the origin A is known and

equal to 50%. We give this value as an input to the leftmost table. The row that

corresponds to SOCA = 50 is the second row of the latter table. Using the highlights

from the previous procedure we notice that the minimum value for the specific row

is met in the middle cell (0.50). This dictates the value 50% as the optimal SOCB.

Taking the value 50 as an output of the left table, we apply it as an input to the

middle table. With the same logic we keep SOCc = 40 and SOCD = 40 as optimal.

The result of the whole procedure is the sequence [50,50,40,40], which represents

the SOC values of the four nodes that result in minimum fuel consumption along the

whole route, when the state of charge at the origin is known to be SOCA = 50.



Chapter 5

Experiments-Results

After the familiarization with the techniques of our method, we are ready to present

and analyze some of its potentials. In the current chapter we present some exper-

iments in order to study how the grade information availability, the level of route

segmentation and the level of SOC quantization can affect the effectiveness of our

method. The results indicate that the method can be quite promising.

5.1 Grade Information Necessity

In this section we present a couple of experiments which prove how important it is

to employ road grade information in order to achieve higher fuel efficiency. Although

the existing digital maps do not include this information, the fact that the largest

digital map vendors (Zenrin, Tele Atlas, NavTeq) are considering to add soon grade

information to their digital maps, shows that the necessity of having this information

available is generally realized.

5.1.1 Grade Experiment 1

Let us consider the route of Fig. 5-1, where the length L is measured in miles, the

speed v in miles/h and the grade g in %. While for segments 1 and 3 we consider grade

equal to zero, for segment 2 we try five different values of grade (g = 0, 1, 2,5, 10).
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g = 0, 1, 2, 5, 10

Figure 5-1: Grade experiment route.

In Fig. 5-2 we give the fuel consumption tables of segment 2 for the five different

values of its grade. As we saw in chapter 4, the increasing darkness of the cells of

each table shows at which direction the fuel consumption augments. Also, the same

convention as before holds for the rows and the columns of every table, that is they

represent the initial and the final SOC of the segment respectively.

The five tables are diagonally lined up and emphasized with an arrow in order

to make their relationship obvious. We notice that, as expected, the fuel consump-

tion increases with the grade for all the correspondent cells. Let us try to quantify

this fuel increase. Tables 5.1 and 5.2 present in percentages the increase of the fuel

consumption of the segment for the five different values of its grade, using as refer-

ence the consumption for g = 0 and for two cases of SOC change along the segment

(40--+60 and 50--+40). The interpretation of these tables will reveal the importance

of these results. It is more than obvious that the increase rate in table 5.2 is much

larger than in table 5.1. For example, for g = 10% the increase of fuel consumption

is 173% for the case of 40--60 and 1300% for the case of 50--*40. The significance

of this is that, although for g = 0 the path 50-+40 is much more fuel efficient than

40--+60 (0.04 <K 0.26), when the grade increases the latter path becomes much more

competitive in relevance to 50--+40 (0.56 < 0.71). In other words, the bigger the grade

gets, the more likely it is for 40--+60 path to compete with 50-+40 during the process

of our optimization algorithm. For g = 0, the ratio of the consumed fuel for the two

L
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Figure 5-2: Grade increase experiment - fuel consumption tables.

paths is 4= 0.015 while it is 56= = 0.79 for g = 10. Although both ratios are smallerp t si -°° __0.126ieiti 0.--71 -

than one, the second ratio is much closer to it than the first one, which shows again

that the difference of the two fuel consumptions diminishes with the grade, and the

two values become almost equivalently competitive.

The impact of this result on our method is that, if the grade is taken into account,

we may increase fuel efficiency by considering paths which become more competitive

exactly because of the presence of a grade. In other words, if we ignore the grade

pretending that it is zero, probably the chosen paths will actually not be optimal.

The following section proves exactly that such a case can happen.

Table 5.1: Grade and fuel consumption interaction for SOC change 40-+60.

40-+60
grade fuel consumption increase

0 0.26 (0%)
1 0.32 23%
2 0.36 38%
5 0.49 88%

10 0.71 173%

Segment (g=10)

Segmenfi (g=5)

0.38 0 43

0.32 .3 .

0.57 0.02
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Table 5.2: Grade and fuel consumption interaction for SOC change 50--.40.

50*40
grade fuel consumption increase

0 0.04 (0%)
1 0.14 250%
2 0.19 375%
5 0.32 700%

10 0.56 1300%

5.1.2 Grade Experiment 2

In this experiment, we try to measure the impact on our method's efficiency of ignoring

the grade, pretending that it is zero. Let us continue with the route of the previous

example (Fig. 5-1). In Fig. 5-3 we can see the fuel consumption tables of all the three

segments for two values of the grade of segment 2, g = 0, g = 1. Using these two tables

and the method described in section 4.4, we compute the optimal SOC sequence and

the minimum expected fuel consumption along the route for the two different values

of the grade of segment 2 and for initial SOC=50. Specifically, for g = 0 we found the

optimal SOC sequence [50,50,40,40] and the minimal fuel consumption 0.5, while for

g = 1 we got [50,60,40,40] and the minimal fuel consumption 0.55. Let us assume

that, although the real value of the grade at segment 2 is 1%, we ignore it and we

consider g = 0 for all the segments. Then, the dynamic programming algorithm

will give us the results of the upper part of Fig. 5-3, which means that the SOC

sequence that the method will recommend us is [50, 50,40, 40]. Let us compute the

fuel consumption of this sequence, using the correct grade's fuel values, namely the

lower table of Fig. 5-3. The bold numbers of the later table represent exactly the

sequence [50, 50,40,40] and the expected fuel consumption for this sequence is their

sum: 0.11 + 0.14 + 0.35 = 0.6. So the error that emerges because of the grade

ignorance is a 9.0909% increase of the minimum fuel consumption as computed in

Fig. 5-3. Consequently, if we ignore the real grade of segment 2 and we set it zero, we

will recommend to the HEV an SOC sequence which increases the fuel consumption



9.0909% with respect to its optimal value. In connection to the previous section, we

see that even a small increase in the grade of segment 2 renders the seemingly less

efficient choice 50--+60 on segment 1 more competitive than 50-*50.

segment 2, v=0 semnent 3. z=0

-+ 0.60

50.- 14o = 400

060 .55 100 = 9,0909%0.55 C

Figure 5-3: Grade ignorance experiment.

It is obvious from the last two subsections that the availability of grade information

makes our method much more efficient.

5.2 Route Segmentation

In this section we present a series of experiments, which study different levels and ways

of route segmentation and evaluate their impact on our method's efficiency. Based

on the results of these experiments we can suggest some rules on how to optimally

decompose a specific route and create the novel segmentation method that we have

:0.55:



already mentioned from the beginning of this thesis.

5.2.1 Route Segmentation - Part 1

The idea of this experiment is to check how the impact of a further segmentation of a

segment changes, when the grade of the segment increases. Let us consider segment

2 from the previous sections. Our goal is to check if decomposing the segment itself

into multiple smaller segments would increase the fuel efficiency that our algorithm

achieves. The intuition suggests that the answer to this question probably changes for

different segment grades. Consequently, we repeat the experiment for five different

values of the grade of segment 2 (g = 0, 1, 2, 5, 10).

Segmentation-in-two: We start by splitting segment 2 into two new segments

of equal length. Given that the original segmentation was based on common road

characteristics, cutting into pieces of unequal length would not offer anything special.

Considering now the route of Fig. 5-1 and the new segmentation, we get the same

route with one supplementary control point (Fig. 5-4(a)). Computationally, this

means that instead of computing 9 values of expected fuel consumption for segment

2, we compute 2 .9 = 18 values corresponding to the two new segments. Using these

values we compute the optimal fuel consumption of the entire route and we compare

the results of the two segmentations in table 5-4(b). Specifically, this table presents

the total fuel consumptions of the newly segmented route for all the grade values of

segment 2, as percentages of the respective fuel consumptions for the initial three-

segment route. We see that with the increase of the grade, the percentages diminish.

For example, for g=1 on segment 2, the fuel consumed on the finer decomposed route

(Fig. 5-4(a)) is slightly improved ( 95%) but still close to the consumption of the

initial route shown in Fig. 5-1. The same percentage is much smaller (- 75%) in

the case of g=10. Therefore, we realize that the bigger the grade of segment 2 is, the

more beneficial it is to further segment it. For g=0 the percentages are sometimes

slightly above and sometimes slightly below 100%. These small deviations are a con-

sequence of the fact that the expected fuel consumptions are computed stochastically,

so statistical errors are expected to appear. The errors become almost invisible for



bigger grades, showing that the improvement that the further segmentation provides

is large enough to stay unaffected by the statistical inaccuracies.

Concluding with the segmentation-in-two, although for small values of the grade

the tradeoff between the fuel efficiency improvement and the additional computational

cost may suggest to avoid making the segmentation finer, when the grade becomes

large the fuel efficiency improvement is significant and probably the additional com-

putational cost of the finer segmentation is a worth-paying price.

S0
g = 0, 1, 2, 5, 10

(a) Segmentation of segment 2 in two pieces.

% 92=0 92=1 g2 92=5 g2=10

40 103 100 90 86 76

50 98 93 87 82 73

60 107 94 85 82 77

-E103 -95 88 83

(b) Improvement table for segmentation in two pieces. Each row
represents a different SOC at the origin of the route.

Figure 5-4: Segmentation-in-two.

Segmentation-in-four: Exactly similarly to the previous experiment, we keep

splitting segment 2 into smaller segments of equal length. The new route we get

includes two new control points (Fig. 5-5(a)). Computationally, this means that we

now have to compute 4 - 9 = 36 fuel consumption values corresponding to the four

new segments. Using these values we compute the optimal fuel consumption of the

entire route and we compare the results in table 5-5(b). As expected, the results are



A.

=..2=0 2 36

g = 1, 1. 2, 5- 10

(a) Segmentation of segment 2 in four pieces.

% gf g1 w2 2 g 2 5 g2=10

40 104 93 69 72 65

50 98 85 64 68 61

60 113 98 68 72 63

St105 92 87 71 83

(b) Improvement table for segmentation in four pieces. Each row
represents a different SOC at the origin of the route.

Figure 5-5: Segmentation in four.

on the same direction as before. Here also, the increase of the grade is combined

with fuel efficiency improvement and particularly the improvement is clearly bigger

compared to segmentation-in-two. For example, for g=10 on segment 2, the fuel

consumption reduces here by - 63%, while the correspondent percentage is 75%

when segmenting by two. Table 5.3 shows the improvement that segmentation-in-four

offers in comparison to segmentation-in-two.

Table 5.3: From segmentation-in-two to segmentation-in-four

g2 0 1 2 5 10
102% 97% 69% 82% 80%

Summarizing the current section, we conclude that the bigger the grade of a seg-

ment is, the finer the segmentation should be, in order to maximize the potentials

of our method. Nevertheless, we should never forget that increasing the segmenta-

I



tion adds significant computational cost to generating the fuel consumption tables.

Specifically, for an n-level quantization of the SOC, every new segment adds n2 new

computations of the expected fuel consumption along that segment. It is, hence,

of great importance to be able to define the optimal tradeoff between the fuel effi-

ciency improvement and the additional computational cost that a finer segmentation

would cause in the case of a segment with a large grade. We may need to employ

grade thresholds, the surpassing of which would allow us to move to the next level of

segmentation.

5.2.2 Route Segmentation - Part 2

In the previous section we studied how the grade of a segment can indicate whether it

is useful to further decompose that segment or not. In the current section we examine

how the changes of the grade and the nominal speed along the whole route should

affect the level of segmentation. In other words, the two sections present two different

approaches of the same concern, which is to define some rules according to which we

will be deciding how fine the route segmentation should be.

Employ Average Grade: With this experiment we check how much our fuel

efficiency deteriorates when we do not segment our route based on the changes of

grade, but instead we assume unique grade equal to the average grade of the whole

route. We try to track how much our results are affected by choosing this grade

uniformity.

Let us consider once more the route of Fig. 5-1, assuming though common nominal

speed for the three segments. Our goal is to check if the efficiency of our algorithm

decreases when we do not segment the route according to the grade changes, but we

consider instead one average value for the grade of the whole route. The average

grade of this route is

i=1 L g (5.1)

where L, 3 the length and the grade of the t road segment, i = 1,2,3. Using our-•= 1 Liwhere Li, gi the length and the grade of the it h road segment, Z' = 1, 2, 3. Using our



method we optimize the fuel consumption along the whole route considering its grade

uniform and equal to g (Fig. 5-6). According to equation 5.1, for g2 = 1, 2,5, 10 the

average grade of the whole route is g = 0.2,0.4,0.9,1.8 respectively.

9 =0 3g=0.2 2
2g3=0 _ 0.4

2 0.9 g=g0. 0.4

2 1.8 0.4 0.9
5 0.9 1.8

10 1.8

Figure 5-6: Non-segmented route - uniform grade of average value.

Realizing the experiment we noticed that the adoption of a uniform value for the

grade does reduce the efficiency of our algorithm. Furthermore, this efficiency deteri-

oration increases with the grade. Table 5.4 summarizes the results of the experiment.

Specifically, it presents the total fuel consumptions of the route for all the average

values of the grade, as percentages of the respective fuel consumptions for the case

where we keep the real grade values on each segment. We see that for small grade of

segment 2 (e.g. g2 = 1 =- g = 0.2) the computed fuel consumption remains the same

(100%), while if we increase the grade, the percentages increase too. For example,

for g2 = 10 we have an increase of 14% in the optimal fuel consumption compared to

the consumption that we would get if we considered separately the real grades of the

three segments.

Table 5.4: Non-segmented route - uniform grade of average value.

g2  1 2 5 10
g 0.2 0.4 0.9 1.8

100% 108% 120% 114%

The essence of these results is that, if along a part of our route the grade takes

generally small values, then we can assume uniform average grade for that part,

without serious loss of efficiency. On the other hand, if the grade presents serious

fluctuations and reaches higher values, then it is recommended to segment the route



according to the grade changes locations.

Employ Average Nominal Speed: With this experiment we check how much

our fuel efficiency deteriorates when we segment our route based only on the changes

of the grade and not on the changes of the nominal speed. In other words, we assume

unique nominal speed equal to the average nominal for the whole route and we track

how much our results are affected by employing this speed uniformity.

Let us consider the route of Fig. 5-1 with the difference that we assume constant

grade g for the whole route. Our goal is to check if the efficiency of our algorithm

decreases when we do not segment the route according to the nominal speed changes,

but we consider instead one average value for the speed of the whole route. The

average speed of this route is

3 Li (5.2)
3lL Li

where Li, vi the length and the speed of the ith road segment, i = 1, 2,3. Using

our method we optimize the fuel consumption along the whole route considering its

nominal speed uniform and equal to v (Fig. 5-7). According to equation 5.2, the

average speed of the whole route is v = 46.1194. We repeat the experiment for two

values of grade, g = 0 and g = 2.

1 . 6 1. 1.94

2 -- 2 .0 :v 46) 19 .... I

2 2

Figure 5-7: Non-segmented route - average nominal speed.

Realizing the experiment we noticed that the adoption of a uniform value for

the nominal speed does reduce the efficiency of our algorithm. Furthermore, this

efficiency deterioration increases with the grade. Table 5.5 summarizes the results of

the experiment. Specifically, it presents the total fuel consumptions of the route for

both g = 0 and g = 2, as percentages of the respective fuel consumptions for the case



where we keep the real values of nominal speed on each segment. We see that for zero

grade of the route the computed fuel consumption deteriorates slightly (102%), while

even for small increase of the grade of the route, the percentage increases significantly

(113%).

Table 5.5: Non-segmented route - average nominal speed.

g2 0 10
g 0 1.8

102% 113%

The essence of these results is that, if along a part of our route where the grade

remains constant we do not segment that part according to the speed changes loca-

tions, but instead we assume a uniform average speed, then we notice some loss of

efficiency. This loss increases with the increase of the grade and it remains greater

than zero even for g = 0. Hence, we conclude that it is prudent to always segment

our route whenever the nominal speed changes significantly.

Summarizing the current section, we conclude that whenever we meet significant

changes of the grade or the nominal speed along our route, it is meaningful to base

our segmentation on the locations of those changes. In other words, it is highly

recommended to add an SOC control point on our route wherever a speed or grade

change is located. Especially when the route grade takes generally large values, the

adoption of the above segmentation becomes even more important.

5.3 SOC Quantization

The goal of this experiment is to study how the SOC quantization affects the efficiency

of our method. Let us consider the left route of Fig. 5-6. We compute the optimal

fuel consumption for two different levels of the SOC quantization, that is for SOC, e
{40, 50, 60} and for SOCj E {40, 45,50,55, 60}. We realize the experiment for two

values of the route grade, g = 0 and g = 2. The results are shown in Fig. 5-8.



g--0 g- 2

Figure 5-8: SOC quantization

The second column of each one of the tables shows the expexted fuel consumption

of the route for the three-level quantization (SOCj E {40,50,60}) and the third

column represents the five-level quantization (SOCj E {40, 45, 50, 55, 60}). We see

that for grade g = 0 nothing really changes for the two quantizations, but when

the grade of the route increases to g = 2 it is obvious that our method becomes

more efficient. For example, for SOC at the origin equal to 50, the expected fuel

consumption reduces from 0.87 to 0.84 when we use the five-level instead of the

three-level quantization. Generally, we notice a 3% - 4% improvement of the fuel

consumption when we compare the five-level to the three-level quantization.

Therefore, with this experiment we verify as expected that a finer quantization

of the SOC values leads to higher fuel efficiency, especially for big values of the

grade. Still, there is again a concern which reminds us of section 5.2.1. Increasing

the SOC quanta from three to five, we add 52 - 32 = 16 new computations of the

expected fuel consumption along each one of the segments, that is for the specific

route 3 - 16 = 48 additional computations. It is, hence, of great importance to be

able to define the optimal tradeoff between the fuel efficiency improvement and the

additional computational cost that a finer SOC quantization would cause in the case

of a route that contains parts of significant grade. We may even choose to adopt a

mixed SOC segmentation, such as a three-level segmentation for parts of the route

40 0.57 0.57

45 0.54

s) 0.5 0.5

55 0.45

60 0.4 04

40 0.92 0.89

45 0.86

so 0.87 0.84

55 0.8

60 0.79 0.76



with small grade and five-level segmentation, for the higher grade parts.



Chapter 6

Conclusions and Future Work

In this work, we presented a new approach to optimally controlling hybrid electric

vehicles. The main advantages of the hereby presented method are that it reduces the

computational complexity of the problem by applying Bellman's dynamic program-

ming and it increases fuel efficiency by introducing new rules to optimally segmenting

the route. These rules can be summarized below:

* Add on the route of interest a new control point at each location of significant

grade or nominal speed change.

* Apply further segmentation on segments of large grade.

* Unify several segments in one, only in case of small speed changes and small

grade values. This way the computational cost may be considerably diminished,

without violating optimality.

Exactly this novel way of segmenting the route of interest is the main contribution

of the current work. Additionally to the above rules, other rules concerning the SOC

quantization can be considered, in order to boost the potentials of our algorithm.

Finally, the widely realized but still not less important result that the availability of

grade information is essential for the efficiency of the route-based control methods,

is one more small contribution of the current thesis, in the sense that the multiple

proof of a single conclusion by many different works makes the conclusion stronger.



Future work should include the following:

* Define specific grade thresholds, the surpassing of which would allow moving to

the next level of segmentation of a single segment.

* Define specific grade thresholds, the surpassing of which would allow moving to

the next level of SOC quantization.

* Define specific grade and speed change thresholds, below which several segments

can be unified.

* Develop an improved model of vehicle speed prediction.

* Introduce a feedback system to ensure the high level controller's robustness.

Apart from the above, many different directions of future work are recommended,

considering the potentials of the broader field of route-based control methods.
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