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Abstract

The research described in this thesis is a portion of a larger project within the Pho-
tonic Systems Group at MIT to design Compact Optoelectronic Integrated Neural
(COIN) coprocessors [13]. The choice of photopolymers is critical in determining
the performance of COIN processors as we look at ways to increase the diffraction
efficiency.

The focus of this research was to optically characterize Polygrama Green, a pho-
topolymer that is sensitive to green light (514 nm). We were able to plot diffraction
efficiency versus the exposure energy density for a series of gratings. We found the
maximum diffraction efficiency to be that of the 678 mJ/cm2 grating with a value of
29.5%. We were able to fit the data to a sin 2(x) curve with a X2- value of 20.79. We
concluded that this somewhat high X2-value is due to our low number of data points.
However, using Kogelnik's equation and the measured diffraction efficiency of each
grating, we were also able to calculate the An, of each grating.

This analysis shows that Polygrama Green seems to be a promising candidate for
the photopolymer used in subsequent optoelectronic neural network applications.

Thesis Supervisor: Professor Cardinal Warde
Title: Department of Electrical Engineering and Computer Science





Acknowledgments

I would like to thank my thesis advisor, Professor Cardinal Warde, for all of his

invaluable assistance, time and support. I would, also, like to thank Bill Herrington

for working directly with me and showing me how to make things happen in the lab.

Bill's direction and assistance were critical to my being able to complete this thesis.





Contents

1 Background 13

2 Diffraction Gratings in Polygrama Green Photopolymrner 17

2.1 Theory ....... ............................ ...... 17

2.2 Finding the maximum diffraction efficiency: Experimental Setup . . . 24

2.3 Measuring the Diffraction Efficiency of the Diffraction Grating . . .. 26

2.4 Experimental Results . ......................... . 27

3 Conclusions 31





List of Figures

1-1 View of a COIN co-processor neuron [6] . .... .......... . 14

2-1 Two plane waves intersecting at an angle 0 at the point r [12] . . .. 18

2-2 Diffraction grating set up . ...................... . 25

2-3 Configuration for grating readout . .................. . 27

2-4 Data fitted using nonlinear fitting program . . . . . . . ...... 29





List of Tables

2.1 First order diffraction efficiency for fabricated gratings . . . . . . . . 27

2.2 Power of diffracted orders for fabricated grating (all powers are in mW) 28

2.3 Data from nonlinear fitting - Asin 2 (ceE) ... . . . . . . . ... . 28

2.4 Calculated values for An . ....................... . 28





Chapter 1

Background

The research described in this thesis is part of a larger project within the Photonic

Systems Group at MIT whose aim is to design Compact Optoelectronic Integrated

Neural (COIN) coprocessors [13]. These coprocessors will operate using neural net-

work type methods employing the light emission properties of gallium arsenide and

the processing properties of Silicon VLSI circuits to provide a high density 2D array

of pixels (neurons). The effectiveness of these coprocessors has been tested. Cur-

rently, research is being done to observe the coprocessor's capability to synthesize

and analyze large, parallel data sets, through the interconnections made between the

different processors. Each processor consists of a sheet of photodetectors, a sheet of

threshold electronics, a sheet of Vertical Cavity Surface Emitting Lasers (VCSELs),

and a hologram array (see Figure 1-1). The Bragg grating of one coprocessor is sep-

arated from the array of photodetectors of the next coprocessor by a spacing plate

which consists of a thin glass spacer. [6]

The setup of the coprocessors which consists of arrays of each component of the

coprocessor allows for nearest neighbor communication which aids in the coprocessor's

ability to perform optical transfer functions at the request of the system supervisor

or independently in unsupervised learning.

When an optical signal is sent to one of the coprocessors, the signal is first detected

by the photodetectors. If the signal is large enough, an electronic signal is passed on

by the threshold electronics to the VCSELs. This signal is then directed by the
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Figure 1-1: View of a COIN co-processor neuron [6]

hologram through the Bragg grating and through the spacing plate to the detectors

of the next processor. Currently, a planar hologram is used to direct the transmitted

signal. The Group's goal is to observe the advantages and efficiency of using a bead

or droplet of photopolymer as the holographic medium. The motivation for this idea

rested in both the bead's ability to act as a hologram in causing the diffraction of

the incoming signal and the droplet's refractive lens properties which would focus the

diverging light from the VCSELs to a specific point which could then be detected

by the photodetectors in the following plane of the coprocessor. If effective, this

method would provide a relatively cheap way to increase the diffraction efficiency of

the hologram array. [6]

It is clear that the choice of photopolymer is critical in determining the per-

formance of COIN processors. Bragg gratings recorded holographically in Aprilis

photopolymer have been shown to display first-order diffraction efficiencies as high

as 95% in the transmission mode [7]. However, this photopolymer tends to be costly

and the design of the interconnect elements is limited by the glass plates that lam-

inate the photopolymer. The ultimate goal is to achieve high diffraction efficiencies

by depositing the holographic layer directly onto the VCSELs. Thus, there is a need



to investigate new holographic materials[6].

There is a new liquid photopolymer manufactured by Polygrama [15]. As a liquid,

it is possible to coat the VCSELs and then write the interconnect elements over the

VCSELs. Coating the VCSELs, allows us greater system design flexibility. It allows

complete control over the distance between the holographic interconnects and the

photodetectors on the target plane and the distance between the VCSELs and the

interconnect elements. This is necessary due to the large spread of light from the

VCSELs.[6]

The focus of this research was to optically characterize Polygrama Green, a pho-

topolymer that is sensitive to green light (514 nm). In this thesis, we will describe the

experimental setup used to find the maximum diffraction efficiency of a diffraction

grating written in the Polygrama Green photopolymer while varying the exposure en-

ergy density. We will also show a relationship between the diffraction efficiency and

both the exposure energy and the refractive index modulation. We then will report

our results and provide an analysis of the data. We will conclude with an outline of

possible next steps.

For this thesis effort we also investigated using the Lummer-Gehrke Interferometer

to determine the refractive index but found that our results were inconclusive due to

poor resolution of the fringes. Hence, this work is not presented.





Chapter 2

Diffraction Gratings in Polygrama

Green Photopolymer

In order to optically characterize the photopolymer, we worked to find the maximum

diffraction efficiency of a diffraction grating written in the photopolymer. In this

chapter we will first describe the theory needed to understand the setup and analysis

of the experiment. We will start with the theory behind diffraction gratings and de-

termine a relation between a grating's diffraction efficiency and its index of refraction

modulation. We will then outline the setup of the experiment and then report our

results and analysis.

2.1 Theory

One goal of the group's research is to write a hologram inside a bead or droplet of

a photopolymer. Therefore, we strove to quantify the Polygrama Green's ability to

record diffraction patterns. We felt that this information would aid in the groups'

final assessment as to whether they should continue to use this photopolymer in their

research. With this aim in mind, we recorded several diffraction gratings using the

photopolymer and then used our measurements of the grating with the maximum

diffraction efficiency to calculate the grating's index of refraction modulation, An.

Kolgelnik's coupled wave equations were used to derive a relationship between the



efficiency and An.[14]
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Figure 2-1: Two plane waves intersecting at an angle 0 at the point r [12]

We will now describe a method of recording a diffraction grating. If two beams

are illuminating a surface, the two beams will interfere where they overlap. In this

derivation we will only focus on the electromagnetic wave's electric field, understand-

ing that the wave's magnetic field can be found using Maxwell's equations. If we

have two monochromatic electromagnetic waves with the same wavelength we have

electric fields described by the following equations:

E1 = Eicos(ki-r - wt - 0(t))rj (2.1)

E2= E2cos(k 2 .r - wt - 02(t)) 2 (2.2)

where E1 and E2 are the amplitudes of the electric fields, k, and k2 are the spatial

frequencies of the electric fields, and w is the angular frequency of the waves. The

vectors, rf and ri2 , are the unit vectors which point in the direction of propagation of

the electric field waves. Let us assume that the vectors of propagation are angularly

separated by an angle 20. This can be seen in the Figure 2-1. Upon evaluating the

argument of the cosine functions of E1 and E2 at the observation plane which is a

distance r from the starting position of the waves, the expressions for the electric



fields become as follows:

El = Eicos(kjxrcos(O) - kjlrsin(0) + wct - 01(t))re

E2 = E2cos(k 2•rcos(0) - k2 rsit(O) - wt - 0(t))e2.

(2.3)

(2.4)

At the observation plane the electric field intensity is described by the time-averaged

square of the waves' sum:

I = < E + E >2 = < E1 >2 + < E 2 >2 + 2 < E 1 -E2 >

b 2

(2.5)

(2.6)

where b can equal either 1 or 2 and

2 < El -E2 > = 2 < EiE 2cos(kircos(O) - klyrsin(O) + wt - 0(t))

-cos(k2xrcos(O) - k2yTrsin(O) - wt - (0 2)(t)) >< el 2 >

= E1 E2 < cos((ki - k2).r + 0 1(t) - 0 2 (t)) >< rl' r2 > . (2.7)

In order for interference to occur, the waves must be mutually coherent. One of the

conditions of mutual coherence is:

01(t) - (2 (t) -- Oa (2.8)

where Oa is a constant. If this condition is met, looking at the interference term

(Equation 2.7), we see that a maximum in the intensity of the interference pattern

occurs when the following condition is true:

cos((ki - k2).r + Oa) = 1 (2.9)

where

ki = -kisin(O)x + kicos(O)z (2.10)



k2 = k2sin(0), + k2 cos(O)i.

Consequently, the maximum in intensity occurs when

(ki - k2 )-r = 2mTr. (2.12)

Upon evaluating the dot product, one finds the following:

-kiSizn(O)x + kicos(O)z - (k2sir(O)x + k2COS(O)z) = 2m7r. (2.13)

However, because the waves are monochromatic and have the same spatial frequency

ki = k2 = k (2.14)

the intensity maxima will occur when the following condition is true:

-2ksin(0)x = 2mTr. (2.15)

It is evident from this equation that the fringe pattern of this grating is as follows:

(2.16)Ax =m+1 - Xm =- 2in()
2sim(O)

One can see from Equation 2.15 that the maxima in the intensity of the interference

pattern occur sinusoidally. Therefore, following this setup one will be able to create

a refractive index diffraction grating [12], with a grating vector:

27i
2x (2.17)

In order to find the index of refraction modulation, An, of a diffraction grating,

let us first model the diffraction grating. Let us assume the grating is read out with a

plane wave of wavelength A and amplitude A1 . Understanding that the variations in

the path of light through the grating are caused by variations in the refractive index,

we can describe the grating by its index of refraction as a function of position along

(2.11)



the grating.

Let us now say that the index of refraction, written with its fringes running per-

pendicular to the z-axis, will be described by the function:

n = no0 + nicos(Kz) (2.18)

where K = 2,A"

Let us once again describe an electromagnetic (EM) wave by its electric field. An

EM wave impinging upon the grating will be diffracted by traveling through a region

where the refractive index of the material changes. Let us assume that the wave

vector of the incoming wave has both an x and z component that is described by the

following:

k, = alx + b1 2. (2.19)

Employing the law of conservation of momentum in the system, we see that because

the incoming wave has no y component neither should the diffracted wave. Conse-

quently, we can conclude that the wave vector of the diffracted wave also lies in the

xz-plane and can be described by the following:

k2= a2 :^ + b2 ^. (2.20)

Therefore in the presence of the grating, the total electric field can be described by

the following equation:

E = Alexp(iwt - kl.r) + A 2exp(iowt - k2.r). (2.21)

For the above equations, A1 and A2 represent the amplitudes of the incoming and

diffracted waves respectively, while k, and k2 represent the wave vectors of both the

incoming and diffracted waves, respectively.

Let us assume that the diffraction pattern is infinite along the z-axis. With this

assumption, one is able to remove the potential z dependence of the amplitudes A1

and A2 . One can see that this conclusion is valid if one considers the translational



invariance in the z-direction of the system introduced by the grating's assumed infinite

length. In order to obtain a relationship between the incoming and diffracted electric

field amplitudes and the refractive index of the diffraction grating, one can apply the

wave equation
02

(V2 + 2)E = 0 (2.22)
c

to the total electric field in the presence of the diffraction grating. Applying the

wave equation to the total electric field and using the description of n found in

Equation 2.18 one finds:[14]

P2 2
dj=1,2( -2iaj)[(Aj)exp[iwt-ajx-biz]] = - c- [n o2 +n•cOs2(Kz)+2nonicos(Kz)].

(2.23)
We can neglect both the rn1

2 and terms because they are significantly smaller

than the term, 2nonicos(Kz). With these assumptions, Equation 2.23 becomes the

following: [14]

- 2ia1 [Aiexp[i(wt - alx - biz)] - 2ia2 [A2 exp[i(W0t - a2 x - biz)]
U2

= c2 (2nonicos(Kz))[Alexp(i(wt - alx - biz))

+ A2exp(i(wt - a2x - b2z)). (2.24)

If we write cos(Kz) in its exponential form and cancel the exp(iwt), Equation 2.24

becomes as follows:

- 2iaj[Alexp[i(wt - aix - biz])] - 2ia2[A2exp[i(Wt - a2x - biz)]
02

= c2 (non 1(exp(iKz) + exp(-iKz))[Alexp(i(wt - alx - biz))

+ A2exp(i(Wt - a2 x - b2 z)). (2.25)

If we multiply this equation by either exp[i(aix + biz)] or exp[i(a 2x + b2 z)], and



employ Fourier's theorem [5],we obtain:

f exp[-ik.r] = 6(k). (2.26)

One comes up with the following differential equations:

d A1dA = -i/3A 2exp[-iAax]
dx

dA2dA2 = -i/32Ajexp[-iAax]
dx

(2.27)

(2.28)

where for n=1,2, the following holds true:

73 - rn1
Acos0,

21r
Aa = 2-no(cos02 - cos01)

A

(2.29)

(2.30)

01 and 02 are the angles of both the incident and diffracted beams measured relative

to the xy-planes of maximum refractive index and 32 = 31 + K. Because we have

assumed that the diffraction grating is infinite in the z direction, we can assume that

the diffracted beams will obey the Bragg condition: 01 = -02. At the Bragg angle,

Equation 2.27 and Equation 2.28 become

dA1
dx -i3 1 A 2

dA2

dx = -i3 2A 1

(2.31)

(2.32)

where 01 = 32 at the Bragg condition.

are as follows:

The solutions to these differential equations

(2.33)Al(x) = Ai(0)cos(3x) - iA2(0)sin(f3x)

23



A 2 (x) = A 2(O)cos(fx) - iAj (O)sin((x) . (2.34)

If a plane wave is incident upon this grating at x = 0, because A 2 (0) = 0, the equation

for the incident and diffracted waves become:

Ai(x) = AI(0)cos(3x)A 2(x)= -iAl(0)sin(fx). (2.35)

Using the definition for the diffraction efficiency evaluated at the edge of the grating

in the x-direction, (x = L), we obtain:

SA_2 (2.36)

Consequently, it follows that:

1= J(L)12 = sinr2(/L). (2.37)
|A1(0)12

As a result, we have found a relation between the diffraction efficiency q and the An

of the grating, where L is the length of the grating in the x-direction [14].

2.2 Finding the maximum diffraction efficiency: Ex-

perimental Setup

In this experiment, we created several transmission gratings at different exposure

energy densities using the Polygrama Green photopolymer. In order to write the

diffraction grating, we used the 488 nm line of an Argon Ion Laser. In order to control

the slides' exposure to the laser beam, a shutter was placed in the path of the beam.

We set up the remainder of the apparatus while the shutter was open. After traveling

through the shutter, the laser beam impinged on a mirror which redirected the beam

by 90 degrees. Then the beam impinged upon another mirror which redirected the

beam by 90 degrees, causing the beam to travel the length of the table.



Beam

lirror

Figure 2-2: Diffraction grating set up

A pinhole was placed in the path of the beam. Then we placed a lens after the

pinhole and adjusted the lens' position so that the focal length of the lens was at the

position of the pinhole to collimate the beam. A mirror was placed in the path of

the beam that traveled the length of the table to redirect the light by 45 degrees. A

beam splitter was placed in the path of the 45 degree beam. The reflected beam was

then redirected by a mirror to an exposure plate. While, the transmitted beam was

also redirected to hit the same plate at the same angle as the other beam so as to

cause interference (see Figure 2-2).

Once the setup was complete, we made several gratings while varying the energy

density of each exposure. In order to make a grating with a certain energy exposure,

we first measured the power of the beams after traveling through a sample glass

slide placed in the plate holder. We used this power measurement to determine the

exposure times, because each slide of photopolymer used in the experiment consisted

of a layer of photopolymer surrounded by two glass slides. So, before reaching the

photopolymer the beams had to travel through a glass slide. Once the power of the

two beams were measured and summed, we then calculated the exposure time needed

to impart the desired amount of energy to the sample of photopolymer and divided

Pin



by the area of beam overlap on the plate. Once calculated, we set the time of the

shutter so that it would stay open for the desired length of time. Using two clean

glass slides, we placed a layer of scotch tape with thickness of 60 pm on two of the

sides of the slide to control the space between the sandwiched plates. We then placed

two drops of photopolymer onto the center of the slide and then placed the second

slide on top of the slide with the photopolymer. Then using two binder clips, we

clamped the sides of the slides and then placed this slide into the plate holder in the

system. With the table floating, we waited 15 minutes to allow the table's vibrations

to settle. After 15 minutes, we then actuated the shutter. After the exposure, we

then developed the slide using an arc lamp, placing the slide in the lamp's beam for

about 15 minutes when the lamp was set for 150 W.

Using this setup and following the outlined procedure, we made gratings with the

exposure energy densities: 478 mJ/cm2, 573 mJ/cm2, 637 mJ/cm2, 678 mJ/cm2 and

755 mJ/cm2.

2.3 Measuring the Diffraction Efficiency of the Diffrac-

tion Grating

Once developed, we needed to measure the power of the grating's different orders

and calculate the gratings' diffraction efficiency. However, before making any of these

measurements we needed to find the Bragg angle of the grating. While illuminating

the diffraction grating with a 488 nm laser beam, we measured the power of both

of the orders to the left and right of the undiffracted beam to find the Bragg angle,

0B. With the power meter positioned to measure one of the beams, we maximized

the power of the order by altering the angle and position of the grating. To see a

representation of the setup see Figure 2-3. The order that resulted in the highest

power was used as the +1 order and we used the angle that resulted in the maximum

power to measure the power of the grating's other orders. Once all of the orders

were measured, we measured the power of the incident beam. In order to find the
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Figure 2-3: Configuration for grating readout

diffraction efficiency of the grating, we divided the measured power of the +1 order

by the measured power of the incident beam.

2.4 Experimental Results

In this paragraph we show the data measured for several holographic gratings that

we fabricated. In Table 2.1 the energy density used to fabricate the gratings and the

resulting efficiency is shown. In Table 2.2 the energy used to fabricate the gratings

and the diffracted orders is shown.

Energy of Exposure Efficiency of First Diffracted Order
(mJ/cm2) (percent)

755 17.5%
678 29.5%
637 16.2%
573 0.84%
478 10.6%

Table 2.1: First order diffraction efficiency for fabricated gratings

Note from the data that we are able to reach an efficiency of 29.5% for the first

diffracted order at an exposure energy of 678 mJ/cm2. We plotted the diffraction

efficiency versus the exposure energy density and found that the data approximated



Exposure Diffracted Orders
Energy

(mJ/cm2)
0.0266-0.0268

0.045-0.046
0.022

0.00113
0.003

2.27 8.79-8.80 0.153-0.154
3.80-3.82 7.68-7.69

2.20
0.110
1.434

8.33
10.97
10.71

• 0.101-0.104
0.4

0.0037
0.148

0.007

0.00086
* unmeasured

Table 2.2: Power of diffracted orders for fabricated grating (all powers are in mW)

a "sin 2 (aE)" curve where E is the exposure energy. Then we fit the "sin 2(aE)"

function to this data using a nonlinear fit algorithm. An error of approximately 15%

resulted in a X2 value of 20.6. The resulting data are shown in Table 2.3. The graph

of the fitted raw data is shown in Figure 2-4.

Parameter Fitted Data
22.6

1.71x10 - 3

Table 2.3: Data from nonlinear fitting - Asin 2(aE)

The X2-value of this fit is somewhat high. This is possibly due to the low number

of data points. Nevertheless, we were able to find the An values of the diffraction

gratings using Kogelnik's equations.

Energy Density of Exposure
(mJ/cm2)

755
678
637
573
478

Table 2.4: Calculated values for An

Note that An increases as the energy density of exposure increases.

755
678
637
573
478

An

1.10x10-3

1.47x10-3
1.06x10 3

2.35x10 - 4

8.46x10 - 4



1st Order Ef•iemyvs Expoiwe E•y F rve
a'Data I

40

35

-30

25

0 20 -

S15

1110

5
0

0 200 400 600 800

EXPsm EmUy Imnky (irahmA2)

Figure 2-4: Data fitted using nonlinear fitting program





Chapter 3

Conclusions

In this thesis, we measured the maximum diffraction efficiency as a function of ex-

posure energy density for several diffraction gratings recorded in Polygrama Green

photopolymer. The maximum diffraction efficiency of this photopolymer was 29.5%

and occurred in the diffraction grating written using an exposure energy density of

678 mJ/cm2 . We also found that when we fit the sin 2 (aE)-curve of the diffraction

efficiency versus exposure energy density the X2-value was 20.6. We concluded that

this large X2-value was due to our low number of data points.

However, using Kogelnik's coupled wave equations, we were able to calculate the

An of the diffraction gratings. In addition, when comparing Polygrama Green to other

photopolymers we found that the value of Polygrama Green's maximum diffraction

efficiency was close to that of dichromated polyvinyl alcohol, a photopolymer that is

often used in these applications. [1]

These results all have furthered the group's aim to create holographic photopoly-

mer beads. From the analysis of the the properties of the diffraction grating, Poly-

grama Green seems as though it would be a promising candidate for the photopolymer

used in subsequent group experiments.

Moreover, further characterization of this photopolymer might include measuring

the diffraction efficiency of gratings as a function of laser intensity, because it has

been found that the intensity of the laser beam used to write the grating may impact

the grating's efficiency. [1]
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