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Abstract
In the past few decades, neutrinos, which are predicted to be massless particles by
the Standard Model of Particle Physics, have been shown to have non-zero mass. The
absolute scale of this neutrino mass has significant implications in particle physics,
astrophysics, and cosmology. The KATRIN experiment is designed to measure this
absolute scale by examining the beta decay spectrum of molecular, gaseous tritium
source. In this thesis, the beta decay of this molecular tritium is simulated to study
the effects of "Doppler shifts" in the energy of the emitted electrons due to the
random thermal motion and fluid flow velocity of the differentially pumped tritium
gas. Simulated spectra are presented for three different neutrino masses and the
relative effects of the thermal and flow velocities are discussed.
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Chapter 1

Massive Neutrinos

1.1 The Discovery of the Neutrino

In 1930, the understanding of nuclear beta decay was that a parent nucleus, P, decayed

into a daughter nucleus, D, and an electron:

P - D + e- (1.1)

This decay must obey both relativistic energy and momentum conservation laws,

so for a given initial momentum of A, there are a total of two constraint equations

on the momenta of the products, P and e-. (Recall that energy is a function of

momentum). Therefore, there are two unknowns (the momenta of P and e-) and two

constraint equations, so the system in completely determined and has no degrees of

freedom. This means that, for a given initial momentum of A, there is one and only

one allowed energy that the electron may possess. Thus, if we measure the electron

energy spectrum (known as the beta spectrum) of Eq. 1.1 where A is at rest, we

should find a single sharp peak at the energy determined by the conservation laws.

Experiments, however, revealed a continuous beta spectrum (Fig. 1-1). If we believe

that Eq. 1.1 truly describes the decay process, then this continuous spectrum, Fig.

1-1, violates energy/momentum conservation. [1, 2]

Many physicists, including Niels Bohr, were ready to interpret this as proof that
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Figure 1-1: The Beta Decay Spectrum of molecular tritium, T2. Note that this
coninuous energy spectrum is inconsistent with momentum/energy conservation in a
2-body decay. This histogram was constructed from the stationary decay data in Fig.
6.2.1 and so, corresponds to a electron antineutrino mass of leV/c 2
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energy conservation was not actually a law of nature. Wolfgang Pauli, on the other

hand, proposed that perhaps there was a third particle created in the decay. This

would make the continuous energy spectrum possible, because it would introduce a

third unknown (the momentum of this particle), giving the system an extra degree

of freedom, so the electron energy would no longer be completely determined. This

particle would have to be very light (perhaps massless) and carry no electric charge,

to explain why it had not been observed. While it was greeted with skepticism at

the time, this notion is now the standard model of beta decay, and the mysterious,

elusive third particle is the electron antineutrino, z7.[1] The correct version of Eq. 1.1

is then

P -4 D + e- + 1 (1.2)

1.2 Motivation for a Non-Zero Neutrino Mass: Neu-

trino Oscillations

Neutrinos are created and interact via weak interactions, which is why they are so

difficult to detect directly. There are three flavors of neutrinos that can participate in

such reactions: the electron neutrino v1e, the muon neutrino v,, and the tau neutrino

v,. The Standard Solar Model, for example, predicts that the fusion reactions that

take place in the Sun produce electron neutrinos. In the 1970's, the Homestake

experiment, led by Dr. Raymond Davis, Jr., measured the flux of electron neutrinos

received from the Sun and found this flux to be one third the flux predicted by

the Standard Solar Model. Subsequent experiments designed to test these results

also measured neutrino fluxes lower than the flux predicted by the Standard Solar

Model. [3]

The question that naturally arises is whether the problem lies within the Standard

Solar Model, the experiments themselves, or our understanding of neutrinos. Subse-

quent theoretic and experimental work isolates our understanding of neutrinos as the

cause of this inconsistency. It was proposed that the flavor states, u3, , ii,, discussed



above, are not actually the energy eigenstates of neutrinos. These theories state that

neutrinos are not actually massless particles, but instead may exist in a number of

different mass eigenstates, and these mass eigenstates are the true energy eigenstates

of the neutrino.[3, 4] Thus, for a mass eigenstate, Lvj), with energy eigenvalue Ej and

mass eigenvalue my, we have

HI |v) = EI |vi) (1.3)

In quantum mechanics, it is always possible to express a state as a superposition

of energy eigenstates, so we can view a flavor eigenstate as a superposition of mass

eigenstates. [5]

ivf) = Ufj Vj) (1.4)
J

Here, f denotes the flavor eigenstate, f C {e, p, 7}, and j again denotes the mass eigen-

state, as in Eq. 1.3. The time evolution of a wavefunction is governed by Schr6dinger's

Equation. For a time-independent Hamiltonian, the Schr6dinger Equation has the

solution: [5]
i~t

i1(t)) = eJ |(0)) (1.5)

Combining this together with Eq. 1.4 and 1.3, an expression for the time evolution

of the wavefunction, JV(t)), of a neutrino that begins in a flavor eigenstate iVf) is

obtained:
i~t iE tifI|()= |)= , (1.6)

Note that the exponential factor within the sum parameterizes the contribution

of each mass eigenvalue to the neutrino's wavefunction at time t. These exponential

factors can be represented as vectors rotating in the complex plane, like clock hands,

each rotating at a rate determined by the energy Ej. Thus, these vectors are rotating

at different rates, so their sum will vary as a function of time, changing the neutrino's

wavefunction as a function of time. One can take the magnitude squared of the inner

product of Eq. 1.6 with a different flavor eigenstate, vg), to calculate the probability

that the neutrino be found in the flavor state Juvg) at time t. Due to this varying

sum of the mass eigenvalues, this probability will change as a function of time. This



means that the flavor of a neutrino is not constant in time, and a neutrino that is

created in one flavor eigenstate may be found to be in another flavor eigenstate at a

later time. This phenomenon is known as neutrino oscillations. [3, 4]

To summarize, when neutrinos participate in weak interactions, they do so in

a flavor eigenstate. This means that neutrinos are created in a flavor eigenstate

and are detected in flavor eigenstates. However, since these flavor states are not

also energy eigenstates, a neutrino's wavefunction changes in time between different

mixtures of these flavor eigenstates. This means that a neutrino created as an electron

neutrino in the Sun may be detected as a different flavor of neutrino on Earth, due

to these flavor mixing oscillations on its journey. Neutrino oscillations could thereby

explain the experimental observations; reduced fluxes were observed simply because

the experiments were not detecting all three flavors of neutrinos.

A number of experiments have been performed to test this neutrino oscillation the-

ory by detecting the different flavors of neutrinos. The first of these experiments to

definitively verify neutrino oscillations, and thereby save the Standard Solar Model,

was the Sudbury Neutrino Observatory (SNO) experiment. This experiment mea-

sured the fluxes of all three flavors, reconstructing a total flux that is consistent with

the flux predicted by the Standard Solar Model. The results also agreed with neu-

trino oscillation models that consider the effects of the passage of neutrinos through

matter, which the simplified version presented above does not. [3]

These neutrino oscillation experiments, however, only measure the differences of

the squared neutrino masses and cannot measure scales of the actual neutrino masses

themselves. This mass difference arises from Taylor expanding the relativistic expres-
2 mnsion for energy, E = + rn p, + 12 , under the assumption that the momentum

of the neutrino is much larger than any of the mass eigenvalues. When taking the

inner product with Eq. 1.6 to calculate probabilities, plugging in this approximated

energy expression yields a term that is the difference between the squared mass eigen-

values, [4]

Amk m k7 (1.7)
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Since they are only sensitive to this mass difference, oscillation experiments shed

no light on issues such as, whether the neutrino masses are hierarchical or nearly

degenerate, for example (see next section). Despite this limitation, the oscillation

experiments are not completely silent on the question of the absolute neutrino mass

scale; it is known that the inequality

(mi or ink) Amk (1.8)

should be satisfied by at least one neutrino mass eigenvalue. [6] Therefore neutrino

oscillation experiments can give a lower bound on the scale of the neutrino mass. The

results of Super-Kamiokande's analysis of atmospheric neutrinos gives a lower bound

of (0.04 - 0.07) eV [6].

1.3 The Impact of the Neutrino Mass Scale

So, these neutrino oscillation experiments have confirmed (with a no-oscillation prob-

ability of 0.5%) neutrino oscillations, and in so doing, confirmed that neutrinos do

not have zero mass, as predicted by the Standard Model.[6] Now that all this is es-

tablished, what motivation have we for measuring the absolute scale of these neutrino

masses? Is it only to neatly round out a textbook chapter on neutrinos with a nice

little chart of neutrino masses? The answer, of course, is that there are still many

open questions upon which the absolute neutrino mass can shed light. In fact, there

are too many to list here in full detail, so we will only examine a handful, superficially.

As one would expect, this observed violation of the Standard Model has motivated

the birth of many new theories that extend beyond the Standard Model to explain

the origin of this non-zero neutrino mass. These theories generally fall into one of

two categories: a hierarchical neutrino mass scheme (ml < m2 < m3), or a nearly

degenerate neutrino mass scheme (ml n m2 m3).[6] Figure 1-2 demonstrates

the dependencies of these two scenarios on the absolute scale of the neutrino mass.

As shown, the dividing line between these two theories is a neutrino mass scale of
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Figure 1-2: The impact of the neutrino mass scale on the question of hierarchical or
degenerate neutrino masses. Plotted are the neutrino mass eigenvalues (ml<m2<m3)
as a function of the value of the lightest eigenvalue, ml. One can see that a posi-
tive identification of a neutrino mass above - 0.1eV would clearly indicate a quasi-
degenerate mass scheme, whereas a positive identification of a neutrino mass below
S0.1eV would clearly indicate a hierarchical mass scheme. [6]

- 0.1eV.

Another general division between theoretical models of neutrinos concerns the

relationship between neutrinos and their anti-particles. Some models predict that a

neutrino is its own antiparticle; these types of neutrinos are called Majorana type

neutrinos. Others say that the neutrino and its antiparticle are actually distinct

particles with different lepton numbers; these types of neutrinos are called Dirac type

neutrinos. [6]

An example of a group of theories that make distinctions between such details

are "Seesaw" models. These models are designed to explain the masses of Majorana

type neutrinos. The Seesaw I mechanism predicts a hierarchical mass scheme and

calls for heavy right-handed neutrinos in addition to light left-handed neutrinos. The

name, "seesaw", arises due to the fact that, the lighter the left-handed neutrinos are,

I



the heavier the right-handed ones will be. The Seesaw II mechanism, however, calls

for the quasi-degenerate mass scheme and a Higgs triplet to which the neutrinos are

coupled. [6]

The scale of the neutrino mass is also an important parameter in cosmology. As

pointed out in Refs. [6], [7], cosmological models are currently plagued by "parameter

degeneracy." This means that experimental results can be adequately explained by

different sets of combinations of cosmological parameters. In other words, the data

cannot distinguish between many possible descriptions of the Universe. Since the

neutrino mass enters into these sets of cosmological parameters, knowledge of the

neutrino mass could help lift some of this degeneracy by eliminating the neutrino

mass as a floating unknown parameter in these fits.

The neutrino mass is also important in determining the relationship between neu-

trinos and dark matter. As quoted in Ref. [8], the Tremaine-Gunn bound claims

that, for neutrinos to make up the dark matter in the Milky Way Galaxy, they would

have to be larger than about 25eV. The results of the Mainz and Troitsk experiments

therefore already rule out the possibility that Standard Model neutrinos make up the

dominant fraction of dark matter. However, the specific role of neutrino hot dark

matter on the formation of large scale structures is still to be determined, and is very

closely related to the total neutrino density of the universe Q.

Hannestad [8, 7] also discusses the possible relationship between cosmic rays and

neutrinos. In the Z-burst model of cosmic rays, neutrinos annihilate with other neu-

trinos in the cosmic background, producing protons. In order for ultra high energy

cosmic rays to be explained by this Z-burst model, a neutrino mass of 0.2620eV is
0.required.14required.



Chapter 2

The KATRIN Experiment

As discussed in the previous section, the absolute scale of the neutrino mass has many

implications in particle and astrophysics. A great deal of the implications lie in distin-

guishing between competing theories. Therefore, if one were to determine the scale of

the neutrino mass in a way that is independent of such theories (a so-called "model-

independent determination"), then the result would have twofold advantages over

model-dependent determinations. First, one could argue that the model-independent

determination would be more satisfy or convincing, for it is not based on a controver-

sial new theory. Second, and most importantly, a model-independent determination

could help place a constraint on these new theories and help determine which may

be correct and which cannot be correct. The fact that the neutrino has a non-zero

mass points to new physics beyond the Standard Model, and a model-independent

determination of that mass can help us understand what this new physics may be.

2.1 The Theory

Nuclear beta decay is a process whereby a parent nucleus decays into a daughter

nucleus, an electron, e-, and an electron antineutrino z. The relevant details of the

beta decay considered in the KATRIN experiment will be discussed in more detail in

Chapter 3. For now we are interested only in the fact that beta decay produces an



electron with an energy spectrum with a shape described by:

d2 Nd2 N= KF(E, Z)p(E + mec2 )(Eo - E) (Eo -E) 2 - M2C4  (2.1)
dtdE .

Here, E is the kinetic energy of the electron, while p and me and are the momentum

and rest mass of the electron. m2 is the neutrino mass observable, K is the matrix

element associated with the decay, and Eo0 is the endpoint energy. d2 N is the count
dtdE

rate of electrons within an energy width of dE.[9]

Since the neutrino mass appears in this expression, the value of the neutrino mass

affects the shape of this electron energy spectrum. Since the other parameters in

this equation are known, a careful examination of the energy spectrum of electrons

produced in beta decay would reveal the value of this neutrino mass observable.

Furthermore, determining the neutrino mass in this fashion would be classified as

model-independent, because it is based on the generally non-controversial and ac-

cepted theory of nuclear beta decay. This, in a nutshell, is how KATRIN aims to

glean the neutrino mass, by examining the electron energy spectrum in nuclear beta

decay. [6]

A closer examination of Eq. 2.1 reveals that the effect of the neutrino mass is

most prominent when the electron energy is near the endpoint energy, E0. However,

as the electron energy approaches this high energy region, the count rate (Eq. 2.1)

correspondingly drops very quickly. Therefore, the fraction of electrons produced

which are relevant to the neutrino mass determination is extremely small. This fact

imposes special constraints on experimental design. Maximizing the count rate of

electrons in this endpoint region is crucial to the success of an experiment of this

type.

As will be discussed in the beta decay chapter, one way to maximize the relevant

count rate is to examine the beta decay of an isotope with a low endpoint. 187Re,

with an endpoint of 2.5keV, and 3 H (also known as "tritium" and denoted as T),

with an endpoint of 18.6keV, are the two isotopes with the lowest known endpoints in

nature, so they are the prime candidates for such an experiment. Even though tritium



possesses the higher of these two endpoints, it also possesses additional qualities that

make it the more attractive candidate for experiment. First of all, tritium has a

half-life of 12.3 years compared to the 1" 7Re half life of 4.5 - 1010 years, which greatly

increases the count rate. Also, tritium is the simpler of the two isotopes; the structures

of the atoms and molecules involved in the beta decay of tritium are simpler than

those for 1"'Re. This is an advantage because calculations involving the final states

of these molecules in the decay and scattering with these molecules must be included

in the analysis of spectrometer experiments. Another advantage of tritium is that

the beta decay is super-allowed, which means that the matrix elements involved in

Eq. 2.1 is relatively simple. Therefore, using tritium as a source for beta decay

provides the most favorable balance of count rate and computational simplicity for a

spectrometer experiment.

2.2 The Status of Neutrino Mass Determination

This idea of examining the beta decay spectrum of tritium to determine the neutrino

mass is not what is new about KATRIN. There have been other such beta decay

experiments, two of which will be discussed here. An experiment in Mainz, Germany

and one in Troitsk, Russia both examined the beta spectrum of tritium using MAC-E

filter type spectrometers (see Section 2.4.1). However, the Troitsk experiment used

a windowless gaseous tritium source while the Mainz tritium source was a thin film

of molecular tritium quench-condensed onto a graphite substrate (at temperatures

below 2K).[6]

At first, the Troitsk group observed an anomaly that resembled a step in the count

rate a few eV below the endpoint energy. After reducing background and compar-

ing measurements to those taken at Mainz, it was decided that this anomaly was

merely an experimental artifact. Assuming that this effect was, in fact, an anomaly,

the Troitsk group's analysis of data taken 1994-2001 yields a bound on the electron



antineutrino mass of[6]

2 eV 2  eV
2 = (-2.3 + 2.5 + 2.0) ; m < 2.05 (95%C.L.) (2.2)

Analysis of the Mainz data from the years 1998, 1999, and 2001 yield a bound of[6]

SeV 2  eV
m = (-0.6 + 2.2 + 2.1)--; m, < 2.3 c2 (95%C.L.) (2.3)

Thus, the current upper bound on the electron antineutrino mass is about 2eV/c 2 .

The KATRIN experiment is designed to reduce this bound by an order of magnitude

by yielding a mass sensitivity of 0.2eV/c 2.

2.3 Advantages of KATRIN

In the previous section, various implication and questions surrounding the absolute

scale of the neutrino mass were discussed. The natural question that arises is, "What

impact will the results of the KATRIN experiment have on these questions?" To

revisit the list, on the topic of hierarchical vs. quasi-degenerate mass schemes, the

sensitivity of KATRIN lies on the dividing line between these two schemes. If the

result of KATRIN is a positive mass identification, then this will fall in the region of

quasi-degenerate masses. If KATRIN results in no positive mass identification and

only an upper bound, then its sensitivity is such that this bound will rule out the

quasi-degenerate mass scheme, implying a hierarchical scheme. Thus, KATRIN will

be able to settle the debate between hierarchical and quasi-degenerate mass schemes.

This will, for instance, help weed out certain Seesaw theories. [6]

KATRIN makes no assumptions as to whether neutrinos are of the Majorana or

Dirac type, so KATRIN's mass determination therefore holds independent of which of

these models, if either, is true. Similarly, impact of KATRIN's results on cosmology

largely relies on the fact that this result will be a "direct," or model-independent,

measurement of the neutrino mass. Thus, KATRIN's results will lead to either fully

determined or at least more constrained input parameters for the various cosmolog-
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Figure 2-1: KATRIN Experimental Setup. a) the WGTS, b) the transport system,
c) the spectrometers, d) the beta detector. Printed from [6].

ical models. This will help alleviate the problem of parameter degeneracy. Also, if

KATRIN results in a positive identification of a neutrino mass (and not just an upper

bound), this will determine the neutrino hot dark matter contribution to the matter

density. KATRIN may also demonstrate definitively that primordial neutrinos do

not contribute substantially to the Universe mass and energy densities. With respect

to astrophysics, the KATRIN results could test the Z-burst model described in the

previous chapter. [6]

2.4 The KATRIN Setup

The Karlsruhe Tritium Neutrino (KATRIN) experiment, located in Karlsruhe, Ger-

many, is designed to measure the neutrino mass, via examining the beta decay of

tritium, to a sensitivity of 0.2eV/c 2. The considerations of this thesis deal mostly

with the tritium source (WGTS), so the WGTS will necessarily be discussed here in

more technical detail. However, it is difficult to understand the function and purpose

of just one piece of a machine in isolation. Therefore, we will also briefly examine

the other components of the KATRIN experiment to give a sense of the scale and

interplay between these parts. These components would be of great importance if one

were to extend my simulation to include the passage of electrons through the entire

apparatus. [6]

v



2.4.1 Experimental Overview

As can be seen in Fig. 2-1, the KATRIN setup consists of a rear calibration/monitoring

section, the tritium source, a transport/pumping section, a pre-spectrometer, a main

spectrometer, and, finally, the electron detector. The rear section, Control and Mon-

itor Section (CMS), will house electron guns and detectors. The electron guns will

be used to investigate the transmission of electrons through the KATRIN apparatus.

In this way a response function can be determined, characterizing the energy losses

of electrons, which can be used for calibration and the determination of systematic

uncertainties. Detectors will also be placed in this system to monitor the activity of

the source. [6]

After the rear section is the Windowless Gaseous Tritium Source (WGTS), which

maintains a high density of high purity tritium gas. It is this tritium that undergoes

beta decay to produce the electrons that will be measured. To maintain a high level

of pure tritium in this source, the tritium gas is pumped in a closed loop system. The

WGTS is described in greater detail in the next section. [6]

Electrons created in the WGTS are guided through the transport system to the

spectrometers. However, tritium can also travel out of the WGTS and find its way to

the spectrometers. Tritium inside the spectrometers would result in an undesirable

background rate, so the amount of tritium that enters the spectrometers must be

severely limited. The pumps within the WGTS already reduce the tritium flow by

a factor of 103, but further reduction is necessary, and this is the job of the trans-

port system. The first section of the transport system consists of another differential

pumping system to pump the tritium out of the transport system. The portions of this

pumping system that are adjacent to the WGTS are matched up carefully with the

conditions (magnetic field and temperature) within the WGTS to ensure stable oper-

ating conditions of the WGTS. After the pumping systems have significantly reduced

the tritium flow, a passive cryotrapping system, maintained at a temperature of 4.5K,

absorbs much of the remainder of the tritium. All together, the transport system re-

duces the tritium flow rate, between the WGTS output and the pre-spectrometer



entrance, by a total factor of about 1011. This results in a background count rate,

due to tritium decay inside the spectrometers, of less than 10- 3 counts per second.

In addition to these pumps downstream of the WGTS, there is also a set of pumps

between the WGTS and the rear system. These pumps help prevent tritium from

entering the rear system and, more important to this thesis, make the pressure profile

within the WGTS symmetric about the injection point. Besides reducing the flow

of tritium to the spectrometers, the transport system also adiabatically guides the

electrons towards the pre-spectrometer. [6]

After the transport system is the pre-spectrometer, followed by the main spec-

trometer. The spectrometers are MAC-E Filters (Magnetic Adiabatic Collimation

combined with an Electrostatic Filter), which act as integrating high-energy pass

filters. In such filters, the electrons emitted from the source, with isotropic direction-

ality, are channeled into a beam by the use of magnetic fields. (In this broad beam,

the electron velocities are nearly parallel to the magnetic field lines). This beam of

electrons then passes through an electrostatic retarding potential. Electrons without

a high enough energy to overcome this potential are reflected back, while electrons

with energies above the retarding threshold are transmitted and then re-accelerated

and collimated via magnetic fields. Thus, only electrons with energy above a certain

threshold (set by the retarding potential) are transmitted through the spectrometer.

[6]
The KATRIN spectrometers have the additional design feature that the retarding

high voltage is connected directly to the hull of the spectrometer. Inside the spec-

trometer, attached at a distance all along the inner surface of the spectrometer, are

sets of thin wire electrodes that are maintained at a potential slightly more negative

than that of the hull. This acts to suppress low-energy electrons that are ejected from

the hull walls and to prevent the formation of Penning traps near the corners of the

hull. [6]

The pre-spectrometer filters out all electrons with energies below 18.3keV. As dis-

cussed above, only the high-energy portion of the electron spectrum near the endpoint

contains information about the neutrino mass. By filtering out these unnecessary elec-
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Figure 2-2: The Windowless Gaseous Tritium Source (WGTS) and Pumping Sections.
Printed from [6].

trons before the main spectrometer, a background due to ionization of residual gas

in the main spectrometer is reduced. The remaining high-energy electrons then pass

through a 2m transport system of two superconducting solenoids and then into the

main spectrometer. This spectrometer measures this last approximately 300eV of the

beta spectrum with an energy resolution of 0.93eV. The rate of electrons entering into

the main spectrometer will be approximately 103 per second.[9] The pre-spectrometer

has an outer diameter of 1.7m and is 3.38m long. The main spectrometer has an outer

diameter of 10m and a length of 23m. Both spectrometers are maintained at a pres-

sure of less than 10- 11imbar. [6]

The electrons that leave the main spectrometer will then travel through another

short transport system and finally impinge upon a multi-pixel, ultra-high energy res-

olution silicon semiconductor detector. In this way, the energy spectrum of the elec-

trons created via beta decay in the WGTS can be examined by dialing the retarding

voltage of the spectrometer. [6]
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2.4.2 The WGTS in Detail

As discussed, a very small fraction of the beta spectrum is relevant to the determina-

tion of the neutrino mass, so a very high count rate of beta decays is needed to obtain

the statistics necessary for experimental observation. This high decay rate is accom-

plished in the WGTS, which yields a beta decay rate of approximately 1011 decays per

second. The WGTS consists of a tube, 10m long and 90mm in diameter. Molecular

tritium gas, T2, maintained at a high isotopic purity of greater than 95%, monitored

by Raman spectroscopy, is injected into the center of the WGTS through over 250

holes of 2mm diameter (to avoid gas jets) at a rate of 40g/day (with stability level

0.1%). From the injection point, the tritium travels the length of 5m via diffusion to

either end of the tube, spending a time of ls in the WGTS. As a result, each single

tritium molecule has a probability of about 10-' to decay within the WGTS. [6]

The tritium within the WGTS is maintained at a temperature of 27K with a

stability to 0.1%. A low temperature is desirable because it decreases the random

thermal motion of the tritium and allows this high density of tritium to be maintained

at a relatively low pressure, and so, relatively low flow rate. This is important because

it helps to reduce the Doppler broadening of the spectrometer measurements, which

is the topic of this thesis. A temperature much lower than this, while it would fur-

ther reduce this Doppler broadening, is not possible. This is due to the fact that, at

lower temperatures, the tritium molecules may begin to cluster together. Since these

clusters have different final electronic states than the molecular tritium, their for-

mation would introduce new and uncontrollable statistical uncertainties. Therefore,

the Doppler broadening at 27K represents the optimal balance between statistical

uncertainties and cannot be removed by lowering the temperature further. [6]

The WGTS in encircled by superconducting solenoids that maintain the entire

source at a magnetic field of 3.6T. This magnetic field serves to adiabatically guide

the electrons produced in the source by beta decay to the ends of the WGTS. To

maintain the high tritium concentration within the WGTS, the tritium is circulated

within a nearly closed loop. This is accomplished by a differential pumping system of
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Figure 2-3: The WGTS coordinate system used in this thesis.

turbomolecular pumps located on either end of the WGTS. This differential pumping

leads to a density/pressure profile within the WGTS that will be discussed in detail

later. [6]

In our analysis, we will assume that the WGTS is axially symmetric, and thus,

analysis of the system can be reduced to a two-dimensional analysis (we partially lift

the one-dimensional assumption in Ref. [10]). Let us establish the coordinate system

that z is the coordinate along the axis of the WGTS, and that the positive z direction

points toward the main spectrometer. The other relevant coordinate is then r, the

radial distance from the axis of the WGTS. Because of the rotational symmetry about

the axis, we will consider only a two-dimensional plane described by r and z.



Chapter 3

Beta Decay

3.1 Fermi's Golden Rule

Fermi's Golden Rule is the rule that governs the transition rate of a system into a

continuum of states. It can be derived, in quantum mechanics, from time-dependent

perturbation theory, where the time-dependent Hamiltonian is expanded into a time-

dependent and a time-independent portion:[5]

H(t) = Ho + H1 (t) (3.1)

And Hi(t) is assumed to be expressible in the form

H'(t) = Hle- wt (3.2)

The final result is

RP-+ = -7 (fojH1Iji0) 2 6(Ef - E -_ ) (3.3)

Ri-,f is the transition rate from state i to state f, and the superscripts denote to what

order of the Hamiltonian the quantities correspond. This equation applies to many

systems that undergo transitions, including nuclear decay. [5]



3.2 Tritium Beta Decay

Nuclear decays are governed by Fermi's Golden Rule (Eq. 3.3), where the "transi-

tion" that occurs is the actual decay, where the parent nucleus decays into a daughter

nucleus and possibly various other products. For nuclear decays, the golden rule sepa-

rates into a matrix element and a phase-space factor. [1] The matrix element encodes

the dynamical information about the decay, and the phase-space factor describes the

kinematic information. Loosely speaking, the phase-space factor adds a weighting

based on the relative number of different possible states and configurations available

in a decay. One can think of the phase-space factor as characterizing the number of

ways one can distribute the available energy of the decay among the momenta of the

various products. The beta decay of the neutron has a relatively small amount of

phase space available due to the relatively small difference between the rest energy

of the parent and the sum of the rest energies of the products. This difference in

rest energies, by relativistic energy conservation, is equal to the total kinetic energy

available to the products in the decay, and is referred to as the decay's endpoint,

(mentioned earlier) and is denoted by E0. Since the phase-space element describes

the possible ways to distribute this kinetic energy between the particles (while con-

serving momentum), the small size of this kinetic energy is a constraint that translates

into a smaller phase-space factor. This is why the rest masses of the products have

such a significant effect on the shape of the energy spectra in neutron beta decay;

the rest-energies of the electron and perhaps the neutrino are non-negligible fractions

of the total energy released in the decay. This is a reason why the low endpoint of

tritium is so attractive in performing neutrino mass experiments that examine the

shape of the beta spectrum. In decays with larger phase-space factors, one may be

able to neglect the rest energies of certain products. [1] The beta decay of atomic

tritium (3H, or T) is described by the equation:

T __-~3 He' + e + ize (3.4)



So, for the specific case of atomic tritium decay, Fermi's Golden Rule takes the form:

[1]

d- = _ - CdpH± cd Pe (22r) 4 6(pT - - PHe+ - Pe)
2hmT (21r)32E,, (27)3 2EHie+ 1 (21r)32EeJ

(3.5)

Here, the subscript He+ denotes the 3He+ daughter. The matrix element can be

evaluated various ways. Ref. [1] expands the matrix element by using Feynman

diagrams, while Ref. [11] performs a full relativistic treatment by expanding the

matrix element in a sort of a Taylor series. The relativistic argument is that IM12 is

a Lorentz invariant term, and so, can be expanded as a sum over Lorentz invariant

quantities. The most general form, up to two powers of momenta is then[11]

M 2 = A - Bp - P- - CPHe+ Piniti al + ... (3.6)

In general, A, B, and C are arbitrary constants, but Ref [11] argues that, for the

tritium decay, A = C = 0, and B $ 0. Thus, combining Eq. 3.5 and Eq. 3.6,

the total weighting factor for a given set of four-momenta of the three products is

simply the phase-space factor multiplied by the dot product of the four-momenta

of the electron and the neutrino. This is relevant to the simulations performed for

this thesis, because the simulation package that is used produces four-momenta of

products weighted solely by the phase-space factor. In order to transform these results

into products specifically of tritium beta decay, this extra dot-product weighting is

added. Eq. 3.5 and Eq. 3.6 can further be manipulated algebraically, momenta can

be integrated over, and a final Fermi correction (see next section) can be added to

produce the final electron energy spectrum given in Eq. 2.1.[2, 1, 11]

3.3 The Fermi Function

The above considerations, however, do not take electromagnetic forces into account.

The electron that is being ejected carries a negative charge, and, as a result of loosing

this electron, the daughter nucleus has a net positive charge. Therefore, we expect



Coulombic forces between these two charged products to affect the kinematics de-

scribed above. Since the force is attractive, the actual speed of the electron (and

so, its energy) is smaller than that predicted purely by kinematics. Because the full

derivation of the Fermi function is beyond the scope of this thesis, let us try to un-

derstand the effect and its dependencies qualitatively. First, we expect this effect to

depend upon the charge of the daughter nucleus, Z, because this will affect the overall

strength of the Coulombic force. Second, electrons ejected with low energies move at

slower speeds than electrons ejected with higher energies. Consequently, lower energy

electrons spend more time close to the daughter nucleus (i.e. in regions of strongest

Coulombic attraction) than higher energy electrons. Therefore, the effect of Coulom-

bic interactions will be larger for low energy electrons, so we expect this Coulombic

effect to also be a function of the electron energy. This energy-dependent Coulombic

effect therefore changes the weighting of electron energies in our spectrum, and its

distortion should be largest in the lower energy region. We can characterize this effect

then by multiplying the energy spectrum by a correction factor, F(Z, E). This factor,

F(Z, E) is known as the Fermi function, and is quite complicated. However, in the

non-relativistic limit, it can be approximated as[2]

F(Z, E) = x (1 - e- (3.7)

Where
21rZax = (3.8)

Where a is the fine structure constant, E is the total energy of the electron, and / is

the velocity of the electron divided by c. An improved version of this approximation

is presented by Ref. [12]

F(Z, E) = x (1 - e-x) - 1 [ao + al/3] (3.9)

Here, the constants ao and a, are determined empirically to be ao = 1.002037 and

a, = -0.001427. Eq. 3.9 agrees with the relativistic calculations of Ref. [13] over the



energy range involved in the determination of the neutrino mass. Thus, this is the

expression for the Fermi function that is used in the calculations in this thesis.

3.4 The Kurie Plot

The effect of the neutrino mass upon the beta spectrum is not very visibly apparent

unless different spectra corresponding to different neutrino masses are superimposed.

An alternative representation of the beta spectrum, called the Kurie plot, makes the

effect of a non-zero neutrino mass quite vivid. When comparing different beta spectra,

Kurie plots are often used, due to their relatively simple, mostly linear nature. [2]

The beta energy spectrum, Eq. 2.1, reduces to the following expression in the

case of a zero neutrino mass:

d2N
dtdE = KF(E, Z)p(Etot)(Eo - E)2  (3.10)

where Etot is the total energy of the electron (E + mec2). If we define N(E) to be

the number of electrons with kinetic energy within a range of [E, E + dE] in a time

interval dt, then we can rearrange Eq. 3.10 as follows

[ N(E) 1/2No(E), 1/2= C(Eo - E) (3.11)

pEti t N(E Z)

Thus, if we plot the quantity EtoF(E,Z) against the electron energy, the plot will

be linear (for the case of zero neutrino mass) and will intercept the E-axis at the

endpoint energy, Eo0 .[2, 9] However, due to the difference between Eq. 2.1 and Eq.

3.10, the Kurie plot for a beta spectrum corresponding to a non-zero neutrino mass

will be mostly linear but will contain a slight dip near the endpoint. (See Fig. 3.4).
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Figure 3-1: Beta Decay Spectra and corresponding Kurie Plots for stationary (in the
rest frame of the decay) T2 decay for m, = 1 and 0 eV/c 2 . Note that, for m, - 0,
the Kurie plot is a straight line, whereas the Kurie plot for m, = 1 eV/c 2 dips near
the endpoint. This figure is constructed from the same stationary decay data sets as
in Figs. 6.2.1-6.2.1.
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3.5 Molecular Decay and Final State Distribution

The tritium source that will be producing the beta decays in the KATRIN experiment

is tritium gas. This tritium gas consists primarily of tritium molecules, T2. This

molecular tritium gas is inherently more complicated than the pure, atomic tritium

considered in Eq. 2.1. Molecules can possess certain vibrational and rotational states

that pure atoms do not. For instance, if we consider a classical toy model of a

diatomic molecule, such as T2, we model the molecule as two hard spheres (the atoms)

connected by a spring (the bond between the atoms). Let us consider the states of

a molecule at rest in this model. One state consists of the two spheres remaining

at rest with respect to one another, with the spring remaining at its rest length.

This is analogous to the state of just one single sphere. However, the spheres may

also oscillate towards and away from each other symmetrically about the center of

the spring. This latter state has a higher energy associated with it than the former,

however in both cases, the molecule is at rest, so this energy is not associated with

the motion of the molecule's center of mass. Thus, this second state possess a certain

internal energy, due to the vibrations of the constituent atoms. A single hard sphere

does not possess such a vibrational state. Furthermore, rotations of the "molecule"

about different axes now have different energies because the molecule is not spherically

symmetric, as the atom is. Of course the true rotational and vibrational states of a

molecule is much more complicated and is governed by quantum mechanics, but this

model serves to lend an intuitive picture to the notion of vibrational and rotational

states.[14, 15] The decay of molecular tritium (3 H 2, or T2) is described by[6]

T2 (3 HeT)+ + e- + Pe (3.12)

Since the (3HeT)+ ion is a molecule, it can exist in a number of rotational-vibrational

states. Thus, when T2 decays, a certain amount of the energy released by the decay

goes into exciting a rotational-vibrational state of the (3HeT)+ ion. We will hence-

forth refer to the state of the (3HeT)+ ion in Eq. 3.12 as the "final state." Energy

conservation then dictates that the total kinetic energy of the decay (the endpoint)



is decreased by an amount equal to this final state energy. Thus, the endpoint of

the molecular tritium decay, Eq. 3.12, is actually a function of the final state of the

(3 HeT)+ molecular ion. The distribution of these final states therefore influences the

shape of the observed beta spectrum near the endpoint. Since the determination of

the neutrino mass is dependent upon this very shape, simulations of the tritium de-

cay in KATRIN must include this final state distribution in order to be accurate. In

addition to the rotational-vibrational states mentioned above, the daughter (3HeT)+

could also exist in a number of electronic excited states, which would also affect this

final state distribution. However, analysis has shown that these excited states are

negligible compared to these rotational-vibrational states. [6] Therefore a distribu-

tion of final states due to rotational-vibrational states is sufficient for the purposes

of KATRIN. The distribution of such states is, again, determined by Fermi's Golden

Rule, Eq. 3.3. Here, the two wavefunctions considered are that of the parent T2 and

that of the daughter (3HeT)+. The H1 is an expression that includes the recoil of

the emitted electron. From this starting point, simulations are performed under the

sudden approximation to produce the final state distribution. The sudden approxi-

mation is the assumption that the interaction between the electron and the (3HeT)+

ion is negligible. [15] The distribution produced consists of a discrete, low-energy dis-

tribution, and a high-energy tail. The tail is described by[14]

( 8e - 4arc• an(K)/  2 dE (313)
P(E) 14.7 1-e47r (1 + 2)2 eV(3.13)

where the probability P(E) is given as a percent, and r = (E - 45eV)/13.606eV.

For the purposes of my simulation, I discretized the tail in intervals of 0.1eV,

to match the smallest resolution given for the discrete portion, and combined both

together into a histogram (Fig. 3.5). The final state energies thrown from this

histogram were added to the rest mass of the (3HeT)+.
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Figure 3-2: The distribution of final states of the (3HeT)+, constructed from Eq.
3.13 and the data given in 3.12.





Chapter 4

Thermal Motion and Doppler

Shifts

The equation describing the beta spectrum of tritium decay, Eq. 2.1, is valid in the

rest frame of the parent tritium. When the parent tritium is moving, it possesses

more energy due to its kinetic energy, so the products of the decay must also have

more energy in total. As discussed in Chapter 2, the tritium in the WGTS is moving

for two reasons: random thermal motion, and the velocity profile due to pumping.

Here we will consider the former. Because the source molecules are at a finite temper-

ature, they possess a finite amount of thermal energy in the form of random motion.

This random distribution of initial velocities translates into random shifts in the en-

ergy of the decay products, and so, tends to smear out the observed beta spectrum.

This phenomenon is known as "Doppler broadening" of the spectrum. The name

comes from the fact that, spectrometry is often performed to measure the spectrum

of light, and so, the velocity of the light source causes a frequency shift (Doppler

shift) in the frequency of the observed light. Even though the term "Doppler shift,"

strictly speaking, correspond to frequency shifts, the terminology is also used to de-

scribe spectrometry experiments in general; even those that measure energy spectra

of particles, like KATRIN.

Therefore, because the initial velocity of the tritium gas molecule affects the en-

ergy of the emitted electron, a simulation of the electron energy spectrum requires a



probability distribution for the initial velocities of the T2 molecules. To this end, we

can use the famous Maxwell velocity distribution. Because the T2 gas in the WGTS

consists of diatomic molecules, let us consider the significantly general treatment of

the Maxwell velocity distribution performed in Ref. [16]. This treatment considers

the effects of the internal energy states (see Chapter 3) of the T2 molecule.

Even though the gas in the WGTS is of very high purity, this purity is not 100%.

Therefore let us consider a general dilute gas, which consists of a mixture of different

types of molecules. Let us then consider a polyatomic molecule of mass m (a T2

molecule in our case) within this gas, with center of mass position and momentum r'

and 'respectively. If this gas is sufficiently dilute such that it can be treated as ideal,

then we may neglect intermolecular interactions. If we also neglect external forces,

such as gravity, the energy of our particle is given by

E -2m+ Eint (4.1)2m

where Eint represents the internal energy due to the rotational-vibrational state of the

molecule. This internal state must be treated quantum mechanically, and is indepen-

dent of position, due to the neglect of intermolecular interactions. However, due to

the diluteness of the gas, the translational component of the molecule's state can be

approximated to be classical, and the particle itself can be treated as a distinguishable

particle.

The gas in the WGTS is maintained at a constant temperature, so the molecule

is in contact with a heat reservoir, and therefore follows the canonical distribution.

The canonical distribution states that a particle in contact with a heat reservoir of

temperature T, has a probability to be in a state, a of

P, oc e- 0 E . (4.2)

where 3 = ~ kb is Boltzmann's constant, and E, is the energy of state a. Applied

to the T2 molecule in the gas, this means that the probability of the molecule being in

the volume d3F centered about the position 'F, having a momentum within the phase



space volume d3' centered about 7, and being in an internal quantum state denoted

by the quantum number s is given by

PS (_,p- oP e- e-OEjnt(s)dj 3d3- (4.3)
2m e (43

In theory, the internal states of the T2 molecule before it decays should affect the

beta spectrum to some degree. However, the value of the rest mass of T2 that is

currently used in KATRIN analysis is simply twice the rest mass of atomic tritium,

T.[17, 18, 10] This is only approximately correct as it neglects the binding energy of

T2 , which is estimated to be negligible compared to uncertainties in other quantities

used in the calculations. [18] Therefore, the effects of the initial internal states of T2

would be beyond the precision of the rest energy of T2, and so the inclusion of these

effects at this stage would be artificial and require a more detailed knowledge of

T2. Therefore, in the simulations in this thesis, the initial internal states of T2 are

neglected.

Therefore, to get the probability for a certain position and momentum range

only, we sum over all states s in Eq. 4.3. The result is simply an overall constant

which is irrelevant, for the final probability density will be normalized. We may also

integrate over F since we are interested in obtaining the velocity distribution, which is

a function of = - only. The result is simply the product of three identical Gaussian

distributions, one for each component of the velocity. Normalization results in the

Maxwell velocity distribution: the probability for a molecule to have a velocity in a

range d3 J about a value of I is[16]

( 3/2  m
2  -

fmv(U)d3 d 2kT) e 2d3V (4.4)27rkbT
If we are only interested in the speed of the particle, then we can change from Carte-

sian to spherical coordinates (d3& = v2 sin OdvdOdq) and integrate over all directions

(over 0 and q) to obtain the Maxwell speed distribution[16]

(M 3/2 m2 2
fms(v)dv = (2kbT) 41rv e 2kbT dv (4.5)

43



Which gives the probability for the particle to have a speed between v and v + dv.

These are the velocity distributions used in this thesis to determine the random

thermal velocities. This will also be used in the next chapter in the analysis of

the fluid velocity profile. Note that we are able to use these standard forms of the

Maxwell distributions because we neglected the initial states and the effect of gravity.

To correct for gravity, one could include a term of the form e- Omgz, where g is the

acceleration due to gravity. However, this is unnecessary, because the change in

gravitational potential over the diameter of 0.09m is negligible and inclusion of this

factor would just add fruitless computation time to the simulation. Also, if one were

to include the initial states of T2 , one would have to return to Eq. 4.3, or include an

independently constructed distribution of initial states.



Chapter 5

Velocity Profile Due to Pumping

As discussed above, in addition to random thermal motion, the tritium molecules'

motion is also determined by the pumping systems at the ends of the WGTS. This

pumping establishes a pressure gradient which, in turn, exerts a force on the tritium,

establishing a velocity profile. Since this pressure gradient is the driving force behind

the velocity profile, we must first estimate the pressure profile within the WGTS in

order to estimate the velocity profile. We will model the tritium gas as an ideal gas

(as done in the previous chapter), which then follows the equation

P = nkbT (5.1)

Where P is pressure, n is the number density of the gas, and T is the temperature.

Furthermore, since the temperature is constant within the tube, the pressure profile

is simply the density profile multiplied by a constant factor of kbT, where T - 27K.

We will now follow the calculations performed in [10], with slight modification, in

order to estimate the pressure profile within the WGTS.

5.1 The Density/Pressure Profile

In these calculations a number of assumptions are made, some of which are only

approximations of the WGTS setup. First, the length of the tube, 10m, is assumed



to be much larger than the radius of the tube, 0.045m so that end effects can be

neglected, making the flow essentially one-dimensional. This assumption means that

the density does not vary within any cross section of the gas and that the local

pressure gradient, v, is small, even though the entire pressure drop along the tube is

quite large.[10] Quantitatively, this is

RdP
v = d < 1 (5.2)P dz

where P is the pressure and R is the radius of the WGTS tube (0.045m). This

assumption is only approximately true, however, since the ratio of length to ratio is

only approximately 220. Later, we will partially lift this assumption by using the

density profile generated here to construct a two-dimensional velocity profile. This

is similar in spirit to perturbation theory; we approximate the solution to a difficult

problem by taking the solution to a simpler, related problem and plugging it in to

higher order calculations.

Another assumption that is made is that, since the total pressure drop, from the

injection point to the ends of the WGTS, will be large (in other words Pe, < Pin), we

will set Pe, = 0 in the following calculations. Here, we use the notation that Pin is the

pressure at the injection site, and Pe, is the pressure at the exit points (the ends of

the WGTS tube). This, of course, is another approximation; Pe" is not actually zero.

Another assumption made is that the interaction between the tritium gas and the

metal surface of the WGTS tube is diffuse; i.e. the accommodation coefficient, a, is

equal to 1. This is done because the accommodation coefficient for such an interface is

not known. [10] One final assumption is that the temperature is constant throughout

the WGTS, which is a relatively reasonable assumption, since the temperature will

be maintained within stability to 0.1%. [10, 6] Since the total pressure drop is large,

we can analyze this system within the model of rarefied flow developed in Ref. [19].

(Rarefaction is the decrease of a fluid's density; i.e. the opposite of compression).



The local rarefaction parameter, 6(z) is defined as

6(z) = rP(z) (5.3)
IVm

Where I is the viscosity, and vm is the most probable molecular velocity, defined as

v•m = 2RT 2  (5.4)

Rg is the gas constant (Rg = 8.314 J/(K mol)), m is the mass of molecular tritium

(m - 6 a.m.u. = 6g/mol), and T is the temperature (27K). The general strategy of

Ref. [10] is to introduce the reduced flow rate, G, and the local reduced flow rate,

Gp(6) (defined in Eqs. 5.5, 5.6) , derive a relation between them, and then integrate

along the WGTS tube (since G does not vary in our model).

G = vm(L/2) (5.5)
7rr 3Pin

G(1) = M (5.6)
() rr2v P(z)

Here, L is the length of the WGTS tube (10m), and M is the mass flow rate through

a cross section of the tube. Combining together Eqs. 5.2, 5.5, 5.6 yields the relation

Gp=(L/2) -_G (5.7)
6in dz

Here, 6in is the rarefaction parameter at the injection site (related to Pin through Eq.

5.3). Eq. 5.7 can then be integrated (recall that G is constant in z) from the injection

point to an arbitrary point z to obtain

1 z
Gp(6) dJ (L/2) G (5.8)

6in ns (L/2)

We then quote a result from Ref. [19]

62G() d (2- )G (5.9)62Gp(6) d6 = (62 - 61)Gp 2 (5.9)



Now, using Eqs. 5.8 and 5.9, we have

z = (L/2) 1 - ) _ (5.10)gn Gp ("in

This is an equation for z(6). Using knowledge of the functional form of Gp(6),

this equation can be inverted to obtain 6(z). Then Eq. 5.3 can be used to obtain the

pressure profile, P(z). All that remains now is to determine a functional form of Gp(6).

Ref. [20] surveys the data and analysis performed in various papers to calculate

Gp(6). The following form of Gp is obtained from the Navier-Stokes equation and is

presented by Ref. [20] for use in the hydrodynamic limit

Gp(6 ) = ± + op (5.11)4

Here, up is the slip coefficient, which is equal to 1.018 (when the accommodation

coefficient, a, is equal to 1, as we are assuming it to be).[10] Thus, by using the

functional form of Gp(b) given in Eq. 5.11, Eq. 5.10 can be inverted and combined

with Eq. 5.3 to finally yield a functional form of the pressure profile P(z).

P(z)= A + B- C (- (5.12)

Where A, B, and C are constants. Note, however, that, since Eq. 5.11 is only valid

in the hydrodynamic limit, the functional form, Eq. 5.12, is also valid only in the

hydrodynamic limit.

Ref. [10] performs numerical analysis and determines that, in the WGTS, the

tritium gas at the injection point falls within the hydrodynamic regime, but along

the tube, there is a transition to the free molecular regime. Values of Gp for the free

molecular and transitional regimes are also given. All of this is combined together to

create a plot (Fig. 5.1) of the scaled density profile n(z)/nin that the author feels is

representative of the density profile in the WGTS. [10, 21]
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Figure 5-1: Scaled
from Ref. [10, 21]

Density/Pressure profile. This plot was constructed from the data

5.2 The Viscosity of Tritium

Unfortunately, the value of the viscosity of tritium (p in the above equations) is

unknown. Currently, there are no experimental measurements. Therefore, we must

estimate p based on known viscosities of other gases, such as deuterium. To do this,

we must first determine the way in which the viscosity of a fluid depends on the

fundamental parameters of its constituent molecules. We will do this here using the

standard momentum diffusion model of viscosity. When viscous fluids flow along a

wall, the interactions between the molecules in the wall and those in the fluid slow

down the fluid flow at the boundary. Empirically, the shear stress, F, that slows the

fluid is shown to be of the form [23]

auzF U (5.13)

Consider, for example, the tritium flow in the WGTS, Fig. 2-2. The fact that the

O

S0

E 0.8

0.6

Ir

0.4

0.2

n -`::::\



fluid moves slower near the walls means that there exists a momentum gradient along

the ? direction (perpendicular to the flow). Viscosity can be viewed as the diffusion of

the i component of momentum due to this gradient, because such a diffusion would

also cause the change in velocity. Due to thermal energy, the molecules of a fluid

move about randomly with an average speed of V with respect to the fluid velocity.

We estimate v by equating the average kinetic energy, 1mV2, of such motion to the

thermal energy, kbT to obtain [24]

S= FT (5.14)
M

The mean free path, A is the average distance a molecule travels through a medium

(here, the fluid) between two scattering events. The scattering cross-section, a, of the

molecules in the fluid is defined by the relation that there should exist one collision

center within a volume Aa. In terms of the density, n of the molecules, this relation

becomes: [23]
1

A (5.15)an

We then argue that the 2 momentum carried across the distance of the mean

free path in the ? direction is the difference in momenta, given by m~ A. Since

the molecules move randomly via thermal motion with a speed of U, the flux of this

momentum should be proportional to U. And, so, taking the momentum difference

and multiplying it by the characteristic speed, we obtain [23]

Ouz _ V•2mkAbT (.6
F c Vm-M A c (5.16)Or a

Comparing this to Eq. 5.13 yields

Soc k(5.17)
a

Thus, if we assume that deuterium and tritium, which differ by one neutron, have

the same cross-section, a, then the ratio of their viscosity coefficients, M, is simply



given by the square root of the ratio of their masses (by Eq. 5.17). Since the viscosity

coefficient, PD, of deuterium is known, we can estimate the viscosity of tritium to be

[10]

PT = PD = 2.425- 10-6 Pa - s (5.18)
m;D

5.3 The Velocity Profile

Calculation of an exact velocity profile for the tritium flow within the WGTS is a

difficult and computationally-intensive task that is beyond the scope of this thesis.

[10] There are many technical challenges involved. For instance, recall that Ref. [10]

concludes that the tritium flow transitions from the hydrodynamic regime to the free

molecular regime within the WGTS. Therefore, even an exact solution to the Navier-

Stokes Equation (see below) would not even be valid throughout the entire length of

the WGTS. To obtain a near-exact profile, the hydrodynamic, transitional, and free

molecular regions, along with their interfaces, would each have to be analyzed with

different models. Therefore, in this thesis, an approximated velocity profile, based on

the hydrodynamic limit, will be obtained and applied to the entire WGTS. In this

way, we can obtain an estimate of the velocity profile that will be sufficient for our

purposes.

5.3.1 The Navier-Stokes Equation

In the hydrodynamic limit, viscous fluid flow is governed by the Navier-Stokes Equation: [23]

++ -- P .... & - -V = - (5.19)(a p 3 p m
Where P is pressure, F is the external force, p is mass density, and & is the velocity of

the fluid. This equation is highly nonlinear and notoriously difficult to solve in general.

However, the WGTS geometry is an axially symmetric tube with a constant circular

cross-section. Incompressible viscous flow through such a geometry is classified as



Poiseuille flow.[26] In this geometric context, Eq. 5.19 greatly simplifies to:[26]

dP d2udP d2  (5.20)
dz dJ'r2-

dPisidpneto

This equation can be easily integrated if the pressure gradient, , is independent of

r. All that is left to determine is the boundary conditions for Eq. 5.20. To accomplish

this task, we will follow the derivation in Ref. [26], which presents a new slip model

for rarefied gas flow.

5.3.2 The Boltzmann Transport Equation

A very rigorous treatment of transport processes by examining molecule-molecule

collisions leads to the derivation of the Boltzmann Transport Equation:[25]

(•-}- -V+F VIl) fl / p2a pl f:} p1' ITf,12 -

+ -+ i = dP 2dpd3p - i 2(ff f21fl) (5.21)
Btm

Here, fh f(F, Pi, t), f2 E f(j', P, t), f - f(i , p, t), and f1 f(F, p2, t). Where

the subscripts denote two colliding particles, and the primes denote quantities after

the collision. T denotes the quantum-mechanical transition matrix, and fi is the

distribution function of particle i.

This equation governs transport phenomena subject to the following assumptions.

Any external forces should act on all of the particles in a similar fashion, so any

effect of these forces on the collision cross-section may be ignored. The gas is dilute

enough so that only two-particle collisions need to be considered. The variation

of f over a the timescale of molecular collisions or length scale of intermolecular

forces is negligible. And, finally, there is the assumption of "molecular chaos," which

states that any correlation between the initial velocities of two colliding molecules is

negligible. [16, 25]



5.3.3 Boundary Conditions

Ref. [26] begins with Eq. 5.21 and derives boundary conditions, in general, for

Poiseuille flow. Then, Eq. 5.20 is integrated to yield an analytic expression for the

velocity profile. Because this derivation is based on general Poiseuille flow and is

not specific to the WGTS in KATRIN, I will only sketch out the derivation, focusing

on steps where assumptions are made. I will also discuss the applicability of these

assumptions to the WGTS.

Assuming that the flow velocity is significantly smaller than the constituent molecules'

thermal velocities, Eq. 5.21 can be approximated by

Of dF - diý f-- fd
+ -Vrf + - Vvf = - (5.22)

DL dt dt T

where fd = fd(i) = n - fm,(') where fm, is given by Eq 4.4. This is known as the

Krook equation. Here, i is the total velocity of a molecule, - is the flow velocity,

and W is the thermal velocity of a molecule, and the three are related by - = v - 'a.

/tau is the relaxation time, which is the average time that a molecule spends between

collisions. In general, T may be a function of the speed of the molecule. [16]

It is worth noting that the assumption that the flow velocity is small compared

to the thermal velocity breaks down for the regions of faster fluid flow near the ends

of the WGTS. The velocities that this slip model predicts for these regions are larger

than the thermal velocities. However, these regions of deviation near the exit points

fall within the free molecular regime. [10] So, for the purposes of this derivation, we can

ignore discrepancies in these regions, since we are aware that, within these regions,

the velocity profile is only an estimate and any hydrodynamic model will break down

here. Within the hydrodynamic region of the WGTS, the fluid velocity predicted by

this model is more than one order of magnitude smaller than the thermal velocities.

Ref. [26] then quotes a solution to this equation which further simplifies under

the assumptions that is negligibly small, P=P(z), and temperature is constant.

The result is
m du

f = fd - n fm, ()T(Vz -U)vr (5.23)
kT dr



Where fmv(i) is the Maxwell Velocity Distribution given in Eq. 4.4. For the WGTS,

the assumptions that P=P(z) and T is constant are consistent with assumptions

made above by Ref. [10] in deriving the pressure/density profile in Fig. 5.1. The

assumption that is negligible is similar to the assumption made in Eq. 5.2 by

Ref. [10]. The arguments run parallel. The way in which the pressure changes along

the tube (in the +± direction) is what influences the velocity profile to vary along

the tube. Since we have already assumed that the pressure changes slowly along the

length of the entire tube, it seems reasonable to say that the velocity should also

change sufficiently slowly along the length of the tube. Therefore, should also be

negligible within our model of the WGTS. In this way, as in the pressure profile, we

can neglect d and arrive at a velocity profile that does have z-depcndence, but onlydz

on a relatively long length scale.

Next, Eq. 5.23 can be used to calculate an expression for the shear stress (Eq.

5.13). This will yield a useful expression for the viscosity of this system, y, in terms

of the macroscopic quantities n and T.

F mv(vZ - u)f, d3v = nrkbT (5.24)

Comparing this to Eq. 5.13 yields the following expression for viscosity

I = n-rkbT (5.25)

Ref. [26] then proceeds by setting up an imaginary boundary region and calculating

the corresponding shear stresses for that region using expressions similar to Eq. 5.24.

In calculating these expressions a derivative of Eq. 5.23 is taken to obtain

df dfd 1 dPfd ' d (5.26)dz dz •  nkbT dz (5.26)

In taking this derivative, the high order term L- was neglected. This is perfectly

consistent with our assumptions for the WGTS (Eq. 5.2). It was also once again

assumed that 4 is negligible, which as argued above, is also reasonably applicable



the WGTS. The analysis of the expressions for the shear stresses on the imaginary

boundary region ultimately results in the boundary condition:

( D_ 2 - a, _k 1/2 du IrTD dP
1/2 dr amn=2T(7 (5.27)J,2J- __ {_T1 12 ] dz2 a 2m d-r amn 2- (r) 1/2 +] - sqrt3D dz

Here, a is the accommodation coefficient of the wall of the WGTS. Using these

boundary conditions with Eq. 5.20, and eliminating T with Eq. 5.25, the final result

(simplified for the WGTS geometry and with a~ = 1) is:

-l dP D [D 2  r2 + AD + 2B (5.28)
2p dz [t4

With

A= (TkbT) 1/2 (5.29)
2m P

B 7rDkbT 1 (5.30)m [2A + VFD] p2





Chapter 6

Results & Analysis

6.1 The Density and Velocity Profiles

The velocity profile in Eq. 5.28 requires a z derivative of Pressure. To perform this

derivative, a table of values (Ref. [21]) for Fig. 5.1 was used as input to a spline

interpolation tool, which interpolates the first derivative of the data at a given point.

Using this tool, the derivative shown in Fig. 6.1 was obtained.

A sample result of Eq. 5.28 is shown in Fig. 6.1. This is the velocity as a function

of r for z = L/4, where L is the length of the WGTS.

The density profile (Fig. 5.1) was used to determine the probability of a decay

as a function of position. In these simulations, a linear weighting in r was also used

due to the fact that our coordinate system is a 2D representation of a geometry with

a circular cross section. A scatter plot of the result of the combination of these two

profiles is shown in Fig. 6.1. Note the high density near the center injection point.

6.2 The Beta Spectra

My analysis of the Doppler shifts consists of a full simulation of the beta decay of T2 ,

including both the phase space factor and the dot-product factor in Eq. 3.6. First

a random position of the parent T2 is chosen based on the considerations discussed

above. This position is then fed into Eq. 5.28 to determine the flow velocity. A
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Figure 6-1: Scaled z derivative of Pressure. This plot was constructed by using a
spline interpolator tool with the data corresponding to Fig. 5.1
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Figure 6-2: The flow velocity for tritium gas in the WGTS given by Eq. 5.28, evalu-
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Figure 6-3: A scatter plot of the distribution of particles within our 2D slice of the
WGTS.

random thermal velocity is chosen from Eq. 4.4 to be added to the flow velocity to

give the total initial velocity of the T2 before it decays. A random rest energy of the

(3HeT)+ is chosen from the final state distribution, Fig. 3.5. The decay T2 is then

simulated in the rest frame of the T2. Then all three decay products are boosted back

into the laboratory frame using the initial velocity of the T2. This boosting is the

full Lorentz velocity transformation. Then this final electron energy, after the boost

transformation, is recorded in a histogram. To study the effects of these two different

velocity considerations (thermal and flow), a number of simulations were performed,

for three values of the neutrino mass.

6.2.1 Inclusion of the Final State Distribution

When the final state distribution was included in the simulation, the endpoint was

blurred due to the effects discussed in Chapter 3. Preliminary runs of these simula-

tions showed that this blurring due to final states had the effect of washing out the

velocity effects, Figs. 6.2.1, 6.2.1. These results showed that a study of the velocity-
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Figure 6-4: For a neutrino mass of leV/c 2, the distortion of the beta spectrum, and

corresponding Kurie plot, due to the influenced of thermal motion, flow velocity, and

the final state distribution. These beta specra were constructed with 5- 109 decay

events.

related effects which also incorporates the final state distribution requires statistics

that are too large to be produced given the time and computational resources avail-

able for this thesis. Therefore, to present more vivid and numerous examples of the

velocity-related effects, we will examine, in the next section, spectra that do not

include the final state distribution.

/subsectionNeglecting the Final State Distribution To obtain a clearer picture of

the sources of the Doppler shifts, we will examine, for each neutrino mass, beta decays

from stationary T2 molecules (the control dataset), T2 influenced by thermal velocities

(Eq. 4.4) alone, T2 influenced by the flow velocity alone (Eq. 5.28), and T2 molecules

influenced by both of these velocities. The results of this analysis is shown in Figs.

6.2.1-6.2.1.

The spectra are given here in "effective" number of counts. This is due to the fact

that, in the creation of these histograms, instead of throwing out events, each event

was given a weighting and a weighted histogram was created. The effective counts
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Figure 6-5: For a neutrino mass of 0eV/c 2, the distortion of the beta spectrum, and
corresponding Kurie plot, due to the influenced of thermal motion, flow velocity, and
the final state distribution. These beta specra were constructed with 5- 109 decay
events.
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Figure 6-6: For a neutrino mass of leV/c 2 , the distortion of the beta spectrum, and
corresponding Kurie plot, due to the influenced of thermal motion only. These beta
specra were constructed via 7 - 109 decay events.
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Figure 6-7: For a neutrino mass of leV/c 2, the distortion of the beta spectrum, and

corresponding Kurie plot, due to the influenced of the flow velocity only. Note that

the scale of the energy axis of this figure is an order of magnitude less than the other

figures considered in this section. These beta specra were constructed via 7-10' decay

events.
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Figure 6-8: For a neutrino mass of leV/c 2, the distortion of the beta spectrum, and
corresponding Kurie plot, due to the influenced of both thermal motion and the flow
velocity. This is the result of direct simulations of the two simultaneous effects, and
was not obtained by simply adding Fig. 6.2.1 and Fig. 6.2.1. These beta specra were
constructed via 7 - 109 decay events.
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Figure 6-9: For a neutrino mass of 0.25eV/c 2, the distortion of the beta spectrum,
and corresponding Kurie plot, due to the influenced of thermal motion only. These
beta specra were constructed via 7 - 10' decay events.
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Figure 6-10: For a neutrino mass of 0.25eV/c 2, the distortion of the beta spectrum,
and corresponding Kurie plot, due to the influenced of the flow velocity only. Note
that the scale of the energy axis of this figure is an order of magnitude less than the
other figures considered in this section. These beta specra were constructed via 7 - 10'
decay events.
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Figure 6-11: For a neutrino mass of 0.25eV/c 2, the distortion of the beta spectrum,
and corresponding Kurie plot, due to the influenced of both thermal motion and the
flow velocity. Again, this is the result of direct simulations of the two simultaneous
effects, and was not obtained by simply adding Fig. 6.2.1 and Fig. 6.2.1. These beta
specra were constructed via 7 - 10' decay events.
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Figure 6-12: For a neutrino mass of 0eV/c 2 , the distortion of the beta spectrum, and
corresponding Kurie plot, due to the influenced of thermal motion only. These beta
specra were constructed via 7 - 10' decay events.
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Figure 6-13: For a neutrino mass of 0eV/c 2, the distortion of the beta spectrum, and
corresponding Kurie plot, due to the influenced of the flow velocity only. Note that
the scale of the energy axis of this figure is an order of magnitude less than the other
figures considered in this section. These beta specra were constructed via 7-10 9 decay
events.
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Figure 6-14: For a neutrino mass of 0eV/c 2, the distortion of the beta spectrum, and
corresponding Kurie plot, due to the influenced of both thermal motion and the flow
velocity. Again, this is the result of direct simulations of the two simultaneous effects,
and was not obtained by simply adding Fig. 6.2.1 and Fig. 6.2.1. These beta specra
were constructed via 7 -109 decay events.
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correspond to the statistics that would be needed to provide the same resolution in an

un-weighted histogram. The weighting and calculation of effective counts is handled

by the software package's built-in histogram functions.

6.2.2 Interpretation of These Results

As one can see from the above figures, the Doppler shifts due to the total velocity

profile is more drastic for a larger value of neutrino mass. Also, the effect of these

Doppler shifts is to "straighten out" the Kurie plot of massive neutrinos. One would

expect that this effect would lead to a underestimation of the neutrino mass, because

smaller dips in Kurie plots ordinarily correspond to smaller neutrino masses (see

Chapter 3).

Another interesting fact to note is that the distortion due solely to the flow ve-

locity was approximately one order of magnitude smaller than the distortion due to

thermal motion. It is worth considering the origin of this difference to determine

whether or not this is an artifact of these simulations. As stated earlier, the velocities

predicted by the fluid flow model we are using, Eq. 5.28, are, near the injection point,

approximately one order of magnitude smaller than the thermal velocities predicted

by Eq. 4.4. Near the ends of the WGTS (large values of Izl), however, these velocities

are multiple orders of magnitude larger than the thermal velocities. These larger flow

velocities should have a much larger effect on the beta spectrum than the thermal

velocities.

However, consider Fig. 6.1, which represents the distribution of parent T2 molecules

in our 2D slice of the WGTS. As is expected, the density of tritium is much larger near

the injection point than it is near the exit points. This means that there are many

more tritium molecules in the region of low flow velocity (small Izi, and so, small

PI by Fig. 6.1) than there are in the regions of high flow velocity. Thus, decays

are much more likely to occur in the region of low flow velocity, near the injection

point. Furthermore, due to the higher probability of a random event occurring at a

larger radius than a smaller radius, the density of the tritium is higher near the wall

of the WGTS than it is near the center (as can also be seen in Fig. 6.1). Due to



viscosity, the velocity decreases as the square of the radial distance from the center of

the WGTS (Eq. 5.28). Therefore, these higher density regions are also lower velocity

regions.

Physically, a molecule near the ends of the WGTS has the largest potential to

have a large single effect on the beta spectrum, due to the high velocity. However,

this high velocity also means that the molecule spends less time in this region, and

so, is less likely to decay there. Thus, we would expect the high energy shifts due to

flow velocity to contribute to the beta spectrum in the form of high-energy outliers.

In fact, there are outliers visible in the flow-shifted spectra (Figs. 6.2.1, 6.2.1, 6.2.1).

Thus, this model predicts that the low probability of high-velocity decays domi-

nates over the effect of these high-velocities on the beta spectrum. However, is this

also true for KATRIN? One important fact to note in the interpretation of this data

is that KATRIN produces beta decays at a rate much faster than my simulations can.

Thus, with these higher count rates, KATRIN may be sensitive to a level of these

outlier high-energy shifts that is simply not present in the number of statistics pre-

sented here. To investigate this, one might perform a single simulation for a specific

set of parameters, which would, of course yield higher statistics than the preliminary

and general study presented here.

I believe that it is also important to note that this suppression of high-velocity

decays due to density is exacerbated by the particular density model used in this

analysis. The approximate density profile in Fig. 5.1 goes to zero at the ends, whereas,

in reality the density does not actually reach zero. This artificially suppresses the

decay rate at the endpoints, and so, suppresses the effect of the flow velocity. Also,

the velocity model that we are using, Eq. 5.28, is being stretched beyond the validity

of its assumptions in this region of high-velocity near the endpoints. It seems very

likely that the creation of a more accurate density model near the endpoints would

go hand-in-hand with a more accurate velocity model in this region, so this could

perhaps be a more fruitful route than continuing on with Eq. 5.28.
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Figure 6-15: The integrated spectra for a neutrino mass of 0.25eV/c 2. This figure
is simply given as a representative example of the spectra over the entire range that
KATRIN will measure; the individual spectra are difficult to distinguish on this scale.

6.3 The Integrated Spectra and Fit Results

As discussed in Chapter 2, the KATRIN spectrometer is an integrating spectrometer.

So, to simulate the measurements results that KATRIN might obtain from the above

simulated raw spectra, we must integrate the spectra. This integration was done in

steps that correspond to the retarding voltages that are planned to be used in the

KATRIN measurements.[22] For each retarding voltage, the number of counts with

above that energy is tallied, and the resulting number was used as the mean in a

Poisson distribution. A number was then drawn from this distribution, and this was

the number used as the measured value (the square root of that number was used as

an error). The resulting spectra are given here.

These spectra were created to be fed into a fitter, created by graduate student

Asher Kaboth, which reports the neutrino mass and endpoint corresponding to a

given integrated spectra. [22] The results of this fitter's analysis is summarized in

Tables 6.3 and 6.3.

Because the velocity effects shifted both the endpoint and the shape of the spec-
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Figure 6-16: The integrated spectra for a neutrino mass of leV/c2 .
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Figure 6-17: The integrated spectra for a neutrino mass of leV/c 2.
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Figure 6-18: The integrated spectra for a neutrino mass of leV/c2 .

m,V(eV/c ) Stationary Decay Thermal Effects Flow Effects Both Effects

0 0.00000 -0.999780 0.000000 -0.99977
+0.733767 +0.880019 +0.746666 +0.824665

0.25 0.299997 -0.998350 -0.299997 -0.998368
±0.412502 ±1.32312 ±0.40062 +1.31047

1 -0.998049 0.500566 -0.998035 0.500566
+0.393119 ±1.42563 +0.396306 ±1.43557

Table 6.1: Fit Neutrino Mass values (in eV/c 2 ) for the various combinations of
velocity-related effects. This table was created by fitting the data in Figs. 6.3-6.3

with a fitter created by Asher Kaboth. [22]

m,(eV/c ) Stationary Decay Thermal Effects Flow Effects Both Effects
0 18610.0 18616.8 18610.0 18616.9

±6.5 +0.2 +6.6 ±0.2
0.25 18616.4 18616.8 18616.4 18616.8

±0.2 +0.2 ±0.2 +0.2
1 18604.5 18615.3 18604.5 18611.5

+0.2 ±0.2 +0.2 ±0.2

Table 6.2: Fit Endpoint values (in eV) for the various combinations of velocity-related
effects. This table was created by fitting the data in Figs. 6.3-6.3 with a fitter created
by Asher Kaboth. [22]



trum, the fitting of the above results was made more difficult. In Tables 6.3 and 6.3,

the velocity-related effects can be seen to increase the endpoint value, as expected,

and as seen in figures in this section also. Another effect of the Doppler shifts is to

decrease the fitted value of the neutrino mass. This effect was expected earlier when

it was noted that the Doppler shifts have the effect of "straightening out" the Kurie

plot.





Chapter 7

Conclusions

The analysis here has shown that the Doppler shifts due to the tritium source motion

within the WGTS shift the endpoint of the decay by an amount on the order of 0.2eV.

This shift also varies as function of neutrino mass, and is mostly dominated by the

random thermal motion of the tritium molecules. In addition to the simple endpoint

shift, the actual shapes of the endpoint distortions are presented here.

The effects due to the flow caused by pumping, Eq. 5.28, were shown to be

smaller than the effects due to thermal motion by approximately one order of magni-

tude. Thus, the fluid flow distortion of the endpoint is negligible in these data. This

conclusion should apply well to the hydrodynamic region near the injection point.

However, the assumptions of the velocity model used in these simulations break down

in the free molecular regime near the exit points. This is the very region where the

flow velocity effects should be strongest. Therefore, the suppression of high-velocity

flow effects present in these data is not necessarily reliable. It may rather point to

the inability of this approximated model to capture the true physics of that region of

the WGTS. Improved modeling of this free molecular region of the WGTS to obtain

more accurate density and velocity profiles seems to be necessary to further quantify

the effects in this region.

Another effect observed in these simulations was the "washing-out" of the velocity

effects by the inclusion of the final state distribution. For the statistics presented

here, 5 - 109 events, it was difficult to distinguish the stationary decay spectra from



the Doppler shifted spectra in any clear or meaningful way. Further simulations with

higher statistics (longer running time and higher computational power) would help

determine whether this is simply a result of low statistics or whether the velocity-

related effects are truly masked by the final state distribution.

In addition to the specific results of this study, the simulation program created for

this study has significant potential for extension to other aspects of the KATRIN sim-

ulations being performed. For instance, every run of the simulation creates all three

four-vectors of the products of the decay at a weighted location in three-dimensional

space (assuming axial symmetry of the WGTS). These products can be directly piped

into the GEANT simulations, which simulate the motion and interactions of the par-

ticles as they pass through the actual geometry and conditions of the detector. In this

way, the interactions between the particles and the energy loss within the apparatus

can be simulated with the actual decay products.

Also, the structures used to incorporate the final states of the (3HeT)+ ion can

easily be extended to include the relative mixtures of the various gasses within the

source and also the final states of other decay products, such as those presented for

(3HeH)+ in Ref. [14]. In addition to this, because the simulation is starts from the

general decay model, takes for input only the rest-masses of the relevant particles,

and so, can be easily modified to simulate the other decays that take place in the

WGTS.[6]



Appendix A

Simulation Code

/* For readability, the code included here is the less general version of the

code, which is custom-tailored to the calculations performed in this thesis.

Presented here is the general loop structure that simulates the decay.

Simulating the various combinations of velocity effects simply consists of

turning off and on various boostings.

It uses histograms that were created by other pieces of code, which contain

the Pressure/Density profile, the Final States Distribution, and the

derivative of the Pressure/Density Profile.

Not presented here is the code that analyzes/plots the data and Kurie plots,

or the code that creates the histograms used in this code snippet.

#include <iostream>

#include <string>

#include <math.h>

#include <fstream>

#include "TLorentzVector.h"

#include "TCanvas.h"

#include "TGenPhaseSpace.h"



#include "TRandom3.h"

#include "TGraph.h"

#include "TFile.h"

#include "TTree.h"

#include "TH1D.h"

#include "TF1 .h"

#include "TVector3.h"

#include "TMath.h"

using namespace std;

//Global Variables for Distributions

TRandom3 RN; //Random Number Generator

TF1 RCirc("RadDistrib","x", 0,1);//Radial Distribution

THiD * hP = new TH1D; //Pressure profile

THiD * hdPdz = new THiD;//Derivative of Pressure profile

THiD * hFS = new TH1D; //Final State Distribution

//---Initialize the Distribution Histograms ---------------

void InitPDistrib(){

TFile *f = new TFile("PresProf.root");

hP = (TH1D*)f->Get("P");

hdPdz = (TH1D*)f->Get("dPdz");

}

void InitFSDistrib() {

TFile *f = new TFile("FinStates.root");

hFS = (TH1D*)f->Get("FinStates");

}

void InitHistograms(){



InitPDistrib()o;

InitFSDistribO();

}

//-------------------------------------------------------

struct weightst{

//Contains the various Weighting info for the event

Double_t FullWeight;

Double_t TGenWeight;

Double_t DotProduct;

Doublet FermiFunc;

};

inline Double_t GetU(Doublet y, Double_t z){

//Returns Beta factor of viscous, 2D veolcity profile

//y = r in the coordinates used in this thesis

//z = position along WGTS axis

//PBinLength = Width of bins in hP histogram

Int_t BinNum = floor(abs(z)/PBinLength)+1; //Convert z to Bin#

Double_t N = hP->GetBinContent(BinNum); //Get the Density

Doublet dNdz = hdPdz->GetBinContent(BinNum); //Get the derivative

if(z < 0) dNdz = -1 * dNdz; //Handle the symmetry of the provile

Double_t A = (mu/Pin)*sqrt((pi*kb*T)/(2*m))*(1/N);

Doublet B = (pi*d*mu*kb*T)/(m*Pin*Pin*(2*A + sqrt(3)*d))*(1/(N*N));

Doublet u = -(Pin/(2*mu))*(dNdz)*(d*d/4 - (y*y) + d*A + 2*mu*B);

return u/c;



inline TVector3 RandomDiro(){

Double_t x, y, z;

RN.Sphere(x, y, z, 1);

TVector3 temp(x, y, z);

return temp;

};

inline Double-t Fermi(Intt Z, Doublet B){//Fermi Function

//Z = Nuclear Charge, B = Beta factor of electron

//Fa = Fine Structure Constant, aO & al are the emperical values

Doublet x = (2*pi*Z*Fa)/B;

Doublet temp = x/(1-exp(-x))*(aO+al*B);

return temp;

};
inline Doublet FP(Intt Z, TLorentzVector P){

//Computes Fermi Function given a 4-vector of electron, P

Double t bf = P.BoostVector().Mag();

Double-t temp = Fermi(Z, bf);

return temp;

};

//Maxwell Speed Distribution----------------------------------

Double-t MaxBeta=5e-6;

TF1 *MSpeedB = new TF1("MaxwellSpeedB", "x* [3] *x* [3] *exp(-([0] *x*[3] *x*[3])

/(2*[2]*[1]))", 0, MaxBeta);

//Initialize Values of Maxwell Speed Distribution

void SetMSpeedParams(TF1 *MSpeedB, Doublet Temp=27){

//0 = mass, 1 = Temperature, 2 = kb (Boltzmann's constant)

MSpeedB->SetParameter(O, Mthermal);



MSpeedB->SetParameter (1, Temp);

MSpeedB->SetParameter(2, kb);

//MSpeedB->SetParameter(3, 1); //For speeds in mks

MSpeedB->SetParameter(3, c); //For speeds as Beta Factors

}1;/ -------------------------------------------------------

inline void GetPosition(Doublet &r, Double_t &z){

//Pick a location for a decay event based on the 2D geometry and the density

distribution

//d = diameter of WGTS, r & z as defined in thesis

r = (d/2) * RCirc.GetRandom();

z = hP->GetRandom ();

if(RN.Uniform(0,1) < 0.5) z = -1 * z;//Pick z<0 or z>0

};

inline TVector3 GetVt(){

//Gets the Thermal Velocity (hard-coded for Maxwell-Speed)

Double_t vmag = MSpeedB->GetRandom();

TVector3 temp = RandomDir();

temp = temp * vmag;

return temp;

};

//------------------------------------------------------------

//Sample of the general boosting routine with All boosting options (thermal

and flow velocity) turned ON.

void WithBoostL(Int_t NumTimes, Double_t NeutrinoMass, string Nme,

Int_t NumBins = le6, Doublet Temp=27) {



//NumTimes = # times to execute loop, Nme = Name of the Run

//NeutrinoMass = electron antineutrino mass in eV

//NumBins = # Bins the Beta Spectrum Histogram should have

//Temp = temperature of WGTS

InitHistogramso();

SetMSpeedParams(MSpeedB, Temp);

string HistNme = "h" + Nme + "WB";

THID *h2 = new TH1D(HistNme.cstr(),"Electron Energy Spectrum;Electron

Kinetic Energy (keV)", NumBins, 0, 19);

TLorentzVector W(0.0, 0.0, 0.0, MParent);

//For TGenPhaseSpace, {Momentum, Energy} units are {Gev/C, GeV}

if(NeutrinoMass!=0) NeutrinoMass=(le-9)*NeutrinoMass;//Convert Units

//masses[] contains the rest-masses of the products

//(masses[2] is changed later by Final States Distribution

Double_t masses[3] = { NeutrinoMass, Me, MDaughter};

TVector3 Vt(0,0,0), U(0,0,0), BoostV(0,0,0);

Doublet r=0, z=O, Uz=0;

weightst wt;

//For use with TTrees (not used in thesis calculations)

//This is may be used for detailed particle tracking

//TLorentzVector Neu, El, He;

//TTree Tr("Tr", "Results");

//Tr.Branch("Electron",&El[0],"Px/D:Py:Pz:E");

//Tr.Branch("Neutrino",&Neu[0],"Px/D:Py:Pz:E");



//Tr.Branch("He",&He[O],"Px/D:Py:Pz:E");

//Tr.Branch("Position",&Position[0] ,"x/D:y:z");

//Tr.Branch("BoostVelocity",&BoostV[0],"Vx/D:Vy:Vz");

//Tr.Branch("Weights",&wt,"FullWeight/D:TGenWt:DotProduct:FermiFunc");

//The ROOT General Phase-Space Decay

TGenPhaseSpace event; event.SetDecay(W, 3, masses);

for(Intt i=O; i < Maxl; i++){

masses[2] = MDaughter + (hFS->GetRandom()); //Final State

event.SetDecay(W, 3, masses); //Distribution

wt.TGenWeight = event.Generate(); //Simulate Decay

TLorentzVector *pNeutrino = event.GetDecay(0);

TLorentzVector *pElectron = event.GetDecay(1);

//TLorentzVector *pHe = event.GetDecay(2);//Not used in thesis

wt.FermiFunc = FP(2, *pElectron); //Fermi Function Weighting

wt.DotProduct = pElectron->Dot(*pNeutrino);//Dot-Product Weighting

wt.FullWeight = wt.TGenWeight * wt.DotProduct * wt.FermiFunc;

GetPosition(r, z); //Get Decay Position in 2D space

Uz = GetU(r, z); U.SetZ(Uz); //Get Flow Velocity

Vt = GetVt(); //Get Thermal Velocity

BoostV = Vt + U;

pElectron->Boost(BoostV);



// pNeutrino->Boost(BoostV); //Not used

// pHe->Boost(BoostV); //in thesis

//Fill Beta Spectrum Histogram

h2->Fill((pElectron->E() - masses[1])*1e6, wt.FullWeight);

//For Use With TTrees (not used in thesis)

//Neu = *pNeutrino;

//El = *pElectron;

//He = *pHe;

//Tr.Fill();

Nme += "WB.root";

TFile f(Nme.cstr(), "RECREATE");

//Scale the Histogram to yield Effective Entries

h2->Scale((h2->GetEffectiveEntries ())/(h2->Integral()));

h2->Writeo();

f.Close()o;
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