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Abstract

An elastic wave equipartition concept is formulated, tested, and used to predict the
mid-frequency bistatic elastic wave scattering from finite complicated elastic shells
in water. This statistical model is simple and insensitive to structural details, and
provides a satisfactory alternative to extensive numerical approaches and to expensive
scale-model measurements.

The elastic waves in shells (compressional, shear and flexural), if insonified, can
convert and exchange energy with each other at shell discontinuities such as bulkheads
and endcaps. Under extensive wave conversion, wave power, defined as energy density
multiplied by axial group speed, is hypothesized to be equipartitioned among the
elastic wave types, a concept analogous to modal energy equipartition in statistical
energy analysis (SEA). The power equipartition hypothesis is tested through a finite
element calculation of finite endcapped shells with four deep heavy rings (the ringed
shell) and with no rings (the empty shell). Wave power equipartition is found plausible
for the ringed shell, where the power difference among the elastic waves is within 3
dB during the second roundtrip time of the trace matched wave in the shell. For the
empty shell, the power difference among the elastic waves is, however, typically 5-10
dB, indicating no power equipartition at least within the first 6 roundtrip periods of
the trace matched wave in the shell.

Based on the elastic wave power equipartition hypothesis, sound radiation is pre-
dicted from the motion of the elastic waves with the finite shells treated as a finite
array. The excitation is limited to within 300 of beam aspect, so that acoustic wave
trace matching to supersonic compressional and shear waves is dominant. First, an
infinitely long shell model is used to estimate acoustic wave power injected into the
shells. Then, the power in each elastic wave type is obtained via the wave power
equipartition hypothesis. Further, a radiation model is built to project the wave mo-
tion into sound pressure in the fluid. Finally, the predicted bistatic elastic scattering
is displayed in the time domain, based on random phase realizations and a decay rate
model which considers various dissipation mechanisms in the shells.

The predicted target strength is compared with MIT/NRL measured data for the
ringed shell and the internalled shell with the internal structures resiliently mounted



to the rings. The mean target strength over the frequency region 3 < ka < 10 and
the observation region with within 300 of beam aspect is evaluated. The prediction
differs from the measured data by no more than than 2.5 dB for the second and third
roundtrip of the trace matched wave in the shells, as well as for a time integrated
case. The consideration of the modified wave speeds in the prediction model does not
yield a better agreement with the measured data. The unmodified wave speeds (from
the infinitely long uniform shell) alone can provide acceptable prediction results.

The geometric scattering, much less sophisticated than the elastic scattering but
important in the specular (forward) direction, is not considered in this study; its
effect can be readily accounted for using methods in the literature. In doing so, a
total estimate of scattering can be readily made.

Thesis Supervisor: Professor Ira Dyer
Title: Weber-Shaughness Professor of Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation and objectives

Sound is widely used for underwater detection because light can not travel very far

in water. Sound scattering (echo) from an insonified elastic shell-like target in water

contains both geometric and elastic scattering components. Elastic scattering, which

usually occurs later in time than geometric scattering, is related to the resonance or

elasticity of the shell-like target. Understanding and prediction of both geometric and

elastic scattering is important for the detection of shell-like elastic targets submerged

in water. Geometric scattering is reasonably well understood (Ref. [1]). This thesis

therefore concentrates on the elastic part.

Elastic scattering can be related to coupling between the acoustic and elastic waves

and coupling among the elastic waves in shells. Namely, elastic scattering involves

the following processes.

* acoustic excitation of the elastic waves in shells

* coupling among the elastic waves in shells

* sound radiation from the elastic waves in shells

For submerged, cylindrical, thin shells in the mid-frequency range (acoustic wave-

length comparable to the shell radius), one usually observes three elastic wave types:



(1) compressional (quasi-longitudinal) waves due to in-plane structural elongation and

compression; (2) shear (quasi-shear) waves due to in-plane transverse motion; and (3)

flexural waves due to out-of-plane bending. The first two wave types, together, are

also called membrane waves. The membrane waves in shells, unlike those in flat

plates, have substantial normal displacement components caused by shell curvature

and therefore are capable of radiating sound strongly once their speeds exceed that

of water. Although flexural waves have large radial motions, they are subsonic and

generally unimportant for sound radiation in water (unless near shell discontinuities).

One important mechanism of acoustic excitation of the elastic waves is trace

matching. The supersonic membrane waves can be trace matched when the trace

speed of an incident sound equals or exceeds that of the membrane waves. Therefore,

trace matching only occurs when sound is incident within a sonic cone region centered

around beam aspect (normal to the shell axis).

Reciprocally, one important mechanism of sound radiation from the elastic waves

is supersonic wave radiation. Once trace matched, the membrane waves can propa-

gate forward in the shells and radiate in the specular direction (with respect to the

incidence direction). The radiation in the backscatter direction (the reverse incident

direction) does not occur until the forward trace matched elastic waves are reflected

at shell discontinuities such as endcaps and bulkheads.

The shell discontinuities in finite complicated shells play roles in all the three

processes of the elastic wave scattering. The most important one is that they cause

elastic waves conversion and create extensive elastic wave coupling and energy sharing

among the elastic waves. Apart from bulkheads and endcaps, there are a large number

of other kinds of discontinuities in the real world submerged vehicles. For example,

additional internal structures with many degrees-of-freedom might be attached to

bulkheads. All those inhomogeneities create enormous elastic wave interactions. As

a result, the elastic wave field in a shell is very complicated.

To determine scattering from finite complicated shells, one might use experimental

means, but building a real model and performing intensive underwater measurements

is extremely expensive and time consuming. One might also attempt numerical cal-

culations, but a complete numerical modeling of a real world shell model is close to



impossible. Not only is it hard to model every structural complexity of a real world

shell, but also one often lacks knowledge of the structural details. Even if one has the

blue prints of a real world shell model, manufacturing inaccuracies can yield serious

structural uncertainties as well.

Since shell details are largely uncertain or even unknown, I choose to explore a

statistical approach to estimate the average scattering behavior of finite complicated

shells. Instead of treating finite complicated shells as complicated systems with many

degrees-of-freedom, I treat elastic wave types as subsystems of the shells. The energy

sharing among elastic wave types is conceptually no different from the energy sharing

among structural subsystems. If the wave coupling is extensive enough to cause

equipartition of wave energy flux or wave power, it is possible to characterize the

statistical power of the elastic waves and estimate sound radiation from them. This

method of predicting elastic wave scattering should be rather insensitive to shell

structural details.

This thesis is motivated by the desire to formulate and test the wave power

equipartition concept to predict quantitatively the elastic scattering from compli-

cated elastic shells in water. Although geometric scattering is not studied in this

thesis, its effect (especially in the specular direction) can be easily accounted for us-

ing methods in the literature, e.g. [1]. In doing so, a total estimate of scattering can

be readily made.

1.2 Previous work and related research

Literature review

Scattering from shells has been studied extensively especially in the last few decades.

Scattering from empty spherical shells and infinitely long cylindrical shells are the

most tractable because the shell geometry is separable and the scattering can be

determined exactly by modal series. [2].

Resonance scattering theory (RST), is helpful to identify and classify mechanisms

causing resonance scattering. Experimental techniques have been developed to iso-



late the resonance response from the geometrical scattering [3], [4]. The resonances

considered in these studies, however, are mainly caused by the radiating elastic waves

because the finite elastic shells presented have no discontinuity or only weak discon-

tinuities. As a result, wave conversion among the elastic waves was ignored in these

studies.

Generalized ray approaches have been intensively used to show resonance scatter-

ing from surface-guided elastic waves on smooth shells of various shapes [5], [6],[7]

and [8]. Ray approaches provide clear physical pictures of coupling between sound

and shell waves, but are generally limited to high frequencies. Although it has been

successfully used in examining the effect of internal structures, it is generally difficult

to apply ray theory as the level of shell complexity increases.

A modal-based method [9] was used to achieve considerable understanding of

transient elastic wave propagation and sound radiation from submerged finite shells

with bulkheads and endcaps. This study is, however, limited to the radiation case

where the shells are excited by a point force. In addition, the endcaps considered

have no slope discontinuities.

The approaches reviewed so far are predominantly deterministic. Yet, since elas-

tic wave interactions and coupling at shell discontinuities create a reverberant field,

statistical approaches should be feasible and helpful.

Weaver [10] estimated diffuse sound radiation from shells following concepts in

traditional Statistical Energy Analysis (SEA). Elastic waves were treated as subsys-

tems and modal energy equipartition was assumed. The study, however, did not test

the plausibility of the modal energy equipartition in shells. Moreover, the assumption

of diffuse sound field eliminates the angle dependence of radiation.

Treating a structure, such as an empty shell, as a deterministic master structure

while treating the attached structures, such as bulkheads and internals, as a group

of resonators with certain statistical properties, some authors [11], [12] have recently

studied the structural acoustic problems of Fuzzy Structures (FS). It is interesting

that some major findings in the FS study can be readily derived from traditional SEA

methods.



Rybak [13], [14] conducted theoretical studies on longitudinal and flexural wave

coupling in plates with random inhomogeneities. He calculated the 'mean-square

modulus of the field' by means of the Dyson equation as well as the spatial distribution

of average energy. The wave power equipartition concept in this thesis is influenced

by his work.

Since phase is, together with amplitude or energy, a fundamental aspect of wave

phenomena, a SEA counterpart of phase, statistical phase analysis (SPA), has been

developed since the 1980s [15], [16] and [17]. The major development of the study

of SPA is that the averaged phase slope of mobility transfer functions depends on

modal density and modal overlap of the system, and is proportional to modal density

of the structure by a factor of 7r/2 if modal overlap is much smaller than 1. The

analysis of statistical phase provides a way of measuring modes of a structure and

has the potential to be used in the sound scattering case. This potential has been

explored by a recent study [18] which showed that the extension to resonant scattering

is possible, in the case of a single structural or wave system. However, the problem

in this thesis is mid-frequency transient scattering from shells with coupling among

multiple elastic wave types, and thus does not seem to be amenable to the technique

of SPA.

Shell scattering research at MIT

In the MIT structural acoustics program, experimental analysis of scattering of scaled

shell models have been carried out over the past several years. Several Ph.D. and

Master theses [19], [20], [21], [22], [23] and [24] reflect this research effort. This thesis

work is part of the continuous research to further understand elastic wave scattering.

The essence of the MIT shell scattering study is to find out what does and what

does not affect the shell scattering. Three shell models have been built that are

acoustically representative of underwater vehicles but simple enough to treat with

available techniques.

The shell models include a set of incrementally complicated shells of 90:1 scale [21].

The simplest is the empty shell. It is a cylindrical thin shell capped by a conical endcap

that is connected by a fractional spherical shell. There are slope discontinuities at
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Figure 1-1: Dimensions and configurations of the MIT empty and ringed shells. Di-
mensions in cm. (a) the empty shell; (b) endcap; (c) the ringed shell with four rings.

both the cylindrical-conical shell junctions and the conical-spherical shell junctions.

The slope discontinuities shown in (a) and (b) of Fig. 1-1, although small, can have

strong influence on elastic wave conversion.

Two other shell models are studied. One is identical to the empty shell stiffened

by four unequally spaced heavy elastic rings, and is called the ringed shell. The third

shell, internalled shell, is distinguished from the ringed shell by additional sprung

elastic internal structure resiliently mounted at the rings.

Fig. 1-1 shows the dimensions and configurations of the empty and the ringed

shells; Fig. 1-2 shows the configurations of the internalled shell. The mass ratio of

the three shell models are 1(empty shell):2 (ringed shell):4(internalled shell). The

compressional wave speed is 5270 m/s in the shells and 1625 m/s in the delrin rods.

The shells and the rings are nickel Ni-200. App. B lists the shell parameters in detail.

The frequency is in the mid range of the dimensionless product of the acoustic

wavenumber in water and the shell radius, 2 < ka < 12, where the acoustic wavelength

A = 27r/k is comparable to the shell radius a. The lower bound is about one half

the shell's ring frequency and the upper bound is about three times the shell's ring

frequency.

,wl



The scattering measurement of the MIT shell models is reviewed in the following.

The experiments were conducted in a water tank at the Naval Research Laboratory

(NRL) and consisted of a series of measurements of scattered sound signals from the

three shell models due to broadband (2.3 < ka < 11.0) plane sound pulse excitation.

The transient sound pressure was measured in both the backscatter direction (mono-

static) and in other directions (bistatic). As shown in Fig. 1-3 for the experiment

configuration, the shells were excited by a 3m long 84-hydrophone line array source.

The bistatic scattered pressure was measured at a 2m distance from the shell center,

typically at 10 increments from 00 to 3600. The incidence angle 0 is measured with

respect to the shell axis, thus bow incidence is equivalent to 0 = 00. The observation

angle is also measured with respect to the shell axis. The incident pressure pi is mea-

sured near the shell surface with the shell models removed. The scattered pressure

is obtained by subtracting the incident pressure from the total measured pressure,

Ps = Pt - Pi. The subtraction process provides a signal-to-noise ratio above 45 dB.

Corrado [19] discussed the evolution of membrane waves in shells and the measured

radiation losses. He pointed out shear wave dominance in the backscattering of the

empty shell. He also studied the monostatic and bistatic target strength and found

that the target strength of the ringed shell and the internalled shell are very similar

to each other, while clearly different from that of the empty shell. His studies provide

basic knowledge that guides further investigation of transient backscatters in this

work. Because Corrado focused more on the membrane waves, the flexural wave was

not extensively discussed in his study.

Corrado [19], Bondaryk [20] and Conti [21] used a beamforming technique to

project the nearfield sound pressure onto the shell surface, revealing details of forward-

and backward-going elastic waves in the shells. In the special case of axial incidence,

Figure 1-2: Illustratisc-elasticnternalled shell model. From Conti's thesis [21].

steel mass

Figure 1-2: Illustration of the MIT internalled shell model. From Conti's thesis [21].
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Figure 1-3: Sketch of the MIT/NRL shell scattering measurement configurations (not
to scale).

Bondaryk found that approximately one tenth of the compressional wave amplitude

of mode n = 0 is reflected at the endcaps. Although the beam focusing technique

is powerful, the lack of circumferential measurement points prevents the analysis of

waves of higher mode (n > 0) in the shells.

Conti [21] focused on scattering near the axial direction, where the length scale

of the endcaps falls into the transition region between the low and high frequency

approximations. Conti discussed rather extensively the flexural wave interaction with

compressional waves at the endcap junctions and at the elastic rings for mode n = 0.

He did not consider shear waves after demonstrating their unimportance at aspect

angles close to axial incidence.

Machovjak [23] processed the bistatic experimental data with Maximum Likeli-

hood beamforming to identify structural resonances in the data. His observation of

the flexural wave influence in later arrivals for the ringed and the internalled shell

demonstrated that flexural waves play a role in the scattering processes, even though

they are subsonic.

Park [22] compared the decay rates of beam aspect monostatic scattering, in three

frequency bands and two temporal regions. He found that by the time the flexural

- -



waves transverse the average ring bay, the decay rate is generally smaller than that

immediately after the initial return. His analysis did not consider shear waves because

shear waves are not directly excited at beam incidence.

Apart from the experimental analysis, analytical and numerical studies have been

carried out at MIT as well. Ricks [24] developed a Direct Global Matrix model for

infinitely long cylindrical shells by using the full 3D elastic theory. Guo [25], [26] used

asymptotic methods to analyze wave propagation in conical shells. He showed that

shear and flexural waves cutoff in the conical shell, while the compressional wave does

not when fluid loading is considered. What is more, compressional waves are found

to dissipate heavily in the conical endcap. The amplitude of the compressional wave

can attenuate by tens or even hundreds of decibels, after one roundtrip in the conical

endcap. Guo's research on wave dissipation at the endcap provides direct guidance

to the estimate of compressional wave decay in this study. In addition to the study of

wave propagation at the endcaps, Guo also studied the effect of bulkheads and keels

on shell scattering and radiation, see [27], [28] and [29].

1.3 Approach

The purpose of this thesis is to formulate and test statistical concepts in order to

predict elastic wave scattering from finite complicated shells in water.

Excited by incoming sound, and converted at shell discontinuities, the elastic

waves will exchange energy among themselves, possibly resulting in an equipartition

of wave power provided the coupling among the wave types is strong. This wave

power equipartition concept is similar to energy sharing processes among coupled

structural subsystems. The classical SEA [30] predicts equipartition of modal energy

if the coupling between the subsystems dominates the dissipation. In the case of wave

types being treated as subsystems, wave power might be equipartitioned, if the decay

of the average field because of elastic wave coupling is more rapid than the decay

because of damping [13]. I hypothesize elastic wave power equipartition in this study

and via the hypothesis, I expect to redistribute the injected sound power among the

power in the elastic wave types, whether or not they are directly excited.



Figure 1-4: Illustration of the modeling procedure and the associated assumptions.

Fig. 1-4 illustrates the statistical scheme based on the elastic wave power equipar-

tition hypothesis. The box 'Inf. shell excitation' is intended to estimate how much

of the incident sound power is injected into the shells while the box 'radiation model'

is intended to project the wave motion into sound pressure in the fluid. Before I

discuss the two boxes further, I will discuss the test of the wave power equiparti-

tion hypothesis, which can be done through the following three possible approaches:

measurements, theoretical analysis and numerical calculation.

The MIT/NRL measured data provide reliable transient scattered sound pressure

from the three shell models. However, they do not contain direct vibration measure-

ments on the shells. Even though it is possible to reconstruct the surface pressure

and even the radial velocity on the shells by means of the beamforming technique,

the in-plane wave motion is still missing. Thus the data can not be used directly to

test the wave power equipartition hypothesis.

There does not seem to be an alternative theoretical approach. No analytical

technique has been found in the literature to solve fluid-loaded finite complicated

shells (such as the ringed shell) without making extra assumptions.

As a result, I use numerical approaches in this study. A finite element code



developed by BBN [31] (SARA-2D) allows the circumferential components of the shell

response and scattered field to be compressed into Fourier modes (circumferential

orders), as long as the shells are axially symmetric. This thesis uses a SARA-2D

program that has been implemented by Liu and Vasudevan [32] to calculate the

responses of both the empty shell and the ringed shell. The internalled shell can not

be calculated by SARA-2D because it is not axially symmetric and has to be modeled

as a 3D structure. There may be other FEM codes to solve 3D elastic shell scattering

problems at mid frequencies, including viscoelastic internals, but huge computation

cost prevents calculation of the internalled shell in this study. In fact, it is the

general difficulty in computing complicated shells that motivates the development of

a statistical scattering prediction model in this thesis.

In this study, the role of SARA-2D itself is mainly limited to generating shell

surface responses. Independent post-processing is needed to transform the surface

response into the wavenumber domain, in order to identify and evaluate the elastic

wave motion and wave power. The coherent phase information is retained in the

SARA-2D calculation so that it is possible to do transient analysis in post-processing

by means of the inverse Fourier transform. The numerical analysis is intended to

answer if and when the wave power hypothesis is plausible.

Based on the numerical inference of plausible wave power equipartition in the

ringed shell model, I use the power equipartition hypothesis to predict sound scatter-

ing from the ringed and the internalled shells, using the flow chart shown in Fig. 1-4.

As mentioned, there are two extra steps necessary: one is to estimate how much

sound power is injected into the shells ('Inf. shell') and the other is to project the

wave motion into sound pressure in the fluid ('radiation model'). Note that the two

steps are not reciprocal, although they seem to be. The acoustic excitation involves

an infinitely long shell while the radiation involves a finite shell. The reciprocity

relation can not be readily applied and separate studies must be performed.

Sound power injected into a finite shell can not be readily calculated by rigorous

theoretical means, but can be approximated. In this thesis, I limit sound incidence

to the membrane wave trace matching region 600 < 0 < 1200, where I expect the

acoustic trace matching to dominate other excitation mechanisms, such as induction



at endcaps and excitation of the subsonic flexural wave at the rings. Trace matching

not only provides much more efficient coupling between the sound pressure field and

the shell motion, but also occurs over the whole shell length instead of at isolated

shell discontinuities. It is thus reasonable to assume that the injected sound power

is from trace matching alone. Based on this assumption, the injected power due to

trace matching can be conveniently obtained from calculation of an infinitely long

cylindrical shell. This assumption of 'trace matching only' is thus also expressed as

the 'Inf. shell excitation' assumption in Fig. 1-4, which states that the acoustic trace

matching injects the same amount of energy per unit shell length into the infinitely

long shell as into the finite shell. The injected elastic wave power into an infinitely

long shell can be calculated using conventional shell theories.

The radiation model box in Fig. 1-4 converts the elastic wave motion to sound

radiation. Green's theorem can be used to compute sound pressure in the fluid if the

surface pressure and velocity of each elastic wave type is known. In doing so, however,

three issues have to be addressed. (1) Only radiation from the cylindrical shell section

is considered while the endcap radiation is ignored. I expect the endcap radiation to

be insignificant, if the sound observation angle is restricted to 600 < 0 < 120* as well,

the same restriction as for sound incidence. (2) The wave power calculation does not

provide a detailed pressure and velocity field, but the magnitude of total velocity.

Thus, the phase field, surface pressure and radial velocity are missing and have to be

estimated, mainly through calculation on the infinitely long shell. The phase field can

be reconstructed from the axial phase speeds or axial wavenumbers, which might be

estimated from the infinitely long shell calculation. The radial velocity component can

be extracted from the total velocity following the wave motion polarization behavior

in the infinitely long shell. The missing surface pressure can be estimated through the

momentum equation. (3) The radiation model only gives magnitude of the scattered

sound pressure. To extends the scattering prediction to the time domain, a decay

rate model has to be developed that considers different wave dissipation mechanisms

in the shell models.

In addition to its use in testing the wave power equipartition, SARA-2D is used

to examine the assumptions and approximations in the acoustic excitation and radi-



ation modeling. For example, the rings might modify wave speeds and wave motion

polarization behavior. Their effects need to be investigated before an infinitely long

shell model can be used. The flow chart in Fig. 1-5 illustrates the post-processing

steps. Parallel to the steps in Fig. 1-4, the numerical calculation provides detailed

shell response.

The MIT/NRL data can be used to directly compare the prediction of the bistatic

target strength from the statistical model. In addition, the data can be used to test

the accuracy of the numerical calculations. Moreover, the data can be analyzed to

derive understanding of the shell scattering behavior, such as decay rate and wave

speed change due to the rings. Fig. 1-6 summarizes the relationship among the model,

the measured data and the numerical calculation.

radiation calculation

Figure 1-5: Illustration of numerical calculations based on SARA-2D shell response.
The numerical calculation helps to test the hypotheses for the modeling. The shaded
blocks represent straightforward implementation of finite element calculation while
the remaining blocks are post-processing steps.



Figure 1-6: Interplay of model, measured data and numerical calculation.

1.4 Thesis overview

Without going into the mathematics, I outlined the statistical scheme in the previ-

ous section. This thesis is naturally organized as formulation and test of the wave

power equipartition concept, in Chap.2 and in Chap.3 respectively, followed by the

development of the radiation model in Chap.4. In Chap.5, the transient elastic scat-

tering from the ringed and internalled shells is predicted based on elastic wave power

equipartition, and is compared to the measured data.

The first part of Chap.2 discusses basic concepts and understanding of elastic wave

excitation, propagation, radiation and coupling in cylindrical shells. A dispersion di-

agram in the frequency-wavenumber domain is projected to demonstrate the acoustic

trace matching and elastic wave coupling processes. A semi-quantitative analyses on

wave coupling strength and wave dissipation is performed. The significantly large

coupling strength among the waves in comparison with the wave dissipation damping

indicates that wave power equipartition is likely for the ringed shell and it is rea-

sonable to hypothesize wave power equipartition. In the second part of Chap.2, I

formulate mathematically the statistical scheme of computing the power in each elas-

tic wave type for finite complicated shells, via the power equipartition hypothesis and



the infinitely long shell excitation assumption. I find that the power equipartitioned

among the elastic waves equals the sound power injected into the shells scaled by the

wave group speed ratios, and is approximately 20 dB lower than the incident sound

power.

Chap.3 tests the wave power equipartition hypothesis through numerical calcu-

lations. First, the accuracy of the SARA-2D finite element modeling is verified. I

show that the calculated scattering from the ringed shell is approximately 2 dB higher

than the measured data within the membrane wave region. The detailed finite element

analysis and wavenumber transform of the shell surface response are not presented in

this chapter, but placed in App.C. Second, the power of the elastic wave types is cal-

culated for the empty and the ringed shell, for both steady-state and time-windowed

cases. The time windows are based on the integer number of roundtrip periods of the

trace matched wave in the shells. The wave power difference is found to be within 3

dB for the ringed shell but typically within 5-10 dB for the empty shell. Thus, power

equipartition is plausible for the ringed shell but not for the empty shell. In addition,

wave power equipartition is found to occur during the second roundtrip period of the

trace matched wave in the ringed shell. The calculation of finite shells with fewer

rings indicates wave power equipartition is still approximately true, but more evident

later in time.

Chap.4 builds a radiation model to convert wave motion to sound pressure in

the fluid, based on Green's theorem. The model computes sound radiation from the

cylindrical section while ignoring the endcap radiation. First, the effect of endcap

radiation is tested, by comparing the radiation using decomposed surface responses

from the SARA-2D calculation with the direct SARA-2D scattering calculation. I find

that the radiation calculation without the endcaps is only 1-2 dB different from the

direct SARA-2D calculation, as long as the observation angle is within 600 < 0 < 1200.

This observation is further supported by an examination of the MIT/NRL measured

data. Second, I bridge the gap between the input of the radiation model and the

output of the wave power calculation, by estimating the elastic wave speeds, surface

pressure and radial velocity component of the total velocity due to each wave type.

I find that the infinitely long shell calculation can be used as approximations which



underestimate the sound radiation to within 2 dB, in comparison with the direct

SARA-2D calculation, and are thus acceptable for scattering prediction. In addition,

I investigate the influence of the rings on the wave speeds. The rings can modify

the membrane phase speeds considerably, but decrease the flexural phase speed only

slightly. The membrane wave region, however, does not change significantly. The

modified wave speeds will be used in Chap.5 for scattering prediction.

Chap.5 predicts elastic wave scattering in the time domain, based on the wave

power calculation in Chap.2 and the radiation model in Chap.4. In order to convert

the magnitude of the sound pressure into the time domain, a random phase realization

concept is put forward. Further, the unified wave decay rate in the presence of

strong wave coupling is formulated and estimated. The unified decay rate is found

to be a weighted summation of individual decay rates of the elastic waves, with the

weighting determined by the ratio of the axial group speeds of the elastic waves.

Major decay mechanisms considered include radiation dissipation from the cylinder,

coupling dissipation to compressional wave radiation from the endcaps, as well as

energy loss into the internals. The second half of this chapter predicts the transient

target strength for finite shells having the same dimensions and materials as the MIT

ringed shell model but with unspecified internal details. The prediction is compared

against the MIT/NRL measured data in windows defined as the integer number of

roundtrip period of trace matched waves in the shells. The logarithmic means over

the frequency region 3 < ka < 10 and angular region 600 < 0 < 1200 are rather close

between the predictions and the measured data, with differences generally within

± 2.5dB, for window 2 and 3 as well as for a time integrated case. The ring influence

on membrane wave speeds is also considered. Inclusion of the random wavenumber

realizations in the prediction model generally does not yield a better agreement with

the measured data.

Chap.6 summarizes the results of this thesis and suggests for future research.



Chapter 2

Insonified elastic waves and their

power

This chapter studies acoustic wave coupling to elastic waves and elastic wave propa-

gation and coupling in shells. I discuss the basic concepts and understanding about

elastic wave excitation, propagation, radiation and coupling in Sec.2.1. The discussion

serves to facilitate the later modeling in the thesis. One focus is on trace matching,

assumed as the dominant excitation mechanism within the membrane wave region, so

that the infinite shell results can be used for the acoustic excitation of a finite shell.

Another focus is on speculating elastic wave coupling strength against wave dissipa-

tion, to illustrate semi-quantitatively the likelihood of wave power equipartition in

finite shells such as the ringed and the internalled shell. Based on the wave power

equipartition hypothesis and the infinite shell excitation assumption, the elastic wave

power is formulated in Sec.2.2 and calculated in Sec.2.3. The equipartitioned wave

power is expressed as the injected sound power scaled by the group speed ratios of

the elastic waves, and is approximately 20 dB lower than the incident sound power.



2.1 Elastic waves in shells, excitation, coupling,

and dissipation

The problems of elastic waves in shells and their interaction with sound are unique

on one hand and are commonly understandable on the other. The uniqueness is

caused by the shell curvature. Because of curvature, any elastic wave has non-zero

displacements both in-plane and out-of plane, although membrane waves are still

predominately in-plane and the flexural waves are still predominantly out-of-plane.

One implication of this is that the sound wave can couple to the supersonic membrane

wave efficiently through their small, but very important radial motions. Such coupling

would be much weaker in flat plates. Another implication is that the elastic waves in

shells can be coupled with each other by essentially any kind of discontinuity, even

at a single point.

Yet it is possible to understand the acoustic problems in a common sense. First, a

sound wave can excite elastic waves by trace matching if the trace speed of the sound

is larger than that of elastic waves. Trace matching, also called acoustic coincidence,

is a fundamental concept that can be described by Snell's law. Second, elastic wave

propagation in shells can be approximately viewed as wave propagation in a waveg-

uide. The shells allow elastic waves to propagate in the axial direction, but confine

them in the circumferential direction if the circumferential periodicity is regarded as

a boundary.

2.1.1 Wave motion in an infinitely long shell

The equation of motion of an infinitely long cylindrical thin shell can be derived in

many ways, well summarized in [33]. Donnell's equations of motion for thin shells,

attached in App. A, is used in this study, since the shell thickness is 1/90 of the

radius, and 1/120 of the shear wavelength at ka = 12.

For a time harmonic solution, the homogeneous part of Donnell's shell equation

of motion yields a dispersion equation in the form



D(ka, kX, n, a, pS, p...) =0 , (2.1)

where the dispersion relation D is determined by the product of acoustic wavenumber

in the fluid and the shell radius, ka, and by circumferential mode n, axial wavenumber

kx and the material properties of the shell and the fluid. The integer n represents

the circumferential resonances due to the periodic boundary condition of the uniform

cylindrical shell. The relation between mode n and the circumferential wavenumber

ko (0 denotes azimuthal angle as seen in Fig. 2-6) can be expressed as

k = . (2.2)
a

In the axial direction, the shell is boundless and the axial wavenumber k. is

therefore continuous. In fact, one can regard a shell as a waveguide, where waves of

different mode n and wave types can propagate in the axial direction.

From Eq. 2.1, one can solve for three free elastic wave types: compressional, shear

and flexural waves. The details of the mathematics are shown in App. A.

The compressional and the shear waves are also termed 'membrane waves'. They

propagate faster in the shells than sound does in water and therefore are supersonic.

This implies that they are able to radiate sound efficiently. Their propagation speeds

generally do not vary with wave propagation directions because the in-plane mem-

brane stiffness is basically isotropic for thin shells.

The flexural wave is caused by local bending motion of the shell and is predomi-

nantly out-of-plane. As frequency increases, the local bending stiffness increases and

the flexural wave propagates faster, resulting in its dispersive nature. In the mid-

frequency range, the flexural wave in the shell is subsonic. It might generate large

surface pressure due to its large radial motion, but the field decays rapidly (55 dB

per flexural wavelength away from the shell [34]). Since the local bending stiffness is

generally anisotropic for a cylindrical shell, the flexural wave propagates faster in the

shell axial direction than in the circumferential direction. Therefore, the flexural wave

speed is in general determined by both frequency and direction of propagation. The

anisotropic behavior of the flexural propagation, however, quickly reduces to isotropic



behavior above the shell ring frequency at ka = 3.5 for a water-loaded nickel shell.

At higher frequencies, the flexural waves in the shells behave more and more like that

in the flat plate [35].

In the following, I study the dispersion of an infinitely long cylindrical shell sub-

merged in water. An infinitely long shell is studied because its dispersion can be

used to describe finite shells, at least to the first order approximation, for the elastic

wave behavior away from shell discontinuities. Ref. [36] has shown that the wave field

in the middle part of a finite empty shell is essentially no different from that of an

infinitely long cylindrical shell.

Fig.2-1, 2-2 and 2-3 display respectively the axial wavenumber, phase speeds and

group speeds for compressional, shear and flexural waves of different circumferential

mode n. The material and circumferential geometry of the infinitely long shell is

identical to that of the empty shell model shown in (a) of Fig. 1-1.

The results in Fig.2-1, 2-2 and 2-3 indicate that the shear waves have cutoffs

near ka = 2, 4, 6,8 for mode n = 1, 2, 3, 4 respectively, because the real part of

the axial wavenumber vanishes. The compressional waves, on the other hand, do

not really cutoff, although the real part of the axial wavenumber has minima near

the ad hoc cutoffs at ka = 3.5, 7.0 and 10.5 for n = 1, 2 and 3 respectively. The

axial wavenumber at those frequencies would vanish, however, if there were no fluid

loading [2]. It is fluid loading that causes no real cutoffs, but only ad hoc cutoffs.

The behavior of the imaginary part of the axial wavenumber near the cutoffs is

directly related to radiation dissipation of the waves. As shown in the upper-right

plots of Figs. 2-1 and 2-2, the imaginary part of the shear wavenumber first increases

as frequency is lowered towards the cutoffs, but quickly reduces to zero at the cutoffs.

The compressional wave counterpart, however, increases as the frequency is lowered

towards and even below the ad hoc cutoffs, indicating significant increase in radiation

dissipation. This radiation damping is physically evident at endcaps as will be shown

shortly in Sec.2.1.2. The loss factors of the membrane waves due to radiation damping

can be calculated for each mode n in Eq. 2.3, and is displayed in Fig. 2-4.



= 2imag(k) (2.3)
real(kx)

The damping loss factors above the cutoff frequencies are not very different be-

tween the compressional waves and the shear waves, a phenomenon found in Ref. [37]

for infinite cylindrical shells. Note that this radiation damping behavior will change

in conical shells, where cutoffs become typical because of shell radius contraction.

The issue will be further discussed in section 2.1.2.

The group speeds in Fig.2-1, 2-2 and 2-3 can be measured from the slopes of the

wave loci. In the case of the membrane waves, the group speeds are smaller than

the phase speeds. The flexural group speeds are smaller than the phase speeds below

ka = 3.2 but increase to become twice the phase speeds at higher frequencies, a

well known behavior of thin fiat plates or thin beams. In general, the axial group

speeds of the flexural waves are only a fraction of the membrane waves, except near

cutoffs of the membrane waves. Since the energy speeds in the shell waveguide can

be represented by axial group speeds [38], the flexural waves transport energy much

more slowly than the membrane waves do.
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Figure 2-1: Compressional wave loci and speeds for n=l(solid), 2(dash) and 3(dash-
dot). (a) Real k,; (b) Imaginary k,; (c) phase speed and (d) group speed. Compres-
sional waves do not have real cutoffs because of fluid loading, but have ad hoc cutoffs
near ka = 3.5, 7 and 10.5 for n=1, 2 and 3 respectively. From theoretical calculation
of the fluid loaded infinitely long shell.
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Figure 2-2: Shear wave loci and speeds for n=1l(solid), 2(dash) and 3(dash-dot). (a)
Real k,; (b) Imaginary k.; (c) phase speed and (d) group speed. Shear waves cutoffs
can be observed near ka = 2, 4 and 6 for n = 1, 2 and 3 respectively. At cutoffs, phase
speeds go to infinity while group speeds go to zero. From theoretical calculation of
the fluid loaded infinitely long shell.
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Figure 2-3: Flexural wave loci and speeds for n=l(solid), 2(dash) and 3(dash-dot).
(a) Real k.; (b) phase/group speeds. The Group speeds exceed the phase speeds
at ka = 3.5, the ring frequency, and increase to becomes twice of the phase speeds
as frequency becomes higher, a typical flat thin plate behavior. From theoretical
calculation of the fluid loaded infinitely long shell.
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2.1.2 Wave radiation from endcaps

Cylindrical shells in the real world are finite and terminated with endcaps. Endcaps

contract the shell radius and cause many interesting acoustic phenomena. For exam-

ple, endcaps might force elastic waves to cutoff because of the decrease of the local ka

or ka(x). Endcaps can also increase local flexural stiffness and thus flexural axial wave

speeds. However, the major impact of endcaps on this study is the drastic increase

of the radiation damping at the endcap, because compressional waves transmitted

from the cylindrical shell, either from other wave types or from the compressional

waves themselves, are forced to 'cutoff' due to the radius reduction. The waves thus

become very dissipative since the imaginary axial wavenumber dominates the real

axial wavenumber below the ad hoc cutoffs, see Fig. 2-1.

According to Guo's analytical study [26], the compressional wave amplitude might

attenuate 10 -- 100 dB during a roundtrip into a conical endcap, the wave turning

at a radius half the large radius. Fig. 2-5 shows his calculation of the compressional

wave attenuation for each mode n at such an endcap. In the calculation, the wave

attenuation is obtained from an integration over the endcap length. Typically, small

n means small attenuation while large n indicates large attenuation. In comparison

to the compressional waves, shear wave attenuation never exceeds 2.5 dB during such

a round trip in the endcap, and can be regarded as relatively lossless at the endcaps.

Cu

0a

0.

2
0

0

Nondimensional Frequency ka

Figure 2-5: Attenuation of compressional waves during a round trip in a cone with
small radius half the large radius and length equal to the diameter at the large end.
From Guo [26].



2.1.3 Acoustic excitation of elastic waves in shells

Basic mechanisms

As mentioned in Sec.1.1, this thesis concentrates on elastic scattering. The following

discussion is therefore focused on the elastic wave excitation; geometric scattering is

not directly discussed.

Elastic waves in the finite shell models can be acoustically excited by at least the

following three mechanisms:

* trace matching

* distributed forcing

* induced forcing.

Trace matching, or acoustic coincidence, occurs when the elastic wave speed ex-

ceeds sound speed in the fluid and when the acoustic wavelength is smaller than the

characteristic shell dimensions. Taking the angle 0 to be 00 in the bow axial direction

and 900 in the beam direction, the axial trace matching of the shear and compres-

sional waves occurs at 0 > 61.30 and 9 > 73.60 respectively, for a water-loaded nickel

uniform shell (no rings) in this thesis. The angles are due to Snell's law in the form

of cmem = c/cos9 or Eq. 2.4. In other words, trace matching occurs only within a

fan region (sonic cone) of about 600 around beam aspect (0 = 900). In this study,

600 < 0 < 1200 is termed the membrane wave region because one, or both, membrane

waves are susceptible to acoustic trace matching in the shell axial direction. It is true

that the rings can affect the wave speeds and therefore the trace matching region.

Sec.4.2.1. will show that four elastic heavy deep rings decrease the membrane wave

speeds considerably above ka = 5. However, the minimum cutoff angle of the mem-

brane wave region, which depends on the n = 1 shear wave speed, is not significantly

affected by the rings. The minimum cutoff angle is shifted from 61.30 for the infinitely

long shell to 59.70 for the ringed shell and to 58.70 for the internalled shell. Thus,

I can still approximate the membrane wave region as 600 < 0 < 1200 for the ringed

and the internalled shells.



Fig. 2-6 sketches acoustic trace matching to membrane waves in a shell. An

incident acoustic wave can trace match two helical elastic waves in the shell (two chi-

ralities in opposite senses), but having the same axial wave speed. Two such opposite

going waves in the circumferential direction lead to the circumferential resonances or

mode n.

Distributed forcing occurs when the acoustic wavelength is many times larger than

the shell dimension so that the fronts of the acoustic wave interacts with the shell in

nearly the same phase like a unidirectional distributed force. Conti [21] demonstrated

this forcing nature of the acoustic excitation of the endcap at low frequencies close

to the axial direction (8 < 200).

Induced forcing is due to a local shell impedance change that induces internal

coupling forces or moments, for example at ring attachments to the shell. These

coupling forces or moments can be regarded as virtual sources that energize the shell

to vibrate and radiate.

The above excitation mechanisms can be better understood if one considers the

reciprocal process of excitation: radiation.

The reciprocal of acoustic trace matching of the supersonic elastic waves is su-

personic sound radiation from the waves. If a plane sound is incident at 9 = 750

where both shear and compressional waves are trace matched, the trace matched

membrane waves will propagate forward in the shell and radiate in the specular di-

rection 0 = 105'. The backward going membrane waves, if reflected at the shell end,

will radiate in the backscatter direction 0 = 75' .

The reciprocal of distributed forcing is a piston pumping the fluid, as shown by

Conti [21] for the axial endcap motion.

The reciprocal process of induced forcing is the power loss to the fluid during elastic

wave interaction and conversion at shell discontinuities. Coupling among the elastic

waves at shell discontinuities can create local displacement or stress disturbance to

the surrounding fluid and can thus create sound radiation. In addition, even without

flexural wave conversion to other wave types, the local shell impedance change would

destroy the surface pressure canceling effect for the small-wavelength flexural waves



and create local flexural surface pressure that can indeed propagate far into the fluid.

Such subsonic flexural wave radiation is commonly encountered in machinery noise

control [35] in air.

The relative importance of the excitation mechanisms in the case of the MIT shell

models can be discussed in the following angular regions.

* 600 < 0 < 850

Rumerman [39] and Corrado [19] have given experimental and theoretical evi-

dence that trace matching is the most important way of injecting sound energy

into all three shell models. The trace matching dominance over other excita-

tion mechanisms can be explained by its stronger coupling to fluid as well as

the larger area of the coupling which occurs over the whole shell length.

* 850 < 0 < 900

Corrado [19], Conti [21] and Klausbruckner [40] have shown that the geometric

response dominates the scattering.

* 00 < 8 < 200

In this region, Conti [21] has shown that the distributed forcing of the endcap

is dominant for ka < 6.

* 200 < 0 < 600

In this region, trace matching at the cylindrical shell is impossible. Geometric

scattering is important, according to Dyer [34].

The focus of this work is the membrane wave trace matching region, 600 < 9 < 850.

By removal of the geometric response from the MIT/NRL scattering data, and the

SARA-2D numerical calculation, I extend the membrane region to 600 < e < 900. In

fact I eventually extend the bistatic observation region to 600 < 0 < 1200 after the

geometric response, which dominates the forward (specular) scattering, is removed.

Consequently, I take trace matching to dominate other excitation mechanisms in

this region. The hypothesis that trace matching dominates the full elastic wave

response will be tested in Sec.4.1 by a numerical calculation and by a reciprocity

argument. Since an infinitely long cylindrical shell is excited only by trace matching



in 600 < 0 < 90' and the injected power can be calculated theoretically, I will use

a uniform infinitely long cylindrical shell to study sound power injection into finite

shells.

2.1.4 Acoustic trace matching and elastic wave coupling in

the ka - k, domain

The concepts of trace matching and elastic wave coupling can be presented in the

frequency - axial wavenumber domain or ka - k. domain. Such a presentation is

expected to provide a clear and meaningful way of illustrating trace matching and

elastic wave coupling concepts in an integrated way. The following results are obtained

from the infinitely long shell calculation.

Fig. 2-7 displays the dispersion curve of the n = 1 shear wave (thick solid line,

from Fig. 2-2) due to 660 sound incidence. The loci of the acoustic wave is represented

by the thick dashed line governed by Snell's law

kX = k cosO . (2.4)

Acoustic trace matching to the n = 1 shear wave is represented by point C where

the two wave loci cross, because trace matching requires the same axial wavenumbers

for the shear wave and the acoustic wave.

In the ideal case of no dissipation in the membrane waves, trace matching occurs

at a point. However, the shell material damping, and more importantly, the radiation

damping, can excite the membrane waves acoustically even if the trace wavenumber

is slightly off the 'eigen' wavenumbers. This off-eigenvalue excitation is much like

forced excitation of a damped resonator. The larger the damping, the wider the

frequency (or wavenumber) response curve. As a result, the shear wave loci in Fig. 2-

7 should be replaced by a narrow strip (two thin solid curves shown), the width of

which is determined by half power bandwidth, which can be approximated by twice

the imaginary part of the axial wavenumber,
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Figure 2-6: Sketch of acoustic trace matching in the shell.
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The region of acoustic trace matching is where the acoustic line overlaps the shear

wave 'strip', represented by line segment AB in Fig. 2-7. The finite trace matching

region can be measured in both the frequency axis and the axial wavenumber axis.

Axial wavenumber, 1/m

Figure 2-7: The n = 1 shear wave locus (thick solid line) and line of the incident
acoustic wave (thick dash line), at 660 sound incidence. Trace matching occurs in a
region, A-B, where the incident acoustic line and the shear wave strip (bounded by
two thin solid lines) overlaps, instead of point C. The spread around the shear wave
locus is determined by Eq. 2.5.

The trace matched membrane waves in the shells are able to convert to other

wave types at shell discontinuities. Of course, there are no discontinuities in the

calculation of a uniform infinitely long shell. The following discussion is intended

to provide a physical rationale for cases in which such conversion is possible. Since

the shell endcaps and ring discontinuities are commonly axially symmetric, an elastic

wave type of mode n only couples to another one of the same mode n, but possibly

of different wave type.

In addition, the elastic waves can only couple to each other if they share the same

frequency band. For example, the trace matching region of the n = 1 compressional

(2.5)



wave due to 750 incidence occurs within the frequency band 3.6 < ka < 8.9 (See

Fig. 2-8). If the n = 1 shear wave is to be excited, it must be excited within the

same frequency band, as if the trace matching region in the shell projects its image

horizontally to the compressional wave. Fig. 2-8 demonstrates the coupling among

the n = 1 elastic waves due to sound incidence at 75' . The finite trace matching

region is not drawn but its effect has been considered.

Acoustic trace matching for sl a75, n=1

Axial wavenumber, 1/m

Figure 2-8: The n = 1 elastic wave loci due to sound incidence at 750 . The elastic

waves can only couple if they share the same frequency band as well as the same

circumferential mode n.

Fig. 2-9 provides an overview of trace matching due to acoustic wave incidence

in an angular region 600 < 0 < 810. In the figure, the n = 0 shear wave is not

shown because it has no radial motion component and can not be excited acoustically.

Moreover, the finite trace matching region effect is ignored for clarity.

Fig. 2-9 is helpful in many ways. For shells without discontinuities, the figure not

only indicates that no compressional wave can be excited below 720 incidence and no

shear wave can be excited below 600, but also shows which circumferential modes are

excited at a fix incidence angle above the critical angles.

In addition, the figure can be used to check wave coupling if the shells have axial

symmetrical discontinuities. In an example sound incidence at 75, the sound trace



matches the n = 1 compressional wave as well as the shear wave of mode n = 1, 2

and 3. The n = 1 compressional wave is trace matched at ka = 8.5 while the

trace matching frequencies for the shear waves are ka = 2.5, 4.5, 7.5, for n = 1, 2, 3

respectively. The n = 1 compressional wave is able to convert to the n = 1 shear

near ka = 8.5, but the n = 1 shear wave trace matched near ka = 3.0 is neither able

to convert to the n = 1 compressional wave because the latter is cutoff at ka = 2.5,

nor are the n = 2 and n = 3 shear waves able to convert to the corresponding n = 2

and n = 3 compressional waves for similar reasons.

Furthermore, Fig. 2-9 can be used to check sound radiation direction of the mem-

brane waves, since trace matching and radiation are reciprocal. Given the fact the

n = 1 shear can be trace matched by the n = 1 compressional wave, one can derive

the radiation direction of the 'converted-reflected' n = 1 shear wave at ka = 7.5 to be

close to 620 by interpolation from Fig. 2-9. This deviation from the coincident radia-

tion is a very important characteristic of wave coupling. The wave coupling spreads

the axial wavenumber and makes the radiation directivity complicated.

To summarize, Fig. 2-9 provides relations among trace matching, membrane wave

coupling at axisymmetric discontinuities, and radiation directions of the converted

waves. This diagram will be referenced frequently in this thesis.
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Figure 2-9: Diagram of acoustic wave coupling with (a) the compressional waves
and (b) the shear waves, due to sound incidence 60 < 0 < 81 ° . The straight lines
correspond to the acoustic wave loci for different angles. For example, sound trace
matches n = 1 compressional wave at ka , 8.5. The same frequency point for n = 1
shear, if converted from the compressional wave, lies between the 60" and 630 lines.
Thus the converted n = 1 shear wave radiates at approximately 620.
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2.1.5 Speculations on wave coupling strength in the shell

models

Elastic waves interact with each other at shell discontinuities and exchange energy

among wave types. The energy sharing among wave types can be regarded as energy

sharing among coupled subsystems, which has been described by traditional SEA

approaches. It has been shown in SEA [30] that two coupled subsystem systems

under steady-state broadband excitation can reach equipartition of modal energy if

the coupling loss factor is significantly greater than the loss factor of the subsystem

(]%op > 77int). In the case of energy sharing among wave types, I expect a similar

condition to be true: that is, the energy flux or wave power might be equipartitioned

among the wave types if the wave coupling is much stronger than the wave dissipation.

I will define energy flux or wave power later in subsequent section. I can, however, in

a semi-quantitative way, evaluate the wave coupling relative to the wave dissipation

in the case of the MIT shell models, and to make a quick estimate of the likelihood

of wave power equipartition in finite complicated shells.

First, I discuss the concept of coupling loss factor, wave coupling and well as the

relationship between the two. I use an example of two irregular plates coupled with

a common boundary, which has been discussed in Ref. [30].

Fig. 2-10 illustrates coupling between two plates. Suppose plate 1 of area A1 is

coupled to another plate through a line-junction of length 11. Plate 1 has vibrational

energy E1 within a frequency band centered at w. The power flow out of plate 1, i 12 ,

depends on the wave transmissibility, r12, at the boundary and the collision rate, vl ,

of the wave incident on the boundary,

Figure 2-10: Illustration of two finite plates coupled by a line junction.



H 12 = EV1rl1 2 . (2.6)

Let us assume a diffuse wave field in the plate, so that the collision rate, vl, can

be conveniently expressed as

VI = Cl/dl , (2.7)

where cl is the wave speed of plate 1 and dl is the mean free path of the diffuse field

in plate 1 ( dl = rA1/11).

On the other hand, the power that flows out of plate 1 can be regarded as a sort

of dissipation

I12 = E1wr112 , (2.8)

where r12 is termed coupling loss factor from plate 1 to 2.

Since Eq. 2.7 and Eq. 2.8 express the same physical quantity, the coupling loss

factor of plate 1 to plate 2 is represented in a general form

7712 = V17 12/W . (2.9)

Thus the loss factor can be defined in wave terms to describe wave coupling

strength, which is determined not only by how strongly different waves are converted

at the structural discontinuities, but also by how often the waves interact with each

other.

The interaction rate in this thesis is the same as the collision rate v in the above

example. The wave conversion coefficient includes wave mixing during both reflection

and transmission processes.

The empty shell

For the empty shell, the interaction rate for a fixed circumferential mode n can



be estimated as

vn = cnxlL , (2.10)

where cnx is axial phase speed of a wave type of mode n, and L is the length of the

shell. For the n = 1 mode, the flexural wave phase speed is approximately 400 m/s

(at ka = 7). The trace matched speed at 750 sound incidence is 6000 m/s. The

interaction rate of the flexural waves and the membrane waves are 500 1/s and 7500

1/s respectively.

Wave reflection and transmission coefficients at shell discontinuities such as end-

caps are not generally known. However, it is possible to study the elastic conversion

at a flat plate junction with the same bend angle as the cylindrical shell-conical shell

junction discontinuity. Using the formulation and calculation in App. D, I estimate

that compressional waves can convert more than one quarter of its wave power to

flexural waves for n = 0, n = 1 and more than one quarter of its wave power to shear

waves for n = 2, n = 3. Thus, endcaps are strong wave scatters.

Based on the above estimation of wave coupling, I suppose each elastic wave con-

verts 1/5 of its power to other wave types every time an endcap is encountered. As

a result, the coupling loss factors for the empty shell at ka = 7 are: 0.046 (compres-

sional), 0.046 (shear) and 0.003 (flexural), according to Eq. 2.9.

The wave loss factor is approximately 0.035 for the compressional wave, and 0.02

for the shear wave, where I use the loss factor for mode n = 1 at ka = 7, as shown in

Fig. 2-4.

The flexural wave damping includes two major mechanisms: material damping

and subsonic radiation. I estimate that the loss factor due to material damping is

0.0004, by using a table in Ref. [41] for steel. I then estimate the loss factor due to

subsonic radiation by considering flexural wave radiation from ribbed flat plates, with

the endcap junctions in the empty shell treated as two ribs. The reason for the flat

plate model is that the shell curvature effect on the flexural wave begins to fade above

the ring frequency, ka = 3.5 in this study. I thus expect the flat plate model can be

used as an approximation for 4 < ka < 10. According to Lyon [30], the radiation



coefficient of the subsonic flexural waves from a ribbed flat plate is

rad 2 arcsin(-)bc , (2.11)
7 Ap r fe

where I represents the total length of the discontinuities or boundaries. Ap repre-

sents the equivalent area of the plate 27raL. Ac is sound wavelength at coincidence

frequency fc. /bc is a correction factor to represent boundary influence, ; 1 for a sim-

ply supported boundary and z 2 for a clamped boundary. For boundary condition

between the two, it can be approximated by .x/. Note that Eq. 2.11 requires that the

rib impedance should be much larger than the acoustic impedance of the surrounding

fluid. The assumption is readily satisfied in air. In this study, the shell is submerged

in water. However, the deep heavy rings still pose a stronger impedance to that of

water within the frequency range of interest. Therefore, I expect Eq. 2.11 to be valid

in this study as well.

The equivalent loss factor due to flexural wave radiation can be found from the

following relation,

PC rad (2.12)
wpsh

The estimated flexural loss factor due to the subsonic radiation at the endcap

junctions is approximately 0.002 using /bc, 1.

This rough estimate indicates that coupling loss factors of the elastic waves for

the empty shell are generally larger, but not significantly larger than the wave loss

factors. The likelihood of wave power equipartition is limited.

The ringed shell

Wave reflection and transmission coefficients at the rings are not generally known

either. I have to estimate them from results for some special cases. Conti [21] cal-

culated flexural and compressional wave coupling in the MIT ringed shell model for

the axisymmetric mode (n = 0). No shear waves were considered. I deduce from his

calculation that the compressional wave power conversion ratio to the flexural wave



is approximately 2 - 3%. The compressional-shear wave power conversion ratio is not

available, but is assumed to be roughly the same as the compressional-flexural power

conversion ratio, 2 - 3%, likely a very conservative assumption. Thus, I speculate

that each elastic wave converts at least 1/50 of its power to other wave types every

time a ring is encountered.

In the ringed shell, the interaction rate inside each bay is increased by 5 times on

average. Since there are 5 such bays, the total wave interaction rate at the rings is

increased by 25 times. In addition, wave reflections at the rings can cause significantly

more interactions with the endcaps, and can increase the wave interaction rate at the

endcaps by as high as 5 times.

Thus the total wave coupling loss factor for the ringed shell is increased drastically

to yield: 0.343 (compressional), 0.343 (shear) and 0.021 (flexural).

The membrane wave dissipation for the ringed shell, dominated by supersonic

radiation from the cylindrical shell, is likely to be no different from that for the

empty shell. The same estimate of the dissipation loss factor is used as for the empty

shell, that is, approximately 0.035 for the compressional wave and 0.02 for the shear

wave for n = 1 at ka = 7. The flexural wave dissipation might increase because of

subsonic radiation from the rings. With use of Eq. 2.11, I estimate the loss factor of

the ringed shell due to sound radiation from the flexural wave to be 0.007.

This rough analysis suggests that the wave coupling loss factors in the ringed

shell, at least for the membrane waves, are likely to be significantly larger than the

corresponding loss factors, so that wave power equipartition is plausible.

The internalled shell

In comparison with the ringed shell, the internalled shell has a possibly larger wave

interaction rate due to the internal structural discontinuities, but possibly larger wave

dissipation as well due to mounting of the highly damped internalled structures at

the rings. However, no experimental evidence is found that the internal structural

damping is significant. Corrado [19] studied scattering decay rates of the two shells

and showed that the internalled shell decays only at a slightly larger rate than than

ringed shell. Therefore, power equipartition is also likely in the internalled shell.



Summary of the speculation on wave coupling strength

Wave coupling strength is determined by the product of interaction rate and wave

conversion coefficient. If wave coupling strength is significantly larger than the wave

dissipation, wave power equipartition is likely. In the case of the ringed shell and

the internalled shell, the ratio jcoup/rdiss is likely to be significantly larger than 1,

according to the semi-quantitative analysis. The above ratios of 7,,oup/qdjis, for the

three shells are listed in table 2.1.

Table 2.1: The ratio of coupling loss factor to wave damping loss factor in the empty
shell and the ringed shell models, from the semi-qualitative analysis. w is used to
denote 77coup/77diss.

Shells Wcomp Wshear Wflex
empty shell 1.3 2.3 1.5
ringed shell 9.9 17.5 3.0



2.2 Formulation of wave power based on equipar-

tition hypothesis

The formulation of elastic wave power in this section relies on the hypothesis of

elastic wave power equipartition which states that power is equipartitioned among

the compressional, shear and flexural wave types. In addition, the formulation relies

on an infinite shell excitation assumption which states that acoustic trace matching

dominates the excitation of the elastic waves within 600 < 0 < 1200.

The semi-quantitative analysis in Sec.2.1.5 has suggested possible elastic wave

power equipartition for the ringed shell. The detailed test of the hypothesis is left

to a numerical analysis in Chap. 3. The infinite shell excitation assumption is to

be studied in Sec.4.1, also by numerical calculation. The infinite shell excitation

assumption allows the injected sound power into a finite shell to be derived from

calculation of an infinite uniform cylindrical shell.

The power of the trace matched membrane wave per unit length, W•m, in an

infinitely long cylindrical shell can be expressed as

Wnm = 27rahp < Vnm 2 > C9nm , (2.13)

where subnote n represents circumferential mode and m represents the membrane

wave type.

The term p < v,nm 2 > in Eq. 2.13 represents energy density, including both

kinetic and potential energy which are equal for elastic waves. 2rah is the shell cross-

section area and cgnm is wave axial group speed representing energy transport speed

along the shell axis. Therefore, the right hand side of Eq. 2.13 is termed wave power,

which has dimension of N - m/s in MKS.

In Eq. 2.13, the wave velocity square v, 2 (for a fixed wave type and mode n) is the

summation of shell velocity squares in the radial, axial and circumferential directions,

represented by subnote r, a and c respectively.



Vn2 = vrn 2 + v n2 + Van 2 . (2.14)

Relative to the wave power, the injected wave energy per unit shell length is

Enm = Wnm/Cgnm . (2.15)

Because of elastic wave coupling at shell discontinuities, the injected membrane

wave energy will be redistributed to the other wave types, propagating in both forward

and backward directions. The energy per unit length for each wave type after wave

coupling has the form

4n = Wnm/lCnm + Wnm'lCgnm, + Wn/lCgnf , (2.16)

where subnote m represents the same membrane wave type that is trace matched and

m' denotes the complementary membrane wave type (e.g. if one is shear wave, the

other is compressional wave). Subnote f denotes the flexural wave. Note that I have

fixed the incidence angle, frequency and mode n in Eq. 2.15, so that either the shear

or compressional waves are trace matched, but not both.

In Eq. 2.16 the elastic waves travel both forward and backward. I have assumed

that power in the forward wave should be no different, statistically, from the power

in the backward wave. The assumption is valid if the elastic wave field in the shell is

reverberant because of multiple wave interactions.

The wave power concept can be shown to be proportional to modal energy in

traditional SEA [30]. In SEA, the number of axial modes (N,) for each n over the

frequency band Aw = w2 - w1 is

Ak Aw/cn AwLNn - = ' (2.17)

where cin denotes the averaged group speed over the band Aw and 7r/L is the average

modal separation in wavenumber for a one-dimensional system.

The modal energy, similar to the derivation of Eq. 2.13, is



E,/N,= 2rahp < v2 > . (2.18)

In comparison with Eq.2.13, Eq.2.18 shows that wave power is proportional to the

modal energy. As a result, modal energy equipartition in SEA can be translated into

wave power equipartition in this study. Wave power is used in this thesis because it

describes forward and backward waves separately, which are important for computing

directional sound radiation field.

In this chapter, I hypothesize wave power equipartition; but I will test the hy-

pothesis in the next chapter, which shows that the wave equipartition hypothesis is

indeed plausible in shells with multiple scatterers, such as rings.

The elastic wave power equipartition hypothesizes

Wnm = Wnm, = Wnf = Wn . (2.19)

To determine the elastic wave power, energy conservation has to be considered.

In the ideal case of no radiation damping and material damping, the sound energy

injected into the shell is the sum of the elastic waves, for all time t > 0, but only

restricted by the power equipartition condition of Eq. 2.19. Because of the damping,
the wave energy will dissipate after the power is equipartitioned among the elastic

waves. Indeed, the elastic waves can even dissipate energy before wave equipartition,

which might not occur immediately after the trace matching. By the time wave power

is equally partitioned, there is already a certain amount of energy dissipated into the

fluid.

If wave conversion takes very long to reach power equipartition, radiation dissi-

pation is almost the only thing important in the prediction of transient elastic wave

scattering. Wave power equipartition becomes irrelevant in that case, and so is the

statistical model set forth in this study.

In another extreme, if wave coupling and mixing is very active, wave power reaches

equipartition almost instantly after the shell is excited. The elastic waves will then



radiate sound and decay at a unified rate that can be predicted statistically. In this

case, sound radiation can be ignored until wave equipartition is reached.

Is it possible to estimate the amount of energy dissipated into the fluid before wave

equipartition is reached? The possibility certainly exists, but only if the shell's struc-

tural details are known, because the early elastic wave coupling process is essentially

deterministic and is highly dependent on particulars of the discontinuities. However,

this study is to explore a simple statistical model for scattering prediction, I do not

attempt to determine the early radiated energy. Instead, I assume that wave power

mixing occurs in a short time so that the energy dissipation during the wave mixing

(before equipartition) can be ignored. Subsequently, Eq.2.15 and Eq.2.16 becomes

equal.

,nm ; En . (2.20)

From Eq. 2.15, Eq. 2.16, Eq. 2.20 and Eq. 2.19, I derive the equipartitioned wave

power as

Wn_ '~m (2.21)1 + +•=
Cgnm Cgnf

Eq.2.21 shows that the equipartitioned elastic wave power is the injected wave

power scaled by the ratios of the wave group speeds. Since the flexural wave has far

smaller group speed (approximately 1/10 that of the membrane waves), the denomi-

nator in Eq.2.21 is typically 0(10).

2.3 Calculation of elastic wave power

Following the formulation of the elastic wave power in the previous section, this

section calculates the elastic wave power in a finite shell, by using the infinitely long

shell excitation assumption and the power equipartition hypothesis. I begin with

the calculation of trace matched elastic wave power in the infinitely long cylindrical

shell and then solve for the equipartitioned elastic wave in a finite shell, according to



Eq. 2.21.

In the calculation, I consider a finite cylindrical shell having the same material,

radius and thickness as the cylindrical shell section of the MIT empty shell model.

Correspondingly, an infinitely cylindrical long shell has the same cross-section dimen-

sions and material as the empty shell model.

Under plane sound incidence, the shell displacements in the axial, circumferential

and radial directions can be solved from linear equations in the transformed domain,

[L][U] = [F] . (2.22)

Eq. 2.22 is established by combining the Donnell's thin shell equations of motion

of the fluid-loaded cylindrical shell and the momentum equation that relates the shell

surface pressure to the shell radial displacement. In Eq. 2.22, matrix U contains the

shell displacements in the axial, circumferential and radial directions, as well as the

surface pressure. The forcing matrix F is determined by the strength of the incident

sound. The first two elements of F are zero because the sound does not couple to the

in-plane motions. The mathematical details can be found in App. A.

I first calculate the injected membrane wave power according to Eq. 2.13. To

display the power, I use a scaling factor that represents sound power incident on the

shell of unit length

Wo = 27ra sin P- , (2.23)

where P0o is the incident sound pressure, pc the characteristic acoustic impedance of

water. 0 is the angle measured from the shell axis. Within 600 < 0 < 900, this power

reference varies no more than 11%. Fig. 2-11 shows the shell velocity (already summed

in the square over three directions) and injected membrane wave power of mode n = 1

under sound incidence at 660. At this angle, only shear waves are trace matched. The

velocity curve has a peak near ka = 4 in (a) of Fig. 2-11 which corresponds to trace

matching of the n = 1 shear wave, as seen from Fig. 2-9. The wave power in (b) of

Fig. 2-11 is calculated according to Eq. 2.13, where the group speed of the shear wave



is used.

It is interesting to note that trace matching does not only occur at a single fre-

quency, but necessarily in a finite frequency band, because of radiation dissipation.

This frequency response demonstrates the resemblance to the excitation of a damped

resonator discussed in Sec.2.1. For fixed frequency, the elastic wave is trace matched

when the forcing wavenumber kcosO is close to the eigen-wavenumber km of the mem-

brane wave. If I allow frequency to change as well (ka - k, domain), the wave

response has a resonator-like shape projection in the frequency axis as well. That

shape is what is shown in Fig. 2-11. The wave power level falls off rapidly away from

the trace matching frequency, by 20 dB at ka = 8 which is twice the trace matching

frequency.

Near the trace matching frequency, ka = 4, the power injected into the shell is 10

dB less than the sound power projected on the shell. Most of the projected sound

power is scattered to various directions, including the backscattering direction.

Fig. 2-12 shows the shell velocity response and injected membrane wave power of

mode n = 1 under sound incidence at 75°. At this angle, both the shear and the

compressional waves are trace matched. The power curve has two peaks, separated

by almost two octaves and associated with the two wave types. I identify the peak

at ka = 2.6 to be associated with the n = 1 shear wave and the peak at ka = 9.2 to

be associated with the n = 1 compressional wave. The power in the middle of the

two peaks is generally from the contribution of both the shear and the compressional

waves. The rigorous separation of the wave components is difficult to because the

eigen-wave-vectors are non-orthogonal. Instead of pursuing rigorous mathematics,

I make an approximation by choosing an arbitrary middle frequency point kamid

between the shear wave peak and the compressional wave peak. I then treat shell

velocity within 2 < ka < kamid to be associated with the shear wave and shell motion

within kamid < ka < 12 to be associated with the compressional wave. The rationale

of doing so is that, first, the two peaks are generally far apart and fall off very quickly

so that the exact choice of the middle point is not critical. Second, the shear and

compressional waves have rather similar axial group speeds. Thus the wave power

resulted from using either of the wave speeds only causes minor errors.



In the case shown in Fig. 2-12 (a), I choose kamid = 4.7. The power calculated in

Fig. 2-12 (b) shows rather smooth transition from the shear wave power at ka = 2.6

to the compressional wave power at ka = 9.2, with only a small discontinuity near

ka = 4.7.

Using the elastic wave power formulation in the previous section, I can calculate

the power of each elastic wave type in a finite complicated shell, according to Eq. 2.21.

Fig. 2-13 and Fig. 2-14 display the equipartitioned elastic wave power for sound

incidence at 660 and 750 respectively. The peak levels at 660 are approximately 20 dB

lower than the incident power. The peak level 750 incidence, however, is somewhat

less than 20 dB lower than the incident sound power. This difference in wave power

between the two incidence cases is 3-4 dB, and is due to the lack of compressional

wave trace matching at 660. In addition, I observe that the wave power dominates

at frequencies close to the trace matching frequencies for different circumferential

modes.

In the foregoing wave power calculation, I use the wave group speeds and phase

speeds on the infinitely long shell. It will be shown in Sec.4.2.1. that the shell

discontinuities such as the rings not only create wave conversion and cause wave

power equipartition, but also modify the wave loci, and therefore the wave group and

phase speeds. However, the use of the modified wave speeds may not provide a better

scattering prediction, as shown in Sec.5.2.

The power of the waves represents the strength of the waves. To predict scattering,

a radiation model is needed to project the elastic wave motion to sound in the fluid.

Before the radiation model is developed in Chap.4, however, I will first test the

hypothesis of wave power equipartition as the topic of Chap.3.
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Figure 2-11: Shell velocity and wave power for n=1 mode. Sound incidence is at 660.
(a) Shell velocity scaled by incident sound pressure. (b) Injected wave power scaled
by the incident sound power. The peak at ka=4 corresponds to the trace matching
frequency of the n=1 shear wave.
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Figure 2-12: Shell velocity and wave power for n=1 mode. Sound incidence is at 750.
(a) Shell velocity scaled by incident sound pressure. (b) Injected wave power scaled
by the incident sound power. The peak at ka = 2.6 and ka = 9.1 corresponds to the
trace matching frequency of the n=1 shear wave and compressional wave respectively.
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Equipartitioned wave power: ang=66
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Figure 2-13: Equipartitioned elastic wave power in a finite shell under sound incidence
at 660 (solid is summation over modes and dash is mode n = 1 only).

Equipartitioned wave power: ang=75

-30

40

2 3 4 5 6 7 8
Center frequency, ka

9 10 11 12

Figure 2-14: Equipartitioned elastic wave power in a finite shell under sound incidence
at 750 (solid is summation over modes and dash is mode n = 1 only).
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2.4 Summary

Under sound incidence close to beam aspect, the acoustic wave can trace match the

supersonic compressional and shear waves. The energized membrane waves can couple

to each other and to the subsonic flexural waves at the shell discontinuities. In the

case of axially symmetric shell discontinuities such as rings and endcaps, the elastic

wave coupling occurs within the same circumferential mode n. The converted waves

can have different axial wave speed from the sound trace speed, causing a spread in

the axial wavenumber and thus a complicated radiation directivity. In the ka - k-

domain, one can conveniently check the interplay of excitation, elastic wave coupling

and radiation using Fig. 2-9. In addition, I find that the trace matching occurs in a

finite region rather than a point, an analog to the wide band excitation of a damped

resonator.

Shear waves radiate above cutoff frequencies and become non-radiating below

cutoff frequencies. Compressional waves have only adhoc cutoffs and radiate especially

strongly near and below the adhoc cutoff frequencies. Since endcaps terminate the

cylindrical shell by contracting its radius, thus forcing waves to cutoff, compressional

waves are much more dissipative at endcaps than shear waves.

Based on the expectation of active wave coupling in finite complicated shells,

equipartition of wave power, defined as wave energy density times axial group speed,

is hypothesized. Wave power equipartition is shown to be similar to the concept of

modal energy equipartition in traditional SEA. With use of the wave power equiparti-

tion hypothesis, the elastic wave power in finite shells can be expressed as the injected

sound power scaled by wave group speed ratios. The power equipartition hypothesis

is to be tested in Chap.3. In this chapter, the likelihood of power equipartition is

speculated by comparing the wave coupling dissipation to wave dissipation. Wave

coupling strength, shown as a product of wave interaction rate and conversion coef-

ficient, must, for equipartition, be greater than the wave dissipation. According to a

rough estimate of iconp/77diss, the ratio is likely to be much greater than 1, at least for

the ringed shell and the internalled shell.

The sound power injected into finite shells is estimated using the analytical cal-



culation of the infinitely long shell. In this thesis, I restrict the sound incidence to

within the membrane wave region 600 < 0 < 120', so that acoustic trace matching

dominates other elastic wave excitation mechanisms in finite shells. Subsequently,

the injected sound power can be derived from infinitely long shell results. The ad-

vantage of this infinitely long shell assumption is that the calculation of the injected

sound power does not require detailed shell structural details. The power calculation

indicates that the equipartitioned wave power is approximately 20 dB lower than the

incident sound power.

The elastic wave power, if combined with a sound radiation model, can be used

to predict scattering. A radiation model will be built in Chap.4.



Chapter 3

Test of the power equipartition

hypothesis

This chapter studies the wave power in finite endcapped shells with and without rings,

by means of numerical calculations based on the Finite Element Method (FEM) using

SARA-2D code.

In this chapter, the SARA-2D calculation is first compared to the measured scat-

tering data. The comparison shows that the target strength of the ringed shell using

SARA-2D is slightly higher than the measurements, but by no more than 2-4 dB in

most frequency bands and at most observation angles. The rest of the chapter evalu-

ates elastic wave power equipartition, for both steady-state and transient cases. The

analysis is intended to answer if and when the equipartition hypothesis is plausible.

I find that the elastic wave power is equipartitioned for the ringed shell within 3 dB

over most frequency bands, while the difference among the elastic waves is typically

5-10 dB for the empty shell. I take 3 dB difference as a criterion and conclude that

power equipartition is plausible in the ringed shell. Furthermore, the hypothesis for

the transient case is more appropriate during the second roundtrip period for the

trace matched waves in the shells. Even for shells with only one or two rings, the

wave power equipartition is still a good hypothesis, although equipartition needs a

longer time to establish. I do not observe evidence of power equipartition for the

empty shell, at least within the first 6 roundtrip periods of the trace matched wave



in the shell.

3.1 Comparison between SARA-2D and scattering

measurements

The FEM SARA-2D code [31] is used to calculate the structural response of the

empty shell and the ringed shell. The two shells are axially symmetric in structure,

so that the three coordinates can be reduced to two: the axial and the radial co-

ordinates, while the circumferential coordinate is compressed into mode n through

Fourier transformation. I can decompose the sound field similarly, so that for fixed

n, the shell scattering becomes a 2D problem. Correspondingly, the computation is

significantly less intensive than the 3D case.

The internalled shell can not be calculated by SARA-2D because it is not axially

symmetric and has to be modeled as a 3D structure. There may be other FEM codes

to solve 3D elastic shell scattering problems at mid frequencies, including viscoelastic

internals, but huge computation cost prevents calculation of the internalled shell in

this study. In fact, it is the general difficulty of computing complicated shells that

motivates the development of a statistical scattering prediction model in this thesis.

The FEM modeling details, post-processing efforts and initial evaluation of the

wave decomposition are attached in App.C. SARA-2D can calculate harmonic sur-

face velocities in axial, radial and circumferential directions as well as surface pres-

sure. All surface responses are complex numbers and are expressed in circumferential

mode n. In post-processing, the spatial distribution of the surface response can be

Fourier transformed into the wavenumber domain so that wave components, in both

forward and backward going directions, can be identified and evaluated. Restricted

by the Fourier transform, only the surface response along the cylindrical part of the

shell is evaluated. The shell length and the density of the elements provide suffi-

cient wavenumber resolution in the frequency region 4 < ka < 12. Because phase is

retained in the complex harmonic response, transient response can be obtained by

Fourier transform as well. The decomposed wave responses have been found to agree

well with the infinite shell calculation.



To check SARA-2D modeling of the shells, a series of numerical monostatic and

bistatic scattering 'measurements' of the ringed shell are carried out. The numerical

calculation is tested against the MIT/NRL measured scattering data.

In the numerical calculations, the frequency range is 2 < ka < 12 with a frequency

increment of ka = 0.05, comparable to that in the MIT/NRL measurements. The

sound incidence angle is 750. The maximum mode number is chosen as 4. A point

receiver is placed at 2 m from the shell center, as in the MIT/NRL measurements.

The direct calculation from SARA-2D is steady-state while the MIT/NRL data

are from time windowed transient scattering signals. To compare them, I first take the

inverse Fourier transform of the calculated target strength from the frequency to the

time domain and then use the same time window as in the MIT/NRL data. In addi-

tion, the same Gaussian frequency filter is applied as in the MIT/NRL measurement

data.

I compare target strength with and without the geometric return, as shown in

Fig. 3-1 and Fig. 3-2, for monostatic results of the ringed shell due to sound incidence

at 75' . In each figure, a histogram is displayed for the decibel difference in target

strength between the calculation and the data .

In spite of the differences at isolated frequencies, the calculated target strength

agree with the MIT/NRL data well in both figures. In fact, if the target strengths

averaged over frequency band are compared, the mean decibel difference is only ap-

proximately 1.4 dB, the calculated mean being larger than the data. (The source of

the calculation bias is unknown to me, but it does not affect the main uses of the

calculation).

Fig. 3-3 and Fig. 3-4 display the comparison of bistatic target strengths of the

ringed shell due to sound incidence at 750. The target strengths are averaged over

three frequency bands: 2 < ka < 5, 5 < ka < 8 and 8 < ka < 11.

I observe that the target strength from SARA-2D differs from the measurement

data by no more than 3 dB for most observation angles, even including observations

near the axial direction. Thus the accuracy of the SARA-2D modeling of the ringed

shell is satisfactory.
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Figure 3-1: Total target strength for the ringed shell, obtained from the MIT/NRL
data and from the SARA-2D calculation. Sound is incident at 75' and observed at
750 . Time window -44 As < t < 1200 As is used.

Furthermore, the results in Fig. 3-3 and Fig. 3-4 show that elastic wave scattering

dominates the geometric return in the two lowest frequency bands in the backward

(monostatic) direction, but the geometric return dominates the elastic wave scattering

for all frequencies in the forward (specular) direction. Thus an elastic wave model,

such as proposed here, can not hope to give robust specular results. Fortunately,

simple analytical models are available for bistatic geometric scattering [1], so that

the elastic scattering component studied in this thesis can, in combination with such

geometric models, provide estimates of the total bistatic scattering.
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Ringed shell TS (elast): SARA-2D(solid) vs. NRL(dashed), Inc=75, obs=75 dea
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Figure 3-2: Target strength due to the elastic waves for the ringed shell, obtained
from the MIT/NRL data and from the SARA-2D calculation. Sound is incident at
750 and observed at 750 . Time window 44 ps < t < 1200 p s is used.
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Ringed shell TS (wgeom): SARA-2D(solid) vs. NRL(dashed), lnc=75 deg
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Figure 3-3: Bistatic target strength of the ringed shell, obtained from the MIT/NRL
data and from the SARA-2D calculation. Sound is incident at 750 . The target
strength contains both the elastic wave scattering and geometric return. Time win-
dow -44 ps < t < 1200 ps is used.
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Figure 3-4: Bistatic target strength of the ringed shell, obtained from the MIT/NRL
data and from the SARA-2D calculation. Sound is incident at 750 . The target
strength contains the elastic wave scattering only. Time window 44 ps < t < 1200 ps
is used.
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3.2 Steady-state wave power analysis

The shell velocities from the direct SARA-2D calculation are steady-state values. The

steady-state power analysis requires a small data set and relatively simple processing,

making it easy to study wave power under various scenarios, such as for many sound

incidence angles.

The wave power is extracted from the SARA-2D calculation of the shell surface

responses, following steps illustrated in Fig 1-5. To decompose the surface velocities

into elastic wave components, the responses on the shells are transformed into the

wavenumber domain so that different wave components can be identified and evalu-

ated separately. The details of wavenumber transform can be found in App.C. Once

the shell velocities in the axial, radial and circumferential directions are obtained for

each elastic wave type, the elastic wave power can be calculated using Eq. 2.13 and

Eq. 2.14.

Since waves going forward and backward can be separated in the wavenumber

domain, the power will be displayed for both forward waves and backward waves. In

steady-state, the forward waves contain both forced waves (largely membrane waves

due to trace matching) and free waves, while the backward waves are all free waves.

The forced waves contribute to the initial geometric scattering, while the free waves

contribute to the elastic scattering only. To study elastic wave power, the focus will

be largely on the backward waves.

I consider wave power for each mode n as well as the summation over n. The

summation is done incoherently, based on the reasoning that any shell response has

a circumferential dependence of sines and cosines. The cross-products of the modal

functions vanish after integration over 0 <5 27r. In other words, the functions are

orthogonal within the azimuthal region.

In addition, the power is averaged over 10 non-overlapping frequency bands in

2 < ka < 12, the width in each band being Aka = 1. Furthermore, the power,

pre-averaged over the frequency bands, is averaged further over two angular sound

incidence regions: (I) 660 < 0 < 720 and (II) 740 < 0 < 800, with the angular

resolution being 10. In region I, only the shear wave is trace matched, while in region



II both shear and the compressional waves are trace matched. Finally, the wave power

is normalized by the incident sound power over a finite shell of a unit length using

Eq. 2.23, and is expressed in dB.

Wave power for the empty shell

Fig. 3-5 and Fig. 3-6 display the mean and standard deviation of wave power in

the angular regions I and II respectively, over a population of the wave power for

each sound incidence angle, with the power first summed over mode n and then

averaged over the frequency bands. In angular region I, the power difference among

the backward elastic waves is more than 10 dB in most frequency bands; the power is

not equipartitioned. In addition, I observe that the power in the shear wave dominates

that of other wave types, consistent with the shear wave trace matching dominance in

this angular region. Furthermore, the flexural wave power in the backward direction

is considerably larger than in the forward direction, most likely due to interactions

at the far endcap junctions. Although the compressional wave is not trace matched

in angular region I, it has considerable power in the forward direction; I suspect

that wave conversion at the insonified endcap plays a role. The reciprocity argument

might provide yet another explanation. Namely, the compressional wave could be

excited strongly at the insonified endcap because it radiates strongly at the endcaps

(Sec.2.1.2). However, this second mechanism will be shown to be insignificant in

Sec.4.1. That is, the compressional wave excitation at the endcap is a far weaker

process in comparison with acoustic trace matching on the cylinder, as long as the

sound incidence angle is above 600.

In angular region II, the wave power difference among the elastic waves in the

backward direction is significantly smaller than that in region I, due to trace match-

ing of both shear and compressional waves in this region. Indeed, the forward com-

pressional wave power is dominant. The wave power difference among the backward

waves, however, is over 5 dB for most frequency bands, still too large to be regarded

as equipartition. Other features remain the same as in angular region I.

To study the wave power variation over the sound incidence angle, Fig. 3-5 (c),

(d) and Fig. 3-6 (c), (d) display the standard deviation of the wave power as a per-



centage of the arithmetic mean of the wave power over angular incidence regions I

and II respectively. The wave power for each sound incidence angle has been summed

over mode n and averaged over the frequency bands. Moreover, the standard devia-

tion is averaged over the frequency region displayed; the average is labeled for each

wave type. In region I, the standard deviation, if averaged over the frequency region

displayed, is typically 30% for forward waves and slightly larger for the backward

waves. The slight larger power fluctuation over the sound incidence angle in the

backward direction is possibly due to wave conversion at the far endcap, indicating

the angle selective nature of the the wave coupling process. In region II, wave power

angular fluctuation is typically 40% for the forward waves and 50% for the backward

waves. The angular fluctuation in region II is larger because compressional wave loci,

as shown in Fig. 2-9, have larger gradient (with respect to k,) than that of shear

waves. Therefore, trace matching of compressional waves is in general more sensitive

to incidence angle.

In order to see wave power in each mode n, Fig. 3-7 shows backward wave power for

the empty shell for different circumferential modes, averaged over 6 incidence angles

in region I. Fig. 3-7 indicates a clear frequency dependence of the wave power for each

mode n. Namely, the wave power becomes important above the cutoff frequencies.

For instance, the n = 1 shear wave cuts off at ka = 2 and dominates the whole

frequency region 2 < ka < 12 for the empty shell. The n = 2 and n = 3 shear waves

in the empty shell become important above ka = 5 and ka = 8 respectively. This

frequency dependence for the empty shell can be explained by acoustic trace matching

within this angular region, which can be conveniently checked using Fig. 2-9.

The backward compressional wave power is mostly from the contribution of the

n = 1 mode in 2 < ka < 9 and of both the n = 1 and n = 2 modes above ka = 9.

The contributions of the rest of the modes are insignificant.

The n = 1 flexural wave in the empty shell dominates 2 < ka < 5.5 and remains

important in the remaining frequency bands. The n = 2 and n = 3 flexural waves

become important only above ka = 5 and ka = 8, respectively.



SARA-2D: Normalized elastic wave power (by inc. sound power), s0a64-70
(a) Log. mean power of fwd waves (b) Log. mean power of bkwd waves
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Figure 3-5: Summed power of (a) forward and (b) backward going elastic waves in
the empty shell in region I, based on the SARA-2D calculation. The power, already
summed over mode n and averaged over small frequency band Aka = 1, is further
averaged over the 6 incidence angles in region I. All points are plotted at the mid
values of the 10 non-overlapping frequency bands in 2 < ka < 12. (c) and (d) display
standard deviation of the wave power over the 6 incidence angles in region I, for
forward and backward waves respectively. The standard deviation is displayed as a
percentage of the mean wave power evaluated over the angular region. Moreover,
the standard deviation is averaged over the frequency region displayed; the average
is labeled for each wave type.
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SARA-2D: Normalized elastic wave power (by inc. sound power), s0a74-80
(a) Log. mean power of fwd waves
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Figure 3-6: Summed power of (a) forward and (b) backward going elastic waves in
the empty shell in region II, based on the SARA-2D calculation. The power, already
summed over mode n and averaged over small frequency band Aka = 1, is further
averaged over the 6 incidence angles in region II. All points are plotted at the mid
values of the 10 non-overlapping frequency bands in 2 < ka < 12. (c) and (d) display
standard deviation of the wave power over the 6 incidence angles in region II, for
forward and backward waves respectively. The standard deviation is displayed as a
percentage of the mean wave power evaluated over the angular region. Moreover,
the standard deviation is averaged over the frequency region displayed; the average
is labeled for each wave type.
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Figure 3-7: Wave power of the backward going elastic waves in the empty shell
for different circumferential modes, based on SARA-2D calculation. The power is
averaged over small frequency band Aka = 1 and over 6 incidence angles in region I.
All points are plotted at the mid values of the 10 non-overlapping frequency bands
in 2 < ka < 12.
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Wave power for the ringed shell

Similar to the format in Fig. 3-5 and Fig. 3-6, the mean and standard deviation of

the wave power for the ringed shell are plotted in Fig. 3-8 and Fig. 3-9 for regions

I and II respectively. In angular region I, the power difference among the backward

elastic wave types is considerably smaller in comparison with the empty shell case

in Fig. 3-5. The power difference between the backward membrane waves is within

2 dB for most frequency bands. The flexural wave power is approximately 3-4 dB

smaller than that of the membrane waves. Although the backward membrane wave

power is equipartitioned, the power is not equally shared with the flexural wave. Total

equipartition is strictly not achieved. In addition, I observe that the power difference

among the forward waves is significantly smaller than for the empty shell case. In

fact, the forward waves are almost as well equipartitioned as the backward waves.

At least, they are much more so than for the empty shell. In the ringed shell, the

forward forced waves are less important than the forward free waves; the latter are

created more so due to strong scattering at the rings. Furthermore, I observe that in

contrast to the empty shell case, the power difference among the elastic waves varies

smoothly with frequency. This is again influenced by the rings, which can change the

membrane wave speeds in the shell. The related discussion can be found in Sec.4.2.1.

In addition, the wave power fluctuation over the sound incidence angles is shown in

(c) and (d) of Fig. 3-8. The wave power fluctuates noticeably less over the incidence

angle than for the empty shell case, especially for backward free waves. Strong wave

coupling and associated creation of non-coincident axial wavenumber are believed to

cause this insensitivity of wave power to the sound incidence angle for the ringed

shell.

In angular region II, I observe basically the same power behavior as in region I. The

backward elastic waves reach power equipartition only approximately. The angular

fluctuation of the wave power of the backward free waves is significantly smaller than

for the empty shell case.

Fig. 3-10 shows backward wave power in the ringed shell for different circum-

ferential modes, averaged over incidence angles in region I. Both the n = 1 and

n = 2 compressional waves are important over basically the whole frequency region



2 < ka < 12. The n = 3 compressional wave is significant only within some isolated

frequency bands. It is hard to observe any cutoff influence on the compressional waves

for the ringed shell, again apparently due to strong scattering.

To summarize the steady-state power analysis, I find that the elastic wave power

is more equally distributed for the ringed shell than for the empty shell, but yet the

total wave power equipartition is strictly not achieved for the ringed shell. The sound

incidence angle and frequency have a strong influence on the wave power difference for

the empty shell. The power difference among the elastic waves for the empty shell is

significantly smaller if both shear and compressional waves are trace matched (region

II). For the ringed shell, however, the wave power is considerably less sensitive to the

incidence angle within both regions I and II. In addition, the power difference among

the elastic waves is less sensitive to frequency, compared with the empty shell.



SARA-2D: Normalized elastic wave power (by inc. sound power), sla64-70
(a) Log. mean power of fwd waves (b) Log. mean power of bkwd waves
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Figure 3-8: Summed power of (a) forward and (b) backward going elastic waves in
the ringed shell in region I, based on the SARA-2D calculation. The power, already
summed over mode n and averaged over small frequency band Aka = 1, is further
averaged over the 6 incidence angles in region I. All points are plotted at the mid
values of the 10 non-overlapping frequency bands in 2 < ka < 12. (c) and (d) display
standard deviation of the wave power over the 6 incidence angles in region I, for
forward and backward waves respectively. The standard deviation is displayed as a
percentage of the mean wave power evaluated over the angular region. Moreover,
the standard deviation is averaged over the frequency region displayed; the average
is labeled for each wave type.
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SARA-2D: Normalized elastic wave power (by inc. sound power), sla74-80
(a) Log. mean power of fwd waves
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Figure 3-9: Summed power of (a) forward and (b) backward going elastic waves in the
ringed shell in region II, based on the SARA-2D calculation. The power, already
summed over mode n and averaged over small frequency band Aka = 1, is further
averaged over the 6 incidence angles in region II. All points are plotted at the mid
values of the 10 non-overlapping frequency bands in 2 < ka < 12. (c) and (d) display
standard deviation of the wave power over the 6 incidence angles in region II, for
forward and backward waves respectively. The standard deviation is displayed as a
percentage of the mean wave power evaluated over the angular region. Moreover,
the standard deviation is averaged over the frequency region displayed; the average
is labeled for each wave type.
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SARA-2D: Normalized elastic wave power (by inc. sound power), sla64-70
backward compressional waves backward shear waves
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Figure 3-10: Power of the backward going elastic waves in the ringed shell for different
circumferential modes, based on the SARA-2D calculation. The power is averaged
over small frequency bands Aka = 1 and over 6 incidence angles in region I. All
points are plotted at the mid values of the 10 non-overlapping frequency bands in
2 < ka < 12.
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3.3 Transient wave power analysis

Many scattering processes of practical interest occur in the time domain. In this

thesis, the transient nature of the scattering is especially remarkable for coupling

among the elastic waves. Under sound insonification within 600 < 0 < 1200 considered

in this study, the supersonic membrane waves are immediately excited as the trace

matched acoustic waves sweeps through the shell length. The subsonic flexural wave

is, on the other hand, not immediately excited by trace matching, but energized

when the trace matched membrane waves interact with a shell discontinuity. Since

the flexural wave is far slower than the membrane waves, its influence usually can

not be observed until very late in time, especially if shell discontinuities are sparsely

distributed. The presence of the late flexural wave scattering in the ringed and the

internalled shell has been observed by Machovjak [23] in analyzing the MIT/NRL

measured data. This late influence of flexural wave scattering has been accounted

for by Corrado [19] and Park [22] to explain the complicated decay behavior they

observed in scattering. Although it is possible to determine decay behavior of each

elastic wave, total scattering can decay at a rate different from any of the individual

waves, because of wave conversion at the shell discontinuities. What is more, the

total scattering decay rate can vary over time, as evident from the experiment analysis

in [19] and [22]. Thus a transient scattering analysis in this study is not only beneficial

to engineering practice, but also extremely informative about the physics of scattering.

This section is intended to study wave power in successive time windows to determine

if and when wave power equipartition occurs.

To extract the transient shell response from direct SARA-2D calculation, the

steady-state shell surface velocities are first transformed from the frequency domain

into the time domain. Then appropriate time windows are applied and the time

windowed responses are inversely transformed back into the frequency domain. The

rest of the steps of wave power calculation are similar to that in the steady-state

analysis. Fig. 3-11 illustrates the flow chart of the process for the transient case.

The choice of the time windows is based on the temporal evolution of trace

matched membrane waves in the shell. As shown in Fig. 3-12, similar to a diagram

in Corrado's thesis [19], acoustic trace matching occurs during 0 < t < Lcos6/c. The
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unique to transient analysis

F straightforard post-processing effort

Figure 3-11: Flow chart of the transient wave power processing steps. The spatial

wavenumber decomposition steps are listed on the left and they have been used in

the steady-state power analysis as well. The big dotted box on the right represents

steps that are unique to the transient analysis.



first backward membrane waves propagate to the insonified endcap within Lcos9/c <

t < 2LcosO/c (assuming no elastic wave conversion at the far endcap). The free mem-

brane waves would then reverse direction to finish a roundtrip along the shell within

2LcosO/c period if the endcaps were instantaneous reflectors. I use this roundtrip

period as a time scale in the study. Each time window is identical and is uniform

(flat top) in the middle, but has cosine round-off taking 5% of the window length at

the two ends.

I use the same time window for the ringed shell, although I realize that possible

reflections at the rings can make the first backward going membrane waves observable

earlier than for the empty shell.

Fig. 3-13 illustrates the time windows for both 660 incidence and 750 incidence.

The consecutive time windows are labeled by (1), (2) and so on.

t= 0
c

speed cos

LcosO
t=

c
c

2LcosO
t=

c

Figure 3-12: Illustration of the temporal evolution of helical waves in the shell due to
plane acoustic wave incidence. Instantaneous reflection at the shell endcap is assumed
in defining the time windows.



(a) Illustration of temporal windows, 66 deg

500 1000 1500
Time, microseconds

2000 2500

(b) Illustration of temporal windows, 75 deg
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Figure 3-13: Illustration of the time windows for temporal wave power analysis. (a)
Sound incidence at 660; (b) Sound incidence at 750
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The empty shell, 660 incidence

Fig. 3-14 displays wave power for time windows 1, 2 and 3 and Fig. 3-15 continues

the display for time windows 4, 5 and 6. In each subplot, the normalized power is

plotted against frequency. The forward wave power is shown in the left column while

the backward wave power is shown in the right column. Note that the fixed vertical

scale in windows 1, 2, 3 is modified in windows 4, 5, 6. The format will be used

consistently in the next six figures. The forced waves are contained in the forward

waves in window 1 only, while the rest of the windows depicting the power of the free

elastic waves.

The emphasis of the analysis shown in the figures is on the power difference among

the three elastic wave types and how the difference changes over time.

In window 1, the power difference among the forward elastic waves is as high

as 25 dB. The forward shear wave carries most of the power, due to acoustic trace

matching. The forward compressional wave, although not trace matched at 660, car-

ries considerable power which is only 10 dB lower than the shear wave. Acoustic

excitation and wave conversion at the insonified endcap is believed to cause the ener-

gization. Furthermore, the flexural wave carries the least amount of power, although

the backward going flexural wave increases significantly after the membrane waves

interact with the far endcap.

In window 2, the wave power becomes more equalized. The forward shear wave

power is still dominant, although already 12 dB down from window 1. The flexural

wave dominates the wave power in the backward direction, after the trace matched

membrane waves interact with the far end endcap in window 1. The reason for this

backward flexural wave dominance in window 2 is that it is more captured, or exposed,

in the wavenumber decomposition process, for window 2 (instead of in window 1),

because of its slow wave speed. The reflection of this backward going flexural wave

at the insonified endcap will be found in window 4 and later, as to be discussed in

this subsection.

The elastic wave types continue to approach equilibrium in window 3. The shear

wave power and the flexural wave power are rather close while the compressional wave



power is considerably lower.

In windows 4, 5 and 6, the forward flexural wave transfers energy to the membrane

waves, especially to the compressional wave. It is interesting to note that the forward

flexural wave power is highly energized in the high-frequency bands in window 4, and

in mid-frequency bands in windows 5 and 6. The explanation is that the backward

going flexural wave converted at the far endcap in window 1 finishes the one-way

trip in the cylindrical shell to reach the insonified endcap, and then reverses the

direction to travel forward. Since higher frequency flexural wave travels faster, the

high frequency (near ka = 11) flexural wave is likely to arrive earlier in time, for

instance in window 4, while the flexural wave in the mid-frequency bands (near ka =

7) can not be observed in window 5 or later.

To check this assertion, I estimate the one-way travel time of the flexural wave

along the shell to be 1950 ps and 1644 ps at ka = 7 and 11 respectively, by using the

shell length of 0.74 m and the corresponding axial flexural wave speeds of 380 rn/s and

450 m/s, obtained from Fig. 2-3. These two time estimates, according to Fig. 3-13,

correspond to window 5 and window 4 respectively. Thus the assertion on the forward

going flexural wave is plausible.

Since the reflected backward free membrane waves in window 1 are considerably

weaker than the forward forced waves, I do not expect significant flexural wave power

in the backward direction in late time windows, which is the case in Fig. 3-15 for

windows 4, 5 and 6. I observe that the backward waves in windows 4 and 5 have

power difference within 3 dB below ka = 6. However, power difference in other

frequency bands and other windows are much larger. Overall, the elastic wave power

does not reach equipartition for the empty shell at this angle of incidence, at least

within the first 6 time windows.

The empty shell, 750 incidence

At this angular incidence, both shear and the compressional waves are trace matched.

Fig. 3-16 and Fig. 3-17 display wave power for time windows 1, 2, 3 and 4, 5, 6

respectively. In window 1, the most distinguishing feature, in comparison with the

660 case in Fig. 3-16, is the considerably higher compressional wave power than in



660 incidence, due to trace matching of the compressional wave. In the next window,

the elastic wave power difference continues to become smaller.

In windows 4, 5, the power difference among the elastic waves in both forward and

backward directions is no more than 5 dB for most frequency bands. If I take 3 dB in

power difference as a criterion for wave power equipartition, the elastic wave power

in window 4 and 5 has not reached, although is close to, equipartition. In window 6,

the forward flexural wave power becomes dominant, which can be explained by the

reversal of the one-way travel of the backward flexural waves hitting the insonified

endcap as discussed in the 660 case. Indeed, such one-way travel time has been shown

to be 1644 ps (at ka = 11), right in window 6 as shown in Fig. 3-13 for the 750 case.

I can even predict that in later windows (no shown), one should observe dominant

flexural wave power in the forward direction, particularly in the mid frequency bands

near ka = 7.

Thus the flexural wave can carry a substantial amount of wave power converted

from the trace matched membrane waves. This power is neither dissipated in the

form of sound radiation nor converted back to the membrane waves unless a shell

discontinuity is encountered. In the empty shell, the conversion can only happen at

the endcaps and the one-way travel time of the flexural wave has been shown to be

equivalent to several time windows, which in turn represents several roundtrip periods

of the trace matched membrane waves in the shell. Since the membrane waves radiate

strongly and attenuate fast, by the time the flexural wave is able to convert the power

back to the membrane waves, the flexural wave carries higher wave power than the

membrane wave do and thus behaves largely as a power source. One can speculate

that if there were other shell discontinuities in the middle of the shell, this late flexural

wave power surge would largely disappear. I will show in the next section that this

is indeed the case for the ringed shell.
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Figure 3-14: Wave power of the empty shell due to 660 sound incidence (SARA
results). Time windows 1, 2 and 3 correspond to the first three roundtrip periods
of the trace matched wave in the shell. The power shown is averaged over ten non-
overlapping frequency bands in 2 < ka < 12 with Aka = 1. Wave power difference is
the largest in window 1, especially for the forward going waves. The power difference
decreases in window 2 and 3, but is still larger than approximately 10 dB. Membrane
wave power below ka = 4 could be contaminated by poor resolution in the wavenum-
ber decomposition. The same or similar legend and display format will be used in
the following figures on transient wave power.
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Figure 3-15: Wave power of the empty shell due to 660 sound incidence and in
time window 4, 5 and 6 (SARA results). The legend and format are the same as in
Fig. 3-14, except for the vertical scale.
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Figure 3-16: Wave power of the empty shell due to 750 sound incidence (SARA
results). Time windows 1, 2 and 3 are used. The legend and format are the same as
in Fig. 3-14.
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Figure 3-17: Wave power of the empty shell due to 750 sound incidence (SARA
results). Time window 4, 5 and 6 are used. The legend and format are the same as
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The ringed shell, 660 incidence

Fig. 3-18 displays wave power for time windows 1, 2 and 3. Fig. 3-19 continues the

display for time windows 4, 5, and 6. In window 1, the important distinction from the

empty shell case in Fig. 3-14 is the drastic increase of forward flexural wave power,

by approximately 10 dB. This earlier energization of the flexural waves is largely due

to wave conversion at the rings from the trace matched shear wave. For a similar

reason, the forward compressional wave power is smaller than the shear wave power,

but by a difference significantly smaller than for the empty shell case. In the backward

direction, the wave power difference among the elastic waves is further smaller, below

8 dB as opposed to above 12 dB for the empty shell result. In window 2, the elastic

waves, in both forward and backward directions, share power almost equally, with the

power difference within 2 dB for most frequency bands. Thus equipartition of wave

power is achieved in window 2.

The equipartition of power observed in window 2 is impaired a little in window

3, and also in the rest of the windows. However, I note that the power difference

among the elastic waves does not change over the time windows, as if the elastic wave

power decays at a unified rate. This feature is critically different from the empty shell

case, which has been shown in the previous subsection to be featured by the surge of

the flexural wave power in late time windows. I believe this fundamental difference

is caused by strong wave coupling and conversion at the rings. The wave coupling

strength, discussed in Sec.2.1.5, can be strong enough to offset the dissipation of each

elastic wave, creating not only equipartition of wave power, but also a unified decay

rate. Based on this belief, a decay rate model is established later in Sec.5.1.

Further, I notice that the wave power in the forward direction is very close to that

in the backward direction, at window 2 and the windows beyond. This indifference

of the wave power to wave propagation direction justifies the assumption made in

Sec.2.2 on W + = W-.

To conclude, the power equipartition is reached in the ringed shell during the

second round-trip time of the trace matched waves for this angle of incidence.



The ringed shell, 750 incidence

Fig. 3-20 displays wave power for time windows 1, 2 and 3 and Fig. 3-21 continues

the display for time windows 4, 5, and 6. The overall elastic wave power for the

ringed shell at 750 incidence is very similar to that at 660. I observe that the power

is more equally shared between the forward membrane waves in window 1, because

of acoustic trace matching of both membrane waves at 750. The flexural wave power

is significantly higher than for the empty shell case in window 1, but still more than

6 dB lower than the membrane wave power. The power in this window is therefore

not equally shared among all the three elastic waves.

In window 2, I observe that the wave power difference among the elastic waves

reduces to below 3 dB for most frequency bands in 4 < ka < 12. Thus the power is

regarded as equipartitioned, according to the 3 dB criterion made in this study.

In the rest of the windows, the power equipartition is still valid except in some

isolated frequency bands and time windows. Again, the relative power difference

among the elastic waves are slowly varying over both frequency and time, the wave

power decaying at a unified rate.

Summary of the results for the empty and the ringed shell

From numerical calculations I conclude that the elastic wave power is plausible for

the ringed shell, but not for the empty shell, at least within the first 6 roundtrip

periods of the trace matched wave in the shell. In the ringed shell, wave power

reaches equipartition in the second time window.

The distinction between the ringed shell and the empty shell can be further high-

lighted graphically. In Fig. 3-22, I plot the wave power difference relative to the shear

wave power for the case of sound incidence at 660. The wave power is averaged over

the frequency band 3 < ka < 5, centered at the trace matching frequency of the n = 1

shear wave at ka = 4. The wave power is plotted against 6 successive time windows,

where the point at each half window number represent forward waves and point at

each integer window number represent backward waves.

From the comparison between (a) and (b) in Fig. 3-22, I observe that the trace



matched shear wave transfers power to both the compressional wave and the flexural

wave for the ringed shell, at a significantly larger rate than for the empty shell. In

the second time window, the power is already equalized among the elastic waves for

the ringed shell while for the empty shell, the power difference among the elastic

waves is large. The role of 'power source' for the flexural wave is clearly seen in late

time windows. The flexural wave in the ringed shell in the late time windows also

plays a role of power source since its power is consistently higher than both shear and

compressional waves. The shear wave power itself, as observed from (c) of Fig. 3-22

in the first time window, is approximately 4 dB lower for the ringed shell than for the

empty shell. This significant reduction of the shear wave power in window 1, caused

by shear wave conversion to the compressional and flexural waves at the rings, is

very important for practical reasons since the smaller shear wave power means lower

scattering strength in the early process. In later time windows, the shear wave power

for the ringed shell might exceed that for the empty shell and cause higher scattering

strength. However, scattering very late in time is less interesting than early in time.
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Figure 3-18: Wave power of the ringed shell due to 660 sound incidence (SARA
results), in time windows 1, 2 and 3. Even in window 1, the forward wave power
difference is significantly smaller than the empty shell case. In window 2, the power
difference is below 3 dB in most frequency bands, indicating power equipartition. The
figure has the same legend and format as in Fig. 3-14.
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Figure 3-20: Wave power of the ringed shell due to 750 sound incidence(SARA
results), in time windows 1, 2 and 3. The figure has the same legend and format as
in Fig. 3-14.
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(a) Comp. and flex. wave power relative to shear wave power, empty shell, 3 < ka < 12
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Figure 3-22: Wave power comparison between the empty shell and the ringed shell
for sound incidence at 660 (SARA results). Subplots (a) and (b) display the compres-
sional and flexural wave power relative to the shear wave power for the empty shell
and the ringed shell respectively. The wave power is averaged over 3 < ka < 12. (c)
displays the shear wave power averaged over 3 < ka < 5 for the two shells.
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Shells with fewer rings, 750 incidence

The semi-quantitative analysis in Sec.2.1.5 has demonstrated that four rings can pro-

vide sufficient coupling loss because the rings drastically increase the wave interaction

rates, by approximately e (nring + 1)2 times. One might conjecture that fewer rings

might still create enough wave interactions for wave power equipartition. According

to the formula, two rings should increase the wave interaction rate by 9 times in

comparison with the empty shell case. As a result, wave equipartition could still be

observed.

In the following I check if this conjecture is true, by performing a transient wave

power calculation using SARA-2D with a reduced number of rings.

In the first case, I remove the two rings that are close to the endcap but keep the

middle two rings. The transient wave power in Fig. 3-23 for windows 1, 2 and 3 and

Fig. 3-24 for windows 4, 5 and 6 shows that the power difference among the elastic

waves reduces to below 3 dB in window three(!), one roundtrip time later than for

the ringed shell with four rings, shown in Fig. 3-20.

In another case, I keep one ring, the second ring from the bow endcap (see Fig. 1-

1) and remove the rest. In this case, the wave coupling loss factors are expected

to increase by four times. According to the semi-qualitative analysis in Sec.2.1.5,

this increase of wave interaction rates might marginally increase wave coupling. The

calculated transient wave power in Fig. 3-25 and Fig. 3-26 are very similar to the case

of two rings in Fig. 3-23 and Fig. 3-24. The power difference reduces to below 3-4 dB

in window 3.

I thus conclude that even one heavy deep ring can produce significantly different

wave power behavior compared to the empty shell. At least one such ring is needed

if wave power is expected to mix uniformly in the early scattering process.
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Figure 3-23: Wave power of the shell with the middle two rings only, due to 750
sound incidence(SARA results). Time windows 1, 2 and 3 are displayed. The power
is averaged over ten frequency bands in 2 < ka < 12. The same legend and format
as in Fig. 3-14 is used.
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Figure 3-24: Wave power of the shell with the middle two rings only, due to 750
sound incidence(SARA results). Time windows 4, 5 and 6 are displayed. The power
is averaged over ten frequency bands in 2 < ka < 12. The same legend as in Fig. 3-14
is used.
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Figure 3-25: Wave power of the shell with the second ring only, due to 750 sound
incidence(SARA results). Time windows 1, 2 and 3 are displayed. The power is
averaged over ten frequency bands in 2 < ka < 12. The same legend and format as
in Fig. 3-14 is used.
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3.4 Summary

According to the elastic wave power analysis based on the SARA-2D calculations,

the elastic wave power of the various wave types in the ringed shell differs by less

than 3 dB over most frequency bands, while the power difference for the empty shell

is significantly larger. I take 3 dB difference as a criterion and conclude that power

equipartition is plausible in the ringed shell. Moreover, the hypothesis is found to be

appropriate in window 2 (the second roundtrip periods of the trace matched wave in

the shell). Even in the case of only one or two rings attached, wave power equipartition

is still a good hypothesis, although the equipartition needs a longer time to establish.

It seems that the four ring stiffeners, working together with the endcaps, greatly

increase the wave interaction rates for all three wave types and thus the strength of

wave coupling. The steady-state wave power analysis suggests that the elastic power

difference for the ringed shell is weakly dependent upon frequency, and slowly varying

with the incidence angle in the membrane wave region.

I do not observe evidence of power equipartition in the empty shell, at least

within the first 6 roundtrip periods of the trace matched wave in the shell. Low wave

interaction rate and limited wave conversion efficiency at the endcaps are believed

unable to provide sufficient wave coupling strength, to significantly offset the heavy

radiation damping of the membrane waves.

The accuracy of the SARA-2D calculation is acceptable since a ringed shell target

strength calculation using the SARA-2D code differs from the MIT/NRL ringed shell

data by less than 2-4 dB for most frequency band and observation angles. I will

continue to use the SARA-2D calculation for further investigations of the radiation

model in Chap.4.

100



Chapter 4

Development of a radiation model

This chapter develops a radiation model that converts the elastic wave power in

finite complicated shells into sound pressure in the fluid. Green's theorem is used for

this purpose. In Sec.4.1, I investigate the possibility of ignoring the endcap radiation

while considering sound radiation from the cylindrical shell section only. Through the

SARA-2D calculation, I observe that the endcap radiation, if ignored, does not make

the radiation significantly different from the direct SARA-2D scattering calculation, as

long as the receivers are within the membrane wave region 600 < 0 < 1200. In addition

to the numerical approach, I probe experimental evidence of the unimportance of

endcap radiation in the membrane wave region and confirm that it can be ignored.

Green's theorem requires a complex surface pressure and radial velocity in the

shell as the input information. However, the calculation of elastic wave power, on the

other hand, only produces the statement of the magnitude of total velocity. To fill

the gap, I need to form the following three variables explicitly: (1) the phase field,

(2) the surface pressure and (3) the radial velocity. In Sec.4.2.1, the phase field in

the finite shells can be reconstructed from the axial phase wave speeds of the elastic

waves. To the first order, the wave speeds from the infinitely long shell are used as an

approximation which results in sound radiation only 1-2 dB smaller than the direct

SARA-2D calculation. Still, the rings can change wave speeds. I observe from the

measured scattering data, the SARA-2D calculation that the rings can modify the

membrane wave speeds considerably but decrease the flexural wave speed only slightly.
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The modified wave loci can be estimated using the simulation of a 1D bar system.

The estimated wave loci will be used in Chap.5 for scattering prediction. In Sec.4.2.2,

I estimate the surface pressure using the momentum equation. The test against

the against the direct SARA-2D scattering results shows that the approximation is

acceptable. Of course, the radial velocity itself has to be decomposed from the total

velocity as well. In Sec.4.2.3, I estimate the wave motion polarization behavior for the

ringed shell. The rings can increase the radial motion component of the membrane

waves by 20 - 40%.

4.1 Radiation model: formulation and evaluation

Green's theorem is typically used to calculate radiation from general vibrating bod-

ies [42]. It is used in this study to convert elastic wave motion in the shell to sound

pressure in the fluid. Since Green's theorem generally requires detailed shell surface

pressure and radial velocity field as input information, I compute in Sec.4.1.1 the

spatial distribution of the elastic wave responses in the ringed shell using the SARA-

2D calculation and the wavenumber decomposition. In Sec.4.1.2 Green's theorem is

formulated for sound radiation from a finite cylindrical shell with zero-vibration at

the endcaps. The endcap radiation is assumed to be insignificant when the receivers

are in the membrane wave region. This assumption will be shown in Sec.4.1.3 to be

reasonable based on both calculations using SARA-2D and an examination of the

measured data.

4.1.1 Spatial wave response in the ringed shell

The complex spatial surface response of each wave type is needed as an input to

the radiation model. Such information is difficult to obtain from the SARA-2D cal-

culation (as implemented), because the requirements of good resolution in both the

wavenumber domain (to identify and separate wave types) and in the spatial domain

(to identify the locations of the four rings at least) are in conflict. This difficulty has

the same nature as in identifying a narrow band event accurately in the time domain.
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Particularly, I discussed in the previous chapters and in App.C that the elastic

waves can be identified and separated in the wavenumber domain. To transform the

elastic wave response back to the spatial domain (the shell axial location), however,

the wavenumber windows have to be large enough to achieve a reasonable spatial

resolution. Large wavenumber windows, however, make it difficult to separate the

elastic waves in the wavenumber domain. This difficulty is especially true for the

membrane waves, since the ka - k, curves of the shear and compressional waves are

very close to each other in the wavenumber domain. Therefore, a compromise is

needed in choosing a useful wavenumber window.

To achieve at least some resolution sufficient to the problem at hand, I choose a

wavenumber window that covers both membrane waves as if they were a single wave.

Fig 4-1 illustrates the typical windows for the membrane waves and the flexural

wave. Even so, the spatial resolution of the membrane waves might be poor (the ring

locations might not be well resolved) below ka = 4.5. The choice of the wavenumber

window for the flexural wave is relatively easy because the flexural wave dispersion

curve is well separated from that of the membrane waves. I choose the flexural wave

window to extend close to the shear wave dispersion curve, as sketched in Fig 4-1.

k

Figure 4-1: Illustration of windows used in the wavenumber domain, for the purpose
of determining the surface response along the ringed shell.

I perform such a transformation for both radial velocity and surface pressure for

each circumferential mode n. The transform is illustrated in the following in the
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example of surface pressure

.(w, kx) = n(w,x) T(x) eikz dx ,

pn(w, X) = J ,n(w, kx) T'[k 1, kx2] e-' k x dk , (4.1)

where T(x) is a uniform spatial tapered function that has round-offs at the ends. The

wavenumber window T'[kxl (w), kx2(W)] is chosen according to Fig 4-1.

Fig. 4-2 shows the decomposed surface pressure(summed over mode n) of the

ringed shell under 750 sound incidence. The locations of the rings are observed for

both flexural waves and membrane waves. Note that the flexural wave has higher

surface pressure. However, its subsonic wave speed prevents the surface pressure

wave from propagating even a fraction of the wavelength into the fluid. On the other

hand, the membrane wave surface pressure, although lower, contribute to the major

sound radiation to the far field.
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Figure 4-2: Decomposed surface pressure of the ringed shell under 750 sound inci-

dence. The locations of the rings I, II, III and IV are at x/L = 0.13, 0.44, 0.70 and
0.87 respectively (see Fig. 1-1). The upper plot is for the membrane waves and the
lower plot is for the flexural wave.
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4.1.2 Green's theorem for sound radiation from shells

The cylindrical shell can be regarded as a waveguide that enables waves to propagate

axially while it creates standing waves (modes) in the circumferential direction. If

the shell radius is much smaller than the acoustic wavelength, the uniform expanding

and contracting n = 0 mode can be thought of as a monopole radiator. Similarly,

the n = 1 mode corresponds to the rigid shell oscillating back and forth, and has

a dipole-like radiation. The n = 2 mode expands in one direction and contracts in

the perpendicular direction, and has a quadrupole radiation pattern. In this small

radius case, if one knew the shell motion of each mode and therefore the strength of

those acoustic compact sources, the radiation could be summed over those compact

sources. However, the shells studied in this thesis are not compact because the shell

radius is larger than or comparable to the acoustic wavelength, 2 < ka < 12. This

explains why I have to model the shell radiation as a shell array instead of a line

array. Note that the shell slenderness in the MIT shell models, L/2a = 8, plays no

role in making such a decision.

Once the surface pressure and radial velocity (Pn, vrn) are available for each wave

type and each mode n, I can multiply the values by cosnq to obtain the circumferential

dependence, q being the azimuthal angle. In doing so, the two waves of the opposite

chiralities during the acoustic trace matching process are automatically considered.

The concept can be better understood if one thinks of the duel relationship between

mode and wave: 2 cos no = eino + e- in+ . The factor '2' does not appear in the

multiplication for the circumferential dependence because it has already been included

in the surface response for each wave type, and for each mode n.

The fundamental approach in solving sound radiation from a moving surface is to

use Green's theorem, see Ref. [42],

p(r) = dso [G,(r, ro) p(ro) p(r)OGW(rr )] , (4.2)
so 0no Ono

where G, is the Green's function. no represents the normal direction of the vibrating

surface, so the surface and ro the point on the surface, see Fig. 4-3.

The relationship between the normal derivative of the pressure and normal velocity
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is obtained from the momentum equation

ap
= -ipwvr . (4.3)

The Green function can be chosen arbitrarily once both surface pressure and

normal velocity are specified. If not, one can choose the Green's function so that

either its value or its normal derivative vanishes at the surface (corresponding to a

vacuum or to a rigid body respectively), to eliminate one of the two terms in the

kernel of Eq. 4.2.

Since the SARA-2D calculation yields both surface pressure and normal velocity,

I choose the Green's function as in the free space of the fluid

eiklr-rol
G,(r, ro) = 4•lr-rol (4.4)47rlr - rol

Figure 4-3: Sketch of sound radiation from the shell surface response using Green's
theorem.

By considering the momentum equation in Eq. 4.3 and summation of sound pres-

sure over circumferential mode n, the pressure integral in Eq. 4.2 over the cylindrical

part of the ringed shell can be written as

p(r) = pn , (4.5)
n

and

L 27=r  eikR

pn(r) = 0f addx [ipW v,n + (ik- 1/R) Pn cos] cosno e , (4.6)
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where angle 7 is due to the difference between the surface normal and the observation

direction, see Fig. 4-3.

4.1.3 Test of radiation model and evaluation of endcap and

flexural wave radiation

The shell surface response can be decomposed into elastic wave component, and into

each mode n. However, the concept of a finite 'array' for each wave needs yet another

specification: the propagation direction.

The elastic waves in the shells propagating both forward and backward and both

waves are important for the sound radiation. The two opposite going waves can be in

general readily obtained by the wavenumber decomposition as discussed in App.C. In

the steady-state case, however, the forward going waves are not free waves, but contain

forced waves due to acoustic wave trace matching. Of course such forced waves can

be eliminated in a time window if the steady-state responses are transformed into the

time domain. Unfortunately, such an attempt is not successful because of numerical

phase errors associated with the multiple Fourier transformations. I therefore make

do with the steady-state results by estimating the forward free elastic waves as the

complex conjugate of the backward waves. The approximation is reasonable because

the power of the free waves going forward and backward have been shown to be

very similar to each other in the transient wave power calculations, see Fig. 3-20 for

windows 2 and 3.

Since each elastic wave can be regarded as a transmitting array uniquely tapered

in both magnitude and phase, this approximation of using the backward waves to

form the forward waves is not expected to affect sound radiation in the major part of

the membrane wave region, except near beam aspect. For example, the backscatter

at 750 is mainly due to contribution of the backward going waves; but near beam

aspect, the radiation calculation might be in error because the phase of the forward

waves is assumed to be opposite that of the backward waves. The canceling effect

might be observed near beam aspect.

Based on the decomposed shell surface velocity and pressure, and the Green's
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theorem formulation in Sec.4.1.2, the sound radiation from the cylinder of the ringed

shell can be calculated, and tested against the direct SARA-2D scattering calcula-

tion, the latter being a complete solution of the ringed shell but with the geometric

scattering extracted by time windowing.

Fig. 4-4 displays monostatic target strength at 2 m from the shell center against

frequency ka for sound incidence at 750 . The radiation model result is obtained

from Eq. 4.5 and Eq. 4.6, and is summed over circumferential mode n and elastic

wave types. The results from the direct SARA-2D calculation are shown in the same

plot. The decibel difference between the two results is analyzed and is displayed by

the mean and standard deviation. I observe that the radiation model result is only

1.4 dB higher than the SARA-2D calculation, if averaged over the frequency band

3 < ka < 10.

The small mean difference between the model and the SARA-2D calculation

demonstrates that the endcap radiation, if neglected, does not make a significant

difference, at least at this monostatic angle.

The flexural wave radiation is displayed in Fig. 4-4 by the dotted line. I observe

that the flexural wave radiation does not significantly contribute to the total radiation.

It is the membrane wave radiation that dominates.

A similar examination can be made for another monostatic angle: 660. Fig. 4-5

displays the monostatic target strength of the ringed shell against frequency ka for

sound incidence at 660. Again, the role of the endcap radiation and flexural wave

radiation is found to be insignificant.

To study radiation variation with bistatic angles, Fig. 4-6 shows the frequency-

band averaged target strength of the ringed shell against observation angle. The

sound incidence is at 750. The decibel difference over the angular region 600 <

0 < 850 is analyzed and its mean and standard deviation are labeled in the figure.

Within 600 < 0 < 850, the averaged radiation model result is found to be within

0.1 dB of the direct SARA-2D calculation. Below 600, the radiation model result is
significantly lower than the direct SARA-2D calculation, possibly due to the lack of

endcap radiation in the model.
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Figure 4-4: Monostatic target strength of the ringed shell from radiation model (thin
line) and from SARA-2D (thick line). Sound incidence is at 750 and the receiver is
at 2 m away from the shell center. Both pressure and velocity terms in Eq. 4.5 are
considered.

In addition, the result from the radiation model is significantly lower near beam

aspect. This is caused by the use of the backward going waves to represent the forward

going waves in the model. Near beam aspect, both forward going and backward going

waves contribute to the radiation actively. The approximation I used simply reverses

the phase of the backward going waves and uses it as the forward going waves. Such

an operation causes phase cancelation which reduces the target strength significantly.

With random phase introduced into the radiation model later, this discrepancy will

become less serious. Note that the purpose of this section is to test, numerically, the

influence of the endcap radiation and that goal has been achieved.
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Figure 4-5: Monostatic target strength of the ringed shell from radiation model (thin
line) and from SARA-2D (thick line). Sound incidence is at 660 and the receiver is
at 2 m away from the shell center. Both pressure and velocity terms in Eq. 4.5 are
considered.
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Figure 4-6: Bistatic target strength of the ringed shell from radiation model (thin
line) and from SARA-2D (thick line). Sound incidence is at 750 and the receiver is
at 2 m away from the shell center. Both pressure and velocity terms in Eq. 4.5 are
considered.
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4.1.4 Summary of the section and discussion

The comparison between the radiation model and the direct SARA-2D scattering

calculation demonstrates that the endcap radiation is insignificant within 600 < <

1200. In addition, the flexural wave radiation is found to be at least 10 dB lower

than the total radiation, especially at higher frequencies. The flexural wave radiation

increases as the observation angle decreases, but is still approximately 10 dB lower

than the total above 600. This insignificant radiation from the endcaps and the

flexural wave justifies the use of the infinitely long shell to estimate sound energy

injection into elastic wave power, by a reciprocity argument.

The insignificant endcap radiation in this case is a little surprising if one notices

Guo's theoretical analysis [26] showing extremely dissipative compressional waves at

the endcap, see Fig. 2-5. This apparent contradiction, however, might be understood

this way: the endcap radiation is not omni-directional. It is likely that the endcap

radiation is directed more towards the axial direction than toward the beam direction

because of the baffle effect of the cylindrical shell section.

The foregoing speculation on the endcap radiation is supported by the MIT/NRL

data for bistatic scattering. In the bistatic measurement, sketched in 1-3, the response

from an arc of bistatic receivers at 2 m from the shell can be phased and then summed,
so that the local wet-surface pressure along the shell is obtained. Such acoustic

focusing techniques have been used by Corrado [19] to study the influence of the

rings on scattering. I use Fig.5.38 in his thesis, copied here as Fig. 4-7, to illustrate

the endcap radiation. The figure shows the effective axial source distribution of

the back- and specularly directed scatter of the internalled shell model for sound

incidence at 75". In the figure, 60 observation receivers within 60' < 0 < 120' are

used, which cover the complete membrane wave region. The contour in Fig. 4-7 is

plotted against the shell length and time, with the slanted red strip in the early

process (t < 140us) representing the trace matching wave in the shell. The ringed

shell model is sketched on the right to provide a scale on the location of the rings and

the endcaps. Along the trace matching strip, I observe that the source strength at

both endcaps is at least one color level (3 dB) lower than on the cylindrical section of

the shell. At the insonified endcap (x/L=1), the waves seem to propagate backward,
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opposite to the trace matched waves. This can be explained by the forced wave at

the endcap junction due to induced forcing excitation, which excites membrane waves

that propagate to the apex of the insonified endcap. This suggests that the endcap is

not trace matched, but energized by other forms of excitation such as induced forcing,

and the energization is not as strong as the acoustic trace matching in the cylinder.

The sound originating from the far endcap is also weaker than from the cylinder,

indicating that the compressional wave transmitted to the endcap does not radiate

strongly to the observation directions.

From the early elastic wave scattering process immediately after the the trace

matching is completed, but no later than 400 ps relative to the red strip, I observe

that the source strength at the endcap is still smaller than at the cylinder portion.

In one case, the radiation from the endcap is close to the radiation from the cylinder,

which happens at the insonified endcap approximately 100 ps after the acoustic wave

excitation. My explanation is that the flexural wave, energized at the endcap junction,

has completed one roundtrip in the insonified endcap and is converting to the radiating

membrane waves at the junction. The 100 ps time shift corresponds to the roundtrip

time of the flexural wave in the endcap.

At later time, say, 400 ps after the trace matching, the poor dynamic range pre-

vents further analysis of the endcap strength.

A similar trend of weak endcap radiation observed within the membrane wave

region can be found in Fig.5.2 and in Fig.5.42 of Ref. [19] for 900 and 660 sound

incidence respectively. These two figures are not attached in this thesis.

This experimental evidence indicates, together with the numerical analysis, that

the endcap radiation is not significant, as long as both the sound incidence angle

and the observation angle are within 600 < 0 < 1200. This does not mean that the

compressional wave radiation at the endcaps plays no role in this study. In fact, its

role as an important decay mechanism will be considered in Sec.5.1.2 in a decay rate

model.
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Effective Axial Field Distribution of Intanafed Shell
MagnitudAee of Analytic Signal at 75 deg Aspect Angle
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Figure 4-7: The internalled shell surface pressure reconstructed using acoustic focus-
ing of the MIT/NRL bistatic scattering data, for frequency range of 2.75 < ka < 10.0.
Receivers within bistatic angle 600 < 0 < 120' are used. The sound incidence is at
750 and the surface pressure is normalized by the incident sound pressure. Copied
from Fig. 5.38 of Corrado's thesis [19].
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4.2 Radiation model: estimate of parameters not

provided by the wave power hypothesis

The previous section converted elastic wave motion to sound pressure in the fluid

using Green's theorem. In the calculation, the detailed shell surface pressure and

radial velocity were obtained from the SARA-2D calculation. However, the detailed

complex surface pressure and velocity are not readily provided by the wave power

equipartition hypothesis. The wave power calculation in Sec.2.3 gives only the power,

or the magnitude of the total velocity for each wave type. Thus, there is a gap between

the output of the wave power calculation and the input required by the radiation

model. To fill the gap, I need to obtain the following variables explicitly:

* the phase field

* the surface pressure

* the radial velocity

Sec.4.2.1 estimates the phase field by using axial phase speeds from the calculation

of the infinitely long shell. The influence of the heavy deep rings on the axial speeds

of the membrane and flexural waves is tested, through SARA-2D calculation and

through the MIT/NRL measured data analysis. I find that the membrane wave

speeds can be either increased or decreased by the rings, by about 10% or even

more. The flexural wave speed, on the other hand, is decreased only slightly by the

rings. The membrane wave region for the ringed shell still remains approximately

as 600 < 9 < 120". The sound radiation using the estimated wave speed is tested

against the direct SARA-2D calculation, and the difference in target strength is less

than 2 dB. Although the membrane wave speed changes do not significantly affect

the membrane wave region and radiation, they can modify the trace matching and

therefore the scattering strength, in terms of frequency and observation angle. This

latter issue will be discussed in Sec.5.2.4.

Sec.4.2.2 estimates the surface pressure by using the momentum equation. The

shell radial velocity is obtained from the decomposed wave magnitude from the SARA-
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2D calculation. Again, the radiation is compared with the direct SARA-2D calcula-

tion and the two agree well, with the results of the radiation model being smaller, by

less than 2 dB.

Sec.4.2.3 estimates the ratio of the radial velocity to the total velocity for the

ringed shell, by the analytical results from the infinitely long shell. The estimate is

tested numerically using SARA-2D, and is found to predict the ratio for the flexural

wave very accurately, but to underestimate the ratio for the membrane waves by

20 - 40%.

4.2.1 Estimate of the phase field

The estimate of propagating phase for each elastic wave is based on the notion that

each wave, either forward going or backward going, can be regarded as a finite array.

The phase of the 'array' is closely related to the axial wave speed by the following

expression, in the example of surface pressure of mode n:

=n Prnf eik I r , = re ike-x (4.7)

where '+' indicates forward going waves and '-' indicates backward going waves.

kxn = w/c, is obtained from the infinitely long shell calculation.

Thus, the estimate of the phase field is equivalent to the estimate of the axial

wave speed. The latter can be influenced by the rings, which are tightly coupled to

the shell.

Analysis of aspect angle shift from the measured scattering data

The MIT/NRL monostatic scattering data for the three shell models are analyzed.

I expect to observe changes in the membrane wave speeds from shifting of aspect angle

of the backscatter peaks, because the axial wave speeds of the supersonic membrane

waves is related to the sound speed in the fluid by the cosine of the aspect angle, with

faster wave corresponding to larger aspect angle. At beam aspect (0 = 900), the axial

wave speed is infinite.

Fig. 4-8, Fig. 4-9 and Fig. 4-10 display the monostatic Gaussian bandlimited im-
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pulse response for the empty, the ringed and the internalled shell models respectively.

Four Gaussian frequency bands, 2.75 < ka < 10, 2.5 < ka < 5, 5 < ka < 7.5 and

7.5 < ka < 10, are used. For the empty shell, the periodic backscatter, clearly ob-

served in (a) of Fig. 4-8 later than the the predicted arrival of the direct scatter from

the far endcap junction (indicated by the black line), is largely due to the backward

helical shear wave circumnavigating the shell, discussed in detail by Corrado [19].

The important feature for the empty shell data is that the elastic target strength

cuts off at below 600, indicating that the membrane wave speeds for the empty shell

are essentially the same as for the infinitely long shell. The membrane wave region,

defined as 600 < 0 < 1200 in Sec.2.1.3, can describe the empty shell well.

For the ringed shell, the backscatter within 60° < 0 < 90' comes much earlier in

time and has no obvious periodic pattern, unlike the the empty shell case. The four

red lines indicate the predicted arrivals of the direct backscatter from the four rings

and the black line has the same indication as for the empty shell. Overall, the elastic

scattering after 44 ps in (a) of Fig. 4-9 is largely concentrated within the angular

region 600 < 0 < 90 ° . Different from the empty shell case, however, there exists

considerable elastic scattering below 600. The scattering coinciding with the 2nd, 3rd

and 4th ring lines indicates that induced forcing at the rings plays a role. The scatter

near the 1st ring line, which extends from 750 to 500, is surprising. I suspect that it

is caused by the resonance between the insonified endcap and the 1st ring, because it

is more significant for one (mid) frequency band, 5.0 < ka < 7.5 than for the whole

frequency region, 2.75 < ka < 10.

The scattering feature for the internalled shell in Fig. 4-10 is similar to that for

the ringed shell, except that scattering below 600 seems to be even more notable than

for the ringed shell.

Next, I take the mean target strength of the three shell models evaluated in the

time window 44 ps < t < 800 /is and the frequency bands 2.5 < ka < 5, 5 < ka < 7.5

and 7.5 < ka < 10. Fig. 4-11, Fig. 4-12 and Fig. 4-13 display the mean target

strength against aspect angle for the three frequency bands. I expect to resolve from

the figures scattering for different mode n and different membrane waves. The corre-

spondence between trace matching angle and wave speed follows a cosine relationship,
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as discussed in Sec.2.1. In order to identify the modes and waves easily in Fig. 4-11,

Fig. 4-12 and Fig. 4-13, I use horizontal bars to denote the angular bands correspond-

ing to the frequency bands for the compressional and shear waves in the infinitely

long cylindrical shell. The frequency-angle (ka - 0) correspondence can be derived

from Fig. 2-9, or more directly from Fig. 4-14, a modified version of Fig. 2-9 with the

horizontal axis changed from k. to 0.

In the frequency band 2.5 < ka < 5, the scattering is dominated by the n = 1

shear wave, according to Fig. 4-14. The peak at 660 for the empty shell in Fig. 4-11

must be the n = 1 shear wave. The two peaks above 750 for the empty shell are

not resolved because both the n = 2 shear and the n = 1 compressional waves are

possible in the angular region. For the ringed shell, there is a significant peak near

750, which I believe is related to the n = 1 shear wave. That is to say, the phase

speed of the n = 1 shear wave is increased, by almost 60%. The scattering behavior

of the internalled shell is similar to that of the ringed shell.

In the frequency band 7.5 < ka < 10.0, I expect to resolve the n = 1, 2 and 3

shear waves and n = 1, 2 compressional waves, as indicated by the horizontal bars

in Fig. 4-13 which are not overlapping along the aspect angle. The corresponding

scattering peaks are observed for the three shell models. For example, I believe that

the n = 1 shear wave scattering occurs at 610 for the empty shell, 590 for the ringed

shell and 580 for the internalled shell. Table. 4.1 lists the 5 'modal angles' for the

three shells, as well as the corresponding wave speed change relative to the empty

shell. I observe that the wave speeds are decreased considerably in this frequency

region. Furthermore, the internals seem to play a role in changing the wave speeds,

although the role is small.

In the frequency band 5 < ka < 7.5, it is hard to make a convincing guess about

the 'modal angles' for the shell models, because the peaks for the ringed shell and the

internalled shell are not obvious below 750, and can not be resolved at all above 75 .
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Table 4.1: The angle change and relative velocity change for the shell models, for
the frequency band 7.5 < ka < 10. The corresponding wave speed change relative
to the empty shell are displayed by A in percentage. 'Sn' and 'Cn' denote the shear
and compressional waves of different mode n. AX/b denotes the ratio of the axial
wavelength to the average separation of the rings.

wave/mode S1 S2 S3 C1 C2

Sempty, deg 61 66 71.5 76 79
Oringed, deg 59 63.5 67 72.5 78
Oint., deg 58 62.5 67 71.5 77
Aempty, % 0 0 0 0 0
Aringed, % -6 -9 -19 -20 -9
Aint., % -9 -12 -19 -24 -16

1 [Ax/b] 0.5 0.5 0.8 1.0 1.6
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MIT/NRL measured data: empty shell monostatic impulse response, Gaussian bandlimited
(a) ka=2.75-10 (b) ka=2.5-5
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Figure 4-8: The MIT/NRL measured monostatic impulse response for the empty
shell, Gaussian bandlimited in (a) 2.75 < ka < 10; (b) 2.5 < ka < 5; (c)5 < ka < 7.5
and (d) 7.5 < ka < 10. The black line indicates the predicted arrival of the direct
scatter from the far endcap junction.
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MIT/NRL measured data: ringed shell monostatic impulse response, Gaussian bandlimited
(a) ka=2.75-10 (b) ka=2.5-5
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Figure 4-9: The MIT/NRL measured monostatic impulse response for the ringed
shell, Gaussian bandlimited in (a) 2.75 < ka < 10; (b) 2.5 < ka < 5; (c)5 < ka < 7.5
and (d) 7.5 < ka < 10. The black line indicates the predicted arrival of the direct
scatter from the far endcap junction. The red lines indicate the predicted arrivals of
the direct scatter from the four rings.
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MIT/NRL measured data: intemalled shell
(a) ka=2.75-1 0
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Figure 4-10: The MIT/NRL measured monostatic impulse response for the inter-
nalled shell, Gaussian bandlimited in (a) 2.75 < ka < 10; (b) 2.5 < ka < 5;
(c)5 < ka < 7.5 and (d) 7.5 < ka < 10. The black line indicates the predicted
arrival of the direct scatter from the far endcap junction. The red lines indicate the
predicted arrivals of the direct scatter from the four rings.
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MIT/NRL monostatic TS, 44<t(microse)<800, 2.5<ka<5

Aspect angle, deg

Figure 4-11: The MIT/NRL measured monostatic target strength for 44 As < t <
800 As and 2.5 < ka < 5. The horizontal bars represent angular bands for the shear
and compressional waves of different mode n, denoted by 'Sn' and 'Cn' respectively.

MIT/NRL monostatic TS, 44<t(microse)<800, 5<ka<7.5

Aspect angle, deg

Figure 4-12: The MIT/NRL measured monostatic target strength for 44 ps < t <
800 js and 5 < ka < 7.5. The horizontal bars represent angular bands for the shear
and compressional waves of different mode n, denoted by 'Sn' and 'Cn' respectively.

124



MIT/NRL monostatic TS, 44<t(microse)<800, 7.5<ka<10

40 45 50 55 60 65
Aspect angle, deg
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Figure 4-13: The MIT/NRL measured monostatic target strength for
800 ps and 7.5 < ka < 10. The horizontal bars represent angular bands
and compressional waves of different mode n, denoted by 'Sn' and 'Cn'

Membrane wave loci
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Figure 4-14: Trace matched shear (dash) and compressional (solid) wave loci for
different mode n. From the theoretical calculation on the infinitely long cylindrical
shell.
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Examination of wave loci from the SARA-2D calculation

The SARA-2D calculation of the empty and the ringed shells provides shell ve-

locities for each mode n. In the wavenumber domain, the membrane waves can be

identified by their characteristic wave loci. By comparing the wave loci for the ringed

shell with that for the empty shell and with that for the infinitely long shell from the

theoretical calculation, I expect to see how the membrane wave speeds are changed

by the rings, noting that the wavenumber is inversely proportional to the wave speed.

Fig. 4-15 displays the in-plane velocity in the ka - k, domain, for the empty

shell and the ringed shell, under 750 sound incidence. The shear and compressional

waves of modes n = 1 and n = 2 are clearly identified for the empty shell because

the wave loci (more exactly, the finite strips due to spatial sampling over the finite

shell) coincide with the loci from the infinitely long shell calculation, indicated by

the red lines. The shear and compressional waves in the ringed shell can be similarly

identified. For ka > 5, I observe that the center of the shear and compressional wave

strips for the ringed shell is shifted towards larger axial wavenumber; for ka < 5, the

wave loci are shifted towards smaller axial wavenumber. The increase of the axial

wavenumber for ka > 5 indicates a decrease of the wave speed. For ka < 5, the

decrease of the axial wavenumber is dramatic, indicating a dramatic increase of the

wave speed. These trends agree with the measured data observed in the previous

subsection. The understanding of this observation will be discussed shortly through

a simulation study of a 1D bar system.

Further, I use the SARA-2D calculation to verify that the flexural wave speed is

essentially unchanged for the ringed shell. I derive the flexural wave speed from the

derivative of the unwrapped phase with respect to the axial distance, see Eq. 4.8.

The flexural wave response along the ringed shell is obtained from the SARA-2D

calculation using the wavenumber decomposition discussed in Sec.4.1.

= W (4.8)

Fig. 4-16 displays the axial wave speed of the n = 1 flexural wave at 750 sound

incidence for the ringed shell. The flexural wave speed for the ringed shell is less than
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2% smaller than the infinitely long shell calculation.

In-plane velocity (MKS unit) from SARA-2D, pO=1, sound inc. at 75 deg
(a) Empty shell n=1 (c) Ringed shell n=1

50 100
Axial wavenumber, 1/m

(b) Empty shell n=2

50 100
Axial wavenumber, 1/m

50 100
Axial wavenumber, 1/m

(d) Ringed shell n=2

50 100
Axial wavenumber, 1/m

Figure 4-15: In-plane velocity in the ka - k, domain, from the SARA-2D calculation
and the wave number decomposition. (a) empty shell, n = 1; (b) empty shell, n = 2;
(c) ringed shell, n = 1 and (d) ringed shell, n = 2. The red lines are from the
theoretical calculation of membrane wave loci on the infinitely long shell; thick line:
compressional waves; thin line: shear waves.
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Phase speed of the n=1 flexural wave: from SARA-2D

000

800

600

400

Frequency, ka

Figure 4-16: Axial phase speed of the n = 1 flexural wave. The circles represent the
SARA-2D calculation on the ringed shell, where backward going flexural wave field is
evaluated over the whole shell length. The solid line represents the analytical results
of the infinitely long shell(without rings).
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Understanding of the wave speed change

According to the observation of the measured data and the numerical results,

the rings have a clear influence on the membrane wave speeds and the influence is

frequency dependent. In order to understand the observation, I consider an elastic

bar attached by four, randomly distributed, identical mass-spring systems, as shown

in Fig. 4-17. Using the transfer matrix formulation (see App. E), I calculate the phase

speed by measuring the slope of the propagation phase in the bar for many random

realizations (20 used in this study) of the ring locations. Fig. 4-18 illustrates a phase

slope from one of the realizations.

M- K systems

Figure 4-17: An elastic bar with 4 random distributed mass-spring subsystems.

In the simulation, the mass M is fixed such that the total mass of the M -

K subsystems equals the mass of the bar, 4M = pAL, consistent with the ringed

shell model configuration. Furthermore, the operating frequency is fixed so that

the corresponding ratio of the axial wavelength (AX) to the average spacing (b) of

the discontinuities in the bar is also fixed. The natural frequency of the M - K

systems, fo, however, is allowed to vary. Fig. 4-19 plots the change of phase speed,

relative to the wave speed in the bar, against the normalized frequency, f/ fo, for

AX/b = 0.65. The rings can decrease the bar phase speed by approximately 10%

above the resonance and increase the bar phase speed by approximately 15% below

the resonance. In addition, this change in wave speed fluctuates with the standard

deviation being 5-10 percentage points.

129

ý CpC



T

A•dal length, m

Figure 4-18: The modified wave speed is obtained by measuring the slope of the
propagation phase.

Fig. 4-20 shows the relative wave speed change for AX/b = 1.6. Again, the rings

can decrease the bar phase speed above the resonance and increase the bar phase

speed below the resonance. In this case, both the mean and the standard deviation

of the wave speed change are significantly larger than for the case of Ar/b = 0.65 as

shown in Fig. 4-19.

Fig. 4-21 shows the relative wave speed change for AX/b = 0.16. The same trend

of the ring influence on wave speed is observed. For this small A, case, the mean

and the standard deviation of the wave speed change are only a few percent (except

near the natural frequency), significantly smaller than for the case of A,/b = 0.65 as

shown in Fig. 4-19.

Thus, the wave speed change due to the attachment of the M - K subsystems

depends on: (1) the resonance of the M - K systems; (2) the ratio of the axial

wavelength to the average spacing of the subsystems. Above the resonance, the M-K

subsystems behave as masses and decrease the wave speed. Below the resonance, the

M - K subsystems behave as stiffeners and increase the wave speed. The wave

speed change is significant for O(A./b) , 1 or O(A./b) < 1, but not significant for

O(Ax/b) <1.

Based on the simulation and the analysis, the ring effect on the the membrane
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wave speeds can be understood in the following way. The increase of the n = 1 shear

wave speed above ka = 5 and the decrease of the wave speed below ka = 5 are caused

by the resonance of the rings, which is near ka = 5. Taking ka = 5 as the resonance

frequency for the n = 1 shear wave in the bar-mass simulation model, I can make an

estimate of the modified dispersion locus for the n = 1 shear wave. Similarly, I can

obtain the modified loci for shear waves of other mode n and for compressional waves

as well. Fig. 4-23 plots the modified wave loci for the n = 1 and n = 2 membrane

waves on the background of Fig. 4-15. Again, I use 20 realizations of the ring locations

for each frequency. In Fig. 4-23, the mean wave loci, smoothed by curvefitting, are

indicated by the black solid thick lines. The two thin black lines indicate the standard

deviation of the axial wavenumber relative to the mean. The modified wave loci and

their associated 'bandwidth' seem to match the numerical calculation well.

The absolute value of the standard deviation of the mean wave loci in Fig. 4-23

does not seem to change significantly. Relative to the mean, however, it can change

from approximately 10% at the higher frequency band to approximately 50% near the

cutoffs. In other words, the standard deviation is small for large axial wavenumber,

but large for small axial wavenumber. This trend is consistent with the observation

of Fig. 4-19, Fig. 4-20 and Fig. 4-21 by noting that the axial wavenumber is inversely

proportional to the axial wavelength, or to the normalized wavelength AX/b.

The approximated ratio AX/b for the ringed shell is shown in Fig. 4-22 for mode

n = 1, 2 and 3, where Ax is obtained from the calculation on the infinitely long

cylindrical shell and b is the averaged bay spacing for the ringed shell model. The

ratio for the flexural waves is typically 0.1 or smaller, comparable to the case in

Fig. 4-21. The ratio for the membrane waves is on the order of 1 for most frequencies,

comparable to the case shown in Fig. 4-20 and in Fig. 4-21.

To summarize, the rings have considerable effect on the membrane wave speeds,

but not on the flexural wave speed. This effect can be understood in a simple way.

That is, the rings modify both the amplitude and the phase of the waves in the shell.

If the phase shift is positive, the wave speed is increased, and vice versa. The larger

the ring spacing (or the smaller the wavelength), the less significant the modification

in wave speed. In this study, the ring spacing is large for the flexural wave, the speed
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of which is almost unaffected by the rings; the bay spacing is small for the membrane

waves, the speeds of which are modified considerably.

The change of the wave speeds might lead to the change of the trace matching

region. However, the cutoff angle for the n = 1 shear wave turns out to be insignifi-

cantly lower than without the rings. The angle is shifted from 61.30 for the infinitely

long shell to 59.70 for the ringed shell and to 58.70 for the internalled shell, using the

n = 1 shear wave result in Table 4.1 for the last two shells. Thus, I continue to use

600 < 0 < 120' as the definition of the membrane wave region in this thesis.

The change of the wave speeds have other effects on the prediction model in

this thesis. First, the change of the membrane wave loci can directly change the

frequencies at which the trace matching occurs. Second, the wave speed change can

affect sound excitation of the shell as well. As a result, the infinitely long shell

excitation model discussed in Sec.2.3. should be modified through the consideration

of a 'magic' infinitely long shell with its wave speed varying with frequency and mode

n. For ka > 5, both shear and compressional wave speeds decrease, which effectively

increases the shell bulk modulus. For ka < 5, the n = 1 shear wave dominates the

scattering, and its wave speed is increased. The magic shell therefore has larger bulk

modulus. The scattering prediction using the modified wave speeds will be shown in

Sec.5.1.4 and Sec.5.2.2.
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cphi from 1D system: wvlength/b = 0.65
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Figure 4-19: Wave speed change (relative to the uniform bar) for the 1D bar system
with M-K subsystems. The operating frequency is fixed, so that the ratio of the
axial wavelength to the average bay spacing remains to be a constant, 0.65. The
natural frequency of the M - K systems is allowed to vary. At each frequency, 20
random realizations are used for the locations of the M - K subsystems. The solid
line represents the mean wave speed change; the dashed lines represent the standard
variation of the mean.
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cphi from 1D system: wvlength/b = 1.6
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Figure 4-20: Wave speed change (relative to the uniform bar) for the 1D bar system
with M - K subsystems. The operating frequency is fixed, so that the ratio of the
axial wavelength to the average bay spacing remains to be a constant, 1.63. The
natural frequency of the M - K systems is allowed to vary. At each frequency, 20
random realizations are used for the locations of the M - K subsystems. The solid
line represents the mean wave speed change; the dashed lines represent the standard
variation of the mean.
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c-phi from 1D system: wvlength/b = 0.16, Mass ratio = 1
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Figure 4-21: Wave speed change (relative to the uniform bar) for the 1D bar system
with M - K subsystems. The operating frequency is fixed, so that the ratio of the
axial wavelength to the average bay spacing remains to be a constant, 0.16. The
natural frequency of the M - K systems is allowed to vary. At each frequency, 20
random realizations are used for the locations of the M - K subsystems. The solid
line represents the mean wave speed change; the dashed lines represent the standard
variation of the mean.
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Estimate of lambda/b ratio for the ringed shell

(a) n=1
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Figure 4-22: The axial wavelength for the infinitely long cylindrical shell, normalized
by the average bay spacing for the ringed shell.
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(b) ringed shell n= 2
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Figure 4-23: Modified wave loci (black lines) from the simulation on the 1D bar
system. The thick black lines represent the mean of the modified wave loci and the
thin black lines represent the standard deviation of the mean. (a) n = 1; (b) n = 2.
The background and the red lines are identical to (c) and (d) of Fig. 4-15.
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Initial test of phase field reconstruction

To see how the radiation model works with the wave speed approximation using

the infinitely long shell results, I reconstruct the complex wave response in the shell

by using Eq. 4.7. The radiation from the elastic waves is then summed, using Eq. 4.5

and Eq. 4.6, over the three wave types including both forward and backward going

waves, as well as over circumferential mode n. All the summation is done incoherently

by assigning random phase to each component, such as in Eq. 4.7. The reason for

incoherent addition is multiple scattering and wave conversion in the ringed shell. It

is true that the initial trace matching might create some coherence among waves of

different type and mode n, but this coherence quickly diminishes because the sound

power injected into each mode n is scattered and exchanged among all the elastic

waves due to coupling at the shell discontinuities. Along with redistribution of the

power among the elastic waves, the phase of the waves are likely to become unknown

and is taken to be random.

Fig. 4-24 displays monostatic target strength of the ringed shell at 750 incidence

against frequency ka, using infinitely long shell wave speeds without the modification

by the rings. The result is compared with the direct SARA-2D scattering calculation.

The mean decibel difference between the two results is labeled in the figure. The

radiation model result is 1.6 dB smaller than the direct SARA-2D calculation.

Similarly, I use the wave phase speeds modified by the influence of the rings to

calculate sound radiation. I find that the radiation is approximately 1.3 dB smaller

than the direct SARA-2D results, where I use the mean modified axial membrane

wavenumber shown in Fig. 4-23.

Fig. 4-25 displays bistatic target strength of the ringed shell at 750 incidence

against observation angle, using infinitely long shell wave speeds without modifica-

tion by the rings. The result is also compared with the direct SARA-2D scattering

calculation. The mean decibel difference between the two results is labeled in the

figure. The target strength from the radiation model, averaged over angular region

600 < 0 < 850, is 1.2 dB smaller than the direct SARA-2D calculation.

Therefore, I conclude that the radiation model is quite acceptable even if only the

magnitude of the surface pressure and radial velocity is given. Moreover, the infinitely
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sla75_UApv11, TS(model)-TS(SARA): mean/std_dev.=-1.6/6.6 (dB)

0

Figure 4-24: Monostatic target strength of the ringed shell from radiation model (thin
line) and from SARA-2D (thick line). Sound incidence is at 750 and the receiver is
at 2 m away from the shell center. Both pressure and velocity terms in Eq. 4.5 are
considered.

long shell wave speed approximation is good enough to reconstruct the phase field.
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Bistatic TS by UA/bist model, sla75, pv=11, ka=3-10
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Figure 4-25: Bistatic target strength of the ringed shell from radiation model (thin
line) and from SARA-2D (thick line). Sound incidence is at 750 and the receiver is
at 2 m away from the shell center. Both pressure and velocity terms in Eq. 4.5 are
considered.
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4.2.2 Estimate of the surface pressure

The kernel of Eq. 4.5 includes both the pressure term and the radial velocity term.

The wave power calculation in Sec.2.3, however, gives only the wave velocity, without

the surface pressure. In this subsection, I will first check if the pressure term for the

ringed shell radiation can be ignored at all. If not, I will find an approximation for

the surface pressure based on shell radial velocity.

First, I keep only the surface velocity term and calculate the ringed shell radiation

for 750 incidence, shown in Fig. 4-26. Second, I keep only the pressure term, and

display the radiation in Fig. 4-27.

Compared with the results at the same incidence angle using both terms, shown

in Fig. 4-24, the absence of the surface pressure causes the sound radiation level to

decrease by 2.3 dB. On the other hand, if only the surface pressure term is kept, the

sound radiation is decreased by 4.5 dB. Thus the surface pressure can not be ignored

and has to be estimated.

For given radial velocity, the surface pressure can be derived from the momentum

equation which states that the acceleration of the fluid on structure surface times

the fluid mass density equals the pressure gradient, see Eq. 4.3. In the wavenumber

domain, the spatial derivative of the pressure is a product of the radial wavenumber

kr and the pressure, which is a function of kr. The momentum equation can then be

rewritten as

k,.p(kr) = pw•r , (4.9)

or further rewritten in the form of impedance

Z= (4.10)

The radial wavenumber kr can be expressed in Cartesian coordinates as

kr = k2 - kX , (4.11)
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where k = w/c is the sound wavenumber in the fluid and k, is the axial wavenumber.

k, is generally a function of frequency, mode n and wave type, and has to be solved

from the dispersion equation of the coupled fluid-shell system. However, the property

of such a coupled system depends on k,, which in turn depends on k.. Thus, k- can

not be expressed explicitly and has to be solved numerically. As an approximation,

however, I use k, from the infinitely long shell calculation. kr is then given by

Eq. 4.11 directly. Under such an approximation, Eq. 4.10 can be rewritten in the

form of normalized impedance, in Eq. 4.12, where I express the dependence on mode

and wave type by subnote n and e respectively, and use the characteristic acoustic

impedance pc in the fluid as the normalization factor.

Zne 1 1
PC V1 - /k2 1 <k2 /C2

11 k >k . (4.12)
i kx., 2 /k 2 - 1

For membrane waves, the axial wavenumber is always smaller than the sound

wavenumber in fluid, kx < k. For the flexural waves within the frequency range of

this study, however, the axial wavenumber is larger than the sound wavenumber in

the fluid, k, > k.

To check whether the above approximation is good enough, I calculate the nor-

malized impedance using the decomposed surface pressure and radial velocity from

the SARA-2D results for the ringed shell, and then compare it with the result from

Eq 4.12. Fig. 4-28 shows the comparison for the three wave types of mode n = 1.

The two sets of impedance ratios differ by only a few percent for membrane waves;

for flexural waves, the two results are almost identical. The pressure approximation

is thus acceptable.

The radiation result based on the estimated pressure also shows good agreement

with the direct SARA-2D calculation. I estimate the surface pressure using the given

shell radial velocity from the SARA-2D results, and then compute the sound radiation

using Eq. 4.5 and Eq. 4.6. The radiation result is less than 1 dB lower than the direct
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sla75_UA-pv01 mean/stddev.=-2.3/7.5 (dB)

Frequency, ka

Figure 4-26: Monostatic target strength of the ringed shell from radiation model (thin
line) and from SARA-2D (thick line). Sound incidence is at 750 and the receiver is
at 2 m away from the shell center. Only the velocity term in Eq. 4.5 is considered.

SARA-2D calculation, as shown in Fig. 4-29.

In conclusion, the missing surface pressure can be retrieved approximately by using

the impedance relation in Eq. 4.12. The radiation model can thus still be applied

even if only the shell radial velocity is available, a useful conclusion since this thesis

aims to test elastic wave equipartition from which only velocity is obtained.
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sla75_UAyv10, TS(model)-TS(SARA): mean/std-dev.=-4.5/8.8 (dB)

Frequency, ka

Figure 4-27: Monostatic target strength of the ringed shell from radiation model (thin
line) and from SARA-2D (thick line). Sound incidence is at 750 and the receiver is
at 2 m away from the shell center. Only the pressure term in Eq. 4.5 is considered.
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(a) Compressional wave n=l
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Frequency, ka

(b) Shear wave n=1
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Figure 4-28: The ratio of ringed shell surface pressure to radial velocity for the n=1

mode. (a) compressional waves; (b) shear waves; (c) flexural waves. Solid line is from

SARA-2D calculation and dashed line is from momentum equation formulation in
Eq 4.12 for (a) and (b) and Eq 4.12 for (c).
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sla75_VApvl 11, TS(model)-TS(SARA): mean/std_dev.=-0.2/7.3 (dB)

Frequency, ka

Figure 4-29: Monostatic target strength of the ringed shell from radiation model
(thin solid-dot line) and from SARA-2D (thick solid line). Sound incidence is at 750
and the receiver is 2 m away from the shell center. The pressure term is estimated
through Eq. 4.12 while decomposed radial velocity is extracted from the SARA-2D
calculation.
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4.2.3 Estimate of the radial velocity

The wave power calculation in Sec.2.3. is capable of computing the total velocity,

but not the radial velocity directly. Because the radiation model requires radial

velocity as input, the radial velocity component must be estimated. The ratio of

radial velocity to total velocity can be derived conveniently for infinitely long shells,

using the formulation in App. A. This subsection studies the ratio for the ringed shell

using the SARA-2D calculation.

In particular, the total velocity magnitude of each wave type can be derived from

elastic wave power,

Wn
Vne = a (4.13)

, 27ahp cgne

where subnote e represents elastic wave type. The axial wave group velocity c9ne is

estimated from the infinite shell calculation. This velocity formulation has considered

waves of opposite helical angles in the shell.

I denote the ratio of radial velocity to total velocity by 0, so that

Vrne = Vnefne , (4.14)

where One is the total velocity summed over axial, circumferential and radial direc-

tions, as used in Eq. 4.13. The ratio, One, is generally a function of mode n, elastic

wave type 'e' and frequency. For the infinitely long shell, it can be theoretically cal-

culated using the formulation in App. A. Fig. 4-30 displays the ratio for different

circumferential modes and wave types. The ratio is essentially 1 for flexural waves

while much smaller than 1 for membrane waves, particularly so above the ring fre-

quency ka = 3.5 where the shell behaves more like a flat plate. This result is consistent

with the in-plane nature of membrane waves and the out-of-plane nature of flexural

waves.

For finite complex shells, the ratio / is generally difficult to analyze rigorously.

The shell discontinuities such as the endcap truncations or the ring stiffeners might
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modify P in a rather complicated way. One can, however, study the influence of shell

discontinuities on 3 through numerical methods. To investigate the influence of the

rings, the shell velocities from the SARA-2D calculation in axial, circumferential and

radial directions are decomposed into each elastic wave type and each mode n. The

results are compared with those for the infinitely long shell, in Fig. 4-31 for mode

n = 1 and in Fig. 4-32 for n = 2. For membrane waves, the rings increase the radial

motion in most frequency bands. When averaged over all frequencies, the increase

is below 20% for compressional waves, and approximately 15 - 40% for shear waves.

Similar calculations are performed for the empty shell, shown in Fig. 4-33. For the

empty shell, the ratio for the shear wave is almost the same as that for the infinite

shell. This result is not surprising since the endcaps should not modify elastic wave

behavior seriously in the middle portions of the empty shell.

Unlike the membrane waves case, the velocity ratio for the flexural wave is not

modified by the rings. Fig. 4-34 compares the ratios for the finite ringed shell with

the calculation of the infinitely long shell. The two ratio curves are identical. The

flexural wave motion is predominantly radial, as seen from the figure. The slight

in-plane motion of the flexural wave is not evident in this figure.

Based on the above analysis, I conclude that the infinitely long shell results can

be used as an approximation. For accurate scattering prediction, however, the correc-

tions should be made. In the case of four rings, the ratio / should be adjusted to be

approximately 20% higher for the shear wave and 40% higher for the compressional

waves. I will use the corrections for the scattering prediction in Chap.5.
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Ratios of radial vel. to total vel. in an infinitely long shell
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Figure 4-30: The ratios of radial velocity to total velocity in an uniform infinitely
long cylindrical shell with fluid loading. (a) compressional waves. (b) shear waves.
(c) flexural waves.
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Ringed shell( ****) vs. Inf. shell (---) sl a75n1
Compressional n=1 Shear n=1
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Figure 4-31: The ratios of radial velocity to total velocity, n = 1, for the ringed shell
under sound incidence at 750 . 'Freq-mean' represents the relative difference of the
ratio averaged over the frequency band, in percentage. Negative means the infinitely
long shell ratio is larger.
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Figure 4-32: The ratios of radial velocity to total velocity, n = 2, for the ringed shell
under sound incidence at 750. 'Freq-mean' represents the relative difference of the
ratio averaged over the frequency band, in percentage. Negative means the infinitely
long shell ratio is larger.
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Empty shell( *****) vs. Inf. shell (---) sOa75n1
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Figure 4-33: The ratios of radial velocity to total velocity, n = 1, for the empty shell
under sound incidence at 750 'Freq-mean' represents the relative difference of the ratio
averaged over the frequency band, in percentage. Negative means the infinitely long
shell ratio is larger.
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The ratios of the radial velocity to the total velocity of the flexural
or ringed shell under sound incidence at 750.
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4.3 Summary

In this chapter, I formulate and test a radiation model from a finite cylindrical shell

without endcaps, by using Green's theorem. The radiation model seems to work

well as long as the observation point is in the membrane wave region 600 < 0 <

1200. Within the region, the radiation model result differs from the direct SARA-2D

calculation by less than 2 dB. In addition, the flexural wave radiation is shown to be

at least 10 dB lower than the total radiation. Below 600, the radiation model performs

poorly, possibly due to increasing endcap radiation and flexural wave radiation. The

weak endcap radiation within the membrane wave region is further supported by

examining the MIT/NRL ringed shell measured data, and it is not in conflict with

the analytical result from Guo [26] about strong compressional wave radiation at

the endcap. I speculate that such radiation is largely directed towards the axial

direction. This wave dissipation effect at the endcaps will be considered in the decay

rate modeling in Sec.5.1.2.

As a byproduct, the evidence of insignificant endcap and flexural wave radiation

within the membrane wave region justifies the use of the infinitely long shell to esti-

mate sound energy injection into a finite shell.

Green's theorem requires complex pressure and radial velocity field in a finite

shell to compute radiation. However, the elastic wave power equipartition hypothesis

produces the magnitude of total velocity (combination of both in-plane and out-of-

plane velocities, see Eq. 2.14). To bridge the gap between the output of the wave

power calculation and the input of Green's theorem, the following approximations

have been made, examined and tested.

* Form phase field through estimated wave speeds with and without the influence

of the rings

The propagating phase field along the shell can be formed if the wave speed is

known. The wave speed calculation of the infinitely long uniform shell can be

used as an approximation, which results in sound radiation only 1-2 dB smaller

than the direct SARA-2D calculation, not significantly different from the results

if the influence of the rings is considered. The influence of the rings on wave
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speed is first observed from the measured scattering data and from the analysis

of the SARA-2D calculation. The rings can increase the membrane wave speeds

considerably, but decrease the flexural wave speed only slightly. Moreover, the

modification is frequency dependent. Above ka = 5, the rings can decrease the

membrane wave speeds by somewhat 10%. Below ka = 5, the rings can decrease

the n = 1 shear phase speed by as much as 50%. In spite of this wave speed

change, the membrane wave region is only 20 - 3 smaller. Further, the observed

wave speed change is understood and characterized by a simulation of a 1D bar

system with mass-spring subsystems attached. I find that the resonance of the

rings determines the frequency region of decreased and increased wave speed,

corresponding to mass and stiffness effect respectively. In addition, the ratio

of the axial wavelength to the average ring spacing, A,/b, plays an important

role. The wave speed change is especially significant if AX/b on the order of 1.

The modified wave loci shown in Fig. 4-23 will be used to predict scattering in

Chap.5, and will be shown to yield better agreement with the measured data.

* Estimate surface pressure from known radial velocity

The estimated impedance for the ringed shell is tested against the SARA-2D

calculation. The difference is insignificant. Further, I use the estimated surface

pressure with the radial velocity from the SARA-2D calculation, and predict

sound radiation within 1-2 dB in comparison with the direct SARA-2D scatter-

ing results.

* Estimate radial velocity by considering the influence of the rings

The rings can mildly modify the ratio of radial motion to total motion for

the membrane waves. According to the SARA-2D calculations, the rings can

increase the compressional wave radial velocity ratio to total velocity by as

much as 20% and the corresponding radial velocity ratio of the shear wave by

as much as 40% over 4 < ka < 12. Thus, the ring effect should be considered if

accurate radiation prediction is required.
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Chapter 5

Prediction of transient scattering

and comparison with measured

data

Following the calculation of elastic wave power in Sec.2.3 and the development of a

radiation model in Chap.4, scattering prediction seems to be straightforward. How-

ever, the prediction model so far only predicts the magnitude of sound scattering,

because no phase information is retained in the wave power calculation, which is

steady-state. Since the scattering processes of concern in this study are transient,

the prediction model has to be extended to the time domain. I do not attempt to

predict the detailed transient scattering signatures since they are highly dependent

on shell details. Instead, I seek to depict the decay trend of the transient scattering

by using the hypothesis of wave power equipartition. Random phase realizations are

first introduced. A wave energy decay model is then developed based on wave power

equipartition. Various decay mechanisms are considered including radiation from the

shell cylinder, coupling loss to the endcaps and the internals, and also material damp-

ing. Finally, the prediction is compared to the measured bistatic target strength of

both the ringed and the internalled shells. The prediction differs from the measure-

ments by no more than 2.5 dB, for time windows 2, 3 and also for a time-integrated

case. Explanations for the discrepancies are given and the strength and limitations

of the prediction model are also discussed in this chapter. Random wavenumber real-
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izations are considered. Inclusion of a random wavenumber realization in the model,

however, does not yield a better agreement with the measured data.

5.1 Prediction of transient scattering

5.1.1 Random phase realizations

Without phase, it is impossible to transform sound pressure from the steady-state

into the time domain. The phase is generally related to the multiple wave reflections

and transmissions at the shell discontinuities, and is therefore highly dependent on

shell details.

Since shell details are often unknown or at best vaguely known, I assume random

phase realizations in this study. As illustrated by a flow-chart in Fig. 5-1, the predicted

scattering, appended with random phase, can be inversely Fourier transformed into

the time domain. Time windows are then applied so that the target strength in each

time window can be Fourier transformed back to the frequency domain. Again, the

time windows correspond to roundtrip periods of the trace matched wave in the shells,

as shown in Fig. 3-13.

In each realization, the phase, Iue(w), is an arbitrary value chosen with equal

likelihood from 0 to 27r. The sound pressure, with the phase appended to the sound

pressure magnitude from the steady-state calculation, Ip,'l, then becomes a complex

number.

Pne = Ipneleie(w) . (5.1)

The total pressure field is a coherent summation of the wave types and mode

components, shown in the following:

pot(w, 0) = Z Pne (w, 0) . (5.2)
e n

In Eq. 5.1 and Eq. 5.2, the sound pressed magnitude, for each wave type e and
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statistical model mag.
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Figure 5-1: Idea of random phase realization for temporal response.

mode n, is appended by a random phase set for each wave type e and mode n.

This is equivalent to randomizing the relative phase among the wave types and the

circumferential modes.

It is true that the predicted scattering fluctuates because of the random phase

realizations. With many such realizations, however, I expect the mean to predict a

typical experiment. That is to say, I can obtain a scattering level that captures the

average shell behavior.

Random phase realizations alone are not enough for predicting transient scatter-

ing, because they do not provide temporal decay behavior. In fact, a random phase

realization gives a flat scattering amplitude (at least statistically) in the time do-

main. Thus, the next step of the transient scattering prediction is to introduce a

proper decay behavior.

156



5.1.2 Measurement and formulation of decay rate

For a multi-degree-of-freedom system, the decay rate of the impulse response is gen-

erally not a constant, but varies with time. One reason is that different modes might

have different loss factors that create time varying decay behavior of the total system

response. In the presence of weak coupling, the system response is affected by both

modal loss factor and coupling loss factor (among modes), and even by the initial

energy conditions of each mode. In such a case, the decay rate can be determined

when detailed information about the system is known. To be consistent with the

wave power equipartition hypothesis, I consider strong modal coupling case, where

the coupling loss factors are not specified, but are sufficiently strong to offset the

modal loss factors. As a result, the system response does not decay at a rate of any

particular mode, but at a unified rate and should be time invariant.

Before a decay rate model is developed, it is necessary to examine the MIT/NRL

measurement data of the shell models, in order to derive experimental understanding

of the decay behavior in the MIT shell models. In particular, I examine the MIT/NRL

monostatic data within the membrane wave region.

Fig. 5-2, Fig. 5-3 and Fig. 5-4 display the frequency bandlimited impulse response

envelope for the ringed shell, the internalled shell and the empty shell, respectively,

for aspect angle at 660. Four frequency bands, 2.75 < ka < 10, 2.5 < ka < 5.0,

5.0 < ka < 7.5 and 7.5 < ka < 10.0 are used for the analysis. In Fig. 5-3, Fig. 5-2,

and Fig. 5-4, the peak at t = 0 corresponds to the geometric return. In monostatic

scattering, the elastic wave backscatter is largely observed when the trace matched

wave is reflected at the rings and the endcaps.

The significant peak near 230 ps in Fig. 5-2 and Fig. 5-3 is due to such reflections

at the rings. After 230 Is, the backscatter signal contains multiple events that are

hardly resolvable in time. The impulse response envelope from 230 is to 1300 Is for

the ringed and internalled shells can be fitted by a straight line. The associated decay

rate, measured from the slope of the line, is labeled in each subplot in dB/ms. For

the ringed shell, the decay rate is 12 dB/ms in the broad band 2.75 < ka < 10, and

is essentially the same in the three narrow bands as well. For the internalled shell,

the decay rate increases considerably in the broad band as well as in the mid-band
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5 < ka < 7.5, due to the presence of the internal structures. For the empty shell,

the back directed elastic wave scattering is observed later in time, at approximately

480 ps, due to the absence of the rings. The peaks within 480 tis < t < 850 us are due

to circumferential navigation of the shear waves. The associated decay rate measures

53.3 dB/ms in band 2.75 < ka < 10.0, significantly larger than for the ringed and the

internalled shells.

The above analysis is performed for each monostatic angle in 640 < 0 < 800, with

10 increment. Fig. 5-5 displays the decay rate for the three shells for the frequency

band 2.75 < ka < 10. I observe that the decay rates fluctuate moderately for the

ringed and the internalled shells, but drastically for the empty shell. I evaluate the

mean decay rate for the ringed and the internalled shells over three angular bands:

640 < 0 < 800, 640 < 0 < 700 and 740 < 0 < 80' and then display the results beside

the plots in Fig. 5-5. Within 640 < 0 < 700, only shear waves are excited while within

740 < 0 < 800 both shear and compressional waves are trace matched. I observe that

the decay rate for the ringed shell does not differ significantly for either the frequency

bands or the angular bands. I observe a similar trend for the internalled shell as

well. Further, I notice that the decay rate for the internalled shell is approximately

30% higher than for the ringed shell. This observation is the same as obtained by

Corrado [19], who analyzed sound incidence at 750 and 660 and for the frequency

range 2.75 < ka < 10.

The foregoing experimental analysis is helpful to reach the following conclusions

about the scattering decay behavior in the shells.

* There exists a unified decay rate for the ringed shell and the internalled shell,

but not for the empty shell. In addition, the decay rate for the ringed and the

internalled shells is in general far smaller than for the empty shell. This obser-

vation is directly related to the strong elastic wave coupling due to the rings,

which is in turn responsible for the elastic wave power equipartition observed

previously in Chap.3.

* The unified decay rate for the internalled shell is approximately 30% larger than

for the ringed shell.
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* The unified decay rate for the ringed shell and the internalled shell is rather

insensitive to either the aspect angle bands, or the frequency bands.

NRL monostatic impulse response of the ringed shell, incidence at 66 deg
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Figure 5-2: Measured monostatic bandlimited impulse response of the ringed shell
and decay rate measurements. The aspect angle is 660. Four different frequency (ka)
bands are used. The t = 0 peak corresponds to the geometric return.
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NRL monostatic impulse response of the intemalled shell, incidence at 66 deg
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NRL monostatic impulse response of the empty shell, incidence at 66 deg
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Figure 5-4: Measured monostatic bandlimited impulse response of the empty shell
and decay rate measurements. The aspect angle is 660. Four different frequency (ka)
bands are used. The t = 0 peak corresponds to the geometric return.
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(a) Ringed shell measurements, 2.75<ka<10
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(b) Intemalled shell measurements, 2.75<ka<10
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Figure 5-5: Decay rate measurement for different aspect angles and different frequency
bands and the three shell models. From the MIT/NRL measured data. (a) the ringed
shell; (b) the internalled shell and (c) the empty shell. The tables on the right list
the means and standard deviation of the decay rate measurements for frequency and
angular bands.
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In the following I will focus on the prediction of the unified decay by using the

hypothesis of elastic wave power equipartition.

At an arbitrary time t, the total elastic wave energy Etot decays to a new level

Etot e-"At during an infinitesimal time interval At at t,

Etot e- hAt = Ec e-~ct + E, e- aQ At + Ef e-C A t  (5.3)

where subnotes c, s and f denote compressional, shear and flexural waves, respectively.

Decay rate a is defined by the following relation, also discussed previously in

Eq. 2.9.

a = wT) = Vr (5.4)

The decay rate in Eq. 5.4 has the unit of neper/s. In oder to read it in dB/s, it

has to be multiplied by a constant 4.34.

The decay rate should, in principle, include material damping, radiation damping

from the shell and coupling damping to dissipative substructures such as the endcaps

and the internal structures. The coupling among the elastic waves in the shell do not

appear in Eq. 5.3 because the coupling effect will be canceled.

Eq. 5.3 states that the total energy is the sum of the energy in the elastic wave

types. However, the relative energy distribution among the elastic waves is dictated

by equipartition of wave power, which is defined as the product of wave energy and

axial elastic wave group speed, as shown in Eq. 2.13.

Ec Cgc = E8 cg, = Ef cgf . (5.5)

The unified energy decay within the small time interval At is derived by expand-

ing the exponentials in Eq. 5.3 and keeping only the first two terms,
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EIL ac + E&L a, + afa = . (5.6)
1+ .L + f+L

Cgc Cg.

The unified decay rate turns out to be a weighted summation of the individual

decay rate of each elastic wave type, with the weighting determined by the axial

group speed ratios. Since the flexural group speed in this study is much smaller

than membrane wave group speeds, the decay rate of the flexural wave is crucial in

determining the unified decay rate. The weight of the membrane wave decay rates,

on the other hand, is relatively small. The group speeds of the elastic waves can be

conveniently obtained from the infinitely long shell calculation, discussed in Sec.2.1.

Since the group speeds are usually dependent on circumferential mode n, so is the

decay rate for each wave type, the unified decay rate is necessarily evaluated for

each mode n as well. The formulation in this subsection should be understood as

pertinent to each mode n component, although the subnote n is not always shown.

In the following, I focus on estimating the decay rate of each elastic wave type and

for each mode n.
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5.1.3 Estimate of decay of each elastic wave type

For each elastic wave, the decay rate is estimated by considering radiation damping,

net coupling damping to other dissipative structures, and material damping.

Decay due to radiation damping

The membrane radiation decay in the cylindrical shell section can be calculated from

the loss factor of the infinitely long shell shown in Fig. 2-4, and from Eq. 5.4.

The subsonic flexural waves do not radiate except at shell discontinuities such as

the rings and the endcap junctions. Flexural wave radiation from shells is compli-

cated at or below the ring frequency. Above the ring frequency, however, the shell

curvature effect fades and flexural wave radiation from a flat plate can be used as

an approximation. In this study, the ring frequency is at ka = 3.5, so the flat plate

approximation can be used for the frequency range 4 < ka < 10. With the use of

Eq. 2.11 for the radiation coefficient and Eq. 2.12 for the corresponding loss factor,

the flexural decay rate due the subsonic radiation from the rings can be estimated

from Eq. 5.4. The decay rate is in general dependent on frequency. At the mid point

of the frequency range, ka = 7, the decay rate is approximately 3.6 dB/ms, close to

Corrado's estimate of 3.8 dB/ms [19] based on an analytical calculation of the elastic

wave interaction in the ringed shell model.

The decay rate estimates due to the radiation damping at the cylinder are dis-

played in Fig. 5-7 by the solid line.

Decay due to coupling loss at endcaps

Dissipative substructures attached to the cylindrical shell provide additional means

of wave energy attenuation. Endcaps are important in this regard, so are the internal

structures. This subsection estimates the dissipation at the endcaps. The subsequent

subsection estimates the dissipation into the internal structures.

The dissipation at the endcaps is caused by the heavy compressional wave ra-

diation when the local endcap radius forces the compressional waves to the ad hoc
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cutoffs. According to the discussion in Sec. 2.1 based on Guo's results [25], the com-

pressional wave amplitude is reduced significantly during a roundtrip in the endcap.

This strong compressional dissipation at the endcap is also experimentally evident by

the lack of compressional wave backscattering from the empty shell [19].

Again, the decay has to be estimated for each mode n since the compressional

wave attenuation is highly dependent on mode n.

The general expression for the compressional wave decay rate at the endcaps is

an = 27ccn6nCcn/L , (5.7)

where 2cen/L represents the interaction rate with the endcaps, ccn being the axial

phase speed of the compressional wave at mode n and L being the shell length; 6,

represents the compressional wave energy attenuation during one roundtrip at the

endcap, given by Fig. 2-5; 7r, is the compressional wave transmissibility at the shell-

endcap junction, which will be evaluated briefly in this section together with the wave

transmissibilities for the shear wave, r•n, and for the flexural wave, rfrn.

Similarly, the shear wave can scatter to the compressional wave at the endcap junc-

tions due to the slope discontinuity. The resultant decay can be estimated according

to Eq. 5.8:

an = 2TscnSnCsn/L. (5.8)

Finally, the flexural wave can also scatter to the compressional wave at the end-

cap junctions due to the slope discontinuity. The resultant decay can be estimated

according to

a, = 27rfcnsncfn/L. (5.9)

Wave transmissibilities in Eq. 5.7, 5.8 and 5.9 are generally dependent on shell

junction details. Instead of pursuing extensive computation of the exact wave con-

version at the shell-endcap junctions, I estimate the wave conversion by modeling the
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discontinuity as two flat plates in vacuo, joined with the same slope discontinuity

as in the shells. The requirement of continuous forces and displacements across the

junction yields 8 boundary conditions, so that the amplitude of the reflected and

transmitted elastic waves can be solved. The incident angles are measured from the

normal to the junction line include 00, 170, 350 and 600, corresponding to the helical

angle 4 for the compressional waves of mode n = 0, 1, 2 and 3 respectively. The wave

conversion coefficients are listed in Table 5.1.

As seen from Table 5.1, the compressional-to-compressional transmissibility is

approximately 1/3, for n = 0, 1 and 2. The flexural-to-compressional transmissibility

decreases as n increases, from 28% at n = 0, to 15% at n = 2. On the other hand, the

shear-to-compressional transmissibility increases as n increases, from 0% at n = 0, to

10% at n = 2 and 30% at n = 3.

Table 5.1: The percentage of reflected and transmitted wave power of the the incoming
compressional wave to a plate joint. Discrete incidence angles (0) correspond to
helical angles of compressional waves of circumferential mode n. r' denotes reflection
and r denotes transmission. Analytical details are attached in App. D.

mode rcc r,, 77e Tc 78c Tfc

0 00 19.2 0 20.0 33.7 0 27.6
1 170 20.4 1.5 17.8 34.3 1.5 25.1
2 350 25.0 9.1 10.0 33.4 9.0 15.2
3 600 25.5 31.4 0.4 13.1 30.3 0.1

The decay rate estimates due to dissipation at the endcaps are displayed in Fig. 5-7

by the dash-dot line.

Decay due to coupling loss to internal structures

The internal structures are resiliently mounted on the rings and have many degrees-

of-freedom. Because of many joints, isolations and high-loss-factor materials used, the

internal structures are likely to have very large damping. What is more, it takes time

for the transmitted waves to convert back to the shell in case they are not completely

attenuated. As long as the observation time is limited to the first few time windows,

such as I am studying, the elastic waves transmitted from the shell into the internal

167



structures can be assumed to decay fast before they are possibly projected back to

the shell. In other words, the internal structures are treated as a energy sink - a black

hole assumption.

Thus any amount of energy transmitted from the outer shell to the rings can be

regarded as dissipation. Conti [21] has shown that the rings for n = 0 compressional

and flexural waves are typically mass-like, because their two fundamental vibration

modes, hooping and rolling, are all below ka = 3 and the next order resonance is

far above ka = 12. In Sec.4.2.1, I observe that the rings above ka = 5 are mass-like

for n=1, 2, 3 and 4, because the membrane wave speeds are generally lower above

ka = 5. Thus, I treat the rings as limp masses, not only for the n = 0 case, but also

for n > 1 cases.

The energy of 'massive rings' can be calculated as heavy 'accelerometers' picking

up vibration of a structure (shell). Since the rings are heavy, the mass loading effect

must be considered. Without losing generality, I consider one 'average' shell bay with

one ring at the end, sketched in Fig. 5-6 as a rectangular flat-plate with a finite beam

attached. The mass of the ring mr is approximately the same as the mass of the

shell bay. The ratio of the ring square velocity to the spatially averaged mean square

velocity of the ring is determined by an impedance ratio, which can be easily deduced

from the analysis in Ref. [41].

< v 2 > 2Z2
r  (5.10)< > 2 + (wmr)2 '(5.10)

where the wave impedance of the shell bay is Z, = 27rahp c, , a, h, and p being

the shell radius, thickness and density, respectively, and car being the axial wave

speed for mode n. In comparison with the mass impedance of the ring, wm, the

wave impedance Z, in the shell is much smaller, only 1/50 of wmr for the n = 0

compressional wave at ka = 4. Therefore, the denominator of the right-hand-side of

Eq. 5.10 can be approximated by w2m2 alone.

In the following formulation, the membrane waves are treated as in-plane and the

flexural wave is treated as out-of-plane. In addition, the rotational coupling of the

ring is neglected.
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Figure 5-6: Sketch of shell-ring coupling, to estimate energy loss into internal struc-

tures, which are (not shown) resiliently mounted to the massive ring(s) and are as-

sumed to be energy sink in this study.

The energy loss factor due to the energy transported to the ring can be expressed

as

Ering p 27ra, b,.hr v7 r (5.11)
SEsell p 2ra, bdh, < v2 > '

or

bh, w2m '

where the shell and the ring have the same mass density p and approximately the same

radius (ar = as), but different width b and thickness h. Subnote s and r represent

the shell and the ring respectively.

The decay rate (dB/s) is then written as

17.36c2 h,
a = 4.34w = n= (5.13)

wb,h,.b,

Eq. 5.13 estimates the decay rate due to the energy transmission into the internal

structures, for both membrane waves and the flexural wave. The axial wave speed

cx can be obtained from the analytical results in Fig. 2-1, Fig. 2-2 and Fig. 2-3 for

the compressional, shear and flexural waves respectively.

Following the foregoing formulation, I make an estimate of such a decay rate,

for a shell with lossy but detail-unknown internal structures which are mounted to
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four heavy deep rings identical to the rings in the MIT ringed shell. The decay rate

estimates due to dissipation into the internal structures are displayed in Fig. 5-7 by

the dotted line.

Decay due to other attenuation mechanisms

The shell structural damping might play a role as well. However, if no extra damping

treatment such as the constrained layer damping is applied, the material loss factor

of steel is normally less than 0.002 [41], which yields a decay rate of 1.65 dB/ms

at ka = 7. This damping is insignificant in comparison with the membrane wave

attenuation but might be important for the flexural wave dissipation.

Decay rate comparison for different mechanisms

Fig. 5-7 summarizes the decay rate estimates due to three major dissipation mecha-

nisms in finite complicated shells: radiation from cylinder, radiation from the endcaps

and vibrational energy loss into the internal structures. For both compressional and

shear waves, the radiation damping from the cylinder is the most important attenua-

tion mechanism, followed by the coupling loss into the internal structures. Radiation

from the endcaps are not as important as the other two, possibly due to the limited

rate for the membrane waves to reach the endcaps.

For the flexural waves, the most important dissipation mechanism is the subsonic

radiation from the shell discontinuities such as rings and endcap junctions. The

coupling loss to the heavily radiating compressional waves at the endcaps plays a

role as well. The energy loss into the internal structures, however, is unimportant.

The explanation is that the heavy deep rings are effectively rigid to the slow flexural

waves, so that the flexural wave incident on a ring will be reflected almost completely.

In other words, the flexural wave is too 'soft' to drive the 'hard' rings to move. This

confinement of the flexural wave within the ring bay can be visualized in Fig. 4-2. In

comparison with the membrane waves, the flexural wave radiation is generally by far

smaller. Although small, the flexural wave radiation is very important because the

slow flexural wave has a larger weight in the calculation of the unified decay rate, see
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Eq. 5.6.

(a) Compressional wave n=l (b) Compressional wave n.2
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Figure 5-7: Decay rates for radiation decay at cylindrical shell and coupling decay
due to coupling to the compressional waves at endcap. (a,b): Compressional wave
n=1 and 2. (c,d): Shear wave n=1 and 2. (e,f): Flexural wave n=1 and 2. Solid line:
radiation damping at cylinder. Dash-dot line: coupling loss at endcaps. Dotted line:
coupling loss to internal structures.

The total decay rate is then computed based on Eq. 5.6 and is shown in Fig. 5-8

for each mode n. The total decay rate is normally zero below the shear wave cutoff.

The drastic increase just above the cutoff is caused by the sharp increase of the shear

wave radiation. As frequency increases further, the decay rates begin to taper down

except near the ad hoc cutoff of the compressional waves. The spike in the n = 2

decay rate curve corresponds the drastic increase of the compressional wave radiation

near the ad hoc cutoff at ka = 7.
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Figure 5-8: Total decay rates from Eq. 5.6. (a) prediction for the ringed shell (sl)
and (b) prediction for the internalled shell shell (s2).

Comparison between the decay rate estimate with the measurements

It is possible to check the calculated decay rate by comparing it with the measure-

ments. I observe from the measured scattering signal in this section that a typical

unified decay rate within the membrane wave region is 11.2 dB/ms for the ringed

shell, and 14.3 for the internalled shell, for frequency band 2.75 < ka < 10 and

angular band 640 < 0 < 800.

However, the decay rate comparison is not straightforward because the calculated

decay rates are for each mode n while the measured decay rates are for total scattering

response. To make the comparison meaningful, I make an assumption of energy

equipartition among the circumferential mode n. This assumption is certainly not

reasonable for any particular frequency or any particular incidence angle. However,
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if the decay rate is averaged over a frequency band and angular band, for instance

3 < ka < 10 and 600 < 0 < 800, I would expect the assumption to be reasonable.

Assuming such equal distribution of energy among circumferential modes, I estimate

that the decay rate, obtained in the similar way as in Eq. 5.6, is 13.2 dB/ms for the

ringed shell and 15.2 dB/ms for the internalled shell. The values are respectively 14%

and 8% higher than the measured decay rates in Sec.5.1.2.

In addition, the estimate of the decay rate for the internaled shell is approximately

25% higher than for the ringed shell, consistent with the measured data discussed in

Sec.5.1.2.
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5.1.4 Scattering prediction of finite ringed and internalled

shells

In the following, I will predict the target strength of a finite ringed shell and a finite

internalled shell. The shells are the same as the MIT shell models in terms of the

following parameters: the shell length, radius, thickness, and material properties; the

ring width, thickness, density as well as the number of the rings. In addition, the shells

are assumed to have many discontinuities for sufficient conversion among the elastic

waves, so that the power of the elastic waves in the shell can reach equipartition.

Scattering from the shells is observed at 2 m from the shell center, the same as in the

MIT/NRL measured data. I consider two sound incidence angles: 750 and 660. At

750 both compressional and shear waves can be trace matched while at 660 only the

shear wave is trace matched in the cylindrical section of the shell.

The prediction of the transient scattering includes the following general steps:

1. Specify input information about shell, fluid, sound incidence and receiver loca-

tion.

2. Compute the elastic wave total velocity for each wave type, mode n and fre-

quency using the infinitely long shell model and the wave power equipartition

hypothesis.

3. Compute the shell radial velocity, estimate the surface pressure using the for-

mulation in Sec.4.2, and form the phase field with the estimated axial wave

phase speeds.

4. Compute shell radiation (steady-state) using Green's theorem in Sec.4.1.

5. Append the steady-state scattered pressure magnitude with random phase re-

alizations and compute target strength for a time window that corresponds to

one roundtrip time of the trace matched wave in the shell. The target strength

is a function of frequency, observation angle and mode n.

6. Adjust the target strength with different decay for different windows, by using

the decay rate estimates in Sec.5.1.2.
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7. Display the target strength in the ka - 0 plane, or, frequency vs. bistatic

observation angle.

In the above steps, the phase speeds and group speeds of the elastic waves are

estimated either from calculation of the infinitely long shell with no rings, or from

simulation that considers the effect of the rings (Sec.4.2.1). In the latter case, I

need to calculate an infinitely long shell in Step 2, with its membrane wave speeds

modified by the influence of the rings. Above ka = 5, the membrane phase speed

is increased while below ka = 5, the n = 1 shear wave is dominant and its phase

speed is decreased. The finite width of the modified wave loci shown in Fig. 4-23

in fact enables random realization of the axial wavenumber, in addition to random

realization of phase. Random realization of the axial wavenumber will be discussed

shortly.

Fig. 5-9 displays the bistatic target strength for 750 incidence for time window 1,

with no modification of the wave speeds. The upper two figures are from two random

phase realizations and the lower figure is the average over 6 random realizations. Since

the first half of window 1 involves sound excitation (trace matching) of the elastic

waves in the shell, I apply no decay to window 1.

Fig. 5-9 demonstrates the following features:

* The scattered field is spread over angular region 600 < 0 < 120', although the

incident sound is a plane wave at a single angle. This is caused by the wave

conversion at the shell discontinuities that spreads the single trace matched

axial wavenumbers into many axial wavenumbers.

* The scattering below 600 or above 1200 decreases sharply, because membrane

wave trace matching is assumed to dominate both excitation and radiation

within 600 < 0 < 1200. Acoustic coupling to the endcaps is not considered in

the prediction model.

* The predicted target strength is symmetrical around beam aspect (900), due to

the assumption used in the prediction (Eq. 2.20), which ignores the magnitude

difference between the waves going forward and backward.
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* The predicted target strength has 'hot spots' close to the trace matching fre-

quencies for different mode n. In the example of 750 sound incidence, the trace

matching to the n = 2 and n = 3 shear waves occurs at ka = 5.0 and ka = 7.2

respectively. The trace matching to the n = 1 compressional wave happens at

approximately ka = 9. Such clear 'modal' behavior is consistent with the peaks

of the equipartitioned elastic wave power displayed in Fig. 2-14.

Furthermore, I find that different phase realizations create fluctuations in both

magnitude and pattern of the predicted target strength, as indicated by the compar-

ison between (a) and (b) in in Fig. 5-9. Denoting TS as the logarithmic mean of the

target strength over 3 < ka < 10 and 60' < 0 < 1200, I find that the average of TS

over random phase realizations does converge. In this study, averaging over 6 phase

realizations is sufficient. The value of TS has been labeled in each plot in Fig. 5-9,

and all subsequent target strength contours. For example, TS is -36.1 dB for one

realization in (a) of Fig. 5-9 and -35.5 dB for another realization in (b) of Fig. 5-9.

I also find that the standard deviation of TfS is approximately 0.7 dB for the 6

random phase realizations shown in Fig. 5-9.

Fig. 5-10 displays the bistatic target strength for 66' incidence for the internalled

shell. Again, the wave speeds are from the infinitely long shell calculation without the

ring influence. The left figure is from one phase realization and the right figure is the

average over 6 random phase realizations, with the standard deviation of TS being 1.2

dB. At this angle of incidence, only the shear wave is trace matched. The hot spots

are concentrated on two frequency bands near ka = 4 and ka = 8, corresponding

to the trace matching frequencies of the n = 1 and n = 2 shear waves. This strong

frequency dependence, however, is not observed in the measured data, as will be

shown later in Sec.5.2. Thus, it might be helpful to consider the ring effect on wave

speeds for this angle of incidence.
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Figure 5-9: Predicted ringed shell bistatic target strength in dB re 2m in window 1

for sound incidence at 750. Modified wave speeds are not used. (a), (b) correspond

to results from two random phase realizations and (c) is the average over 6 random

phase realizations. The logarithmic mean target strength over 600 < 0 < 1200 and

3 < ka < 10, T2S, is labeled in each contour.
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Figure 5-10: Predicted Internalled shell bistatic target strength in dB re 2m in

window 1 for sound incidence at 660. Modified wave speeds are not used. (a) is from

one phase realization and (b) is the average over 6 random phase realizations. TfS is

labeled in each contour.
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Prediction using modified wave speeds

The influence of the rings on wave speeds is studied in Sec.4.2.1. The modified

wave I ci are estimated from the simulation of the 1D bar system and the results are

shown 'n Fig. 4-23. Note that the modified wave loci are in fact narrow strips, the

center of which is determined by the mean and the width of which is determined by

the standard deviation of the simulation results of 1D bar with 20 random location

realizations of 4 identical M-K systems. The center and width curves of the modified

wave loci in Fig. 4-23 are already smoothed by curvefitting in the ka - k" plane,

making it possible to estimate modified group speeds by measuring the derivative of

the curves.

To predict scattering, I use random wavenumber (or wave speed) realizations. For

a fixed frequency, the modified wave locus becomes a rectangular window. In Fig. 5-

11, the wave speed (wavenumber) is nonzero and equally likely within the wavenumber

window, but vanishes outside the window. I choose one wavenumber that has equal

likelihood within the wavenumber window and use it for the scattering prediction.

This operation is then repeated for all the 140 frequencies within 3 < ka < 10. Thus,

a random wavenumber realization means that the wavenumber is randomly chosen

within the finite wave strip.

The group speeds are obtained from the derivatives of the mean wave loci, which

is fairly representative of the slope of the modified wave loci (strips). Thus, I only

randomize phase speeds (wavenumber), but not the group speeds.

Adding random wavenumber realizations to random phase realizations, Fig. 5-12

displays the bistatic target strength for 660 incidence for time window 1. The left

figure is from one phase realization and one wavenumber realization, while the right

figure is the average over 6 random wavenumber realizations. In comparison with

(a) of Fig. 5-10, the target strength in (a) of Fig. 5-12 is much more spread in the

frequency region displayed. The prediction in Fig. 5-12 will be used in Sec.5.2.2 to

compare with the measured data.

The average over 6 random phase realizations, shown in (b) of Fig. 5-12, yields

the standard deviation of TS, 0.5 dB. The averaging process significantly smears the

pattern of the target strength. Moreover, the predicted target strength is essentially
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Figure 5-11: Illustration of random wavenumber realization.

the same even if a different wavenumber realization is used, possibly due to many fre-

quency pins within 3 < ka < 10. Therefore, one wavenumber realization is sufficient.

Averaging over many wavenumber realizations is not necessary.

The mean target strength, TS, in (b) of Fig. 5-12 is 1.7 dB smaller than in (b)

of Fig. 5-10. I suspect that the smaller mean target strength is caused by weaker

coherence introduced by random wavenumber realizations.

To demonstrate prediction in later time windows, Fig. 5-13 shows the target

strength in windows 2 and 3 for 750 incidence. Both random phase and random

wavenumber realizations are used. The decay for window 2 is the product of the

estimated decay rate shown in Fig. 5-8 multiplied by 300 ps, the interval between

windows 1 and 2. The decay for window 3 is the product of the estimated decay rate

multiplied by 600 tps, the interval between windows 1 and 3. These time intervals for

750 and 660 incidence are defined in Fig. 3-13.
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Figure 5-12: Predicted internalled shell bistatic target strength in dB re 2m in

window 1 for sound incidence at 660. Modified wave speeds are used. (a) is from

one phase realization and one wave phase speed realization. (b) is the average over 6

random phase realizations. TS is labeled in each contour.
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Figure 5-13: Predicted ringed shell bistatic target strength in dB re 2m in windows

2 and 3 for sound incidence at 750. (a) is for window 2 and (b) is for window 3. Both

random phase and wavenumber realizations are used. TS is labeled in each contour.
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5.2 Measurement data and comparison with pre-

diction

5.2.1 Measurement data

The MIT/NRL bistatic scattering measurement setup has been shown in Fig. 1-3. I

will use the bistatic data at two sound incidence angles within the membrane wave

region: 750 for the empty, ringed and internalled shells, and 660 for the internalled

shell only.

The transient scattering signal at each receiver position is time windowed in the

same way as shown in Fig. 3-13, except that the first time window is delayed by

44 ps from the peak of the initial scattering signal. Such an operation is intended to

remove the geometric scattering component from the total scattering and retain only

the elastic scattering.

The target strength of the measured data is displayed for windows 1, 2 and 3.

Fig. 5-14 displays the bistatic target strength of the ringed shell and the internalled

shell at sound incidence of 750. Fig. 5-15 shows the empty shell target strength at

750 incidence on the left and the internalled shell data at 660 incidence on the right.

For the empty shell model, the target strengths of the forward scatter and the

backward scatter are not symmetric in windows 1, 2 and 3. For the ringed and the

internalled shell, however, an approximate symmetry is observed in windows 1, 2 and

3.

The observed asymmetry in target strength for the empty shell in windows 2 and 3

is caused by two factors: strong backward shear wave radiation and weak forward wave

radiation. First, the strong backward directed waves are due to the trace matched

membrane wave interaction with the far endcap. The endcap not only makes the trace

matched membrane waves convert to each other and to the subsonic flexural wave,

but also greatly attenuates the compressional wave through sound radiation from

the endcap, as discussed in Sec.2.1.2. The shear wave attenuation at the endcap is,

however, very small. As a result, the shear wave is largely reflected at the endcap and

contributes to the target strength in the backward direction. Second, the backward
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shear wave attenuates greatly by the time it reaches the insonified endcap so that the

forward going waves are weak and radiate much less sound than the backward waves

do. The slower flexural wave is converted from the trace matched membrane waves at

the far endcap. It then travels along the length of the shell to the insonified endcap.

From there, the energy is converted back to the radiating compressional and shear

waves. According to the transient wave power analysis in Sec. 3.3, this forward wave

radiation does not become significant until after window 3.

The approach to symmetry in window 3 in the ringed and internalled shell data

is caused by multiple wave scattering at the rings. Extensive wave interactions are

completed by the time window 3 is reached, which leads to almost symmetric target

strength for the ringed and the internalled shells. The logarithmic mean of target

strength is evaluated over the same region (3 < ka < 10 and 600 < 0 < 120') as in

the prediction, and is labeled in Fig. 5-14 and Fig. 5-15.

I also observe that the target strength of the ringed shell differs from that of

the internalled shell. The internal structures seem to decrease the target strength,

approximately, by 1 dB in window 1, 3 dB in window 2, and 3.5 dB in window

3. Therefore, the scattering of the internalled shell decays slightly faster than that

of the ringed shell, and energy must be transferred to the internal structures. This

observation is consistent with the decay rate measurement discussed in Sec.5.1, where

I find the internalled shell tends to have a decay rate 30% larger than the ringed shell.

The scattering of the empty shell is largely limited to the membrane wave trace

matching region. However, the target strength of the ringed shell, and especially

the internalled shell, is still quite high outside the membrane wave region. A similar

observation has been discussed in Sec.4.2.1. Apparently, the rings can considerably

alter the wave speeds, which might affect the scattering.
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Figure 5-14: Measured bistatic target strength in dB re 2m in time windows 1, 2 and
3, corresponding to (a), (b), and (c) respectively for the ringed shell and (d), (e),
and (f) for the internalled shell at 750 sound incidence. The logarithmic mean of
the target strength over 60' < 0 < 1200 and 3 < ka < 10 is labeled in each plot.
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NRL data: TS (dB@2m) s0a75

(a) window I mean=-36.1 dB

40 60 80 100 120 140

(b) window 2 mean=-41.9 dB

(c) window 3 rrmean.-48.2 dB

NRL data: TS (dB@2m) s2a66

(d) window I mean=-37.5 dB
-30O

--35

-40

-45

-50

-55

-60

(e) window 2
-30

-35

-40 -

-45

--50
--55

-60

mean=-45.8 dB

(f) window 3 mean--50.1 dB
-30

-40

-45

-50

-55

-60

Observation angle, dog Observation angle, dog

Figure 5-15: Measured bistatic target strength in dB re 2m in time windows 1, 2 and

3, corresponding to (a), (b), and (c) respectively for the empty shell shell at 750

sound incidence. Plots (d), (e), and (f) are for the internalled shell at 660 sound

incidence. The logarithmic mean of the target strength over 600 < 0 < 1200 and

3 < ka < 10 is labeled in each plot.
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5.2.2 Comparison with prediction

Note from Fig. 5-9 that the predicted target strength from two random phase real-

izations is not the same for a particular frequency or angle, but is similar if averaged

over the ka - 0 domain, for instance, in terms of TS. Therefore, the comparison be-

tween the prediction and the measured data will not focus on the detailed scattering

pattern, but on the global pattern and on average over the ka - 0 domain. To do so,

the prediction should be averaged over random phase realizations.

In the measurements, the shells are deterministic in structure. If there were no

measurement uncertainties, the scattering from the shells is a deterministic process.

However, measurement uncertainties, such as fluid pressure disturbances after each

new setup is made, and the corresponding unwanted motion of the shell model and

the transmitting and receiving hydrophones, might introduce random phase to the

scattering process and make it less deterministic. At each incidence and observation

angle, the measured data are averaged over 100 runs in order to reduce the influence of

the measurement uncertainties and noise. By and large, the measured data can hardly

be taken from an average over a fully random phase process. Thus, the comparison

between prediction and measurement should again focus on the average in the ka - 0

plane, than on the value at a particular frequency or angle.

To make the comparison easier, I place the measurement-prediction pairs on the

same page, as shown in Fig. 5-16 for the ringed shell at 750 incidence, in Fig. 5-17

for the internalled shell at 750 incidence, and in Fig. 5-18 for the internalled shell

at 660 incidence. The prediction consists of results from two different realization

approaches: (c) and (d) are from using only random phase realizations, while (e)

and (f) are from using both random phase realizations and a random wavenumber

realization, as shown in Fig. 5-16, Fig. 5-17 and Fig. 5-18. The observation angle

range is 600 < 0 < 120', instead of 400 < 0 < 1400 used in the previous sections,

because the prediction model is expected to work well in the membrane wave region.

A prediction will be regarded as good if its averaged target strength over the region

3 < ka < 10 and 600 < 0 < 1200, or T7S, is within 2.5 dB of the measured data - one

color step in the contour plots. The modified wave speeds are not used for the 750

cases, but are used for the 660 case. In the prediction, 6 random phase realizations
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are used.

The direct model-data comparison is shown for windows 2 and 3 only. The direct

comparison for window 1 is not reasonable and is not shown in the three figures. The

reason is that several assumptions, which the prediction model is based on, such as

wave power equipartition, might not be valid for window 1. Despite its disappearance

in the direct visual comparison, the target strength in window 1 is listed by its mean,

TS, in Table 5.2, together with TS for windows 2 and 3, for the sake of completeness.

750 sound incidence (see Fig. 5-16 and Fig. 5-17)

In both windows 2 and 3, the predicted target strength using random phase realiza-

tions, in (c) and (d), is spread in the ka - 0 plane, similar to the measured data in (a)

and (b). The predicted target strength for the ringed shell, TS, is 0.5 dB lower than

that of the measured data. The predicted internalled shell target strength is 1.2 dB

higher than the measured data. In window 3, the predicted TS for the ringed shell is

1.5 dB lower than the measured data. However, the predicted TS for the internalled

shell is 0.7 dB higher than the measured data.

The predicted target strength using both random phase and random wavenumber

realizations, in (e) and (f), also exhibits a similar global pattern to the measured data

in (a) and (b), particularly below ka = 8. Above ka = 8, the prediction seems to be

at least one color level smaller than the measured data. The lower target strength in

the prediction might be caused by the lower trace matching frequency of the n = 1

compressional wave because of the reduced wave speed. Without the rings, the n = 1

compressional wave can be trace matched at approximately ka = 9, which explains

why (c) and (d) have relatively stronger target strength above ka = 8. With the

rings, the modified wave loci in the random wavenumber realization can easily shift

the trace match frequency to below ka = 8, thus reduce the target strength above

ka = 8 because no other modes are important in 8 < ka < 10 except for the n = 4

shear wave.

In terms of TS, the random wavenumber realization seems to make the prediction

more close to the measured internalled shell data, although it is not so for the ringed

shell. Table 5.2 lists the dB difference of TS for 750 incidence.
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Table 5.2: Decibel difference between the predicted and measured mean target
strength, TS, evaluated over 3 < ka < 10 and 600 < 0 < 1200 for window 1 through
3. Positive value means the prediction is larger. 'sl' and 's2' represent the ringed
shell and the internalled shell respectively. 'a75' indicates sound incidence at 750.

Two different approaches are used in the prediction: one uses random phase realiza-
tions; the other uses a random wavenumber realization, in addition to random phase
realizations, as shown in brackets.

Incidence angle sla75 s2a75
TS difference in window 1 -0.5 [-2.6] +0.7 [-1.4]
TS difference in window 2 -0.7 [-1.7] +1.2 [+0.1]
TS difference in window 3 -1.4 [-2.5] +0.7 [-0.4]

Although wave power equipartition in window 1 is not evident from the numerical

calculation of the ringed shell, I observe that the predicted ringed and the internalled

shell target strengths differ from the measured data only slightly.
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660 sound incidence (see Fig. 5-18)

In terms of the mean target strength, TS, the prediction is close to the measured

data. In window 2, the prediction using only random phase realizations in (c) is

approximately 0.9 dB higher than the measured data. In window 3, the prediction

in (d) is -1.5 dB smaller than the measured data. The prediction using both random

phase realizations and random wavenumber realizations does not yield better agree-

ment with the data. In fact, the prediction in (f) is -3.5 dB lower than the measured

data, a difference larger than using random phase realizations alone in (d).

In terms of scattering pattern, the measured data display a rather uniform target

strength distribution in the whole ka - 0 plane, while the predicted target strength

using random phase realizations, in (c) and (d), concentrates on two trace matching

frequencies near ka = 4 and ka = 8. The predicted target strength using both random

phase and wavenumber realizations, in (e) and (f), seems to reduce the frequency

concentration to a certain degree. The sharp decrease of the predicted target strength

for ka > 8 is due to the drastic increase of the estimated decay rate for the n = 2

mode as seen in Fig. 5-8. The drastic increase in decay rate is mainly caused by the

drastic increase of the n = 2 compressional wave radiation damping near the ad hoc

cutoff frequency. That is to say, the decay rate model for n = 2 near ka = 8 might

be inaccurate because of the cutoff. Other explanations might be available, since the

predicted target strength can still be fairly significant if the target strength in modes

other than n = 2 is significant near or above ka = 8. This is possible for the measured

data, because the axial asymmetry of the internalled shell might transfer wave energy

across mode n. However, such a possibility is excluded in the prediction model.

Time integrated target strength

So far the comparison has been done in separate time windows. In the following, I

will compare time integrated target strength in order to provide a different view of

the scattering process.

The measured time integrated target strength caused by the elastic wave scattering

is obtained by time windowing the impulse response in the time domain and then
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transforming it back to the frequency domain. The time window starts 44 ps after

the geometric return and spans the whole effective data length in the MIT/NRL

scattering measurements.

The predicted time integrated target strength is obtained in a different way. The

wave power calculation and the direct radiation calculation are in steady-state, rather

than in the time domain. Although a decay rate model is developed in Sec.5.1.3, it

does not estimate the decay rate of the total scattering, but only for its fixed frequency

component and mode n. As a result, it is impossible to use the same approach as in

the measured data case. I take each frequency component of the steady-state target

strength (harmonic response) and let it decay at t = 0 at a rate predicted by the decay

rate model. I then apply the same time window as in the scattering measurements and

transform the attenuated single frequency temporal response back into the frequency

domain. In this way, the new target strength approximates the time integration, and

is used to compare with the measurements. Fig. 5-19 displays the comparison for

the ringed shell at 750 and the internalled shell at 750 and 660 respectively. Again,

the logarithmic mean over 3 < ka < 10 and 600 < 0 < 120 ° is labeled in each

contour plot. I observe that the measured target strength has approximately the

same magnitude in the forward and backward direction. The mean of the measured

internalled shell target strength is 1.8 dB smaller than the measured ringed shell, for

750 incidence. The reduction is due to energy loss into the internal structures. In the

prediction, only random phase realizations are used. The modified wave speeds are

not considered.

In terms of the mean target strength evaluated over the ka - 0 region, the predic-

tion of the ringed shell is 1.6 dB lower than the measured data at 750. The prediction

of the internalled shell is different from the measured data by only a fraction of dB

at 750 and 660, respectively.

Summary of the comparison

The statistical model can predict the target strength of the ringed shell and the

internalled shell target strength within -2.5 dB, in window 2 and window 3. Table 5.3

displays the decibel difference of the logarithmic mean of the target strength, already
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labeled in each contour plot. In general, the model works well within the membrane

wave region, but not outside the membrane wave region. In terms of the mean target

strength, TS, a random wavenumber realization generally does not yield a better

agreement with the measured data. Therefore, if one is interested in estimating

an averaged target strength only (average at least along the frequency), random

wavenumber realization is not necessary.

Table 5.3: Decibel difference between the predicted and measured mean target
strength, evaluated over 3 < ka < 10 and 60' < 0 < 1200 for window 1 through
3. Positive value means the prediction is larger. 'sl' and 's2' represent the ringed
shell and the internalled shell respectively. 'a75' and 'a66' represent sound incidence
at 750 and 660 respectively. Two different approaches are used in the prediction: one
uses random phase realizations; the other uses a random wavenumber realization, in
addition to random phase realizations, as shown in brackets.

Incidence angle sla75 s2a75 s2a66

TS difference in window 1 -0.5 [-2.6] +0.7 [-1.4] +1.5 [-0.2]
TS difference in window 2 -0.7 [-1.7] +1.2 [+0.1] +0.9 [-0.9]
TS difference in window 3 -1.4 [-2.5] +0.7 [-0.4] -1.5 [-3.5]

TS Difference, time integrated -1.6 -0.1 +0.2

Discussion

In the above comparison between the prediction and the measured data, the mean

target strength over the whole ka-0 plane, TS, is used. This does not mean the model

can only predict TS. The comparison using TS is rather coarse. In the following,

I discuss another way of comparing the prediction with the data, that is, to average

over the frequency.

Fig. 5-20 and Fig. 5-21 show the frequency averaged target strength for the ringed

and the internalled shells, respectively, at 750 incidence. Fig. 5-22 shows the frequency

averaged target strength for the internalled shell at 660 incidence. The average is

conducted over 3 < ka < 10 using the real value of target strength rather than its

decibel values.

The predicted target strength is no more than a few decibels above or below the

measured data for most of the observation angles within 60 ° < 0 < 120'. The mean

evaluated over the angular region is similar to TS shown in Table 5.3. They are,

190



however, not identical because the former is the mean of decibel levels (along the

angle) while the latter is the logarithmic mean.

The spike near 720 of the measured internalled shell target strength in window

3 (shown in Fig. 5-22) might be caused by noise contamination in the data. This

abnormality is also observed in Fig. 5-15, plot (f).
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TS (dB@2m) s175 window 2

(a) Measured data mean--41.6 dB
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Figure 5-16: Ringed shell bistatic target strength in dB re 2m in window 2 and 3 for

sound incidence at 750. (a) and (b) are measured data; (c) and (d) are predictions

using random phase realizations only; (e) and (f) are predictions using both random

phase realizations and random wavenumber realizations. The logarithmic mean target

strength over 600 < 0 < 1200 and 3 < ka < 10, TfS, is labeled in each contour.
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TS (dB@2m) s275 window 2

(a) Measured data mean--44.4 dB

TS (dB@2m) s275 window 3

(b) Measured data mean..-48.1 dB
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Figure 5-17: Internalled shell bistatic target strength in dB re 2m in window 2 and 3

for sound incidence at 750. (a) and (b) are measured data; (c) and (d) are predictions

using random phase realizations only; (e) and (f) are predictions using both random

phase realizations and random wavenumber realizations. The logarithmic mean target

strength over 600 < 0 < 1200 and 3 < ka < 10, T7S, is labeled in each contour.
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TS (dB@2m) s266 window 2

(a) Measured data mean.-45.8 dB
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Figure 5-18: Internalled shell bistatic target strength in dB re 2m in window 2 and 3

for sound incidence at 660. (a) and (b) are measured data; (c) and (d) are predictions

using random phase realizations only; (e) and (f) are predictions using both random

phase realizations and random wavenumber realizations. The logarithmic mean target

strength over 600 < 0 < 1200 and 3 < ka < 10, TS, is labeled in each contour.
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NRL data: Time integrated TS (dB@2m)
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Figure 5-19: Time integrated bistatic target strength in dB re 2m. Contour (a-c) are

predictions and (d-f) are the MIT/NRL measured data. (a, d) are the ringed shell

for incidence at 750. (b, e) are the internalled shell for incidence at 750. (c, f) are the

internalled shell too, but for incidence at 660. In the prediction, only random phase

realizations are used. The logarithmic mean target strength over 600 < 0 < 1200 and

3 < ka < 10 is labeled in each contour.
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Frequency averaged TS (dB@2m), s175_nr_ave
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Figure 5-20: Ringed shell bistatic target strength in dB re 2m in window 2 and 3 for
sound incidence at 750 . The prediction is averaged over 6 random phase realizations.
The target strength is averaged over the frequency band 3 < ka < 10. The mean
and standard deviation of the decibel difference (prediction minus measurement) are
labeled in dB.
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Frequency averaged TS (dB@2m), s275_nrave
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Figure 5-21: Internalled shell bistatic target strength in dB re 2m in window 2
and 3 for sound incidence at 750 . The prediction is averaged over 6 random phase
realizations. The target strength is averaged over the frequency band 3 < ka <
10. The mean and standard deviation of the decibel difference (prediction minus
measurement) are labeled in dB.

197

windoW 2 mean (Prdct.- Meas.) = 1.6 dB
std. dev. (Prdct.- Meas.) = 2.5 dB

- measured
- predicted

ir

-3u

E -40

c -50

_•n

-•u

E -40
Ca

C -50

H-

window 3 mean (Prdct.- Meas.) = 0.7 dB
std. dev. (Prdct.- Meas.) = 2.3 dB:

SI I

I

,,

6

-u

6



Frequency averaged TS (dB@2m), s266_nr_ave
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Figure 5-22: Internalled shell bistatic target strength in dB re 2m in window 2
and 3 for sound incidence at 660. The prediction is averaged over 6 random phase
realizations. The target strength is averaged over the frequency band 3 < ka <
10. The mean and standard deviation of the decibel difference (prediction minus
measurement) are labeled in dB.
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5.3 Applicability of the prediction model

To provide a general description of the strength and limitations of the statistical

model, this section examines the assumptions and approximations used in its devel-

opment.

* The statistical model is designed to predict the general trend of elastic wave

scattering behavior of finite complicated shells. Thus, the model is not intended

to predict detailed target strength along the frequency, time or aspect angle co-

ordinates. In addition, no geometric scattering is considered in the model. Thus,

the model must be supplemented with a geometric response model (Ref. [1]) in

order to predict total scattering.

* The key assumption of the model is elastic wave power equipartition. The

numerical calculations in this study indicate at least approximate wave power

equipartition for the ringed shell. Stronger wave coupling at the rings and the

endcaps, relative to wave dissipation, accounts for the equipartition. Most finite

complicated shells in the real world have several heavy ring-like bulkheads and

possibly heavy keels (stringers), all of which create strong elastic wave coupling.

I therefore expect elastic wave power equipartition to be valid in most shells

of practical concern. In addition, sound trace matching serves as distributed

forcing that can inject sound energy into the shell globally and possibly into

multi-wave types simultaneously. Such forcing can accelerate wave coupling

and energy mixing and thus can help to achieve the equipartition of elastic

wave power earlier in time.

* Sound incidence in the statistical model is limited to the region 600 < 0 < 1200,

because I assume that a finite shell is acoustically excited by trace matching

in the cylindrical shell section only. Within 600 < 0 < 1200, shear and com-

pressional waves can be trace matched strongly, so that other mechanisms are

relatively less important. Outside this region, other forms of forcing must be

considered, but the possibility of elastic wave power equipartition is still likely

to be met, at least under some conditions in the frequency, time and aspect

angle domains.
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* The observation region is also limited to 600 < 0 < 1200. Inside this region,

the membrane waves, either trace matched or not, dominate the radiation. But

outside the region, other processes such as the endcap radiation, neglected in

the model, might become important.

5.4 Summary

This chapter extends the prediction model to the time domain. I estimate the scat-

tering decay trend, predict the scattering and compare it with the measured data.

I conclude that the statistical model provides a satisfactory prediction of the elastic

wave scattering from both the ringed and the internalled shells. The predicted target

strength, averaged over the membrane wave region 600 < 0 < 120* and frequency

band 3 < ka < 10, differs from the MIT/NRL measured data by no more than ±2.5

dB, in windows 2, 3 (2nd and 3rd roundtrip time of the trace matched wave in the

shells), as well as in the time integrated case. The consideration of the modified wave

speeds in the prediction model does not yield better agreement with the measured

data. The unmodified wave speeds (from the infinitely long uniform shell) alone can

provide acceptable prediction results.

The prediction model does not work outside the membrane wave trace matching

region. Outside the membrane wave region, trace matching is impossible. Other

sound excitation mechanisms such as endcap radiation and subsonic flexural wave

radiation must play important roles and must be included.

The decay rate model developed in this section provides an understanding of the

elastic wave decay trend in finite complicated shells. I show that the shell decay rate

does not equal the decay rate of any particular elastic wave, but is a weighted average

of the decay rates of all the elastic waves. The weight is determined, in the case of wave

power equipartition, only by the elastic wave group speed ratios. The estimate of the

decay rate for each wave type includes the effect of radiation damping from the shell

section, the coupling loss at the endcaps, the coupling loss into the internal structures,
as well as the shell material damping. This decay rate model proves acceptable, and

its estimate of the decay rate of the ringed shell and the internalled shell is less than
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14% higher than the MIT/NRL measured data. Finally, the internal structures are

found to increase the total scattering decay rate by approximately 25 - 30%, obtained

from both the prediction and the measurement.
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Chapter 6

Summary of the thesis

6.1 Summary of the results

This thesis formulates and tests the concept of elastic wave power equipartition and

uses it as a hypothesis to predict bistatic sound scattering from finite elastic shells

in water. The statistical model provides a simple, quick and inexpensive way of es-

timating elastic scattering from finite complicated shells, and does not suffer from

the numerical difficulties that plague conventional numerical approaches. The con-

ventional approaches, however, give both the geometric and elastic wave scattering

components, while the present statistical model only gives the elastic wave part. Of

the two, the elastic wave component is by far the most complicated. By adding the

statistical model developed here to a simple geometric model, such as those already

in the literature [1], a total estimate of scattering can be readily made.

The basic idea of the statistical prediction model is to treat compressional, shear

and flexural waves as coupled systems and to investigate a simple statistical descrip-

tion of the power and energy ratios among the elastic wave types. Each wave type

has a different wave speed and can radiate sound uniquely like an array with a finite

aperture. Once the strength and phase speed of each wave type is known, the sound

radiation is then the sum of contributions from each wave.

In the case of shell scattering, the incident sound can inject energy into the elastic

waves in the shells. Within about 300 of beam aspect, the supersonic elastic membrane
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waves are apt to be excited by acoustic trace matching. Once excited, the elastic waves

are coupled and converted at shell discontinuities such as bulkheads and endcaps. The

energy of each wave is thus redistributed among the wave types. With many shell

discontinuities functioning as strong elastic wave scatterers, it is then reasonable to

hypothesize that the strong wave coupling can offset wave dissipation and cause the

wave power (energy flux in shell cross section) to be equipartitioned among the elastic

waves. The concept of wave power equipartition is similar to the commonly known

concept of modal energy equipartition in traditional SEA. In fact, I show that the

definition of wave power, energy density times wave axial group speed, is proportional

to the modal energy in SEA.

To test the wave power equipartition hypothesis, the MIT empty and ringed shells

are modeled by a finite element approach, using SARA-2D. According to the numer-

ical analysis, the elastic wave power is at least approximately equipartitioned for the

ringed shell with four heavy deep rings. Thus, the wave power equipartition hypoth-

esis is plausible for the ringed shell. For the empty shell, no wave power equipartition

is found in the early scattering process. Sec.6.1.3 summarizes related results in detail.

Elastic wave power equipartition is a powerful tool because it allows one to derive

any elastic wave strength once the total injected power is known, by means of energy

conservation. Mathematically, the equipartitioned wave power is expressed as the

injected wave power divided by the elastic wave group speed ratios. This greatly sim-

plifies the relationship among the elastic waves which is otherwise extremely difficult

to determine for finite complicated shells. The usefulness of this tool is demonstrated

in this study by predicting elastic wave scattering from finite complicated shells in

water for the mid-frequency range 3 < ka < 10.

In order to predict elastic wave scattering based on elastic wave power equiparti-

tion, three major steps are taken. The first is to compute the sound power injection

into finite shells. The second is to build a radiation model to project the wave motion

into sound pressure in the fluid. The third is to convert the steady-state scattering

from the first two steps into the time domain and to compare the predicted target

strength with the measured transient scattering data. The first two steps will be

summarized in Sec.6.1.1 and the third will be summarized in Sec.6.1.2.
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6.1.1 Sound injection and radiation modeling

The sound power injection into finite shells is obtained not directly, but indirectly

through calculation on a infinitely long shell. I restrict sound incidence to the mem-

brane wave region, 60" < 8 < 1200, so that acoustic trace matching to the membrane

waves dominates the excitation. Other excitation mechanisms in finite shells, such as

acoustic induction at endcaps and the rings, are of secondary importance. As a result,

the injected sound power per unit length is the same, whether it be an infinitely long

shell or a finite shell. For the infinitely long shell, this injected sound power is readily

calculated by means of Donnell's thin shell theory. Once the injected sound power is

obtained, the power in each elastic wave becomes the injected sound power scaled by

a factor that is related to the elastic wave group speed ratios only.

In the sound radiation modeling, I consider sound radiation from the cylindrical

section of the shell while I ignore the endcap radiation. According to the numerical

analysis, the endcap radiation is insignificant if the receivers are within the membrane

wave region, 600 < 0 < 120'. This observation is further supported by experimental

evidence. What is more, this observation of small endcap radiation also justifies the

neglect of acoustic excitation at the endcap for sound incidence in 600 < 8 < 1200, as

well as the use of the infinitely long shell excitation model, since acoustic excitation

and radiation are in principle reciprocal processes.

The sound radiation model is based on Green's theorem. However, the input of

Green's theorem requires detailed complex surface pressure and radial velocity, while

the wave power calculation only outputs the magnitude of the total velocity. To fill

the gap, I estimate the following variables and test the estimates numerically using

SARA-2D:

1. the axial wave phase speed

2. the surface pressure

3. the radial velocity

I find it possible to estimate the axial wave speed and radial velocity for the ringed

shell through a calculation on the infinitely long cylindrical shell. Once the radial
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velocity is known, the surface pressure are approximated by the momentum equation.

The comparison with the direct SARA-2D calculation shows that the approximations

are satisfactory, with an error less than 2 dB.

Furthermore, the experimental observation and numerical calculations show that

the rings hardly affect the flexural axial wave speed, but decrease the axial membrane

wave speeds considerably (from several to tens of per cent) for ka > 5. The reason is

that the ring spacing in this study is smaller than, or comparable to, the membrane

wavelength, the phase shift caused by the rings has notable effect on the membrane

wave speeds. The ring spacing, on the other hand, is much large for the flexural

wave, so its speed is much less affected. The membrane wave speed change is further

estimated using a simple statistical model of a 1D bar system with several resonators.

In spite of the wave speed change, I find the membrane wave region is only slightly

modified (by 2° - 30), because the n = 1 shear wave phase speed is decreased by

approximately 6% near ka = 9.

6.1.2 Transient scattering prediction

No phase is retained in the steady-state wave power calculation. The measured scat-

tering is, on the other hand, transient. I need to extend the steady-state scattering

into the time domain, not only because I need to compare the prediction to the mea-

surements, but also because the elastic wave scattering can be conveniently identified,

examined and separated in the time domain.

Two steps are taken to predict the transient scattering. First, random phase

realizations transform the steady-state sound pressure into the time domain. Second,

a model is built to predict the decay rate of the elastic wave scattering by using the

hypothesis of elastic wave power equipartition. The decay rate model shows that the

elastic wave response, as a whole, decays at a rate not dictated by any particular

wave type, but rather by weighted contributions from all the elastic wave types. The

weight is determined by the group speed ratios only. The decay rate of each wave

type is estimated with the following mechanisms considered: (1) radiation from the

cylindrical shell; (2) coupling loss at the endcaps (3) coupling loss into the internal

structures and (4) material damping. The coupling loss at the endcaps is due to wave
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Table 6.1: Summary of input information needed and not needed by the prediction
model.

conversion to compressional waves which radiate sound heavily there. The estimated

decay rate is close to the MIT/NRL measurement analysis of the ringed shell and

the internalled shell, with overpredictions no more than 14%. Further, the decay rate

model estimates that the internal structures increase the total scattering decay rate

by approximately 25%. The similar trend is observed in the measured data as well.

Finally, I predict the transient elastic scattering from two finite complicated shells,

a ringed shell and an internalled shell. Each shell has the same shell length, radius,

thickness and material property as the MIT empty shell model. To estimate the wave

decay rate into the internalled shell, the dimensions, material as well as the number

of the rings are needed. The ring information is obtained from the MIT/NRL ringed

and internalled shell models. Table 6.1 summarizes the input information needed and

not needed by the prediction model.

For sound incidence at 750 and 660, both measured data and the predicted target

strength contour in the ka - 0 domain is displayed in separate time windows, corre-

sponding to the integer number of the roundtrip periods of the trace matched wave in

the shells. In addition, I compare the time integrated target strength for the predic-

tion and the data. I find that the predicted target strength averaged over the angular
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region 600 < 0 < 120* and frequency 3 < ka < 10 is quite acceptable for sound in-

cidence at the two angles. Table 5.3 summarizes the comparison for sound incidence

at 660 and 750 . In general, the prediction is within 2.5 dB of the measurement data.

Moreover, consideration of the modified wave speeds in the prediction model does

not seem to yield a better agreement with the measured data.

The discrepancies observed between the prediction and the measured data might

be caused by the exclusion of other sound excitation mechanisms such as acoustics

induction at the endcaps and the rings, especially near 600 and 1200 and outside the

region 600 < 8 < 120'.

6.1.3 More on elastic wave power equipartition

The numerical analysis of the wave power in the time domain demonstrates that the

elastic wave power takes time to reach wave power equipartition in the ringed shell

(with 4 rings). In window 1, defined as the 1st roundtrip time of the trace matched

wave in the shells, the flexural wave power is 8-10 dB less than the membrane wave

power, i.e. wave power is not equipartitioned. However, the flexural wave power

increases considerably in window 2 and the power difference among the elastic waves

is less than 3 dB for most frequency bands. That is, wave power is approximately

equipartitioned in window 2. In the later time windows, the wave power difference

remains small and the power of different elastic wave attenuates at almost the same

rate. The numerical calculation also indicates that even with two rings or one rings

attached, the wave power equipartition is still approximately true, although it occurs

one window later in time. Finally, the steady-state wave power analysis shows that

the relative wave power difference are weakly dependent upon frequency, and slowly

varying over the incidence angle for the ringed shell. In comparison, the numerical

wave power analysis shows that the power difference among the elastic waves for the

empty shell is typically 5-10 dB. No elastic wave power is equipartitioned for the

empty shell, at least for the first 6 time windows observed.

Thus, the heavy elastic rings play a crucial role in the equipartitioning of the

elastic wave power. The rings not only create significantly more wave interaction rate
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( %" (nri 9n + 1)2), but also function as strong elastic wave scatterers themselves. This

latter point can be demonstrated by the fact that even one ring can make a drastic

difference in wave power behavior, compared to that of the empty shell.

Although the wave power equipartition concept is tested in this study for the case

of the ringed shell, and for sound incidence near beam aspect, I expect that it holds

true for other finite complicated shells, and under other forms of excitation as well.

Any shell discontinuity, even a single point, can convert wave energy from one type

to others. Since most finite shells of practical concern have numerous stiffeners and

other forms of discontinuities, I expect wave power equipartition to be true in many

cases.

6.2 Suggestions for future work

This thesis considers elastic wave scattering which normally dominates backscatter-

ing. In forward or specular directions, however, the geometric scattering plays an

important role. By adding a simple but separate model for the geometric scattering

to the current elastic wave scattering model, one can predict the complete bistatic

scattering process.

I am convinced that trace matching is able to capture the major elastic scattering

process via energy injection into and emission from finite shells within the angular re-

gion considered. However, the comparison between the prediction and measurements

indicates that other mechanisms can play some role as well, and a very important

role outside the trace matching region. Therefore, another topic for future work is to

expand the applicability of the prediction model for elastic wave scattering to sound

incidence outside the trace matching region.

Apart from considering more excitation and radiation mechanisms, the cross-mode

energy sharing among the elastic waves is another important topic. In the current

shell model, the ring and endcap discontinuities are axisymmetric so that the elastic

wave of mode n couples only to another wave of the same mode n. Once axial

symmetry is destroyed, such as by having a stringer in the shell, cross-mode coupling

can become important. The current statistical model should be modified to account
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for such an effect, and is expected to describe the physical systems better in doing so.

Further, the wave power equipartition concept can be used to solve sound radia-

tion problems in air. Generally, flexural waves dominate sound radiation in air while

membrane waves have poor coupling to the air, contrary to the case in water. Tra-

ditionally, membrane waves are often ignored in dealing with sound radiation in air.

However, ignoring the membrane waves can cause serious errors in some cases. One

such case is transient sound radiation. In this study, the flexural wave plays a very

important role in scattering, even if it does not radiate strongly. Similarly, membrane

waves should be considered in air even if they might radiate poorly. Even in steady-

state, membrane waves which are energized by conversion from the flexural waves at

structural discontinuities may not convert the energy back to the flexural waves be-

cause they can attenuate by other means than sound radiation to air, such as coupling

loss to other elastic or fluid media which are outside the systems considered. In such

a case, the membrane wave should not be ignored. Moreover, the associated sound

radiation prediction scheme has basically no restriction on frequency, and therefore is

a very promising possibility for tackling the mid-frequency noise problems, commonly

of interest in the aerospace and automobile industries.
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Appendix A

Donnell thin cylindrical shell

equations

Donnell's thin shell theory [2] is one of the many shell theories developed to describe

dynamic motions of shells. It is justified to use Donnell's thin shell theory in this

thesis because the shell models considered satisfy two conditions:

* The wavelengths of the elastic waves in the shells are large compared with the

shell thickness (A, > 20h). In these cases the transverse shear and rotatory

inertia may be neglected.

* The radii of curvature are large compared with the shell thickness.

In the formulation, an assumed harmonic time dependence e-" is suppressed.

The free motion of the shell is described by

92U aM m2u ap 029 a 0,w 1 02u
Ox2  a2 0 2  a 2x¢0q aax c2 0t2

or, 1_2U 020 1 02 0 10w 1 020
a 8 -a + + a2 + -2 + a2 € c2 t 2

a au 1 00 w r 04w 04w
+ ++a[a +2

a Ox a2  a 2  1X4  0X2 aq2

1 a4w 1 2W
a2 ( 4 C+ 2 2

- 0,

- 0,

(1 - o~)p
Eyh
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In the equation, a is Poisson ratio and

1-a l+a
Up= 2 I am = (A.4)

2 2

#b represents the influence of bending stresses

h2
Ob = h2 (A.5)12a2

The displacements in an infinitely long cylindrical shell can be generally expressed

by double wavenumber integrals, one in the axial direction and one in the circumfer-

ential direction. Due to the periodic nature in an uniform shell in the circumferential

direction, the corresponding integral can be replaced by a modal summation, that is

u(x, ¢) = : i eie' e-ikzxdx
-0 0

9(x, ) = U ^, ei"n e-ik'dz
-00

-00

w(x, ) = e -eikzxdx.oo -oo
(A.6)

Similarly, we can express the incident sound pressure Pi and the scattered pressure

field Ps in the form

00 +00oo

n=- -oo

where J, and Hn are the nth order Bessel and Hankel functions respectively of the

first kind. kr is given by
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kr = (k2 - kx2) 1/ 2 . (A.7)

The sound field and the shell motion is related by the momentum equation

@r=a

The resulting linear algebraic equations are

[d2 + amn2 - 2] fin + nape f d - ic7d w

nap &in + [am 2  n2 - 2] + -in -inW

ad fi + n On - i[1 + O'~4 - -2] W
+i.a 2p (-_l) n+l H n (k r a ) C

c2 hp,

w2p ,n + krH,(kra) Cn

= 0,

= 0

ia2po(-1)n+l Jn (ka)
cPhp,

= -krpo(-1)"Jg(kra)

where a = kxa and Q = wa/cp.

Such linear equations are in the form of LU = F. The displacement coefficients

[in, , n] and the pressure coefficient Cn can be solved if the forcing matrix F is

known.

The dispersion relation is obtained from the determinant of the operator matrix

L from Eq. A.8.

D, = (1 + #64 _ Q2 + Fu Ef k2a2 )(R 2 - 2)(2 a_ a2) - Q4

-a 2 [Q2 n2 + (2a + 3) 2d2 - (1 - a2) 4] = 0

where

(A.9)

Hn(kra)
kraH'(kra)

c2 paEf = C,2 p
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W2 (pi + Ps)
-w p 1 = - r
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The complex axial wavenumber roots, kr + k+i, which satisfy the transcendental

dispersion equation can be found numerically using a root finder.
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Appendix B

Parameters of the MIT shells
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Shell Parameters

General Properties
Overall shell length 86 cm
Cylinder length, L 74 cm
Cylinder radius, a 5.54 cm
Shell thickness, h 0.053 cm
Thickness to radius, h/a 0.96 %
Shell Properties
Shell material Ni-200
Compressional plate wave speed 5270 m/s
Transverse shear wave speed 3100 m/s
Young's modulus, E, 2.2x1011 N/m 2

Density, p, 8900 kg/m 3

Poisson's ratio, a 0.31
Ring Properties
Ring material Ni-200
Mass ratio (rings:shell) 1:1
Symmetry Axisymmetric
Internals Properties
Resilient material EAR c1002 rubber
Wave bearing rods General purpose Delrin
Delrin rod compressional wave speed 1625 m/s
Mass Ratio (internals+rings:shell) 3:1
Symmetry Quadrant symmetric

Table B.1: Shell Parameters
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Appendix C

SARA shell modeling and wave

decomposition

This section introduces SARA-2D [31] modeling of the empty shell and the ringed

shell, discusses post-processing issues, and evaluates the initial wave decomposition

results.

C.0.1 FEM modeling of the shells

The finite element code SARA-2D solves the steady-state problem of a structure

submerged in an infinite fluid subjected to incident traveling waves or vibrational

loads within the structure. Finite elements are used to model both the structure and

the fluid field. Conventional displacement elements are used for the structure, and

pressure type acoustic elements are used for the external nearfield. The unbounded

external fluid is modeled with infinite elements that include in their formulation the

outward traveling and decaying waves. The coupled fluid-structure model results in

a complex, symmetric, banded set of equations which can be efficiently solved by

Gaussian elimination for displacements and pressures throughout the model. Select-

ing normal velocities and pressures at the fluid-structure interface permits the field

response to be obtained from the Helmholtz integral equation.

The SARA-2D software enables all loadings and response quantities to be repre-
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sented in a cosine and sine Fourier series for circumferential coordinate in axisymmet-

ric analyses. In other words, the circumferential coordinate is compressed, so that

'2D' refers to dimensions in radial and axial directions of the cylindrical shell models.

The equations for the Fourier circumferential modes are uncoupled and each is solved

separately for coefficients of the response quantities. These coefficients must be mul-

tiplied by the appropriate sine or cosine variation to obtain the actual response. By

superposition of modes, arbitrary loadings and responses can be obtained.

Of the three shell models, only the axisymmetric empty shell and the ringed shell

are calculated. The shell element is conventional isotropic quadratic element that

has three nodes. The basic surface responses include velocities in the radial, axial

and circumferential directions and surface pressure, represented by v,, va, vc and

p respectively. Their formulations can be explained in the example of the surface

pressure. The surface pressure is represented by p,(w, x) for circumferential mode n,

frequency w, and node point position in axial coordinate x. For arbitrary azimuthal

angle 0, the total surface pressure is then

nmrax

p(w, , ) = pn(w, ) cos no . (C.1)
n=O

In the special case of € = 0, summing up the pressure components leads to the

total pressure along the meridian of the shell

nmrax

p(w,, = 0) = E p(w, ) . (C.2)
n=O

The mean squared pressure on a cylindrical shells is then proportional to the

squared value of the total pressure on the meridian, by a factor of 1/2.

nmaz 1 nmoaz

< p'(W, X) > 0<0<2, = E < PnP= > = 2 < PnP* > 0=0 , (C.3)
n= o n=o

where * denotes the complex conjugates.

The MIT shell models have been calculated before by Dr. Liu and Dr. Vasude-

van [32] for separate studies. The basic version of the SARA-2D input file in this

217



study is kindly provided by them. Fig. C-1 illustrates the grid point of the empty

shell in the calculation. Only the upper half of the shell surface is modeled because of

symmetry. 206 quadratic shell elements are used to model the outline of the shell. The

number of nodes (grids) is 413 and the number of Gaussian integration point is 618.

The FEM results in this thesis are sampled at the Gaussian integration points. The

sampling wavenumber is ksa,mping = 4233 1/m. Within frequency range 2 < ka < 12,

the maximum wavenumber of the elastic waves (flexural) is 650 1/m, smaller than

k,ampling/ 2 , so that spatial aliasing is avoided.

Fig. C-2 and Fig. C-3 display the detailed grids for the endcap and the rings

respectively. The elastic properties of the rings are included and rings are attached

to the shell middle plane by a portion of the ring width.

Number of elements: 206
Number of grids: 413

39 81 187 273 331 375
17 397>1413

Figure C-1: Illustration of the empty shell for FEM calculation. Only half shell,
shown by the thick line, is modeled due to symmetry. The grid point numbers at the
shell discontinuities are displayed. In the ringed shell case, grid number 81, 187, 273
and 331 indicate the locations of the ring stiffeners.

Another parameter to choose is the maximum mode number nma,. Within fre-

quency range 2 < ka < 12, the highest compressional mode is n = 3 near ka = 11,

and the highest shear mode is n = 5 near ka = 10.5. The highest flexural mode is

n = 36 near ka = 12. Since the flexural wave is subsonic and is mainly generated due

to elastic wave coupling at the shell discontinuities, the circumferential mode number

of the actual flexural waves on the shells is no greater than that of the membrane

waves. I chose nmax = 4 in the calculation.
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Figure C-2: Detailed FEM grid display of the endcaps. Dimensions are in cm and
are roughly in scale.
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Figure C-3: Detailed FEM grid display of the rings. Dimensions are in cm and are
roughly in scale.
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C.0.2 Wavenumber decomposition

On the basis of the SARA-2D generated shell surface response, I perform the wavenum-

ber transformation, according to the following equations (again, I take surface pres-

sure as an example),

.n(w, k =) = - p,(w, x) eikzx dx , pn(w,x) = J (w, kx)e-ikzx dkx . (C.4)
27r oo f00oo

Since the shells are of finite length, pn(w, x) is zero outside the region of the shell

length. To reduce artifacts due to abrupt truncation, a tapered rectangular spatial

window is used on the cylindrical part of the shell only, as shown in Fig. C-4. Each

tapered part of the window is a half Hanning window and takes 5% of the total

window length.

Spatial taper function

0.8 .......

S0.6 .................
E
< 0.4 ............ . . . . .........................................................

0.2 ....... .......... ........... ...........
0.2

0 1 j i
0 50 100 150 200 250 300 350 400

Shell grid points

Figure C-4: Spatial taper function for sampling shell surface responses. Only the
cylindrical shell section is sampled with each tail about 5 % of the shell length.

Fig. C-6 shows a typical surface pressure of the empty shell in ka - k. domain.

Positive wavenumber represents forward going waves and negative wavenumber repre-

sents the backward going waves. Since the axial wave speed is proportional to ka/ks,

the fast wave has smaller IksI if the frequency is fixed. In the backward direction, the

fast compressional and shear wave can be clearly identified close to Ik|I = 0 while the

flexural wave is far into the negative k. domain. In the forward direction, the surface

response is dominated by the acoustic wave, and also by the flexural wave. At 660

sound incidence, the acoustics wave trace matches the shear wave near ka = 3.
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The acoustic wave and the elastic wave loci have a width. It has a different
nature from radiation damping discussed in Chap.2, and caused by data sampling
over finite length. If the pressure had been sampled from a much longer shell, the
width associated would have been much smaller. The half power bandwidth for a

rectangular window of length L is about 0.887r/L. Fig. C-5 shows the wavenumber

response of the spatial window. Since the shell length is the only factor here, the

width is the same for all wave loci, independent of wave types.

Wavenumber response of the spatial taper function
1

® 0.5

. 0

-100 -80 -60 -40 -20 0 20 40 60 80 100
Wavenumber, 1/m

Figure C-5: Wavenumber response of the spatial tapering window in Fig. C-4. The
solid line uses the full shell length L = 0.74 m while the dash-dot line uses the average
shell bay length(0.15, or 1/5 of the total length). Along the shell length, there are
498 sampling points. By means of zero padding, a 2048 point Fourier transform is
performed.

The forward going acoustic wave trace matches the shear and the compressional
waves, making the forward membrane waves mainly forced waves. In the backward
direction, the acoustic wave vanishes and the three elastic waves are all free waves.

The loci of the elastic waves in the empty shell is shown in subplot (a) of Fig. C-6.
I overlay the loci of the equivalent infinite cylindrical shell submerged in water over
plot (a) and the result is shown in subplot (b) of Fig. C-6, in contour format.

I observe that the elastic wave loci in the empty shell are not different from that
in an infinitely long cylinder, which is well expected.

Fig. C-7 overlay the dispersions of the ringed shell with that from the infinitely
long shell. The center of the flexural wave dispersion loci is not different from the
infinitely long shell case. It is difficult to compare the dispersion loci of the membrane
waves.
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Surface pressure sOa66ml

CU
Cu

(D
:"

u.CrUL

12
10

0> 8

0 6
..

U-
4

2

-600 -400 -200 0 200 400 600
Axial wavenumber, 1/m

-600 -400 -200 0 200 400 600
Axial wavenumber, 1/m

Figure C-6: Frequency - axial wavenumber display of surface pressure of the empty
shell under 660 incidence in waterfall. Circumferential order n = 1. Positive axial
wavenumber represents forward going waves. The acoustic wave, shear, compressional
and flexural waves are labeled by the initials a,s,c and f respectively. (a) waterfall
plot; (b) contour plot, overlayed by dispersion curves from an infinitely long shell in
water.
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Surface pressure sOa66ml

-600 -400 -200 0 200 400 600
Axial wavenumber, 1/m

Figure C-7: Overlay the dispersion loci of the equivalent infinite cylindrical shell to
that of the ringed shell under 660 incidence in waterfall. Circumferential order n = 1.

I observe some new features in the wave patterns for the ringed shell. The rings

increase the width of the flexural wave dispersion loci and create many sidelobes.

In the following, I take a close look at the elastic waves surface pressure and the

velocities in the two shells for a particular case: sound incident at 660 and mode

n = 1. Fig. C-6 illustrates surface pressure in ka - k., for sound incident at 660 on

the empty shell. Fig. C-8 displays the surface pressure and normal velocity of the

empty shell and Fig. C-9 displays the circumferential and axial velocities respectively.

Similar presentations of the ringed shell surface response can be found in Fig. C-10

and C-11 respectively. In the four color contour plots, all the shell responses are

scaled by the incident pressure, and all have MKS units.

I make the following observations about the empty shell.

* The shell membrane wave response is concentrated mostly at the low frequen-

cies, 2.5 < ka < 5.5, consistent with the half-power bandwidth of trace matching

region 3 < ka < 4.7 displayed in Fig. 2-7.

* The in-plane motion (see Fig. C-9) is dominated by the membrane waves, while

the out-of-plane motion, together with the surface pressure (Fig. C-8), is con-

tributed to by both the flexural and membrane waves.
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SARA-2D for the empty shell, 66 deg inc, n-=1
(Surface pressure in dB re Pin)

-600 -450 -300 -150 0 150 300 450 600 750
Axial wavenumber, 1/rn

SARA-2D for the empty shell, 66 deg inc, n=l
(Normal velocity in dB re Pin)

SCAI.E
ABOVE -15.0

-18.0 - -15.0
-21.0 - -18.0
-24.0 - -21.0
-27.0 - -24.0
-30.0 - -27.0
-33.0 - -30.0
-36.0 - -33.0
-39.0 - -36.0
-42.0 - -39.0
-45.0 - -42.0

BESIOW -45.0

SCALE
ABOVE -124.0

-127.0 - -124.0
-130.0- -127.0
-133.0- -130.0
-136.0- -133.0
-139.0- -136.0
-142.0 - -139.0
-145.0- -142.0
-148.0 - -145.0
-151.0- -148.0
-154.0 - -151.0

BBLXOW -154.0

-600 -450 -300 -150 0 150 300 450 600 750
Axial wavenumber, 1/m

Figure C-8: Surface pressure (upper) and radial velocity (lower) of the empty shell
due to sound incidence at 0 = 660. n = 1.
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SAR.A-2D for the empty shell, 66 deg inc, n=l
(Circumnferential velocity in dB re Pin)

SCALJ

ABOVE -124.0
-127.0 - -124.0
-130.0 - -127.0
-133.0 - -130.0
-136.0 - -133.0
-139.0 - -136.0
-142.0 - -139.0
-145.0 - -142.0
-148.0 - -145.0
-151.0 - -148.0
-154.0 - -151.0

BELOW -154.0

-750 -600 -450 -300 -150 O 150 300 450 600 750
Axial wavenumber, 1/rn

SARA-2D for the empty shell, 66 deg inc, n=1
(Axial velocity in dB re Pin)

SCALE

ABOVE -124.0
-127.0 - -124.0
-130.0 - -127.0
-133.0 - -130.0
-136.0 - -133.0
-139.0 - -136.0
-142.0 - -139.0
-145.0 - -142.0
-148.0 - -145.0
-151.0 - -148.0
-154.0 - -151.0

BELOW -154.0

-750 -600 -4 -3 -xaU 1 xa.U a , %
Axial wavenumber, 1/m

Figure C-9: (upper) Circumferential velocity (lower) axial velocity of the empty shell
due to sound incidence at 0 = 660, n = 1.
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SAR.A-2D for the ring shell, 66 deg inc, n= 1
(Surface pressure in dB re Pin)

SCALEH

ABOVE -15.0
-18.0 - -15.0
-21.0 - -18.0
-24.0 - -21.0
-27.0 - -24.0
-30.0 -- 27.0
-33.0- -30.0
-36.0--33.0
-39.0 - -36.0
-42.0 - -39.0
-45.0 - -42.0

BELOW -45.0

-750 -600 -450 -300 -150 0 150 300 450 600 750
Axial wavenumber, 1/rn

SARA-2D for the ring shell, 66 dog inc, n=l
(Normnal velocity in dB re Pin)

SCAJLE

ABOVE -124.0
-127.0 - -124.0
-130.0 - -127.0
-133.0 - -130.0
-136.0 - -133.0
-139.0- -136.0
-142.0- -139.0
-145.0 - -142.0
-148.0- -145.0
-151.0 - -148.0
-154.0 - -151.0

BELOW -154.0

-750 -600 -450 -300 -150 0 150 300 40 600 750
Axial waveaumnber, 1/rn

Figure C-10: (a) Surface pressure (b) radial velocity of the ringed shell due to sound
incidence at 0 = 660. n = 1.
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SARA-2D for the ring shell, 66 deg inc, n=l
(Circumferential velocity in dB re Pin)

SCAL1-JE
ABOVE -124.0

-127.0 - -124.0

-130.0 - -127.0
-133.0- -130.0
-136.0- -133.0
-139.0 - -136.0
-142.0 - -139.0
-145.0 - -142.0
-148.0 - -145.0
-151.0 - -148.0

-154.0 - -151.0
BELOW -154.0

-750 -600 -450 -300 -150 0 150 300 450 600 750

Axial wavenurnber, I/rn

SARA-2D for the ring shell, 66 deg inc, n=l
(Axial velocity in dB re Pin)

SCAI-E

ABOV"E -124.0
-127.0 - -124.0
-130.0 - -127.0
-133.0 - -130.0
-136.0 - -133.0
-139.0 - -136.0
-142.0 - -139.0
-145.0 - -142.0
-148.0 - -145.0
-151.0 - -148.0
-154.0 - -151.0

BELOW -154.0

-750 -600 -450 -300 -150 0 150 300 450 600 750

Axial wavenumber, 1/rn

Figure C-11: (a) Circumferential velocity (b) axial velocity of the ringed shell due to

sound incidence at 0 = 660. n = 1.
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Similarly I make observations about the ringed shell, with emphasis on the com-

parison with the empty shell.

* Although smeared out to certain degree in the wavenumber domain, the mem-

brane waves can still be identified, especially in the in-plane response.

* In comparison with the empty shell, the flexural waves are significantly smeared

out. The broader width of the flexural wave dispersion loci indicates that the

flexural waves are confined within the ring bays, consistent with the observation

in Fig. 4-2.

* The ring stiffeners create side-lobe-like responses in the ka-k. plane. No strong

modulation pattern is observed because because the rings are unequally placed.

The energy of the 'side-lobe' responses velocities is insignificant relative to the

response near the eigen-wavenumbers and are neglected.

* The 'side-lobe' response is absent at wavenumbers greater than the eigen-

wavenumber of the flexural waves. This indicates that the ring discontinuities

are not abrupt, so that a direct spatial Fourier transform is justified across the

rings for the whole length of the ring shell.

What I learn from the above analysis confirms the plausibility of identifying the

elastic wave and evaluating them in the wavenumber domain, even at the presence of

the ring discontinuities.

The spatially averaged mean squared velocity < vi > can be obtained from the

wavenumber spectral density Sm,

< V^ 2 > /_÷•,. /dk
SV,>= J Sdk X Sndk. (C.5)

The approximated wavenumber band [k 1l, kx2] is centered at the 'eigen' axial

wavenumber of the corresponding wave type. The bandwidth is chosen to include

most contributions from the expected wave type while exclude the contributions from

the unwanted wave types. Since the flexural wave loci are well separated from that
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of the membrane waves, the band for the flexural wave is chosen to be 87r/L. The

averaging band for the shear and the compressional waves is chosen to be 1.757r/L.
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Appendix D

Elastic wave conversion at a line

joint

Elastic wave transmission through plate slope discontinuity (bending angle) is studied,

for the purpose of estimating wave transmission from cylindrical shell to the endcaps.

The estimation is meaningful at least for high frequency where the shell curvature

effect is small. As shown in Fig. D-1, plate 1 and 2 are joined in vacuum with an angle

26.50 and have same material (Young's Modulus Ey, Poisson ratio o, and density p)

and thickness h as the MIT shell models.

The wave motion potential in the plates is governed by the following equations,

corresponding to the compressional, shear and flexural waves respectively.

V2b + kP2 = 0;

V2W + k2 q = 0;

V4e + k40e = 0. (D.1)

where wavenumbers denote

k2 = w2/C~
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Figure D-1: Sketch of wave coupling at plate junction. The global coordinate is
represented by (X, Y, Z). The local coordinate x, y, z (not shown) is so arranged that
when plate bending angle a vanishes, (x, y, z) coincides with (X, Y, Z).

k = 2/c1

k4 = 12pw2/Eyh 2 . (D.2)

and e(- iwt) is assumed and is compressed in the formulation.

The wave incidence is oblique so that the trace wavenumber along the junction

ky is the same for all waves, both reflected and transmitted. If the Fourier transform

e(ikyy) is used to represent y dependence, the 2-dimensional wave equations in Eq. D.1

become separated in 1-dimensional form.

A- + (kI - k )b = 0;- T +  (k 2 - k 2) T = 0;

4- + (k - k) = 0. (D.3)
Considering wave incidence onto the junction from plate 1, the field i (D3)

Considering wave incidence onto the junction from plate 1, the field in plate 1
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consists of both incidence waves and reflected waves and the field in plate 2 consists

of the transmitted waves only.

1 (x, ky) = A+ eiax + A- e-iax;

1(x, ky) = C+ e'i + C- e-';

0 1(x, ky) = B + eibx + B- e-ibx; +Blj ebx;

( 2 (x, ks) = A+ eiax;

I 2(x, ky) = C2+ ei
E2 (x, ky) = B + eibs + B23 e-b s

(D.4)

where a, b and c denote wavenumber in x direction, and subnote 1 and 2 index plate

1 and 2 respectively.

b= k-
c = /k - k . (D.5)

There are 11 variables in Eq. D.4 and three of them are known. The incident wave
strength vector A = [At+ B+  C+ ] are given in advance. For instance, the incidence

of compressional, shear and flexural waves can be conveniently given as A = [1 0 0],

A = [0 0 1] and A = [0 1 0] respectively. The 8 unknowns represent the reflection

and transmission coefficients correspondingly.

The 8 unknowns can be solved by matching boundary conditions across the junc-

tion. First, the displacements in x,y and z directions have to be continuous. In

addition, the corresponding forces(stresses) have to be continuous. Finally, the rota-

tion angle and momentum cross the junction have to be continuous as well.

Denoting displacements by u, v, w in x, y, z directions, the corresponding stresses
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by ,rxy, oy, a,. and the momentum by M, the boundary conditions are listed in the

following:

ulcosa, - wlsina = u 2 COSQ + w 2sina;

V1 = V2 ;

ulsinc, + wicos = u2sinc + w2cosS;

UzlCOSO + "zzl7sina = Uxx2COSa - Uzz2Sinoa;

ryl = 7xy2;

acxlisina - uzzicosa = -- xx28in - Uzz2COS8;

wl1/ax = 1w2/ax;

a2wla2x = a2 2/ 2x . (D.6)

The displacements and stresses are derived from the potential field in Eq. D.4.

U-
y -- y '

= X

Xz'
axx = AV2 O

Tr, = /[V29

+ 2p( a+
8z 8xay

a2+ 4
+ 2( yaxayy (D.7)

where A and p are Lame's constants,

. -, I
VA = -I-

(1 + a)(1 - 2u)
G Ey
2(1 + a)

(D.8)

The unknown coefficient vector R = [A- CT BT Blj A+ C+ B + B2 j] can be

solved by linear equations in the matrix format:
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[G] - [R] = [Q] , [R] = [G]- 1 . [Q] , (D.9)

where the nonzero elements of 8 x 8 matrix G and 8 x 1 matrix Q are given in the

following.

gll = -iacosa; g12=-ik cosa; g13 = -ibsina; g14 = -bsina;

g15 = -iacosa; g16 = ikcosa; g17 = -ibsina; g18 = bsina;

g21 = ik; g22=-ic; g25=-iky; g26=-ic;

g31 = -ia sina; g32 = -iky sina; g33 = -ibcosa; g34 = bcosa;

g35 = ia sinc; g36 = -iky sina; g37 = -ib cosa; g38 = b cosa;

g41 = -{A(a 2 + k2) + 2p a2} cosa; g42 = 2pck, cosa;

g43 = (b4 + k2b 2)h2 sina/12; g44 = (b4 - k2b2)h2 sina/12;

g45 = {A(a 2 + k2) + 2pa2 cosa; g46 = 2pck, cosa;

g47 = (b4 + kLb 2)h 2 cos/12; g48 = (b4 - k b2 )h2 cos&/12;

g51 = -{A(a 2 + kc) + 2pa2 } sina; g52 = 2pck, sina;

g53 = (b4 + k2b2)h2 cosa/12; g54 = -(b4 - k2b2)h2 sina/12;

g55 = -{A(a 2 + k 2) + 2pa2} sina; g56 = -2 1 ck, sina;

g57 = (b4 + k2b2)h2 cosa/12; g58 = (b4 - k b2 )h2 cosC/12;
g61=2ak5; g62 =c2 -k; g65 = 2ak; g66 = -c 2 +k ,;

g73 =-1; g74 = 1; g77 = 1; g78 = -1;

g83 = i(b3 - ak 3); g84 = (b3 - iok,); g87 = i(b3 + ak 3); g88 = (b3 + ick,);

ql = -ia cosa A+ + ik cosa C+ + ib sina BP;

q2 = -ik, At - ic C+;

q3 = -ia sina A+ + ik sina C1 - ib cosC B+P;

q4 = {A(a 2 + k2) + 2pa2 } cosa A+ + 2 * mu * ck, cosa C+ - (b4 + k2b2)h2 sina B+/12;

q5 = {A(a + k2) + 2p a 2 } sina At + 2 * mu * ck sina C• + (b4 + kb 2 )h2 cosa B/12;

q6 = 2ak, A+ + (k2 - c2)C+;
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q7 = B+; q8 = i(b3 + ak3)B + (D.10)

From wave transmission coefficients, one can derive the wave power transmissibil-

ity, which is the ratio of incoming wave power to the transmitted wave power. In the

example of compressional wave, the intensity is expressed as

1 1IC= pcP lvC = pwkPl 2 (D.11)

In oblique incidence, the projected intensity on the junction has to be scaled by

coso. Notice that k cos4 is the wavenumber component in x direction, the trans-

missibility of compressional wave from plate 1 to elastic waves in plate 2 can be

calculated.

Tc =1 12, , -c 1,1, Tbc = - e2bl. (D.12)a a

In Eq. D.12, factor 2 in flexural wave transmissibility is caused by real energy

work from force on displacement as well as from moment on rotation. Since two

plates are identical, the elastic wave transmissibilities to compressional wave should

be the same as compressional wave transmissibility to the elastic waves, according to

reciprocal principle.
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Appendix E

Formulation for a 1D bar with

M-K subsystems

An elastic bar of density p, length L, cross-section area S and wave speed c. is studied,

which is attached by N identical mass-spring (M - K) subsystems having mass M

and stiffness K. The M-K subsystems are randomly distributed in the bar. Fig. E-1

shows the sketch of the bar system. The wave velocity field in the bar between the

nth and the (n + 1)th subsystems is assumed to be in the following general form

v(x) = A+eikzx + Ae - ikx, x, < <n+1, = 0,1...N- 1 (E.1)

where two waves of wavenumber k, propagate in the forward and the backward di-

rections, with the magnitude A+ and A- respectively.

Note that the wave velocity at the attachment point of the nth subsystem is

continuous, so that

A+eikzxn + A'e-ikxRn = A+ 1 eikzxn+l + An+le - ikxn" + l . (E.2)

Similarly, the force across the attachment is continuous as well;
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M - K systems

p, c,.

X 1  ... X n  n+1 ... XN

Figure E-1: An elastic bar with random distributed mass-spring subsystems.

Z [A+eikxxn - Ae -ik xzn] - Z [A++leikzxn+l - A+ 1 e-ikxn+1 =-

ZMK [A++1 eikzxn+1 - A 1 le - ikznx+1] , (E.3)

where Z is the axial wave impedance of the bar, Z = pcxS; ZMK is the impedance of

the M - K system, ZMK = jwM + K/(jw); w is the operating frequency, w = kxc,.

Eq. E.2 and Eq. E.3 provide a transfer matrix which helps to solve the chain

system in Fig. E-1 'globally'. In solving the global matrix, I assume unit incident

wave magnitude, A+ = 1, and no wave reflection at the bar ends, A-=O.

The forward wave field in the bar can be then derived using the forward wave

magnitude A+ .By measuring the slope of the unwrapped propagation phase of the

forward wave field, one can obtain the modified wavenumber.
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List of Symbols

a shell radius
a, c, r subscripts identifying variables for axial, circumferential

and radial directions
A cross-section area
A, surface area of plate
b average separation of two adjacent rings
c sound speed in fluid (water)
co, c, phase speed and group speed, respectively
g9 group speed averaged over frequency band Aw

cp, c, wave speed of compressional and shear waves, respectively
cX axial phase speed
c, s, f subscripts identifying variables for compressional,

shear and flexural waves, respectively
Cn pressure coefficient
d mean free path
f frequency in Hz
fe coincident frequency
e subscript identifying elastic wave types (Chap.5)
Ey Young's modulus
E energy
6 energy density (per unit length)
G shear modulus
G, Green's function
Hn nth order Hankel function

JA nth order Bessel function
k wavenumber, k = w/c
kx axial wavenumber, k = w/c.
kr radial wavenumber, k = Rk2 - kk
m, m' subscript identifying the two membrane waves
h shell thickness
L length of a shell, or a bar (Sec.4.2.1)
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L, U, F Operator, displacement and force matrices of constitute
equations for coupled shell-fluid system

n mode order
Nn number of axial modes for each mode n
no normal directional vector
Po incident sound pressure on shell surface
pi incident sound pressure
p, scattered pressure
r position vector locating a field point
ro position vector locating a source point
R spatial separation between source and receiver
Svn wavenumber spectral density of shell surface velocity of mode n
t time
TS logarithmic mean target strength over frequency region 3 < ka < 10 and

angular region 600 < 0 < 1200
u, t9, w shell displacement in axial, circumferential and radial

directions
fi, 9, ^b Spatial Fourier transform of shell displacement in axial, circumferential

and radial directions
Wo incident sound wave power; used to normalize elastic wave power
Wn elastic wave power equipartitioned among the elastic waves
Wnm elastic wave power for a membrane wave
Wnnm sound power injected into the membrane waves
x axial coordinate
Z wave impedance or mechanical impedance
a decay rate
13 ratio of radial velocity to total velocity
Ob flexural bending parameter, h2/12a 2

Obc correction factor of boundary influence for radiation
coefficient aad

6n attenuation of the compressional wave at the conical
endcaps, from Guo's analysis [26].

A 1/2 half-power bandwidth along axial wavenumber
-y angle between surface normal and observation direction
P perimeter
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77 loss factor
rldiss, ~Oup wave loss factor and coupling loss factor, respectively
0 Sound incidence (and observation) direction measured respect

to the shell axis.
6 circumferential displacement
Ax axial wavelength
v wave interaction rate
II Power flow
p density of acoustic medium
Pr, p, density of ring, and shell respectively
a Poisson's ratio
Urad radiation coefficient
7, 7' wave transmissibility and reflectivity, respectively

azimuthal angle
phase of a complex variable
helical angle. Wave is axial for O = 00 and circumferential for b = 900

w radian frequency
< walcp
< > spatial average
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