UNCERTAIN INFERENCE, ESTIMATION, AND DECISION-MAKING IN
INTEGRATED ASSESSMENTS OF GLOBAL CLIMATE CHANGE

by
L. JAMES VALVERDE A., JR.

M.S., Stanford University (1988)
S.M., Massachusetts Institute of Technology (1996)

SUBMITTED TO THE DEPARTMENT OF CIVIL AND
ENVIRONMENTAL ENGINEERING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN TECHNOLOGY, MANAGEMENT, AND POLICY
at the ot
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1997 ey 110y

© L. James Valverde A., Jr., MCMXCVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in
part, and to grant others the right to do so.

/ //

Author..................... S N R rorrm g e L
Tec ]ogy Management, and Policy ProgrAm and

Nenartment of Civil and Environmental EnAering

June 11, 1997

Certified by ................ "'} ........................
! Henry D. Jaccby

William F. Pounds Professor of Management

Sloan School of Management

1.

upervisor
Certified BY ... ovovenie i - LT
Gordon M. Kaufman
Professor of Operations Research and Management
— { Sloan School of Management
upervisor
Accepted by .

g e,
' David H. Marks

James Mason Crafts Professor of CHI and Environmental Engineering

— ”~

Accepted by ............. C et g s e e n e e e e aene
) Joseph M. Sussman
Chairman, Departmental Committee on Graduate Studies



Uncertain Inference, Estimation, and Decision-Making in
Integrated Assessments of Global Climate Change
by
L. James Valverde A., Jr.

Submitted to the Department of Civil and Environmental Engineering
on June 11, 1997, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Technology, Management, and Policy

Abstract

Current efforts to confront the prospect of anthropogenic global warming present policy an-
alysts, decision-makers, and intergovernmental negotiators with a host of challenges. The
technically-intensive nature of the policy debates that surround the climate change problem
are complex and multifaceted. Much of the uncertainty that underlies the greenhouse debate
arises, in part, from an incomplete understanding of critical features of atmospheric and cli-
mate science. Difficulties in predicting future levels of anthropogenic emissions of key green-
house gases (GHGs), and their effects on the global carbon cycle, make it difficult to reliably
assess the potential magnitude and timing of global climate change. Moreover, there are in-
herent difficulties in drawing reliable inferences as to the potential socio-economic impacts
of climatic change, as well as the likely costs, benefits, and effectiveness of possible response
strategies.

In this dissertation, we approach the problem of greenhouse warming from two comple-
mentary perspectives: (i) uncertain inference or prediction; and (ii) decision-making under un-
certainty. Proceeding from these two vantage points, we set forth an integrated decision analy-
sis (IDA) framework for structuring and evaluating complex policy decisions concerning global
climate change and its potential socio-economic consequences. Our model formulation and
discussion proceeds in four parts. First, we derive two reduced-scale models of the global cli-
mate system. These computationally-efficient models represent those processes that have the
greatest influence on climatic change, and they permit nimble execution of long-term policy-
dependent projections of global climate change. Second, we use econometric and statistical
time series estimation techniques to numerically calibrate the reduced-scale models so that
they essentially mimic the transient behavior of a larger global climate model that is contained
within the MIT Integrated Global System Model (IGSM). Third, we develop static and sequen-
tial decision models for evaluating several GHG abatement policies that are currently being
debated under the United Nations Framework Convention on Climate Change. The IDA frame-
work draws structural linkages between the reduced-scale representations of the global climate
system and the MIT IGSM. In addition, the framework provides a computational vehicle for ex-
ploring the role of learning in climate change decision-making. Finally, we conclude with an
assessment of the policy relevance of our findings.
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Chapter 1

Introduction

Current efforts to confront the prospect of anthropogenic global warming present policy an-
alysts, decision-makers, and intergovernmental negotiators with a host of challenges. The
technically-intensive nature of the policy debates that surround the climate change problem
are complex and multifaceted. Much of the uncertainty that underlies the greenhouse debate
arises, in part, from an incomplete understanding of critical features of atmospheric and cli-
mate science. Difficulties in predicting future levels of anthropogenic emissions of key green-
house gases (GHGs), and their effects on the global carbon cycle, make it difficult to reliably
assess the potential magnitude and impacts of global climate change. The climate change prob-
lem is, in addition, characterized by several unique features, all of which complicate efforts to
arrive at reasoned responses to the prospect of anthropogenic global warming. For example,
the time horizons that must be considered in the evaluation of climate change response strate-
gies are on the order of one or more centuries. And although the climate change problem is
global in scale, the spatial and temporal distribution of impacts is likely to be non-uniform.
Moreover, the physical inertias that drive the global climate system are such that the poten-
tial social-economic and environmental impacts associated with climatic change are, to varying
degrees, irreversible.

It is interesting to note that the history of scientific study of global warming is, in fact,
long and varied. Fourier [22] was, perhaps, the first to notice—more than a century ago—
that the Earth is a greenhouse, kept warm by an atmosphere that reduces the loss of infrared
radiation. The overriding importance of water vapor as a greenhouse gas was recognized even
then. In the late 1890s, Arrhenius [3] was the first to quantitatively relate the concentration of
carbon dioxide (CO>) in the atmosphere to global surface temperature. Scientific understanding
has, of course, increased since then, particularly stimulated in the latter half of this century

by the conclusion of Revelle and Suess [64] that anthropogenic emissions of CO; would, in

16



1. INTRODUCTION

the near-term, exceed the rate of uptake by natural sources. Also stimulating interest in the
scientific community was the demonstration by Keeling et al. [39] that atmospheric CO; is
steadily increasing. These scientists’ warnings had little effect on public opinion or policy until
the summer of 1988, at which time it was noted that five out of the previous six summers in
the United States were the hottest on record. In addition, the long-term global temperature
record was presented to the United States Congress, suggesting that a global-mean warming
had emerged above the natural background variation [27].

Most of the observed warming in this century occurred before 1940, when anthropogenic
emissions of greenhouse gases were much lower than they are today. Observations such as this
have led some scientists to question the reality, or at least the imminence, of global warming.!
Although the cooling caused by anthropogenic aerosols seems likely to have masked the effect
of rising CO, emissions, the explanations presented to Congress were viewed as cause for con-
cern by many people. In the ensuing policy debates, few proponents have enunciated clearly
how—in their view—society should proceed in the face of large scientific uncertainty concern-
ing the prospect of global warming. Should society ignore the prospect of global warming,
until there is more definitive and direct evidence for its occurrence, and until there is a bet-
ter understanding of the potential adverse consequences associated with its occurrence? Or,
rather, should society argue for immediate action to prevent anthropogenic changes that are
comparable to natural disasters, and that might have dramatic effects at a future time when
society has developed habits that may be difficult to curtail or reverse?

Present-day efforts to confront and, ultimately, manage the prospect of anthropogenic cli-
mate change have lead researchers to propose a broad range of analytical frameworks and
methodologies for characterizing and evaluating the various dimensions of the problem. In
recent years, it has become commonplace and fashionable for economists, policy analysts, and
climate researchers to focus their efforts on the development of a class of models commonly
referred to as integrated assessment models of global climate change. Integrated assessment
models (IAMs) are characterized by their broad-based, comprehensive approach to the analysis
of the climate change problem. IAMs seek to represent the most salient features of the climate
change problem, and are typically comprised of analytically-tractable linkages between (i) mod-
els of atmospheric, oceanic, and biological processes; (i) models of the global climate system;
and (iii) models of the socio-economic processes that influence, and are affected by, climatic
change.? In order to inform climate policy choice, IAMs seek to provide policy analysts and

decision-makers with answers to the following sorts of questions:

1See, e.g., Balling [4] and Seitz [68].
2For insightful discussions on current approaches to climate-change-related integrated assessment modeling,
see, e.g., Dowlatabadi [17], Parson [58], and Toth {76].
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» When, and by how much, should GHG emissions be reduced to achieve specific levels of

atmospheric GHG concentrations or climatic change?

« Should governments wait for more information about key uncertainties before allocating

scarce resources?

In this dissertation, we set forth an integrated assessment methodology that is seen to con-
sist of two complementary components: uncertain inference or prediction, on the one hand,
and decision-making under uncertainty, on the other. Long-term projections of future climate
are an important aspect of integrated assessments of global climate change. Such predictions
are, however, characterized by large degrees of uncertainty, which, in turn, makes it difficult
to draw reliable inferences as to the potential socio-economic impacts associated with climatic
change. Reasoned decision-making about the prospect of anthropogenic global warming re-
quires that we integrate this type of information with additional knowledge and information
concerning the risks, costs, and benefits that characterize the range of possible climate change
response options.

Integrated assessment modeling is, in many respects, an emerging discipline and practice.
In recent years, researchers have proposed a number of approaches for the development of
such models. In its latest report, Working Group III of the Intergovernmental Panel on Climate

Change (IPCC) highlights two challenges currently facing integrated assessment modelers [9]:

o Integrating and managing a large and diverse array of data and models from many re-

searchers and a range of disciplines;

» Improving the relevance of the models to policy needs, as well as the presentation of

model results to policymakers.

In this dissertation, we address these concerns in the context of a policy-oriented, integrated
decision analysis (IDA) framework for structuring and evaluating GHG abatement policies un-
der uncertainty. The IDA framework is intended to aid policymakers and negotiators in their
efforts to formulate and evaluate reasoned responses to the prospect of greenhouse warming.
The framework integrates knowledge and information concerning the magnitude, timing, and
impacts of climate change, as well as information concerning the likely effectiveness and cost
of possible response options.

Given the scale and complexity of the climate change problem, there are, of course, a plu-
rality of approaches that can be taken in the formulation and evaluation of GHG abatement

strategies.?> The modeling approach that we adopt here is markedly decision-oriented, in that

3See, e.g., Nordhaus [55] for an insightful overview of the range of analytical frameworks and economic models
that have been brought to bear on the problem of evaluating climate change response strategies.
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1. INTRODUCTION

the methodology imposes a formal decision-theoretic frame on the manner in which climate
change response options are structured and evaluated. Our motivation for pursuing a decision-
oriented approach to integrated assessment modeling stems, in part, the IPCC’s recent commen-
tary that “treatments of decision making under uncertainty. .. are at present poorly developed
in international environmental economics, and especially in the climate change literature” [9,
p. 7). Moreover, the IPCC makes the expectant claim that “decision analysis can be a powerful
tool for understanding the barriers to making optimal choice. Thinking about climate choices
as decision analysis problems may highlight those aspects most likely to affect the decision
process” [9, p. 62]. The methodology and analysis that we set forth here can, in the context of

these remarks, be seen to provide answers to the following closely-related set of questions:

¢ What does modern decision science have to contribute to the emerging theory and practice

of integrated assessment modeling of global climate change?

¢ Viewed from a decision-theoretic perspective, what policy actions—if any—should be

taken in response to the prospect of anthropogenic climate change?

In this light, the contributions made here to the climate change literature are both methodolog-
ical and policy-analytic in character.

The structure of our IDA framework attempts to incorporate the most salient aspects of the
greenhouse problem. In Figure 1-1, we provide a schematic representation of the framework’s
key components. The framework breaks down the evaluation of climate change response op-
tions into six basic components: (1) changes in anthropogenic carbon emissions; (2) changes
in atmospheric CO; concentrations; (3) changes in the radiative balance of the global climate
system; (4) changes in global-mean surface temperature; (5) physical outcomes associated with
changes in global-mean surface temperature; and (6) economic valuation of climate-change-
related impacts.

Our IDA framework serves as a bridge—conceptual and otherwise—between two different
ways of approaching the task of integrated assessment modeling. In particular, the modeling
approach set forth here draws explicit linkages between (i) the policy evaluation capabilities of
the MIT Global System Model (IGSM), which is rich in physical and biogeochemical detail;* and
(ii) the policy optimization capabilities of a complementary set of decision-theoretic models for
evaluating climate change response options under uncertainty.

The MIT IGSM is designed to seek the best tradeoff between scientific detail and computa-
tional performance. However, even given this attention to computational efficiency, bottlenecks

arise, because the IGSM contains subcomponent models that require substantial storage and

4Specific components of the MIT IGSM are described in more detail in subsequent chapters of this dissertation.
For a comprehensive overview and description of the IGSM, see Prinn et al. [62].
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Figure 1-1: Schematic representation of the integrated decision analysis framework for evalu-
ating global climate change response strategies.

execution time. In order to deal effectively with the limitations that computational constraints
such as these impose on our ability to systematically trace-out the effects of policy choice on
future climate, an important feature of our integrated modeling approach is the development
of reduced-scale representations of the global climate system. As we discuss in the next sev-
eral chapters, these computationally-efficient models represent those processes that have the
greatest influence on climatic change, and they permit nimble execution of long-term policy-
dependent projections of global climate change. These models are, in addition, numerically
calibrated in such a way that they essentially mimic the transient behavior of a larger, more
complex global climate model that is maintained within the MIT IGSM.

Because of their ability to mimic the transient behavior of their larger counterpart, these
small and nimble models are capable of informing our understanding of the characteristic
behavior of the IGSM. The reduced-scale models can, in this way, be used in an exploratory or
experimental fashion to specify or design IGSM simulations and experiments. The modeling
approach that we describe here is iterative in character: A study of climate policy using the
IGSM produces a set of system outputs; the reduced-scale models are, in turn, calibrated against

the integrated system output; the nimble models are then used to explore wider domains of

20



1. INTRODUCTION

~

Analysis of Climate Policies
and Uncertaintics

MIT Integrated Reduced-Scale
Framework Models
Adjust detinition of Conduct experiments
climate policies
Estimate model
parameters
Revise model
structure
Revisc model
structure
Design/conduct T
system experiments Adjust definition of
climate policics

‘( Results of MIT Integrated

'k Framework Experiments

Figure 1-2: Interplay between the reduced-scale models and the MIT IGSM (Source: Jacoby,
Kaufman, and Valverde (1995)).

policy choice than can be easily done with the computationally expensive IGSM (e.g., uncertainty
analysis, sensitivity analysis, etc.); finally, this exploration of policy choice can, in turn, guide
future decisions concerning which policies should be explored using the IGSM.

Figure 1-2 provides a schematic illustration of the interplay that exists between the IGSM and
our reduced-scale modeling approach. In explaining this figure, we begin with the arrow at the
lower left. The arrow represents the results of system experiments (e.g., GHG emission scenario
studies, sensitivity analysis, etc.) that are conducted on the IGSM. These results are then used
to (i) calibrate the reduced-scale models; (ii) inform the definition of policies to be studied;
(iii) guide subsequent revisions of model structure; and (iv) estimate key model parameters.

Proceeding around the top of Figure 1-2, the reduced-scale models can also be used to inform
subsequent analyses of climate policy, using the limited numbers of runs that are feasible within
the larger integrated framework. The reduced-scale results can also provide information as to
which uncertainties are most likely to be important to policy choice. This information can, in
turn, lead to a judicious selection of cases to run using the more computationally expensive
parts of the IGSM’s interactive set of models. And so the analysis proceeds around the diagram,

so long as the expected learning from additional rounds is perceived to be worth the cost of
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analysis.

In the chapters that follow, we lay out the individual components that, together, comprise
our IDA framework. The organization of our presentation follows the transition diagram shown
in Figure 1-1. We begin, in Chapter 2, with a discussion of the nature of the relationship
between global carbon emissions, changes in atmospheric CO, concentrations, and changes in
CO2-induced radiative forcing. As part of this discussion, we describe the nature of the global
carbon cycle, and, in addition, we present several simplified carbon cycle models.

In Chapter 3, we address the related problems of climate modeling and prediction. We
begin with a discussion of the major components of the global climate system, and then move
to a discussion of the types of models that are used in its prediction. We then derive two
reduced-scale global climate models that serve as key inputs to our IDA framework. The chapter
concludes with the presentation of a simultaneous equations model for global climate change
assessment.

In Chapter 4, we address the problem of numerically calibrating the reduced-scale global
climate models presented in Chapter 3 to transient simulations of the MIT 2D-LO global climate
model. Our calibration procedure utilizes econometric and statistical time series techniques to
estimate key reduced-scale model parameters. The calibrated reduced-scale models are subse-
quently used to compute long-term, policy-dependent projections of global climate change.

In Chapters 5 and 6, we present static and sequential analyses, respectively, of several GHG
abatement policies that are currently being debated under the United Nations Framework Con-
vention on Climate Change. Chapter 5 begins with a brief discussion of the decision-theoretic
concepts that underlie our modeling approach. We follow this discussion with the formal
specification of a decision basis for evaluating GHG abatement policies under uncertainty. We
then implement and numerically evaluate the decision basis within a graphically-based decision
framework. As part of our analysis, we use deterministic and probabilistic sensitivity analyses
to identify key uncertainties in the decision model. Finally, we consider the problems of valu-
ing information and control, and we discuss the relevance of these concepts to climate change
decision-making.

In Chapter 6, we consider the problem of climate change decision-making from a multi-
period or sequential perspective. The chapter begins with an introduction to the basic concepts
that underlie our sequential modeling approach. We then extend the static decision model
presented in Chapter 5 to two periods. The chapter concludes with an in-depth examination of
the role of learning in climate change decision-making.

Finally, in Chapter 7, we conclude with a summary of our research findings, and we propose

several possible directions for future research.
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Chapter 2

Radiative Forcing of Climate Change

A central feature of the integrated modeling approach that we set forth in this dissertationis the
ability to assess the likely influence of policy choice on future climate. As an incremental step
towards achieving this predictive capability, in this chapter we consider the first two linkages
of the global climate change transition diagram shown in Figure 2-1. In particular, we consider
the nature of the relation between global CO,-equivalent emissions, changes in atmospheric
CO> concentrations, and changes in radiative forcing. Our presentation is organized along the
following lines. We begin with a brief introduction to the concept of radiative forcing, and from
there we go on to consider the topic of CO;-induced radiative forcing. We then discuss several
key features of the global carbon cycle. As part of this discussion, we present three analytically-
tractable frameworks for modeling the gradual accumulation of CO; concentrations in the

Earth’s atmosphere.

2.1 Introduction

Radiative forcing is formally defined as a change in the average net radiation at the tropopause,
brought about by changes in either the incoming solar radiation, or in the outgoing infrared
radiation. Radiative forcing therefore disturbs the balance that exists between incoming and
outgoing radiation. As the climate system evolves over time, it responds to the perturbation
by slowly re-establishing the radiative balance. In general, positive radiative forcing tends (on
average) to give rise to surface warming, whereas negative forcing tends (on average) to give
rise to surface cooling.

The Earth’s climate is influenced largely by changes in radiative forcing that arise from
changes in the concentrations of radiatively-active gases in the troposphere and the strato-

sphere. As Figure 2-2 illustrates, the global climate system is driven primarily by incoming
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2. RADIATIVE FORCING OF CLIMATE CHANGE
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Change

Figure 2-1: Transition between global carbon emissions, atmospheric CO, concentrations, and
radiative forcing.

solar radiation. On an annually-averaged global scale, roughly one-third of the incoming solar
radiation is reflected back out into space. Some of the outgoing (infrared) radiation is partially
absorbed, and is then re-emitted by naturally-occurring GHGs. This so-called natural green-
house effect warms the surface temperature of the Earth by approximately 33°C more than it
would otherwise be if naturally-occurring GHGs were not present. The remaining two-thirds
of the incoming radiation is absorbed by the atmosphere, land, ice, and ocean surfaces. In
Figure 2-2, we see that the solar radiation that is absorbed by the Earth’s atmosphere and
surface (~ 240 Wm~2) is—in the long run—balanced by outgoing infrared radiation. Thus, in
equilibrium, the absorbed solar energy is balanced by the radiation that is emitted to space by
the planet surface and atmosphere. Any factor that disturbs this balance is called a radiative
forcing agent [32]. In the discussion that follows, we focus on the changes in radiative forcing

that are brought about by changes in atmospheric CO, concentrations.

2.2 Carbon Dioxide Radiative Forcing

Long-term predictions of anthropogenic emissions of key GHGs play an important role in cur-
rent efforts to obtain reliable predictions of future concentrations of radiatively and chemically
important trace species. Emissions of the long-lived gases—CO», methane (CHy), nitrous oxide
(N20), and chlorofluorocarbons (CFCs)—are central to assessing changes in radiative forcing.
Because of their influence on atmospheric chemistry, emissions of several short-lived gases,
such as nitrogen oxides (NOy), sulfur dioxide (SO2), and carbon monoxide (CO), are also impor-
tant. Carbon dioxide is the most important anthropogenic GHG. The importance of CO; as a
GHG stems, in part, from the fact that its emissions are directly influenced by human activities.
Moreover, ignoring the uncertain effects of the CFCs and changes in ozone, increases in CO»
have, to date, contributed to roughly 70% of the enhanced greenhouse effect, with CH4 and N,O
accounting for the remaining ~ 23% and ~ 7%, respectively. Carbon dioxide is therefore likely
to play a dominant role in future warming, whereas, over the course of the next century, the
role of other GHGs is expected to be relatively minor.

Long-term projections of non-CO, GHGs are, at present, highly uncertain. Given this con-
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Figure 2-2: Schematic representation of the global long-term radiative balance of the Earth’s
atmosphere.

sideration, together with those outlined above, it is common practice to take these other gases
and convert them to equivalent amounts of CO,. These so-called CO;-equivalents represent
the amounts of CO; that would give rise to the same radiative forcing. In this dissertation,
we adopt this CO»-equivalent emissions approach, in that it provides a reasonable approxima-
tion to more computationally-burdensome and expensive analyses that treat each GHG in an
individual fashion.

GHGs are typically classified in terms of their levels of concentration in the atmosphere, and
in terms of the strength of their absorption of infrared radiation. Since pre-industrial times, CO»
levels in the atmosphere have increased by more than 25%, from approximately 280 ppmv! to
approximately 356 ppmv [7]. At present levels of atmospheric CO> concentrations, the relation
between changes in GHG concentration levels and radiative forcing is strongly nonlinear [7].
This relation is typically expressed in terms of changes in net radiative flux at the tropopause

(i.e., the top of the troposphere). In formal terms, we can represent these changes as

1] ppmv = 1 part per million by volume.
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2. RADIATIVE FORCING OF CLIMATE CHANGE

AF(t) = f (C(to), C(t) ),

where AF(t) denotes the change in net flux measured in Watts per square meter (Wm~™2) cor-
responding to a volumetric concentration change from the initial concentration level at time
period ty to the concentration level at some later time period t.

Climate modelers utilize detailed radiative transfer models to explore the relationships that
exist between radiative forcing and the atmospheric concentration levels of key GHGs. These
radiative transfer models attempt to simulate the variation of the absorption and emission for
specific GHGs, as a function of wavelength. These models also account for any overlap that
exists between the absorption bands of the gases, as well as for the effects that clouds have on
radiative transfer [32].

The concentration-forcing relationships that are derived from radiative transfer models are
typically characterized by complicated functional forms. These complicated representations
can, however, be used to derive simpler analytical expressions. For carbon dioxide, the func-
tional form of f is well approximated by presuming a logarithmic dependence of AF(f) on C(t).

Specifically,

AF(t) = 6.3 ln( cw ) ,

Clto) (2.1)
where C(ty) and C(t) are the atmospheric concentrations of CO» in ppmv at times £y and ¢,
respectively. Equation (2.1) yields reasonable approximations of CO;-induced radiative forcing
for values of C(t) less than 1000 ppmv.2

It is worth noting that the uncertainty that underlies the specification of the CO» forcing-
concentration relationship arises from several sources. First, the radiative transfer models
that are used to derive the complicated functional forms that ultimately give rise to Eq. (2.1)
are themselves uncertain. For example, Shine et al. [71] cite a 1984 study that places the un-

certainties at around +10%. In a more recent study, Cess et al. [12] document the uncertainties

2We note that in a recent study, Nordhaus [57] uses a somewhat different CO; forcing equation than that given
by Eq. (2.1). The relationship between GHG accumulation and increased radiative forcing used by Nordhaus is given
by

log[C(t)/590]
log 2 ’

where C(t) denotes the atmospheric concentration of CO; in ppmv at time period t. Nordhaus states that this
forcing equation is “not controversial.” As we discuss below, this statement is not altogether accurate. Also,
Nordhaus states erroneously that this equation is used by the Intergovernmental Panel on Climate Change in their
1990 report [32]; in fact, the IPCC report uses Eq. (2.1). In comparing these two equations, it is important to
recognize that each implies a different level of forcing in response to a static doubling of atmospheric CO2, and
will lead—other things being equal—to a different climate sensitivity. Specifically, the Nordhaus equation implies
a climate sensitivity of 4.1 Wm~2, whereas Eq. (2.1) implies a climate sensitivity of 4.4 Wm ™2,

AF(t) =4.1
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in carbon dioxide radiative forcing in 15 GCMs. A series of CO; doubling experiments revealed
substantial differences among the 15 models. In accounting for these differences, Cess et al.

suggest several hypotheses:

Differences in the lapse rate among the models;

Differences in the atmospheric water vapor distributions among the models;

 Differences in the parameterization of radioactive overlap in the radiation codes of the

models;

o Differences in the GCM cloud fields.

Cess et al. found that the largest contributor to the observed model-to-model variations
was the carbon dioxide radiation parameterizations used in the GCMs. In addition, they found
that the models used in the study gave a global warming average of approximately 4°C, and
produced an average CO» forcing of 4.0 Wm™2. These results are equivalent to an average
climate sensitivity of 1°C of warming for each 1 Wm~2 of radiative forcing. In discussing the
implications of this finding, Cess et al. make the following observation: Imagine that the 15
GCMs used in the study possess the same climate sensitivity of 1°C warming per 1 Wm™2
and, in addition, possess the same observed forcing variation. Under this set of assumptions,
for presumed CO; concentration levels, the global warming projections given by the 15 GCMs
would range from 3.4°C to 4.7°C just because of their forcing differences. This is an important
observation, in that the range is substantial and, moreover, constitutes nearly half of the often-
quoted IPCC climate sensitivity range of 1.5° - 4.5°C. We note that the IPCC range is based only
on feedback uncertainties, and assumes no differences in the forcing. Also, the 3.4°C lower
bound specified by Cess et al. is well above the IPCC “best estimate” of 2.5°C. Findings such as
this provide an initial basis for explaining the degree of scientific uncertainty that surrounds

current climate sensitivity estimates.3

2.3 Modeling the Global Carbon Cycle

An important aspect of global climate change assessment concerns the manner in which the
carbon cycle is modeled. The storage and transport of carbon in the atmosphere is a process
that is only partially understood. During the course of the past decade, atmospheric scien-
tists have improved their understanding of how the removal of CO, from the atmosphere is

distributed between sinks in the ocean and on land. In this biological, chemical, and physical

3For a discussion concerning the range of scientific opinion about climate sensitivity, as well as other key climate-
change-related quantities, see Morgan and Keith [53].
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process, carbon is transferred or exchanged between the atmosphere, oceans, and terrestrial
biosphere. In the global climate system, the net uptake of anthropogenic CO; by the deep
oceans occurs very slowly. Consequently, anthropogenic CO> has a long-lasting effect on at-
mospheric concentrations and future climate. In the 1980s, the average rate of increase in
atmospheric CO, concentrations was on the order of 1.5 ppmv/year, which is equivalent to
3.2 GtC/year [7]. Viewed on a decadal time-scale, the proportion of anthropogenic emissions
remaining in the atmosphere has stayed relatively constant at approximately 50%.

In order to model the global carbon cycle, there are several key processes that need to be

considered [7]:
e The exchange of CO; between the atmosphere and the ocean;
e The exchange of CO; between surface waters and long-term storage in the deep ocean;
e The net release or uptake of CO; from changes in land-use practices;
e Photosynthetic uptake, storage, and transfer of CO» by soil and plants.

Current efforts to negotiate so-called quantified emission limitation and reduction objectives (QEL-
ROs) require an understanding of the nature of the relation between carbon emissions and
atmospheric CO» concentrations. Naturally, climate-change-related targets can be defined in a
number of ways. Say, for example, that an international agreement is reached whereby Annex I
countries? abate GHG emissions so as to achieve an emissions target, E*, by the year 2010.
Figure 2-3 illustrates three separate emission time-paths that achieve this target. Though each
path leads to the same target, the accumulation of CO, concentrations in the atmosphere will
differ for each carbon emission path.

Alternatively, QELRO-type agreements can be cast in terms of cumulative emission targets,
where a cap or upper bound is placed on the total sum of carbon emissions that are allowed
within a particular time frame. We illustrate this concept in Figure 2-4. Although the cumulative
emissions from 1990 to 2100 are (roughly) the same for paths A and B, the concentration
trajectories associated with each of these emission paths (illustrated in Figure 2-5) differ from
one another, as do their implied commitments to warming. In this way, the specification of a
cumulative emission target gives rise to various possible emission time-paths that achieve the
target. For this reason, the shape of the emission time-path is an important consideration, in
that early reductions may give rise to potentially beneficial outcomes.

Recent policy proposals for confronting the prospect of anthropogenic global warming have
focused on the goal of stabilizing atmospheric concentrations of carbon dioxide. In order to

evaluate CO; stabilization policies, we must pose two fundamental questions [7]):

4Annex I countries consist of the OECD nations (except Mexico), plus 12 so-called “economies in transition” in
the former Soviet Union and Eastern Europe.
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Figure 2-3: Three alternative carbon emission time-paths that achieve the same emission target,
E*, in the year 2010.

e For a given CO» emission time-path, in what way are atmospheric CO, concentrations

likely to evolve in the future?

e For a given atmospheric CO, concentration trajectory leading to stabilization at some

predefined level, what anthropogenic carbon emission time-path is implied?

In light of these questions, an important task in the evaluation of CO> stabilization policies is
the identification of emission time-paths that—over the course of a predefined time horizon—
achieve a desired level of stabilization. Early efforts to explore this problem were first carried
out under the auspices of the IPCC. Specifically, two types of calculations were performed. In
the first type of calculation, “forward” projections were used to determine the atmospheric
CO, concentrations that would result from a specified carbon emission time-path. Looking,
first, at a broad range of carbon emission scenarios—each encompassing a diverse range of
assumptions concerning factors such as economic growth and demographics—global carbon
cycle models showed marked increases in projected atmospheric CO; concentrations well above

pre-industrial levels by the year 2100.°

5In fact, several of the IPCC scenarios are characterized by a doubling of pre-industrial CO» levels before the
year 2070.
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Figure 2-4: The area under carbon emission paths A and B are roughly the same over the 110
year time horizon.

In the second type of calculation, the IPCC computed the carbon emission time-paths re-
quired to achieve particular CO, concentration stabalization levels via specified pathways. In a
series of analyses presented in its 1994 report [7], the IPCC used “inverse” carbon cycle calcu-
lations to determine the emission time-paths that would be required to achieve stabalization
of atmospheric CO, concentrations at levels ranging from 350 ppmv to 750 ppmv via speci-
fied pathways.6 The IPCC inverse calculations suggest that major reductions in global carbon
emissions will be required in order to stabalize atmospheric CO; levels, even at 750 ppmv.

In order to assess the influence that policy choice is likely to have on future climate, it
is necessary to model the global carbon cycle in a computationally-tractable manner. In the

discussion that follows, we consider three simplified models of the global carbon cycle.

2.3.1 Three Simple Carbon Cycle Models

The three carbon cycle models that we present below for modeling the accumulation of carbon

dioxide in the Earth’s atmosphere are computationally-tractable and, in addition, are easily

6 According to the IPCC, “the selection of the range of concentrations from 350 ppmv to 750 ppmv was arbitrary
and should not be construed as having any policy implications,” and “many different stabilization levels, time-scales
for achieving these levels, and routes to stabilization could have been chosen” [7, p. 15, emphasis added].
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Figure 2-5: Carbon emissions paths A and B lead to different concentration and temperature
change trajectories.

implementable within an integrated assessment framework.

Model I

In order to link anthropogenic emissions of carbon dioxide to atmospheric concentrations, we
begin by stating the problem in terms of sources and sinks. Specifically, we construe the process

of accumulation of carbon as a trend, defined as the difference of all sources and sinks:

Trend = Source — Sink.

In more formal terms, this relationship can be expressed as

AC _ by €
E_E(t) p (2.2)

where E denotes the carbon source, C denotes the atmospheric concentration of CO; in ppmv,
and T denotes the atmospheric lifetime of CO». For our purposes here, let E(t) denote the
amount of anthropogenic CO; that is emitted at time ¢, specified in units of GtC/year. Let
AC(t) = C(t + h) — C(t) denote the change in atmospheric CO, concentrations during the

finite time interval [ t, t + h). If we now define the time step At = h, then Eq. (2.2) becomes
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_AC(t) _dC(t) L
im =y = a4 ke (O == (2.3)

where the constant kco, converts CO2 concentrations in GtC to ppmv.

We are typically interested in estimating observed changes in CO, concentration levels rel-
ative to some arbitrarily-specified time period or baseline, which we denote by . At equilib-
rium, the time derivative dC(t)/dt evaluated at time t = t; is equal to zero. For t > to, let

C(t) = C(ty) + [C(t) — C(tg)]. Also, to simplify notation, let

OC(t) =C(t) - C(to)

denote the difference between atmospheric CO, concentrations at time periods t and to, re-

spectively. Equation (2.3) can now be written as

acty d ~ _doC(t)
s dt[C(t) C(to)] = at (2.4)
= kco2 E(t) — ’C_(—t)_;-_c—‘@

In terms of a finite time interval [t, t + h), for some time-step h > 0, when h is small,

Eq. (2.4) can be approximated by

[6C(t+h) - 6C(H)]~h [kcoz E(E) - E(_E)_—TC_@Q] ,

(2.5)

forany t < £ < t + h. If we choose h = 1, and let § = t and & = to, then Eq. (2.5) becomes

SC(t+1) = 8C(t) ~ ko, E(t) ~ @_—T_CEOJ

which gives rise to

OC(t)

6C(t+1) = 6C(t) + kco, E(t) - (2.6)
Equivalently, Eq. (2.6) can be expressed as
SC(t) =~ 6C(t — 1) + kco, E(t — 1) — ‘ﬁg—“—l-). (2.7)

Model II

A second model of the global carbon cycle is quite similar to the model we described above. This
model is used by Nordhaus [57] in his DICE model, and was originally put forth by Machta [43].
The model assumes that the accumulation and transportation of carbon emissions follow the

equation
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2. RADIATIVE FORCING OF CLIMATE CHANGE

C(t)=(1—Tl)C(t—1) + BE(t-1), (2.8)

where C(t) represents the deviation of atmospheric CO; concentrations from its preindustrial
equilibrium, E(t) represents anthropogenic CO, emissions, T, is the e-folding or turnover time
(in years) for the deep oceans, and B is the marginal atmospheric retention rate. Most estimates
place 7, between 100 and 500 years. Missing in this model is an explicit treatment of the uptake
and release of CO; by the terrestrial biosphere.

In Eg. (2.8), atmospheric concentrations of CO» are calculated as deviations from an equi-
librium preindustrial level, which, for our purposes here, is taken to be 590 GtC. Intuitively,
Eq. (2.8) states that deviations in the total carbon mass in the atmosphere are increased by
carbon emissions, but are reduced as carbon diffuses into the deep ocean [57].

It is possible to recast Eq. (2.8) so as to represent the accumulation and transport of atmo-

spheric CO; on a decadal time scale. Specifically, Eq. (2.8) can be written as

Ct)y=(1-y)Ct-1) + BE(t-1), (2.9)

where y is the decadal rate of transfer to the deep oceans, which are treated as an infinite sink.
Equation (2.9) therefore assumes that, in the short run, the fraction p of an emission remains

in the atmosphere, and that GHGs are transported to the deep oceans at a rate y [57].

Model III

The carbon cycle models described above are relatively simple representations of the storage
and transport of carbon in the global climate system. There are, however, several key facets
of the global carbon cycle that these models do not consider. Central in this regard is the
manner in which we represent the uptake of CO; by the ocean. In the models presented earlier,
there are, for example, no factors that dampen the rate at which carbon dioxide is removed
from the atmosphere when there are exponential increases in carbon emissions. Also missing
from these models are explicit treatments of the uptake and release of CO; by the terrestrial
biosphere.

In an attempt to address these shortcomings, in recent years attention has focused on the
development of realistic ocean CO, storage models that are, at the same time, computationally-
tractable. Maier-Reimer and Hasselmann [45], for example, put forth a relatively simple global
carbon cycle model that attempts to accurately represent the transport and storage of CO; in

the oceans. This model is used in several recent integrated assessments of the climate change
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problem.”

The Maier-Reimer and Hasselmann carbon cycle model provides a computationally tractable
means by which to estimate the atmospheric CO» concentration trajectories associated with
specific CO, emission time-paths. The essential component of the model involves summarizing
the response of a coupled three-dimensional global ocean circulation model and carbon cycle
model in terms of a simple linear impulse response function, which we denote by G(t).% For
an arbitrarily-specified carbon emission trajectory, E(t), specified in terms of GtC/year, the

change in atmospheric mass of CO», AM(t), is given by

t

E(t-u)G(u)du
to

AM(t) = 2.13 AC(t)

t
J E(u)G(t —u)du, (2.10)

L

where AC(t) denotes the change in atmospheric CO;, concentration in ppmv from time period ty
to period ¢, and the constant term 2.13 converts concentrations in ppmv to masses in GtC.

Alternatively, the atmospheric concentration of CO; at time t can be expressed as

t
C(t) = C(to) + kco, L E(u)G(t —u)du, (2.11)

where kco, = 1/2.13 = 0.4695 ppmv/GtC.
In their model formulation, Maier-Reimer and Hasselmann express the impulse response
function, G(t), as the sum of several exponential decay terms, each of which represents differ-

ent time scales that characterize the ocean mixing portion of the carbon cycle. In particular,

4
t
G(t) =ao+i=ziai exp (—?l) (2.12)

In this equation, the amplitude ay denotes the asymptotic airborne fraction for the equilib-
rium response of the ocean-atmosphere system to any finite-duration unit integral input func-
tion [45]). The a; terms are interpreted as the relative capacity of other reservoirs; these reser-
voirs are filled independently by atmospheric input, at rates that are characterized by the
relaxation time scales T; (in years).

Maier-Reimer and Hasselmann fit the linear impulse response function given by Eq. (2.12) via
aleast-squares procedure to the computed response of the ocean carbon cycle model for a step-

function change in the initial CO, concentration. Table 2.1 provides the fitted response function

7See, e.g., Dowlatabadi and Morgan [18, 19], Hammitt [26], and Lempert et al. [41].
8As Maier-Reimer and Hasselmann point out, the linearity assumption is reasonable for small deviations from a
stationary equilibrium state.
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ao ai T1 a T2 as T3 a4 T4
0.131 | 0.201 | 362.9 | 0.321 | 73.6 | 0.249 | 17.3 | 0.098 | 1.9

Table 2.1: Exponential fits to the computed impulse response function for a step-function
increase of initial atmospheric CO, concentration level by a factor of 1.25.

parameters for a sudden step-function initial change of a 25% increase in the initial (1800)
atmospheric CO, concentration level.?

Having specified the fitted response function parameters described above, substituting
Eg. (2.12) into Eq. (2.11) yields

4
(t—u)
Z a; exp [——T—] ) du. (2.13)

C(t) = C(to) + keo, f E(w) (a0 +

to i i

Inrecent years, researchers have developed numerical methods that avoid the computationally-
intensive task of constructing time series for C(t) by successive iteration of Eq. (2.13). By ex-
ploiting the functional form of G(t), it has been possible to develop computationally-efficient

algorithms that avoid the direct calculation of the convolution integral.!?

2.4 Summary

In this chapter, we discussed a number of issues relating to the topic of radiative forcing of
climate change. The set of integrated model linkages discussed here represent a crucial step
in our efforts to assess the influence that policy choice is likely to have on future climate. In
the following chapter, we consider the next linkage in our IDA framework, namely, the relation

between changes in radiative forcing and changes in global-mean surface temperature.

9Maier-Reimer and Hasselmann [4 5] also specify the fitted response function parameters for step-function initial
changes representing static doublings and quadruplings of initial atmospheric CO; concentrations.
108ee, e.g., Harvey [29] and Wigley [79].
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Chapter 3

Climate Modeling and Prediction

In the previous chapter, we considered the first two linkages in our integrated framework,
namely, the relation between global carbon emissions, changes in atmospheric CO, concentra-
tions, and changes in radiative forcing. In this chapter, we consider the third linkage in our
integrated framework, namely, the relation between changes in CO,-induced radiative forcing
and changes in the global-mean surface temperature. This linkage is illustrated in Figure 3-1.
We divide our presentation into three parts. In Section 3.1, we begin with a brief description
of the basic components of the global climate system, as well as the various types of models
that are used in its prediction. In Section 3.2, we describe the reduced-scale climate model-
ing approach that is utilized in this dissertation. As part of this discussion, we derive two
globally-averaged reduced-scale climate models that are used in our IDA framework to gener-
ate long-term policy-dependent projections of global climate change. In Section 3.3, we present
a simultaneous equations model for global climate change assessment. We close with a numer-

ical test of the stability of the coupled system.

3.1 Modeling the Global Climate System

The global climate system is comprised of several major components, all of which interact with
one another in complex and often unpredictable ways. The fundamental process that drives the
climate systemis heating by incoming short-wave radiation and cooling by long-wave radiation
into space. In general, the climate system of the Earth can be seen to consist of the following

five basic components:

* Atmosphere. Absorbs and emits infrared radiation; clouds promote cooling by reflecting

sunlight.
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Global Carbon Gloabl Carbon
Emissions Cycle

Figure 3-1: Transition between radiative forcing and global climate change.

¢ Oceans. Exert a large influence on current climate conditions; absorb over half of the
solar radiation reaching the Earth’s surface. The heat capacity of the ocean delays the

response of the climate system.

o Land. Atmospheric processes are strongly coupled to the land surface of the planet. The
soil interacts with the atmosphere via exchanges of aerosols, gases, and moisture. Such
exchanges are influenced by soil type and vegetation, and are strongly dependent on soil

wetness.

o Ice. Reflects sunlight; sea-ice reduces heat exchange between the ocean and atmosphere,

and affects climate on time-scales of seasons and longer.

o Biosphere. Affects climate by influencing atmospheric composition, albedo, and hy-
drology. Also controls the magnitude of the fluxes of several GHGs, including CO, and

methane.

We illustrate these basic components of the global climate system in Figure 3-2.

Modeling the components and processes that, together, makeup the global climate systemis
a complicated task. Numerical models attempt to mimic or simulate the physical processes that
give rise to climatic change. In order to simulate the dynamic behavior of the climate system,
modelers utilize simplified representations, most of which are based on physical laws governing
such factors as mass, momentum, and energy flows and exchanges in the atmosphere.

The task of arriving at realistic representations of the global climate system’s main com-
ponents and processes is complicated by a number of factors. First, many of the physical
laws that govern the processes that influence climate change are poorly understood. For ex-
ample, as Lindzen [42] points out, very little is known about the factors that determine the
equator-to-pole temperature distribution. Knowledge about this distribution bears directly on
our understanding of the processes that determine the mean surface temperature of the Earth.

The uncertainties that underlie modern atmospheric science’s best physical representations
of clouds and oceans limit the predictive capability of even the most sophisticated climate mod-
els. Most climate models are extremely sensitive to the manner in which clouds are represented.
Intuitively, clouds have both a positive and a negative effect on warming: Clouds exert a nega-

tive effect on temperature by reflecting sunlight off into space, and they have a positive effect
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Figure 3-2: Simplified representation of the global climate system.

by trapping heat from below. It is generally accepted that cloud feedback is an important de-
terminant of observed differences in estimates of global warming [53]. Conjectures about the
direction and magnitude of cloud feedback effects vary significantly; also, the factors that most
influence cloud behavior (e.g., type, amount, height distribution, etc. ) are poorly understood,
and realistic models are several years away.

The role of the oceans in absorbing CO-, as well as in storing and transporting heat, is also
poorly understood. The Earth’s oceans transport roughly 50% of the heat carried from the
equator to the pole. The oceans also slow temperature change, though—as we discuss in Chap-
ter 4—fundamental uncertainty exists as to the rate at which heat is transported downward in
the ocean.

The task of modeling the global climate system is complicated by other factors, as well. For
example, the specification of the climate system’s initial conditions is an inherently problematic
task. Equally important, the global climate system is characterized by a complex array of
interactions and feedbacks, knowledge of which is also highly uncertain. Complicating matters
further is the fact that these climatic interactions and feedbacks occur at different levels of

both spatial and temporal resolution.
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3.1.1 Types of Climate Models

There are, of course, many ways to model the global climate system. In general, all numerical

climate models must address the following set of issues [30}:

Radiation. The input and absorption of incoming solar radiation; emission of outgoing

infrared radiation.

Dynamics. The movement of energy around the globe, from low to high latitudes, as well

as vertical movements.

Surface Processes. The role of land/ocean/ice interactions and the resultant change(s) in

albedo, emissivity, and surface-atmosphere energy interchanges.

Resolution in Space and Time. The time-step of the model, as well as the resolution of

the horizontal and vertical scales.

The manner and degree to which these facets of the climate system are represented in

numerical climate models depends, in large measure, upon the climate model type. In general,

there are four basic types of climate models:

Energy Balance Models. Zero- and one-dimensional models that are used to predict either
globally-averaged temperature or the variation of the Earth’s surface temperature with
latitude. Models of this type are useful for evaluating scenarios of future climate change,

as well as for developing parameterizations that explore climate system sensitivities.

One-Dimensional Radiative-Convective Models. Models that make explicit calculations
of the fluxes of solar and terrestrial radiation. Models of this type usually include detailed
representations of radiative transfer and atmospheric chemistry. Such models usually
compute vertical globally-averaged temperature profiles by modeling the radiative process

with a “convective adjustment” that re-establishes a predetermined lapse rate.!

Two-Dimensional Statistical Dynamical Models. Models that represent surface pro-
cesses and dynamics in a zonally-averaged manner, and with a vertically resolved at-
mosphere. Such models typically represent either the two horizontal dimensions, or the

vertical and horizontal dimensions.

General Circulation Models. Utilize fundamental equations that describe flows of mass,
momentum, and heat, to model the three-dimensional nature of the atmosphere and
ocean; such models typically have a higher spatial resolution than other types of climate

models.

1The lapse rate is the rate at which temperature decreases as a function of height in the atmosphere.
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3.1.2 Climate Sensitivity and Intermodel Comparisons

An important scientific uncertainty in the greenhouse debate concerns the expected change
in global-mean surface temperature that results from increases in atmospheric concentrations
of key GHGs. The models described above all play a role in present-day efforts to assess the
influence of GHGs on climatic change. These gases include—in addition to CO—methane (CHy),
nitrous oxide (N»O), the CFCs, and, most importantly, water vapor.? Factors that determine the
atmospheric concentrations of GHGs from known emissions are moderately well understood,
though current forecasts of CFC concentrations are thought to be much more certain than
forecasts of CO», CHy, and N»O.

A useful benchmark for comparing models is the so-called climate sensitivity value, which
is defined as the equilibrium response of the global climate system to a static doubling of at-
mospheric CO, concentrations. Most scientists believe that the range 1-5°C is likely to contain
the true climate sensitivity value. If there were no change in the concentration of water va-
por, a static doubling of atmospheric CO;would give rise to a global mean surface temperature
increase of ATy =~ 1.2°C.# However, as water evaporates with increasing temperature, the con-
centration of water vapor in the Earth’s atmosphere is expected to increase; this effect could, in
turn, amplify warming. In addition, water can introduce interactive feedbacks into the climate
system, such as water vapor, clouds (especially cirrus clouds), and snow-ice albedo. Feedbacks
such as these introduce considerable uncertainty into long-term predictions of global-mean
surface temperature changes resulting from increases in atmospheric concentrations of key
GHGs.

Global-mean surface temperature, ATy, is roughly related to ATy by the formula

AT = ATq/ (1 - f),

where f denotes the sum of all climate feedbacks. The water vapor feedback is relatively simple,
in that a warmer atmosphere is likely to contain more water vapor. This process gives rise to
a positive feedback: An increase in one greenhouse gas, CO», induces an increase in another
greenhouse gas, namely, water vapor. Cloud feedback, however, is harder to evaluate, because
it depends on the difference between the warming caused by the reduced emission of infrared

radiation from the Earth into outer space and the cooling through reduced absorption of solar

2The concentration of water vapor varies rapidly in space and time, and this variation arises from climate feedback
mechanisms that are currently not well understood.

3See, e.g., National Academy of Sciences [54] and the Intergovernmental Panel on Climate Change [31]. Cf. Jacoby
and Prinn [36, p. 13-16] for an insightful discussion of the various interpretations that can be attached to the
Intergovernmental Panel’s climate sensitivity range.

4This estimate depends on the assumption that the cooling of the Earth is from the stratosphere, and that there
is a fixed air temperature distribution with height.
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radiation. The net effect is determined by the amount of clouds, their altitude, and their water
content. Estimates for AT from different models vary from 1.9°C to 5.2°C [15].

It is worth noting that two models which give similar values for AT values can differ in the
effects of various feedback mechanisms. For example, two GCM models—GFDL and GISS5 —
show an unequal temperature increase as clouds are included (from 1.7°C and 2.0°C to 2.0°C
and 3.2°C, respectively). The effects of ice albedo in these two models are different, but oppo-
site, so that the results converge (4.0°C versus 4.2°C, respectively). What this example shows
is that agreement between models may be spurious and potentially misleading. In addition,
many climate experts believe that f is high enough (~ 0.70) that even small increases in this

value could result in a runaway warming that is not predicted by current models [46, 74].

3.1.3 The MIT 2D-LO Global Climate Model

The prediction of anthropogenic climate change is an important facet of the MIT Joint Program
on the Science and Policy of Global Change. Within this research program, efforts are currently
underway to develop a large-scale integrated assessment framework for addressing various
aspects of the greenhouse debate, including carbon emissions projection, climate prediction,
economic analysis of control policies, and the assessment of social and environmental impacts.®

An important component of the MIT framework is a sophisticated land- and ocean-resolving
two-dimensional (2D-LO) climate model that simulates various climate processes and variables
that relate to environmental and societal impacts. The 2D-LO model simulates zonally-averaged
climate separately over land and ocean, as a function of both latitude and height. The radiation
code that is contained within the 2D-LO model includes all significant GHGs (H-O, CO,, CHy,
N0, CFCs, etc.), and twelve types of aerosols.

The choice of the 2D-LO model is motivated, in part, by the observation that latitudinal
variations play a stronger role than longitudinal variations in determining climate, and that
transport by large-scale 3-D eddies can be parameterized using dynamical theory. Projections
of climate change are based on changes in the zonal-mean climate over land and ocean, with
more detailed longitudinal variations being based on current climate, or on transient 3-D model
simulations of climate change.

The 2D-LO climate model solves the primitive system equations as an initial value problem.
There are nine vertical layers: two in the planetary boundary layer, five in the troposphere, and
two in the stratosphere. There are 24 grid points in latitude, corresponding to a resolution

of 7.826°. A schematic of the model is shown in Figure 3-3. In the verification and validation

5See, e.g., Hansen et al. [28].
6For a detailed description of the issues that underlie the conceptual design, model selection, and development
of the MIT Integrated Framework, see, e.g., Ref. [38] and Prinn et al. [62].
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Figure 3-3: Schematic representation of the MIT 2D-LO global climate model. Using predictions
of atmospheric composition obtained from an associated biogeochemistry model, the 2D-LO
model simulates the zonally-averaged climate separately over land and ocean, as a function of
latitude and height (Source: MIT Joint Program on the Science and Policy of Global Change).

of the 2D-LO model, model numerics and physics (e.g., long and shortwave radiation, cumu-
lus convection, large-scale condensation, clouds, surface fluxes, and the oceans) have closely
paralleled those of the NASA GISS three-dimensional GCM.”

As with any global climate model, the 2D-LO model requires that numerical values be as-
signed to model parameters before it can be used to generate long-term projections of future
climate. Of course, even conditional upon having specified a particular model’s functional
form, modelers are almost always uncertain a priori about what numerical values to assign to
its parameters. The continuing controversy about the numerical value to assign to the feed-
back multiplier in the computation of equilibrium change in global-mean surface temperature
is an example of a parameter uncertainty that gives rise to a large spread in expert judgements
about climate sensitivity. Within the MIT Integrated Framework, further examples of important

parameter uncertainties include the following:

¢ Cloud Feedback. The cloud feedback simulated by the MIT 2D-LO global climate model

depends on the parameterizations of cloud cover. Letting n(¢, z) denote cloud cover at

"Detailed technical discussions of the MIT 2D-LO climate model, and its relation to other sub-models in the MIT
Integrated Global System Model (IGSM), are found in Refs. [62] and [72].
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latitude ¢ and height z, the parameterization of cloud cover takes the functional form

Alr(p,z) — 7] )

n(¢,z) = max {0, a1

where

¥ = Relative humidity at(¢, z);
r. = Critical humidity threshold;
A = Empirical constant.

This parameterization is similar to that used in many GCMs. Given this prescription
for cloud cover as a function of humidity, the change in n(¢, z) over location and time
will determine cloud feedback behavior. Conditional on accepting this model structure,
knowledge of one of A or of . would allow us to compute a reasonable value of the other
from observed data. Unfortunately, which values of A or of ¥, most adequately represent

cloud cover are not well-understood.

+ Rapidity of Deep Ocean Mixing. Both heat and CO, mixing within the deep ocean are
represented as simple diffusion with the MIT 2D-LO climate model. The magnitude of
the diffusion coefficient, which is a function K(¢) of latitude, is uncertain, but lies within
a broad , finite range, 0 < K(¢) < 10 cm?/sec. Heat flux F(¢, z) at a given ¢ and z is

directly proportional to K in the diffusion equation

oT (¢, z)

where p is the water density, C is water heat capacity, and 0T (¢, z)/0z is the temperature
gradient in the vertical direction. If K(¢) is uncertain, it follows that heat flux F(¢, z) is

also uncertain.

o Initial Temperature of the Deep Ocean. Current scientific knowledge does not allow us
to know with certainty if the deep ocean temperature is, in actuality, an equilibrium tem-
perature. If To(¢p) is the deep ocean temperature for current climate and T.(¢) is the
corresponding deep ocean equilibrium temperature, then the future evolution of temper-

ature depends on Ty () — T.(¢p) = 6T(¢). But, 6T(¢) is not known with certainty.

Naturally, computational capacity places boundaries on our ability to perform systematic
and exhaustive analyses of policy. Even though the 2D-LO model is more than one hundred

times faster than the GISS GCM at 4° x 5° resolution, the computational costs involved in
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running this model are sufficiently high to make its integration into formal decision-analytic
frameworks, such as those which we present in Chapters 5 and 6, a practical impossibility.

In order to deal effectively with these computational restrictions, an important aspect of
our integrated modeling approach is the development of reduced-scale representations of the
global climate system. In the following section, we present two reduced-scale global climate
models. Later, in Chapter 4, these models are numerically calibrated against the larger, more

complex 2D-LO climate model.

3.2 Reduced-Scale Modeling of Global Climate Change

Global energy balance models (EBMs) constitute the simplest means by which to model the
climate system of the Earth. Historically, such models have played an important role in our
understanding of the various components and processes that influence climatic change. The
earliest EBMs date back to the late 1960s, beginning with the work of Budyko [10] and Sellers [69]
demonstrating that equator-to-pole energy transport and radiation streams are fundamental
processes of the global climate system.

The fundamental principle underlying all EBMs is that the incoming and the outgoing radi-
ation for the globe is—in the long run—balanced. In more formal terms, the rate of change of
the surface temperature, T, with time, t, is represented as the difference between net incoming
and net outgoing radiant energies. This relationship between time, temperature, and radiant
energies can be stated informally as follows:

AT
KZ—t-—Rl—R 1, (3.1)

where K is the “thermal inertia” or heat capacity® of the system, and R | and R 1 are the

incoming and outgoing radiation fluxes, respectively.

3.2.1 Globally-Averaged One-Box Model

Equation (3.1) serves as the conceptual basis for a variety of EBMs. Schneider and Mass [67],
for example, propose a one-box time-dependent globally averaged model of the Earth’s climate
system. The model they put forth is zero-dimensional, in that the Earth is treated as a single
point in space, characterized by a global-mean surface temperature whose value at time t is
denoted T(t). The model is formally specified in terms of a global energy balance equation,

with heat storage expressed in terms of solar energy absorbed minus infrared energy emitted to

8The heat capacity of a body is defined as the ratio of the amount of heat energy that a body is supplied with to
its corresponding temperature rise.
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space. If we let AT(t) = T(t + h) — T(t) denote the change in global-mean surface temperature
during the finite time interval [ t, t + h), and define the time-step At = h, then the global energy
balance for this model is given by

AT(t) . dT(t)

K lim = K=

= Q[1-x(T(t))] - R 1 (T(1)), (3.2)

where K is the heat capacity coefficient, Q is the annually averaged solar radiation received
by the earth (a constant with respect to both time and temperature), «(T(t)) is the planetary
albedo,® and Ry, 1 (T(t)) is the outgoing infrared radiation to space.

In order to render Eq. (3.2) more amenable to analysis, we linearize o(T(¢)) and Ry 1 (T'(1))
as follows [67, 77]:

x(T(t)) a+bT(t), (3.3)

Ry 1(T(1))

x+yT(t). (3.4)

Typically, the real-valued coefficients a, b, x, and y in Egs. (3.3) and (3.4) are treated as
empirically-determined constants that account for the greenhouse effect of clouds, water va-
por, and CO> [30].

Equation (3.4) provides a conceptually simple means by which to combine the effects of
surface emissivity and atmospheric transmisivity. For our purposes here, it is useful to mod-
ify this equation slightly. Specifically, in order to explore the response of the one-box model
to external CO, forcing, we generalize Eq. (3.4) by lumping together the effects of increasing
atmospheric CO, concentrations due to anthropogenic CO;-equivalent emissions into the coef-
ficient x. If we treat anthropogenic CO» as an exogenously-specified variable thatis dependent

on time, but not on T(t), then Eq. (3.4) can be rewritten as

Riy 1 (£, T(t)) =x(t) +yT(1), (3.5)

where the function Ry t is now defined on a domain that consists of both time, t, and global
mean surface temperature, T (t). Intuitively, Eq. (3.5) states that the outgoing infrared radiation
to space can, in principle, change over time, even if global-mean temperature remains constant.

Now, substituting Egs. (3.3) and (3.5) into Eq. (3.2) vields

K dgt” = Ql-(a+bT(t)] - [x(t) +yT(t)]

9 Planetary albedo is defined as the ratio of reflected to incident radiation, and provides a measure of the reflec-
tivity of the earth’s surface and its atmosphere.
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= (1-a)Q-(bQ +)T() — x(t). (3.6)

In order to estimate the impact of rising CO, concentrations on climate, relative to some
pre-industrial baseline which we denote by tg, at time t = t;, we assume that the system is in
a state of climatic equilibrium; that is, the time derivative 4T (t)/dt evaluated at time t = tp
is equal to zero. At equilibrium, we are able to establish the following initial condition for

Eq. (3.6):

(bQ+¥)T(ty) = (1 -a)Q — x(to). (3.7)

For t = tg,let T(t) = T(to) + [T(t) — T(tp)]. Also, to simplify notation, let

T(t) = T(t) — T(to)

denote the difference between global-mean surface temperature T at times t and tg, respec-

tively. Equation (3.6) can now be written as

dart(t)
dt
1-a)Q—-(bQ+y)T(ty) — (bQ +y)T(t) — x(t). (3.8)

dar(t)
dat

KL (Tt + 70] = K

I

Now, substituting Eq. (3.7) into Eq. (3.8) yields

Kd;(tt) = 1-a)Q-[1-a)Q-x(ty)] = BQ+T() - x(t)
x(tg) — x(t) — (bQ + y)T(l). (3.9)

By defining F(t) = x(to) — x(t) and A = v + b Q, Eq. (3.9) can be expressed as

dar(t)

Kdt

=F(t) - AT(t), (3.10)

where F(t) denotes the change (from equilibrium) of that part of the time-dependent outgo-
ing longwave radiation that is independent of temperature. Intuitively, we recognize that as
concentrations of CO» in the atmosphere increase, the values that x(t) takes on decrease and
F(t) > 0, which agrees with our intuition about the effects of increased CO; in the atmosphere.

In terms of a finite time interval [f, t + h), for some time-step h > 0, when h is small,

Eg. (3.10) can be approximated by
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Kltt+h)-1t)] = h[F(E) -AT(5)], (3.11)

forany t < & <t + h. Now, if we choose h = 1 and let & = t, then Eq. (3.11) becomes

K[t(t+1)—-7(t)] = F(t) - AT(1),

which gives rise to

T(t+1) ~ T(t) + I%[F(t) ~ATO]. (3.12)

Equivalently, Eq. (3.12) can be expressed as
T(t) ~T(t—1) + %[F(t—l)—?\'r(t—l)].lo (3.13)

3.2.2 Globally-Averaged Two-Box Model

The climate model given by Eq. (3.13) is concerned only with the atmosphere of the Earth. Most
atmospheric processes, however, are strongly coupled to the Earth’s oceans. In what follows,
we extend the model presented above to include ocean-atmosphere interactions.

The globally-averaged two-box model that we consider here was originally developed by
Schneider and Thompson [67], and versions of it are used by Nordhaus [57] and others in
several recent integrated assessments of global climate change.

In this globally-averaged model, the ocean-atmosphere systemis represented by two “boxes”
or layers: one layer for land and another for the world ocean. The upper box consists of a land
fraction, fi, and is characterized by a globally- and annually-averaged temperature, T(t); the
lower box consists of an ocean fraction, 1 — f;, and is characterized by a globally- and annually-
averaged temperature, T*(t). Each of these layers is assumed to be internally well-mixed. As
in the case of the one-box model, the two-box model is driven by external solar forcing, Q —

the absorbed portion of which is scaled by the planetary albedo «(T(t)) — and emits infrared

101t bears mentioning that if we choose € = t + h — ¢, for small € satisfying h > € > 0, then, letting h = 1, Eq. (3.11)
becomes

K[t(t) -1t -1)] = [F(t—€) -AT(t—-€)],
in which case

() =~ Tt -1) + %[F(t—e)—AT(t—e)].

As € — 0, we obtain

T) = Tt -1+ % [F(t)-AT()].

Thus, from a purely analytical vantage point, there exists some degree of flexibility as to whether F and T are treated
as contemporaneous or lagged variables.
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radiation, R 1 (£, T(t)), to space. The heat transfer rate between the upper and the lower box
is proportional to the volume rate, V (t), of water exchange between the two boxes.
The global energy balance for the two-box model is formally specified by the following

system of equations:

KT~ Q- aT )] - Rt (6 T(0)
_ Yy [T - T ()], (3.14)
Oy
aTr*(t) _ Cwe _ %
K - ogva)[m) T*(1)], (3.15)

where K; and K> are the thermal inertias for the upper and lower box, respectively, c,, is the
volumetric heat capacity of water, and oy is the global surface area.l!

The thermal inertias K; and K> are given by

K = 2y, (3.16)
Oyg

K, = 2y (3.17)
Og

where V and V* are the water-equivalent volumes of the upper and the lower box, respectively.
Note that in this model, the water-equivalent volumes are fixed with respect to both time and
temperature.

As in the case of the one-box model, we are ultimately interested in examining the behavior
of the two-box model to external, anthropogenic CO, forcing. Looking, first, at Eq. (3.14), we
use the linearized forms for «(T(t)) and R;, 1 (t, T(t)) given previously by Egs. (3.3) and (3.5),

respectively, to rewrite Eq. (3.14) as

AT (t)
K=t

= Q[l1-(a+bT()] - [x+yT()]

~ YY) TR - T ()]
Oy
(1-a)Q-mQ+y)T(t) — x(t)

11we note that the two-box model described by Egs. (3.14) and (3.15) can be viewed intuitively as a generalization
of the one-box model developed in Section 3.2.1. Specifically, the model can be specified in terms of the weighted
sum
dT(t) K dT*(t
dt 24t
where K> de*tQ is defined by Eqg. (3.15).

K ) =Q[1-a(T(t))] - Rir 1 (£, T(t)),
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-9y TR - TH@)]. (3.18)
Og

As before, the variable t; denotes some pre-industrial baseline relative to which we wish to
measure climatic change. At time ty, we assume that the system is in a state of climatic equi-
librium. At equilibrium, two conditions obtain: first, the time derivative dT(t)/dt evaluated at
time t = tg is equal to zero; second, the surface temperature at time t = to, T(fp), is equal to
the ocean temperature at time t = to, T*(typ). Thus, at time t = t(, in equilibrium, Eq. (3.18)

yields

(bQ+y)T(ty) = (1 -—a)Q - x(to). (3.19)

Now, let T(t) = T(t)—T(ty) denote the difference between global-mean surface temperature
at times t and tg, respectively; similarly, let T*(t) = T*(t) — T*(to) denote the difference
between ocean temperature at times t and to, respectively. Using these definitions, the two-

box model specified by Egs. (3.18) and (3.15) becomes

dT (t) d dt(t)
K ar = KIZi_t[T(tO)+T(t)] = Kj T
= (1-a)Q-(bQ+YIT(ty) +T(t)] - x(t)
~ S [T(to) = T (to) + () = T ()]
Oy
= 1-a)Q-(bQ+3)T(t) — (bQ+MT(H) — x(t)
Sy [T(to) - T* (to) + T(H) — T*(D)],
Og
ar<t) o d ., e dTE()
27 ; = Kp PT: [T*ty) +T* ()] = K> ai

= DUV [T(to) - T*(to) + T(t) — T*(D)].
Og

Since, in equilibrium, T (ty) equals T*(tp), these two equations can be rewritten as

aTt(t)

K ai = (1-a)Q—-(bQ+y)T(ty) — (bQ +y)T(t) — x(t)
YY) [Ty - )], (3.20)
Oy
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at*(t)

K=

= Dy [t -TH0)]. (3.21)
Og

At equilibrium, Eq. (3.19) obtains, in which case Eq. (3.20) becomes

Ky d;(tt) = 1-a)Q-11-a)Q-x(ty)l - (bQ+)T(t) — x(t)
— S Y ) [(0) - (D))
Og
= x(tp) — x(t) = (bQ + y)T(t) - (C)__w V(t) [T(t) - *(1)]. (3.22)
g

As before, letting F(t) = x(tg) — x(t) and A = v + b Q, Eq. (3.22) can be rewritten as

AT _ ey - Atit) — LV [0 - T (D). (3.23)

K
't Oy

In this equation, F(t) is again interpreted as the change—from a specified baseline—of that por-
tion of the outgoing longwave radiation, R;, 1, thatis dependent upon time, but is independent
of temperature.

In this representation, we are interested in exploring the effects that upper and lower box
mixing have on the climate variable of interest, namely, the upper box temperature, T(t). Fol-
lowing Broecker [8] and Schneider and Thompson [67], we use the following parameterization
for upper and lower box mixing:

V(t) = V—*, (3.24)

Vd
where V* is defined as before, and v, is the ventilation time of the world deep ocean. Substi-
tuting Egs. (3.24) and (3.17) into Egs. (3.23) and (3.21), the system of equations for the two-box

model becomes

K3 dT(t) = F(t) - AT(t) - K [T@)-T*(t)], (3.25)
dt \Z)
dart*(t) Ko e
K> i = —Vd [T@)-T*()]. (3.26)

As in the case of the one-box model, for computational purposes, it is useful to express the
two-box model in finite-difference form. To this end, consider a finite time interval [ ¢, t + h),

for some nonzero time-step h. For small values of h, Egs. (3.25) and (3.26) are approximated by
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Kil[t(t+h)-7(t)]

1

h(FE) -aT® - 2 (1@ - @),

h(52 (@) - @),

K [T*(t +h) — T*(t)] >y

I

t, and make our time-step unity, then this system of

foranyt < E <t+h. If welet&

equations becomes

~ 1 _ _K _ ok
T(t+1) = 1) + X (F(t) AT(L) Vs [T(t) -1 (t)]),
* - 1 (K -
T +1) = T() + e (Vd [tt) -7 (t)]).

Equivalently, if we let t = t — 1, then the two-box model can be expressed as

1
T(t) = =D+ (F(t— 1) — AT(t—1)
_K [T(t—l)—T*(t-l)]), (3.27)
Vd
THE) o~ T —1)+ Vi [T(t—1) - T*(t - 1)]. (3.28)
d

Equations (3.27) and (3.28) can be represented succinctly in matrix form as

( T(t) ) (ru rlz) ( T(t-1) ) 1 (F(t—l))
= + = , (3.29)
T*(t) D Do ™t ~1) K 0

where

K1
K>
r - ’
12 Kiva
1
Iy = —,
Vd
1
I = ——.
Vd

In this structural representation, we note that thermal forcing due to changes in atmospheric

CO> concentrations is decoupled from the climatic variables, and is treated as an exogenous
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input to the system.

In order to simplify notation, we define a (2 x 1) column vector y; and a (2 x 2) parameter

(T
Y = .

I rlZ)
r= ,
Iy I

where the matrix elements I;j are defined as above. In addition, we define a (2 x 1) vector u; as

( KL]F(t))
U = .
0

Using the above definitions, system (3.29) can be expressed succinctly as

matrix T as

and

Ve =Tyt-1 +upg. (3.30)

Intuitively, we recognize that Eq. (3.30) holds true for all values of t, in which case

Yi-1 =Tyr2 +ui-o. (3.31)

If we let (I')* denote the k" power of the parameter matrix I' and, in addition, define (I')°

to be the identity matrix, then substituting Eq. (3.31) into Eq. (3.30) yields

vyt = TTyr2+us2)+u

= (Dyr2 +TW +up .
By induction, it is easily verified that
t .
ye=M'yo+ Y @) upj. (3.32)

j=1
Equation (3.32) provides a computationally simple means by which to compute numerical values

of the vector time series y;.

3.3 A Simultaneous Equations Model

In the previous section, we derived two reduced-scale global climate models. These simplified

models provide a computationally-tractable means by which to simulate the response of the
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global climate system to CO»-induced thermal forcing. Earlier, in Chapter 2, we described
several simplified representations of the global carbon cycle. In this section, we analyze these
simplified representations as a coupled or integrated system. Our motivation for explicitly
linking these models together is three-fold in nature. First, we are interested in exploring the
dynamic properties of the coupled system. Second, insofar as we are interested in using these
simplified models for evaluating climate policy choice, the manner and degree to which the
system’s variables interact with one another has important implications for how the behavior
of the overall system is estimated and interpreted. Lastly, in exploring the formal properties
of the coupled system, we hope to better understand the characteristic structure and dynamic
behavior of the individual models that comprise the system.

Our presentation is organized along the following lines. In Section 3.3.1, we begin with a
description of the coupled system of equations. In Sections 3.3.2 and 3.3.3, we explore the
dynamic properties and numerical stability of the coupled system. Lastly, in Section 3.3.4, we

present a simple numerical test of the stability of the coupled system.

3.3.1 Coupled System of Equations

In Table 3.1, we summarize the individual equations that we use in the specification of our
simultaneous equations model. The equations listed in this table are for the global carbon
cycle, COz-induced radiative forcing, and the globally averaged two-box climate model.}2 In
the context of our discussion here, we view these equations as the structural equations of
global climate change, in that each equation describes a particular facet of the global climate
system, and each equation is, in some measure, derived from first principles or physical theory.

In the absence of uncertainty, the four climate-related equations in Table 3.1 imply the

following system of equations:

Ci h 0 0O Ci1 E; 0

1
Tt =] 0 I I3 Te-1 |+B] O |+ X p(Ce-1) |, (3.33)
T 0 T3 I3/ \T1, 0 0

where

2In the previous sections, time-indexed variables were explicitly represented in a functional manner so as to
emphasize the time-dependent nature of the climate system variables. To simplify notation, in this chapter all
time-indexed variables are represented in a subscripted manner.
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1
Ct = (1-—=—)Ct-1+BEi
Te
F, = 63ln <&>
to
1 K>
Tt = T+ K [Ft—l = ATy — Vo (Te-1 - Tt*_l)]
1
T o= T+ Vo T =T

Table 3.1: Finite-difference equations for the global carbon cycle, CO;-induced radiative forcing,
and the globally-averaged two-box climate model.

1
Iy =(1- =),
11 = ( Te)
1 Kz)
p=-— A+—]),
22 Kl ( Vd
I3 = Kivy
1
I3 = —,
Vda
1
I3z = v
and
_ _ Cra
p(Ct_l) =F_1 =63 In ?;—— .
to

In this system of equations, we note that the variables C;, T;, and T/ are jointly dependent or
endogenous, whereas the variable E; is exogenously specified. This particular representation
of the climate system provides an at-a-glance view of the elements and structure of the overall
system.

To simplify notation, we define a (3 x 1) column vector y; and a (3 x 3) parameter matrix I’

as
Gt
Ye=| Tt
T
and
It O 0
I'= 0 Ipx I3 |, (3.34)
0 Izx Iy
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where the matrix elements I;; in (3.34) are defined as before. In order to exploit the block form

of (3.34), we partition I in the following manner:

r11 OT
I'= ,
0 Iz
where I7; is a scalar (as defined previously), 0is a (2 x 1) zero vector, 0T is a (1 x 2) transposed

zero vector, and I'»; is a (2 x 2) submatrix whose elements come from the lower right-hand

corner of matrix (3.34), i.e.,

o Iz
Iy = ( ) . (3.35)
I3 I3z

Finally, combining the last two terms of system (3.33), we define a (3 x 1) vector u; as

BE:
u; = KLIP(Ct)
0

Using these four definitions, system (3.33) can now be expressed succinctly as
Ye =Ty +u¢-g. (3.36)

3.3.2 Dynamic Properties of the System

We now examine some of the dynamic properties of system (3.36). To begin, we recognize that
Eq. (3.36) holds true for all values of ¢, in which case

Yi-1 =Tyt 2 +uo. (3.37)

If we now define the k™" power of the parameter matrix I as

r-r---r=(Mk,
|y ——
k terms

and, also, define (I')° = I, where I denotes the identity matrix, then substituting Eq. (3.37) into
Eqg. (3.36) yields

Yt IFTyi—> +u_2) +uey

I

(T)%ye-2 + T2 + 1.

Proceeding by induction, it is easily verified that
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t
vi=D'yo+ > ()Y u; (3.38)
j=1

Equation (3.38) provides a computationally simple means by which to compute numerical
values of the vector time series y;. In this equation, y; is seen as the sum of two components.
The first component is (I’ )t yo, which is the solution to the systemy; = (I') y;_;. In this way,
the first component of Eq. (3.38) represents what y; would be if it were influenced only by its
own lagged values. As for the second component of Eq. (3.38), rearranging terms, we note that

the difference .

vi-D'yo=> @) u;
Jj=1

can be interpreted as the combined effects of an exogenously-specified CO, emissions path
Eo,Ey,...,E; and the radiative forcing trajectory p(Co), p(C1),...,p(Ct) associated with this
carbon emissions path.!3

As a preliminary step in our exploration of the dynamic properties of Eq. (3.38), we begin
by exploiting the fundamental structure of the parameter matrix I'. In particular, given its
distinctive “block” form, it is possible to specify matrix decompositions or factorizations of T
which—after some mathematical manipulation—allow useful inferences to be drawn about the
dynamic behavior and stability of the overall system.

The approach that we take in decomposing the parameter matrix I has two parts. We begin
by decomposing submatrix I'»;. This decompositionis then used in the ensuing decomposition
of the parameter matrix, I'. For submatrix I'»;, it is easily shown that if the eigenvalues of this

matrix are distinct, then there exists a nonsingular'* (2 x 2) matrix T such that

I = TAT !, (3.39)

where A is a (2 x 2) diagonal matrix with the eigenvalues of I'>, along the principal diagonal

and zeros elsewhere. Thus, A is defined as

Ar O
A= ,
0 Az
where A; and A denote the distinct eigenvalues of submatrix I'y>. Using decomposition (3.39),

we can express the parameter matrix I as
; of
Ir= .
0 TAT!

13In Appendix A, we present a simple means by which to compute an upper bound for CO»-induced radiative
forcing.
14 Any square matrix with full rank is called a nonsingular matrix.

56



3. CLIMATE MODELING AND PREDICTION

The diagonal structure of I' necessarily implies that powers of this matrix are also diagonal

matrices. In general, the k™ power of T, ('), is given by

rk or
nk=| " : 3.40
© ( 0 (TAT-I)"> (40

Given the nature of decomposition (3.39), powers of (TAT!) are given by

(TAT—I)k = \(TAT‘I) (TAT ) - - (TAT‘I)J

k terms

= TAI---IAT !

TAKT !, (3.41)

Ak Ao
0 Aak)’

Thus, substituting Eq. (3.41) into Eq. (3.40) vields

T 5 oT
0 TA*T!)’

Turning our attention, now, to the parameter matrix I', we recognize that it, too, can be

where

decomposed in a similar fashion. Using the same diagonalization procedure outlined above,

the matrix I' can be decomposed as

I =SDS !, (3.42)

where the matrix S is a nonsingular (3 x 3) matrix and D is a (3 x 3) diagonal matrix consisting

of the distinct eigenvalues of I'. For our purposes here, let

1 of 1 of
S = s 1=
0T 0 T!
I; oOf
D= )
0 A

In this way, the decomposition of I'>» has, in a simple and direct way, motivated the ensuing

and

decomposition of the parameter matrix I'. As a check on the assumptions that underlie this

decomposition, we note that
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1 oF 1 of
ss1 = =L
0T 0 T!

Given decomposition (3.42), it is easily verified that (I')! = SD'S™!, in which case sys-

tem (3.38) becomes

t
Mtyo+ > (I
j=1

Yt

t
SD'S7lyp + > SD/7!S7u,_;
j=1

1 o'\ (rf, o\ (1 of
o t)\lo a)lo )"
t (1 o7\ /T' of \ /1 of
+ ‘ w_j. (3.43)
E(o T)( o At)lo 1)

Equation (3.43) provides a computationally efficient means by which to compute values of y;

It

for specified values of t. We note, however, that the formulation arrived at above is predicated
on the assumption that the parameter matrix I consists of linearly independent eigenvectors.
It must be stressed that not all matrices are diagonalizable in the manner described above.

In addressing this problem, we approach the decomposition of T from a somewhat different
vantage point. To begin, we again focus our attention on submatrix I'>> of matrix I'. Using the
so-called singular value decomposition'> procedure, it can be shown that there exists orthogonal

matrices'® Ry and Ry of order (2 x 2) such that

T2 = RiAR], (3.44)

where A is a (2 x 2) diagonal matrix. The columns of R; are eigenvectors of ['2,T',; similarly,
the columns of Ry are eigenvectors of I'},T'2». The so-called singular values of A are defined as
the square roots of the nonzero eigenvalues of both I'>oI'}, and I'},T2;.

Using decomposition (3.44), the parameter matrix I' can be expressed as

1‘11 OT
r= :
0 R;AR!

As before, since I is a diagonal matrix, the k™ power of I, (I')¥ is given by

‘0 ry or
)k = v . (3.45)
0 (RiAR])

158ee, e.g., Strang [75, Appendix A).
16 An orthogonal matrix is defined as a square matrix whose columns are orthonormal.
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In contrast with the previous case, Eq. (3.45) does not lend itself to a simple factorization
in the way that Eq. (3.40) did. In order to push the decomposition further, we must impose an

additional constraint on the matrices R; and R;, namely, we require that

RIR; =1L

Proceeding from this assumption, it is easily verified that (RIARE)" = RyA*R], in which case
Eq. (3.45) becomes

) X i
0 RiAFRY )

As before, the parameter matrix I' can be written in spectral form as

I = Q;DQ},

where Q; and Q> are orthogonal matrices, and D is a diagonal matrix. For our purposes here,

1 of 1 of
Q = Q =
0 Rl 0 R2
I; of
D= .
0 A

Since (IN* = Q;D!QJ, Eq. (3.38) becomes

we let

and

t
M'yo+ > (0 up
j=1

t
QD'QJyo + > QiD/7'Q us
j=1

L o'\ /rf, o'\ /1 of
' T | YO
0 Ry/\ 0 A')\0 R!

i 1 of\ /! of 1 of (3.46)
+ ) Wy . .46
S\or )\ o at)lo Rl

As in the previous case, for any admissible set of parameter values, Eq. (3.46) provides a

Yt

computationally-efficient means by which to compute specific values for the vector y;.
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3.3.3 Stability of the System

We now briefly explore the numerical stability of Egs. (3.43) and (3.46). Given the unique struc-
ture of these equations, it is useful to invoke a change of basis. Without loss of generality, we

confine our attention to Eq. (3.46). Premultiplying both sides of Eq. (3.46) by QlT yields

t
QfQiD'QJyo + > QD' Q  uy-;

j=1

QlT Yt

t
D!QJyo+ > D/ 'Qf us;
j=1

(r{l OT)(I 0T>
Yo
0 A'/J\0 RI
t (' ol \ (1 of
11
+ ) u;_j. (3.47)
S )6 )

If we now denote the individual elements of the matrix R as

fiiey "N2@
R, =
212y "22(2)

and, as before, let A = Diag(A(, A2), then QlT y: can be written explicitly as

L, o0 0 Co
Qly: = 0 ru@dl raeAl To

0 712AL raeAL ) \ 1)

-1
, BT 0 . 0 Erj
oAy
£ o meh g e (ci-s) |- (3.48)
~ )
J 0 0 VIZ(;{)’/\g p (Ct—j)

Intuitively, we see that Eq. (3.48) recasts system (3.38) in terms of the characteristic roots of
the parameter matrix I'. By inspection, it is easily seen that a necessary (though not sufficient)
stability condition for system (3.46) is that all of the eigenvalues of the parameter matrix I' must

be less than one in absolute value.

3.3.4 A Numerical Example

We now consider a simple numerical test of the stability of Egs. (3.43) and (3.46). For this

example, let
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0.9917 0 0
r= 0 -0.1690 0.0493 (3.49)
0 0.0017 -0.0017
denote a set of illustrative values for the parameter matrix.!”
Following our discussion in the previous section, we are interested in specifying the columns
of the orthogonal matrices Q, and Q. To this end, we first compute the eigenvectors of Tt

and I''T, respectively. Thus, for the matrices

0.9835 0 0
' = 0 0.0310  —-0.0004
0 -0.0004 5.78 x 107
and
0.9835 0 0
r'r = 0 0.0286 —0.0083 |,
0 -0.0083  0.0024

we specify the matrices Q; and Q> as follows:

1 0 0
Q=10 -0.9999 0.0120
0 0.0120 0.9999
and
1 0 0
Q=]10 09600 -0.2801
0 -0.2801 -0.9600

Computing the eigenvalues of T yields the values 0.9917, 0.1761, and 0.0012. Thus, the

diagonal matrix D is specified as

0.9917 0 0
D= 0 0.1761 0
0 0 0.0012

Inspection of this diagonal matrix reveals that the stability condition described earlier is, in-
deed, satisfied for this particular set of parameter values. The parameter matrix I' can now be

written in spectral form as the product of the matrices Q;, D, and Q>:

r = QbQ;

17For this example, we assume that v; = 590 years, K»/v4 = 0.675, and, following Maier-Reimer and Hassel-
man [45], Te = 120 years. We also assume that 1/K; = 0.073, a value which we numerically estimate in Chapter 4.
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1 0 0 0.9917 0 0 1 0 0
= 0 -0.9999 0.0120 0 0.1761 0 0 0.9600 -0.2801
0 0.0120 0.9999 0 0 0.0012 0 -0.2801 -0.9600
0.9917 0 0
= 0 -0.1690 0.0493
0 .00017 -0.0017

The numerical procedure outlined above can be used to test the stability of the coupled

system of equations, for any specified set of model parameter values.

3.4 Summary

In this chapter, we explored a number of issues pertaining to the closely-related topics of cli-
mate modeling and prediction. Central to our presentation was the derivation of two reduced-
scale models of the global climate system. The reduced-scale climate modeling approach pre-
sented here provides a computationally-efficient means by which to obtain policy-dependent
projections of future climate. As we discuss later in Chapter 6, this capability is an important
aspect of our IDA framework. In the chapter that follows, we address the technical problem of
calibrating these reduced-scale models to transient simulations of the MIT 2D-LO global climate

model.
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Chapter 4

Reduced-Scale Model Calibration

The preceding chapters have sought to emphasize the centrality of long-term climate predic-
tions in integrated assessments of global climate change. General Circulation Models—by far
the most sophisticated tools for performing global climate simulations—are ill-suited for the
task of policy-oriented global climate change assessment, in that the computational costs re-
quired to perform long-term simulations are largely prohibitive. Large-scale global climate
models are, in addition, unable to provide the degree of flexibility, ease-of-use, and trans-
parency that policy-oriented modeling requires. Moreover, it is impossible to incorporate large-
scale climate models into decision-analytic frameworks such as those which we present later
in Chapters 5 and 6.

Policy-oriented assessments of global climate change necessarily entail trade-offs between
model adequacy or realism, on the one hand, and computational efficiency, on the other. The
reduced-scale global climate models put forth previously in Chapter 3 attempt to strike an in-
strumental balance between these competing needs. In particular, each of these models posses
a sound theoretical basis, and each represents those processes that—for our purposes here—
have the greatest influence on global climate change. In order to render such models suitable
for policy analysis, it is desirable that the output of these reduced-scale models resemble—as
closely as possible—the characteristic output of larger, more realistic climate models. In this
chapter, we address the problem of calibrating the reduced-scale climate models in such a way
that they essentially mimic the transient behavior of the MIT 2D-LO global climate model.! In
what follows, we address a number of technical issues surrounding the problem of numerically

calibrating the one- and two-box models to transient simulations of the 2D-LO climate model.

1The MIT 2D-LO global climate model was described earlier in Chapter 3.
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4. REDUCED-SCALE MODEL CALIBRATION

4.1 Calibration of the One-Box Model

In Chapter 3, we derived the following globally-averaged one-box climate model:

1
Tt =Tl + ¢ (Ft-1 —ATi-1), (4.1)

where T; is the change in global-mean surface air temperature at time ¢, K is the heat capacity
or thermal inertia of the climate system, F; is the change in radiative forcing at time ¢, and A
is a feedback parameter. Equation (4.1) is dynamic in character, in that non-contemporaneous
relationships exist between the variables in the model. Specifically, the time-lagged values of T
and F are explanatory variables for changes in global-mean surface air temperature, and 1/K
and A are physically-determined parameters that influence the rate and magnitude of climatic
change. For our purposes here, Eq. (4.1) is construed as a structural time series model, in the
sense that each variable has a direct, physical interpretation. In this section, we address the
problem of calibrating Eq. (4.1) to transient simulations of the 2D-LO global climate model,
where each simulation assumes a gradual increase in atmospheric CO; concentrations.
Intermodel comparisons of long-term climate simulations using large-scale GCMs reveal
significant differences in the transient response of these models to gradual increases of GHG
concentrations in the atmosphere. Our calibration of Eq. (4.1) draws upon a series of sensitivity
studies carried out at MIT using the Integrated Global System Model.? In particular, we examine
a set of 2D-LO transient model runs that are characterized by different numerical values for

the following pair of climate-related variables:

e Climate Sensitivity. Formally defined as the difference in global-average surface tempera-

ture between equilibrium climates for current and doubled CO; levels;
o Ocean Diffusion Coefficient. Influences the global climate system’s rate of warming.3

In Figure 4-1, we summarize the climate sensitivity and ocean diffusion coefficient values
that characterize the transient 2D-LO simulations that are used here to calibrate the one- and
two-box models. In this figure, we note that each transient simulation assumes that climate
sensitivity takes on the value 1.5°C, 2.5°C, or 4.5°C, representing the lower, “best guess,” and
upper values, respectively, of the IPCC climate sensitivity range [32]. Each transient simulation
is also characterized by an ocean diffusion coefficient, which is assumed to range between 1/50

and 50, with 1 and 5 as middle values.*

2See, e.g., Sokolov and Stone [73]. For a detailed description of the MIT Integrated Global System Model, see Prinn
et al. [62].

3In the 2D-LO climate model, different climate sensitivities are obtained by imposing cloud-feedback parameter-
izations that depend on increases in surface air temperature. Also, heat uptake by the deep ocean is parameterized
by diffusive mixing of mixed-layer temperature perturbations (A. P. Sokolov, Private Communication).

4Nordhaus [57] calibrates the climate portion of his DICE model to single transient runs of three separate GCMs,
each of which is characterized by a different climate sensitivity value.
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Climate Sensitivity

Ocean Diffusivity

Figure 4-1: Structure of transient simulations of the MIT 2D-LO global climate model used to
calibrate the reduced-scale climate models. Each simulation assumes a specific climate sensi-
tivity and ocean diffusivity value.

As illustrated in Figure 4-2, our calibration of the reduced-scale climate models proceeds
along the following lines. We begin with an exogenously-specified radiative forcing scenario.
The forcing trajectory is used to drive a series of transient simulations of the 2D-LO climate
model, where two of the model’s parameters—climate sensitivity and ocean diffusivity—are
varied successively in the manner described above. This procedure gives rise to twelve long-
term projections of global-mean surface temperature change. As discussed below, we utilize
econometric and statistical time series techniques to estimate key reduced-scale model param-
eters.

In arriving at an appropriate numerical representation for Eq. (4.1), we begin by examining a
set of 2D-LO transient simulations of global-mean surface air temperature change, where each
simulation assumes that atmospheric CO, concentrations grow at a rate of 1.2% per year. In
addition, we focus on the case where climate sensitivity is 2.5°C. In Figure 4-3, we plot the atmo-
spheric CO» concentration and radiative forcing time-paths used for this set of simulations, for
the period 1977-2077. The four global-mean surface temperature trajectories associated with
this forcing scenario are plotted in Figure 4-4; in this figure, we plot one simulated temperature

trajectory for each individual ocean diffusion coefficient value.

Radiative Time Series Estimation

R Transient Simulations of
Forcing 2D-LO Climate Model of Reduced-Scale

Scenario(s) Model Paramter(s)

Climate Ocean
Sensitivity Diffusivity

Figure 4-2: Reduced-scale model calibration procedure.
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Figure 4-3: CO; concentration and radiative forcing time-paths for the period 1977-2077. At-
maspheric CO» concentrations are assumed to grow at the rate of 1.2% per year.

In using this set of temperature change trajectories to calibrate the one-box climate model,

we first re-write Eq. (4.1) as

T =Ti-1+ C (Fo1 - CaTio1 ), 4.2)

where C; = 1/K and C> = A. At equilibrium, it is easily shown that the feedback parameter, A,

is related to climate sensitivity and radiative forcing via the equation

AF>x
A=
ATox

where AF,, denotes the change in radiative forcing brought about by a static doubling of at-

(4.3)

mospheric CO; concentrations, and AT,y denotes climate sensitivity. Following Nordhaus [57],
we assume that AF, is equal to 4.1 Wm™2. Since AT is, for this particular set of transient

model runs, equal to 2.5°C, A equals 4.1/2.5 = 1.64, in which case Eq. (4.2) becomes

T =Ti-1 + C1 (Ft—l —1.6471; ) . (4.4)

Using the global-mean surface temperature change time series data presented in Figure 4-4,
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Temperature Change (Degrees C)

~1 e
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Year
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---------- OD Coefficient = 1/50 ————- OD Coefficient = 50

Figure 4-4: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO, concentrations
increase at a rate of 1.2% per year. Each temperature trajectory assumes a climate sensitivity
value of 2.5°C, but differs in the value used for the ocean diffusion (OD) coefficient.

in Table 4.1 we summarize the ordinary least-squares® (OLS) estimates of the inertial parameter,
C1 = 1/K. Inspection of this table reveals that the OLS estimation procedure yields estimates
of C; that range from 0.012 to 0.052. In Figures 4-5 - 4-8, we plot the actual, fitted, and
residual values for global-mean surface temperature change, for the period 1977-2077. Visual
inspection of these values, together with a cursory examination of the summary statistics,
reveals that—for this set of transient runs—the one-box climate model reasonably mimics the
transient behavior of the larger 2D-LO model.

An alternative to the estimation procedure outlined above is to compute a pooled estimate of
the inertial parameter, C; = 1/K. To compute such an estimate, we begin by re-writing Eq. (4.2)

das

Tit = Tit-1+ C1 (Fip-1 — C2 Tig-1 ), (4.5)

SFor technical discussions of ordinary least-squares estimation with lagged dependent variables, see, e.g.,
Greene [23, pp. 419-420; 435-436] and Hamilton [24].
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AT, | Ocean Diffusivity C, =% R? SER
1/50 0.052 (0.007) | 0.998 | 0.061

) 1 0.024 (0.004) | 0.997 | 0.058
2>°C 5 0.015 (0.003) | 0.995 | 0.063
50 0.012 (0.002) | 0.995 | 0.056

Table 4.1: Inertial parameter estimates for the globally-averaged one-box climate model, with
climate sensitivity of 2.5°C. Values in parentheses denote standard errors.

OD Coefficient = 1/50
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Figure 4-5: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.5°C and OD coefficient of 1/50.
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Figure 4-6: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.5°C and OD coefficient of 1.
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Figure 4-7: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.5°C and OD coefficient of 5.
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Figure 4-8: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.5°C and OD coefficient of 50.
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where i = 1, ..., 4 indexes the four temperature time series associated with each ocean diffusion
coefficient value; the parameters C; and C; are defined as before, and remain constant for all i.
Equation (4.5) interprets the four temperature change trajectories described above as cross-
sectional units, observed at each discrete time period t = 1977,...,2077. For the radiative
forcing scenario described above, with AT,x = 2.5°C, we obtain the following OLS pooled

estimate® for C;:

Tt =Ti-1 + 0.017 (F—1 — 1.64 7,1 ),
(0.002)
where R? = 0.99 and SER= 0.06. As expected, the pooling procedure yields an estimate for C;

that lies between the low and high inertial parameter estimates obtained previously.

The numerical estimates obtained above for the inertial parameter, 1/K, are derived from
a set of transient simulations of the 2D-LO climate model that assume the IPCC “best guess”
climate sensitivity estimate of 2.5°C. Naturally, it is important to explore the manner and degree
to which these parameter estimates vary when climate sensitivity takes on values that span the
IPCC range. To this end, we now explore a set of transient simulations of the 2D-LO model that
assume the full range of climate sensitivity and ocean diffusion coefficient values shown in
Figure 4-1. For this particular set of transient simulations, atmospheric CO, concentrations are
assumed to grow at a rate of 1% per year. In Figure 4-9, we plot the radiative forcing scenario
used for this set of transient simulations. In Figures 4-10 - 4-12, we plot the temperature
change time series associated with each climate sensitivity-ocean diffusivity pair. In Table 4.2,
we summarize the OLS estimates of the inertial parameter, for each possible climate sensitivity-
ocean diffusivity pair. In this table, we also summarize the pooled inertial parameter estimates,

as a function of climate sensitivity.

4.1.1 Serial Correlation

The OLS estimates obtained above for the inertial parameter in Egs. (4.2) and (4.5) are based on
the assumption that the errors corresponding to different observations generated by the 2D-LO
climate model are uncorrelated. Correlation among error terms from different time periods is
referred to as serial correlation. In the context of our discussion here, an important concern
is that in utilizing the reduced-scale climate models to make long-term projections of global-
mean surface temperature change, we wish to identify instances where overestimation of the

magnitude of temperature change in one year may lead to overestimation in succeeding years.

6The use of OLS in the estimation of cross-sectional time series is discussed by Greene [23, pp. 444-464].
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Figure 4-9: Radiative forcing time paths for the period 1977-2077. Atmospheric CO> concen-
trations are assumed to grow at the rate of 1% per year.

AT, | Ocean Diffusivity | €1 =% | Durbin-Watson | Pooled Estimate |
1/50 0.028 (0.004) 1.295 |
1 0.019 (0.002) 1.765
1.5°C 0.015 (0.001)
5 0.014 (0.002) 0.815
50 0.012 (0.001) 1.251
1/50 0.048 (0.004) 0.390
1 0.025 (0.006) 2.331
2.5°C 0.017 (0.001)
5 0.015 (0.002) 0.624
50 0.010 (0.001) 1.295
1/50 0.053 (0.003) 0.784
1 0.021 (0.001) 0.666
4.5°C 0.016 (0.001)
5 0.013 (0.001) 0.703
50 0.010 (0.001) 0.851

Table 4.2: Inertial parameter estimates for the globally-averaged one-box climate model, as a
function of climate sensitivity and ocean diffusivity. Values in parentheses denote standard

€ITors.
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Figure 4-10: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO, concentrations
increase at a rate of 1% per year. Each temperature trajectory assumes a climate sensitivity of
1.5°C, but differs in the value used for the ocean diffusion (OD) coefficient.
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Figure 4-11: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO» concentrations
increase at a rate of 1% per year. Each temperature trajectory assumes a climate sensitivity of
2.5°C, but differs in the value used for the ocean diffusion (OD) coefficient.
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Figure 4-12: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO; concentrations
increase at a rate of 1% per year. Each temperature trajectory assumes a climate sensitivity of
4.5°C, but differs in the value used for the ocean diffusion (OD) coefficient.
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Durbin-Watson Test

A commonly used procedure for identifying serial correlation is the so-called Durbin-Watson
test. This test is based on the assumption that serial correlation in the true disturbances is
likely to manifest itself in the residuals, e;, that are derived from the least-squares estimation

procedure. The Durbin-Watson test statistic, dw, is defined as follows:

100 2
_ 2i-2 (er —er-1)
- 100 2
2.i-1€;

For this equation, successive values of e; that are close to each other give rise to a low Durbin-

aw

Watson statistic—an indication of positive serial correlation. The Durbin-Watson statistic is
defined on the interval O to 4, with values near 2 indicating that first-order serial correlation is
not present. Values above and below 2 are indicative of negative serial correlation and positive
serial correlation, respectively. In the fourth column of Table 4.2, we provide the Durbin-Watson
statistic value for each of the inertial parameter estimates. For the high climate sensitivity cases,
we note that the Durbin-Watson values are indicative of positive serial correlation. The Durbin-
Watson values obtained for the low and “best guess” climate sensitivity cases are indicative of

both negative and positive serial correlation.

Breusch-Godfrey

The Durbin-Watson has been shown to be biased against finding serial correlation when there
is a lagged dependent variable, as is the case in Eqgs. (4.2) and (4.5).” An alternative procedure
is the so-called Breusch-Godfrey (BG) test. The BG test is a Lagrange multiplier test of the
hypothesis

Hy No Autocorrelation,

H, e; = AR(7),

where 7 is specified as a positive order.® The test has power against all types of serial corre-
lation, and is applicable to equations that have lagged values of the dependent variable. The
test is carried out by regressing the OLS residuals on the right-hand variables, together with
¥ lagged residuals. The BG statistic is calculated as the product TR?, where T denotes the
total number of observations. We then refer BG statistic values to tabled critical values for the

chi-squared distribution, with » degrees of freedom. In Table 4.3, we tabulate the BG statis-

7See, e.g., Dezhbaksh [16} and Durbin [20].
8For our purposes here, we assume that v = 2.
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AT,y | Ocean Diffusivity | Breusch-Godfrey | p-Value
1/50 14.307 0.001
1 9.225 0.010
1.5°C
5 26.754 0.000
50 10.680 0.005
1/50 62.326 0.000
1 9.136 0.010
2.5°C
5 43.071 0.000
50 14.596 0.001
1/50 28.630 0.000
1 35.079 0.000
4.5°C
5 36.195 0.000
50 32.976 0.000

Table 4.3: Breusch-Godfrey statistic values and their associated p-values for the calibration of
the globally-averaged one-box climate model.

tic values, and their associated p-values,® for the 12 climate sensitivity-ocean diffusivity pairs
tabulated in Table 4.2. The BG statistic values listed in Table 4.3 indicate that we can reject the

null hypothesis (no autocorrelation) at significance levels less than or equal to 1%.

4.1.2 Corrections for Serial Correlation

In order to correct for serial correlation in our calibration of the one-box model, we introduce

a first-order autoregressive error process of the form

& =P &-1 T Uy,

where p denotes the first-order serial correlation coefficient, and u; is distributed as N(0, o2),
and is assumed to be i.i.d. By introducing this error process, we are able to reflect the possibility
of mis-specification in our basic model structure. Given this assumption, our one-box model

becomes

Tt Ti-1+ C1 (Fio1 —CaTe1 ) + &,

0<lpl<l.

I

&t pE-1 + Uy,

9For a given test statistic, the p-value or attained significance level is the smallest level of significance for which
the observed data indicates that the null hypothesis should be rejected.
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ATy | Ocean Diffusivity C;=1/K P
1/50 0.030 (0.005) | 0.308 (0.092)
) 1 0.019 (0.002) | 0.110 (0.100)
15°C 5 0.014 (0.003) | 0.540 (0.079)
50 0.012 (0.002) | 0.341 (0.092)
1/50 0.054 (0.013) | 0.798 (0.064)
. 1 0.024 (0.004) | -0.213 (0.095)
2>°C 5 0.016 (0.003) | 0.679 (0.073)
50 0.010 (0.002) | 0.240 (0.118)
1/50 0.054 (0.004) | 0.510 (0.075)
. 1 0.021 (0.002) | 0.612 (0.073)
4.>7C 5 0.013 (0.002) | 0.645 (0.077)
50 0.009 (0.001) | 0.555 (0.083)

Table 4.4: Inertial parameter estimates for the globally-averaged one-box climate model, as
a function of climate sensitivity and ocean diffusivity, with corrections for serial correlation.
Values in parentheses denote standard errors.

In Table 4.4, we summarize the inertial parameter estimates for the globally-averaged one-
box climate model, as a function of climate sensitivity and ocean diffusivity, with corrections
for serial correlation. Inspection of these values reveals that the revised estimates for this
parameter range from 0.009 to 0.054.

As a means of visualizing the numerical results of our calibration procedure, in Figure 4-13
we provide a three-dimensional surface plot of the inertial parameter estimates, as a function
of climate sensitivity and ocean diffusivity. This calibration response surface shows how the in-
ertial parameter estimate responds to changes in both climate sensitivity and ocean diffusivity.
Inspection of the response surface reveals that, for small values of ocean diffusivity, the iner-
tial parameter rises sharply across the range 1.5-4.5°C. We note, also, that as ocean diffusivity
increases, the response of the inertial parameter estimate to increases in climate sensitivity is
dampened, until at ocean diffusivity levels of ~20 and above, variations in climate sensitivity
have little effect on the value of the parameter estimate. Graphical displays such as Figure 4-
13 help summarize qualitative features of the behavior of the inertial parameter estimate to
simultaneous changes in climate sensitivity and ocean diffusivity; such features are difficult to

identify solely by visual inspection of tabular data such as that presented in Table 4.4.
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\neflial Parameler Estimate

Figure 4-13: Calibration response surface for the globally-averaged one-box climate model in-
ertial parameter estimates, as a function of climate sensitivity and ocean diffusivity. The scale
for ocean diffusivity is logarithmic, but is displayed with untransformed values.
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4.2 Calibration of the Two-Box Model

The globally-averaged two-box climate model put forth previously in Chapter 3 is specified as

follows:

T, (4.6)
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1
T = T+ va (Te-1—775,), 4.7)

where T; and 7; denote the changes, at time t, in global-mean surface air temperature and
deep ocean temperature, respectively. As before, F; denotes the change in radiative forcing at
time t, and A is a feedback parameter. The parameters K, and K> denote the thermal inertias
for land and ocean, respectively, and v, is the ventilation time of the deep ocean.

Numerical calibration of the two-box model to transient runs of the 2D-LO climate model
proceeds in a manner similar to that which we outlined earlier for the one-box model, with
one notable exception: Equation (4.7) requires that we specify temperature change time series
for the deep ocean. In Figures 4-14 - 4-16, we plot the transient simulations of deep ocean
temperature change that correspond to the transient simulations of global-mean surface air
temperature change depicted earlier in Figures 4-10 - 4-12.

Each transient simulation of the 2D-LO model is characterized by a fixed climate sensitivity
value, from which we are able to derive — via Eq. (4.3) — a corresponding value for A. The
2D-LO transient simulations of deep ocean temperature change assume that the deep oceanis
3,000 meters in depth. Given this assumption, it follows that K> = 398 Jm—2 K1 yr~1.10 Most
published estimates of the transient coefficient, v, lie between 500 and 550.!! Rather than
assume a single value for v, we assume a range of possible values, each of which is function-
ally dependent on the ocean diffusion coefficient values defined previously. In Table 4.5, we
summarize the values used for v;, K> /vg4, and 1/v,4 in the calibration of the two-box model.

For the purposes of calibration, we rewrite Egs. (4.6) and (4.7) as
T = T +C (Foy - Cmer -G [T -1, 1), (4.8)
Tt* = Tzk_l + Cy4 (Tt—l - Tgk_l ), (4.9)

where C; = 1/K1, C2 = A, C3 = K» /vy, and C4 = 1/v,4. Estimation of this system of equations

is, in general, a problematic task. The presence of lagged dependent variables with serial

10A_ P. Sokolov, Private Communication.
11gee, e.g., Nordhaus [57], who uses v4 = 500 in his DICE model.
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Figure 4-14: Projections of deep ocean temperature change derived from the MIT 2D-LO global
climate model. The projections assume that atmospheric CO, concentrations increase at a rate
of 1% per year. Each temperature trajectory assumes a climate sensitivity of 1.5°C, but differs
in the value used for the ocean diffusion (OD) coefficient.

Ocean Diffusivity 7 K>/vy 1/vy
1/50 29,500 | 0.013 | 0.000034
1 590 0.675 0.0017
5 118 3.373 0.0085
50 11.8 | 33.729 | 0.0847

Table 4.5: Parameter values for the globally-averaged two-box climate model, as a function of

ocean diffusivity.
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Figure 4-15: Projections of deep ocean temperature change derived from the MIT 2D-LO global
climate model. The projections assume that attmospheric CO> concentrations increase at arate
of 1% per year. Each temperature trajectory assumes a climate sensitivity of 2.5°C, but differs
in the value used for the ocean diffusion (OD) coefficient.
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Figure 4-16: Projections of deep ocean temperature change derived from the MIT 2D-LO global
climate model. The projections assume that atmospheric CO, concentrations increase at arate
of 1% per year. Each temperature trajectory assumes a climate sensitivity of 4.5°C, but differs
in the value used for the ocean diffusion (OD) coefficient.
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correlation complicates our efforts to estimate the inertial parameter, C; = 1/K;. If it were the
case that our temperature change time series were not serially correlated, then OLS estimates
of C; would be consistent, but biased.

To obtain consistent estimates of the inertial parameter, we re-write the system defined by

Egs. (4.8) and (4.9) so as to include an autoregressive error term:

Tt = Tt-1+C1 (Fo1 = CoTeo1 = Gy [T — T, ]) + &, (4.10)
& = Pp&-1+ Uy, (4.11)
T = 1+ Ca (e —T1), 4.12)

where p denotes the first-order serial correlation coefficient, and u, is distributed as N (0, 0°2),
and is assumed to bei.i.d. In obtaining numerical estimates of the inertial parameter, C; = 1/Kj,
we use a three-stage least squares (3SLS) procedure, which applies two-stage least squares (2SLS),
together with a full treatment of the cross-equation correlations of residuals.!? Each iteration
of the 3SLS procedure transforms Eqs. (4.10) and (4.12) so as to eliminate cross-equation cor-
relation, and then applies 2SLS. Following Fair [21], we include as first-stage “instruments” the
lagged dependent variables, T;-; and T;° |, as well as the exogenously-specified lagged values
for F;_;. Since Eqgs. (4.10) and (4.12) contain endogenous variables on the right-hand side, 3SLS
yields asymptotically efficient results.!3

In Table 4.6, we summarize the 3SLS estimates for C; = 1/K;. In Figure 4-17, we plot the
calibration response surface for this set of inertial parameter estimates. The corresponding
isocontour plot shown in Figure 4-18 allows for a precise reading of the parameter estimate
values shown in Figure 4-17. Clearly, the response surface shown here is quite different from
that which we presented earlier for the globally-averaged one-box climate model. Obtaining a
meaningful physical interpretation for the observed differences between these two surfaces is
problematic, because, in reality, the inertial parameter C; = 1/K; is not directly influenced by
climate sensitivity and ocean diffusivity.14

The most striking feature of the calibration response surface shown in Figure 4-17 is the
presence of a relatively flat plateau or “tabletop,” where, for climate sensitivity values ranging
from roughly 2.4-4.5°C, and for ocean diffusivity values ranging from roughly 0.02-1.0, the

value of the inertial parameter estimate exhibits only slight variation. As in the one-box model,

I2For technical discussions of the 3SLS estimation procedure, see, e.g., Greene [23], Hamilton [24], and Pindyck
and Rubinfeld [61].

I3For a discussion of the efficiency of the 3SLS estimation procedure, see, e.g., Madansky [44].

145 P. Sokolov, Private Communication.
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AT>x | Ocean Diffusivity C=1/K;
1/50 0.015 (9.23x1079)
1 0.015 (0.0003)
1.5°C
5 0.008 (0.0007)
50 0.001 (0.0001)
1/50 0.070 (0.0172)
1 0.073 (0.0175)
2.5°C
5 0.009 (0.0008)
50 0.005 (0.0014)
1/50 0.053 (0.0041)
1 0.062 (0.0058)
4.5°C
5 0.015 (0.0013)
50 0.013 (0.0018)

Table 4.6: Inertial parameter estimates for the globally-averaged two-box model, as a function
of climate sensitivity and ocean diffusivity. Values in parentheses denote standard errors.

we note that for ocean diffusivity values greater than ~ 20, variations in climate sensitivity have

only a small effect on the value of the inertial parameter estimate.

4.3 Summary

In this chapter, we utilized econometric and statistical time series estimation techniques to
numerically calibrate the globally-averaged one- and two-box climate models presented earlier
in Chapter 3. By calibrating these reduced-scale models against transient simulations of the
larger, more complex MIT 2D-LO global climate model, we are able to mitigate the tension that
is seen to exist between two competing objectives in integrated assessment modeling. In par-
ticular, the reduced-scale modeling approach set forth here provides a conceptually powerful
means by which to balance the obvious need for scientific adequacy and model realism, on the
one hand, and computational efficiency, on the other. Later, in Chapter 6, we utilize portions of
the calibration exercise presented here as part of our IDA framework for evaluating sequential

climate policies under uncertainty.
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Figure 4-17: Two views of the calibration response surface for the globally-averaged two-box
climate model inertial parameter estimates, as a function of climate sensitivity and ocean dif-

fusivity. The scale for ocean diffusivity is logarithmic, but is displayed with untransformed
values.
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Figure 4-18: Isocontour plot for the globally-averaged two-box climate model calibration re-
sponse surface.
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Chapter 5

Climate Change Decision-Making

Under Uncertainty

Current policy debates surrounding the issue of global climate change are complex and mul-
tifaceted. Much of the complexity that underlies the greenhouse debate arises, in part, from
an incomplete understanding of critical features of atmospheric science, as well as from sci-
entific uncertainty concerning the causes and consequences of human interaction with the
global climate system. In addition, difficulties in predicting future levels of anthropogenic
emissions of key GHGs complicate efforts to reliably assess the potential magnitude and tim-
ing of anthropogenically-induced climate change. Moreover, there are inherent difficulties in
drawing reliable inferences as to the potential socio-economic impacts of climatic change, as
well as the likely costs, benefits, and effectiveness of possible response strategies.

In this chapter, we set forth a formal decision-analytic framework for structuring and eval-
uating global climate change response options. The model formulation that we present here
is static in design, and serves as the conceptual basis for a dynamic formulation which we
present in Chapter 6. Our presentation is organized along the following lines. We begin, in
Section 5.1, with a brief discussion of the decision-theoretic concepts that underlie our deci-
sion modeling approach. We follow this discussion with the specification of a formal decision
basis for evaluating an illustrative set of GHG abatement policies. In Section 5.2, we implement
and numerically evaluate the decision basis within a graphical structure for modeling uncertain
variables and decisions. We then use this analytical framework to evaluate an optimal course of
GHG abatement action. As part of this analysis, we use deterministic and probabilistic sensitiv-
ity analyses to identify key uncertainties in our model formulation. In Section 5.3, we consider
the related problems of valuing information and control, and we discuss the relevance of these

concepts to climate change decision-making. Finally, in Section 5.4, we conclude with a brief
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summary of our findings, and we offer some tentative conclusions as to the policy relevance

of our analysis.

5.1 Decision-Making Under Uncertainty

Governmental and intergovernmental decisions as to what actions, if any, should be taken
in response to the prospect of anthropogenic climate change are characterized by conflicting
criteria and large degrees of uncertainty. In addition, policymakers must evaluate a range of
possible response options in a decision context where the effects of climate change may be
recognized only decades hence. In addition to being characterized by long lead-times, some
of these effects may, in fact, be irreversible. Also complicating efforts to arrive at a robust set
of climate change response options are the inherent nonlinearities that characterize the global
climate system. The existence of such nonlinearities force decision-makers to consider the
possibility of “shocks” or “surprises” in the climate system, some of which could potentially
give rise to catastrophic consequences.

The formal evaluation of climate change response options requires that we consider a num-
ber of interrelated factors. Our focus here is on the evaluation of mitigation options that seek,
ultimately, to minimize or prevent climatic change. In order to slow or prevent global warming,
it is necessary to reduce net emissions of key GHGs. Such reductions can be achieved in one
of two ways: (i) reducing the sources of GHGs; or (ii) increasing the sinks (natural or other-
wise) of GHGs. In this way, climate change response options are typically broken down into
those options that reduce or eliminate GHG emissions, and those that measurably offset GHG
emissions.

As with any complex, real-world problem, there are a plurality of ways to frame the green-
house problem. In this section, we explore how the evaluation of GHG abatement options can
be framed as a decision problem under uncertainty. The decision basis that we set forth be-
low provides a formal and explicit means by which to structure and evaluate alternative GHG

abatement policies.

5.1.1 Formal Elements of Decision Theory

For our purposes here, any situation in which a climate policy choice must be made among
alternative courses of action with uncertain consequences will be referred to as a decision prob-
lem under uncertainty. Following Leonard Savage’s [66] classic formulation of decision theory,

a decision problem under uncertainty is seen to consist of four basic elements:

(i) Aset A= {ay,...,an} of alternative policy options, one of which will be selected,;
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(ii) For each policy option a; € A, a set U; = {Xj,...,Xn} of uncertain events that describe

the possible outcomes associated with the selection of policy option a;;
(iii) Corresponding to each set U}, a set of consequences Cj = {c1,...,¢r};

(iv) A preference order, <, defined as a binary relation between some of the elements of A.

Given this formulation, having chosen a policy action a;, we observe the occurrence of
uncertain events in the set U;. Each uncertain event in the set U; has associated with it a
corresponding consequence set C;. In this way, the set of uncertain events U; = {X1,...,Xp}
forms a partition of the total set of possibilities, with each policy option a; mapping elements
of U; to the elements ¢x € Cj,i.e, ai(-):U; — Cj or a;(Uj) = ck.

In this chapter, we focus on the problem of identifying GHG abatement policies that mini-
mize expected social loss over all policy options a € A. Assume that we are interested in only
one uncertain quantity X. Assume, further, that our degree of belief that the uncertain quan-
tity X will assume the value x, given our background state of information, &, is Pr(x | &), the
probability mass function for X. If x occurs, and if policy option a is adopted, then the re-
sulting payoff or social loss is represented by the function l(x, a). Let I* denote the minimum
expected social loss. When x is a discrete random variable,! our decision problem is formally

stated as follows:
I*=minE[l(X,a)|E]
acA

=min > I(x,a) Pr(x | ©).

A policy option a* that minimizes expected social loss is called a Bayes decision.?

5.1.2 A Single-Period Decision Model

In what follows, we put forth a single-period decision model for the evaluation of GHG abate-
ment strategies. As alluded to earlier, this single-period model serves as the conceptual ba-
sis for a sequential model formulation—which we present in Chapter 6—that integrates the
reduced-scale climate modeling approach that we described earlier in Chapters 3 and 4, with
time-series outputs drawn from the MIT IGSM. The single-period model that we describe below
provides a nimble, flexible framework for evaluating climate policy choice under uncertainty,
as well as for assessing the relative importance of the various factors that are considered as

part of our formal evaluation of optimal policy choice.

1The problem is easily formulated for the case where X is characterized as a continuous random variable.

2We note that the probability distribution for X may be conditioned on policy option a, as well as on our back-
ground state of information, £. The relevance of this type of probabilistic dependence to climate-change decision-
making is discussed by Jacoby, Kaufman, and Valverde [34].
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For the purposes of illustration, we consider a set of GHG abatement policies that are cur-
rently being debated under the United Nations Framework Convention on Climate Change.3
We focus on three aspects of the climate change problem that are particularly relevant to the

evaluation of GHG abatement strategies:

¢ The economic costs of pursuing a range of GHG abatement strategies;
e The economic benefits of abating global climate change;

» Uncertainty concerning the level or magnitude of global climate change.

In this way, GHG abatement actions are construed as hedges against what could possibly be

unacceptable levels of global climate change.

5.1.3 Specification of the Decision Basis

We now formally specify the individual components that, together, comprise the decision basis
of our single-period model. The decision basis consists of three parts: (i) specification of the
decision alternatives; (ii) specification of the possible states of nature and their associated

probabilities; and (iii) specification of abatement costs and possible climate change impacts.

Decision Alternatives

In our decision model formulation, we assume a single or unitary decision-maker, who wishes to
choose among a finite set of possible abatement strategies.* Each of these abatement strategies
differ in their severity and timing.> We begin our formulation with the definition of a finite set

of possible abatement options

Abatement Decision = {a1, az, as, a4},

3We discuss the United Nations Framework Convention on Climate Change in Chapter 7.

4The greenhouse debate is, of course, characterized by multiple stakeholders, all of whom are likely to value the
various facets of the problem differently. Our motivation for adopting the perspective of a unitary decision-maker
is twofold in nature. First, given the global character of the problem, it is reasonable to suppose that unilateral
responses to the prospect of global warming are unlikely to be effective in mitigating climatic change and its potential
adverse consequences. For this reason, a global perspective such as the one which we adopt here seeks, at a base
level, to inform our conception of what climate-change-related goals and objectives might be achievable within
a particular time horizon. Second, much of the policy-oriented dialogue surrounding the greenhouse debate is
global in character, though researchers are now beginning to explore the difficult problem of assessing the regional
implications of global warming. These efforts notwithstanding, the usefulness of pursuing multi-actor formulations
of the climate change problem is severely limited by the inability of modern climate science to provide reliable, long-
term predictions of regional climate change. The analytical frameworks and methodology that we set forth here
can, of course, be utilized by individual stakeholders, who may be part of a larger, multi-actor policymaking and
negotiation process.

>All of the decision models presented in this dissertation are evaluated on an expected-value or risk neutral basis.
The role that risk preferences should play in societal decision-making is, of course, a contentious issue, and it is
not our intent to enter into these debates here. Suffice it to say that extensions to the analyses put forth here to
include the risk preferences of decision-makers are, for the most part, straightforward and easily implemented.
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where

a; = Reference Baseline-No Controls Strategy,
ap; = AOSIS Protocol,

az = Delayed AOSIS Protocol,

a4 = Stringent Abatement Strategy.

Strategy a, represents a carbon emissions baseline that is unconstrained by a GHG abatement
policy. The economic costs of mitigation are defined as the difference in costs between the
baseline scenario and a new scenario that is characterized by lower GHG emissions. Strategy a»
represents a protocol recently proposed by the Alliance of Small Island States (AOSIS) and
Germany [1]. Under the terms of the AOSIS protocol,

« All Annex I® countries agree to reduce CO» emissions to 20% below 1990 levels by the
year 2005;

e There are no commitments to reduction or limitation of GHG emissions by non-Annex I

countries or by Economies in Transition.

Under Strategy a3, we extend the original AOSIS target date from the year 2005 to 2015. Lastly,
under Strategy a4, we assume that GHG emissions are reduced to 40% of 1990 levels.
Naturally, there are a host of other abatement options that we could consider as part of
this analysis. Our intent here, however, is to illustrate the formal concepts and methods that—
in Chapter 6—serve as the basis for an integrated decision analysis framework for evaluating

sequential GHG abatement policies under uncertainty.

Possible States of Nature

For the purposes of our static analysis, we focus on the possible states of nature associated with
the level or magnitude of global-mean surface temperature change. We assume that the level of
warming is observed in the year 2050. In our single-period model, we define a chance variable

Climate Change, consisting of four mutually exclusive and collectively exhaustive events:

Climate Change = {Small, Medium-Low, Medium-High, Large},

where

6 Annex I countries consist of the OECD nations (except Mexico), plus 12 so-called “economies in transition” in
the former Soviet Union and Eastern Europe.
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il

Small < 1°C,

Medium-Low 1-5°C (on the low side),

Il

Medium-High 1-5°C (on the high side),

> 5°C.

Large

The chance variable Climate Change represents a broad range of possibilities concerning
the extent or magnitude of future climate change. The probability distribution associated with
this uncertain quantity is influenced by the decision variable Abatement Decision. In this way,
policy action to abate GHG emissions influences the likelihood of each possible state of nature.

In our model formulation, we therefore specify probabilities of the form

p(sjla;i) = Pr{Climate Change = s; | Abatement Decision = a;}, (5.1)

where a; € Abatement Decision and s; € Climate Change.

In assessing subjective probability distributions for Eq. (5.1), we utilize outputs from the
MIT IGSM to assess the likely influence of policy choice on global-mean surface temperature
change. In Figure 5-1, for example, we plot the MIT IGSM temperature change projections
for Strategies a; and a,. Using long-term climate projections such as these as a source of
data in probability elicitation exercises directed at Eq. (5.1), we are able to specify the discrete
distributions shown in Table 5.1. In this way, expert judgement is used to summarize the
best available knowledge and information about the likely effects of policy choice on climatic
change.

In specifying subjective probability distributions for Eq. (5.1), we recognize that scientific
uncertainty concerning key climate-change-related quantities is treated in an implicit fashion.
For instance, we note that the global climate model used to generate the policy-dependent
temperature change projections shown in Figure 5-1 is characterized by a particular climate
sensitivity value, in this case, 2.9°C. As we discussed earlier in Chapters 3 and 4, consider-
able scientific uncertainty currently surrounds this particular quantity. By imposing subjective
probability distributions on the categorical states of nature defined above, we are, in effect,
making indirect assertions about this uncertain quantity, as well as others. Suppose, for ex-
ample, that the expert who provides subjectively-assessed values for Eq. (5.1) believes that the
energy-economic model within the MIT IGSM makes “optimistic” assumptions about the avail-
ability and cost of so-called “carbon-free” backstop technologies. Suppose, further, that the
expert believes that the true climate sensitivity value is 4.5°C, rather than 2.9°C. In order to
reflect this set of beliefs in the assessed values for Eq. (5.1), the expert wishes to represent

the idea that, by assuming a low climate sensitivity value in long-term temperature change
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Figure 5-1: MIT IGSM projections of global-mean surface temperature change for the Reference
scenario and the AOSIS Protocol.

projections such as those shown in Figure 5-1, the climate model is, at any particular point in
time, likely to underestimate the true magnitude of observed climatic change. To “correct” for
this underestimation, the expert assigns the ‘Medium-High’ and ‘High’ states higher likelihoods
of occurrence. The modeling approach outlined here is, of course, just one of many that are
possible. Later, in Chapter 6, we treat uncertainty concerning climate sensitivity (and other
climate-change-related quantities) in an explicit fashion.

In Table 5.1, the probability distribution imposed on the variable Climate Change, given that
Strategy a; (i.e., no controls on carbon emissions) is adopted, is defined as follows: ‘Small’ and
‘Large’ climate change are each assigned probabilities of 0.2, and ‘Medium-Low’ and ‘Medium-
High’ are each assigned probabilities of 0.3. Consistent with the temperature change projec-
tions shown in Figure 5-1, this probability distribution captures the qualitative belief that the
range 1-5°C is most likely to contain the true magnitude of the observed level of warming.
Strategy a. constitutes a relatively moderate abatement policy; looking, again, at Figure 5-1,
the probability mass for the chance variable Climate Change is, for this strategy, allocated so
as to favor the likelihood of ‘Small’ or ‘Medium-Low’ climate change. Adopting Strategy as is
presumed to increase the likelihood that Climate Change falls into either the ‘Medium-High’
or the ‘Large’ category. Lastly, Strategy a4 is presumed to increase the likelihood of observing

either ‘Small’ or ‘Medium-Low’ climate change. Later, in Section 5.2.5, we examine the effects
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Abatement Decision

Climate Change Strategy a; | Strategy a, | Strategy a3 | Strategy a4
Small 2 2 2 4
Medium-Low 3 4 3 3
Medium-High 3 3 4 2
Large 2 1 1 1

Table 5.1: Probability distributions for the Climate Change chance variable.

that alternative probability specifications have on the policy prescriptions of our static decision

model.

Abatement Costs and Climate Change Impacts

In our model formulation, abatement costs and climate change impacts are measured in terms
of percentage of gross domestic product (GDP) loss.” The economic cost of pursuing a specific
climate change abatement strategy depends, in large measure, upon the stringency of the pol-
icy, the adjustment time, and the expected technological improvements in energy sources and
renewables.’

The costs of emissions control for Strategies a;, az, and as are introduced in the form of
a data structure that is drawn from output of the MIT Emissions Prediction and Policy Analy-
sis (EPPA) model. EPPA is a global, applied general equilibrium model, derived in part from the
OECD General Equilibrium Environmental (GREEN) model. The model projects anthropogenic
GHG emissions based on analysis of economic development and patterns of technical develop-
ment. Like GREEN, the EPPA model is divided into twelve geopolitical regions, each of which
is linked with bilateral trade. There are four OECD regions (USA, EEC, Japan, and other OECD),
and eight non-OECD regions (China, India, Brazil, Dynamic Asian Economies, Energy Exporting
LDCs, Former Soviet Union, Central and Eastern Europe, and Rest of World). In version 1.6 of
the EPPA model used here,? each region has ten production sectors (five energy, two future en-

ergy backstops, and three non-energy) and four consumption sectors. The various components

7GDP is a measure of all currently produced final goods and services evaluated at market prices, and is typically
broken down into four basic components: (i) consumption; (ii) investment; (iil) government purchases; and (iv) net
exports. While GDP is arguably the most comprehensive measure of a nation’s economic activity, it is important to
recognize two salient limitations of this aggregate measure. First, GDP leaves out nonmarket productive activities.
Second, GDP is not a welfare measure. Since non-market effects have no observable prices, they must be valued
using alternative measures, the most common measure being willingness to pay. Another practical consideration
concerns the manner in which cross-country comparisons of costs/impacts should be conducted (e.g., nominal
exchange rates vs. trade-weighted rates). These limitations notwithstanding, GDP remains a useful means by which
to aggregate a number of goods and services that contribute to welfare.

8For a detailed survey of the economic dimensions of the climate change problem, see, e.g., Cline [14] and Ref. [9].

9See Yang et al. [80].
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Meoxlel Features
Based on OECD GREEN Model Welfare costs of polides
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Figure 5-2: Features of the MIT EPPA model (Source: MIT Joint Program on the Science and
Policy of Global Change).

of the EPPA model are illustrated in Figure 5-2.

Because of its importance for greenhouse emissions, the overall energy sector is modeled
in the greatest detail. The EPPA model contains sectors for oil, gas, coal, and electricity. The
model also includes non-fossil technologies (e.g., solar and advanced nuclear power) and new
carbon-based sources that might replace conventional fossil fuels in the long term. The model
projects emissions of CO,, CO, CHy, SO2, NOx, and N>O from the twelve geopolitical regions,
taking account of inter-regional trade in energy and other goods. The regional structure also
allows consideration of the geographic distribution of emissions of short-lived trace gases (NOx,
SO,, C0).10

The EPPA model solves for equilibrium in five-year time-steps for the period 1985 to 2100,
and the model is calibrated with 1985 data. For the purposes of policy analysis, carbon emission
constraints can be imposed on any of the 12 regions, in any time period. Control policies may be
modeled in the form of price instruments (taxes or subsidies) or quantitative controls (quotas).
The price instruments may be ad valorem energy or carbon taxes. The quantitative instruments
that the EPPA model can handle include CO, emission quotas imposed globally, or imposed on a

single region, or a block of regions. These constraints may be fixed (i.e., no trading), or specified

10The distribution of these gases is important, in that they drive atmospheric chemistry (HOx, etc.) and radiative
forcing (sulfate production, O3 production, CH4 destruction), which is regional in effect.
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Reference Case OECD | Non-OECD | Global
Annualized GDP 2000-2050 (billion 1985%) | 10,100 7,300 17,400
GDP NPV 1985-2050 (billion 1985%) 278,600 185,500 464,100
Carbon Emissions in 2050 (GtC) 7.0 8.9 15.9
Carbon Emissions 1985-2050 (GtC) 315.9 385.1 701.1

Table 5.2: Reference case GDP and carbon emissions data.

as tradable with other regions, which reallocates the quotas so as to minimize cost.
For the single-period decision model, we specify the abatement costs for each response

option as follows:

0%, if Abatement Decision = as;

2.03%, if Abatement Decision = ay;
Abatement Costs =

1.85%, if Abatement Decision = ag;

10%, if Abatement Decision = ay4.

The economic and carbon emissions data that underlie these cases are summarized in Tables 5.2
and 5.3. Table 5.2 summarizes the GDP and carbon emissions conditions of the Reference case,
broken down in terms of OECD, Non-OECD, and global values. Table 5.3 shows the annualized
costs for Strategies a, and a3 for the period 2000-2050, their NPVs for the period 1985-2050 (in
billions of 1985 dollars), a percentage change in GDP (annualized) from the Reference case, and
carbon emissions results. The abatement cost specified for Strategy a4 is hypothetical, but is,
nonetheless, consistent with published estimates of the economic costs associated with this
level of GHG abatement.

The economic valuation of the potential social and environmental losses associated with
anthropogenic global warming is an inherently problematic task. Most published damage esti-
mates are for benchmark warming studies for 2xCO;, with the majority of estimates focusing
primarily on the United States and OECD countries.!!

In our single-period model, estimates of the percentage of GDP loss associated with the

possible levels of climate change that we outlined previously are specified as follows:12

0%,  if Climate Change = Small;
. 0.5%, if Climate Change = Medium-Low;
Climate Change Impacts =
3%, if Climate Change = Medium-High;

30%, if Climate Change = Large.

11 A useful summary of the social costs of global climate change is found in Chapter 6 of Ref. [9].

12The values used here are consistent with various published damage estimates. See, e.g., Cline {14] and Nord-
haus [56].
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AOSIS Protocol Global

Annualized Costs 2000-2050 (billion 19859%) -353

NPV 1985-2050 (billion 19859%) -6,500
Percent Change in Annualized GDP from Base | -2.03%
Change in Carbon Emissions in 2050 (GtC) 11.5
Carbon Emissions 1985-2050 (GtC) 158.1
Delayed AOSIS Protocol Global
Annualized Costs 2000-2050 (billion 1985%) -322
NPV 1985-2050 (billion 1985%) -5,600
Percent Change in Annualized GDP from Base | -1.85%
Carbon Emissions in 2050 (GtC) 11.5

Change in Carbon Emissions 1985-2050 (GtC) | 152.5

Table 5.3: Global results from the MIT EPPA model for Strategies a, and as.

This set of values implies that climate change falling below the 1-5°C range is expected to
have negligible effects on social and environmental costs, whereas a change greater than 5°C
is expected to have a very large effect. The economic impact of climate change that falls within
the 1-5°C range is expected to range between 0.5% and 3% of GDP reduction.

Having specified the decision basis for the single-period model, we now address the task
of constructing a formal decision-analytic framework that provides a computationally-efficient
means by which to structure and numerically evaluate the GHG abatement policies outlined

above.

5.2 Influence Diagram Representation of the Decision Model

The construction of formal decision models generally necessitates the integration of three types
of knowledge [59]:

¢ Causal knowledge about how events influence, or relate to, one another;

» Knowledge about what action sequences are possible in a particular circumstance or de-

cision context;
* Knowledge about how desirable the potential consequences are.

Central to our decision model formulation is the concept of an influence diagram, which

serves as the formal means by which we structure and numerically evaluate the global climate
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change response options outlined above. The language of influence diagrams (IDs) provides an
elegant, robust, and computationally powerful means by which to represent decision problems
under uncertainty, at several levels of abstraction. As we discuss later in Chapter 6, it is this
last feature—computational efficiency—that serves as an important motivating factor in our
decision to use IDs as a modeling language for our decision-analytic framework.

At their simplest and, perhaps, most transparent level, IDs provide a graphical means by
which to qualitatively represent the key elements and components of a decision problem. At
this qualitative level of abstraction—often referred to as the relational or topological level—we
are able to graphically depict the flow of information among those actions and distinctions that
are thought to characterize the decision problem in question. At a deeper level of abstraction,
IDs are used to represent the functional and numeric relationships that characterize a decision

problem.

5.2.1 Formal Elements of Influence Diagrams

Influence diagrams possess a rich underlying mathematical structure. In real-world decision
problems, we are typically interested in modeling relationships in a domain consisting of de-
cision variables D and chance variables U. Influence diagrams provide a convenient means
by which to represent the relationships that exist between these variables. Formally defined,
an ID is an directed acyclic graph whose vertices represent either decision variables, random

variables, or value functions. Influence diagrams therefore consist of three types of nodes:

e Decision Nodes. Represent those actions that are under the full control of the decision-

maker, and are depicted graphically as squares (O);

» Chance Nodes. Represent the random or uncertain variables in a decision problem, and

are depicted graphically as circles or ovals (O);

» Value Nodes. Depicted graphically as diamonds or rounded squares (O).

The arcs in an ID have different meanings and interpretations. Specifically, arcs can be of
two types: (i) information arcs; and (ii) relevance arcs. As Figure 5-3 illustrates, an arc from
a chance or decision node A to a decision node B is said to be “informational,” in the sense
that the arc implies a time precedence, and states that the variable A is known to the decision-
maker at the time that decision B is made. A relevance arc from a chance or decision node A to
a chance node B denotes a probabilistic or functional dependency. The absence of a relevance
arc represents conditional independence between the variables in question.

Identifying relevance is an important task in the construction of an ID. In order to identify

relevance arcs, we begin by ordering the variables in U = (X1,..., Xy), and for each variable X,
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O

Information Arcs Relevance Arcs

Figure 5-3: Information and relevance arcs in influence diagrams.

specify a set par(X;) < {X1,...,Xi-1, D} such that

PI‘{Xi |X1,...,X1‘_1,D} =PI‘{Xi Ipar(Xi)}. (5.2)

In constructing the ID, for every variable z € par(X;), we place a relevance arc from z to X; in
the diagram. The nodes that belong to the set par(X;) are referred to as the parents of X;.
Following this procedure, associated with each chance node X; in an ID are the probability

distributions Pr {X; | par(X;)}. The so-called “chain rule” of probability states that

n
Pr{Xi,...,Xn | D} = [[PriX; | X1,...,Xi-1, D}. (5.3)

i=1

Given Egs. (5.2) and (5.3), it follows that any ID for U u D uniquely determines the following
joint probability distribution for U given D [5]:
n
Pr{Xi,...,Xn | D} = []Pr{X; | par(X;)}.
i=1
In recent years, a number of numerical procedures have been developed for computing the
optimal decision policy from an ID. A large class of ID solution procedures eliminate nodes from
the diagram via a series of so-called value-preserving transformations.!3 These transformations
preserve the joint distribution of the chance variables in the diagram, but they do not influence
the expected value of the diagram. In this way, at every step in the solution process, the modified

graph remains a well-formed ID.

I3For detailed, technical presentations of algorithms for evaluating IDs, see, e.g., Pearl [59, pp. 309-313] and
Shachter [70]. Lucid and accessible presentations of these and related topics are found in Clemen [13, pp. 81-83]
and Matzkevich and Abramson [51].
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Abatement
Costs

Abatement
Decision

Social Loss

Climate
Change

Climate Change
Impacts

Figure 5-4: Influence diagram representation of the single-period decision model.

5.2.2 Single-Period Decision Model

Figure 5-4 depicts a single-period ID for the decision basis that we specified earlier. The dia-
gram uses three types of nodes to represent each of the individual elements of the decision
problem. In particular, the diagram is seen to consist of one decision node (Abatement De-
cision), one chance node (Climate Change), and three value nodes (Abatement Costs, Climate
Change Impacts, and Social Loss). Beginning at the top-left portion of the diagram, the choice
of an abatement strategy is seen to influence Abatement Costs, i.e., each abatement strategy
has associated with it an economic cost. In addition, the choice of an abatement strategy is seen
to influence the probabilities associated with the chance variable Climate Change. The value
node Climate Change Impacts is seen to depend on the observed magnitude of the chance node
Climate Change. The right-most node, Social Loss, aggregates the expected costs and benefits
of pursuing a particular abatement strategy. Specifically, the value nodes Abatement Costs and

Climate Change Impacts are aggregated via the equation

Social Loss = Abatement Costs + Climate Change Impacts.

In interpreting the structure of the ID in Figure 5-4, we first note that there are no informa-
tion arcs in the diagram. Consequently, the diagram depicts what Manne and Richels [48] call

an act-then-learn decision strategy. Under such a strategy, an abatement decision is made in
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Abatement Decision Climate Change
) Bvaseline - Nor(”)ontroﬁ!fs 7 Smaﬁlﬁli -
Social_Loss
 AGSIS Protocol Medium-Low
Social_Loss
Delayed AOSIS Medium-High
Social_Loss
Stringent Abatement Large
Social_Loss

Figure 5-5: Schematic decision tree for the single-period model.

the near-term, without knowing which possible states of nature will obtain in the future. This
structure becomes readily apparent when we examine the model’s corresponding schematic
decision tree, shown in Figure 5-5. This figure depicts a situation where an abatement deci-
sion is made in the near-term, and then, at some point in the future, the magnitude of climate
change is observed. Associated with each possible state of nature is an economic consequence,

measured in terms of aggregate social loss.

5.2.3 Evaluation of the Single-Period Model

Having fully specified the single-period model, we now numerically evaluate the ID in Figure 5-
4 so as to determine an optimal decision policy. Figure 5-6 summarizes the optimal decision
policy for the ID.'¥ We observe that the optimal policy is to pursue Strategy a», i.e., AOSIS
Protocol. This abatement action has an expected social loss of 6.13%, whereas the other three
abatement strategies—No Abatement, Delayed AOSIS Protocol, and Stringent Abatement—have
expected social losses of 7.05%, 6.20%, and 13.75%, respectively.

Figure 5-7 depicts the so-called cumulative risk profile for the single-period model. The
risk profile depicts a cumulative probability distribution of possible outcomes for the optimal
policy, Strategy a,. In this profile, we see that our model specification is such that there is

no chance that aggregate social loss will be less than zero. Also, the risk profile rises quickly

14All of the decision models developed in this dissertation are implemented and numerically evaluated using the
Decision Programming Language (DPL) modeling environment. The technical details that underlie this decision
modeling environment are described in Call and Miller [11] and in Ref. [2].
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Figure 5-6: Decision policy summary for the single-period model.

between (roughly) 1.25% and 5%, and then levels off.

5.2.4 Sensitivity Analysis: Identifying Key Uncertainties

We now explore the manner and degree to which the policy prescriptions of the single-period
decisionmodel are sensitive to changes in the input data. The results of this type of analysis can
be used to identify key linkages and variables in the model, as well as to motivate subsequent
extensions and improvements to the model. We begin by examining the sensitivity of the model
outputs to changes in the values specified for Abatement Costs and Climate Change Impacts.

Estimates of the economic costs of GHG reductions are most sensitive to assumptions about
(i) appropriate model structure; (ii) demographic and economic growth; (iii) the cost and avail-
ability of energy demand- and supply-side options; (iv) the desired level and timing of abate-
ment; and (v) choice of policy instruments. Different assumptions about these and related
issues lead to a wide range of emissions reduction cost estimates. Similarly, estimates of the
economic impacts of climate change are likely to underestimate the true impacts of climate
change, the reason being that many of the effects that we associate with climatic change are
not fully quantifiable. Moreover, it is difficult to incorporate the effects that adaptation may
have on damage estimates.

The values that we use in the sensitivity analysis of Abatement Costs and Climate Change
Impacts are presented in Tables 5.4 and 5.5. Ideally, it would be useful to have some knowledge

about the underlying statistical variation in these values. In the absence of concrete knowledge
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Figure 5-7: Risk profile for the optimal static climate policy, Strategy a,.

Abatement Costs

Abatement Decision

Low Value | Nominal Value | High Value
No Abatement 0 0 0
AOSIS Protocol 1 2.03 3
Delayed AOSIS Protocol 9 1.85 2.8
Stringent Abatement 5 10 15

Table 5.4: Range of Abatement Costs for the single-period decision model.

of this sort, the values in both of these tables are specified so as to reflect a roughly three-fold
variation between the nominal value and the low-high extremes.

Figure 5-8 depicts a tornado diagram of our sensitivity analysis results. Tornado diagrams
are a convenient means by which to communicate and explore the relative impacts that alter-
native value specifications have on the expected value and policy prescriptions of a decision
model. In a tornado diagram, the horizontal bars are sorted from top to bottom, from most
important to least important. Importance is measured in terms of the relative impact that a
particular quantity has on the expected value of the optimal policy. Each of the horizontal
bars in a tornado diagram depicts a so-called value sensitivity analysis, which calculates the
change in expected value and optimal policy that is brought about by varying one variable in
the model, while holding all of the other variables fixed. In effect, a value sensitivity analysis

requires that we evaluate the model twice: once using the low value and once using the high
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Climate Change Impacts

Climate Change Low Value | Nominal Value | High Value
Small 0 0 0
Medium-Low 0.25 0.5 0.75
Medium-High 1.5 3 4.5
Large 15 30 45

Table 5.5: Range of Climate Change Impacts for the single-period decision model.

value. The length of the bars indicate the difference in the expected value between the two
runs; the expected value of the original model is indicated by a vertical line; shifts in optimal
policy are denoted by a change in color.

In Figure 5-8, we note that the optimal decision policy is most sensitive to the climate
change impacts associated with the large and medium-high levels of climatic change. The
decision model is, in addition, sensitive to the abatement costs specified for Strategies a»
and a3. The remaining value sensitivities depicted in Figure 5-8 have little or no effect on the

policy prescriptions, or the expected value, of the model.

5.2.5 Probabilistic Sensitivity Analysis

We now examine the sensitivity of the single-period model’s policy prescriptions to changes in
the probability distributions specified for the Climate Change chance variable. In particular,
looking again at Eq. (5.1), we specify—in Table 5.6—four alternative probability distributions
for p(sj|az), the probability distribution for Climate Change, given that optimal Strategy a»
is adopted. These subjective probability distributions span a broad range of possible beliefs
concerning the influence that Strategy a. is likely to have on future climate change. Evaluating
our primary model with each of the probability distributions shown in Table 5.6 reveals that the
model is, indeed, sensitive to the distributions specified for the Climate Change chance node,
given that Strategy a» is adopted. The bottom of Table 5.6 summarizes the optimal climate
policy choice and expected social loss that each probability distribution induces in the decision

model.

5.3 Valuing Information and Control

Information is, at a fundamental level, central to the evaluation of policy proposals. Formal

policy analysis often requires that we address issues concerning the cost, reliability, source, and
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Figure 5-8: Tornado diagram for Abatement Costs and Climate Change Impacts.

timing of information. In modern decision analysis, the notions of value of information and
value of control provide important conceptual schemes for systematically evaluating possible
opportunities for gathering information, and for gaining insights about the value of considering
alternatives that provide decision-makers with some measure of control over key variables [50].

In this section, we explore how the single-period decision model presented earlier can be
modified so as to lend itself to the exploration of issues concerning the valuation of information
and control. We begin our discussion with the notion of clairvoyance or perfect information, and
from there we go on to consider the more general notion of imperfect information. We follow

this presentation with a discussion of the concept of the value of control and its relevance to

Climate Change | Distribution; | Distribution, | Reference | Distributions | Distributiony
Small 0 0 2 .25 .75
Medium-Low 0 .25 4 .50 .25
Medium-High .25 .50 3 .25 0
Large .75 .25 1 0 0
Optimal Policy asz [6.2] ajs [6.2] a» [6.13] a; [3.03] ap [2.16]

Table 5.6: Alternative policy-dependent probability distributions for p(s;jlay).
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climate change decision-making.

5.3.1 Computing the Value of Clairvoyance

The value of clairvoyance or perfect information is typically construed as an upper bound on
the value of obtaining a specific piece of information. The basic question that concerns us
here is, “What is the value of knowing the outcome of an uncertain climate-change-related
quantity now rather than later?” We pose this question so as to gain insight about whether it
is economically viable or desirable to pursue specific policy actions or research programs that
could potentially resolve key scientific uncertainties in the greenhouse debate.

By definition, the expected value of perfect information (EVPI) can be zero or positive. If
the EVPI is zero, then the decision is said to be invariant to the information that we may re-
ceive. Suppose that we wish to compute the EVPI for the chance variable Climate Change in our
single-period decision model. Looking, again, at the ID shown in Figure 5-4, we recognize that
before we can perform a determinate value of clairvoyance calculation on Climate Change, we
must modify the basic structure of the diagram: Were it not for the influence arc from Abate-
ment Decision to Climate Change, the addition of an information arc from Climate Change to
Abatement Decision would allow us to calculate the value of the primary model with perfect
information about the magnitude of climate change.!> However, the addition of such an arc in
Figure 5-4 would introduce an illegal cycle into the diagram. In addition to this problem, there
is a conceptual difficulty with this approach that merits mention, namely, before revealing the
value of the uncertain quantity that interests us—in this case, Climate Change—the clairvoyant
must know what decision alternative has been chosen. As Howard [33] points out, if the clair-
voyant were able to answer our query in the absence of knowledge concerning which course
of GHG abatement action we have taken (or plan to take), then our actions would, in effect, be
predetermined.

In order to sidestep this dilemma, we modify our basic model so that it is represented in

canonical form:16

Definition 1 An influence diagram for uncertain variables U and decisions D is said to be in

canonical form if

1. Every chance node that is not a descendant of a decision node is unresponsive to D;

2. Every chance node that is a descendant of a decision node is a deterministic node.

15Such a procedure is typical of the manner in which determinate value of information calculations are performed
in formal policy analyses of global climate change. See, e.g., Hammitt [25], Manne and Richels [48], and Peck and
Teisberg [60].

16See, e.g., Howard [33] and Matheson [50].
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Figure 5-9: Clairvoyant Form for the chance variable Climate Change.

An ID that is in canonical form allows modelers to represent all of the causal dependencies
that exist in a given domain. In order to recast our single-period decision model in canonical
form, we begin by imagining that the clairvoyant is able to fill out a form such as the one
depicted in Figure 5-9. When filled out by the clairvoyant, the form indicates—for every course
of action that the decision-maker can take—whether or not the event will occur. Since there are
four possible abatement strategies that can be adopted, and four possible outcomes associated
with the chance variable Climate Change, there are 44 = 256 possible ways for the clairvoyant
to fill out the form.

In modifying our original ID, we assume that the answer the clairvoyant provides, given that
the decision-maker chooses to follow a particular abatement strategy, is probabilistically rele-
vant to the answers he would provide if the decision-maker were to follow another course of
action [33]. Such a characterization requires that we assign probabilities to receiving particular
reports from the clairvoyant. In order to explicitly model this probabilistic dependency, we re-
place the chance node Climate Change with four separate chance nodes, which we label (Climate
Change | a,), (Climate Change | a;), (Climate Change | a3), and (Climate Change | a4). In this
characterization, each of the four chance nodes for the variable Climate Change is conditioned
by one of the four possible abatement strategies. What this characterization does is separate
the variables under the decision-makers control from the variables he cannot influence [50]. To
complete our specification, we represent any mutual relevance that exists between these four

random quantities, as well as specify the probabilities that are associated with each of these
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Figure 5-10: Single-period decision model in canonical form.

chance nodes.

Figure 5-10 illustrates one possible way in which our single-period decision model can be
modified so as to reflect these ideas. We note that there are 4! = 24 possible assessment orders
for the uncertain variables in the revised model. For the purposes of illustration, we single out
the simplest possible assessment order: We assume that no mutual relevance exists between
the four random quantities. For each chance variable (Climate Change| a;), for i € {1,...,4},
we use the probability distributions listed in Table 5.1.17 Having specified the required prob-
ability distributions, we compute the value of complete clairvoyance on Climate Change—as
illustrated in Figure 5-11—by drawing an information arc from each of the four chance nodes
to the Abatement Decision node. Adding these information arcs stipulates that the decision-
maker has perfect information concerning the chance variables (Climate Change | a;) at the time
that the abatement decision is made, i.e., the outcomes of these chance variables are known
prior to making the abatement decision. The model therefore assumes that the decision-maker
follows what Manne and Richels [48] call a learn-then-act decision strategy, in the sense that

the magnitude of climate change is learned prior to choosing an abatement strategy.

17Given these assumptions, the IDs in Figures 5-4 and 5-10 are decision equivalent, i.e., the two diagrams share
the same optimal policy and expected value.
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Avatement Decision

Figure 5-11: Complete value of clairvoyance on Climate Change using the canonical form rep-
resentation of the single-period decision model.

In order to compute the value of complete clairvoyance on Climate Change, we first evaluate
the ID in Figure 5-11. The solution for this model yields an expected social loss of 1.42%.
Subtracting from this amount the expected social loss of the primary decision model shown
in Figure 5-10 yields an EVPI of 1.42% — 6.13% = —4.71%. This value can be interpreted as the
maximum amount that the decision-maker should be willing to pay a clairvoyant for perfect
information concerning the magnitude of climate change.

The canonical form ID described above can also be used to compute the value of partial
clairvoyance, i.e., the value of clairvoyance on Climate Change for each abatement policy indi-
vidually. This computation is achieved by adding only those information arcs that are of most
interest to the decision-maker. For example, looking again at the ID shown in Figure 5-10, in or-
der to compute the value of cost-free clairvoyance on Climate Change for Strategy a;, we draw
an arc from the node labeled (Climate Change | a;) to the Abatement Decision node. Evaluat-
ing the revised diagram yields an expected social loss of 2.28%. Subtracting from this amount
the expected social loss of the original model yields an EVPI of 2.28% — 6.13% = —3.85%. In
Table 5.7, we summarize the expected value of cost-free clairvoyance on Climate Change, for

each abatement policy individually.
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Abatement Decision | Value of Partial Clairvoyance
ax -3.85%
a -2.58%
as -2.50%
aq 0.00%

Table 5.7: Value of cost-free partial clairvoyance on Climate Change, for each individual abate-
ment option.

5.3.2 Computing the Value of Imperfect Information

Human decision-makers rarely find themselves in situations where they have access to perfect
information concerning uncertain quantities of interest. In truth, the notion of clairvoyance or
perfect foresight can, in many ways, be seen to be little more than a convenient fiction. The
more realistic case arises when the decision-maker has the option of consulting an imperfect
information source that is, for whatever reason, limited in it’s ability to foresee the course of
future events.

The value of imperfect information is defined mathematically as the difference between the
expected utilities associated with two optimal decision strategies: one decision path allows
the decision-maker to choose an information source, whereas the other decision path does
not allow this opportunity. The expected value of the information source is computed as the
(posterior) expected difference between the utilities (or monetary values) that correspond to
optimal decisions with and without the information source.

In practice, decision-makers are often faced with situations where they must choose among
competing sources of information. The canonical approach to evaluating an information source
is depicted in the decision tree shown in Figure 5-12.1% Reading the tree from left to right, we
first decide whether to consult the information source in question, or to act without it. If
we choose to consult the information source, we then observe potential reports, 7, from the
information source. Next, we choose a possible course of action, a. Having chosen a decision
path, nature then chooses a state, s.

The numerical procedure that we use to compute a determinate value of the information
source has two parts. We begin by focusing on the upper portion of the tree in Figure 5-12.

Using the process of backward induction,'® the utility of report v, U(r), is given by

Ur) = mngPr(s [ v)U(a,s).

18This figure is adapted from Bernardo and Smith [6] and Pearl [59].
19See, e.g., Bernardo and Smith [6] and Raiffa [63].
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Figure 5-12: Assessment of an imperfect information source.

Thus, the expected utility of consulting the information source I is given by
Up=>Pr(r)Ur)=> > Pr(r|s) Pr(s) U(r),
v v s

which reflects the probability of obtaining report », and the utility of acting optimally after
receiving it. It is important to recognize that the conditional probability, Pr(r | s), fully char-
acterizes the nature of the information source. This conditional probability measures what
Pearl [59] calls the “fidelity” with which » “mirrors” s.

Looking, now, at the lower path in Figure 5-12, we see that U reflects the utility of not

consulting the information source, and is given by
Up = max > Pr(s) U(a,s).
a s

The value of the information source n = Pr(r | s) is now defined as the difference between

the upper and the lower paths in our decision tree. Specifically, we have that

Vin) = Ur-U

> max [Z Pr(s | ) U(a, 5')] Pr(r | s) Pr(s)
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— max > Pr(s)U(a,s).

It is easily shown that the value of the information source is always nonnegative, i.e., V() = 0.

The canonical form ID shown in Figure 5-10 is easily modified so as to allow one to per-
form determinate value of imperfect information calculations in the manner described above.
Suppose, for example, that we wish to compute the value of imperfect information on Climate
Change for abatement policy as. To do so, we add a chance node to the diagram that represents
an imperfect information source or forecast concerning the chance variable Climate Change,
given that abatement policy a3 is adopted. The revised ID is shown in Figure 5-13. In this
diagram, we assume that the forecasts and the event outcomes are represented by the same
categories that we defined earlier for the chance variable Climate Change. Thus, we define a

chance variable
(Climate Forecast | az) = {“Small”, “Medium-Low”, “Medium-High”, “Large”},

where the quotes denote forecasts of the four climate change categories. For this new ID, we
must specify the relative frequency of each category, Pr{Climate Change | a3}. In addition, we
must specify a likelihood matrix, F, whose i row and j™ column consists of the following

conditional probabilities:
p(i|j) = Pr{(Climate Forecast|a3) = r; | (Climate Change | a3) = s;},

where 7; € (Climate Forecast | a3) and s; € (Climate Change| a3).

For the purposes of illustration, let us suppose that the chance variable (Climate Change | a3)
is characterized by the probability distribution that we specified earlier in Table 5.1. For the
likelihood matrix F, we follow Manne and Richels [48] and assume that forecast errors are
symmetrically distributed.?’ In this way, we assume that a climate forecast is equally likely
to overestimate or underestimate the actual climate change outcome. Thus, for the chance
variable (Climate Change | a3), we assume that the likelihood matrix F takes the form depicted
in Table 5.8. In this table, the parameter o (labeled ‘sigma’ in the ID shown in Figure 5-13)
is a measure of the accuracy of the climate forecast. By inspection, we see that if ¢ = 1/4,
then all of the climate forecasts are characterized as being equally probable; consequently, the
forecasts fail to provide the decision-maker with additional new information. Alternatively,

if o is equal to unity, then the climate forecasts represent perfect information concerning the

20This assumption should, of course, be modified if available evidence suggests that the climate forecast errors
are characterized by a different distributional form. Also, we note that the analysis presented here differs from
that of Manne and Richels [48] in one important respect, namely, we model the probabilistic influence that policy
choice has on the possible states of nature associated with climatic change.
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Abatement Decision

Figure 5-13: Canonical form ID for computing a determinate value of imperfect information on
(Climate Change | a3).

chance variable Climate Change. In this way, increasing values of ¢ in the interval 1/4 to 1 give
rise to increases in the accuracy of the climate forecasts.

In order to evaluate the ID in Figure 5-13, we must specify a value for o. For the purposes
of illustration, we consider three separate cases: o = 0.4, ¢ = 0.6, and o = 0.8. Evaluating
the diagram with each of these three values for o yields expected social losses of 5.67%, 4.99%,
and 4.31%, respectively. Subtracting from these values the expected social loss of the primary
model (6.13%) yields expected values of imperfect information of -0.46%, -1.14%, and -1.82%,
respectively. Clearly, the value of imperfect information increases with the accuracy of the
climate forecast, which agrees with our intuition.

At this point, it is useful to explore the influence that receiving a particular climate forecast
has on the policy-dependent prior probability judgements concerning climate change. Specifi-
cally, we now address the question of how the decision-maker’s prior probability assessments
concerning the level of climatic change are revised or updated in light of new information. In
the context of our discussion here, this new information takes the form of categorical forecasts
of climatic change, and the ID shown in Figure 5-13 provides a useful computational vehicle

for exploring this issue.
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| Climate Change
Climate Forecast
Small | Medium-Low | Medium-High | Large
“ ”» 1-o 1-o 1-0o
Small o 3 3 3
“Medium-Low” | 52 o e e
“Medium-High” | 5% e o Le
“« » 1-— 1- 1-
Large 3 3 3 4

Table 5.8: Likelihood matrix for value of imperfect information calculations.

As discussed previously in Section 5.2.1, it is possible to transform any well-formed ID by
means of so-called value-preserving operations. Of interest to us here is an operation called
arc reversal, which provides a computational means by which to perform Bayesian inversion
calculations. Looking, again, at the ID shown in Figure 5-13, we are interested in reversing the
arc that goes from (Climate Change | a3) to (Climate Forecast | a3), so as to compute the poste-
rior prob<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>