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Abstract

Current efforts to confront the prospect of anthropogenic global warming present policy an-
alysts, decision-makers, and intergovernmental negotiators with a host of challenges. The
technically-intensive nature of the policy debates that surround the climate change problem
are complex and multifaceted. Much of the uncertainty that underlies the greenhouse debate
arises, in part, from an incomplete understanding of critical features of atmospheric and cli-
mate science. Difficulties in predicting future levels of anthropogenic emissions of key green-
house gases (GHGs), and their effects on the global carbon cycle, make it difficult to reliably
assess the potential magnitude and timing of global climate change. Moreover, there are in-
herent difficulties in drawing reliable inferences as to the potential socio-economic impacts
of climatic change, as well as the likely costs, benefits, and effectiveness of possible response
strategies.

In this dissertation, we approach the problem of greenhouse warming from two comple-
mentary perspectives: (i) uncertain inference or prediction; and (ii) decision-making under un-
certainty. Proceeding from these two vantage points, we set forth an integrated decision analy-
sis (IDA) framework for structuring and evaluating complex policy decisions concerning global
climate change and its potential socio-economic consequences. Our model formulation and
discussion proceeds in four parts. First, we derive two reduced-scale models of the global cli-
mate system. These computationally-efficient models represent those processes that have the
greatest influence on climatic change, and they permit nimble execution of long-term policy-
dependent projections of global climate change. Second, we use econometric and statistical
time series estimation techniques to numerically calibrate the reduced-scale models so that
they essentially mimic the transient behavior of a larger global climate model that is contained
within the MIT Integrated Global System Model (IGSM). Third, we develop static and sequen-
tial decision models for evaluating several GHG abatement policies that are currently being
debated under the United Nations Framework Convention on Climate Change. The IDA frame-
work draws structural linkages between the reduced-scale representations of the global climate
system and the MIT IGSM. In addition, the framework provides a computational vehicle for ex-
ploring the role of learning in climate change decision-making. Finally, we conclude with an
assessment of the policy relevance of our findings.
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Chapter 1

Introduction

Current efforts to confront the prospect of anthropogenic global warming present policy an-

alysts, decision-makers, and intergovernmental negotiators with a host of challenges. The

technically-intensive nature of the policy debates that surround the climate change problem

are complex and multifaceted. Much of the uncertainty that underlies the greenhouse debate

arises, in part, from an incomplete understanding of critical features of atmospheric and cli-

mate science. Difficulties in predicting future levels of anthropogenic emissions of key green-

house gases (GHGs), and their effects on the global carbon cycle, make it difficult to reliably

assess the potential magnitude and impacts of global climate change. The climate change prob-

lem is, in addition, characterized by several unique features, all of which complicate efforts to

arrive at reasoned responses to the prospect of anthropogenic global warming. For example,

the time horizons that must be considered in the evaluation of climate change response strate-

gies are on the order of one or more centuries. And although the climate change problem is

global in scale, the spatial and temporal distribution of impacts is likely to be non-uniform.

Moreover, the physical inertias that drive the global climate system are such that the poten-

tial social-economic and environmental impacts associated with climatic change are, to varying

degrees, irreversible.

It is interesting to note that the history of scientific study of global warming is, in fact,

long and varied. Fourier [22] was, perhaps, the first to notice-more than a century ago-

that the Earth is a greenhouse, kept warm by an atmosphere that reduces the loss of infrared

radiation. The overriding importance of water vapor as a greenhouse gas was recognized even

then. In the late 1890s, Arrhenius [3] was the first to quantitatively relate the concentration of

carbon dioxide (C0 2) in the atmosphere to global surface temperature. Scientific understanding

has, of course, increased since then, particularly stimulated in the latter half of this century

by the conclusion of Revelle and Suess [64] that anthropogenic emissions of CO2 would, in
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the near-term, exceed the rate of uptake by natural sources. Also stimulating interest in the

scientific community was the demonstration by Keeling et al. [39] that atmospheric CO2 is

steadily increasing. These scientists' warnings had little effect on public opinion or policy until

the summer of 1988, at which time it was noted that five out of the previous six summers in

the United States were the hottest on record. In addition, the long-term global temperature

record was presented to the United States Congress, suggesting that a global-mean warming

had emerged above the natural background variation [27].

Most of the observed warming in this century occurred before 1940, when anthropogenic

emissions of greenhouse gases were much lower than they are today. Observations such as this

have led some scientists to question the reality, or at least the imminence, of global warming. 1

Although the cooling caused by anthropogenic aerosols seems likely to have masked the effect

of rising CO2 emissions, the explanations presented to Congress were viewed as cause for con-

cern by many people. In the ensuing policy debates, few proponents have enunciated clearly

how-in their view-society should proceed in the face of large scientific uncertainty concern-

ing the prospect of global warming. Should society ignore the prospect of global warming,

until there is more definitive and direct evidence for its occurrence, and until there is a bet-

ter understanding of the potential adverse consequences associated with its occurrence? Or,

rather, should society argue for immediate action to prevent anthropogenic changes that are

comparable to natural disasters, and that might have dramatic effects at a future time when

society has developed habits that may be difficult to curtail or reverse?

Present-day efforts to confront and, ultimately, manage the prospect of anthropogenic cli-

mate change have lead researchers to propose a broad range of analytical frameworks and

methodologies for characterizing and evaluating the various dimensions of the problem. In

recent years, it has become commonplace and fashionable for economists, policy analysts, and

climate researchers to focus their efforts on the development of a class of models commonly

referred to as integrated assessment models of global climate change. Integrated assessment

models (IAMs) are characterized by their broad-based, comprehensive approach to the analysis

of the climate change problem. IAMs seek to represent the most salient features of the climate

change problem, and are typically comprised of analytically-tractable linkages between (i) mod-

els of atmospheric, oceanic, and biological processes; (ii) models of the global climate system;

and (iii) models of the socio-economic processes that influence, and are affected by, climatic

change.2 In order to inform climate policy choice, IAMs seek to provide policy analysts and

decision-makers with answers to the following sorts of questions:

1See, e.g., Balling [4] and Seitz [68].
2For insightful discussions on current approaches to climate-change-related integrated assessment modeling,

see, e.g., Dowlatabadi [17], Parson [58], and Toth [76].
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* When, and by how much, should GHG emissions be reduced to achieve specific levels of

atmospheric GHG concentrations or climatic change?

* Should governments wait for more information about key uncertainties before allocating

scarce resources?

In this dissertation, we set forth an integrated assessment methodology that is seen to con-

sist of two complementary components: uncertain inference or prediction, on the one hand,

and decision-making under uncertainty, on the other. Long-term projections of future climate

are an important aspect of integrated assessments of global climate change. Such predictions

are, however, characterized by large degrees of uncertainty, which, in turn, makes it difficult

to draw reliable inferences as to the potential socio-economic impacts associated with climatic

change. Reasoned decision-making about the prospect of anthropogenic global warming re-

quires that we integrate this type of information with additional knowledge and information

concerning the risks, costs, and benefits that characterize the range of possible climate change

response options.

Integrated assessment modeling is, in many respects, an emerging discipline and practice.

In recent years, researchers have proposed a number of approaches for the development of

such models. In its latest report, Working Group III of the Intergovernmental Panel on Climate

Change (IPCC) highlights two challenges currently facing integrated assessment modelers [9]:

* Integrating and managing a large and diverse array of data and models from many re-

searchers and a range of disciplines;

* Improving the relevance of the models to policy needs, as well as the presentation of

model results to policymakers.

In this dissertation, we address these concerns in the context of a policy-oriented, integrated

decision analysis (IDA) framework for structuring and evaluating GHG abatement policies un-

der uncertainty. The IDA framework is intended to aid policymakers and negotiators in their

efforts to formulate and evaluate reasoned responses to the prospect of greenhouse warming.

The framework integrates knowledge and information concerning the magnitude, timing, and

impacts of climate change, as well as information concerning the likely effectiveness and cost

of possible response options.

Given the scale and complexity of the climate change problem, there are, of course, a plu-

rality of approaches that can be taken in the formulation and evaluation of GHG abatement

strategies.3 The modeling approach that we adopt here is markedly decision-oriented, in that

3See, e.g., Nordhaus [55] for an insightful overview of the range of analytical frameworks and economic models
that have been brought to bear on the problem of evaluating climate change response strategies.



1. INTRODUCTION

the methodology imposes a formal decision-theoretic frame on the manner in which climate

change response options are structured and evaluated. Our motivation for pursuing a decision-

oriented approach to integrated assessment modeling stems, in part, the IPCC's recent commen-

tary that "treatments of decision making under uncertainty... are at present poorly developed

in international environmental economics, and especially in the climate change literature" [9,

p. 7]. Moreover, the IPCC makes the expectant claim that "decision analysis can be a powerful

tool for understanding the barriers to making optimal choice. Thinking about climate choices

as decision analysis problems may highlight those aspects most likely to affect the decision

process" [9, p. 62]. The methodology and analysis that we set forth here can, in the context of

these remarks, be seen to provide answers to the following closely-related set of questions:

* What does modern decision science have to contribute to the emerging theory and practice

of integrated assessment modeling of global climate change?

* Viewed from a decision-theoretic perspective, what policy actions-if any-should be

taken in response to the prospect of anthropogenic climate change?

In this light, the contributions made here to the climate change literature are both methodolog-

ical and policy-analytic in character.

The structure of our IDA framework attempts to incorporate the most salient aspects of the

greenhouse problem. In Figure 1-1, we provide a schematic representation of the framework's

key components. The framework breaks down the evaluation of climate change response op-

tions into six basic components: (1) changes in anthropogenic carbon emissions; (2) changes

in atmospheric CO2 concentrations; (3) changes in the radiative balance of the global climate

system; (4) changes in global-mean surface temperature; (5) physical outcomes associated with

changes in global-mean surface temperature; and (6) economic valuation of climate-change-

related impacts.

Our IDA framework serves as a bridge--conceptual and otherwise-between two different

ways of approaching the task of integrated assessment modeling. In particular, the modeling

approach set forth here draws explicit linkages between (i) the policy evaluation capabilities of

the MIT Global System Model (IGSM), which is rich in physical and biogeochemical detail;4 and

(ii) the policy optimization capabilities of a complementary set of decision-theoretic models for

evaluating climate change response options under uncertainty.

The MIT IGSM is designed to seek the best tradeoff between scientific detail and computa-

tional performance. However, even given this attention to computational efficiency, bottlenecks

arise, because the IGSM contains subcomponent models that require substantial storage and

4 Specific components of the MIT IGSM are described in more detail in subsequent chapters of this dissertation.
For a comprehensive overview and description of the IGSM, see Prinn et al. [62].
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Figure 1-1: Schematic representation of the integrated decision analysis framework for evalu-
ating global climate change response strategies.

execution time. In order to deal effectively with the limitations that computational constraints

such as these impose on our ability to systematically trace-out the effects of policy choice on

future climate, an important feature of our integrated modeling approach is the development

of reduced-scale representations of the global climate system. As we discuss in the next sev-

eral chapters, these computationally-efficient models represent those processes that have the

greatest influence on climatic change, and they permit nimble execution of long-term policy-

dependent projections of global climate change. These models are, in addition, numerically

calibrated in such a way that they essentially mimic the transient behavior of a larger, more

complex global climate model that is maintained within the MIT IGSM.

Because of their ability to mimic the transient behavior of their larger counterpart, these

small and nimble models are capable of informing our understanding of the characteristic

behavior of the IGSM. The reduced-scale models can, in this way, be used in an exploratory or

experimental fashion to specify or design IGSM simulations and experiments. The modeling

approach that we describe here is iterative in character: A study of climate policy using the

IGSM produces a set of system outputs; the reduced-scale models are, in turn, calibrated against

the integrated system output; the nimble models are then used to explore wider domains of
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Analysis of Climate Policies
and Uncertainties

MIT Integrated Reduced-Scale
Framework Models

Figure 1-2: Interplay between the reduced-scale models and the MIT IGSM (Source: Jacoby,
Kaufman, and Valverde (1995)).

policy choice than can be easily done with the computationally expensive IGSM (e.g., uncertainty

analysis, sensitivity analysis, etc.); finally, this exploration of policy choice can, in turn, guide

future decisions concerning which policies should be explored using the IGSM.

Figure 1-2 provides a schematic illustration of the interplay that exists between the IGSM and

our reduced-scale modeling approach. In explaining this figure, we begin with the arrow at the

lower left. The arrow represents the results of system experiments (e.g., GHG emission scenario

studies, sensitivity analysis, etc.) that are conducted on the IGSM. These results are then used

to (i) calibrate the reduced-scale models; (ii) inform the definition of policies to be studied;

(iii) guide subsequent revisions of model structure; and (iv) estimate key model parameters.

Proceeding around the top of Figure 1-2, the reduced-scale models can also be used to inform

subsequent analyses of climate policy, using the limited numbers of runs that are feasible within

the larger integrated framework. The reduced-scale results can also provide information as to

which uncertainties are most likely to be important to policy choice. This information can, in

turn, lead to a judicious selection of cases to run using the more computationally expensive

parts of the IGSM's interactive set of models. And so the analysis proceeds around the diagram,

so long as the expected learning from additional rounds is perceived to be worth the cost of
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analysis.

In the chapters that follow, we lay out the individual components that, together, comprise

our IDA framework. The organization of our presentation follows the transition diagram shown

in Figure 1-1. We begin, in Chapter 2, with a discussion of the nature of the relationship

between global carbon emissions, changes in atmospheric CO2 concentrations, and changes in

CO2-induced radiative forcing. As part of this discussion, we describe the nature of the global

carbon cycle, and, in addition, we present several simplified carbon cycle models.

In Chapter 3, we address the related problems of climate modeling and prediction. We

begin with a discussion of the major components of the global climate system, and then move

to a discussion of the types of models that are used in its prediction. We then derive two

reduced-scale global climate models that serve as key inputs to our IDA framework. The chapter

concludes with the presentation of a simultaneous equations model for global climate change
assessment.

In Chapter 4, we address the problem of numerically calibrating the reduced-scale global

climate models presented in Chapter 3 to transient simulations of the MIT 2D-LO global climate

model. Our calibration procedure utilizes econometric and statistical time series techniques to
estimate key reduced-scale model parameters. The calibrated reduced-scale models are subse-

quently used to compute long-term, policy-dependent projections of global climate change.

In Chapters 5 and 6, we present static and sequential analyses, respectively, of several GHG

abatement policies that are currently being debated under the United Nations Framework Con-

vention on Climate Change. Chapter 5 begins with a brief discussion of the decision-theoretic

concepts that underlie our modeling approach. We follow this discussion with the formal
specification of a decision basis for evaluating GHG abatement policies under uncertainty. We

then implement and numerically evaluate the decision basis within a graphically-based decision
framework. As part of our analysis, we use deterministic and probabilistic sensitivity analyses

to identify key uncertainties in the decision model. Finally, we consider the problems of valu-

ing information and control, and we discuss the relevance of these concepts to climate change
decision-making.

In Chapter 6, we consider the problem of climate change decision-making from a multi-

period or sequential perspective. The chapter begins with an introduction to the basic concepts
that underlie our sequential modeling approach. We then extend the static decision model

presented in Chapter 5 to two periods. The chapter concludes with an in-depth examination of
the role of learning in climate change decision-making.

Finally, in Chapter 7, we conclude with a summary of our research findings, and we propose
several possible directions for future research.



Chapter 2

Radiative Forcing of Climate Change

A central feature of the integrated modeling approach that we set forth in this dissertation is the

ability to assess the likely influence of policy choice on future climate. As an incremental step

towards achieving this predictive capability, in this chapter we consider the first two linkages

of the global climate change transition diagram shown in Figure 2-1. In particular, we consider

the nature of the relation between global CO2-equivalent emissions, changes in atmospheric

CO2 concentrations, and changes in radiative forcing. Our presentation is organized along the

following lines. We begin with a brief introduction to the concept of radiative forcing, and from

there we go on to consider the topic of CO2-induced radiative forcing. We then discuss several

key features of the global carbon cycle. As part of this discussion, we present three analytically-

tractable frameworks for modeling the gradual accumulation of CO2 concentrations in the

Earth's atmosphere.

2.1 Introduction

Radiative forcing is formally defined as a change in the average net radiation at the tropopause,

brought about by changes in either the incoming solar radiation, or in the outgoing infrared

radiation. Radiative forcing therefore disturbs the balance that exists between incoming and

outgoing radiation. As the climate system evolves over time, it responds to the perturbation

by slowly re-establishing the radiative balance. In general, positive radiative forcing tends (on

average) to give rise to surface warming, whereas negative forcing tends (on average) to give

rise to surface cooling.

The Earth's climate is influenced largely by changes in radiative forcing that arise from

changes in the concentrations of radiatively-active gases in the troposphere and the strato-

sphere. As Figure 2-2 illustrates, the global climate system is driven primarily by incoming
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Figure 2-1: Transition between global carbon emissions, atmospheric CO2 concentrations, and
radiative forcing.

solar radiation. On an annually-averaged global scale, roughly one-third of the incoming solar

radiation is reflected back out into space. Some of the outgoing (infrared) radiation is partially

absorbed, and is then re-emitted by naturally-occurring GHGs. This so-called natural green-

house effect warms the surface temperature of the Earth by approximately 330 C more than it

would otherwise be if naturally-occurring GHGs were not present. The remaining two-thirds

of the incoming radiation is absorbed by the atmosphere, land, ice, and ocean surfaces. In

Figure 2-2, we see that the solar radiation that is absorbed by the Earth's atmosphere and

surface (- 240 Wm-2) is-in the long run-balanced by outgoing infrared radiation. Thus, in

equilibrium, the absorbed solar energy is balanced by the radiation that is emitted to space by

the planet surface and atmosphere. Any factor that disturbs this balance is called a radiative

forcing agent [32]. In the discussion that follows, we focus on the changes in radiative forcing

that are brought about by changes in atmospheric CO2 concentrations.

2.2 Carbon Dioxide Radiative Forcing

Long-term predictions of anthropogenic emissions of key GHGs play an important role in cur-

rent efforts to obtain reliable predictions of future concentrations of radiatively and chemically

important trace species. Emissions of the long-lived gases-C0 2, methane (CH4), nitrous oxide

(N20), and chlorofluorocarbons (CFCs)-are central to assessing changes in radiative forcing.

Because of their influence on atmospheric chemistry, emissions of several short-lived gases,

such as nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon monoxide (CO), are also impor-

tant. Carbon dioxide is the most important anthropogenic GHG. The importance of CO2 as a

GHG stems, in part, from the fact that its emissions are directly influenced by human activities.

Moreover, ignoring the uncertain effects of the CFCs and changes in ozone, increases in CO2

have, to date, contributed to roughly 70% of the enhanced greenhouse effect, with CH4 and N20

accounting for the remaining - 23% and ~ 7%, respectively. Carbon dioxide is therefore likely

to play a dominant role in future warming, whereas, over the course of the next century, the

role of other GHGs is expected to be relatively minor.

Long-term projections of non-CO2 GHGs are, at present, highly uncertain. Given this con-

I
m m
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Figure 2-2: Schematic representation of the global long-term radiative balance of the Earth's
atmosphere.

sideration, together with those outlined above, it is common practice to take these other gases

and convert them to equivalent amounts of CO2. These so-called C02 -equivalents represent

the amounts of CO2 that would give rise to the same radiative forcing. In this dissertation,

we adopt this C02-equivalent emissions approach, in that it provides a reasonable approxima-

tion to more computationally-burdensome and expensive analyses that treat each GHG in an

individual fashion.

GHGs are typically classified in terms of their levels of concentration in the atmosphere, and

in terms of the strength of their absorption of infrared radiation. Since pre-industrial times, CO2

levels in the atmosphere have increased by more than 25%, from approximately 280 ppmv1 to

approximately 356 ppmv [7]. At present levels of atmospheric CO2 concentrations, the relation

between changes in GHG concentration levels and radiative forcing is strongly nonlinear [7].

This relation is typically expressed in terms of changes in net radiative flux at the tropopause

(i.e., the top of the troposphere). In formal terms, we can represent these changes as

11 ppmv - 1 part per million by volume.
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AF(t) = f ( C(to), C(t) ),

where AF(t) denotes the change in net flux measured in Watts per square meter (Wm -2 ) cor-

responding to a volumetric concentration change from the initial concentration level at time

period to to the concentration level at some later time period t.

Climate modelers utilize detailed radiative transfer models to explore the relationships that

exist between radiative forcing and the atmospheric concentration levels of key GHGs. These

radiative transfer models attempt to simulate the variation of the absorption and emission for

specific GHGs, as a function of wavelength. These models also account for any overlap that

exists between the absorption bands of the gases, as well as for the effects that clouds have on

radiative transfer [32].

The concentration-forcing relationships that are derived from radiative transfer models are

typically characterized by complicated functional forms. These complicated representations

can, however, be used to derive simpler analytical expressions. For carbon dioxide, the func-

tional form of f is well approximated by presuming a logarithmic dependence of AF(t) on C(t).

Specifically,

AF(t) = 6.3 In C(0()) , (2.1)

where C(to) and C(t) are the atmospheric concentrations of CO2 in ppmv at times to and t,

respectively. Equation (2.1) yields reasonable approximations of CO2 -induced radiative forcing

for values of C(t) less than 1000 ppmv. 2

It is worth noting that the uncertainty that underlies the specification of the CO2 forcing-

concentration relationship arises from several sources. First, the radiative transfer models

that are used to derive the complicated functional forms that ultimately give rise to Eq. (2.1)

are themselves uncertain. For example, Shine et al. [71] cite a 1984 study that places the un-

certainties at around ±10%. In a more recent study, Cess et al. [12] document the uncertainties

2We note that in a recent study, Nordhaus [57] uses a somewhat different CO2 forcing equation than that given
by Eq. (2.1). The relationship between GHG accumulation and increased radiative forcing used by Nordhaus is given
by

AF(t) - 4.1 log[C(t)/590]
log 2

where C(t) denotes the atmospheric concentration of CO 2 in ppmv at time period t. Nordhaus states that this
forcing equation is "not controversial." As we discuss below, this statement is not altogether accurate. Also,
Nordhaus states erroneously that this equation is used by the Intergovernmental Panel on Climate Change in their
1990 report [32]; in fact, the IPCC report uses Eq. (2.1). In comparing these two equations, it is important to
recognize that each implies a different level of forcing in response to a static doubling of atmospheric CO2, and
will lead-other things being equal-to a different climate sensitivity. Specifically, the Nordhaus equation implies
a climate sensitivity of 4.1 Wm - 2, whereas Eq. (2.1) implies a climate sensitivity of 4.4 Wm - 2.
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in carbon dioxide radiative forcing in 15 GCMs. A series of CO 2 doubling experiments revealed

substantial differences among the 15 models. In accounting for these differences, Cess et al.

suggest several hypotheses:

* Differences in the lapse rate among the models;

* Differences in the atmospheric water vapor distributions among the models;

* Differences in the parameterization of radioactive overlap in the radiation codes of the

models;

* Differences in the GCM cloud fields.

Cess et al. found that the largest contributor to the observed model-to-model variations

was the carbon dioxide radiation parameterizations used in the GCMs. In addition, they found

that the models used in the study gave a global warming average of approximately 40C, and

produced an average CO2 forcing of 4.0 Wm - 2. These results are equivalent to an average

climate sensitivity of 10C of warming for each 1 Wm - 2 of radiative forcing. In discussing the

implications of this finding, Cess et al. make the following observation: Imagine that the 15

GCMs used in the study possess the same climate sensitivity of 1C warming per 1 Wm - 2

and, in addition, possess the same observed forcing variation. Under this set of assumptions,

for presumed CO2 concentration levels, the global warming projections given by the 15 GCMs

would range from 3.40C to 4.7 C just because of their forcing differences. This is an important

observation, in that the range is substantial and, moreover, constitutes nearly half of the often-

quoted IPCC climate sensitivity range of 1.50 - 4.5 0 C. We note that the IPCC range is based only

on feedback uncertainties, and assumes no differences in the forcing. Also, the 3.4'C lower

bound specified by Cess et al. is well above the IPCC "best estimate" of 2.5'C. Findings such as

this provide an initial basis for explaining the degree of scientific uncertainty that surrounds

current climate sensitivity estimates.3

2.3 Modeling the Global Carbon Cycle

An important aspect of global climate change assessment concerns the manner in which the

carbon cycle is modeled. The storage and transport of carbon in the atmosphere is a process

that is only partially understood. During the course of the past decade, atmospheric scien-

tists have improved their understanding of how the removal of CO2 from the atmosphere is

distributed between sinks in the ocean and on land. In this biological, chemical, and physical

3For a discussion concerning the range of scientific opinion about climate sensitivity, as well as other key climate-
change-related quantities, see Morgan and Keith [53].
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process, carbon is transferred or exchanged between the atmosphere, oceans, and terrestrial

biosphere. In the global climate system, the net uptake of anthropogenic CO2 by the deep

oceans occurs very slowly. Consequently, anthropogenic CO2 has a long-lasting effect on at-

mospheric concentrations and future climate. In the 1980s, the average rate of increase in

atmospheric CO2 concentrations was on the order of 1.5 ppmv/year, which is equivalent to

3.2 GtC/year [7]. Viewed on a decadal time-scale, the proportion of anthropogenic emissions

remaining in the atmosphere has stayed relatively constant at approximately 50%.

In order to model the global carbon cycle, there are several key processes that need to be

considered [7]:

* The exchange of CO2 between the atmosphere and the ocean;

* The exchange of CO2 between surface waters and long-term storage in the deep ocean;

* The net release or uptake of CO2 from changes in land-use practices;

* Photosynthetic uptake, storage, and transfer of CO2 by soil and plants.

Current efforts to negotiate so-called quantified emission limitation and reduction objectives (QEL-

ROs) require an understanding of the nature of the relation between carbon emissions and

atmospheric CO2 concentrations. Naturally, climate-change-related targets can be defined in a

number of ways. Say, for example, that an international agreement is reached whereby Annex I

countries 4 abate GHG emissions so as to achieve an emissions target, E*, by the year 2010.

Figure 2-3 illustrates three separate emission time-paths that achieve this target. Though each

path leads to the same target, the accumulation of CO2 concentrations in the atmosphere will

differ for each carbon emission path.

Alternatively, QELRO-type agreements can be cast in terms of cumulative emission targets,

where a cap or upper bound is placed on the total sum of carbon emissions that are allowed

within a particular time frame. We illustrate this concept in Figure 2-4. Although the cumulative

emissions from 1990 to 2100 are (roughly) the same for paths A and B, the concentration

trajectories associated with each of these emission paths (illustrated in Figure 2-5) differ from

one another, as do their implied commitments to warming. In this way, the specification of a

cumulative emission target gives rise to various possible emission time-paths that achieve the

target. For this reason, the shape of the emission time-path is an important consideration, in

that early reductions may give rise to potentially beneficial outcomes.

Recent policy proposals for confronting the prospect of anthropogenic global warming have

focused on the goal of stabilizing atmospheric concentrations of carbon dioxide. In order to

evaluate CO2 stabilization policies, we must pose two fundamental questions [7]:

4Annex I countries consist of the OECD nations (except Mexico), plus 12 so-called "economies in transition" in
the former Soviet Union and Eastern Europe.
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Figure 2-3: Three alternative carbon emission time-paths that achieve the same emission target,
E*, in the year 2010.

* For a given CO2 emission time-path, in what way are atmospheric CO2 concentrations

likely to evolve in the future?

* For a given atmospheric CO2 concentration trajectory leading to stabilization at some

predefined level, what anthropogenic carbon emission time-path is implied?

In light of these questions, an important task in the evaluation of CO2 stabilization policies is

the identification of emission time-paths that-over the course of a predefined time horizon-

achieve a desired level of stabilization. Early efforts to explore this problem were first carried

out under the auspices of the IPCC. Specifically, two types of calculations were performed. In

the first type of calculation, "forward" projections were used to determine the atmospheric

CO2 concentrations that would result from a specified carbon emission time-path. Looking,

first, at a broad range of carbon emission scenarios-each encompassing a diverse range of

assumptions concerning factors such as economic growth and demographics--global carbon

cycle models showed marked increases in projected atmospheric CO2 concentrations well above

pre-industrial levels by the year 2100.5

5In fact, several of the IPCC scenarios are characterized by a doubling of pre-industrial CO 2 levels before the
year 2070.
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Figure 2-4: The area under carbon emission paths A and B are roughly the same over the 110
year time horizon.

In the second type of calculation, the IPCC computed the carbon emission time-paths re-

quired to achieve particular CO2 concentration stabalization levels via specified pathways. In a

series of analyses presented in its 1994 report [7], the IPCC used "inverse" carbon cycle calcu-

lations to determine the emission time-paths that would be required to achieve stabalization

of atmospheric CO2 concentrations at levels ranging from 350 ppmv to 750 ppmv via speci-

fied pathways.6 The IPCC inverse calculations suggest that major reductions in global carbon

emissions will be required in order to stabalize atmospheric CO2 levels, even at 750 ppmv.

In order to assess the influence that policy choice is likely to have on future climate, it

is necessary to model the global carbon cycle in a computationally-tractable manner. In the

discussion that follows, we consider three simplified models of the global carbon cycle.

2.3.1 Three Simple Carbon Cycle Models

The three carbon cycle models that we present below for modeling the accumulation of carbon

dioxide in the Earth's atmosphere are computationally-tractable and, in addition, are easily

6According to the IPCC, "the selection of the range of concentrations from 350 ppmv to 750 ppmv was arbitrary
and should not be construed as having any policy implications," and "many different stabilization levels, time-scales
for achieving these levels, and routes to stabilization could have been chosen" [7, p. 15, emphasis added].
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Figure 2-5: Carbon emissions paths A and B
change trajectories.

lead to different concentration and temperature

implementable within an integrated assessment framework.

Model I

In order to link anthropogenic emissions of carbon dioxide to atmospheric concentrations, we

begin by stating the problem in terms of sources and sinks. Specifically, we construe the process

of accumulation of carbon as a trend, defined as the difference of all sources and sinks:

Trend = Source - Sink.

In more formal terms, this relationship can be expressed as

AC C(t)
At TE(t)

At T

where E denotes the carbon source, C denotes the atmospheric concentration of CO2 in ppmv,

and T denotes the atmospheric lifetime of CO2. For our purposes here, let E(t) denote the

amount of anthropogenic CO2 that is emitted at time t, specified in units of GtC/year. Let

AC(t) = C(t + h) - C(t) denote the change in atmospheric CO2 concentrations during the

finite time interval [ t, t + h). If we now define the time step At = h, then Eq. (2.2) becomes

(2.2)

1990
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lim AC(t) dC(t) - kco E(t) - C(t) (2.3)
h-O h dt T

where the constant kco2 converts CO2 concentrations in GtC to ppmv.

We are typically interested in estimating observed changes in CO2 concentration levels rel-

ative to some arbitrarily-specified time period or baseline, which we denote by to. At equilib-

rium, the time derivative dC(t)/dt evaluated at time t = to is equal to zero. For t > to, let

C(t) = C(to) + [C(t) - C(to)]. Also, to simplify notation, let

6C(t) = C(t) - C(to)

denote the difference between atmospheric CO2 concentrations at time periods t and to, re-

spectively. Equation (2.3) can now be written as

dC(t) d d6C(t)
- [C(t) - C(to)] -

dt dt dt (2.4)
C(t) - C(to)

= kco, E(t) -

In terms of a finite time interval [t, t + h), for some time-step h > 0, when h is small,

Eq. (2.4) can be approximated by

[6C(t + h) - 6C(t)] h [kco, E(-) (ý) T C(o)] (2.5)

for any t <• < t + h. If we choose h = 1, and let ý = t and ýo = to, then Eq. (2.5) becomes

C(t) -C(to)
6C(t + 1) - 6C(t) kcoz E(t) -

T

which gives rise to

6C(t)
6C(t + 1) a 6C(t) + kco2 E(t) - (2.6)

T

Equivalently, Eq. (2.6) can be expressed as

6C(t- 1)
6C(t) z 6C(t - 1) + kcoz E(t - 1) - (2.7)

T

Model II

A second model of the global carbon cycle is quite similar to the model we described above. This

model is used by Nordhaus [57] in his DICE model, and was originally put forth by Machta [431.

The model assumes that the accumulation and transportation of carbon emissions follow the

equation
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1
C(t) = (1- ) C(t - 1) + PfE(t - 1), (2.8)

Te

where C(t) represents the deviation of atmospheric CO2 concentrations from its preindustrial

equilibrium, E(t) represents anthropogenic CO2 emissions, Te is the e-folding or turnover time

(in years) for the deep oceans, and 1 is the marginal atmospheric retention rate. Most estimates

place Te between 100 and 500 years. Missing in this model is an explicit treatment of the uptake

and release of CO2 by the terrestrial biosphere.

In Eq. (2.8), atmospheric concentrations of CO2 are calculated as deviations from an equi-

librium preindustrial level, which, for our purposes here, is taken to be 590 GtC. Intuitively,

Eq. (2.8) states that deviations in the total carbon mass in the atmosphere are increased by

carbon emissions, but are reduced as carbon diffuses into the deep ocean [57].

It is possible to recast Eq. (2.8) so as to represent the accumulation and transport of atmo-

spheric CO2 on a decadal time scale. Specifically, Eq. (2.8) can be written as

C(t) = (1 - y) C(t - 1) + fE(t - 1), (2.9)

where y is the decadal rate of transfer to the deep oceans, which are treated as an infinite sink.

Equation (2.9) therefore assumes that, in the short run, the fraction P of an emission remains

in the atmosphere, and that GHGs are transported to the deep oceans at a rate y [57].

Model III

The carbon cycle models described above are relatively simple representations of the storage

and transport of carbon in the global climate system. There are, however, several key facets

of the global carbon cycle that these models do not consider. Central in this regard is the

manner in which we represent the uptake of CO2 by the ocean. In the models presented earlier,

there are, for example, no factors that dampen the rate at which carbon dioxide is removed

from the atmosphere when there are exponential increases in carbon emissions. Also missing

from these models are explicit treatments of the uptake and release of CO2 by the terrestrial

biosphere.

In an attempt to address these shortcomings, in recent years attention has focused on the

development of realistic ocean CO2 storage models that are, at the same time, computationally-

tractable. Maier-Reimer and Hasselmann [45], for example, put forth a relatively simple global

carbon cycle model that attempts to accurately represent the transport and storage of CO2 in

the oceans. This model is used in several recent integrated assessments of the climate change
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problem. 7

The Maier-Reimer and Hasselmann carbon cycle model provides a computationally tractable

means by which to estimate the atmospheric CO2 concentration trajectories associated with

specific CO2 emission time-paths. The essential component of the model involves summarizing

the response of a coupled three-dimensional global ocean circulation model and carbon cycle

model in terms of a simple linear impulse response function, which we denote by G (t). 8 For

an arbitrarily-specified carbon emission trajectory, E(t), specified in terms of GtC/year, the

change in atmospheric mass of C02, AM(t), is given by

AM(t) = 2.13 AC(t) = E(t - u) G(u) du
fo

= E(u) G(t - u) du, (2.10)

where AC(t) denotes the change in atmospheric CO2 concentration in ppmv from time period to

to period t, and the constant term 2.13 converts concentrations in ppmv to masses in GtC.

Alternatively, the atmospheric concentration of CO2 at time t can be expressed as

C(t) = C(to) + kco,2  E(u) G(t - u) du, (2.11)

where kco2 = 1/2.13 = 0.4695 ppmv/GtC.

In their model formulation, Maier-Reimer and Hasselmann express the impulse response

function, G(t), as the sum of several exponential decay terms, each of which represents differ-

ent time scales that characterize the ocean mixing portion of the carbon cycle. In particular,

4
G(t) = ao + ai exp(_ it). (2.12)

i=1

In this equation, the amplitude ao denotes the asymptotic airborne fraction for the equilib-

rium response of the ocean-atmosphere system to any finite-duration unit integral input func-

tion [45]. The aj terms are interpreted as the relative capacity of other reservoirs; these reser-

voirs are filled independently by atmospheric input, at rates that are characterized by the

relaxation time scales Tj (in years).

Maier-Reimer and Hasselmann fit the linear impulse response function given by Eq. (2.12) via

a least-squares procedure to the computed response of the ocean carbon cycle model for a step-

function change in the initial CO2 concentration. Table 2.1 provides the fitted response function

7See, e.g., Dowlatabadi and Morgan [18, 19], Hammitt [26], and Lempert et al. [41].
8As Maier-Reimer and Hasselmann point out, the linearity assumption is reasonable for small deviations from a

stationary equilibrium state.
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ao a, T1 a 2  T2 a 3  T3  a4  74
0.131 0.201 362.9 0.321 73.6 0.249 17.3 0.098 1.9

Table 2.1: Exponential fits to the computed impulse response function for a step-function
increase of initial atmospheric CO2 concentration level by a factor of 1.25.

parameters for a sudden step-function initial change of a 25% increase in the initial (1800)
atmospheric CO2 concentration level. 9

Having specified the fitted response function parameters described above, substituting
Eq. (2.12) into Eq. (2.11) yields

t 4 (t -)
C(t) = C(to) + kco E(u) ( ao + ai exp (t ) du. (2.13)

o i=1 Ti

In recent years, researchers have developed numerical methods that avoid the computationally-

intensive task of constructing time series for C(t) by successive iteration of Eq. (2.13). By ex-
ploiting the functional form of G(t), it has been possible to develop computationally-efficient

algorithms that avoid the direct calculation of the convolution integral. 10

2.4 Summary

In this chapter, we discussed a number of issues relating to the topic of radiative forcing of
climate change. The set of integrated model linkages discussed here represent a crucial step
in our efforts to assess the influence that policy choice is likely to have on future climate. In
the following chapter, we consider the next linkage in our IDA framework, namely, the relation

between changes in radiative forcing and changes in global-mean surface temperature.

9Maier-Reimer and Hasselmann [45] also specify the fitted response function parameters for step-function initial
changes representing static doublings and quadruplings of initial atmospheric CO2 concentrations.

10See, e.g., Harvey [29] and Wigley [79].



Chapter 3

Climate Modeling and Prediction

In the previous chapter, we considered the first two linkages in our integrated framework,

namely, the relation between global carbon emissions, changes in atmospheric CO2 concentra-
tions, and changes in radiative forcing. In this chapter, we consider the third linkage in our
integrated framework, namely, the relation between changes in C0 2-induced radiative forcing

and changes in the global-mean surface temperature. This linkage is illustrated in Figure 3-1.

We divide our presentation into three parts. In Section 3.1, we begin with a brief description
of the basic components of the global climate system, as well as the various types of models

that are used in its prediction. In Section 3.2, we describe the reduced-scale climate model-
ing approach that is utilized in this dissertation. As part of this discussion, we derive two
globally-averaged reduced-scale climate models that are used in our IDA framework to gener-
ate long-term policy-dependent projections of global climate change. In Section 3.3, we present
a simultaneous equations model for global climate change assessment. We close with a numer-
ical test of the stability of the coupled system.

3.1 Modeling the Global Climate System

The global climate system is comprised of several major components, all of which interact with
one another in complex and often unpredictable ways. The fundamental process that drives the
climate system is heating by incoming short-wave radiation and cooling by long-wave radiation
into space. In general, the climate system of the Earth can be seen to consist of the following
five basic components:

* Atmosphere. Absorbs and emits infrared radiation; clouds promote cooling by reflecting

sunlight.
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Figure 3-1: Transition between radiative forcing and global climate change.

* Oceans. Exert a large influence on current climate conditions; absorb over half of the

solar radiation reaching the Earth's surface. The heat capacity of the ocean delays the

response of the climate system.

* Land. Atmospheric processes are strongly coupled to the land surface of the planet. The

soil interacts with the atmosphere via exchanges of aerosols, gases, and moisture. Such

exchanges are influenced by soil type and vegetation, and are strongly dependent on soil

wetness.

* Ice. Reflects sunlight; sea-ice reduces heat exchange between the ocean and atmosphere,

and affects climate on time-scales of seasons and longer.

* Biosphere. Affects climate by influencing atmospheric composition, albedo, and hy-

drology. Also controls the magnitude of the fluxes of several GHGs, including CO2 and

methane.

We illustrate these basic components of the global climate system in Figure 3-2.

Modeling the components and processes that, together, makeup the global climate system is

a complicated task. Numerical models attempt to mimic or simulate the physical processes that

give rise to climatic change. In order to simulate the dynamic behavior of the climate system,

modelers utilize simplified representations, most of which are based on physical laws governing

such factors as mass, momentum, and energy flows and exchanges in the atmosphere.

The task of arriving at realistic representations of the global climate system's main com-

ponents and processes is complicated by a number of factors. First, many of the physical

laws that govern the processes that influence climate change are poorly understood. For ex-

ample, as Lindzen [42] points out, very little is known about the factors that determine the

equator-to-pole temperature distribution. Knowledge about this distribution bears directly on

our understanding of the processes that determine the mean surface temperature of the Earth.

The uncertainties that underlie modern atmospheric science's best physical representations

of clouds and oceans limit the predictive capability of even the most sophisticated climate mod-

els. Most climate models are extremely sensitive to the manner in which clouds are represented.

Intuitively, clouds have both a positive and a negative effect on warming: Clouds exert a nega-

tive effect on temperature by reflecting sunlight off into space, and they have a positive effect
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Figure 3-2: Simplified representation of the global climate system.

by trapping heat from below. It is generally accepted that cloud feedback is an important de-

terminant of observed differences in estimates of global warming [53]. Conjectures about the

direction and magnitude of cloud feedback effects vary significantly; also, the factors that most

influence cloud behavior (e.g., type, amount, height distribution, etc. ) are poorly understood,

and realistic models are several years away.

The role of the oceans in absorbing C02, as well as in storing and transporting heat, is also

poorly understood. The Earth's oceans transport roughly 50% of the heat carried from the

equator to the pole. The oceans also slow temperature change, though-as we discuss in Chap-

ter 4-fundamental uncertainty exists as to the rate at which heat is transported downward in

the ocean.

The task of modeling the global climate system is complicated by other factors, as well. For

example, the specification of the climate system's initial conditions is an inherently problematic

task. Equally important, the global climate system is characterized by a complex array of

interactions and feedbacks, knowledge of which is also highly uncertain. Complicating matters

further is the fact that these climatic interactions and feedbacks occur at different levels of

both spatial and temporal resolution.
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3.1.1 Types of Climate Models

There are, of course, many ways to model the global climate system. In general, all numerical

climate models must address the following set of issues [30]:

* Radiation. The input and absorption of incoming solar radiation; emission of outgoing

infrared radiation.

* Dynamics. The movement of energy around the globe, from low to high latitudes, as well

as vertical movements.

* Surface Processes. The role of land/ocean/ice interactions and the resultant change(s) in

albedo, emissivity, and surface-atmosphere energy interchanges.

* Resolution in Space and Time. The time-step of the model, as well as the resolution of

the horizontal and vertical scales.

The manner and degree to which these facets of the climate system are represented in

numerical climate models depends, in large measure, upon the climate model type. In general,

there are four basic types of climate models:

* Energy Balance Models. Zero- and one-dimensional models that are used to predict either

globally-averaged temperature or the variation of the Earth's surface temperature with

latitude. Models of this type are useful for evaluating scenarios of future climate change,

as well as for developing parameterizations that explore climate system sensitivities.

* One-Dimensional Radiative-Convective Models. Models that make explicit calculations

of the fluxes of solar and terrestrial radiation. Models of this type usually include detailed

representations of radiative transfer and atmospheric chemistry. Such models usually

compute vertical globally-averaged temperature profiles by modeling the radiative process

with a "convective adjustment" that re-establishes a predetermined lapse rate.'

* Two-Dimensional Statistical Dynamical Models. Models that represent surface pro-

cesses and dynamics in a zonally-averaged manner, and with a vertically resolved at-

mosphere. Such models typically represent either the two horizontal dimensions, or the

vertical and horizontal dimensions.

* General Circulation Models. Utilize fundamental equations that describe flows of mass,

momentum, and heat, to model the three-dimensional nature of the atmosphere and

ocean; such models typically have a higher spatial resolution than other types of climate

models.

1The lapse rate is the rate at which temperature decreases as a function of height in the atmosphere.
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3.1.2 Climate Sensitivity and Intermodel Comparisons

An important scientific uncertainty in the greenhouse debate concerns the expected change

in global-mean surface temperature that results from increases in atmospheric concentrations

of key GHGs. The models described above all play a role in present-day efforts to assess the

influence of GHGs on climatic change. These gases include-in addition to CO2 -methane (CH4),

nitrous oxide (N20), the CFCs, and, most importantly, water vapor. 2 Factors that determine the

atmospheric concentrations of GHGs from known emissions are moderately well understood,

though current forecasts of CFC concentrations are thought to be much more certain than

forecasts of C0 2, CH4, and N20.

A useful benchmark for comparing models is the so-called climate sensitivity value, which

is defined as the equilibrium response of the global climate system to a static doubling of at-

mospheric CO2 concentrations. Most scientists believe that the range 1-50 C is likely to contain

the true climate sensitivity value.3 If there were no change in the concentration of water va-

por, a static doubling of atmospheric CO2would give rise to a global mean surface temperature

increase of ATd -z 1.20 C.4 However, as water evaporates with increasing temperature, the con-

centration of water vapor in the Earth's atmosphere is expected to increase; this effect could, in

turn, amplify warming. In addition, water can introduce interactive feedbacks into the climate

system, such as water vapor, clouds (especially cirrus clouds), and snow-ice albedo. Feedbacks

such as these introduce considerable uncertainty into long-term predictions of global-mean

surface temperature changes resulting from increases in atmospheric concentrations of key

GHGs.

Global-mean surface temperature, ATs, is roughly related to ATd by the formula

ATs = ATd / (1 - f),

where f denotes the sum of all climate feedbacks. The water vapor feedback is relatively simple,

in that a warmer atmosphere is likely to contain more water vapor. This process gives rise to

a positive feedback: An increase in one greenhouse gas, C02, induces an increase in another

greenhouse gas, namely, water vapor. Cloud feedback, however, is harder to evaluate, because

it depends on the difference between the warming caused by the reduced emission of infrared

radiation from the Earth into outer space and the cooling through reduced absorption of solar

2The concentration of water vapor varies rapidly in space and time, and this variation arises from climate feedback
mechanisms that are currently not well understood.

3See, e.g., National Academy of Sciences [54] and the Intergovernmental Panel on Climate Change [31]. Cf. Jacoby
and Prinn [36, p. 13-16] for an insightful discussion of the various interpretations that can be attached to the
Intergovernmental Panel's climate sensitivity range.

4 This estimate depends on the assumption that the cooling of the Earth is from the stratosphere, and that there
is a fixed air temperature distribution with height.



3. CLIMATE MODELING AND PREDICTION

radiation. The net effect is determined by the amount of clouds, their altitude, and their water
content. Estimates for ATs from different models vary from 1.90C to 5.2°C [151.

It is worth noting that two models which give similar values for ATs values can differ in the
effects of various feedback mechanisms. For example, two GCM models-GFDL and GISS 5-

show an unequal temperature increase as clouds are included (from 1.70C and 2.0°C to 2.0°C
and 3.20C, respectively). The effects of ice albedo in these two models are different, but oppo-
site, so that the results converge (4.0 0C versus 4.2 0 C, respectively). What this example shows

is that agreement between models may be spurious and potentially misleading. In addition,
many climate experts believe that f is high enough (- 0.70) that even small increases in this
value could result in a runaway warming that is not predicted by current models [46, 74].

3.1.3 The MIT 2D-LO Global Climate Model

The prediction of anthropogenic climate change is an important facet of the MIT Joint Program

on the Science and Policy of Global Change. Within this research program, efforts are currently

underway to develop a large-scale integrated assessment framework for addressing various

aspects of the greenhouse debate, including carbon emissions projection, climate prediction,
economic analysis of control policies, and the assessment of social and environmental impacts. 6

An important component of the MIT framework is a sophisticated land- and ocean-resolving

two-dimensional (2D-LO) climate model that simulates various climate processes and variables

that relate to environmental and societal impacts. The 2D-LO model simulates zonally-averaged

climate separately over land and ocean, as a function of both latitude and height. The radiation

code that is contained within the 2D-LO model includes all significant GHGs (H20, CO2, CH4,
N20, CFCs, etc.), and twelve types of aerosols.

The choice of the 2D-LO model is motivated, in part, by the observation that latitudinal

variations play a stronger role than longitudinal variations in determining climate, and that
transport by large-scale 3-D eddies can be parameterized using dynamical theory. Projections

of climate change are based on changes in the zonal-mean climate over land and ocean, with
more detailed longitudinal variations being based on current climate, or on transient 3-D model
simulations of climate change.

The 2D-LO climate model solves the primitive system equations as an initial value problem.

There are nine vertical layers: two in the planetary boundary layer, five in the troposphere, and
two in the stratosphere. There are 24 grid points in latitude, corresponding to a resolution

of 7.8260. A schematic of the model is shown in Figure 3-3. In the verification and validation

5See, e.g., Hansen et al. [28].6For a detailed description of the issues that underlie the conceptual design, model selection, and development
of the MIT Integrated Framework, see, e.g., Ref. [38] and Prinn et al. [62].



Figure 3-3: Schematic representation of the MIT 2D-LO global climate model. Using predictions
of atmospheric composition obtained from an associated biogeochemistry model, the 2D-LO
model simulates the zonally-averaged climate separately over land and ocean, as a function of
latitude and height (Source: MIT Joint Program on the Science and Policy of Global Change).

of the 2D-LO model, model numerics and physics (e.g., long and shortwave radiation, cumu-

lus convection, large-scale condensation, clouds, surface fluxes, and the oceans) have closely

paralleled those of the NASA GISS three-dimensional GCM.7

As with any global climate model, the 2D-LO model requires that numerical values be as-

signed to model parameters before it can be used to generate long-term projections of future

climate. Of course, even conditional upon having specified a particular model's functional

form, modelers are almost always uncertain a priori about what numerical values to assign to

its parameters. The continuing controversy about the numerical value to assign to the feed-

back multiplier in the computation of equilibrium change in global-mean surface temperature

is an example of a parameter uncertainty that gives rise to a large spread in expert judgements

about climate sensitivity. Within the MIT Integrated Framework, further examples of important

parameter uncertainties include the following:

Cloud Feedback. The cloud feedback simulated by the MIT 2D-LO global climate model

depends on the parameterizations of cloud cover. Letting n(qb, z) denote cloud cover at

7Detailed technical discussions of the MIT 2D-LO climate model, and its relation to other sub-models in the MIT
Integrated Global System Model (IGSM), are found in Refs. [621 and [721.

3. CLIMATE MODELING AND PREDICTION

primitiw eqatIon5.
ti~e step = 20 min,
sigrm coordnates

S(venkal).
spherical coordrates

(horizontal)

At ric

2 i Che•l i stiry i:Schemical componets,53 pt rend aerosol
phase reactior,

time steps:
advection - 20 minR

physics w I hout
photochemistry w 3 hrs

Ocean Citiobn
paramiterized horizartul
and vertal tr.niport In

inii verslon,
predcted 3D transports

n adyanced rwsion



3. CLIMATE MODELING AND PREDICTION

latitude c4 and height z, the parameterization of cloud cover takes the functional form

n(4, z) = max { 0, A [r ,z) - rc
(1 - rc)

where

r = Relative humidity at(q, z);

rc = Critical humidity threshold;

A = Empirical constant.

This parameterization is similar to that used in many GCMs. Given this prescription

for cloud cover as a function of humidity, the change in n(cf, z) over location and time

will determine cloud feedback behavior. Conditional on accepting this model structure,

knowledge of one of A or of rc would allow us to compute a reasonable value of the other

from observed data. Unfortunately, which values of A or of rc most adequately represent

cloud cover are not well-understood.

" Rapidity of Deep Ocean Mixing. Both heat and CO2 mixing within the deep ocean are

represented as simple diffusion with the MIT 2D-LO climate model. The magnitude of

the diffusion coefficient, which is a function K(4) of latitude, is uncertain, but lies within

a broad , finite range, 0 < K(qb) < 10 cm 2/sec. Heat flux F(4, z) at a given 4 and z is

directly proportional to K in the diffusion equation

aT(/, z)
F(4, z) = -pCK(P) az

where p is the water density, C is water heat capacity, and aT(p, z)/lz is the temperature

gradient in the vertical direction. If K(c) is uncertain, it follows that heat flux F(k, z) is

also uncertain.

* Initial Temperature of the Deep Ocean. Current scientific knowledge does not allow us

to know with certainty if the deep ocean temperature is, in actuality, an equilibrium tem-

perature. If To(c1) is the deep ocean temperature for current climate and Te(cl) is the

corresponding deep ocean equilibrium temperature, then the future evolution of temper-

ature depends on To(q5) - Te(cP) = 6T(4). But, 6T(q) is not known with certainty.

Naturally, computational capacity places boundaries on our ability to perform systematic

and exhaustive analyses of policy. Even though the 2D-LO model is more than one hundred

times faster than the GISS GCM at 40 x 50 resolution, the computational costs involved in
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running this model are sufficiently high to make its integration into formal decision-analytic

frameworks, such as those which we present in Chapters 5 and 6, a practical impossibility.

In order to deal effectively with these computational restrictions, an important aspect of

our integrated modeling approach is the development of reduced-scale representations of the
global climate system. In the following section, we present two reduced-scale global climate

models. Later, in Chapter 4, these models are numerically calibrated against the larger, more

complex 2D-LO climate model.

3.2 Reduced-Scale Modeling of Global Climate Change

Global energy balance models (EBMs) constitute the simplest means by which to model the
climate system of the Earth. Historically, such models have played an important role in our
understanding of the various components and processes that influence climatic change. The
earliest EBMs date back to the late 1960s, beginning with the work of Budyko [10] and Sellers [69]

demonstrating that equator-to-pole energy transport and radiation streams are fundamental

processes of the global climate system.

The fundamental principle underlying all EBMs is that the incoming and the outgoing radi-
ation for the globe is-in the long run-balanced. In more formal terms, the rate of change of
the surface temperature, T, with time, t, is represented as the difference between net incoming
and net outgoing radiant energies. This relationship between time, temperature, and radiant

energies can be stated informally as follows:

AT
K - = I -R T, (3.1)At

where K is the "thermal inertia" or heat capacity8 of the system, and R I and R t are the
incoming and outgoing radiation fluxes, respectively.

3.2.1 Globally-Averaged One-Box Model

Equation (3.1) serves as the conceptual basis for a variety of EBMs. Schneider and Mass [67],
for example, propose a one-box time-dependent globally averaged model of the Earth's climate

system. The model they put forth is zero-dimensional, in that the Earth is treated as a single
point in space, characterized by a global-mean surface temperature whose value at time t is
denoted T(t). The model is formally specified in terms of a global energy balance equation,
with heat storage expressed in terms of solar energy absorbed minus infrared energy emitted to

8The heat capacity of a body is defined as the ratio of the amount of heat energy that a body is supplied with to
its corresponding temperature rise.
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space. If we let AT(t) = T(t + h) - T(t) denote the change in global-mean surface temperature

during the finite time interval [ t, t + h), and define the time-step At = h, then the global energy

balance for this model is given by

AT(t) dT(t)
K lim - K - Q [1 - o(T(t))] - Rir t (T(t)), (3.2)

h-O h dt

where K is the heat capacity coefficient, Q is the annually averaged solar radiation received

by the earth (a constant with respect to both time and temperature), cx(T(t)) is the planetary

albedo,9 and Rir I (T(t)) is the outgoing infrared radiation to space.

In order to render Eq. (3.2) more amenable to analysis, we linearize 0o(T(t)) and Rir T (T(t))

as follows [67, 77]:

ac(T(t)) = a+ b T(t), (3.3)

Rir t (T(t)) = x + y T(t). (3.4)

Typically, the real-valued coefficients a, b, x, and y in Eqs. (3.3) and (3.4) are treated as

empirically-determined constants that account for the greenhouse effect of clouds, water va-

por, and CO2 [30].

Equation (3.4) provides a conceptually simple means by which to combine the effects of

surface emissivity and atmospheric transmisivity. For our purposes here, it is useful to mod-

ify this equation slightly. Specifically, in order to explore the response of the one-box model

to external CO2 forcing, we generalize Eq. (3.4) by lumping together the effects of increasing

atmospheric CO2 concentrations due to anthropogenic C0 2-equivalent emissions into the coef-

ficient x. If we treat anthropogenic CO2 as an exogenously-specified variable that is dependent

on time, but not on T(t), then Eq. (3.4) can be rewritten as

Rir I (t, T(t)) = x(t) + y T(t), (3.5)

where the function Rir T is now defined on a domain that consists of both time, t, and global

mean surface temperature, T(t). Intuitively, Eq. (3.5) states that the outgoing infrared radiation

to space can, in principle, change over time, even if global-mean temperature remains constant.

Now, substituting Eqs. (3.3) and (3.5) into Eq. (3.2) yields

dT(t)
K dT(t) Q[1 - (a + b T(t))] - [x(t) + y T(t)]

dt

9Planetary albedo is defined as the ratio of reflected to incident radiation, and provides a measure of the reflec-
tivity of the earth's surface and its atmosphere.
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= (1-a)Q - (bQ + y)T(t) - x(t). (3.6)

In order to estimate the impact of rising CO2 concentrations on climate, relative to some

pre-industrial baseline which we denote by to, at time t = to, we assume that the system is in

a state of climatic equilibrium; that is, the time derivative dT(t)/dt evaluated at time t = to

is equal to zero. At equilibrium, we are able to establish the following initial condition for

Eq. (3.6):

(b Q + y)T(to) = (1 - a)Q - x(to). (3.7)

For t > to, let T(t) = T(to) + [T(t) - T(to)]. Also, to simplify notation, let

T(t) = T(t) - T(to)

denote the difference between global-mean surface temperature T at times t and to, respec-

tively. Equation (3.6) can now be written as

dT(t) d dT (t)
K K -[T(to) + T(t)] = K

dt dt dt

(1 - a)Q - (b Q + y)T(to) - (b Q + y)T(t) - x(t). (3.8)

Now, substituting Eq. (3.7) into Eq. (3.8) yields

dTr(t)
K = (1 - a)Q - [(1 - a)Q - x(to)] - (b Q + y)T(t) - x(t)dt

= x(to) - x(t) - (bQ + y)T(t). (3.9)

By defining F(t) = x(to) - x(t) and A = y + b Q, Eq. (3.9) can be expressed as

dT(t)
K = F(t) - A T(t), (3.10)

dt

where F(t) denotes the change (from equilibrium) of that part of the time-dependent outgo-

ing longwave radiation that is independent of temperature. Intuitively, we recognize that as

concentrations of CO2 in the atmosphere increase, the values that x(t) takes on decrease and

F(t) > 0, which agrees with our intuition about the effects of increased CO2 in the atmosphere.

In terms of a finite time interval [ t, t + h), for some time-step h > 0, when h is small,

Eq. (3.10) can be approximated by



3. CLIMATE MODELING AND PREDICTION

K [T(t + h) - T(t)] h [F(ý) - A T(ý)], (3.11)

for any t < ( < t + h. Now, if we choose h = 1 and let ý = t, then Eq. (3.11) becomes

K [T(t + 1) - T(t)] F(t) - A T(t),

which gives rise to

1
T-(t + 1) r T(t) + [F(t) - A T(t)]. (3.12)

Equivalently, Eq. (3.12) can be expressed as

1
T(t) • T(t - 1) + 1 [F(t - 1) - A T(t - 1)]. 10  (3.13)

3.2.2 Globally-Averaged Two-Box Model

The climate model given by Eq. (3.13) is concerned only with the atmosphere of the Earth. Most

atmospheric processes, however, are strongly coupled to the Earth's oceans. In what follows,

we extend the model presented above to include ocean-atmosphere interactions.

The globally-averaged two-box model that we consider here was originally developed by

Schneider and Thompson [67], and versions of it are used by Nordhaus [57] and others in

several recent integrated assessments of global climate change.

In this globally-averaged model, the ocean-atmosphere system is represented by two "boxes"

or layers: one layer for land and another for the world ocean. The upper box consists of a land

fraction, fL, and is characterized by a globally- and annually-averaged temperature, T(t); the

lower box consists of an ocean fraction, 1 - fL, and is characterized by a globally- and annually-

averaged temperature, T* (t). Each of these layers is assumed to be internally well-mixed. As

in the case of the one-box model, the two-box model is driven by external solar forcing, Q -

the absorbed portion of which is scaled by the planetary albedo a(T(t)) - and emits infrared

1'It bears mentioning that if we choose 5 = t + h - c, for small E satisfying h > E > 0, then, letting h = 1, Eq. (3.11)
becomes

K [T(t) - T(t - 1)] [F(t - ) -A T(t - E)],

in which case

1
T(t) ; T(t - 1) + [F(t - E) - A T(t - E)].

K
As E - 0, we obtain

1
T(t) T(t - 1) + [F(t) -A T(t)].

Thus, from a purely analytical vantage point, there exists some degree of flexibility as to whether F and T are treated
as contemporaneous or lagged variables.
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radiation, Rir i (t, T(t)), to space. The heat transfer rate between the upper and the lower box

is proportional to the volume rate, V(t), of water exchange between the two boxes.

The global energy balance for the two-box model is formally specified by the following

system of equations:

dT(t)
K1 Q [1 - aoc(T(t))] - Rir t (t, T(t))

dt
Cw V1(t) [T(t) - T*(t)], (3.14)
0-9

KdT(t) C V(t) [T(t) - T*(t)], (3.15)
dt o0-

where K1 and K2 are the thermal inertias for the upper and lower box, respectively, c, is the

volumetric heat capacity of water, and o-a is the global surface area.11

The thermal inertias K1 and K2 are given by

K 1  = Cw V, (3.16)0-9

K2  = V*, (3.17)
09

where V and V* are the water-equivalent volumes of the upper and the lower box, respectively.

Note that in this model, the water-equivalent volumes are fixed with respect to both time and

temperature.

As in the case of the one-box model, we are ultimately interested in examining the behavior

of the two-box model to external, anthropogenic CO2 forcing. Looking, first, at Eq. (3.14), we

use the linearized forms for oc(T(t)) and Rir T (t, T(t)) given previously by Eqs. (3.3) and (3.5),

respectively, to rewrite Eq. (3.14) as

dT(t)
K1 = Q [1 - (a + b T(t))] - [x + y T(t)]dt

cw V(t) [T(t) - T*(t)]
0-9

= (1 - a)Q - (b Q + y)T(t) - x(t)

1We note that the two-box model described by Eqs. (3.14) and (3.15) can be viewed intuitively as a generalization
of the one-box model developed in Section 3.2.1. Specifically, the model can be specified in terms of the weighted
sum

dT(t) dT*(t)
K1i d + K2 t - Q [1 - oc(T(t))] - Rir t (t, T(t)),

dt dt

where K2 T_ is defined by Eq. (3.15).
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cw V(t) [T(t) - T*(t)]. (3.18)
0r-

As before, the variable to denotes some pre-industrial baseline relative to which we wish to

measure climatic change. At time to, we assume that the system is in a state of climatic equi-

librium. At equilibrium, two conditions obtain: first, the time derivative dT(t)/dt evaluated at

time t = to is equal to zero; second, the surface temperature at time t = to, T(to), is equal to

the ocean temperature at time t = to, T* (to). Thus, at time t = to, in equilibrium, Eq. (3.18)

yields

(b Q + y)T(to) = (1 - a)Q - x(to). (3.19)

Now, let T (t) = T(t) - T(to) denote the difference between global-mean surface temperature

at times t and to, respectively; similarly, let T* (t) = T* (t) - T* (to) denote the difference

between ocean temperature at times t and to, respectively. Using these definitions, the two-

box model specified by Eqs. (3.18) and (3.15) becomes

dT(t) d dT(t)
K dT(t) K 1  [T(to) + T(t)] = K1

dt dt dt

= (1 - a)Q - (b Q + y)[T(to) + T(t)] - x(t)

CW V(t) [T(to) - T*(to) + T(t) - T*(t)]
O-9

(1 - a)Q - (b Q + y)T(to) - (b Q + y)T(t) - x(t)

cw V(t) [T(to) - T* (to) + T(t) - r* (t)],
09

dT(t) d dT*(t)
K2 dT*(t) K2  [T*(to) + T*(t)] = K 2  dtdt dt dt

cw V(t) [T(to) - T* (to) + T(t) - T*(t)].
O-a

Since, in equilibrium, T(to) equals T* (to), these two equations can be rewritten as

dr(t)
K (1 - a)Q - (b Q + y)T(to) - (b Q + y)T(t) - x(t)

dt
cw V(t) [T(t) - T*(t)], (3.20)
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dr*(t) c
K2 dw -ý(t) [T(t) - T*(t)] (3.21)

dt

At equilibrium, Eq. (3.19) obtains, in which case Eq. (3.20) becomes

dr(t)
KI d (1 - a)Q - [(1 - a)Q - x(to)] - (b Q + y)T(t) - x(t)dt

cw V(t) [T(t) - T*(t)]
0-g

x(to) - x(t) - (b Q + y)r(t) - c (t) [T(t) - T* (t)]. (3.22)

As before, letting F(t) = x(to) - x(t) and A = y + b Q, Eq. (3.22) can be rewritten as

K1  - F(t) - A T(t) - V(t) [T(t) - T* (t)]. (3.23)
dt 0g

In this equation, F (t) is again interpreted as the change-from a specified baseline-of that por-

tion of the outgoing longwave radiation, Rir t, that is dependent upon time, but is independent

of temperature.

In this representation, we are interested in exploring the effects that upper and lower box

mixing have on the climate variable of interest, namely, the upper box temperature, T(t). Fol-

lowing Broecker [8] and Schneider and Thompson [67], we use the following parameterization

for upper and lower box mixing:

V(t) - (3.24)
Vd

where V* is defined as before, and vd is the ventilation time of the world deep ocean. Substi-

tuting Eqs. (3.24) and (3.17) into Eqs. (3.23) and (3.21), the system of equations for the two-box

model becomes

dr(t) K2
K1  = F(t) - A T(t) - - [T(t) - T*(t)], (3.25)

dt Vd

dT* (t) K 2K2 d 2 [T(t) - T*(t)]. (3.26)

As in the case of the one-box model, for computational purposes, it is useful to express the

two-box model in finite-difference form. To this end, consider a finite time interval [ t, t + h),

for some nonzero time-step h. For small values of h, Eqs. (3.25) and (3.26) are approximated by
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K 1 [T(t + h) - T(t)]

K2 [T*(t + h) - T*(t)]

h ( AK 2  IrT rc\

h(F( )KAT()) 1TT)T*JjJ,

Vd /

for any t < ý < t + h. If we let 5 = t, and make our time-step unity, then this system of

equations becomes

T(t + 1)

T* (t + 1)

1 K2 [T(t)-- T*(t)])
T(t) + • F(t) - A T(t) - 2 [T(t) - T*(t)])

K 1i Vd

*(t) + K2 --
K2 vd 'I

Equivalently, if we let t = t - 1, then the two-box model can be expressed as

T(t)

T*(t)

T(t-1)+ ( F(t - 1) - A T(t - 1)

K2 [T(t - 1) - T*(t - 1)]
Vd

1
T*(t - 1) [T(t - 1)- T*(t - 1)].

Vd

(3.27)

(3.28)

Equations (3.27) and (3.28) can be represented succinctly in matrix form as

T*(t)) = )(T(t - 1 )T*(t - 1))

1
K 1

F(t -

0
(3.29)

1))
where

1 + K2F1 = -= K

K 2

K1 Vd'
1
K2 vd

122 --

In this structural representation, we note that thermal forcing due to changes in atmospheric

CO2 concentrations is decoupled from the climatic variables, and is treated as an exogenous

--

22--
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input to the system.

In order to simplify notation, we define a (2 x 1) column vector Yt and a (2 x 2) parameter

matrix F as

Yt =

and

1711 F 12

1721 22

where the matrix elements rij are defined as above. In addition, we define a (2 x 1) vector ut as

Ut -= F(t)

Using the above definitions, system (3.29) can be expressed succinctly as

Yt = Fyt-1 + ut-1. (3.30)

Intuitively, we recognize that Eq. (3.30) holds true for all values of t, in which case

(3.31)

If we let (F)k denote the kth power of the parameter matrix F and, in addition, define (F)o

to be the identity matrix, then substituting Eq. (3.31) into Eq. (3.30) yields

Yt = F(TYt-2 + Ut-2) + Ut-1

= () 2 Yt-2 + Fut-2 + Ut-1-

By induction, it is easily verified that

Yt = (F) t Yo + . (F) j - l Ut-j. (3.32)

Equation (3.32) provides a computationally simple means by which to compute numerical values

of the vector time series Yt.

3.3 A Simultaneous Equations Model

In the previous section, we derived two reduced-scale global climate models. These simplified

models provide a computationally-tractable means by which to simulate the response of the

Yt-1 = Fyt-2 + ut-2-



3. CLIMATE MODELING AND PREDICTION

global climate system to CO2-induced thermal forcing. Earlier, in Chapter 2, we described

several simplified representations of the global carbon cycle. In this section, we analyze these

simplified representations as a coupled or integrated system. Our motivation for explicitly

linking these models together is three-fold in nature. First, we are interested in exploring the

dynamic properties of the coupled system. Second, insofar as we are interested in using these

simplified models for evaluating climate policy choice, the manner and degree to which the

system's variables interact with one another has important implications for how the behavior

of the overall system is estimated and interpreted. Lastly, in exploring the formal properties

of the coupled system, we hope to better understand the characteristic structure and dynamic

behavior of the individual models that comprise the system.

Our presentation is organized along the following lines. In Section 3.3.1, we begin with a

description of the coupled system of equations. In Sections 3.3.2 and 3.3.3, we explore the

dynamic properties and numerical stability of the coupled system. Lastly, in Section 3.3.4, we

present a simple numerical test of the stability of the coupled system.

3.3.1 Coupled System of Equations

In Table 3.1, we summarize the individual equations that we use in the specification of our

simultaneous equations model. The equations listed in this table are for the global carbon

cycle, CO2-induced radiative forcing, and the globally averaged two-box climate model. 12 In

the context of our discussion here, we view these equations as the structural equations of

global climate change, in that each equation describes a particular facet of the global climate

system, and each equation is, in some measure, derived from first principles or physical theory.

In the absence of uncertainty, the four climate-related equations in Table 3.1 imply the

following system of equations:

Ct 17F1  0 0 Ct-1 Et-1 0
Tt = Fo 22 F23 Tt-1 + 0 + - P(Ct-1) (3.33)

t* 32  r33 T-1 0 0
where

121n the previous sections, time-indexed variables were explicitly represented in a functional manner so as to
emphasize the time-dependent nature of the climate system variables. To simplify notation, in this chapter all
time-indexed variables are represented in a subscripted manner.
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Ct = (1 - )Ct_ 1 + fEt-1
Te

Ft = 6.3 In Ct

1 t ) K2Tt = Tt-1 + K Ft- 1 -- A Tt-1 (Tt-1 - T*_)K1I Vd

t 

1

Vd

Table 3.1: Finite-difference equations for the global carbon cycle, C02-induced radiative forcing,
and the globally-averaged two-box climate model.

F11 = (1 - 1),
Te

1 K+ 2
F22  - (A+ ),

K2
F23 =

K1Vd'

r32 = -,,
Vd

r33 = -
Vd

and

p(Ct-1) - Ft-1 = 6.31n . Ct

In this system of equations, we note that the variables Ct, Tt, and T* are jointly dependent or
endogenous, whereas the variable Et is exogenously specified. This particular representation
of the climate system provides an at-a-glance view of the elements and structure of the overall
system.

To simplify notation, we define a (3 x 1) column vector yt and a (3 x 3) parameter matrix F
as

Yt -ETt

and

(11 o 0 o0
F 0 r722 723 (3.34)

0 '32 '33
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where the matrix elements Fij in (3.34) are defined as before. In order to exploit the block form

of (3.34), we partition F in the following manner:

(Fll OT

0 r22

where F11 is a scalar (as defined previously), 0 is a (2 x 1) zero vector, OT is a (1 x 2) transposed

zero vector, and r 22 is a (2 x 2) submatrix whose elements come from the lower right-hand

corner of matrix (3.34), i.e.,

r22 \F132 F33 (3.35)

Finally, combining the last two terms of system (3.33), we define a (3 x 1) vector ut as

ut =

PfEt

- p(Ct)

0

Using these four definitions, system (3.33) can now be expressed succinctly as

(3.36)

3.3.2 Dynamic Properties of the System

We now examine some of the dynamic properties of system (3.36). To begin, we recognize that

Eq. (3.36) holds true for all values of t, in which case

(3.37)

If we now define the kth power of the parameter matrix F as

k terms

and, also, define (F)o = I, where I denotes the identity matrix, then substituting Eq. (3.37) into

Eq. (3.36) yields

Yt = F( Yt-2 + Ut-2) + Ut-1

= () 2 Yt-2 + Fut-2 + Ut-1.

Proceeding by induction, it is easily verified that

Yt-1 = Fyt-2 + Ut-2.
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t

Yt = (F)t Yo + (F)j- I ut-j. (3.38)
j=1

Equation (3.38) provides a computationally simple means by which to compute numerical

values of the vector time series Yt. In this equation, yt is seen as the sum of two components.

The first component is (T) t Yo, which is the solution to the system Yt = (T) Yt-1. In this way,

the first component of Eq. (3.38) represents what Yt would be if it were influenced only by its

own lagged values. As for the second component of Eq. (3.38), rearranging terms, we note that

the difference
t

Yt - (T) t yo = (F) j- 1 ut-j
j=1

can be interpreted as the combined effects of an exogenously-specified CO2 emissions path

Eo, El,..., Et and the radiative forcing trajectory p (Co), p (C1),..., p (Ct) associated with this

carbon emissions path. 13

As a preliminary step in our exploration of the dynamic properties of Eq. (3.38), we begin

by exploiting the fundamental structure of the parameter matrix F. In particular, given its

distinctive "block" form, it is possible to specify matrix decompositions or factorizations of F

which-after some mathematical manipulation-allow useful inferences to be drawn about the

dynamic behavior and stability of the overall system.

The approach that we take in decomposing the parameter matrix F has two parts. We begin

by decomposing submatrix F22. This decomposition is then used in the ensuing decomposition

of the parameter matrix, F. For submatrix F22, it is easily shown that if the eigenvalues of this

matrix are distinct, then there exists a nonsingular'4 (2 x 2) matrix T such that

F22 = TAT - 1,  (3.39)

where A is a (2 x 2) diagonal matrix with the eigenvalues of r22 along the principal diagonal

and zeros elsewhere. Thus, A is defined as

A (0 A2)

where A, and A2 denote the distinct eigenvalues of submatrix r 22. Using decomposition (3.39),

we can express the parameter matrix F as

S(F 11 
O T

0 TAT- 1

13In Appendix A, we present a simple means by which to compute an upper bound for C02-induced radiative
forcing.

14Any square matrix with full rank is called a nonsingular matrix.
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The diagonal structure of F necessarily implies that powers of this matrix are also diagonal

matrices. In general, the kth power of F, (F)k, is given by

k 0( (T=T l )k. (3.40)

Given the nature of decomposition (3.39), powers of (TAT - 1) are given by

(TAT-1)k = (TAT-')(TAT) ... (TAT-I)

k terms

= TAI ...IAT -

= TAkT -1, (3.41)

where

(Ak 0

Thus, substituting Eq. (3.41) into Eq. (3.40) yields

( 0 TAkT - 1

Turning our attention, now, to the parameter matrix F, we recognize that it, too, can be

decomposed in a similar fashion. Using the same diagonalization procedure outlined above,

the matrix F can be decomposed as

F = SDS - 1 , (3.42)

where the matrix S is a nonsingular (3 x 3) matrix and D is a (3 x 3) diagonal matrix consisting

of the distinct eigenvalues of F. For our purposes here, let

S (1 OT )  1 OT

0 T 0 T - 1

and

D
=  

OT0 
A

In this way, the decomposition of F22 has, in a simple and direct way, motivated the ensuing

decomposition of the parameter matrix F. As a check on the assumptions that underlie this

decomposition, we note that
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SS - 1  OT 1 OT I.

0 T 0 T-1

Given decomposition (3.42), it is easily verified that (F)t = SDtS- 1, in which case sys-

tem (3.38) becomes

t
Yt = (f)t Yo + (F)j-l ut-j

j= 1
t

= SDtS-lyo + SDJ-1S-1ut-j
j=1

0 T 0 A t  0 T- 1 Yo

t 1 ) ( -1 1 O T

±+ u( Fj-1 0 T1 t-J. (3.43)j=x 0 T 0 A j -  0 T - 1

Equation (3.43) provides a computationally efficient means by which to compute values of yt

for specified values of t. We note, however, that the formulation arrived at above is predicated

on the assumption that the parameter matrix r consists of linearly independent eigenvectors.

It must be stressed that not all matrices are diagonalizable in the manner described above.

In addressing this problem, we approach the decomposition of F from a somewhat different

vantage point. To begin, we again focus our attention on submatrix F22 of matrix F. Using the

so-called singular value decomposition15 procedure, it can be shown that there exists orthogonal

matrices16 R1 and R2 of order (2 x 2) such that

F22 = RIART, (3.44)

where A is a (2 x 2) diagonal matrix. The columns of R1 are eigenvectors of F22FT2 ; similarly,

the columns of R2 are eigenvectors of T212F22. The so-called singular values of A are defined as

the square roots of the nonzero eigenvalues of both F22 F 2 and F 2 r 22.

Using decomposition (3.44), the parameter matrix F can be expressed as

r =( F1 OT
0 RIAR2

As before, since F is a diagonal matrix, the kth power of F, (F)k is given by

( =(Fl OT

(r)k 1k ( TT) k (3.45)

15See, e.g., Strang [75, Appendix A].16An orthogonal matrix is defined as a square matrix whose columns are orthonormal.
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In contrast with the previous case, Eq. (3.45) does not lend itself to a simple factorization

in the way that Eq. (3.40) did. In order to push the decomposition further, we must impose an

additional constraint on the matrices R1 and R2, namely, we require that

2RRi = I.

Proceeding from this assumption, it is easily verified that (R1ART)k = RAkR T, in which case

Eq. (3.45) becomes

0 R1AkR)

As before, the parameter matrix F can be written in spectral form as

r = Q1DQ ,

where Q1 and Q2 are orthogonal matrices, and D is a diagonal matrix. For our purposes here,

we let

Q1 
=  

Q2 1

0 Ri 0 R2

and

D= .0 
A

Since ([)t = QIDtQ T, Eq. (3.38) becomes

t
Yt = ()tYo + (F)J-ut-j

j=1

t

= QDtQDTy + ýT,0 1 DJ-IQ2Tut-j
j=1

(1 OT l 0t OT 1 OT

0 R1 O At 0 R Yo

t TOT j-1 OT

+ 1 OT)FuIl 0) (O T)Ut-j. (3.46)
j=1 0 Ri A j -  0 R2 )

As in the previous case, for any admissible set of parameter values, Eq. (3.46) provides a

computationally-efficient means by which to compute specific values for the vector yt.
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3.3.3 Stability of the System

We now briefly explore the numerical stability of Eqs. (3.43) and (3.46). Given the unique struc-

ture of these equations, it is useful to invoke a change of basis. Without loss of generality, we

confine our attention to Eq. (3.46). Premultiplying both sides of Eq. (3.46) by QT yields

QTyt = QTQlDtQ 0 + QTQlIDJ-IQT ut-j
j= 1

= DtQ2TYo + DJ-1QTut-j
j=

1

(%tT OT OT
0 A t  0 RT Yo

j A j  0 RT Ut-j. (3.47)
j=1 0 A 0 R

If we now denote the individual elements of the matrix R2 as

R2 = 11 (2) r12 (2)
721 (2 ) 722 (2 )

and, as before, let A = Diag(AI, A2), then QTyt can be written explicitly as

Trtl 0 0 Co

QTyt = r1 (2)A 21 (2)• T

0 r12 (2) A r22 (2) A

Fll 0 0 Et-j
t 

(2) j- 1 (0 Ct-j) . (3.48)

J= 0 0 2 (2)A]2' P (Ct-j)

Intuitively, we see that Eq. (3.48) recasts system (3.38) in terms of the characteristic roots of

the parameter matrix F. By inspection, it is easily seen that a necessary (though not sufficient)

stability condition for system (3.46) is that all of the eigenvalues of the parameter matrix F must

be less than one in absolute value.

3.3.4 A Numerical Example

We now consider a simple numerical test of the stability of Eqs. (3.43) and (3.46). For this

example, let



3. CLIMATE MODELING AND PREDICTION

0.9917 0 0

I = 0 -0.1690 0.0493 (3.49)

0 0.0017 -0.0017

denote a set of illustrative values for the parameter matrix.17

Following our discussion in the previous section, we are interested in specifying the columns

of the orthogonal matrices Q1 and Q2. To this end, we first compute the eigenvectors of FFT

and FT , respectively. Thus, for the matrices

0.9835 0 0
FT = 0 0.0310 -0.0004

0 -0.0004 5.78 x 10- 6

and

FTF = 0 0.0286 -0.0083 ,

0 -0.0083 0.0024

we specify the matrices Q, and Q2 as follows:

1  o  o0
Q = 0 -0.9999 0.0120

0 0.0120 0.9999
and

1 0 0
Q2 = 0 0.9600 -0.2801

0 -0.2801 -0.9600
Computing the eigenvalues of F yields the values 0.9917, 0.1761, and 0.0012. Thus, the

diagonal matrix D is specified as

0.9917 0 0

D = 0 0.1761 0

0 0 0.0012

Inspection of this diagonal matrix reveals that the stability condition described earlier is, in-

deed, satisfied for this particular set of parameter values. The parameter matrix F can now be

written in spectral form as the product of the matrices Q1, D, and Q2:

F = QDQT

17For this example, we assume that vd = 590 years, K2/Vd = 0.675, and, following Maier-Reimer and Hassel-
man [45], Te = 120 years. We also assume that 1/K 1 = 0.073, a value which we numerically estimate in Chapter 4.
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1 0 0 0.9917 0 0 1 0 0
0 -0.9999 0.0120 0 0.1761 0 0 0.9600 -0.2801

0 0.0120 0.9999 0 0 0.0012 0 -0.2801 -0.9600,

0.9917 0 0

0 -0.1690 0.0493

0 .00017 -0.0017

The numerical procedure outlined above can be used to test the stability of the coupled

system of equations, for any specified set of model parameter values.

3.4 Summary

In this chapter, we explored a number of issues pertaining to the closely-related topics of cli-

mate modeling and prediction. Central to our presentation was the derivation of two reduced-

scale models of the global climate system. The reduced-scale climate modeling approach pre-

sented here provides a computationally-efficient means by which to obtain policy-dependent

projections of future climate. As we discuss later in Chapter 6, this capability is an important

aspect of our IDA framework. In the chapter that follows, we address the technical problem of

calibrating these reduced-scale models to transient simulations of the MIT 2D-LO global climate

model.



Chapter 4

Reduced-Scale Model Calibration

The preceding chapters have sought to emphasize the centrality of long-term climate predic-

tions in integrated assessments of global climate change. General Circulation Models-by far

the most sophisticated tools for performing global climate simulations-are ill-suited for the

task of policy-oriented global climate change assessment, in that the computational costs re-

quired to perform long-term simulations are largely prohibitive. Large-scale global climate

models are, in addition, unable to provide the degree of flexibility, ease-of-use, and trans-

parency that policy-oriented modeling requires. Moreover, it is impossible to incorporate large-

scale climate models into decision-analytic frameworks such as those which we present later

in Chapters 5 and 6.

Policy-oriented assessments of global climate change necessarily entail trade-offs between

model adequacy or realism, on the one hand, and computational efficiency, on the other. The

reduced-scale global climate models put forth previously in Chapter 3 attempt to strike an in-

strumental balance between these competing needs. In particular, each of these models posses

a sound theoretical basis, and each represents those processes that-for our purposes here-

have the greatest influence on global climate change. In order to render such models suitable

for policy analysis, it is desirable that the output of these reduced-scale models resemble-as

closely as possible-the characteristic output of larger, more realistic climate models. In this

chapter, we address the problem of calibrating the reduced-scale climate models in such a way

that they essentially mimic the transient behavior of the MIT 2D-LO global climate model.' In

what follows, we address a number of technical issues surrounding the problem of numerically

calibrating the one- and two-box models to transient simulations of the 2D-LO climate model.

1The MIT 2D-LO global climate model was described earlier in Chapter 3.
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4.1 Calibration of the One-Box Model

In Chapter 3, we derived the following globally-averaged one-box climate model:

1
Tt = Tt-1 + - (Ft-1 -A Tt-1 ), (4.1)

K
where Tt is the change in global-mean surface air temperature at time t, K is the heat capacity

or thermal inertia of the climate system, Ft is the change in radiative forcing at time t, and A

is a feedback parameter. Equation (4.1) is dynamic in character, in that non-contemporaneous

relationships exist between the variables in the model. Specifically, the time-lagged values of T

and F are explanatory variables for changes in global-mean surface air temperature, and 1/K

and A are physically-determined parameters that influence the rate and magnitude of climatic

change. For our purposes here, Eq. (4.1) is construed as a structural time series model, in the

sense that each variable has a direct, physical interpretation. In this section, we address the

problem of calibrating Eq. (4.1) to transient simulations of the 2D-LO global climate model,

where each simulation assumes a gradual increase in atmospheric CO2 concentrations.

Intermodel comparisons of long-term climate simulations using large-scale GCMs reveal

significant differences in the transient response of these models to gradual increases of GHG

concentrations in the atmosphere. Our calibration of Eq. (4.1) draws upon a series of sensitivity

studies carried out at MIT using the Integrated Global System Model. 2 In particular, we examine

a set of 2D-LO transient model runs that are characterized by different numerical values for

the following pair of climate-related variables:

* Climate Sensitivity. Formally defined as the difference in global-average surface tempera-

ture between equilibrium climates for current and doubled CO2 levels;

* Ocean Diffusion Coefficient. Influences the global climate system's rate of warming.3

In Figure 4-1, we summarize the climate sensitivity and ocean diffusion coefficient values

that characterize the transient 2D-LO simulations that are used here to calibrate the one- and

two-box models. In this figure, we note that each transient simulation assumes that climate

sensitivity takes on the value 1.50C, 2.5°C, or 4.5°C, representing the lower, "best guess," and

upper values, respectively, of the IPCC climate sensitivity range [32]. Each transient simulation

is also characterized by an ocean diffusion coefficient, which is assumed to range between 1/50

and 50, with 1 and 5 as middle values.4

2 See, e.g., Sokolov and Stone [73]. For a detailed description of the MIT Integrated Global System Model, see Prinn
et al. [62].

3 In the 2D-LO climate model, different climate sensitivities are obtained by imposing cloud-feedback parameter-
izations that depend on increases in surface air temperature. Also, heat uptake by the deep ocean is parameterized
by diffusive mixing of mixed-layer temperature perturbations (A. P. Sokolov, Private Communication).

4 Nordhaus [57] calibrates the climate portion of his DICE model to single transient runs of three separate GCMs,
each of which is characterized by a different climate sensitivity value.
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Climate Sensitivity 1.5 2.5 4.5

Ocean Diffusivity 150 1 5 50 1150 1 5 50 1/50 1 5 50

Figure 4-1: Structure of transient simulations of the MIT 2D-LO global climate model used to
calibrate the reduced-scale climate models. Each simulation assumes a specific climate sensi-
tivity and ocean diffusivity value.

As illustrated in Figure 4-2, our calibration of the reduced-scale climate models proceeds

along the following lines. We begin with an exogenously-specified radiative forcing scenario.

The forcing trajectory is used to drive a series of transient simulations of the 2D-LO climate

model, where two of the model's parameters--climate sensitivity and ocean diffusivity-are

varied successively in the manner described above. This procedure gives rise to twelve long-

term projections of global-mean surface temperature change. As discussed below, we utilize

econometric and statistical time series techniques to estimate key reduced-scale model param-

eters.

In arriving at an appropriate numerical representation for Eq. (4.1), we begin by examining a

set of 2D-LO transient simulations of global-mean surface air temperature change, where each

simulation assumes that atmospheric CO2 concentrations grow at a rate of 1.2% per year. In

addition, we focus on the case where climate sensitivity is 2.5°C. In Figure 4-3, we plot the atmo-

spheric CO2 concentration and radiative forcing time-paths used for this set of simulations, for

the period 1977-2077. The four global-mean surface temperature trajectories associated with

this forcing scenario are plotted in Figure 4-4; in this figure, we plot one simulated temperature

trajectory for each individual ocean diffusion coefficient value.

Figure 4-2: Reduced-scale model calibration procedure.
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Year

1980 2000 2020

Year

2040 2060

Figure 4-3: CO2 concentration and radiative forcing time-paths for the period 1977-2077. At-
mospheric CO2 concentrations are assumed to grow at the rate of 1.2% per year.

In using this set of temperature change trajectories to calibrate the one-box climate model,

we first re-write Eq. (4.1) as

Tt = Tt-1 + C 1 (Ft-1 - C 2 Tt-1 ), (4.2)

where C1 = 1/K and C2 = A. At equilibrium, it is easily shown that the feedback parameter, A,

is related to climate sensitivity and radiative forcing via the equation

AF2xA = AF 2 x  (4.3)
A T2 x

where AF 2x denotes the change in radiative forcing brought about by a static doubling of at-

mospheric CO2 concentrations, and AT2x denotes climate sensitivity. Following Nordhaus [57],

we assume that AF2x is equal to 4.1 Wm - 2. Since AT 2 x is, for this particular set of transient

model runs, equal to 2.50C, A equals 4.1/2.5 = 1.64, in which case Eq. (4.2) becomes

Tt = Tt-1 + C1 ( Ft-1 - 1.64 Tt- 1 ) . (4.4)

Using the global-mean surface temperature change time series data presented in Figure 4-4,

8

6- '

4
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1980 2000 2020 2040 2060

Year

- OD Coefficient = 1 ------- OD Coefficient = 5
---------- OD Coefficient = 1/50 ------- OD Coefficient = 50

Figure 4-4: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO2 concentrations
increase at a rate of 1.2% per year. Each temperature trajectory assumes a climate sensitivity
value of 2.50C, but differs in the value used for the ocean diffusion (OD) coefficient.

in Table 4.1 we summarize the ordinary least-squaress (OLS) estimates of the inertial parameter,

CI = 1/K. Inspection of this table reveals that the OLS estimation procedure yields estimates

of CI that range from 0.012 to 0.052. In Figures 4-5 - 4-8, we plot the actual, fitted, and

residual values for global-mean surface temperature change, for the period 1977-2077. Visual

inspection of these values, together with a cursory examination of the summary statistics,

reveals that-for this set of transient runs-the one-box climate model reasonably mimics the

transient behavior of the larger 2D-LO model.

An alternative to the estimation procedure outlined above is to compute a pooled estimate of

the inertial parameter, CI = 1/K. To compute such an estimate, we begin by re-writing Eq. (4.2)

as

Tit = Tit-1 + CI ( Fit-1 - C 2 Tit-1 ), (4.5)

5For technical discussions of ordinary least-squares estimation with lagged dependent variables, see, e.g.,
Greene [23, pp. 419-420; 435-436] and Hamilton [24].
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AT2,Ix Ocean Diffusivity C1 = 1 R2  SER
1/50 0.052 (0.007) 0.998 0.061

1 0.024 (0.004) 0.997 0.058
2.50C

5 0.015 (0.003) 0.995 0.063

50 0.012 (0.002) 0.995 0.056

Table 4.1: Inertial parameter estimates for the globally-averaged one-box climate model, with
climate sensitivity of 2.5°C. Values in parentheses denote standard errors.

OD Coefficient = 1/50

0.2

0.1

nn
v.v

-0.1

-0.2
1980 2000 2020 2040 2060

I-- Residual ---------. Actual ------ Fitted

Figure 4-5: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.5'C and OD coefficient of 1/50.
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OD Coefficient = 1

0.2

0.1

0.0

-0.1

-0.2
1980 2000 2020 2040 2060

I-- Residual ------- Actual ---- FittedI

Figure 4-6: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.5°C and OD coefficient of 1.
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OD Coefficient = 5

I - Residual ---------- Actual ------ Fitted

Figure 4-7: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.5°C and OD coefficient of 5.
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OD Coefficient = 50

0.2

0.1

0.0

-0.1

-0.2
1980 2000 2020 2040 2060

-- Residual ---------- Actual ------ Fitted

Figure 4-8: Actual, fitted, and residual values for global-mean surface air temperature change
for the period 1977-2077, with climate sensitivity of 2.50C and OD coefficient of 50.
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where i = 1,...,4 indexes the four temperature time series associated with each ocean diffusion

coefficient value; the parameters C1 and C2 are defined as before, and remain constant for all i.

Equation (4.5) interprets the four temperature change trajectories described above as cross-

sectional units, observed at each discrete time period t = 1977,..., 2077. For the radiative

forcing scenario described above, with AT2x = 2.5°C, we obtain the following OLS pooled

estimate 6 for C1:

Tt = Tt-1 + 0.017 ( Ft-1 - 1.64 Tt-1 ),

(0.002)

where R2 = 0.99 and SER= 0.06. As expected, the pooling procedure yields an estimate for C1

that lies between the low and high inertial parameter estimates obtained previously.

The numerical estimates obtained above for the inertial parameter, 1/K, are derived from

a set of transient simulations of the 2D-LO climate model that assume the IPCC "best guess"

climate sensitivity estimate of 2.5 C. Naturally, it is important to explore the manner and degree

to which these parameter estimates vary when climate sensitivity takes on values that span the

IPCC range. To this end, we now explore a set of transient simulations of the 2D-LO model that

assume the full range of climate sensitivity and ocean diffusion coefficient values shown in

Figure 4-1. For this particular set of transient simulations, atmospheric CO2 concentrations are

assumed to grow at a rate of 1% per year. In Figure 4-9, we plot the radiative forcing scenario

used for this set of transient simulations. In Figures 4-10 - 4-12, we plot the temperature

change time series associated with each climate sensitivity-ocean diffusivity pair. In Table 4.2,

we summarize the OLS estimates of the inertial parameter, for each possible climate sensitivity-

ocean diffusivity pair. In this table, we also summarize the pooled inertial parameter estimates,

as a function of climate sensitivity.

4.1.1 Serial Correlation

The OLS estimates obtained above for the inertial parameter in Eqs. (4.2) and (4.5) are based on

the assumption that the errors corresponding to different observations generated by the 2D-LO

climate model are uncorrelated. Correlation among error terms from different time periods is

referred to as serial correlation. In the context of our discussion here, an important concern

is that in utilizing the reduced-scale climate models to make long-term projections of global-

mean surface temperature change, we wish to identify instances where overestimation of the

magnitude of temperature change in one year may lead to overestimation in succeeding years.

6The use of OLS in the estimation of cross-sectional time series is discussed by Greene [23, pp. 444-464].
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Figure 4-9: Radiative forcing time paths for the period 1977-2077. Atmospheric CO2 concen-
trations are assumed to grow at the rate of 1% per year.

AT2x Ocean Diffusivity C1
= 1 Durbin-Watson Pooled Estimate

1/50 0.028 (0.004) 1.295

1 0.019 (0.002) 1.765
1.50 C 0.015 (0.001)

5 0.014 (0.002) 0.815

50 0.012 (0.001) 1.251

1/50 0.048 (0.004) 0.390

1 0.025 (0.006) 2.331
2.5 0 C 0.017 (0.001)

5 0.015 (0.002) 0.624

50 0.010 (0.001) 1.295

1/50 0.053 (0.003) 0.784

1 0.021 (0.001) 0.666
4.5 0C 0.016 (0.001)

5 0.013 (0.001) 0.703

50 0.010 (0.001) 0.851

Table 4.2: Inertial parameter estimates for the globally-averaged one-box climate model, as a
function of climate sensitivity and ocean diffusivity. Values in parentheses denote standard
errors.
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-- OD Coefficient = 1/50 ------- OD Coefficient = 5
--------- OD Coefficient = 1 ------- OD Coefficient = 50

Figure 4-10: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO2 concentrations
increase at a rate of 1% per year. Each temperature trajectory assumes a climate sensitivity of
1.5°C, but differs in the value used for the ocean diffusion (OD) coefficient.
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Year

-- OD Coefficient = 1/50 ------- OD Coefficient = 5
---------- OD Coefficient = 1 ------- OD Coefficient = 50

Figure 4-11: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO2 concentrations
increase at a rate of 1% per year. Each temperature trajectory assumes a climate sensitivity of
2.50C, but differs in the value used for the ocean diffusion (OD) coefficient.
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Figure 4-12: Projections of global-mean surface air temperature change derived from the MIT
2D-LO global climate model. The projections assume that atmospheric CO2 concentrations
increase at a rate of 1% per year. Each temperature trajectory assumes a climate sensitivity of
4.5 0C, but differs in the value used for the ocean diffusion (OD) coefficient.
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Durbin-Watson Test

A commonly used procedure for identifying serial correlation is the so-called Durbin-Watson

test. This test is based on the assumption that serial correlation in the true disturbances is

likely to manifest itself in the residuals, et, that are derived from the least-squares estimation

procedure. The Durbin-Watson test statistic, dw, is defined as follows:

dw= 1 (et - et-1)2
dw t=2 -- 1

t=1 et

For this equation, successive values of et that are close to each other give rise to a low Durbin-

Watson statistic-an indication of positive serial correlation. The Durbin-Watson statistic is

defined on the interval 0 to 4, with values near 2 indicating that first-order serial correlation is

not present. Values above and below 2 are indicative of negative serial correlation and positive

serial correlation, respectively. In the fourth column of Table 4.2, we provide the Durbin-Watson

statistic value for each of the inertial parameter estimates. For the high climate sensitivity cases,

we note that the Durbin-Watson values are indicative of positive serial correlation. The Durbin-

Watson values obtained for the low and "best guess" climate sensitivity cases are indicative of

both negative and positive serial correlation.

Breusch-Godfrey

The Durbin-Watson has been shown to be biased against finding serial correlation when there

is a lagged dependent variable, as is the case in Eqs. (4.2) and (4.5).7 An alternative procedure

is the so-called Breusch-Godfrey (BG) test. The BG test is a Lagrange multiplier test of the

hypothesis

Ho - No Autocorrelation,

H 1 - et = AR(r),

where r is specified as a positive order.8 The test has power against all types of serial corre-

lation, and is applicable to equations that have lagged values of the dependent variable. The

test is carried out by regressing the OLS residuals on the right-hand variables, together with

r lagged residuals. The BG statistic is calculated as the product TR2 , where T denotes the

total number of observations. We then refer BG statistic values to tabled critical values for the

chi-squared distribution, with r degrees of freedom. In Table 4.3, we tabulate the BG statis-

7See, e.g., Dezhbaksh [161 and Durbin [20].
8For our purposes here, we assume that r = 2.
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Table 4.3: Breusch-Godfrey statistic values and their associated p-values for the calibration of
the globally-averaged one-box climate model.

tic values, and their associated p-values, 9 for the 12 climate sensitivity-ocean diffusivity pairs

tabulated in Table 4.2. The BG statistic values listed in Table 4.3 indicate that we can reject the

null hypothesis (no autocorrelation) at significance levels less than or equal to 1%.

4.1.2 Corrections for Serial Correlation

In order to correct for serial correlation in our calibration of the one-box model, we introduce

a first-order autoregressive error process of the form

Et = P Et-1 + Ut,

where p denotes the first-order serial correlation coefficient, and ut is distributed as N(0, o-u),

and is assumed to be i.i.d. By introducing this error process, we are able to reflect the possibility

of mis-specification in our basic model structure. Given this assumption, our one-box model

becomes

Tt = Tt-1 + C1 (Ft-1 - C2 Tt-1 ) + Et,

Et = p Et-1 + Ut, 0 < Pl < 1.

9For a given test statistic, the p-value or attained significance level is the smallest level of significance for which
the observed data indicates that the null hypothesis should be rejected.

AT2, Ocean Diffusivity Breusch-Godfrey p-Value

1/50 14.307 0.001

1 9.225 0.010
1.5oC

5 26.754 0.000

50 10.680 0.005

1/50 62.326 0.000

1 9.136 0.010
2.50C

5 43.071 0.000

50 14.596 0.001

1/50 28.630 0.000

1 35.079 0.000
4.5 0C

5 36.195 0.000

50 32.976 0.000
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AT2x Ocean Diffusivity C1 = 1/K p

1/50 0.030 (0.005) 0.308 (0.092)

1 0.019 (0.002) 0.110 (0.100)
1.50C

5 0.014 (0.003) 0.540 (0.079)

50 0.012 (0.002) 0.341 (0.092)

1/50 0.054 (0.013) 0.798 (0.064)

1 0.024 (0.004) -0.213 (0.095)
2.50C

5 0.016 (0.003) 0.679 (0.073)

50 0.010 (0.002) 0.240 (0.118)

1/50 0.054 (0.004) 0.510 (0.075)

1 0.021 (0.002) 0.612 (0.073)
4.5°C

5 0.013 (0.002) 0.645 (0.077)

50 0.009 (0.001) 0.555 (0.083)

Table 4.4: Inertial parameter estimates for the globally-averaged one-box climate model, as
a function of climate sensitivity and ocean diffusivity, with corrections for serial correlation.
Values in parentheses denote standard errors.

In Table 4.4, we summarize the inertial parameter estimates for the globally-averaged one-

box climate model, as a function of climate sensitivity and ocean diffusivity, with corrections

for serial correlation. Inspection of these values reveals that the revised estimates for this

parameter range from 0.009 to 0.054.

As a means of visualizing the numerical results of our calibration procedure, in Figure 4-13

we provide a three-dimensional surface plot of the inertial parameter estimates, as a function

of climate sensitivity and ocean diffusivity. This calibration response surface shows how the in-

ertial parameter estimate responds to changes in both climate sensitivity and ocean diffusivity.

Inspection of the response surface reveals that, for small values of ocean diffusivity, the iner-

tial parameter rises sharply across the range 1.5-4.50 C. We note, also, that as ocean diffusivity

increases, the response of the inertial parameter estimate to increases in climate sensitivity is

dampened, until at ocean diffusivity levels of - 20 and above, variations in climate sensitivity

have little effect on the value of the parameter estimate. Graphical displays such as Figure 4-

13 help summarize qualitative features of the behavior of the inertial parameter estimate to

simultaneous changes in climate sensitivity and ocean diffusivity; such features are difficult to

identify solely by visual inspection of tabular data such as that presented in Table 4.4.
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Figure 4-13: Calibration response surface for the globally-averaged one-box climate model in-
ertial parameter estimates, as a function of climate sensitivity and ocean diffusivity. The scale
for ocean diffusivity is logarithmic, but is displayed with untransformed values.
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4.2 Calibration of the Two-Box Model

The globally-averaged two-box climate model put forth previously in Chapter 3 is specified as

follows:

1 K 2  (4.6)
Tt = Tt-1+ + ( Ft- - A Tt-1 [ It-1 - ), (4.6)

Ki Vd

Tt= T 1 + - ( Tt-1 - Tt* ), (4.7)
vd

where Tt and T* denote the changes, at time t, in global-mean surface air temperature and

deep ocean temperature, respectively. As before, Ft denotes the change in radiative forcing at

time t, and A is a feedback parameter. The parameters K, and K2 denote the thermal inertias

for land and ocean, respectively, and vd is the ventilation time of the deep ocean.

Numerical calibration of the two-box model to transient runs of the 2D-LO climate model

proceeds in a manner similar to that which we outlined earlier for the one-box model, with

one notable exception: Equation (4.7) requires that we specify temperature change time series

for the deep ocean. In Figures 4-14 - 4-16, we plot the transient simulations of deep ocean

temperature change that correspond to the transient simulations of global-mean surface air

temperature change depicted earlier in Figures 4-10 - 4-12.

Each transient simulation of the 2D-LO model is characterized by a fixed climate sensitivity

value, from which we are able to derive - via Eq. (4.3) - a corresponding value for A. The

2D-LO transient simulations of deep ocean temperature change assume that the deep ocean is

3,000 meters in depth. Given this assumption, it follows that K2 = 398 Jm - 2 K - 1 yr-1.10 Most

published estimates of the transient coefficient, Vd, lie between 500 and 550.11 Rather than

assume a single value for vd, we assume a range of possible values, each of which is function-

ally dependent on the ocean diffusion coefficient values defined previously. In Table 4.5, we

summarize the values used for Vd, K2 /Vd, and 1/vd in the calibration of the two-box model.

For the purposes of calibration, we rewrite Eqs. (4.6) and (4.7) as

Tt = Tt-1 + C1 (Ft-1 - C 2 Tt-1 - C 3 [ Tt-1 - T_ 1 ]), (4.8)

Tt = T<_ 1 + C4 ( Tt-1 - T ), (4.9)

where C, = 1/KI, C2 = A, C3 = K2/Vd, and C4 = 1/Vd. Estimation of this system of equations

is, in general, a problematic task. The presence of lagged dependent variables with serial

l0 A. P. Sokolov, Private Communication.
11See, e.g., Nordhaus [57], who uses vd = 500 in his DICE model.
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OD Coefficient = 1/50
OD Coefficient = 1

OD Coefficient = 5
OD Coefficient = 50

Figure 4-14: Projections of deep ocean temperature change derived from the MIT 2D-LO global
climate model. The projections assume that atmospheric CO2 concentrations increase at a rate
of 1% per year. Each temperature trajectory assumes a climate sensitivity of 1.5°C, but differs
in the value used for the ocean diffusion (OD) coefficient.

Table 4.5: Parameter values for the globally-averaged two-box climate model, as a function of
ocean diffusivity.
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Figure 4-15: Projections of deep ocean temperature change derived from the MIT 2D-LO global
climate model. The projections assume that atmospheric CO2 concentrations increase at a rate
of 1% per year. Each temperature trajectory assumes a climate sensitivity of 2.5'C, but differs
in the value used for the ocean diffusion (OD) coefficient.
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Figure 4-16: Projections of deep ocean temperature change derived from the MIT 2D-LO global
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of 1% per year. Each temperature trajectory assumes a climate sensitivity of 4.5'C, but differs
in the value used for the ocean diffusion (OD) coefficient.
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correlation complicates our efforts to estimate the inertial parameter, C1 = 1/K1. If it were the

case that our temperature change time series were not serially correlated, then OLS estimates

of C, would be consistent, but biased.

To obtain consistent estimates of the inertial parameter, we re-write the system defined by

Eqs. (4.8) and (4.9) so as to include an autoregressive error term:

Tt = Tt-1 + Cl ( Ft-1 - C2 Tt-1 - C3 [ Tt-1 - t- 1 ]) + Et, (4.10)

Et = PEt-1 + Ut, (4.11)

7t = Tl + C4 (Tt-1- T 1 ), (4.12)

where p denotes the first-order serial correlation coefficient, and ut is distributed as N(0, o-2),

and is assumed to be i.i.d. In obtaining numerical estimates of the inertial parameter, C, = 1/K1,

we use a three-stage least squares (3SLS) procedure, which applies two-stage least squares (2SLS),

together with a full treatment of the cross-equation correlations of residuals. 12 Each iteration

of the 3SLS procedure transforms Eqs. (4.10) and (4.12) so as to eliminate cross-equation cor-

relation, and then applies 2SLS. Following Fair [21], we include as first-stage "instruments" the

lagged dependent variables, Tt-1 and t*_1, as well as the exogenously-specified lagged values

for Ft-1. Since Eqs. (4.10) and (4.12) contain endogenous variables on the right-hand side, 3SLS

yields asymptotically efficient results.13

In Table 4.6, we summarize the 3SLS estimates for C, = 1/KI. In Figure 4-17, we plot the

calibration response surface for this set of inertial parameter estimates. The corresponding

isocontour plot shown in Figure 4-18 allows for a precise reading of the parameter estimate

values shown in Figure 4-17. Clearly, the response surface shown here is quite different from

that which we presented earlier for the globally-averaged one-box climate model. Obtaining a

meaningful physical interpretation for the observed differences between these two surfaces is

problematic, because, in reality, the inertial parameter C, = 1/KI is not directly influenced by

climate sensitivity and ocean diffusivity.14

The most striking feature of the calibration response surface shown in Figure 4-17 is the

presence of a relatively flat plateau or "tabletop," where, for climate sensitivity values ranging

from roughly 2.4-4.5°C, and for ocean diffusivity values ranging from roughly 0.02-1.0, the

value of the inertial parameter estimate exhibits only slight variation. As in the one-box model,

12For technical discussions of the 3SLS estimation procedure, see, e.g., Greene [23], Hamilton [24], and Pindyck
and Rubinfeld [61].

13For a discussion of the efficiency of the 3SLS estimation procedure, see, e.g., Madansky [441.
14A. P. Sokolov, Private Communication.
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Table 4.6: Inertial parameter estimates for the globally-averaged two-box model, as a function
of climate sensitivity and ocean diffusivity. Values in parentheses denote standard errors.

we note that for ocean diffusivity values greater than - 20, variations in climate sensitivity have

only a small effect on the value of the inertial parameter estimate.

4.3 Summary

In this chapter, we utilized econometric and statistical time series estimation techniques to

numerically calibrate the globally-averaged one- and two-box climate models presented earlier

in Chapter 3. By calibrating these reduced-scale models against transient simulations of the

larger, more complex MIT 2D-LO global climate model, we are able to mitigate the tension that

is seen to exist between two competing objectives in integrated assessment modeling. In par-

ticular, the reduced-scale modeling approach set forth here provides a conceptually powerful

means by which to balance the obvious need for scientific adequacy and model realism, on the

one hand, and computational efficiency, on the other. Later, in Chapter 6, we utilize portions of

the calibration exercise presented here as part of our IDA framework for evaluating sequential

climate policies under uncertainty.

AT2 x Ocean Diffusivity C1 = 1/K 1

1/50 0.015 (9.23x10-6)

1 0.015 (0.0003)
1.50C

5 0.008 (0.0007)

50 0.001 (0.0001)

1/50 0.070 (0.0172)

1 0.073 (0.0175)
2.5 0 C

5 0.009 (0.0008)

50 0.005 (0.0014)

1/50 0.053 (0.0041)

1 0.062 (0.0058)
4.5 0C

5 0.015 (0.0013)

50 0.013 (0.0018)



4. REDUCED-SCALE MODEL CALIBRATION

Figure 4-17: Two views of the calibration response surface for the globally-averaged two-box
climate model inertial parameter estimates, as a function of climate sensitivity and ocean dif-
fusivity. The scale for ocean diffusivity is logarithmic, but is displayed with untransformed
values.
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Chapter 5

Climate Change Decision-Making

Under Uncertainty

Current policy debates surrounding the issue of global climate change are complex and mul-

tifaceted. Much of the complexity that underlies the greenhouse debate arises, in part, from

an incomplete understanding of critical features of atmospheric science, as well as from sci-

entific uncertainty concerning the causes and consequences of human interaction with the

global climate system. In addition, difficulties in predicting future levels of anthropogenic

emissions of key GHGs complicate efforts to reliably assess the potential magnitude and tim-

ing of anthropogenically-induced climate change. Moreover, there are inherent difficulties in

drawing reliable inferences as to the potential socio-economic impacts of climatic change, as

well as the likely costs, benefits, and effectiveness of possible response strategies.

In this chapter, we set forth a formal decision-analytic framework for structuring and eval-

uating global climate change response options. The model formulation that we present here

is static in design, and serves as the conceptual basis for a dynamic formulation which we

present in Chapter 6. Our presentation is organized along the following lines. We begin, in

Section 5.1, with a brief discussion of the decision-theoretic concepts that underlie our deci-

sion modeling approach. We follow this discussion with the specification of a formal decision

basis for evaluating an illustrative set of GHG abatement policies. In Section 5.2, we implement

and numerically evaluate the decision basis within a graphical structure for modeling uncertain

variables and decisions. We then use this analytical framework to evaluate an optimal course of

GHG abatement action. As part of this analysis, we use deterministic and probabilistic sensitiv-

ity analyses to identify key uncertainties in our model formulation. In Section 5.3, we consider

the related problems of valuing information and control, and we discuss the relevance of these

concepts to climate change decision-making. Finally, in Section 5.4, we conclude with a brief
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summary of our findings, and we offer some tentative conclusions as to the policy relevance

of our analysis.

5.1 Decision-Making Under Uncertainty

Governmental and intergovernmental decisions as to what actions, if any, should be taken

in response to the prospect of anthropogenic climate change are characterized by conflicting

criteria and large degrees of uncertainty. In addition, policymakers must evaluate a range of

possible response options in a decision context where the effects of climate change may be

recognized only decades hence. In addition to being characterized by long lead-times, some

of these effects may, in fact, be irreversible. Also complicating efforts to arrive at a robust set

of climate change response options are the inherent nonlinearities that characterize the global

climate system. The existence of such nonlinearities force decision-makers to consider the

possibility of "shocks" or "surprises" in the climate system, some of which could potentially

give rise to catastrophic consequences.

The formal evaluation of climate change response options requires that we consider a num-

ber of interrelated factors. Our focus here is on the evaluation of mitigation options that seek,

ultimately, to minimize or prevent climatic change. In order to slow or prevent global warming,

it is necessary to reduce net emissions of key GHGs. Such reductions can be achieved in one

of two ways: (i) reducing the sources of GHGs; or (ii) increasing the sinks (natural or other-

wise) of GHGs. In this way, climate change response options are typically broken down into

those options that reduce or eliminate GHG emissions, and those that measurably offset GHG

emissions.

As with any complex, real-world problem, there are a plurality of ways to frame the green-

house problem. In this section, we explore how the evaluation of GHG abatement options can

be framed as a decision problem under uncertainty. The decision basis that we set forth be-

low provides a formal and explicit means by which to structure and evaluate alternative GHG

abatement policies.

5.1.1 Formal Elements of Decision Theory

For our purposes here, any situation in which a climate policy choice must be made among

alternative courses of action with uncertain consequences will be referred to as a decision prob-

lem under uncertainty. Following Leonard Savage's [66] classic formulation of decision theory,

a decision problem under uncertainty is seen to consist of four basic elements:

(i) A set A = {ax,..., am} of alternative policy options, one of which will be selected;
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(ii) For each policy option ai E A, a set Uj = {XI,...,Xn I of uncertain events that describe

the possible outcomes associated with the selection of policy option ai;

(iii) Corresponding to each set Uj, a set of consequences Cj = {cl,..., cr, ;

(iv) A preference order, <, defined as a binary relation between some of the elements of A.

Given this formulation, having chosen a policy action ai, we observe the occurrence of

uncertain events in the set Uj. Each uncertain event in the set Uj has associated with it a

corresponding consequence set Cj. In this way, the set of uncertain events Uj = {X1,..., Xn

forms a partition of the total set of possibilities, with each policy option ai mapping elements

of Uj to the elements Ck e Cj, i.e., ai(.) : Uj - Cj or ai(Uj) = ck.

In this chapter, we focus on the problem of identifying GHG abatement policies that mini-

mize expected social loss over all policy options a e A. Assume that we are interested in only

one uncertain quantity X. Assume, further, that our degree of belief that the uncertain quan-

tity X will assume the value x, given our background state of information, ý, is Pr(x I ý), the

probability mass function for X. If x occurs, and if policy option a is adopted, then the re-

sulting payoff or social loss is represented by the function 1(x, a). Let l* denote the minimum

expected social loss. When x is a discrete random variable,' our decision problem is formally

stated as follows:

1* = min E [ l(X, a) I 5 ]
aeA

= min l(x, a) Pr(xI ().
aEA

A policy option a* that minimizes expected social loss is called a Bayes decision.2

5.1.2 A Single-Period Decision Model

In what follows, we put forth a single-period decision model for the evaluation of GHG abate-

ment strategies. As alluded to earlier, this single-period model serves as the conceptual ba-

sis for a sequential model formulation-which we present in Chapter 6-that integrates the

reduced-scale climate modeling approach that we described earlier in Chapters 3 and 4, with

time-series outputs drawn from the MIT IGSM. The single-period model that we describe below

provides a nimble, flexible framework for evaluating climate policy choice under uncertainty,

as well as for assessing the relative importance of the various factors that are considered as

part of our formal evaluation of optimal policy choice.

1The problem is easily formulated for the case where X is characterized as a continuous random variable.
2We note that the probability distribution for X may be conditioned on policy option a, as well as on our back-

ground state of information, ý. The relevance of this type of probabilistic dependence to climate-change decision-
making is discussed by Jacoby, Kaufman, and Valverde [34].
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For the purposes of illustration, we consider a set of GHG abatement policies that are cur-

rently being debated under the United Nations Framework Convention on Climate Change.3

We focus on three aspects of the climate change problem that are particularly relevant to the

evaluation of GHG abatement strategies:

* The economic costs of pursuing a range of GHG abatement strategies;

* The economic benefits of abating global climate change;

* Uncertainty concerning the level or magnitude of global climate change.

In this way, GHG abatement actions are construed as hedges against what could possibly be

unacceptable levels of global climate change.

5.1.3 Specification of the Decision Basis

We now formally specify the individual components that, together, comprise the decision basis

of our single-period model. The decision basis consists of three parts: (i) specification of the

decision alternatives; (ii) specification of the possible states of nature and their associated

probabilities; and (iii) specification of abatement costs and possible climate change impacts.

Decision Alternatives

In our decision model formulation, we assume a single or unitary decision-maker, who wishes to

choose among a finite set of possible abatement strategies.4 Each of these abatement strategies

differ in their severity and timing.5 We begin our formulation with the definition of a finite set

of possible abatement options

Abatement Decision = {ai, a 2 , a3 , a 4},

3We discuss the United Nations Framework Convention on Climate Change in Chapter 7.4 The greenhouse debate is, of course, characterized by multiple stakeholders, all of whom are likely to value the
various facets of the problem differently. Our motivation for adopting the perspective of a unitary decision-maker
is twofold in nature. First, given the global character of the problem, it is reasonable to suppose that unilateral
responses to the prospect of global warming are unlikely to be effective in mitigating climatic change and its potential
adverse consequences. For this reason, a global perspective such as the one which we adopt here seeks, at a base
level, to inform our conception of what climate-change-related goals and objectives might be achievable within
a particular time horizon. Second, much of the policy-oriented dialogue surrounding the greenhouse debate is
global in character, though researchers are now beginning to explore the difficult problem of assessing the regional
implications of global warming. These efforts notwithstanding, the usefulness of pursuing multi-actor formulations
of the climate change problem is severely limited by the inability of modern climate science to provide reliable, long-
term predictions of regional climate change. The analytical frameworks and methodology that we set forth here
can, of course, be utilized by individual stakeholders, who may be part of a larger, multi-actor policymaking and
negotiation process.

5All of the decision models presented in this dissertation are evaluated on an expected-value or risk neutral basis.
The role that risk preferences should play in societal decision-making is, of course, a contentious issue, and it is
not our intent to enter into these debates here. Suffice it to say that extensions to the analyses put forth here to
include the risk preferences of decision-makers are, for the most part, straightforward and easily implemented.
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where

a, = Reference Baseline-No Controls Strategy,

a 2  AOSIS Protocol,

a 3  Delayed AOSIS Protocol,

a4  Stringent Abatement Strategy.

Strategy al represents a carbon emissions baseline that is unconstrained by a GHG abatement

policy. The economic costs of mitigation are defined as the difference in costs between the

baseline scenario and a new scenario that is characterized by lower GHG emissions. Strategy a 2

represents a protocol recently proposed by the Alliance of Small Island States (AOSIS) and

Germany [1]. Under the terms of the AOSIS protocol,

* All Annex 16 countries agree to reduce CO2 emissions to 20% below 1990 levels by the

year 2005;

* There are no commitments to reduction or limitation of GHG emissions by non-Annex I

countries or by Economies in Transition.

Under Strategy a 3, we extend the original AOSIS target date from the year 2005 to 2015. Lastly,
under Strategy a 4, we assume that GHG emissions are reduced to 40% of 1990 levels.

Naturally, there are a host of other abatement options that we could consider as part of

this analysis. Our intent here, however, is to illustrate the formal concepts and methods that-

in Chapter 6-serve as the basis for an integrated decision analysis framework for evaluating

sequential GHG abatement policies under uncertainty.

Possible States of Nature

For the purposes of our static analysis, we focus on the possible states of nature associated with

the level or magnitude of global-mean surface temperature change. We assume that the level of

warming is observed in the year 2050. In our single-period model, we define a chance variable

Climate Change, consisting of four mutually exclusive and collectively exhaustive events:

Climate Change = {Small, Medium-Low, Medium-High, Large},

where

6Annex I countries consist of the OECD nations (except Mexico), plus 12 so-called "economies in transition" in
the former Soviet Union and Eastern Europe.
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Small < 1°C,

Medium-Low 1-5 0C (on the low side),

Medium-High = 1-50 C (on the high side),

Large > 5°C.

The chance variable Climate Change represents a broad range of possibilities concerning

the extent or magnitude of future climate change. The probability distribution associated with

this uncertain quantity is influenced by the decision variable Abatement Decision. In this way,

policy action to abate GHG emissions influences the likelihood of each possible state of nature.

In our model formulation, we therefore specify probabilities of the form

p(sj I ai) = Pr{Climate Change = sj I Abatement Decision = ai}, (5.1)

where ai E Abatement Decision and sj E Climate Change.

In assessing subjective probability distributions for Eq. (5.1), we utilize outputs from the

MIT IGSM to assess the likely influence of policy choice on global-mean surface temperature

change. In Figure 5-1, for example, we plot the MIT IGSM temperature change projections

for Strategies al and a2. Using long-term climate projections such as these as a source of

data in probability elicitation exercises directed at Eq. (5.1), we are able to specify the discrete

distributions shown in Table 5.1. In this way, expert judgement is used to summarize the

best available knowledge and information about the likely effects of policy choice on climatic

change.

In specifying subjective probability distributions for Eq. (5.1), we recognize that scientific

uncertainty concerning key climate-change-related quantities is treated in an implicit fashion.

For instance, we note that the global climate model used to generate the policy-dependent

temperature change projections shown in Figure 5-1 is characterized by a particular climate

sensitivity value, in this case, 2.9 0C. As we discussed earlier in Chapters 3 and 4, consider-

able scientific uncertainty currently surrounds this particular quantity. By imposing subjective

probability distributions on the categorical states of nature defined above, we are, in effect,

making indirect assertions about this uncertain quantity, as well as others. Suppose, for ex-

ample, that the expert who provides subjectively-assessed values for Eq. (5.1) believes that the

energy-economic model within the MIT IGSM makes "optimistic" assumptions about the avail-

ability and cost of so-called "carbon-free" backstop technologies. Suppose, further, that the

expert believes that the true climate sensitivity value is 4.5°C, rather than 2.9'C. In order to

reflect this set of beliefs in the assessed values for Eq. (5.1), the expert wishes to represent

the idea that, by assuming a low climate sensitivity value in long-term temperature change
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Figure 5-1: MIT IGSM projections of global-mean surface temperature change for the Reference
scenario and the AOSIS Protocol.

projections such as those shown in Figure 5-1, the climate model is, at any particular point in

time, likely to underestimate the true magnitude of observed climatic change. To "correct" for

this underestimation, the expert assigns the 'Medium-High' and 'High' states higher likelihoods

of occurrence. The modeling approach outlined here is, of course, just one of many that are

possible. Later, in Chapter 6, we treat uncertainty concerning climate sensitivity (and other

climate-change-related quantities) in an explicit fashion.

In Table 5.1, the probability distribution imposed on the variable Climate Change, given that

Strategy al (i.e., no controls on carbon emissions) is adopted, is defined as follows: 'Small' and

'Large' climate change are each assigned probabilities of 0.2, and 'Medium-Low' and 'Medium-

High' are each assigned probabilities of 0.3. Consistent with the temperature change projec-

tions shown in Figure 5-1, this probability distribution captures the qualitative belief that the

range 1-5"C is most likely to contain the true magnitude of the observed level of warming.

Strategy a2 constitutes a relatively moderate abatement policy; looking, again, at Figure 5-1,
the probability mass for the chance variable Climate Change is, for this strategy, allocated so

as to favor the likelihood of 'Small' or 'Medium-Low' climate change. Adopting Strategy a3 is
presumed to increase the likelihood that Climate Change falls into either the 'Medium-High'

or the 'Large' category. Lastly, Strategy a4 is presumed to increase the likelihood of observing
either 'Small' or 'Medium-Low' climate change. Later, in Section 5.2.5, we examine the effects
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Abatement Decision
Climate Change Strategy al Strategy a2  Strategy a3 Strategy a 4

Small .2 .2 .2 .4

Medium-Low .3 .4 .3 .3

Medium-High .3 .3 .4 .2

Large .2 .1 .1 .1

Table 5.1: Probability distributions for the Climate Change chance variable.

that alternative probability specifications have on the policy prescriptions of our static decision

model.

Abatement Costs and Climate Change Impacts

In our model formulation, abatement costs and climate change impacts are measured in terms

of percentage of gross domestic product (GDP) loss. 7 The economic cost of pursuing a specific

climate change abatement strategy depends, in large measure, upon the stringency of the pol-

icy, the adjustment time, and the expected technological improvements in energy sources and

renewables. 8

The costs of emissions control for Strategies al, a 2, and a 3 are introduced in the form of

a data structure that is drawn from output of the MIT Emissions Prediction and Policy Analy-

sis (EPPA) model. EPPA is a global, applied general equilibrium model, derived in part from the

OECD General Equilibrium Environmental (GREEN) model. The model projects anthropogenic

GHG emissions based on analysis of economic development and patterns of technical develop-

ment. Like GREEN, the EPPA model is divided into twelve geopolitical regions, each of which

is linked with bilateral trade. There are four OECD regions (USA, EEC, Japan, and other OECD),
and eight non-OECD regions (China, India, Brazil, Dynamic Asian Economies, Energy Exporting

LDCs, Former Soviet Union, Central and Eastern Europe, and Rest of World). In version 1.6 of

the EPPA model used here,9 each region has ten production sectors (five energy, two future en-

ergy backstops, and three non-energy) and four consumption sectors. The various components

7GDP is a measure of all currently produced final goods and services evaluated at market prices, and is typically
broken down into four basic components: (i) consumption; (ii) investment; (iii) government purchases; and (iv) net
exports. While GDP is arguably the most comprehensive measure of a nation's economic activity, it is important to
recognize two salient limitations of this aggregate measure. First, GDP leaves out nonmarket productive activities.
Second, GDP is not a welfare measure. Since non-market effects have no observable prices, they must be valued
using alternative measures, the most common measure being willingness to pay. Another practical consideration
concerns the manner in which cross-country comparisons of costs/impacts should be conducted (e.g., nominal
exchange rates vs. trade-weighted rates). These limitations notwithstanding, GDP remains a useful means by which
to aggregate a number of goods and services that contribute to welfare.

8For a detailed survey of the economic dimensions of the climate change problem, see, e.g., Cline [14] and Ref. [9].
9See Yang et al. [80].
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Figure 5-2: Features of the MIT EPPA model (Source: MIT Joint Program on the Science and
Policy of Global Change).

of the EPPA model are illustrated in Figure 5-2.

Because of its importance for greenhouse emissions, the overall energy sector is modeled

in the greatest detail. The EPPA model contains sectors for oil, gas, coal, and electricity. The

model also includes non-fossil technologies (e.g., solar and advanced nuclear power) and new

carbon-based sources that might replace conventional fossil fuels in the long term. The model

projects emissions of CO2, CO, CH4, SO2, NOx, and N20 from the twelve geopolitical regions,

taking account of inter-regional trade in energy and other goods. The regional structure also

allows consideration of the geographic distribution of emissions of short-lived trace gases (NOx,

SO2, CO).10

The EPPA model solves for equilibrium in five-year time-steps for the period 1985 to 2100,

and the model is calibrated with 1985 data. For the purposes of policy analysis, carbon emission

constraints can be imposed on any of the 12 regions, in any time period. Control policies may be

modeled in the form of price instruments (taxes or subsidies) or quantitative controls (quotas).

The price instruments maybe ad valorem energy or carbon taxes. The quantitative instruments

that the EPPA model can handle include CO2 emission quotas imposed globally, or imposed on a

single region, or a block of regions. These constraints may be fixed (i.e., no trading), or specified

10The distribution of these gases is important, in that they drive atmospheric chemistry (HOx, etc.) and radiative
forcing (sulfate production, 03 production, CH4 destruction), which is regional in effect.
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Reference Case OECD Non-OECD Global

Annualized GDP 2000-2050 (billion 1985$) 10,100 7,300 17,400

GDP NPV 1985-2050 (billion 1985$) 278,600 185,500 464,100

Carbon Emissions in 2050 (GtC) 7.0 8.9 15.9

Carbon Emissions 1985-2050 (GtC) 315.9 385.1 701.1

Table 5.2: Reference case GDP and carbon emissions data.

as tradable with other regions, which reallocates the quotas so as to minimize cost.

For the single-period decision model, we specify the abatement costs for each response

option as follows:

0%, if Abatement Decision = al;

Abatement Costs 2.03%, if Abatement Decision = a 2;

1.85%, if Abatement Decision = a3;
10%, if Abatement Decision = a4.

The economic and carbon emissions data that underlie these cases are summarized in Tables 5.2

and 5.3. Table 5.2 summarizes the GDP and carbon emissions conditions of the Reference case,
broken down in terms of OECD, Non-OECD, and global values. Table 5.3 shows the annualized

costs for Strategies a 2 and a 3 for the period 2000-2050, their NPVs for the period 1985-2050 (in

billions of 1985 dollars), a percentage change in GDP (annualized) from the Reference case, and

carbon emissions results. The abatement cost specified for Strategy a 4 is hypothetical, but is,
nonetheless, consistent with published estimates of the economic costs associated with this

level of GHG abatement.

The economic valuation of the potential social and environmental losses associated with

anthropogenic global warming is an inherently problematic task. Most published damage esti-

mates are for benchmark warming studies for 2xCO2, with the majority of estimates focusing

primarily on the United States and OECD countries."

In our single-period model, estimates of the percentage of GDP loss associated with the

possible levels of climate change that we outlined previously are specified as follows: 12

0%, if Climate Change = Small;

Climate Change Impacts = 0.5%, if Climate Change = Medium-Low;

3%, if Climate Change = Medium-High;

30%, if Climate Change = Large.

11A useful summary of the social costs of global climate change is found in Chapter 6 of Ref. [9].12The values used here are consistent with various published damage estimates. See, e.g., Cline [14] and Nord-
haus [56].
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AOSIS Protocol Global

Annualized Costs 2000-2050 (billion 1985$) -353

NPV 1985-2050 (billion 1985$) -6,500

Percent Change in Annualized GDP from Base -2.03%

Change in Carbon Emissions in 2050 (GtC) 11.5

Carbon Emissions 1985-2050 (GtC) 158.1

Delayed AOSIS Protocol Global

Annualized Costs 2000-2050 (billion 1985$) -322

NPV 1985-2050 (billion 1985$) -5,600

Percent Change in Annualized GDP from Base -1.85%

Carbon Emissions in 2050 (GtC) 11.5

Change in Carbon Emissions 1985-2050 (GtC) 152.5

Table 5.3: Global results from the MIT EPPA model for Strategies a2 and a 3.

This set of values implies that climate change falling below the 1-5 C range is expected to

have negligible effects on social and environmental costs, whereas a change greater than 50C

is expected to have a very large effect. The economic impact of climate change that falls within

the 1-5°C range is expected to range between 0.5% and 3% of GDP reduction.

Having specified the decision basis for the single-period model, we now address the task

of constructing a formal decision-analytic framework that provides a computationally-efficient

means by which to structure and numerically evaluate the GHG abatement policies outlined

above.

5.2 Influence Diagram Representation of the Decision Model

The construction of formal decision models generally necessitates the integration of three types

of knowledge [59]:

* Causal knowledge about how events influence, or relate to, one another;

* Knowledge about what action sequences are possible in a particular circumstance or de-

cision context;

* Knowledge about how desirable the potential consequences are.

Central to our decision model formulation is the concept of an influence diagram, which

serves as the formal means by which we structure and numerically evaluate the global climate
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change response options outlined above. The language of influence diagrams (IDs) provides an

elegant, robust, and computationally powerful means by which to represent decision problems

under uncertainty, at several levels of abstraction. As we discuss later in Chapter 6, it is this

last feature-computational efficiency-that serves as an important motivating factor in our

decision to use IDs as a modeling language for our decision-analytic framework.

At their simplest and, perhaps, most transparent level, IDs provide a graphical means by

which to qualitatively represent the key elements and components of a decision problem. At

this qualitative level of abstraction--often referred to as the relational or topological level-we

are able to graphically depict the flow of information among those actions and distinctions that

are thought to characterize the decision problem in question. At a deeper level of abstraction,

IDs are used to represent the functional and numeric relationships that characterize a decision

problem.

5.2.1 Formal Elements of Influence Diagrams

Influence diagrams possess a rich underlying mathematical structure. In real-world decision

problems, we are typically interested in modeling relationships in a domain consisting of de-

cision variables D and chance variables U. Influence diagrams provide a convenient means

by which to represent the relationships that exist between these variables. Formally defined,

an ID is an directed acyclic graph whose vertices represent either decision variables, random

variables, or value functions. Influence diagrams therefore consist of three types of nodes:

* Decision Nodes. Represent those actions that are under the full control of the decision-

maker, and are depicted graphically as squares (o);

* Chance Nodes. Represent the random or uncertain variables in a decision problem, and

are depicted graphically as circles or ovals (0);

* Value Nodes. Depicted graphically as diamonds or rounded squares (cD).

The arcs in an ID have different meanings and interpretations. Specifically, arcs can be of

two types: (i) information arcs; and (ii) relevance arcs. As Figure 5-3 illustrates, an arc from

a chance or decision node A to a decision node B is said to be "informational," in the sense

that the arc implies a time precedence, and states that the variable A is known to the decision-

maker at the time that decision B is made. A relevance arc from a chance or decision node A to

a chance node B denotes a probabilistic or functional dependency. The absence of a relevance

arc represents conditional independence between the variables in question.

Identifying relevance is an important task in the construction of an ID. In order to identify

relevance arcs, we begin by ordering the variables in U = (X1,..., Xn), and for each variable Xi,
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Information Arcs Relevance Arcs

Figure 5-3: Information and relevance arcs in influence diagrams.

specify a set par(Xi) g {X1,..., Xi-1, D} such that

Pr {Xi I X 1,...,Xi_1 , D} = Pr {Xi I par(Xi)}. (5.2)

In constructing the ID, for every variable z e par(Xi), we place a relevance arc from z to Xi in

the diagram. The nodes that belong to the set par(Xi) are referred to as the parents of Xi.

Following this procedure, associated with each chance node Xi in an ID are the probability

distributions Pr {Xi I par(Xi) }. The so-called "chain rule" of probability states that

n

Pr {XI,...,Xn I D} = Pr {Xi I Xi,...,Xi-1 , D}. (5.3)
i= 1

Given Eqs. (5.2) and (5.3), it follows that any ID for U u D uniquely determines the following

joint probability distribution for U given D [5]:
n

Pr {XI,...,Xn I D} = Pr {Xi par(Xi)1.
i=1

In recent years, a number of numerical procedures have been developed for computing the

optimal decision policy from an ID. A large class of ID solution procedures eliminate nodes from

the diagram via a series of so-called value-preserving transformations. 13 These transformations

preserve the joint distribution of the chance variables in the diagram, but they do not influence

the expected value of the diagram. In this way, at every step in the solution process, the modified

graph remains a well-formed ID.

13For detailed, technical presentations of algorithms for evaluating IDs, see, e.g., Pearl [59, pp. 309-313] and
Shachter [70]. Lucid and accessible presentations of these and related topics are found in Clemen [13, pp. 81-83]
and Matzkevich and Abramson [51].
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Figure 5-4: Influence diagram representation of the single-period decision model.

5.2.2 Single-Period Decision Model

Figure 5-4 depicts a single-period ID for the decision basis that we specified earlier. The dia-

gram uses three types of nodes to represent each of the individual elements of the decision

problem. In particular, the diagram is seen to consist of one decision node (Abatement De-

cision), one chance node (Climate Change), and three value nodes (Abatement Costs, Climate

Change Impacts, and Social Loss). Beginning at the top-left portion of the diagram, the choice

of an abatement strategy is seen to influence Abatement Costs, i.e., each abatement strategy

has associated with it an economic cost. In addition, the choice of an abatement strategy is seen

to influence the probabilities associated with the chance variable Climate Change. The value

node Climate Change Impacts is seen to depend on the observed magnitude of the chance node

Climate Change. The right-most node, Social Loss, aggregates the expected costs and benefits

of pursuing a particular abatement strategy. Specifically, the value nodes Abatement Costs and

Climate Change Impacts are aggregated via the equation

Social Loss = Abatement Costs + Climate Change Impacts.

In interpreting the structure of the ID in Figure 5-4, we first note that there are no informa-

tion arcs in the diagram. Consequently, the diagram depicts what Manne and Richels [48] call

an act-then-learn decision strategy. Under such a strategy, an abatement decision is made in
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Figure 5-5: Schematic decision tree for the single-period model.

the near-term, without knowing which possible states of nature will obtain in the future. This

structure becomes readily apparent when we examine the model's corresponding schematic

decision tree, shown in Figure 5-5. This figure depicts a situation where an abatement deci-

sion is made in the near-term, and then, at some point in the future, the magnitude of climate

change is observed. Associated with each possible state of nature is an economic consequence,
measured in terms of aggregate social loss.

5.2.3 Evaluation of the Single-Period Model

Having fully specified the single-period model, we now numerically evaluate the ID in Figure 5-

4 so as to determine an optimal decision policy. Figure 5-6 summarizes the optimal decision

policy for the ID.' 4 We observe that the optimal policy is to pursue Strategy a 2, i.e., AOSIS

Protocol. This abatement action has an expected social loss of 6.13%, whereas the other three

abatement strategies-No Abatement, Delayed AOSIS Protocol, and Stringent Abatement-have

expected social losses of 7.05%, 6.20%, and 13.75%, respectively.

Figure 5-7 depicts the so-called cumulative risk profile for the single-period model. The

risk profile depicts a cumulative probability distribution of possible outcomes for the optimal

policy, Strategy a2. In this profile, we see that our model specification is such that there is

no chance that aggregate social loss will be less than zero. Also, the risk profile rises quickly

14All of the decision models developed in this dissertation are implemented and numerically evaluated using the
Decision Programming Language (DPL) modeling environment. The technical details that underlie this decision
modeling environment are described in Call and Miller [ll] and in Ref. [2].
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Figure 5-6: Decision policy summary for the single-period model.

between (roughly) 1.25% and 5%, and then levels off.

5.2.4 Sensitivity Analysis: Identifying Key Uncertainties

We now explore the manner and degree to which the policy prescriptions of the single-period

decision model are sensitive to changes in the input data. The results of this type of analysis can

be used to identify key linkages and variables in the model, as well as to motivate subsequent

extensions and improvements to the model. We begin by examining the sensitivity of the model

outputs to changes in the values specified for Abatement Costs and Climate Change Impacts.

Estimates of the economic costs of GHG reductions are most sensitive to assumptions about

(i) appropriate model structure; (ii) demographic and economic growth; (iii) the cost and avail-

ability of energy demand- and supply-side options; (iv) the desired level and timing of abate-

ment; and (v) choice of policy instruments. Different assumptions about these and related

issues lead to a wide range of emissions reduction cost estimates. Similarly, estimates of the

economic impacts of climate change are likely to underestimate the true impacts of climate

change, the reason being that many of the effects that we associate with climatic change are

not fully quantifiable. Moreover, it is difficult to incorporate the effects that adaptation may

have on damage estimates.

The values that we use in the sensitivity analysis of Abatement Costs and Climate Change

Impacts are presented in Tables 5.4 and 5.5. Ideally, it would be useful to have some knowledge

about the underlying statistical variation in these values. In the absence of concrete knowledge
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Figure 5-7: Risk profile for the optimal static climate policy, Strategy a 2.

Abatement Costs
Abatement Decision

Low Value Nominal Value High Value

No Abatement 0 0 0

AOSIS Protocol 1 2.03 3

Delayed AOSIS Protocol .9 1.85 2.8

Stringent Abatement 5 10 15

Table 5.4: Range of Abatement Costs for the single-period decision model.

of this sort, the values in both of these tables are specified so as to reflect a roughly three-fold

variation between the nominal value and the low-high extremes.

Figure 5-8 depicts a tornado diagram of our sensitivity analysis results. Tornado diagrams

are a convenient means by which to communicate and explore the relative impacts that alter-

native value specifications have on the expected value and policy prescriptions of a decision

model. In a tornado diagram, the horizontal bars are sorted from top to bottom, from most

important to least important. Importance is measured in terms of the relative impact that a

particular quantity has on the expected value of the optimal policy. Each of the horizontal

bars in a tornado diagram depicts a so-called value sensitivity analysis, which calculates the

change in expected value and optimal policy that is brought about by varying one variable in

the model, while holding all of the other variables fixed. In effect, a value sensitivity analysis

requires that we evaluate the model twice: once using the low value and once using the high
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Climate Change Impacts
Climate Change

Low Value Nominal Value High Value

Small 0 0 0

Medium-Low 0.25 0.5 0.75

Medium-High 1.5 3 4.5

Large 15 30 45

Table 5.5: Range of Climate Change Impacts for the single-period decision model.

value. The length of the bars indicate the difference in the expected value between the two

runs; the expected value of the original model is indicated by a vertical line; shifts in optimal

policy are denoted by a change in color.

In Figure 5-8, we note that the optimal decision policy is most sensitive to the climate

change impacts associated with the large and medium-high levels of climatic change. The

decision model is, in addition, sensitive to the abatement costs specified for Strategies a2

and a3. The remaining value sensitivities depicted in Figure 5-8 have little or no effect on the

policy prescriptions, or the expected value, of the model.

5.2.5 Probabilistic Sensitivity Analysis

We now examine the sensitivity of the single-period model's policy prescriptions to changes in

the probability distributions specified for the Climate Change chance variable. In particular,
looking again at Eq. (5.1), we specify-in Table 5.6-four alternative probability distributions

for p(sj I a2 ), the probability distribution for Climate Change, given that optimal Strategy a2

is adopted. These subjective probability distributions span a broad range of possible beliefs

concerning the influence that Strategy a2 is likely to have on future climate change. Evaluating

our primary model with each of the probability distributions shown in Table 5.6 reveals that the

model is, indeed, sensitive to the distributions specified for the Climate Change chance node,
given that Strategy a2 is adopted. The bottom of Table 5.6 summarizes the optimal climate

policy choice and expected social loss that each probability distribution induces in the decision

model.

5.3 Valuing Information and Control

Information is, at a fundamental level, central to the evaluation of policy proposals. Formal

policy analysis often requires that we address issues concerning the cost, reliability, source, and
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Figure 5-8: Tornado diagram for Abatement Costs and Climate Change Impacts.

timing of information. In modern decision analysis, the notions of value of information and

value of control provide important conceptual schemes for systematically evaluating possible

opportunities for gathering information, and for gaining insights about the value of considering

alternatives that provide decision-makers with some measure of control over key variables [50].

In this section, we explore how the single-period decision model presented earlier can be

modified so as to lend itself to the exploration of issues concerning the valuation of information

and control. We begin our discussion with the notion of clairvoyance or perfect information, and

from there we go on to consider the more general notion of imperfect information. We follow

this presentation with a discussion of the concept of the value of control and its relevance to

Climate Change Distributionl Distribution 2  Reference Distribution 3  Distribution 4

Small 0 0 .2 .25 .75

Medium-Low 0 .25 .4 .50 .25

Medium-High .25 .50 .3 .25 0

Large .75 .25 .1 0 0

Optimal Policy a3 [6.2] a3 [6.2] J a2 [6.13] a2 [3.03] a2 [2.16]

Table 5.6: Alternative policy-dependent probability distributions for p(sj a2).
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climate change decision-making.

5.3.1 Computing the Value of Clairvoyance

The value of clairvoyance or perfect information is typically construed as an upper bound on

the value of obtaining a specific piece of information. The basic question that concerns us

here is, "What is the value of knowing the outcome of an uncertain climate-change-related

quantity now rather than later?" We pose this question so as to gain insight about whether it

is economically viable or desirable to pursue specific policy actions or research programs that

could potentially resolve key scientific uncertainties in the greenhouse debate.

By definition, the expected value of perfect information (EVPI) can be zero or positive. If

the EVPI is zero, then the decision is said to be invariant to the information that we may re-

ceive. Suppose that we wish to compute the EVPI for the chance variable Climate Change in our

single-period decision model. Looking, again, at the ID shown in Figure 5-4, we recognize that

before we can perform a determinate value of clairvoyance calculation on Climate Change, we

must modify the basic structure of the diagram: Were it not for the influence arc from Abate-

ment Decision to Climate Change, the addition of an information arc from Climate Change to

Abatement Decision would allow us to calculate the value of the primary model with perfect

information about the magnitude of climate change."5 However, the addition of such an arc in

Figure 5-4 would introduce an illegal cycle into the diagram. In addition to this problem, there

is a conceptual difficulty with this approach that merits mention, namely, before revealing the

value of the uncertain quantity that interests us-in this case, Climate Change-the clairvoyant

must know what decision alternative has been chosen. As Howard [33] points out, if the clair-

voyant were able to answer our query in the absence of knowledge concerning which course

of GHG abatement action we have taken (or plan to take), then our actions would, in effect, be

predetermined.

In order to sidestep this dilemma, we modify our basic model so that it is represented in

canonical form:16

Definition 1 An influence diagram for uncertain variables U and decisions D is said to be in

canonical form if

1. Every chance node that is not a descendant of a decision node is unresponsive to D;

2. Every chance node that is a descendant of a decision node is a deterministic node.

15 Such a procedure is typical of the manner in which determinate value of information calculations are performed
in formal policy analyses of global climate change. See, e.g., Hammitt [25], Manne and Richels [48], and Peck and
Teisberg [60].

16 See, e.g., Howard [33] and Matheson [50].
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Figure 5-9: Clairvoyant Form for the chance variable Climate Change.

An ID that is in canonical form allows modelers to represent all of the causal dependencies

that exist in a given domain. In order to recast our single-period decision model in canonical

form, we begin by imagining that the clairvoyant is able to fill out a form such as the one

depicted in Figure 5-9. When filled out by the clairvoyant, the form indicates-for every course

of action that the decision-maker can take-whether or not the event will occur. Since there are

four possible abatement strategies that can be adopted, and four possible outcomes associated

with the chance variable Climate Change, there are 44 = 256 possible ways for the clairvoyant

to fill out the form.

In modifying our original ID, we assume that the answer the clairvoyant provides, given that

the decision-maker chooses to follow a particular abatement strategy, is probabilistically rele-

vant to the answers he would provide if the decision-maker were to follow another course of

action [33]. Such a characterization requires that we assign probabilities to receiving particular

reports from the clairvoyant. In order to explicitly model this probabilistic dependency, we re-

place the chance node Climate Change with four separate chance nodes, which we label (Climate

Change I al), (Climate Change I a2), (Climate Change I a3), and (Climate Change I a 4). In this

characterization, each of the four chance nodes for the variable Climate Change is conditioned

by one of the four possible abatement strategies. What this characterization does is separate

the variables under the decision-makers control from the variables he cannot influence [50]. To

complete our specification, we represent any mutual relevance that exists between these four

random quantities, as well as specify the probabilities that are associated with each of these
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Figure 5-10: Single-period decision model in canonical form.

chance nodes.

Figure 5-10 illustrates one possible way in which our single-period decision model can be

modified so as to reflect these ideas. We note that there are 4! = 24 possible assessment orders

for the uncertain variables in the revised model. For the purposes of illustration, we single out

the simplest possible assessment order: We assume that no mutual relevance exists between

the four random quantities. For each chance variable (Climate Change I ai), for i {1, ... ,4},

we use the probability distributions listed in Table 5.1.17 Having specified the required prob-

ability distributions, we compute the value of complete clairvoyance on Climate Change-as

illustrated in Figure 5-11--by drawing an information arc from each of the four chance nodes

to the Abatement Decision node. Adding these information arcs stipulates that the decision-

maker has perfect information concerning the chance variables (Climate Change I ai) at the time

that the abatement decision is made, i.e., the outcomes of these chance variables are known

prior to making the abatement decision. The model therefore assumes that the decision-maker

follows what Manne and Richels [48] call a learn-then-act decision strategy, in the sense that

the magnitude of climate change is learned prior to choosing an abatement strategy.

17Given these assumptions, the IDs in Figures 5-4 and 5-10 are decision equivalent, i.e., the two diagrams share
the same optimal policy and expected value.
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Figure 5-11: Complete value of clairvoyance on Climate Change using the canonical form rep-
resentation of the single-period decision model.

In order to compute the value of complete clairvoyance on Climate Change, we first evaluate

the ID in Figure 5-11. The solution for this model yields an expected social loss of 1.42%.

Subtracting from this amount the expected social loss of the primary decision model shown

in Figure 5-10 yields an EVPI of 1.42% - 6.13% = -4.71%. This value can be interpreted as the

maximum amount that the decision-maker should be willing to pay a clairvoyant for perfect

information concerning the magnitude of climate change.

The canonical form ID described above can also be used to compute the value of partial

clairvoyance, i.e., the value of clairvoyance on Climate Change for each abatement policy indi-

vidually. This computation is achieved by adding only those information arcs that are of most

interest to the decision-maker. For example, looking again at the ID shown in Figure 5-10, in or-

der to compute the value of cost-free clairvoyance on Climate Change for Strategy al, we draw

an arc from the node labeled (Climate Change I ai) to the Abatement Decision node. Evaluat-

ing the revised diagram yields an expected social loss of 2.28%. Subtracting from this amount

the expected social loss of the original model yields an EVPI of 2.28% - 6.13% = -3.85%. In

Table 5.7, we summarize the expected value of cost-free clairvoyance on Climate Change, for

each abatement policy individually.
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Abatement Decision Value of Partial Clairvoyance

a, -3.85%

a2 -2.58%

a 3  -2.50%

a4 0.00%

Table 5.7: Value of cost-free partial clairvoyance on Climate Change, for each individual abate-
ment option.

5.3.2 Computing the Value of Imperfect Information

Human decision-makers rarely find themselves in situations where they have access to perfect

information concerning uncertain quantities of interest. In truth, the notion of clairvoyance or

perfect foresight can, in many ways, be seen to be little more than a convenient fiction. The

more realistic case arises when the decision-maker has the option of consulting an imperfect

information source that is, for whatever reason, limited in it's ability to foresee the course of

future events.

The value of imperfect information is defined mathematically as the difference between the

expected utilities associated with two optimal decision strategies: one decision path allows

the decision-maker to choose an information source, whereas the other decision path does

not allow this opportunity. The expected value of the information source is computed as the

(posterior) expected difference between the utilities (or monetary values) that correspond to

optimal decisions with and without the information source.

In practice, decision-makers are often faced with situations where they must choose among

competing sources of information. The canonical approach to evaluating an information source

is depicted in the decision tree shown in Figure 5-12.18 Reading the tree from left to right, we

first decide whether to consult the information source in question, or to act without it. If

we choose to consult the information source, we then observe potential reports, r, from the

information source. Next, we choose a possible course of action, a. Having chosen a decision

path, nature then chooses a state, s.

The numerical procedure that we use to compute a determinate value of the information

source has two parts. We begin by focusing on the upper portion of the tree in Figure 5-12.

Using the process of backward induction,19 the utility of report r, U(r), is given by

U(r) = max I Pr(s I r) U(a,s).
s

18This figure is adapted from Bernardo and Smith [6] and Pearl [59].
19See, e.g., Bernardo and Smith [6] and Raiffa [63].
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Figure 5-12: Assessment of an imperfect information source.

Thus, the expected utility of consulting the information source I is given by

U, = I•Pr(r) U(r) = I I Pr(r I s) Pr(s) U(r),
r r S

which reflects the probability of obtaining report r, and the utility of acting optimally after

receiving it. It is important to recognize that the conditional probability, Pr(r I s), fully char-

acterizes the nature of the information source. This conditional probability measures what

Pearl [59] calls the "fidelity" with which r "mirrors" s.

Looking, now, at the lower path in Figure 5-12, we see that Uo reflects the utility of not

consulting the information source, and is given by

Uo = max Pr(s) U(a,s).
a

S

The value of the information source r = Pr(r I s) is now defined as the difference between

the upper and the lower paths in our decision tree. Specifically, we have that

V(r7) = UI - Uo

S max [YPr(s' I r) U(a, s') Pr(r I s) Pr(s)I
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-max .Pr(s) U(a, s).
a

S

It is easily shown that the value of the information source is always nonnegative, i.e., V(rl) > 0.

The canonical form ID shown in Figure 5-10 is easily modified so as to allow one to per-

form determinate value of imperfect information calculations in the manner described above.

Suppose, for example, that we wish to compute the value of imperfect information on Climate

Change for abatement policy a3. To do so, we add a chance node to the diagram that represents

an imperfect information source or forecast concerning the chance variable Climate Change,

given that abatement policy a 3 is adopted. The revised ID is shown in Figure 5-13. In this

diagram, we assume that the forecasts and the event outcomes are represented by the same

categories that we defined earlier for the chance variable Climate Change. Thus, we define a

chance variable

(Climate Forecast I a3 ) = {"Small", "Medium-Low", "Medium-High", "Large"},

where the quotes denote forecasts of the four climate change categories. For this new ID, we

must specify the relative frequency of each category, Pr{Climate Change I a 3}. In addition, we

must specify a likelihood matrix, F, whose it h row and jth column consists of the following

conditional probabilities:

p(i I j) = Pr (Climate Forecast I a 3) = ri I (Climate Change I a3) = sj},

where ri e (Climate Forecast I a 3) and sj E (Climate Change I a3).

For the purposes of illustration, let us suppose that the chance variable (Climate Change I a3)
is characterized by the probability distribution that we specified earlier in Table 5.1. For the

likelihood matrix F, we follow Manne and Richels [48] and assume that forecast errors are

symmetrically distributed. 20 In this way, we assume that a climate forecast is equally likely

to overestimate or underestimate the actual climate change outcome. Thus, for the chance

variable (Climate Change I a 3), we assume that the likelihood matrix F takes the form depicted

in Table 5.8. In this table, the parameter o- (labeled 'sigma' in the ID shown in Figure 5-13)

is a measure of the accuracy of the climate forecast. By inspection, we see that if a- = 1/4,
then all of the climate forecasts are characterized as being equally probable; consequently, the

forecasts fail to provide the decision-maker with additional new information. Alternatively,
if o- is equal to unity, then the climate forecasts represent perfect information concerning the

20 This assumption should, of course, be modified if available evidence suggests that the climate forecast errors
are characterized by a different distributional form. Also, we note that the analysis presented here differs from
that of Manne and Richels [48] in one important respect, namely, we model the probabilistic influence that policy
choice has on the possible states of nature associated with climatic change.

114



5. CLIMATE CHANGE DECISION-MAKING UNDER UNCERTAINTY

Figure 5-13: Canonical form ID for computing a determinate value of imperfect information on
(Climate Change I a3).

chance variable Climate Change. In this way, increasing values of o- in the interval 1/4 to 1 give

rise to increases in the accuracy of the climate forecasts.

In order to evaluate the ID in Figure 5-13, we must specify a value for o-. For the purposes

of illustration, we consider three separate cases: o- = 0.4, o- = 0.6, and o- = 0.8. Evaluating

the diagram with each of these three values for o- yields expected social losses of 5.67%, 4.99%,
and 4.31%, respectively. Subtracting from these values the expected social loss of the primary

model (6.13%) yields expected values of imperfect information of -0.46%, -1.14%, and -1.82%,
respectively. Clearly, the value of imperfect information increases with the accuracy of the

climate forecast, which agrees with our intuition.

At this point, it is useful to explore the influence that receiving a particular climate forecast

has on the policy-dependent prior probability judgements concerning climate change. Specifi-

cally, we now address the question of how the decision-maker's prior probability assessments

concerning the level of climatic change are revised or updated in light of new information. In

the context of our discussion here, this new information takes the form of categorical forecasts

of climatic change, and the ID shown in Figure 5-13 provides a useful computational vehicle

for exploring this issue.
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Climate Change
Climate Forecast

Small Medium-Low Medium-High Large

"Small" o 3 3 3

"Medium-Low" 1- - 1-o- 1-3 -3 3

"Medium-High" 31 -3 1 3 -

"Large" 1 - 13 - 13--

Table 5.8: Likelihood matrix for value of imperfect information calculations.

As discussed previously in Section 5.2.1, it is possible to transform any well-formed ID by

means of so-called value-preserving operations. Of interest to us here is an operation called

arc reversal, which provides a computational means by which to perform Bayesian inversion

calculations. Looking, again, at the ID shown in Figure 5-13, we are interested in reversing the

arc that goes from (Climate Change I a 3) to (Climate Forecast I a 3), so as to compute the poste-

rior probabilities, Pr{(Climate Change I a 3) I (Climate Forecast I a 3)}. Calculation of coherent

values for these updated probabilities are obtained via Bayes' rule, which, for this example, we

state as follows:

Pr{ (Climate Forecast I a 3) I (Climate Change I a 3)} Pr{(Climate Change I a 3))
Pr{ (Climate Change I a3)}

In the ID, we specified the marginal distribution for (Climate Change I a3), and the forecast

likelihoods for (Climate Forecast I a 3). In order to perform the Bayesian inversion, we must also

compute the marginal forecast probabilities, Pr{ (Climate Forecast I a 3). These probabilities are

easily obtained by means of the decomposition formula

Pr{ (Climate Forecast I a 3)) = 1 [ Pr{ (Climate Forecast I a 3) I (Climate Change I a 3)}

x Pr{ (Climate Change I a 3)} ] .

In Table 5.9, we summarize these marginal probabilities, for each level of forecast accuracy.

Table 5.10 summarizes the posterior probabilities that we obtain using the Bayesian arc reversal

procedure described above. In this table, we tabulate the posterior probabilities for the three

forecast accuracy levels considered here: o = 0.4, a = 0.6, and o- = 0.8. For the purposes of

comparison, in Figure 5-14 we plot these three sets of posterior probabilities, along with the

original prior probability assessment.

Inspection of Table 5.10, together with the bar plots shown in Figure 5-14, reveals some

interesting characteristics about the prior-to-posterior values. First, as expected, the posterior

probabilities that lie along the diagonals of the three individual tables shown in Table 5.10
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Marginal Probability Distribution
Climate Forecast

o- = .4 o- = .6 o- = .8

"Small" .24 .23 .21

"Medium-Low" .26 .27 .29

"Medium-High" .28 .32 .36

"Large" .22 .18 .14

Table 5.9: Marginal probability distributions for the Climate Forecast chance variable, as a
function of forecast accuracy, o-.

increase with forecast accuracy, o-. For the specific values used here, some of these increases

are quite dramatic. For example, when o- equals 0.6 and 0.8, the probability for small climate

change, given that the climate forecast says "Small," goes from 0.20 to 0.52 and 0.75, respec-

tively. We note, also, that the probability of small climate change, given that the forecast says

"Large," decreases with increases in forecast accuracy.

5.3.3 Computing the Value of Control

The concept of the value of control is often used to gain insight into the value of considering

new decision alternatives that enable decision-makers to assume some measure of control over

uncertain variables of interest. To operationalize the concept of value of control, we posit the

existence of a "wizard" that is capable of controlling or setting the value of a particular variable

of interest.

In our single-period decision model, we envision a situation where we wish to determine the

value of exercising perfect control over the level or magnitude of observed climate change. If,

for example, our objective is to minimize climate change, then we would engage the wizard to

ensure a 'Small' degree of climate change.

For our purposes here, we assume that our hypothetical wizard is cost-free and is capable of

ensuring the best possible outcome. To calculate the value of complete control over the chance

variable Climate Change, we do not need to revise the ID shown in Figure 5-10. Rather, within

the internal representation of the model, we simply set the chance node Climate Change to the

desired state, and then numerically re-evaluate the model.

For the model specification presented above, this numerical calculation is quite simple.

Since the wizard is able to ensure that the event 'Climate Change = Small' will obtain with

certainty, we are guaranteed that Climate Change Impacts will be 0%. Consequently, the abate-

ment decision that minimizes aggregate social loss is Strategy al, which has an abatement cost

equal to 0%. Subtracting from this amount the value of the primary problem yields an expected
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o- = .4 Climate Forecast

Climate Change "Small" "Medium-Low" "Medium-High" "Large"

Small .33 .15 .14 .18

Medium-Low .25 .46 .21 .28

Medium-High .33 .31 .57 .36

Large .09 .08 .08 .18

a = .6 Climate Forecast

Climate Change "Small" "Medium-Low" "Medium-High" "Large"

Small .52 .10 .08 .15

Medium-Low .18 .65 .13 .22

Medium-High .24 .20 .75 .30

Large .06 .05 .04 .33

o- = .8 Climate Forecast

Climate Change "Small" "Medium-Low" "Medium-High" "Large"

Small .75 .05 .04 .10

Medium-Low .09 .84 .06 .14

Medium-High .13 .09 .88 .19

Large .03 .02 .02 .57

Table 5.10: Posterior probabilities obtained from the arc reversal procedure, for three different
levels of climate forecast accuracy: o- = .4, o- = .6, and o- = .8.

118



5. CLIMATE CHANGE DECISION-MAKING UNDER UNCERTAINTY
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Figure 5-14: Prior and posterior probabilities for o- = .4, o- = .6, and o- = .8.
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value of perfect control of 0% - 6.13% = -6.13%. This calculation demonstrates that the value

of wizardry far exceeds the value of clairvoyance.

5.4 Summary

In this chapter, we examined how the problem of evaluating GHG abatement strategies can be

framed as a decision problem under uncertainty. Analytical tools drawn from modern decision

science served as the conceptual basis for an analytical framework for structuring and evaluat-

ing an illustrative set of GHG abatement policies. The decision-theoretic framework set forth

here also provides a formal and explicit means by which to conduct sensitivity analyses of key

model assumptions, inputs, and policy prescriptions, as well as to address issues concerning

the valuation of information and control.

There can be little doubt that the decision models presented in this chapter represent a sim-

plified picture of reality. Modeling efforts such as these are, as a matter of course, necessarily

fraught with choices concerning which aspects of the human-climate system are most essential

for the systematic appraisal of policy choice. Granting this point, the models presented here

provide a convenient means by which to structure and integrate knowledge and information

from a disparate range of sources.

To what end, then, can the decision models presented here be said to inform the climate

policymaking process? Ultimately, our intention is to garner insights about the relative merits

of adopting one GHG abatement action over another. Given the crudeness of even our best-

available data, together with a sobering awareness of the myriad scientific and economic uncer-

tainties that pervade the greenhouse debate, the most we can reasonably hope to achieve-at

least in the near-term-is to assess relative orders of magnitude. In this context, the static deci-

sion models presented here are useful policy-analytic tools, in that they provide policymakers

with nimble and computationally-efficient frameworks for exploring a broad range of climate

change response options. As we discussed earlier in Chapter 1, the results of static analyses

such as these can help guide the design and specification of subsequent analyses, which focus

on more detailed or refined aspects of the greenhouse problem.

The static analysis presented here suggests that-relative to the other climate policies-

the AOSIS Protocol represents an optimal course of GHG abatement action. We recognize,

however, that this policy prescription is sensitive to the damages specified for medium-high

to large degrees of climatic change, as well as the abatement costs specified for the AOSIS

and Delayed AOSIS policies. The close proximity of the expected social loss associated with

the AOSIS and Delayed AOSIS policies (6.12% vs. 6.2%) suggests that delaying implementation

of the AOSIS Protocol by one decade is a policy alternative that deserves further analysis and
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interpretation. In particular, given that the Delayed AOSIS policy is a static representation of

what is, in actuality, a sequential climate policy, it seems reasonable to enquire how this policy

would fare-relative to others-when evaluated from a multi-period or sequential perspective.

In the following chapter, we address this question in the context of an integrated decision

analysis framework for evaluating sequential GHG abatement policies under uncertainty.
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Chapter 6

Integrated Frameworks for Sequential

Decision-Making and Learning

In recent years, climate researchers, economists, and policy analysts have begun to study how

the evaluation of climate change response options can be viewed as a sequential decision prob-

lem, where successive, interdependent GHG abatement decisions are made over a finite time

horizon.' The single-period decision model put forth previously in Chapter 5 is essentially

a static representation of the climate change problem, in that the model assumes a decision

context where policymakers select a single GHG abatement policy in the short-term, once-and-

for-all, with no future opportunities for amending or revising an adopted course of action.

In this chapter, we consider the problem of climate change decision-making from a multi-

period or sequential perspective. Our presentation is divided into four parts. We begin, in

Section 6.1, with an introduction to the basic concepts that underlie our sequential modeling

approach. As part of this discussion, we review several analytical frameworks that climate

researchers have, in recent years, put forth for the evaluation of sequential GHG abatement

strategies. In Section 6.2, we extend the single-period decision model presented in Chapter 5

to two periods. Our sequential model formulation is seen to draw explicit linkages between

the MIT IGSM and the reduced-scale climate modeling approach set forth earlier in Chapters 3

and 4. In Section 6.3, we turn our attention to the topic of learning, and we explore the relevance

of this concept to climate change decision-making. Lastly, in Section 6.4, we briefly summarize

the policy relevance of our findings.

1See, e.g., Manne and Richels [48] and Nordhaus [57].
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6.1 Sequential Climate Change Decision-Making

Many real-world decision problems are characterized by sequences of successive and interde-

pendent decisions. Viewing the problem of climate change decision-making from a sequential

perspective requires that we first recognize that an optimal course of abatement action will

depend upon the optimal choices at subsequent decision points. In this way, near-term GHG

abatement action is not taken without first considering what climate change response options

might be available in the future, as well as what might be observed in the long-term about im-

portant climate-change-related parameters. We recognize, also, that both mid- and long-term

abatement actions will-in some measure-depend on the observed consequences of short-

term policy action(s).

During the course of the past decade, economists and policy analysts have explored ways of

formulating and evaluating sequential decision problems that are characterized by uncertainty

and scarce resources. 2 In Chapter 4 of their landmark study, Manne and Richels [48] present a

framework for dealing with uncertainty in the analysis of the economic costs of CO2 emission

reduction strategies. Their two-period, "Act-then-Learn" formulation assumes that decisions

concerning CO2 emission reductions are made at discrete ten-year time intervals. As illustrated

in the schematic decision tree shown in Figure 6-1, as well as in the corresponding temporal

influence diagram (TID) shown in Figure 6-2, near-term energy sector supply and demand de-

cisions are made prior to knowing the true damage potential of global climate change. Manne

and Richels assume that the damage potential is characterized by three possible states of na-

ture: 'Low,' 'Moderate,' and 'High.' Associated with each possible state of nature is an assumed

CO2 emission reduction level. If, for example, the damage potential is 'Low,' then, from 2020

on, no limits are imposed on global carbon emissions. Alternatively, the 'Moderate' and 'High'

damage potentials give rise to assumed carbon emission reductions of 20% and 50% below 1990

levels, respectively. By assigning a subjective probability distribution to the damage potential,
the model is used to evaluate an optimal hedging policy for 2000 and 2010, without knowing

which carbon emission scenario will obtain.3 In this way, the framework makes explicit the

idea of hedging against a range of possible future policy outcomes.

More recently, Hammitt, Lempert, and Schlesinger [26] put forth a sequential framework

for evaluating GHG climate change abatement strategies. In Figure 6-3, we depict the basic

structure of their framework in the form of a two-stage decision tree. In the tree, we see that two

near-term abatement policies are evaluated: "Aggressive" and "Moderate." Under the aggressive

21n the field of environmental economics, e.g., Miller and Lad [52] develop a two-period model for evaluating
resource development projects that are characterized by irreversible actions and consequences, and where learning
is assumed to take place over a finite time horizon.

3In a recent paper, Manne [47] reports the results of a study that compares the optimal hedging strategies of
seven models participating in Energy Modeling Forum Study 14.
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Energy Sector Decisions Damage Potential Energy Sector Decisions

Low Carbon Tax

Medium Carbon Tax

High Carbon Tax

2000 to 2020

Low Low Carbon Tax

Moderate Medium Carbon Tax

High High Carbon Tax

Beyond 2020

Figure 6-1: Act-then-learn decision framework proposed by Manne and Richels (1992).

Figure 6-2: Temporal influence diagram representation of the act-then-learn decision frame-
work proposed by Manne and Richels (1992).
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Figure 6-3: Two-stage decision tree proposed by Hammitt, Lempert, and Schlesinger (1992) for
the evaluation of six sequential GHG abatement strategies.

abatement option, both energy conservation and fuel-switching measures are adopted at the

beginning of Period 1; under the moderate option, only conservation measures are adopted

at the beginning of Period 1. Regardless of which policy option is adopted in Period 1, at the

beginning of Period 2, uncertainties concerning the climate sensitivity parameter, AT 2x, and a

climate target, AT*, are assumed to be fully resolved. 4 In Period 2, the rate of fuel switching is

adjusted so that-for a given climate sensitivity value-observed temperature change at time t

peaks at the revealed climate target, AT*. In their model formulation, both climate sensitivity

and the climate target are implicitly chosen so that the present value of the marginal costs of

abatement is equal to that of the damages. In this way, abatement action in Period 1 is amended

in Period 2 to limit the magnitude of climate change to some "optimal" level.

The salient features of the two-stage model put forth by Hammitt, Lempert, and Schlesinger

are, for our purposes here, more adequately depicted in the form of a TID, which we show in

Figure 6-4. In this alternative representation, we note that the level or magnitude of climate

change at each time period is treated in a deterministic fashion. In their analysis, Hammitt,
Lempert, and Schlesinger treat climate change uncertainty in an implicit fashion by examining

4It is important to note that, in this model formulation, AT 2x and AT* serve as proxies or surrogates for the
scientific uncertainty that surrounds the greenhouse debate. The uncertainty that characterizes these quantities is,
however, treated in a deterministic fashion.
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Figure 6-4: Temporal influence diagram representation of the sequential framework proposed
by Hammitt, Lempert, and Schlesinger (1992).

the sensitivity of the model's policy prescriptions to a range of plausible climate sensitivity

values, as well as to a range of possible climate targets.

The two-period formulation of Hammitt, Lempert, and Schlesinger, while useful in providing

a basis for comparing an illustrative set of GHG abatement policies, fails to provide decision-

makers with clear policy prescriptions, due, mainly, to the fact that key uncertainties in their

model are not treated in an explicit, quantitative fashion.5

In what follows, we set forth an integrated decision analysis (IDA) framework for evaluating

sequential GHG abatement policies under uncertainty. Our IDA framework seeks to improve

upon the models discussed above in several respects, most notably, in the explicit treatment

of uncertainty in key climate-change-related quantities and model parameters.

6.2 A Sequential Decision Model

In this section, we extend the single-period decision model presented earlier in Chapter 5 to two

periods. The two-period formulation set forth here provides a formal and explicit means by

5It is worth noting that Hammitt, Lempert, and Schlesinger do not prescribe an "optimal" abatement path. Rather,
they conclude that a "Moderate" control strategy is less costly than an "Aggressive" strategy if (i) climate sensitivity
is low; or (ii) the allowable temperature change is above 3 C.
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which to represent several important features of the climate change decision-making problem:

1. The representation of possible mid-course corrections to near-term policy choice;

2. The representation of climatic change as a dynamic process that evolves over time;

3. The representation of uncertainty in key climate-change-related quantities;

4. The representation of uncertainty in the calibration and parameterization of the functions

used to represent climate-induced damages or impacts.

As Jacoby, Kaufman, and Valverde [34] point out, there are several IAMs currently in use

that incorporate some or all of these features. A key innovation of the analytical frame-

work that we present here is the integration of these features into a nimble, transparent, and

computationally-efficient scheme, with-as we discuss below-direct and tangible linkages to
the larger, more complex MIT IGSM.

Our sequential model formulation begins with the TID shown in Figure 6-5; we shall refer
to this diagram as the "primary" TID. As in the single-period case, the diagram represents

the economic costs (in each period) of adopting particular GHG abatement policies, as well

as the economic impacts associated with realized levels of climatic change. In contrast with
the single-period formulation, however, global climate change is represented as a dynamic
process that is functionally dependent on (i) the abatement policy adopted in each period; and

(ii) chance variables representing the uncertainty that characterizes two important climate-
related parameters.

The TID shown in Figure 6-5 provides a computationally-efficient framework for evaluating
sequential climate policies. In its latest report, the IPCC rightly notes that "the intractability

of complex decision trees has limited the application of [decision analysis] in environmental

problems ... " [9, p. 67]. To emphasize this point, we note that-for the sequential decisionbasis

defined below-the decision tree equivalent for our primary TID contains over one thousand

enumerated branches.

In the presentation that follows, we formally specify the sequential decision basis for the
primary TID. As discussed below, we utilize quantified expert judgements to estimate the eco-

nomic impacts associated with various levels of greenhouse warming, as well as to specify
subjective probability distributions for key climate-change-related quantities and model pa-

rameters. The climate change experts who participated in this study are all affiliated with the
MIT Joint Program on the Science and Policy of Global Change. Wherever possible, we have, in
addition to these experts' opinions, drawn from published elicitations and surveys of expert
opinions, most notably, Morgan and Keith [53] and Nordhaus [56].
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Figure 6-5: Temporal influence diagram representation of the sequential decision model.
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6.2.1 Specification of the Sequential Decision Basis

The sequential decision basis for our two-period model consists of two stages: The first stage

covers the years 2000-2010, and the second stage covers the years 2010-2050.6 We now specify

the sequential decision alternatives, possible states of nature, uncertain quantities, abatement

costs, and climate change impacts that, together, comprise the decision basis for our sequential

model.

Sequential Decision Alternatives

In our sequential model, we assume a unitary decision-maker, who wishes to choose among a

finite set of possible abatement strategies. 7 In contrast, however, with the single-period model,
our concern here is with the selection of optimal sequential decision strategies. Thus, we define

two decision nodes, Abatement Policy (1) and Abatement Policy (2), denoting the model's first

and second decision stages, respectively. In Figure 6-5, we observe that there is a directed arc

from the first decision stage to the second decision stage. The addition of this so-called no

forgetting arc introduces an explicit time ordering into the diagram. Specifically, in Period 1,
an initial near-term abatement policy all is selected from the set

Abatement Policy (1)= {at1 , a 12, a 13, a 14},

where

all Reference Baseline-No Controls,

al12  - Stabilize OECD Carbon Emissions at 1990 Levels,

a 13  - AOSIS Protocol,

a 14  = Stringent Abatement.

In a similar fashion, at the beginning of Period 2, a long-term abatement policy a2j is selected
from the set

Abatement Policy (2) = {a21 , a22, a 23 , a 24 },

6The time horizon used here is consistent with the time horizon used earlier in our single-period model
formulation.

7As in the single-period formulation, we stress that unilateral responses to the prospect of global warming are
unlikely to be effective in the mitigation of climatic change and its potential socio-economic consequences. For this
reason, a global, "single-actor" analysis such as that which we present here seeks to improve our understanding of
what can potentially be achieved on a global scale, given that opportunities for mutual cooperation are successfully
negotiated in the geo-political arena. Moreover, this type of analysis can provide useful insights about the rela-
tive importance of factors that are likely to influence the willingness of stakeholders to enter into, and abide by,
politically-negotiated agreements concerning the abatement of key GHGs.
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where

a21 Reference Baseline-No Controls,

a22 Stabilize OECD Carbon Emissions at 1990 Levels,

a23 = AOSIS Protocol,

a24 Stringent Abatement.

Abatement policies all and a 21 represent an unconstrained 'Reference' carbon emission

baseline. As in the single-period case, abatement costs in our sequential framework are defined

in terms of the difference in costs between the Reference Baseline scenario and an alternative

policy scenario where carbon emissions are constrained. Under abatement policies al2 and a22,

OECD carbon emissions are stabilized at 1990 levels. The AOSIS Protocol, which we described

earlier in Chapter 5, is represented by abatement policies a 13 and a23. Under abatement poli-

cies a14 and a24 , OECD carbon emissions are reduced to 30% of 1990 levels.

In Figure 6-6, we use a schematic decision tree to depict the abatement policies described

above. In this tree, we observe that there are 42 = 16 possible decision sequences in the

model. We formally denote a sequential climate policy by the ordered pair, < ali, a2j >, where

alil Abatement Policy (1) and a2j E Abatement Policy (2). Using this notation, a complete

enumeration of the sequential climate policies depicted in Figure 6-6 can be specified succinctly

as follows:

< a11, a21 > < a12, a21 > < a13, a21 > < a14, a21 >

< all, a22 > < a12, a22 > < a13, a22 > < a14, a22 >

< all, a23 > < a12, a23 > < a13, a23 > < a14, a23 >

< a11, a24 > < a12, a24 > < a13, a24 > < a614, a24 >.

Inspection of this set of sequential climate policies reveals that the two-period formulation

differs from the single-period formulation in some important respects. First, we note that an

abatement policy that is adopted at the beginning of Period 1 can be revised or amended at

the beginning of Period 2. If in Period 1, for example, abatement policy al12 is adopted, then in

Period 2, the decision-maker can (i) abandon the policy and adopt a no-controls policy (Abate-

ment Policy a21); (ii) continue with the adopted policy (Abatement Policy a22); or (iii) adopt

a more stringent policy (Abatement Policies a23 or a24). Also worth noting is the fact that

the sequential model formulation allows for the explicit representation of delayed policy ac-

tion. Specifically, we note that sequential climate policies < a11, a22 >, < all, a23 >, and

< a11, a24 > all represent delayed policy action in response to the prospect of anthropogenic

global warming; also, sequential climate policy < all, a23 > is an explicit representation of the

'Delayed AOSIS Protocol' option that we discussed earlier in Chapter 5.
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Abatement Policy (1)

No Controls

Stabilize Emissions

A OSIS Protocol

Stringent Abatement

Abatement Policy (2)

No Controls

Stabilize Emissions

AOSIS Protocol

Stringent Abatement

Figure 6-6: Schematic decision tree for the two-period model.

Representation of Possible States of Nature

In the static decision model presented earlier in Chapter 5, we utilized a single chance node

to represent uncertainty in a set of categorical forecasts of future levels of climatic change. A

more realistic representation construes climatic change as a dynamic process that evolves over

time, and takes on a finite number of possible states. How this dynamic process evolves over

time is, in our sequential framework, seen to depend on (i) what actions are taken-in both the

short- and long-term-to mitigate climate change; and (ii) two key climate-related parameters:

climate sensitivity and ocean diffusivity. As we discuss below, our formal representation of this

dynamic process integrates the globally-averaged one-box climate model discussed previously

in Chapters 3 and 4 with the TID shown in Figure 6-5.

Looking at the center portion of our primary TID, we note that the level or magnitude of

climate change in Periods 1 and 2 is represented by two value nodes, labeled deltaT (1) and

deltaT (2), respectively. The value nodes deltaT (1) and deltaT (2) represent the projected

changes in global-mean surface temperature in the years 2010 and 2050, respectively. Each

value node is seen to be a function of both the abatement policy that is adopted in each period,
and two aleatory variables, Climate Sensitivity and Ocean Diffusivity, which we define as follows:

Climate Sensitivity = {Low, Medium, High},

where

Low = 1.50 C;
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Medium = 2.50C;

High = 4.5 0 C;

and

Ocean Diffusivity = {odl, od2, od3, od4 },

where

odl 1/50;

od 2  - 1;

od 3  5;

od 4  50.

We note that the possible states of nature for these two chance variables are defined in a manner

that is consistent with the definitions used earlier in Chapter 4 for the numerical calibration of

the globally-averaged reduced-scale climate models.

In Figure 6-5, we note that the TID asserts that Climate Sensitivity and Ocean Diffusivity are

probabilistically independent.8 Thus, the diagram requires that we assess subjective probabil-

ity distributions for Climate Sensitivity and for Ocean Diffusivity. The probability distribution

for Climate Sensitivity is specified as follows: 'Low' and.'High' are each assigned probabilities

of 0.2, and 'Medium' is assigned a probability of 0.6. The probability distribution for Ocean

Diffusivity is specified as follows: od 2 and od 3 are assigned probabilities of 0.6 and 0.199,
respectively; odl and od 4 are assigned probabilities of 0.2 and 0.001, respectively. 9

For each abatement policy ali e Abatement Policy (1), the functional dependence shown in
Figure 6-5 of deltaT (1) on Climate Sensitivity and Ocean Diffusivity gives rise to a value node

data structure of the form depicted in Figure 6-7. For this data structure, we note that the

deltaT (1) value node is defined in terms of twelve separate projections of global-mean surface
temperature change, one for each possible Climate Sensitivity-Ocean Diffusivity pair. The data

structure for deltaT (2) is identical to that of deltaT (1), with the exception that the structure
is conditioned by the abatement policy choices made in both Periods 1 and 2.10

We now address the problem of numerically specifying the data structures that correspond

to the deltaT (1) and deltaT (2) value nodes. Recall that earlier, in Chapter 4, we used transient

simulations of the MIT 2D-LO global climate model, together with econometric and statistical

8
1In doubled CO2 experiments, the deep ocean is assumed to be at a temperature that is in equilibrium with the

atmosphere. Since there is no physical process that "links" climate sensitivity and ocean diffusivity, we are able to
assert that these two quantities are probabilistically independent.

9Expert judgement elicitation: A. P. Sokolov.
10This dual conditionality arises from the presence of the no-forgetting arc between the primary TID's two decision

nodes.
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Climate_Sensitivity
Medium

High

deltaT 1
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Ocean Diffusivity od2
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Figure 6-7: Data structure for the deltaT (1) value node, conditioned by the selection of an
abatement policy ali E AbatementPolicy (1).

time series techniques, to compute a range of estimates for the globally-averaged one-box

climate model's inertial parameter, C1 = 1/K.11 In these simulations, we varied the climate

sensitivity and ocean diffusivity parameters across a discrete range of values. Specifically,
three climate sensitivity values (1.50 C, 2.5'C, and 4.5 0C), combined with four ocean diffusivity

values (1/50, 1, 5, and 50), were seen to give rise to twelve separate estimates of the one-box

model's inertial parameter. In this way, the one-box climate model can, for our purposes here,
be restated as

Tt = Tt-1 + C1 (Climate Sensitivity, Ocean Diffusivity) [ Ft-1 - A Tt-1 ], (6.1)

where the inertial parameter, Ci, is now indexed by the possible states of nature associated

with the Climate Sensitivity and the Ocean Diffusivity chance nodes.

The twelve estimates obtained earlier in Chapter 4 for the inertial parameter give rise to an

equal number of numerical specifications for Eq. (6.1). Numerical implementation of this equa-

tion requires that we provide an exogenously-specified radiative forcing time series, {Ft }T- 1
For a given radiative forcing trajectory, the twelve numerical specifications for Eq. (6.1) give

rise to twelve projections of global-mean surface temperature change, for times t = 1,..., T.

In our primary TID, for each sequential climate policy, < ali, a2z >, we assess a correspond-

ing radiative forcing trajectory, {Ft 205077. As illustrated in Figure 6-8, we utilize elements of

11To simplify our presentation, we focus on the globally-averaged one-box climate model. Application of the
globally-averaged two-box climate model proceeds in an analogous fashion.
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Figure 6-8: Linkages between the integrated decision analysis framework, the MIT Integrated
Global System Model, and the reduced-scale global climate model(s).

the MIT IGSM to assess the radiative forcing time-paths and-as we discuss below-the abate-

ment costs associated with each of the sixteen sequential climate policies outlined above.
Using Eq. (6.1), for each radiative forcing trajectory, {Ft } 77, we compute twelve sepa2050

t=1977, we compute twelve separate

projections for deltaT (1) and for deltaT (2). In Appendix B, we tabulate the global carbon emis-

sion, atmospheric CO2 concentration, and radiative forcing time-paths associated with each

sequential climate policy; in this appendix, we also tabulate, for each of the sixteen sequen-

tial climate policies, the one-box climate model projections for deltaT (1) and deltaT (2), as a

function of Climate Sensitivity and Ocean Diffusivity.

Sequential Abatement Costs

The economic costs associated with each sequential climate policy are measured in terms of

percentage of gross domestic product (GDP) loss. In our primary TID, abatement costs in each

period are represented numerically in the form of a value node data structure. As illustrated

in Figure 6-8, the values specified for this data structure are drawn from output of the MIT

EPPA model. 12 In Table 6.1, we summarize the economic and carbon emissions data that un-

derlie our Reference baseline scenario. In Table 6.2, we summarize the Period 1 and Period 2

abatement costs associated with each sequential climate policy, < ali, a2j >. The costs in each

period are stated in terms of percentage of GDP loss for the periods 2000-2010 and 2010-2050,

12The MIT EPPA model was discussed briefly in Chapter 5. Outputs derived from EPPA are deterministic in char-
acter. Recent work by Webster [78] represents one possible avenue for introducing uncertainty into the carbon
emission forecasts and cost estimates that are derived from EPPA.
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Reference Case OECD Non-OECD Global

Annualized GDP 2000-2050 (billion 1985$) 13,107 10,560 23,667

GDP NPV 1985-2050 (billion 1985$) 248,107 199,902 448,010

Carbon Emissions in 2050 (GtC) 5.54 9.71 15.25

Carbon Emissions 1985-2050 (GtC) 61.84 83.43 145.27

Table 6.1: Reference case GDP and carbon emissions data.

respectively.'"

Specification of Climate Change Impacts

As discussed briefly in Chapter 5, the literature on the economic valuation of climate change

impacts is at an early stage of development. 14 The approach to damage valuation that we adopt

here is, in some respects, similar to that used by Nordhaus [57], Peck and Teisberg [60], and

others. Specifically, we are interested in specifying a damage function, D, whose domain is

defined as the level or magnitude of climate change at time t. In general, the damage function

is typically assumed to take the form

D(Tt) =( Tt )Y, (6.2)

where, as before, Tt denotes the change in global-mean surface temperature at time t, and y

characterizes the order of the damage function. The parameter y is usually assumed to take

on the values 1, 2, or 3.15

Though the use of Eq. (6.2) in integrated assessments of global climate change is relatively

widespread, recent analyses suggest that its use can potentially give rise to counter-intuitive or

pathological results. Webster 16 points out that there is an implied (and, it seems, unquestioned)

assumption among policy analysts who utilize Eq. (6.2) that larger values of the parameter y

necessarily entail larger damages. If, however, the temperature change over some finite time

period is less than 1°C, then it follows that (Tt) > (Tt) 2 > (Tt) 3 , in which case welfare loss is

seen to decrease with increases in the order of the damage function.

In order to avoid this potential pitfall in our sequential framework, we assume that the

damages in each of the model's two periods are characterized by an exponential function of

the form

13Abatement costs in each period are stated in net present value terms, with an assumed discount rate of 5%.14For a useful overview of this literature, see, e.g., Chapter 6 of Ref. [9].
15See, e.g., Nordhaus [57].
16Mort D. Webster, Private Communication.
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Sequential Climate Policy Abatement Cost (1) Abatement Cost (2)

< all, a 21 > 0%

< all, a 22 > 0.84%
0%

< all, a 23 > 1.16%

< all, a 24 > 1.49%

< a 12, a 21 > 0.15%

< a1 2 , a2 2 > 0.84%
0.32%

< a12, a 23 > 1.23%

< a 12 , a24 > 1.47%

< a1 3, a21 > 0.25%

< a1 3, a22 > 1.04%
0.45%

< a 13, a 23 > 1.43%

< a1 3, a 24 > 1.67%

< a1 4 , a21 > 0.32%

< a 1 4 , a2 2 > 1.11%
0.55%

< a1 4 , a 23 > 1.48%

< a1 4 , a2 4 > 1.78%

Table 6.2: Abatement costs incurred in Periods 1 and 2 for each sequential climate policy.
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D(Tt) = er Tt _ 1, (6.3)

where Tt is defined as before, and a is a scaling constant. The functional form of Eq. (6.3)

is seen to have an important advantage over Eq. (6.2), namely, for any two values a• < cc2 , it
follows that ea1 Tt < e a2 t, for all positive values of Tt.

Typically, damage functions such as Eqs. (6.2) and (6.3) are calibrated so that, for partic-

ular levels of global-mean surface temperature change, damages are seen to equal a certain

percentage of gross production. Peck and Teisberg [60], for example, assume that the damage

associated with a 30C surface temperature rise is 2% of gross production-a value which they

refer to as the adaptation/damage percent.17

In our sequential framework, rather than assume a single deterministic specification for

Eq. (6.3), we treat the calibration and parameterization of this damage function as an explicit un-

certainty in the decision model. In particular, rather than anchoring the calibration of Eq. (6.3)

to a single level of climatic change (say, e.g., 30C), we calibrate the damage function against a

range of possible warming levels. For our purposes here, we focus on two climate change sce-

narios: one scenario is characterized by a low level of warming, and the other is characterized

by a high level of warming. For each warming scenario, we utilize quantified expert judgement

to specify 'Low,' 'Medium,' and 'High' estimates for the expected adaptation/damage percent

in the sequential model's two periods.

The two warming scenarios that we utilize for the calibration of Eq. (6.3) are drawn directly

from the one-box climate model projections for global-mean surface temperature change under

the Reference policy scenario. In particular, for the low warming scenario, we select the low

values for deltaT (1) and deltaT (2) under sequential climate policy < all, a2 1 >; similarly,

for the high warming scenario, we select the high values for deltaT (1) and deltaT (2) under

the same sequential policy. Looking at Table B.1 in Appendix B, we see that the temperature

change projections for the low warming scenario are 0.470 0C and 0.8760 C for Periods 1 and 2,
respectively; the corresponding temperature change values for the high warming scenario are

1.3400C and 2.913°C.

An expert judgement elicitation of the expected adaptation/damage percentages associated

with the low and high warming scenarios might yield a set of values such as those shown in

Table 6.3.18 The 'Low,' 'Medium,' and 'High' percentages associated with each warming scenario

are, for our purposes here, interpreted as the 0.05-, 0.50-, and 0.95-fractiles of a cumulative

probability distribution for the expected adaptation/damage percent in each period. 19 For

17For the purposes of sensitivity analysis, Peck and Teisberg vary the adaptation/damage percent from 0.5%
to 3.5%.

s8The expected damages that we utilize here are consistent with those reported by Nordhaus [56].
19The z-fractile is defined as the magnitude cz of the uncertain quantity oc such that there is a probability of z
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Expected Adaptation/Damage Percent
Low Warming Scenario

Low Medium High

0.470'C rise by 2010 0.1% 0.75% 1%

0.8760 C rise by 2050 0.2% 1.75% 3%

Expected Adaptation/Damage Percent
High Warming Scenario

Low Medium High

1.34 0 °C rise by 2010 0.2% 2.25% 4%

2.913 0 C rise by 2050 0.3% 3.75% 10%

Table 6.3: Low, medium, and high estimates for the expected adaptation/damage percentages
associated with the low and high warming scenarios.

Calibrated Scaling Parameter
Low Warming Scenario

Low Medium High

0.4700C rise by 2010 0.203 1.191 1.475

0.876°C rise by 2050 0.208 1.155 1.583

Calibrated Scaling Parameter
High Warming Scenario

Low Medium High

1.34 0 °C rise by 2010 0.136 0.880 1.201

2.913°C rise by 2050 0.090 0.535 0.881

Table 6.4: Calibrated low, medium, and
ter, a.

high values for the damage function scaling parame-

each row of values in Table 6.3, we solve Eq. (6.3) for the corresponding 'Low,' 'Medium,' and

'High,' values of the scaling parameter, oa. We summarize these values in Table 6.4. Using these

calibrated parameter values, in Figures 6-9 and 6-10, we plot the damage functions associated

with the low and high warming scenarios, respectively, for Periods 1 and 2.

As alluded to earlier, in our sequential framework, we treat the calibration and parameteri-

zation of the damage functions shown in Figures 6-9 and 6-10 as an explicit set of uncertainties

in the model. In particular, consistent with our discussion above, we define a chance node

Warming Scenario = {Low, High},

where

that the true magnitude is less than or equal to zc,.
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8

6

0 0.1 0.2 0.3 0.4 0.5

0.470*C rise by 2010

i' I I I

0 0.2 0.4 0.6 0.8

0.8760 C rise by 2050

Figure 6-9: Damage functions for the low warming scenario, for Periods 1 and 2 of the sequential
decision framework.
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2.913*C rise by 2050

Figure 6-10: Damage functions for the high warming
quential decision framework.
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Low = 0.470 0 C by 2010;
0.876 0C by 2050;

High 1.340 0C by 2010;
2.913 0C by 2050.

As before, we utilize quantified expert judgement to specify a discrete probability distribution

for this chance variable. The nominal values used for this distribution are as follows: the 'Low'

warming scenario is assigned a probability of 0.7, and the 'High' warming scenario is assigned

a probability of 0.3.

In our primary TID, the chance node Warming Scenario is seen to condition two chance

nodes, alpha (1) and alpha (2), each defined in terms of three possible states of nature, cor-

responding to the 'Low,' 'Medium,' and 'High' values of the calibrated scaling parameter, or.

Also, the chance nodes alpha (1) and Warming Scenario have directed arcs that lead into a

value node labeled Climate Change Impacts (1); similarly, alpha (2) and Warming Scenario have

directed arcs that lead into a value node labeled Climate Change Impacts (2). This set of func-

tional specifications give rise to a pair of value node data structures-which we illustrate in

Figure 6-11--for representing climate-change-related impacts.

In specifying probability distributions for alpha (1) and alpha (2), we simplify the assess-

ment procedure by assuming that these two chance nodes are conditionally independent given

Warming Scenario. In addition, the directed arcs from Warming Scenario to alpha (1), and from

Warming Scenario to alpha (2), are-for our purposes here--interpreted as non-conditioning

arcs. As discussed earlier, the 'Low,' 'Medium,' and 'High' values of the scaling parameter oc are

interpreted as the 0.05-, 0.50-, and 0.95-fractiles of a cumulative probability distribution. In

specifying these distributions, we use the so-called extended Pearson-Tukey method to obtain a

three-point approximation.20 Using this approximation, the 'Low,' 'Medium,' and 'High' values

of the chance nodes alpha (1) and alpha (2) are assigned probabilities of 0.185, 0.63, and 0.185,

respectively.

Aggregating Abatement Costs and Climate Change Impacts

In our primary TID, abatement costs and climate change impacts are, in each period, aggregated

via the following set of equations:

Social Loss (1) = Abatement Costs (1) + Climate Change Impacts (1);

20For a discussion of the Pearson-Tukey approximation method, see, e.g., Clemen [13, p. 278].
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exp(.881 *deltaT_2j - 1

Figure 6-11: Data structures for the Climate Change Impacts (1) and Climate Change Impacts (2)
value nodes.
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and

Social Loss (2) = Abatement Costs (2) + Climate Change Impacts (2).

6.2.2 Evaluation of the Sequential Decision Model

We now numerically evaluate the TID shown in Figure 6-5 so as to determine the optimal se-

quential climate policy. Figure 6-12 summarizes the resulting optimal policy for the case where

the uncertainties are resolved at the end of the model's presumed time horizon, i.e., 2050.21 In

this figure, we observe that the optimal course of GHG abatement action is to pursue sequential

climate policy < all, a22 >, i.e., No Controls in Period 1 and Stabilize Emissions in Period 2.

This sequential strategy is seen to have an expected social loss of 6.05%. In Figure 6-13, we plot

the global carbon emission path for the optimal climate policy, and for the Reference policy

scenario (i.e., sequential climate policy < all, a21 >).

In Figure 6-14, we plot the risk profile associated with the optimal sequential climate pol-

icy. As we discussed earlier in Chapter 5, this type of figure depicts a cumulative probability

distribution of possible outcomes under the optimal climate policy. The risk profile reveals

that-under the optimal policy-there is no chance that aggregate social loss will be less than

zero. In addition, the risk profile is seen to rise quickly between (roughly) 1% and 10%, and

then gradually levels off. If the optimal climate policy is adopted, what this particular profile

implies is that the probability that the expected social loss will be less than or equal to 1% is

quite small (- 0.05), whereas the probability that the expected social loss will be less than or

equal to 10% is much higher (- 0.85).

As part of our analysis, it is useful to compare the projections of global-mean surface

temperature change associated with the Reference policy scenario and the optimal sequen-

tial climate policy. Since, in our sequential model formulation, projected temperature change

is functionally dependent on climate policy choice, as well as on the chance variables Climate

Sensitivity and Ocean Diffusivity, it is possible to graphically depict the temperature change

projections under sequential policies < all, a21 > and < all, a22 >, as functions of these two

uncertain quantities. In Figures 6-15 and 6-16, we plot the global-mean surface temperature

change response surfaces associated with each of these sequential policies. Since the optimal

climate policy is, in this case, characterized by unconstrained carbon emissions in the first pe-

riod, the Period 1 response surfaces shown in Figures 6-15 and 6-16 are identical. In Period 2,

however, we note that-relative to the Reference scenario-the temperature change response

surface for the optimal policy is characterized by a gradual leveling-off for high climate sensi-

tivity values and low to medium-high ocean diffusivity values. The differences between these

21Later, in Section 6.3, we consider alternative resolution schemes, where the sequential model's climate-change-
related uncertainties are resolved at various points in the presumed time horizon.
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Figure 6-12: Decision policy summary for the sequential framework.

Figure 6-13: Global carbon emissions under the Reference policy scenario and optimal sequen-
tial climate policy < all, a22 >.
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10 20 30 40 50 60 70

Figure 6-14: Risk profile for optimal sequential climate policy < all, a22 >.
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Figure 6-15: Global-mean surface temperature change response surfaces for Periods 1 and 2
of the Reference policy scenario, as a function of climate sensitivity and ocean diffusivity. The
scale for ocean diffusivity is logarithmic, but is displayed with untransformed values.

two response surfaces are quite subtle, which suggests that the policy prescriptions described

here are likely to be sensitive to the probability distributions specified for the chance variables

Climate Sensitivity and Ocean Diffusivity.

6.2.3 Sensitivity Analysis

We now explore the robustness of the sequential policy prescriptions described above. In

the discussion that follows, we consider two types of sensitivity analyses: (i) value sensitivity

analysis of sequential abatement costs; and (ii) event sensitivity comparisons. These analyses

play an instrumental role in our efforts to identify those variables and model parameters that

have the greatest influence on the policy prescriptions presented here.
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Figure 6-16: Global-mean surface temperature change response surfaces for Periods 1 and 2 of
optimal sequential climate policy < all, a22 >, as a function of climate sensitivity and ocean
diffusivity. The scale for ocean diffusivity is logarithmic, but is displayed with untransformed
values.
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Abatement Costs (1) Abatement Costs (2)
Sequential Climate Policy Low Nominal High Low Nominal High

< all, a21 > 0

< all, a22 > 0.67% 0.84% 1%
0%

< all, a23 > 0.93% 1.16% 1.39%

< all, a24 > 1.19% 1.49% 1.78%

< a12, a21 > 0.12% 0.15% 0.18%

< a1 2 , a22 > 0.67% 0.84% 1%
0.16% 0.32% 0.48%

< a 12 , a23 > 0.98% 1.23% 1.48%

< a12, a2 4 > 1.18% 1.47% 1.76%

< a1 3, a21 > 0.2% 0.25% 0.3%

< a1 3, a22 > 0.83% 1.04% 1.25%
0.23% 0.45% 0.68%

< a1 3 , a2 3 > 1.14% 1.43% 1.72%

< a13, a2 4 > 1.34% 1.67% 2%

< a1 4, a 21 > 0.26% 0.32% 0.38%

< a1 4 , a 22 > 0.89% 1.11% 1.33%
0.28% 0.55% 0.83%

< a1 4 , a 23 > 1.18% 1.48% 1.78%

< a14, a 24 > 1.42% 1.78% 2.14%

Table 6.5: Range of abatement
policy.

costs incurred in Periods 1 and 2, for each sequential climate

Value Sensitivity Analysis

We begin by exploring the sensitivity of the primary TID's expected value and optimal policy

to changes in the values specified for Abatement Costs (1) and Abatement Costs (2). Recall

that these values were obtained from the MIT EPPA model. The range of values utilized for

this sensitivity analysis is shown in Table 6.5. We specify the Period 1 abatement costs so as

to reflect a roughly three-fold variation between the nominal value and the low-high extremes;

similarly, the Period 2 values are seen to reflect a roughly 1.5-fold variation. Using these low-

high values, we conduct a series of value sensitivity analyses, which we then use to construct the

tornado diagram shown in Figure 6-17. In this diagram, we observe that the model is most sen-

sitive to the abatement costs specified in Period 2 for sequential climate policies < all, a22 >,

< all, a 23 >, and < a 12 , a22 >. The sequential model is, in addition, sensitive to the abatement

costs specified in Period 1 for abatement policy a12. The remaining low-high values specified

for Abatement Costs (1) and Abatement Costs (2) have no influence on the expected value and

sequential policy prescriptions of the model.
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Abatement_Costs 2 IAbatement Policy 1 .No Controls,Abatement_Policy_2 .Stabilize_Emissions

Abatement_Costs 2 IAbatement_Policy 1 .No_Controls,Abatement_Policy_2_.AOSIS_Protocol

Abatement_Costs 2 IAbatementPolicy 1 .Stabilize Emissions,Abatement_Policy_2_.Stabilize_Emissions

Abatement_Costs 1 IAbatement_Policy 1_.Stabilize_Emissions

AbatementCosts 1 IAbatement_Policyl 1.AOSIS_Protocol

Abatement_Costs_1 _IAbatement_Policyl 1.Stringent_Abatement

Abatement_Costs 2 IAbatementPolicy 1 .NoControls,AbatementPolicy 2_.Stringent_Abatement

Abatement_Costs 2 IAbatement_Policy 1 .Stabilize_Emissions,Abatement Policy 2_.No Controls

I5.9 5.925 5.95 5.975 I I 6.15 6.

5.9 5.925 5.95 5.975 6 6.025 6.05 6.075 6.1 6.125 6.15 6.175 6.2

Figure 6-17: Tornado diagram for Abatement Costs (1) and Abatement Costs (2).
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Event Sensitivity Comparisons

The value sensitivity analysis described above focused exclusively on the Period 1 and Period 2

abatement costs associated with each sequential climate policy, < ali, a2j >. We now turn our

attention to the uncertain quantities in our sequential framework. Our main objective here is

to assess the influence that each uncertain quantity has on the expected value of the model.

We begin by performing a so-called deterministic event sensitivity comparison of our primary

TID. In this type of analysis, we run the decision model once for every chance variable, each time

replacing the lotteries on the remaining chance variables with their expected values. This type

of sensitivity analysis yields information concerning the characteristic nature of the outcome

distribution when the specified chance event is the only uncertain quantity in the model.

For the primary TID, the numerical procedure used in performing a deterministic event sen-

sitivity comparison has six stages. First, we run the model once with all of the lotteries set

to their expected values; this procedure establishes a base case, which is used as the basis for

comparing the remaining cases. We then run the model in the manner described above, once

for each of the five uncertain quantities, each time replacing the lotteries on the remaining un-

certainties with their expected values. Following this procedure, we obtain the tornado diagram

shown in Figure 6-18. In this diagram, we see a horizontal bar of zero-width labeled '*BASE

CASE*,' which indicates that there is no variance in the outcome distribution of the base case.

The remaining five bars in the tornado diagram depict the variance in the outcome distribution

under the optimal policy. The width of each bar indicates the difference between the 10th

and 90th percentiles of the outcome distribution. The 50th percentile is indicated by a change

in color, and the vertical line indicates the expected value of the base case.

In interpreting the tornado diagram shown in Figure 6-18, we note, first, that the chance

events whose bars lie furthest from the base case have the greatest influence on the outcome dis-

tribution of the sequential framework. Thus, the chance variables Climate Sensitivity, alpha (2),

and Ocean Diffusivity are seen to have the greatest impact on the outcome distribution, whereas

the chance variables Warming Scenario and alpha (1) are seen to contribute very little to this

distribution.

In Figure 6-19, we plot the tornado diagram that corresponds to the probabilistic variant

of the event sensitivity comparison described above. In performing a probabilistic event sen-

sitivity comparison, we first run the sequential model with all of its lotteries present, thereby

establishing a base case. We then run the model once for each uncertain quantity in the model.

In contrast with the deterministic case, however, each bar in Figure 6-19 is obtained by re-

placing the corresponding chance event with its expected value; the lotteries for the remaining

chance variables are left unchanged. Inspection of Figure 6-19 suggests that Ocean Diffusivity

and Climate Sensitivity have the greatest influence on the outcome distribution of the decision
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Figure 6-18: Tornado diagram for the deterministic event sensitivity comparison of the pri-
mary TID.
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Figure 6-19: Tornado diagram for the probabilistic event sensitivity comparison of the pri-
mary TID.

model.

The sensitivity analyses described above highlight some important features about our se-

quential framework. First, the model's policy prescriptions are, indeed, sensitive to the abate-

ment costs specified for the sequential GHG abatement policies which we have considered here.

Second, the deterministic and probabilistic event sensitivity comparisons described above tend

to bear-out our earlier intuitions about the sensitivity of the primary TID's policy prescriptions

to the manner in which the chance variables Climate Sensitivity and Ocean Diffusivity are charac-

terized. Ultimately, these results highlight the need for climate researchers and policy analysts

to focus more attention and resources on efforts that seek to arrive at better characterizations

of key climate-change-related uncertainties.
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6.3 The Role of Learning

Learning is an intrinsic feature of the climate change problem, in that human knowledge and

understanding about the various dimensions of the problem is continually evolving. 22 In this

section, we explore the potential role that learning can play in the evaluation of GHG abate-

ment policies. Our presentation is divided into three parts. We begin with an overview of

the analytical approaches that researchers have, in recent years, put forth for addressing the

topic of learning in climate change decision-making. We then explore how the sequential de-

cision framework presented above can be used as a vehicle for representing learning about

key climate-change-related uncertainties. We conclude our analysis with the presentation of a

Bayesian learning model, where subjective beliefs concerning key scientific uncertainties are

updated over time.

6.3.1 Past Approaches

The role of learning in climate change decision-making has, in recent years, sparked the inter-

est of climate researchers, economists, and policy analysts, alike. As we discussed earlier in

Chapter 5, Manne and Richels [48] were the first to explore so-called learn-then-act decision

strategies for optimal GHG abatement. This type of decision strategy has also been explored by

Nordhaus [57] in the context of his DICE model. We illustrate this characterization of climate-

change-related learning in the schematic decision tree shown in Figure 6-20. In this decision

tree, the damage potential associated with global climate change is treated as an uncertain

quantity. Specifically, damages are seen to fall into one of three possible categories or states:

'Low,' 'Moderate,' or 'High.' In this learn-then-act formulation, it is assumed that the true dam-

age potential is known to the decision-maker prior to choosing a carbon tax or a GHG emission

reduction level.

More recently, Kolstad [40] develops a stochastic version of the DICE model that incorporates

gradual learning over time about the extent of climate-induced damages. 23 The model assumes

that the world can be in any one of a finite number of possible states, st,..., s. Over time,

the learning process is such that messages mi,..., mr are received concerning the true state

of the world. The model further assumes an information structure that consists of two prior

probability vectors, P and Q, defined over the set S of possible states of the world, and the set M

of possible messages, respectively. These two vectors reflect the decision-maker's degree of

22Naturally, the term "learning" can take on many different meanings and connotations, depending on the appli-
cation or circumstance in which it is used. For an insightful discussion of the notion of learning, and its relation to
theories of cognition and human judgement, see Margolis [491.

23Kolstad's analysis assumes that climate change impacts fall into one of two possible states: (i) damages are five
times as great as those assumed by Nordhaus in Ref. [57]; and (ii) there are no damages associated with climatic
change.
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Figure 6-20: Learn-then-act decision framework proposed by Manne and Richels (1992).

belief concerning the relative likelihood of each possible state of the world, and the likelihood

of receiving a particular message.

Each message, mi, constitutes a "noisy signal" as to the true state of the world. In opera-

tionalizing this notion, Kolstad defines a parameter A e [0, 1], which represents the quality of

information in a particular message: A value of A = 0 corresponds to "no information," and

a value of A = 1 corresponds to "perfect information." If a particular message is too noisy

to contain any information, then the posterior probability of each possible state of the world,

given that message, is equal to the prior probability associated with each state.24 Using this

parameterization, Kolstad is able to represent the "rate" of learning: A = 0 denotes the situa-

tion where no learning takes place in a particular time period, whereas A = 1 denotes complete

resolution of uncertainty in a single period.

Kolstad's model formulation is somewhat limited in its ability to trace out the implications of

learning for climate policy, due, mainly, to its myopic focus on climate-change-related damages,

at the exclusion of factors that are likely to influence the magnitude and rate of climatic change.

In what follows, we use the sequential framework presented earlier in Section 6.2 to explore an

alternative set of frameworks for representing learning. Our modeling approach is seen to have

some important advantages over the approaches described above, the most notable advantage

being the ability to represent a broad range of learning schemes in a nimble, flexible, and

24This modeling approach is similar to the approach that we presented earlier in Section 5.3.2 for performing
determinate value of imperfect information calculations.
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transparent manner.

6.3.2 Modeling Learning

The policy-analytic treatments of learning described above are all conceptually predicated on

the notion that learning essentially entails the acquisition of new evidence or information. How

these models operationalize this conception of learning is, nevertheless, highly stylized. One

consequence of this is that the models fail to provide decision-makers with accurate and con-

vincing accounts of the potential role that learning can play in the evaluation of GHG abatement

policies. The modeling approach that we set forth here is grounded in this general conception

of learning, but focuses specifically on the problem of representing learning in sequential de-

cision contexts that are characterized by uncertainty.

The acquisition of new information concerning anthropogenic climate change can occur in a

number of ways, and can take many different forms (e.g., long-term climate forecasts, observed

climate, risk analyses of socio-economic impacts, etc. ).25 In general, any systematic effort to

assess or characterize the role of learning in the formal evaluation of GHG abatement strategies

must address three basic questions:

1. What specific facets of the climate change problem might we expect to learn about in both

the near- and long-term?

2. When will the learning occur?

3. How does learning influence the evaluation of optimal GHG abatement strategies?

In what follows, we use our sequential framework as a computational vehicle for exploring

these questions.

Partial and Complete Learning Schemes

For the purposes of illustration, we focus on learning as it relates to the sequential framework's

two climate-change-related variables: Climate Sensitivity and Ocean Diffusivity. Operationally,

we model learning about these uncertain quantities by making assumptions about the timing of

their occurrence. In particular, we utilize our sequential framework to explore various learning

schemes for Climate Sensitivity and Ocean Diffusivity, where each scheme is characterized by a

different set of assumptions concerning the timing of the resolution of uncertainty for these

two quantities.

25Related to this point, Miller and Lad [52] make a semantically useful distinction between "active" and "inactive"
learning. Active learning occurs when information obtained during a particular time period depends on what was
actually done during that period, whereas inactive learning occurs with the mere passing of time.
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The structure of our sequential framework is such that we are able to specify several possible

resolution points for each of the uncertain quantities in the model. In particular, uncertainty

concerning each chance variable can be resolved at one of three possible points:

1. Before Period 1;

2. At the end of Period 1;

3. At the end of Period 2.

In general, an n-period decision model consisting of p uncertain quantities is characterized by

(n + 1)P possible learning schemes. The chance variables Climate Sensitivity and Ocean Diffu-

sivity thus give rise to (2 + 1)2 = 9 possible learning schemes. We denote each learning scheme

by an ordered pair, (rpClimate Sensitivity, rPOcean Diffusivity), where rpClimate Sensitivity,
rpOcean Diffusivity e {1, 2, 3} denote the resolution points for Climate Sensitivity and Ocean

Diffusivity, respectively. Using this notation, we enumerate the following nine possible learning

schemes for our sequential framework:

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(3, 1) (3, 2) (3, 3).

We begin our discussion of the learning schemes outlined above by noting that our primary

decision model-shown in Figure 6-5 -is characterized by learning scheme (3, 3). In this learn-

ing scheme, uncertainty concerning both Climate Sensitivity and Ocean Diffusivity is resolved

at the end of Period 2. As discussed below, this learning scheme is used as the reference case

against which the remaining eight learning schemes are compared.

The topological structure of our primary TID is easily modified to represent the learning

schemes outlined above. Such modifications are achieved by adding information arcs to the

diagram. If, for example, in Figure 6-5 we include a directed arc from Climate Sensitivity to

Abatement Policy (1), we are able to represent learning scheme (1, 3). The TID corresponding

to this learning scheme is shown in Figure 6-21. Alternatively, if we draw an information arc

from Ocean Diffusivity to Abatement Policy (1), we are able to represent learning scheme (3, 1).

By evaluating each of these revised models, we are able to determine the value of knowing the

outcome of the chance variables Climate Sensitivity or Ocean Diffusivity prior to choosing a

GHG abatement policy in Period 1.

Suppose, now, that in Figure 6-21 we include a directed arc from Ocean Diffusivity to

Abatement Policy (2). As shown in Figure 6-22, the addition of this arc gives rise to learning

scheme (1, 2), which represents what we shall term sequential learning about Climate Sensi-

tivity and Ocean Diffusivity, respectively. Learning scheme (2, 1) is specified in an analogous

manner.
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Figure 6-21: Temporal influence diagram with partial learning about Climate Sensitivity.
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Figure 6-22: Temporal influence diagram with sequential learning about Climate Sensitivity and
Ocean Diffusivity.
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Figure 6-23: Temporal influence diagram with delayed learning about Climate Sensitivity.

An alternative to the learning schemes described above is to assess the influence that de-

layed learning has on the evaluation of both near- and long-term policy choice. Learning

schemes (2, 3) and (3, 2) both represent this type of delayed learning. As shown in Figure 6-23,

to specify learning scheme (2, 3), in our primary model we include a directed arc from Climate

Sensitivity to Abatement Policy (2). Learning scheme (3, 2) is specified in an analogous fashion.

The frameworks described above are, for our purposes here, classified as partial learning

schemes, in the sense that learning about the two climate-change-related quantities is assumed

to take place one variable at a time. That is, prior to selecting an abatement policy in Periods 1

or 2, the decision-maker may learn about Climate Sensitivity or Ocean Diffusivity, but not both at

the same time. The two remaining learning schemes - (1, 1) and (2, 2) - are representative

of what we shall term complete learning schemes. Learning scheme (1, 1) is characterized

by complete learning about the sequential model's two climate variables in Period 1, whereas

learning scheme (2, 2) represents complete learning about these variables that is delayed by

one period. The TIDs corresponding to these two learning schemes are shown in Figures 6-24

and 6-25.
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Figure 6-25: Temporal influence diagram with complete learning in Period 2 about Climate
Sensitivity and Ocean Diffusivity.
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Learning Scheme IValue of Learning

(1, 1) -0.34%

(1, 2) -0.31%

(1, 3) -0.20%

(2, 1) -0.34%

(2, 2) -0.29%

(2, 3) -0.18%

(3, 1) -0.17%

(3, 2) -0.17%

Table 6.6: Value of learning associated with each learning scheme.

6.3.3 Computing the Value of Learning

Numerically evaluating the TIDs associated with each of the learning schemes described above

yields a set of expected values that canbe used in a manner that is conceptually analogous to the

determinate value of perfect information calculations that we performed earlier in Chapter 5.

By computing the expected value of the TID corresponding to a particular learning scheme, and

subtracting from this value the expected value of our primary decision model (6.05%), we are

able to obtain an expected "value of learning."

In Table 6.6, we summarize the value of learning associated with each of the learning

schemes described above. Looking at these values, we note that learning schemes (1, 1)

and (2, 1) have the greatest value of learning (-0.34%). The fact that these two learning schemes

share the same value of learning suggests that, from a policymaking perspective, there is no

additional value to be gained by adopting a complete learning scheme in Period 1; learning

about Ocean Diffusivity at resolution point 1, and then learning about Climate Sensitivity at

resolution point 2, is seen to give rise to the same value of learning as the complete learning

scheme. We note, also, that the value of learning associated with learning scheme (1, 2) (-0.31%)

is close to the value of learning associated with learning scheme (2, 1), which suggests that

if a sequential learning strategy is adopted, then Climate Sensitivity and Ocean Diffusivity are

roughly interchangeable, in the sense that both learning schemes are seen to give rise to similar

values of learning.

Looking, now, at the learning schemes that have the lowest values of learning, we note that

learning schemes (3, 1) and (3, 2) both have values of learning of -0.17%. This result suggests

that if uncertainty about Climate Sensitivity is not resolved until the end of Period 2, then there

is no additional value to be gained by resolving uncertainty concerning Ocean Diffusivity before
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Period 1, as opposed to at the end of Period 1. The values of learning associated with learning

schemes (1, 3) and (2, 3) suggest that delayed learning about Ocean Diffusivity gives rise to

a situation where there is only marginal benefit (-0.20% vs. -0.18%) in resolving uncertainty

concerning Climate Sensitivity before Period 1, as opposed to at the end of Period 1. Lastly, we

note that learning scheme (2, 2) has an expected value of learning of -0.29%, which suggests

that complete learning about Climate Sensitivity and Ocean Diffusivity in Period 2 has moderate

value, relative to the other learning schemes.

6.3.4 A Bayesian Learning Scheme

An alternative to the modeling approach described above is to posit a Bayesian learning scheme,

where the decision-maker's beliefs about the chance variables Climate Sensitivity and Ocean Dif-

fusivity are seen to change over time. Rather than assume a "static" representation for these

two uncertain quantities, we now assume that the decision-maker's knowledge and information

about these uncertain quantities evolves over the finite time horizon of the sequential frame-

work. In formally representing this dynamic process, we generalize our earlier definitions for

Climate Sensitivity and Ocean Diffusivity to two periods. Specifically, for climate sensitivity, we

define two chance variables:

Climate Sensitivity (1) = {Lowl, Medium1 , High 1},

and

Climate Sensitivity (2) = {Low 2, Medium 2, High 2},

where, for i = 1, 2,26

Lowi = 1.50C;

Mediumi 2.5 °C;

High i  4.5 0 C.

In a similar fashion, for ocean diffusivity, we define two chance variables:

Ocean Diffusivity (1) = {od 11 , od 12, od 13, od 14 },

and

Ocean Diffusivity (2) = {od 21, od 22, od 23, od 24},

26To simplify our presentation, we assume that the state space for the chance variables defined here remains
invariant over the finite time horizon of the model. This assumption is, of course, easily modified.
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where, for i = 1, 2,

odil 1/50;

odi2  1;

odi3 5;

odi 4  50.

As we discuss below, in characterizing these chance variables, we assume that the passage of

experience,27 from Period 1 to Period 2, leads the decision-maker to change his degrees of belief

concerning climate sensitivity and ocean diffusivity.

Incorporating these four chance variables into our sequential framework yields the TID

shown in Figure 6-26. This revised diagram has several characteristic features that are worth

noting. First, the diagram requires that we specify marginal probability distributions for Cli-

mate Sensitivity (1) and for Ocean Diffusivity (1), as well as conditional distributions for Climate

Sensitivity (2), given Climate Sensitivity (1), and for Ocean Diffusivity (2), given Ocean Diffusiv-

ity (1). For our purposes here, the marginal distributions specified for Climate Sensitivity (1)

and Ocean Diffusivity (1) are identical to those specified earlier in Section 6.2 for the chance

variables Climate Sensitivity and Ocean Diffusivity.

In specifying the conditional probability distributions for

Pr{Climate Sensitivity (2) 1 Climate Sensitivity (1)} (6.4)

and

Pr{Ocean Diffusivity (2) 1 Ocean Diffusivity (1)1, (6.5)

we are interested in operationalizing the notion of "surprise" as it relates to the decision-

maker's degrees of belief concerning the dynamic evolution of climate sensitivity and ocean

diffusivity. For Eqs. (6.4) and (6.5), we assume the probability structures shown in Tables 6.7

and 6.8. Looking, first, at Table 6.7, we let the diagonal entries labeled p denote the conditional

probability that Climate Sensitivity (2) is in a particular state in Period 2 (Low 2, Medium 2, or

High 2), given that the chance variable was in the same state in Period 1. For our purposes here,

we assume that 0.5 <_ p < 1, which means that if Climate Sensitivity (1) is believed to be in

a particular state in Period 1, then we assign at least better than even odds to the event that

Climate Sensitivity (2) is in the same state in Period 2. In very general terms, we can think of

27This term is due to Richard Jeffrey. See, e.g., Jeffrey [37].
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Climate Sensitivity (1)
Climate Sensitivity (2)

Lowl Medium1  High1
1-p 1-p

Low 2  p 2 4
Medium2 3(1-P)4 P 3(1-4 p)Medium 2  4 p

High 2  4 2

Table 6.7: Conditional probability distribution for Climate Sensitivity (2), given Climate Sensi-
tivity (1).

Ocean Diffusivity (1)
Ocean Diffusivity (2)

od81 od12 od13 od14
od21 19(1-q) 1-q 1-q

40 5 20

od 2 2  3(1-q) 3(1-q) 1-q

1-q 19(1-q) 1 -q
od 23  5 40 q

od 24  1-q 1-q 1-q02 _20 20 20

Table 6.8: Conditional probability distribution for Ocean Diffusivity (2), given Ocean Diffusiv-
ity (1).

p as a measure of the degree of entrenchment of the decision-maker's beliefs concerning the

dynamic evolution of climate sensitivity.

The off-diagonal elements of Table 6.7 are specified so as to reflect a range of probabil-

ity judgements concerning the likelihood of moving from a particular state in Period 1 to a

different state in Period 2. As alluded to earlier, these conditional probabilities are specified

so as to reflect the degree of surprise that the decision-maker associates with these transi-

tions. If, for example, in Period 1 climate sensitivity is in state 'Lowl,' then, for p = 0.6,

Pr{Climate Sensitivity (2) = High 2 I Climate Sensitivity (1) = Lowl } = 0.1. In this way, we are

able to represent the decision-maker's qualitative belief that it is unlikely that the passage of

experience would give rise to a situation where climate sensitivity is believed to be 1.50 C in

Period 1, and then believed to be 4.5 0C in Period 2.

The presumed structure for Pr{Ocean Diffusivity (2) 1 Ocean Diffusivity (1)} is specified in an

analogous manner. In Table 6.8, we let the diagonal entries labeled q denote the conditional

probability that Ocean Diffusivity (2) is in a particular state (od 21 , od 22, od 23, or od 24), given

that the variable was in the same state in Period 1. Consistent with our discussion above, we

assume that 0.5 < q < 1.

A characteristic feature of the TID shown in Figure 6-26 is the assumed timing of the climate-

change-related uncertainties defined above. Specifically, in this dynamic formulation, we as-
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sume that the outcomes of the chance variables Climate Sensitivity (1) and Ocean Diffusivity (1)

are known to the decision-maker prior to choosing a GHG abatement policy in Period 2; further-

more, we assume that uncertainty concerning Climate Sensitivity (2) and Ocean Diffusivity (2)

is resolved at the end of Period 2. This set of assumptions can, of course, be modified to re-

flect a range of possible timing assumptions, similar in character to those which we considered

earlier.

6.3.5 Evaluation of Probabilistic Climate Policies

Numerical evaluation of the TID shown in Figure 6-26 require that we specify values for both

p and q. For the purposes of illustration, we consider four separate cases, each reflecting a

different set of assumptions concerning the dynamic evolution of the chance variables defined

above:

1. p = 0.5 and q = 0.5;

2. p = 0.5 and q = 0.75;

3. p = 0.75 and q = 0.5;

4. p = 0.75 and q = 0.75.28

Having specified these values, in Table 6.9 we summarize the expected social loss associ-

ated with each of the four cases outlined above. Also summarized in this table are the policy

prescriptions of the model. In the third and fourth columns of Table 6.9, we note that the abate-

ment policies in each period have probabilities associated with their alternatives. Looking, first,

at the case where p = q = 0.5, evaluation of our sequential Bayesian learning model yields an

expected social loss of 6.38%. In Period 1, the optimal course of GHG abatement action is to

pursue a 'No Controls' policy. Thus, for Abatement Policy (1), we see that the probability asso-

ciated with the optimal choice, Strategy all, is 1.0; by the axioms of probability, it follows that

the probabilities associated with the other abatement policies are 0. For Abatement Policy (2),

the optimal climate policy is seen to depend on the outcomes of the chance events Climate

Sensitivity (1) and Ocean Diffusivity (1). Since Abatement Policy (2) is preceded by these two

chance events, it follows that the probability for each policy alternative in Period 2 may be less

than 1.0. Hence, in Table 6.9, we note that the Period 2 abatement policies a21, a 22 , a23, and a24

(i.e., 'No Controls,' 'Stabilize Emissions,' 'AOSIS Protocol,' and 'Stringent') have probabilities of

0.28, 0.68, 0.04, and 0, respectively. These probabilities reflect the likelihood that a particular

28The careful reader will note that, for the case where p = q = 1, our Bayesian learning scheme reduces to the
TID associated with learning scheme (2, 2).
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Probabilistic Climate Policies
Case: (p, q) Expected Social Loss

Abatement Policy (1) Abatement Policy (2)

all 1 a 21  0.28

a12 0 a 22  0.68
(0.5, 0.5) 6.38%

a1 3 0 a 23  0.04

a 14  0 a 24  0

all 1 a 21  0.32

a12 0 a 22  0.64
(0.5, 0.75) 6.27%

a 13  0 a2 3  0.04

a14  0 a 24  0

all 1 a 2 1  0.32

al2 0 a 22  0.64
(0.75, 0.5) 6.19%

a1 3 0 a2 3  0.04

a1 4  0 a24  0

all 1 a21  0.68

a12 0 a22  0.28
(0.75, 0.75) 6.09%

a 13 0 a23  0

a1 4 0 a24 0.04

Table 6.9: Probabilistic climate policies for four different combinations of p-q values.

policy choice will be made, if the optimal policy is followed. We shall refer to this type of policy

as a probabilistic climate policy.

Examining the remaining three cases shown in Table 6.9, we note that the optimal course of

GHG abatement action in Period 1 is 'No Controls.' This near-term abatement policy is therefore

invariant under the range of learning assumptions considered here. It is also worth noting that,

relative to the other cases, the case where p = q = 0.75 is seen to give rise to a dramatic increase

in the probability associated with Strategy a21 (0.68 vs. 0.28 and 0.32). In contrast with the other

cases, this case also gives rise to a 4% chance for Strategy a 24. These results suggest is that the

more "entrenched" the decision-maker's beliefs about climate sensitivity and ocean diffusivity

become, the more likely it is that sequential climate policy < all, a 21 >, i.e., 'No Controls' in

Periods 1 and 2, will represent an optimal course of GHG abatement action.
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6.4 Summary

In this chapter, we presented an integrated decision analysis framework for evaluating sequen-

tial GHG abatement policies under uncertainty. Our sequential model formulation integrates

the reduced-scale climate modeling approach set forth earlier in Chapters 3 and 4, and, in

addition, is seen to include direct and tangible linkages to the MIT IGSM. In this way, the

IDA framework presented here provides policy analysts and decision-makers with a nimble,

computationally-efficient vehicle for evaluating a broad range of possible GHG abatement poli-

cies.

The sequential analysis presented here suggests that a ten year delay in taking GHG abate-

ment action might be warranted, but only if followed, in Period 2, by the stabilization of global

carbon emissions at their 1990 levels. As we discuss in the concluding chapter that follows, this

policy prescription should not be construed as providing license for the explicit adoption of a

"Do Nothing" greenhouse policy. Delayed policy action must, in the context of the type of anal-

ysis presented here, be clearly distinguished from inaction on the part of intergovernmental

decision-makers and negotiators. Moreover, our assessment of the potential role of learning in

the evaluation of GHG abatement policies suggests that there is positive value associated with

pursuing policies and research programs aimed at reducing or resolving the uncertainty that

currently underlies our knowledge and understanding of several key climate-change-related

quantities. Learning strategies such as those evaluated here deserve explicit consideration in

current efforts to arrive at reasoned responses to the prospect of anthropogenic global warm-

ing.
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Chapter 7

Conclusion

In this chapter, we provide an executive summary of the main research findings presented in

this dissertation. Following this summary, we discuss several possible directions for future

research. Finally, we close with some concluding remarks.

7.1 Summary of Findings

The integrated assessment methodology set forth in this dissertation approaches the fram-

ing and evaluation of global climate change response options from two different though, in

many ways, complementary perspectives: (i) uncertain inference or prediction; and (ii) decision-

making under uncertainty. Proceeding from these two vantage points, the foregoing chapters

outlined the main components of an integrated decision analysis (IDA) framework for eval-

uating GHG abatement policies under uncertainty. Structurally, the IDA model formulation

consists of three major components:

* The derivation of two reduced-scale models of the global climate system. These models

possess a reasonable balance of scientific adequacy/realism and computational efficiency.

* The numerical calibration of the reduced-scale climate models against a larger, more com-

plex global climate model.

* The development of static and sequential frameworks for structuring and evaluating GHG

abatement policies under uncertainty. These formal decision models utilize the reduced-

scale climate modeling approach, and they utilize time-series outputs derived from the

MIT IGSM.

In what follows, we summarize the key features of the IDA framework and, in addition, we

discuss the policy relevance of our static and sequential analyses of the climate change problem.
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7.1.1 Reduced-Scale Models of the Global Climate System

In Chapters 2 - 4, we emphasized the centrality of long-term climate predictions in integrated

assessments of global climate change. The computational costs entailed in running large-scale

climate models makes their use in decision-analytic frameworks a practical impossibility. The

reduced-scale modeling approach set forth in Chapter 3 provides policy analysts and decision-

makers with an instrumental basis for balancing the need for scientific adequacy and realism,

on the one hand, against the need for computational efficiency and model transparency, on the

other.

Central to our reduced-scale modeling approach is the idea that the output of such models

should resemble-as closely as possible-the characteristic output of larger, more realistic

models. In Chapter 4, we utilized econometric and statistical time series estimation techniques

to numerically calibrate the globally-averaged one- and two-box climate models presented in

Chapter 3 against transient simulations of the MIT 2D-LO global climate model. Our numerical

calibration of these models utilized an experimental design that focused specifically on two key

climate-change-related quantities: climate sensitivity and ocean diffusivity. By varying these

variables across a range of scientifically plausible values, we obtained a range of reduced-scale

model parameter estimates; these values were subsequently used to compute policy-dependent

projections of future climate change.

7.1.2 Integrated Decision Analysis Framework

The IDA framework set forth in Chapters 5 and 6 imposes a formal decision-theoretic frame on

the manner in which climate change response options are structured and evaluated. The static

analysis presented in Chapter 5 focused on three aspects of the climate change problem:

* The economic costs of pursuing specific GHG abatement strategies. Abatement cost esti-

mates were derived from the MIT EPPA model.

* The economic benefits of abating global climate change.

* Uncertainty concerning the level or magnitude of global climate change.

The static framework provides a nimble and computationally-efficient framework for exploring

a broad range of GHG abatement policies. In addition, the framework provides a computational

vehicle for exploring issues concerning the value of information and control. As we discussed

in Chapter 1, the static model can also be used to guide more detailed examinations of policy

choice that utilize the sequential decision framework presented in Chapter 6.

The sequential framework presented in Chapter 6 provides a more detailed and realistic ba-

sis from which to explore the various dimensions of climate policy choice under uncertainty. In
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general, the framework represents several key features of the climate change decision-making

problem:

* The representation of possible mid-course corrections to near-term policy choice;

* The representation of climate change as a dynamic process that evolves over time;

* The representation of uncertainty in key climate-change-related quantities;

* The representation of uncertainty in the calibration and parameterization of the functions

that are used to represent climate-induced damages or impacts.

As in the static model formulation, the sequential framework draws upon outputs from the

MIT IGSM. The framework also makes use of the reduced-scale modeling approach described

in Chapters 3 and 4. In this way, the framework provides a computationally-efficient vehicle

for structuring and evaluating sequential GHG abatement policies. Using several sensitivity

analysis techniques, we were able to determine which model uncertainties and values have

the greatest influence on climate policy choice. Lastly, the framework is seen to provide a

flexible and transparent vehicle for exploring the potential role of learning in the evaluation of

sequential GHG abatement policies.

By way of summary, the IDA framework presented in this dissertation is seen to possess

several unique characteristics, which we summarize as follows:

* The models are grounded in well-established normative theories of choice under uncer-

tainty, and are prescriptive in their orientation;

* The models have a distinct policy-oriented focus, and are well-attuned to the policy con-

text in which they reside;

* The modeling approach explicitly separates the structure of the decision and inference

problems that characterize the climate change problem from the assessment and valuation

of relevant model inputs and parameters;

* The models allow for the explicit representation of uncertainty in key climate-change-

related quantities and parameters;

* The models possess a reasonable balance between scientific accuracy, computational

tractability, and model transparency.

7.1.3 Implications for Global Climate Change Policy

The static and sequential analyses presented in Chapters 5 and 6 yield many insights concerning

a broad range of possible response options that world governments might choose to act upon
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in their collective efforts to mitigate the potential adverse effects of anthropogenic climate

change.

In the static analysis presented in Chapter 5, we determined that-relative to the other abate-

ment policies considered-the AOSIS Protocol represents an optimal course of GHG abatement

action. As part of our analysis, we noted that the 'Delayed AOSIS' policy is characterized by an

expected social loss that is quite close in value to that of the AOSIS policy. In interpreting this

result, we recognize that the delayed version of the AOSIS Protocol is, in actuality, a sequential

climate policy.

The sequential analysis presented in Chapter 6 focused on sixteen sequential climate poli-

cies. In order to broaden the scope of our analysis, in addition to evaluating sequential versions

of the 'AOSIS' and 'Delayed AOSIS' policies, we also considered a sequential emission stabiliza-

tion policy that lies between the 'No Controls' and 'AOSIS' policies in terms of its level of

stringency. Our sequential analysis suggests that delayed policy action is, indeed, warranted,

but only if followed by a global carbon emission stabilization program. Sensitivity analysis of

key model assumptions and inputs reveals that the policy prescriptions presented here are

sensitive to the manner in which the model's climate-change-related uncertainties are charac-

terized.

Finally, our exploration of the potential role of learning in the evaluation of GHG abatement

policies suggests that there are positive benefits associated with policy initiatives and research

programs directed at reducing or resolving key climate-change-related uncertainties, such as

climate sensitivity and ocean diffusivity. However, our analysis suggests, also, that it is possible

for policymakers to delay research efforts aimed at resolving these uncertainties by a deacde

or more, and still realize positive benefits.

7.2 Directions for Future Research

In this section, we outline three possible directions for future research, each of which deals

with a particular facet of our IDA framework.

7.2.1 Reduced-Scale Model Specification and Calibration

Possible extensions to the reduced-scale modeling approach presented in Chapters 3 and 4 fall

into two general categories:

* The development of additional and, perhaps, more sophisticated reduced-scale represen-

tations of the global climate system;
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* The development of statistical experimental design strategies for efficient reduced-scale

model calibration.

The reduced-scale modeling approach set forth in this dissertation represent an important

step towards the successful integration of such models into formal, decision-analytic frame-

works. Possible extensions to the reduced-scale models presented here include the incorpo-

ration of other key features of the 2D-LO climate model into the one- and two-box models,

thereby attaining added degrees of realism.1 Of course, the manner and degree to which such

extensions are incorporated into our reduced-scale modeling framework must ultimately be

balanced against the need or desire for model transparency and computational-tractability.

An alternative to the reduced-scale modeling approach described here is to use the transient

simulations of the 2D-LO climate model to develop statistical time series models that are able

to mimic the characteristic behavior of the larger model.2 In addition, empirical analysis of

2D-LO time series data might provide valuable insights concerning the characteristic nature of

the model's dynamic behavior.

The numerical calibration procedure outlined in Chapter 4 can be expanded upon in several

directions. A potentially fruitful research direction focuses on the development and specifica-

tion of statistical experimental design strategies that can be used to extract maximal informa-

tion from the smallest possible number of MIT IGSM transient runs. While the design strategy

used in Chapter 4 can serve as a preliminary guide for subsequent IGSM runs, future designs

should give explicit consideration to issues such as aliasing, balance, efficiency, resolution, and

rotatability. After specifying improved experimental design strategies, attention must then fo-

cus on the task of obtaining meaningful estimates of key reduced-scale model parameters.

Naturally, there are a plethora of econometric and statistical time series estimation techniques

that can be brought to bear on this task.

7.2.2 Analysis of Sequential CO2 Stabilization Policies

Several recent policy proposals aimed at mitigating the potential adverse effects associated with

global climate change focus on the goal of stabilizing atmospheric concentrations of carbon

dioxide. The driving force behind this emphasis on CO2 stabilization is Article 2 of the United

Nations Framework Convention on Climate Change, which states that

1'Of course, it may also be useful to develop reduced-scale representations of other key components of the
larger MIT IGSM. Webster [78] outlines a methodology for arriving at reduced-form representations of complex,
dynamical systems. Methodologies such as this can be used to incorporate additional aspects of the IGSM into the
IDA framework that might otherwise be too large and complex to incorporate directly.

2It might, for example, be possible to use vector ARMA models to analyze transient 2D-LO time series data.
Related to this approach, one might also develop dynamic simultaneous equations models of the global climate
system, much like the coupled system presented in Chapter 3.
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The ultimate objective of this Convention and any related legal instruments that the

Conference of Parties may adopt is to achieve, in accordance with the relevant provi-

sions of the Convention, stabilization of greenhouse gas concentrations in the atmo-

sphere at a level that would prevent dangerous anthropogenic interference with the

climate system. Such a level should be achieved within a time frame sufficient to al-

low ecosystems to adapt naturally to climate change, to ensure that food production

is not threatened and to enable economic development to proceed in a sustainable

manner [1, emphasis added].

Most technical discussions of the stabilization problem have, to date, focused on two prob-

lem areas, the first of which we discussed earlier in Chapter 2, namely, the nature of the relation

between GHG emissions and the global carbon cycle. The second problem area is a more recent

topic of concern in the climate change literature, and focuses on estimating the economic costs

of pursuing GHG abatement strategies aimed at achieving specific CO2 stabilization levels.

An important theme to emerge from the stabilization literature is that GHG abatement costs

are an important consideration in the selection of CO2 concentration stabilization targets. How-

ever, abatement costs are only one facet of the stabilization problem. Ideally, abatement costs

should inform the evaluation of hedging strategies that seek to balance the risks, costs, and

benefits that underlie specific policy proposals aimed at stabilizing atmospheric CO2 concen-

trations.

To date, most studies of the stabilization problem have focused on static analyses of the

abatement costs associated with CO2 stabilization policies. Consequently, most of these analy-

ses assume that a long-term stabilization target is chosen today, once-and-for-all, with no future

opportunities to amend or revise the chosen stabilization target.3

A potentially fruitful avenue for future research is to combine insightful economic analyses

of the stabilization problem4 with the type of sequential decision framework presented ear-

lier in Chapter 6. In what follows, we sketch the basic elements of a decision framework for

evaluating sequential CO2 stabilization policies under uncertainty.

We begin our sequential formulation of the stabilization problem by making the assumption

that the choice of a CO2 concentration target can potentially change over time. In this way,

we wish to represent the possibility of mid-course corrections to short-term policy choice.

Analogous to the sequential Bayesian learning framework presented at the end of Chapter 6,

we might formulate the sequential stabilization problem in terms of the TID shown in Figure 7-

1. In this diagram, we focus on the evaluation of sequential GHG abatement strategies aimed

at stabilizing atmospheric CO2 concentrations. The TID is defined in terms of three decision
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stages: 2010-2050, 2050-2080, and 2080-2100. For each of these three periods, we specify

a control rate on global carbon emissions. At each decision stage, we choose a global carbon

emissions control rate

Control Rate (1) = {L1, MI, Hi },

where

L1 = 1.01;

M1 = 1.06;

H1  = 1.2.

Each of these three control rates defines the allowable carbon emissions for each year, as a

percentage of the previous year's emissions.

In a similar fashion, we define the control rates for the second and third periods as follows:

Control Rate (2) = {L2, M2, H2},

where

L2 1.01;

M2  1.03;

H2 1.2;

and

Control Rate (3) = {L3, M3, H3},

where

L3 = 0.90;

M3 = 0.92;

H3  = 0.95.

The control rates Hi, Mi, and Li, for i = 1, 2, 3, represent increasingly stringent levels of

carbon emission reductions. Viewed sequentially, these control rates give rise to the decision

structure depicted in Figure 7-2. In this schematic decision tree, we note that the three possi-

ble control rates in each period give rise to 33 = 27 possible sequential climate policies. Using

the MIT IGSM, we have chosen the control rates specified above so that, over the one hundred

year time horizon of the model, sequential climate policies < L1, L2, L3 >, < M1, M2, M3 >,

and < H1, H2, H3 > lead to CO2 stabilization levels of (approximately) 450 ppmv, 550 ppmv,
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Figure 7-1: Temporal influence diagram for the evaluation of sequential CO2 stabilization poli-
cies.
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Figure 7-2: Schematic decision tree for the sequential CO 2 stabilization framework.

and 640 ppmv, respectively. Of the remaining 24 possible sequential climate policies, 14 lead
to the stabilization of atmospheric CO 2 concentrations, at levels ranging from 450 ppmv to
640 ppmv. Since we are only interested in climate policies that lead to stabilization, we are
able to 'trim' those branches of the decision tree shown in Figure 7-2 that do not lead to stabi-
lization by 2100. s In Table 7.1, we list the 17 sequential policies that lead to specific levels of
stabilization by the end of the model's one hundred year time horizon.

There are several characteristics of the sequential design outlined above that are worth
noting. First, the control rates in each period are pre-defined in such a way that each of the
sequential policies leads to a different level of stabilization. Looking at Table 7.1, we note
that in order to achieve a CO 2 stabilization target below 500 ppmv, Control Rate L1 must be
adopted in Period 1; failure to adopt this level of control forecloses the option of achieving
a sub-500 ppmv concentration target over the course of the model's one hundred year time
horizon. Similarly, in order to achieve a stabilization target that lies in the mid-500 ppmv
range, Control Rate M1 must be adopted in Period 1. In addition, we note that in order to
achieve this target, either control Rate L2 or M2 must be adopted in Period 2; adopting control
rate H2 in Period 2 leads to a non-stabilizing CO 2 concentration trajectory, irrespective of the

SIn this way, the decision structure of our sequential stabilization framework is asymmetric, in that some of the
paths implied by Figure 7-2 are not evaluated.
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Sequential Climate Policy Stabilization Level at 2100

< L1,L2,L3 > 450 ppmv

< L1, L2, M3 > 453 ppmv

< L1, L2, H3 > 457 ppmv

< Lx, M2, L3 > 462 ppmv

< L1, M2, M3 > 465 ppmv

< L1, M2 , H3 > 469 ppmv

< M1, L2, L3 > 534 ppmv

< M1, L2, M3 > 537 ppmv

< M1, L2, H3 > 542 ppmv

< M1, M2, L3 > 548 ppmv

< M1, M2, M3 > 550 ppmv

< M1, H2, L3 > 609 ppmv

< H1 ,L2 ,M3 > 615 ppmv

< HI, M2, L3 > 624 ppmv

< H1,M2,M3 > 629 ppmv

< H1, H2, L3 > 635 ppmv

< HI, H2, M3 > 640 ppmv

Table 7.1: Atmospheric CO2 stabilization levels for 17 sequential climate policies.

level of control that is adopted in Period 3. Lastly, we note that in order to achieve a target

in the low- to mid-600 ppmv range, their is some flexibility in the control rates that can be

adopted, in the limited sense that H1 can be adopted in all but one case (609 ppmv). Also, we

note that in Period 2, all three possible control rates can be adopted, without foreclosing the

possibility of achieving concentration levels between 615 ppmv and 640 ppmv.

An important artifact of the sequential design presented here is that in order to achieve

increasingly stringent stabilization targets, it is necessary to adopt increasingly stringent levels

of control in the near-term. This particular feature of our sequential design is, in general,

consistent with a number of recent studies that have suggested that the attainment of stringent

stabilization targets is likely to require considerable near-term reductions in global carbon

emissions. 6

The complete specification of the sequential stabilization framework outlined above pro-

ceeds in a manner that is analogous to that which we outlined earlier in Chapter 6. In particu-

lar, we must specify the global carbon emission, atmospheric CO2 concentration, and radiative

6 See, e.g., Ref. [7].
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forcing time-paths associated with each of the seventeen sequential stabilization policies listed

in Table 7.1. Also, for Periods 1, 2, and 3 of the model, we must compute the projected changes

in global-mean surface temperature change associated with each sequential stabilization pol-

icy. Lastly, we must assess the abatement costs and climate change impacts associated with

each sequential stabilization policy.

7.2.3 Expert Judgement Elicitation

Expert judgement elicitation of key climate-change-related uncertainties has, in recent years,

received a modest amount of attention in the climate change literature. Most notable in this

regard are recent studies by Morgan and Keith [53] and Nordhaus [56]. The IDA framework

presented in this dissertation draws upon these studies and, in addition, makes use of expert

judgement elicitations conducted at MIT. Inasmuch as the IDA framework's policy prescrip-

tions are sensitive to the manner in which key uncertainties are represented, future research

must continue to explore methods and techniques for better characterizing and evaluating the

scientific and economic uncertainties that underlie the greenhouse debate.

While the development of improved techniques for characterizing climate-change-related

uncertainties can successfully draw upon existing frameworks and methodologies, the nature

and scope of the greenhouse problem is likely to also require the exploration of alternative

approaches and perspectives. A clearly discernable feature of the greenhouse debate is that

credible experts disagree about substantive technical issues that have potentially broad policy

implications. In highly contentious and politically-charged debates such as this, the sources

of expert disagreement are oftentimes difficult to identify and resolve. As a consequence,

policymakers and negotiators-not having the luxury of being able to wait until the experts are

resolved in their collective judgements-must make difficult decisions in the face of complexity,

expert disagreement, scientific uncertainty, limited resources, and time-constrained conditions.

In this regard, an important avenue for future research concerns the examination of ways in

which disagreements among experts can be resolved or otherwise successfully negotiated in

the context of greenhouse policy debates.

7.3 Concluding Remarks

Programmatic efforts to confront the prospect of anthropogenic global warming require, at a

base level, that we explore a broad range of possible response options. Current efforts directed

along these lines focus primarily on the task of tracing-out the likely risks, costs, and benefits

associated with particular climate policy proposals. On a more fundamental level, it seems

important to recognize and acknowledge that such efforts--directed, as they are, at analysis and
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prediction-sit in a larger set of social, political, and economic contexts. Ultimately, our best

efforts to develop and improve upon the plurality of theories, methodologies, and frameworks

that can be brought to bear on the policy formulation and evaluation process must be predicated

on the hope and promise that such tools lead to knowledge and insights that, in turn, allow us

to move towards the future with greater clarity and deliberation.
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Appendix A

Computing an Upper Bound for

CO2-Induced Forcing

Consider the nonlinear radiative forcing function, p (Ct), defined previously in Chapter 2 as

p(Ct) = K n (Kc),

where K = 6.1. For our purposes here, assume that the function p is both concave and differ-

entiable on the interval (0, oo). Let

p(Ct) = p[(Ct - Ct-1) + Ct- 1 ] = p(ACt + Ct-1),

where ACt = Ct - Ct-1, i.e., ACt denotes the change in atmospheric concentration of C02 from

time period t - 1 to period t. Because p is concave on (0, oo), using Jensen's inequality, it is

possible to bound p (Ct) from above in the following manner:

p(Ct) - p(Ct-1) + ACt p'(Ct), (A.1)

where p' denotes the first derivative of p, i.e.,

dp K
p'(Ct-_) - dCt-1 Ct- 1

Making the relevant substitutions, Eq. (A.1) becomes

(A.2)p(Ct) P(Ct-1) + K (Ct i)

The inequality given by Eq. (A.2) is valid for all values of t. Thus, it follows that

p(Ct-1) - p(Ct- 2 ) + (Ct-1 - Ct-2)

Ct-2
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(Ct-2) fashion, i(Ct-3) + K verified that

and so on. Proceeding in this fashion, it is easily verified that

p(Ct) • p(Co) j+ t (Ct-j+i Ct-j )+K Ct

j=1 1
which, after simplifying, becomes

p(Ct) _ p(Co) + K
Ct-j+ t

Equation A.3 provides a simple and efficient means by which to compute an upper bound for

C02-induced radiative forcing.
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Appendix B

Integrated Assessment of Sequential

Climate Policies

In this appendix, we provide a detailed accounting of the numerical values used in the sequential
decision model presented in Chapter 6. As discussed in the main text, our formulation of the
two-period decision model consists of sixteen sequential climate policies, < ali, a2j >, where
all E Abatement Policy (1) and a 2j e Abatement Policy (2). The sixteen sequential climate
policies are enumerated as follows:

< all, a 21 > < a1 2 , a 21 > < a 13 , a 21 > < a14, a21 >
< a 11 , a22 > < a 12 , a2 2 > < a 13 , a 22 > < a14, a22 >

< all, a 23 > < a 12 , a23 > < a 13 , a 23 > < a 14 , a 23 >
< a 11 , a 24 > < a 12 , a 24 > < a 13 , a 24 > < a 14 , a 24 >.

As Figure B-1 illustrates, we use the MIT Integrated Global System Model (IGSM) to assess the
projected changes in global carbon emissions, atmospheric chemistry, and radiative forcing
associated with each sequential climate policy. In the pages that follow, we tabulate the global
carbon emission, atmospheric CO2 concentration, and radiative forcing time-paths associated
with each of the sixteen sequential climate policies outlined above. In addition, for Periods 1
and 2 of the sequential decision model, we summarize the projected changes in global-mean
surface temperature associated with each sequential climate policy. These projections are com-
puted using the calibrated globally-averaged one-box climate model presented in Chapters 3
and 4 of the main text.
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Figure B-1: Use of the MIT Integrated Global System Model to assess the changes in global
carbon emissions, atmospheric chemistry, and radiative forcing associated with each sequential
climate policy.

Carbon Emission, Atmospheric CO2 Concentration, and Radiative Forcing Time-

Paths

In Figures B-2 - B-5, for each sequential climate policy, < ali, a2j >, we tabulate the global car-

bon emission, atmospheric CO2 concentration, and radiative forcing time-paths for the period

1977-2050.

One-Box Model Projections of Future Climate Change

In Tables B.1 - B.8, we summarize the projected changes in global-mean surface temperature

in Periods 1 and 2, for each sequential climate policy, < ali, a2j >. These projections are

tabulated for Periods 1 and 2 of the sequential decision model, and are computed using the

calibrated one-box global climate model. For each sequential policy, we specify the projected

values (in oC) for deltaT (1) and deltaT (2), as a function of the sequential model parameters

Climate Sensitivity and Ocean Diffusivity.
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<a 1t, a_22>

E(t) C(t)
3.4 331.249

3.756891 331.35373
4.113782 331.62636
4.470673 332.06419
4.827564 332.66456
5.184455 333.42485
5.541346 334.34247
5.898237 335.41489

6.612019 336.6396
6.737698 338.18376
6.863377 339.76493
6.989056 341.38252
7.114735 343.03596
7.240414 344.72468
7.324721 346.44812
7.409029 348.1861
7.493337 349.93839
7.577645 351.70479
7.661953 353.48507
7.764349 355.27904
7.866746 357.09481

7.969143 358.93206
8.071539 360.79044
8.173936 362.66963
8.386239 364.56929

8.598541 366.54098
8.810844 368.58354
9.023146 370.69581

9.235449 372.87669
9.377593 375.12508
9.519738 377.4062
9.661882 379.71955
9.804026 382.06459

9.946171 384.44083
10.140968 386.84777
10.335766 389.30985

10.530563 391.82619
10.725361 394.39593
10.920158 397.01819
11.086181 399.69213
11.252205 402.4029
11.418228 405.14992
11,584252 407.93259
11.750275 410.75035

11.931327 413.60262
12.112378 416.49596
12.29343 419.42972

12.474481 422.40325
12.655533 425.4159
12.793145 428.46704
12.930758 431.53558
13.068371 434.62124
13.205983 437.72374
13.343596 440.84283
13.476322 443.97822
13.609048 447.12734
13.741774 450.28996
13.8745 453.46587

14.007226 456.65486

14.126355 459.85671
14.245485 463.06472
14.364614 466.2788
14.483743 469.49884
14.602872 472.72475

14.6651 475.95644
14.727328 479.16655
14.789555 482.35544

14.851783 485.52344
14.914011 488.67089
14.98126 491.79814

15.048509 494.90783
15.115759 498.00026
15.183008 501.07571
15.250257 504.13444

Sequential Climate Policy
<all , a23>

E(t) C(t)
0.945887 3.4 331.249
0.947757 3.756891 331.35373

0.952621 4.113781 331.62636
0.960426 4.470672 332.06419
0.97111 4.827563 332.66456

0.984613 5.184453 333.42485
1.00087 5.541344 334.34247
1.019812 5.898235 335.41488
1.041371 6.612016 336.6396
1.068441 6.737696 338.18376
1.096032 6.863375 339.76493

1.124126 6.989055 341.38251
1.152706 7.114734 343.03595
1.181753 7.240414 344.72467
1.211252 7.324722 346.44811

1.240851 7.409029 348.18609
1.270545 7.493337 349.93839
1.300327 7.577645 351.70478
1.330193 7.661953 353.48507
1.360136 7.762629 355.27903
1.39029 7.863305 357.09398
1.420645 7.963981 358.9296
1.451191 8.064657 360.78555

1.48192 8.165333 362.66152
1.512822 8.341229 364.5572
1.544726 8.517125 366.50755

1.577596 8,693021 368.51169
1.611398 8.868917 370.56875

1.646095 9.044814 372.67789
1.681655 8.961428 374.83826
1.717515 8.878041 376.92489
1.753661 8.794655 378.93897
1.790079 8.711269 380.88166
1826753 8.627883 382.75413

1.863671 8.756329 384.55751
1.901198 8.884775 386.39403
1.939308 9013221 388.26315
1.977974 9.141667 390.16434
2.017172 9.270114 392.09711

2.056876 9.39822 394.06093
2.096858 9.526327 396.05489
2.1371 9.654433 398.07852

2.177587 9.78254 400.13132
2.218304 9.910647 402.21284
2.259237 10.04336 404.32261
2.300471 10.176073 406.4623
2.34199 10.308786 408.63143

2.383777 10.441499 410.82953
2.425814 10.574212 413.05613
2.468086 10.695153 415.31078
2.510297 10.816095 417.58769
2.552441 10.937036 419.88651
2.594515 11.057978 422.2069
2.636515 11.178919 424.5485

2.678435 11.291361 426.91098
2.720242 11.403804 429.28994
2.761933 11.516246 431.68512
2.803506 11.628689 434.09626
2.844958 11.741131 436.52311

2.886287 11.836415 438.96542
2.927408 11.931699 441.41472
2.968321 12.026984 443.87091
3.009029 12.122268 446.33389
3.049532 12.217552 448.80353
3.089832 12.283633 451.27975

3.129592 12.349714 453.74841
3.168827 12.415795 456.20965
3.207549 12.481876 458.66359
3.24577 12.547957 461.11034
3.283502 12.603236 463.55003
3.320786 12,658515 465.97753
3.357631 12.713793 46839304
3.394048 12.769072 470.79676
3.430046 12.82435 473 18887

<al , a 24>

E(t) C(t)
0.945887 3.4 331.249
0.947757 3.756891 331.35373
0.952621 4.113781 331.62636
0.960426 4.470672 332.06419
0.97111 4.827563 332.66456
0.984613 5.184453 333.42485
1.00087 5.541344 334.34247
1.019812 5.898235 335.41488
1.041371 6.612016 336.6396
1.068441 6.737696 338.18376

1.096032 6.863375 339.76493

1.124126 6.989055 341.38251

1.152706 7.114734 343.03595
1.181753 7.240414 344.72467

1.211252 7.324722 346.44811
1.240851 7.409029 348.18609

1.270545 7.493337 349.93839
1.300327 7.577645 351.70478
1.330193 7.661953 353.48507

1.360136 7.762629 355.27903
1.390276 7.863305 357.09398
1.420604 7.963981 358.9296
1451111 8.064657 360.78555
1.481788 8.165333 362 66152
1.512626 8.341229 364.5572

1.544187 8.517125 366.50755
1.576443 8.693021 368.51169
1.60937 8.868917 370.56875
1.642941 9.044814 372.67789
1.67713 9.13329 374.83826

1.709967 9.221767 377.00712
1.741489 9.310244 379.18434
1.771736 9.398721 381.36977

1.800744 9.487197 383.56329
1.828548 9.384868 385.76477
1.856729 9282538 387.88255

1.885273 9.180209 389.91798
1.914167 9.077879 391.87238
1.943396 897555 393.74708
1972947 9.045864 395.54335
2.002802 9.116179 397.34481
2.032948 9.186494 399.15139
2.063372 9.256808 400.96299

2.094063 9.327123 402.77955
2.125009 9.462275 404.60098
2.156229 9.597428 406.45815
2.187711 9.73258 408.35048

2.219444 9.867733 410.27742
2.251416 10.002885 412.2384
2.283615 10.129768 414.23287
2.315955 10.256651 416.25665
2.348429 10.383533 418.30926
2.381026 10.510416 420.39026
2.413741 10.637299 422.49917
2.446565 10.742873 424.63555

2.479435 10.848447 426.78877
2512346 10.954022 428.95858
2.545292 11.059596 431.14469
2.578269 11.165171 433.34685
2.611271 11.262083 435.5648
2.644183 11.358995 437.79416
2.677005 11.455908 440.03473

2.709736 11.55282 442.28633
2.742375 11.649732 444.5488
2.774921 11.724315 446.82195
2.80719 11.798898 449.0949
2.839188 11.87348 451.36765

2.87092 11 948063 453.6402
2.90239 12.022646 455.91257
2.933603 12.078319 458.18474

2.964498 12.133992 460.44762
2.995081 12.189665 46270136
3.025359 12.245338 46494609
3.055337 12.301011 467.18198

Figure B-2: Global carbon emission, atmospheric CO2 concentration, and radiative forcing time
series for the period 1977-2050 for sequential climate policies < all, a2z >.
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<al , a 21>

E(t) C(t)

0.945887 3.4 331.249
0.947757 3.756891 331.35373
0.952621 4.113781 331.62636
0.960426 4.470672 332.06419
0.97111 4.827563 332.66456
0.984613 5.184453 333.42485

1.00087 5.541344 334.34247
1.019812 5.898235 335.41488
1.041371 6.612016 336.6396
1.068441 6.737696 338.18376
1.096032 6.863375 339.76493
1.124126 6.989055 341.38251
1.152706 7.114734 343.03595
1.181753 7.240414 344.72467

1.211252 7.324722 346.44811
1.240851 7.409029 348.18609
1.270545 7.493337 349.93839
1.300327 7.577645 351.70478
1.330193 7.661953 353.48507
1.360136 7.762629 355.27903
1.390276 7.863305 357.09398
1.420604 7.963981 358.9296
1.451111 8.064657 360.78555
1.481788 8.165333 362.66152
1.512626 8.341229 364.5572

1.544187 8.517125 366.50755
1.576443 8.693021 368.51169
1.60937 8.868917 370.56875

1.642941 9.044814 372.67789
1.67713 9.13329 374.83826
1.711257 9.221767 377.00712
1.745318 9.310244 379.18434
1.779312 9.398721 381.36977

1.813236 9.487197 383.56329
1.847088 9.354541 385.76477
1.879472 9.221885 387.86804
1.910431 9.089229 389.87468
1940005 8.956573 391.78625
1968235 8.823917 393.6043
1.995158 8.861879 395.33032
2.022036 8.899841 397.04718
2.048868 8.937803 398.75505
2.075654 8.975765 400.45406
2.102392 9.013727 402.14435
2.12908 9.156283 403.82608

2.156169 9.298838 405.54934
2.183643 9.441394 407.31347
2.21149 9.58395 409.1178
2.239694 9.726506 410.9617
2.268243 9.856791 412.84453
2.297071 9.987076 414.76009
2.326168 10.117361 416.70786
2.355521 10.247646 418.68733
2.38512 10.377932 420.69798

2.414954 10,487625 422.73931
2.444872 10.597319 424.80099
2.474868 10.707013 426.8827
2.504936 10.816707 428.98411

2.535072 10.926401 431.1049
2.565269 11.02534 433.24477
2.595467 11.124279 435.39827
2.625662 11.223218 437.56518

2.655851 11.322157 439.74528
2.686032 11.421096 441.93837
2.716201 11.496541 444.14423

2.746214 11.571985 446.35139
2.776073 11.64743 448.55981
2.80578 11.722874 450.7695

2.835335 11.798319 452.98042

2.864741 11.852875 455.19255

2.893883 11.907431 457.39583
2.922764 11.961987 459.59038
2.951391 12.016543 461.77636
2.979768 12.071099 463.9539

0.945887
0.947757
0.952621
0.960426
0.97111

0.984613
1.00087

1.019812
1.041371
1.068441
1.096032

1.124126
1.152706

1.181753

1.211252

1.240851
1.270545
1.300327
1.330193
1.360136

1.390276
1,420604

1.451111
1.481788
1,512626

1.544187
1.576443
1.60937

1.642941
1,67713
1.711257
1.745318
1.779312

1.813236
1.847088
1.879251

1.909774
1.938705
1.966089
1.991971

2.017604
2.042992
2.068141
2.093056

2.11774
2.142928
2.168603

2.194748
2.221347
2.248385
2.275767
2 30348
2.331511
2.359849
2.388481

2.417258

2.446173

2.47522
2.504391
2.533678

2.563007
2.592372

2.62177
2.651196

2.680647

2.709968
2.739162

2.768229

2.79717
2.825986

2.854548

2.88286
2.910927
2.938755



B. INTEGRATED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy
<a 12, a 21> <a_12, a 22> <a 12, a_23> <a 12, a 24>

E(t) C(t) F(t) E(t) C(t) F(t) E(t) C(t) F(t) E(t) C(t) F(t)1 7 79 34 331 2,49 09,4887 , • • . ... . . ..

Figure B-3: Global carbon emission, atmospheric CO2 concentration, and radiative forcing time
series for the period 1977-2050 for sequential climate policies < a 12, a 2j >.
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1.97. 3 4 3 -8 - -1.249 0.945887 3.4 331.249 0.945887 3.4 331.249 0.9458871978 3.756891 331.35373 0.947757 3.756891 331.35373 0.947757 3.756891 331.35373 0.947757 3.756891 331.35373 0.947757
1979 4.113781 331.62636 0.952621 4.113781 331.62636 0.952621 4.113781 331.62636 0.952621 4.113781 331.62636 0.952621
1980 4.470672 332.06419 0.960426 4.470672 332.06419 0.960426 4.470672 332.06419 0.960426 4.470672 332.06419 0.960426
1981 4.827563 332.66456 0.97111 4.827563 332.66456 0.97111 4.827563 332.66456 0.97111 4.827563 332.66456 0.97111
1982 5.184453 333.42485 0.984613 5.184453 33342485 0.984613 5.184453 333.42485 0.984613 5.184453 333.42485 0.984613
1983 5.541344 334.34247 1.00087 5.541344 334.34247 1.00087 5.541344 334.34247 1.00087 5.541344 334.34247 1.00087
1984 5.898235 335.41488 1.019812 56898235 335.41488 1.019812 5.898235 335.41488 1.019812 5.898235 335.41488 1.019812
1985 6.612016 336.6396 1. 041371 6612016 336.6396 1.041371 6.612016 336.6396 1.041371 6.612016 336.6396 1.041371
1986 6.737694 338.18376 1.068441 6.737694 338.18376 1.068441 6.737694 338.18376 1.068441 6.737694 338.18376 1.068441
1987 6.863372 339.76493 1.096032 6.863372 339.76493 1.096032 6.863372 339.76493 1.096032 6.863372 339.76493 1.096032
1988 6.98905 341.38251 1 124126 6.98905 341.38251 1.124126 6.98905 341.38251 1.124126 6.98905 341.38251 1.124126
1989 7.114728 343.03595 1.152706 7.114728 343.03595 1.152706 7.114728 343.03595 1.152706 7.114728 343.03595 1.152706
1990 7.240406 344.72466 1.181753 7.240406 344.72466 1.181753 7240406 344.72466 1.181753 7.240406 344.72466 1.181753
1991 7.253725 346.4481 1. 211252 7.253725 346.4481 1.211252 7.253725 346.4481 1.211252 7.253725 346.4481 1.211252
1992 7.267044 348.15211 1. 240274 7.267044 348.15211 1.240274 7,267044 348.15211 1.240274 7.267044 348.15211 1.240274
1993 7.280363 349.83702 1.268831 7.280363 349.83702 1.268831 7.280363 349.83702 1.268831 7.280363 349.83702 1.268831
1994 7.293683 351.50315 1.296935 7.293683 351.50315 1.296935 7.293683 351.50315 1.296935 7.293683 351.50315 1.296935
1995 7.307002 353.15082 1.324597 7.307002 353.15082 1.324597 7.307002 353.15082 1.324597 7.307002 353.15082 1.324597
1996 7.342646 354.78034 1.351828 7.342646 354.78034 1.351828 7.342646 354.78034 1.351828 7.342646 354.78034 1.351828
1997 7.378291 356.40239 1.378809 7.378291 356.40239 1.378809 7.378291 356.40239 1.378809 7.378291 356.40239 1.378809
1998 7.413935 358.01709 1.405547 7.413935 358.01709 1.405547 7.413935 358.01709 1.405547 7.413935 358.01709 1.405547
1999 7.44958 359.62458 1.432046 7.44958 359.62458 1.432046 7.44958 359.62458 1.432046 7.44958 359.62458 1.432046
2000 7.485224 361.22498 1.458311 7.485224 361.22498 1.458311 7.485224 361.22498 1.458311 7.485224 361.22498 1.458311
2001 7.626381 362.81842 1.484346 7.626381 362.81842 1.484346 7.626381 362.81842 1.484346 7.626381 362.81842 1.484346
2002 7.767537 364.45478 1 510964 7.767537 364.45478 1.510964 7.767537 364.45478 1.510964 7.767537 364.45478 1.510964
2003 7.906693 366.13338 1 538145 7.908693 366.13338 1.538145 7.908693 366.13338 1.538145 7.908693 366.13338 1.538145
2004 8.04985 367.85352 1. 565869 8.04985 367.85352 1.565869 8.04985 367.85352 1.565869 8.04985 367.85352 1.565869
2005 8.191006 369.61455 1. 594119 8.191006 369.61455 1.594119 8.191006 369.61455 1.594119 8.191006 369.61455 1.594119
2006 8.28075 371.41582 1.622875 8.28075 371.41582 1.622875 8.28075 371 41582 1.622875 8.28075 371.41582 1.622875
2007 8.370496 373.23197 1.651728 8.370495 373.23197 1.651728 8.370495 373.23197 1.651728 8.370495 373.23197 1.651728
2008 8.460239 375.06276 1.680672 8.460239 375.06276 1.680672 8.460239 375.06276 1.680672 8.460239 375.06276 1.680672
2009 8.549983 376.90797 1.709701 8.549983 376.90797 1.709701 8.549983 376.90797 1.709701 8.549983 376.90797 1.709701
2010 8.639727 378.76736 1.73881 8.639727 378.76736 1.73881 8.639727 378.76736 1.73881 8.639727 378.76736 1.73881
2011 8.768315 380.64071 1. 767993 8.768315 380.64071 1.767993 8.710134 380.64071 1.767993 8.679792 380.64071 1.767993
2012 8.896903 382.54613 1.797529 8.896903 382.54613 1.797529 8.780541 382.51829 1.797099 8.719858 382.50378 1.796874
2013 9.025491 384.48312 1.827404 9.025491 384.48312 1.827404 8.850948 384.40005 1.826126 8.759923 384.35673 1.825459
2014 9.154079 386.45115 1.857604 9.154079 386.45115 1.857604 8.921355 386.28591 1.855074 8.799988 386.19974 1.853754
2015 9.282667 388.44974 1.888115 9.282667 388.44974 1.888115 8.991762 388.17582 1.883943 8.840054 388.03297 1.881766
2016 9.814028 390.4784 1.918926 9.410811 390.4784 1.918926 9.062091 390.0697 1.912732 8.878834 389.85657 1.909499
2017 10.345389 392.7291 1.952922 9.538955 392.53617 1.950016 9.132421 391.96722 1.941436 8.917613 391.66984 1.936947
2018 10.876749 395.19826 1.989995 9.667099 394.62259 1.981372 9.202751 393.8683 1.970055 8.956393 393.47294 1.964115
2019 11.40811 397.88236 2.030033 9.795243 396.7372 2.012984 9.27308 395.7729 1.998589 8.995173 395.26603 1.991009
2020 11.939471 400.77794 2.072923 9.923387 398.87954 2.044839 9.34341 397.68095 2.027038 9.033953 397.04929 2.017635
2021 12.095621 403.88158 2.118553 10.056581 401.04916 2.076925 9.480332 399.59241 2.0554 9.176533 398.82287 2.043998
2022 12.25177 407.01033 2.164199 10.189775 403.24798 2.109267 9.617255 401.539 2.084145 9.319114 400.63652 2.070836
2023 12.40792 410.16378 2.209851 10.322969 405.47551 2.141851 9.754177 403.52016 2.113258 9.461694 402.48959 2.098132
2024 12.56407 413.34153 2.255501 10.456163 407.7313 2.174667 9.891099 405.53534 2.142724 9.604275 404.38144 2.12587
025 12.720219 416.5432 2.301142 10.589358 410.01489 2.207704 10.028021 407.58398 2.17253 9.746855 406.31146 2.154034
026 12.847525 419.7684 2.346764 10.710888 412.32583 2240949 10.155353 409.66555 2.202662 9.877329 408.27903 2182608
027 12.974831 423.00326 2.392173 10.832418 414.65842 2 274317 10.282685 411.77524 2.233045 10.007803 410.27805 2.211499
028 13.102137 426.24762 2.437367 10.953948 417.0123 2.307799 10.410017 413.91259 2.263668 10.138277 412.30803 2.240693
029 13.229443 429.50134 2.482348 11.075478 419.38713 2.341389 10.537349 416.07717 2.29452 10.26875 414.36847 2.270179
030 13.356749 432.76427 2.527114 11.197008 421.78259 2.375079 10.664681 418.26854 2.325592 10.399224 416.45887 2.299944
031 13.48602 436.03626 2.571668 11.309423 424.19833 2.40886 10.776371 420.48625 2.356871 10.516646 418.57877 2.329977
032 13.615291 439.31811 2.616021 11.421837 426.62969 2.442667 10.88806 422.72243 2.388245 10.634068 420.72144 2.360179
033 13.744561 442.60968 2.660174 11.534252 429.0764 2.476492 10,999749 424.97677 2.419705 10.75149 422.88653 2.39054
034 13.873832 445.9108 2.704127 11.646666 431.53824 2.510333 11.111438 427.24899 2451247 10.868912 425.07368 2.421054
035 14.003103 449.22132 2.747879 11.759081 434.01495 2.544184 11.223128 429.53879 2482863 10.986334 427.28252 2.451711
036 14.094598 452.5411 2.791431 11.8564505 436.50629 2.578041 11.319654 431.84589 2.514549 11.083899 429.51272 2.482504
037 14.186092 455.85191 2.834548 11.94993 439.00392 2.611789 11.41618 434.16278 2.546198 11.181463 431.75443 2.513296
038 14.277587 459.1539 2.87724 12.045354 441.50772 2.645429 11.512706 436.48928 2.57781 11.279027 434.00747 2.544082
039 14.369082 462.44722 2.919514 12.140778 444.0176 2.67896 11.609232 438.82524 2.609381 11.376591 436.27166 2.57486
040 14.460577 465.732 2.961381 12.236203 446.53346 2.712381 11.705759 441.17052 2.64091 11.474155 438.54681 2.605627
041 14.534558 469.0084 3.002847 12.302678 449.05521 2.745691 11.776871 443.52497 2.672394 11.546918 440.83277 2.63638
042 14.608539 472.26811 3.043816 12.369153 451.56887 2.778709 11.847983 445.87625 2.703668 11.61968 443.11744 2.666956
043 14.682521 475.51143 3.084299 12.435628 454.07456 2.811441 11.919095 448.2244 2.734738 11.692443 445.40085 2.697358
044 14.756502 478.7386 3.124307 12.502104 456.57243 2.84389 11.990208 450.56947 2.765604 11.765206 447.68302 2.727589
045 14.830483 481.9499 3.163852 12.568579 459.06259 2.876063 12.06132 452.91153 2.796271 11.837968 449.96397 2.75765
046 14.890764 485.14559 3.202944 12.62337 461.54517 2.907965 12.112942 455.25061 2.826741 11.889357 452.24373 2.787543
047 14.951045 488.31928 3.241512 12.678161 464.01464 2.939529 12.164564 457.57738 2.856895 11.940747 454.51202 2.817136
048 15.011326 491.47135 3.279571 12.732953 466.47121 2.970762 12.216186 459.89204 2.886741 11.992136 456.76903 2.846437
049 15.071607 494.60213 3.317131 12.787744 468.91509 3.00167 12.267808 462.19478 2.916285 12.043525 459.01494 2.875449
050 15.131887 497.71197 3.354206 12.842535 471.34648 3.032261 12.31943 464.48579 2.945532 12.094914 461.24993 2.90418
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Figure B-4: Global carbon emission, atmospheric CO 2 concentration, and radiative forcing time
series for the period 1977-2050 for sequential climate policies < a13, a2j >.
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Sequential Climate Policy
<a_13, a_21> <a_13, a_22> <a_13, a23> <a_13, a_24>

E(t) C(t) F(t) E(t) C(t) F(t) E(t) C(t) F(t) E(t) C(t) F(t)
3.4 331.249 0.945887 3.4 331.249 0.945887 3.4 331.249 0.945887 3.4 331.249 0.945887

3.756891 331.35373 0.947757 3.756891 331.35373 0.947757 3.756891 331.35373 0.947757 3.756891 331.35373 0,947757
4.113781 331.62636 0.952621 4.113781 331.62636 0.952621 4.113781 331.62636 0. 952621 4.113781 331.62636 0.952621
4.470672 332.06419 0.960426 4.470672 332.06419 0.960426 4.470672 332.06419 0.960426 4.470672 332.06419 0.960426
4.827563 332.66456 0.97111 4. 827563 332.66456 0. 97111 4.827563 332.66456 0. 97111 4. 827563 332.66456 0.97111
5.184453 333.42485 0 984613 5.184453 333.42485 0.984613 5.184453 333.42485 0 984613 5.184453 333.42485 0 984613
5.541344 334.34247 1.00087 5.541344 334.34247 1.00087 5.541344 334.34247 1.00087 5.541344 334.34247 1.00087
5.898235 335.41488 1.019812 5.898235 335. 41488 1 .019812 5.898235 335. 41488 1.019812 5.898235 335.41488 1.019812
6.612016 336.6396 1.041371 6.612016 336.6396 1.041371 6.612016 336.6396 1.041371 6.612016 336.6396 1 .041371
6.737694 338.18376 1 .068441 6.737694 338.18376 1.068441 6.737694 338 .18376 1.068441 6.737694 338.18376 1.068441
6.863372 339.76493 1.096032 6.863372 339.76493 1.096032 6 863372 339.76493 1.096032 6.863372 339.76493 1.096032
6.98905 341.38251 1.124126 6.98905 341.38251 1.124126 6.98905 341.38251 1.124126 6.98905 341.38251 1.124126
7.114728 343.03595 1.152706 7.114728 343.03595 1. 152706 7.114728 343.03595 1 .152706 7.114728 343.03595 1 .152706
7.240406 344.72466 1.181753 7.240406 344.72466 1.181753 7 240406 344.72466 1.181753 7.240406 344.72466 1 .181753
7.253725 346.4481 1 .211252 7.253725 346.4481 1.211252 7.253725 346 4481 1.211252 7.253725 346. 4481 1.211252
7.267044 348.15211 1.240274 7.267044 348.15211 1.240274 7.267044 348.15211 1.240274 7.267044 348.15211 1.240274
7.280363 349.83702 1.268831 7.280363 349.83702 1.268831 7.280363 349. 83702 1.268831 7.280363 349, 83702 1.268831
7.293683 351.50315 1 .296935 7.293683 351.50315 1.296935 7.293683 351.50315 1 .296935 7.293683 3515 0315 1.296935
7.307002 353.15082 1.324597 7.307002 353.15082 1.324597 7.307002 353.15082 1.324597 7.307002 353.15082 1.324597
7.342646 354.78034 1.351828 7.342646 354.78034 1 .351828 7.342646 354. 78034 1 .351828 7.342646 354.78034 1 .351828
7.378291 356.40239 1 378809 7.378291 356.40239 1.378809 7.378291 356.40239 1.378809 7.378291 356.40239 1.378809
7.413935 358.01709 1.4056547 7.413935 358.01709 1.405547 7.413935 358.01709 1.405547 7.413935 358.01709 1.405547
7.44958 359.62458 1 432046 7.44958 359.62458 1 432046 7.44958 369.62458 1 432046 7.44958 359.62458 1 432046
7.485224 361.22498 1.458311 7.485224 361.22498 1.458311 7.485224 361.22498 1.458311 7.485224 361.22498 1.458311
7.568354 362.81842 1.484346 7.568354 362, 81842 1.484346 7.568354 362.81842 1.484346 7.568354 362. 81842 1 .484346
7.651483 364. 42702 1 .510513 7.651483 364.42702 1 510513 7.651483 364.42702 1 .5106513 7.651483 364. 42702 1.510513
7.734613 366.05053 1.536806 7.734613 366.05053 1.536806 7.734613 366.05053 1,536806 7.734613 366.05053 1.536806
7.817742 367. 68872 1.563219 7 817742 367. 68872 1 .563219 7. 817742 367. 68872 1 .563219 7. 817742 367.68872 1.563219
7.900872 369.34136 1.589745 7.900872 369.34136 1.5897456 7.900872 369.34136 1.589745 78900872 369.34136 1.589745
7930613 371.821 1 .61638 7.930613 371.00821 1 .61638 7.930613 371.00821 1.61638 7.930613 371 00821 1 .61638
7.960353 372.6634 1.642711 7.960353 372.6634 1.642711 7.960353 372.6634 1.642711 7.960353 372.6634 1.642711
7.990094 374.30712 1 668743 7.990094 374 30712 1.668743 7.990094 374.30712 1.668743 7.990094 374.30712 1 668743
8.019835 375.93957 1.694484 8.019835 375.93957 1.694484 8.019835 375.93957 1.694484 8.019835 375.93957 1.694484
8.049576 377.56092 1.719939 8.049576 377.56092 1.719939 8.049576 377.56092 1.719939 8.049576 377.56092 1.719939
8.179091 379.17136 1.745116 8.179091 379 17136 1.745116 8.179091 379 17136 1.745116 8.209579 379.17136 1.745116
8.308607 380.81856 1.770756 8.308607 380.81856 1.770756 8.308607 380.81856 1.770756 8.369582 380.83314 1.770983
8.438122 382.50192 1.796845 8.438122 382.50192 1 796845 8.438122 382.50192 1.796845 8.529585 382.54545 1 797519
8.567637 384.22088 1 823368 8.567637 384.22088 1.823368 8.567637 384.22088 1.823368 8 689587 384.30746 1.824701
8-697152 385.97485 1.850309 8.697152 385,97485 1.850309 8.697152 385.97485 1.850309 8.84959 386.11839 1.852508
9.368263 387.76327 1.877653 8.944314 387.76327 1.877653 8.827459 387,76327 1.877653 8.886159 387.97743 1.880919

10.039374 389.84448 1.909315 9.191475 389.64163 1.906237 8.957766 389.58572 1.905388 8.922727 389.82451 1.909012
10.710485 392.21374 1.945155 9.438637 391.60848 1.93602 9.088073 391.44164 1.933499 8.959296 391.65982 1.936795
11 381596 394.86643 1 985026 9.685798 393 66239 1.966962 9.21838 393 33051 1.961973 8.995865 393.48355 1.964274
12.052707 397 79796 2.028778 9.93296 395.80195 1 999024 9.348687 395 25179 1 990796 9.032433 395.29589 1 991456
12.210549 401.00385 2.076257 10.065391 398.0258 2.032165 9.484721 397.20495 2.019953 9.17564 397.09703 2.018346
12.368392 404.234 2.123713 10.197823 400.27759 2.065534 9.620754 399.19215 2.049472 9.318847 398.93808 2.045707
12.526234 407.48803 2.171137 10.330254 402.55688 2.099121 9,756787 401.21284 2.079339 9.462055 400.81842 2.073521
12.684077 410 786555 2.218523 10 462686 404.86323 2.132913 9.89282 403.26648 2.109538 9.605262 402 7374 2.101772
12.841919 414.06619 2.265863 10.595117 407.1962 2.1669 10.028854 405.35254 2.140057 9.748469 404.69441 2,130446
12.967987 417.38957 2.313148 10.718858 409.55536 2.201071 10.15871 407.4705 2.170883 9.880291 406.68882 2.159525
13.094014 420.72042 2.360164 10.842599 411 93645 2.23536 10.288566 409.6172 2.201963 10.012114 408.71491 2-18892
13.220062 424.05864 2.406912 10.96634 414.3391 2.26976 10.418422 411.79217 2.233288 10 143937 410.77217 2.218618
13,346109 427.40409 2.453394 11.09008 416.76298 2.304262 10.548278 413.99497 2.264845 10.27576 412.86009 2.248608
13.472157 430.75666 2.49961 11.213821 419.20775 2.338859 10.678134 416.22515 2.296624 10.407583 414.97818 2.278876
13.590227 434 11625 2.545565 11.326073 421.67307 2.373543 10.788716 418.48226 2.328613 100524406 417.12595 2,309411
13.708297 437.47893 2.591206 11.438326 424.15312 2.40823 10.899297 420.75667 2.360674 10.64123 419.29577 2.340101
13.826368 440.84466 2.636539 11.550578 426.64767 2.442916 11.009879 423.04809 2.3928 10.758053 421.48728 2.370936
13.944438 444.21339 2.681568 11 66283 429,15649 2.477596 11.12046 425.35626 2.424985 10.874877 423 70013 2.401909
14.062508 447.58507 2.726295 11.775083 431.67935 2.512267 11.231041 427.68091 2.457223 10.991701 425.93399 2.433013
14.166971 450.95967 2.770724 11 871201 434.21602 2.546924 11 327914 430.02176 2.48951 11 08947 428.1885 2.46424
14.271434 454 33061 2.814775 11.96732 436.75857 2.581458 11.424786 432 37202 2.521751 11.187239 430.45424 2.495456
14.375896 45769797 2.858454 12.063438 439.30691 2.61587 11.521659 434.73152 2.553942 11.285008 432.73101 2.52666
14.480359 461 06181 2.901767 12.159557 441.86094 2.65016 11.618531 437.10012 2.586082 11.382777 435.01865 2.557847
14.584821 464.42219 2.944722 122255676 444.42057 2.684326 11.715404 439.47768 2.618169 11.480546 437.31698 2.589016
14.653883 467.77915 2.987324 12.324048 446.98572 2.718369 11.788198 441 86405 2.650201 11.554541 439.62582 2.620163
14.722944 471 11579 3.029366 12.39242 449.54298 2.752113 11.860992 444.24753 2.682022 11.628536 441.93361 2.651132
14.792005 474.43243 3.070861 12.460792 452.09248 2.785564 11.933786 446.62817 2.713635 11.702531 444.24035 2.681927
14.861066 477.72939 3.111825 12.529165 454.63436 2.818728 12.00658 449.00602 2.745043 11.776527 446,54606 2.712548
14.930128 481 007 3.152268 12.597537 457.16872 2.85161 12.079374 451 38113 2.77625 11.850522 448.85077 2.742998
14.988329 484.26557 3.192204 12.651148 459.69571 2.884215 12.130745 453.75353 2.807257 11.90098 451 1545 2.773279
15.046531 487.50014 3.231582 12.704759 462.2083 2.916458 12.182117 456.11297 2.837935 11.951439 453.44592 2.803246
15.104732 490.7111 3.270414 12.75837 464.70673 2.948345 12.233489 458.45964 2.868289 12.001898 455.72523 2.832904
15.162934 493,89884 3.308715 12.811982 467.19123 2.979885 12 28486 460.79376 2.898328 12,052357 457.99265 2.862261
15.221136 497.06372 3.346497 12.865593 469.66202 3.011085 12.336232 463.11553 2.928057 12.102815 460.24835 2891322



B. INTEGRATED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Figure B-5: Global carbon emission, atmospheric CO2 concentration, and radiative forcing time
series for the period 1977-2050 for sequential climate policies < a 14, a 2j >.
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r Sequential Climate Policy
<a 14,a_21> <a_14, a_22> <a_14, a23> <a_14, a24>

E(t) C(t) F(t) E(t) C(t) F(t) E(t) C(t) F(t) E(t) C(t) F(t)
3.4 331.249 0.945887 3.4 331.249 0.945887 3.4 331.249 0.945887 3.4 331.249 094588&

3.756891 331.35373 0.947757 3.756891 331.35373 0.947757 3.756891 331.35373 0.947757 3.756891 331.35373 0.94775-
4.113781 331.62636 0.952621 4.113781 331.62636 0.952621 4.113781 331.62636 0.952621 4.113781 331.62636 0.95262
4.470672 332.06419 0.960426 4.470672 332.06419 0.960426 4.470672 332.06419 0.960426 4.470672 332.06419 0.960426
4.827563 332.66456 0.97111 4.827563 332.66456 0.97111 4.827563 332.66456 0.97111 4.827563 332.66456 0.9711
5.184453 333.42485 0.984613 5.184453 333.42485 0.984613 5.184453 333.42485 0.984613 5.184453 333.42485 0.98461:
5.541344 334.34247 1.00087 5.541344 334.34247 1.00087 5.541344 334.34247 1.00087 5.541344 334.34247 1.0008F
5.898235 335.41488 1.019812 5.898235 335.41488 1.019812 5.898235 335.41488 1.019812 5.898235 335.41488 1.019812
6.612016 336.6396 1.041371 6.612016 336.6396 1.041371 6.612016 336.6396 1.041371 6.612016 336.6396 1.041371
6.737694 338.18376 1.068441 6.737694 338.18376 1.068441 6.737694 338.18376 1.068441 6.737694 338.18376 1.068441
6.863372 339.76493 1.096032 6.863372 339.76493 1.096032 6.863372 339.76493 1.096032 6.863372 339.76493 1.096032
6.98905 341.38251 1.124126 6.98905 341.38251 1.124126 6.98905 341.38251 1.124126 6.98905 341.38251 1.124126
7.114728 343.03595 1.152706 7.114728 343.03595 1.152706 7.114728 343.03595 1.152706 7.114728 343.03595 1.152706
7.240406 344.72466 1.181753 7.240406 344.72466 1.181753 7.240406 344.72466 1.181753 7.240406 344.72466 1.18175;
7.253725 346.4481 1.211252 7.253725 346.4481 1.211252 7.253725 346.4481 1.211252 7.253725 346.4481 1.211252
7.267044 348.15211 1.240274 7.267044 348.15211 1.240274 7.267044 348.15211 1.240274 7.267044 348.15211 1.240274
7.280363 349.83702 1.268831 7.280363 349.83702 1.268831 7.280363 349.83702 1.268831 7.280363 349.83702 1.268831
7.293683 351.50315 1.296935 7.293683 351.50315 1.296935 7.293683 351.50315 1.296935 7.293683 351.50315 1.296935
7.307002 353.15082 1.324597 7.307002 353.15082 1.324597 7.307002 353.15082 1.324597 7.307002 353 15082 1.324597
7.342646 354.78034 1.351828 7.342646 354.78034 1.351828 7.342646 354.78034 1.351828 7.342646 354.78034 1.351828
7.378291 356.40239 1.378809 7.378291 356.40239 1.378809 7.378291 356.40239 1.378809 7.378291 356.40239 1.378809
7.413935 358.01709 1.405547 7.413935 358.01709 1.405547 7.413935 358.01709 1.405547 7.413935 358.01709 1.405547
7.44958 359.62458 1.432046 7.44958 359.62458 1.432046 7.44958 359.62458 1.432046 7.44958 359.62458 1.432046

7.485224 361.22498 1.458311 7.485224 361.22498 1.458311 7.485224 361.22498 1.458311 7.485224 361.22498 1.458311
7.539241 362.81842 1.484346 7.539241 362.81842 1.484346 7.539241 362.81842 1.484346 7.539241 362.81842 1.484346
7.593258 364.41309 1.510287 7.593258 364.41309 1.510287 7.593258 364.41309 1.510287 7.593258 364.41309 1.510287
7.647275 366.00897 1.536135 7.647275 366.00897 1.536135 7.647275 366.00897 1.536135 7.647275 366.00897 1.536135
7.701292 367.60604 1.561889 7.701292 367.60604 1.561889 7.701292 367.60604 1.561889 7.701292 367.60604 1.561889
7.755309 369.20429 1.58755 7.755309 369.20429 1.58755 7.755309 369.20429 1.58755 7.755309 369.20429 1.58755
7.755165 370.8037 1.613119 7.755165 370.8037 1.613119 7.755165 370.8037 1.613119 7.755165 370.8037 1.613119
7.755021 372.37825 1.638183 7.755021 372.37825 1.638183 7.755021 372.37825 1.638183 7.755021 372.37825 1.638183
7.754876 373.92833 1.662754 7.754876 373.92833 1.662754 7.754876 373.92833 1.662754 7.754876 373.92833 1.662754
7.754732 375.45434 1.686844 7.754732 375.45434 1.686844 7.754732 375.45434 1.686844 7.754732 375.45434 1.686844
7.754588 376.95667 1.710465 7.754588 376.95667 1.710465 7.754588 376.95667 1.710465 7.754588 376.95667 1.710465
7.882855 378.43571 1.733629 7.882855 378.43571 1.733629 7.913676 378.43571 1.733629 7.882855 378.43571 1.733629
8.011122 379.95304 1.757297 8.011122 379.95304 1.757297 8.072764 379.96778 1.757527 8.011122 379.95304 1.757297
8.139389 381.50803 1.781456 8.139389 381.50803 1.781456 8.231852 381.55203 1.782138 8.139389 381.50803 1.781456
8.267655 383.10008 1.806088 8.267655 383.10008 1.806088 8.39094 383.18761 1.807439 8.267655 383.10008 1.806088
8.395922 384.72859 1.831179 8.395922 384.72859 1.831179 8.550028 384.8737 1.83341 8.395922 384.72859 1.831179
9.135839 386.39299 1.856713 8.705557 386.39299 1.856713 8.710468 386.60949 1.860027 8.525183 386.39299 1856713
9.875755 388.38509 1.887131 9.015193 388.17921 1.883994 8.870908 388.39457 1.887275 8.654444 388.09291 1.882679

10.615672 390.69961 1.922276 9.324828 390.0853 1.912968 9.031348 390.22815 1.915134 8.783705 389.82778 1.909062
11.355588 393.33135 1.961986 9.634463 392.10932 1.94358 9.191788 392.10945 1.943582 8.912966 391.59705 1.935847
12.095504 396.2752 2.006092 9.944098 394.24938 1.975775 9.352228 394.03769 1.972599 9.042227 393.40015 1.963021
12.259085 399.52612 2.054419 10.074769 396.50359 2.0095 9.487794 396.01213 2.002164 9.183101 395.23654 1.990568
12.422665 402.80333 2.102741 10.20544 398.78442 2.043428 9.623361 398.02004 2.032079 9.323975 397.11118 2.018557
12.586246 406.1064 2.151048 10.336111 401.09144 2.077549 9.758927 400.06088 2.062331 9.464849 399.02343 2.046972
12.749826 409.43492 2.199331 10.466782 403.42423 2.111851 9.894493 402.13413 2.092906 9.605724 400.9727 2.075797
12.913407 412.78848 2.247582 10.597454 405.78237 2.146326 10.03006 404.23925 2.123789 9.746598 402.95839 2.105017
13.039036 416.16667 2.295793 10.722889 408.16545 2.180962 10.161249 406.37575 2.154969 9.880863 404.97992 2.134617
13.164664 419.55126 2.343704 10.848324 410.57088 2.215719 10.292439 408.54132 2.186407 10.015129 407.03384 2.164541
13.290293 422.94213 2.391318 10.97376 412.9983 2.250588 10.423628 410.7355 2.21809 10.149394 409.11965 2.194774
13.415922 426.33919 2.438638 11.099195 415.44736 2.28556 10.554818 412.95783 2.250008 10.28366 411.23684 2.225306
13.541551 429.74235 2.485666 11.224631 417.91771 2.320628 10.686007 415.20786 2.282149 10.417925 413.38489 2.256122
13.6596 433.1515 2.532405 11.337432 420.40901 2.355784 10796755 417.48515 2.314503 10.535084 415.56331 2.287211

13.777649 436.56293 2.578808 11.450233 422.91488 2.390937 10.907504 419.77949 2.346921 10.652244 417.76344 2.318444
13.895699 439.97662 2.624881 11.563033 425.4351 2.426081 11.018252 422.0906 2.379397 10.769403 419.98494 2.349815
14.013748 443.39252 2.670627 11.675834 427.96944 2.461213 11.129 424.41822 2.411926 10.886562 422.22745 2.381314
14.131797 446.81061 2.716051 11.788635 430.51766 2.496328 11.239749 426.76208 2.444502 11.003721 424.49065 2.412935
14.236151 450.23084 2.761157 11.885139 433.07956 2.531422 11.336917 429.12192 2.47712 11.102264 426.7742 2.44467
14.340505 453.64665 2.805864 11.981643 435.64711 2.566387 11.434086 431.491 2.509686 11.200807 429.06886 2.476389
14.44486 457.05809 2.850179 12.078147 438.22022 2.601221 11.531255 43386916 2.542197 11.29935 431.37448 2.508088
14.549214 460.46524 2.894109 12.17465 440.79882 2.635924 11.628423 436.25626 2.574652 11.397893 433.69086 2.539766
14.653568 463.86818 2.937662 12.271154 443.3828 2.670497 11.725592 438.65216 2.607048 11.496437 436.01783 2.571418
14.721305 467.26698 2.980844 12.340197 445.97209 2.70494 11.798468 441.05672 2.639384 11.570561 438.35524 2.603043
14.789042 470.64413 3.023441 12.40924 448.55343 2.739078 11.871345 443.45814 2.671502 11.644686 440.69118 2.63448
14.85678 474.00001 3.065468 12.478283 451.12694 2.772918 11.944221 445.85646 2.703406 11.718811 443.02569 2.665731
14.924517 477.33494 3.106939 12.547327 453.69276 2.806465 12.017097 448.25175 2.735099 11.792936 445.35878 2.6968
14.992254 480.64927 3.147867 12.61637 456.251 2.839724 12.089973 450.64406 2.766583 11.867061 447.69049 2.727688
15.049293 483.94333 3.188267 12.669289 458.8018 2.872702 12.141674 453.03343 2.797862 11.918094 450.02084 2.758397
15.106333 487.21227 3.228088 12.722208 461.33749 2.905303 12.193375 455.40971 2.828807 11.969127 452.33873 2.788785
15.163372 490.45649 3.267344 12.775127 463.85831 2.937536 12245076 457.77311 2.859425 12.020161 454.64437 2.818859
15.220412 493 67639 3.3060

15.277451 496 87236 3.344219 12.880965 468.85633 3.000929 12 348477 462 46212 2.919705 12.122227 459.21969 2.878087



B. INTEGRATED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity deltaT (1) deltaT (2)

1/50 0.535 1.077

1 0.501 0.990
1.5°C

5 0.480 0.916

50 0.470 0.876

1/50 0.895 1.824

1 0.731 1.523
< a11 , a 2 1 > 2.5 0C

5 0.652 1.325

50 0.575 1.094

1/50 1.340 2.913

1 0.907 2.025
4.5°C

5 0.743 1.576

50 0.649 1.286

1/50 0.535 0.974

1 0.501 0.904
1.50 C

5 0.480 0.842

50 0.470 0.809

1/50 0.895 1.646

1 0.731 1.398
< all, a22 > 2.5 0 C

5 0.652 1.229

50 0.575 1.026

1/50 1.340 2.660

1 0.907 1.887
4.5°C

5 0.743 1.483

50 0.649 1.218

Table B.1: One-box climate model projections (in oC) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < all, a21 > and < all, a 22 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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B. INTEGRA TED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity JdeltaT (1) deltaT (2)

1/50 0.535 0.956

1 0.501 0.890
1.5oC

5 0.480 0.831

50 0.470 0.799

1/50 0.895 1.615

1 0.731 1.379
< all, a 23 > 2.50C

5 0.652 1.215

50 0.575 1.017

1/50 1.340 2.619

1 0.907 1.869
4.5 0C

5 0.743 1.471

50 0.649 1.209

1/50 0.535 0.945

1 0.501 0.880
1.50C

5 0.480 0.823

50 0.470 0.792

1/50 0.895 1.595

1 0.731 1.366
< all, a 24 > 2.50C

5 0.652 1.205

50 0.575 1.010

1/50 1.340 2.592

1 0.907 1.854
4.5 C

5 0.743 1.461

50 0.649 1.202

Table B.2: One-box climate model projections (in oC) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < all, a2 3 > and < a11 , a24 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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B. INTEGRATED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity deltaT (1) deltaT (2)

1/50 0.524 1.044

1 0.493 0.958
1.50C

5 0.473 0.885

50 0.464 0.847

1/50 0.873 1.769

1 0.720 1.471
< a1 2 , a21 > 2.50C

5 0.643 1.281

50 0.569 1.060

1/50 1.315 2.816

1 0.896 1.959
4.5 0C

5 0.736 1.528

50 0.644 1.249

1/50 0.524 0.962

1 0.493 0.892
1.50C

5 0.473 0.831

50 0.464 0.798

1/50 0.873 1.627

1 0.720 1.379
< a1 2 , a 22 > 2.50C

5 0.643 1.211

50 0.569 1.012

1/50 1.315 2.624

1 0.896 1.860
4.5 0C

5 0.736 1.462

50 0.644 1.202

Table B.3: One-box climate model projections (in oC) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < a 12 , a 21 > and < a 12 , a2 2 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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B. INTEGRATED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity deltaT (1) deltaT (2)

1/50 0.524 0.939

1 0.493 0.872
1.50C

5 0.473 0.814

50 0.464 0.783

1/50 0.873 1.587

1 0.720 1.351
< a 12 , a 2 3 > 2.50C

5 0.643 1.190

50 0.569 0.998

1/50 1.315 2.567

1 0.896 1.830
4.50C

5 0.736 1.442

50 0.644 1.188

1/50 0.524 0.927

1 0.493 0.863
1.50C

5 0.473 0.806

50 0.464 0.776

1/50 0.873 1.567

1 0.720 1.337
< a1 2 , a 24 > 2.5°C

5 0.643 1.180

50 0.569 0.990

1/50 1.315 2.539

1 0.896 1.816
4.5"C

5 0.736 1.432

50 0.644 1.181

Table B.4: One-box climate model projections (in 'C) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < a 12, a 23 > and < a 12 , a 24 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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B. INTEGRA TED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity deltaT (1) deltaT (2)

1/50 0.522 1.037

1 0.492 0.951
1.50C

5 0.472 0.879

50 0.464 0.841

1/50 0.871 1.759

1 0.718 1.461
< a1 3, a 21 > 2.5°C

5 0.643 1.272

50 0.569 1.053

1/50 1.313 2.796

1 0.895 1.944
4.5 0 C

5 0.735 1.517

50 0.643 1.241

1/50 0.522 0.952

1 0.492 0.882
1.5oC

5 0.472 0.821

50 0.464 0.789

1/50 0.871 1.610

1 0.718 1.363
< a13,a22 > 2.5 0 C

5 0.643 1.198

50 0.569 1.002

1/50 1.313 2.594

1 0.895 1.841
4.5"C

5 0.735 1.448

50 0.643 1.192

Table B.5: One-box climate model projections (in 'C) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < a13, a21 > and < a13, a 22 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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B. INTEGRATED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity deltaT (1) deltaT (2)

1/50 0.522 0.930

1 0.492 0.864
1.50C

5 0.472 0.807

50 0.464 0.776

1/50 0.871 1.573

1 0.718 1.338
< a1 3 , a2 3 > 2.5°C

5 0.643 1.180

50 0.569 0.990

1/50 1.313 2.543

1 0.895 1.814
4.5 0C

5 0.735 1.431

50 0.643 1.179

1/50 0.522 0.921

1 0.492 0.857
1.50C

5 0.472 0.800

50 0.464 0.770

1/50 0.871 1.556

1 0.718 1.328
< a 1 3 , a 24 > 2.50C

5 0.643 1.172

50 0.569 0.984

1/50 1.313 2.521

1 0.895 1.803
4.50 C

5 0.735 1.424

50 0.643 1.174

Table B.6: One-box climate model projections (in °C) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < a 13, a 23 > and < a 13 , a 24 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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B. INTEGRA TED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity deltaT (1) deltaT (2)

1/50 0.522 1.035
1 0.491 0.948

1.50C
5 0.472 0.876

50 0.463 0.838

1/50 0.870 1.754

1 0.718 1.455
< a1 4 , a 21 > 2.5°C

5 0.642 1.267

50 0.569 1.049

1/50 1.311 2.786

1 0.895 1.937
4.50C

5 0.735 1.512

50 0.643 1.237

1/50 0.522 0.947

1 0.491 0.877
1.50C

5 0.472 0.817

50 0.463 0.785

1/50 0.870 1.602

1 0.718 1.355
< a1 4 ,a2 2 > 2.5 0C

5 0.642 1.192

50 0.569 0.998

1/50 1.311 2.579

1 0.895 1.831
4.5°C

5 0.735 1.441

50 0.643 1.187

Table B.7: One-box climate model projections (in °C) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < a 14, a 21 > and < a14, a 22 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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B. INTEGRATED ASSESSMENT OF SEQUENTIAL CLIMATE POLICIES

Sequential Climate Policy Climate Sensitivity Ocean Diffusivity deltaT (1) deltaT (2)

1/50 0.522 0.926

1 0.491 0.860
1.5oC

5 0.472 0.803

50 0.463 0.773

1/50 0.870 1.566

1 0.718 1.332
< a14, a23 > 2.5 0 C

5 0.642 1.174

50 0.569 0.986

1/50 1.311 2.531

1 0.895 1.806
4.5°C

5 0.735 1.425

50 0.643 1.175

1/50 0.522 0.915

1 0.491 0.850
1.5oC

5 0.472 0.795

50 0.463 0.765

1/50 0.870 1.546

1 0.718 1.318
< a14, a24 > 2.5 0 C

5 0.642 1.164

50 0.569 0.978

1/50 1.311 2.503

1 0.895 1.791
4.5°C

5 0.735 1.415

50 0.643 1.168

Table B.8: One-box climate model projections (in 'C) of global-mean surface temperature
change for Periods 1 and 2 under sequential policies < a14, a2 3 > and < a1 4 , a 24 >, as a
function of Climate Sensitivity and Ocean Diffusivity.
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