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Abstract
In this thesis I investigated the feasibility of an optically pumped intersubband far-
infrared (40-100 j,lm) laser, using GaAs/ AlxGal-xAs heterostructures. The proposed
design aims to use LO-phonon-mediated depopulation of the lower THz laser level
to aid the intersubband laser population inversion. Interband recombination occurs
by means of stimulated emission, thus combining an interband (rv 1550 me V) and
intersubband (rv 16-18 meV) laser.

As the subband properties of both the valence band and the conduction band are
important for this work, a numerical program code was developed for the valence
band to supplement the available tools for the conduction band. The steady state
rate equations for the proposed quantum well structure were solved self-consistently
for several different carrier temperatures. The calculations indicate that a pump
beam of moderate power (0.5-1 W) concentrated on a device of typical dimensions
(104 cm2) can generate an intersuhband gain of 20 cm-1 at 50 K for a THz emission
linewidth of 2 meV. This gain level can suffice to obtain THz lasing action, provided
that the cavity losses can be kept in check. The performance of the THz laser is
predicted to be very dependent on electron temperature, mainly due to the opening
of a parasitic LO-phonon channel between the THz laser levels. Interhand lasing
seems to be easier to obtain, as the calculated threshold pump intensity is lower than
for the intersubband case.
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Chapter 1

Introd uction

1.1 Interband Pumped Intersubband THz Lasers

1.1.1 Introduction

The far-infrared frequency range-is roughly defined as 30-300 J-lm or 4-40 meV. Often

this range is also referred to by the term terahertz radiation, since 4-40 meV corre-

sponds to 1-10 THz. Far-infrared (FIR) or terahertz (THz) electromagnetic radiation

is important in many applications such as radio astronomy, environmental monitor-

ing, plasmon diagnostics, laboratory spectroscopy, telecommunications etc. and in

the characterization of nanoscale condensed matter materials. In recent years, the

generation, propagation and detection of FIR or THz electromagnetic radiation using

two-dimensional semiconductor systems or other semiconductor nanostructures has

become one of the most rapidly expanding fields in the photonics, optoelectronics and

condensed matter physics communities.

Diode lasers are ideal sources because they are cheap, compact and very efficient.

However, the semiconductor band gap places a limitation on emission frequency. The

longest-wavelength diode lasers (rv 30J-lm) are based on narrow gap lead-salt semicon-

ductors [1]. While these lead-salt lasers have been quite successful for high resolution

15



16 CHAPTER 1. INTRODUCTION

spectroscopy, they are still limited to cryogenic operation and provide relatively low

power. On the other end of the spectrum, semiconductor transistors can be used to

make 100 GHz oscillators [2]. Molecular gas lasers are currently the only practical

laser sources for the far infrared, but they have limited lasing frequencies. They are

also somewhat unwieldy as they require high voltage supplies and are usually rather

bulky.

Intersubband lasers have several advantages over conventional semiconductor lasers.

Most useful is the fact that the emission frequency is chosen by the design of the

widths of the quantulIl wells, and can hence be tailored to the application. This

is especially useful for infrared applications where small bandgap materials become

difficult to find and work with. Also, since the envelope functions extend over a well

(tens of Angstroms), the dipole moment for the intersubband transition is typically

several orders of magnitude larger than that of an atomic transition. These features

promise more efficient lasers.

1.1.2 Intersubband Lasers

In 1970, Esaki and Tsu [3] proposed using heterostructures for applications in opto-

electronics. The use of intersubband transitions to create a laser was first suggested

by Kazarinov and Suris [4] in 1971. Since then, electrically pumped quantum cascade

lasers have been developed for wavelengths up to 24 pm [5]. Quantum wells are made

by growing layers of different band gap semiconductors on top of each other, creating

a stack like structure. Since the bandgap of GaAs is smaller than that of AlxGal-xAs,

the ensuing band gap profile gives rise to potential wells. The potential well height

is determined by the Al alloy concentration of the barrier material.

These quantum wells perturb the crystal periodicity in the growth direction. New

electron energy states are located in these quantum wells, confined in the growth

direction but still free in the plane of the well. As shown in figure (1-1), the conduction

band is quantized into subbands.
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Figure 1-1: Subbands in a quantum well. The potential well caused by the AlGaAs
/ GaAs quantum well gives rise to bound states localized in the well. In k-space, the
subbands are parabolic as the electrons are not confined in the plane of the well.

The quantum well is similar to an impurity atom in that localized states are

created. In k-space, the subbands are parabolic as the electrons are not confined in

the plane of the well. The exact energies of the subband minima are dependent on

the well width and the depth of the potential well. The energies can be approximated

by the formula for infinitely deep wells:

E = .!!-(n1r)2
n 2m* L '

(1.1)

where m* is the electron effective mass in GaAs, L is the well width and 1i is the

reduced Planck's constant. The energy levels for a well with a finite barrier are lower

than in equation (1.1). By choosing the well width and the barrier heights we can

tailor the quantum levels so that transitions between Em and En will emit photons

in the far infrared. Very interesting from an engineering point of view is the ability

to tune the energy levels and the dipole moments by applying a voltage bias. The

Stark shift induced by the electric field shifts the energy levels and alters the potential

profile. This is a very powerful tool when designing quantum wells.
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Figure 1-2: Gauthier-La/aye's three level quantum well design. Indicated are the pump
and mid-IR intersubband laser transitions. [8}

Kazarinov and Suris [4J were the first to propose the use of intersubband transi-

tions to design a laser. Electrically pumped versions of such a laser, called a Quantum

Cascade Laser, have been demonstrated in recent years. The QCL works by applying

a voltage bias to create a potential staircase in which each step consists of a module

of quantum wells. In most designs, each module has three major energy levels. Elec-

trons are injected into the upper level and relax down to the middle level by emission

of a photon. Subsequently, this lower laser level is quickly vacated by fast polar longi-

tudinal optical (LO) phonon scattering to the ground state. From this ground state,

electrons are then injected into the upper level of the next module. This design and

variations thereof have been very successful in the nlid-infrared frequency range 4-24

/-lm [5, 6, 7).

An alternative to electrical pumping is optical pumping, either intersubband or

interband. Room temperature luminescence around 10 /-lm was observed by Sauvage

et al [9) in 1996 and at 7.7 /-lln in 1997 [10]. Lyobumirsky et al. reported spontaneous
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Figure 1-3: Kastalsky's MQW design consists of multiple single wells. Also shown is
a scheme of the optical transitions under IR laser operation [14].

far-infrared emission around 47 /-lm [11]. In 1998, a mid infrared quantum well laser

operating at 15.5 pm was realized by Gauthier-Lafaye et al. [8]. A schematic diagram

of their laser design is shown in figure (1-2). This laser uses a simple three-level

scheme where electrons are optically pumped from the ground level into the excited

state E3. Population inversion is ensured by designing the intersubband spacing

E2 - E1 ~ 1i WLO for LO phonon resonance to depopulate E2• Similar structures were

proposed by Julien [12], Green [13] and Sauvage [10].

Optical pumping can have the advantage of a high selectivity in populating energy

levels in a simple structure. It avoids the free carrier losses associated with contact

regions. Also, a voltage bias can be seen as an extra degree of freedom and is not

instrumental in carrier transport between modules. On the other hand, electrical

pumping is a more convenient and efficient.

Recently, several proposals and measurements of FIR interband pumped laser

devices have been published, but no lasing has been observed yet. Sauvage et al. [10,

9] reported both far- and mid-infrared intersubband luminescence in an interband
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pumped device. Kastalsky [14] proposed an infrared intersubband laser based on an

interband laser. In his design a pump laser excites electrons into the first excited

state in an isolated quantum well. The ground state is depopulated by a stimulated

interband process (figure (1-3)). Vurgaftman and Meyer proposed the use of optically

pumped type-II heterostructures to obtain THz lasing [15].

For intersubband pumping, the CO2 laser is the most commonly used laser. Its

main drawback is that its wavelength is fixed, which imposes limits on the QW design.

For interband pumped devices, the Ti:Sapphire laser offers easy tunability from 690-

1080 nrn wavelength and a range of pulse lengths continuously variable from 80 ps

to less than 50 fs. Also, cheap single mode laser diodes around 780 nm are available

with power levels up to 100 mW. SLI Corporation (15 Link Drive, Binghamton, NY

13904) offers a single mode diode laser at 785 nrn (e.g. SLI-CW-XXX-C1-XXX-

O.lS-R) with up to 100 mW output power. Multimode laser diodes and diode laser

arrays (linewidth around 3 nm) are more commonly available with powers ranging to

upwards of 200 W. Coherent offers a single-stripe multimode laser diode with 3 W

output power (S-79-3000C-200x) at 780 nm. The same company offers a 20 W laser

diode array (Bl-770-20C-19-30-A) at 770 nm. Unfortunately it is very difficult to

find laser diodes with a wavelength between 740 and 780 nm (1670 and 1600 meV).

The proposed pumping geometry is based on the setup used by Le et ale [16] We

can use a linear pump diode array with a collimating cylindrical lens. The collimated,

parallel beam can be focused into a stripe by an aspheric condenser. The stripe width

can be controlled with a pair of wedges that form a precise slit aperture and also act

as a beam scrambler to reduce hot spots. The wedges are positioned slightly off the

condenser focus so that the pump density profile along the stripe is nearly uniforrn.

The sample itself can be mounted on a cold finger inside a dewar. Intersubband

radiation emitted by the sample is coupled out of the dewar through a window. In

order to ensure an efficient use of the pumping power, we will assume surface pumping.

This means that the incident pump beam propagates along the QW growth axis, and
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Figure 1-4: Schematic drawing of the optical pumping arrangement [16}
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the electric field is polarized in the plane of the well (TE polarization). The active

region is surrounded by cladding layers and a metal-metal waveguide. The top metal

layer should have windows to allow the pump beam to pass through, yet still reflect

the THz emission for an effective mode confinement. This can be achieved by having

the rectangular windows aligned with their length along the ridge. Edge pumping is

more difficult because of the very small penetration depth of the pump field in the

sample (on the order of 1 j.lm). On top of that, it is difficult to focus the pump beam

exactly on the sample's edge.

The proposed interband pumped intersubband laser consists of a sequence of inde-

pendent modules of three coupled quantum wells of increasing width. A laser emitting

radiation of the appropriate frequency excites carriers in the narrowest well (contain-

ing the highest energy ground state) from the valence band into the corresponding

conduction subband which will serve as the FIR laser's upper level. The middle well,

of intermediate width, hosts the lower laser level. Finally, this lower laser level is de-

populated by making use of resonant La phonon scattering into the third and widest

well. In order to depopulate this well and avoid state blocking for the La-phonon

transition from the lower laser level, interband lasing conditions must be met.
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1.2 Problem Statement

Two major difficulties pose challenges to the design of interband pumped intersu b-

band THz lasers: pump selectivity and the lasing conditions for the "depopulation

laser" in the widest well. Ideally, the pump laser would only excite carriers in the nar-

rowest well, containing the upper laser level. However, as this well also has the largest

"effective bandgap" of all three wells in a module, it is inevitable that the pump laser

energy will be greater than the effective bandgaps in the other two wells, giving rise

to an undesirable generation of photo-excited carriers in these wells. Those carriers

reduce the population inversion between the intersubband laser levels by swamping

the lower FIR laser level with electrons, making population inversion more difficult to

obtain. Also, by increasing the carrier density in the widest well, state blocking of the

depopulation of the lower level may become an issue. Furtherrnore, this "parasitic"

photogeneration depletes the pump beam, decreasing the attainable efficiency of the

device. Secondly, in order to determine the depopulation laser threshold, it is neces-

sary to investigate the hole transport in the valence band, as well as the interband

dipole moment.



Chapter 2

Optical Transitions

2.1 Introduction

In order to evaluate electronic and optical processes in a semiconductor, an adequate

model of its electronic band structure is needed, defining electron (and hole) energy

levels and effective masses. This will enable us to calculate the corresponding wave

functions, and hence absorption and gain due to electronic transitions in the presence

of an incident optical field. Most important for optical devices are optical transitions

between conduction and valence band edge states, which are lowest in energy and

most densely populated. Therefore, we will focus on the conduction and valence

band structures near the band edge, where the k . p method is very useful.

2.2 Bloch Theorem and k. p Method

A crystal lattice is characterized by its long range order and symmetry. This symme-

try will be reflected in the crystal's electrostatic potential, which in turn influences

the movement of charge carriers. How these (translation) symmetry properties can

be expressed in terms of properties of the carrier wave functions, is described by the

Bloch Theorem.

23
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For an electron in a p~riodic potential V(r) = V(r + R), with R a lattice vector, the

electron wave function satisfies the Schr6dinger equation :

H1/J(r) = [~~: \72 + v(r)] 1/J(r) = E(k)1/J(r). (2.1)

The Hamiltonian is invariant under the translation r -7 r + R. Therefore, if'ljJ(r)

is a solution, 'ljJ(r + R) will also satisfy (2.1), the only possible difference being a

constant phase factor (which has no physical meaning). So, the general solution to

(2.1) can be written as:

(2.2)

with

(2.3)

n referring to the band and k to the electron wave vector.

The k .p method is a useful technique for analyzing the band structure near a par-

ticular point ko, especially when it is near a band extremum. Here, we will consider

the case where this extremum occurs at the zone center, ko = o. This is a very useful

case for direct II 1-V semiconductors, such as GaAs.

Substituting (2.2) in (2.1) we can write the Schr6dinger equation in terms of unk(r) :

(2.4)

or

where

p2
Ho = - + V(r),

2mo

, Ii
H = -k.p,

mo

(2.5)

(2.6)

(2.7)
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(2.8)

(2.9)

n?k2

£n(k) = En(k) - -.
2mo

If we're just interested in a single band, as is the case near the band edge in

a conduction band, we can easily use perturbation theory to calculate the energy

dispersion relation. We carry out an expansion around k = 0, and time independent

perturbation theory gives the energy to second order [17]:

1i2 k2 1i 1i2 Ik.Pnn,12

En(k) = En(O) + -2 - + -k.Pnn + -2 L E (0) - E (0)'
mo mo mo n':f.n n n'

where the momentum matrix elements are defined as

(2.10)

If ko is at an extremum of En(k), Pnn usually vanishes because of symmetry

considerations, and En (k) around the extremum has a second order dependence on

the components of k. We can write this as :

(2.11)

(2.12)

and

D"P = ~8 P + ~ L P~n'P~'n +~n'P~'n = h
2

(~)
2mo ° 2m5n:f.n' En(O)-En,(O) 2 m* o{3'

where lX, {3 = x, y and z. The matrix D°{3 is the inverse effective mass in matrix

form multiplied by 1i2

2.3 Luttinger-Kohn's model

2.3.1 Lowdin's Perturbation Method

These results from the single-band k .P theory can be generalized for the case of

multiple, degenerate bands by using the Luttinger-Kohn model [18, 19]. In this model

the influence of all other bands are taken into account by using L6wdin's perturbation

method [17]. All bands are subdivided into two classes:
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1ClassB

Class A

T Class'B

Figure 2-1: Conduction and valence bands are divided into two classes for the appli-
cation of Lowdin's perturbation method .

• class A : the six valence bands(heavy hole, light hole, split off band and their

spin counterparts) and the two conduction bands

• class B : all other bands

We will concentrate on the bands in class A, while taking into account class B bands

perturbatively.

We can write the perturbed solution </J as a linear combination of the unperturbed

eigenstates </J~O):

(2.13)
n

Assuming the unperturbed eigenstates are orthonormalized, we can write the

eigenequation as:
A B

(E - Hmm)am == I:Hmnan + I:Hmoaco
wpm oi=m

with

H == I ~(O)t H ~(O)d3r == E(O)8 + H'mn \f"m \f"n n mn mn'

(2.14)

(2.15)
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(2.16)

where the first sum on the right-hand side is over the states in class A only, while

the second sum is over the states in class B. Since we are interested in the coefficients

am for m in class A, we may eliminate those in class B by an iteration procedure and

obtain:

(2.17)

and

Or, equivalently, we solve the eigenvalue problems for an, (n E A)

(2.18)

A

L (U~n - E8mn) an = 0
n

and

mEA,

'Y E B.

(2.19)

(2.20)

When the coefficients an belonging to class A are determined from the eigenequa-

tion (2.19), the coefficients a'Y can be found from (2.20). A necessary condition for

the expansion of (2.18) is:

mEA, a E B. (2.21)
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2.3.2 Schrodinger Equation and Basic Functions

Including the spin-orbit interaction, the Hamiltonian is written as [17]:

1i
H = Ho + ~(7 . \7V x p,

4moc
(2.22)

where (7 is the Pauli spin matrix vector. Substituting 2.2 in the Schr6dinger

equation, we finally obtain

(2.23)

where

Ii
IT = p+ --2(7 x \7V,

4moc

and the perturbation Harniltonian

H' = ~k. 11.
mo

(2.24)

(2.25)

The unperturbed Hamiltonian will then refer to the band-edge spin-orbit system

(for k = 0).

Note that the second term in k . IT is much smaller than the last term in (2.23),

because lik « p = I(Uklpluk)1 ~ Ii/a. The electron velocity in the atomic orbit is

much larger than the velocity of the wave packet in the vicinity of ko ~ 0 (band

edge).

At the band edge, conduction band Bloch states exhibit s-like symmetry, and

valence hand states are p-like (3-fold degenerate without spin). We can represent these

states by IS), and IX), IY) and IZ) respectively. We can picture these Bloch functions

as a periodic repetition of atomic orbitals, repeated at intervals corresponding to the

lattice spacing.
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We expand the function

A B

Unk(r) = L aj,(k)uj'o(r) + L a1'(k)u1'o(r),
j' l'

29

(2.26)

where j' is in class A and "I is in class B. We choose the basic functions Uj'O to be

1

1 1) 1 I. 1.u20(r) = uso(r) = 2' 2 = J31~X + zY) t) + J3IZ t),

1

3 3) -1u40(r) = uhh(r) = 2' 2 = y'21(X + iY) t) ,

1

1 -1)u50(r) = uel(r) = 82'"2 = -18 t),

1

1 -1) 1 . 1
u60(r) = uso(r) = 2'"2 = J31(X - zY) t) - J3IZ t) ,

1

3 -1) 1 . f3u70(r) = ulh(r) = 2'"2 = J61(X - ~Y) t) + V "2IZ -!-),

1

3 -3) 1u80(r) = uhh(r) = 2'"2 = y'2I(X - iY) t).

Using Lowdin's method, we need only solve the eigenequation

A

L(Uj~' - E8jj')aj,(k) = 0,
j'

where

(2.27)

(2.28)

(2.29)

(2.30)
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As mentioned ab<?ve, the second term in II can be neglected compared to the

similar term with p instead of k. Similarly to the single band case, we can write for

U-:1.,
JJ

Djjl = Uj~' = Ej(0)8jjl + L Dj;~kakfJ'
a,fJ

We now define [19J

11.2 11.2 B pX pX
Ao = -_ + - L X'Y 'YX

2mo m5 'Y Eo - E'Y

1i2 1;2 B y y
Bo = -- + _/£- L PX'YP'Yx

2mo m5 'Y Eo - E'Y

1i2 B x y + y xC = _ "" PX'YP'Yy PX'YP'Yy
o 2L.., E E 'mo 'Y 0 - 'Y

and the band structure parameters (Luttinger parameters)

1i2 1--,1= -(Ao + 2Bo),
2mo 3

1i2 1--,2 = -(Ao - Bo),
2mo 6

1i2 Co---,3 =-.
2mo 6

(2.31)

(2.32)

These parameters are very closely related to the effective masses of the holes in

the various valence bands. ,1 and ,2 describe the coupling of the IX), IY) and IZ)

states to the other states. The third parameter ,3 relates to the anisotropy of the

energy band structure around the r point when ,3 =1= ,2.
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The Luttinger-Kohn Hamiltonian matrix Djj' can be written explicitly as [18, 17,

20]:

Eel Pz -/2Pz --I3P+ 0 -/2P- p- O

pt P+b.. -/2Qt -st /-/2 --/2pt 0 -}3/2S --/2Rz

-/2p} -/2Q P-Q -st -pt }3/2S 0 R
--I3pt -S/-/2 -S P+Q 0 -/2R R 0

H=
0 --/2P+ -P+ 0 Eel Pz --/2Pz -V3P-

-/2p! 0 J3/2St V2Rt pt P+b.. -/2Qt -S/-/2z

p! -J3/2St 0 Rt --/2P} V2Q P-Q S
0 --/2Rt Rt 0 -V3P! -st /-/2 st P+Q

with [20]

Por. ...:.~[iP(kx:l: iky) + Bkz(ky:l: ikx)],

Pz = ~ (iPkx + Bkxky),

Q = fi2'2 (k2 + k2 _ 2k2)
2mo x y z ,

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

Here b.. is the spin-orbit splitting energy. The coupling between the r conduction

band-edge IS} state and the r valence-band-edge state IZ} is given by:

n? 1 8p= -- 'ljJs-'ljJz.
mO unit cell 8z
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The Kane parameter B describes the inversion asymmetry. In most practical

calculations, this parameter is neglected [2IJ. The parameters 111 12, 13 and P can

be determined from effective masses at the r point of a bulk semiconductor [20):

(2.41 )

(2.42)

~o 1
~so(OOI) = II + 2"Ar, (2.43)

(2.44)

where the dimensionless parameters A and r are given by

A = 4mOP2
31i2 E '9

(2.45)

Egr-----::....--- E
g

+~. (2.46)

Some values for the effective masses of GaAs and AIGaAs are given in table (2.1).

sourceMaterial
GaAs 0.067 0.4537 0.0700 0.1434 0.8526 [20}
GaAs 0.465 0.085 0.595 cyclotron resonance [22J
GaAs 0.474 0.076 0.68 calculation [23] in [24J
GaAs 0.067 0.51 0.082 0.154 0.63 [25}
GaAs 0.067 0.62 0.087 0.15 [26]
Al.25Ga.75As 0.0942 0.5100 0.0900 0.1720 0.9815 [20J
AlAs 0.150 0.76 0.15 0.24 [26]

Table 2.1: Effective mass at the valence band r point, according to different sources
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2.3.3 2 Band Model

33

The conduction band can be modeled quite easily if we assume that the interaction

with the other bands is weak enough for it to be treated perturbatively, i.e. use a

simple effective mass model. In the case of the valence band, however, the strong

interaction between the degenerate light and heavy hole bands (near the band edge)

requires that these bands are taken into account explicitly. Only when we consider

energy levels deep into the valence bands (close to the SO splitting energy, about 300

meV in GaAs) do the coupling terms to the SO band become important. As we will

only be concerned with shallow levels, the influence of SO and conduction bands (1.5

eV splitting) can be introduced through the effective mass.

The degeneracy of the light and heavy hole bands near the band edge generates a

coupling term (as in the Luttinger-Kohn Hamiltonian). Including spin degeneracy,

this yields a set of four coupled effective mass equations [17, 21, 27].

Fortunately, this set of coupled equations can be greatly simplified by a method

described by Broido and Sham [21]. They used a unitary transformation of the four

basis Bloch functions (Ulh' Uhh, Ulh, Uhh) into a new set (UA' UB, uc, UD) to decouple

the set of four coupled equations into two sets of two coupled equations. The Bloch

functions Ui are given by

(2.47)

(2.48)

(2.49)

(2.50)
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This means that the Hamiltonian

P-Q -st 0 R

-S P+Q R 0
H= (2.51)

0 Rt P-Q S
Rt 0 st P+Q

is diagonalized into two 2x2 blocks, an upper block HU and lower block HL, given

HO' = [ P ~ Q W ], W = IRI - ilSI,
wt P=fQ

(2.52)

where the index a = U(L) refers to the upper (lower) :f: signs. The upper and

lower blocks are equivalent, showing the double degeneracy of the heavy and light

hole bands. It is therefore sufficient to solve the upper block and obtain its solutions.

The solutions for the lower block can easily be determined from the latter.

We can identify (P - Q) and (P + Q) with the light hole energy (operator) H1h and

the heavy hole energy Hhh, respectively. Similarly to the conduction band case, the

Schr6dinger equation with Hamiltonian (2.52) can be simplified into an effective-mass

formalism with:

A ~ 2
Hih = -('1 + 2'2) 8z2 + ('1 -'2)kt,

A 82 2
H hh = -('1 - 2'2) 8z2 + ('1+ '2)kt,

A r;; 8
W = v 3kt(,2kt - 2;3 8z)'

(2.53)

(2.54)

(2.55)

Finally, we take into account a potential V (z), which represents the (bulk) valence-

band-edge offset with respect to an arbitrary reference energy. This allows us to write

the effective mass equation as :

(2.56)
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Figure 2-2: Const'ant:energycontours for light holes.and heavy holes in .bulk GaAs.
There is a clear :anisotropy in the (lID) direction. The energy spacing is 0.5. me V for
the HH band and 3 meV for the LH band.

where Fhh and .Flhl.'~rethe envelope functions corresponding to UA and UB respec-

tively. Note that in this formalism, hole energies are taken to be positive.

The first step in solving the quantum well problem, is finding the solution in bulk

material, where we take V to be a constant 110. The value of Vo will be different

in well material and barriers, reflecting the different valence band edge offsets.. We

can now easily solve for the eigenenergies E(k), yielding the bulk energy dispersion

relations for the.HH and LH bands. We consider the case of a. {IOO}plane, writing

the in-plane k component askt :

(2.57)

where the plus sign refers to the "light hole" solution, and the minus sign to the

"heavy hole" solution. We can rewrite (2.57) as:

'(2.58)
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Constant energy contours are shown in figure (2-2), illustrating that 1'3 can be

related to the mass anisotropy along the (100) and (110) directions. If kt is small

compared to kz, we can expand the square root in (2.57):

(2.59)

The energy term accounting for anisotropy for a given kt and kz is equal for the

HH and LH bands. However, due to the lower energy of the HH bands the anisotropy

term is relatively more important for HH than for LH, resulting in a clearly anisotropic

HH band and a quasi isotropic LH band.

Still, we see that in bulk material, the effective masses along the z-axis (001) and

x- and y- axes (100) and (010) are identical (as expected), as the dispersion relation

is given by E(k) - va == (1'1 :i: 21'2)k2• We can easily find this from (2.57) with kt == a
for (001), and kz == 0 for the x- and y- directions.

The eigenvectors of (2.56) are found to be, apart from a normalization constant:

1/Jdk, r) == [ Fhh,l ] == eik.r [ Hlh + va - Ehh ] ,

Flh 1 -wt,

where the matrix notation implies

(2.60)

(2.61)

(2.62)

To solve the quantum well problem, we choose the well growth direction (direction

of confinement) along the z-axis. The xy-plane is in the plane of the well. We

can construct a confined solution from the bulk plane wave solutions by imposing

boundary conditions along the confinement axis. In the plane of the well, there is

no confinement and hence we retain the bulk plane wave solutions. By taking a

linear combination of the bulk solutions in each material, a general solution can be
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Figure 2-3: At anyone energy in a bulk material, we can find four wavevectors
corresponding to the heavy and light hole bands. An eigenstate of the Hamiltonian
in a quantum well is then made up of a linear combination of the bulk plane waves
corresponding to those wave vectors. A:i: corresponds to :f::kz1 (light hole), B:i: to the
heavy hole :f::kz2 in GaAs. In the barriers (AIGaAs) a similar mechanism is employed.
The boundary conditions at the interfaces then determine the energy eigenvalues and
the coefficients. Only the outgoing waves are indicated, as the coefficients for the
incoming waves have to be identically zero.

constructed. As illustrated in figure (2-3), four plane wave solutions exist at a given

energy, yielding a general solution '1J:

(2.63)

The four coefficients A:i: and B:i: are unknown constants. Both 'lfJl and 'lfJ2 are two-

component vectors, as described in (2.60) and (2.61). We can write the components

of '1J, Fhh and Flh' as :

Thus we have four unknown constants in each region, making a total of twelve

unknowns over the three regions. The boundary conditions at the interfaces between

the regions and the demand that the solutions be confined in the quantum well

provide the necessary relations to solve the problem. The following quantities have
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Figure 2-4: Dispersion relations f01' (100) and (110) directions in a 100 A wide
GaAs/Al.3Ga.7As quantum well. Growth direction is (001). The subbands are named
after their dominant character at the zone center. A t higher k-vectors the bands are
very heavily mixed.



2.3. LUTTINGER~I(OHN'S MODEL

DOS vs E um I GaAs/AIGaAs well width=1 00 A

39

50

.g 40
g
"0

8
~ 30
o
...... CD

g
CD

~ 20enoo
10

~500 1550 1600 1650 1700
Epump (meV)

-hh1
-lh1
- hh2

hh3

1750 1800

Figure 2-5: Density of states in a 100 A wide GaAs/Al.3Ga.7As quantum well. The
spikes in the eJ,ensityof states for LHl and HH3 are due to band extrema away from
the zone center.

to be matched across an interface :

(2.66)

(2.67)

These boundary conditions were obtained by symmetrizing the Hamiltonian in

(2.52). Caution should be issued however that the above boundary conditions only

apply when the Bloch functions in both well materials are similar (also as seen from

their Luttinger parameters), as is the case for the GaAs-AIGaAs system. The bound-

ary conditions boil down to the continuity of the wave function and "generalized"

continuity of its derivative, corresponding to current across the interface.

In figure (2-4), the valence subband structure of a 100A GaAs/ Alo.3Gao.7As quantum

well is shown (Vo ~ 140 meV if the reference is the GaAs valence band edge). The LH

and HH bands are very heavily coupled, giving rise to highly non-parabolic subbands.
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Also notice the anisotropy between (IOO) and (lID) directions. In practical calcula-

tions, we can use an approximation where the coupling terms which are responsible

for the anisotropy are replaced by an "average" term Wave == (WlOO + Wllo)/2. This

approach is known as the axial approximation.

Particularly important is the density of states of the subbands, as illustrated in

figure (2-5), as this plays a major role in determining interband gain and absorption.

The density of states g(E) can be found from

(2.68)

assuming the E-k relationship is isotropic (using the axial approximation). The

DOS starts off at roughly 2.5 times the conduction band DOS (2.8 x 1010cm-2meV-1),

increasing with increasing hole energy in the valence band.

2.4 Optical Transitions

At the core of an optical device, is of course the interaction of electromagnetic ,waves

(light) and matter (electrons in the semiconductor). Quantum mechanically, the

interaction between photons and electrons in the semiconductor can be described by

the Hamiltonian

IH == -(p - qA)2 + V(r),
2mo

(2.69)

where A is the magnetic vector potential, and q is the carrier charge (q == -e

for electrons). Neglecting the term quadratic in A (a good approximation for most

practical optical field intensities), and applying the Coulomb gauge \7 . A == 0, we can

distinguish the perturbation Hamiltonian H' due to the electron-photon interaction:

I eH ~-A.p.
mo

(2.70)

However, it is possible to take the quadratic term into account without making the

perturbation Hamiltonian more cumbersome. We can do this by by explicitly writing
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the wavefunction 'lj; as the product of a phase factor and the remaining wavefunction

'lj;':

(2.71)

Substituting this into the Schr6dinger equation with Hamiltonian (2.69), we find:

p'lj; = eieAor/h (p + eA)'lj;', (2.72)

(2.73)

and, as E = -aA/at, the Schr6dinger equation for the interaction of a photon

with an electron can be written as a function of the amplitude of the incident optical

field E:

[
p2 ] , 0 a'lj;'-- - eE . r 'lj; = 'In-,

2mo at

The perturbation Hamiltonian is:

H' = -eE. r.

(2.74)

(2.75)

The physical interpretation of this interaction is more intuitively obvious than

in the description with a vector potential. The radiative field acts as a force on

the electron charge cloud, thus accelerating it and generating radiation (emitting a

photon) or exciting the electron (absorption of a photon).

In order to describe the particle-particle interaction between photon and electron,

we have to quantize the electric field E. This can be done similarly to the case of a

harmonic oscillator. A photon then corresponds to one quantum of excitation in an

oscillator:

~[t .. .. ]E(r, t) = -iy ~ a e-u\:or+zwt - aeZKor-zwt . (2.76)

The operators a and at are photon annihilation and creation operators, respec-

tively. They correspond to the absorption and emission of photons by mediation of
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an oscillating electric (electromagnetic) field with angular frequency w. This is true

even if that field is a vacuum field, as is the case for spontaneous emission.

The optical transition rate between an initial state (Ei, kd and final state (Ef, kr)

can be described using Fermi's Golden Rule:

(2.77)

(2.78)

(2.79)

Here the delta function assumes a zero linewidth. In order to introduce a finite

linewidth, the delta function can be replaced with the proper line-shape, usually a

Lorentzian with linewidth f. The Lorentzian is a good model for line-shape broad-

ening due to a finite lifetime or dephasing scattering.

f /(27f)
8(Ef - Ei - hw) ~ (Ef - E

i
- hw)2 + (f/2)2'

More generally, in most cases a number of final states is available, with density of

states P(Eif). As each state is equally probable as a final state for the transition, we

obtain (zero linewidth)

T¥;f = 2; 1 (-tPfIH'(r) !7P;)1
2 p(E;f )8(Ef - E; -liw).

If we neglect non-parabolicity, the subbands in one particular band track each

other. The energy separation between two states with identical in-plane wave vector

remains constant for any two given subbands. Assuming only vertical transitions

(dipole selection rule), this means that p will be given by the subband density of states

for intersubband transitions. Neglecting non-parabolicity is okay for the conduction

band, but not for the valence band. Band-mixing in valence band quantum wells

leads to large non-parabolicity effects.

In interband transitions, the bands don't track each other and the energy separa-

tion varies with Eif. Again, assuming only vertical transitions in k-space, the number

of transition pairs within 8k has to be the same in both conduction band and valence

band Pr 8Ecv == Pc 8Ec == Pv 8Ev. Setting 8Ecv == 5Ec + 5Ev, we irnmediately obtain:

1 1 1
- == -+-.
Pr Pc Pv

(2.80)
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Figure 2.:.6: Relationship between the energy ranges in the conduction and valence
bands for a given dk in k-space, assuming k-selection applies.

In typical semiconductors, like GaAs, Pv is a lot higher than Pc, hence Pr ~ Pc. The

above equation can be rewritten in a more practical form, useful for non-parabolic

bands:

1 = _1_ [dEc(k) _ dEv(k)].".
p(Eif) p(k) dk dk

(2.81)

This definition allows for Pr to be evaluated at any given point in k-space once

the E - k dispersion relation is known at that point.

2.4.1 Intersubband Optical Transitions

We can write the initial (photon density nph) and final states (nph + 1) in an inter-

subband transition as:

(2.82)
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(2.83)

where A is the in-plane area of the quantum well. As both the Bloch functions u

belong to the same band, and as they are almost independent of k, we can assume

UO,i ::::::uO,j' The matrix element Hi! can then be written:

(2.84)

(2.85)

In the above equation we made use of the fact that the F(z) can be considered

a constant on the scale of a lattice spacing. This is a very good assumption for low

level states and quantum wells wider than a few monolayers. This is generally true

for the wave functions we are interested in.

The delta function in (2.85) corresponds to a conservation of in-plane momentum.

The momentum carried by the photon, kph, is of the order of 2rr/).. ().. ::::::100j.lm),

which is negligible compared to the electron wave vectors ki, k f of the order of

2rr/a, a being the lattice constant (order of magnitude 5 A). Therefore we can write

kt f ::::::kt i., ,

The matrix element Zif = (FflzIFi) is called the dipole matrix element between

the initial and final states. The dipole matrix element can be used as a gauge for

the strength of the optical intersubband transition. Due to the dimensions of the

quantum wells and their (bound) energy levels, Zif in intersubband transitions (I'V 30

A) can be a lot larger than in an atomic system (I'V 2 A). During the desigJ;! of a

quantum well structure, we will try to maximize the dipole moment associated with

the targeted intersubband transition.

Also apparent from (2.85) is a dipole selection rule for intersubband transitions.

Only an electromagnetic wave with its electric field polarized along the z-axis (the

quantum well growth axis) will be generated or absorbed in an intersubband transi-

tion.



2.4. OPTICAL TRANSITIONS 45

Using Fermi's Golden Rule, the intersubband transition rate for stimulated emis-

sion (into one specific optical mode, i.e. the same one as the incident wave) can be

written as:

(2.86)

(2.87)

(2.88)

(2.89)

The transition rate is directly proportional to the intensity of the incident field

(rv nph). Equation 2.86 also shows that the transition rate decreases with increasing

wavelength. The expression for (stimulated) absorption is identical to the one for

stimulated emission.

For spontaneous intersubband emission, we have to sum over all available final

photon states. Taking into account a 3D optical mode density of (81fVn3 E2)/(h3c3),

the transition rate is:

2 3Z2
3D e nw ifWOf = ----=-

z ,sp 31f€onc3'

However, in far-infrared optical quantum electronic devices, the transition usually

takes place inside a two-dimensional optical cavity with thickness tc which is at the

same scale or smaller than the wavelength (50-100 j.Lm). This cavity can consist of

a metal or plasma waveguide, confining the electromagnetic wave in the z-direction

and limiting the optical mode density to A/(21f)2. This yields a 2D intersubband

transition rate of

2 2Z2
2D e nw ifWOf = -----=-

z ,sp 2tc€onc2 '.
scaling inversely proportional to the cavity thickness. Compared to the 3D ex-

pression, this dependence replaces a 1/ A dependence. This is shown more clearly if

we look at the ratio of W3D to W2D

Wi}~p _ 4tc

W2D - 3"if,sp /\

The microcavity effect will increase W2D over the 3D case if the thickness of the

cavity is smaller than the wavelength. Note that a microcavity only has an effect on
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the spontaneous emission rate. Stimulated emission, and hence gain, are not affected

as all photons are coupled into one single mode. How many modes are available, is

not important.

Optical gain is defined as the relative increase of a wave intensity per length unit

as the wave propagates through the medium: dI/dx = g(w)I. To find the expression

for optical gain, we subtract total absorption liwNf Wab from total stimulated emission

liwNiWst. With pump beam intensity I == ¥liw; we find from (2.86):

(2.90)

and

(2.91)

Here D.N == Ni - Nf is the population inversion between initial and final subbands.

If the transition has a finite linewidth Ilj, the delta function in (2.86) is replaced with

a Lorentzian line-shape and the maximum gain is:

(2.92)

2.4.2 Interband Optical Transitions

The initial and final states in an interband transition between conduction band and

valence band are

(2.93)

(2.94)

The optical interband matrix element Hif now takes a slightly different form than

for the intersubband case.

(2.95)
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Figure 2-7: (a) Subband edge probability distributions for the conduction and heavy
hole valence bands in a single 100..4 GaAs/Al.3Ga.7As QW. Growth direction is (001).
(b) Sub band edge wavefunctions for the conduction and heavy hole valence bands in
a pair of coupled GaAs/Al.3Ga.7As QW's. Only the four lowest energy heavy hole
subbands are illustrated. The width of barriers and wells is indicated in monolayers
(lML==2.825..4). Growth direction is (001) .

..
Here we made use of (2.70) rather than (2.75). Notable is that the same k selection

applies as in the intersubband case. The vector e is the unit vector pointing along A.

As E = -BA/Bt, e will also be parallel to E if the exciting field is linearly polarized.

The overlap integral (FfIFi) between the conduction and valence band envelope

functions gives rise to another, less strict selection rule. Usually the overlap between

states with the same quantum number in the same well is much higher than with other

states. So, transitions between corresponding states in conduction and valence band

will be favored ("allowed"), whereas the other transitions are less strong. However, the

difference in effective mass between the bands and wave mixing can cause important

exceptions to this rule. This is illustrated in figure (2-7) and table (2.2). For a single



48 CHAPTER 2. OPTICAL TRANSITIONS

well the subband edge wavefunctions would be perfectly orthogonal if they had the

same effective mass and if the wells had the same depth. These differences between

the valence and conduction band give rise to small violations of the selection rule,

becoming more important as the involved subbands are higher in energy and thus

closer to the barrier energy. In the double quantum well system the ground level of

the narrow well and the first excited level of the wide well are heavily coupled. The

four involved states ('l/Jc2, 'l/Jc,3, 'l/Jv,2, 'l/Jv,3) now share a significant overlap. The overlap

with the "non-perturbed" states ('l/Jc,l and 'l/Jv,l, 'l/Jv,4 in the example) remains small. Of

course, the orthogonality of states in the same band (valence or conduction) still holds

and the overlap integral between two conduction or valence band states is identically

zero.

I~~ 1Pv,1 I 1Pv,2 I 1Pv,3 .1 1Pv,4 I
'l/Jc,l 0.9810 0.0000 0.0102 0.0000
'l/Jc,2 0.0000 0.9260 0.0000 0.0388

I~~ 1Pv,1 I 1Pv,2 I 1Pv,3 I 1Pv,4 I
'l/Jc,l 0.9714 0.0007 Q.OI09 .0.0088
'l/Jc,2 0.0075 0.5963 0.3361 0.0001
'l/Jc,3 0.0071 0.3410 0.5847 0.0055

Table 2.2: The square of the overlap integrals I(FfIFi}12 between the various subband
edge wavefunctions as illustrated in figure (2-7). The top table refers to the single
well in (a), the bottom table refers to the coupled wells in (b).

The momentum matrix element MT = (ucle. pluv) (FcIFv) is polarization de-

pendent [28]. When calculating MT, all possible transitions between the involved

conduction and valence bands (HH or LH) have to be taken into account, yielding:

IMrl
2 = ~ ~ ~ j(ucle. pjuv) (FclFv)12

•
Uc,Uc Uv,Uv

(2.96)
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Figure 2-8: Dependence of the transition strength IMT/ on the angle between the
electron k-vector and the the electric field polarization vector E.

The factor 1j2 compensates for the spin degeneracy factor already present in the

expression for the density of states. It is customary to express /MT/ in function of

IMI .-:./ (ucle . p/Ui) I, where i = x, y, z. 1M/ can be determined from measurements of

the band curvature [28]. By expressing the valence bands Uv as linear combinations

of the basis functions Ui (equations (2.47)-(2.50) and (2.27)), the expression for IMT/2

can be much simplified. We assume the envelope function overlap integral to be unity,

because for the moment we will be interested in transitions between two bulk plane

wave states. We find for the normalized transition strength in bulk material [28]:

2 2 {~(1 -/k . e /2) for HH band,IMT/ jlMI = A 2~(l+ Ik . e I) for LH band.

Here k is a unit vector pointing along the electron k-vector.

As shown in figure (2-8), the strength of interaction between each electron plane

wave state and an incident photon is highly polarization dependent. However, in

bulk material this dependence doesn't reveal itself as the incident field interacts with
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many electrons with different wave vectors, effectively averaging out the polarization

difference. In bulk, the relative interaction strength is equal in all three principal

directions IMrI2/IMI2 = 1/3.

For TM polarized light (E II z, Hz = 0, assuming propagation in the z-direction),

the heavy-hole transition is forbidden. This is due to the absence of a Uz component in.

the heavy-hole basis state Uhh. A pz-like (odd in z) state is needed for the interaction

of a z-polarized field with the s-like conduction band Bloch state.

In quantum well structures, we can no longer work with simple plane wave states,

but have to take into account the envelope functions. As a general valence band wave-

function consists of both HH and LH components, equation (2.96) can be replaced

by

(2.98)

Averaging out over all in-plane k directions, we can remove the cross-terms in the

above equation and get explicit expressions for TE (Ez =0, for beam propagation in

z-direction) and TM (Hz =0) light polarization, assuming the growth direction is z:

IMrl
2 = IMI2 [~ I (FcIFih) 1

2
]

IMr12r= ¥ [1(FcIFhh)1
2 + !1(FcIFih) 1

2
]

TM (e II z),

TE (e 1- z).

For the interband pumping scheme, TM polarization corresponds to edge pump-

ing, while TE polarization relates to surface pumping.

At the band edge, the valence band states can be be characterized as pure HH or

LH states. Apart from the overlap integral I(FfIFi)12
, this case corresponds to the

bulk case and the obtained values for the LH and HH transition strength correspond to

what was shown in figure (2-8). As kt increases, band mixing becomes more and more

important, drastically altering the transition strength. Away from the zone center,

the states generally exhibit both HH and LH components. A sample calculation of

a 100 A quantum well is included in figure (2-9). For the heavy hole transition,

absorption of TM polarized light is suppressed close to kt == 0, where band mixing is
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Figure 2-9: Relative transition strengths for both TE and TM light polarization for
the two lowest subband transitions in a 100 A GaAs/Al.3Ga.7As quantum well.

minimal. As we move away from the band edge, band mixing occurs such that both

Flh and Fhh are present in anyone wavefunction. This alters the transition strengths.

We c,an use Fermi's Golden Rule to get an expression for the interband optical

gain. The gain can be written as:

(2.99)

(2.100)

withvg = cln the group velocity of the incident wave. Substituting (2.95) in

(2.99) yields the material gain per unit length:

q2/i 1 2
gij = --2-fi IMT{Eij)! Pr{Eif)(fj - fi)'

EocmO Wij
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Chapter 3

Phonon-Carrier and

Carrier-Carrier Scattering

3.1 Phonons

The atoms in a semiconductor lattice are linked together with chemical bonds. These

b?~ds ca~?e strictly covalent or contain a degree of ionicity, as is the case between

Ga(-) ans As(+) in GaAs. Still, the atoms are constantly in motion, vibrating around

their equilibrium lattice position, each atom a tiny harmonic oscillator. As the atomic

vibrations are closely coupled through their common bonds, the atomic vibrations can

be seen as part of larger lattice vibrations, which exist in several modes (see figu.re

(3-1).

Similarly as with an electromagnetic field, each vibration mode can be quantized.

A quantum of excitation in one mode is called a phonon, and each phonon can

be characterized by a wave vector q and angular frequency w. Like an electron or

photon, an unconfined phonon can then be described by a (non-normalized) plane

wave function eiq-r.

Similarly as for electrons, the lattice periodicity gives rise to a Brillouin-zone type

E - q phonon dispersion relation. The lower branches represent the acoustic phonon

53
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Figure 3-1: Room temperature dispersion curves for acoustic and optical branch
phonons in GaAs, obtained by inelastic neutron scattering. Adapted from
Blakemore [25}.

modes, characterized by the neighboring atoms being in phase. In the longitudinal

mode, the atomic displacernents are in the same direction as the direction of energy

transfer, while in the the transverse mode the atomic displacements are perpendicular

to this direction. In optical phonon modes, the displacements of neighboring atoms

are in opposite phase.

As shown in the figure, the energy of the optical phonons is almost independent

of q, and in calculations longitudinal optical (LO) phonons are usually assumed to

have one energy (liWLO = 36 meV in GaAs). Because of the large dipole moment

induced by neighboring ions, LO phonons couple strongly with electrons in polar

semiconductors, provided enough energy is available.

As the phonons themselves represent the motion of atoms which are centers of

charge, they also represent time-dependent perturbations of the crystal potential and

can therefore scatter charge carriers. The electron-phonon interaction, i.e. creation
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(3.1)

(3.2)

(3.4)

and absorption of phonons, can be quantized through creation and absorption oper-

ators. The perturbation Hamiltonian H' is very similar to (2.76):

H"= La(q) [e-iq.rb~ + eiq.rbq] .
q

To find the total scattering rate, we sum over all q in the above equation. a( q) is

the electron-phonon coupling strength.

LA phonons are most important for low energies or low temperatures. In these

cases they correspond to long wavelength deformations of the crystal lattice. The

interaction strength can be expressed as [29]:

2 nwD2

la( q) I = 2 V 2.P Cs

Here D refers to the deformation potential, V is the crystal volume, p the material

density and Cs the (longitudinal) speed of sound in the material.

For polar semiconductors such as GaAs, interactions with La phonons are most

important. The La phonon interaction strength- is [30]:

la(q)12 = nWLoe
2
(Es - ~oo) , (3.3)

2EsEooEQ Vq
where Es and Eoo denote the relative permittivity of GaAs at frequencies lower and

higher than optical frequencies, respectively. Due to the 1/ q2 dependence, interactions

with La phonons at the zone center are favored over transitions involving a large

momentum transfer. Also, the La phonon threshold energy (36 meV for GaAs) causes

a sharp temperature dependence. This effect is especially important for far-infrared

transitions, where the subband energy spacing is less than nWLO. Here, hot carriers

can open up parasitic La phonon channels, drastically altering average scattering

times. This can be detrimental to the working of the device.

We can adapt the bulk phonon expression to the 2D case by splitting the real

space dependence of the Hamiltonian in components along and perpendicular to the

growth axis.

H' = e L [liWLoe2( Es - ~oo)] 1/2 e-iqt.rt e-iqzZ
-.

q 2EsEooEQ V q JA-JL
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To assess the transition rate between an initial state ki on subband i and a final

state kj on subband f, we use Fermi's Golden Rule:

(3.5)

We can rewrite the matrix element HI(

(3.6)

where Ai! = 1.:'I/J}(z) 'l/Ji(Z) eiq,zdz.

The form factor Aij contains the dependence on the electron wave functions.

Summing over all possible kj, we find the total rate for a LO phonon mediated

transition from the initial state ki in subband i to a state in subband f :

(3.7)

We assume parabolic subbands and liw( q) :::::::nWLO' The electrons in subband

i are thermalized with electron temperature Te,i, and their energy'distribution can

be described using a Fermi-Dirac distribution around a chemical potential (Fermi

energy) EF:

f(E) = E-~~'

e kTe,i + 1
(3.8)

As phonons are bosons, their energy distribution is the Bose-Einstein function:

1
NLO(E) = ~

e kTph - 1
(3.9)

Using the momentum conservation qt = ki - kj from (3.6) the LO phonon scat-

tering rate can be written:
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Ci is the kinetic energy of the electron in the initial subband, Ci = li2k; t/2m*. The
I

energy to create a phonon can be obtained from both the electron kinetic energy and

potential energy, i.e. the subband separation. This is reflected in the step function

H(ci + ~Eif -liWLO).

Usually we can assume that the phonon temperature Tph is close to the lattice

temperature 1l. For experiments where the device is being tested in a cryogenic

environment, mounted on a cold plate, this means that LO phonons are frozen out.

The equilibrium LO phonon population is negligible and scattering is dominated by

the phonon emission process.

However, heavy pumping resulting in hot carriers could result in a non-equilibrium

phonon population. The LO-phonon temperature Tph can be much higher than the

lattice temperature. This can result in absorption of LO phonons:

(3.11)

The intersubband scattering time for the whole subband can then be found byaver-

aging the individual scattering times of all electrons on that subband:

(3.12)

where the factor 2 accounts for spin degeneracy, and ni is the subband's 2D

population density.

3.2 Carrier-carrier scattering

With increasing population density, electrons are more and more likely to interact

and scatter. Especially in cases where LO-phonon scattering is not possible or very

limited, e-e scattering is the main scattering mechanism. In this section we will be

using the Hartree approximation, in which we neglect the "exchange energy" caused
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22~11 22~21 21 ~ 11

Figure 3-2: Va.rious intersubband carrier-carrier scattering mechanisms for a two-
s'Ubband system

by the anti-symmetry in the real space wave function of a two-electron state if the two

electrons have the same spin. Inclusion of this "exchange energy" adds considerable

complexity to the problem (Hartree-Fock), effectively making the problem intractable.

The perturbation Harniltonian is an unscreened Coulombic potential:

2
H'- _e_

- 47rEr'
(3.13)

with r the distance between the electrons and E = EsEO the dielectric permittivity

of the semiconductor. At its simplest, we can represent electron-electron interaction

as a two-body process involving two isolated carriers. As there are two initial and two

final states, there are a lot more scattering possibilities than in the case of LO-phonon

scattering, which involved one initial and one final state. In figure (3-2), various

scattering mechanisms for intersubband scattering are illustrated. The transition

from subband 2 to subband 1 can be split into three contributions, 22-11, 22-21 and

21-11. The 22-21 and 21-11 transitions are Auger-type transitions, with one electron

relaxing down to a lower subband while giving its excess energy to another electron
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22~22 21~21 21 ~12

Figure 3-3: Various intrasubband carrier-carrier scattering mechanisms for a two-
sub band system

which scatters higher into its original subband. Also, there are scattering events

which don't affect the number of electrons in a subband, as illustrated in figure (3-3).

22-22 is a "pure" intrasubband scattering event. Even though these intrasubband

e-e scatterings don't change the suhband populations, they are very important for

thermal equilibrium in and between subbands.

The ini~ial and final states are composed of two electron wavefunctions, and are

of the form !W12) = !Wl) !W2). The collision probability between electrons with equal

spin polarity is lower due to an exchange term (related to Pauli's exclusion principle),

and therefore only electrons with opposite spins are taken into account here [31].

Taking wavefunctions of the form (2.93) and (2.94) for the electron wavefunctions,

the matrix element HI! becomes:

(3.14)

where the initial electron states are labeled i and j, and the final states f and g.

Note that, for simplicity, we are working with the unscreened Coulombic potential.
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The separation of the carriers is:

(3.15)

Therefore we obtain:

H:f = 4::A2 L:ooL:oo! ! >p}(z) >Pt(z') >p;(z) >Pj(z')
ei(kiort+krr't} e-i(krrt+kg.r't}

x drt dr't dz dz'. (3.16)Vlrt - r'tl2 + (z - Z')2

Expanding the Coulombic potential in a Fourier series, and substituting HIf into

Fermi's Golden Rule gives the scattering rate of a carrier in subband i. Integrating

over all the states of the second carrier (given by kj) and introducing Fermi-Dirac

distribution functions to account for state occupancy, we find

w = 21r1i~;1r€)2!!! lA;jf;?t)1
2

/i(kj) [1 - h(kf)] [1 - /g(kg)]

x l5(kf + kg - ki - kj) l5(E} + E; - Ef - EJ) dkg dki dkj• (3.17)

where the energies Et refer to the total energy of the corresponding carrier, i.e.

subband minimum energy plus kinetic energy. Aijfg is a form factor and a function

of qt = Iki - kfl:

(3.18)

The delta functions express the conservation of momentum and energy in the

scattering event. We can see that carrier-carrier scattering will be largest for small

exchanged wavevectors. Assuming parabolic subbands with Et = E + 11?k2 /2rn*, we-

find:

(3.19)
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Figure 3-4: Conservation of momentum in e-e scattering.

with Pj,f,g(kj, kf, kg) representing the probability functions. This equation is no

longer valid for the non-parabolic valence band subbands in a quantum well.

It is useful to introduce two new variables, the relative wavevectors

k..-k.-k.1,) -) 1" (3.20)

(3.21)

The energy conserving delta function then allows reduction of this integral to:

(3.22)

and 0 is the angle between kij and kfg, as illustrated in figure (3-4). Although

(3.22) looks simple, the actual computation is rather time-consuming and resource-

intensive. Certain simplifications, like ignoring final-state blocking, are common. This

is a fair approximation for low carrier densities or high electron temperatures.



62CHAPTER 3. PHONON-CARRIER AND CARRIER-CARRIER SCATTERING

At higher electron densities, the interaction can no longer be described as solely

between two isolated carriers. The reaction of other carriers to the Coulombic poten-

tial will effectively "screen" the disturbing field, thereby reducing the perturbation.

The probability of scattering will decrease as compared to the non-screened case.

One of the simplest models for screening considers only the carriers within the

same subband as the initial carrier state. It replaces [32] the dielectric constant €s

with one which is dependent upon the relative wave vector qt:

(3.23)

with the polarization factor

(3.24)

kF is the Fermi wave vector for subband i.

Equation (3.22) gives the carrier-carrier scattering rate for a particular carrier

energy i, averaged over another initial carrier distribution j. In order to find ~

scattering rate for the whole subband i, we have to average out over the Fermi-Dirac

distribution of carriers in the initial state.

(3.25)

with Ci the kinetic energy associated with ki. The denominator is equal to

N(Jr1i2 Im*, and assuming a parabolic subband, we obtain:

(3.26)

In figure (3-5) the temperature dependence of various inter- and intrasubband

electron-electron scattering rates is shown. The "intrasubband" carrier scattering

rate increases with temperature, as state blocking becomes less important. The rise

in the number of easily accessible final states results in a higher scattering rate.
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Figure 3-5: Intrasubband and intersubband electron-electron scattering rates between
the~wo lowest subbands of a 100 A AI.3Ga.7As/GaAs quantum well. Both subbands
have a population density of 1010cm-2• "Intersubband" processes are indicated with a
dotted line, "intrasubband" processes with a dashed line.

For intersubband scattering mechanisms this is less evident. Overall, intersubband

e-e scattering can be considered to be nearly temperature insensitive. The 22-21

and 21-11 transitions are "forbidden" in this single quantum well, because their form

facto'tvanishes [30]. The rate indicated in the figure is a numerical error. On the other

hand, intersubband scattering is approximately proportional to the upper subband

population at higher temperatures (figure (3-6)) when ignoring final state blocking.

Inclusion of a significant population density in the final subband could lead to final

state blocking being important, and hence give rise to a decrease in the scattering

rate.

Figure (3-7) shows the dependence of e-e intersubband scattering on the intersub-

band separation. The different energy separations were obtained by varying the well

width. The scattering time is.very nearly inversely proportional to the intersubband

energy separation. However, the relation becomes more complex if the two levels con-

sidered are close to anti-crossing. The overlap between the wavefunctions of initial
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Figure 3-6: Intersubband electron-electron scattering rates between the two lowest
subbands of a 100 A Al.3Ga.7As/GaAs quantum well, as Q. function of the upper
sub band population.
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Figure 3-7: Intersubband electron-electron scattering rates between the two lowest
subbands in Al.3Ga.7As/GaAs quantum wells of varying width, as a function of the
sub band energy separation. Both subbands have a population density of lOlOcm-2.
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and final states will sensitively depend on their energy difference.

We can summarize the above as:

1 N
- ex --.
T D.E21

65

(3.27)

This empirical relation can be used as a rough guideline in the design of quantum

well structures where carrier-carrier scattering plays an important role.
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3.3 Electron Temperature in an Optically Pumped

Device

The intense optical pumping in an interband pumped device dumps a lot of power

into the device. Cooling the device down by mounting it on a cold finger reduces

the heating, especially of the lattice (phonons). However, as electrons are generated

several tens of meV above the band edge in some of the subbands, the excess kinetic

energy of the electrons will cause the electron gas in each subband to heat up. The

electron temperature can be considerably higher than the lattice temperature.

Carrier heating has been an active research topic for the past several years. Usu-

ally, two main subjects are addressed, thermalization and the energy loss rate of a

thermalized carrier gas to the lattice. Researchers can use either band-to-band lumi-

nescence (most in undoped samples) or pump-and-probe techniques to measure the

carrier energy distribution. Both pulsed and steady state experiments are important

to understand the full picture. Once the electron or hole gas is thermalized, the

high energy tail of the thermalized distribution can be used to deduce the carrier

temperature.

The relaxation of carriers takes place through several different mechanisms. As-

suming negligible carrier recombination, for low excess energy excitation the dominant

thermalization mechanism is carrier-carrier scattering. Most carriers do not acquire

enough energy to emit LO phonons. Experiments using high-energy excess have in-

dicated relaxation processes where inter-valley scattering and sequential LO phonon

emission play an important role.

Thermalization of the newly generated carriers by intrasubband scattering takes

place within 300 fs to one ps for electrons [33] and less than 100 fs for holes [34]. Actual

thermalization times depend on the carrier density and excess energy. For holes, the

kinetic energy is never more than a couple of meV, and LO phonon scattering rarely

comes into play. For electrons however, the excitation energy can come close to or
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exceed the La phonon energy. This can lead to accelerated inter- and intrasubband

scattering due to interactions with La phonons.
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Figure 3-8: (a) Energy loss rates for holes and electrons for a MQW structure. At
the same temperature, hole ELR's are one order of magnitude higher than electron
ELR's [35]. (b) Schematic representation of the thermalization process after optical
excitation [36].

The therm-alized distribution then exchanges energy with the lattice (La and LA

phonons) and continues to cool down. The involved time constants range from tens

(for holes) to hundreds of picoseconds (for electrons). In figure (3-8) we can see that

the energy loss rates for electrons are about one order of magnitude smaller than for

holes.

A typical experimental dependence of the electron temperature Te on the opti-

cal pump intensity is shown in figure (3-9). Generally, the electron temperature in

a subband will be in the range 20-100 K for most pump intensities. In the pro-

posed quantum well structure, electron temperatures will probably be different in

each conduction subband. This is due to the variations in the excess energy of the
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Figure 3-9: Te versus excitation intensity for bulk GaAs at Epump==2.41 e V,
llattice==2K [37].

photogenerated electrons, as well as the unidirectional flow of electrons from the upper

laser level to the collection (depopulation) level. In the simulations, this difference is

not taken into account. Instead, the temperature of all conduction and valence band

levels is assumed to be equal. This assumption is justified because intrasubband e-e

scattering, including "intersubband" e-e scattering with mere energy exchange, oc-

curs on a time scale of 100 fs, as indicated in figure (3-5). Energy exchange between

subbands is faster than intersubband particle exchange, which leads to an almost

uniform temperature for all involved subbands. The calculations are then carried out

for a set of temperatures between 20-100 K.



Chapter 4

Design and Simulation

4.1 Three-Level System

The simplest design is the "three-level" structure, illustrated in figure (4-1). Electrons

are optically pumped from V3 into the upper conduction band level (C3)' In order to

ensure an efficient use of the pumping power, we will assume surface pumping. This

means that the incident pump beam propagates along the QW growth axis, and the

electric field is polarized in the plane of the well (TE polarization). The electrons can

escape C3 by either electron-electron (e-e) scattering down to C2, LO-phonon scattering

to CI or emission of a photon nW32. The transition C3 -+ C2 is the target intersubband

transition. The difference in energy between the lower intersubband laser level C2 and

CI is slightly greater than the LO phonon activation energy nWLO' This ensures a rapid

LO-phonon-assisted depopulation of C2, which is crucial in achieving a population

inversion between the two far-infrared laser levels.

Unfortunately, in this design it is not possible to selectively pump C3. In order

to remove the optically generated holes from valence subband level V3, the valence

subband levels V2 and VI need to have a lower or similar hole energy. This means that

inevitably electrons will be optically excited from V2 and VI into C2 and CI. Electrons

and holes will gather in CI and VI, respectively. If the carrier density in CI and VI

69
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Figure 4-1: Energy levels and transitions in a three-level system.
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becomes high enough, the lasing threshold for the interband transition Cl -+ Vl is

reached. Depopulation of the bottom levels of the valence and conduction bands

by stimulated emission will then keep the population densities of both levels at a

fixed value. The "depopulation laser" is important for the prevention of a buildup

of carriers in the bottom levels, which causes state blocking of the depopulation of

C2 and an increased free-carrier absorption at THz frequencies. The interband laser

is also the main "circulation pump", returning the optically excited electrons in the

conduction band to the valence band.

In the valence band the heavy hole subbands are most important in hole trans-

port. The HH ground states are the lowest in energy and will contain most holes

after thermalization of the photogenerated carriers. In practice the HH ground states

in the narrow wells are nearly lined up with the first excited HH state in the wide

well. The fast scattering between these lined up subbands combined with an efficient

h-h scattering from the excited state into the ground state in the wide well, ensures

that most holes are concentrated in Vl. In the wide well, the LH ground state is very

close to the first excited HH state, and can playa role in hole transport [38]. This

means that the LH bands will playa small role in the interwell electron transport, as

interwell scattering involving these higher energy states is considerably slower thalla.

scattering between the ground valence subbands, except in the wide well. However,

their contribution in photogeneration is taken into account for every conduction sub-

band.

The steady state subband populations are calculated using a rate equation analy-

sis. Below the threshold for the interband depopulation laser, the rate equations for

this "three-level" system are given by:

dnc3 ( 1 1 )-- = Gc3 - -- + -- nc3,
dt Tc3el Tc3c2

dna 1 1
-- = Gc2 + --nc3- --nc2,

dt Tc3c2 Tc2el

dnc1 1 1
-- = Gel - Rel + --nc3+ --nc2.

dt Tc3cl Tc2c1

(4.1)

(4.2)

(4.3)
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For the valence band, similar equations apply. Above the interband lasing thresh-

old, ncl and nvl are clamped at the interband laser threshold population density. Gi

and Ri refer to generation and recombination rates per unit area. The subband gener-

ation rate Gi is a function of the carrier density, carrier temperature, and the density

of states in the involved subbands. Its dependence on population density and temper-

ature is through the Fermi level energy (see equation (2.99)), which makes this set of

equations highly nonlinear. The generation terms Gi include the contributions of all

subbands participating in the photogeneration into subband i. For example, Gc2 rep-

resents the transitions from all valence subbands (HH and LH) in all three wells into

subband C2. We assume very fast (less than 1 ps) intrawell intersubband scattering

in the valence band, so that carriers generated in the excited and LH subbands relax

into the HH ground state before participating in interwell scattering. Except in the

lowest energy subband, we can neglect the interband (spontaneous) recombination

terms R, as LO phonon and e-e scattering are much faster than radiative interband

recombination (rv 1 ns).

In steady state all carrier densities are constant, so ~ = O. Recombination equals

generation in either band:

(4.4)

where 1/ Rcl = T:rvl ~ 1 ns below the interband lasing threshold and decreases

rapidly above the the threshold to keep ncl constant.

Population inversion in steady state is found to be:

G tot (1 TC2cl) Gn3 - n2 = c3 Tc3 - -- - c2Tc2cll
Tc3c2

with

1 1 1
"t;;i = -- + --.
Tc3 Tc3c2 Tc3cl

(4.5)

(4.6)

This equation is easy to interpret if we keep in mind that in a system with a

generation rate G and a carrier lifetime T, the steady state population density is
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n = G7. In order to obtain a population inversion, it is not sufficient that C2 is

depopulated faster than C3' The depopulation of C2 has to be fast enough also to

get rid of the carriers optically excited into C2 itself. Cl and the valence band levels

influence the generation terms. Electron and hole statistics and transport in these

levels will determine carrier generation and injection into C3 and C2.

The total spontaneous emission power for the intersubband transition C3 -? C2 is

given by

1i G tot
1 - W32nc3 c37c3

em - spon = 1i W32 spon'
732 732

(4.7)

7~3t represents two major intersubband scattering processes for C3, as seen in equa-

tion (4.6) .. Scattering into C2 is dominated by e-e scattering, as the energy separation

between the two levels does not allow for LO phonon scattering. But for the C3 -? Cl

transition, LO phonon emission is allowed. This LO phonon channel can make it very

difficult to achieve a substantial population inversion. Therefore, the suppression of

the C3 - Cl LO phonon transition is a major design challenge. Matters are complicated

further by the demand that the C3 -? C2 transition must have a sizable dipole moment,

in order to have an efficient far-infrared emission. A strong overlap between C3 and

C2, combined with an overlap between C2 and Cl for efficient LO phonon depopulation

of C2, will result in a fast LO phonon depopulation of C3. In the three-level scheme, a

compromise has to be found between the strength of the intersubband laser transition

and the efficiency of the lower intersubband laser level depopulation.

For a single module, we can find the THz spontaneous emission efficiency by taking

the ratio of the spontaneous emission and the absorbed incident pump power Ip in one

module. The generation rate Gci can be expressed as the product of an interaction

cross-section O"ci and the pump photon flux nphc/n, or:

(4.8)



74 CHAPTER 4. DESIGN AND SIMULATION

where 1iwp is the pump photon energy. This enables us to find for the spontaneous

emission efficiency:

(4.9)

This efficiency is the ratio of emitted THz power over the absorbed pump power

per module. It is important to optimize the absorption efficiency by using many

modules, so that the incident power would be nearly completely absorbed, and the

total power output/input efficiency is close to the prediction of equation (4.9).

The emission efficiency depends critically on the ratio of the fastest non-radiative

(La) scattering time to the spontaneous emission lifetime. It is therefore very im-

portant to minimize the La phonon scattering channels depopulating the upper laser

level. Another important parameter is the pump selectivity ac3/(acl + ac2 + ac3),

which is close to 1/3 in the three-level design. The calculated emission efficiency for

the designed three-level structure is shown in figure (4-12), and is close to 10-7. The

dependence on punlp intensity and temperature is discussed later.

4.2 Four-Level System

The main drawback of the simple three-level design is that the required strong cou-

pling between the two radiative subband levels inevitably leads to a fast La-phonon

mediated depopulation of the upper level. In a four-level design we attempt to make

the lower laser level considerably more susceptible to La-phonon depopulation by

increasing the overlap with level 1. By bringing the second energy level in the first

well close to anticrossing with the lower laser level, this level is partly delocalized.

Fast LO-phonon scattering depopulates the lower intersubband laser level. However,

there are several disadvantages to this scheme. The intersubband dipole moment is

now split between two heavily mixed bands (4-3 and 4-2), which means the avail-

able gain will be split between two transitions as well. This decreases the maximum
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available gain, and increases the intersubband laser threshold population inversion.

Also, we assume that the electrons in the two mixed bands can tunnel coherently

into the wide well, even though the barrier between the wide well and the adjacent

well is fairly thick and could cause loss of coherence. In that case the electrons get

trapped behind the barrier and have to tunnel through in order to scatter down,

greatly reducing scattering times and increasing the population density in the lower

FIR laser levels. However, in this non-coherent case the loss in oscillator strength is

also reduced because of the effective localization of the electron wavefunctions in the

two narrow wells.

Similarly as for the three-level case, we can write the steady state rate equations:

dnc4 ( 1 1 1)-- = Gc4 - -- + -- + -- nc4,
dt Tc4cl Tc4c2 Tc4c3

dnc3 1 1. ( 1 1)-- = Gc3 + --nc4 + --nc2 - -- + -- nc3,
, dt Tc4c3 Tc2c3' Tc3cl Tc3c2

dnc2 1 1 (1 1)-- = Gc2 + --nc4 + --nc3 - -- + -- nc2,
dt Tc4c2 Tc3c2 . Tc2cl Tc2c3

dncl 1 1 1
-d = Gel - Rel + --nc4 + --nc3 + --nc2,

t Tc4cl Tc3cl Tc2cl

and

Rcl = Gel + Gc2 + Gc3 + Gc4.

(4.10)

(4.11)

(4.12)

(4.13) ..

(4.14)

Again, 1/ Rcl = T:fvl ~ 1 ns below the interband lasing threshold, and decreases

rapidly above the threshold to keep nc1 at its threshold value. Here we neglected the

recombination terms in all except the lowest subbands, as in the three-level case.

In figure (4-3) the dependence of the interband spontaneous lifetime on subband

population density and electron temperature is illustrated. The lifetime was deter-

mined by taking the ratio of the spontaneous recombination rate and the population

density. The quasi-linear dependence of the spontaneous lifetime on temperature can

easily be seen if we assume a Boltzmann distribution of the carriers in the subband,
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Figure 4-2: Energy levels and transitions in a four-level system. The first excited
subband in the wide well and the lower laser level are heavily coupled.
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Figure 4-3: (a) Dependence of the spontaneous interband emission time r:fvl on the
population density in the laser levels far various electron temperatures. (b) Depen-
dence of the spontaneous interband emission time r:fvl on the electron temperature
for a population density of 2 x 1011 cm-2 and 3 x 1011 cm-2•

and a constant density of states in the valence and conduction bands. We can then

write for the population density N

/.

00 Ef-E
N= g2D e kBT dE,

Eo
(4.15)

with g2D the 2D density of states, Eo the band edge energy, and Ef the suhband

quasi-Fermi-energy. From this we find that exp (E f / (k BT)) rv N/ (kBT). The sponta-

neous emission rate at a certain emission energy is proportional to the joint density of

states for that energy, and to the number of electrons (in the conduction band) and

holes (in the valence band) at that energy. The density of states is assumed constant,

so we can leave it out of what follows, and for the electron and hole distribution we

use the Maxwell-Boltzmann approximation. The spontaneous emission rate Rf:

(4.16)
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where the indices.c and v refer to conduction and valence band respectively, and

the integration is over the interband transition energy in excess of the bandgap energy.

We find that

(4.17)

Radiative interband transitions conserve in-plane electron momentum. As tem-

perature rises, electrons (in the conduction band) and holes (in the valence band)

get more spread out and have fewer counterparts available to recombine with, hence

increasing the radiative recombination lifetime.

The dependence of the spontaneous interband lifetime on population density is

closely related to the above. At low densities or higher electron temperatures, the

carrier distribution function is spread out and somewhat resembles a Boltzmann dis-

tribution. Higher temperatures or lower densities will yield a longer lifetime. For

lower temperatures or higher densities, the Fermi-Dirac distribution increasingly re-

sembles a step function. In this limiting case, the spontaneous emission lifetime is

rninimal as there is no state-blocking.

The steady state expression for population inversion between subbands C3 and C4

can easily be deduced from the above equations:

The second term represents n3. The factor in brackets is a generalized generation

term, encompassing the carriers scattering into C3 from C4 (directly and via C2) and

from C2. The second factor is an effective scattering time. The denominator is an

enhancing factor for r~~t, accounting for a feedback loop when electrons scatter from

C3 to C2 and back.

Similar to the three-level case, the emission efficiency of the four-level intersubband

spontaneous transition 4-3 can be written as:

(4.19)
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Again, the output/input efficiency will be close to equation (4.19) if all the incident

power is absorbed in the active region. The calculated emission efficiency for the

designed four-level structure is shown in figure (4-12), and is close to 10-7•

4.3 Simulation

4.3.1 Computational model

The rate equations governing the subband populations and, subsequently, intersub-

band gain are highly coupled and nonlinear because the e-e and e-LO-phonon scat-

tering rates depend on the density and temperature of the electrons. There is no

analytical solution to describe the subband populations as function of the optical

pump intensity. However, a steady state simulation of the system can yield a self-

consistent solution to the problem. This means that, starting from an initial guess for

the subband populations, the band potential profiles and scattering times are calcu-

lated. Using those parameters, new subband populations are determined. However,

now these new values do not correspond to the previously calculated carrier-density.
dependent parameters, so we iterate the process until the solution converges. The

convergence l~mit is ~he.self-consistent solution.

The model incorporates the major scattering and optical transition processes ex-

pected to occur in the structure. There are two main parts in the simulation: the

calculation of the valence and conduction band structure and the semi-self-consistent

calculation of the subband populations.

The primary tool used in the design of the quantum wells is a program writ-

ten by Paul Harrison (University of Leeds) [39]. This numerical simulation program

iteratively solves Schr6dinger's equation and Poisson's equation for a series of het-

erostructures under bias. First Schr6dinger's equation is solved to determine the

bound states, and then they are populated according to the expected carrier density.

Poisson's equation is then solved to determine the effect of the accumulated charge



80 CHAPTER 4. DESIGN AND SIMULATION

VB Poisson
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Figure 4-4: Schematic overview of the different steps in the simulation of an interband
pumped intersubband THz laser.

on the shape of the potential wells. Schrodinger's equation is then re-solved with this

new potential profile. This process is repeated until the result converges.

For each valence band well, the number of subbands and their E - k dispersion

relations are calculated. This is done using the two-band k . p formalism outlined in

chapter 2.2-2.3. From the dispersion relations, we can deduce the density of states

per subband. The next step is the calculation of the optical transition strength for

the various interband transitions. This will determine the generation rate of photo-

excited carriers in each subband and the spontaneous interband radiative lifetime

In the second part of the simulation, the subband population densities are calcu-

lated. The whole calculation is repeated for several carrier temperatures. For the first

calculation, we use an initial guess for the different nc and nv• LO phonon scattering
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rates are calculated for all intraband transitions where one can reasonably expect

a LO phonon channel to open up and be important at the simulated temperature.

Electron-electron scattering is usually only important where LO phonon scattering

is not available. In the valence band, hole-hole scattering is the main means of hole

transport. Carrier-carrier and phonon scattering calculations are performed with a

program written by Paul Harrison [39]. The hole-hole scattering rates are approx-

imated by treating them as if the valence subbands were parabolic bands with the

appropriate carrier mass, neglecting the valence subband interaction. This crude

approximation is justified because only an order-of-magnitude estimate of the hole-

hole scattering rates is needed to roughly guess the hole distribution, and determine

whether the great majority of the holes will rapidly relax into VI.

For the calculation of the optical pumping rates, we assume thermalized subband

populations. Using the previously calculated optical transition strengths, generation

rates for the pump laser are found. Plugging the various generation rates and lifetimes

into the rate equations, we find new values for the subband populations. Again

assuming thermalized populations, the degree of population inversion between the

lowest subbands 1 in conduction and valence band will decide whether the lasing

threshold for the interband laser is reached (see figures (4-10) and (4-22)). If so,

the population densities in these subbands are restricted to their threshold level.

The new values for the subband populations can now be used to reiterate the above

process, obtaining more consistent values with every iteration. Provided that the

initial guesses for the subband populations are not too far off the calculated values,

the impact on the solution of Schrodinger's equation will be minimal. Therefore it is

sufficient to reiterate the rate equations.

Finally, the self-consistent population densities yield the expected gain for the

intersubband THz laser.
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Figure 4-5: Sketch of the surface pumped THz laser. A gold ridge window structure
allows the pump beam to penetrate the sample while still providing a metal waveguide
for the THz laser mode.

4.3.2 Waveguide

In a laser, an electromagnetic wave propagates through a wave guide, containing both

an active region (with net gain) and a cladding region, where losses prevail. The top

and bottom of the waveguide are covered in gold to better confine the propagating

mode. The top gold layer consists of a windowed structure with the length along the

ridge. This orientation will not leak out the desired THz mode, but still allows for

surface pumping. Details of the fabrication of such a waveguide are outlined in Bin

Xu's thesis [40].

The active region consists of a number of quantum well modules, optimized to

make an efficient use of the incident power of the pump beam and to maximize the

confinement factor. The confinement factor denotes the overlap of the propagating

mode with the active region, and is important to determine how much of the mode

is actually useful in the process of stimulated emission. A schematic sketch of the

surface pumped structure is shown in figure (4-5).
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The cladding layers consists of a semiconductor nlaterial with a bandgap larger

than the pump energy in order to avoid absorption in the cladding layer, and a dielec-

tric constant lower than in the active region to help the optical mode confinement.

The mirrors on both sides of the cavity are cleaved facets. The reflectance at one

such mirror is:

R=(ns-l)2,
ns + 1

(4.20)

with ns the refractive index of the semiconductor. For GaAs ns=3.27 and we find

R = 0.28.

4.3.3 Design Simulation

Design Parameters

One four-level module is depicted in figure (4-6). The energy levels are indicated

in table (4.1). At 4K, Eg for GaAs is 1.52 eV. The THz laser levels are separated

by 18.7 meV (4.5 THz or 67 Mm) with a transition dipole moment of 36 A. The

energy differences -between C2 or C3 and CI are higher than the La phonon resonance,

36 meV. This is necessary to prevent state blocking of the La-phonon scattering

as the lowest conduction subband has a population density equal to the interband

depopulation laser threshold density. This ensures fast La phonon depopulation of

the lower intersubband laser levels. The threshold density calculations are explained

in more detail below.

A bias voltage of 10 mV/module helps to align the levels in both conduction and

valence band. The bias is chosen to line up the valence subbands in a configuration

that will enhance h-h scattering and efficiently transport the photogenerated holes

into VI' Between each module is a 28 ML barrier, preventing interaction between

modules. Including this barrier, a module spans 139 monolayers, or 38.7 nm.

For comparison, a three-level module is shown in figure (4-7). The laser transition

is 17 meV (4.1 THz or 73.2 Mm) with a dipole moment of 36 A, and a bias voltage of
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18 mV/module is applied. This module is 121 ML (34.2 nm) wide.

Note that the radiative dipole moment for the three- and four-level system are

very similar, despitethe split-up of the four-level dipole moment due to the doublet

lower subband. In the four-level design, the symmetry properties of the involved

wavefunctions result in an enhancement of Z43 over Z42. The dipole moment con-

tributions originating from the wide well have an opposite sign for the 4-2 and 4-3

transitions, whereas the parts due to the overlap of the wavefunctions in the narrow

wells are about equal for both transitions.

The 4-3 transition features both a larger dipole moment and a slower LO phonon

depopulation than the 4-2 transition (figure (4-13». This clearly qualifies the 4-3

transition as the better candidate for THz lasing. The slower LO phonon depopulation

is mainly due to the smaller energy separation between C4 and C3, which means fewer

electrons in C4 will have sufficient energy to emit an LO phonon and scatter down to

C3 than to C2.

In order to find the total thickness of the active region, we have to take the pump

beam depletion into account. Calculation reveals that each conduction band energy

level, available for interband absorption at an energy less than the pump energy,

typically absorbs about 0.5-1% of the incident power.

The calculated absorption spectra for the conduction subbands in both the three-

and four-level system are shown in figure (4-8). The pump energy is chosen so as to

maximize photogeneration in C4, but it is kept as close to the subband edge as possible

to keep the electron temperature down. In the four-level case that is about 60 meV

above the onset energy for the C4 absorption, which is around 1600 meV (745 nm).

The incident pump field is assumed to be multimodal with a Lorentzian line-shape

envelope and a linewidth of 4 meV. There is no selectivity in the photogeneration at

this pump wavelength, and the absorption coefficient for each conduction subband

is around 2 x 103 cm-1 (0.78%/cond.subband). The total absorption coefficient is

approximately 8 x 103 em-I, close to the bulk value of rv 104 cm-1 [41]. For the three-
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Figure 4-6: Design parameters and energy levels for the four-level system. The well
and barrier widths are indicated in units of monolayers (2.825 A). A bias voltage of
J0 mV/module is applied to help align the subbands.

Subband Energy (meV)
Eel 15.774 EVl -Eg-4.587
Ee2 66.010 EV2 -Eg-13.356
Ec3 69.003 Ev3 -Eg-13.566
Ee4 87.671 EV4 -Eg-15.289

Energy Separation (meV) Dipole Moment (A)
Eel Ee2 Ee3 Eel Ee2 Ee3

Ee2 50.24 Ee2 21.81
Ec3 53.23 2.99 Ec3 24.06 83.6
Ee4 71.90 21.66 18.67 Ee4 1.46 18.49 35.72

Table 4.1: Energy levels for the module shown in figure (4-6).
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Figure 4-7: De.c;ignparameters and energy levels for the three-level system. The .well
and barrier width are indicated in units of monolayers (2.825 A). A bias voltage of
18 m V/module is applied to help align the subbands.

Subband Energy (meV)
Eel 25.794 EVl - Eg-9.093
Ee2 62.657 EV2 - Eg-9.850
Ec3 79.675 EV3 - Eg-12.686

Energy Separation (meV)
Eel Ee2

Ee2 36.86
Ec3 53.88 17.02

Dipole Moment (A)
Eel Ee2

Ee2 11.888
Ee3 6.211 36.452

Table 4.2: Energy levels for the module shown in figure (4-7).
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Figure 4-8: (a) Absorption as a function of the incident photon energy for each of
the, considered subban,ds .in the conduction. band. Each absorption curve consists of
contributions from the various valence subbands. (a) refers to the three-level system,
(b) 'shows the absorption for the four-level case. The difference in absorption is due
to the smaller module length in the three-level case, resulting in a higher 3D density
of states.
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Figure 4-9: Pump beam intensity in the active region for both 3- and 4- -level designs.
The beam is reflected at the point where its intensity is 50 % of its original value.

level structure, the active layer thickness is 1050 nm, corresponding to 30 modules.

This allows us to make a rough estimate of the maximum number of modules. The

incident power is absorbed in the modules and decays exponentially with a penetration

depth of 1.25 j.lm. If we allow the pump beam to reflect off the back mirror when its

intensity drops-to 50%, we find for the width of the active layer:

w = -In(0.5) /8000 cm = 866 nm,

corresponding to 22 modules. For the three-level structure the absorption is close

to 2.2 x 103 cm-1 per conduction subband. The active layer thickness is 1050 nm,

corresponding to 30 modules. An approximate transverse intensity profile for the

pump beam is shown in figure (4-9).

Typical device surface area dimensions are of the order of 500j.lm x 20j.lm. Simula-

tions are done for a range of pump powers going from 50 mW to 50 W concentrated

on the surface of the device. This corresponds to power densities of 500 W/ cm2 to

500 kW/cm2•

For the calculation of the threshold population density of the interband "depopu-

lation" laser transition, we take the mirror loss to be 23 cm-1, equal to the mirror loss
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Figure 4-10: Temperature dependence of the threshold population density for the in-
terband laser in the (a) three- and (b) four-level systems. Indicated are threshold
densities for a round-trip cavity loss of 20, 50 and 100 em-I.

in a 500 J.Lm cavity, am = t In R. Taking into account various other loss mechanisms,

mode scattering, mode leakage and absorption in the gold layers, the cavity loss is

estimated to be around 50 cm-1.

The population density of the valence subband and conduction subband is taken to

be equal. Because these subbands are the lowest in energy in the module, the majority

of the carriers gathers in these levels, scattering down from the other subbands. The

carrier concentration in these wells is limited by the threshold carrier density for the

interband laser. Assuming thermalized carrier populations, the threshold nc1 and nvl

can be found by using the gain equation (2.99). A plot of the threshold population

density versus carrier temperature for different values for the threshold gain is shown

in figure (4-10). We see that at a carrier temperature of 50 K, threshold densities in

the lowest valence and conduction subbands are close to 2 x 1011cm-2, corresponding

to a quasi-Fermi level of about 7 meV above the conduction subband edge. In order

to avoid state blocking for theLO phonon scattering from the lower intersubband

laser level to the Cl subband, the intersubband spacing between these levels has to be
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Figure 4-11: Electron-electron scattering rates vs. carrier density for the four-level
system. The scattering rates vary almost linearly with the population density. The
electron temperature is 5OK.

over 43 meV.

Electron-electron scattering rates in the four-level system are shown in figure (4-.

11). Again we see that the e-e scattering rates vary nearly linearly with the subband .

population density. Remarkable is the large difference between the 3-2 and 2-3 scat-:'

tering rates, though both transitions have very similar form factors. However, the fast

22-33 and 22-23 scattering processes are partially suppressed because of energy con-

servation for electrons close to the C2 band edge. In the expected range of population

densities for C2 and C3, i.e. 108 - 109cm-2, the e-e scattering time is far longer than

the LO phonon scattering time (rv 0.6 ps) and as such the depopulation of C2 and

C3 is completely governed by LO phonon scattering. Similarly, LO phonon scattering

from C4 to Cl (~ 40 ps) is faster than e-e scattering below nc4 ~ 101Ocm-2, so even

at very high generation levels e-e scattering only plays a marginal role. In fact,. at

electron temperatures exceeding 40K the parasitic 4-2 and 4-3 LO phonon channels
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Figure 4-12: Emission efficiency for the intersubband THz transition in the (a)three-
and (b)four-Ievel systems, for varying pump intensities.

will start to dominate C4 depopulation.

The lack of impurity scattering in the undoped structure promises a narrow spon-

taneous .intersubband linewidth. In the simulations, a linewidth of 2 meV was used.

Results

A plot of the THz emission efficiency in both designs is shown in figure (4-12). At

low temperatures, e-e scattering is the dominant depopulation mechanism in the

upper intersubband laser level. The lower population densities generated by the

lower-intensity. pump beams have a longer e-e scattering time, therefore electrons

are more likely to stay in the upper subband and make a radiative transition to C3,

increasing the emission efficiency. At high temperatures, LO phonon scattering is the

main depopulation process. As LO phonon scattering times do not depend on the

population density of the initial subband, rlot ~ rio (T) for all pump intensities at

high temperatures.
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In the 3-level system the LO phonon scattering channel from the upper THz laser

level to the Cl state is more pronounced than in the 4-level design. This results in

a lower electron population in the upper intrasubband laser level, and a lower gain.

As the temperature increases, more electrons in the high energy tail of the Fermi

distribution of the upper CB level will have sufficient energy to emit an LO phonon

and scatter to the lower laser level (figure (4-13)). The shortened lifetime in the upper

state gives rise to a smaller population inversion, and hence a decrease in gain (figures

(4-15), (4-17»). Eventually, the LO phonon scattering between the intersubband laser

levels destroys the population inversion and the gain becomes negative.

The intersubband gain in the three-level design is far lower than in the four-

level design (figure (4-18)). This is due to the insufficient difference in the (LO-

phonon-mediated) depopulation of the upper and lower THz laser levels (figure (4-

14)). Already at 50K the parasitic LO phonon channel 3-2 depopulates the upper

state. The 2-1 scattering rate is too low to maintain the population inversion, but is

difficult to increase without dramatically increasing the 3-1 LO phonon scattering rate

in the pr~cess (figure (4-16)). In the four-level system the fast depopulation of the

lower laser level virtually guarantees a population inversion, even as the parasitic LO

phonon channel becomes more prominent with increasing temperature. Note that the

short LO phonon scattering times for C3 and C2 to Cl assume a coherent electron wave

function in C3 and C2. This means that the thick barrier between the well containing

Cl and the other wells does not induce significant scattering and localization of C2 and

C3.

In figure (4-19) the intersubband gain is plotted against the pump intensity for

the four-level scheme. The approximate square-root dependence of the gain on the

pump beam intensity is the result of the quasi-linear dependence of e-e scattering

rates on population density. The population density in the upper THz laser level can

be written as nc4 = Gc4Tc4. The scattering time Tc4 at low temperatures is mainly

due to e-e scattering, and hence inversely proportional to nc4. We conclude that
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In the three-level system (figure (4-20)) the LO phonon depopulation lifetime from

the lower THz laser level to CI is on the order of lOps, and from C3to CI 32 ps as

seen in figure (4-14). For the higher generation rates (and hence higher population

densities), e-e scattering rates between the aforementioned levels can easily exceed

the LO phonon scattering rates. At low temperatures, the e-e scattering time between

the THz laser levels is the main depopulation mechanism for C3. The small dip in the

gain curve indicates where the C3- Cl LO phonon scattering rate and the C3- C2e-e

scattering rate become equal. For higher generation rates, the gain remains positive

because the C2- Cl electron-electron scattering rate keeps pace with the C3- C2rate

(figure (4-21)).

Finally, it is interesting to ask the question whether the pump threshold level

is lower for the intersubband or the interband laser. If the threshold is lower for

the interband laser, then nc1 is clamped and a red light laser will coexist with the

intersubband THz laser. If it is the other way around, then nc1 is not clamped and a

red light LED will accompany the intersubband THz laser.

In figure (4-22) the threshold pump intensities for the interband and intersubband

lasers in the four-level system are indicated for varying temperatures. The intersub-

band threshold displays a high temperature sensitivity, reflecting the opening of a LO

phonon channel between the upper THz laser level and C2and C3. Note that the inter-

band threshold pump intensity is lower than the intersubband threshold, predicting

an interband laser at pump power levels which allow intersubband lasing.

4.3.4 Simulation Conclusion

In the design of an optically pumped intersubband THz laser, there are many pa-

rameters to keep in mind. The proposed designs consist generally of three levels, two

levels involved in the actual THz laser and one "collector" level. The lower THz laser

level is depopulated by LO phonon scattering. In this design, as in any laser design,
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Figure 4-13: LOphonon scattering times vs. temperature at a pump power'dens'ity of
5000 W/ cm2 for the 4. -level system.
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a key issue is how to maximize carrier lifetime in the upper laser level while still

depopulating the lower laser level as fast as possible. The three-level design tries to

spatially separate the upper THz laser level and Cl, while the four-level design spa-

tially extends the lower THz laser level to ensure faster depopulation and still keeps

the aforementioned spatial separation.

A self-consistent calculation using the rate-equations governing the subband popu-

lations was performed, including carrier-carrier scattering, LO phonon scattering and

radiative recombination and generation. The simulation of the proposed three- and

four-level systems clearly indicates that the four-level system is the most promising.

The fast depopulation of the lower rHz laser levels is the key to the superior simu-

lation results as compared to the three-level design. It is not possible to selectively

pump the upper THz laser level, which makes it even more important to evacuate the

lower THz laser level as efficiently as possible. The calculated gain (20 cm-1 at 50K)

at pump beam intensities of 5-10 kW/cm2 can suffice to obtain THz lasing action,

provided that the cavity losses can be kept in check. The performance of the THz

laser is predicted to be very dependent on electron temperature, mainly due to the

opening of a parasitic LO-phonon channel between the THz laser levels. Interband

lasing seems to be easier to obtain, as the calculated threshold pump intensity is lower

than for the intersubband case.

The logical next step is. manufacturing a device and building an experimental

setup. The simulated results suggest that a 0.5 W pump source focused on a device

with area 20x500 J.Lm2 (corresponding to 5 kW/cm2) could be sufficient to obtain THz

lasing action. Doing this will enable us to check the model used and provide insight

into several topics, such as electron temperature and cavity losses for interband and

intersubband laser. We will be able to see how severe the free carrier absorption is,

caused by the accumulated carriers in the lowest subband in each module.
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Figure 4-19: Intersubband gain 4-9 as a function of pump intensity and various elec-
tron temperatures, for the four-level system. The intersubband spontaneous emission
linewidth is 2 me V.
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Figure 4-21: Intersubband scattering times as a function of pump intensity for an
electron temperature of 20 K, in the three-level system.
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Appendix A

Appendix: Matlab Scripts and.

Functions

A.I Finite Difference Method in the 2-Band Model

The method used to solve the coupled Hamiltonian equations in the two-band model

is based on the shooting method as described by Paul Harrison for the simple case of

the conduction band. [39]

As a starting point, we consider the general one-dimensional form of the Hamilto-

nian equations (see equations (2.53)-(2.56)). In order to allow for a variable effective

mass, we rewrite these equations as:

[
Hhh + V W ] [Fhh] _ E(k) [ Fhh ]

wt Hlh + V Flh - Flh'

with

101

(A.l)

(A.2)

(A.3)

(A.4)
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The potential V(z) describes the valence band edge of the quantum well structure

(in terms of hole energy), and Fhh and Flh represent the hole wavefunction while

under the effective mass and envelope function approximations.

We can rewrite the effective mass equations as :

[
Hhh + V (z) - E W ] [ Fhh ]

WI H'h + V(z) - E F'h = O.
(A.5)

The problem now is to find a numerical method for the solution of both the energy

eigenvalues E and the eigenfunctions F for any V(z).

For this purpose, we can expand the first and second derivatives in terms of finite

differences. e can approximate the first derivative of a function j (z) as :

dj ~j j(z + 8z) - j(z - 8z),
dz ~ ~z = 28z .

The second derivative follows as:

d2f ~ ¥.Iz+oz - ¥.I.-JZ
dz2 28z'

j(z + 28z) - 2j(z) + j(z - 28z)
(28z)2

(i\.6)

(A.7)

(A.8)

As 8z is an, as yet, undefined small step along the z-axis, and as it only appears in

equation (A.8) with the factor 2, then we can simplify this expression by substituting

8z for 28z, Le. :

d2 j j(z + 8z) - 2j(z) + j(z - 8z) (A.9)
dz2 ~ (8z)2 .

Let's take a closer look at the term H& - :z (')'1 + 2')'2) a:;h in the light hole

Hamiltonian, and try to express this in terms of finite differences. We can rewrite

this term as:

(A.I0)
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(A.ll)

However, shooting equations derived from this point by expanding the derivatives

in terms of finite differences have led to significant computational inaccuracies in

systems with a large discontinuous change in the effective mass (the Luttinger pa-

rameters), as occurs in the GaAs/ AIGaAs system. The source of the inaccuracies is

thought to arise from the 8-function nature of the effective-mass derivative.

A more robust scheme can be derived by expanding Hl~ starting from the left-hand

derivative :

HO ~ (-rl + 'Y2)~LHZ - (-rl + 'Y2)~L_6Z
lh "J 28z .

Recalling the centered finite difference expansion for the first derivative, we can

write the numerator of the above expression as :

(A.12)

or

(28z)2 H,~ - (')'1 + 2')'2)lz+oz (Flh(Z + 28z)

-Flh(Z)) - .(')'1 + 2')'2)lz-oz (Flh(Z) - Flh(Z - 28z)). (A.13)

Making the transformation28z ~ 8z then yields:

H8. = (O~)2 [( 'Yl - 2'Y2)+ .Flh(Z + oz) - [(-rl - 2'Y2)+ + (-rl - 2'Y2)-j.Flh (z)

+(')'1 - 2')'2)-Flh(Z - 8z)] , (A.14)

with

(')'1 + 2')'2)+= (')'1 + 2')'2)lz+oz/2'

(')'1 + 2')'2)- = (')'1 + 2')'2)Iz-oz/2 ,

(')'1 - 2')'2)+= (')'1 - 2')'2)Iz+oz/2 ,

(A.15)

(A.16)

(A.17)
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(A.18)

We now substitute the finite difference expressions for 8/ 8z, H& and a similar ex-

pression for its heavy-hole counterpart into the effective mass equations, and obtain:

o =

(A.19)

The Luttinger parameters, can be found at the intermediary points z I.8z/2 by

taking the mean of the two neighboring points at z and z I.8z.

We see that we draw up a set of finite difference equations if we map the potential

V(z) and the Luttinger parameters, to a grid along the z-axis. We will now try

to solve these coupled equations for the eigenenergies E and the eigenfunctions F.

Assuming an equidistant grid Zi, with a grid step 8z, we can substitute Z ~ Zi,

Z - 8Z ~ Zi-l and Z + 8z ~ Zi+ 1.

If we assume a given energy E, we still have 6 unknown parameters in the finite

difference equations. However, we can rewrite these equations so that we are able to

find .Flh(Zi+l) and Fhh(Zi+l) from their values at the two previous nodes, .Flh(Zi-l),

.Flh(Z-), Fhh(Zi-d, Fhh(Zi).
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( ) [
('Yl - 2'Y2)- 'Y~ 2(~ )2]

- Fhh Zi-l - ( 2 )+ + 3 ( 2 )+( 2)+ kt uZ'Yl - 'Y2 'Yl + 'Y2 'Yl - 'Y2

R (z. ) [ ('Yl + 2'Y2)- 'Y~ 2(6 )2]+ lh z-1 (+ 2 )+ + 3 ( 2 )+( 2)+ kt Z'Yl 'Y2 'Yl + 'Y2 'Yl - 'Y2
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These equations imply that, if the wavefunctions are known at the two points

(z - 8z) and z, then the value of the wavefunctions at (z + 8z) can be determined

for any energy E. This iterative equation forms the basis of a standard method of

solving equations numerically, and is known as the shooting method.

The equations can be rewritten in a matrix formalism, which allows for an easy

implementation in a MATLAB program code. If we use use a coefficient notation for

equations (A.21) and (A.22), i.e.

(A.23)

(A.24)

the effective mass equations can be written in a recursive "transfer" matrix ex-

pression:

0 0 1 0 .Fhh(Zi-d Fhh(Zi)

0 0 0 1 Flh(Zi-d Flh(Zi)
(A.25)

al a2 a3 a4 Fhh(Zi) Fhh(Zi+l)

bl b2 b3 b4 Flh(Zi) Flh(Zi+l)

Provided that we have initial values for the wave functions at the first and second

node, we can determine the wavefunction values at any node by an iterative procedure.
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By multiplying matrices, it is possible to obtain an expression for the wavefunction

values at any node in function of the initial values:

Fhh(Zn)

Flh(Zn)

Fhh(Zn+l)

Flh (Zn+l)

Fhh(ZO)

Flh (zo)

Fhh(zd

Flh (Zl)

(A.26)

Now the questions remain what a suitable choice is for those initial values, and

how to determine whether an e:nergy isan eigenenergy or not.

A.2 Initial Conditions and Practical Implementa-

tion.
. ._ I

Using four known values of the waveftinction components at Z and (z + 8z), a fifth

and sixth value can be prediCted.. Using 'thIs new point together with the known

wavefunction components at z, we can subsequently find the wavefunctions at (z +
28z), and so on. Hence the complete wave function solution can be found for any

particular energy. The solutions for steady states have wavefunctions which satisfy

the standard boundary conditions, i.e. :

8
F ~ 0 and 8z F ~ 0, as Z ~ :1:00 (A.27)

As argued by Harrison [39], in the one-band case of the conduction band only two

initial values are required, and a suitable choice is "0" for the first node, and "1" for

the second point. The "I" can be any arbitrary number, as changing it will only scale

the wavefunction (the finite difference equations are linear) and this does not affect

the eigenenergy. The valence band case is a bit more complicated, as now there are

two coupled wavefunction components, and one cannot be scaled independently from

the other. Therefore we choose the initial values to be "0" and "I" for one band, and
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"0" and "c" for the other band. Here c is a parameter, which is to be determined

when solving the coupled equations.

The energy is varied systematically until both the wavefunction components switch

from diverging to :1:00 to =Foo, satisfying the boundary conditions. However, an

additional problem is that the extra parameter c complicates matters. On top of

that, in many cases one of the wavefunction components exhibit very sharp sign

switches, often a component switches signs twice within one energy search step. In

order to work around these problems, we minimize the amplitude of the wavefunction

at the end of the grid. The function to be minimized can be found by generating the

transfer matrix which propagates the wavefunction at the first two nodes to the last

two notes:

Fhh(ZN-l) mn m12 m13 m14 0

Flh(ZN-d m21 m22 m23 m24 0
(A.28)

Fhh(ZN) m31 m32 m33 m34 1

Flh(ZN) m41 m42 m'43 m44 c

We then minimize the wavefunction amplitude at the final node :

(A.29)

We then look for a minimum in cmin(E). A solution for the Hamiltonian equa-

tions is found when this minimum wavefunction amplitude is smaller than a certain

threshold value. This guarantees a converging wavefunction. The wavefunction can

be found by substituting Cmin for c in equation (A.26).

The wavefunctions obtained from this numerical method are not normalized. This

can easily be achieved with the following transformation

(A.30)



A.3. CODE 109

A.3 Code

lutt.m
This function looks for the file containing the Al content x. r, as generated by

Paul Harrison's code. It then calculates and saves the three Luttinger parameters

for the structure specified in x. r, and saves them as ascii. r-files in g1. r, g2. rand

g3.r. The effective mass data was taken from Adachi [26].

function lutt;
XCreate files containing Luttinger parameters gl, g2, g3 vs. z
ltInput is x.r

u-load( 'x.r');
z-xr(:,l);
x-u(: ,2)';

me-9.1e-31;
hbar-1. OSe-34;
mhh-0.SO+0.29.x;
mlh-0.087+0.063.x;
mhh110-0.85.mhh./mhh;

X Al contant in AlCaAs
X z grid
X Al content

X e mass

X heavy hole mass
X light hole mass
X hh mass along <110>

XLuttinger parameters gamma for AlCaAs
coeff-U -2 0; 1 2 0; 1 0 -2];
const-hbar-2/(2.mO) .[1./mhh ; l./mlh; 1./mhhll0];
g-coeff--1.const;
gag';

gl-[z g(: ,1)];
g2-[z g(:,2)];
g3-rz g(:,3)];
save 'g1.r' gl -ascii -double
save 'g2.r' g2 -ascii -double
save 'g3.r' g3 -ascii -double

input_de.c.k.m
Some input values for the dispersion relation calculator vbdispersion.m and the

simple band-edge calculation script finelvb.m. This allows for easier manipulation

of some key input parameters.

Xfinelvb and vbdhpersion

min_en_diff-O.OS.meV;
alimit-1eS;
kt-1eS;
Estep-0.1.meV;
Eacc-meV.1e-9;

X used to determine vhether tvo solutions are the same
X maximum for a
X kt for 'band edge' calculation
X E step for band edge calculation
X E resolution of calculated subband energies

Xvbdhpersion - search parameters

subband_ el:l_aearch-O •lS.me V;
en_abort-meV;
ktmax-1e9;
kt step-2e6 ;
number _of _cb_subbands-4;
humber _of _statesanr-1;

X energy search range
X abort search vhen E range > en_abort
X maximum calculated kt
X kt step for E-k dispersion
X • of cb subbands taken into account
X • of vb subbands taken into account

vbdispersion.m
This is the main MATLAB script file, calculating the E - k relations for all valence

subbands. The function lutt.m is run first, to calculate the Luttinger parameters



110 APPENDIX A. APPENDIX: MATLAB SCRIPTS AND FUNCTIONS

for use in the transfer matrix code. The script works as explained in the theoretical

section on finite difference calculations, searching an energy grid ranging over the

energies allowing a bound solution. First, the zone center (k = 0) subband energies

are determined by searching this energy grid and refining the energy solutions up to a

certain energy accuracy Eacc• Two plots of the valence band structure are shown, dis-

tinguishing between heavy hole and light hole components of the wavefunctions. The

wavefunction data is saved as an ascii file under the name wf_subbancLnumber.dat.

The user can specify for how many valence subbands a dispersion relation is calcu-

lated, and at what resolution, by setting the corresponding parameters in input_deck. m.

The dispersion relation is found by starting from the zone center energy, and increas-

ing k to find a new value E(k). The previous values for E(k) are then used to predict

a value which is used as an initial guess in the next k-step.

Simultaneously, the wavefunctions for the solutions are calculated and used to

find the relative interband optical transition strength between each calculated valence

subband and a user-specified number of conduction subbands. The relative transition

strength data is saved as .mat-files.

X5hooting Method
clear
lutt

global Z hbar llleV V dz N g1 g2 g3

hbar-1.0Se-34;
llleV-1.602e-22;

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ixxinxini~xfnniiiixxiX:x:xixxxxxxxXXXXXXXXXXXXXXXXXXXXXXXX
zr-load( 'z.r');
z-zr(:.2);
z-zr(:.1);
Vr-load('v.r');
V-Vr(: .2);
g1r-load( 'g1.r');
gl-g1r(: .2);
g2r-load( 'g2.r');
g2-g2r(:.2);
g3r-load( 'g3.r');
g3-g3r(: .2);

input_deck

dz-z(2)-z(1) ;
N-sixe(V.1);

Ul content
Xgrid
Xpotential profile

XLuttinger parameters

%input parameters

Xgrid step size
Xiilllllber of grid points

cl-C'm 'j'C ';'r 'i'g 'i'b ':'y ';'m-.':'c-.'j'r-.':'g-.' 'b-.':'y-
'e 'j'r 'j'g ':'b ','y ':'m-.':'c-.'i'r-.'i'g-.':'b-.'i'y- 'i'm 'i'
c.h-['m 'j'C 'j'r ':'g 'i'b ':'y 'i'm-.':'c-.'i'r-.':'g-.' 'b-.'j'y-
'e 'j'r 'i'g 'j'b ':'y ':'m-.'i'c-.'i'r-.':'g-.':'b-.':'y- 'i'm 'j'
=-1e7;

Emin-min(V); %energy lllinilllUlll
Emax-min(V(1),V(N»; %energy lllaxilllUlll

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ixxi~xx~iiixxxxix~iX:xi~fxxxx~~iX:xi%ixfixixiX:xxxxiixxxiixxi

i'm 'j

· j'r ':'g
.'m 'i

':'r 'j'g

'j'b

'j'b

';'y 'J;
';'y 'J;
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hold;

;i~;~~~:io,V/meV"k') ;
hold;

nr-l;
oldsignl-l ;
oldsignh-l ;
oldsignd-l ;
oldsignd2-1 ;
oldsignd3-1 ;
index-l;
for E-Emin:Estep:Emax

tfm-tfmatrix(E,kt) ;
hl0(index)-tfm(3,3) ;
110(index)-tfm(4,3) ;
h01(index)-tfm(3,4) ;
101(index)-tfm(4,4) ;
cmin(index)-- (tfm(1,3)*tfm(l,4)+tfm(2,3) *tfm(2,4) )/(tfm(1,4) -2+tfm(2,4) -2);
diffhmin(index)-tfm(3,3)+cmin(index)*tfm(3,4) ;
difflmin(index)-tfm(4,3)+cmin(index)*tfm(4,4) ;
dmin(index) -diffhmin(index) -2+difflmin(index) -2;
dWll(index)-abs(hl0(index) *h01(index) +101(index) *110 (index) );

if index>l
diffdmin(index)-dmin(index)-dmin(index-l) ;
nevsignd-sign(diffdmin(index» ;
if index>2

if (nevsignd-oldsignd .. 2)
E/meV
[a,Eresult]-shootvbd(E-2*Estep ,E,kt ,Eacc) ;
eval(['lecho diU E - , num2str(Eresult/meV,12»);
if (nr--1) I ( (nr>1) l abs(Eresult-Estate(nr-l»>min_en_diff

Estate (nr) -Ereault ;
[fh,flJ-plotvav(Eresult,kt,l,a) ;
if ( (fl(N) -2+fh(N) -2)1 (max(abs(fl) -2+max(abs(fh»-2)<le-4)

Estate (nr) -Ere suI t ;
coeff(nr)-a;
vfl(nr, :)-fl;
vfh(nr,:)-fh;
figure (mpl) ;
plot (z/le-l0,Estate (nr) ImeV+vfl (nr , :). -2/nrm,cl(nr,:»;
dravnov;
refresh(mpl) ;
figure (mph);
plot (z/18-l0,Estate (nr) ImeV+vfh(nr , :). -2/nrm,ch(nr,:»;
dravnov;

~:~:::~~h~~,fl'];
eval(['save vf_' num2str(nr) '.dat vf_save .asciil]);
nr-nr+l;

end
end

end
end
oldsignd-nevsignd;

end

if index>l
diff3(index)-dum(index)-dum(index-l) ;

.. \1evsignd3-sign(ditf3(index» ;
if index>2" .. ~

if (nevaignd3-o1daignd3--2)
E/meV
[a,Ereault]-ahootvbd(E-2*Estep,E+2*Estep,kt,Eacc,Estep/50) ;
eval(['lecho try E.' num2str(Eresult/meV,12)]);
if (nr"l) I ( (nr>1) l abs(Eresult-Estate(nr-l»>min.en_diff

Estate (nr) -Ereaul t;
[fh ,fl]-plotvav (Eresult ,kt,l,a);
if ( (fl(N) -2+fh(N) -2)1 (max(abs(fl» -2+max(abs(fh» -2) <18-4)

Estate (nr) -Ere suI t ;
vfl(nr,:)-fl;
vfh(nr,:)-fh;
coeU(nr)-a;
figure (mpl) ;
plot (z/le-l0,Estate (nr) ImeV+vfl (nr , :). -2/nrm,cl(nr,:»;
dravnov;
refreah(mpl) ;
figure (mph);
plot (z/le-l0,Estate (nr) ImeV+vfh(nr , :). -2/nrm,ch(nr,:»;
dravnov;
refreah(mph) ;
vf_save-[z fh' fl'];
eval(['save vf_' num2str(nr) '.dat vf_save -ascii']);
nr-nr+l;

else
[a,Eresult]-shootvbd(Eresult ,E+2*Estep,kt ,Eacc ,Eatep/50,2);
eval(['lecho try E - , num2atr(Ereault/meV,12)]);
Estate (nr) -Ereaul t;
[fh ,fl]-plotvav (Eresult ,kt ,l,a);
if ( (fl(N) -2+fh(N) -2)1 (max(abs(fl» -2+max(abs(fh» -2) <18-4)

Estate(nr)-Eresult;
vfl(nr,: )-fl;
vfh(nr, : )-fh;
figure (mpl) ;
plot(z/le-l0,Estate(nr)/meV+vfl(nr,:). -2/nrm,cl(nr,:»;
dravnov;
refresh(mpl) ;
figure(mph) ;
plot (z/18-l0,Estate (nr) ImeV+vfh(nr ,:). -2/nrm,ch(nr,:»;
dravnov;
refresh(mph) ;
vf_save-[z fh' fl'];
eval(['save vf_' num2str(nr) , .dat vf_save -asciil»;
nr-nr+l;

end
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end
end

end
end
01dsigndJ-nevsignd3 ;

end

Eindex(index)-E;
index-index+l ;

end

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ixxxixiixi~iixiixii~x~~ifxii~xxxii~ii~xxixxxxxxxxXXXXX
clear vavcon rtsTE rtsTH

if -exht{'number.ot.stat .. ')
number.ot.states-nr.l ;

end

tor cb.num-l: number.ot .cb.subbands
eval(['vt-load(' 'vt.e' num2str(cb.num) '.r' '); 'J);
vavcon{: .cb.num)-vt (: .2);

end

X subband edge energy

X number ot minima in search range

X 1 it no miniJllu:a tound
X miniJllu:a search range
X dift betveen predicted and calculated E

X search range
X old .. arch range (previous k)
X energy step in range
X old energy step
X E difterence betveen tvo previous E

EO-Estate(nr);
subband.energy(I)-EO;
sbnd. en. srch.act -subband. en. search ;
sbnd.en.srch.old-sbnd.en.srch.act;
Estep-subband.en ... arch/l0;
Estep.old-Estep;
del.en-O;
Itt.index-l;
abort-O;
error.nt-O;
sbnd.en.lilll_eV*3e.6;
old.error-O;
accuracy .lIIOdif!er-l ;
num-1;
tic
lacc.act-lacc;
Ittmat-[{0:0.25: 1.75) 2: (lttlllalt/lttstep)]-Ittstep;

X Itt iteration

Itt-Ittmat (Itt.index+1);
min. en-subband. energy (ltt .index) +d81. en- sbnd. en. srch.act ;
1Ilalt. en-subband. energy (kt .index) +d81. en+sbnd. en. uch.act ;
min. en. arc (ltt.index+l)-min.en; .
lIlalt.en.arc(ltt.index+l)-IIlalt.en;
[a,Eresult ,error .nt]-shootvbd(lIIin.en,max.en.ltt .lacc.act ,Estep,num) ;

it ltt.index/50--tloor(ltt.index/50)
dravnov

end

XXXXXXXXXXXXXXXXXXU .Hipillllim not found XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

if (num--2) t (ltt.index<4)
num-l;

else

num.steps-2-sbnd.en.srch.act/Estep;

it (Estep>Estep.old/l0) t (sbnd.en.uch.act<sbnd.en.uch.old*10)
if num.steps<3e2

Estep-Estep/2 ;
num.steps-sbnd.en.srch.act/Estep;
eval([' !echo Adjuating Estep to ' num2str(Estep/meV) , 'num2str(tloor(num.steps»' steps'J);

else
sbnd_en.srch. act- sbnd. en. srch.act -2;
Estep-sbnd.en.srch.act/l0;
eval([' !echo Too many steps. increasing search area to ' num2str(sbnd.en.srch.act/meV) , Estep.' num2str(Estep/meV) '. 10 steps'J);

end

elselt sbnd.en.uch.act<5-sbnd.en.uch.old
sbnd.en.srch.act-sbnd.en.srch.old-5;
Estep-Estep.old/2 ;
num.steps-sbnd. en. srch.act/Est ep ;
eval([' !echo Search area too small • increasing search area to • num2str(sbnd.en.srch.act/meV) ,
Estep - , num2str(Estep/meV) '. ' num2str{num.steps) , steps ,]);

else
Ittmat.size-size(lttmat .2);
Ittstep.local-kt.ktmat (kt.index) ;
Itt.inter-ltt.lttstep.local/2;
ktmat- [lttmat (1:ltt.index) kt.inter Ittmat (ltt.index+l :lttmat.size)] ;
P-polytit (lttmat «kt.index.3) :ltt.index) /lttstep. subband.energy( (ltt.index.3) :ltt.index)/meV .3) ;
en.predict-polyval (P, ktmat (kt. index+l) /kt step) -meV;
del. en-en.predi ct .subband. energy (kt. index) ;
sbnd. en. srch. act- sbnd. en. srch. old;
Estep-Estep.old;
eval([' !echo Inserting additional kt - , num2str(Itt)J);

end

if sbnd.en.srch.act >0. 25-meV
Ittmat.size-size (ktmat .2) ;
Ittstep.local-Itt-Ittmat(ltt_index) ;
Itt.intersltt-lttstep.local/2;
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ktlllat-[Ittmat(l:kt.index) Itt.inter Ittmat(ltt.index+1:ktmat.aize)];
P-polyfit (ktmat «kt-index-3) :ltt.index) Ilttatep. subband.energy( (Itt.index-3) :ltt_index)/meV ,3) ;
en.predict-polyval (P ,lttmat (Itt.index+1) Ilttstep) .llleV;
del.en-en.predict.subband.energy(ltt_index) ;
sbnd.en.srch.act-sbnd.en.srch.old;
Estep-Estep.old;
eval(['lecho Search area too large, inserting additional Itt - , nUlll2str(ltt)]);

end

end

else

nnnnxnnxnnn Minimum found xnxnxnnxnnxxxxxnxnxnxnxnxnnn
[fh,fl]-plotvav(Eresult ,ltt ,l,a);

if ( «fl(K) -2+fh(N)-2)/(mu(abs(fl» -2+mu (abs (fh) ) -2» <le.4.accuracy.modifier)

subband.energy (ltt.index+1) -Eresult;
coeff(ltt.index+l)-a;

if kt.index<4
del. en- (Eresul t.subband.energy (ltt.index». (ktmat (ltt.index+2) .ltt) I (Itt.lttmat (Itt.index» ;

elaeif kt.index«aize(ktmat,2).1)
P-polyfit (ktmat «kt.index.2) : (ltt.index+1) ) Iktstep ,subband.energy «1tt.index.2) : (ltt.index+1) )/meV,3);
en.predictspolyval (P ,lttmat (Itt.index+2) Iktstep) .meV;
del.en-en.predict.Eresult;

end

for cb_num-l:number.of.cb.subbands
oU-trapz(z, (vavcon(: ,cb_num) •• fh'»;
012-trapz(z, (vavcon(: ,cb.num) •• fl'»;
rtsTE(nr ,cb.num,ltt.index+1)-O. 5*(e.bs(oU-2)+(1/3) *abs(012-2» ;
rtsnl(nr,cb.num,ltt.index+1)-(2/3) *e.bs(012-2) ;

end

old. error-Ere suI t .min.en- sbnd. en.srch.act ;
kt.index-kt-index+1 ;

eval([' Iecho Itt-, nUlll2str(kt) " Eacc-' nUlll2str(Eacc.act/meV) ,
uch.delE-'nUlll2str(sbnd.en.uch.act/meV) 'Estep-'nUlll2str(Estep/meV) , E found ' nUlll2str(Eresult/meV) , llleV']);

sbnd.en.srch.old-sbnd.en.srch.act;
sbnd. en.uch.actamin( [max (sbnd.en.uch.act/5, abs (5* (old. error ) ) ), subband.en.search] ) ;
sbnd.en.srch.fnd-sbnd.en.srch.act;
if sbnd.en.Brch.act<sbnd.en.lim;

sbnd.en.srch.act-sbnd.en.lim;
end
sbnd.en.limamu([sbnd.en.limll0, e.bs(5*01d.error), min(Eacc,Eacc.act*le4)]);

Estep.old-Estep;
Estep.sbnd. en.uch.act/l0 ;
Estep.fnd-Estep;

Eacc.prev-Eacc.act;
Eacc_actamin(Eacc*le5,Eacc.act*1.25) ;
Eacc.fnd-Eacc.act;

accuracy.modifieramu(accuracy.modifier*. 75,1) ;
changed.num-O;

else

!echo Adjusting search parameters

if kt-index<3

if Eacc.act<Eacc/20
if num--l

num-2;
else

num-l;
end

end
else

Eacc.act-Eacc.act*. 5;
eval([' Iecho Eacc changed to ' nUlll2str(Eacc.act/meV)]);
accuracy .Illodifieramin (accuracy .lllodifier*2 ,100) ;
eval ([, !echo accuracy modifier - , nUlll2str(accuracy .modifier)]);

if Eacc.e.ct<Eacc.prev/3
ktmat.aize-aize (lttmat, 2);
ktstep.local-Itt.ktmat (ltt.index);
kt.inter-kt-ktstep.local/2;
ktlllat-[ktmat{1:kt.index) kt.inter ktmat(kt.index+1:lttmat.aize)];
if Itt.index>-3

P-polyfit (ktmat «ltt_index.3) :ltt.index)/lttstep ,subband.energy( (Itt_index.3) :ltt.index)/meV ,3) ;
en.predict-polyval (P ,ktmat (Itt.index+1) Iktstep) *meV;

end
del.en-en.predict.subband.energy(kt.index) ;
sbnd_en.srch.act-sbnd.en.srch.old;
Estep-Estep.old;
eval([' lecho Inserting additional kt • , nUlll2str(kt.inter)]);

end

if Eacc.act<Eresult*eps*10
if •changed.num

if nUlll--l
num-2;

else
num-l;
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end
EstepaEstep_fnd;
sbnd.en.srch.act-sbnd.en.srch.fnd;
Eacc.actaEacc.fnd;
chansed.n\llllal ;

else
subband_enugy(kt.indu+t)-Eresult;
eva1(['lec:ho Solution not found, aU\IIIled calculated value']);

old.erroraEresul t -min.en.sbnd.en.srch.act;
Itt.indu-kt.indu+l ;

abnd_en_arc:h.old-abnd_en.arc:h.act;
abnd.en.src:h.actamin( [max(abnd.en_uch.act, aba(S* (old. error »), aubband.en.searc:h»;
if abnd.en.uch.act<abnd.en_lim;

abnd.en_arch_act-abnd.en.lim;
end
abnd.en.lim-max([abnd.en.lim/l0, aba(S*old.error), min(Eacc,Eacc.act*le4»);

Eatep.oldaEatep;
Eatep-abnd.en_arch.act/l0;

Eacc.prev-Eac:c.act;
Eacc.ac:t-Eacc.act*le2 ;

[tl,fh)-plotvav(Eruult,kt ,l,a);
fisure
plot (fh)
hold;
plot(tl, 'r')
dravnov

a
eva1([' lec:ho • num2atr«tl(N)-2+fh(N)-2)/(IIlA%(aba(tl» -2+mu (aba (fh» -2»»;

accuracy .modifier_in (accuracy _modifier*2 ,100) ;
eval( [. !ec:ho accuracy modifier - • num2atr(accuracy.modifier»);

end
end

end
end

end
end
t(nr)-toc;
eval([' !echo Elllpaed time - • num2atr(t(nr» • a'»;
fisure
plot (ktmat, subband.energy/meV)
dravnov;
eval(['aave En' num2str(nr) , subband.energy'»;
eval(['aave kt' num2atr(nr) , ktmat'»;

fisure
plot(ktmat,aqueeze(rtaTE(nr,l,l: aize(ktmat,2») ,cl(1»;
hold
for cb.n\lllla2:number.of.cb.aubbanda

plot (ktmat,aqueeze(rtaTE(nr,c:b.n\llll,1 :aize(ktmat ,2») ,cl(cb.n\llll»;
end
fisure
plot (ktmat , aqueeze(rtaTH(nr, 1, 1: aize(ktmat,2» ) ,c1(l»; .; .
h~d .
for cb_n\lllla2:number.of .cb.aubbanda

plot (ktmat ,aqueeze(rtaTH(nr, cb.n\llll,l :aize(lttmat ,2») ,cl(cb.n\llll»;
end

eval ( [' aave caeff' num2atr (nr) • codf'»

end

eval(['aave rtaTE rtaTE'])
eval( [ •aave rt aTH rt aTH'] )

tfmatrix.m
The function tfmatrix. m returns the transfer matrix for the whole structure.

Inputs are E, the energy in J, and kt, the in-plane hole momentum. This function

implements the finite-difference equations (A.21) and (A.22).

function TFtot-tf_trix(E,kt)
Xfunction TFtot-tfmatrix(E,kt)
Xreturna the transfer matrix for E and kt
Xl - aubband enersy (J)
X1tt - in-plane hole moment\llll

if -uht(.kt')
ktaO;

end
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global gl g2 g3 V N dz

11tot-eye(4) ;
11-zeros(4.4) ;
11(1,3)-1;
11(2.4)-1;
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for n-2: (N-1)

if (g1(n)--g1(n-l» I (n"2) %determine transfer matrix elements
Cl-gl(n)-2-4*g2(n) -2;

Cf • 1 + 3*kt-2*dz-2*g3(n)-2/Cl;

11(3.1) - (-1 + 3*kt-2*dz-2*g3(n)-2/C1) I Cf;

11(3.2) - (2*sqrt(3)*kt*dz*g3(n)/(g1(n)-2*g2(n») I Cf;

1133 • ( 2 + kt-2*dz-2*(g1(n)+g2(n»/(g1(n)-2*g2(n» - 3*kt-3*dz-3*g2(n)*g3(n)/Cl ) I Cf;

1134 • ( sqrt(3)*kt-2*dz-2*g2(n)/(g1(n)-2*g2(n» - 2*sqrt(3)*kt*dz*g3(n)/(gl(n)-2*g2(n» - sqrt(3)*kt-3*dz-3*g3(n)*(g1(n)-g2(n»/C1) I Ct;

11(4.1) - (-2*sqrt(3)*kt*dz*g3(n)/(g1(n)+2*g2(n») I Cf;

11(4.2) - (-1 + 3*kt-2*dz-2*g3(n)-2/C1) I Cf;

1143 • ( sqrt(3)*kt-2*dz-2*g2(n)/(g1(n)+2*g2(n» + 2*sqrt(3)*kt*dz*g3(n)/(g1(n)+2*g2(n» + sqrt(3)*kt-3*dz-3*g3(n)*(g1(n)+g2(n»/C1) I Ct;

1144 • ( 2 + kt-2*dz-2*(g1(n)-g2(n»/(g1(n)+2*g2(n» + 3*kt-3*dz-3*g2(n)*g3(n)/Cl ) I Cf;

gp-gl (n)+2*g2(n);

gm-g1(n)-2*g2(n) ;

c:ons34-sqrt (3) *kt*dz-3*g3(n) IC1;

end

delE-V(n)-E;

11(3,3) - 1133 + ( dz-2*delE/gm ) I Cf;

11(3.4) - 1134 + ( - c:ons34*delE ) I Cf;

11(4.3) • 1143 + ( c:ons34*delE ) I Cf;

11(4.4) - 1144 + ( dz-2*delE/gp ) I Cf;

11tot-11*TFtot;

if n"N-l0
TFp-TFtot;

end

end

shootvbd*m
This function looks for a minimum in the wavefunction amplitude between Emin

and Emax, at intervals of Estep, and for a wavevector of kt. If a minimum is found,

the minimum is determined with an accuracy Eacc. Optionally, the function can

look for the minnumth minimum, disregarding the first minnum - 1 minima in the

interval. The function works with recursive calls, refining the search grid with every

step. The return values are a, which is the free parameter in the initial condition (c

in the theory section), the candidate eigenenergy E, and a variable error _nt, which

is set to 1 if no minimum is found and is 0 otherwise.

func:t ion [a. E. error _nfJ -shootvbd (Emin. Emu •kt •Eac:c:.Estep .minnum)
lreturns the approximate eigen-energy for kt. betveen Emin and Emu and vith an ac:c:urac:y Eac:c:

global z hbar meV V dz N gl g2 g3

delE-Emu-Emln;

if -exist('Estep')



116

Estep-delE/10;
end

it •exist ( 'minnUID')
minnWll-1;

end

it Estep<!acc
Estep-!acc;
tl-1;

end

E-Emin-3*Estep;
olddgnd-1;
index-O;
no.dgn.change-1 ;
nac-O:
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vhile (E<-Emax) t no.dgn.change
E-E+Estep;
index-index+1 ;
Um-Ulllatrix(E,kt) ;
ClIIin(index)--(tfmU ,3)*UmU .4)+tfm(2.3)*Um(2.4»1 (UmU ,4) -2+tfm(2.4) -2);
diffint(index)-(tfmU ,3)+UmU .4) *CIIIin(index) ) -2 + (tfm(2,3)+tfm(2,4) *cmin(indn» -2;
diffh(index)-tfm(3,3)+ClIIin(index)*Um(3.4) ;
diftl(indn)-tfm(4,3)+cmin(indn)*tfm(4.4) ;
if index>1

diU (index)-diffinf (index) -diffint (index.1) ;
nevdgnd-dgn(diff(indn» ;
if index>2

if (nevdgnd-olddgnd--2)
nsc-nsc+l;
it (nsc"minnUID)

no.dgn.change-O;
end

end
end
olddgnd-nevdgnd;

end
end

if a~~~~ii~:~~e
E-E;
error.nt-l;
!echo No minimum found

.lse
if Estep>Eacc

(a.E ,error _ntl -shootvbd(E-2*Estep,E,kt, !acc) ;
els.

a-ClIIin(indn-1) ;
E-E-Estep;
error.nt-O;

end
end

vbdos.m
This script-file cleans up some of the data generated in vbdispersion.m, and

calculates the valence subband density of states as a function of in-plane hole mo-

mentum dosk and as a function of subband energy, relative to the valence band

edge (dosE). The various dispersion relations are saved as .mat-files :dosk.mat,

dosE. mat, rtsTE. mat, rtsTM. mat, the grid for the valence subband energy Evb. mat,

the in-plane-momentum grid ktmat .mat, and the E - k dispersion relation Ek.mat.

!_grid.step-O.l.meV;

load rtsTE
load rtsnt

X clean up E.k tiles

for vb-1:nWllber.of.vb.subbands
eval«('load kt' num2str(vb)]);
eval(('load !n' num2str(vb)]);
indic .. -find(ktlllat/ktstep .. tloor (ktmat/ktstep» ;
Ek(vb.: )-subband.energy(indices);
tor cb-1:nWllber_of.cb.subbands

rtsTEtemp(vb.cb.: )-squeue(rtsTE(vb.cb. indices»;
rtsnttemp(vb.cb.: )-sque.ze(rtsnt(vb.cb.indices»;

end
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end

X calculate density of stat .. vs It and DOS vs E

lttmat-[O:lttstep:lttmax]: X ltt matrix
ltt_num-size(lttmat,2): X number of ltt
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rtsTE-rtsTEtemp:
rtsnl-rtsnltemp:

::~:~:i;;~~::;~~P:!max]:
dosE-zeros (number _of_ vb_subbands ,Evb_num) :
dEk-diff (Elt,l ,2) :
dltt-diff(ktmat) :
lttmid-lttmat (2: kt_num) -ktstep/2:
Elt_node_index- (Ek-Emin) IE_grid_stepH:

X energy grid for DOS. vs E
X E grid size
X init DOS va E matrix
X B grid step
X kt grid step
X ltt grid for DOS va ltt
X index matrix to match the E grid to the kt grid

for vb-l :number_of_ vb_subbands
doslt(vb,:)-abs(lttmid.*dkt./(pi*dEk(vb,:»): X DOS va ltt
for step-l:size(dEk,2)

El-min(Ek(vb,step) ,Ek(vb,step+1});
E2-max(Ek(vb,step) ,Ek(vb,stepH»;
node_index_l-noor( (El-!min) IE_grid_step+1} ;
node_index_2-cen «!2.!min) IE.grid_step+l) ;
if node.index_2<Evb_num

for node_index-node_index.l: (node_index.2.1)
dosE( vb ,node.index) -dosE(vb ,node_index)+dosk( vb, step) ;

end;

~~::(:~7~:~:~i;~~;~~~=~~:~1:b~:~~~:~~~~;:f)~:~:::~~act ion.l*dosk (vb, step) l
node.fraction.2- (Evb{node_index_2) -E2) IE.grid_step:
dosE(vb,node_index_2-1)-dosE(vb,node-!ndex_2-1).node_fraction.2*dosk(vb,step) l

end
end

end

diffdoslt-diff(doslt,l,2) ;
dosk-[dosk(: ,1} dosk(: ,l:ltt_num-2)+diffdosk dosk(: ,".num-l)];

save Evb Evb
save Ek Ek
save rtsTE rtsTE
save rtsnl rtsnl
save dosk dosk
save dosE dosE
save lttmat lttmat

gainE.m
In this function, the gain is calculated versus the interband energy minus the

bandgap energy. The gain is expressed in dimensionless numbers, the gain in cm-1

can be found by dividing by the module width.

The calculated gain is between valence subband vb, with population density Nb,

and conduction subband cb, with population density N c. The electron temperature

is T. Optionally, a Lorentzian linewidth yam can be specified.

function gainE-gainE(vb,cb,Nv,Nc,T ,gam)
X function gainE(vb,cb,Nv,Nc, T,gam)
X returns the gain (in X) va (pump energy - band gap energy)
X gain in cm--l can b. found by dividing by the module vidth
X uses rtsTE.mat, Ee.r, doslt.mat, ktmat.mat, Ek.mat
X constants from init.m
X vb - valence subband number
X cb - conduction subband number
X Nv - valence subband population (in units of tel0 cm--2)
X Nc - conduction subband population (in units of lel0 cm-.2)
X T - temperature (K)
X gam • linevidth (default :0)

if -exist('gam')
gam-O;

end

init

load('Ee.r')
load rtsTE
load dosk
load Ek
load lttmat

X DOS vs k
X subband energy vs k
X ltt grid



118 APPENDIX A. APPENDIX' MATLAB SCRIPTS AND FUNCTIONS

% srid for pUlllp .nergy in .xc... of band gap .n.rgy
I n\llllb.r of nod.. in EpUlllp
% sa in vs P\IIIlP E

E.Srid.stepaO.lall.V;

EpUlllp-[0:E_~id.step:500all.V] ;
EpUlllp.n\llll-uze(EpUlllp.2) ;
sainE-zeros (EpUlllp.n\llll.1) ;

rtsasqu.ez.(rtsTE(vb.cb.:» ;
doslt_sp.c-squ .. ze(doslt(vb. :»;
!nasqu •• ze(Ek(vb.:» ;

Saink-q"2ahbar/(.OacaIl0"2)arts' ./(1./doslt_sp.c+pi-hbar-2/(0.0665-1I0»; Isain V8 It
Saink-Saink./ (l.52-.V+!n+E.(cb .2) all.V+hbar-2-ktmat. -2/(2-0.0665aIl0» ;
gaink-gaink-28. 8a.VaIl0/2;

Uvag.tUvfin(vb .Nv. T) ;
dosate-4alll./(piahbar-2) ;
delUaltBaT-lOS(up(1e10aNc/ (dos-ItB-T» -1) ;
U.aE.(cb.2)-III.V+delEf;

I valence subband quasi-F.rmi level. relative to the valenc. band .dg.
I d.nsity of stat.s in cb. in emo-2
I conduction subband quasi.F.rmi level. relative to the conduction subband .dg.
I cb q-F .n.rgy. relative to the cb .dS.

saink-gaink.a(fd(Uv .Ek(vb.:). T)+fd(Et •• E.(cb.2)all.V+hbar-2-ktmat. -2/(2-0.06155-110). T)-1);
.naEk(vb.:)+E.(cb.2)-II.V+hbar-2-lttlllat.-21(2-0.0665aIl0); I en.rgy ditference b.tv.en cb and vb vs kt

d.naditf(.n); %tit gain vs It to gain va E
for step-l:siz.(den.2)

Elamin(.n(step) •• n(step+1»;
E2amax(.n(step) •• n(step+1»;
nod._indu_latloor(El/E_grid_step+1) ;
nod. _indu_2-ceil (E2/E_Srid_ step+ 1) ;
it nod._index.2<EP\llllP_n\llll

for nod._ind.xanod •• index.l: (nod._index.2.1)
gainE(nod •• index)againE(node_ind.x)+gaink(st.p) ;

.nd;
nod._fractioD_l- (EI-Ep\llllP(nod •• index.l) ) /E_srid.step;
gainE (nod •• indexol) .SainE (nod •• index_l) -nod • .tract ion_l- saink (step) ;
nod.ofraction_2. (EpUlllp(nod.o index_2) - E2) /E_grid_st.p;
gainE(nod •• index_2-1).gainE(nod._index_2-1)-nod._fraction.2-gainlt(step);

.nd
.nd

if SIUll-.O I add linevidth
factor-1/ .844; I mak.s up for 10.. due to limiting lin. shape vidth to 2-SIUll
gainElv.zeros (Ep\llllP.n\llll.1);
absvidth.2aglUll;
d.1EaE.grid.step;
Evidth.round(absvidth/delE) ;
for 100p.l:siz.(EpUlllp.2)

for 10op2-(100p-Evidth): (loop+Evidth)
if (loop2>0) t (loop2<Ep\llllP.nUIII)

fract-d.1E- (glUll/(2-pi) /( (Ep\llllp(100p)-Epump(100p2» -2+ (glUll!2)-2) ;
gainElv(100p2)againElv(100p2)+fract-gainE(100p) ;

.nd
.nd

.nd
SainE.gainElvaf actor;

end

f ind_threshold_pop .m
f ind_threshold_pop. mrecursively calculates the threshold population density for

an interband transition between valence subband vb and conduction subband cb, as-

suming an equal population density in both subbands. The threshold gain is threshold

(in cm-1), electron temperature T. The returned population density value is in units

of [le10cm-2J.
function ftpafind_thruhold.pop(vb.cb.threshold.T .popgu" •• popstep)
% function find_ thr .. hold_pop (vb. cb. thr.shold. T.popgu .. s .popstep)
% vb • valence band n\llllb.r
I cb • conduction band n\llllb.r
I thr.shold • thr .. hold gain, in % • gain in em--l tim.s 1I0dule vidth in em
IT. .l.ctron telllp.rature
I popgu .. s • initial guess for thr.shold population density in units of lel0 em--2 (0.1)
% popstep • step size in iteration proce ... in 1.10 emo-2 (5)

it • exist (tpopgu ... ')
popgu .... O.l;

.nd

if -exist ('popstep')
popstepa5;

end

tol.l.-3;
lIlUgainaO;
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lIIU.tep •• 2S0;
nUIII.t.p •• l;

vhib (lIIUgain<thr .. hold) t (nUIII.tep.<lIa:utep.)
IllUgain-max (gainE(vb ,cb ,popgu ... ,popgu ... ,T» ;
popgu•••• popgu... +pop.t.p;
nUlll8tep.-nUIII.t.p.+l ;

.nd

if (lIIUgain-thr .. hold)/thr .. hold<tol
ftp.popgu ... ;

el.e
pop.t.pnev-pop.tep/S;
ftp.Und_threshold_pop(vb ,cb, thr •• hold, T,popgu ... -2-pop.tep, pop.tepnev) ;

end

lifetimesfin.m
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In this script file the rate equations as outlined in Chapter 4, are implemented

and solved self-consistently. The e-e, h-hand LO phonon scattering rates are calcu-

lated with the aid of Paul Harrison's code. The interband generation rate is obtained

from the finite-difference code. The various outputs are written to ascii data files.

rhoc_vs_Txxx : conduction subband population densities rhoc_vs_Txxx : valence sub-

band population densities eescatt_vs_Txxx : e-e scattering rates hhscatt_vs_Txxx :

h-h scattering rates LO_vs_Txxx : LO phonon scattering rates tspib_vs_Txxx : inter-

band spontaneous lifetimes and xxx denotes the photon flux in units of 102ocm-2
•

clear
init
IllUrun •• S;
it_recalc ••• S; "valu. of 'it' 0 vhich e.-.catt i. recalculated

ltNc_init.load( 'N.r');
ltNc_ini t.Nc_ini t (: ,2) -1810;
ltNv_init.load( 'Nv_init .dat');
ltNv_init.Nv_iDit(: ,2)-1810;

Nc_init.[20 0.02S 0.016 0.S]-hl0;
Nv_init.[30 2 2 2 2 0.OU-lel0;

for run •• l :1IIUruD.

calculate_ee.O; "calculate e-e .cattering?
calculate_hh-O;
calculate_LO.l; "calculate LO phonon .caU.ring?

M.q.28. 8-q-1I0/2;
lIeV.0.001-q;
gamma.O.S-meV;
Lz.3S0e-8; "effective period in em
ibthresh.SO; ltlo .. for depop laser in vell 1 (em--l)
Nph.16000/ (167S-meV); ltincident photon flux (em"-2 .--1)
.c.4; bumber of conduction band .tate. taken into account
.v.6; bumber of valence band .tat •• tak.n into account
T(1).10-run.+l0;
T(2).10-runs+l0;
T(3) .10-run.+l0;
T(4).10-run.+10;
Tv(1).10-run.+10;
Tv(2).10-run.+10;
Tv(3).10-run.+10;
Tv(4).10-run.+10;
Tv(S).10-run.+10;
Tv(6).10-run.+l0;
delta_f-4.8el1; "isb Unewidth 2 lIIeV
cc.[4 3 ; 4 2 ; 3 2];
hh. [6 2 ; 6 1 ; S 4 ; 5 3 ; 5 2 ; S 1 ; 4 2 ; 4 1 ; 3 S ; 3 4 ; 3 2 ; 3 1 ; 2 1];
scatt.zero. (.c, .c) ;
LO.zero.(sc,.c) ;

!cp Nv.dat Nv_old.dat

!runsim
!cp N.r N_old.r
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for it-I: 10
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Xiteration requires! for self-condstent calculation

%auumed conduction band populations for first iteration
N-load( 'N.r');
Nc-N(: .2)-hl0;

%set fel'1lli leveb for conduction band
%load ( 'Ete.r');
load('Ee.r');
dos-le-4-me/(pi-hbar-2); %dendty of states in cb. in cm--2
for loop-I: sc

delEt (loop)-ltB-T(loop) -log(exp (Nc(loop) / (dos-ltB-T(loop» )-1) ;
Ete (loop. 2)-Ee (loop .2)+delEt (loop) /meV;

end
!l'1Il-f Ete.r
for loop-I: size (Ete.1)

eval(['!echo ' num2str(loop) , 'num2str(Ete(loop.2),16) , » Ete.r']);
end

%get ferm! leveb for valence subbands
Nv-load( 'Nv.dat ');
Ud - energy diU betveen band edge
for loop-I: sv

Etv(100p)-getEtvfin(loop,Nv(l00p.2). Tv(loop»;
%diff betveen Etv and subband edse

end

~r{(:~:;Hrin~r::::1» I calculate_ee
scatt-zeros (sc. sc) ;
[ree cols]-dze(cc);
for rov-l:ree

T_av-(T(cc(rov.l»+T(cc(rov.2»)/2; %temp set to average of the initial subbands
eval([' !qveescatt -T ' num2str(T_av) • -i ' num2str(cc(rov,l» , -f ' num2str(cc(rov.2»

• -1 ' num2str(N(cc(rov.1),2» , -F • num2str(lf(cc(rov,2).2» »;
rr-load( 'temp_dir2/ccABCD.r');
for loop-l:3

if (rr(100p.1)--rr(loop.2» a (rr(100p.3)"rr(loop.4»
scatt (rr(loop.O .rr(loop.4) )-(scatt(rr(loop.O .rr(loop,4) )+2-rr(10op .5» ;

ebe
scatt (rr(loop,l) .rr(l00p.4) )-(scatt (rr(loop,O ,rr(100p,4) )+rr(100p,5»;

end
end
eval(['!rm temp_dir2/-'»;
eval([' !rmdir temp_dir2'»;

end
eval(['!rm temp_dir2/-']);
eval( [' !l'1Ildir temp_dir2'»;
save scatt scatt;

ebe
if it"1

load scatt
scatt_ee_init-scatt;

end
end

%!rundlllv
!cp Nv_old.dat N.r

~-~ (:~:;~)r~n~r::::1) )0., calculate_hh
scatthh-zeros (sv , sv) ;
[rhh cob]-dze(hh);
for rov-l:rhh

T_av-(Tv(hh(rov.l»+Tv(hh(rov,2»)/2; %temp set to average of the initial subbands
eval([' !qvhhscatt -T ' num2str(T_av) , -i ' num2str(hh(rov,1» , -f ' num2str(hh(rov,2»

, -1 • num2str(Nv(hh(rov,l),2» , -F ' num2str(Nv (hh(rov ,2) .2» ]);
rr-load( 'temp_dir2/cclBCD.r');
for loop-l:3

if (rr(100p.1)"rr(loop.2» a (rr(lOOr,3) .. rr(loop,4»
scatthh(rr(loop.O .rr(l00p,4»-(scatthh(rr( oop,O ,rr(100p,4»+2-rr(100p,5»;

else
scatthh (rr (loop .0.rr(l00p.4) )-(scatthh(rr(loop ,0,rr(loop ,4»+rr(loop,5» ;

end
end
eval(['!rm temp_dir2/-']);
eval(['!rmdir telllp_dir2');

end
eval(['!l'1Il temp_dir2/-']);
eval([' !rmdir temp_dir2'»;
save scatthh scatthh;

ebe
if it"l

load scatthh
scatt_hh_init-scatthh;

end
end

!rundm
!cp N_old.r N.r

%XXXXXXXXXXXXXXXXXXXXXXXX%XXXXspontaneous elllbdon lifetime XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

load ( 'Ee.r');
tspbb-l./zeros(sc. sc);
del-zeros(sc,sc-O;
Z-zeros (sc. sc-l) ;
temp_vi-load( 'vf_el.r');
nod.. -size(temp_vf.1) ;
v-zeros(nodes.sc) ;

Xlifetimes for spontaneous intersubband emission
Xenergy diU in meV
%dipole moment

Xlnod.. in grid
Xvan function amplitud ..

grid-temp_ vi (: ,1) ;
v(: •O-temp_vi ( : .2);
for loopl-2: sc

temp_vf-load([ 'vi _e' num2str(loopO '.r');
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v(: ,loop1)-temp_vf(: ,2);
for loop2-1: (loopl-1)

del(loopl,loop2)-Ee (loopl,2) -Ee(loop2,2);
Z(loopl,loop2)-abs(trapz(grid,v(: ,loopl). -grid. -v(: ,loop2»);
tsphb(loopl,loop2)-tsp_hb(del(loopl,loop2) -meV,Z(loopl,loop2» ;

end
end

nnxnnnnxnnnnnnnxnnxnxnnxnnnxnnnxxxnnnxnnxnnxnnnxnxnnnxnnnn
xnxnnnnxnxnxnn LO scattering rat .. nnxnnnxxnnxnnxnnnnxnxnnnxnxxnxnnxxx
load('rrp.r');
[rLO cob]-dze(rrp);
if calculate_LO

eval([' !mv rrp.r rrp_temp.r']);
for rov-l: rLO

T_av-(T(rrp(rov,l»+T(rrp(rov,2»)/2; Xtemp .. t to average of the initial subbands
eval(['!sbp -T ' num2str(T_av)]);
eval([t!echo ' num2str(rrp(rov,l» , , num2str(rrp(rov,2» , ) rrp.r']);
eval([t!srelo -T' num2str(T_av) ]);
eval([t!rm rrp.r']);

end
eval([' !mv rrp_temp.r rrp.r']);

end
for rov-l:rLO

sbi-rrp(rov ,1);
sbf-rrp(rov,2);
LOsr-load(['LOe' num2str(sbi) num2str(sbf) '.r']);
en-LOsr(: ,1)-meV;
cst-Nc(sbi) -le4-pi-hbar"2/me;
LO(sbi,sbf)-trapz(en,LOsr(: ,2) •*fd(Efe(sbi,2)*JIleV ,en, T(sbi» .*(1-fd(Efe(sbf ,2)*meV ,en-36*meV, T(sbf») )/cst;

end

LOxxnxnxxxnxnnxxxnnnxxnxnnxxxxxnnxxnxxxxxxxxxnnxnxnnxxxxxnxxxxnnxnnxnxnxxxxn
xxxxxxxnxxnxnnxxxxinterband generation rates and lifetimes nxxnxxxxxxxnxxnxxnuxux
load('Eh.r');
Eval-Eh(4,2)-meV;
E_pump_exc-Eval +Ee(4,2) *JIleV+2S*meV;X-delEexci ton;
ind-roun~(E_pUIDp_exc/(O.l*J1leV» ;

f:~~~:~~:~s~'~~~~idered trandtions from val --) con
load( 'valcon. dat');
for loop-l:dze(valcon,1)

valnr-valcon(loop ,1);
connravalcon(loop,2) ;
V"Ilra1lum2str(valnr) ;
cnr-num2str(connr); .
gainvs--gainE(valnr ,connr,Nv(valnr,2) ,N(connr,2), T(connr»;

Xinterband spontaneous emhdon rate (converted to cm"-2 s"-1)
rrecsp(valnr,connr)-spont_em(valnr,connr,Nv(valnr,2) ,N(connr,2), T(connr»;
tBp(valnr ,connr)-Nc(connr)/rrecsp(valnr ,connr); .

Xcalculation of pump beam absorption into each conduction subband
gain(valnr,connr)-Nph*gainvs(ind) ;

end

Xdepop calculation
n_thresh-Und_ threshold_pop (1,1, ibthresh*Lz, T(1) ) ;

Xconduction band
tc-1./zeros(sc) ;
for loopl-l: sc

for loop2-1: sc . ..
tc(loopl,loop2)-1/ (scatt(loopl,loop2)+LO(loopl,loop2)+1/tsphb(loopl,loop2» ;

end
end

Xvalence band
tv-1./zeros(sv) ;
for loopl-l: sv

for loop2-1:sv
tv(loopl,loop2)-1/(scatthh(loopl,loop2» ;

end
end

Xcoeff for cb
Gc-zeros(sc,l) ;
coeffc-zeros(sc) ;
for eqn-l:sc

for coef-l: sc
if eqn--coef

for loop-l:sc Xin cb
coeffc(eqn, eqn) -coeffc (eqn, eqn) +1/tc (eqn ,loop) ;

end
for loop-I: sv Xspontaneous interband emisdon

coeffc(eqn.eqn)-coeffc(eqn.eqn)+l/tsp(loop,eqn) ;
end

else
coeffc(eqn,coef)--l/tc(coef ,eqn);

end
end;
Xspont interband emisdon
for loop-l:sv

GcCeqn)-Gc(eqn)+gain(loop,eqn) ;
end

end
rhoc-coeffc"-l-Gc;
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Xcodf for vb
Gv-zeros (sv .t) ;
coeffv-zeros(sv) ;
for equ-t: sv

for coef-t: sv
if equ--coef

for loop-t:av Un vb
coeffv(eqn.eqn)-codfv(eqn.eqn)+t/tv(equ.loop) ;

end
for loop-t: sc Xspontaneous interband emission

codfv(eqn.eqn)-coeffv(eqn.eqn)+lItap(eqn.loop) ;
end

elle
coeffv(eqn.coef)-.t/tv(coef .eqn);

end
end;
Xspont interband emission
for loop-t:sc

Gv(equ)-Gv(equ)+gain(eqn.loop) ;
end

end
rhov-coeffv •• t-Gv ;

if rhoc(t»n.thruh-tetO
rhoc(t)-n.thruh-te10;

end;
if rhov(t»n.thresh-1etO

rhov(t)-n.thruh-1etO;
end;

!rm N.r
!rm Nv.dat
for loo!!-I: sc Xadjust ee.rates

eval([' !echo ' num2str(loop) , , num2str(rhoc(loop)/tetO) , » N.r']);
scatt(loop.: )-scatt.e •• init(loop.: )-Nc(loop)/Nc.init(loop);

end

fO~v~~{F~~~o X~d~~s~(~:;;) , 'num2str(rhov(loop)/te10) , » Nv.dat ,]);
scatthh(loop.: )-scatt.hh.init(loop.: )-(Nv(loop.2)-1el0)/Nv.init(loop);

end

calculah.LO-O;
calculate ••• -O;
calculate.hh-O;
if it--it.recalce.

calculate.ee-t;
calculat •• hh-l ;

end

end Xihration

Xinteraubband gain in CIII-.1
isbgain43-(rhoc(4).rhoc(3» -q"2-del (4 .3) "eV- (Z(4 .3)-1e2) .2/ (pi-n-eO-c-hbar"2-delta.t-Lz);
isbgain42- (rhoc (4) .rhoc (2» -q-2-del (4.2) -aeV- (Z (4.2) -le2) -2/ (pi-n-eO-c-hbar"2-del ta.f-Lz) ;

eval([' 'echo • nUlll2str(T) , • num2str (transpose (rhoc) /1.10) • » rhoc.vs.T' nUlll2str(Nph/le20») ;

eval([' 'echo • num2str(T) , , num2str(transpo .. (rhov)/1el0) • » rhov.vs.T' nUlll2str(Nph/le20») ;

eval([' !echo • num2str(T) • 3 2 • num2str(t/scatt(3.2).16) • » eescatt.vs.T' nUlll2str(Nph/t.20)]) ;

eval ([ • !echo ' num2str(T) • 4 2 • nUlll2str(t/scatt(4.2) .16) , » e.scatt.vs.T' num2str(Nph/le20») ;

eval([' 'echo ' num2str(T) • 4 3 ' num2str(t/scatt(4.3),16) , » eescatt.vs.T' num2str(Nph/le20)]) ;

for loop-t:size(hh.2)
vt-hh(loop.t) ;
v2-hh(loop,2) ;
eval([' !echo ' num2str(T) • • num2str(vt) • • num2str(v2) • • num2str(t/scatthh(vt.v2) .t6) , » hhscatt.vs.T' nUlll2str(Nph/le20»);

end

for rov-t :rLD
sbi-rrp(rov.t) ;
sbf-rrp(rov .2) ;
eval([' !.cho • num2str(T)' • nUlll2str(sbi) • • num2str(sbf) • , nUlll2str(lILO(sbi .sbf) .t6) , » LO.vs.T' nUlll2str(Nph/le20»);

end

for loopv-t: sv
for loopc-l: sc

vnr-num2str(loopv) ;
cnr-nUlll2str(loopc) ;
eval([' !echo ' nUlll2str(T) , • vnr • • cnr • • num2str(tsp(loopv.loopc» • » tspib.vs.T' num2str(Nph/te20»);

end
end

eval([' !echo • num2str(T) • 4 2 ' nUlll2str(hbgain42.t6) • » isbgain.vs.T' nUlll2str(Nph/te20»);
eval( [. !echo • num2str(T) , 4 3 • nUlll2str(isbgain43.t6) , » hbgain.vs.T' num2str(Nph/te20»);

eval(["echo ' nUlll2str(Nph) • • num2str(isbgain43.t6) • » hbgain43.vs.G'»;
eval( [. !echo • num2str(Nph) • , num2str(isbgain42.t6) • » isbgain42.vs.G']);
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