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Abstract

In this thesis I investigated the feasibility of an optically pumped intersubband far-
infrared (40-100 pm) laser, using GaAs/AlcGa;_xAs heterostructures. The proposed
design aims to use LO-phonon-mediated depopulation of the lower THz laser level
to aid the intersubband laser population inversion. Interband recombination occurs
by means of stimulated emission, thus combining an interband (~ 1550 meV) and
intersubband (~ 16-18 meV) laser.

As the subband properties of both the valence band and the conduction band are
important for this work, a numerical program code was developed for the valence
band to supplement the available tools for the conduction band. The steady state
rate equations for the proposed quantum well structure were solved self-consistently
for several different carrier temperatures. The calculations indicate that a pump
beam of moderate power (0.5-1 W) concentrated on a device of typical dimensions
(10* cm?) can generate an intersubband gain of 20 cm™! at 50 K for a THz emission
linewidth of 2 meV. This gain level can suffice to obtain THz lasing action, provided
that the cavity losses can be kept in check. The performance of the THz laser is
predicted to be very dependent on electron temperature, mainly due to the opening
of a parasitic LO-phonon channel between the THz laser levels. Interband lasing
seems to be easier to obtain, as the calculated threshold pump intensity is lower than
for the intersubband case.

Thesis Supervisor: Qing Hu
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Interband Pumped Intersubband THz Lasers

1.1.1 Introduction

The far-infrared frequency range-is roughly defined as 30-300 pm or 4-40 meV. Often
this range is also referred to by the term terahertz radiation, since 4-40 meV corre-
sponds to 1-10 THz. Far-infrared (FIR) or terahertz (THz) electromagnetic radiation
is important in many applications such as radio astronomy, environmental monitor-
ing, plasmon diagnostics, laboratory spectroscopy, telecommunications etc. and in
the characterization of nanoscale condensed matter materials. In recent years, the
generation, propagation and detection of FIR or THz electromagnetic radiation using
two-dimensional semiconductor systems or other semiconductor nanostructures has
become one of the most rapidly expanding fields in the photonics, optoelectronics and
condensed matter physics communities.

Diode lasers are ideal sources because they are cheap, compact and very eflicient.
However, the semiconductor band gap places a limitation on emission frequency. The
longest-wavelength diode lasers (~ 30pm) are based on narrow gap lead-salt semicon-

ductors [1]. While these lead-salt lasers have been quite successful for high resolution

15



16 CHAPTER 1. INTRODUCTION

spectroscopy, they are still limited to cryogenic operation and provide relatively low
power. On the other end of the spectrum, semiconductor transistors can be used to
make 100 GHz oscillators [2]. Molecular gas lasers are currently the only practical
laser sources for the far infrared, but they have limited lasing frequencies. They are
also somewhat unwieldy as they require high voltage supplies and are usually rather
bulky.

Intersubband lasers have several advantages over conventional semiconductor lasers.
Most useful is the fact that the emission frequency is chosen by the design of the
widths of the quantum wells, and can hence be tailored to the application. This
is especially useful for infrared applications where small bandgap materials become
difficult to find and work with. Also, since the envelope functions extend over a well
(tens of Angstroms), the dipole moment for the intersubband transition is typically
several orders of magnitude larger than that of an atomic transition. These features

promise more efficient lasers.

1.1.2 Intersubband Lasers

In 1970, Esaki and Tsu [3] proposed using heterostructures for applications in opto-
electronics. The use of intersubband transitions to create a laser was first suggested
by Kazarinov and Suris [4] in 1971. Since then, electrically pumped quantum cascade
lasers have been developed for wavelengths up to 24 pm [5]. Quantum wells are made
by growing layers of different band gap semiconductors on top of each other, creating
a stack like structure. Since the bandgap of GaAs is smaller than that of Al,Ga;_xAs,
the ensuing band gap profile gives rise to potential wells. The potential well height
is determined by the Al alloy concentration of the barrier material.

These quantum wells perturb the crystal periodicity in the growth direction. New
electron energy states are located in these quantum wells, confined in the growth
direction but still free in the plane of the well. As shown in figure (1-1), the conduction

band is quantized into subbands.
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Figure 1-1: Subbands in a quantum well. The potential well caused by the AlGaAs
/ GaAs quantum well gives rise to bound states localized in the well. In k-space, the
subbands are parabolic as the electrons are not confined in the plane of the well.

The quantum well is similar to an impurity atom in that localized states are
created. In k-space, the subbands are parabolic as the electrons are not confined in
the plane of the well. The exact energies of the subband minima are dependent on
the well width and the depth of the potential well. The energies can be approximated
by the formula for infinitely deep wells:

A% nr,
- 2m* (_IT) ? (1'1)

n

where m* is the electron effective mass in GaAs, L is the well width and £ is the
reduced Planck’s constant. The energy levels for a well with a finite barrier are lower
than in equation (1.1). By choosing the well width and the barrier heights we can
tailor the quantum levels so that transitions between E,, and E, will emit photons
in the far infrared. Very interesting from an engineering point of view is the ability
to tune the energy levels and the dipole moments by applying a voltage bias. The
Stark shift induced by the electric field shifts the energy levels and alters the potential

profile. This is a very powerful tool when designing quantum wells.
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Figure 1-2: Gauthier-Lafaye’s three level quantum well design. Indicated are the pump
and mid-IR intersubband laser transitions. [8]

Kazarinov and Suris [4] were the first to propose the use of intersubband transi-
tions to design a laser. Electrically pumped versions of such a laser, called a Quantum
Cascade Laser, have been demonstrated in recent years. The QCL works by applying
a voltage bias to create a potential staircase in which each step consists of a module
of quantum wells. In most designs, each module has three major energy levels. Elec-
trons are injected into the upper level and relax down to the middle level by emission
of a photon. Subsequently, this lower laser level is quickly vacated by fast polar longi-
tudinal optical (LO) phonon scattering to the ground state. From this ground state,
electrons are then injected into the upper level of the next module. This design and
variations thereof have been very successful in the mid-infrared frequency range 4-24
pm [5, 6, 7).

An alternative to electrical pumping is optical pumping, either intersubband or
interband. Room temperature luminescence around 10 pm was observed by Sauvage

et al [9] in 1996 and at 7.7 pun in 1997 [10]. Lyobumirsky et al. reported spontaneous
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Figure 1-3: Kastalsky’s MQW design consists of multiple single wells. Also shown is
a scheme of the optical transitions under IR laser operation [14].

far-infrared emission around 47 pm [11]. In 1998, a mid infrared quantum well laser
operating at 15.5 pum was realized by Gauthier-Lafaye et al. [8]. A schematic diagram
of their laser design is shown in figure (1-2). This laser uses a simple three-level
scheme where electrons are optically pumped from the ground level into the excited
state E3. Population inversion is ensured by designing the intersubband spacing
E, — E; = hwro for LO phonon resonance to depopulate F,. Similar structures were

proposed by Julien [12], Green [13] and Sauvage [10].

Optical pumping can have the advantage of a high selectivity in populating energy
levels in a simple structure. It avoids the free carrier losses associated with contact
regions. Also, a voltage bias can be seen as an extra degree of freedom and is not
instrumental in carrier transport between modules. On the other hand, electrical

pumping is a more convenient and efficient.

Recently, several proposals and measurements of FIR interband pumped laser
devices have been published, but no lasing has been observed yet. Sauvage et al. [10,

9] reported both far- and mid-infrared intersubband luminescence in an interband
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pumped device. Kastalsky [14] proposed an infrared intersubband laser based on an
interband laser. In his design a pump laser excites electrons into the first excited
state in an isolated quantum well. The ground state is depopulated by a stimulated
interband process (figure (1-3)). Vurgaftman and Meyer proposed the use of optically
pumped type-II heterostructures to obtain THz lasing {15].

For intersubband pumping, the CO, laser is the most commonly used laser. Its
main drawback is that its wavelength is fixed, which imposes limits on the QW design.
For interband pumped devices, the Ti:Sapphire laser offers easy tunability from 690-
1080 nm wavelength and a range of pulse lengths continuously variable from 80 ps
to less than 50 fs. Also, cheap single mode laser diodes around 780 nm are available
with power levels up to 100 mW. SLI Corporation (15 Link Drive, Binghamton, NY
13904) offers a single mode diode laser at 785 nm (e.g. SLI-CW-XXX-C1-XXX-
0.1S-R) with up to 100 mW output power. Multimode laser diodes and diode laser
arrays (linewidth around 3 nm) are more commonly available with powers ranging to
upwards of 200 W. Coherent offers a single-stripe multimode laser diode with 3 W
output power (S-79-3000C-200x) at 780 nm. The same company offers a 20 W laser
diode array (B1-770-20C-19-30-A) at 770 nm. Unfortunately it is very difficult to
find laser diodes with a wavelength between 740 and 780 nm (1670 and 1600 meV).

The proposed pumping geometry is based on the setup used by Le et al. [16] We
can use a linear pump diode array with a collimating cylindrical lens. The collimated,
parallel beam can be focused into a stripe by an aspheric condenser. The stripe width
can be controlled with a pair of wedges that form a precise slit aperture and also act
as a beam scrambler to reduce hot spots. The wedges are positioned slightly off the
condenser focus so that the pump density profile along the stripe is nearly uniform.
The sample itself can be mounted on a cold finger inside a dewar. Intersubband
radiation emitted by the sample is coupled out of the dewar through a window. In
order to ensure an efficient use of the pumping power, we will assume surface pumping.

This means that the incident pump beam propagates along the QW growth axis, and
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Figure 1-4: Schematic drawing of the optical pumping arrangement [16]

the electric field is polarized in the plane of the well (TE polarization). The active
region is surrounded by cladding layers and a metal-metal waveguide. The top metal
layer should have windows to allow the pump beam to pass through, yet still reflect
the THz emission for an effective mode confinement. This can be achieved by having
the rectangular windows aligned with their length along the ridge. Edge pumping is
more difficult because of the very small penetration depth of the pump field in the
sample (on the order of 1 pm). On top of that, it is difficult to focus the pump beam

exactly on the sample’s edge.

The proposed interband pumped intersubband laser consists of a sequence of inde-
pendent modules of three coupled quantum wells of increasing width. A laser emitting
radiation of the appropriate frequency excites carriers in the narrowest well (contain-
ing the highest energy ground state) from the valence band into the corresponding
conduction subband which will serve as the FIR laser’s upper level. The middle well,
of intermediate width, hosts the lower laser level. Finally, this lower laser level is de-
populated by making use of resonant LO phonon scattering into the third and widest
well. In order to depopulate this well and avoid state blocking for the LO-phonon

transition from the lower laser level, interband lasing conditions must be met.
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1.2 Problem Statement

Two major difficulties pose challenges to the design of interband pumped intersub-
band THz lasers: pump selectivity and the lasing conditions for the “depopulation
laser” in the widest well. Ideally, the pump laser would only excite carriers in the nar-
rowest well, containing the upper laser level. However, as this well also has the largest
“effective bandgap” of all three wells in a module, it is inevitable that the pump laser
energy will be greater than the effective bandgaps in the other two wells, giving rise
to an undesirable generation of photo-excited carriers in these wells. Those carriers
reduce the population inversion between the intersubband laser levels by swamping
the lower FIR laser level with electrons, making population inversion more difficult to
obtain. Also, by increasing the carrier density in the widest well, state blocking of the
depopulation of the lower level may become an issue. Furthermore, this “parasitic”
photogeneration depletes the pump beam, decreasing the attainable efficiency of the
device. Secondly, in order to determine the depopulation laser threshold, it is neces-
sary to investigate the hole transport in the valence band, as well as the interband

dipole moment.



Chapter 2

Optical Transitions

2.1 Introduction

In order to evaluate electronic and optical processes in a semiconductor, an adequate
model of its electronic band structure is needed, defining electron (and hole) energy
levels and effective masses. This will enable us to calculate the corresponding wave
functions, and hence absorption and gain due to electronic transitions in the presence
of an incident optical field. Most important for optical devices are optical transitions
between conduction and valence band edge states, which are lowest in energy and
most densely populated. Therefore, we will focus on the conduction and valence

band structures near the band edge, where the k - p method is very useful.

2.2 Bloch Theorem and k- p Method

A crystal lattice is characterized by its long range order and symmetry. This symme-
try will be reflected in the crystal’s electrostatic potential, which in turn influences
the movement of charge carriers. How these (translation) symmetry properties can
be expressed in terms of properties of the carrier wave functions, is described by the

Bloch Theorem.

23
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For an electron in a periodic potential V (r) = V(r + R), with R a lattice vector, the

electron wave function satisfies the Schrédinger equation :

Hy(r) = [i’—vz " V(r)] b(x) = BA(e). (21)

2my
The Hamiltonian is invariant under the translation r — r + R. Therefore, if 9(r)
is a solution, ¥ (r + R) will also satisfy (2.1), the only possible difference being a
constant phase factor (which has no physical meaning). So, the general solution to

(2.1) can be written as:

¢nk(r) = eik.runk(r)y (22)
with
Unk(r + R) = uni(r), (2.3)

n referring to the band and k to the electron wave vector.
The k - p method is a useful technique for analyzing the band structure near a par-
ticular point ko, especially when it is near a band extremum. Here, we will consider
the case where this extremum occurs at the zone center, ko = 0. This is a very useful
case for direct II1I-V semiconductors, such as GaAs.

Substituting (2.2) in (2.1) we can write the Schrodinger equation in terms of un(r) :

27’—7; +kep V(r)] t(r) = {En(k) - ZZ“:] e(E), (2.4)
or
[Ho + H') tnk(r) = En(K)unk(r), (2.5)
where
Ho= '2% Vi), (2.6)
W= ke, 2.7)
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h2k?
8n(k) = En(k) Y (28)
2m0
If we're just interested in a single band, as is the case near the band edge in
a conduction band, we can easily use perturbation theory to calculate the energy
dispersion relation. We carry out an expansion around k = 0, and time independent

perturbation theory gives the energy to second order [17]:

h2k2 h h2 lk'pnn' l2
E,.(k) = E,(0) + — + —k-ppn + — , 2.9
(k) (0) + o T e KB+ };,, F(0) - By (0) (2.9)

where the momentum matrix elements are defined as

Pant = /mig u:',o(r)punlg(r)dgr. (210)

cell
If ko is at an extremum of E,(k), pn. usually vanishes because of symmetry
considerations, and E,(k) around the extremum has a second order dependence on

the components of k. We can write this as :

2
Bu(k) — En(0) = 3" D*Pkaks = 1= 3° (i) kaks, (2.11)
a,f 2 a,f m*/ o
and
h? R P2 ,pﬂ + pﬂ P R
af _ nn'tn'n nn'Pa'n _ 77 [ -
D 2m0 6&/3 + 2m% né;t’ En(O) - Enl(O) 2 (m*)aﬂ ’ (212)

where a, 8 = z, y and z. The matrix D°? is the inverse effective mass in matrix

form multiplied by h?

2.3 Luttinger-Kohn’s model

2.3.1 Lowdin’s Perturbation Method

These results from the single-band k - p theory can be generalized for the case of
multiple, degenerate bands by using the Luttinger-Kohn model [18, 19]. In this model
the influence of all other bands are taken into account by using Lowdin’s perturbation

method [17]. All bands are subdivided into two classes:
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ﬂl\/ l Class B
N2

//\\

} Class A

I Class B

Figure 2-1: Conduction and valence bands are divided into two classes for the appli-
cation of Lowdin’s perturbation method.

e class A : the six valence bands(heavy hole, light hole, split off band and their

spin counterparts) and the two conduction bands

e class B : all other bands

We will concentrate on the bands in class A, while taking into account class B bands

perturbatively.

We can write the perturbed solution ¢ as a linear combination of the unperturbed

eigenstates ¢1(0):

A,B
= andl). (2.13)

Assuming the unperturbed eigenstates are orthonormalized, we can write the

eigenequation as:

A B
(E - Hmm)am = Z Honan + Z Hqta, (214)

n#m a#m

with

H, = / ot O g3y = EO5, .. + H' | (2.15)
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or
A Hpn
m — n 2.1
a n;nE o, a+a§nE Hmm ( 6)

where the first sum on the right-hand side is over the states in class A only, while
the second sum is over the states in class B. Since we are interested in the coefficients
a., for m in class A, we may eliminate those in class B by an iteration procedure and

obtain:

A T7A
U - Hmnfsmn
= 3 S, (217)
and
B H,oHoun H,..H.,zH,
UA = Hp + + ma_of Thn ... (2.18
L E - Ha 2 (T Ha)(E - Hop) )
# B#m,
a#fB
Or, equivalently, we solve the eigenvalue problems for a,, (n € A)
A
> (U,ﬁn - E&mn) an =0 m € A, (2.19)
and
A UA — H 0
ay = i‘E—_—I%—l—an v € B. (2.20)
n s

When the coefficients a,, belonging to class A are determined from the eigenequa-
tion (2.19), the coefficients a, can be found from (2.20). A necessary condition for

the expansion of (2.18) is:

|Himo| € |E— Haol mE€EA, a€B. (2.21)
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2.3.2 Schrodinger Equation and Basic Functions
Including the spin-orbit interaction, the Hamiltonian is written as [17):

h
H = H() + WU -VV x P, (222)

where @ is the Pauli spin matrix vector. Substituting 2.2 in the Schrodinger

equation, we finally obtain

I h2k? h _
Hun(r) = (Ho+ —k-II+ —+ ——VV xp-T Unk(T) (2.23)
my 2my  4dmjc?
= E,(k)un(r),
where
II=p+ L ox VV (2.24)
=P 4m0c2 ’ '

and the perturbation Hamiltonian

H = —}}—k -I1. (2.25)
mp

The unperturbed Hamiltonian will then refer to the band-edge spin-orbit system
(for k = 0).

Note that the second term in k - IT is much smaller than the last term in (2.23),
because ik < p = |[{ux|plur)| = k/a. The electron velocity in the atomic orbit is
much larger than the velocity of the wave packet in the vicinity of ko ~ 0 (band
edge).

At the band edge, conduction band Bloch states exhibit s-like symmetry, and
valence band states are p-like (3-fold degenerate without spin). We can represent these
states by |S), and |X), |Y') and | Z) respectively. We can picture these Bloch functions
as a periodic repetition of atomic orbitals, repeated at intervals corresponding to the

lattice spacing.
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We expand the function

A B
k(1) = Y- a5 (uyo(r) + 3, (1 (r),

29

(2.26)

where j’ is in class A and 1 is in class B. We choose the basic functions u; to be

us9(r) = ua(r ’S > =151,

a0 (£) = ugo(r) = |2 1> (X +iY) Dt =

uz(r) = wp(r) = 3 1> 7 I(X +1Y) 1) + \/ng 1,
wo®) = ua®) = [3.5) = X+ ¥) 1),

. 1
Sl -1 =512,

wro(r) = Tin(x) }2 )= \/—|(X—2Y)T \/‘IZU

wo®) = Tale) = 5,5 ) = 75 X = ¥) 1)

Using Lowdin’s method, we need only solve the eigenequation

A

Z(U]Aj' - Eéjj:)aj: (k) = 0,

jl

where
B H H B H/ HI
U H_” + z ’7.7 —_ HJJ Z Jr g’
#JJ - Ey Y#35,3’ Ey - By’
h _ hk,
H_;")' = <uj0 Eok(p + 4m0620' X VV) u.,0> ~ g p]7'

(2.27)

(2.28)

(2.29)

(2.30)
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As mentioned above, the second term in IT can be neglected compared to the

similar term with p instead of k. Similarly to the single band case, we can write for

Us,
Dy = Uj = E;(0)8;; + 3 DSikoks, (2.31)
75
Daﬂ _fi_ Sop + Z pJ’Yp’YJ + pf’)’pgj' (2 32)
ii’ JJ af . mo(Eo — E.,) . .

We now define [19]

" 2mg m% > E,

h2 h? B p p
BO — z'y 'yz
mg ZY:

h? i P%,PSy + PhyPEy
m% ~ E() - E7 ’

and the band structure parameters (Luttinger parameters)

h2
—2—’”—“;’)’1 (A() -+ 2B0)
h2
—5_372 —(AO — By),
h? Co
2m0 »B= 6

These parameters are very closely related to the effective masses of the holes in
the various valence bands. 7; and 7, describe the coupling of the |X), |Y) and |Z)
states to the other states. The third parameter 3 relates to the anisotropy of the

energy band structure around the I' point when 3 # 7,.
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The Luttinger-Kohn Hamiltonian matrix Djy can be written explicitly as [18, 17,
20]:

E, P, V2P, —3P, 0 V2P_ P_ 0
Pl P+A V2Qt -St/v2Z -v2PL 0  —/3/2S —V2R
V2Pl V2Q P-@Q -st  -PL 3/25 0 R
o —V3PL -S/¥/2 -5 P+Q 0 V2R R 0
0 —V2P, -P, 0 Eq P, —V2P, —\/3P_
V2P! 0 4/3/25t V2Rt P} P+A V2Q1 -5/V2
Pt —f3/25t 0 Rt —V2P} V2@ P-Q S
0 —v2Rrt Rt 0 —v3PL —st/v2 St P+Q
with [20]
Bu=FE,+ (2 412+ 12
el — g+2me( z+ y+ z)’ (233)
pln IR 4+ B2+ KD), (2.34)
2m
Py = \/% [iP (ks % iky) + Bk.(k, £ 1ik.)], (2.35)
P, = \/g (iPks + Bkzk,), (2.36)
Q= Z”(kuk? 2%2), (2.37)
Mg
h2
R = o —[~V3m(k; — k2) + i2V3sk,ky ), (2.38)
mg
2
§ =" 3k, —ik)k. (2.39)
myo

Here A is the spin-orbit splitting energy. The coupling between the I' conduction
band-edge |S) state and the I' valence-band-edge state |Z) is given by:

h? 0
P=—-——- %alﬁz- (240)

mg Junit cell
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The Kane parameter B describes the inversion asymmetry. In most practical
calculations, this parameter is neglected {21]. The parameters 7, 72, v3 and P can

be determined from effective masses at the I' point of a bulk semiconductor [20]:

my
D =9 2.41
h}z(001) "N Y2, ( )

0

_ = 2 A 2.42

M _ 4l (2.43)

m50(001) =M 2 ’ ’
Mo

—_— =y =2 2.44

mhh(lll) T 73, ( )

where the dimensionless parameters A and r are given by

4m0P2
A= ——, 2.45
3h’E, (2.45)
B,
- 2.
T B+ A (2.46)

Some values for the effective masses of GaAs and AlGaAs are given in table (2.1).

Material [ ma [ mwn | mm | mso [ mpy | source

GaAs 0.067 | 0.4537 | 0.0700 | 0.1434 | 0.8526 (20]

GaAs 0.465 | 0.085 0.595 | cyclotron resonance [22]
GaAs 0.474 | 0.076 0.68 | calculation [23] in [24]
GaAs 0.067 | 0.51 0.082 | 0.154 | 0.63 [25]

GaAs 0.067 | 0.62 | 0.087 | 0.15 [26]

Al 55Gaz5As || 0.0942 | 0.5100 | 0.0900 | 0.1720 | 0.9815 [20]

AlAs 0.150 | 0.76 0.15 0.24 [26]

Table 2.1: Effective mass at the valence band ' point, according to different sources
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2.3.3 2 Band Model

The conduction band can be modeled quite easily if we assume that the interaction
with the other bands is weak enough for it to be treated perturbatively, i.e. use a
simple effective mass model. In the case of the valence band, however, the strong
interaction between the degenerate light and heavy hole bands (near the band edge)
requires that these bands are taken into account explicitly. Only when we consider
energy levels deep into the valence bands (close to the SO splitting energy, about 300
meV in GaAs) do the coupling terms to the SO band become important. As we will
only be concerned with shallow levels, the influence of SO and conduction bands (1.5
eV splitting) can be introduced through the effective mass.

The degeneracy of the light and heavy hole bands near the band edge generates a
coupling term (as in the Luttingér—Kohn Hamiltonian). Including spin degeneracy,
this yields a set of four coupled effective mass equations [17, 21, 27].

Fortunately, this set of coupled equations can be greatly simplified by a method
described by Broido and Sham [21]. They used a unitary transformation of the four
basis Bloch functions (un, Unh, Uin, Ghr) into a new set (ua,up,uc,up) to decouple
the set of four coupled equations into two sets of two coupled equations. The Bloch

functions u; are given by

ug = %(uhh — Unh), (2.47)
1 _

up = —\/—5(—1% + Tin), (2.48)
1 —

uc = ’ﬁ(ulh + Tip), (2.49)
1 .

up = E(Uhh + Upp)- (2.50)
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This means that the Hamiltonian

[ P-Q -st 0 R
-S P+ R 0
H = ¢ (2.51)
0 R? P-Q S

Rt 0 St P+Q |

is diagonalized into two 2x2 blocks, an upper block HY and lower block H%, given

by

P+Q W
wt PFQ

H = W = |R| -S|, (2.52)

where the index o = U(L) refers to the upper (lower) =+ signs. The upper and
lower blocks are equivalent, showing the double degeneracy of the heavy and light
hole bands. It is therefore sufficient to solve the upper block and obtain its solutions.
The solutions for the lower block can easily be determined from the latter.
We can identify (P — @) and (P + @) with the light hole energy (operator) H, and
the heavy hole energy Hj, respectively. Similarly to the conduction band case, the
Schrédinger equation with Hamiltonian (2.52) can be simplified into an effective-mass

formalism with:

. 52
Hip = ~(n + 2’)’2)5;3 +(m1 — )k, (2.53)
. o°
Hpyp=—(m - 2’72)5"23 + (11 + 1)k, (2.54)

. 7]
W = V3ki(yok - 2775-).

(2.55)
Finally, we take into account a potential V'(z), which represents the (bulk) valence-
band-edge offset with respect to an arbitrary reference energy. This allows us to write

the effective mass equation as :

Hp, +V 1%
wi Hy,+V

Fup
Fi

Fhp
Fi

= E(k) : (2.56)
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-

Figure 2-2: Cons?)antﬁjenergy contours for light holes and ﬁeavy holes in bulk GaAs.
There is a clear-anisotropy in the (110) direction. The energy spacing is 0.5 meV for
the HH band and 3 meV for the LH band.

where Fj,, and Fy,.are the envelope functions corresponding to u4 and up respec-
tively. Note that in this formalism, hole energies are taken to be positive.
The first step in solving the quanﬁim well problem, is finding the solution in bulk
material, where we take V to be a constant Vo The value of V; will be different
in well material and barriers, reflecting the different valence band edge offsets. We
can now easily solve for the eigenenergies F(k), yielding the bulk energy dispersion
relé,tions for the HH and LH bands. We consider the case of a {100} plane, writing

the in-plane k component as k; :

E(k) — Vo = (k2 + k?) £ /413 (k2 + k2)? + 12(73 — 13)k2k2, (2.57)

where the plus sign refers to the “light hole” solution, and the minus sign to the

“heavy hole” solution. We can rewrite (2.57) as:

E®) -Vo= |+ Pk ML (K2 + k2) (2.58)
( [t ’Yl 72 ’Yg (k2+k%)2 z t/]: .



36 CHAPTER 2. OPTICAL TRANSITIONS

Constant energy contours are shown in figure (2-2), illustrating that 3 can be
related to the mass anisotropy along the (100) and (110) directions. If k; is small
compared to k., we can expand the square root in (2.57):

22
E(k) — Vo = (11 £ ) (K2 + k2) £ 313—;—”’%?. (2.59)
2

The energy term accounting for anisotropy for a given k; and k, is equal for the
HH and LH bands. However, due to the lower energy of the HH bands the anisotropy
term is relatively more important for HH than for LH, resulting in a clearly anisotropic
HH band and a quasi isotropic LH band.

Still, we see that in bulk material, the effective masses along the z-axis (001) and
x- and y- axes (100) and (010) are identical (as expected), as the dispersion relation
is given by E(k) — Vo = (71 % 27,)k?. We can easily find this from (2.57) with &k, =0
for (001), and &, = 0 for the z- and y- directions.

The eigenvectors of (2.56) are found to be, apart from a normalization constant :

F | Hhi+v-E
allr) = | =k | TRT R ST (2:60)
Fina -wit
 Fina | o | Hu+Vo—E
ballr) = | T L=t | TR TR (2.61)
Fin -Wi
where the matrix notation implies
¥ = Frpug + Fiup. (2.62)

To solve the quantum well problem, we choose the well growth direction (direction
of confinement) along the z-axis. The xy-plane is in the plane of the well. We
can construct a confined solution from the bulk plane wave solutions by imposing
boundary conditions along the confinement axis. In the plane of the well, there is
no confinement and hence we retain the bulk plane wave solutions. By taking a

linear combination of the bulk solutions in each material, a general solution can be
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Figure 2-3: At any one energy in a bulk material, we can find four wavevectors
corresponding to the heavy and light hole bands. An eigenstate of the Hamiltonian
in a quantum well is then made up of a linear combination of the bulk plane waves
corresponding to those wave vectors. Ay corresponds to xk,; (light hole), By to the
heavy hole +k,3 in GaAs. In the barriers (AlGaAs) a similar mechanism is employed.
The boundary conditions at the interfaces then determine the energy eigenvalues and
the coefficients. Only the outgoing waves are indicated, as the coefficients for the
incoming waves have to be identically zero.

constructed. As illustrated in figure (2-3), four plane wave solutions exist at a given

energy, yielding a general solution ¥:

U= Z Ai’l/)l (:l:k‘zl, kt, I') -+ Z Bj:’Q[lQ(:l:kzg, kt, I'). (263)

The four coefficients Ay and B, are unknown constants. Both v, and 1, are two-
component vectors, as described in (2.60) and (2.61). We can write the components

of U, Fy, and Fjy, as :
Fip = €[S AxFan (£ka, k)€™ 37 By Fup (g, ke)e®*2] | (2.64)
Fyp, = etk [Z Ay Fip (ke k)e™™ % + 3" By By o(Zk.o, kt)eiik”‘z] . (2.65)

Thus we have four unknown constants in each region, making a total of twelve
unknowns over the three regions. The boundary conditions at the interfaces between
the regions and the demand that the solutions be confined in the quantum well

provide the necessary relations to solve the problem. The following quantities have
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Valence Band Energy vs k for a 100 A GaAs/AlGaAs QW

100 T — 100
— HH1

R -— LH1
%0 4} 90 - HH2
we=s HH3
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8o0F . 1t 180

-~
o
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2

8
Subband Energy {meV)

Subband Energy (meV)
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8

k (m™) <110> x10" <100>

Figure 2-4: Dispersion relations for (100) and (110) directions in a 100 A wide
GaAs/Al 3Ga 7 As quantum well. Growth direction is (001). The subbands are named
after their dominant character at the zone center. At higher k-vectors the bands are

very heavily mized.
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Figure 2-5: Density of states in a 100 A wide GaAs/Al 3Ga7As quantum well. The
spikes in the density of states for LH1 and HH3 are due to band eztrema away from
the zone center.

to be matched across an interface :

dFpp

Fun and - (71— 27%) P + V3y3k: Fin, (2.66)
' dF
Fyp and (7 — 272)d—;h — V3y3k Fun. (2.67)

These boundary conditions were obtained by symmetrizing the Hamiltonian in
(2.52). Caution should be issued however that the above boundary conditions only
apply when the Bloch functions in both well materials are similar (also as seen from
their Luttinger parameters), as is the case for the GaAs-AlGaAs system. The bound-
ary conditions boil down to the continuity of the wave function and “generalized”
continuity of its derivative, corresponding to current across the interface.

In figure (2-4), the valence subband structure of a 100A GaAs/Aly 3Gag.7As quantum
well is shown (Vp =~ 140 meV if the reference is the GaAs valence band edge). The LH

and HH bands are very heavily coupled, giving rise to highly non-parabolic subbands.
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Also notice the anisot‘ropy between (100) and (110) directions. In practical calcula-
tions, we can use an approximation where the coupling terms which are responsible
for the anisotropy are replaced by an “average” term Wy, = (Wigo + W110)/2. This
approach is known as the axial approximation.

Particularly important is the density of states of the subbands, as illustrated in
figure (2-5), as this plays a major role in determining interband gain and absorption.

The density of states g(E) can be found from

_1dk

el 2.68
— 5 (2.68)

9(E)

assuming the E-k relationship is isotropic (using the axial approximation). The
DOS starts off at roughly 2.5 times the conduction band DOS (2.8 x 10'%m=?meV!),

increasing with increasing hole energy in the valence band.

2.4 Optical Transitions

At the core of an optical device, is of course the interaction of electromagnetic waves
(light) and matter (electrons in the semiconductor). Quantum mechanically, the
interaction between photons and electrons in the semiconductor can be described by

the Hamiltonian

(p— qA)? +V(r), (2.69)

~ 2m,
where A is the magnetic vector potential, and ¢ is the carrier charge (¢ = —e
for electrons). Neglecting the term quadratic in A (a good approximation for most
practical optical field intensities), and applying the Coulomb gauge V - A = 0, we can
distinguish the perturbation Hamiltonian H’ due to the electron-photon interaction:
H ~SA.p. (2.70)

my
However, it is possible to take the quadratic term into account without making the

perturbation Hamiltonian more cumbersome. We can do this by by explicitly writing
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the wavefunction 1 as the product of a phase factor and the remaining wavefunction

L&
% — P AT/, (2.71)

Substituting this into the Schrodinger equation with Hamiltonian (2.69), we find:

p’l/) — eieA.r/h (p + GA)Q/)’, (272)
PP [0 0A ,
2m0¢ = [8t e E r] , (2.73)

and, as E = —0A/0t, the Schrodinger equation for the interaction of a photon
with an electron can be written as a function of the amplitude of the incident optical

field E:

2 ’
P o |y 00
[2m0 eE r] P = th 5 (2.74)

The perturbation Hamiltonian is:
H =—€E-r. (2.75)

The physical interpretation of this interaction is more intuitively obvious than
in the description with a vector potential. The radiative field acts as a force on
the electron charge cloud, thus accelerating it and generating radiation (emitting a
photon) or exciting the electron (absorption of a photon).

In order to describe the particle-particle interaction between photon and electron,
we have to quantize the electric field E. This can be done similarly to the case of a
harmonic oscillator. A photon then corresponds to one quantum of excitation in an

oscillator:

hw I I
—_ t —ikr+iwt _  _ikr—iwt
E(r,t) = —4/ Ve [a e ae ] . (2.76)

The operators a and af are photon annihilation and creation operators, respec-

tively. They correspond to the absorption and emission of photons by mediation of
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an oscillating electric (electromagnetic) field with angular frequency w. This is true
even if that field is a vacuum field, as is the case for spontaneous emission.
The optical transition rate between an initial state (E;, k;) and final state (£, ke)

can be described using Fermi’s Golden Rule:
2m .
Wig = = [(¢s|H (D)l)|* 8(Ef — Bi — hw). (2.77)

Here the delta function assumes a zero linewidth. In order to introduce a finite
linewidth, the delta function can be replaced with the proper line-shape, usually a
Lorentzian with linewidth I'. The Lorentzian is a good model for line-shape broad-

ening due to a finite lifetime or dephasing scattering.

I/(2m)
(Ey = E; — hw)? + (T/2)%

More generally, in most cases a number of final states is available, with density of

§(Ef — E; — hw) — (2.78)

states p(Ejis). As each state is equally probable as a final state for the transition, we

obtain (zero linewidth)
2T ,
Wi = — @by H' () |) | p(Eip)b(Ey — Ei — hw). (2.79)

If we neglect non-parabolicity, the subbands in one particular band track each
other. The energy separation between two states with identical in-plane wave vector
remains constant for any two given subbands. Assuming only vertical transitions
(dipole selection rule), this means that p will be given by the subband density of states
for intersubband transitions. Neglecting non-parabolicity is okay for the conduction
band, but not for the valence band. Band-mixing in valence band quantum wells
leads to large non-parabolicity effects.

In interband transitions, the bands don’t track each other and the energy separa-
tion varies with E;;. Again, assuming only vertical transitions in k-space, the number
of transition pairs within ¢k has to be the same in both conduction band and valence
band p, 0F,, = p.6F, = p, 0F,. Setting 6., = 0FE. + dE,, we immediately obtain:

1 1 1

—=—+—. (2.80)
Pr Pc Pv
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oF

Figure 2:6: Relationship between the energy ranges in the conduction and valence
bands for a given dk in k-space, assuming k-selection applies.

In typical semiconductors, like GaAs, p, is a lot higher than p., hence p, =~ p.. The
above equation can be rewritten in a more practical form, useful for non-parabolic

bands:

1 1 [dEc(k) _ dEv(k)] ._ (2.81)

p(Eip) ~ plk) | dk dk

This definition allows for p, to be evaluated at any given point in k-space once

the E — k dispersion relation is known at that point.

2.4.1 Intersubband Optical Transitions

We can write the initial (photon density n,,) and final states (np, + 1) in an inter-

subband transition as:

etkeiTe

’lpi: \/Z

Fi(2)ugg, (2.82)
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eikg‘f'l‘:

”l/)f = \/A. Ff(Z)’LLO’f, (283)

where A is the in-plane area of the quantum well. As both the Bloch functions u
belong to the same band, and as they are almost independent of k, we can assume

Ui = Ug,s. The matrix element H;; can then be written:

Hif%—

. fhw(npn +1) <e“‘"f'“ ik
1 .

We 7 L f(z)|er'“—\/‘j“f’i(2)> (uo,fluoz),  (2-84)

. [hw +1) .
Hy =i [P & ) enl () Gy (2.85)

In the above equation we made use of the fact that the F'(z) can be considered
a constant on the scale of a lattice spacing. This is a very good assumption for low
level states and quantum wells wider than a few monolayers. This is generally true
for the wave functions we are interested in.

The delta function in (2.85) corresponds to a conservation of in-plane momentum.
The momentum carried by the photon, k,, is of the order of 2w/ (A ~ 100um),
which is negligible compared to the electron wave vectors k;, k; of the order of
27 /a, a being the lattice constant (order of magnitude 5 A). Therefore we can write
ke~ ke

The matrix element Z;; = (Fy|z|F;) is called the dipole matrix element between
the initial and final states. The dipole matrix element can be used as a gauge for
the strength of the optical intersubband transition. Due to the dimensions of the
quantum wells and their (bound) energy levels, Z;; in intersubband transitions (~ 30
A) can be a lot larger than in an atomic system (~ 2 A). During the design of a
quantum well structure, we will try to maximize the dipole moment associated with
the targeted intersubband transition.

Also apparent from (2.85) is a dipole selection rule for intersubband transitions.
Only an electromagnetic wave with its electric field polarized along the z-axis (the
quantum well growth axis) will be generated or absorbed in an intersubband transi-

tion.
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Using Fermi’s Golden Rule, the intersubband transition rate for stimulated emis-
sion (into one specific optical mode, i.e. the same one as the incident wave) can be

written as:

wesz?fnph

Wiy = — 2 6(By — Bi — hw). (2.86)

The transition rate is directly proportional to the intensity of the incident field
(~ npr). Equation 2.86 also shows that the transition rate decreases with increasing
wavelength. The expression for (stimulated) absorption is identical to the one for
stimulated emission.

For spontaneous intersubband emission, we have to sum over all available final
photon states. Taking into account a 3D optical mode density of (87Vn3E?)/(h3c3),
the transition rate is:

2. 372
aD _eanif

P = Breohcd (2.87)

However, in far-infrared optiéal quantum electronic devices, the transition usually
takes place inside a two-dimensional optical cavity with thickness ¢, which is at the
same scale or smaller than the wavelength (50-100 um). This cavity can consist of
a metal or plasma waveguide, confining the electromagnetic wave in the z-direction
and limiting the optical mode density to A/(27)2. This yields a 2D intersubband
transition rate of

2, 272
2D _eanif

il i 2.
5P T 9 eohic? (2.88)

scaling inversely proportional to the cavity thickness. Compared to the 3D ex-
pression, this dependence replaces a 1/\ dependence. This is shown more clearly if

we look at the ratio of W3P to W?2P

w3P 41
if,sp — c
= (2.89)

if,sp
The microcavity effect will increase W2P over the 3D case if the thickness of the

cavity is smaller than the wavelength. Note that a microcavity only has an effect on
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the spontaneous emiséion rate. Stimulated emission, and hence gain, are not affected
as all photons are coupled into one single mode. How many modes are available, is
not important.

Optical gain is defined as the relative increase of a wave intensity per length unit
as the wave propagates through the medium : dI/dz = g(w)I. To find the expression
for optical gain, we subtract total absorption hwN;W, from total stimulated emission

hwN;Wg,. With pump beam intensity [ = "—‘f}—"—hwﬁ we find from (2.86):

e’nZ}

W = I6(F; — F; — hw), 2.90
t 2h2€C ( f UJ) ( )
and
ANe?wZ?
et i R -
g(w) = Smece 0(Es — E; — hw). (2.91)

Here AN = N;— Nj is the population inversion between initial and final subbands.

If the transition has a finite linewidth A f, the delta function in (2.86) is replaced with

a Lorentzian line-shape and the maximum gain is:
_ ANEwZZ

= —0. 2.92
g0 mwh’negcAf (2:92)

2.4.2 Interband Optical Transitions

The initial and final states in an interband transition between conduction band and

valence band are

tky i re :

Wi = e—:/—_A_T—F,-(z)uc, (2.93)
eikt,f'l‘t

Yy = \/Z Ff(z)uv- (2.94)

The optical interband matrix element H;; now takes a slightly different form than

for the intersubband case.

A
Hip = 35— (uclé - plus) S eies (FrIF)- (2.95)
0
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Figure 2-7: (a) Subband edge probability distributions for the conduction and heavy
hole valence bands in a single 100 A GaAs/Al 3Ga7As QW. Growth direction is (001).
(b) Subband edge wavefunctions for the conduction and heavy hole valence bands in
a pair of coupled GaAs/Al3GarAs QW’s. Only the four lowest energy heavy hole
subbands are illustrated. The width of barriers and wells is indicated in monolayers
(IML=2.8254). Growth direction is (001).

35

Here we made use of (2.70) rather than (2.75). Notable is that the same k selection
applies as in the intersubband case. The vector € is the unit vector pointing along A.

As E = —0A/0t, & will also be parallel to E if the exciting field is linearly polarized.

The overlap integral (Fy|F;) between the conduction and valence band envelope
functions gives rise to another, less strict selection rule. Usually the overlap between
states with the same quantum number in the same well is much higher than with other
states. So, transitions between corresponding states in conduction and valence band
will be favored (“allowed”), whereas the other transitions are less strong. However, the
difference in effective mass between the bands and wave mixing can cause important

exceptions to this rule. This is illustrated in figure (2-7) and table (2.2). For a single
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well the subband edée wavefunctions would be perfectly orthogonal if they had the
same effective mass and if the wells had the same depth. These differences between
the valence and conduction band give rise to small violations of the selection rule,
becoming more important as the involved subbands are higher in energy and thus
closer to the barrier energy. In the double quantum well system the ground level of
the narrow well and the first excited level of the wide well are heavily coupled. The
four involved states ({2, ¥c3, ¥u,2, ¥v,3) Now share a significant overlap. The overlap
with the “non-perturbed” states (1., and 9,1, ¥ 4 in the example) remains small. Of
course, the orthogonality of states in the same band (valence or conduction) still holds
and the overlap integral between two conduction or valence band states is identically

Zero.

Val ,
COH d %,1 "/’v,? ¢v,3 "/)0,4
Ve 0.9810 | 0.0000 | 0.0102 | 0.0000
VYe,2 0.0000 | 0.9260 | 0.0000 | 0.0388
Val
Cond "l’v,l "/’v,2 %,3 1//'0,4
Pe 0.9714 | 0.0007 | 9.0109 | 0.0088
Ye,2 0.0075 | 0.5963 | 0.3361 | 0.0001
Ye,3 0.0071 | 0.3410 | 0.5847 | 0.0055

Table 2.2: The square of the overlap integrals |(F, fIF})|2 between the various subband
edge wavefunctions as illustrated in figure (2-7). The top table refers to the single
well in (a), the bottom table refers to the coupled wells in (b).

The momentum matrix element Mt = (u.|é - plu,) (F.|F,) is polarization de-
pendent [28]. When calculating My, all possible transitions between the involved

conduction and valence bands (HH or LH) have to be taken into account, yielding:

MrfP =3 3 3 Heele - plua) (RIEN. (2.96)

Uc,Uc Uy,Uy
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Figure 2-8: Dependence of the transition strength |Mr| on the angle between the
electron k-vector and the the electric field polarization vector E.

The factor 1/2 compensates for the spin degeneracy factor already present in the
expression for the density of states. It is customary to express |Mr| in function of
| M| = | (uc|é - p|u;) |, where i = z,y, 2. |M| can be determined from measurements of
the band curvature [28]. By expressing the valence bands u, as linear combinations
of the basis functions u; (equations (2.47)-(2.50) and (2.27)), the expression for |Mp|>
can be much simplified. We assume the envelope function overlap integral to be unity,
because for the moment we will be interested in transitions between two bulk plane

wave states. We find for the normalized transition strength in bulk material [28]:

| Mz P/ M[? =

IIR é l ) for HH band, (2.97)

|2 for LH band.

Ml'—‘ va—'
wh—*

Here k is a unit vector pointing along the electron k-vector.
As shown in figure (2-8), the strength of interaction between each electron plane
wave state and an incident photon is highly polarization dependent. However, in

bulk material this dependence doesn’t reveal itself as the incident field interacts with
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many electrons with -different; wave vectors, effectively averaging out the polarization
difference. In bulk, the relative interaction strength is equal in all three principal
directions |Mr|?/|M|* = 1/3.

For TM polarized light (E || z, H, = 0, assuming propagation in the Z-direction),
the heavy-hole transition is forbidden. This is due to the absence of a u, component in.
the heavy-hole basis state u,. A p,-like (odd in z) state is needed for the interaction
of a z-polarized field with the s-like conduction band Bloch state.

In quantum well structures, we can no longer work with simple plane wave states,
but have to take into account the envelope functions. As a general valence band wave-
function consists of both HH and LH components, equation (2.96) can be replaced
by

|Mr[? = 3 |(clé - plua) (Fel Fan) + (uclé - plus) (Fe| Fun)[”. (2.98)
Ue,Ue

Averaging out over all in-plane k directions, we can remove the cross-terms in the

above equation and get explicit expressions for TE (E,=0, for beam propagation in

z-direction) and TM (H,=0) light polarization, assuming the growth direction is 2:

| Mz |2 = |M? [2 [(Fe| Fun) ] T™ (2 | 2),
Mr? = ME (P Fu) + L (P F)F] TE (8 L 2).

For the interband pumping scheme, TM polarization corresponds to edge pump-
ing, while TE polarization relates to surface pumping.

At the band edge, the valence band states can be be characterized as pure HH or
LH states. Apart from the overlap integral |(F;|F;)|?, this case corresponds to the
bulk case and the obtained values for the LH and HH transition strength correspond to
what was shown in figure (2-8). As k; increases, band mixing becomes more and more
important, drastically altering the transition strength. Away from the zone center,
the states generally exhibit both HH and LH components. A sample calculation of
a 100 A quantum well is included in figure (2-9). For the heavy hole transition,

absorption of TM polarized light is suppressed close to k; = 0, where band mixing is
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Figure 2-9: Relative transition strengths for both TE and TM light polarization for
the two lowest subband transitions in a 100 A GaAs/Al 3Ga7As quantum well.

minimal. As we move away from the band edge, band mixing occurs such that both
Fy, and Fj;, are present in any one wavefunction. This alters the transition strengths.
We can use Fermi’s Golden Rule to get an expression for the interband optical

gain. The gain can be written as:

. 271' |Hif|2
i = — (B - fi), 2.99
gis =7 vgnphp( = 1f) (2.99)

with v, = ¢/n the group velocity of the incident wave. Substituting (2.95) in

(2.99) yields the material gain per unit length:

_¢h 1
9ir = €ocm3 huw;

\Mr(Eif) o (Eig)(f5 = fi)- (2.100)
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Chapter 3

Phonon-Carrier and

Carrier-Carrier Scattering

3.1 Phonons

The atoms in a semiconductor lattice are linked together with chemical bonds. These
ng}ds can w‘t,)e strictly covalent or contain a degree of ionicity, as is the case between
Ga(-) ans As(+) in GaAs. Still, the atoms are constantly in motion, vibrating around
their equilibrium lattice position, each atom a tiny harmonic oscillator. As the atomic
vibrations are closely coupled through their common bonds, the atomic vibrations car;

be seen as part of larger lattice vibrations, which exist in several modes (see figure

(3-1).

Similarly as with an electromagnetic field, each vibration mode can be quantized.
A quantum of excitation in one mode is called a phonon, and each phonon can
be characterized by a wave vector q and angular frequency w. Like an electron or
photon, an unconfined phonon can then be described by a (non-normalized) plane
wave function e'9*.

Similarly as for electrons, the lattice periodicity gives rise to a Brillouin-zone type

E — q phonon dispersion relation. The lower branches represent the acoustic phonon

53
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Figure 3-1: Room temperature dispersion curves for acoustic and optical branch
phonons in GaAs, obtained by inelastic neutron scattering.  Adapted from
Blakemore [25].

modes, characterized by the neighboring atoms being in phase. In the longitudinal
mode, the atomic displacements are in the same direction as the direction of energy
transfer, while in the the transverse mode the atomic displacements are perpendicular
to this direction. In optical phonon modes, the displacements of neighboring atoms

are in opposite phase.

As shown in the figure, the energy of the optical phonons is almost independent
of q, and in calculations longitudinal optical (LO) phonons are usually assumed to
have one energy (hwpo = 36 meV in GaAs). Because of the large dipole moment
induced by neighboring ions, LO phonons couple strongly with electrons in polar

semiconductors, provided enough energy is available.

As the phonons themselves represent the motion of atoms which are centers of
charge, they also represent time-dependent perturbations of the crystal potential and

can therefore scatter charge carriers. The electron-phonon interaction, i.e. creation
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and absorption of phonons, can be quantized through creation and absorption oper-

ators. The perturbation Hamiltonian H’ is very similar to (2.76):
H = > a(q) [e_i"" bl + €T bq] : (3.1)
q

To find the total scattering rate, we sum over all q in the above equation. a(q) is
the electron-phonon coupling strength.

LA phonons are most important for low energies or low temperatures. In these
cases they correspond to long wavelength deformations of the crystal lattice. The

interaction strength can be expressed as [29]:

le(a)|* = 5 (3.2)
Here D refers to the deformation potential, V is the crystal volume, p the material
density and c, the (longitudinal) speed of sound in the material.
For polar semiconductors such as GaAs, interactions with LO phonons are most
important. The LO phonon interaction strength-is [30]:

hwroe(es — €
(ot = 10Tl ~ 2)

R 3.3
26565060V G2 (3:3)

where €, and ey, denote the relative permittivity of GaAs at frequencies lower and
higher than optical frequencies, respectively. Due to the 1/¢* dependence, interactions
with LO phonons at the zone center are favored over transitions involving a large
momentum transfer. Also, the LO phonon threshold energy (36 meV for GaAs) causes
a sharp temperature dependence. This effect is especially important for far-infrared
transitions, where the subband energy spacing is less than fwpp. Here, hot carriers
can open up parasitic LO phonon channels, drastically altering average scattering
times. This can be detrimental to the working of the device.

We can adapt the bulk phonon expression to the 2D case by splitting the real
space dependence of the Hamiltonian in components along and perpendicular to the
growth axis.

Wy

q

12 i o -
hwz,oez(es —ﬁw)} / e ATt o722

N R (3.4)

2€€00€0V ¢2
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To assess the transition rate between an initial state k; on subband 7 and a final

state ky on subband f, we use Fermi’s Golden Rule:

Wik, = -Hly 8(Ex(k) = By(kg) — (@) (3.5)

We can rewrite the matrix element H};:
Hzlf = a(Q)Alf(qz) (Sk;—k,,m, (36)

+00 .
where A;f = / w}(z) ¥i(2) €'%%dz.
—00
The form factor A;; contains the dependence on the electron wave functions.
Summing over all possible ks, we find the total rate for a LO phonon mediated

transition from the initial state k; in subband ¢ to a state in subband f :

=4 Z 33 le(@)l? |Air(a)|* 6(E; — Ef — hw(q)). (3:7)

k] q gz

We assume parabolic subbands and fiw(q) = hwro. The electrons in subband
i are thermalized with electron temperature T,;, and their energy ‘distribution can

be described using a Fermi-Dirac distribution around a chemical potential (Fermi

energy) Ep:
1
f(B) = = (3.8)
e kTE',- + 1

As phonons are bosons, their energy distribution is the Bose-Einstein function:

1

E-pro
e kTph _ 1

Nio(E) = (3.9)

Using the momentum conservation q; = k; — k; from (3.6) the LO phonon scat-

tering rate can be written:

62( 600 wLom

Wi, = / dé / dg, (1 — f;(B;)ELE0

AT2€g€o0€sh?
X (Npo(aq) +1) H(e; + AEi; — hwro)- (3.10)

14 zf( ol
7
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€; is the kinetic energy of the electron in the initial subband, ¢; = h2ki2,t /2m*. The
energy to create a phonon can be obtained from both the electron kinetic energy and
potential energy, i.e. the subband separation. This is reflected in the step function
H(e; + AE;; — hwro).

Usually we can assume that the phonon temperature T, is close to the lattice
temperature 7;. For experiments where the device is being tested in a cryogenic
environment, mounted on a cold plate, this means that LO phonons are frozen out.
The equilibrium LO phonon population is negligible and scattering is dominated by
the phonon emission process.

However, heavy pumping resulting in hot carriers could result in a non-equilibrium
phonon population. The LO-phonon temperature T, can be much higher than the

lattice temperature. This can result in absorption of LO phonons:

2 S oo m Al
Wiass = Gz MIOM [y "0, (1 fy(, )'—’Ll'—

Am2ep€eon€s T

x (Nro(a)) H(e:)- (3.11)

The intersubband scattering time for the whole subband can then be found by aver-
aging the individual scattering times of all electrons on that subband:

Z 2fi(E:) Wi, (3.12)

’I'le

where the factor 2 accounts for spin degeneracy, and n; is the subband’s 2D

population density.

3.2 Carrier-carrier scattering

With increasing population density, electrons are more and more likely to interact
and scatter. Especially in cases where LO-phonon scattering is not possible or very
limited, e-e scattering is the main scattering mechanism. In this section we will be

using the Hartree approximation, in which we neglect the “exchange energy” caused
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22—11 22 —21 21—-11

Figure 3-2: Various intersubband carrier-carrier scatlering mechanisms for a two-
subband system

by the anti-symmetry in the real space wave function of a two-electron state if the two

electrons have the same spin. Inclusion of this “exchange energy” adds considerable

complexity to the problem (Hartree-Fock), effectively making the problem intractable.
The perturbation Hamiltonian is an unscreened Coulombic potential:

g (3.13)
"~ dmer’ '

with r the distance between the electrons and € = €€ the dielectric permittivity
of the semiconductor. At its simplest, we can represent electron-electron interaction
as a two-body process involving two isolated carriers. As there are two initial and two
final states, there are a lot more scattering possibilities than in the case of LO-phonon
scattering, which involved one initial and one final state. In figure (3-2), various
scattering mechanisms for intersubband scattering are illustrated. The transition
from subband 2 to subband 1 can be split into three contributions, 22-11, 22-21 and
21-11. The 22-21 and 21-11 transitions are Auger-type transitions, with one electron

relaxing down to a lower subband while giving its excess energy to another electron
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Figure 3-3: Various intrasubband carrier-carrier scattering mechanisms for a two-
subband system

which scatters higher into its original subband. Also, there are scattering events
which don’t affect the number of electrons in a subband, as illustrated in figure (3-3).
22-22 is a “pure” intrasubband scattering event. Even though these intrasubband
e-e scatterings don’t change the subband populations, they are very important for
thermal equilibrium in and between subbands.

The initial and final states are composed of two electron wavefunctions, and are
of the form |112) = |¥1) |¢2). The collision probability between electrons with equal
spin polarity is lower due to an exchange term (related to Pauli’s exclusion principle),
and therefore only electrons with opposite spins are taken into account here [31].
Taking wavefunctions of the form (2.93) and (2.94) for the electron wavefunctions,

the matrix element H;; becomes:

e—ikj'l‘t e—ikg-r'g 2 e—ik,‘-rt e—ikj-r't

H{;=<¢f(2)-7—2—¢g(2')—\/—f ¢i(z)ﬁ¢j(z') 7a >, (3.14)

where the initial electron states are labeled 7 and j, and the final states f and g.

e

4mer

Note that, for simplicity, we are working with the unscreened Coulombic potential.
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The separation of the carriers is:

r= \/rrt - I',¢I2 + (Z — Z’)z. (315)

Therefore we obtain:

b= rm [ [H@uE e nE)

ei(k.‘-rr}-kj'r’g) e—i(krrt-{-kg‘r'g)
X drydr'ydzd2'.  (3.16)
Ve =42 + (2 — 2)2

Expanding the Coulombic potential in a Fourier series, and substituting H is into
Fermi’s Golden Rule gives the scattering rate of a carrier in subband i. Integrating
over all the states of the second carrier (given by k;) and introducing Fermi-Dirac

distribution functions to account for state occupancy, we find

W o= i [ [ ey - k- ()
x O(ks +ky — ki — k;) 6(E} + E; — Ef — Ej) dk, dk; dk;. (3.17)

where the energies E* refer to the total energy of the corresponding carrier, i.e.
subband minimum energy plus kinetic energy. A;jf, is a form factor and a function

of qs = |k1 - kfli

Aurala) = [ [ 9wl o) wy(ae e (3.18)

The delta functions express the conservation of momentum and energy in the
scattering event. We can see that carrier-carrier scattering will be largest for small
exchanged wavevectors. Assuming parabolic subbands with Et = E + h%k?/2m*, we

find:

|A1 ¥i
W= h? 47re)2// ’ g nyy(kjakfa k,)

2
xa(k§+k§—k§—k§ :’(Ef+E _Ei- E))dk,dk,-, (3.19)
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Figure 3-4: Conservation of momentum in e-e scattering.

with P;j,(k;, kg, k,) representing the probability functions. This equation is no
longer valid for the non-parabolic valence band subbands in a quantum well.

It is useful to introduce two new variables, the relative wavevectors
ki; = k; — ki, (3.20)
ks =k, — kj. (3.21)

The energy conserving delta function then allows reduction of this integral to:

2w |A1 f
7rh3 47re / / Hars el J’fﬂ(kﬂ’kf’ g)df dk;, (3.22)

and @ is the angle between k;; and ky,, as illustrated in figure (3-4). Although
(3.22) looks simple, the actual computation is rather time-consuming and resource-
intensive. Certain simplifications, like ignoring final-state blocking, are common. This

is a fair approximation for low carrier densities or high electron temperatures.
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At higher electron densities, the interaction can no longer be described as solely
between two isolated carriers. The reaction of other carriers to the Coulombic poten-
tial will effectively “screen” the disturbing field, thereby reducing the perturbation.
The probability of scattering will decrease as compared to the non-screened case.

One of the simplest models for screening considers only the carriers within the
same subband as the initial carrier state. It replaces [32] the dielectric constant e,
with one which is dependent upon the relative wave vector g;:

2me?

(47f€s)Qt

with the polarization factor

€s =1+ ILi(ge, T) Aijso(ar), (3.23)

- 2
2 [1 - HGa - 2heyf1 - (22)]
dE

+oo 7h
Hii ,T = /
(@) 0 4kT cosh®(ZE=E)

(3.24)

kr is the Fermi wave vector for subband .
Equation (3.22) gives the carrier-carrier scattering rate for a particular carrier
energy %, averaged over another initial carrier distribution j. In order to find a
scattering rate for the whole subband i, we have to average out over the Fermi-Dirac
distribution of carriers in the initial state.
1[5 file:) de;
T J file:) dei

with ¢; the kinetic energy associated with k;. The denominator is equal to

(3.25)

N;7h?/m*, and assuming a parabolic subband, we obtain:

I = fulk:) ki dk;
- ’/TN,' '

. (3.26)

In figure (3-5) the temperature dependence of various inter- and intrasubband
electron-electron scattering rates is shown. The “intrasubband” carrier scattering
rate increases with temperature, as state blocking becomes less important. The rise

in the number of easily accessible final states results in a higher scattering rate.
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Figure 3-5: Intrasubband and intersubband electron-electron scattering rates between
the two lowest subbands of a 100 A Al3GarAs/GaAs quantum well. Both subbands
have a population density of 10°%cm=2. “Intersubband” processes are indicated with a
dotted line, “intrasubband” processes with a dashed line.

For intersubband scattering mechanisms this is less evident. Overall, intersubband
e:e scattering can be considered to be nearly temperature insensitive. The 22-21
and 21-11 transitions are “forbidden” in this single quantum well, because their form
factotvanishes [30]. The rate indicated in the figure is a numerical error. On the other
hand, intersubband scattering is approximately proportional to the upper subband
population at higher temperatures (figure (3-6)) when ignoring final state blocking.
Inclusion of a significant population density in the final subband could lead to final
state blocking being important, and hence give rise to a decrease in the scattering
rate.

Figure (3-7) shows the dependence of e-e intersubband scattering on the intersub-
band separation. The different energy separations were obtained by varying the well
width. The scattering time is very nearly inversely proportional to the intersubband

energy separation. However, the relation becomes more complex if the two levels con-

sidered are close to anti-crossing. The overlap between the wavefunctions of initial
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Figure 3-7: Intersubband electron-electron scattering rates between the two lowest
subbands in Al3GarAs/GaAs quantum wells of varying width, as a function of the
subband energy separation. Both subbands have a population density of 101%cm=2.
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and final states will sensitively depend on their energy difference.

We can summarize the above as:

1 N

This empirical relation can be used as a rough guideline in the design of quantum

well structures where carrier-carrier scattering plays an important role.
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3.3 Electron Temperature in an Optically Pumped

Device

The intense optical pumping in an interband pumped device dumps a lot of power
into the device. Cooling the device down by mounting it on a cold finger reduces
the heating, especially of the lattice (phonons). However, as electrons are generated
several tens of meV above the band edge in some of the subbands, the excess kinetic
energy of the electrons will cause the electron gas in each subband to heat up. The

electron temperature can be considerably higher than the lattice temperature.

Carrier heating has been an active research topic for the past several years. Usu-
ally, two main subjects are addressed, thermalization and the energy loss rate of a
thermalized carrier gas to the lattice. Researchers can use either band-to-band lumi-
nescence (most in undoped samples) or pump-and-probe techniques to measure the
carrier energy distribution. Both pulsed and steady state experiments are important
to understand the full picture. Once the electron or hole gas is thermalized, the
high energy tail of the thermalized distribution can be used to deduce the carrier

temperature.

The relaxation of carriers takes place through several different mechanisms. As-
suming negligible carrier recombination, for low excess energy excitation the dominant
thermalization mechanism is carrier-carrier scattering. Most carriers do not acquire
enough energy to emit LO phonons. Experiments using high-energy excess have in-
dicated relaxation processes where inter-valley scattering and sequential LO phonon

emission play an important role.

Thermalization of the newly generated carriers by intrasubband scattering takes
place within 300 fs to one ps for electrons [33] and less than 100 fs for holes [34]. Actual
thermalization times depend on the carrier density and excess energy. For holes, the
kinetic energy is never more than a couple of meV, and LO phonon scattering rarely

comes into play. For electrons however, the excitation energy can come close to or
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exceed the LO phonon energy. This can lead to accelerated inter- and intrasubband

scattering due to interactions with LO phonons.
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Figure 3-8: (a) Energy loss rates for holes and electrons for a MQW structure. At
the same temperature, hole ELR’s are one order of magnitude higher than electron
ELR’s [85]. (b) Schematic representation of the thermalization process after optical
ezxcitation [36].

| The thermalized distribution then exchanges energy with the lattice (LO and LA
phonons) and continues to cool down. The involved time constants range from tens
(for holes) to hundreds of picoseconds (for electrons). In figure (3-8) we can see that
the energy loss rates for electrons are about one order of magnitude smaller than for
holes.

A typical experimental dependence of the electron temperature T, on the opti-
cal pump intensity is shown in figure (3-9). Generally, the electron temperature in
a subband will be in the range 20-100 K for most pump intensities. In the pro-
posed quantum well structure, electron temperatures will probably be different in

each conduction subband. This is due to the variations in the excess energy of the
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photogenerated electrons, as well as the unidirectional flow of electrons from the upper
laser level to the collection (depopulation) level. In the simulations, this difference is
not taken into account. Instead, the temperature of all conduction and valence band
levels is assumed to be equal. This assumption is justified because intrasubband e-e
scattering, including ”intersubband” e-e scattering with mere energy exchange, oc-
curs on a time scale of 100 fs, as indicated in figure (3-5). Energy exchange between
subbands is faster than intersubband particle exchange, which leads to an almost
uniform temperature for all involved subbands. The calculations are then carried out

for a set of temperatures between 20-100 K.



Chapter 4

Design and Simulation

4.1 Three-Level System

The simplest design is the “three-level” structure, illustrated in figure (4-1). Electrons
are optically pumped from v3 into the upper conduction band level (c3). In order to
ensure an efficient use of the pumping power, we will assume surface pumping. This
means that the incident pﬁmp beam propagates along the QW growth axis, and the
electric field is polarized in the plane of the well (TE polarization). The electrons can
escape c3 by either electron-electron (e-e) scattering down to ¢z, LO-phonon scattering
to c; or emission of a photon hwss. The transition ¢z — ¢ is the target intersubband
transition. The difference in energy between the lower intersubband laser level ¢, and
¢, is slightly greater than the LO phonon activation energy hwpo. This ensures a rapid
LO-phonon-assisted depopulation of c;, which is crucial in achieving a population
inversion between the two far-infrared laser levels.

Unfortunately, in this design it is not possible to selectively pump c3. In order
to remove the optically generated holes from valence subband level v;, the valence
subband levels v, and v; need to have a lower or similar hole energy. This means that
inevitably electrons will be optically excited from v, and v, into ¢, and ¢;. Electrons

and holes will gather in ¢; and v;, respectively. If the carrier density in ¢; and v,

69
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Figure 4-1: Energy levels and transitions in a three-level system.
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becomes high enough, the lasing threshold for the interband transition ¢; — v; is
reached. Depopulation of the bottom levels of the valence and conduction bands
by stimulated emission will then keep the population densities of both levels at a
fixed value. The “depopulation laser” is important for the prevention of a buildup
of carriers in the bottom levels, which causes state blocking of the depopulation of
¢ and an increased free-carrier absorption at THz frequencies. The interband laser
is also the main “circulation pump”, returning the optically excited electrons in the
conduction band to the valence band.

In the valence band the heavy hole subbands are most important in hole trans-
port. The HH ground states are the lowest in energy and will contain most holes
after thermalization of the photogenerated carriers. In practice the HH ground states
in the narrow wells are nearly lined up with the first excited HH state in the wide
well. The fast scattering betweén these lined up subbands combined with an efficient
h-h scattering from the excited state into the ground state in the wide well, ensures
that most holes are concentrated in v;. In the wide well, the LH ground state is very
close to the first excited HH state, and can play a role in hole transport [38]. This
means that the LH bands will play a small role in the interwell electron transport, as
interwell scattering involving these higher energy states is considerably slower than,
scattering between the ground valence subbands, except in the wide well. However,
their contribution in photogeneration is taken into account for every conduction sub-
band.

The steady state subband populations are calculated using a rate equation analy-
sis. Below the threshold for the interband depopulation laser, the rate equations for

this “three-level” system are given by:

d’nc3 1 1
=G — ( + ) Ne3, 4.1
dt < Te3cl Te3c2 3 ( )
dncg 1 1
=G - 2, 4.2
dt @+ Te3c2 e ’fc2c1n 2 (42)
dn, 1 1
flel = Gcl Rcl + Ne3 + Neo. (43)

dt Te3cl Te2cl
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For the valence band, similar equations apply. Above the interband lasing thresh-
old, n.; and n,; are clamped at the interband laser threshold population density. G;
and R; refer to generation and recombination rates per unit area. The subband gener-
ation rate G; is a function of the carrier density, carrier temperature, and the density
of states in the involved subbands. Its dependence on population density and temper-
ature is through the Fermi level energy (see equation (2.99)), which makes this set of
equations highly nonlinear. The generation terms G; include the contributions of all
subbands participating in the photogeneration into subband i. For example, G2 rep-
resents the transitions from all valence subbands (HH and LH) in all three wells into
subband c¢,. We assume very fast (less than 1 ps) intrawell intersubband scattering
in the valence band, so that carriers generated in the excited and LH subbands relax
into the HH ground state before participating in interwell scattering. Except in the
lowest energy subband, we can neglect the interband (spontaneous) recombination
terms R, as LO phonon and e-e scattering are much faster than radiative interband
recombination (~ 1 ns).

In steady state all carrier densities are constant, so % = 0. Recombination equals

dt
generation in either band:

Rcl = va = Gcl + Gc2 + GcS = le + Gv2 + Gv3, (44)

where 1/R, = 7.5,; = 1 ns below the interband lasing threshold and decreases
rapidly above the the threshold to keep n. constant.

Population inversion in steady state is found to be:

T
n3 —ny = Ge Tctgt (1 - cm) — Gea Teaet (4.5)
Te3c2
with
1 1 1
—-t;t_ = + . (46)
Te3 Te3c2 Te3cl

This equation is easy to interpret if we keep in mind that in a system with a

generation rate G' and a carrier lifetime 7, the steady state population density is
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n = G7. In order to obtain a population inversion, it is not sufficient that c, is
depopulated faster than c¢;. The depopulation of ¢, has to be fast enough also to
get rid of the carriers optically excited into ¢, itself. ¢, and the valence band levels
influence the generation terms. Electron and hole statistics and transport in these
levels will determine carrier generation and injection into c3 and c,.

The total spontaneous emission power for the intersubband transition ¢; — ¢, is

given by
tot
I - hwsaneg 5 Ge3 s 4.7
em — spon . — PW32~—pon - ( . )
732 T32

7' represents two major intersubband scattering processes for c3, as seen in equa-
tion (4.6).' Scattering into ¢, is dominated by e-e scattering, as the energy separation
between the two levels does not allow for LO phonon scattering. But for the c3 — ¢
transition, LO phonon emission is allowed. This LO phonon channel can make it very
difficult to achieve a substantial population inversion. Therefore, the suppression of
the ¢3 —c; LO phonon transition is a major design challenge. Matters are complicated
further by the demand that the c; — ¢, transition must have a sizable dipole moment,
in order to have an efficient far-infrared emission. A strong overlap between c3 and
¢y, combined with an overlap between c; and c; for efficient LO phonon depopulation
of ¢y, will result in a fast LO phonon depopulation of c3. In the three-level scheme, a
compromise has to be found between the strength of the intersubband laser transition
and the efficiency of the lower intersubband laser level depopulation.

For a single module, we can find the THz spontaneous emission efficiency by taking
the ratio of the spontaneous emission and the absorbed incident pump power I, in one
module. The generation rate G; can be expressed as the product of an interaction

cross-section o, and the pump photon flux nype/n, or:
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where fiw, is the pump photon energy. This enables us to find for the spontaneous

emission efficiency:

tot
Iem Oc3 hwsa Te3

= - . 4.9
s Ip Oc1 -+ Oc2 + Oc3 hwp T;Sm ( )

This efficiency is the ratio of emitted THz power over the absorbed pump power
per module. It is important to optimize the absorption efficiency by using many
modules, so that the incident power would be nearly completely absorbed, and the
total power output/input efficiency is close to the prediction of equation (4.9).

The emission efficiency depends critically on the ratio of the fastest non-radiative
(LO) scattering time to the spontaneous emission lifetime. It is therefore very im-
portant to minimize the LO phonon scattering channels depopulating the upper laser
level. Another important parameter is the pump selectivity o.3/(0c1 + 0c2 + 0c3),
which is close to 1/3 in the three-level design. The calculated emission efficiency for
the designed three-level structure is shown in figure (4-12), and is close to 10~7. The

dependence on pump intensity and temperature is discussed later.

4.2 Four-Level System

The main drawback of the simple three-level design is that the required strong cou-
pling between the two radiative subband levels inevitably leads to a fast LO-phonon
mediated depopulation of the upper level. In a four-level design we attempt to make
the lower laser level considerably more susceptible to LO-phonon depopulation by
increasing the overlap with level 1. By bringing the second energy level in the first
well close to anticrossing with the lower laser level, this level is partly delocalized.
Fast LO-phonon scattering depopulates the lower intersubband laser level. However,
there are several disadvantages to this scheme. The intersubband dipole moment is
now split between two heavily mixed bands (4-3 and 4-2), which means the avail-

able gain will be split between two transitions as well. This decreases the maximum
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available gain, and increases the intersubband laser threshold population inversion.
Also, we assume that the electrons in the two mixed bands can tunnel coherently
into the wide well, even though the barrier between the wide well and the adjacent
well is fairly thick and could cause loss of coherence. In that case the electrons get
trapped behind the barrier and have to tunnel through in order to scatter down,
greatly reducing scattering times and increasing the population density in the lower
FIR laser levels. However, in this non-coherent case the loss in oscillator strength is
also reduced because of the effective localization of the electron wavefunctions in the
two narrow wells.

Similarly as for the three-level case, we can write the steady state rate equations:

dnc4 1 1 1
— G- ( PR )n , 4.10
dt ot Tedel Te4c2 Te4c3 o ( )
dn, 1 1 - 1 1
c3 = Gc3 + Neq + Neo — ( + ) Ne3, (411)
. dt Teac3 Te2c3 Tedel  Tedc2
dn 1 1 1 1
<2 = Gc2 + Neq + Ne3 — ( + ) Ne2, (412)
dt Tedc2 Te3c2 Te2el  Te2ed
dn 1 1
cl = Gcl - Rc] + nc4 + n03 + TLCQ, (4.13) v
dt Tedcel Te3cl Te2c1
and
Rcl = Gcl + Gc2 + Gc3 + Gc4- (414)

Again, 1/R.; = 7.,; = 1 ns below the interband lasing threshold, and decreases
rapidly above the threshold to keep n;1 at its threshold value. Here we neglected the
recombination terms in all except the lowest subbands, as in the three-level case.

In figure (4-3) the dependence of the interband spontaneous lifetime on subband
population density and electron temperature is illustrated. The lifetime was deter-
mined by taking the ratio of the spontaneous recombination rate and the population
density. The quasi-linear dependence of the spontaneous lifetime on temperature can

easily be seen if we assume a Boltzmann distribution of the carriers in the subband,
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Figure 4-2: Energy levels and transitions in a four-level system. The first excited
subband in the wide well and the lower laser level are heavily coupled.
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and a constant density of states in the valence and conduction bands. We can then

write for the population density N

co E¢-E

N = ¢*P e *8T dF,

A (4.15)

with g2 the 2D density of states, E, the band edge energy, and E¢ the subband
quasi-Fermi-energy. From this we find that exp(E;/(kgT)) ~ N/(kgT). The sponta-
neous emission rate at a certain emission energy is proportional to the joint density of
states for that energy, and to the number of electrons (in the conduction band) and
holes (in the valence band) at that energy. The density of states is assumed constant,
so we can leave it out of what follows, and for the electron and hole distribution we
use the Maxwell-Boltzmann approximation. The spontaneous emission rate R;;

Sp ® -
Riboc/O e

Ec(k)—-EIYc
kgT

Eu(k)=Ej,
kpT

e dE, (4.16)
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where the indices ¢ and v refer to conduction and valence band respectively, and
the integration is over the interband transition energy in excess of the bandgap energy.

We find that

Efc—Efn By (k)= Ec(k)
[ 2 g o L (4.17)

RP x e *8T BT X —.
ib kBT

Radiative interband transitions conserve in-plane electron momentum. As tem-
perature rises, electrons (in the conduction band) and holes (in the valence band)
get more spread out and have fewer counterparts available to recombine with, hence
increasing the radiative recombination lifetime.

The dependence of the spontaneous interband lifetime on population density is
closely related to the above. At low densities or higher electron temperatures, the
carrier distribution function is spread out and somewhat resembles a Boltzmann dis-
tribution. Higher temperatures or lower densities will yield a longer lifetime. For
lower temperatures or higher densities, the Fermi-Dirac distribution increasingly re-
sembles a step function. In this limiting case, the spontaneous emission lifetime is
minimal as there is no state-blocking.

The steady state expression for population inversion between subbands c3 and ¢,
can easily be deduced from the above equations:

Nea—Nez = Gea 71— [Gc3 +Ge ( el + A ) + G L3 } :%: it (4.18)

Teae3  Tede2 Te2e3 1-— ;cﬂ_T
c3c2 Tc2c3

The second term represents n3. The factor in brackets is a generalized generation
term, encompassing the carriers scattering into ¢3 from ¢4 (directly and via ¢;) and

from c,. The second factor is an effective scattering time. The denominator is an

enhancing factor for 7'¢*, accounting for a feedback loop when electrons scatter from

c3 to ¢ and back.
Similar to the three-level case, the emission efficiency of the four-level intersubband

spontaneous transition 4-3 can be written as:

tot
Oc4 h(,d43 Tc4

spon -

(4.19)
Ol + 02 + 03+ 0cq hwp 743

My =
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Again, the output/input efficiency will be close to equation (4.19) if all the incident
power is absorbed in the active region. The calculated emission efficiency for the

designed four-level structure is shown in figure (4-12), and is close to 1077.

4.3 Simulation

4.3.1 Computational model

The rate equations governing the subband populations and, subsequently, intersub-
band gain are highly coupled and nonlinear because the e-e and e-LO-phonon scat-
tering rates depend on the density and temperature of the electrons. There is no
analytical solution to describe the subband populations as function of the optical
pump intensity. However, a steady state simulation of the system can yield a self-
consistent solution to the problem. This means that, starting from an initial guess for
the subband populations, the band potential profiles and scattering times are calcu-
lated. Using those parameters, new subband populations are determined. However,
now these new values do not correspond to the previously calculated carrier-den§ity
dependent parameters, so we iterate the process until the solution converges. The
convergence limit is the self-consistent solution.

The model incorporates the major scattering and optical transition processes ex-
pected to occur in the structure. There are two main parts in the simulation: the
calculation of the valence and conduction band structure and the semi-self-consistent
calculation of the subband populations.

The primary tool used in the design of the quantum wells is a program writ-
ten by Paul Harrison (University of Leeds) [39]. This numerical simulation program
iteratively solves Schrédinger’s equation and Poisson’s equation for a series of het-
erostructures under bias. First Schrodinger’s equation is solved to determine the
bound states, and then they are populated according to the expected carrier density.

Poisson’s equation is then solved to determine the effect of the accumulated charge
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Figure 4-4: Schematic overview of the different steps in the simulation of an interband
pumped intersubband THz laser.

on the shape of the potential wells. Schrodinger’s equation is then re-solved with this

new potential profile. This process is repeated until the result converges.

For each valence band well, the number of subbands and their £ — k dispersion
relations are calculated. This is done using the two-band k - p formalism outlined in
chapter 2.2-2.3. From the dispersion relations, we can deduce the density of states
per subband. The next step is the calculation of the optical transition strength for
the various interband transitions. This will determine the generation rate of photo-
excited carriers in each subband and the spontaneous interband radiative lifetime

sp__
Telvl = 1/Rc1-

In the second part of the simulation, the subband population densities are calcu-
lated. The whole calculation is repeated for several carrier temperatures. For the first

calculation, we use an initial guess for the different n, and n,. LO phonon scattering
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rates are calculated for all intraband transitions where one can reasonably expect
a LO phonon channel to open up and be important at the simulated temperature.
Electron-electron scattering is usually only important where LO phonon scattering
is not available. In the valence band, hole-hole scattering is the main means of hole
transport. Carrier-carrier and phonon scattering calculations are performed with a
program written by Paul Harrison [39]. The hole-hole scattering rates are approx-
imated by treating them as if the valence subbands were parabolic bands with the
appropriate carrier mass, neglecting the valence subband interaction. This crude
approximation is justified because only an order-of-magnitude estimate of the hole-
hole scattering rates is needed to roughly guess the hole distribution, and determine

whether the great majority of the holes will rapidly relax into v;.

For the calculation of the optical pumping rates, we assume thermalized subband
populations. Using the previously calculated optical transition strengths, generation
rates for the pump laser are found. Plugging the various generation rates and lifetimes
into the rate equations, we find new values for the subband populations. Again
assuming thermalized populations, the degree of population inversion between the
lowest subbands 1 in conduction and valence band will decide whether the lasing
threshold for the interband laser is reached (see figures (4-10) and (4-22)). If so,
the pbpulation densities in these subbands are restricted to their threshold level.
The new values for the subband populations can now be used to reiterate the above
process, obtaining more consistent values with every iteration. Provided that the
initial guesses for the subband populations are not too far off the calculated values,
the impact on the solution of Schrédinger’s equation will be minimal. Therefore it is

sufficient to reiterate the rate equations.

Finally, the self-consistent population densities yield the expected gain for the

intersubband THz laser.
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Figure 4-5: Sketch of the surface pumped THz laser. A gold ridge window structure
allows the pump beam to penetrate the sample while still providing a metal waveguide
for the THz laser mode.

4.3.2 Waveguide

In a laser, an electromagnetic wave propagates through a wave guide, containing both
an active region (with net gain) and a cladding region, where losses prevail. The top
and bottom of the waveguide are covered in gold to better confine the propagating
mode. The top gold layer consists of a windowed structure with the length along the
ridge. This orientation will not leak out the desired THz mode, but still allows for
surface pumping. Details of the fabrication of such a waveguide are outlined in Bin
Xu’s thesis [40].

The active region consists of a number of quantum well modules, optimized to
make an efficient use of the incident power of the pump beam and to maximize the
confinement factor. The confinement factor denotes the overlap of the propagating
mode with the active region, and is important to determine how much of the mode
is actually useful in the process of stimulated emission. A schematic sketch of the

surface pumped structure is shown in figure (4-5).
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The cladding layers consists of a semiconductor material with a bandgap larger
than the pump energy in order to avoid absorption in the cladding layer, and a dielec-
tric constant lower than in the active region to help the optical mode confinement.
The mirrors on both sides of the cavity are cleaved facets. The reflectance at one
such mirror is:

R— (" = 1)2, (4.20)

ng+1

with n, the refractive index of the semiconductor. For GaAs ny=3.27 and we find

R =0.28.

4.3.3 Design Simulation
Design Parameters

One four-level module is depicted in figure (4-6). The energy levels are indicated
in table (4.1). At 4K, E, for GaAs is 1.52 eV. The THz laser levels are separated
by 18.7 meV (4.5 THz or 67 pm) with a transition dipole moment of 36 A. The
energy differences-between c; or c3 and c; are higher than the LO phonon resonance,
36 meV. This is necessary to prevent state blocking of the LO-phonon scattering
as the lowest conduction subband has a population density equal to the interband
depopulation laser threshold density. This ensures fast LO phonon depopulation of
the lower intersubband laser levels. The threshold density calculations are explained
in more detail below.

A bias voltage of 10 mV/module helps to align the levels in both conduction and
valence band. The bias is chosen to line up the valence subbands in a configuration
that will enhance h-h scattering and efficiently transport the photogenerated holes
into v;. Between each module is a 28 ML barrier, preventing interaction between
modules. Including this barrier, a module spans 139 monolayers, or 38.7 nm.

For comparison, a three-level module is shown in figure (4-7). The laser transition

is 17 meV (4.1 THz or 73.2 pm) with a dipole moment of 36 A, and a bias voltage of
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18 mV/module is applied. This module is 121 ML (34.2 nm) wide.

Note that the radiative dipole moment for the three- and four-level system are
very similar, despite the split-up of the four-level dipole moment due to the doublet
lower subband. In the four-level design, the symmetry properties of the involved
wavefunctions result in an enhancement of z43 over z;5. The dipole moment con-
tributions originating from the wide well have an opposite sign for the 4-2 and 4-3
transitions, whereas the parts due to the overlap of the wavefunctions in the narrow

wells are about equal for both transitions.

The 4-3 transition features both a larger dipole moment and a slower LO phonon
depopulation than the 4-2 transition (figure (4-13)). This clearly qualifies the 4-3
transition as the better candidate for THz lasing. The slower LO phonon depopulation
is mainly due to the smaller energy separation between ¢4 and c3, which means fewer
electrons in c4 will have sufficient energy to emit an LO phonon and scatter down to

c3 than to c,.

In order to find the total thickness of the active region, we have to take the pump
beam depletion into account. Calculation reveals that each conduction band energy
level, available for interband absorption at an energy less than the pump energy,

typically absorbs about 0.5-1% of the incident power.

The calculated absorption spectra for the conduction subbands in both the three-
and four-level system are shown in figure (4-8). The pump energy is chosen so as to
maximize photogeneration in c4, but it is kept as close to the subband edge as possible
to keep the electron temperature down. In the four-level case that is about 60 meV
above the onset energy for the ¢4 absorption, which is around 1600 meV (745 nm).
The incident pump field is assumed to be multimodal with a Lorentzian line-shape
envelope and a linewidth of 4 meV. There is no selectivity in the photogeneration at
this pump wavelength, and the absorption coefficient for each conduction subband
is around 2 x 103 cm™! (0.78%/cond.subband). The total absorption coefficient is

approximately 8 x 10% cm™!, close to the bulk value of ~ 10* cm™! [41]. For the three-
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Figure 4-6: Design parameters and energy levels for the four-level system. The well
and barrier widths are indicated in units of monolayers (2.825 A). A bias voltage of

10 mV/module is applied to help align the subbands.

Subband Energy (meV)

Ecl
Ec2
Ec3
Ec4

15.774
66.010
69.003
87.671

Evl
Ev2
Ev3
Ev4

—E,-4.587
—E,-13.356
—E,-13.566
—E,-15.289

Energy Separation (meV)

Ecl Ec2

Ec3

E. | 50.24
Es | 53.23 2.99

E,4 {7190 21.66 18.67

Dipole Moment (A)

Ecl Ec2 Ec3

E» | 21.81
Es | 24.06 83.6
Es | 146 18.49 35.72

Table 4.1: Energy levels for the module shown in figure (4-6).
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Figure 4-7: Design parameters and energy levels for the three-level system. The well
and barrier width are indicated in units of monolayers (2.825 A). A bias voltage of
18 mV/module is applied to help align the subbands.

Subband Energy (meV)

E; | 25.794 E, | —E4-9.093
E. | 62.657 Ey | —E4-9.850
Ec | 79.675 E,3 | —E,-12.686
Energy Separation (meV) Dipole Moment (A)
Ecl Ec2 Ecvl : Ec2
E. | 36.86 Fe | 11.888
E. | 53.88 17.02 Es | 6.211 36.452

Table 4.2: Energy levels for the module shown in figure (4-7).
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Figure 4-8: (a) Absorption as a function of the incident photon energy for each of
the considered subbands in the conduction-band. Each absorption curve consists of
contributions from the various valence subbands. (a) refers to the three-level system,
(b) shows the absorption for the four-level case. The difference in absorption is due

to the smaller module length in the three-level case, resulting in a higher 3D density
of states.
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Figure 4-9: Pump beam intensity in the active region for both 3- and 4-level designs.
The beam is reflected at the point where its intensity is 50 % of its original value.

level structure, the active layer thickness is 1050 nm, corresponding to 30 modules.

This allows us to make a rough estimate of the maximum number of modules. The
incident power is absorbed in the modules and decays exponentially with a penetration
depth of 1.25 pm. If we allow the pump beam to reflect off the back mirror when its
intensity drops-to 50%, we find for the width of the active layer:

w = —1n(0.5)/8000 cm = 866 nm,

corresponding to 22 modules. For the three-level structure the absorption is close
to 2.2 x 103 cm™! per conduction subband. The active layer thickness is 1050 nm,
corresponding to 30 modules. An approximate transverse intensity profile for the
pump beam is shown in figure (4-9).

Typical device surface area dimensions are of the order of 500umx20um. Simula-
tions are done for a range of pump powers going from 50 mW to 50 W concentrated
on the surface of the device. This corresponds to power densities of 500 W/cm? to
500 kW /cm?.

For the calculation of the threshold population density of the interband “depopu-

lation” laser transition, we take the mirror loss to be 23 cm™!, equal to the mirror loss
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Figure 4-10: Temperature dependence of the threshold population density for the in-
terband laser in the (a) three- and (b) four-level systems. Indicated are threshold
“densities for a round-trip cavity loss of 20, 50 and 100 cm™1.

in a 500 pm cavity, oy, = %ln R. Taking into account various other loss mechanisms,
mode scattering, Iﬁode leakage and absorption in the gold layers, the cavity loss is
estimated to be around 50 cm™!. |

The population aénsity of the valence subband and conduction subband is taken to
be equal. Because these subbands are the lowest in energy in the module, the majority
of the carriers gathers in these levels, scattering down from the other subbands. The
carrier concentration in these wells is limited by the threshold carrier density for the
interband laser. Assuming thermalized carrier populations, the threshold n.; and n,;
can be found by using the gain equation (2.99). A plot of the threshold population
density versus carrier temperature for different values for the threshold gain is shown
in figure (4-10). We see that at a carrier temperature of 50 K, threshold densities in
the lowest valence and conduction subbands are close to 2 x 10''cm™2, corresponding
to a quasi-Fermi level of about 7 meV above the conduction subband edge. In order
to avoid state blocking for the LO phonon scattering from the lower intersubband

laser level to the c¢; subband, the intersubband spacing between these levels has to be
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Figure 4-11: Electron-electron scattering rates vs. carrier density for the four-level
system. The scattering rates vary almost linearly with the population density. The
electron temperature is 50K. Sy

over 43 meV.

Electron-electron scattering rates in the four-level system are shown in figure (4--
11). Again we see that the e-e scattering rates vary nearly linearly with the subband -
population density. Remarkable is the large difference between the 3-2 and 2-3 scat--
tering rates, though both transitions have very similar form factors. However, the fast
22-33 and 22-23 scattering processes are partially suppressed because of energy con- -
servation for electrons close to the ¢, band edge. In the expected range of population
densities for c; and cs, i.e. 108 — 10%m~2, the e-e scattering time is far longer than
the LO phonon scattering time (~ 0.6 ps) and as such the depopulation of ¢, and
c3 is completely governed by LO phonon scattering. Similarly, LO phonon scattering
from c4 to ¢; (= 40 ps) is faster than e-e scattering below ng = 10'%m=2, so even
at very high generation levels e-e scattering only plays a marginal role. In fact, at

electron temperatures exceeding 40K the parasitic 4-2 and 4-3 LO phonon channels
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Figure 4-12: Emission efficiency for the intersubband THz transition in the (a)three-
and (b)four-level systems, for varying pump intensities.

will start to dominate ¢, depopulation.

The lack of impurity scattering in the undoped structure promises a narrow spon-

taneous.intersubband linewidth. In the simulations, a linewidth of 2 meV was used.

Results

A

plot of the THz emission efficiency in both designs is shown in figure (4-12). At

low temperatures, e-e scattering is the dominant depopulation mechanism in the

upper intersubband laser level. The lower population densities generated by the

lower-intensity pump beams have a longer e-e scattering time, therefore electrons

are more likely to stay in the upper subband and make a radiative transition to cs,

increasing the emission efficiency. At high temperatures, LO phonon scattering is the

main depopulation process. As LO phonon scattering times do not depend on the

population density of the initial subband, 7t ~ 7£9(T') for all pump intensities at

high temperatures.
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In the 3-level system the LO phonon scattering channel from the upper THz laser
level to the c; state is more pronounced than in the 4-level design. This results in
a lower electron population in the upper intrasubband laser level, and a lower gain.
As the temperature increases, more electrons in the high energy tail of the Fermi
distribution of the upper CB level will have sufficient energy to emit an LO phonon
and scatter to the lower laser level (figure (4-13)). The shortened lifetime in the upper
state gives rise to a smaller population inversion, and hence a decrease in gain (figures
(4-15), (4-17)). Eventually, the LO phonon scattering between the intersubband laser

levels destroys the population inversion and the gain becomes negative.

The intersubband gain in the three-level design is far lower than in the four-
level design (figure (4-18)). This is due to the insufficient difference in the (LO-
phonon-mediated) depopulation of the upper and lower THz laser levels (figure (4-
14)). Already at 50K the parasitic LO phonon channel 3-2 depopulates the upper
state. The 2-1 scattering rate is too low to maintain the population inversion, but is
difficult to increase without dramatically increasing the 3-1 LO phonon scattering rate
in the process (figure (4-16)). In the four-level system the fast depopulation of the
lower laser level virtually guarantees a population inversion, even as the parasitic LC
phonon channel becomes more prominent with increasing temperature. Note that the
short LO phonon scattering times for c3 and ¢ to ¢; assume a coherent electron wave
function in c; and c;. This means that the thick barrier between the well containing
c; and the other wells does not induce significant scattering and localization of ¢, and

C3.

In figure (4-19) the intersubband gain is plotted against the pump intensity for
the four-level scheme. The approximate square-root dependence of the gain on the
pump beam intensity is the result of the quasi-linear dependence of e-e scattering
rates on population density. The population density in the upper THz laser level can
be written as ne = GeaTea- The scattering time 7.4 at low temperatures is mainly

due to e-e scattering, and hence inversely proportional to n,. We conclude that
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In the three-level system (figure (4-20)) the LO phonon depopulation lifetime from
the lower THz laser level to ¢, is on the order of 10 ps, and from c3 to ¢; 32 ps as
seen in figure (4-14). For the higher generation rates (and hence higher population
densities), e-e scattering rates between the aforementioned levels can easily exceed
the LO phonon scattering rates. At low temperatures, the e-e scattering time between
the THz laser levels is the main depopulation mechanism for c;. The small dip in the
gain curve indicates where the c3 — ¢; LO phonon scattering rate and the c3 — c; e-e
scattering rate become equal. For higher géneration rates, the gain remains positive
because the c; — c; electron-electron scattering rate keeps pace with the c3 — ¢ rate
(figure (4-21)).

Finally, it is interesting to ask the question whether the pump threshold level
is lower for the intersubband or the interband laser. If the threshold is lower for
the interband laser, then n. is clamped and a red light laser will coexist with the
intersubband THz laser. If it is the other way around, then n; is not clamped and a
red light LED will accompany the intersubband THz laser.

In figure (4-22) the threshold pump intensities for the interband and intersubband
lasers in the four-level system are indicated for varying temperatures. The intersub-
band threshold displays a high temperature sensitivity, reflecting the opening of a LO
phonon channel between the upper THz laser level and c; and c3. Note that the inter-
band threshold pump intensity is lower than the intersubband threshold, predicting

an interband laser at pump power levels which allow intersubband lasing.

4.3.4 Simulation Conclusion

In the design of an optically pumped intersubband THz laser, there are many pa-
rameters to keep in mind. The proposed designs consist generally of three levels, two
levels involved in the actual THz laser and one “collector” level. The lower THz laser

level is depopulated by LO phonon scattering. In this design, as in any laser design,
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a key issue is how to maximize carrier lifetime in the upper laser level while still
depopulating the lower laser level as fast as possible. The three-level design tries to
spatially separate the upper THz laser level and ¢;, while the four-level design spa-
tially extends the lower THz laser level to ensure faster depopulation and still keeps
the aforementioned spatial separation.

A self-consistent calculation using the rate-equations governing the subband popu-
lations was performed, including carrier-carrier scattering, LO phonon scattering and
radiative recombination and generation. The simulation of the proposed three- and
four-level systems clearly indicates that the four-level system is the most promising.
The fast depopulation of the lower THz laser levels is the key to the superior simu-
lation results as compared to the three-level design. It is not possible to selectively
pump the upper THz laser level, which makes it even more important to evacuate the
lower THz laser level as efficiently as possible. The calculated gain (20 cm™! at 50K)
at pump beam intensities of 5-10 kW/cm? can suffice to obtain THz lasing action,
provided that the cavity losses can be kept in check. The performance of the THz
laser is predicted to be very dependent on electron temperature, mainly due to the
Qpening of a parasitic LO-phonon channel between the THz laser levels. Interband
lasing seems to be easier to obtain, as the calculated threshold pump intensity is lower
than for the intersubband case.

The logical next step is. manufacturing a device and building an experimental
setup. The simulated results suggest that a 0.5 W pump source focused on a device
with area 20x500 pm? (corresponding to 5 kW /cm?) could be sufficient to obtain THz
lasing action. Doing this will enable us to check the model used and provide insight
into several topics, such as electron temperature and cavity losses for interband and
intersubband laser. We will be able to see how severe the free carrier absorption is,

caused by the accumulated carriers in the lowest subband in each module.
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Appendix A

Appendix : Matlab Scripts and

Functions

A.1 Finite Difference Method in the 2-Band Model

The method used to solve the coupled Hamiltonian equations in the two-band model
is based on the shooting method as described by Paul Harrison for the simple case of
the conduction band. [39]

As a starting point, we consider the general one-dimensional form of the Hamilto-
nian equations (see equations (2.53)-(2.56)). In order to allow for a variable effective

mass, we rewrite these equations as:

Hyn+V W F F,
hh hh - E(k) hh : (A].)
wt Hp+V Fy, Fy,
with
Hy = —2( +2 )—Q- + (11 — y)K? (A.2)
lh = 92 ! Y2 oz M1 — Y2)E, .
B =—Zn—2m) 2+ (n + )2 (A3)
0z 0z ¢ ’
. )
W = V/3ky(voke — 2735;). (A.4)

101
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The potential V'(2) describes the valence band edge of the quantum well structure
(in terms of hole energy), and Fy, and Fj, represent the hole wavefunction while
under the effective mass and envelope function approximations.

We can rewrite the effective mass equations as :

Hy, +V(z) - E w
Wt H[h + V(Z) —F

Fun
Fy,

=0. (A.5)

The problem now is to find a numerical method for the solution of both the energy
eigenvalues E and the eigenfunctions F' for any V(2).
For this purpose, we can expand the first and second derivatives in terms of finite

differences. e can approximate the first derivative of a function f(z) as:

df Af  f(z+0z2) = f(z = 62).
ENE— 26z . (AA.G)

The second derivative follows as:

a? P
_&;é ~ d z+6226zd 2—62, (A7)
202) — 2 - 26
_ f(z+262) (Q{SS); fz — 202) (A8)

As 4z is an, as yet, undefined small step along the z-axis, and as it only appears in
equation (A.8) with the factor 2, then we can simplify this expression by substituting
6z for 20z, i.e. :

d*f _ flz+062) = 2f(2) + f(2 — 02)
dz2 (62)2 ' (A-9)

Let’s take a closer look at the term HY = 36—2(71 + 272)3_;";11 in the light hole
Hamiltonian, and try to express this in terms of finite differences. We can rewrite

this term as:

7] OF; 0?F;
Hiy = o~ [n+ml =+ (n+7m) 55 (A.10)
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However, shooting equations derived from this point by expanding the derivatives
in terms of finite differences have led to significant computational inaccuracies in
systems with a large discontinuous change in the effective mass (the Luttinger pa-
rameters), as occurs in the GaAs/AlGaAs system. The source of the inaccuracies is
thought to arise from the é-function nature of the effective-mass derivative.

A more robust scheme can be derived by expanding HJ, starting from the left-hand

derivative :

0 (m + ’72)%1th otis (m +'72)8—§§“
th ™ 20z

Recalling the centered finite difference expansion for the first derivative, we can

= (A.11)

write the numerator of the above expression as :
Fp(z+262) — Fin(z
262Hl(;1 = (7l+272)’z+62‘ lh( : 252 ’h( )
Fin(z) — Fnlz — 252)
202 ’

(A.12)

- ('71 +2’Y2) lz"_(sz
or

(262)°Hp, = (m + 272), 45, (Fin(z + 262)
—Fn(2)) = (1 + 290)|,_g, (Fin(2) — Fin(z — 262)). (A13)

Making the transformation 26z — dz then yields:

Hh = g [0 = 20 Fie+ 62) = [l = 200+ (= 2007 B2

+(n = 272) " Fin(z - 52)] ; (A.14)

with
(m+2%)" =Mmn+ 2’72)|z+,sz/2, (A.15)
(m+27)" = M +2%)|,_5p, (A.16)

m-27)"=m- 272)|z+6z/2 ) (A.17)
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(M =272)" = (n — 272),_5./2 - (A.18)

We now substitute the finite difference expressions for 8/9z, HJ, and a similar ex-

pression for its heavy-hole counterpart into the effective mass equations, and obtain:

0 = _(%_(E:)Zi._phh(z +62) + (m — 2'72):5':;71 — 27,)” Fiun(2)
_%FM (2 = 62) + (1 + 72 K2 Fha(2)
+(V(2) — E)Fun(2) + V372kE Fin(2) :
ok Finlz + 52)2;'21?"1(2 ~ 02) , (A.19)

th(z + 52) - th(z - (52’)

0 = V3nklFun(2) + 2V313k,

20z
O R ) QRN I
- :5‘:;—32) ~Fin(z = 82) + (n = W)KFu(2) + (V(2) — E)Fin(2)- (A.20)

The Luttinger parameters 7 can be found at the intermediary points z & §z/2 by

taking the mean of the two neighboring points at z and z £ dz.

We see that we draw up a set of finite difference equations if we map the potential
V(z) and the Luttinger parameters 7 to a grid along the z-axis. We will now try
to solve these coupled equations for the eigenenergies E and the eigenfunctions F'.
Assuming an equidistant grid z;, with a grid step dz, we can substitute z — z;,
z2—0z— zi_1 and 2+ 6z = 241

If we assume a given energy E, we still have 6 unknown parameters in the finite
difference equations. However, we can rewrite these equations so that we are able to
find Fip(2i41) and Fpp(2iy1) from their values at the two previous nodes, Fy,(2:i-1),

Fin(z-), Fan(zi-1), Fra(2i)-

2

Y3 2 2
Fyp(z; 1+3 ki(dz
(i) |1+ 3 s ey (02)
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(m —2%)~ V3
= Fpn(zi1) |- +3
(1) [ (71— 272)* (m +27%)* (71 — 27)*

6]

+ Fin(zie1) [f B ksl + M)}

(n —27)* (7 + 272)*

(1 —2%)t + (n — 272)” N+Y2 9/ 0
+ Fyplz; + ks (6
() [ (’Y1 —27,)* (n —2m)* +62)

(Z,) Y3Y2 3 2 3
+(71 — 279)* (6 ’- (71 + 272)* (m — 272)+k‘ (62) ]

_\/g Y (mt2y)t+(n+2%)”
(71— 272)* (m1 +2%)*

_ Y3(71 — 72) 3(52
\/5(71 +272)*(n — 2’72)+k +(02)

- T3 z) — z)3 .
\/5(71 +272) (1 — 272)* (V=) = E)ka(02) ] (A-21)

kt6z

2

5 2 2
Fin(zie1) |1+ 3 k2(62
i “)[ (m +272)H(m — 272)* t )]

= Ful(zia) [\/_ m)—mz( %71—:%%)}

, _(n+27)” v2 2
+ Fin(zi1) [ (27" + 3(71 - 272)+E‘% — 272)+k 2(6z) ]

+ th(zi) |:\/§ k2((52)2

(m+ 2 2)“l~

Y3 (M =27)t + (1 — 27)~
+V3 k0z
(7 +27)* (M = 272)*
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. Y3(m + 72) 3 3
+V3 k(6
(11 + 272) (71 — 27) +(92)

3 N 2)3
VB (V(a) - B)(e) ]

+ - -
+ Fulz) (71 +27)" + (11 + 272) Bk BT TR

(m + 272)* (m +27)*
V(z)-FE 2 Y273 3 3]
e (82)"+3 k(2 A.22
M2 o e 07| (A22)

These equations imply that, if the wavefunctions are known at the two points
(2 — 6z) and z, then the value of the wavefunctions at (z + 62) can be determined
for any energy E. This iterative equation forms the basis of a standard method of
solving equations numerically, and is known as the shooting method.

The equations can be rewritten in a matrix formalism, which allows for an easy
implementation in a MATLAB program code. If we use use a coefficient notation for

equations (A.21) and (A.22), i.e.
Fiun(zi1) = a1 Fan(zic1 + aoFin(2i21) + asFrn(2) + a4 Fha(2), (A.23)
Fin(zi1) = biFun(2iz1 + baFin(zio1) + b3 Fra(2) + by Fhn(2), (A.24)

the effective mass equations can be written in a recursive “transfer” matrix ex-

pression :

(0 0 1 0 ][ Fulz) | Fun(z:) |
0 0 0 1 Fin(2i-1) _ Fin(z) ' (A.25)
ay az a3 aq Fhn(2:) Fin(2i41)

| b by b3 by || Fu(z) | | Fin(zig) |

Provided that we have initial values for the wave functions at the first and second

node, we can determine the wavefunction values at any node by an iterative procedure.
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By multiplying matrices, it is possible to obtain an expression for the wavefunction

values at any node in function of the initial values:

Fun(zn) Frn(20)
Fu(zn ' Fin(z
ih(2n) = Mpy1M;Mp_1 -+ - MM, in(20) . (A.26)
Frn(2n41) Fpn(z1)
| Fin(2041) | | Eh(zl) 1

Now the questions remain what a suitable choice is for those initial values, and

how to determine whether an energy is an eigenenergy or not.

A.2 Initial Conditions and Practical Implementa-

tion

Using four known values of the wavefunction components at z and (z + 6z), a fifth
and sixth value can be predié{ed. 'Usin'g ‘this new point together with the known
wavefunction components at z, we can subsequently find the wavefunctions at (z +
26z), and so on. Hence the complete wave function solution can be found for any
particular energy. The solutions for steady states have wavefunctions which satisfy
the standard boundary conditions, i.e. :

F — 0 and %F-—)O, as z — oo (A.27)

As argued by Harrison [39], in the one-band case of the conduction band only two
initial values are required, and a suitable choice is “0” for the first node, and “1” for
the second point. The “1” can be any arbitrary number, as changing it will only scale
the wavefunction (the finite difference equations are linear) and this does not affect
the eigenenergy. The valence band case is a bit more complicated, as now there are
two coupled wavefunction components, and one cannot be scaled independently from

the other. Therefore we choose the initial values to be “0” and “1” for one band, and
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“0” and “c” for the other band. Here c is a parameter, which is to be determined
when solving the coupled equations.

The energy is varied systematically until both the wavefunction components switch
from diverging to dco to Foo, satisfying the boundary conditions. However, an
additional problem is that the extra parameter ¢ complicates matters. On top of
that, in many cases one of the wavefunction components exhibit very sharp sign
switches, often a component switches signs twice within one energy search step. In
order to work around these problems, we minimize the amplitude of the wavefunction
at the end of the grid. The function to be minimized can be found by generating the

transfer matrix which propagates the wavefunction at the first two nodes to the last

two notes:
Frn(zn-1) My Mz Mz My 0
Fin(zn- a1 Mg Moz Mg 0
() | _ . (A.28)
Fun(zn) M31 M3y M3z M3y 1
Fin(znv) | | ma1 maz My My | | C |
We then minimize the wavefunction amplitude at the final node :
(maz + ma4c)? + (Maz + M4s)® = Cmin- (A.29)

We then look for a minimum in ¢, (F). A solution for the Hamiltonian equa-
tions is found when this minimum wavefunction amplitude is smaller than a certain
threshold value. This guarantees a converging wavefunction. The wavefunction can
be found by substituting ¢, for ¢ in equation (A.26).

The wavefunctions obtained from this numerical method are not normalized. This

can easily be achieved with the following transformation

Frn(2) . Fun(2) 1
Fin(2) Fin(2) | VI(FRu(2) + Fi(2))dz

(A.30)
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A.3 Code

lutt.m

This function looks for the file containing the Al content x.r, as generated by
Paul Harrison’s code. It then calculates and saves the three Luttinger parameters
for the structure specified in x.r, and saves them as ascii .r-files in gl.r, g2.r and
g3.r. The effective mass data was taken from Adachi [26].

function lutt;
%Create files containing Luttinger parameters gi, g2, g3 vs. z
%Input is x.r

xr=load(’x.r’); % Al contant in AlGaAs
z=xr(:,1); % z grid

x=xr(:,2)’; % Al content
n0=9.10-31; % e mass
hbar=1.05e-34;

mhh=0.50+40.29+x; % heavy hole mass
mlh=0,087+0.063*x; % light hole mass

mhh110=0.85*mhh./mhh; % hh mass along <110>

#Luttinger parameters gamma for AlGaAs
coeff=[t -2 0;1 2 0;1 0 -2];
const=hbar2/(2*n0) *{1./mhh ; 1./mlh; 1./wmhh110];
g=coeff"-1*const;

g=g’;

gi=[z g(:,1));

g2=[z g(:,2)];

g3=[z g(:,3)];

save ’gl.r’ gl -ascii -double

save ’g2.r’ g2 -ascii -double

save ’g3.r’ g3 -ascii -double

input_deck.m

Some input values for the dispersion relation calculator vbdispersion.m and the
simple band-edge calculation script finelvb.m. This allows for easier manipulation
of some key input parameters.

%finelvb and vbdispersion

min_en_diff=0.05*meV; % used to determine whether two solutions are the same
alimit=1e5; % maximum for a

kt=1e5; % kt for ’band edge’ calculation

Estep=0.1+meV; % E step for band edge calculation

Bacc=meV*1e-9; % E resolution of calculated subband energies

%vbdispersion - search parameters

subband_en_search=0.15*meV; % energy search range

en_abort=meV; abort search when E range > en_abort

ktmax=1e9; % maximum calculated kt

ktstep=2e6; % kt step for E-k dispersion

number_of _cb_subbands=4; % # of cb subbands taken into account

%number_of _states=nr-1; % # of vb subbands taken into account
vbdispersion.m

This is the main MATLAB script file, calculating the E —k relations for all valence

subbands. The function lutt.m is run first, to calculate the Luttinger parameters
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for use in the transfer matrix code. The script works as explained in the theoretical
section on finite difference calculations, searching an energy grid ranging over the
energies allowing a bound solution. First, the zone center (k = 0) subband energies
are determined by searching this energy grid and refining the energy solutions up to a
certain energy accuracy FE,... Two plots of the valence band structure are shown, dis-
tinguishing between heavy hole and light hole components of the wavefunctions. The
wavefunction data is saved as an ascii file under the name wf_subband_number.dat.

The user can specify for how many valence subbands a dispersion relation is calcu-
lated, and at what resolution, by setting the corresponding parameters in input_deck.m.
The dispersion relation is found by starting from the zone center energy, and increas-
ing k to find a new value E(k). The previous values for E(k) are then used to predict
a value which is used as an initial guess in the next k-step.

Simultaneously, the wavefunctions for the solutions are calculated and used to
find the relative interband optical transition strength between each calculated valence
subband and a user-specified number of conduction subbands. The relative transition

strength data is saved as .mat-files.

%Shooting Method

clear

lutt

global z hbar meV V dz N gt g2 g3

hbar=1.05e-34;
meV=1.602e-22;

RAXXLAELARALRARALLARL LA L AR LRR LN XA XA XL KL AAALA KR LAAA KL LXAAKNLRLR
% structural parameters and data
11111111111X%{%%X1111121111111112111111111111211111211111111%1

xr=load(’x.r’);

x=xr(:, ). %A1 contont

zexr(:, Ygri

Vr-load('v r'); Xpotontill profile

Vavr(:,2);

glttload( 1 r’); Xluttinger paramsters

gl=gir(:,2

g2r-load( 2 r');

g2=g2r(: ,2?

g3r-load( §3 .r');

g3=g3r(:,2

input_deck %input parameters

dz=z(2)-2(1); Xgrid step size

Nasize(V,1); %number of grid points

cl=['m ’;’c ’;'r ’;'g ’;’b '.'Y 1.:m- :.»c. "’r- 1irg- b0y 0w 0

e ';'r ’;'g 20 'y tmel?tp . itb=ty=Lttm Yilc ' 'lg Yth 0y '];
ch=l'm *;’c ';'r i'g b '3 s ; e P Y TN :’__r m o '
'c l;lr l;ls );’b l;l’ ’;'n-.';’c-_l;'!-.l;'s_.l;lb_.’:"-.I;’m l.lc l.'r l.’s "Ib l;" l];
nrm=1e7;

Emin=min(V) Yenergy minimum

Enax-min(v(l) LV(N)); Yenergy maximum
111%%11111111111%11ll1111111%1111111111111111111%111111111111

% calculation of band-ed subband ener; vavefunction

XARRLRLAALNXAAARLANAL LA 11%11111111111 1%1111%1%%11!%%1%111%

mpl=fi
plot(z’“: 10,V/meV, ’k?);



A.3. CODE 111

hold;

mph=£i,
plot (z’ur-lo V/meV, ’k?’);
hold;

nr=1;

oldsignl=1;

oldsignh=1;

oldsignd=1;

oldsignd2=1;

oldsignd3=1;

index=1;

for EsEmin:Estep:Emax
tfm=tfmatrix(E,kt);
h10(index)=tfm(3,3);
110(1ndox)-tfu(4.3) ;
h01(index)=tfm(3,4);
101 (index)=tfm(4,4);
cmin(index)=-(tfn(1,3)stem(1,8) +ten(2, 3)-efm(2 4))/(tfn(1,4)"2+tfm(2,4)"2);
dif{hnin(indox)ttfm(a 3)¢min(ind-x)tt1n(3.
diff1min(index)=tfm(4,3)+cmin(index)*tfm(4, 4).
dmin(indux)-diﬂhnin(indcx) 2+difflmin(index) "
dum(index)=abs(h10(index) *hO1(index)+101 (1ndox) tllo(indux) );

if index>1
diffdmin(index)=dmin(index)-dmin(index-1);
newsignd=sign(diffdmin(index));
if index>2
if (newsignd-oldsignd==2)
E/meV
[a,Exesult]=shootvbd(E-2+Estep,E,kt,Eacc);
eval([’lecho diff E = nm?ltr(arnult/mv 12)1)
it (or==1) | ( (or>1) & Ahs(!ruult-l‘.‘ltat.(nr-l)))
Estate(nr)=Eresult;
[th, fl]-plotvav(Erosult kt,1,a);
if { (£1(N)-2+£n(N)~2)/ (max(abs(£1))~2+max(abs(fh))"2)<1e-4)
Estate(nr)=Eresult;
coeff{(nr)=a;
wfl(nr,:)=f1;
"fh(nri.)lgh.
]
plot(z/h-lo Estate(nr)/meV+wtl(nr,:)."2/nrm,cl(nr,:));
draunow;
ro!rnh(uq:l) H
tigure(mph);
plot(z/h-m Estate(nr)/meV+uth(nr,:)."2/nrm,ch(nr, .)) ;
drawnow;
rofrnh(
vt_save=[z fh’ £1°];
eval([’save wf_’' num2str(nr) ’.dat wf_save -ascii’l);
nr=nr+l;
end
end

min_en_diff )

end
end
oldsignd=newsignd;
end

if index>1 .
diff3(index)=dum(index)-dum(index-1);
9.“&943--1@(41“3(;“.: H
if index>2

if (nevsignd3-oldsignd3==2)
E/meV
[a,Eresult]=shootvbd(E-2+Estep,E+2¢Estep,kt ,Eacc Estoplso),
eval([’lecho try E = ? nmltr(zruult/mn .12
if (nr==1) | ( (ar>1) & abs(Eresult-Estate(nr-1))>min_en_diff )

Estate(nr)=Eresult;

(th,f1]=plotvav(Eresult,kt,1,a

if ( (ZL(N)"2+th(N)" 2)/(max(nbs(t1)) 2+max(abs(fh))~2)<1e-4)
Estate(nr)=Eresult;

co'!f(nr)-a,
tigure(mpl);
plot(z/h-lo Estate(nr)/meV+utl(nr,:).2/nrm,cl(nr,:));
dravnow;
xofxut(:(upl) H
» (mph)
plot (z/lc-lo Estate(nr)/meV+wth(nr,:)."2/nmm,ch(nr,:));
drawnow;
xofrnh( h) ;
vt _ savo-ﬂg th' £1'];
eval([’save vf_? nun2:tr(nr) ?.dat uf_save -ascii’]);
nr=nr+i;
else
(a,Eresult]=shootvbd(Eresult ,E+2+Estep,kt,Eacc,Estep/50,2);
oval(["ocho try E = nmnr(&ruule/mv 12)]),
Estate(nr)=Eresult;
{£h,f1]=plotvav(Eresult,kt,1,a);
it ( (1(N)" Quh(N)‘2)/(nu(nbl(t1))“2max(abs(fh)) “2)<1e-4)
Estate(nr)=Eresult;
vﬂ.(nr,:)-fl;
wth(nr, :)=th;
figure(mpl);
plot(z/lo-lﬂ Estate(nr)/meV4vfl(nr,:).*2/nm,cl(nr,:));
drawvnow;
refresh(mpl);
tigure(mph);
plot (zllrlo Estate(nr)/meV+wfh(nr,:).~2/nrm,ch(nr,:));
drawvnow;
refresh(mph);
wf_save=[z fh' £1°’];
eval([’save wf_’ num2str(nr) ’.dat wf_save -ascii’]);
nr=nr+i;
end
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ond
end
end
end
oldsignd3=newsignd3;
end

Eindex(index)=E;
index=index+1;
end

ARLARAALXAKLAALAAANLAXRLAAA XA KL AR LA ALK RAN AKX LR AR AAAR
% calculation of E-k dispersion relations
%11111111112111111111111{11112!111!1111111111%%1%11111

clear wavcon rtsTE rtsTM

if “exist(’number_of_states’)
number_of_statessnr-1;

ond

for cb_num=1:number_of_cb_subbands
eval(['wf=1oad(’’vf_e’ num2str{cb_num) ’.r?’);’]);
wavcon(:,chb_num)=vf(:,2);

end

for nr=1:number_of_states

clear subband_energy coeff

EO=Estate(nr); % subband edge energy
subband_energy(1)=E0;
sbnd_en_srch_act=subband_en_search; % search range
sbnd_en_srch_old=sbnd_en_srch_act; % old search range (previous k)

subband_en_search/10; % energy step in range

_old=Estep; % old e ste

del_en=0; % E difference between two previous E
kt_index=1;
abort=0;
error_nf=0; % 1 if no minimum found
sbnd_en_lim*meVY*3e-6; % minimum search range
old_error=0; % diff between predicted and calculated E
accuracy_modifier=1;
num=1; % number of minima in search range
tic
Eacc_act=Eacc;

ktmat=[(0:0.25:1.75) 2:(ktmax/ktstep)]*ktstep;
vhile (kt_index<size(ktmat,2)) & ~abort % kt iteration

kt=ktmat(kt_index+1);
min_en=subband_energy(kt_index)+del_en-sbnd_en_srch_act;
max_en=subband_energy(kt_index)+del_en+sbnd_en_srch_act;
min_en_arc(kt_index+1)=min_en; .
max_en_arc(kt_index+1)=max_en;
{a,Eresult,error_nf])=shootvbd(min_en,max_en,kt,Eacc_act,Estep,num);

if kt_index/50==floor(kt_index/50)
avnow
end

KAXXLAAXNLXALARLALAL Mipimim not found XXXXXNXXXXXNXXNLAXLNZNENLNXXXLALAXANELXL

if error_nft

num_ltnpsﬂztlbnd_cn_lrch_uct/!ntop;

i2 (Estep>Estep_o01d/10) & (sbnd_en_srch_act<sbnd_en_srch_old»10)
if num_steps<3e2
Estep=Estep/2;
num_steps=sbnd_en_srch_act/Estep;
eval([’'echo Adjusting Estep to ' num2str(Estep/meV) ’, ’ num2str(floor(num_steps)) °’ steps’]);
olse
sbnd_en_srch_act=sbnd_en_srch_act+*2;
Estep=sbnd_en_srch_act/10;
eval([’!echo Too many steps - increasing search area to ’ num2str(sbnd_en_srch_act/meV) ’, Estep = ' num2str(Estep/meV) ’, 10 steps’]);
end

elseif sbnd_en_srch_act<5+sbnd_en_srch_old
sbnd_en_srch_act=sbnd_en_srch_old*5;
Estep*Estep_old/2;
s=sbnd_en_srch_act/Estep;
echo Search area too small - increasing search area to ’ nun2str(sbnd_en_srch_act/meV) °*
, Estep = ' num2str(Estep/meV) ', ' num2str(num_steps) ’ steps’]);

olse
ktmat_size=size(ktmat,2);
ktstep_local=kt-ktmat (kt_index);
kt_inter=kt-ktstep_local/2;
ktmat=[ktmat (1:kt_index) kt_inter ktmat(kt_index+1:ktmat_size)];
P=polyfit(ktmat((kt_index-3):kt_.index)/ktstep,subband_energy((kt_index-3):kt_index)/meV,3);
en_predict=polyval(P,ktmat(kt_index+1)/ktstep)smeV;
del_en=en_predict-subband_energy(kt_index);
en_srch_act=sbnd_en_srch_old;
Estep=Estep_old;
eval([’!echo Inserting additional kt = ’ num2str(kt)]);
end

if sbnd_en_srch_act>0.25*meV
ktmat_sizes=size(ktmat,2);
ktstep_local=kt-ktmat(kt_index);
kt_inter=kt-ktstep_local/2;
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Xtmat=[ktmat(1:kt_index) kt_inter ktmat(kt_index+i:ktmat_size)];
P=polyfit(ktmat((kt_index~3):kt_index)/ktstep,subband_energy((kt_index-3):kt_index)/meV,3);
on_predictspolyval(P,ktmat (kt_index+1)/ktstep)*meV;
del_en=en_predict-subband energy(kt_index);
sbnd_en_srch_act=sbnd_en_srch_old;
Estep=Estep_old;
eval([’!echo Search area too large, inserting additional kt = ’ num2str(kt)]);
end

error_nf=0;
end
else
ARAAAANLALLANAANAALK  Minimum found NUAKAXNNALAXXANALNAXNXRENXNNKAANAKNANAALLNY
[th,£1]=plotwav(Eresult,kt,1,a);
if ( ((£1(N)~2+£h(N)~2)/(max(abs(£1))-2+max (abs{fh))"2))<ie-4*accuracy_modifier)

subband_energy(kt_index+1)=Eresult;
coeff(kt_index+1)=a;

if kt_index<4
del_en=(Eresult-subband_energy(kt_index))#(ktmat(kt_index+2)-kt)/(kt-ktmat(kt_index));

olseif kt_index<(size(ktmat,2)-1)
P'polyfit(ktnat((kt_ind-x-z):(kt_indox#l))/ktst.p,lubband--nargy((kt_indox-2):(kt_indox#l))/moV,S);
en_predict=polyval(P,ktmat(kt_index+2)/ktstep)*meV;
del_en=en_predict-Eresult;

end

for cb_num=1:number_of_cb_subbands
oll=trapz(z, (vavcon(:,cb_num).sfh?));
012=trapz(z, (vavcon(:,cb_num).*£1°));
rtsTE(nr,cb_num,kt_index+1)=0.6+(abs(011°2)+(1/3)*abs(012"2));
rtsTM(nr,cb_num, kt_index+1)=(2/3)»abs(012~2);

end

old_error=Eresult-min_en-sbnd_en_srch_act;
kt_index=kt_index+i;

eval([’!lecho kt=’ num2str(kt) ’, Eacc=’ num2str(Eacc_act/meV) *
srch_delE=’num2str(sbnd_en_srch_act/meV) ' Estep=’num2str(Estep/meV) ’ E found ’ num2str(Eresult/meV)

sbnd_en_srch_old=sbnd_en_srch_act;

d_en_srch_act=min([max{sbnd_en_srch_act/5, abs(5+(old_error))), subband_en_searchl);
srch_fnd=sbnd_en_srch_act;
if sbnd_en_srch_act<sbnd_en_lim;

sbnd_en_srch_act=sbnd_en_lim;

end
sbnd_en_lim=max([sbnd_en_1im/10, abs(5*cld_error), min(Bacc,EBacc_act*1ed)]);

Estep_old=Estep;
Estep=sbnd_en_srch_act/10;
Estep_fnd=Estep;

Bacc_prev=Eacc_act;
Eacc_act=min(Eacc*ie5,Eacc_act*1.25);
Eacc_fnd=Eacc_act;

nccurucy_modi!iur-max(accuracy_modi!i.rt.75.1);
changed_num=0;

else
techo Adjusting search parameters
if kt_index<3
Bacc_act=Bacc_act/10;

if Eacc_act<Eacc/20
if num==1
num=2;
else
num=1;
end
end
else
Bacc_act=Eacc_act*.5;
oval([’techo Eacc changed to ' num2str(Bacc_act/meV)]);
accuracy_modifier=min{accuracy moedifier+2,100);
eval([’Yecho accuracy modifier = ’ num2str(accuracy.modifier)]);

if Eacc_act<Bacc_prev/3
ktoat_size=size(ktmat,2);
ktstep_local=kt-ktmat(kt_index);
kt_inter=kt-ktstep_local/2;
ktmat={ktmat (1:kt_index) kt_inter ktmat(kt_index+l:ktmat_size)];
if kt_index>=3
P=polyfit (ktmat ((kt_index-3):kt_index)/ktstep,subband_energy((kt_index-3):kt_index)/meV,3);
en_predict=polyval(P ktmat(kt_index+1)/ktstep)+meV;
end
del_en=en_predict-subband_energy(kt_index);
sbnd_en_srch_act=sbnd_en_srch_old;
Estep=Estep_old;
eval([’!echo Inserting additional kt = ’ num2str(kt_inter)]));
end

if Eacc_act<Eresultseps+10
if “changed_num
if num==1
num=2;
else

* meV']);

113
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ond
Estep=Estep_fnd;
sbnd_en_srch_act=sbnd_en_srch_fnd;
Bacc_act=Eacc_fnd;
changed_num=1;
else
subband_energy(kt_index+1)=Eresult;
eval([’techo Solution not found, assumed calculated value'’]);

old_error=Eresult-min_en-sbnd_en_srch_act;
kt_index=kt_index+i;

sbnd_en_srch_old=sbnd_en_srch_act;
sbnd_en_srch_act>min([max(sbnd_en_srch_act, abs(5s(old_error))), subband_en_search]);
if sbnd_en_srch_act<sbnd_en_lim;

sbnd_en_srch_act=sbnd_en_lin;

ond
sbnd_en_lim=max([sbnd_en_1im/10, abs(5*old_error), min(Eacc,Eacc_act*1e4)}]);

Estep_old=Estep;
Estep=sbnd_en_srch_act/10;

Eacc_prev=Eacc_act;
Bacc_act=Eacc_act*le2;

[£1,2h)=plotvav(Eresult, kt,1,a);

ploti(l,'r')
drawvnow

:v-l([’!.:ho » num2str((£1(N)“2+th(N)"2)/(nax(abs(£1)) “2+4max(abs(fh))"2))]);

accuracy_modifier=min(accuracy.modifier*2,100);
oval([’lecho accuracy modifier = ’ num2str(accuracy_modifier)]);
end
end

ond
end

end
end
t(nr)=toc;
eval((’techo Elapsed time = ’ num2str(t(nr)) * s°l]);
figure
plot (ktmat,subband_energy/meV)
drawnow;
oval([’save En’ num2str(nr) ' subband_energy’'});
eval([’save kt’ num2str(nr) ’ ktmat’]);

figure

plot(ktmat,squeeze (rtsTE(nr,1,1:size(ktmat,2))),cl(1));

hold

for cb_num=2:number_of_cb_subbands
plot(ktmat,squeeze(rtsTE(nr,cb_num,1:size(ktmat,2))),cl(cb_num));

on

figure

plot(ktmat,squeeze(rtsTM(nr,1,1:size(ktmat,2))),cl(1)); .;

hold

for cb_num=2:number_of_cb_subbands
plot(ktmat,squeeze(rtsTM(nr,cb_num,1:size(ktmat,2))),cl(cb_num));

end

eval([’save coeff’ num2str(nr) ’ coeff’])
end

eval([’save rtsTE rtsTE’})
eval([’save rtsTM rtsT™’))

tfmatrix.m
The function tfmatrix.m returns the transfer matrix for the whole structure.
Inputs are F, the energy in J, and kt, the in-plane hole momentum. This function

implements the finite-difference equations (A.21) and (A.22).

function TFtot=tfmatrix(E,kt)

Yfunction TFtotstfmatrix(E,kt)

¥returns the transfer matrix for E and kt
%E = subband energy (J)

%kt = in-plane hole momentum

if “exist('kt’)
kt=0;
end
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global gl g2 g3 V N dz
TFtot=eye(4);
TF=zeros(4,4);
TF(1,3)=1;

TF(2,4)=1;

for n=2:(N-1)

if (gi(n)~=g1(n-1)) | (n==2) Ydetermine transfer matrix elements
C1=g1(n)~2-4+g2(n)"~2;

Cf = 1 + 3skt-2+dz"2+g3(n)"2/C1;

TF(3,1) = (-1 + 3+kt"2+dz*2+g3(n)*2/C1) / Cf;

TF(3,2) = (2+3qrt(3)sktsdz+g3(n)/(g1(n)-2+g2(n))) / Cf;

TF33 = ( 2 + kt"2+dz-2+(g1(n)+g2(n))/(g1(n)~2+g2(n)) - 3ekt"3edz-3+g2(n)*g3(n)/C1 ) / Cf;

TF34 = ( sqrt(3)skt-2+dz-2¢g2(n)/(gl(n)-2+g2(n)) - 2+sqrt(3)+ktedz*g3(n)/(g1(n)-2+g2(n)) - sqrt(3)skt-3sdz-3+g3(n)*(g1(n)-g2(n))/C1) / Cf;

TF(4,1) = (-2+sqrt(3)+ktedz*g3(n)/(g1(n)+2+g2(n))) / Cf;
TP(4,2) = (-1 + 3+kt"2+dz"2+g3(n)"2/C1) / Cf;

TF43 = ( sqrt(3)ekt-2+dz-2+g2(n)/(g1(n)+2+g2(n)) + 295qrt(3)*ktedzeg3(n)/(g1(n)+2¢g2(n)) + sqrt(3)+kt~3+dz"3+g3(n)*(g1(n)+g2(n))/C1) / Cf;

TF44 = ( 2 + kt"2sdz"2+(g1(n)-g2(n))/(g1(n)+2+g2(n)) + 3skt-3edz"3+g2(n)*g3(n)/Ct ) / Cf;
gp=gl(n)+2+g2(n);
gm=g1(n)-2+g2(n);
cons34=sqrt (3)+ktsdz"3+g3(n)/C1;
end
delE=V(n)-E;
TF(3,3) = TF33 + ( dz"2+delE/gm ) / Cf;
TP(3,4) = TP34 + ( - cons34sdelE ) / Cf;
TF(4,3) = TF43 + ( cons34sdelE ) / éf;
TF(4,4) = TF44 + ( dz"2+delB/gp ) / Cf;

TFtot=TF*TFtot;

it n==N-10
TFp=TFtot;
end

end

shootvbd.m

This function looks for a minimum in the wavefunction amplitude between Emin
and Emaz, at intervals of Estep, and for a wavevector of k¢. If a minimum is found,
the minimum is determined with an accuracy Eacc. Optionally, the function can
look for the minnumth minimum, disregarding the first minnum — 1 minima in the
interval. The function works with recursive calls, refining the search grid with every
step. The return values are a, which is the free parameter in the initial condition (¢
in the theory section), the candidate eigenenergy E, and a variable error_nf, which

is set to 1 if no minimum is found and is 0 otherwise.

function [a,E,error_nt]=shootvbd(Emin,Emax,kt,Bacc,Estep,minnum)
%returns the approximate eigen-energy for kt, betveen Emin and Emax and with an accuracy Eacc

global z hbar meV V dz N g1 g2 g3
delE=Emax-Emin;
if “exist(’Estep’)
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Estep=delE/10;
end

if ~exist(’minnum’)
minnum=1;
end

it Estep<Bacc
Estep=Eacc;
fl=1;

ond

E=Emin-3+Estep;
oldsignd=1;
index=0;
no_sign_change=1;
nsc=0;

vhile (E<=Emax) & no_sign_change
E=E+4Estep;
index=index+1;
ttn-tfuatrix(!,kt

APPENDIX A. APPENDIX :

MATLAB SCRIPTS AND FUNCTIONS

cmin(index)=- (+2m(1,3) stem(1,4) +tem(2,3) *t£n(2,4))/ (tn(1,4) ~2+t2m(2,4)"2)
diffinf (index)= (t!m(l 3)+teall, 4)*cnin(index))2 + (tfm(2,3)+tfm(2, 4)‘cmin(xnd-x)) 2;

dif£h(index)=tfn(3,3) +cmin(index)*tfm(3,4);
diff1(index)=tfn(3,3) +cmin(index)sttm(4,4);
if index>1
diff(index)=diffinf (index)-diffinf(index-1);
newsignds=sign(diff(index));
if index>2
if (nevsignd-oldsignds=2)
nsce=nscHi;
if (nsc==minnum)
no_sign_change=0;
end
end
end
oldsignd=newsignd;
end
end

if no_si
a=cain(i
E=E;
error_nfs=1;
fecho No minimum found
else
it Estep>Eacc
[a,E,error_nf]=shootvbd (E-2+Estep,E,kt,Eacc);
else
a=cmin(index-~1);
E=E-Estep;
error_nf=0;
end
end

.change
index);

vbdos.m

This script-file cleans up some of the data generated in vbdispersion.m, and

calculates the valence subband density of states as a function of in-plane hole mo-

mentum dosk and as a function of subband energy, relative to the valence band

edge (dosE). The various dispersion relations are saved as .mat-files :dosk.mat,

dosE.mat, rtsTE.mat, rtsTM.mat, the grid for the valence subband energy Evb.mat,

the in-plane-momentum grid ktmat.mat, and the E — k dispersion relation Ek.mat.

E_grid_step=0.1smeV;

load rtsTE
load rtsT™

% clean up E-k files

for vb=1:number_of_vb_subbands
eval([’load kt’ num2str(vb)]);
eval([’load En’ num2str(vb)]);
indices=find(ktmat/ktstep==floor(ktmat/ktstep));
Ek(vb, :)=subband_energy(indices);
for cb=1:number_of_cb_subbands
rtsTEtemp(vb,cb, )-:quoozo(rttTE(vb cb,indices));
rtsTMtemp(vb,cb,:)=squeeze (rtsTM(vb,cb,indices));
end
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end
% calculate density of states vs k and DOS vs E

ktmat=[0:ktstep:ktmax); ¥ kt matrix
kt_num=size(ktmat,2); % number of kt

rtsTEsrtsTEtemp;

rtsTH=rtsTHtemp;

Evb=[Emin:E_grid_step:Emax]; % energy grid for DOS vs E

Evb_num=size{Evb,2); tE gra size
dosE=zeros(number_of_vb_subbands,Evb_num); % init DOS vs E matrix

dEk=diff(Ek,1,2); % E grid step

dkt=diff(ktmat); % kt grid step

ktmid=ktmat(2:kt_num)-ktstep/2; % kt grid for DOS vs kt
Ek_node_index=(Ek-Emin)/E_grid_step+1; % index matrix to match the E grid to the kt grid

for vb=1:number_of_vb_subbands
dosk(vb, :)=abs(ktmid.+dkt./(pi*dEk(vb,:))); % DOS vs kt
for step=1:size(dEk,2)
Bi=min(Ek(vb,step) ,Ex(vb,step+1));
E2=max(Ek(vb,step) ,Ex(vb,step+1));
node_index_1=floor((E1-Emin)/E_grid_step+1);
node_index_2=ceil ((E2-Enin)/E_grid_step+1);
if node_index_2<Evb_num
for node_index=node_index_1:(node_index_2-1)
dosE(vb,node_index)=dosE(vb,node_index)+dosk(vb,step);
end;
node_fraction_1=(E1-Evb(node_index_1) )/E,frid_lk.p:
dosE(vb,node_index_1)=dosE(vb,node_index_1)-node_fraction_isdosk(vb,step);
node_fraction_2=(Evb{node_index_2)-E2)/E_grid_step;
dosE(vb,node_index_2-1)=dosE(vb,node_index_2-1)-node_fraction_2+dosk(vb,step);
end
ond
end

Qiffdosk=diff(dosk,1,2);
dosk=[dosk(:,1) dosk(:,1:kt_num-2)+diffdosk dosk(:,kt_nm-1)];

save Evb Evb
save Ek Ek

save rtsTE rtsTE
save rtsTM rtsTM
save dosk dosk
save dosE dosE
save ktmat ktmat

gainE.m

In this function, the gain is calculated versus the interband energy minus the
bandgap énérgy. The gain is expressed in dimensionless numbers, the gain in cm™!
can be found by dividing by the module width.

The calculated gain is between valence subband vb, with population density Nb,
and conduction subband c¢b, with population density Nc. The electron temperature

is T. Optionally, a Lorentzian linewidth gam can be specified.

function gainE=gainE(vb,cb,Nv,Nc,T,gam)

% function gainE(vb,cb,Nv,Nc,T,gam)

% returns the gain (in %) vs (pump energy - band gap energy)
% gain in cn”-1 can be found by dividing by the module width
% uses rtsTE.mat, Ee.r, dosk.mat, ktmat.mat, Ek.mat

% constants from init.m

% vb - valence subband number

% cb - conduction subband number

% Nv - valence subband population (in units of 110 cm"-2)

% Nec - conduction subband population (in units of 1e10 cm~-2)
¥ T - temperature (K)

% gam - linewidth (default:0)

if “exist(’gam’)
gam=0;
end

init

load(’Be.x’)

load rtsTE

load dosk % DOS vs k

load Ek % subband energy vs k
load ktmat % kt grid
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E_grid_step=0.1sneV;

Epump=[0:E_grid_step:500+meV]; % grid for pump energy in excess of band gap energy
Epump_num=size(Epunp,2); % number of nodes in Epump
gainE=zeros(Epump_num,1); X gain vs pump E

rts=squeeze(rtsTE(vb,cb,:));
dosk_s: squeeze (dosk(vb,:));
En=squeeze(Ek(vb,:));

gaink=q“2shbar/(e0*c*n0°2)*rts’./(1./dosk_spec+pishbar"2/(0.0665*m0)); Xgain vs k
gaink=gaink./(1.52#eV+En+Ee(cb,2) *meV+hbar-2+ktmat.“2/(2+0.0665+m0)) ;
gaink=gainks28.8+eVsn0/2;

Efv=getEfvtin(vb,Nv,T); % valence subband quasi-Fermi level, relative to the valence band edge
dos=le-4*me/(pishbar-2); % density of states in cb, in cm™-2

delEf=kB*T*log(exp(1e10+Nc/(dos*kB+T))-1); % conduction subband quasi-Fermi level, relative to the conduction subband edge
Efe=Ee(cb,2)*meV+delES; % cb q-F energy, relative to the cb edge
gaink=gaink.*(£d(Efv,Ek(vb,:),T)+fd(Efe,Ee(cb,2) smeV+hbar-2¢ktmat . “2/(2+0.0665+x0),T)-1);

en=Ek(vb, :)+Ee(cb,2) smeV+hbar-2sktmat. “2/(2+0.0665*m0) ; % energy difference between cb and vb vs kt

den=diff(en); Xfit gain vs k to gain vs E

for step=1:size(den,2)
El=min(en(step) ,en(step+1));
E2=max(en(step) ,en(step+1));
node_index_1=floor(E1/E_grid_step+l);
node_index_2=ceil (E2/E_grid_step+1);
if node_index_2<Epump_num
for node_index=node_index_1:(node_index_2-1)
gainE(node_index)=gainE(node_index)+gaink(step);
eond;
node_fraction_i=(B1-Epump(node_index_ 1))/E_grid_step;
gainE(node_index_1)=gainF(node_index_1)-node_fraction_isgaink(step);
node_fraction_2=(Epump(node_index_2)-E2)/E_grid_step;
gainE(node_index_2-1)=gainE(node_index_2-1)-node_fraction_2sgaink(step);
end
end

if gam=0 % add linewidth
factor=1/.844; X makes up for loss due to limiting line shape width to 2sgam
gainElu=zeros (Epump_num,1);
absvidth=2sgan;
delE=E_grid_step;
Evidthsround(absvidth/delE);
for loop-l:lizt(zpum§,2)
for loop2=(loop-Ewidth):(loop+Evidth)
if (loop2>0) & (loop2<Epump_num)
fract=delEs( nm/(?‘pi))/(f&pump(loop)-Epump(loopZ))“24(5an/2)'2);
gainElw(loop2)=gainElw(loop2) +fractsgainE(loocp) ;
end

end

end
gainE=gainElvsfactor;
end

find_threshold_pop.m

find_threshold_pop.m recursively calculates the threshold population density for
an interband transition between valence subband vb and conduction subband cb, as-
suming an equal population density in both subbands. The threshold gain is threshold
(in cm™?), electron temperature 7. The returned population density value is in units

of [1e10cm™2].

function ftp=find_threshold_pop(vb,cb,threshold,T,popguess,popstep)

% function find_threshold_pop(vb,cb,threshold,T,popguess,popstep)

% vb = valence band number

% ¢b = conduction band number

% threshold = threshold gain, in X = gain in cm"-1 times module width in cm

% T = electron temperature

Y popguess = initial guess for threshold population density in units of 110 cm™-2 (0.1)
% popstep » step size in iteration process, in 110 cm~-2 (5)

if “exist(’popguess’)
popguess=0.1;
end

if “exist(’popstep’)
popstep=5;
end

tol=le-3;
maxgain=0;
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maxsteps=250;
numsteps=1;

vhile (maxgain<threshold) & (numsteps<maxsteps)
maxgainsmax(gainE(vb,cb,popguess,popguess,T));
popguess=popguess+popstep;
numsteps=numsteps+l;

end

if (maxgain-threshold)/threshold<tol

ftp=popguess;
else

popstepnev=popstep/5;

ttp-ﬂnd_thrnhold_pop(vh ,cb,threshold,T,popguess-2¢popstep .popltopniv) H
oend

lifetimesfin.m

In this script file the rate equations as outlined in Chapter 4, are implemented
and solved self-consistently. The e-e, h-h and LO phonon scattering rates are calcu-
lated with the aid of Paul Harrison’s code. The interband generation rate is obtained
from the finite-difference code. The various outputs are written to ascii data files.
rhoc_vs_Txxx : conduction subband population densities rhoc_vs_Txxx : valence sub-
band population densities eescatt_vs_Txxx : e-e scattering rates hhscatt_vs_Txxx :
h-h scattering rates LO_vs_Txxx : LO phonon scattering rates tspib_vs_Txxx : inter-

band spontaneous lifetimes and xxx denotes the photon flux in units of 102%cm=2.

clear

init

maxruns=6;

it_recalcee=5; JYvalue of ’it’ @ vhich ee-scatt is recalculated

4Nc_init=load(’N.r?);
YNc_init=Nc_init(:,2)*1e10;
%Nv_init=load(’Nv_init.dat’);
YNv_initsNv_init(:,2)*1e10;

Ne_init={20 0.025 0.016 0.5)*1¢10;
Nv_init=[30 2 2 2 2 0.01]*1e10;

for runs=l:maxruns

calculate_ee=0; %calculate e-e scattering?
calculate_hh=0;
calculate LO=1; %calculate LO phonon scattering?

Msq=28.8+q+m0/2;

meV=0.001*q;

gamma=0,5+meV;

Lz=350e-8; Xeffective period in em

ibthresh=50; %loss for depop laser in well 1 (cm"-1)
Nph=16000/(1675*meV);  Xincident photon flux (em”-2 s°-1)
sc=4; %number of conduction band states taken into account
sv=6; %number of valence band states taken into account
T(1)=10*runs+10;

T(2)=10*runs+10;

T(3)=10*xuns+10;

T(4)=10*runs+10;

Tv(1)=10*runs+10;

Tv(2)=10*runs+10;

Tv(3)=10*runs+10;

Tv(4)=10*runs+10;

Tv(5)=10*runs+10;

Tv(6)=10*runs+10;

delta_f=4.8e11; %isb linewidth 2 meV

cc=[4 3 ; 42; 32];

hh=[6 2 ; 61 ;54 ;53;52;51;42;41;35;34;32;31;21];
scatt=zeros(sc,sc);

L0=zeros(sc,sc);

tecp Nv.dat Nv_old.dat

frunsim
tcp N.r Noold.r
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for it=1:10 Yiteration requiregd for self-consistent calculation

Xassumed conduction band populations for first iteration
Ne=load(’N.r’);
Nc=N(:,2)*1e10;

Xget fermi levels for conduction band
Xload(’Efe.xr’);
load(’Be.r?);
dos=1e-4sme/(pishbar2); Xdensity of states in cb, in cm"-2
for loop=1:sc
de1Ef (loop)=kB#T(loop)*log(exp(Nc(loop)/(dosskB*T(lo0p)))-1);
Efe(loop,2)=Ee(loop,2)+delEf (1oop) /meV;
end
‘rm -f Efe.r
for loop=1:size(Efe,1)
;Vll( *techo ’ num2str(loop) ’ * num2str(Efe(loop,2),16) ’ >> Efe.r’l);
en

Jget fermi levels for valence subbands
Nv=load(’Nv.dat’);
%fd = energy diff betveen band edge
for loop=1:sv
Efv(loop)=getEfvtin(loop,Nv(loop,2),Tv(loop));
%Xdiff bet Efv and subband edge

end

%e-e scattering rates
if ((it==1) & (runs==1)) | calculate_ee
scatt=zeros(sc,sc);
[ree cols)=size(cc);
for row=i:ree
T_av=(T(cc(row,1))+T(cc(rov,2)))/2; Atexp set to average of the initial subbands
eval([’!queescatt -T ’ num2str(T_av) ’ -i ’ num2str(cc(row,1)) * -f * num2str(cc(row,2))
? -1 * num2str(N(cc(rov,1),2)) ’ -F ’ num2str(N(cc(rov,2),2)) 1);
rr=load(’'temp_dir2/ccABCD.x’);
for loop=1:3
if (rr(loop,1)==rr(loop,2)) & (rr(loop,3)==rr(loop,4))
scatt(rr(loop,1),rr(loop,4))=(scatt(rr(loop,1),rr(loop,4))+2+rr(loop,5));

:cutt(;rsioop,l).rr(loop,d))-(-c.tt(rr(loop,l).rr(loop,4))#rr(loop.5));
on

end
oval([’!mm temp.dir2/+']);
oval([’!rmdir temp_dir2']);
end
eval([’!rm temp_dir2/+’l);
oval([’!rmdir temp_dir2’]);
save scatt scatt;
else
if it==l
load scatt
scatt_ee_init=scatt;
eond
end

{!runsinv
tcp Nv_old.dat N.r

%h-h scattering rates
if ((it==1) & (runs==1))e| calculate_hh
scatthh=zeros(sv,sv);
[xhh colsl=size(hh);
for row=l:rhh
T_ava(Tv(hh(row,1))+Tv(hh(rov,2)))/2; XAtemp set to average of the initial subbands
eval([’!quhhscatt -T ’ num2str(T.av) ’ -i ’ num2str(hh(row,1)) ’ -f ’ num2str(hh(rov,2))
? -1 ’ pnum2str(Nv(hh(row,1),2)) ’ -F ’ num2str(Nv(hh(row,2).2)) 1);
rr=load(’temp_dir2/ccABCD.r’);
for loop=1:3
if (rr(loop,1)==rr(loop,2)) & (rr(loocp,3)==rr(loop,4))
scatthh(rr(loop,1),rr(loop,4 )-(-cutthh(rr(foo ,»1),rr(loop,4))+2+rx(2o0p,5));

else
scntthh(;r(looy.l),rr(loop,4))-(-c-tthh(rr(loop,l),rr(loop,4))orr(loep.5));
on,

end
oval([’!rm temp_dir2/s'));
oval([’!rmdir temp_dir2’]);
end
oval([’!rm temp_dir2/+'});
oval([’!rmdir temp_dir2’]);
save scatthh scatthh;
olse
if it==)
load scatthh
scatt_hh_init=scatthh;
end
end

‘runsim
tcp N old.r N.r

AAARAXAAAAXAALRAAAAAAAALAALAAL spontanecus emission lifetime XXNKNAXNXANXXAXXLAXUNAAXLXXANANALLNLLY

load(’'Be.z’);

tspisb=1./zeros(sc,sc); %lifetimes for spontaneous intersubband emission
del=zeros(sc,sc~1); Xenergy diff in meV

Z=zeros(sc,sc-1); %dipole moment

tenp_uf=load(’vf_el.r’);

nodes=size(temp_wf,1); %#nodes in grid

wszeros(nodes,sc); Yvave function amplitudes

grid=temp_vf(:,1);
vw(:,1)=temp_vwt(:,2);
for loopl=2:sc
temp_vf=load([’vf_e’ num2str(loopl) ’.r’l);
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w(:,loopl)=temp_ vwt(:,2);
for loop2=1:(loopl-1)
del(loopl,loop2)=Ee(loop1,2)-Ee(l00p2,2);
Z(loop1,loop2)=abs(trapz(grid,v(:,loopt). 'grid. »w(:,l00p2)));
;ipilh (1oop1,lo0p2) =tsp_isb(del(loopl,loop2) *meV,Z(1loopl,loop2));
ont
end

pAyaa e aNANIIEININEANIASNIASEEASNNNSSESASNIISANIESRENNINESNIISNIISANIEIANIIFSRANIEEANIISAANESAAIAS
AAANKAAANNLANKNANUNKXNL LO scattering rates XNANNNNXLXXNAXXXXLXNXANNXLXNNXYALNNUXRANANLANXXLXANNLLLY

load(’rrp.r’);
[xL0 cols)=size(xrrp);
if calculate_LD
oval([’!mv rrp.r rrp_temp.r'l);
for row=1:rL0
T.av=(T(rrp(row,1))+T(rrp(rov,2)))/2; Xtemp set to average of the initial subbands
eval([’!sbp -T ’ num2str(T_av)]);
eval([’'echo ’ num2str(rrp(row,1)) ' ’ num2str(rrp(row,2)) ’ > rrp.r’l);
eval(f’!srelo ~T ’ num2stxr(T_av) ]);
eval([’!rm rrp.r’]);

end
eval(['!mv rrp_temp.r rrp.r'l);
end
for row=1:rL0
sbi=rrp(row,1);
sbe=rrp(rov,2);
LOsr=load([’LOe’ num2str(sbi) num2str(sbf) ’.r'l);
en=L0sr(:,1)*nmeV;
cst=Nc(sbi)«le4*pishbar-2/me;
LO(sbi,sbf)=trapz(en,LOsr(:,2) .*»2d(Efe(sbi,2)*meV,en,T(sbi)).*(1-td(Efe(sbf,2)*meV,en-36+meV,T(sbs))))/cst;
end

Lo
pYRNR NN RSN RN RRNS AN ARNANAINIASANANAIAIAN SN RANFISNRIANFAIRIANIIINNIRNRINENSAIAANANANNGSENAINSAINENES
AALLAXANAAXAAALNKAXLLX interband generation rates and lifetimes XANNXXLXNNXXXALLXXXLAXXXXXNX

load(’Eh.r?);

Eval=Eh(4,2)*meV;

E_pump_exc=Eval+Ee(4,2) *meV+25+meV;%-delEexciton;
ind=round(E_pump_exc/(0.1+meV));

ain=zeros(sv,sc);
valcon.dat : considered transitions from val --> con
load(’valcon.dat’);
for loop=1:size(valcon,1)
valnr=valcon(loop,1);
connr=valcon(loop,2);
var=num2str(valnr);
cnr=num2str(connr) ; .
gainvs=-gainE(valnr,connr ,Nv(valnr,2),N(connr,2),T(connr));

%interband spontaneous emission rate (converted to cm~-2 s~-1)
rrecsp(valnr,connr)=spont_em(valnr,connr,Nv(valnr,2),N(connr,2),T(connr));
tsp(valnr,connr)=Nc(connr)/rrecsp(valnr,connr);

Ycalculation of pump beam absorption into each conduction subband
ain(valnr,connr)=Nphsgainvs(ind);
on: . .

%depop calculation
n_thresh=find_threshold_pop(1,1,ibthreshsLz,T(1));

ARRAAAAARANAAAAANAXLK rate equations KANNENXNXANXANXXUXNXNZAXLNAANXLANAANXLANLXNANNAL

%conduction band
te=1./zeros(sc);

for loopl=i:sc -
for loop2=1:sc . . .
tc(loopl,loop2)=1/(scatt(loopl,loop2) +L0(2oopl, loop2) +1/tspisb(2oopt,loop2)); .
end
end

%valence band
tv=l./zeros(sv);
for loopi=1:sv
for loop2=1:sv
;v(loopl,loop2)-1/(lcutthh(loopl,loop2));
on
end

%coett for cb
Ge=zeros(sc,1);
coeffc=zeros(sc);
for eqn=1:sc
for coef=l:sc
if eqn==coef
for loop=i:sc %in cb
coeffc(eqn,eqn)=coeffc(eqn,eqn)+1/tc(eqn,loop);
end

for loop=i:sv ¥spontaneous interband emission
coeffc(eqn,eqn)=coeffc(eqn,eqn)+1/tsp(loop,eqn);
end
else
coeffc(eqn,coet)=-1/tc(coef,eqn);
end
end;
%spont interband emission
for loop=1l:sv
Ge(eqn)=Ge(eqn) +gain(loop,eqn);
eond

end
rhoc=coeffc ~12Gc;
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122 APPENDIX A. APPENDIX : MATLAB SCRIPTS AND FUNCTIONS

Xcoeft for vb .
Gvezeros(sv,1);
coeffvazeros(sv);
for equ=1:sv
for coef=1:sv
if eqn==coef
for loop=1:sv ¥in vb
coeffv(eqn,eqn)=coeffv(eqn,eqn)+1/tv(eqn,loop);
end

for loop=i:sc Xspontaneous interband emission
coeftv(eqn,eqn)scoetfv(eqn,eqn)+1/tsp(eqn,loop);
end
olse
coeffv(eqn,coet)=-1/tv{coet,eqn);
end
ond;
%spont interband emission
for loop=i:sc
Gv(egn)=Gv(eqn) +gain(eqn,loop);
end
end
thov=coeffv--1sGv;

if rhoc(1)>n_thresh+1e10
rhoc(1)=n_thresh*1e10;

ond;

if rhov(1)>n_thresh*1e10
rhov(1)=n_threshe1e10;

end;

‘rm N.x

frm Nv.dat

for loop=1:sc Xadjust ee-rates
eval([’echo ’ num2str(loop) * * num2str(rhoc(loop)/1e10) * >> N.r’]);
scatt(loop,:)=scatt_se_init(loop,:)*Nc(loop)/Nc_init(loop);

end

for loop=i:sv Xadjust hh-rates
eval([’!echo ’ num2str(loop) ’ ’ num2str(zhov(loop)/1e10) ’ >> Nv.dat’l);
scatthh(loop,:)=scatt_hh_init(loop,:)*(Nv{(loop,2)*1e10)/Nv_init(loop);

end

calculate_| H

if itssit_recalcee
calculate_ee=1;
calculate_hh=1;

end

end %iteration

%intersubband gain in em"-1
isbgain43=(rhoc(4)-rhoc(3))*+q 2+del(4,3) *meV*(2(4,3)*102)°2/(pi*nse0scohbar-2+delta_f+Lz);
isbgain4d2=(rhoc(4)-rhoc(2))*q 2+del(4,2)*neV+(2(4,2)*162)"2/(pi*n*e0*cohbar-2+delta_1+Lz);

eval([’!echo ’ num2str(T) °* ’ num2str(transpose(rhoc)/1e10) ’ >> rhoc_vs_T' num2str(Nph/1e20)3);
eval([’!echo * num2str(T) ’ * num2str(transpose(rhov)/1e10) ’ >> rhov_vs T’ num2str(Nph/120)]);
oval(['techo ’ num2str(T) ' 3 2 ’ num2str(1/scatt(3,2),16) ’ >> eescatt_vs.T’ num2str(Nph/120)]1);
eval([’techo ’ num2str(T) * 4 2 * num2str(1/scatt(4,2),16) * >> eescatt_vs.T’ num2str(Nph/1e20)]);
eval({’!echo ’ num2str(T) * 4 3 ’ num2str(1/scatt(4,3),16) ’ >> eescatt_vs_T’ num2str(Nph/1e20)]);

for loops1:size(hh,2)

vis=hh(loop,1);

v2=hh(loop,2);

eval([’techo ' num2str(T) ’ ’ num2str(vl) ’ ’ num2str(v2) ’ ’ num2str(1/scatthh(vi,v2),16) * >> hhscatt_vs_T’ num2str(Nph/1e20)]);
end

for row=1:rL0

sbi=rrp(rov,1);

sbf=rrp(row,2);

eval([’techo ’ num2str(T) °* ’ num2str(sbi) ’ ' num2str(sbf) * ’ num2str(1/L0(sbi,sbf),16) ’ >> LO_vs.T’ num2str(Nph/1e20)]);
end

for loopv=1:sv
for loopc@i:sc
vor=num2str(loopv);
cnr=num2str(loopc);
eval([’lecho ? num2str(T) * ’ var * * cnr ' ’ num2str(tsp(loopv,loopc)) * >> tspib_vs_T’ num2str(Nph/1e20)]);
end
end

oval([’techo ’ num2str(T) ' 4 2 * num2str(isbgaind2,16) * >> isbgain_vs_T’ num2str(Nph/1e20)]);
eval([’!echo ’ num2str(T) ’ 4 3 ’ num2str(isbgaind3,16) * >> isbgain_vs_T’ num2str(Nph/1e20)]);

eval([’!echo ’ num2str(Nph) ’ ’ num2str(isbgain43,16) ’ >> isbgain43_vs_G’]);
eval([’!echo ’ num2str(Nph) * * num2str(isbgaind2,16) ' >> isbgain42_vs_G’]);

end %runs
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