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Abstract

Methods are developed for optimizing a general multi-input, single-output, nonlinear
system whose inputs are Gaussian processes. The output of the nonlinear system is
expressed as a sum of orthogonal functional polynomials of the inputs. The only statis-
tical information needed for this optimization is composed of the first-order autocorre-
lations and crosscorrelations among the inputs, and the higher-order crosscorrelations
between the inputs and the desired output.

Methods are developed also for optimizing simple single-input nonlinear systems
whose input is Gaussian. The systems consist of combinations of linear systems and
nonlinear no-memory devices. The systems have a fixed form with some undetermined
parameters. The system is optimized by making an optimum choice of the values of
these parameters. Methods are presented for determining these optimum values by
measurements.
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I. INTRODUCTION

1. 1 NONLINEAR SYSTEMS

A multi-input, single-output, nonlinear system, as its name implies, has several

inputs and one output. Unless it is otherwise specified, the nonlinear systems discussed

in this report are of this type. A block diagram of such a system is shown in Fig. 1.

Fig. 1. Multi-input, single-output nonlinear system.

A nonlinear system operates on its inputs to give the present value of its output. The

present value of the output is thus a nonlinear function of the inputs. If the present value

of the output is a function of only the past and present values of the inputs, the system

is called realizable; if the present value of the output is also a function of future values

of the inputs, then the system is called unrealizable.

1.2 OPTIMUM NONLINEAR SYSTEMS

The purpose of this report is to develop a theory for determining optimum nonlinear

systems of both the realizable and unrealizable types. An optimum nonlinear system

is one that operates on a given set of inputs in such a manner that its output is as close

as possible, in the mean-square sense, to a desired output. The inputs considered are

all stationary, zero-mean, Gaussian, random variables. The design of the optimum

nonlinear system will depend on the statistical relationships among the given inputs and

the desired output.

As well as optimizing general nonlinear systems, we shall consider the problem of

optimizing nonlinear systems of restricted forms. The restricted forms are chosen

because the systems can be optimized and constructed simply.

1. 3 AN APPLICATION FOR OPTIMUM NONLINEAR SYSTEMS

An application for an optimum nonlinear system might be found in weather fore-

casting. Suppose we wish to forecast some quantitative aspect of the weather, say, the

visibility at an airport 24 hours hence. Suppose also that we are given related quantita-

tive weather information, such as the past values of temperature, humidity, and wind

velocity in neighboring towns.
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The desired output is the future visibility at the airport; the actual output of the opti-

mum nonlinear system is the prediction of that visibility; the inputs are the temperature,

humidity, and wind velocities in neighboring towns. The statistical information needed

for designing the optimum nonlinear system might (in more quantitative form) be that

the visibility usually is poor after a temperature drop and an east wind. Because only

past values of the inputs are used, the resulting nonlinear system will be realizable.

In this example, the inputs, although random, would not be Gaussian.

1.4 GAUSSIAN INPUTS

The reason for restricting the random inputs to be of a specific type is that different

optimization procedures will, in general, be necessary for different types of input. The

reason for choosing the specific type of random input to be Gaussian is twofold. First,

Gaussian processes are very common, because the sum of many random processes tends

often to be Gaussian. Second, and perhaps more important, the Gaussian probability

distribution makes the mathematics simple enough so that the optimization equations

can be solved analytically.

1. 5 CHARACTERIZATION OF NONLINEAR SYSTEMS

In order to optimize a system, it is necessary, first, to express the functional rela-

tionship between the inputs and the output of the system. Undetermined parameters in

the functional relationship are then chosen to optimize the system.

For a multi-input, single-output, linear system the set of impulse responses, each

of which corresponds to the response to an impulse at a different input terminal, com-

pletely characterizes the functional dependence of the output on the inputs. The present

value of the output of a linear system is the sum of the convolutions of each of its inputs

with the corresponding impulse response. It is the set of impulse responses that is

chosen to optimize the linear system.

The functional relationships between the inputs and the output of a multi-input,

single-output, nonlinear system cannot be characterized as simply as can that of the

less general linear system. We shall present a characterization for a nonlinear system.

This characterization has properties that make it particularly convenient in the optimi-

zation procedures.

1.6 BACKGROUND OF THIS RESEARCH

Two books by Wiener, one on linear systems (1) and one on nonlinear systems (2),

give important background material for this study. In his book on linear systems Wiener

solves the problem of optimizing a multi-input realizable linear system. The inputs are

random but not necessarily Gaussian. The solution is not simple because it requires
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spectrum factorization and the solution of sets of linear equations. However, in this

report use will be made of the fact that such a solution does exist.

In his book on nonlinear systems Wiener treats the problem of characterizing an

arbitrary realizable single-input nonlinear system whose input is white Gaussian noise.

That is, Wiener considers the problem in which both the output and the white Gaussian

input of an arbitrary, realizable, single-input nonlinear system are given, and from

this input and output the functional dependence of the output on the input is to be deter-

mined. Wiener's solution to this characterization problem is closely related to the opti-

mization problem in which a desired output and a white Gaussian input are given, and

we wish to determine a realizable single-input nonlinear system whose input is the given

Gaussian input and whose output is as close as possible, in the mean-square sense, to

the desired output. If we attempt to characterize, in Wiener's manner, an imaginary

nonlinear system whose input is the given input and whose output is the desired output,

then the resulting characterization will not represent the imaginary nonlinear system,

but will represent the optimum realizable nonlinear system. Therefore, if the input is

white Gaussian noise, Wiener's characterization method can be used for obtaining the

optimum realizable single-input nonlinear system.

Barrett (3) and Zadeh (4) have considered the problem of optimizing a single-input

nonlinear system for non-Gaussian inputs. In general, their optimization equations

cannot be solved analytically, although machine computations could give solutions.

Bose (5) has used a novel expansion for a nonlinear system. Systems represented

by his "gate-function" expansion can be optimized by simple measurements for any type

of random input. His expansion and optimization procedure can be used for multi-input

nonlinear systems.
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II. CHARACTERIZATION OF A MULTI-INPUT NONLINEAR SYSTEM

2. 1 INTRODUCTION

In this section we shall present several ways in which the relationship between the

output and the inputs of a multi-input nonlinear system may be expressed. We shall start

with one method that leads directly to a physical model for a nonlinear system. By a

modification of this first method of characterization, we obtain a characterization in

terms of functionals of the Volterra type. A brief history of the development and applica-

tion of this functional representation will be given. Finally, we shall present both the

method of characterization that will be used in the rest of this report and the important

properties of this characterization.

2.2 CHARACTERIZATION OF THE PAST OF INPUTS

The output of a realizable multi-input nonlinear system depends in a nonlinear man-

ner, on the past of its inputs. In order to describe how the output depends on the past of

the inputs, we would like to be able to characterize the past of the inputs by some means

that is more convenient, say, than a graph of each input over past time.

The past of the inputs can be characterized by an infinite set of coefficients in the

following manner. We can expand the past of each input in terms of a complete ortho-

normal set of functions such as Laguerre functions. That is, if {hj(T)} is a complete set

of functions with the property that

h (T) hk(T) dT( = (1)
Jo. Jl(Ti to(TJ dT . (~ j + k

then at any time t the past of each input xi(t-T) for T 0 can be represented as

0oo

xi(t-T) = ui, j(t) hj(T) T 0 (2)
j=l

The coefficient ui j(t) is the coefficient of the jth Laguerre function (if {hi(T)} is a set of
1, th 

Laguerre functions) in the expansion of the past of the i input at time t. If there are

N inputs xl, ... xN, then at time t the infinite set of coefficients

i= 1,...N
{ui, j(t)}

J ,j=...

is said to characterize the past of inputs because, by means of Eq. 2, we can express

the past of each input in terms of the coefficients.

By multiplying both sides of Eq. 2 by hk(T), integrating on T, and then applying

the orthonormality property of Eq. 1, we see that the Laguerre coefficient ui j(t)

is given by
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(t hi(T) xi(t-T) dT (3)

2.3 CHARACTERIZATION OF A NONLINEAR SYSTEM

Since the output w(t) of a multi-input nonlinear system, as shown in Fig. 2, with

inputs {xl(t) .... xN(t)} depends on the past of the inputs and, since at time t the past of

the inputs can be characterized by the infinite set of coefficients {ui, j(t)}, the output can

be written as a nonlinear function of the coefficients {ui j(t)}; that is,

w(t) = F[ul, (t), ul, 2(t), .. . u2, (t), ..] (4)

The function F has no memory; that is, the present value of the output depends only

on the present value of the coefficients {ui j(t)}, since all the information about the

past of the inputs is contained in the present

value of the coefficients.
X.(t )

Ine Iunctlon r cnaracterizes ne non-
linear system, for it tells how the output is

produced from the inputs. It is only the

nonlinear no-memory function F that is

different for different nonlinear systems.
Fig. 2. Multi-input nonlinear system. Thus the function F is the parameter that

is varied to optimize the nonlinear system.

One form in which the nonlinear no-memory function F could be expressed is a

power series. By using this power series for F, Eq. 4 becomes

w(t) = a + bul, l(t) + cu, 2 (t) + ... + du2, (t) + .

+ eu2 l(t) + ... + fu 1 l(t) 2, l(t)+ .

+ gul, 3 (t) u2 , 4 (t) u3 , 5 (t) + ... (5)

The constants (a, b, c, ... .) depend upon the nonlinear no-memory function F. Thus the

constants (a, b, c, . . .) are the parameters that are different for different nonlinear sys-

tems and are the parameters that are varied to optimize the nonlinear system. The con-

stants (a, b, c, . . .) characterize the nonlinear system, for they are sufficient to describe

how the output is formed from the inputs.

Both this method of characterizing a nonlinear system and the physical model of a

nonlinear system given in the next section are due to Wiener (6) and have been discussed

by Bose (5).

2.4 A PHYSICAL MODEL FOR A GENERAL MULTI-INPUT NONLINEAR SYSTEM

The previous method for characterizing a multi-input nonlinear system suggests the

physical model of Fig. 3 for a general multi-input nonlinear system. In the model of

5



NONLINEAR
LINEAP NO-MEMORY

Fig. 3. Model for a general multi-input nonlinear system.

Fig. 3 each of the inputs {xl(t), .... xN(t)} is passed through an infinite set of linear sys-

tems; each of their impulse responses is a different Laguerre function. The outputs of

all these linear systems are the inputs to an infinite-input, single-output, nonlinear,

no-memory device F. The output of the nonlinear system is w(t).

Since the output of a linear system is the convolution of the input with the impulse

response of the linear system, the output at time t of the linear system in Fig. 3, whose

impulse response is the jth Laguerre function hj(t) and whose input is x i , is, from Eq. 3,

u. (t). Thus the present outputs of the linear systems in Fig. 3 are the coefficients
1, j

{ui j(t)} that characterize the past of the inputs. The box F performs the nonlinear

no-memory operation on the coefficients {uij(t)} and characterizes the nonlinear system.

If a power series is used as in Eq. 5, then the box F performs only multiplication

and addition of the coefficients {ui j(t)}. The constants (gains) in the multiplication and

addition are the parameters that characterize the nonlinear system. Different nonlinear

systems are all represented in the form shown in Fig. 3; these systems differ only in

the gains in the power-series box F.

2.5 ANOTHER CHARACTERIZATION OF A NONLINEAR SYSTEM

We can obtain another method for characterizing a nonlinear system by grouping

together some of the terms in Eq. 5. We shall group together those terms that are com-

posed of one u, and then group together those terms that are products of two u's, and, in

general, group together those terms that are products of n u's for each n.
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Let us first consider the sum of terms in the right-hand side of Eq. 5 that consist of

a single u multiplied by a constant, such as

aul, l(t) + bul, 2 (t) + .. . cu2, (t) + ... (6)

From either Eq. 3 or Fig. 3, it is seen that each u is the output of a linear operation on

an input. The sum of the outputs of linear operations on the same input is equivalent to

the output of a single linear operation on that same input. This single linear operation,

of course, depends upon the many linear operations with which it is equivalent. It also

follows that the sum of the outputs of many linear operations on N inputs is equivalent

to the output of N linear operations; one on each of the N inputs. Thus expression 6 is

equivalent to

N oo

z0 K1 i (T ) xi(t-T) dT (7)

for some set of N kernels {K 1 i(T)}.

As an example, let us show that the expression

aul, (t) + bul, 2 (t) + cu 2 , (t)

can be written in the form of expression 7. Expanding each u in the form of Eq. 3, and

rearranging terms, we obtain the desired form

aul t + bul ( t) + cul 2(t) a cu2T) xl(t-T) dT

+ b fj h2 (T) xl(t-T) dT + c hl(T) x 2 (t-T) dT

00 
00

Jo 1)[ahl(T)+bh 2(T)] xl(t-T) dT + chl(T) x2 (t-T) dT

j K1 , 1(T) xl(t-T) dT + J K1 2 (T) x 2 (t-T) dT (8)

where K1, 1 (T) - ahl(T) + bh 2(T), and K1, 2 (T) = chl(T).

Let us now consider the sum of terms in the right-hand side of Eq. 5 that are com-

posed of the product of two u's times a constant, such as

2
au1i(t) + bul, l(t) u1 2(t)+ + CU1, (t) u2, (t) + + du 2, l(t) u, 2 (t) + . (9)

In considering the linear terms of expression 6, we divided the expression up into

a single linear operation on each input (expression 7). By expressing each of the

u's in expression 9 in the form of Eq. 3, it can be shown that expression 9 can be

written as the sum of quadratic operations on all pairs of the inputs.

7



i' J J K2 , i(TI, T 2 ) X. (t-T 1 ) Xi(t-T 2 ) dTldT2 (10)
i X2

The sum on i is such that all pairs of inputs are considered once. That is, there will

be a term in expression 10 that involves xl(t-T 1 ) xl(t-T 2 ), and there will be another

term that involves xl(t-T 1 ) x 2 (t-T 2 ), and one term for each of the other pairs of inputs.

The second-order kernels {K2, i(T1, T 2 )} will depend upon the constants (a, b, c, ... ).

As an example, let us show that the expression

2
aul, l(t) + bul, 1 (t) u 2 (t) + cu, 1 (t) 2, (t) (11)

can be written in the form of expression 10. By expanding each u in the form of Eq. 3,

expression 11 becomes

aul, (t) + bul, (t) u, 2 (t) + CU, 1(t) u2, 1 (t)

a f hl(T1 ) xl(t-T1 ) h(T 2 ) Xl(t-T2 ) dT 2

/00 ,.00

bJ hl(T1 ) x 1 (t-T 1 )J h2 (T 2 ) x 1 (t-T 2 ) dT 2

c/o o 00
+ c hl(T 1) xl(t-T 1 ) J hl(T 1 ) x 2 (t-T 2 ) dT 2

Writing these terms as double integrals and combining terms involving the product of the

same pair of x's, we obtain the desired form:

aul, 1 (t) + bul, 1 (t) ul, 2 (t) + cul, 1 (t) 1, 2 (t)

Jo JO0 [ah (T)hl(()hT 2 )+bh 1 (T)h 2 (T 2 )] x1 (t-T 1) xl(t-T 2) dT 1dT 2

Jo Chl(T h1 (T) h l (t-T 1 ) x 2 (t-T 2 ) dTldT2

= JJ K2, 1 (T 1 ,T 2 ) xl(t-T 1 ) x2 (t-T 2 ) dTldT 2

o+ JoK 2 , 2 (T 1 , T 2 ) xl(t-T1 ) x 2 (t-T 2 ) dT 1 dT2 (12)

where

K2, 1 (T 1 , T2 ) ahl(T1 ) hl(T2) + bhl(T 1) h2 (T 2) (13)

and

8



K2, 2 (T 1 , T 2 ) = ch 1 (T 1) hl(T2 ) (14)

In general, the second-order kernels K2, i can be expressed as an infinite sum of terms

of the form of the right-hand side of Eqs. 13 and 14.

By using the same methods, we could express the sum of terms composed of the prod-

uct of n u's as

Xj j Kn i(Tl * n i Tn) xi-T . (t-T) dT 1) ... x i (dTn (15)
i ....

The summation on i is such that all different products of n x's are considered. The

nth order kernels iK i(T .... Tn) depend upon the constants (a, b, c, . . .) in Eq. 5.

Since the output w(t) (Eq. 5) can be expressed as a sum over n of sums of terms

composed of the product of n u's, and since these sums of products of n u's can be

expressed in the form of expression 15, the output w(t) can be written as

w(t ) =j Z ..i Kn. i(T .. Tn) x (t-T 1 ) .. x. (t-Tn) dT... dT (16)
n=O i 1 n

Here, the n = 0 term is a constant.

In expression 16, the infinite set of kernels {Kn,i(T . .. T )} characterizes the non-

linear system in the same manner as the constants (a, b, c, .... ) characterize the nonlinear

system in Eq. 5.

2.6 FUNCTIONALS

The terms that we have used in the right-hand side of Eq. 16 are of a well-known

mathematical form and are called functionals. A functional is a number that depends

upon a function. For example, the present output r(t) of a linear system with impulse

response K(t) and input x(t) is expressed as

r(t) K(T) x(t-T) dT (17)

and is a functional of the input. The present value of r(t) is a number depending upon

the past of the input, and is a function. A functional may be contrasted with a function

that is a number depending on a finite number of variables. An example of a function of

an input x(t) is

g(t) = ax(t-T 1) + bx(t-T 2)

The present value of the function g(t) is a number that depends on only two past values

of the input.

A functional may also be contrasted with an operator that transforms a function (the

past of the inputs) into a function (the output of the system as a function of time).

A term of the form

9



nj */ O* K(T 1 , *Tn ) x i( t-T1 ) . x.(t-Tn) dT. dT (18)

is called a homogeneous functional of degree n. Expression 18 is indeed a functional

because its present value (a number) depends on the past of the inputs. It is homogeneous

of degree n because it has the property that if each input is multiplied by the same con-

stant A, then the functional is multiplied by An

A finite sum of homogeneous functionals whose highest degree is n is called a func-

tional polynomial of degree n. An example of a functional polynomial of degree 2 is

K2 3 (T 1 ,T 2 ) xl(t-T1 ) x2 (t-T 2 ) dTldT2 + K1, 2 (T) x 2 (t-T) d (19)

If the inputs are random, then both the homogeneous functionals and the functional

polynomials are random variables because they both depend upon the random inputs. A

system of functional polynomials in which functional polynomials of different degree are

linearly independent (that is, the average value of their product is zero) is called a sys-

tem of orthogonal functional polynomials. Such a system has this orthogonality (linear

independence) for only certain input statistics.

In Eq. 16 we represented the output of a nonlinear system as an infinite sum of homo-

geneous functional polynomials. We shall later represent the output of a nonlinear sys-

tem by an infinite sum of orthogonal functional polynomials. The orthogonality of the

functional polynomials simplifies the optimization procedures.

2.7 BACKGROUND OF THE DEVELOPMENT AND APPLICATION OF FUNCTIONALS

As early as 1900, Volterra (7) discussed homogeneous functionals. In 1942,

Wiener (8) used homogeneous functionals to describe the output of a nonlinear elec-

trical circuit whose input was white Gaussian noise. In 1947, Cameron and Martin (9)

developed a system of orthogonal functional polynomials for a single white Gaussian

input.

Wiener (2, 6) has used orthogonal functional polynomials to characterize single -input

nonlinear systems with a white Gaussian input.

Barrett (3) has given an excellent discussion on the application of functionals in the

study of nonlinear systems. He presents the equations that must be solved in order to

form a system of orthogonal functional polynomials for a single non-Gaussian input.

Barrett's orthogonal functional polynomials for a single Gaussian input use the

N-dimensional Hermite polynomials of Grad (9). For a single white Gaussian input, these

orthogonal functional polynomials of Barrett reduce to those of Wiener (6).

Brilliant (10) and George (11) have discussed some of the convergence and cascading

properties of the functional power-series representation for a single-input nonlinear

system.

10



2.8 A SYSTEM OF ORTHOGONAL FUNCTIONAL POLYNOMIALS

We shall now define a system of orthogonal functional polynomials of a set of jointly

Gaussian inputs {x 1(t), .... xN(t)}. In general, different functional polynomials are required

for different input statistics. The reason for introducing these functional polynomials is

that in the rest of this report an infinite sum of these functional polynomials will be used

to represent the output of a multi-input nonlinear system whose inputs are {x1(t), . xN(t)}.

These functional polynomials are the same ones that Barrett (3) uses with a single

Gaussian input. We shall use them with N Gaussian inputs and prove that they are indeed

orthogonal.

Unfortunately, in order to describe these functional polynomials, a fair amount

of notation has to be introduced. A functional polynomial of degree n is denoted by

Gn(t, Kn, i' {x}i) and is called a G-functional. This functional polynomial is defined as

=O0 nGntnKi { i)=J ... J K(T 1 , ~Tn) Xj (-1)" P[xi (t-T1 ). . . xi (t-Tn)] dT... dT

(20)

The expression [n equals n for n even and eqials 2 for n odd. Unless otherwise

stated, the limits of integration are from minus infinity to infinity.

Implicit in the definition of Gn(t, Kn, i'{x}i) is a table that associates with each {x}i a

corresponding set of n inputs {X, x .. .. x }. Some of these n inputs may be the

same ones.

The kernel Kn, i(T, . .. Tn) is arbitrary; it will be different for different nonlinear

systems. The first subscript, n, of the kernel indicates how many T variables the kernel

has; the second subscript, i, indicates which set of x's is used with the kernel.

The expression P xi (t-T1, x (t-Tn)] requires a definition of its own. The
1 n

expression P [Xi (t-T 1 ), ... x i (t-Tn)] is a sum of terms. One such term is formed in

three steps: (a) v pairs of x's are formed without replacement from the set of x's

{Xi (t-T 1 ), . . . xi (t-Tn)}. (Notice that there are many different ways of choosing these
1 n

pairs.) (b) The statistical average of each pair is formed. (c) The product of the

unpaired x's is multiplied by the product of the v averaged pairs to form one of the

terms of P . To form another of the terms of P , the same three steps are followed,

except that a different set of pairs of x's is chosen. The sum of the terms formed by all

possible different sets of pairs defines PV.

To give an example of a Pv expression,

P l [Xl(t-T 1), xl(t-T2), x 2 (t-T 3)] = xl(t-T1 ) xl(t-T2 ) x 2 (t-T 3 ) + xl(t-T2 ) xl(t-T1 ) x 2 (t-T 3 )

+ x 2 (t-T 3 ) xl(t-T 1) xl(t-T 2 ) (21)

11
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The bar indicates ensemble average. Since the input x processes are assumed to be

stationary, we can define a correlation function as

Rx x (T) = xi(t) xj(t+T) (22)
1 j

By using this definition of correlation function, Eq. 21 becomes

P1[X l(t-T1), xl(t-T2), x2(t-T3) ]= xl(t-T 1 ) Rx2(T2-T )

+ xl(t-T2 ) Rx (TI-T3)+ x2(tT3) Rx (T 1 -T 2 )
Rxlx2 Rxl 1

(23)

As another example, the term Po[xl(t-T 1 ), xl(t-T 2 ) x 2 (t-T 3 )] involves no pairing

because v = 0. Hence, it is given by

Po[xl(t-T 1), xl(t-T 2 ), x2 (t-T 3 )] = xl(t-T 1) xl(t-T 2 ) x 2 (t-T 3) (24)

As an example of a G-functional, we shall expand G3 (t, K3, i'({xi)
.th

we are given the fact that the i set of inputs is

{i = (Xil Xi2 Xi3) = (x 1 x 1 x 2 )

From Eqs. 20 and 25, we obtain

We assume that

(25)

G3 (t,K 3 i',{x}i) =ff K3 ,i(T 1,T 2 T 3 )

1

v=O
(-1) Pv[xl(t-T 1 ),xl(t-T2 ),x 2 (t-T 3 )] dTldT2 dT 3

(26)

By substituting Eqs. 23 and 24 in Eq. 26, we obtain the desired expansion

=fff
-xl(t-T 1)Rx x (T 2 -T 3)-xl(t-T 2 )R x (T-T 3 )

-x 2 (t-T 3 )Rx x (T 1 -T 2 ) dTldT2 dT 3 (27)

Notice that a G-functional depends upon the autocorrelation and crosscorrelation func-

tions of the inputs.

The fact that G3 (t, K3 , i.x)i) as given by Eq. 27 is indeed a functional polynomial of

degree 3 may be seen by integrating on those T's that appear inside the correlation func-

tions and by defining three new kernels:

K3 i(T ) K3, i(T1 , T 2 , T 3 ) Rx x (T 2 -T 3) dT 2 dT 31 2

12

(28)

i·r

K 3 i(TI, T2'T3j) IXI(t-T1)xI(t-T2)x2(T-T 3)G 3(t K3, VIXid



K ,)i(T2) =T, T3)R (T -T3 ) ) dT dT (29)

Ki3)i(T) = K3 i(T1T T2 ) RXl(T -T 2 ) dT (30)

Substituting Eqs. 28, 29, and 30 in Eq. 27, we obtain

G3 (t, K3 , ,{x} ) = f K3 i(T1 , T2, T3 ) X1(t-T1 ) xl(t-T2 ) x(t-T3) dTldT2 dT 3 f K1
(T) I(t-T) dT- K (T) x1 (t-T) dT

K(3 )(T) x(t-T) dT

(31)

The right-hand side of Eq. 31 is recognized as a functional polynomial of degree 3, since

it consists of a homogeneous functional of degree 3 plus three homogeneous functionals

of degree 1.

The functional polynomial, Gn(t, Kn, i,{x}i), is, as the notation indicates, a function

of time, a function of the set of inputs {x}i, and a function of the kernel Kn i. It also

depends upon the autocorrelation and crosscorrelation functions of the inputs. We shall

usually represent the output w(t) of a multi-input nonlinear system (Fig. 2) as an infinite

sum of G-functionals of its inputs {x 1,... X N}, as follows:

00

w(t) = Gn(tK , i,{x}i) (32)
n=0 i

The summation is made over all sets of the inputs (the summation on i), as well as over

all degrees of polynomials (the summation on n).

It is the infinite set of kernels {Kn, i} in Eq. 32 which is different for different non-

linear systems. The set of kernels {Kn, i} is said to characterize the nonlinear system

because by means of Eq. 32 we can express the output of a nonlinear system in terms of

these kernels and the inputs. It is the kernels that are to be determined in optimizing a

nonlinear system.

2. 9 PROPERTIES OF G-FUNCTIONALS

We shall now present some important properties of G-functionals of Gaussian random

processes. The proofs of these properties will be presented in section 2. 10. The

G-functionals were defined by Eq. 20.

The first important property is that G-functionals of different degree are orthogonal,

that is, linearly independent. Therefore,

Gn(t, Kn, i,{X}i) Gm(t, Lm j xj)= 0 n m (33)

The sets of random processes {x}i and {x}j together are jointly Gaussian. The kernels

K n and L m are arbitrary. The bar indicates ensemble average.
n,i mJ

13
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The second important property of G-functionals concerns the average of the product

of two G-functionals of the same degree. This average is given by

G n(t, Kn, i,{x}i ) Gn(t, Ln, j{x}j ) ..-- Kn, i(T 1 .... T n Ln, j(s s n )

XQ [xi (t-T1), . xi (t-Tn);x j (t-sl) inx . (t- n)]

XdT 1 . . dT n ds 1. d s n (34)

The expression Q [xil(t-T1) .. xin(t-Tn); Xj (t-s). .. n )] needs to be defined.

Notice that Qn is a function of two sets of variables, {x}i and {x}j. The expression

Qn[xil1(t-T1) .. xi (t-Tn); x l(t-s) . (t--sn)] is a sum of terms. To form one such

term, we pair each member of the set {x}i with a member of the set {x}j and take the

ensemble average of each pair. (This pairing can be done in many different ways.) The

product of the n averaged pairs forms one term of Qn. Each of the other terms is

formed in the same manner, except that a different pairing arrangement is chosen. The

sum defining Qn is composed of terms, each of which requires a different pairing

arrangement. Since there are n! different ways of pairing n things with n other things,

the expression Qn is the sum of n! terms.

As an example of a Qn expression, let us take

Q 2 [Xl(t-T), (t-T) t-T 2 ); x 3 (t-s), x 4 (t-s 2)]

= 1l(t-T1) x3 (t-s 1 ) x 2 (t-T 2 ) x4 (t-s 2) + xl(t-T 1) x 4 (t-s 2) x 2 (t-T 2) x3 (t-s 1)

(35)

Since the x processes are assumed stationary, we can use the correlation functions given

in Eq. 22. With these correlation functions, Eq. 35 becomes

Q 2 [Xl(t-T), x2 (t-T 2 ); x 3 (t-s 1 ), x 4 (t-s 2 )]

RX (T2-s ) R x4(T ) x(T 2-) (36)
xx3 1 1s4 2 3Rxx3

Notice that Q2 is the sum of 2! terms.

As an illustration of the application of Eq. 34, we shall evaluate

G 2 (t, K2, i{x}i) G2 (t, L2, j'{x}) (37)

In this example we shall assume that the jointly Gaussian set of processes {x}i and {x}j

are given by

{x}i = (Xilxi2) = (XIx 2 ) (38)

and

14
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{xj = (jlj2) (3,x4) (39)

Substituting Eqs. 37, 38, and 39 in Eq. 34, we obtain

G 2 (t, K2 , i {x}i) G2 (t,' L 2 , j' {}j)

=jjffff K2 i(T1 ,T 2 ) L2 , j(s 1 s 2 ) Q2 [xl (t-T 1 ),x 2 (t-Ts 12 ,x4(t-s1)x 4 (t-s 2 )] dTldT2 ds ds 2

(40)

If we use the expression for Q2 given by Eq. 36, then Eq. 40 becomes

G(tK2 i,{x}i) G2 (t L2 j,{x}j) ffff K2,i(T 1 T2) L2 j(s 1 2 )

X[XlX3(T1-s 1 ) Rx x4(T 2 -s z) + RXlx4(T i-s ) Rx3 (T2 -Sl)]dTldT 2 dslds 2

(41)

Several other properties of G-functionals can be derived in a simple manner from

Eqs. 33 and 34. Since these equations will be proved valid for an arbitrary kernel Lm j

and from the definition of G-functionals (Eq. 20) it can be shown that

Gm(t+a, Lm, j {x}j) = Gm(t, L' {x}j) (42)

where

L', j(s . sm) L j(sl+a, ... sm+a)m, 1 . m, m

then Eqs. 33 and 34 imply that the two following equations are true.

Gn(t, Kn, i,{x}i) Gm(t+a, Lm j{x}j)0 m n (43)

G (t. K, i, {x}i) G(t+a, Ln j {x}j) = f.. f Kni(T1. Tn n) Ln j(s+a .... a)

Qn[Xil(t-T1)'. Xin(t-Tn); x(1) j . (t-sn] dT1.dTn d1 .. ds

(44)

A useful and equivalent form of Eq. 33 is

Gn(t, Kn, i,{x}i) Gn(t, Lm, j{y } n m (45)

The members of the sets of random processes {x}i and {y}j together are jointly Gaussian.

The difference between Eq. 33 and Eq. 45 is merely a renaming of some of the ran-

dom processes.

Similarly, an equivalent form of Eq. 34 is

15
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Gn(t Kn,i x)i) Gn(t, Ln, j Yj) ... Kn ... Tn ) Ln, j( 1 ... s n)

X Q [xi I (-T I...Xn(t-Tn); Yj ( t - s 1) .... Yjn(t-Sn)] dT 1 dTn ds ... dsn

(46)

2. 10 PROOFS OF PROPERTIES OF G-FUNCTIONALS

In this section we shall prove the two properties, Eqs. 33 and 34, of G-functionals

presented in section 2. 9.

We shall first prove the orthogonality property given by Eq. 33 and its equivalent,

Eq. 45. The notation in the proof is a little simpler if we use the form of the orthogo-

nality property given by Eq. 45.

In proving Eq. 45 we shall consider only the case n > m, since the proof of the other

case, n < m, is similar. Since a functional polynomial of degree n such as Gn is a sum

of homogeneous functionals of degree n or less, in order to prove Eq. 45 for n > m it is

sufficient to prove that

G(t,K,{x}i)f ... f .s ... . d -G (t K {x}i) L kj(sl *sk)Yj (t-s 1 ) Yj(t-sk) dsl .ds 0 k= 0,... n-l

(47)

for arbitrary kernels Kn i and Lk j

We shall now prove Eq. 47. If we expand G (t, Kn, i,{x}i) as in Eq. 20 and interchange

orders of integration and averaging, then Eq. 47 becomes

/ "'f Lk, j ( S l , ... Sn) Kn, i(T 1 .n) ( 1)v

X[1 ( [ T1 )**xi (t-Tn)]yj (t-sl) ... yjk(t-sk) dT1 ... dTn ds. ds = 0 k= 0 ... n-

(48)

We shall prove Eq. 48 by showing that

[2]
v (-1 )v PlV[xi (t-T n)] yj (t-s 1 ) ... Yjt. sk = 0 k = .... n-1 (49)

v=0 1 n 1

Recall that each term of PV [Xi (t-T)... xn(t-Tn)] contains the product of n - 2v x's.

Each term of the averaging operation in Eq. 49 is therefore the average of a product of

Gaussian variables. The average of a product of Gaussian variables is the sum, over

all ways of pairing, of products of averages of pairs of the Gaussian variables. We now

divide the averaging operation in Eq. 49 into two parts: in part 1 each y is paired with

an x for averaging; in part 2 at least two y's are paired for averaging. If in part 2 for

16
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a particular k we first average two y's that are paired and integrate on their corre-

sponding s, then the remaining expression is again in the form of Eq. 49, but with k

smaller by 2. Therefore if we prove the set of Eqs. 49 in order of increasing k, then

for each k it is only necessary to prove that the terms from the averaging of part 1 equal

zero, since the terms from the averaging of part 2 will have been proved equal to zero

in the proof of the k - 2 equation of Eq. 49.

If we replace the averaging operation in Eq. 49 by the averaging of part 1 (indicated

by a wavy line) as in the equation

(n-k)/2 

v:O (- 1 )V Pv[Xi (tT)(t n] Yj (t-sl) ' ' Yj (t-sk) = (50)

then a proof of Eq. 50 will constitute a proof of Eq. 49. Since each term of

P [xi (t-T 1 ) ... x i (t-Tn)] contains n - 2v x's, this pairing of all the k y's with k x's
1 n

and the pairing of the remaining x's among themselves can exist if and only if k and n

are either both even or odd and v < (n-k). Note that (n-k)/2 is an integer.

After the averaging of part 1, each term of the left-hand side of Eq. 49 consists of

the product of (n+k)/2 averaged pairs: k of these are y's paired with x's and the (n-k)/2

remaining pairs are x's paired with x's. A typical term would be

x i (t-T 1) yj (t-s 1) x.i(t-T2 ) yj,(t-s 2) ... x (t-Tk) Yj (t-sk)
1 1 1 Y2 2 ik - k

X x. (t-Tk+1 ) xi (t-Tk+2) x. (t n- 1 ) x i (t-T n )k+ 1 Xk+ 2 n-i n

Let us denote each different term that appears after the averaging in the left-hand side

of Eq. 50 Su . The subscript varies for different terms. By using this S u notation we

can write

P[x 1 x (t-T) . . (tTn)] Yjl(t-sl ... Yjn(t-s b S (51)

where b is the number of times each S appears in the v t h term. All S 's appear the
V u u

same number of times because of the symmetric nature of the averaging and the sym-

metric nature of the definition of P . Substituting Eq. 32 in Eq. 50 and changing orders
v

of summation, we obtain

(n-k)/2
X Su (n-k)2 (-1) b = 0 (52)
u vv

We shall prove Eq. 52 by showing that

(n-k)/2
n (-1) b = (53)

v=O

17
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We must now evaluate b v, which is the number of times each S term appears in the

left-hand side of Eq. 51. We recall from its definition that P [ I (t-T 1 ), . . xin(t-Tn)

is a sum of terms and that each term of Pv contains averaged pairs of x's multiplied by

the remaining n - 2v x's. From the definition of the averaging of part 1, it follows that

a particular Su will arise once from only those terms of Pv in which each of the v aver-

aged pairs of x's is included in the (n-k)/2 averaged pairs of x's defining the particular

S . Therefore b is equal to the number of ways v pairs can be chosen from (n-k)/2
u n - k

pairs; hence, b v is the binomial coefficient (")

With this value of b , Eq. 53 becomes V

Z-0 (-1) (nk)= O (54)

But the left-hand side of Eq. 54 is recognized as the binomial expansion for (1-1) (n - k)/2

which clearly is zero. Therefore we have proved Eq. 54, thereby proving the orthogo-

nality property of Eqs. 33 and 45.

We shall now prove the second of the two important properties of G-functionals. That

is, we shall prove Eq. 34 and its equivalent, Eq. 46. The notation in the proof is a little

simpler if we use the form of the property given by Eq. 46.

If we expand Gn(t, Ln, j,{y}j) as in Eq. 20, then the left-hand side of Eq. 46 becomes

Gn(t Kn1i' {x}i) Gn(t' Ln' j' {Y}j) = Gn(t' Kni' {x}i)' * Ln j(sl... sn) 0 
(

1 )V P[Yj l(t-sl)-.) ds...

(55)

From the definition of P it may be seen that each term of the expansion for

Gn(t, Ln, j,y}j), except the term for which v is zero, is a homogeneous functional of

degree less than n. But by Eq. 47 each homogeneous functional of degree less than n

is orthogonal to Gn(t, Kn, i,{x}i). Thus by applying this orthogonality and by using the

definition of Po' Eq. 55 becomes

Gn t'Kni ji. G (tnL {Y};) Gn(t Kn,i x i) Ln j(l sn) Yj(tS .. *y (t-s) ds 'ds

(56)

The averaging operation on the right-hand side of Eq. 56 involves the average of prod-

ucts of Gaussian variables {x}i and {y}j. We now divide this averaging operation into

two parts: in part 1 each y is paired with an x for averaging; in part 2 at least two y's

are paired together for averaging. If in part 2 we first average the product of two y's

that are paired together (say, for example, the last two y's) and integrate on their

respective s, then that term has the form

18
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Gn(t Kn i, {x}i) ... ) yl(t-s 1 ) Y (tn d ds..
(I..' n-2 n-2 IS. n-2

(57)

where

n-2 j(S1 . s..n2) =J Ln(si. sn) YJ _l(t-Sn_-) Yjn(t-Sn) dsn-ldsn

From Eq. 47 it is seen that expression 57 equals zero. Therefore in performing the

averaging on the right-hand side of Eq. 57 it is necessary to consider only the terms in

which each of the n y's is paired with an x. However, in the expansion of Eq. 20 for

Gn(t, Kn, i,{x}i), only the term in which v = 0 has at least n x's, and that term has

exactly n xs. If we use the averaging of part 1 (indicated by a wavy line) and the v = 0

term of the expansion (Eq. 20) for Gn(t,Kni,{x}i), then Eq. 56 becomes

Gn(t, Kn, i {x}i ) Gn(t,Ln, j {Y}j)=f - / Kni(Tl .. Tn ) Ln j(s 1.... s n

x xi (t-T1)... (t-Tn) (t-sl) ... (t-sn) dT1... dTn dsl ... dsn

(58)

The expression

xi (t-T)... x (t-Tn) Yj (t-sl) ... (t-S n) (59)

is, by the definition of the averaging of part 1, the sum over all ways of pairing of the

product of n averaged pairs, each y being paired with an x. Since there are the same

number of x's as y's, no x can be paired with another x. This definition of expres-

sion 59 is the same as the definition of Qn[xi (tT 1), xi (t-Tn); Yj1 (t- 1 ). .Yin (t-sn)]

By substituting this Qn for expression 59, Eq. 58 becomes Eq. 46, which was to be

proved.

19

-- --



III. OPTIMUM MULTI-INPUT NONLINEAR SYSTEMS

3. 1 EIGHT OPTIMIZATION PROBLEMS

In this chapter we shall derive procedures for determining an optimum multi-input

nonlinear system. More specifically, we shall be given a set of N, zero-mean, sta-

tionary, Gaussian, random inputs {xl(t). . . xN(t)} and a desired output z(t); we wish to

determine a multi-input nonlinear system (Fig. 2) whose inputs are the given inputs and

whose output w(t) minimizes the mean-square error, E, between the system ouput w(t)

and the desired output z(t). This mean-square error, E, is given by

E = [w(t)-z(t)] 2 (60)

Here, the bar indicates ensemble average.

There are, however, eight different cases to be considered. The desired output may

be given in one of two forms; the allowable nonlinear system may be of two different

types; and the set of inputs may be of two different types. These three parameters with

two forms each give a total of 32 or eight different cases. We shall now discuss these

different forms.

GAUSSIAN KNOWN
INPUTS NONLINEAR

SYSTEM

Fig. 4. System that produces the desired output.

One way in which the desired output z(t) may be given is as a known nonlinear func-

tional of a set of M Gaussian inputs G{l (t), . . . yM(t)} (see Fig. 4). In particular, the

desired output z(t) can be expanded in a set of orthogonal G-functionals of the y's.

00

z(t) = Z Gm(t, Lmj, (61)
m=0 

The kernels {Lm, j} would be given.

An example, in which the desired output is given in the form of Eq. 61, is a chemical

process in which the quality z(t) of the output is a known nonlinear functional of M fluc-

tuating temperatures and pressures {Y1 (t) . yM(t)} at different points in the system.

Suppose we wish to estimate this output quality by making measurements on these tem-

peratures and pressures, and suppose also that our measurements are inaccurate in the
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sense that we actually measure these temperatures and pressures plus random noise.

That is, we measure {yl(t)+nl(t), .. yM(t)+nM(t)}. The members of the set{nl(t),. .. nM(t)}

are random noises. The desired output (the quality z(t) of the output) is a known non-

linear functional (as in Eq. 61) of a set of inputs {yl(t), . . YM(t)}; we wish to estimate

the desired output by operating in a nonlinear manner on a set of inputs {yl(t)+n (t),

· * YM(t)+nM(t) }

The other type of desired output is merely one that is not produced in the previous

manner. One reason for studying the case in which the desired output is formed by a

known nonlinear operation on a set of Gaussian inputs is that the solution to that case is

used as a tool in solving for the optimization in the other case.

The inputs can be either linearly independent of one another or dependent. Two

inputs xi(t) and xj(t) are linearly independent if

xi(t) xj(t+T) = 0 for all T

Since the inputs are Gaussian, linear independence implies statistical independence.

The case in which the inputs are independent is used as a tool for solving the case in

which the inputs are dependent.

The nonlinear systems to be optimized either may be restricted to be realizable in

the sense that the present value of the output uses only past values of the inputs or may

be permitted to be unrealizable in the sense that the present value of the output uses

Table 1. Eight optimization cases.
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Desired Output Allowable Inputs
Nonlinear System

NotCase Produced Not
Produced

Gaussian from Unrealizable Realizable Independent Dependent
Gausa Gaussian
Inputs Inputs

2 1/

3 1 / /

5 1 1 1

6 1 

7 _ / 1 

8 1 /
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future, as well as past, values of the inputs. The "unrealizable" case is of interest

when we are allowed to approximate the delayed desired output instead of the desired

output. The solution to the "unrealizable" case is used as a tool for solving the

"realizable" case.

In Table 1 we list the eight cases arising from combinations of the different forms

of desired output, inputs, and allowable systems. We shall now derive optimization

procedures for each of these cases. Fortunately, some of these cases can be treated

together. Some of the cases will be solved by reducing them to previously solved cases.

3. 2 CASES 1 AND 2

In this section we shall consider optimizing a nonlinear system for cases 1 and 2

in Table 1. In these cases the desired output z(t) is given as a known G-functional

expansion of a set of M Gaussian inputs {Y (t), . . yM(t)} (Eq. 61). The nonlinear system

to be optimized may be unrealizable (use future values of the inputs). As in Fig. 2, the

inputs to the system to be optimized are N Gaussian inputs {xl(t),. . . xN(t)} and the out-

put is w(t). We wish to choose the nonlinear system to minimize the mean-square

error (Eq. 60). The inputs {x (t),... xN(t)} are independent in case 1 and dependent in

case 2.

We shall first present the optimization procedure and then prove that it is correct.

This optimization procedure was discovered by inspecting the results of a direct vari-

ational procedure for optimization.

The optimum nonlinear system for cases 1 and 2 is a cascade of two systems, B

and C, and is shown in Fig. 5. The first system, B, is an N-input, M-output unreal-

izable linear system. The N-inputs of system B are, of course, the given N Gaussian

inputs {x l (t),. . . xN(t)}. Each of the M outputs {u l (t), . . uM(t)} of system B is the opti-

mum unrealizable linear mean-square approximation to the corresponding member of

the Gaussian inputs {Yl (t),... YM(t)} from which the desired output z(t) is formed. Notice

that each u is Gaussian because it is formed by linear operations on Gaussian inputs.

The second system, C, is nonlinear and has M inputs and a single output. The

M inputs to system C are {u l (t), . uM(t)}. The nonlinear system C operates on its

inputs in such a manner that the G-functional expansion for its output w(t) in terms of

its inputs {u1 (t),. uM(t)} has the same kernels {Lm, j} as does the G-functional expan-

sion (Eq. 61) for the desired output z(t) in terms of its inputs Y (t),... YM(t)}. That is,

Fig. 5. Optimum nonlinear system of cases 1 and 2.
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if the desired output z(t) is given by Eq. 61, then the output w(t) of system C is given by

0o

w(t) = Z G(t, Lm u j' {}) (62)
m=0 j

We should note that the nonlinear system A of Fig. 4 and the nonlinear system C of

Fig. 5 are not the same. The nonlinear operation described by a G-functional depends,

as we have noted, not only on the kernel but also on the autocorrelations and crosscorre-

lations of its inputs; therefore, although the two systems have the same kernels in the

G-functional expansion of their outputs, the fact that their inputs are different means

that the systems are different.

There are two things yet to be done. One of them is to prove that the output w(t)

(Fig. 5), formed by the previous procedure, is indeed the optimum unrealizable non-

linear approximation to the desired output z(t). The second is to present the procedures

by which the linear system B can be determined. We shall treat the second problem in

section 3. 3.

To prove that the output w(t) (Fig. 5), formed by the previous procedure, is the opti-

mum unrealizable nonlinear approximation to the desired output z(t), we shall show that

the mean-square error,

E 1 = [w(t)-z(t)]2

is less than or equal to the mean-square error

E 2 = [g(t)-z(t)]2 (63)

where g(t) is the output of any unrealizable nonlinear system with inputs {x 1 (t), . . xN(t)}.

That is, we wish to prove that E 2 > E 1.

We shall now express Eq. 63 in a more convenient form. If there exists a system

whose output is g(t), there also exists a system whose output r(t) is given by

r(t) = g(t) - w(t) (64)

for the output r(t) of this system is formed by merely subtracting the output w(t) from

the output g(t). Since w(t) and g(t) are the outputs of unrealizable nonlinear systems

with inputs {x1 (t),. .. . xN(t)}, then r(t) is also the output of an unrealizable nonlinear sys-
tem with the same inputs.

By means of Eq. 64 we can express the error E 2 of Eq. 63 in terms of r(t) and w(t)

instead of g(t):

E2 = [r(t)+w(t)-z(t)]

We can then regroup terms:

E Z = {r(t)-[z(t)-w(t)]} 2
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and by expanding the square, we have

E2 = r2(t)- 2 r(t)[z(t)-w(t)] + [z(t)-w(t)] 2

We notice that the last term in Eq. 65 is E 1. Equation 65 can then be written as

E2 = r (t) - 2 r(t)[z(t)-w(t)] + E

If it is true that

r(t)[z(t)-w(t)] = 0

(65)

(66)

(67)

for all unrealizable nonlinear systems with output r(t) and inputs {xl (t), . xN(t)}, then

Eq. 66 becomes

E 2 = r (t) + E1 (68)

Since the average of the square of an output such as r(t), is always greater than or

equal to zero, then Eq. 68 implies that E 2 -- E 1.

We shall prove that E2 > E1 by proving that Eq. 67 is true. Since r(t) is the output

of an unrealizable nonlinear system with inputs {x1 (t). . . xN(t)} it can be written as a

sum of G-functionals of the inputs

oo

r(t) = Gn(t, Kn i' {xi) (69)
n=0 i

for some set of kernels {Kn, i}. By using the G-functional expansions for z(t), w(t), and

r(t) given by Eqs. 61, 62 and 69, Eq. 67 becomes

n Z Gn(t, Kn k, {x}i )n= i n EkJ0
oo

Gm(t,Lm,j,{Y}j ) - O
j m=O J G(tL m,{ju}) =0j m ' j, j]

Since the x's, y's, and u's are all Gaussian, we can apply the orthogonality of

G-functionals of different degree given by Eq. 45. By using this orthogonality, Eq. 70

becomes

n={ iGn( ' n, i' {x}i) [ Gn(tLn,j {Y}j) - Gn (t, j,{u})]} (71)

If we use Eq. 46 to evaluate these averages, and make use of the fact that the kernels

{Ln, j} are the same in the G-functional expansions of w(t) and z(t), then Eq. 71 becomes

K (T... T) L(S [(t-T 1 ), tT ts. . .

[ (tT1)* x i (t-Tn); Uj ( t- s1, d dTi ... 0 n d

(72)
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We shall prove Eq. 72 by proving that

Qn[Xil(t-T1).... X in (t-Tn); Yjl(t-sl) Yjn(t-Sn )]

xQn Xi (t-T ) , . xi (t-Tn); (t-s . u t-n (73)
n i 1

Recall that the expansion for Qn is a sum of terms in which each of the first n of

its variables is paired and averaged with one of the last n of its variables. To prove

Eq. 73, it is therefore sufficient to show that

xi(t-T) yj(t-s) = xi(t-T) uj(t-s) (74)

because if Eq. 74 is true, then each term of the expansion of the Q of the left-hand side

of Eq. 73 is equal to the term corresponding to the same pairing in the expansion of the

Q of the right-hand side of Eq. 73.

We shall now prove Eq. 74. Recall that uj(t-s) is defined as the optimum unrealiz-

able linear approximation to yj(t-s) obtainable from the inputs {x1 (t)... xN(t)} . That is,

uj(t-s) minimizes the error defined by [uj(t-s)-yj(t-s)]2. Since uj(t-s) is optimum, it

has the property that if we add to it any linear function of the x's such as

E f h(T) xi(t-T) dT
o0

where h(t) and E are arbitrary, then the error must have zero derivative with respect

to E when E = 0. That is,

2
; 01

d Lui(t-S) + E L h(T) xi(t-T) dT - yj(t-s) o = (75)

By performing the differentiation, Eq. 75 becomes

2 f h(T) dT [x i (t-T)uj(t-s)-x i(t-T)yj(t-s)] = 

Since the kernel h(T) is arbitrary, the quantity in brackets must be zero for all T. That

is,

xi(t-T) uj(t-s) = xi(t-T) yj(t-s)

which was to be proved.

We have now proved that the optimization procedure shown in Fig. 5 is correct.

3.3 OPTIMUM MULTI-INPUT UNREALIZABLE LINEAR SYSTEMS

In this section we shall present methods for determining the N-input, M-output linear

system B of Fig. 5. The N-inputs are the given inputs {xl(t), ... xN(t)}. The
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Fig. 6. Optimum multi-input multioutput unrealizable linear system.

M outputs {ul(t), ... uM(t)} are the optimum unrealizable approximations to {Yl(t),

... yM(t)}, respectively. We shall design system B as the cascade of two linear sys-
tems (Fig. 6), system D and system E.

System D has N inputs {x1 (t), .. xN(t)} and N white, linearly independent outputs

{r l ( t),. .. rN(t)}. By linearly independent we mean that

r.(t) rj(t+T) = 0 i # j (76)

By white we mean that

ri(t) ri(t+T) = (T) (77)

where 6(T) is an impulse. System D may be unrealizable in the sense that its present

outputs depend upon future values of its inputs. System D is invertible in the sense that

there exists an unrealizable linear system whose inputs are {rl (t),... rN(t)} and whose

outputs are {x 1 (t),. .. xN(t)}. We shall show how to design the system D.

System E is an N-input, M-output unrealizable linear system. Its inputs are

{rl ( t ) ,. . rN(t). Its outputs, { l (t) . . . uM(t)}, are optimum unrealizable approxima-

tions to {Yl (t),... yN(t)}. The fact that the inputs to system E are the r's instead of the

x's does not produce a poorer approximation to the y's, because system D is invertible

and system E could internally produce the x's from the r's if necessary. The reason

for this cascade arrangement of systems D and E is that it is easier to optimize a sys-

tem whose inputs are the r's than one whose inputs are the x's.

Let us first consider how to design system D for the case in which the inputs are

already independent. In this case system D only has to "whiten" each input. A random

input can be whitened by a single-input, realizable, linear system that has a realizable

linear inverse (12). The Fourier transform of the impulse response of the whitening

system has for its poles the upper half-plane zeros of the power density spectrum of

the input; it has for its zeros the upper half-plane poles of the power density spectrum

of the input.

Thus, if xi(t) is a random input with autocorrelation function

Rxix (T) = xi(t) xi(t+T) (78)
1and power density spectrum

and power density spectrum
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xx(@) =X, ej i R (T) dT (79)
1 1 -o i i

and if S (w) can be factored as
x.x.
1 1

(X)=k 2 W-a (W a) (w-a) ( -a2(80)
i i (W-s) ( -P1)(a)-B2)-P 2)**-

in which the asterisk means complex conjugate, and al, a 2, ... P1, 02 .... all have

imaginary parts that are greater than zero, then xi(t) can be whitened by a realizable,

linear, invertible system with impulse response f.(t) whose Fourier transform Fi() is
1

given by

LINEAR

xl (t) r(t)

x2(t) r(t)

xN(t) rN(t)
f t)N

Fig. 7. System D for whitening independent inputs.

LINEAR

x (t) r(t)
f (t)

Fig. 8. Whitening system.

LINEAR

rl (t)t s

x2(t) s2 t)

Fig. 9. Orthogonalizing system.
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Fi() = k (81)
(a)-a ) (-a 2 )·..

Since fi(t) is the inverse transform of Fi(w), it is given by

fit) = e F.i(c) d (82)
co

Therefore, if the inputs {xi(t) .... xj(t)} are independent, as they are for case 1 (Fig. 5),

then system D has the simple form shown in Fig. 7. System D for this case consists

of N single-input, single-output, linear systems with impulse responses {f1 (t), . . fN(t)}

defined by Eqs. 78-82. Since each member of the set {fi(t)} is realizable and has a

realizable inverse, system D of Fig. 7 is realizable and has a realizable inverse.

We now consider how to design system D when the inputs are dependent as in case 2

in Table 1. The method that we shall use is analogous to a "Schmidt orthogonalization

procedure" (13). We treat the inputs in order. We first whiten input x1 (t) by a single-

input, realizable, linear system that has a realizable linear inverse. The impulse

response of the whitening system is f 1 (t) and its output is r 1 (t) (Fig. 8). The output

r1 (t) is white; that is,

r1 (t) r 1 (t+T) = 6(T) (83)

We next wish to form a signal s(t) that is linearly independent of r(t). The way

in which we form s 2 (t) is to subtract from x 2 (t) the output of a linear operation on r 1 (t),

as in Fig. 9. That is, we wish to form a signal s 2 (t) with the property that

s 2 (t) r 1 (t-T) = 0 (84a)

with s 2 (t) formed as

2 (t) = x 2 (t) - a 2 , 1 (t') r 1 (t-t') dt' (84b)

and in which the impulse response a 2 , 1 (t) of the linear system is to be determined.

We can determine a 2 1 (t) in the following manner. By multiplying both sides of

Eq. 84b by r 1 (t-T) and then taking averages on both sides, we obtain

00
s 2 (t) r l (t-T) = x2 (t) r1 (t-T) - J a2 l(t') r 1 (t-t') r 1 (t-T) dt' (85)

By substituting Eqs. 83 and 84a in Eq. 85 we obtain the desired impulse response,

a2, 1 (T) = X2 (t) r 1(t-T)

In general, a 2 , 1(t) will be nonzero for t < 0 and hence will be unrealizable.

To form r 2 (t) (Fig. 9), we whiten s(t) by a single-input, realizable, linear system
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that has a realizable linear inverse. The impulse response of the whitening system is

f2 (t).

To form ri.(t) we use a similar procedure. First, we form a signal si(t) with the

property that

si(t) rj(t-T)= 0 j < i

The signal s(t) is formed by subtracting from x.(t) linear operations on the previous r's.1 1
Thus

i-i
sit) x(t) - ai j(t') r(t-t') dt' (86)

j=1 

By multiplying both sides of Eq. 86 by rk(t-T) for k < i, averaging, and then applying

Eqs. 76 and 77, we find that the impulse responses of the linear systems {ai, j(t)} are

given by

ai, j(T) = xi(t) rj(t-T)

To form ri(t) we merely whiten s(t) by a single-input, realizable, linear system that

has a realizable linear inverse.

We have now shown how to derive a set of white, linearly independent signals,

{rl(t),. . . rN(t)}, by unrealizable linear operations on a set of dependent inputs

{xi(t), ... xN(t)}. We must now show that by unrealizable linear operations on

{rl(t), ... rN(t)} we can obtain xi(t), . xN(t)} . From Eq. 86 we see that xi(t) is given by

i-1 oo
xi(t) = s.(t) + ai, j(t') r(t-t') dt' (87)

We are given the set {r 1 (t),. .. rN(t)}; we know the set of impulse responses {ai j(t)};

and we can form si(t) by a realizable linear operation on ri(t) because si(t) was whitened

in an invertible manner. Therefore from Eq. 87 we see that we can form the set

{x (t),... xN(t)} by unrealizable, linear operations on {r 1 (t), . . . rN(t)}.

We shall now show how to design the unrealizable linear system E whose inputs are

{r 1(t),... rN(t)} and whose outputs {ul (t), ... uM(t)} are the optimum unrealizable linear

mean-square approximations to Gyl(t), .. yM(t)}. Since system E is linear, we can

produce each output uj(t) as the sum of outputs of linear operations on each of the inputs

as in Fig. 10. Each output is then given by

uj(t) = Z Jhj i(T) ri(t-T) dT (88)

where {hj, i(t)} are impulse responses that will be chosen to minimize the error

[uj(t)-yj(t) ]2
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Using Eq. 88, we see that this error is given by

N 2

l / hj, i(T) ri(t-T) dT - yj(t]

If the impulse responses {hj, i(t)} are optimum, and if we add to one of them, say hj, k(t),

an impulse response E gj, k(t), then the derivative of the error with respect to E must

be zero when E = 0. That is,

dT L f h, i(T) ri(t-T) + E gj k(T) rk(t-T) dT - yj(t) = 0 (89)dE

Performing this differentiation, we obtain

2/ g, k(T1) dT I / hj, i(T2) ri(t-T 2 ) rk(t-T1) dT 2 - yj(t) rk(t-T1)j 0 (90)

By using Eqs. 76 and 77 to evaluate the average of the product of two r's Eq. 90 becomes

2 gj, k(T1 ) dTl[hjik(T)-yj(t)rk(t-Tl)] = 0

Since the impulse response gj, k(T1) is arbitrary, the term in brackets must be zero for

all T1 . That is,

hij k(T 1) yj(t) rk(t-T1) (91)

Equation 91 gives us the set of impulse responses {hj i(t)} that characterizes system

E; each output uj(t) can be determined in terms of this set of impulse responses and the

inputs {rl(t), ... rN(t)} by Eq. 88.

LINEAR

Fig. 10. Multi-input, single-output, linear system.

From Eq. 91 we see that these impulse responses depend only upon the crosscorre-

lation functions between the r's and y's. Since the r's depend in a linear manner on the

x's, the crosscorrelation functions between the r's and the y's can be computed from

the crosscorrelation functions between the x's and the y's.
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3.4 CASES 3 AND 4

We shall now treat the optimization of a nonlinear system for cases 3 and 4 in

Table 1. In these cases the desired output z(t) is given as a known G-functional expan-

sion of a set of M Gaussian inputs {Yl(t), ... yM(t)} (Eq. 61). The nonlinear system to be

optimized must be realizable (use only past or present values of the inputs). As in Fig. 2,

the inputs to the system to be optimized are N Gaussian inputs {x1 (t), . . . xN(t)}, and the

output is w(t). We wish to choose the nonlinear system to minimize E.

E = [w(t)-z(t)]2

The inputs {x1 (t) . . xN(t)} are independent in case 3 and dependent in case 4.

Cases 3 and 4 differ from cases 1 and 2 only in the realizability constraint. Concep-

tually, the optimization procedure for cases 3 and 4 is very similar to that for cases 1

and 2. Just as in cases 1 and 2, the optimization procedure for cases 3 and 4 involves,

at least conceptually, an optimum linear operation and a nonlinear operation that is

defined in terms of the kernels of the G-functional expansion of the desired output

(Eq. 61). Physically, however, these two operations for cases 3 and 4 cannot be sepa-

rated into the cascade of two operations as they are for cases 1 and 2 in Fig. 5.

Again, this optimization procedure was discovered by inspecting the results of a

direct variational procedure for optimization. We shall first present the optimization

procedure and then prove that it is correct.

Conceptually, not physically, here are the two steps by which we can form w(t') - the

optimum nonlinear approximation to the desired output at a fixed time t'. The first step

is that at time t', by realizable linear operations on the past of the inputs {x1 (t),

... xN(t)}, we form M functions of t called {v1 (t It'), . . .vM(t t')}. Each {vj(t It')} is the

optimum realizable linear approximation to the corresponding member of the set {yj(t)},

the set of inputs from which the desired output z(t) is formed.

This approximation procedure is a little different from that which we normally con-

sider a linear approximation. Normally, at an instant of time t' we think of making an

approximation to the value of some signal at time t' + a, where a is some fixed delay

or advance. What we are doing with the function vj(t It') is to approximate with a func-

tion of t to the whole past and future of the signal vj(t). That is, at time t' we form

not a set of numbers but a set of functions of t.

The realizable linear operation that forms vj(t It') is given by

N oo
vj(t It') h (s,t'-t) x (t'-s) ds (92)

If t' is thought of as the present time, then each kernel h i(s,t'-t) can be thought

of as the effect that an impulse that occurred s seconds ago in the input x i produces in

our present approximation to the value that yj had t' - t seconds ago. The kernels

h. (s, t'-t) are chosen to minimize the error
1, 
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(93)[vj(t t')-yj(t)]2

In Eq. 93

Gaussian

Fig. 11.

of its inp

the bar indicates ensemble average. The members of the set {vj(t It')} are

because they are formed by linear operations on Gaussian inputs.

The second step in this conceptual form

of the optimization procedure is to use the set
NONLINEAR r . I I 1 -

Ivl(t It'), ... vM(tIt')I as the M inputs to a
nonlinear system C' (Fig. 11), with t' held

fixed, and t the independent variable. The

nonlinear system C' operates on its inputs

in such a manner that the G-functional expan-
,. -.. . . I . -..- .

sion for its output r(t It') in terms of its inputs

Optimization procedure for {v1 (t It'), ... vM(t It')} has the same kernels
cases 3 and 4. {L, j} as does the G-functional expansion

(Eq. 61) for the desired output z(t) in terms

uts {y,(t), ... y_(t)}. That is, if z(t) is given by Eq. 61, then the output
1- / 111 -

r(t It') of system C' is given by

0oo

r(t It') m= X Gm(t,Lm,j,{ v j )

It will be shown that w(t'), the optimum realizable, nonlinear approximation to the

desired output at a fixed time t', is given by

o00w(t') = r(t It')It=t, = Z X Gm (t , L m, {v}i ')
m= j m~ t t~t'

(94)

Notice that for any value of t, the output r(t It') as shown in Fig. 11 will also depend

upon t'.

To see how the two conceptual steps combine into a single physical operation, we

examine a typical homogeneous functional that would be found in the expansion (Eq. 94)

of w(t'). Let us pick, for example, the following homogeneous functional of degree 2.

00 00
00o oo

2, 3 (T 1, T 2 ) v1 (t-T 1 It') v2 (t-T 2 It') dT1 dTz2
t=t'

(95)

From Eq. 92 we see that

hj, i(s, T) xi(t'-s) ds (96)

By substituting Eq. 96 in expression 95 and by changing orders of integration, expres-

sion 95 becomes
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N N oooo 0 0 c
xi (t' )x (t'-s ) hl i(SlT1)h2,k(sT)L2,3(T1 ,T2)dTdT

i=l k=l S 0-o oo

X dslds 2 (97)

The quantity in brackets in expression 97 is a second-order kernel of the variables s1
and s 2. Expression 97 is therefore a sum of homogeneous functionals of degree 2 of the

x inputs. In a similar manner it can be shown that all the terms in the expansion of w(t')

(Eq. 94) can be realized by physical operations on the x inputs.

The optimum realizable linear kernels {hj i(s, t'-t)} which minimize the error of

expression 93 can be obtained by Wiener's (1) method for optimizing a realizable multi-

input linear system. This method will not be described here.

We shall now prove that w(t') as given by Eq. 94 does indeed minmize the error E

between w(t') and the desired output z(t'):

E1 = [(t')-z(t')] 2

The proof is very similar to the proof given for cases 1 and 2. The method of proof will

be to show that if we add to w(t') an output s(t') of any realizable nonlinear system with

inputs {x (t), .... xN(t)}, then the error E2 defined by

E 2 = [w(t')+s(t')-z(t')] 2 (98)

will be greater than E1. That is, we shall prove that E 2 > E 1.

If we regroup the terms in Eq. 98 as

E Z = {s(t')-[z(t')-w(t')]}

and then expand the square, we obtain

E 2 = s2(t' ) - 2s(t')[z(t')-w(t')] + [z(t')-w(t')]2 (99)

The last term in Eq. 99 is recognized as E1 . If we can prove that

s(t')[z(t')-w(t')] = 0 (100)

then Eq. 99 would become

E 2 s (t') + E1 (101)

Since s2(t') is always non-negative, Eq. 101 would show that E2 > E1 .

We shall now prove that Eq. 100 is true. Since s(t') is the output of a real-

izable nonlinear system with inputs {xl(t), ... xN(t)}, it can be written as a sum of

G-functionals of the inputs.
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00

s(t') = E G(t',Kn, i{x}i) (102)
n=0 i

for some set of kernels {K n }. Since s(t') is realizable, each of the kernels

Kn,i(T1 . .. Tn) is zero if any of its T's is less than zero. By using the G-function expan-

sions for z(t'), w(t'), and s(t') given by Eqs. 61, 94, and 102, Eq. 100 becomes

X A. Gn(t',Kn,i,{xk i ) E Gm(t',Lm,j,{Y}j ) - _X Gm(t, Lm j,{v}j ) 0
n:0 i n0i m j m0 j tt

(103)

Since the x's, y's, and v's are all Gaussian, we can apply the orthogonality of

G-functionals of different degree given by Eq. 45. By using this orthogonality, Eq. 103

becomes

lX G (t',Kn, i,{x}i) F Gn(t',Lnj,{y}j) - G (t , {v})] 0 (104)
n=0 i n nJ n n, j . n nj v t~j

If we use Eq. 46 to evaluate these averages, and make use of the fact that the kernels

{Ln, j} are the same in the G-function expansion of w(t) and z(t), then Eq. 104 becomes

E7 Xg * . -.. Kn, iiT, .... T n ) Ln, j(Sl .... s n )
n0 ij 

{Qn[Xi (t-T 1 ) , . XiN (t'-Tn); Yj (t'-s Y, (t'-Sn)]

Qn [x (t'-T) ... x it'-Tn);V j l(t'-slt ) ...vj (t'-snt')]} dT dT ds ds =01 n 1 n

(105)

We shall prove Eq. 105 by proving that

Qn~xi (t'-T) . .xi (t'-Tn); y j (t'-s * *.* Y, (t'-Sn)]ni n

Qn[ il(t-T1) . .x i (t '-Tn); v (t'-s It') ... v. (t- s It')] (106)

for all T's that are non-negative.

Recall that the expansion for Qn is a sum of terms in which each of the first n of its

variables is paired and averaged with one of the last n of its variables. To prove Eq. 106,

it is sufficient to show that

xi(t'-T) yj(t'-s) = xi(t '-T) vj(t '-s It') (107)

because if Eq. 107 is true, then each term of the expansion of the Q of the left-hand side

of Eq. 106 is equal to the term corresponding to the same pairing in the expansion of
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the Q of the right-hand side of Eq. 106.

We shall now prove Eq. 107. Recall that vj(t'-s It') is defined as the optimum real-

izable linear approximation to yj(t'-s). By realizable, we mean that we use the inputs

{xi(T' ) .... XN(T4)} for T' < t'. Thus vj(t'-s It') minimizes the error

[vj(t'-s It')-yj(t'-s)] 2 (108)

Since vj(t'-s It') is optimum, it has the property that if we add to it any realizable linear

function of the x's such as

E f g(T) xi(t'-T) dT

where g(T) and E are arbitrary, then the error must have zero derivative with respect

to E when E = 0. That is,

d 2
dE j(t-s t') + E g(T) xi(t'-T) dT - y(t '-s 0

By performing the differentiation, this equation becomes

2 j g(T) dT[xi(t'-T)v(t'-s It')-xi(t'-T)yj(t'-s)] = 0

Since the kernel g(T) is arbitrary, the quantity in brackets must be zero for T > 0. This

proves Eq. 107.

We have now proved that the optimization procedure is correct.

3.5 EXAMPLE OF CASE 3

We shall present a simple example of an optimization procedure of the type of case 3.

The example will be used to illustrate the following three points. It will be used to show

how we can, by inspection, express the output of a simple power series device such as

a single-input squaring device as a sum of G-functionals of its input. The example will

illustrate the fact that two systems with the same kernels in the G-function expansion of

their outputs will not, in general, be the same systems. It will also show that if the

desired output is formed by a nonlinear no-memory operation on a Gaussian input, then

the optimum realizable nonlinear system will

consist of a cascade of an optimum linear sys-
NO-MEMORY
SQUARER tem whose output approximates the input that

y(t) [ S z(t)=Y2(t) produces the desired output and a nonlinear

no-memory system.

In this example, the desired output z(t)
Fig desired output. iSystem that produces the

desired output. is formed by squaring a single Gaussian input
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y(t), as shown in Fig. 12. Thus the desired output is given by

z(t) y (t)

We are given a single Gaussian input x(t), and we wish to find a realizable nonlinear sys-

tem to operate on x in such a manner that its output w(t) is as close as possible in the

mean-square sense to z(t). This problem is of the type of case 3 because the desired

output is produced in a known manner from a Gaussian variable; the optimum system

must be realizable, and the single input x(t) is, of course, independent, since no other

x's exist.

We are given the fact that the input y is the input x advanced by a known time a.

That is,

y(t) = x(t+a)

where a > 0.

The autocorrelation R xx(T) of the x input is given as

R (T) = v e 27rTI (109)

The power density spectrum of x, S x(a), which is the Fourier transform of the auto-

correlation function, is therefore given by

SXX() 
jc°1·~ e= eJWTR,TdT = 1+(~:)2 (110)

The first thing we would like to do is to express the desired output z(t) as a sum of

G-functionals of its input y(t). We note that we can express z(t) as a homogeneous func-

tional in the form

zt) y(t f 5(TI) 6(T 2 ) y(t-T 1) y(t-T2 ) dTldT2 (111)

We now form a G-functional of degree 2 of the input y that has the same kernel,

6(T 1 ) 6(T 2 ), as the homogeneous functional of Eq. 111. From Eq. 20 we see that this

G-functional is

G 2 (t, 6(T)6(T2),{y}) = 6(T1 ) 6(T 2 ) y(t-T 1 ) y(t-T 2 )

-/j 5(T 1 ) 6(T 2 ) y(t-T 1 ) y(t-T2 ) dTldT2 (112)

We note that the right-hand side of Eq. 112 differs from the right-hand side of Eq. 111

only in the constant given by
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jj 6(T 1 ) 6(T 2 ) y(t-T1 ) y(t-T2 ) dTldT2 2 (t) (113)

But a constant is a G-functional of degree zero. Therefore, we can express z(t) as the

following sum of G-functionals:

z(t) G2 (t, 6(T1 )6(T 2),{y}) + y2 (t) (114)

Normally, to find w(t'), the optimum realizable nonlinear approximation to z(t'), we

would first form v(t It'), the optimum realizable linear approximation at time t' to the

whole time function y(t); and then from Eq. 94 we would form

w(t') [G2 [t, 6(T 1)6(T 2){V}]+y 2 ( t)] t=t' (115)
t=t'

Notice that we have used the same kernel 6(T1 ) 6(T 2 ) and constant y (t) as in Eq. 114.

Let us expand Eq. 115 by means of the definition of the G-functionals given in Eq. 20:

w(t') =[f 6(T1) 6(T) v(t-T 1 t') v(t-T It) dT dT2 - 6(T 1) 6(T2 ) v(T-Tllt') v(t-T It') dT dT2 + y2 (ti
t=tl

= v2 (t It') - v2 (t' It) + y2 (t')

(116)

Let us define a new variable v'(t) as

v'(t) = v(t It)

Thus v'(t) is the optimum realizable linear estimate of y(t) which can be made at time t.

From Eq. 116 we see that w(t) is a nonlinear no-memory function of v'(t). Physically,

we would form v'(t) as the output of a realizable linear system whose input is x. To

NONLINEAR NO-MEMORY

CONSTANT

Fig. 13. Optimum nonlinear system.

form w(t), we would follow this system by a nonlinear no-memory system, as in Fig. 13.

Davenport and Root (14) have shown that the optimum realizable linear system with
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which to estimate y(t) from the past of x (where x and y satisfy Eqs. 108 and 110) is a
-2ra

no-memory gain of value e . The linear output v'(t) is given by

-2ra
v'(t) = e x(t) (117)

From Eqs. 109 and 117, we can evaluate y2(t) and [v'(t)]2 as follows:

y2(t) x2(t) = Rxx(0) = 

[v' (t)]2 [e- 2 w a x(t)] = e-4ra x2(t) = e

The constant in Fig. 13 is

[y2 (t)] - [v'(t)] 2 r[l -e e4a] (118)

Thus if a is greater than zero, the constant (Eq. 118) is nonzero. Notice that the non-

linear part of Fig. 13 is composed of a nonzero constant plus a squaring device, while

the nonlinear system of Fig. 12 is only a squaring device. The two systems are differ-

ent even though the kernels of their G-functional expansions are the same.

3.6 CASES 5, 6, AND 7

We shall now derive the optimization procedures for cases 5, 6, and 7 in Table 1. In

all these cases the desired output z(t) is not given as a known nonlinear operation on a

set of Gaussian variables. In cases 5 and 6, the Gaussian inputs {xl(t) .. . xN(t)} are

linearly independent of each other; in case 7 the inputs are dependent. In cases 5 and 7

the allowable optimum nonlinear system may be unrealizable; in case 6 the optimum

nonlinear system is restricted to be realizable.

We shall determine the optimum nonlinear system as the cascade of two systems D

and F, as in Fig. 14. The first system, D, is linear and has N inputs and N outputs.

LINEAR NONLINEAR

Fig. 14. Optimum nonlinear system for cases 5, 6, and 7.

Its N inputs are, of course, {x(t), ... xN(t)}. Its N outputs {rl(t), ... rN(t)} are white,

Gaussian, and linearly independent of one another. In each of the three cases, system

D is allowable and has a linear inverse that is allowable. Thus, for case 6, system D

is realizable and has a realizable linear inverse.

The second system, F, is nonlinear and has N inputs {rl(t), . .. rN(t)} and a single
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output w(t). System F is the optimum nonlinear system whose inputs are the r's. In

cases 5 and 7 system F is unrealizable; in case 6 system F is realizable. The fact

that the inputs to system F are the r's and not the x's does not make w(t) a poorer

approximation to the desired output because system D is invertible and system F could

always produce the x's internally if necessary. The cascade arrangement simplifies the

optimization procedures.

In section 3. 3 we have shown how to derive system D. For cases 5 and 6, in which

the inputs are independent, system D is shown in Fig. 7. The system of Fig. 7 is real-

izable and has a realizable inverse. For case 7, in which the inputs are dependent, we

have to use the more complicated "Schmidt -like" procedure described in section 3. 3.

We shall now optimize system F of Fig. 14 by use of a direct variational procedure.

We first expand the output w(t) as a sum of allowable G-functionals of the inputs {rl(t),

.. rN(t)}.

00

w(t) = E Gn(t, Kn i,{r}i)

n=O i

We wish to find the set of kernels {Kn i) that minimizes the mean-square error given by

[w(t)-z(t)] = Gn(t, Kn i, {r}i) - z(t)]
n=O K'

If the set of kernels {K n i} is optimum, it has the property that if we add to the optimum

w(t) any arbitrary allowable G-functional of the r's such as

E G m (t, Lm j, {r}j )

then the error must have zero derivative with respect to E when E = 0. That is,

d o E Gn(t, K, .{r}i) + Gm(t L, j{r) - =0 (119)

The kernel L j is arbitrary with the restriction that for case 6, in which the system

must be realizable, the kernel L . must use only past and present values of the inputs.m,j
When we perform the differentiation, Eq. 119 becomes

2Gm(t Lm, j' {r} ) Gn(t, Kn, i,' {r}i) - z(t) = 0
m~ [ i 

If we apply the orthogonality of G-functionals of different degree given by Eq. 33,

we obtain

ZG m(t, Lm j,{r}j)[ G(t, Km, i,{r}i)- z(t)] (120)
m m~j JL~ 1
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We now evaluate the averages in Eq. 120. From Eq. 34, we see that the averages of

the pairs of G-functionals are given by

Gm(t Lm, j{ }j) Gm(t, Km,i,{r}i)= X / -. /Lm j(T 1 Tn) K.i(S ..T Km, i(Sr}.)I...s m )

X Q rj (t-T).... j (t-Tm); ri (t-sl) * ri (t-sm)] dT1 dT m dSl... ds m

(121)

Recall that Qm is a sum of terms in which each member of the set {rJ . r} is

paired and averaged with a member of the set ... r , and inwhichthese aver-

aged pairs are multiplied together. If i j, then the set rj rj is different from

the set {ri ... r. } and thus for every pairing arrangement at least one r will be paired

with a different r for averaging. But since the r's are constructed to be independent of

one another, the average of the product of two different r's is zero. Therefore

Qm [r(t-T 1 ), . . . r (t-Tm); ri (t-s l ), . . ri (t-s)] = i j (122)

If i = j, then the set {rj, . . . rj} is the same as the set {ri .. . r } In that case,

there may be several different pairing arrangements of Qm in which no r is paired and

averaged with a different r. If bk(m, j) is the number of times rk appears in the set

{r .... r }, then the number of different pairing arrangements of Qm in which no r

is paired with a different r is given by

N
Cm, j = [bk(mj)!] (123)

because for each k there are bk(m, j)! permutations of the r's which do not change Qm

We can, without loss of generality, demand that each kernel {Km i(S1, . . Sm)} be
symmetric in those s that correspond to s of the same rk's. Without changing any of

the G-functionals, we can substitute for an unsymmetric kernel a kernel that is symmet-

ric in those s that correspond to s of the same rk's and is formed by adding up kernels

formed by all permutations of those s and dividing by the number of such permutations.

We can also demand that the kernel Lm, j(T . . Tm) be similarly symmetric. For

example, the expression

/7 K33(Sl' s 2 , s 3 ) rl(t-sl ) rl(t-s2 ) r2(ts 3 ) dSldS2ds3

in which the kernel is unsymmetric in s and s2, that is,

K3,3(sl, s2, s 3 ) K3, 3(Sl, s2, 3 )

is equal to the expression
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fff 2 [K3 , 3 (s 1 s 2 , s 3 )+K 3 3(s2, s, s3)] rl(t-s1 ) r 2 (t-s 2 ) r 3 (t-s 3 ) dslds2 ds 3

in which the kernel

- [K 3 , 3 (sl s', s 3 )+ 3 , 3 (s 2 ' S1, S3 )]

is clearly symmetric in s 1, and s 2.

In Eq. 121 for i = j and for kernels having the symmetry just discussed, we can

replace

Q[r. (t-T1) ... r. (t-Tm ); r j (t-s 1)...r. (t- m)] (124)

by one of its pairing arrangements in which no r is paired with a different r, and then

multiply this term by the number cm j (Eq. 123) of pairing arrangements with the same

property. One such pairing arrangement is clearly

rj (t-T 1) rj (t-s 1) rj (t-T 2 ) rj (t-s 2) .. m rjm(t-T ) (tsm)

Thus we could replace expression 124 by

Cm,j r. (t-T) rj (t-s) rj(t-T2) rj (t-s2) ... r. (t-T m ) r ts) . (125)

By using Eqs. 122 and expression 125, Eq. 121 becomes

Gm(t, L , {r}j) Gm(t, Km, i {r}i
)

= cmf ... f Lm, (T .. .Tm) Km,(S jI .. Sm)

X [rj (t-Tl)rjl(t-sl) rj (t-TZ)rj (t-s2) ... rjm(t-Tm)rjm(t- sm)] dT. dT mds ... d s m

(126)

Since each of the inputs is white,

rk(t-T) rk(t-s) = 6(T-s) (127)

Substituting Eq. 127 in Eq. 126 and then integrating on the s, we obtain

Gm(t, Lm j,{r}j) Gm(t, Km,i' ri)

m imj) Km, j(T1' Tm) dTT 1 dTdT (128)

We have now evaluated the averages of the pairs of G-functionals in Eq. 120. To

evaluate the average of the G-functional with z(t) in Eq. 120, we expand the G-functional

by means of Eq. 20 and obtain
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z(t) G (t L {r})= Lm, j(Tl ... Tm) z(t) (-1) v Pv[rjl(t-T1) (t-T ] dT1... dTm

(129)

Substituting Eqs. 128 and 129 in Eq. 120, we obtain

2* ... Lm j(T 1 ..T m ) cm, Km j(T1 .... T)- z(t) (-l)v P[rj (t-T 1) ... rJ (t-dT m
= 0

(130)

For cases 5 and 7 in which the systems can be unrealizable, the kernel Lm j(T 1 ,

.. Tm) is arbitrary for all T's, and hence the quantity in braces in Eq. 130 must be zero

m2for all T's. Thus for cases 5 and 7, K .(T.. Tin) is given by1 m
K,(T . Tm) cm z(t) vO ( 1 ) Pr (t-T) r (t-T )] (131)

For case 6 in which the systems must be realizable, the kernel Lm j(T.. . Tm) is

arbitrary if all the T's are non-negative, and hence the quantity in braces in Eq. 130

must be zero if all the T's are non-negative. Thus for case 6

1 [..
Km, j(T 1 .z(t) ()V P[r. (t-T1), = r. (t-Tj (132)

if all T's O0. For case 6, Lm j(T 1 , . . Tm) will be zero if any T is negative, and this

fact will satisfy Eq. 130. The realizability constraint means that for case 6

Km j(T ... Tm) = O if any T < 0 (133)

Equation 131 gives the optimum kernels for cases 5 and 7. Equations 132 and 133

give the optimum kernels for case 6. From the definition of P as the sum of products and

averages of its variables, we see that these kernels will depend upon the autocorrelation

and crosscorrelation functions of the r's and the higher-order crosscorrelation functions

between the r's and z(t). For example, if K2, 3 (T 1, T 2 ) operates on the set (r 1 , r 2 ), then

from Eq. 131 and the definitions of P and cmj, we obtain

K 3(TI, T) = 1 z(t)[r (t-T )r 2 (t-T )-r (t-T )r2(t-T2 )]
2,3(T'2) c 2 , 3

= z(t) rl(t-T1 ) r 2 (t-T 2 ) - z(t) rl(t-T1 ) r 2 (t-T 2 )

The number c 2 ,3 = 1 because no input appears more than once in the set (r 1 , r 2 ).
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Since the r's are formed in a known linear manner from the x's, the higher-order

crosscorrelation functions between the r's and z(t) can be computed from the higher-

order crosscorrelation functions between the x's and z(t). Thus, to optimize a general

nonlinear system for cases 5, 6, and 7 we must know all the higher-order crosscorrela-

tion functions between the inputs {xl(t), . . . xN(t)} and the desired output z(t). That is,

we must be given terms of the form

z(t) x (t-T) x (t-T2) . x (t-Tn)
'1 1 12 n

for all sets of the inputs and all n.

3.7 THEOREM RELATING OPTIMUM REALIZABLE SYSTEMS TO OPTIMUM

UNREALIZABLE SYSTEMS

In this section we shall prove a theorem that is interesting in its own right and will

be used in the optimization procedure for case 8.

The theorem can be stated: If wl(t) is the optimum, unrealizable, nonlinear approx-

imation to z(t) in the mean-square sense, and if w 2 (t) is the optimum, realizable,

nonlinear approximation to wl(t) in the mean-square sense, then w 2 (t) is the optimum,

realizable, nonlinear approximation to z(t) in the mean-square sense.

The variable w l(t) can be thought of as the output of an optimum unrealizable non-

linear system whose desired output is z(t); the variable w 2 (t) can be thought of as the

output of an optimum realizable nonlinear system whose desired output is wl(t). The

inputs to these two systems are the same. This theorem states that the output of the

optimum realizable nonlinear system whose desired output is z(t) and whose inputs are

the same as those of the other two systems is actually w2 (t).

To prove this theorem, we must show that the error E1 defined by

E 1= [w 2 (t)-z(t)]2

is less than or equal to the error produced by the output of any realizable nonlinear sys-

tem with the same inputs. We assume now that the allowable nonlinear systems are gen-

eral enough so that the output of any realizable nonlinear system can be obtained as the

sum of w2 (t) plus the output g(t) of another realizable nonlinear system. Thus we wish

to show that E 1 < E 2, where E 2 is defined by

E 2 = [w2 (t)+g(t)-z(t)]2 (134)

We now regroup terms in Eq. 134 as follows:

E 2 = {g(t)-[z(t)-w 2 (t)]}2

Expanding the square, we obtain
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E 2 = g2 (t) - 2g(t)[z(t)-w 2(t)] + [z(t)-w 2 (t)] 2 (135)

The last term in Eq. 135 is recognized as E 1. If we can prove that

g(t)[z(t)-w 2(t)] 0 (136)

is true, then Eq. 135 becomes

E 2 = g (t)+ E 1 (137)

But g2(t) 0, since the average of a squared real variable is always non-negative. Thus

if Eq. 136 is true, Eq. 137 shows that E1 < E 2 . We shall now prove Eq. 136 which can be

rewritten

g(t) z(t) = g(t) w2 (t) (138)

The fact that w 2 (t) is the optimum realizable nonlinear approximation to w1 (t) means

that w 2 (t) minimizes the error

[w2 (t)-w 1 (t)] 2

In particular, if we add to w2 (t) the output E g(t), then derivative of the error with

respect to E will be zero when evaluated at E = 0. That is,

0d [w,(t)+ Eg(t) -wl(t)]2 =0

Performing this differentiation, we obtain

2 g(t)[w2 (t)-w (t)] = O

This equation can be rewritten as

g(t) w 2 (t) = g(t) w1 (t) (139)

Similarly, the fact that w1 (t) is the optimum unrealizable approximation to z(t) means

that w 1 (t) minimizes the error

[Wl(t)-z(t)] 2

If we add to w 2 (t) the output E f(t), where f(t) is the output of any unrealizable system,

then the derivative of the error with respect to E will be zero when evaluated at E = 0.

Since a realizable output is a special case of an unrealizable output, we may choose f(t)=

g(t), the realizable output used previously. This necessary condition on the derivative

then becomes
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d [wl(t) + E g(t) - Z(t)]2 = 0
E=O

Performing this differentiation, we obtain

2 g(t)[wl(t)-z(t)] = 0 (140)

Equation 140 can be rewritten as

g(t) wil(t) = g(t) z(t) (141)

Combining Eqs. 139 and 141, we obtain

g(t) w2 (t) = g(t) wl(t) = g(t) z(t) (142)

which proves Eqs. 136 and 138 and completes the proof of the theorem.

This theorem can also be stated for linear systems, or for any class of systems that

have the property that if a(t) and b(t) are allowable outputs then a(t) - b(t) is an allowable

output. The proofs are the same.

3.8 CASE 8

We shall present the optimization procedure for case 8 in Table 1. Case 8 is the

most general of all the cases because the desired output z(t) is not produced in a known

manner from Gaussian variables; the optimum system is restricted to be realizable,

and the inputs are dependent. This case is treated last because we need some of the

results of the previous cases and the theorem of section 3. 7 to derive the optimization

procedure.

The optimization is carried out in two steps. First, we derive an optimum unreal-

izable nonlinear system whose inputs are the given dependent inputs {xl(t), . . . xN(t)} and

whose desired output is the given desired output z(t). We can derive this unrealizable

system, for the problem is that of case 7 (Table 1) which we have solved. Let us call

the output of this unrealizable system wl(t).

Next, we treat w (t) as a desired output and derive an optimum realizable non-

linear system whose output is the best approximation to w (t). We can derive this

second system because our desired output wl(t) is produced in a known manner from

Gaussian inputs {xl(t), . . . xN(t) }. The system to be optimized is restricted to be

realizable, and its inputs {xl(t) ... xN(t)} are dependent. These three conditions are

those of case 4 which we have solved. Let us call the output of this second sys-

tem w 2 (t).

By the theorem of section 3.7, the optimum realizable approximation to the optimum

unrealizable approximation is, in fact, the optimum realizable approximation to the

desired output. Thus, the system that produces w2(t) is the optimum realizable nonlinear

system for the desired output.
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3.9 STATISTICAL INFORMATION USED IN OPTIMIZATION PROCEDURES

Let us review the statistical information that we must use in these different cases of

optimization. In the first four cases, in which the desired output is given as a known

nonlinear G-functional expansion of a set of Gaussian inputs, we performed, at least con-

ceptually, some optimum linear operations, and then a nonlinear operation defined in

terms of the kernels of the given G-functionals. The optimum linear operations require

only a knowledge of first-order autocorrelations and first-order crosscorrelations. The

nonlinear operations are well defined and need no statistical information.

In the last four cases, in which the desired output is not given as a G-functional of

Gaussian inputs, the kernels that have to be determined depend upon higher-order cross-

correlations between the inputs {xl(t), . .. xN(t)} and the desired output z(t). (Recall that

case 8 depended upon case 7 and hence also used these higher-order crosscorrelations.)

In particular, from Eq. 131 we see that a kernel of degree m depends upon

1 * 
c z(t) ()P Vr. (t-T ). r (t-Tm)] (143)

m,j =O J m

where the r's depend linearly on the x's.

In practice, we could never measure an infinite set of statistics such as the set of

all higher-order crosscorrelations. It might therefore be of interest to see what

restricted class of systems we can optimize if we know only crosscorrelations up to

order M. We note from the definition of Pv that the terms in expression 143 contain, at

most, the product of m r's. Hence expression 143 involves crosscorrelations of order

m or less, and thus an optimum kernel of degree m can be determined from crosscor-

relations of order m or less. Since kernels of degree m determine G-functionals of

degree m, it follows that if we know crosscorrelations of order M and less, then we

can determine an optimum nonlinear system from the restricted class of nonlinear sys-

tems represented by sums of G-functionals of degree M and less.
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IV. SIMPLE NONLINEAR SYSTEMS

4. 1 INTRODUCTION

In Section III, we discussed general multi-input nonlinear systems. Unfortunately,

there is a price we must pay for this generality. We have already noted that in order

to optimize some of these general systems, we would have to know an infinite set of

higher-order crosscorrelations. In practice these correlation functions would have to

be measured, and hence we could never obtain an infinite set. Furthermore, even if

we had all the statistical information that we needed, we would still be unable to con-

struct a general nonlinear system. The model for a general multi-input nonlinear sys-

tem shown in Fig. 3 contains an infinite number of linear systems and hence cannot be

built. We might, therefore, be willing to give up some of the generality of these sys-

tems in exchange for the ease of determination and ease of construction of some simpler

systems.

In section 3. 9 we saw that by assuming no knowledge of crosscorrelations of higher

order than M we could optimize only a nonlinear system whose G-function expansion

was of no higher degree than M. However, with finite electrical systems we cannot at

the present time construct arbitrary G-functionals of degree greater than one. Thus,

by restricting the statistical information we have not ensured that we can construct the

optimum system.

The approach that we shall take now is to consider nonlinear systems of restricted

form that can be easily constructed. Each system will consist of a finite number of

linear systems and a finite number of simple nonlinear no-memory devices such as

squarers, multipliers, and constants (dc voltages). In each system of given form there

will be some undetermined parameters such as the impulse responses of some of the

linear systems. We shall derive methods by which we can determine these parameters

in such a way as to minimize the mean-square error between the output of the system

and some given desired output. Because these systems are restricted in form, their

output will not be as good an approximation to the desired output as would the output of

a more general nonlinear system.

Since the nonlinear devices will be simple, the optimization procedures will not

involve crosscorrelations of higher order than 2. Instead of measuring the second-

order crosscorrelation and then computing the optimum values of the parameters from

the crosscorrelation, we shall describe measurements that will more directly yield

these optimum values.

Each of the systems considered has a single white Gaussian input. The restric-

tion that the input be Gaussian is necessary for the optimization procedures

that will be presented. The restriction that the input be white causes no loss

of generality because any non-white input can always be whitened realizably and

reversibly.
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4. 2 G-FUNCTIONALS OF A SINGLE INPUT

In working with simple nonlinear systems with a single Gaussian input, we still find

G-functionals useful. In this section we shall derive the form and properties of

G-functionals of a single Gaussian input from the form and properties of G-functionals

of many Gaussian inputs. These forms and properties are somewhat simpler in the

single-input case.

Recall that both the definition (Eq. 20) and some of the properties (Eq. 34) of

G-functionals involve summations over different pairings of the inputs. We have pre-

viously noted that a kernel can be made symmetric in those variables that are associated

with the same input; therefore, with only a single input, we can, without loss of gener-

ality, require that each kernel be symmetric in all of its variables. For example, we

require that

K 3(T1, T 2, T3) = K 3 (T 3 , T2 , T 1 )

Since the kernels are symmetric for a single input, then any pairing arrangement has

the same effect as any other similar pairing arrangement, and we can use one pairing

arrangement and merely multiply by the number of similar pairing arrangements. For

example,

fj K3(T T z2 T 3 ) [x(t-T 1 )x(t-T 2 )x(t-T3 )

+ x(t-T)x(t-T3 ) x(t-T 2 )+x(t-T2 )x(t-T 3 )x(t-T 1 )] dTldT 2dT 3

= 3j K 3 (T 1, T 2 , T3 ) x(t-T 1 ) x(t-T 2 ) x(t-T 3 ) dT 1 dT 2dT 3

If we apply this technique to the definition of a G-functional given by Eq. 20, we

obtain

[n1
Gn(t, Kn ,x) X an- . Kn(Til Tn) x(t-T .) .. x(t-T v)

X x(t-Tn_2v+ ) X(t-Tn-2v+2 ) x(t-Tn_2v+3) x(t-Tn_2v+4 ) ... x(t-Tn_ 1) x(t-Tn) dT 1... dT n

(144)

The constant a n )
2 is (-1)v times the number of different pairing arrangements in

Pv [x(t-Ti.... x(t-Tn)]

and this number of pairing arrangements is, from the definition of P, the
V

number of different ways v pairs can be formed from n x's and is equal to

n!

Zv (n - 2 v ) ! v!
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Therefore a(n) is given by

a(n) = (- 1 ) n! (145)
n-Zv 2 v (n-2v)! v!

In Eq. 144 we have omitted those subscripts which refer to sets of inputs, since there

is only one input.

By applying the same technique to Eqs. 34 and 46, we obtain

Gn(t Kn, ) (t, Ln, X ) x) = n! / ... Kn(Tl. ..1 ) Ln(sl, ... )

X x(t-T1) x(t-x(t- T (t-T2) -x(t-T x(t-s) ... x(t-Tx(t- ) dT 1. ··dTn ds.. ds n

(146)

Gn(t,Kn, ) Gn(t,Lny)= n! ... f Kn(T ...T n) L (s, ... )

x ) y(-x(t-T1) y(t-s) x(t-T 2) y(t-s 2 )... x(t-Tn) y(t-s n ) dT 1 ... dTn dsl ... ds n

(147)

The number n! is the number of different ways n things can be paired with n other

things.

Of course, G-functionals of different degree are still linearly independent; we have

not defined new G-functionals, we have merely rewritten the G-functionals in a form

that is made possible by the single input.

If input x(t) is white Gaussian noise, that is,

x(t) x(t+T) = (T)

then Eqs. 144 and 146 take the following forms

Gn(t, Kn X) an-(n) / Kn(T1 Tn) x(t-T 1) . x(t-Tn-2vv=O n nv

X 6(Tn-2v+l-Tn-Zv+2) ... 6(Tn l-Tn) dT 1 ... dT n (148)

Gn(t, Kn, x) Gn(t, Ln, x) = n! ... Kn(T ... T LTl .. T) dT. dT (149)
Equations 148 and 149 are the ones that Wiener (2) uses.

Equations 148 and 149 are the ones that Wiener (2) uses.
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4. 3 SYSTEM A

The first system that we shall consider has the form shown in Fig. 15 and is called

system A. The output w(t) of system A is the sum of a constant c, plus the output of

a linear system with impulse response Ll(t), plus the squared output of N linear sys-

tems with impulse response {hl(t) .... hN(t)}, the squared outputs being multiplied by

the gains {a, .. . aN}, respectively. The white Gaussian input to the system is x(t). The

constant c o, the impulse responses Ll(t) and {hi(t)}, and the gains {a, .... aN} are all to

be determined to minimize the mean-square error between w(t) and the desired output

z(t).

CONSTANT

Fig. 15. System A.

By means of the constant c o we can, of course, produce any G-functional of degree

zero. With the linear system Ll(t) we can produce any G-functional of degree 1 of

the input x(t). The h's, the squarers, and the a's allow us to produce only a limited

class of G-functionals of degree 2 of the input. System A is, then, just a bit more

general than a linear system.

The arrangement of the h's, squarers, and a's in Fig. 15 is somewhat more general

than at first it might appear. In particular, if we had N arbitrary linear systems with

input x(t), and if we formed an output y(t) by summing the products of pairs of these

outputs times arbitrary gains, then we could form this same output y(t) with the arrange-

ment of the h's, squarers, and a's of Fig. 15 by proper choices of the impulse responses

{hi(t)} and gains {ai}. That is, if there are N arbitrary linear systems with impulse

responses {gi(t)} and outputs {vi(t)} given by

vi(t) = . gi(T) x(t-T) dT (150)

and if we form y(t) as
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N N
y(t) = bv.(t) v(t) (151)

i=1 j=lJ

where the constants {bi .} are arbitrary, then by proper choice of the impulse responses

{hi(t)} and the gains {ai} we can form y(t) as

N 2
y(t) = a i u (t) (152)

where ui(t) is given by

ui(t) = J hi(T) x(t-T) dT

To prove the statement just given we shall show how the {ui(t)} and {ai} are deter-

mined in terms of {vi(t)} and {bi, j}. We can first assume with no loss of generality that

bi j = bj i because with no change in y(t) we can always make the bi j's have that prop-

erty. We now introduce some matrix notation. We form a column vector v given by

vl(t) 

v 2 (t)

vN(t)

and a symmetric N X N matrix b given by

b b b, 1 1,2 bl,N

b2, 1

bN, 1 bN, N

If vT is the transpose of v, then from the definition of matrix multiplication, y(t) of

Eq. 151 can be expressed as

T (153)y(t) = v bv (153)

But according to matrix theory (see Hildebrand (15)) there always exists an N X N

matrix Q with the following properties:

Q Q = Q Q = I (154a)

TQbQ = c (154b)
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where I is the identity matrix, and c is an N x N diagonal matrix of the form

C 0 0 ... 0
1, 1

0 c2, 2
C -

CN, N

Using Eq. 154a, we can express Eq. 153 as

y(t) = v T I b I v = vT Q Q b QT Q (155)

Substituting Eq. 154b in Eq. 155, we obtain

y(t) =v T QT cQv (156)

If we define a new vector d as

d = Q v (157)

and recall from matrix theory that

T T T T
d T =(Qv) = Q

then Eq. 156 becomes

T
y(t) = d c d (158)

The summation indicated by Eq. 158 is

N
y(t) = d Ci (159)

i=l 

where d. is the ith element of the vector d. Equation 159 has the same form as our desired
1

equation, Eq. 152. In Eq. 157 each element di is defined as a linear sum of the elements

of v, each of which is the output of a linear system with impulse response gi(t) and input

x(t), as shown in Eq. 150. Therefore d is the output of a linear system whose impulse

response is the same sum of the {gi(t)} as d i is of the corresponding elements of v. Each

element ci i is a sum of the bi 's and hence is a number. Therefore, if we let ui(t) = di

and if we let ai = c.i ithen Eq. 159 becomes Eq. 152, which was to be proved.

Without reducing the generality of system A (Fig. 15), we can normalize each of

the impulse responses {hi(t)}. Thus

h(t) dt = 1 (160)

The gains {ai} can perform all of the necessary magnitude scaling.

In determining how to optimize system A (Fig. 15), it is convenient to express the
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output w(t) as a sum of G-functionals of the single input x(t).

express w(t) as

w(t) = Go + Gl(t, L1 , x) + G2 (t, L 2, x)

where

G2 (t, L2 , X) := 22

By inspection we can

(161)

N
X aihi(T 1 ) hi(T2)[X(t-Tl)x(t-T2)-x(t-Tl)x(t-T2)] dTldT 2i=1

(162)

G1 (t, L1 , x) = J00 L l (t) x(t-T) dT

aihi(T1) hi(T Nx(t-T1) x(t-T) dTldT
G = J J i aihi(T1) h(T 2 ) x(t-TI) x(t-T 2 ) dT 1 dT 2 (164

i=1

The fact that the input is white means that

x(t) x(t-T) = &(T) (165

By using Eq. 165 and the normality of Eq. 160, Eqs. 162 and 164 can be expressed as

4)

G2 (t, L, x) = Jo/J
N

X. aihi(T 1) hi(T2 ) Xi(t-T 1) Xi(t-T 2 ) dTldT2 -
i=l

N
a i

i=1

N
G =c + a.

i=l

The kernel L2 is given by

N

L2 (T 1 , T2 ) = aihi(T1) hi(T2 )

Notice that L2 (T 1 , T 2) is symmetric in T1 and T 2.

We now express the mean-square error E in terms of these G-functionals.

E = [w(t)-z(t)]2 = [Go+Gl(t, L1 , x)+G2 (t, L2 , x)-z(t)] 2

(166)

(167)

(168)

(169)

By expanding the square and applying the orthogonality of the G-functionals, Eq. 169

becomes

E = G2 + G12(t, L1 , x) + G2 (t, L2 , x) - 2z(t)[G +Gl(t, L1 , x)+G 2 (t, L2 , x)] + z(t)0 1 (170)

Equation 170 can be rewritten as

E = [Go-z(t)]2 + [Gl(t, L1 , x)-z(t)] 2 + [G 2 (t, L2 , x)-z(t)] 2
- 2z2 (t) (171)
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In Eq. 171 each G-functional appears in a different squared term and each term can be

minimized separately. Although the constants {ai} appear in both Go and G2 (t, L 2 , x),

their effect on Go can be completely compensated for by the constant c.

We shall now evaluate the optimum values of c, L l (t), {hi(t)}, and {ai} by minimizing

each of the terms in Eq. 171. The first term in Eq. 171 is the mean-square difference

between a constant Go and a random variable z(t). This term is clearly minimized by

setting the constant Go equal to the mean of the random variable.

G = z(t) (172)
o

Substituting the definition of Go given by Eq. 167 in Eq. 172, we find that c is given by

N
c ° = Z(t) - a. (173)

i=l 1

The constants {ai} will be determined later.

We minimize the second term of Eq. 171,

[Gl(t, L 1 , x)-z(t)]2

by a direct variational procedure. We add an arbitrary realizable impulse response

E g(t) to the optimum impulse response Ll(t) and set the derivative of the error with

respect to equal to zero when E = 0.

2d 00
dE- [LI(T)+Eg(T) ] x(t-T) dT - z(t)} = 0

E=O

Performing the differentiation and using the fact that the input is white, we obtain

2 J g(T) dT[Ll(T)-x(t-T)z(t)] = 0

Since g(T) is arbitrary for T > 0, the term in brackets must be zero for T > 0. That is,

L 1 (T) = x(t-T) z(t) T > 0 (174)

Since Li(T) is realizable,

L 1 (T) = T < 0 (175)

Notice that Ll(t) in Eq. 174 is just the crosscorrelation between the input and the

desired output.

The minimization of the third term of Eq. 171,
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is a little more complicated. We first expand the square in

[GZ(t, L2 , x)-z(t)] = G2 (t, L 2 , x) - 2z(t) G2 (t, L2 , x) + z2(t)

By means of Eq. 149, we see that

2 L,)=
G 2(t, L2' x) = 2 |

2~~~J

0 2

2( T 1 T 2) dT dT 2

By using the definition of L2 given by Eq. 168, Eq.

2 Lx 2f 00 [ aNh.(T 1)
G2(t, L2, x) = 2 j aihi( T 1 )

i= 1

2

hi(T2 j

177 becomes

dTldT2

Since the average value of the product of a constant times a G-functional of degree 2

is zero, we may write the second term of Eq. 176 as

2 z(t) G2 (t, L2 , x) = 2[z(t)-z(t)] G2 (t, L 2, x) (179)

Since the average value of a constant times z(t) - z(t) is zero, we may write Eq. 179 as

2 z(t) G2 (t, LZ, x) = 2[z(t)-z(fl[G (t , L2 , x)
N

+ 
i=l

ai (180)

By using Eq. 166 for the G-functional, Eq. 180 becomes

2 z(t) G 2 (t, L2 , x) = J L2 (T 1, T 2 )[x(t-T 1 )(t-T 2 )][z(t)-z(t)] dTldT2 (181)

We can now define a symmetric kernel K(T 1 , T 2) as

K(T 1 , T2 ) = [x(t-T 1 )x(t-T2 )][z(t)-z(t)] (182)

Substituting this kernel in Eq. 181, and using the definition of L2 given by Eq. 168, we

obtain

2 z(t) G2 (t, L2 , x) = 4 o o N

i aihi(T 1) hi(T 2 ) K(T 1 , T2 ) dTldT2i=l

We can now substitute Eqs. 178 and 183 in Eq. 176 and rearrange terms to obtain

[G 2 (t, L2 , x)-z(t)]2 = 2 fOO f[il aihi(T1) hi(T2)- K(T 1I T 2)j

-2 j j K2(T1 , T 2 ) dTldT2 + z (t)

55

(176)

(177)

(178)

(183)

dTldT 2

(184)

-



In Eq. 184 only the term

00 co1 N

2 aihi(T ) h(T2) - K(T1,T dT dT2 (185)

contains the parameters {hi(t)} and {ai}. Therefore we minimize the error of Eq. 170 if

we choose {hi(t)} and {ai} so as to minimize expression 185. Now it follows directly from

Hilbert-Schmidt theory (16) that there exist a set of normalized functions {i(t)} called

eigenfunctions and a corresponding set of numbers {Xi} called eigenvalues that satisfy

the integral equation

co0

X ii(T 2) = K(T1 , T 2 ) pi(T1) dT 1 (186)

If the eigenvalues are ordered so that

IxiI > Ij i <j (187)

then, from Hilbert-Schmidt theory (16), it follows that expression 185 is minimized if

we choose {ai} and hi(t)} as follows:

ai= Xi i= 1,. N

(188)

hi(t) = 182,(t) i = 188 we see that the. N must satisfy the

From Eqs. 182, 186, and 188 we see that the set {at} and {hi(t)} must satisfy the

equation

aihi(T) = 2 x(t-T1) x(t-T2)[z(t)-z(t)] hi(T I) dT1 (189)

where the set ai is the set of numbers of largest magnitude that satisfy Eq. 189.

Equations 173, 174, 175, and 189 give us the optimum values of the parameters of

system A. The solution to the integral equation 189 presents the only difficulty.

4.4 EXPERIMENTAL PROCEDURE FOR OPTIMIZING SYSTEM A

We shall now present an experimental procedure for solving Eq. 189. After pre-

senting the procedure we shall show that it is correct.

The experimental procedure for determining the impulse response hl(t) is an itera-

tive one in which we start off with an arbitrary linear system with impulse response

fl(t), and then by a series of measurements and a simple computation we determine a

new normalized impulse response f2 (t). A linear system with impulse response f 2 (t)

is then substituted for the one with fl(t) and the procedure is repeated. The desired

impulse response hl(t) is given by

hl(t) = lim fn(t)
n-oo
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The experimental system is shown in Fig. 16. The output of the system f' (T) isn+l
the average value of the product of the output of a delay line, the output of a linear sys-

tem with impulse response fn(t), and the desired output minus its mean z(t) - z(t). The

procedure is to measure the output of the system fl (T) as a function of the tap position

T of the delay line. The next impulse response fn+l(t) is related to fn+l(t) by
f' (t)~~~~~~~~n

fn+l(t) =
fn+l(t)

1/2

The gain a l is given by

f' (t)
fn+l(t)

a 1 = lim n+
n-oo 2fn(t)n

(190)

Equation 190 will not be a function of time.

With the determination of hi(t) and a part of system A is known. The experimental

procedure for determining each of the remaining impulse responses {hi(t)} and gains {ai}

z(t)- z(t)

MULTIPLIER
fn I(T)

Fig. 16. Experimental system No. 1 for system A.

z(t)

ZERO-MEAN
PROCESS

\MULTIPLIER

Fig. 17. Experimental system No. 2 for system A.
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is the same as that for determining hi(t) and a1 , with the difference that the output of

the part of system A that has already been determined is subtracted from the desired

output z(t), and enough dc voltage is also subtracted to make the sum a zero-mean proc-

ess. The experimental system for determining h 2 (t) is shown in Fig. 17.

To show that the procedure described above is correct, we have only to note that

the output f +l(T) of Fig. 16 is given by

fn+ (T) j f(T) (t-T1 ) dT1 J 6(T 2-T) x(t-T2) dT2 [z(t)-z(t)]

fn(T1) x(t-T 1 ) x(t-T 1 )[z(t)-z(t)] dT 1 (191)

and that the output fn+l(T) of Fig. 17 is given by

f+ (T) = J f(T 1 ) x(t-T ) dT 1 J 6(Tz-T) x(t-T2 ) dT t - z(t) - a h(T hT) (t-T) x(t-T) dT3dT 4 a,1

= J f(T )[x(t-T 1)x(t-T)[z(t)-z(t)]-z2alh)hh(T)] dT 1

(192)

(What we actually measure are time averages, but these are equal to ensemble averages.)

With the outputs fn (T) defined by Eqs. 191 and 192, the iterative procedure just described

is the same as the standard iterative procedure (see Hildebrand (17)) for solving the

integral equation given by Eq. 189.

4.5 MEAN-SQUARE ERROR FOR SYSTEM A

In this section we shall derive an expression for the minimum mean-square error E

between the desired output z(t) and the optimum output w(t) of system A. By definition

(Eq. 169),

E = [w(t)-z(t)] 2

We shall show, first, that E is given by

E = z 2(t) - w (t) (193)

and then we shall evaluate w2(t).

Equation 193 is true for any optimum system that has the property that if g(t) is a

possible output, then c g(t) is a possible output. Here, c is an arbitrary constant. Sys-

tem A has this property because by multiplying c, Ll(t), and the gains {ai} by c we

can multiply the output by c. The cascade of, first, a linear system, whose impulse

response we are free to choose, followed by an ideal clipper whose output is either +1

or -1 does not have this property.
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To prove Eq. 193, we express our optimum output w(t) as

w(t) = c g(t)

and then choose c to minimize the error in the definition of E, by setting the derivative

of the error with respect to c equal to zero.

dc [c g(t)-z(t)] 2 = 0
dc 

Performing the differentiation, we obtain

c g2(t) - g(t) z(t) = 0

Thus the optimum value of c is

g(t) z(t)

g2(t)

Substituting Eqs. 195 and 194 in Eq. 169, we obtain

2 [g(t)z(t)]
E = z (t) -

g2(t)

But from Eqs. 194 and 195 we notice that

2 g(t) z(t)
w (t) =

g (t)

Substituting Eq. 197 in Eq. 196, we obtain

E = z2(t) - w (t)

which was to be proved.

Because of the orthogonality of G-functionals of different degree, the G-functional

expansion for w(t) (Eq. 161) simplifies the derivation of w (t). In G-functional form,

w2(t), is given by

w2 (t) = [Go+Gl(t, L, )+G 2 (t, L2 , )]2

= G2 + G2(t, L, x) + G2(t, L, x) (198)
U I I . L

because all of the cross products are zero. From Eq. 172 we see that G
O

= z(t), hence

G2 = [z(t)]2
0
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From Eqs. 163 and 174 we see that Gl(t, L1 , x) is given by

Gl(t, L 1 , x) J00 x(t-T) z(t) x(t-T) dT

Hence, squaring both sides and averaging, we obtain

G12(t, L 1 , x) 0 x(t-T 1 ) z(t) x(t-T l ) dT 1 J x(t-T 2 ) z(t) x(t-T 2 ) dT 2

of Jo x(t-T 1 ) z(t) x(t-T 2 ) z(t) x(t-T 1) x(t-T 2 ) dTldT 2

Since the input is white, Eq. 200 becomes

G 2(t, L 1 x) =1 X [x(t-T)z(t)]2 dT (201)

2We can evaluate G2 (t, L2 , x) by means of Eq. 149.

G 2(t, L 2 , x) = 2 f L (T 1 , T 2 ) dTldT 2 (202)

By using the definition of L 2 (T 1 , T 2 ) given by Eq. 168 and by rearranging terms, Eq. 202

becomes

N
G2 (t, L 2 , x) = 2 

i=l

N oo

0
hi(T 2 ) hj(T2 ) dT 2

The optimum h's are eigenfunctions (Eq. 189), and eigenfunctions have the property (18)

that

0 hi(T) hj(T) dT = 0 i j (204)

By applying the orthonormality of the h's given by Eqs. 160 and 204, Eq. 203 becomes

N
G2 (t, L 2 , x) = 2 X ai (205)

i=l

From Eqs. 199, 201, and 205, we see that Eq. 198 for w (t) becomes

w (t) = [(t + [x(t-T)z(t)] dT + 2 N ai2
i=1

(206)

We see from Eq. 189 that the gains {ai) are eigenvalues of a second-order crosscorre-
lation (divided by 2)
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Substituting Eq. 206 in Eq. 193, we obtain the minimum error for system A:

2 N 2
E = z2 (t) - [z(t-)] - [x(t-T)z(t)] dT - 2 E ai

4. 6 EXAMPLE Al

As an example of the optimization procedures discussed in the three previous sec-

tions, we now consider optimizing system A of Fig. 18. System Al consists of a con-

stant c, a linear system with impulse response Ll(t), and a linear system with impulse

response hl(t) whose output is squared and multiplied by a gain al . The input to system

A 1 is the white Gaussian input x(t). The output is w(t). The constant c, the impulse

responses Ll(t) and hi(t), and the gain al are all to be determined to minimize the

mean-square difference between w(t) and the desired output z(t).

CONSTANT
Co

x(t)

Fig. 18. System A1 .

LINEAR NO- MEMORY

x(t) _ , y(t) y4 (t) =z(t)

Fig. 19. Desired output for examples.

In this example, the desired output z(t) is produced in the manner shown in Fig. 19.

This is done by raising to the 4t h power the output y(t) of a linear system whose input

is x(t), and whose impulse response g(t) is given by

g(t) = i
LO

0 t 1
(207)

otherwise

In a real case we would be given x(t) and z(t), and we would then make measurements

to determine the optimum values of the parameters in system Al . In this example we

shall compute analytically those quantities which, in practice, we would measure.

To facilitate these computations, we would like to express z(t) as a sum of
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G-functionals of x(t). From Fig. 19 we see that we can express z(t) as

z(t) =ffj g(T 1 ) g(T 2 ) g(T 3 ) g(T 4 ) x(t-T) x(t-T 2 ) x(t-T) x(t-T2 ) ) dTldT2 dT 3 dT4

(208)

By means of Eqs. 148 and 145 we can form a G-functional of degree 4 that has the same

kernel as Eq. 208. This G-functional is

G4[t, g(Tj)g(T2 )g(T3 )g(T 4 ), ] =ffff g(T 1 ) g(TZ) g(T 3) g(T 4) x(t-T 1 ) x(t-T2 ) x(t-T 3 ) x(t-T4) dTdTdT3 dT 4

- 6ffffg(T g(T )g(T 3 )g(T 3 )g dTldT3) dTdT2dT 3 + 3 g(Tff gT (T1 ) g(T 2 ) g(T 2 ) dT 1dT 2

(209)

From the definition of g(t) (Eq. 207), we note that

if g2 (t) dt = 0 dt = 1

Using this expression in Eq. 209, we obtain

G4[t, g(T 1)g(T 2)g(T)g(T4 ), ] =ffff g(T 1 ) g(T 2 ) g(T 3) g(T 4 ) x(t-T1 ) x(t-T 2 ) x(t-T 3 ) x(t-T 4 ) dTldT2dT 3dT 4

- 6ff g(T1 ) g(T 2) x(t-T 1 ) x(t-T 2) dTldT 2 + 3

(210)

By means of Eqs. 148 and 145, we can form a G-functional of degree 2 whose kernel is

the negative of the second-order kernel in the right-hand side of Eq. 210. The

G-functional is

G 2 [t, 6g(T 1 )g(T2 ), x] = 6 / g(T 1 ) g(TT2 ) x(t-T 1 ) x(t-T 2 ) dTldT2 - 6 (211)

We can now form a G-functional of degree zero (a constant) which is the negative of the

sum of the constants in the right-hand sides of Eqs. 210 and 211. We shall call this

constant G'. It is given by
o

G' = 3 (212)
o

From Eqs. 208, 210, 211, and 212 we see that z(t) is given by the sum of G-functionals:

zt) = G4[t, g(T 1)g(T2 2 T2 )g(T3 )g(T 4 ), x] + G 2 [t, 6g(T1 )g(T 2 ), x] + Go (213)

We shall first determine the impulse response Ll(t). Equation 174 states that Li(t)

is given by

L 1(T) = x(t-T) z(t)
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But x(t-T) is a G-functional of degree 1, and z(t) has no G-functional of degree 1 in its

expansion. Thus, x(t-T) is linearly independent of z(t), and hence

L l (t) = 0

We can evaluate hl(t) and al by inspection. Notice that if we choose hl(t) = g(t) and

a1 = 6, we can form a G-functional of degree 2 that will exactly equal the G-functional

of degree 2 in the expansion of z(t) in Eq. 213. The iterative procedure described in

section 4. 4 would give us the same values.

By Eq. 173, the constant c is

c o = z(t) - al

The mean of z(t) is equal to G' because that is the only term in the G-functional
0

expansion for z(t) (Eq. 213) that is not orthogonal to a constant. By Eq. 212, G' = 3.
0

We have previously determined that a = 6. Thus c becomes

c = 3 - 6 = -3

The G term in the expansion for w(t) will, of course, be equal to G of Eq. 213.O 0
The mean-square error between z(t) and w(t) is easy to compute. By optimizing

system A1 , we have been able to produce an output w(t) that is composed of the zero-

and second-degree G-functionals of the expansion for z(t) (Eq. 213). The instantaneous

difference between z(t) and w(t) is, therefore, given by the remaining G-functional of

degree 4 in the expansion for z(t). That is,

z(t) - w(t) = G4 [t, g(T 1 )g(T 2 )g(T 3 )g(T 4 ), x ]

The mean-square difference between z(t) and w(t) is

[z(t)-w(t)] 2 = G4[t, g(T 1 )g(T )g(T 3 )g(T 4 ), x]

By Eq. 149, this becomes

4

[z(t)-w(t)]2 = 4! g2 (t) dTj = 24

We might wish to normalize this mean-square error by dividing by the mean square of

the desired output z(t). We can evaluate z2(t) by squaring and averaging Eq. 213, and

using the fact that the G-functionals are orthogonal.

z 2 (t) = G4[t, g(T 1 )g)g(Tg(T3)g(T3)g(T4)] + G[t, g(T 1 )g(T 2 ), x] + [G'] 2 (214)

If each of these terms is evaluated by means of Eq. 149, Eq. 214 becomes

z (t) = 105
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The normalized mean-square error is then given by

[z(t)-w(t)] 2 24

2 105 = 22.8 per cent
z (t)

4.7 SYSTEM B

In the previous sections we have shown that an experimental iterative procedure is

necessary to optimize system A. We shall now consider a nonlinear system that can be

optimized by direct measurements with no iteration. The cost of this simplification is

a loss of efficiency of components. That is, for the same number of linear subsystems,

system A would give a better approximation to the desired output than would the system

that we shall now treat.

CONSTANT

Fig. 20. System B.

We consider the optimization of system B which is shown in Fig. 20. System B con-

sists of a constant c o , a linear system with impulse response Ll(t), and two sets of N

linear systems whose impulse responses are (hl(t), .. hN(t)} and {rl(t), . . rN(t)}. The

output of each h system is multiplied by the output of the corresponding r system. The

impulse responses {rl(t), . . . rN(t)} are given; they are not to be determined in the opti-

mization procedure. The r's are an orthonormal set. That is, they have the following

two properties:

f0 ri(t) rj(t) dt = 0 iij I
(215)

r i(t) ri(t) dt = 1
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The constant c, the impulse response L 1 (t), and the set of impulse responses {hl(t),

... hN(t)} are all to be determined so as to minimize the mean-square error between the

output w(t) of system B and the desired output z(t). The input x(t) to system B is white

and Gaussian.

By means of the undetermined constant c o , system B can produce any zero-order

output. By means of the undetermined impulse response L 1 (t), system B can perform

any realizable linear operation on x(t). Because it contains only a limited number of lin-

ear systems whose outputs are multiplied together, system B can produce only a limited

class of second-order operations on its input. If system B had an infinite number of

such linear systems, it could produce a general second-order operation on x(t) in the

manner shown for the general nonlinear system of Section II.

In section 3. 3 we showed that for a given number of linear systems the form of sys -

tem A is optimum. Therefore, for the same number of linear systems (number of h's

plus number of r's), system B will produce a poorer approximation to z(t) than will

system A.

System B has many parameters that have to be chosen to minimize the mean-square

error between w(t) and z(t). The simultaneous choice of many parameters is often a

formidable problem. However, by means of an orthogonal expansion for w(t) we shall

be able to reduce this optimization problem to one of minimizing, separately, many dif-

ferent errors, each one of which involves only one parameter.

Before we determine the particular expansion for w(t), let us demonstrate that for

any arbitrary orthogonal expansion for w(t), the mean-square error between z(t) and w(t)

can be written as a sum of mean-square errors between z(t) and each of the terms of the

expansion. Let w(t) be expressed as

N
w(t)= E gi(t)

i=l

in which the g's are random signals with the property that

gi(t) gj(t) = i j

Then the mean-square error can be expressed as

N

[w(t)-z(t)] = L' gi(t) - z(t

N N N

i gi(t) g(t) - 2 gi(t) z(t) + z(t) (216)
i=1 j=l i=

By applying the orthogonality of the g's, we obtain

N 2 N
[w(t)-z(t)] = gi (t) - 2 gi(t)z(t) z (t) + (217)

i=l i=l
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We now rearrange terms to obtain

N
[w(t)-z(t)] 2 N [gi(t)-z(t)] 2 - (N-) z 2 (t) (218)

i=l

The right-hand side of Eq. 218 is the sum of a constant which is independent of the g's

plus the sum of the mean-square errors between z(t) and each of the terms of the orthog-

onal expansion for w(t). The form of Eq. 218 is particularly convenient if the undeter-

mined parameters are such that each parameter affects only one g because, in that case,

we can minimize each error term separately. We shall now determine such an orthog-

onal expansion for w(t).

The orthogonal expansion that we shall use for w(t) is a sum of G-functionals. The

sum consists of one G-functional of degree zero, one G-functional of degree 1, plus many

G-functionals of degree 2. The G-functionals of degree 2 are orthogonal to each other,

and each G-functional of degree 2 can be optimized independently. The main problem is

that of choosing the set of G-functionals of degree 2 which will have these properties.

The quadratic part of system B produces the following homogeneous functional of

degree 2:

N
JJ i h i(T1) ri(T2 ) x(t-T 1 ) x(t-T 2 ) dTldT 2 (219)

The sum of the kernels of the G-functionals of degree 2 must have the same kernel,

N
.hi(Tl) ri(T2) (220)

as expression 219, for neither G-functionals of degree 1 nor G-functionals of degree

zero contains homogeneous functionals of degree 2. We note from Eq. 149 that two

G-functionals, G2 (t, K2 , x) and G2 (t, L 2 , x), are orthogonal if

j K 2 (T 1 T 2 ) L 2 (T 1 , T 2 ) dTldT2 0 (221)

(Remember that kernels in Eq. 221 must be expressed in symmetric form.) Therefore,

if we can express the kernel 220 as a sum of kernels that are mutually orthogonal in the

sense of Eq. 221, then for each kernel in the sum there is a G-functional of degree 2

which uses that kernel. The sum of these G-functions produces expression 219 (plus a

constant); and the G-functionals of degree 2 are orthogonal to each other. We wish to

choose the kernels in the sum in such a manner that one and only one undetermined

parameter appears in each kernel.

To divide up kernel 220, we first express each impulse response hi(t) as follows:

i
hi(t) h(t) + ai, j rj(t) (222)

1 ~1j=1
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where h!(t) is orthogonal to every r. That is,
1

f h!(t) rj(t) dt = 0 (223)

The constants ai, j} are undetermined in the same sense that hi(t) is undetermined. Thus,

these constants will be determined to optimize the output. If j in Eq. 222 is allowed to

run to N instead of to i, then clearly any arbitrary hi(t) can be written in the form of

Eq. 223. However, this restriction on hi(t) places no restriction on the output w(t)

because any part of w(t) formed by

j rj(T1 ) ri(T2 ) x(t-T1 ) x(t-T 2 ) dT1 dT2 j > i

could be formed by letting aj i = 1 in expansion 222 for hj(t), as can be seen from expres-

sion 219. By using Eq. 222, kernel 220 becomes

N N i
h i(T1) r(T 2 ) + . ai j rj(T1 ) ri(T 2 ) (224)

i=l i=l j=

The symmetrized forms of each of the terms of expression 224 are orthogonal to

each other in the sense of Eq. 221. This orthogonality is expressed by the following

equations:

ff-2 [hi(T )ri(T2 )+ri(T (T 2 ) 2 [h!(TI)r (T2 )+r (T )h!(T2 )] dTdT2 = 0

i j (224a)

jj [hI(T )r(T)+rn(T )h(T 2)]

X 2 [ai j rj(T 1)r(T j (T)r(T)+ai dTdT 0 (224b)

jj1[a, j rj(T1)ri(T2)+ai, j r(T1)rj(T2)]

X [am n rm rn()rn(T)+am nrn(T 1 )rm(T2)] dT dT2 o

if either i n or j m (224c)

Equation 224a follows from the orthogonality of the r's (Eq. 215) and the orthogo-

nality of h' with r (Eq. 223). Equation 224b follows from the orthogonality of h'

with r (Eq. 223). Equation 224c follows from the orthogonality of the r's (Eq. 215)

except when both i = n and j = m, in which case it follows from the fact that a, =0

for j i.

By means of the kernels of expression 224, we can now express w(t) as a sum of

orthogonal G-functionals as follows:
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N
w(t) = G+ G 1 (t, L 1 ,x)+ G2 [t, hi(T)ri(T2 ),x]

i=l

N i
+ K j a G2z[t rj(T )ri(T),X] (225)

i=l j= , j2

The sum of the G-functionals of degree 2 is equal to expression 219 minus its mean. The

constant Go is equal to c plus the mean of expression 219. The G-functional of degree 1

is equal to the output of the linear system with impulse response Ll(t).

The impulse responses {hi(t)} and the gains {ai j} have now replaced the impulse

responses {hi(t)} and are, of course, undetermined parameters. Notice that each of these

undetermined parameters appears in its own G-functional of degree 2.

We shall now optimize system B by determining the optimum values of the undeter-

mined parameters. Recall from Eq. 218 that if the output w(t) can be expressed as the

sum of orthogonal functions and if these functions can be adjusted independently, then

each of the orthogonal functions should be adjusted to minimize the mean-square error

between itself and the desired output.

To choose each gain ai j we therefore adjust ai j to minimize

{ai, j G[t, rj(Tl ) r i ( T 2 ) , x] z(t)}2

Setting the derivative of this error with respect to ai j equal to zero, we obtain

z(t) G2 [t, rj(T1)ri(T2 ), x]

a. . = (226)

G2 [t, rj(T)ri(T2), x]

Evaluating these averages by means of the properties of the G-functionals given in

Eqs. 148 and 149 and the properties of the r's given in Eqs. 215, we obtain two forms

for Eq. 226:

ai j = z(t)j rj(T1 ) x(t-T 1) dT f ri(T2 ) x(t-T2 ) dT2 i j (227a)

2

z(t)J ri(T) x(t-T) dT 1 -z(t) (227b)

The optimum impulse response h!(t) is the one that minimizes the error:

{G2 [t, h!(T )ri(T2 ), x]-z(t)}2 (228)

subject to the constraint (Eq. 224) that h' be orthogonal to r. The easiest way to apply

this constraint is to for-m a variable u(t) that is defined as
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u(t) z(t) - ZJ ai j r(Tl) x(t-T ) dTj ri(T2 ) x(t-T 2 ) dT 2 (229)
i=l 1 

and then choose h!(t) to minimize
1

{G2 [t, h(T 1 )ri(T2 ), x]-u(t)} 2 (230)

The variable u(t) is just z(t) minus that part of the output of system B which has already

been determined. Since we chose the a's to be optimum, we know that the impulse

response h!(t) that minimizes expression 230 subject to no constraint will indeed be1
orthogonal to all of the r's; this fact follows from the fact that any desired component of

hi(t) which is not orthogonal to the r's could have been produced by a different choice of

gains {ai, j}.

We shall now minimize the error of expression 230. We expand the square and use

the properties of the G-functionals given by Eqs. 148 and 149, and use the orthogonality

of h! and r to obtain the error of Eq. 228 in the following form:

f [h(T)]2 dT - 2 h!(T 1 ) r(T 2 ) [u(t)-ii(t)] x(t-T 1 ) x(t-T 2 )

X dTldT2 + u 2(t) (231)

If we now add an arbitrary realizable impulse response E g(t) to hi(t), then for the opti-

mum h!(t) the derivative of the error with respect to E will be zero when E = 0. Applying

this condition to the error of Eq. 23 1, we obtain

2 jg(T) dT{hI(T) - [u(t)-u(t] x(t-T) ri(T 1 ) x(t-T 1 ) dT 1 } 0

Since g(T) is arbitrary for T 0, the quantity in braces must be zero for T > 0. Since

h'(T) is realizable, it must be zero for T < 0. Therefore, h(T) is given by
1 1

[u(t)-u-()] x(t-T) fri(T1) x(t-T 1) dT1 T O

h!(T) (232)

0 T < 0

To choose the realizable impulse response Ll(t), we minimize the error

[G1 (t, L 1, x)-z(t)] 2

In the optimization of system A we have shown that the realizable impulse response that

minimizes this error is
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fx(t-T) z(t) T > 0
L 1 (T) 

0 T < 

Clearly, the constant Go that minimizes [Go-z(t)] 2 is

Go = z(t)

The constant c of system B serves two purposes. It produces the constants of the

G-functionals of degree 2, and it produces the addition constant used in forming Go . Thus

co equals Go plus the constants of the G-functionals of degree 2. From the definition of

the G-functionals (Eq. 148), the orthogonality of h' and r (Eq. 223), and the orthogo-

nality of the r's (Eq. 215), we find that the constants of the G-functionals of degree 2 are

N
- E a. .

1, 1i=1

Thus the constant c is given by

N
c = z(t)- a..

i=l- 1,1

The experimental procedures for determining the parameters of system B follow

directly from the equations that define their optimum values. Thus, directly from

Eq. 227a we see that the output of the system of Fig. 21 is the optimum value of gain

ai j for i j. Similarly, from Eq. 227b we see that the output of the system of Fig. 22

is the gain ai i. From the definition of u(t) given in Eq. 229 and from the optimum value

of h!(T) given in Eq. 232, we see that the output of the system of Fig. 23, measured as

a function of the delay T, is hi(T).

Just as in system A, the mean-square error between w(t) and z(t) is the difference

of the average values of the squares. That is,

[w(t)-z(t)]2 = z 2 (t) - w2 (t) (233)

By using the orthogonal expansion of Eq. 225, we can express w (t) as

w2(t) = G2 + G2(t,L 1 x)+ G2 [t,hI(T)ri(T2),X]
i=N

N i
+ ai2 G2[t, r(T 1 )ri(T2 ),x] (234)

i=l j=l 1, 2 G2

From the properties of the G-functionals (Eq. 149) and the optimum values of

the parameters which we have determined, we can evaluate each of the terms in

Eq. 234. Then, substituting these terms in Eq. 233, we obtain the following error

expression:
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MULTIPLIER
a.!

Fig. 21. Experimental system No. 1 for system B.

z(t) z(t)

Fig. 22. Experimental system No. 2 for system B.

Fig. 23. Experimental system No. 3 for system B.

71

I __���_I ·I _ _ _ _



N 2[w(t)-z(t)] 2 z2 (t) - [z )]2
- f [x(t-T)z(t)] 2 dT

- l [hi(T)] dT

N i-l l

i=l j=li
rj(T1 ) ri(T2 ) z(t) x(t-T 1 ) x(t-T 2 ) dTldT 2

2

(235)rT zt tT- Z -2 ri(T1) ri(T2) z(t) x(t-T 1) x(t-T 2 ) dTldT 2 - z(t

In a straightforward manner we could derive the expression for f[h!(t)] 2 dT in terms of

second-order crosscorrelations between z(t) and x(t). However, the expression is very

long and will not be presented here.

4.8 EXAMPLE B 1

As an example of the techniques discussed in the previous section we shall optimize

system B 1 of Fig. 24. System B 1 consists of a constant c o and three linear realizable

Fig. 24. System B 1.

MULTIPLIER

systems with impulse responses Ll(t), hl(t), and rl(t). The outputs

tems with impulse responses hl(t) and rl(t) are multiplied together.

the impulse response Ll(t), and the impulse response hl(t) are all to

impulse response rl(t), which is not to be determined, is given as

r
r(t) = /O

of the linear sys -

The constant c o,

be determined. The

O0 t 2

otherwise

The input, x(t), is white and Gaussian. The output of system B is w(t).

The desired output z(t) is the same one used in example A1 and is shown in Fig. 19.

Recall that z(t) is formed by raising y(t) to the 4 t h power, and y(t) is the output of a
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linear system with input x(t) and impulse response g(t) given by

0 < t. 1

g(t) 0 otherwise

To optimize hl(t), we first express hl(t) as

hl(t) = al 1 rl(t) + h 1 (t) (236)

From Eq. 227b, al 1 is given by

2

al, 1 2 z1) xt_1d 2l 1 z(t) r(T) x(t- -z(t) (237)

The averages in Eq. 237 can be evaluated by using the G-functional expansion for z(t)

given by Eq. 213. By evaluating these averages, Eq. 237 becomes

al, 1 3 (238)

To determine hi(t), we form u(t) from Eq. 229.

u(t ) = z(t) - al, 1 rl(s) x(t-s) d (239)

From Eq. 232 we see that hl(T) is given by

hi (T) = [u(t)-u(t)] x(t-T) r 1 (s)-x(t-s) ds (240)

Substituting Eq. 239 in Eq. 240 and evaluating the averages, we obtain

r 6 0 t 1

h (t) = (241)

1<t 2

Notice that h'(t) is orthogonal to rl(t).

From Eqs. 236, 238, and 241 we see that h(t) is given by

9

h(t) =
-3

We have already seen that Ll(t) is given by

Cx(t-T) z(t) T > 0
L T) =T

0 T < 0
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However, z(t) is an even function of x and hence is uncorrelated with x. Thus the

impulse response L 1 (t) should be zero for all time.

We have seen that the optimum value of the constant c is

c o = z(t) - al, 1

In Eq. 212 we saw that the mean of z(t) is 3, and in Eq. 238 we saw that a 1 3. Thus

the optimum value of c o is zero.

We can evaluate the mean-square error as the differences of the mean-square

outputs.

[w(t)-z(t)] 2 = z2(t) - w2(t) (242)

From Eq. 234 and the properties of the G-functionals, we find that w2(t) is given by

w2(t) = [(t)] 2 + [h'(T)]2 dT + a2 1

By evaluating each of these terms, w (t) becomes

2
w (t) = 54 (243)

As shown in section 4. 6, z2(t) is given as

z (t) = 105 (244)

Substituting Eqs. 242 and 243 in Eq. 242, we obtain

[w(t)-z(t)] 2 = 51

The normalized error then becomes

[w(t)-z(t)] 2 51
2 05 = 49.5 per cent

z (t)

Notice that in system B1 we have one more linear subsystem than we have in system

A1 ; and yet because one of its subsystems is fixed, system B 1 has a larger mean-square

error than does system A 1.
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V. CONCLUSIONS

In this report we have developed methods for optimizing general multi-input, single-

output, nonlinear systems and methods for optimizing single-input nonlinear systems

of restricted form. All of the inputs considered are Gaussian random processes. In

all cases, an orthogonal expansion for the output of the nonlinear system has been a very

valuable tool.

Theoretically, an infinite set of higher-order crosscorrelations must be known in

order to optimize a general multi-input nonlinear system. In practice, however, good

results can be obtained by using only a finite number of these higher-order crosscorre-

lations. In either case, an infinite number of linear subsystems is needed to build a

general multi-input nonlinear system. For these reasons, we have treated some single-

input, nonlinear systems of restricted form which can be optimized with a finite amount

of statistical information and can be constructed with a finite number of simple subsys-

tems. These systems of restricted form will produce a better approximation to the

desired output than will the optimum linear system, but a poorer one than a general

nonlinear system will produce.

Other restricted forms of nonlinear systems which can be easily optimized and con-

structed have already been presented by the author (19). Techniques could also be

developed that would allow one to choose the best restricted form to use for a particular

problem.

Because the optimization techniques developed in this report depend very strongly

on the Gaussian nature of the inputs, these techniques are not directly applicable to

problems with non-Gaussian inputs. However, for slightly non-Gaussian inputs (such

as Gaussian processes that have been amplitude-limited), the inputs can be treated as

Gaussian, and a nonlinear system can then be optimized by the methods presented in

this report.
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