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ANTIFERROMAGNETIC RESONANCE IN MANGANOUS
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by DAVID H. DOUGLASS JR. **) and M. W. P. STRANDBERG

Department of Physics and Research Laboratory of Electronics Massachusetts Institute of
Technology Cambridge, Massachusetts, U.S.A.

Synopsis
The molecular fields and linewidths of antiferromagnetic manganous chloride were

measured by magnetic resonance techniques as a function of temperature, frequency,
and orientation. Demagnetization effects were observed. The "10/3 effect" was
observed for the paramagnetic state. An effect similar to this was observed in the
antiferromagnetic state.

1. Introduction. The technique of magnetic resonance has developed
into a powerful means for unraveling the properties of matter. It has been
used, with considerable success, to study and measure some of the properties
of antiferromagnetic materials. In this investigation, it was used to study
crystalline manganous chloride in both the paramagnetic and antiferro-
magnetic states. Murray and Roberts 1)2) have shown by specific heat
and susceptibility measurements that manganous chloride undergoes phase
transitions at 1.96°K and 1.81 K; and Wollan 3), using neutron scattering
found that the transition at 1.96°K was from the paramagnetic state to
the antiferromagnetic state (State I) and the transition at 1.81°K was to
a second antiferromagnetic modification (State II). He also showed that
this second transition was strongly field-dependent. This effect is illustrated
in fig. 1. He was able to explain all of his results by using the two-sublattice
model and the concept of antiferromagnetic domains. The domain structure
of State I with and without a magnetic field is shown in figs. 2 and 3. A
field of approximately 200-1000 gauss was sufficient to convert the crystal
into a single domain. The magnetic fields and frequencies used in these
experiments were such that only State I in the single domain modification
was observed. (See fig. 1).

*) This work was supported in part by the U.S. Army (Signal Corps.), the U.S. Air Force (Office
of Scientific Research, Air Research and Development Command), and the U.S. Navy (Office of
Naval Research).

**) Present address: Massachusetts Institute of Technology, Lincoln Laboratory. Lexington,
Massachusetts.

- 1

I · _I� _I ______ ____�II�



DAVID H. DOUGLASS JR. AND M. W. P. STRANDBERG

The crystal structure is a hexagonal layer structure 4) of the CdC12 class.
The manganous ions are arranged in a hexagonal pattern in a sheet. This
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Fig. 1. Magnetic "phase"
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diagram for manganous
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240°

Fig. 2. Domains in manganous chloride; no magnetic field. State I (1.81 <iT < 1.96IK)

Ho

Ho

Fig. 3. Domains in manganous chloride in the presence of a magnetic field. State I.

sheet is sandwiched between two similar sheets of chlorine ions, and the c-axis
is normal to these sheets. The unit cell is rhombohedral (a = 6.20 A ° ,
a = 34o35') with a manganous ion at (0, 0, 0) and chlorine ions at (u, u, u)
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ANTIFERROMAGNETIC RESONANCE IN MANGANOUS CHLORIDE

and (ii, i, i) with u w 0.25. The single crystals, which are transparent and
pink, are very easily cleaved parallel to the above-mentioned sheets.
Samples can be prepared in the form of thin disks, with the c-axis normal
to the plane of the disk.

2. Theory. Resonance Equations. Since Wollan was able to explain
his data by using the two-sublattice model, the same model is assumed here.
Kittel 5) and Nagamiya 6) have shown that the equations of motion are

il = yM. x Heffi (la)

2= yM2 x Heff (ib)

where Heff and Heft, are defined as

He, = Ho + HA1 + Hrf - AM2 - N(Mix + M 2x) j, - Ny(Ml y +
+ M 2Y) jy- Nz(Miz + M 2z)jz (2a)

He,ff = Ho + HA, + Hrf - AM1 - N(M1X + M 2x) jx -
- Ny(M1Y + M 2Y) jy - Nz(M1Z + M 2 Z) jz. (2b)

The quantity HO is the external field; HA1 and HA, are the anisotropy
fields for sublattices 1 and 2, respectively: Hrf is the rf field; AM represents
the exchange interaction between the two sublattices; and the last three
terms are the corrections that result from demagnetization effects. Until
now, demagnetization effects have never been important experimentally
in antiferromagnetism. This investigation shows that for these experiments
the effects are large and cannot be neglected.

Because solutions of equations 1 depend on the shape of the sample, there
are three cases of experimental interest for a disk-shaped sample; they are
shown in fig. 4. The solutions of the equations are given in appendix A,
and only the results are presented here.

Case I
[(lr/) 2

- 2HEHAI
Ho 2 A-42 (3)

1 - 4 Z
Case II

Ho [(o/r)2 - 2HEHA (4)

Case III
H o J I(o/y) (2HEHA)Il, T < TN (5)

where o is the angular frequency of the rf field, X is the appropriate sus-
ceptibility, and HE is equal to AlMi, 21. Note that equations 3 and 4 are also
descriptions of the paramagnetic state when 2HEHA is equal to zero.

Paramagnetic linewidth. Van Vleck 7) has considered a special
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DAVID H. DOUGLASS JR. AND M. W. P. STRANDBERG

case of paramagnetic linewidths in crystals by the method of moments.
In general this method breaks the Hamiltonian into three parts, X*o +
JA' + Ja"; where X'0 is the sum of the single-spin (Zeeman, crystalline
field, and so forth) operators, the two spin (dipole-dipole, exchange)
operators which commute with the single-spin operators, and the transition-
inducing operator S. #' and XV" are, in the eigen-representation of XF0,
the parts of the Hamiltonian which do and do not commute with the single
spin operators and which do not commute with S. The effect of A' is to
broaden the sharp lines that would occur if there were no interactions;
XV" produces weak satellite lines by mixing the single-spin eigen-states.
These satellite lines contribute to the mean square absorption frequency,
but not to the individual linewidths when these satellites are resolved and
hence are usually of no experimental interest. To eliminate their contribution
in the theoretical calculation of the moments of resonant absorption lineshape
a truncated Hamiltonian XP = o0 + Y' and a suitably truncated spin
operator Sx must be used. It is obvious that the form of Jyeo will determine
how the interaction Hamiltonian will separate into its two parts, and hence
will determine the value of the linewidth.

CASE I CASE II CASE m

X,C-AXIS Y,C-AXIS ,C-AXIS
/X 

Y H

H Mp = Ho

Fig. 4. The three spacial orientations of interest in manganous chloride.

Van Vleck considered the case of a Zeeman spin system in an external
field under the influence of exchange and dipolar interactions. His calcu-
lations give a linewidth that is independent of exchange. It is not clear,
however, that this Hamiltonian will describe the MnC12 system because
an electrostatic interaction probably exists. Ishiguro 8) has added an
electrostatic interaction (zero-field splitting) under the conditions that it is
larger than the dipolar and exchange interactions. In this case, the truncation
is carried out differently, and the linewidth is found to depend upon the
exchange term. This case does not apply to MnC12 either, because here the
electrostatic interaction is smaller than the dipolar and the exchange in-
teractions. Murray and Robert s estimate the electric interaction at
0.06 cm-1 while the dipolar and exchange energies are 0.2 cm-l and 0.6 cm- 1.

Because the electrostatic interaction is small, the Van Vleck-truncated
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ANTIFERROMAGNETIC RESONANCE IN MANGANOUS CHLORIDE 5

Hamiltonian is used here as the best approximation for the case where the
Zeeman energy is greater than the exchange energy. This case can be
suitable modified when this condition does not hold.

Since the exchange energy is large compared to both the dipolar and
electric field energies, exchange narrowing effects must be considered.

Anderson and Weiss 9) have considered the Van Vleck case (simple
dipolar interaction) under the condition that the operating frequency could
be larger than the exchange frequency. They sh6wed that if o > ye, then
the halfwidth is

h 2 <Ava2>
Av =-- <vK> =d> (6)

where Jvd is the halfwidth obtained by Van Vleck, J is the exchange
integral, o is the rf frequency, and IJl/h = e. However, if o < ve, then

Jv = 10 h 10 <= 1 V 2> (7)
3 j <AJV 3

Equations 6 and 7 predict a variation in dipolar halfwidth with rf frequency
by a factor of 10/3; Anderson and Weiss call this the "10/3 effect".

Kubo and Tomita 10) and Yokota 11) have considered the same
problem. They started from a more fundamental point of view, worked
the problem out in more detail, and obtained the full frequency dependence.
For the simple case of spin ½ and "good symmetry", they get for the halfwidth

A = 2> [1 + e-(volv) 2 + e-2(vo/ v)] (8)
Ve

It can be seen that equation 8 reduces to equations 7 and 6 in the corre-
sponding limits. A variation of linewidth with frequency has been observed
in aqueous copper potassium chloride 12) (CuK 2C14 . 2H 20) and in diphenyl
picryl hydrazyl 13). In both cases, this is attributed to the 10/3 effect. Since
for MnCl2 the zero field splitting is probably small compared to the dipolar
energy, we feel thar these calculations are relevant to our case, and we will
use eq. 8 to discuss the frequency dependence of the paramagnetic linewidth.

As for the explicit temperature dependence of the paramagnetic linewidth,
we note that Pryce and Stevens 14) have considered the temperature
dependence of the halfwidth and they have shown that the explicit temper-
ature dependence arises from an exponential operator arising from the
Boltzmann distribution of the diagonal elements of that density matrix.

The first temperature dependent term in the expansion of the exponential
weighting factor for the second moment is of the form

<1 lWjl 2> <2 Ws 3> <3 IWo 1> 9
kT
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where W is the appropriate term in the Hamiltonian. Therefore, the temper-
ature dependence of the linewidth should have the asymptotic form

<Av2>i 1 + eA T (10)

where A is a constant that depends on the matrix elements in eq. 9.
The value of A depends on the nature of the Hamiltonian and how it is

truncated. It would thus appear that the truncation is independent of
temperature in the paramagnetic state, and for that reason the "10/3 effect"
can be factored from the temperature effects. Note well that the 10/3
factor depends upon the form of F' and X", that is, on the dipolar energy
and crystalline zero field splitting. This factor should change, therefore,
depending on the relative magnitudes of the crystalline and dipolar terms.
Since our results also indicate that the crystalline zero field splitting is
smaller than the dipolar term, Eq. 8 will be used to describe the effect
of frequency on the linewidth. Because exchange is the largest term in
the Hamiltonian, one would expect that A J/k ' TN.

More precisely, we find that the leading term in the temperature dependence
of the rms linewidth should be TN/2T or in units of TN/T. This calcu-
lation can have little relevance to the present case, however, since the ob-
served rms linewidth has a variable slope versus TN/T. At large TN/T,
where the leading term should be adequate, the variation is greater than
I. At smaller TN/T, the slope approaches TN/T, although here the leading
term should become inadequate. Quite possibly, the trouble here is due
to the implicit temperature dependence of the terms which give rise to the
explicitly temperature dependent terms, such as the crystalline splitting.
Ignorance of implicit temperature dependence (or whatever the cause of the
inadequacy of the theory is) has prompted us to forego further theoretical
development here (however, we are continuing these investigations), and
to gratefully accept and indicate the qualitative agreement only.

With the above reservations in mind, the complete expression we will
use for the paramagnetic linewidth in MnC12 is

<Avd>2

v = [ 1 [ e-I-(volve)' s e-2(v/olv,)] [eAIT] (11)

Antiferromagnetic linewidth. Nethercot and Johnson 15)

present a result that was obtained by Townes for the halfwidth in an
antiferromagnetic material. It is derived by relating fluctuations in the
molecular fields to the spread in resonant fields. The result is

2vA(0)
Av = v---- [Bs-l(T/TN) - Bs(T/TN)] (12)

where VA(O) is the frequency corresponding to the value of the anisotropy
field at T = O, BS(T/TN) is the modified Brillouin function of spin S (in
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ANTIFERROMAGNETIC RESONANCE IN MANGANOUS CHLORIDE

this case S 5), and n is the equivalent number of nearest neighbors of
spin 2 (i.e., 6 neighbors of spin are equivalent to 30 neighbors of spin ½).

N ether c o t and J ohn son found that for MnF 2, equation 12 gave results
that were too small by a factor of 5. In the derivation of equation 12.
exchange narrowing was assumed. (This assumption should be checked
theoretically). If exchange narrowing can be assumed, then the "o effect"
should be included for consistency, and as a result, the complete expression
for the halfwidth would be

Av = 2 A() [Bs-(TTN) - Bs(T/TN)] [1 + e- 'i(vo!ve)2 + 5 e-2(olv)2] (13)
n

For the frequencies used in the MnF 2 experiments, this expression would
give a factor of 10/3 greater than that given by equation 12. Nethercot and
Johnson have interpreted equation 12 as the full linewidth; this puts
them in error by a factor of 2. This factor of 2 when combined with the factor
of 10/3 just about accounts for the above-mentioned factor of 5. Similarly,
they apply equation 12 to the results on aqueous copper chloride 16),

(CuC12 .2H 2 0), and find the calculation too small by approximately a factor
of 8. Here again the frequencies are such that the 10/3 effect would apply;
this effect when combined with the factor of 2 fairly well accounts for the
factor 8. In this case, the question of whether or not the frequency de-
pendence can be separated from the temperature dependence is pertinent.

3. Results. a. Resonant Field vs. Temperature and Frequency.
Measurements were made at 9.0 kmc and 35.0 kmc as a function of temper-
ature and orientation. The values of the resonant field for the two frequencies
are shown in figs. 5 and 6. The experimental setup is described in appendix B.

For temperatures greater than approximately 7°K, the system is entirely
paramagnetic, and the molecular field quantity 2HEHA is zero. By substi-
tuting the appropriate values of x(T) into equations 3 and 4, it is found that
there is perfect agreement between the experimental and the calculated
values.

However, at lower temperatures, the molecular field quantity 2HEHA is
not zero and, therefore, must be considered. It is necessary to know the
susceptibility as a function of field as well as temperature in order to
measure this quantity. Unfortunately, Murray and Roberts measure it
only to values of 2600 gauss, whereas some of our data points were as high
as 15,000 gauss. However, it was possible to use data that did not exceed
4000 gauss by selecting certain portions of the experimental curves. The
low field values of the susceptibility were then used to calculate the quantity
2HEHA as a function of temperature. Thus curve is shown in fig. 7. As a
check, the values of 2HEHA thus obtained were substituted back into the
equations along with the low field susceptibilities, and the resonant field

I _ _�__�_1�1� ___� __�_�_�__ ___II_ ��
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DAVID H. DOUGLASS JR. AND M. W. P. STRANDBERG

was calculated. These calculated values are shown in figs. 5 and 6 by a solid
line. Agreement is rather poor at high values of HIT. This is not surprising,
for in the derivation of the resonance equations, we assume that M=X(T)H.
This certainly cannot be true for arbitrarily large H or small T.

O..

3

I

0

1 2 3 4 5 6 78910
TEMPERATURE (OK)

20 30 40 50

Fig. 5. Reduced resonant field vs. temperature at 9.0 kmc.
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I
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1 2 3 4 5 6 78910
TEMPERATURE (K)

20 30 40 50

Fig. 6. Reduced resonant field vs. temperature at 35.0 kmc.

Because of the nature of the domain orientation with respect to magnetic
field (see fig. 3), orientation of the sample, in such a way that the spin
direction would be parallel to the magnetic field, would seem to be impossible.
(Case III in fig. 4.) However, the solutions for the resonant field for the two
possible orientations where Ho is perpendicular to the spins can become
imaginary. This situation occurs at 9.0 kmc and at the lowest temperatures;
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ANTIFERROMAGNETIC RESONANCE IN MANGANOUS CHLORIDE

however, a weak resonance was observed (Fig. 5). The interpretation is that
most of the domains are perpendicular to the external field, but that a few
are parallel. When the resonance due to the perpendicular domains becomes
imaginary, the resonance from the parallel ones dominates. Since this occurs
only at the lowest temperatures, it was necessary to solve the equations for
this orientation only in the limit T < TN.

0.2
XW

4Iw
I
Nr

1.0 2.0 3.0 4.0

TEMPERATURE (k)

Fig. 7. (2HvHA)t vs. temperature.

Examination of the plot of (2HEHA)i versus temperature in fig. 7 shows
that the molecular fields have large values well above the transition temper-
atures. Perhaps this can be explained by or connected to the fact that there
is considerable short-range order in the system above the Noel temperature.
Just above the Nel temperature, the spin entropy has attained only 70 per
cent of its maximum value, and at 4.20 K it has attained only 90 per cent.
An extrapolation to T= 0 gives (2HEHA)t equal to approximately 13
kilogauss. A value for HA of 5 kilogauss is obtained by using HE = 17
kilogauss.

For Case II in fig. 4, the resonance was observed as a function of rotation
about the C-axis. There was a slight variation with angle that showed a 60 °

periodicity, which is the variation that would be expected on the basis of
the domain structure given in figs 2 and 3.

Because the samples could be prepared in the form of thin platelets,
the spin wave resonances were looked for, but without success. Theoretical
calculations 17) show, however, than the separation of the spin wave
resonances was much less than the linewidth under the experimental
conditions used.

b. Linewidths. Experimentally, the halfwidth was taken to be the
difference between the field at the higher inflection point and the field at

�
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10 DAVID H. DOUGLASS JR. AND M. W. P. STRANDBERG

the maximum of the absorption versus field curve. Also, because the field,
rather than frequency, was swept, the usual correction factor av/lH was
applied to the experimental values.

The corrected values of the halfwidth are shown in figs. 8 and 9. There was
no consistent orientation dependence. The field quantities Avd and ve have
been determined 9) to be 4.9 kmc and 45 kmc, respectively. These values
would make the frequency factor in eq. 11 equal to 10/3 for vo = 9.0 kmc
and equal to 2.0 for vo = 35.0 kmc.

.
E
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I

I
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a
-J

0

Er
C:
08

1 2 3 4 5 10 30 100 300
TEMPERATURE (K)

Fig. 8. Halfwidth vs. temperature at 9.0 kmc.
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lr

1 2 3 4 5 10 30 100 300

TEMPERATURE (K)

Fig. 9. Halfwidth vs. temperature at 35.0 kmc.

Examine first the linewidths in the paramagnetic region. It is seen that
the temperature dependence can apparently be fitted with a curve of the
form of eq. 10, and that the line is narrower at the higher frequency in
agreement with the 10/3 effect. A quantitative comparison shows that the
ratio of the experimental linewidths is approximately 2 and is almost
independent of temperature, whereas the ratio predicted by eq. 11 is
approximately 1.6. Note that A is approximately equal to TN, as expected.
Experimentally, the values for the coefficient of the temperature varying
factor (see figs. 8 and 9) are 2.0 kmc and 1.0 kmc for vo equal to 9.0 kmc and
35.0 kmc, respectively. These values should be compared with the values
1.7 kmc and 1.0 kmc given by eq. 11.



ANTIFERROMAGNETIC RESONANCE IN MANGANOUS CHLORIDE

In the antiferromagnetic region, eq. 13 fits the data very well for 35.0 kmc
by using vA(O) = 14 kmc and n equal to 5 x 6 = 30. The agreement for
v = 9.0 kmc is not as good. At this frequency, however, the experimental
linewidths near T = 2°K are very large, and av/OH is nearly to zero, with
the result that their product is uncertain. (The linewidths in the region

TEMPERATURE (K)

14 1.6 18 1.96 2.5 3.0 40 50 10.0 a)

REDUCED TEMPERATURE (--T. OR )
T )

Fig. 10. Halfwidth vs. temperature at 9.0 kmc.

TEMPERATURE (K)
4.4 4.6 1.8 4.96 2.5 3.0 4.0 5.0 40.0 Co

0.6 0.8 4.0 0.8 06 0.4 0.2

REDUCED TEMPERATURE ( TOR T)

Fig. 11. Halfwidth vs. Temperature at 35.0 kmc.

1.7-2.5°K could not be determined). It is certain, however, that there is a
definite variation in halfwidths with frequency.

We would like to propose the following method of displaying linewidth
data as a function of temperature as being more useful than the conventional
method. In figs. 10 and 11, the logarithm of the linewidth is plotted versus
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DAVID H. DOUGLASS JR. AND M. W. P. STRANDBERG

TITN or TN/T, depending on whether T is above or below TN. (Figs. 10
and 11). This representation has the following advantages: an exponential
variation of the linewidth as T approaches TN is displayed as a straight
line; the region near the transition temperature is expanded; and temper-
atures from zero to infinity can be plotted on a finite sheet of paper.

From figs. 8 and 9, we can see that on a conventional plot, an exponential
variation of linewidth with temperature above TN appears to fit quite well.
However, when the same data are plotted in the proposed way (Figs. 10
and 11), it is seen that an exponential does not fit the data very well.
Perhaps one reason is that over this temperature range, the implicit temper-
ature dependence of various parameters (exchange integral, electrostatic
interaction, and so on) may be important. It is also noticed that the
Townes' expression for the antiferromagnetic halfwidth can be approximated
by an exponential over a good part of its range.

4. Summary of experimental results. This work reports on the magnetic
resonance investigation of antiferromagnetic manganous chloride at 9.0
kmc and 35.0 kmc as a function of temperature and orientation. Demagneti-
zation effects were found to be important. A value of 13.000 gauss was found
for (2HEHA)i at T = 0, and therefore HA(O) has a value of 5000 gauss.

The effect of line narrowing when the rf frequency was increased was
observed at all temperatures in both the antiferromagnetic state and the
paramagnetic state. In the paramagnetic state at high temperatures this
is called the 10/3 effect. The temperature dependence of the paramagnetic
linewidth was found to vary qualitatively as elT. In the antiferromagnetic
state, the expression by Townes seems adequate.

APPENDIX A.

Solutions of the equation of motion. Because equations la and lb are
nonlinear, the method of small oscillations is applied to linearize them. This
is done by letting M - Mlo + 6M 1 and M 2 -> M 20 + M 2, where M 1o
and M 20 are the values of M1 and M 2 in the absence of Hrf. The quantities
6M 1 and 6M 2 are assumed to have time dependence ei"", where co is the
angular frequency of the rf field. The term containing Hrf is now dropped
as being small in magnitude compared with the other terms. The equations,
when expanded, will become linear.

Case I: HAIIZ, Hol[X, N, = 4, N = N = 0.

For this case, equations la and b can be represented by a single matrix
equation:

__ _�
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ANTIFERROMAGNETIC RESONANCE IN MANGANOUS CHLORIDE 13

0 HA--AM20o AMlo AM2o --AM lo'
Y

0 - AM20o -HA-AM10Z -AM 2 0V AMo10V

-HA+AM2o0 - i HO-AM20o
- (A+N)Mloz O AMloZ

-NMlo Y -N(Mlo + M20o)

HA +AMloZ --i Ho --AMloZ
-(A+N)M2oz 0 AM 20o

-NM 2oZ -N(Mlo
x
+ MsoZ)

-Ho +AMo - iox
-AM20oY+NMlo

y
(A + N)MloY -AM loz 0

+ N(Mlo + Mso2) Y

--Ho +AMloZ --i
(A+N)M 2o

y
NM20o-AMoY -AM 2 H0Z

0
+ N(MoX + Mox) Y

6M 1z

6M 2
x

SMlY

dM1

6M2z
I52

=0 A-l)

As is well known, the only way for the eigenvector

E cM 1 1
6M 2

to have nonzero values is for the determinant of the matrix to be equal to
zero. This, in general, will lead to a polynomial in co of degree 6. The six roots
of this polynomial will be the eigenfrequencies of the system. For this case,

MloY = M2 0 = O, M 0lo
x = M 2 0x, M 0loz = -M 2 .

Also, the following definitions are used:

,Mo z = -HE and M1 0x =- 2

By expanding the determinant and collecting terms, we find that

(ol/y)2 = (1 - 4nX)2 H 0
2 + 2HEHA + HA2 (A-2)

(Co/y) 2 = (1 - ( + 4) X)2 Ho2 + 2HEHA + HA2 + (8n/A) HEHA (A-3)

(Co/y) = 0. (A-4)

Solving these equations for Ho gives

[((o/y) 2 - 2HEHA - HA2 ] A5)
Ho = -t (A-5)

1 - 4 Z

HO= [(Co/y)2 - 2HEHA - HA 2 - (8n/)A) HEHA] (A-6)

1 - (A + 4)X

Kittel 18) has shown that ~ (l/X), where X1 is the susceptibility
perpendicular to HA; so solution of equation A-6 occurs at high fields and
can be dropped. Thus the only solution of interest is the positive root of
equation A-5. If the usual assumption that HE is greater than HA is made,
then:

H O w [(o/Y)2 - 2HEHA] (A-7)
Ho ~ (A-7)

·_ I�_ � __ C · ·lll�·lp---········--·
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DAVID H. DOUGLASS JR. AND M. W. P. STRANDBERG

Case II: HolIX, HAIIZ, Ny = 4, NX = N = 0.
As in Case I, the following polynomial in co is obtained.

0

--io

Y

HA - AM20Z

+4nMloZ
(A + 4n)MloZ

(A + 4n)M2oZ 4rM2oZ - AMloZ - HA

0

0

-HA + AM 20Z -AMloZ

-AM20o HA + AM 1lo

0 0

--i0

0

- 4nMoZ

-Ho + MaoZ

0

--i

Y

-(A + 4n)MloZ

Ho - AM 2 0o AM lox

AM2 0 Ho - AM1 oZ

YV
0

0 -(A + 4)M20o -Ho + AMlo - 4nMaoz

Now make the substitutions Mloz = -- iM 20Z = HE, Mo0 = M 20X =
- (XHo/2), and iA (1/XI). Solution of equation A-8 gives.

(c/y)2 = (1 + 4) Ho2 + 2(1 + 4 ) HEHA + HA2 ,

(o/y)2 = 2HEHA + HA2 ,

(ov/y) 2 = 0.

(A-9)

(A-10)

(A-l1)

It is noticed that equation A-9 is the only one that contains Ho. Solving
it for Ho gives

((/y)2 _ 2( 1 + 4 'X) HEHA - HA2 Ho = 1 + 4 X (A-12)

If 4nX in the numerator is dropped because it is small compared with 1, and
HE is assumed to be greater than HA, then

H 0o [(/y)2 - 2HEHA 1
+ 4 nx

(A-13)

Case III:
H o I[HAII Z, N = Nz = O, Ny = 4. Also MloY= M 20o= Mlo1 = M 20 X= 0.

The polynomial in c is
Ho + HA

--AM20Z + 4MloZ

(A + 4)M2zo

(A + 4n)Mloz 0 0

Ho - -HA

--AMlo + 4M2oz
0 0

--Ho - HA + AM20z

-AM.o

0

-AMloz

-Ho + HA + AMlo

0

-Ow

O-i

0

0

0

-Ow

y

0

0 0

o o

0 0

io

0

14

--ico

Y

0

0

0

0

= (A-8)

0
-iow

Y

Y
0

0
--io

= o (A-14)
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Now make the substitutions

(M0oZ - M20Z) = 2HE and M 10z + M20Z = XHo.

This particular case is of interest only when T < TN. Under this condition,
X approaches zero. The solutions of equation A-14 are then

(o/y)2 = [Ho + (2HEHA)i]2 ,

((y)2= [Ho - (2HEHA)l)2 ,

(o)/y)2 = 0.

Solving these equations for positive Ho gives

H0 = I(o/yr)± (2HEHA)kI

(A-15)

(A-16)

(A-17)

(A-18)

The solution observed experimentally was the one with the negative sign.
The intensities of antiferromagnetic resonance lines were shown by

Kittel to be comparable to paramagnetic intensities.

APPENDIX B.

Experimental methods. Magnetic Resonance Spectrometer.Be-
cause the apparatus used in these experiments is similar to that described
by others 19)20), only a brief description is given here. The system is shown
schematically in fig. B-1. The sample is placed in a rectangular TEoll mode

Fig. B-1. Schematic of magnetic resonance spectrometer.

cavity in a region of rf magnetic field that is perpendicular to the external
field. The frequency of the klystron is locked by a feedback circuit to the
frequency of the cavity to eliminate mixing of the real and imaginary parts
of the rf susceptibility.
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The resonance is sinusoidally modulated at an audio frequency (50 cycles)
and is phase-sensitively detected at the modulation frequency. This type
of modulation and detection produces at the output a signal that is propor-
tional to the derivative of the imaginary part of the rf susceptibility. The
signal is plotted on a recording ammeter as the static field is slowly swept.

Crystal Growing. The method of growing anhydrous single crystals
of manganous chloride was similar to that described.by Murray 2). Chemi-
cally pure hydrated manganous chloride (MnCl2 .4H 20) was heated in a
flowing atmosphere of dry hydrogen chloride gas until the water was driven
off. The temperature was then raised above the melting point of the anhy-
drous compound. The crucible containing the molten compound was then
very slowly withdrawn from the heating zone (30 hours). Very good single
crystals, of the order of 1 cm3 in size, were obtained. These crystals, being
very hydroscopic, were kept in a desiccator. The crystals were cleaved into
thin platelets from which disks were cut. The crystal structure was checked
with a Laue X-ray photograph of the single crystal and also by means of an
X-ray analysis of a polycrystalline sample.

Low-Temperature Techniques. A conventional double-dewar system
was used, with liquid nitrogen in the outer dewar and liquid helium in the
inner dewar. Temperatures in the helium range were measured both by
a carbon resistance thermometer 21) and a vapor pressure thermometer.
Above 4.2°K, the resistance thermometer was used exclusively. Tempera-
tures below 4.2°K were controlled in the usual way by regulating the vapor
pressure of the liquid helium by means of a vacuum pump.

For temperatures above 4.2°K, a method described by Ro s e-I n n e s 22) was
used. It consists of filling the excess space in the bottom of the inner dewar
with activated charcoal. Liquid helium is transferred directly into the inner
dewar and a normal run is performed. After the liquid helium is gone, the
charcoal will have absorbed large quantities of helium gas. The heat of
absorption is very high (200-400 cal/gm of helium). This effectively increases
the heat capacity of the system, with the result that it will warm up very
slowly. The warming-up process can be slowed down, stopped, or reversed
by controlling the-pumping speed. Data points for temperatures up to 40°K
were obtained in this way. It was found that with 15 grams of charcoal, the
temperature could be held for as long as 30 minutes at a particular operating
point with a total heat leak of approximately 30 milliwatts or more.

Data points at T = 48°K were obtained by filling the inner dewar with
liquid nitrogen and controlling the vapor pressure with a vacuum pump.

Received 10-8-60
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