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ABSTRACT

This study analyses the information and material flow through a component manufacturing and
turbine engine assembly system. The intent of this work was to understand the inefficiencies associated with
the current system, and to propose solutions which would prove valuable to the entire value chain, not only to
one manufacturing site. This work was accomplished by identifying a significant problem in the system,
developing a model to replicate historical behaviot, then developing solutions to improve material and
information flow.

The shipment rate of engines from the assembly facility was found to follow a “hockey stick” pattetn
throughout each production quarter (a three-month cycle), meaning that shipments increased exponentially
toward the end of each quarter. Shipments were traced back through the component manufacturing facilities,
and the exponential increase of component shipments was shown to follow that of assembly shipments.
Interviews were primarily used to éstablish critical variables in the system, and a system dynamics modeling
technique was used to generate a model that mirrored historical shipment data. The model was then
manipulated to test the sensitivity of specific production variables, and suggestions were made to improve
matertal and information flow.

Finally, 2 component kit plan was developed that added value to the assembly facility by delivering
gear products by order number rather than-as separate components. Also, the component production facilities
benefit by shortening the existing information feedback loop between component manufacturing and assembly
and allowing more level production with less variability amplification from the bullwhip effect. Demand Flow
Technology is introduced as a means to then affect the entire supply chain, including supporting functions not
directly related to manufacturing.
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Chapter 1 Introduction

“An information-feedback system exists whenever the
environment leads to a decision that results in action which
affects the environment and thereby influences future

decisions.”

- Jay W. Forrester

1.1 Problem Motivation

This project began as a local optimization of a gear production facility manufacturing
process within the framework of a larger engine assembly facility with multiple component
production centers and a central assembly center. It was determined that a local
optimization would contribute to certain operational improvements within the gear center,
and could have some effect on upstream and downstream activities, but the improvements
would remain limited in effectiveness due to the gear center’s integration with a final engine
assembly schedule. Therefore, the scope of the problem was broadened to incorporate the
entire supply chain, from procurement of raw materials and externally manufactured
components through assembly and delivery to the customer. The specific issues centered on
component production and engine assembly rates (contributing directly to delivery
performance), and invenfory levels throughout the chain. Delays in information and
material flow between component centers led to a bullwhip’ efféct, which amplified
production schedule Idisruption and inventory levels, and severely limited the gear facility’s
ability to smooth production rates and maintain delivery petformance without continuous
expediting. The problem presented in this work involves a specific manufacturing
environment, but has been developed generically to apply to many manufacturing situations
which manufacture and procure components, and assembly those components into final

products according to a forecasted schedule.
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1.2 Introduction

The turbine engine facility represented by this study designs and manufactures
auxiliary power units (for commercial and regional aitlines, and business/military aircraft)
and turbofan, turboshaft and turboprop propulsion engines (for business aviation, regional
airlines, military aircraft and marine and industrial markets). Turbofan engines support
applications in the 3500-5000 lb. thrust range in business aviation and 7000 lb. thrust range
in regional jet applications. Auxiliary power units support applications from corporate jet '
through the commercial aitliner range. Also, the company provides maintenance service and
repair parts through a worldwide service and support network.

At the engine facility, 2 main assembly facility receives both purchased and internally
manufactured parts, and maintains sole responsibility for engine assembly and shipment, and
kit and spare part order consolidation and shipment. Aside from externally purchased patts,
three component manufacturing ceﬁters on the campus support the assembly facility with
manufactured parts and subassemblies. Manufactured products from these three facilities
include gears and shafts, subassembly housings and machined casings, compressor and
turbine rotating groups, and a variety of static sheet metal components.

This thesis seeks to understand the information and material flow through a single;
on-campus component manufacturing center, the Case & Gear Center of Excellence (COE).
This facility was formetly known as the Gear Production Center, a cost center that
manufactured only gears and shafts. However, after the adoption of Centers of Excellence
(taken from the General Electric business model) and the integration of the Caseline
(subassembly housings and machined casings), a new name and organization was adopted as
a first step toward providing complete, integrated gear dtives, and assuming autonomous
profit and loss responsibility.

The critical issues discussed are the detrimental effects of time delays associated with
current information and material flow between component production and engine assembly.
These delays contribute to production schedule disruption, expediting and delivery
performance, and increase in amplitude as the system steps further back in the value chain.
This is known as the bullwhip effect. As pointed out by Lee, Padmanaghan and Whang
(1997), the term “bullwhip effect” was coined by executives of Proctor and Gamble (P&G).
It was noted that although consumer demand for diapers was fairly constant over time,

orders from retailers were quite variable. Also, larger variations in order quantities were
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observed in the orders P&G received from their wholesalers. This increasing variability was
called the bullwhip effect.

Also, component completion and engine shipment rates which exponentially
increase during each revenue quarter will be studied. This is the hockey stick effect, where
activity increases exponentially to meet a production quota in a prescribed time limit. In this
case the limit was one (three month) production quarter. Executives at Compaq Computer
Corporation spoke of this topic, noting that most of their quarterly business was shipped in
the last month of 2 production quarter. In that last month, most shipments went out the last
week. Finally, in that last week most orders shipped the last day. This exponential increase
describes the hockey stick effect. | |

It is hoped that by developing a mathematically based model that can replicate the
current component and assembly behavior, this thesis can quantify the extent to which
production schedules are disrupted, orders are expedited, and delivery performance suffers.

Chapter 2 attempts to provide a foundation for building system dynamics models as
a way to solve specific management issues related to the bullwhip effect. Jay Forrester’s
work in Industrial Dynamics serves as a foundation to explain this bullwhip effect and the
resulting hockey stick phenomenon that occurs as a target completion time approaches.

Chapter 3 then develops a model of the production and assembly system to explain
why inventory, production rates and shipment rates vary during the course of a production
quarter. Results are show which first mirror historical dat# obtained on site, then the model
is used to present options for correcting noted inefficiencies.

Chapter 4 presents one possible solution to minimize the material and information
flow delays. A kit plan is developed that de-couples component manufacturing from the
assembly production schedule, allowing smoother (more level) component production and
more proacﬁve (versus reactive) adjustments to the schedule to project 2 net reduction in
inventory and maintain or improve delivery performance.

Chapter 5 introduces Demand Flow Technology, developed by the John Costanza
Institute of Technology (JcIT), which integrates the issues desctibed above into an efficient
production system. While names like Just-in-Time, CONWIP, Lean Manufacturing, Kanban
and Demand Flow all represent the same tyée of manﬁfacmting environment, subtle
differences will be noted between each. Additionally, their advantages over a traditional

MRP-type system are also presented.
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Chapter 6 will conclude the work by integrating model building, manufacturing
model development (with inherent material and information flow delays), and a kit plan as a

first step in controlling the entire gear value chain within the larger engine assembly system.



Chapter 2 Model Building

2.1 Model Introduction

In a simple system involving information and/or material flow, one can easily
determine the outcome of a particular action based on common knowledge and basic
fundamentals. Even parties unfamiliar with the system can determine likely outcomes in a
basic cause and effect relationship. A simple example is the effect of birth and death rates
on total population of a given area.

As the birth rate of an area increases, represented as births/time, the total population
increases at the birth rate times a given amount of time. The cause and effect are simple —
more births equal more population. As population increases, the percentage of people able
to have children increases as well, increasing the birth rate. Conversely, as one variable
decreases, an accompanying decrease is noted in the other. In this case, since a change in
one variable contributes to a similar change in the other, the two are considered positively
linked forming a reinforcing causal loop (see Figure 2.1-1). (Note: the “+” symbol denotes

a similar relationship — increase to increase, or decrease to decrease.)

Birth Ratf @ "Population

Figure 2.1-1 Birth Rate Loop: A reinforcing causal loop which shows that as either
variable increases, a corresponding increase is noted in the other (a + sign signifies a

change in the same direction — increase t increase, decrease to decrease).

Population and death rate are also linked, but negatively as shown in Figure 2.1-2.
As the death rate increases (more people die in a given amount of time), the population sees
a corresponding decrease. Then, as the population decreases, the percentage of people who
can die decreases, resulting in a decreased death rate. A change in one variable causes an |

opposite change in the other. They are negatively linked forming a balancing causal loop,
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where a change in one variable produces the opposite change in the other. Here, the

sign denotes an opposite relationship — increase to decrease, or decrease to increase.

Population @ Death Rate
\/

Figure 2.1-2 Death Rate Loop: A balancing causal loop which shows that as
population increases the death rate increases, but as the death rate increases,
population shows a corresponding decrease (a — sign signifies a change in the

opposite direction: increase to decrease, decrease to increase).

When combined (see Figure 2.1-3), the birth rate and death rate both affect |
population simultaneously. Simple mathematics shows a net increase or decrease in
population as birth or death rates outpace one another. Note, however, that the system is
dynamic. Fluctuations in birth and death rates simultaneously produce changes in
population, and a race between the two loops results in either a population increase or

decrease over time.

Death Rate
v \/

Figure 2.1-3 Combined Birth-Death Loops: The reinforcing and balancing loops

have opposite effects on population. Their combined effect is a net increase or

decrease in the population, depénding on the rate of bitths or deaths.

Although simplistic, this concept will be examined further as it relates to the

introduction of material onto the shop floor and the exit of finished goods from the facility.
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The balance between release rates and completion rates is considered work-in-process, or
the “population” of material at any one time in the system.

As shown, a simple, first order system is easily determined. However, as additional
variables are added to a system the results become much harder, if not impossible, to
determine accurately. In the population model above, a myriad of other factors also
influence population. Immigration rates, weather, food supply, disease, and medical
treatment are only a few factors that are included in a2 more complete model. As factors are
added, the ability to simply balance rates of increase or decrease become increasingly

complex, and requires the aid of 2 model.

2.2 A Manufacturing Model

In a manufacturing environment, the factors affecting the “population,” or inventory
of a system are easily identifiable. The introduction of raw material, the completion rate,
machine reliability, process time, supplier and process quality, and many other human factors
contribute to the level of inventory. However, these factors are constantly changing — even
by the minute — making a real time evaluation of inventory almost impossible. Again, a

~mathematical model can serve to aid in evaluating the performance of a system.

A note about data is required before beginning a discussion of modeling. The use of
computers in 2 manufacturing environment has contributed to incredible advances in
process efficiency and information and matetial flow. Automated production equipment has
significantly increased the quality level of many manufactured components by eliminating
countless sources of human error. These machines are also able to collect data many times
per second, allowing continuous process feedback. Information systems provided up to the
minute status of inventory that is readily available to all parties involved. These benefits
come at a cost, however. 7

The sheer amount of data that can be collected has made analysis, in some cases, a
nightmare. Aithéugh all parties involved in the system have access to the same data, the
enormity can be overwhelming and analysis can be incomplete or even wrong. Computer

systems that cannot communicate contribute to inaccuracies, and knowledge (or lack

thereof) of statistical methods to synthesizing results contribute to flawed conclusions.
The point of noting the above costs and benefits is to further develop the need for a

model. By using the collected data, yet making certain simplifying assumptions, one can
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replicate the performance of certain system characteristics to determine conclusions.
Forrester (1961) notes, “The key to success (in modeling) will lie 1n clear questions which are
broad enough to encompass matters of major consequence but which initially limit a system
to proportions that fit the skill, time, and experience of the investigator” (p. 450). Modeling
provides a systematic approach to simplifying the problem solving process by collecting only
the data needed, and then using that data to come to a concrete conclusion not about the

entire systemn, but about a specific issue or problem.

2.3 Industrial Dynamics

Jay Forrester, cutrently the Germechausen Professor Emeritus of Management at the
Massachusetts Institute of Technology in Cambridge, Massachusetts, first studied these
positive and negative effects as they related to industrial management in his work, Industrial
Dynamics. The principles contained in this section will form a foundation upon which a
model applicable to a specific manufacturing environment will be developed. In general,
Professor Forrester provided a framework for studying information and material feedback

systems, and the complex interrelationships between vatiable in such a system. He states

(1961):

Information-feedback systems, whether they be mechanical,
biological, or social, owe their behavior to three
characteristics — structure, delays, and amplification. The
structure of a system tells how the parts are related to one
another. Delays always exist in the availability of information,
in making decisions based on the information, and in taking
action on the decisions. Amplification usually exists
throughout such systems, especially in the decision policies of
our industrial and social systems. Amplification is manifested
when an action is more forceful than might at first seem to be

implied by the information inputs to the governing decision

(p. 15).
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What makes this work so applicable to the problem identified in this thesis is that it
incorporates many of the same variables one would encounter in 2 manufacturing system.
Information and material flow are traced from an end-consumer back through retail,
distribution, wholesale and manufacturing elements. As will be discussed in a later section,
the model will not specifically note distribution, wholesale or retail segments. It will,
however, use the same concepts to develop production process steps, inventory levels, and
delivery to customers.

A schematic of Professor Forrester’s system is shown in Figure 2.3-1.

™

Facto Factory Material Flow
ry Warehouse
\ Distributio
Center
Information Flow
Customer Orders | Delivery

Figure 2.3-1 Distribution Model Structure: This represents a four-stage distribution
system where information (dashed lines) is transferred in steps from the end
customer back to the factory, and material (solid lines) is then shipped forward to the
customer. Delays in information and material flow are inherent in this type of
systém and contribute to the bullwhip effect. The bullwhip effect resuits in
overordering back to the factory, expediting at the factory to meet customer demand,

and then ‘delayed shipment of product at each stage forward.

Solid lines in the above diagram represent the flow of material from the factory
through delivery to the customer. Dashed lines represent the flow of information from the
customer order back through the system to the factory, where the product is ultimately

produced. Delays are inherent in such a system. Rarely does a factory get simultaneous
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information of a customer order, and rarely does a customer immediately receive an ordered
product. Just as information has to pass through many le\}els between customer and factory,
normally waiting for processing at each step, material follows the same hurry-up-and-wait
path. Each level of the above diagram pushes to process orders and ship, but upon arrival at
the next step, the material again waits in 2 queue for processing. -

~ So what issues arise as a result of these information and material delays? Consumer
data that is old contributes to a lag in responsiveness to customer needs. If the lag is only a
few days, the factory has much more flexibility to adjust production levels to meet demand.
As the lag increases, the factory is responding to consumer patterns that occurred sometime
in the past. Additionally, if the cycle time of a product is considerable, or if the lead-time
from suppliers is long, the factory must hold much more inventory to maintain an adequate
level of customer service. If the total lead-time is great enough and customers have to wait,
they may simply buy another product instead of waiting, even if it is of lesser quality
(although this is not typically the case in the aerospace industry, it should be noted). Finally,
if the factory deals in products that are changing rapidly in the face of consumer needs or
technological improvements, a long lead-time reduces the manufacturer’s ability to get the
right product to market to meet customer demand. |

More importantly, not having real time information means that each level upstream

of the customer must add a safety factor in adjusting to changing consumption patterns. For
example, 2 sudden increase in buying means that a factory must immediately ramp up
production. As mentioned earlier, if the delay in learning this information is short,
production schedules need only minor adjustment to make up for the increased demand.
The time between the actual increase and the arrival of information at the factory means
only a small number of backorders. If the time lag is great, much more time has elapsed
allowing unfilled orders to increase. Then, when the factory receives the information,
production must be dramatically increased. Unfortunately, in a system with both significant
information and material delays two main consequences can result. By the time production
catches up with demand, the actual demand has either decreased (leaving the factory with
excess inventory), or customers have 'gone elsewhere to place their order (not only leaving
the factory with excess inventory, but with lost orders in the future from customers who

have lost confidence).
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Professor Forrester’s model, shown in Appendix B, mathematically models a system
with multiple variables and significant delays, and two sets of results are shown. Figure 2.3-2
shows a one-time increase in demand, a “step,” which is delayed as it moves back to the
facfory. Figure 2.3-3 shows cyclical demand, where the oscillation of demand at the

consumer level multiplies as it again moves back to the factory.

Step
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Figure 2.3-2 Step Order Input: A one-time step perturbation is introduced to actual
customer demand. The tesult is delayed orders from retailer to distributor (RRF)
and from distributor to factory (RRD). Production orders at the factory (MOF) and
then actual production (SRF) are further delayed. At each step, the order increase is
exaggerated to meet the rise in demand. Each step must increase further than the
previous step in order to meet both the original increase in demand and the buildixp
of backorders. Actual production peaks last and does not peak as high, since it is

able to see that demand is again level after the step input.
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Figure 2.3-3 Sine Order Input: A continuous oscillation is introduced to demand.
As in the step input shown above, orders from the customer back to the factory, and
then production orders at the factory, are exaggerated in amplitude and peak later
than the original order curve. The order curves above appear to be headed out of

control. If the oscillations in demand are great enough, this is precisely the result.

Note that each step up from the customer reacts to new information with more
pronounced amplitude, and how each reaction peaks later than the previous step. This is

known as the bullwhip effect, and it is common in many environments where the

distribution channel is extended in multiple steps, and where information is not immediately

shared. The graphs above only show information flow from the customer to the factory,

and do not show the delays in material flow as product moves from the factory to the

customer. Below are the results of that material flow, again both with a one-time step input

(Figure 2.3-4) and an oscillation (Figure 2.3-5).
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Figure 2.3-4 Step Input (Material Flow): This shows the delays in material flow
from a one-time step input. Note that factory shipments peak much later and higher
than distributor or customer shipments as they try to catch up with backordered
demand. Also, note that as shipments get closer to the customer they more closely
resemble actual demand, with customer shipments smoothly rising to meet demand

by Week 12.
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Figure 2.3-5 Sine Input (Material Flow): A constant demand oscillation is shown

above. Again, customer shipments closely mirror actual demand, but factory
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shipments follow demand trends in exaggerated shipments, peaking much later than

the demand curve.

Here, note that again the curves peak highex and later for the disfrib_utor and for the
factory deliveries, but the reasons are somewhat different from before. Here, it is shown
that the retailers are much more responsive to customer chaﬁges. Their curve follows very
closely with the orders curve and does not peak significantly higher. In the Step figure, the
deliveries curve simply tises to meet demand, smoothly meeting it by Week 7. Curves for
distributors and the factory, however, again show a delay in moving product to the next
stage. Whereas in the first example the information was delayed telling each upstream step
to order more goods and their successive orders curves peaked later, here the actual delivery
curve peaks later. This is due primarily tb the factory’s ability to generate enough products

to satisfy demand in the distribution chain.

2.4 Component Production and Engine Assembly

Why all the fuss about generic models, and what do retailers and distributors have to
do with manufacturing engine components? Actually, everything and nothing. The point of
this section was not to develop a model specifically of a distribution network. Instead, the
purpose was to introduce a system comprised of many levels in a supply chain from the
factory to and end-user, and to demonstrate the inherent material and information flow
delays. Distributors and retailers deal in bulk shipments, not make-to-order turbine engines.
They exist to make certain supply cl;éins more efficient by providing an effective mechanism
for material flow between the factory and customer. Turbine engines are make-to-order, are
not shipped in bulk, and do not normally sit in inventory waiting for a prospective buyer.
Therefore, there are no distributors or retailers in the industry. A shift will now be made
from thinking of distributors and retailers as steps in a value chain to thinking of component
production (furthest from the customer) and engine assembly (the last step before the
customer). Instead of now thinking of consumer goods moving through a distribution
network, now attention turns to an individual engine component moving from a
manufacturing facility, through an assembly facility, then on to a customer. Information
flow from the customer to assembly, and finally to component production mirror orders for

consumer goods. At the same time, the movement of a component from production,

24



through assembly, and on to the customer represents the same material flow steps developed
in the production distribution model of this section.

To further simplify this explanation, Figure 2.4-1 presents a schematic which
highlights the similarity of the systems. Note that although fewer steps are shown in the
engine model, the same information and material flow delays occur between the existing
steps. Subtracting steps means that the furthest step away from the customer will see a
smaller amplification of the original input, while adding steps further compounds the
amplification. Again, dashed lines represent information flow and solid lines represent

material flow.
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Figure 2.4-1 Structure Similarity: The distribution model that is developed in this
chapter is shoim on the left. It is a multi-stage system of material and information
flow. On the right, the manufactuting system studied in this research is also shown
as a similar multi-stage system of flows. The interaction of multiple stages in
systems such as these produce similar delays which affect material and information

flows.

The next chapter will develop a model similar to Professor Forrester’s, and will speak
more directly to the information and material flows between steps in a production and

assembly value chain.
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Chapter 3 Manufacturing Model Development

3.1 Analysis of Interviews and Data

Having motivated mnformation and material flow thus far, and having introduced a
technique for analyzing such issues, a procedure to integrate these factors and develop
meaningful conclusions must be presented. Original work at the facility was accomplished
by interviewing numerous individuals at various levels of the manufacturing organization.
The goal was to understand the thought process — to understand the mental models
associated with solving similar problems — at all levels. Interestingly, the range of answers to
particular questions relating to production schedules, production rates, orders and inventory
varied widely from higher level executives to shop floor associates, even though the
questions were identical. Their mental models differed based on current information (both
externally and internally obtained), historical experience at the facility, and breadth of
knowledge of the entire system from raw matetials to finished components and engines.

Given the foundation for a production model, attention now turns to its application
to the manufacturing environment. As mentioned previously, the assembly facility receives
both purchased and internally manufactured parts, then assembles those parts into either
rebuild kits or complete engines, or consolidates them for spare parts shipments. This
model focuses on the movement of manufactured gears and shafts through the Case & Gear
COE and on to the assembly facility.

Onginaily, linking the Case & Gear COE with the assembly facility in a flow system
based on customer demand of engine, kit and spares orders was the goal of the internship.
A shift in manufacturing strategy of such magnitude required a high degree of employee
mvolvement and management support. Also, it required absolute commitment to the
principles of flow manufacturing as well as a2 commitment from suppliers for both delivery
performance and quality. This system was not ready for such a dramatic change, so the goal
was modified to present a feasible way to develop flow manufacturing within the framework
of the current MRP system. Namely, to allow the Case & Gear COE to adopt a flow system
independent of suppliers deeply rooted in MRP delivery and an assembly facility firmly

committed to a production schedule.
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Before suggesting improvements over the existing material and information flow
structure, one must first understand the key drivers and metrics affecting performance of
gear and shaft manufacturing and order assembly and delivery. This model was developed
using Jay Forrester’s model as a baseline, then adding key variables to first mirror historical
data, then suggest why performance is affected. The process first identifies the key vartables
affecting the system and establishes a causal connection between these variables. Then a
model is constructed that can be mathematically manipulated to explain the drivers and
metrics. This final step, manipulation of the model, is where we are able to surface
unanticipated side effects of management policies, then suggest ways to either rework or
eliminate altogether these policies to dtive intended behavior. A key deliverable of this
process, given the management structure and existing production system, was to write 2
_ story that could be quickly synthesized and would naturally lead to possible solutions. The
thesis, and indeed the entire internship serve to build system understanding of key drivers
and dynamics for decision-makers so that system change can be enabled.

Numerous interviews were conducted at various levels of management, across
functions, and finally with shop floor employees. The method chosen was to start from the
tdp levels, then work down through the layers to where production and assembly was
actually being accomplished. By using this interviewing approach, each story was either
immediately reinforced or refuted, and key variables could be traced down through the
‘system to learn policy impacts of behavior.

~ Once these variables were determined, they were separated into stocks and flows.
These stocks and flows are simply defined as amounts that can be measured exactly ata
given point in time (stocks), and rates that change over time (flows). Examples of stocks
include work in process, unfilled orders, and finished goods inventory. At any given point in
time, the exact number of items in these stocks can be determined. Mathematically, stocks
are simply the sum of flows entering and exiting, like water flowing into and out of a tub of |
water. If inflows are greater than outflows, the tub fills, and vice versa. Examples of flows
are order introduction, delivery rates, component completion rate and asserﬁbly rate.
Although at any given point in time an exact number of items cannot be determined, the rate
at which items are moving through the systefn can be. Mathematically, determining the rate
involves taking the derivative of the completion curve, with the result (slope of the line)

representing the exact rate.
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The basic stocks in the system were easy to uncover. Completed engines, completed
components, and work-in-process (WIP) levels for both formed the basis of most
interviews. Managers monitored inventory levels through reports for both work in process
and finished goods, and shop floor associates were keenly aware of the work waiting both
ahead and after their manufacturing cells. Also, the Case & Gear COE tracked raw
materials, adding them as the third component of inventory. The stock of unfilled orders, or
the number of gear and shaft orders placed yet still to be introduced onto the production
floor, was noted and is important in a later discussion. Ironically, however, attempts were
never made to mentally link completed orders and WIP with outstanding orders during the
personal interviews, and an almost adversarial relationship existed between the enterprise,
responsible for customer contact and maintaining order delivéry, and production,
responsible for manufacturing the order components.

Flows in the system were also obvious, both for material and information. Goods
moved from raw material into production, from production to the assembly warehouse,
from the warehouse into assembly or kit/spares otders, then finally on to the customer.
Although material flow through component manufacturing as well as flow through the -
assembly process will be linked and are included in the model, duting this phase of
development each process was assumed independent to avoid confusion and facilitate a
complete understanding of each facility. Further analysis of each system showed that neither
was truly optimized. Therefore, each system was identified separately as either Gear
Production or Engine Assembly, and independent average cycle times were used to compute
material flow.

Information flow occurred through both formal and information channels. Standard
production and inventory information was readily available on an internal computer
network. Although read-write access to this network was extremely limited, anyone could
easily review the data on a read-only basis. In parallel to this official documentation of
production and inventory transactions, an elaborate informal network between marketing
and sales, engine coordinators and production managers served to keep the system in
balance on a more real-time basis. Although this informal channel created natural
efficiencies, it is almost impossible to model due to its complexity and continual change.
Therefore, the model deals only with the formal information channels to determine

appropriate production rates.
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3.2 Causal Loop Development

The basic causal loops started with component production and assembly. They
highlight the difference between the number of components or engines to be completed in a
time period and the actual number of pieces complete. This difference, or gap, forms the
basis of an MRP system analysis, and provides a foundation for this model (Hopp &
Spearman, 1996). Original interviews uncovered a gap similar to this, occurring at the engine
assembly facility, as progress was measured by comparing the number of orders complete in
a week to the number of orders scheduled for completion.

Business cycles were measured in calendar quarters. Each quarter had production
quotas for engines to be assembled and shipped, and kits and spare parts orders to be
shipped. At the beginning of each quarter, employees noted that the shipment rate was slow
and gained speed as the end of the revenue quarter approached. Data supported these

assertions, and the shipment rates by quarter are shown in figure 3.2-1.
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Figute 3.2-1 Quarterly Engine Shipments: Each short line shows the connection of
shipment data from each three-month production quarter. For example, the first
connection of data points represent of January, February and March engine
shipxﬁent data. A deliberate break is made between the final month of a production
quartter and the first month of the next to highlight the trend in rising shipments

within each quarter.
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The scale has been deliberately omitted, but the rising trend is clear by quarter. With
the exception of the second quarter of 1996, the only outliers are in December 1997 and
1998. Holiday vacations severely decreased production time, and consequently less engines
- and kits were shipped. |

The next logical question was whether the Gear Production Center linked to the
assembly facility by its own production schedule for engine components, followed the same
pattern. During almost evéry interview, the answer was a definitive “No, we produce gears
and shafts at a constant rate.” At first this seemed logical since the two facilities were
physically separated, produced completely different products with different processes, and
were under different management. Also, the volume of spare parts made the production

rate seem more level. Data, however, refuted these claims and shows the same rising pattern

through the quarter as the assembly facility (see Figure 3.2-2).
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Figure 3.2-2 Quarterly Gear Shipments to Stores: As with engine shipment data,
only shipments within each production quarter ate connected to show the rising
trend. Note the shipment decrease for December 1996, and December 1997. The

drop in shipment levels reflects curtailed production due to holiday vacation.
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Figure 3.2-3 Normalized Quarterly Gear Shipments: The solid lines are identical to
the previous Gear Shipment figure. Here, however, additional data points have been
added to answer the argument that the final month of a quarter contains five weeks

instead of four. This is included to defend the rising trend.

Again, the scale has been omitted but the rising trend by quarter follows. As
expected, this was a startling find for the Gear Production Center management, and many
explanations for the behavior soon surfaced. First, it was argued that the first two months in
each quarter contain only four weeks and that the third month contained five. Certainly this
would explain the rise in the final month. Shown in Figure 3.2-3 are triangles and dashes at
each third month of the quarter. They are not data points; but instead represent a
normalization of data to account for the difference in weeks. The triangles show the
expected production rate in the third month if the second month shipments are increased by
25% (to represent an increase from 4 weeks to 5). The dashes, to further show the failure of
the argument, are the average of the first two months in the quarter, again increased by 25%.
Next, it was argued that monthly totals did not accurately reflect a true production rate, and
that possibly a weekly average would better show a flat production rate. Although this
procedure does show a decrease in output/week (shown in Figure 3.2-4) during the last
month of the quarter, the output/week statistic is meaningless. A per week statistic simply
waters down the meaning of the initial data,_measuréd on a per monti’x basis, by dividing a

rising total by a number 25% higher than that of month one or two, in cases where the total
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shipments did not increase by that amount. Our interest lies in the per month numbers, not -

necessarily in the average rate of each week.
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Figure 3.2-4 Average Gears/Week: This figure represents the average number of
gears produced each week during a production month. Since the last month of each
quarter contains five weeks instead of four, the average is shown to decrease.
However, this statistic is misleading in that total shipments for the final month still

show a rising trend.

Attention now turns to establishing a causal relationship between the variables
already mentioned, to gain an understanding of the system. First, the production and
assembly gap will be developed in more detail, and then other variables deemed significant
from interviews will be added. At each step, the causal loop diagram was presented to man);
of the people with whom interviews were conducted to maintain integrity of the story. The
relationships that follow are the final loops developed during this phase in the model
building process. For simplicity, only the assembly causal reEﬁonsMps will be developed.
The production relationships are exactly the same, and will be further investigated when the
two systems are linked.

As the assembly gap increases (again, the gap is defined as the difference between the
actual number of products complete and the desired number to be completed), pressure to
decrease that gap increases resulting in increased assembly. This loop is a balancing loop,
where an increase in any variable contributes to a decrease in the production gap. They
system tends toward zero to eliminate the gap. Two methods to relieve this production or
assembly pressure were through norhﬂ assembly and overtime assembly (see Figure 3.2-5).

Interviews with many shop floor associates supported this development. It was noted
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without exception that the pace of shop floor activity increased dramatically as each month
came to an end, with an even more significantly increased noted at the end of each

production quarter.

Complete Engines Desired Engines
+
+
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Normal Assembly OT Assembly Assembly Gap
A
+
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Figure 3.2-5 Production/Assembly Balancing Loops: These simple causal loops
show the goal-seeking behavior of this production system. As the gap between
desired engines and complete engines increases, normal and overtime (OT)
assembly increase to drive this gap to zero. The (-) sign in the link between
Complete Engines and Assembly Gap produce an opposite effect (increase to

decrease, decrease to increase).

By substituting gears or components for engines, an identical causal loop is
constructed for component production. In both cases, a gap exists at the beginning of a
productidn period between orders and complete product, resulting in pressure to fill orders.
The stock of completed engines or components tise, the level of unfilled orders falls, the gap
approaches an equilibrium level of zero. The most plausible reference mode for this system
is a linear increase in engines complete, stopping at the level of desired engines as shown in

Figure 3.2-6.
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Completion Reference Mode
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Figure 3.2-6 Original Completion Refetence Mode: The level of desired engines

remains the same over the complete time interval. Completion of engines,

theoretically, rises linearly to meet this desired level at the target time.

As discussed earlier, this was not the case in reality for the assembly facility. The
curve began much flatter and rose aggressively as the end of the quarter approached and as

pressure to complete engine orders increased (Figure 3.2-7).

Revised Completion Reference Mode
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Figure 3.2-7 Revised Completion Reference Mode: In reality, the number of
completed engines rises exponentially to meet the desired number. Completion
rates at the beginning of the time interval are very low, but increase dramatically

toward the end.
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Other variables were then added to the basic causal loops in order to determine the
management policies which were really affecting assembly rates. The first and miost
important policy was expediting engine orders as the quarter drew to a close. As can be
imagined, as engines are expedited the problem works its way back up stream through the
component production centers and finally to suppliers, who must continue to supply raw-
matetials and purchased parts, but to a schedule which shows tremendous fluctuations.
THis, again, is the bullwhip effect.

How does expediting begin? What drives the decision to deliberately split a
production batch in order to speed it through the system? The answer to this question was
not at all obvious but could be explained fairly easily after key interviews with engine
assembly coordinators. The reason is that engines are started, or released to the assembly
floor, even though not all parts necessary for completion are present at release. Associates at
the assembly facility were very familiar with this behavior, as they saw engine and
subassembly carts wheeled to their stations every day without all necessary components. To
the assemblers, the problem was that the carts were taking up space. To engine
coordinators, who’s responsibility was to integrate both externally purchased and internally
manufactured parts before release onto the floor, releasing without parts was the best way to
get attention and action on the missing parts. Another reason given for starting engines
without all parts was simply that the production schedule specified a certain release date, and
that date would not be missed. Whatever the reason, as the quarter began more and more
engines, kits and subassemblies found their way onto the assembly floor incomplete.

At some point during the quarter, the actual level of work in process became greater
than the desired level for efficient assembly. This difference could certainly not be
determined exactly, but at a given time managers realized that shipments were behind, and
the level of inventory on the floor was greater than necessary. What was the fix? Managers
identified engines that could be completed within the quarter, then identified the parts
necessary for completion, and finally either called external suppliers to add i)ressure to the
order, or (as analyzed in this work) forced the component production centers to expedite
critical components.

" Does this sound inefficient? Certainly, but not because the managers aren’t making

sound business decisions. In fact, they are making absolutely correct decisions, but only as
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they relate to their own piece of the system. Nahmias étates, “If a sudden unusual event
occurs, such as a much-higher-than-anticipated demand of a sudden decline in productive
capacity...it is likely that many managers would tend to overreact” (p. 154). Unfortunately,
an expediting decision of this type made-very late in the manufacturing i)rqcess (at assembly)
has a great impact on all upstream steps and, as shown in the previous chapter, this effect is
magnified at each level. The idea, then, is to understand both the cause and effect of such a
decision at each level in the process in order to optimize the behavior of the entire system,
not just the behavior at one facility.

Finally, it was proposed that the primary objective of the system was to assemble and
deliver as many engines and kits as possible during each revenue quarter, many times at the
expense of other orders. Early in the internship this proposition was refuted, but soon the
truth surfaced. On quotation in particular, received in an e-mail at the middle of one .
quatter, supported the original argliment and led many managers to finally give up flawed
mental models of system behavior. Quoted on October 15 as the Engines facﬂity was
making a final push toward end of year production quotas and revenue, “Also, please keep
your focus on two things, the first being the close of the month for October is the 24™.
Second, we must ship as many engines as possible by the 14* of November in order to have
a positive impact on cash flow in the fourth quarter. Please target your delivery dates for the
first week in November for all shipments, including both spares and engines that are
committed for the month of November.” The original production schedule was being
abandoned, and any and all engines which could feasibly be completed in time to contribute
to cash flow were identified and expedited.

How did this decision affect the component production facilities? Two weeks after
receipt of the message above, another message was sent, but only to the component
facilities. “Please note that all serial numbers that are highlighted blue is what we must get
out the door by Nov 14th for cash flow. Please focus on bringing in the controlling
hardware that falls within the blue highlighted engines. We need hardware no later than Nov
10th.” Not only were engine orders expedited to meet delivery by mid November,
component facilities lost four additional days of production, and were still expected to

produce all necessary parts.
Let’s again look at the bullwhip effect. After increasing the production rate at assembly, a message is

then sent to all component suppliers (both internal and external) to target parts delivery for November 10,

36



Compared to the increasing slope of the assembly curve, to meet the same demand four days earliet required
the component curve to rise even more aggressively, and due to the delay in information flow from assembly to

components, it started to rise later.

The time is right to introduce the causal relationship of other variables noted in order to establish the
cause and effect system leading to management decisions. As discussed earlier, the basic causal relationships’
are between the desired level of engines to be completed and the actual amount completed, and the
desired/actual number of components. Shown in Figure 3.2-8 are the causal loops for engine assembly. The
loops for component production are identical, but they refer to components instead of engines. Later, they will

be discussed together as the two systems are linked.
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Figure 3.2-8 Balancing Assembly Loop: These balancing loops drive the assembly

gap to zero as the number of complete engines approaches the desire number.

As stated earlier these loops are balancing, forcing the engine gap to zero. Assembly pressure
increases normal and overtime assembly, increasing the completion rate of engines, closing the gap between

desired and actual number of engines for a given quarter.

Next, starting engines without all necessary components is included. In Figure 3.2-9, this variable is
referred to as “Starts without Parts,” which increases work in process in the engine facility and decreasing the

rate at which engines are complete.
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Figure 3.2-9 Assembly WIP Reinforcing Loop: Assembly pressure forces engine
coordinators to release engines onto the production floor without all necessary

components. This increases WIP on the shop floor and decreases the rate at which

engines are completed.

This new loop is a reinforcing loop, which increases the engine gap. As engines are started and WIP

levels increase, the number of engines complete actually decreases.

Another reason stated for starting engines without all necessary parts was to gain attention for missing
components. Engine coordinators, through past experience, realized that by simply starting an engine missing
parts, just to get it into view on the assembly floor, would add priority to those parts, requiring them to be
expedited, forcing more parts to assembly stores, and adding to the stock of complete engines. This new,

balancing loop is shown in Figure 3.2-10.
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Figure 3.2-10 Component Expediting Balancing Loop: The main reason given for
starting engines without all components was to force attention to those missing
parts. When attention on those missing parts increases enough, necessary
components are expedited through the production system and more parts are

shipped to assembly stores.

Finally, as managers note the increase in work in process levels, they are forced to identify engines

which can feasibly be completed by the end of a quarter, and expedite them through the system.
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Figure 3.2-11 Engine Expediting Balancing Loop: An additional dynamic is
observed at engine assembly. As WIP in the assembly facility increases, managers

identify engines that can be expedited to decrease WIP. Expediting engines results

in more component expediting.

This forms a new loop, shown in Figure 3.2-11, a balancing loop that again tries to decrease the
engine gap to zero. If we look at only the assembly facility, four separate variables are affecting the system —
normal assembly, overtime assembly, starts without parts, and expediting. As each of these is introduced,
trying to predict which vartiable will have the most profound impact becomes much more complex. Hence, the
necessity for this type of modeling. Additionally, when the two systems are linked, there are many more

variables racing to either increase or decrease the engine and production gaps.

At this point, the systems must be linked and all necessary variables included to develop a complete
picture of the assembly-production system. Presented in Figure 3.2-12 is the entire causal loop system for
assembly and production, linked as appropriate, including all variables noted in interviews and research. The -

following section presents a much more detailed mathematical formulation supporting the modei calculations.
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Figure 3.2-12 Complete Causal Loop Structure: Above is the combination of all
variables in their appropriate causal loops. Engine assembly, component production

and expediting are all included to portray all the dynamics of this system.

First, the revenue gap determines the desired number of engines and desired components (desired
components being the sum of rebuild kit orders and spare part orders). The number of engine components is
added to the Desired Parts to Stores through the variable Desired Engine Parts. ‘The two systems are then
linked'&lréugh the variable Desired Parts to Stores. This is the number of internally manufactured
components that the assembly fécility needs to complete engines and fill kit and spare part orders. As the
relationship continues, components are manufactured and Parts to Stores feeds back into Normal Assembly

and Spare Parts Shipments, completing the cycle.

Next, attention tuns to the other key variables noted, namely Starts without Parts and Expediting.
Assembly pressure drives both of these variables, resulting in increased WIP and increased pressure to decrease
WIP. Again,‘ the loops continue in both cases through parts to stores. But where does this pressure come
from? ' '

Pressure in both assembly and production comes from the variables Engine Time to Target and Gear

Time to Target. Mathematically, as the time to target decreases, a cotresponding increase in pressure is seen.
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Although as time decreases pressure should increase lineatly, in reality the time decrease is linear and the
pressure increase is exponential. 7

Though the quotations noted above were obtained well after this system-wide study
was begun, all preparation led to 2 problem statement. This statement had to be broad
enough to include all variables noted during interviews, yet specific enough to provide solid
direction for the model. Our interest is not necessarily to model the entire system, but to
model the relevant factors affecting a problem in order to understand the time varying
relationships between parts of a system which directly impact the specific problém.

The problem statement evolved as follows. Expediting engines through assembly
and test negatively impacts all component production by increasing schedule disruption,
where ultimately the benefit of shipping incremental engines is outweighed by the cost
remaining work-in-process. The quotations noted above, when they were made, only added

suppott to the problem statement, and provided the impetus for further study.

3.3 Model Development

Once the causal relationships were agreed on, and the problem statement was
approved, attention turned to developing a mathematical representation. In the loops above,
revenue drives initial engine and parts schedule demand. While in reality this was true, it was
not necessary to include this variable in 2 model that represented only one quarter. It
seemed mote straightforward to assume a certain number of engines for a quarter, based on
historical data, then develop the model to mirror historical behavior in relation to the
specified production and assembly quotas. Additionally, this model was not meant to show
system reaction to a variety of engine order inputs, but rather to show system reaction to a
chosen input, based on a variety of combinations of internal variables.

For simplicity, models for component production and engine assembly will be
developed individually. Then, once the similarities and differences between each
independent system are understood, they will be linked to show the complete flow of

. components through production and assembly, then on to the customer.

The stock of unfilled orders (UO Gears) begins the gear production model (see
Figure 3.3-1). This represents the stock of outstanding orders awaiting some element of
administrative processing, and which have not yet been introduced into production. This

stock is increased by incoming orders for gears and shafts (Gear Inc), both from OEM
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orders and external spare parts. Through interviews, it was determined that between one
and two months of incoming orders rested as unfilled. In the model, one month of orders
equals 7800 gears, so the initial condition for unfilled orders was set at 10,000. This stock is
decreased by the rate of component completion (Gear Dec) which is the final completion

rate after the included production lead-time delays.

External Orders

OEM Orders

UO Gears =—==P{3

Gear Inc Gear Dec

Figure 3.3-1 Unfilled Gear Orders: OEM and spare parts orders combine to form the
rate at which unfilled orders increase at gear production. That stock of unfilled

orders decreased as gears are shipped from the facility.

The next stock, from Figure 3.3-2, is gear work in process (Gear WIP) which is the
sum of the three stocks represented in the third order delay (Gears 1, Gears 2 and Gears 3).

3 H=——p| Gears] F—=%P» Gears2 :—Y:. Gears 3 F———Pn
Gear Decision Rate GR1 ' GR2 T&GR3

a
Gear WIP

Figure 3.3-2 Gear WIP: This is a three-stage gear productibn delay. Ateach stage, a

stock of gears repreéents gear WIP, and the combination of individual WIP stocks

equals the total gear WIP in the system.

The flow into these series of stocks is the rate at which gear products are introduced
onto the production floor (Gear Decision Rate), and the flow out is (GR3), the rate at which
products are completed and shipped from the facility. GR1 and GR2 represent intermediate
flows in the production delay. Although the idea of a higher order delay may be difficult to

conceptualize, it may aid understanding by simply lobking at intermediate flows as individual
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processing and transportation steps, and intermediate stocks as process buffers.
Mathematically, this third order delay represents the entire gear production system in time
and volume for an average product.- The initial condition for gear WIP was 6,000 at each
WIP stage, which represented the somewhat reduced level of WIP which the production
system would see at the start of a production quarter after expedited depletion at the end of
the previous quarter. | |

A key component here is the Gear Decision Rate. This decision rate must take into
account real time knowledge of both outstanding orders and WIP levels in orde;r to release
the required amount of material to meet demand, yet not flood the production system.
Therefore, the decision rate is simply the sum of the difference between actual and normal
unfilled orders and the difference between actual and normal WIP. These actual stocks are
dynamic through a production quérter and serve to increase and decrease the rate at which
material is released. Normal order and WIP levels, however, remain much more constant.
They are based on material handling and out of stock delays, which are inherent in the
system, and are neither dynamic enough to change within the time scope of the model, or
they are beyond the control of those involved with the production process.

Normal lead times for gear products ranged between 45 and 65 days. Additionally,
parts met an additional delay in the stores warehouse of up to 6 weeks. Therefore, a total
production delay of three months was used, split into one-month subsections throughout
the two individual production delays and one warehouse delay. This delay, howevet, was
only seen at the beginning of a quarter when work rates were most normal. Somehow, the
increased pace of production had to be represented, and this was done by decteasing the
Gear Assembly Delay (and in effect decreasing the time necessary to proauce a product). At
the beginning of a quarter, the entire three month delay was used to moderate the third
order production system. As the quarter wore on, however, production rates increased with
added pressure to produce parts and meet production quotas. An original formulation for
this increase (and resulting decreased time necessary to produce patts) simply used the
difference between the actual time and the production time as the delay. As can be
predicted, however, as the target time is approached the production delay becomes infinitely
small, meaning gear products are produced almost instantaneously. Therefore, the assembly
delay was decreased linearly from three months to one month, at which point it leveled off.

What this accomplished was allowing the system to gain production speed throughout the
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quarter, replicating actual events, yet top out at a theoretical maximum completion rate.

Shown in Figures 3.3-3 and 3.3-4 are the two different formulations.

Graph for Gear Assembly Delay
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production quarter, the delay in completing gears steadily decreases as a result of
production pressure to a minimum level, or a theoretical maximum rate at which

gears can be made.

Graph for Gear Assembly Delay
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Figure 3.3-4 " Theoretical Production/Assembly Delay: Originally, the production
delay was modeled as a linear decrease to zero. However, this means in reality that

gears are instantly made, which is not possible.
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The assembly warehouse (Stores Inventory) represents the last stock in the gear
production system. This stock is fed by gears completed (GR3) and depleted by shipments
to both assembly and spare patts. The inittal condition for Stores Inventory was set to 6000.
As mentioned eatrlier, one month represented 7800 gear products released into the system.
And, even though a delay of up to six weeks could be seen at the assembly warehouse,
normally the delay was less than one month. It should also be noted that a minimum bound
was set on Shipments Sent from Stores, to protect the system from shipping geirs even
though no gears existed to be shipped. Without this minimum bound, the model would
continue to ship gears in amounts far beyond the completion rate, and mathematically the
system spun out of control. »

7 Finally, gear expediting had to be included. First, it was necessary to understand the
true effect of expediting a part. Upon identification for expediting, a part or group of parts
wete split from their original production batch, marked for priority processing, then moved
through the production system ahead of other orders. This meant that although the
expedited order was processed quicker, other orders waiting in queues had to wait even
longer for these smaller, priority orders. From the point of regular orders waiting in queues,
the effect of expediting was to simply add additional orders into the production system.
Therefore, an additional expediting rate (Gear Exp Rate) fed the first production stock,
Gears 1.

But how, exactly, is one able to determine the number of orders which will be
expedited into the system? As discussed in the development of the causal loops, expediting
was a result of WIP buildup in the production process. As the actual WIP exceeded what
was considered normal, pressure increased to decrease the WIP and ship the correct orders
on time to assembly and to spares. Using the difference between actual WIP and normal
WIP levels, the model generates a multiplier based on this difference to attificially infuse

extra orders into the system to represent expediting.

Expediting:  If (Actual WIP — Normal WIP) < 0, No expediting
If (A WIP — N WIP) > 0, Expediting Multiple * (A WIP — N WIP)
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If the actual WIP is less than a level considered normal, no expediting occurs.
However, as the actual WIP level exceeds the normal level, orders are expedited according to
amount of difference. The greater the difference, the higher the rate of expediting, and vice
versa.

The development of the assembly system is the same, except that the additional
stock of a warehouse inventory is not included. For the purposes of this model, as engines
are completed they are assumed to be immediately shipped. Therefore, most of the
explanation for this half of the model will center on initial conditions.

The stock of unfilled engine orders was set to 600. Although engine orders were
introduced at a rate of 200 engines per month, the lead-time between placing an engine
order and actually shipping the engine was closer to three months. As in the production
model, the stock of unfilled orders was fed by ordef introduction (OU Inc), and decreased
by the engine completion rate (AR3).

Engine WIP, just as with gear production, was the sum of individual WIP levels
throughout the three-step delay. Each individual stock (Engines 1, Engines 2 and Engines
3) were initially set at 250. Though the production WIP levels were set slightly lower than
the introduction of otrders into the system, engine WIP levels were set somewhat higher to
capture both the number of engines already released onto the production floor but not yet
complete, and the engines which were cleared for production (still staged in the warehouse)
but not yet released to the production floor.

Engine expediting was developed the same way as production, where the difference
between actual and normal WIP levels produced pressure to identify engines that could be
expedited. As the actual WIP level became larger than the level considered normal, the
model developed a multiplier of that difference to artificially introduce extra engines into the
system, increasing WIP and lead-time. .

~ For both models, 2 WIP adjustment factor was included to moderate the speed at
which pipeline inventory could be identified and then adjusted. For production, the
adjustment factor was two months. This allowed time within the production quarter to
identify incréasing WIP and then target it to more a more appropriate level by the end of the
quarter. Also, since spare part orders made ﬁp more than half of the orders introduced into
production, the volume of pieces alone forced this delay in pipeline inventory adjustment.

For engine assembly, however, inventory could be adjusted somewhat more quickly, so the
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adjustment delay was 1.5 months. Overtime labor and the strategic release of subassembly
work prior to engine release allowed the system to more quickly regulate itself.

To combine the models, then, the Decision Rate of engine assembly fed back into
OEM Oxtders and unfilled orders increased. This allowed the model to feplicate the bill of
materials explosion that would result upon freezing the engine assembly schedule. Then, by
using an average of 9 gear products per engine, the number of engines introduced into the
assembly system was simultaneously converted into gear products introduced into the
production system. This type of “backward” conversion follows the policy of cietermining
engine and spare part orders from set quarterly production quotas, then determining the

number of components necessary to complete the orders.

3.4 Results

The first variable studied was the WIP adjustment rate for both components and
assembly. Data suggested that time necessary to adjust pipeline inventory be 1.5 months for
the assembly facility and 2 months for components. Although difficult to obtain accurate
historical data showing WIP levels at each facility, visual inspection of the facilities at
different times during a quarter provided enough proof that the inventory level could be
manipulated at this rate. Results of assembly and component production rates and WIP

levels are shown in Figure 3.4-1.

48



Gear WIP
30,000 i
!
22,500 [ U FUS ]
15,000 e
7,500 -
[
0 0.5 | 1.5 2 25 3
Time (Month)
Desired Gear WIP : base - gear
Gear WIP : base === - - mmmmmmeesopear
Engine WIP
1,300 ‘?
- |
1,056 " T
. 1
RIZ5 === i
56875 gl e
325
0 0.5 1 L5 2 25 3
Time (Month)
Desired WIP : base cngine
Engine WIP : base ~ - - cngine

Gear Production Rate

20,000
15,000 - =
10,000 el
B P g
= el v
e e py L~
5,000 R X e
0
0 0.5 i L5 2 2.5 3
Time (Month)
Desired Gear Rate : base gear/Month
GR3 : hase gear/Month
Engine Assembly Rate
400
\»
295 [
.‘\ __,—"'“»W"“"‘"“-u-..___ -
190 —
-------- - e ]
- N e
85 N
~
\\ P /./
220 e
0 0.5 1 15 2 25 3
Time (Month)
Desired A bly Rate : buse: gine/Month
AR3 : base gine/Month

Figure 3.4-1 WIP Base Case Model Results: Both gear and engine actual WIP show

an initial increase then a decrease until the end of the production quarter.

The

desired WIP, however, steadily decreases through the production quatter to a

theoretical minimum. The actual gear production and engine assembly rates

increase through the quarter to a maximum, then decrease somewhat toward the end

of the quarter. The desired production and assembly rates, however, decrease to a

minimum then increase toward the end. These results show what this type of system

“should” do and how they “really” behave.

First, note both the starting and ending desired WIP levels in assembly and gears.

These represents the actions of engine coordinators and raw material procurement to stock

matertal prior to the beginning of a production quarter. They expect the level to gradually

decrease to an optimum level throughout the quarter. At the same time, actual WIP levels in

the plant start somewhat below that desired, rise immediately to compensate, then collapse

as the quarter wears on and orders are expedited through the system to make cash flow. By

the end of the quarter, WIP levels are significantly lower than the level desired at the start of

the next quarter, as everything available is shipped to increase revenue. One executive

noted, “At the end of a quarter, everything that is not tied down and that we can sell goes
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out the door.” Unfortunately, this happens without regard to the beginning of the next
quarter, when WIP levels start well below the optimum level for efficient assembly, and well
above the optimum level for efficient production. Assembly begins the next quarter short
critical components, further reinforcing their low m1t1a1 shipment rate, and components
begins with too much material in the pipeline, further increasing WIP carryiﬁg costs and
system congestion. |

Before looking to assembly rates, a discussion of the rate curves is in order. Imaging
being given two different directives: 1)”In three months, build as many engincs.as you can,” -

“and 2)”You have three months, build me (x) engines.” The difference between these two
directives is critical to the argument about production and assembly rates. With the first
directive, one would begin at a pace considered manageable, possibly even challenging.
Then, as the target time approached rates would speed in order to capture every remaining
production minute (albeit to a certain threshold). By the end of the quarter, every available
resource would be utilized for the purpose of completing engines or components. This
directive represents the actual production curves above. With the second directive, one
would figure out the best way to make a certain number of goods, do that in the shortest
amount of time and with a specified amount of resources, and try to finish eatly. A gradual
rise in production rate may result after the initial decline if the tir;:e and resources were not
accurately determined, but the overall effect would be a smoother, more predictable
production rate. This directive represents the desired production cutves shown above.

To provide some additional direction to the argument before further muddying the
water, the initial goal was to implement flow manufacturing for the gear production center in
an existing MRP type system. The results above show the system as it operates cutrently, -
with all variables set to appropriate initial conditions. Now, these variables can be
manipulated individually to find the key variables affecting the system, and their effect.

The first variable chosen is Gear WIP Adjustment Time. This is the time necessary
for the gear facility to adjust pipeline inventory with respect to new information of increased
or decreased orders. For example, if the desired number of gears immediately steps up (or
down) by a certain percentage, an MRP type system will show an increase (or decrease) in
pipeline inventory to support an increased level of desired delivery performance. This
increased inventory can result from many factors — by adding additional capacity, increasing

batch size, or increasing raw material and finished goods inventories. A certain time lag
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exists between the time the actual order step happens and that time that information is
known, and a second time lag exists as the inventory is increased to meet demand. The sum
of these two lags represents the WIP adjustment time.

Initially, the adjustment time is set at two months. Although conservative, the
production cycle lasted only three months and the system was responsive enough to make
this adjustment during the cycle. Next, the adjustment time was changed to one month,
representing an even quicker response time. Finally, the time was set to three months,
representing the longest time available during one production cycle to adjust inventory.
Shown in Figure 3.4-2 are the WIP levels and production rates throughout the quarter, at

varying WIP adjustment times.
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Figure 3.4-2 WIP Adjustment Results: WIP Adjustment Time represents the time
necessary to adjust pipeline inventory after a change in demand. As the adjustment
time decreases, the ability to proactively react to demand shifts increases. However,
if the adjustment time is long, the ability to react to demand shifts is severely limited.
Gear completion rates are also affected. As the adjustment time increases, the ability
to ramp up production is hindered, whereas a short adjustment time allows

production to ebb and flow to more closely match demand.

Remember that the desired WIP level and the desired production rate should remain
level throughout the quarter. For WIP levels, an adjustment time of one month allowed for
the smoothest curve, with beginning and ending WIP levels being almost equal. As the
adjustment time grew, however, the ability to react to increased orders diminished. Ending
WIP levels ended significantly below starting levels, leaving the facility with less that efficient
inventory levels to begin the next quarter. For production rates, the effect is just the

opposite. A shorter adjustment time results in higher fluctuations in completion rate. With
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increased responsiveness comes increased desire to continually “fix”” the inventory and try to
match the variability of demand. As adjustment time increased, though, the inability to
change WIP to an efficient level caused that production rate to increase much slower.

The next variable chosen was the delay resulting from stockout of raw material (the
results of which are shown in Figure 3.4-3). Two variables are included in ihe model, Gear
Out of Stock and Gear Handling, and both represent a delay lassociated with introducing
material onto the shop floor. They are included for completeness, and their individual delays
are added to show a total delay in material introduction rates. Therefore, only one variable

need be adjusted to show the effect on the system.
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Figure 3.4-3 Stockout Delay Results: Stockout delay represents the time necessary
to recover from a stockout of raw material. A longer response time means
production must ramp faster to satisfy backorders, and WIP increases more
dramatically. A shorter stockout time means that the system is not as drastically

perturbed from equilibrium, and the sjstem can easily tecover.

The stockout delay was initially set to 1 month. Interviews revealed this as the
average time to get material from a supplier due to a complete, unforecasted stockout. The
variable was then adjusted down to two weeks, then up to six weeks to show sensitivity.

In Gear WIP, a faster response time from suppliers results in less overall WIP, as '
material is quickly ordered and received, released into the system, and processed. Given the
confidence in the supplier’s ability to deliver means order can be smallet, since the delay in
receiving the order in short. Slower response ﬁmé, as expected, means higher orders must
be placed to overcome the initial delay, and those higher WIP level remains through the rest
of the production cycle. The problems associated with this type of delay follow into
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production rates. As mentioned, shorter supplier reaction time means less of a time lag
between order and receipt. Production, therefore, need not increase so drastically upon
receipt in order to make up for the delay time lost. A longer delay, however, means that the
production facility, upon receipt of the order, must ramp up production much more
aggressively to meet demand. And, due fo the bullwhip effect mentioned earlier which
multiplies the effect of delays, the peak production rate achieved is greater than with a
shorter delay.

Finally, attention turns to expediting orders through the system. If WIP adjus&nent
is slow, and out of stock and handling delays produce the undesirable results shown above,
then expediting should solve the problem. In reality, however, expediting only adds fuel to
the fire.

All of the results shown above were generated without expediting any orders to the
system. Now, however, additional orders will be artificially introduced into the system to
stmulate the effect of expediting. Also, it should be noted that artificially introducing orders
into the system replicates another common problem, and that is rework. Both expediting
and rework have a similar effect on the production system. With expeditiﬁg, orders get
either simple line cutting privileges or line privileges and tear down of the batch now in
process. The net effect is that other orders must wait in queue for these smaller, more
important orders. With rework, deficiencies are noted in an individual piece or batch and
that batch must be reintroduced into the system to fix discrepancies. The adage, “If you
can’t find the time to do it right the first time, when will you find time to do it again,” justly
applies. If an operation is performed incorrectly, a piece ot batch must loop back through
necessary processing steps, forcing other orders to wait. The conclusion is that expediting
and rework have the same effect, and artificially introducing additional orders into the
system replicates the effect.

Infusion of gear orders is generated within the production facility, at least for the
purposes of the model. This value is generated at the assembly level, through orders
identified to expedite through the system to affect cash flow. 'Thereforc,- the number of
additional gear orders introduced into the system is simply the multiple of engines to be
expedited and gears per engine. If there are no orciers expedited frém assembly (because
WIP levels are correct) an additional calcﬁiation is added to introduce additional gears based

only on the difference between desired and actual WIP levels. This adds reality into the
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model by simulating the gear manager’s abulity to recogniée and “fix” an inventory problem
based only on an internally generated inventory discrepancy. Figure 3.4-4 presents gear WIP

levels and production rates resulting from expediting engines.
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Figure 3.4-4 Gear Expediting Results: As orders are expedited through gear
production, both WIP and production rates are driven out of control. Obviously this
would not happen in a real factory, but the dynamic of overstressing a production

system by continuous expediting are obvious.

As the rate of engines expedited through the system rises, both the gear WIP levels
and production rates explode out of control. Mathematically, the introduction multiplier of
engines is not important. The trend, however, is vitally important to this study. Expediting
engines without regard for component production (and, as one can imagine, for suppliers)
has drastic effects Brought on by the bulehip effect. Component manufacturers are left
scrambling to make up the difference on key components for expedited engines.
Additionally, it must be noted that internally introduced component orders or rework does
not produce the increases shown above. Even though the calculation was included to allow
for internally generated orders, the pressure seen from expedited engines far outweighs aﬂy
internal pressure. Imagine what happens, then, when component manufacturing experiences
a quality problem and has significant rework. This would magnify an already out of control

system.

3.5 Recommendation

So where do we stand? Expediting and rewotk internally generated at the

component level has significant effects on WIP levels and production rates, but a2 manager
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has the ability to fix these problems through quality improvements, efficient inventory
management and proactive manipulation of the production schedule. However, this
pressure pales in comparison to that generated from expedited engines, and the component
manager’s hands are tied to fix these external issues. Adding to the confusion is the drive to
ship as many engines and kits as possible to meet revenue numbers. What can one manager
do?

The answer lies in the linkage between production and assembly, and a
rrianufacturing system designed to meet actual customer demand, not simply a production
schedule. As shown, component production is absolutely linked to the assembly schedule,
and must follow the same production patterns. Even though original mental models
thought the two systems were separate, historical data and the bullwhip effect show their
intimate relationship. To see any significant improvement, which is certainly possible at the
component level, the systems must be de-coupled (production must follow an independent
production schedule based on the actual demand from assembly and from spare parts
customer). Component production must focus on making individual gears (in optimum
batch size) for specific orders.

- Fortunately, this is possible in this environment through the introduction of demand
flow technology. Additionally, value can be added one step sooner in the process by
shipping gear orders to assembly as complete kits, rather than separate components. This
further increases the visibility of gear inventory levels and allows much more proactive
manipulation of the production schedule to meet the required level of customer service

while maintaining the lowest levels of inventory:.
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- Chapter 4 Kit Plan

4.1 Kit Plan Introduction

The plan to kit gears and shafts, by otder, in appropriate quantities sérved as thé first
step to building complete gear modules prior to shipment to the assembly facility. Engineers
and managers felt that a complete gear module could and should be designed, manufactured
and assembled at the Gear Production Center (GPC). The orginizational shift to the Center
of Excellence (COE) model furthered this idea by co-locating all functions necessary for
independent profit and loss operation. Also, to continue studying the material and
information delay issues developed in the model, the kit plan served to co-locate production
and inventory of all gear products in one location. By kitting, information flows between the
COE and the assembly warehouse for individual gear components would be eliminated.
Gears would be shipped as complete engine order kits the same day the engine was released
to the shop floor, and the only required exchange of information would be the engine release
date. Responsibility for production of all gears in a kit would again rest with the COE, and
the information transfer would involve gear kits and subassemblies, rather than individual
components. Likewise, material flow of bulk gear shipments would now consist of complete
kits, allowing the COE to ship the right gear, in the right amount, and to more proactively
adjust their gear production schedule to match true OEM and spare parts demand on a pull
schedule. |

Originally, the GPC manufactured individual gear and shaft products, grouped in
batches, then delivered them to the assembly facility in bulk. Although the information
system was set up to allow full visibility of finished goods inventory at all points in the
manufacturing chain, delays in material and information flow severely decreased confidence
in real time information through these channels and caused continual confusion about
component order status. Meetings between component directors and assembly occurred
- three times weekly with the goal of sharing order status to make more informed and
proactive adjustments to the assembly production schedule. However, meetings were long
~ and complex, and the continuous stream of order numbers and status allowed for side
conversations, last minute deals, and phone calls for up-to-the-minute réports. Much of the

coordination value was lost, leaving many directors to simply wait for the word to expedite
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critical orders. The information system was poor, communication between directors was
mediocre, and the inventory and order status remained a mystery.

By building complete gear modules, the Gear Production Center would take 2 big
step toward de-coupling from the current information and material flow system by
completing all value added steps necessary in 2 module or kit prior to shipment to a
customer (either internal or external). The COE, with the added functionality, could actually

operate as an independent business.

4.2 Kitting Development

As mentioned earlier, though, an organizational shift of this magnitude was not
possible at this point. Instead, a first step was ‘proposed to kit all gears and shafts prior to
shipment. Components would still be produced in existing batches, but the finished goods
inventory would be delivered to a COE warehouse (not the central assembly warehouse).
Components would then be grouped by order number, arranged in trays and carts, and
delivered as complete kits. At the assembly facility, these trays could then be pulled by order
number and arranged in build sequence on an engine cart, saving warehouse personnel
valuable shopping time and giving the Gear COE complete control over finished goods
inventory levels and order status. To provide some perspective, it is necessaty to present the
original assembly warehouse procedures. By doing this, both information and material flows
will be shown, and the effects of their delays can be immediately identified.

As components were completed at the Gear COE, they were packaged, loaded onto
carts and transported to the assembly warehouse. Upon atrival, each part was immediately
scanned, or “bought into” the warehouse by an electronic inveﬁtory management system

(WMS, or Warehouse Management Systcm) and taken to the appropriate location.

Inventory was arranged by engine family, and components from different facilities were

loaded onto color coded carts. In theory, this procedure allowed the warehouse personnel
to quickly locate the engine family and proper component. Additionally, a hand held WMS
transmitter listed the entire order bill of materials and the correct location of the desired
componenf. As each part was “picked,” or taken from the warehouse shelf and staged on an
assembly cart, it was entered into WMS and the serial number of eeach part was noted on the
bill of materials to track each part during its life with the engine. An average engine used

three carts for staging and parts were arranged on each shelf in order, allowing the assembler

57



easy access with minimal searching. Finally, after the engihe was staged then cleared for
release, some carts were moved to assembly stations while others went to a subassembly
section where intermediate assemblies were completed prior to general assembly. As
subassemblies were completed, they were immediately moved to the corresponding engine

station to wait for assembly. Graphically, the process flow is shown in Figure 4.2-1.

{ompanen Pag

Trans to Engine Station

Wait 4
Wait 1
l Transportation to Assembly Trans to Subasscmbly
Y
Wait 2
Wait 5
l Buy in and Shelving /
Subassembly
and Delivery — 7 Wait 6
Wait 3
Staging Assembly

Figure 421 Production-Assembly Process Flow: This figure shows the flow of
individual gears from packaging through assembly. Note that after Wait 4 there are
two possible locations for transport — either dircctly to an engine station and a wait

for assembly, or to subassembly and even greater time waiting.
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Average times for each step are shown below:

* Component Packaging: 2 hours

» Wait 1: 2 hours

* Transportation to Assembly: 15 minutes
= Wait 2: | . 6 hours

* Buy in and Shelving: 30 minutes
= Wait 3 1 week

= Staging (complete engine): 6 hours

» Wait 4: 3 days

® Transportation to Subasscmbly: 10 minutes
= Wait 5: 2 days

®  Subassembly and Delivery: 4 hours

= Transportation to Engine Station: 10 minutes
= Wait6: 2 days

= Assembly: 8 hours

All of these steps are important parts of the process map, but for simplicity of
further discussion transportation delays will be neglected and only processing and waiting
times will be discussed. The reason for this is that transportation deals 6nly with material
movement, and with or without a component kit plan material will still travel the same path.
Also, the travel times are insignificant compared to the sum of waiting and processing times
of the rest of the system. With that in mind, discussion turns to the mechanics, advantages
and disadvantages of the component kit plan.

Once individual components ate shelved in the assembly warehouse they wait until
picked for an engine, kit or spare parts order. They are grouped in trays by engine family
and part number. . This seems efficient on the surface; but further inspection revealed some
disturbing issues. Although each tray contained a certain number of identical parts, which
aided in visual inventory count, multiple trays of the same part number were found in several
different locations on the engine family rack, as well in several different engine family
locations. Shown in Figure 4.2-2 is schematic of the layout of the assembly warehouse, and

close-ups of an engine rack and part tray are presented in Figure 4.2-3.
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Color shows engine racks containing trays of identical gears

Figure 4.2-2 Warehouse Overhead View: Overhead view of the assembly warehouse

showing organization of components by engine family.
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* Several different trays ol the same
part number, not grouped together.

For Engine Rack, color shows trays with the same géars
For Part Tray, color shows the presence of a gear
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Figure 4.2-3 Engine Rack and Part Tray: Engine racks and part trays containing

identical gears.

As gears were taken from a tray, additional time was not spent to rearrange all other
‘ gears on the rack to backfill the vacant spot. When a tray emptied, it was immediately
replaced by a full tray, which had just been bought into the facility. As new trays of like
gears were bought in, individual gears were not removed from that tray to backfill vacant
spots, but the entire full tray was placed in an open location in the rack. Then, by separating
components by engine family, the facility was able to save travel time during the picking and
staging process. Although at the tray and rack level there was some disorganization, the time
spent not rearranging individual components made the buy in and shelving process very
smooth. In short, warehouse personncl became much more efficient through time saved in
shelving, picking and staging due to the reduced travel and shopping time. Finally, after
installing the WMS system to electronically monitor inventory levels, the facility was able to
jump from an inventory accuracy level of 70% to over 95%.

So why kit gears at the COE level? With a system this effictent, wouldn’t it be easier
just to fix the information system to more accurately reflect inventory levels at real time
speed rather than creating the chaos of physically relocating entire sections of the original
warehouse? Maybe, but remember that the long-term goal was to build complete gear
modules at the component level. To build them there inventory must be there, and for the
inventory to be there it must be moved from its current location. So the logic follows: If the
Gear COE was not looking to build complete modules, the system need not change and
resources could be dedicated to improving the information and material flow between the
component facﬂiﬁés and assembly. However, if complete modules are to be built prior to

shipment to a customer then the entire system to support that must be co-located.

4.3 Pros and Cons

The entire system? In fact, the entire system necessary build complete modules prior
to shipment involves not just component manufacturing and on-site inventory management,
it involves purchasing (for raw materials and purchased components), finance (to track cost
performance), and an assembly section to actually assembly the parts into modules.

Fortunately, the move to a COE strucfure provided the foundation for integrating all
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necessary support functions. There is still work to be done determining the exact
otganization structure of the COE, as well as defining roles and responsibilities, but the
groundwork has been laid for this type of restructuring. But what about someone to actually
assemble the parts? This is skilled work requiring spccial qualifications, and as luck would
have it the subassembly section in the assembly facilify s its own organization, structurally
separate from the engine assemblers. When the decision is fi;nally made to produce
complete modules, moving the subassembly section can be accomplished with little
difficulty. |

Arguments against such a drastic change include the fact that subassembly and
assembly associates are mutually supporting. Although subassemblers cannot replace engine
assemblers (engine assembly requires a higher lcvel of certification), enginé assemblers can
and do fill in to complete subassembly work when necessary. After physically moving the
subassembly section to a different location a measure of mutual support will be lost, but this
step is far into the future and will get due attention long before a move is made. Another
argument is that physically moving the inventory will mean less visibility for engine
cootdinators who must have accurate, up to date information on matertal status in order to
propetly adjust the engine production schedule. Later, an attempt will be made to show the
futility of such an argument, and possibly even the irrelevance of engine coordinators
altogether with a new system. Finally, it was noted that creating a separate warehouse might
compromise the physical security of the components. While it is true that multiple facilities
increase the need for prudent (and possible costly) security measures, this issue must be
included in any future study.

Why is so much emphasis placed on the above arguments? It was mentioned earlier
that this facility was not ready to support such a radical organizational change. Having been
through a company-side restructuring, a voluntary retirement and a reduction in force,
opposition to change was well understood. The arguments above were heard most
frequently during interviews and presentations, and they are presented here to show the level
of resistance under which this kit plan was being developed.

After identifying the process steps and their approximate times, the kit plan was
developed to reduce or eliminate some of the non-value added time and to bring some of
the value added steps furfher upstredm in the manufacturing process. Specifically,

concentration centers first on the break between Wait 4 and Transportation to Subassembly,
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then on the break between Subassembly and Delivery, and Wait 6. These are the two
locations where future kitting, and then complete production of subassemblies will integrate
into the assembly process.

The mechanics of the kit plan do not differ significantly from the inventory flow
seen in the original assembly system, but there are differences. Many steps originally
accomplished at the assembly level will now be completed at the component level, and the
effect on the process steps and waiting time will be noted.

Component packaging will not change. Parts will continue to move from the
production floor to the packaging area upon completion. The first change, then, is what
happens at Wait 1. Although not so significant in relation to the total time, this is actually a
step which can be climinated altogether. When parts are moved from the component facility
to assembly, travel time and additional resources are necessary. Trucks are used to make
runs throughout the day, and packaged parts wait for each of those runs. Therefore, a
tradeoff is made between holding inventory and efficiently loading a truck. By moving
inventory closer to the component facility, however, packaged components can be
immediately moved to a storage location. In fact, during development of the kit plan a new
storage location was identified in the same building, just down the hall. In relation to the
total movement and processing time, transportation to the storage facility is almost
instantaneous.

Once transportation is complete, the old system required a waiting pertod (along
with incoming components from two other facilities) before buy-in and shelving could
occur. Again, this waiting time was not great but could be reduced or even eliminated in the
new system. If a part was moved directly from packaging, through transportation and
immediately shelved, Wait 1 and Wait 2 would be completely eliminated. A manpower issue
might exist, however, if one person was not able to adequately cover the amount of
incoming orders. Although this issue was noted during kit plan development, it was not
investigated further. It was agreed that this issue would be solved during the construction of
the new warehouse, after testing during various incoming order levels. It made no sense at
this stage to try and replicate the éystem.

Between shélving and staging, aﬁ unavoidable wait occurs. Given the constraints of
the MRP system under which the assembly facility operated, the Gear COE was susceptible

to engine production schedule variability. Even if all components were built to order, and
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completed just in time for staging and transportation to ﬁssembly, the production schedule
could at any minute change and force components to be re-shelved in favor of other, more
critical parts. This wait, producing the first significant amount of inventory, was able to be
reduced but not eliminated altogether. Therefore, allowances were made to hold certain
amounts of inventory in this buffer to not only protect the Gear COE from assembly
variability, but also to maintain adequate delivery performance for kit and spare part orders.

Looking next to staging, the old system required a wait before transportation to
either subassembly of an engine station. Due to production schedule variability mentioned
above, this was unavoidable in some circumstances. Also, at some points during the
quattetly production cycle there were discrepancies between the workload in subassembly
and at engine stations. Usually, the subasscmbly section ran short of work and was idle. To
balance holdiﬁg inventory and keep subassembly gainfully employed, certain components
were split from a staged engine and transported to subassemblies. Although this kept the
section busy, it is obvious that once the work was complete it again sat (although now on the
shop floor) waiting for the rest of the engine components to be released into production.

What happens if engine components are staged at the component facility? First,
components for an engine can remain on the shelves until a concrete decision has been
‘made to release an engine to the production floor. Since this decision is made days in
advance of staging the parts, the component facility has plenty of time to react and can
assemble kits in a just-in-time fashion for transportation to assembly. The next logical step
after kitting, and this may prematurely jump to the punchline, is that complete modules are
assembled in a just-in-time fashion and are transported directly to the engine station. Was it
mentioned earlier that engine coordinators, who are responsible for tracking all component
order status, might be irrelevant when complete kits (and then complete modules) are

shipped, complete, on the day of engine release?

4.4 What to Kit?

The first step in developing a kit plan was to determine exactly what to kit depending
on type of order (engine, kit or spare parts). For engines and rebuild kits, the bills of |
materials had already been developed including both purchased parts and manufactured
components from all three component facilities. Spare parts orders were not standard, so b

they were not included in this study. Only engines and kits, then, were considered for
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kitting. Note: Spare parts would still be mncluded in developing production schedules, and
the variance of these orders taken into account in figuring optimum batch size and
production runs, but after production they would be separated from components marked for
kits and held separately.

There were approximately 150 different engine builds and kits (including both parent
engine families and derivatives). Space was limited for additional warehouses on the
campus, and attempting to kit each one would be wasteful. Many of these builds were
similar, so it did not make sense to develop individual kits for all 150 cases. Instead, kits
with similar (or even identical) components were grouped into one kit. Only 51 kits were
required to cover the original 150 possible kit configurations, saving space.

At the Gear COE, kits would be comprised of only ﬁlanufactuted gears and shafts.
Since the COE was already using cell based manufacturing for different components, it
made sense to further break the kit bill of materials into cell groups. This would first aid in
visual inspection of inventory in each kit, and would allow cell managers to more proactively
adjust their production schedules to produce necessary components in time for delivery. By
identifying each kit by engine family and then break them into different cells, visibility on the
components for any order would be brought to the absolute lowest level, the cell manager.
Whereas in the original production system COE Directors and the Vice President of
Manufacturing made decisions about delivery of individual components, now the
responsibility for components rested with the first line manager. COE directors could then
concentrate on subassembly and engine kits, and senior executives could track engine orders,
instead of individual parts.

Shown in Figure 4.4-1 is a representative kit for a single engine order. Not that the
bill contains all the manufactured parts from a component facility broken down by

manufacturing cell.
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85-180C 3800272-1 02 - 3604090-1 1
698195-6 1
22 371551 1
75283 3
23 76389-1 1

Organized by: 24 372420 1)
- Engine 372822-2 1
. 73749-6 1
- Build Number 29 75280 1
- Cell 75285-4 1

Figure 4.4-1 Representative Kit: This shows (by part number and manufacturing
cell) the gear products proposed for one engine kit. It is a representative kit of the
85-180C engine, Build Number 3800272-1. Products from cells 02, 22-24 and 29 are
shown. This kit currently includes only internally manufactuted parts. Future

kitting will include both intemaﬂy and externally sourced gear products.

It was mentioned earlier that certain engine families contained not only the parent
engine but also derivatives of that engine. The kit above shows not only the engine number
(85-180C), but also the build number (3800272-1). Some engines had up to a dozen
different build numbers. At the component level, kits were grouped according to similarity,
meaning that one kit contained the identical parts for a number of different engine builds.
Although that makes the build number meaningless in maintaining kit inventory, it seemed
appropriate to include this additional step during explanation.

To avoid confusion between engines and build numbers, interim part numbers
would be made for each of the 50 kits. At the component level, these interim numbers
would be used to track specific kits, replacing the need for a complete bill of materials for
the kit. No change would be seen at the assembly facility, since the tray would be delivered
as a mix of individual part numbers, and the interim number would no longer be necessaty.
Additionally, the build number would be included with the delivered kit, along with the
appropriate order number, in order to ensurc accuracy of the transaction and accountability
of all gears.

This accuracy and accountability may seem like common sense, but it was a vital step
in ensuring the success of the kit plan. As the assembly facility was currently laid out, both

original equipment assemblers and rebuild technicians were located under the same roof.
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Communication between these two groups was frequent, but unfortunately it was normally
to secutre needed parts that were not readily available in inventory. Earlier it was mentioned
that often engines were released onto the shop floor without a complete bill of parts. Also,
subassemblies were released prior to engine release in order to keep the subassembly section
in work. Sometimes, even these subassemblies were released without a complete bill
preventing any work. So, many times both engine and subassembly carts waited for
assembly for days on the shop floor. The best way to explain the issues that developed is to
tell a story.

If a rebuild technician did not have a certain part, he or she would first look to
inventory to find the part. If the part was not in stock and the order was critical, the next
step was to go onto the OEM assembly floor to find the part. If lucky, the technician would
find the part on an engine or subassembly rack that was waiting for assembly, but without a
complete bill. The managers compared order completion dates, and parts were routinely
given away. This worked both ways, when OEM assemblers were short parts that they
could find in rebuild. What is confusing here is that this type of transaction is the best way
for the assembly managers to maintain smooth flow of engines through the facility. If an
OEM order did not have a complete bill, and the necessary components would take many
days to arrive, it did not make sense to sit on other components which could be used
somewhere else to get engines out the door. If studied only within the scope of the
assembly facility, this procedure was an important and necessaty part of coordinating
completion times to meet end-of-quarter production quotas.

The problem arises when these parts, having been identified at the component level
as being released to the floor with an order, turn up missing as a result of 2 unknown
transaction made at assembly. Unfortunately, the information about that part’s location
flows very Slowly back to the production facility, and when it finally arrives it is usually in the
form of an expedited order. The component production schedule, which worked adequately
to get the part to assembly on time, now has to scramble and disrupt current production to
expedite a small batch to meet this “new” critical engine assembly. A vicious cycle is
generated when other components, forced to wait for the expedited order, fall behind in the
schedule and are delivered late to assembly.‘ As one part 1s expedited,rothers wait and

become critical, only to be then expedited to meet new critical engines.
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4.5 New System Layout
So how can a kit plan solve these issues? Shown below are two diagrams. Figure
4.5-1 shows the existing production and assembly system, and Figure 4.5-2 shows a new

system with kitting.

. Existing System

Part Lot I Part Number
Part Lot Part Number
Part Lot—f> Part Number— SubAssembly

Part Lot Part Number

Part Lot Part Number 7
Assembly

Part Lot ]| Part Number

Part Lot Part Number

Part Lot—L> Part Number—> SubAssembly

PartLot | Part Number

Part Lot I Part Number

Gears Assembly > Spares

Figure 4.5-1 Existing System without Kitting: The cutoff of gear product visibility
occurs as parts are shipped to the assembly warehouse. This significantly increases

the information feedback loop involving order processing and status.

Proposed System

Part Lot Part Number
Part Lot Part Number .
Part Lot—— Part Number—> SubAssembly I
Part Lot Part Number \'\
Part Lot Part Number
J Assembly
Part Lot Part Number / 301
Part Lot Part Number I
Part Lot— Part Number—> SubAssembly
Part Lot Part Number I
‘Part Lot Part Number
" Gears —> Spares

Figure 4.5-2 Proposed System with Kitting: By maintaining gear product visibility

until the final assembly step, the feedback loop is dramatically decreased.
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Chapter 5 Integrating Product Ownership

5.1 Background

The previous chapters focused mostly on the mathematical development of a model
that mirrors historical assembly and production behavior. The bullwhip and hockey stick
effects have been developed, and an understanding of the variables that affect the actual
production and assembly systerhs is complete. However, this explanation is too narrow in
the larger context of material and information flow throughout the entire organization. An
analogy to where this thesis now stands would be like discussing the growth of 2 plant only
in terms of cell reproduction, without any mention of food, water and sunlight. In this
thesis, only the most tactical issues have been developed, without regard for systems
operations or strategy. The link between manufacturing and marketing must in some way be
addressed. This allows a full appreciation for the development and execution of the
production schedule, and allows the presentation of a unified argument for process
improvements across the entire supply chain, not just in the manufacturing sector.

This section is not meant to be quantitative. Instead, the goal is to present a
framework for developing a material and information flow management system in the Case
and Gear COE given the current management structure, exploiting the roles and
responsibilities outlined during the business reorganization. Specifically, as the COE
assumes a greater role in designing and producing complete gear modules and separates
from the volatility associated with the assembly schedule, a higher level of customer service,
lower inventory and higher turns can be achieved, and the enterprise and manufacturing
goals can be more closely aligned.

Looking back at causal loop development, the primary driver of the system was a
revenue target. This target determined the number of engines built in a production quarter, .
and the number of spare parts orders that would be filled. The model itself did not include
this revenue variable, but instead concentrated on the behavior of the system after being
motivated by a revenue target (1.e. it met an artificial engine quota that was developed based
on historical data). Now, by looking more at the manufacturing-marketing linkage, it will be
possible to suggest different information and material flow options to improve. system

performance, lower inventory and increase customer responsiveness.
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A plethora of material and information management tools abound. Material
Requirements Planning (MRP), Just-in-Time (JIT), Kanban, CONWIP, and Lean
Manufacturing are only a few such tools which provide managers ways to match demand
and operate at the lowest cost structure possible in terms of inventory, labor, and capital.
An additional tools is presented here, called Demand Flow Technology (DFT), which is
simply a western approach to Japanese Just-in-Time manufacturing. DFT, however,
includes certain aspects that aid its applicability to the traditional western manufacturing
philosophy of schedulized manufacturing systems.

Demand Flow Technology is a business tool that allows companies to more
effectively track material and information flow, and continually adjust daily and weekly
production based on actual customer demand. The reltance on schedules for individual
components and subassemblies is eliminated, and individual components are manufactured
to meet specific orders and delivery dates, without lost time in raw material, WIP and
finished goods inventories. If this sounds su.s*’piciously like Japanese Kanban techniques,
well, it should. However, DFT goes far beyond pull processes and machine cells. It
incorporates a strategic link between marketing and manufacturing, refocusing the
manufacturing process on takt time, cost, quality and inventory turns.

In a traditional scheduled manufacturing environment, marketing and manufacturing
are forever at odds. Manufacturing managers complain that marketing always asks for more
than they can offer in both volume and speed. Marketing complains of missed orders,
unresponsive design changes and quality problems. Understanding that the incentives of
each organization are not necessarily linked, it is incvitable that such tension arises (Porteus
& Whahg, 1989). As discussed earlier in this work, marketing drove the need to ship a quota
of engines. Manufacturing managers resorted to extraordinary measures of expediting
engines and components to meet demand, and often achieved production goals with a
reliance on overtime labor.

The primary marketing goal was to ship as many engines as possible in a production
quarter to meet revenue targets. Manufacturing managers, on the other ha_ﬁd, were much
more interested in production efficiency, and scheduled production runs to optimize labor
and time in the process. Because the origimﬂ Gear Production Center operated solely on a
cost basis, many times these priorities did not match. The necessity to ship orders, in many

cases, overrode production efficiency and process cost. Manufacturing managers were in a
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race to not only produce scheduled components, but also to meet the additional demand of
expedited orders.

Scheduled manufacturing also necessitated.a large and complex stbrage facility for
raw materials, work in process and fimished goods. Since components were not necessarily
produced at the pull of an engine but rather to a production schedule, many pieces waited in
finished goods for engine release (which was often changed to suit completion and delivery
of priotity orders). Raw materials waited in bulk for release to the production floor (which
were purchased in quantity as a tradeoff to reduce shipping expense). Finally, ih‘ventory
turns ranged between four and seven. l.onglead times and excess work in process inventory
contributed to quality exposure of cach lot of gear products. Although defect rates were
fairly constant and the sources of the defects could be found, aggressive process
improvement methods were met with some resistance.

The organizational shift to the COE concept was the first step toward creating an
organization that could operate independently and not remain tied to assembly volatility.
The new COE included the functional expertise to design and manufacture complete gear
modules, and also would be in a position to control the entire value chain from raw material
procurement to delivery of complete modules. Cellular manufacturing was already in place,
and a vigorous attempt was underway by supply chain management to optimize product lot
sizes to minimize inventory and reduce cycle times. However, the Case and Gear COE was
still invariably linked to the production processes of the three other component facilities,

and was still under the control of assembly for delivery performance.

5.2 Application

Demand Flow Technology is surprisingly simple. In fact, its tenets may be too
simplistic to find their way into this type of literature. The basic philosophy is nothing more
than fundamental industrial engineering concepts appropriately matched with consistent
manufacturing metrics. More importantly, however, DFT provides a framework to align
necessary support functions around the manufacturing process capability yet retain their own
inherent goals and metrics. 7

John Costanza’s book, The Quantum Leap, explains the mechanics of DFT in much
greater detail than is possible here. Relevant examples allow the reader to understand the

most basic production schedule inefficiencies and to establish conclusions about its worth as
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not only a production scheduling technique, but as a tool for capacity planning and
inventory control. Costanza then discusses product design, total employee and total quality
involvement, and financial management. Finally, issues are outlined that are relevant to
implementing the DFT stratcgy and technology.

The point of introducing DFT in this context is not to develop its mechanics. The
point is to discuss its relevance in the overall supply chain, of which the COE is only a small
part. A quote from a Compaq Computer Corporation senior manager says, “There is only
so much that can be done to affect costs within 4-wall manufacturing. The real payoff is
going to come from the supply chain as a whole, and we must all look outside our own
organizations to reap these benefits.” The model developed in this work seeks to
understand the flow of gear products across the entire chain from raw materials to engine
shipment. This type of system thiking is absolutely critical in implementing any type of
change involving two or more elements of a value chain. |

The aspect of DFT most relevant to this.discussion is the link between
manufacturing and marketing. In the model presented here, that link started with a revenue
target driving engine and parts orders and ended with shipped orders. Tension existed
within manufacturing to mect orders levels that were consistently higher than current
process capability. Marketing, or Enterprise, was concerned with meeting quarterly demand
regardless of costs. Somewhere in starting and ending this link, ownership for the product
was lost and information and material flow suffered.

The first step in DFT is to gain control of both orders and the manufacturing
process, and force continued ownership of the product throughout the value chain. In this
case, the break in ownership occurred once the product was complete. Enterprise forecasts
were tnaccurate and manufacturing was left to sort through excess finished goods inventory
meant for a lost order. The bullwhip of randomly fluctuating orders caused continual
production schedule disruption, and as was proven in the system model, that fluctuation
amplified as it moved back through the value chain. Assembly reacted to changing engine
orders, but the component centers bore the brunt of the effect with two levels of
ampliﬁcatioﬁ and the combined variability of both OEM, kit and spare parts orders.

To improve forecasting accuracy would seem like throwing gobd money after bad.
In fact, the first rule of forecasting is that they are inherently inaccurate. Additionally, trying

to artificially “frecze” a production schedule at a certain time limit severely limits the hands
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of marketing to meet rapidly changing customer rcquircinents. Therefore, it is necessary to
look to other variables in the system which can indirectly drive forecasting accuracy (yet
maintain flexibility) and allow for smooth, level-loaded production (yet still be responsive to
changing market demands) and minimize the bullwhip effect. |

DFT addresses both forecasting accuracy and production efficiency through the
medium of ownership. In the case of the manufacturing facility in this study, ownership of
the product was lost between order entry and production, and between compleﬁon and
order shipment. Marketing owned nothing in production, and manufacturing owned no
outstanding orders. To suggest a remedy would be to develop continuous ownership, or a
set of linkages, of production from order entry through shipment, by both marketing and
production (Hausman & Montgomery, 1997).

Specifically, manufacturing would own all outstanding orders and in-process
inventory to maximize process efficiency. This way, marketing would not be able to change
the production schedule except in the most extreme circumstances, and manufacturing
would look much further out on the production horizon to more efficiently use the
resources at hand to effectively meet customer demand in the right amount, at the right time.
Marketing, on the other hand, would immediately take ownership of all completed orders,
whether firm orders existed or not. To meet aggressive inventory metrics, marketing would
have to become much more proactive about determining the status of each order, and about
entering that order into the system. No longer would manufacturing be left holding excess
inventory for which orders never existed, and marketing would no longer be apt to
artificially inflate orders based on inaccurate forecasts.

Currently, marketing and manufacturing are separate functions in the manufacturing
environment in this company. Although linking marketing and manufacturing would
certainly be possible, geographical and functional separation make the task much more
difficult. As the COE further defines its place in the organization, and roles and
responsibilities become clearcr, linking the matketing and manufactuting functions will be of
prime importance in achieving the greatest improvements across the entire supply chain.
Co-location of both functions, a resolution to production ownership and aligned metrics

should be long term goals in support of Demand Flow Technology implementation.
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Chapter 6 Conclusion

6.1 Integration

Feedback systems with few variables are casily understood through inspection,
common sense and basic mathematics. Simple cause-and-effect relationships directly affect
flows to produce net increases and/or decreases in the stocks in an environment. However,
as those systems become more complex, adding more variables and multiple cause-and-
effect relationships, it 1s nearly impossible to accurately determine the net effect in an
environment from a change in any single variable. Inspecction is confusing, common sense
often leads to incorrect conclusions, and the mathematical representations become
complicated sets of equations necessitating advanced solving techniques. Modeling is a way
to create a mathematical representation of a system to determine the net effect from a
change in specific variables.

In a manufacturing system, there exist countless material and information feedback
systems that can dramatically affect system performance. At all levels, in all functions, policy
differences contribute to inefficiencics in transmitting information and material, resulting in
a bullwhip effect. This bullwhip cffect, as shown by Jay Forrester, can have significant
impacts on a supply chain. As scparate policies are implemented, and managers make sound
decisions affecting their own piece of the chain, the overall effect can be detrimental.

In the manufacturing environment studied in this work, many information and
material feedback loops combined between component production and turbine engine
assembly. These feedback loops (and the inherent variability of demand forecasting)
produced increasing amplitude of response to producton changes. As demand fluctuated,
so too did the manufacturing process supportng it, but at 2 much more aggressive rate.
Forrester’s step and sine inputs showed only cither a one-time change in demand or a
constant, predictable cyclicality. As shown, however, very rarely was demand fluctuation
either predictable or singular in this industry. Instead, managers had to cope with consistent
step inputs (and accompanying noitsc) overlying inherent cyclicality.

Additionally, the concept of a production gap (a result of MRP type systems which
rely on sequential scheduling of components, subassemblies and complete assemblies) was

introduced to show its importance in the feedback race between the stock of engines actually
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complete and the desired level of engines to be complétéd in a production quarter. Many of
the management incentives in this type of svstem revolve around this production gap,
sometimes driving undesirable side cffects like expediting in order to meet atbitrary
production quotas at the expense of process efficiency. A delicate balance must be
maintained between the manufacturing process and marketing flexibility, but often .
maximizing the performance of one for short-term gain happens only at the long-term
expense of the other. .

The manufacturing model presented in Chapter 3 builds on the bullwhip effect
development of Chapter 2. Forrester’s work showed the amplification of response and delay
of information transmissions with each step back from an end consumet, and also showed
the delay in increasing or decreasing material flow. In this manufacturing system, the delays
of information and material flow operate similarly. With each step back, changes in demand
are learned later, and the speed necessary to increase or decrease production to account for
that demand change (and either backorders or cancelled orders) is directly a function of the
time delay in transmission of the information.

Many variables affected the manufacturing system in this study. Each variable tested
represented some type of controllable delay, and the sensitivity of each was used to then
determine appropriate management actions to take in improving material and information
flow. Interpretation of the results highlighted the most important variables affecting delays,
and this study was able to suggest a kit plan (at the component level) which would
significantly shorten the feedback loops between assembly and component production. By
maintaining a dedicated gear product finished goods inventory, more immediate decisions
could be made about product flow through the factory. Also, by kitting the gears by order
number prior to shipment to assembly, each component facility could make more proactive
adjustments to production schedules to improve delivery performance and maintain less
inventory. -Said another way - the component facilities could be lean.

Demand Flow Technology (DFT) was then introduced to provide a framework for
integrating other functions in the organization that were not directly involved in the
manufacturing process. Marketing; specifically, was identified because of their fundamental
interest in outstanding orders at the facilities and in complete orders to be shipped.
Unfortunately, in many circumstances manufacturing and marketing metrics are at odds

about product mix, volume and flexibility. Using DFT, a more efficient method to link
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manufacturing and marketing incentives through product ownership was introduced. The
point was to look outside the four walls of a manufacturing facility and seek process
improvement over an entire supply chain, rather than only in the production process.

To conclude, this main emphasis of this work was to introduce a problem solving
approach, using system dynamics modeling, to suggest policy improvements in a specific
manufacturing environment. The basics of modeling were presented to inspire confidence
in the process and an understanding of the results obtained in a production-distribution
setting. Then, using the same piecewise approach, a manufacturing model was developed to
mirror the information and material delays inherent in a production-assembly system. While
the most intricate details of creating a mathematical representation of the production system
were deliberately minimized, causal loop development was instead highlighted. As a first
step in determining the cause-and-effect relationships in any system, it can be implemented
by anyone at any level of an organization. It does not take cxtraordinary skill to decide that
one variable affects another, and this step alone can become a powerful management tool to
uncover basic misconceptions about business processcs, whether they be in the

manufacturing industry, finance, service or research.

6.2 Future Work

The variables modeled in this work represent a study at one point in time. This
company, and the industry as a whole, is in a state of flux. Business reorganization
contﬁbuted to many changes over the course of the internship, and continued
improvements have altered the system since. Although an :ittempt was made in this study to
generalize the relationships between key variables and the results of their interactions, the
system is now fundamentally different. As the kit plan is developed in the future, then, a
look back at the cause-and-effect rela tionships of this study must be performed. Although
the relationships may seem similar, subtle changes from updated management policies alter
even the most basic interactions. Additionally, the reference modes associated with those
variables could significantly change which may impact the initial conditions of a
mathematical representation. In short, the same process outlined in this study must be
followed to develop a new, improved model of system.petformance.

'Ihe kit plan was a first pass attempt ta define a solution to the information and

material feedback delays noted in the system. Although it represents an in-depth look at
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inventory control across the production-assembly value chain, its tactical implementation
was not fully outlined. To implement such a plan in the future, then, will require a2 more
thorough development of the operational and tactical clements necessarty to support this-
type of organizational change. This study looked to kit current engine configurations, and
exploited the tremendous overlap of components to minimize the space required to house
such a finished goods inventory. Enginc configuration and cémponent overlap must be
again researched to determine appropriate inventory levels and kit configurations.

Finally, a morc thorough cost/benefit analysis must be conducted to determine the
true economic benefit of such a plan. During the internship, the study was able to
adequately outline the material and informarion flow cfficiencies that could be created with a
kit plan, but the cost drivers (and their overall effect on the system) were not fully examined.
Using the same causal loop dcvclopmrent process used for the production process, the
interactions of product mix and volume, quality, delivery and flexibility can be weighed

against the costs incurred by the system.
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07

Appendix A

Manufacturing Model Documentation

AR1= Engines 1/(Assembly Delay/3)
Units: engine/Month

Engine completion rate after one delay period.

AR2= Engines 2/(Assembly Delay/3)
Units: engine/Month

Engine completion rate after two delay periods.

AR3= Engines 3/(Assembly Delay/3)
Units: engine/Month

Engine completion rate after three delay periods.

Assembly Delay= max(2*Time to Target,3)
Units: Month

Represents pressure felt to complete engines as the target time approaches. Begins with a linear delay
until a theoretical minimum delay is reached, representing the fastest rate at which an engine can be
completed.

Decision Rate= Desired Assembly Rate+(Expedited Infusion*Switch)
Units: engine/Month

Desired rate at which engines are assembled developed as a function of the difference between actual
and desired WIP, the difference between normal and actual stocks of unfilled orders, the order
introduction rate and the WIP Adjustment Time.

Delay in Filling Orders= Gear Handling+(Gear Out of Stock*(Desired Inventory/Stores Inventory))
Units: Month

Time lag as a result of raw material stockout or material handling.

Desired Assembly Rate= UO Inc+((Normal UO-UO Engines)+(Desired WIP-Engine WIP))/WIP
Adjustment)

Units: engine/Month

Desired rate at which engines are asscmbled.
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(08)

09)

(10)

an

(12)

(13)

(14

(15)

(16)

Desired Gear Rate= Gear Inc+((Normal UO Gears-00 Gears)+(Desired Gear WIP-Gear

WIP))/Gear WIP Adjustment)
Units: gear/Month

The desired rate at which gear/shaft orders will be processed.

Desired Gear WIP= Smoothed Gears*Gear Assembly Delay
Units: gear

Desired WIP level based on smoothed orders.

Desired Inventory= "Inventory/Orders Constant™*Smoothed Gears
Units: gear

Desired finished goods inventory available to fill orders.

Desired WIP= Smoothed Orders*Assembly Delay
Units: engine

Desired engine WIP.

Engine WIP= Engines 1+Lingincs 2+Engines 3
Units: engine

Total actual WIP level in the assembly system.

Engines 1= INTEG (Dccision Rate-AR1, 250)
Units: engine

WIP level in first delay period.

Engines 2= INTEG (AR1-AR2, 250)
Units: engine

WIP level in sécond delay period.

Engines 3= INTEG (AR2-AR3, 250)
Units: engine

WIP level in third delay period.

Expedited Infusion= IF THEN ELSE(WIP Delta>0,WIP Delta*4,0)

Units: engine/ Month

Represents engines needing rework or expedited through the system.
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a7

(18)

19

(20)

1)

@2

23)

@9

(25)

External Orders= Orders*Inpur Modification
Units: gear/Month

This is the modified kit/spares order variable.

Feasible Shipments= Stores Inventory/Delay in Filling Orders
Units: gear/Month

Shipment rate at which the current system ts able to support.

FINAL TIME =3
Units: Month

The final time for the simulation.

Gear Assembly Delay= max(Gear Time to Target.1)
Units: Month '

Used to determine the pressure felt as the targer ime approaches.

Gear Dec= GR3
Units: gear/Month

Completed gear/shaft orders leaving the system.

Gear Decision Rate= Desired Gear Rate
Units: gear/Month

The desired rate at which gear/shaft orders will be processed.

Gear Exp Rate= Gear Infusion
Units: gear/Month

Amount of gear orders which are targeted for expedition through the system.

Gear Handling= 1
Units: Month

Delay in handling raw material for producton.
Gear Inc= External Orders+OEM Orders

Units: gear/Month

This is the total inflow of gear/shaft orders to the Gear Production Center.

82



(26)

@n

(28)'

29

(0

G2y

(32

33)

4

Gear Infusion= max(Expedited Infusion®' Gears/engine”,(Gear WIP-Desired Gear WIP)/Time)

Units: gear/Month

Decision variable which can add gear/shaft orders into the system. Represents effect of rework or
expediting.

Gear Out of Stock= 1
Units: Month

Time necessary to obtain raw material when out of stock.

Gear Smoothing Delay= 8
Units: Month

Smoothing constant for gear/shaft orders.

Gear Target Time= 3
Units: Month
Production time for revenue purposes.
) 4
Gear Time to Target= Gear Target Time-Time
Units: Month

Time left in production cycle until target time is reached.

Gear WIP= Gears 1+Gears 2+Gears 3
Units: gear

Total actual WIP in the Gear Production Center.

Gear WIP Adjustment= 2
Units: Month

Represents the time factor to adjust gear/shaft WIP levels.

Gears 1= INTEG (Gear Decision Rate+Gear Exp Rate-GR1, 6000)
Units: gear
Level 1 WIP.

Gears 2= INTEG (GR1-GR2, 6000)
Units: gear.
Level 2 WIP.
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(35

36)

@37

(38)

(39

(40)

@)

“2)

Gears 3= INTEG (GR2-GR3. 6000)
Units: gear
Level 3 WIP.

"Gears/engine"=9
Units: gear/engine

Average gear/shaft products per engine

GR1= Gears 1/(Gear Assembly Delay/3)
Units: gear/Month

Gear production rate after one delay cycle.

GR2= Gears 2/(Gear Assembly Delay/3)
Units: gear/Month

Gear production rate after two dcl.'iy cvcles.

GR3= Gears 3/(Gear Assembly Delay/3)
Units: gear/Month

Final gear production rate.

Handling= 1
Units: Month

Delay resulting from component handling.

INITIAL TIME = 0.001
Units: Month

The initial time for the simulation.

Input Modification=
1+STEP(Step Height,Step Time)+STEP(Step Height2 Step Time2)+
(Pulse Quantity/TIMI: STEP)*PULSE(Pulse Time, TIME STEP)+
RAMPRamp Slope,Ramp Stagt Time,Ramp End Time)+
Sine Amplitude*SIN(2+3.14159*Time/Sine Period)+
STEP(1,Noise Start Time)*Noise Amplitude*(RANDOM 0 1) - 0.5)
Units: dimensionless

This is a tool that allows quick access to a variety of input patterns.
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*3)

()

(45)

(46)

¢

(48)

49

(0

G

"Inventory/Orders Constant”= 2
Units: Month

Represents the desired time amount of inventory in the system.

MACPAC= 200
Units: engine/Month

Engine orders through MACPAC.

Noise Amplitude= ()
Units: dimensionless

Magnitude of the random input, as a fraction of the base value of the input.

Noise Start Time= 1
Units: Week

Start ime for the random nput.

Normal UO= Smoothed Orders*(Handling+Out of Stock)
Units: engine

Normal stock of unfilled orders in the system.

Normal UO Gears= Smoothed Gears*(Gear Handling+Gear Out of Stock)
Units: gear

The normal amount of unfilled otders reflected by smoothed orders.

OEM Orders= Decision Rate*' Gears/enginc"
Units: gear/Month

The number of OEM engine orders.

Orders= 4200
Units: gear/Month

This represents the number of kit/spares orders.

Qut of Stock= 1
Units: Month '

Delay timc as a result of our of stock components.
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(52)

(53)

G

(55)

(56)

7

(58)

9

(60)

Pulse Quantity= ()
Units: dimenstonless®Week

The quantity to be added to the delay in the pulse input, as a fraction of the base value of Input. For
example, to pulse in 4 quamity equal to 50% of the current value of input, set to .50. ’

Pulse Time= 50
Units: Week

Time at which the pulsc in Input occurs.

Ramp End Time= 1e+009
Units: Week

End time for the ramp input.

Ramp Slope= ()
Units: 1/Week

Slope of the ramp input, as a fraction of the base value.

Ramp Start Time= 10
Units: Week

Start time for the ramp input.

SAVEPER = TIME STEP
Units: Month

The frequency with which output is stored.

Shipments= Shipments Sent I'rom Stores
Units: gear/Month

Shipments sent from the Gear Production center to spares orders and stores.

Shipments Sent From Stores= MIN(Feasible Shipments,Gear Inc)
Units: gear/Month

Actual shipments which can be shipped from the Gear Production center. Moderated by the negative
hold variable to prevent shipments without material.

Sine Amplitude= ()

Units: dimensionless

Amplitude of the sine wave in Input, as a fraction of the base value.
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(61)

(62)

63)

64

(65)

(66)

67

(68)

69)

(70)

Sine Period= 52
Units: Week

Periodicity of the sine wave in Input.

Smoothed Gears= SMOOTH(Gear Inc,Gear Smoothing Delav)

Units: gear/Month

Resulting smoothed gear/shaft order into the system,

Smoothed Orders= SMOOTH(UO Inc,Smoothing Delay)

Units: engine/Month

Smoothed engine orders.

Smoothing Delay= §
Units: Month

Smoothing constant for engine orders.

Step Height= ()

Units: dimensionless

Height of the step input, as a fraction of the base value.

Step Height2= 0

Units: dimensionless

Step Time= 1
Units: Week

Time for the step input.

Step Time2= 48
Units: Week

Stores Il]\rént01')r= INTLEG (GR3-Shipments, 6000)
Units: gear

Gear products i storage at assembly warehouse

Switch= 1
Units: dimensionless

Turns expediting on and off.

87



)

72

(73)

(74)

75

(76)

an

(78)

(79

Target Time=3
Units: Month

Production time for revenue purposes.

TIME STEP = (.015625
Units: Month

The time step for the simulation.

Time to Target= Target Time-Time
Units: Month

Time left in production cycle until target timc is reached.

UQO Dec= AR3
Units: engine/Month

Completion rate of engines.

UO Engines= INTEG (+U0 Inc-UO Dec, 600)
Units: engine

Number of outstanding engine orders.

UQO Gears= INTEG (+Gear Inc-Gear Dec, 10000)
Units: gear

Stock of outstanding gear/shaft orders.

UO Inc= MACPAC
Units: engine/Month

Inflow of engine orders.

WIP Adjustment= 1.5
Units: Month

Time required to adjust WIP in the Engine Assembly facility.

WIP Delta= Enginc WIP-Desired WIP -
Units: engine

Difference between actual and desired WIP evels.
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Industrial Dynamics Model Documentiation

(Note: Most variables in this model include explanations for clarity. A more detailed explanation can be found
in Chapter 15 of Industrial Dynamics)

(001)

(002)

(003)

(004)

(005)

(006)

(007)

(008)

AID=6
Units: Week

Proportionality constant between Inventory and Average Sales at Distributor

AIF=4
Units: Week

Proportionality constant berween Inventory and Average Sales at Factory

AIR=38
Units: Week

Proportionality constant berween Inventory and Average Sales at Retail

ALF= 1e+006
Units: units/Week

Constant specifying manufacturing capacity limit at factory

CPD= CPD1+CPD2+CPD3
Units: units

Cletical in-process orders at distributor.

CPD1= INTEG (PDD-PSI1, 667)
Units: units

Level 1 clerical in-pmccss.

CPD2= INTEG (PSD!-PSD2, 667)
Units: units

Level 2 clerical in-process.
CPD3= INTEG (PSDD2-PSD3, 667)

Units: units -

Level 3 clerical in-process.
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(009)

(010)

(011)

(012)

(013)

014

(015)

(016)

(017)

CPF= CPFI1+CPI2+C P13
Units: units

Clerical in-process orders at factory.

CPF1= INTEG (MDI-MOIL, 333)
Units: units

Level 1 factory m-process.

CPF2= INTEG (MOI'1-MOF2, 333)
Units: units

Level 2 factory in-process.

CPF3= INTEG (MOF2-MOF3, 333)
Units: units

Level 3 factory in-process.

CPR= CPRI+CPR2+CPR3
Units: units

Clerical in-process at retailer.

CPR1= INTEG (PDR-PSR1, 1000)
Units: units

Level 1 retail in-process.

CPR2= INTEG (PSR1-PSR2, 1000)
Units: units

Level 2 retail in-process.

CPR3= INTEG (PSR2-PSR3, 1000)
Units: units

Level 3 retail in-process.

DCD=2
Units: Week

Delay in Clerical Order Placing at Distributor
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(018)

(019)

(020)

(021)

(022)

(023)

(024)

(025)

(026)

DCF=1
Units: Week

Delay in Clerical Order Placing at Factory

DCR=3
Units: Week
Delay in Clerical Order Placing at Retailer

DFD= DHD+DUD*(1DD/"IAD, Inventory")
Units: Week
Delay in filling orders ar Distributor

DFF= DHF+DUF*(1DFE/"IAF, Inventory")
Units: Week
Delay in filling orders at Distributor

DFR= DHR+DUR*(IDR/"IAR, Inventory™)
Units: Week
Delay in filling orders at Retail

DHD=1
Units: Week

Delay in handling time at Distributor

DHF=1
Units: Week

Delay in handling time at Factory

DHR=1
Units: Week

Delay in handling time at Retail

DID?- 4
Units: Week

Delay in Inventory (and Pipeline) adjustment at Distributor
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(027) DIF= 4
Units: Week

Delay in Inventory (and Pipeline) adjustment at Factory

(028) DIR=4
Units: Week

Delay in Inventory (and Pipeline) adjustment at Retail

029y DMD=05
Units: Week

Delay in order mailing from Distributor

(030) DMR=0.5
Units: Week

Delay in order mailing from retailer

(031) DPF=6
Units: Week

Delay in order mailing from lactory

(032) DRD= 8
Units: Week

Delay in smoothing requisitions at Distributor, the smoothing time constant

(033) DRF=38
Units: Week

Delay in smoothing requisitions at Factory, the smoothing time constant

(034) DRR= 8
Units: Week

Delay in smoothing requisitions at Retail, the smoothing time constant

(035) DTD=2
Units: Week

Delay in Transportation of goods to Distributor



(036)

(037)

(038)

(039)

(040)

(041)

(042)

(043)

(044)

DTR=1
Units: Week

Delay in Transportation of goods to Retail

DUD= 0.6
Units: Week

Delay in Unfilled Orders at Distributor from out-of-stock items at normal inventory

DUF=1
Units: Weck

Delay in Unfilled Orders at Factory from out-of-stock items at normal inventory

DUR=0.8
Units: Week

Delay in Unfilled Orders at Retail from out-of-stock items at normal inventory

FINAL TIME =120
Units: Week

The final time for the simulation.

"IAD, Inventory"= INTEG (SRD3-SSD, 6000)
Units: units

Actual Inventory at Distributor

"IAF, Inventory"= INTEG (SRF3-SSF, 4000)
Units: units

Actual Inventory at I'actory

"IAR, Inventory"= INTEG (SRR3-"SSR, Shipments", 8000)
Units: units

Actual Inventory at Retail

IDD= AID*RSD
Units: units

Inventory Desired at Distributor
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(045)

(046)

(047)

(048)

049)

(050)

(051)

(052)

IDF= AIF'RSK
Units: units

Inventory Desired at Factory

IDR= AIR*RSR
Units: units

Inventory Desired at Retail

INITIAL TIME = 0.00]
Units: Weck

The initial time for the simulation.

Input Modification=
1+STEP(Step Height,Step Time)+STEP(Step Height2,Step Time2)+
(Pulse Quantity/TIME STEP)*PULSE(Pulse Time TIME STEP)+
RAMP(Ramp Slope,Ramp Start Time Ramp Lind Time)+
Sine Amplitude*SIN(2*3.14159*Time/Sine Period)+
STEP(1,Noise Start Time)*Noise Amplitude*RANDOM 0 1() - 0.5)
Units: dimensionless

This is a tool which allows quick access to a variety of input patterns.

LAD= CPD+PMD+"UOF, Unfilled Orders"+MT1D
Units: units

Pipeline Orders Actually in “I'ransit to Retail

LAF= CPF+QOPF
Units: units

Pipeline Orders Acrually in Transit through Factory

LAR= CPR+PNMR+"UOD, Unfilled Orders"+MNTR
Units: units

Pipeline Orders Actually in Transit to Retail

LDD= RSD*DCD+DMD+DFF+DTD)
Units: units

Pipeline Orders desired (necessary) in transit to distributor
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(053)

(054)

(055)

(056)

(057)

(058)

(059)

(060)

(061)

LDF= RSIF(DCI+DPE)

Units: units

Pipeline Orders desired (necessary) in transit through factory

LDR= RSRHDCR+DMR+DFD+DTR)
Units: units

Pipeline Orders desired (or necessary) to supply Retail

MDF= IF THEN ELSE(ALF<MWF,ALF,MWEF)
Units: units/Week

Manufacturing rate decision at factory

MOF1= CPF1/(IDCI¢/3)
Units: units/Week

Manufacturing order rate into factory Level 1

MOF2= CPF2/(DCF/3)
Units: units/Week

Manufacturing order rate into factory Level 2

MOF3= CPF3/(DCF/3)
Units: units/Wecek

Manufacturing order rate into factory Level 3

MTD= MTD1+MTD2+MTD3
Units: units

Material in transit to distributor

MTD1= INTEG (SSF-SRID1, 667)
Units: units

Level 1 material ro distributor

MTD2= INTEG (SRD!L-SRID2, 667)
Units: units '

Level 2 material to distributor
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(062)

(063)

(064)

(065)

(066)

(067)

(068)

(069)

(070)

MTD3= INTEG (SRD2-SRD3, 667)
Units: units

Level 3 material to distriburor

MTR= MTRI+MTR2+MTR3

Units: units

Material in transit ro rerail

MTR1= INTEG (+SSID-SRR1, 333)
Units: units

Level 1 material to retail

MTR2= INTEG (SRRI1-5RR2, 333)
Units: units )

Level 2 matcrial to retail

MTR3= INTEG (SRR2-SRR3, 333)
Units: units

Level 3 matenal to retail

MWE= RRE3+(((IDF-"IAF, Inventory")+(LIDFE-LAK)+("UOF, Unfilled Orders"-UNF))/DIF)
Units: units/Week

Manufacturing rate wanted ar factory

NID= "IAD, Inventory"/TIME STEP
Units: units/Weck

Negative Inventory limit rate at Distributor

NIF="IAl Inventory" /TIME STEP
Units: units/Week

Negative Inventory limit rate at Factory

NIR= "IAR, Inventory" /TIME STEP
Units: units/Week

Negative Inventory limit rate at Retail
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(071)

(072)

(073)

(074)

(075)

(076)

077)

(078)

(079)

Noise Amplitude= 0
Units: dimenstonless

Magnitude of the random input, as a fraction of the base value of the input.

Noise Start Time= 1
Units: Week

Start time for the random input.

OPF= OPF1+OPF2+OPE3
Units: units

Orders in production at tactory

OPF1= INTEG (MOJ}3-SRF1, 2000)
Units: units

Level 1 production at factory

OPF2= INTEG (SRF1-SR:2, 2000)
Units: units '

Level 2 production at factory

OPF3= INTEG (SRF2-SRI¥3, 2000)
Units: units

Level 3 production at factory

Order Introduction= 1000
Units: units/Week

Constant introduction of orders, will be modified by "Input Modification" variable

Otders= Input Modification“Order Introduction
Units: units/Week

Rate at which orders are introduced into the system

Outs D= $5D
Units: units /Week

Same variﬁble as SSD

97



(080)

(081)

(082)

(083)

(084)

(085)

(086) -

(087)

(088)

QOuts K= SSF
Units: units/Weck

Same variable as SSF

Outs R= "SSR, Shipments"
Units: units/Weck

Same variable as SSR

PDD= RRD3+(((IDD-"IAD, Inventory")+(.1DD-LAD)+("UOD, Unfilled Orders"-UND))/DID)

Units: units/Week

Purchase rate decision at distributor

PDR= "RRR, Orders"+(((IDR-"IAR, Inventory")+(L.DR-LAR)+("UOR, Unfilled Orders"-

UNR))/DIR)
Units: units/Week

Purchase rate decision at retailer

PMD= PMD1+PMD2+PMD3
Units: units

Purchase orders in mail from distributor

PMD1=INTEG (PSD3-RRFI, 167)
Units: units

Level 1 mail from distributor

PMD2= INTEG (RRFI-RRF2, 167)
Units: units

Level 2 mail from distributor

PMD3= INTEG (RRI2-RRI3, 167)
Units: units

Level 3 mail from distributor

PMR= PMR1+PMR2+PMR3
Units: units

Purchase orders in mail from retailer
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(osb)

(090)

(091)

(092)

(093)

(094)

" (095)

(096)

©097)

PMR1= INTLEG (PSR3-RRD, 167)
Units: units

Level 1 mail from retatler

PMR2= INTEG (RRD1-RRID2, 167)
Units: units

Level 2 mail from retailer

PMR3= INTEG (RRD2-RRD3, 167)
Units: units

Level 3 mail from retailer

PSD1= CPD1/(DCD/3)
Units: units/Week

Level 1 purchase orders senr from distributor

PSD2= CPD2/(DCD/3)

Units: units/Week

Level 2 purchase orders sent from distributor

PSD3= CPD3/(1DCD/3)
Units: units/Weck

Level 3 purchase orders sent from distributor

PSR1= CPR1 /(DCR/3)
Units: units/Wecek

Level 1 purchase orders sent from retailer

PSR2= CPR2/ (DCR/3)
Units: unirs/Weck

Level 2 purchase orders sent from retailer

PSR3= CPR3/(DCR/3)
Units: units/Week

Level 3 purchase orders sent from retailer
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(098)

(099)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

Pulse Quantty= ()

Units: dimensionless*\Week

The quantity to be added to the delay in the pulse inpur, as a fraction of the base value of Input. For

example, to pulsc in a quantity equal to 50% of the current value of input, set to .50.

Pulse Ttme= 50
Units: Weck

Time at which the pulse in Input occurs.

Ramp End Time= le+009
Units: Week

End time for the ramp mput.

Ramp Slope= 0
Units: 1/Week

Slope of the ramp input, as a fraction of the basc value.

Ramp Start Time= 10
Units: Week

Start time for the ramp input.

RRD1=PMR1/(DMR/3)
Units: units/Weck

Level 1 regs received at distributor

RRD2= PMR2/(DMR/3)
Units: units/Weck

Level 2 reys received at distributor

RRD3= PMR3/ (DI\’[R/ 3)
Units: units/Weck

Level 3 reys received at distributor

RRF1= PMD1/(DMD/3)
Units: units/Week

Level 1 regs received at factory
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(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114

(115)

RRE2= PMD2/(1DMD/3)
Units:A units/Wecek

Level 2 reys recerved at factory

RRE3= PMD3/(DMD/3)
Units: units/Week .

Level 3 reys received at factory

"RRR, Orders"= Order Introduction*Input Modification
Units: units/Week

Modified order introduction rate

RSD= SMOOTH®RRD3,DRD)
Units: units/Weck

Reqs smoothed at distributor

RSF= SMOOTH(RRF3,DRIY)
Units: units/Week

Regs smoothed ar factory

RSR= SMOOTH("RRR, Orders" DRR)
Units: units/Week

Reqs smoothed at retailer

SAVEPER = TIME STEP
Units: Weck

The frequency with which output is stored.

Sine Amplitude= (.1

Units: dimensionless

Amplitudc of the sine wave in Input, as a fraction of the base value.

Sine _Period= 52
Units: Week

Periodicity of the sine wave in Input.
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(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124

SRD1= M1DL/(IDTD/3)
Units: units/Weck

Level 1 shipments received at distributor

SRD2= MTD2/(DTD/3)
Units: units/Week

Level 2 shipments received at distributor

SRD3= MTD3/(DTD/3)
Units: units/Weck

Level 3 shipments received at distributor

SRF1= OPF1/(DPE/3)
Units: units/Weck

Level 1 shipments received at factory

SRF2= OPIF2/(DPF/3)

Units: units/Week

Level 2 shipments received at factory

SRF3= OPF3/(DPFE/3)
Units: units/Week

Level 3 shipments received at factory

SRR1= MTR1/(DTR/3)
Units: units/Wecek

Level 1 shipments recetved at retailer

SRR2= MTR2/(DTR/3)
Units: units/Weck

Level 2 shipments received at retailer

SRR3= MTR3/(DTR/3)
Units: units/Week

Level 3 shipments received at retailer
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(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

SSD=IIF TT1EN FLSEQID<STD,NID,STD)
Units: unis, \Week

Shipments sent from distributor

SSF=IF T11EN ELSEMNIF<STF NIF,STF)
Units: units/Week

Shipments sent from factory

"SSR, Shipments"= I THIEN ELSE(NIR<STR.NIR STR)
Units: units/Week

Shipments sent from Retail

STD="U0OD, Unfilled Orders"/DFD
Units: units/Week

Shipping Rate to be tried at Distributor

Step Hetght= 0
Units: dimensionless

Height of the step input, as a fraction of the base value.

Step Height2= 0

Units: dimensionless

Step Time= |
Units: Weck

Time for the step nput.

Step Time2= 48
Units: Week

STE="COI, Unfilled Orders"/DFF
Units: units/\Week

Shipping Rate to be tried ar Factory
STR="UOR, Unfilled Orders"/DFR

Units: units/Week

Shipping Rate to be tried at Retail
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(135)

(136)

137

(138)

(139)

(140)

(141)

TIME STL: = 0.0625
Units: Weck

UND= RSD*(DID+DUID)
Units: units »

Unfilled Normal level of orders at Distributor

UNF= RSI"{(DHI+DUF)
Units: units

Unfilled Normal level of orders at Factory

UNR= RSR*(DHR+DUR)
Units: units

Unfilled Normal level of orders at Retail

"UOD, Unfilled Orders"= INTEG (RRD3-Outs D, 1600)
Units: units

Stock of Unfilled Orders at Distributor

"UQF, Unfilled Orders"= INTEG (RRF3-Outs ¥, 2000)
Units: units

Stock of Unfilled Orders at Factory

"UOR, Unfilled Orrders"= INTEG (+"RRR, Orders”"-Outs R, 1400)
Units: units

Stock of Unfilled Orders at Retail
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Appendix B

Manufacturing Model
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This figurc is the actual model developed with Vensim simulation software
Graphically, it represents a system of cquations which, when repeatedly run

through many cycles, yields the systems results referred to in this work
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Industrial Dynamics Model

This figure is the model developed by

Forrester in Industrial Dynamics. Further

study is directed to that work for a more

thorough discussion. of its development.
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