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Abstract

A functional representation, which is a generalization of the linear convolution inte-

gral, is used to describe continuous nonlinear systems. Emphasis is placed on nonlinear

systems composed of linear subsystems with memory, and nonlinear no-memory

subsystems. An "Algebra of Systems" is developed to facilitate the description of such

combined systems. From this algebraic description, multidimensional system trans-

forms are obtained. These transforms specify the system in much the same manner as

one-dimensional transforms specify linear systems. The system transforms and the

transform of the system's input signal are then used to determine the transform of the

output signal. Transform theory is also used for determining averages and spectra of

the system output when the input is a random signal Gaussianly distributed. Certain

theoretical aspects of the functional representation are discussed.
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I. INTRODUCTION

1.1 SYSTEM ANALYSIS

In physical analysis, a "sysi

and an effect. In system termii

output. This is represented in

x(t) NONLINEAR
SYSTEM

f(t)

Fig. 1. Nonlinear system.

The continuous concept implies

tem" is

nology,

often used to specify the relation between a cause

the cause is the system input and the effect is the

Fig. 1, where x is the input signal and f is the output

signal. Usually these signals are functions of time. Of

the several general classifications of systems, the class

that has been most successfully studied is the linear,

time-stationary system. This report is concerned with

the nonlinear, stationary system - particularly the con-

tinuous nonlinear stationary system. The continuous non-

linear system will be described in detail in section 6. 8.

a certain degree of smoothness in the system's input-

output relation. The linear system can be regarded as a special case of the continuous

nonlinear system.

The analysis of a system is dependent upon finding a mathematical description of the

relation between the system input and the system output. Classically, the relation is

obtained by means of a differential equation. However, the present means of repre-

senting a linear system is by the convolution integral and its associated transforms.

The mathematical representation for nonlinear systems which forms the basis of this

report is closely related to these modern methods for linear system analysis.

1.2 FUNCTIONAL REPRESENTATION

A function f operates on a set of variables x to produce a new set of variables f(x).

A functional, however, operates on a set of functions and produces a new set of functions.

In other words, a functional is a function of a function.

The mathematical description used in this report to represent a nonlinear system is

the functional series:

f(t) = h(T) X(t-T) dT + h2(T1l T2) x(t-T 1 ) x(t-T 2 ) dTldT2
oo 00 0oo

fo hn1(T .. ITn) x(t-T 1 ) ... X(t-Tn) dT 1 ... dT +...· .. f_0hn(T1 ..... n (1)

where f(t) is the system output, and x(t) is the system input. The first term in this

series is the ordinary convolution integral that is used for linear system analysis. The

other terms are generalizations of this linear convolution term. In linear system theory,

the function h(t) is known as the "impulse response." In section 1.5, the function

hn(tl .. ., tn) will be shown to be a generalized impulse response. In this report, the
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limits of integration, unless otherwise indicated, will be from -oo to oo.

1.3 HISTORICAL NOTE

These functionals were studied by Volterra (1) early in the twentieth century. In

1942, Wiener (2) first applied the functional series to the study of a nonlinear electrical

circuit problem. He was concerned with computing the output moments of a detector

circuit with a random input. Later, he used this representation as the basis for a

canonical form for nonlinear systems (3).

More recently, the functional representation has been investigated by a number of

workers. Bose (3) investigated the canonical form problem and developed a system

that overcame many of the difficulties associated with Wiener's system. Brilliant (4)

was concerned with the validity of the functional representation, and found that systems

satisfying a certain continuity condition could be represented. He also showed that the

representation was well suited to the combining of nonlinear systems.

Wiener and others have extended the application of this functional representation,

in the random input case, beyond the results of Wiener's paper of 1942. Wiener (5)

developed the rigorous theory for random (white Gaussian) inputs and applied the theory

to such situations as are found in FM spectra. Barrett's (6) paper is an excellent expo-

sition of the state of this theory at the time the present work was undertaken.

1.4 COMPARISON OF THE FUNCTIONAL APPROACH WITH OTHER NONLINEAR

METHODS

The analysis of nonlinear systems has been an interesting problem for many years.

It is therefore of benefit to compare the present state of the functional approach with the

principal classical methods. There are two main classes of solutions to nonlinear prob-

lems: transient solutions, and steady-state solutions.

Transient solutions are obtained classically by the solution of nonlinear differential

equations (7). For first-order equations, solutions can usually be obtained formally,

although numerical integration procedures may be required. However, bnly special

forms of second-order equations can be solved. Force-free solutions for second-order

equations can be found with the phase-plane method - even for extremely violent nonlin-

earities. Examples of violent and nonviolent nonlinearites are shown in Fig. 2. Gen-

erally, numerical techniques must be used to solve higher-order equations.

Sinusoidal steady-state solutions can be obtained for systems in which the first

harmonic is the only significant term. This is the basis for the "describing function

method" (8), and for some others. System order is not a limiting factor, nor, generally,

is the violence of the nonlinearity.

The functional series (Eq. 1) is a very general method for representing nonlinear

systems (see secs. 2.1 and 6.8). However, at least in the present state of these methods,

it does have a definite practical limitation. If the nonlinearities in a system are too

violent, the number of terms required for a close approximation becomes very large.
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Fig. 2. Violence of nonlinearities: (a) nonviolent nonlinearity
(vacuum tube with "medium" signal); (b) violent non-
linearity (ideal clipper).
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It would then be necessary to resort to a computer, and a great deal of the value of the

method would be lost. However, if the nonlinearities are sufficiently smooth, the trans -

ient response of a system is determined by the first few terms of the series, and there

is little limitation from system order. Also, steady-state solutions do not require that

the first harmonic be the only significant term.

The comparisons that have just been made are illustrated graphically in Fig. 3. The

shaded areas show the regions of effectiveness of various methods of analysis. However,

the graphs should not be taken to mean that these methods can cover all systems in the

shaded regions, but only a significantly large number.

The first problem in system analysis is to find a suitable mathematical description.

This description is called the "system representation." The functional representation

studied in this report has three important properties:

(a) It has an explicit input-output relation.

(b) It facilitates the combination of systems.

(c) It allows the consideration of random inputs.

If a representation has an implicit - rather than explicit - input-output relation, it means

that the whole problem must be re-solved for each different input. (The differential

equation representation is implicit.) Property (b) is important because the electrical

engineer spends a great deal of time "putting things together." The effect of random

inputs is a problem of great interest to the engineer.

The classical methods based on the differential equation have none of these proper-

ties. On the other hand, the significance of transform and convolution methods in linear

system analysis rests heavily on these properties. Therefore, these three properties

give three distinct advantages to the functional representation as compared with the

classical nonlinear methods.

1.5 INTERPRETATION OF THE FUNCTIONAL SERIES

Having indicated the position of the functional representation in the general field of

nonlinear system analysis, the writer would like to present an interpretation of the

functional series. First of all, the series (Eq. 1) can be viewed as a series of time

functions:

f(t) = fl(t) + f2 (t) + ... + fn(t) + ... (2)

where

fn(t) .* fhn(Tl. *, Tn) x(t-Tl) X(t-Tn) dTl 1 dTn (3)

That is, at some time t 1 we have a series of numbers fn(tl) that add up to give the

actual value of the system output f(tl). Also, each of the functions f (t) is seen from

Eq. 3 to be the result of a convolution operation on the input time function x(t). The

first term, fl(t), in particular, is recognized as being the result of putting x(t) into a
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linear system with an impulse response, h(t). Indeed, each term fn(t) can be viewed

as the output of a system with input x(t).

To take advantage of this idea, we introduce an

operator notation. In this notation, if we have a gen-

x f eral nonlinear system with output f(t) and input x(t), as

illustrated in Fig. 1, then we can write f(t) = H[x(t)],

or if we make the time dependence implicit, f = H[x].
Fig. 4. Nonlinear system. Then the symbol H represents the operation that the

system makes on input x to produce output f. In dia-

gram form, a nonlinear system is then represented as shown in Fig. 4. (The usual

operator notation ' is replaced by H in this report.)

The first term can be viewed as a linear system operation, and therefore

fl(t) = Hl[X(t)]

or

fl= H1 [x]

where the subscript "1" is added to the H notation to denote that the operation is linear.

Now, a linear system is specified by means of its impulse response; and thus, associated

with the linear system H1 , there is an impulse response hi(t), and

fl(t) = f hi(T) X(t-T) dT

Now, the second term in the series (Eq. 2) is

f2() jj h2(Tl T2) x(t-Tl) x(t-T 2 ) dTldT 2 (4)

If the input x(t) is changed by a gain factor E to give a new input ex(t), then the new

output, g2 (t), is

g2 (t) = j h 2(Tj, T2 ) EX(t-T 1 ) Ex(t-T 2 ) dT 1 dT 2

or

g2 (t) = E2 f2 (t)

Thus, the second term is the result of a quadratic (or squaring) operation. In the oper-

ator notation, then, f2 = H 2 [x], where the subscript "2" indicates that this is a quadratic

operation. Similarly, f3 = H H[x]. Associated with each Hn

is the function hn(t 1 ... . tn), and

fn(t) = ... h- 1 ' . Tn) x(t-T 1 ) . x(t-Tn) dT ldT

5



In the light of these remarks, Eq. 1 can be rewritten as

f = H[x] + H2 [x] + ... + Hn[X] + (6)

That is, the system H has been broken into a parallel combination of systems Hn, as

shown in Fig. 5. This is the desired inter-

pretation: The functional representation

represents a nonlinear system as a par-

allel bank of systems H that are nt h --n
order nonlinear systems and have an

impulse -response function hn(t 1' . .. tn)

associated with them.

The next task is to show how these

functions h (t 1, . . .,t ) can be interpreted

as impulse responses. The linear case

is well known. If fl = H 1l[x], and x(t) =
Fig. 5. Block diagram for the functional 6(t+T), an impulse at time -T, then f(0) =

representation.
h1(T), where hl(t) is the impulse response.

Now consider a generalization of the second term of the functional series

g2 (t) = h2 (T1 , T2 ) x(t-T 1 ) Y(t-T 2 ) dTldT2

and represent this operationally by

g2 = H2 (xy)

(7)

(8)

This operational form will be considered in greater detail in section 2. 2. The difference

between f2 = H2 [x] and g2 = H2 (xy) should be noted. The square brackets denote an actual

system operation, and the parentheses denote a mathematical operation on a pair of func -

tions. Such a form (Eq. 8) cannot occur by itself because only single-input systems are

being studied. However, it can occur in combination with other terms. onsider the

system operation f2 = H 2[x+y].

Using Eq. 4 (the actual functional relation) with Eqs. 7 and 8, we obtain

f2 = H2 (xx) + H2 (XY) + H2 (YX) + H2 (YY)

but h2 (t 1 , t 2 ) is a symmetrical function, and so

f = H2 (x 2 ) + 2H2 (xy) + H2(y 2 ) (9)

where xx = x and yy = y . In the functional form for the second-order case (Eq. 7),

with hl(tl, t 2 ) # h2 (t 2 , tl), the symmetrical function [h 2 (tl, t2 )+h 2 (t 2, t 1 )] /2 can be formed

and substituted for h2 (t1 , t 2 ) without affecting f2 (t). This procedure (5) generalizes to

hn(tl, .. .. tn), and so it will generally be assumed in this report that hn(tl . . i tn) is a

6



symmetrical function in t, t2, ... , tn .

In Eq. 9, H2 (xy) has been obtained, but it is in combination with two other terms.
Figure 6 shows how H 2 (xy) can be isolated experimentally. If the indicated operations

were performed sequentially, only one

system H2 would be needed. In the system
y(T

v(t

of Fig. 6, if x(t) = 6(t+T 1 ) and y(t) = 6(t+T 2 ),

V)=p then the output p is p = H 2 (xy), and, at

time 0, p(0) = h2 (T 1 , T 2 ). This is proved

by substituting these values of x(t) and y(t)

in Eq. 7. Thus, h 2 (t 1 ,t 2 ) can be inter-
Fig. 6. Apparatus for isolating H2 (xy). preted as an impulse response in a manner

similar to the interpretation of the linear

response hl(t). This approach can be generalized to the n th-order case, and all func-

tions hn(tl . . tn) may be called impulse responses. In section 4. 8 we shall be con-

cerned with measuring these impulse responses.

To summarize, the functional series may be regarded as representing a nonlinear

system as a parallel bank of nonlinear subsystems (or operators). Each of these sub-

systems is specified by an impulse response, hn(t1 l .. tn).

1.6 SYSTEM TRANSFORMS

If the impulse responses h2 (tl, ... tn) are known for a system, then the output f(t),

for a given input x(t), can be obtained from Eq. 1. However, the analysis of linear sys -

tems has been greatly aided by the fact that "convolution in the time domain is multiplica-

tion in the frequency domain." An analogous result holds for nonlinear systems - except

that multiple -order transformations must be used.

These transforms are defined by the transform pairs:

1~i . f n ... fy(t1 . tn) exp(sltl+...+sntn)dt dtn (10)

and

Y(t n) = (In ... fY(s 1 . .,sn) exp(-st-... Sntn)d 1 '... dn (1 1)

Appropriate contours of integration and values of sl, s 2, and so on can be chosen in a

manner similar to that in the linear transform case to give Fourier or Laplace trans-

formations.

The value of the higher -order transform theory lies in the fact that

... h(Ti. Tn) kn(tlT ' n- n) dT 1 dTn (12)

has an nth -order transform, Hn(s 1 ... Sn) Kn(s 1 . . Sn).

7



Now, consider

f(2)(t t) =/ h2(T1 , T2)(tT1 X(tlT) (2-T2) drldT 2 (13)

which is a special case of Eq. 12, and thus will have a transform, F(2)(s 1 ,s2) =

H2(s 1, s2) X(s1 ) X(s 2 ). We are interested in the special case of Eq. 13, with t 1 = t 2 = t.

Then

f 2 (t) = f(2 )(t, t) =jj h2(T 1, T2 ) x(t- T) x(t-T 2 ) dTldT 2 (14)

which is the second term in the functional series. Similarly, the output of an nth-order

system can be made artificially a function of tl, ... t n, in order to take advantage of

transform theory. The discussion at this point is only intended to define the transforms

and indicate their possible application. In Section III we shall show how the transforms

can be used to obtain the system output.

1.7 SUMMARY

We have given an introduction to the functional representation for nonlinear systems.

This functional method can be used to solve a large class of nonlinear problems in which

the classical methods fail, but it does have certain limitations, certainly, at the present

stage of development. Furthermore, the functional representation has three very desir-

able properties that make it a method of considerable strength and value.

We have seen that the representation may be viewed as a parallel bank of nonlinear

operations or subsystems. These subsystems are generalizations of the ordinary linear

convolution operation, and are specified by impulse responses. Finally, the higher-

order transform has been introduced, and its potential use indicated.

8



II. AN ALGEBRA OF SYSTEMS

2. 1 INTRODUCTION

The second property of the functional representation is that it facilitates the com-

bination of systems. This property was noticed by Brilliant (4), and he obtained formu-

las for finding the impulse responses and transforms of the component subsystems.

However, these formulas are difficult to use, and do not indicate how the components of
a system combine to produce the over-all system. These difficulties can be overcome

by means of a representation in which the whole system can be expressed by a single

equation. This representation, which is called the "Algebra of Systems," makes use of

the operator system notation that was introduced in section 1. 5.

NO- MEMORY 

(o0)

R=I

F- o~ k NONLINEARe k RESISTOR

(b)

Fig. 7. Examples of nonlinear systems: (a) nonlinear capacitor;
(b) dc motor.

We are primarily concerned with a certain class of physical systems. In this class,

the systems are composed of:

(a) nonlinear subsystems with no memory (that is, the outputs depend on the instan-

taneous value of the input and are independent of the past or future values of the input);

(b) linear subsystems that, in general, have memory.

This class of systems is of a very general nature. The only class of system that appears
to be definitely excluded is the hysteretic system. Two examples are shown in Fig. 7.

The nonlinear capacitor, viewed as a system, is equivalent to an integrator followed

by a nonlinear no-memory operation. We can see this by considering the capacitor equa-
tion

e = n(q) (15)

where e represents voltage and q, charge, and the function n represents the nonlinear
relation between charge and voltage. Then

9



t
q(t) = i(t) dt (16)

where i(t) is the current. The block diagram of Fig. 7a shows this relation between cur-

rent and voltage.

The relation between the speed X and the armature voltage e of the dc motor is given

by

e = kL coa+n(w)+k2 d (17)1 2 dt

where k and k 2 are constants, and n is a function representing the nonlinear character-

istic of the motor. Thus, the motor is equivalent to the circuit shown in Fig. 7, with

C = k2 (see Truxal (8)).

We know how to describe the linear system and the nonlinear no-memory system.

The linear system can be described by its impulse response or transform, and the non-

linear no-memory system can be described by a function relating its input and output.

The use of the functional representation depends on our being able to write, or approx-

imate, this nonlinear function by a power series or a polynomial. For example, the

saturating system of Fig. 2a can be approximated over a desired interval by

1 3 2n+ 1f = ax + a 3 x + ... + a2n+lxZn+l (18)

The ideal clipper of Fig. 2b, on the other hand, would require an extremely large n for

approximation in the form of Eq. 17. This is a practical limitation. Even very violent

nonlinearities, such as the ideal clipper, can, theoretically, be very closely approxi-

mated by a polynomial.

Now the situation is: We are given a system in which the component subsystems are

linear, or nonlinear no-memory, and we want to describe the over-all system by the

functional representation. To do this, the subsystems (which we know how to describe)

must be combined. Therefore, the ability to conveniently combine systems is very

important in the use of the functional representation for system analysis.

It can be said that not only is the ability to combine nonlinear systems an important

engineering problem but also that this ability is a basic need in the use of the functional

representation. The algebra of systems will be developed and the relation to the system

impulse responses and transforms shown.

2.2 FUNCTIONAL OPERATIONS

We introduced the operational notation in Section I. For a general system that oper-

ates on an input x(t) to produce an output f(t) (see Fig. 1), f(t) = H[x(t)] or f = H[x], where
t is implicit. The system operation (Eq. 3) is denoted by fn = Hn[x]. Then, the func-

tional series (Eq. 1) becomes f = Hl ] + [x] + .2 [x + +Hn[] + ... . If this form is

truncated at some Hn[x], it is then a functional polynomial.

Now, if fn = Hn[x], thenn 'te

10



gn = Hn[EX] = nHn[x] = Enf (19)

where E is a constant. If f(t) is the output of system H with input x(t), and f (t) is the

output with input Ex(t), it follows that

fE = EH l [ ] + H2[x] + . . EnHn[] + ... (20)
E_ -n

The usual Taylor, or power, series is

ale + aE 2 + +. n.. (21)
1 2 n

and comparison of Eqs. 20 and 21 shows that the functional series is very similar to a

power series. It will be shown in section 6. 6 that there is a strong mathematical con-

nection between them. This relationship serves to relate the functional series to ordi-

nary mathematical series.

We have represented the generalized second-order operation

g2 (t) ff h 2 (Tl T2 ) x(t-T 1 ) Y(t-T 2 ) dTldT2 (22)

by

g2 = Hz(XY) (23)

When x = y we have, g2 = H 2 (xx) = H 2 (x2 ), and since this represents a real input into

the system H2,

2 = H2(x 2)= HZ[x (24)

Terms of the form of Eq. 24 do not occur alone, but in combination with other terms. If

f = H[x+y], then from the definition of H 2 ,

f(t) = 2 h(T 1 T2 ){x(t-T )+y(t- 2 )}{x(t-Tz)+y(t-T 2 )} dTl1dT2

ffh(T 1, T2 ){x(t- 1-)x(t-T 2 )+x(t-T1 )y(t-T 2 )+y(t-T)x(t-T 2 )+y(t-T 1 )y(t-T2 )} dT 1 dT 2

(25)

But, since h(l 1 , T2) is symmetrical,

f(t) =h(T 1 T2 ){x(t (tT)(tT)Y)-2)+ y(t-T2 )+y(t-T1 )y(t-T2 )} dTldT2

=/h(Tl Tz)X(t-T )X(t-T 2 ) dTldT2 + 2 h( 1, 2 )X(t-T)Y(t-T 2) dT 1d 2

+ /h(T 1 T) y(t-T1 ) y(t-T2 ) dTldT 2 (26)

11



In terms of the definitions of Eqs. 22 and 23, Eq. 26 can be written

f = H2 (x2 ) + 2_H(xy) + H2 (Y2 ) (27)

This expansion of H2 [x+y] can be obtained directly in the short notation, by the following

sequence of steps:

f = H 2[x+y]

=H 2 ((x+y) 2 )

=H 2 (x2 +2xy+y 2 )

= H(x ) + 2H2 (xy) + H2 (y2 )

= H2[x] + 2H 2 (xY) + H2[Y ]

and this is validated by Eq. 27. Thereby, the form H 2 (xy) occurs in combination with

other similar forms.

Similarly, for the third-order case, f3 = H3[x+y = H3((x+y 3) H 3(x3+3xy+3xy +y2),

or f3 = H3 (x3 ) + 3H 3 (x2 y) + 3H 3 (xy ) + H 3 (y 3 ). This directly generalizes for the n-

order case. Not only is this a useful interpretation of the functional operation, but it

will also be shown, in the course of this report, to be extremely useful for dealing with

inputs that are composed of sums of simple functions such as sinusoids. Also, this is

of great importance in the algebraic expansion used for determining the system impulse

responses and transforms.

We have now accomplished two aims:

(a) The notion of functional power series has been introduced.

(b) The concept of nonlinear operations has been defined as generalized multiplica-

tion operations on multiple signals. For example, H3 (xyz) is an operation on a triplet

of functions x(t), y(t), and z(t).

2.3 SYSTEM COMBINATIONS

There are three basic means of combining nonlinear systems - addition, multiplica-

tion, and cascading. The addition combination of two systems involves putting the same

input into the two systems and combining the two outputs in an adder. This is shown in

Fig. 8a and is written algebraically: L = J + K, where L is the combined system, and

J and K are the component systems.

The multiplication combination is similar, except that a multiplier is substituted

for the adder. The diagram is shown in Fig. 8b and the combination is written

L = J K (28)

12



ADDITION: L = J * K

(a)

MULTIPLICATION: L= J K

(b)

CASCADE: L = J K

(c)

Fig. 8. System combinations.

K H

x I

f f+ H

(b) H (K L)

Fig. 9. Illustrating the use of brackets.

In the cascade combination the output of one system is the input of the other. This

is shown in Fig. 8c and is written L = J * K. Expressing it in words, we can use "plus"

for +, "times" for , and "cascade" for *. Then, for example, J + K is read, "jay plus

kay."

It is convenient to have a bracketing operation, in addition to the other operations.

This is used to remove ambiguity from the algebraic expressions. For example, the

system (J*K) + L is the cascade system J * K plus the system L. This is shown in

Fig. 9a. However, the system J * (K+L) is the system J cascaded with the system

(K+L). This combination is shown in Fig. 9b. The bracket, then, has the same grouping

meaning that it usually has in algebra, and all terms in parentheses specify a composite

system.

13



For the system operation f = L[x], where L = J + K, we can write

f = (J+K)[x] (29)

Similarly, if L = J * K, we can write

f = (J*K)[x] (30)

Equation 30, however, has another form. Let

y = K[x] (31)

Then, by the definition of the cascade operation (see Fig. 8c),

f = J[y] (32)

Substitution of Eq. 32 in Eq. 31 yields

f = J[K[x]] (33)

as an alternative form for Eq. 30.

Now that we have the basic definitions of this algebra, we shall proceed to develop it.

In view of the addition definition, the functional representation is seen to be an expansion

of a system H, and so H = HI + H2 + + .. +n + ...

Now, this algebra will have two uses:

(a) To expand a system in terms of its component linear and nonlinear no-memory

subsystems.

(b) To allow block-diagram manipulation.

In order to perform these manipulations, or rearrangements, certain algebraic rules

must be developed. For the addition and multiplication operations the rules are similar

to those usually followed in algebra. The rules for the cascade operation are somewhat

different. These rules will be given in the form of eight axioms. The proofs are based

on the physical significance of the algebraic operations.

The first two axioms are concerned with the addition operation.

Axiom 1. J+K = K + J (34)

This combination is illustrated in Fig. 8a. Axiom 1 states that both J + K and K + J

stand for the additive combination of Fig. 8a.

Axiom 2. J + (K+L) = (J+K) + L (35)

This axiom is illustrated by Fig. 10a. The diagram shows that it does not matter

whether K and L or J and K are grouped together.

The next two axioms are like axioms 1 and 2, except that they have plus replaced by

times.

Axiom 3. J K =K .J (36)

Axiom 4. J (K.L) = (J.K) L (37)

The diagram for the axiom 3 combination is Fig. 8b. Axiom 3 states that both J K

14
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(a) J + (K + L) = (J + K ) L

(b) J · (K L) = (J K) L

I I, f I : f
K L E ' J KKEL I I J.K

(c) J (K E L) = (J K) L

Fig. 10. Illustration of axioms.

(o) L (H 
-

K) = (L H) + (L- K)

x I a f

(b) (J+K) m L=(J L)+(KNL)

(c) (J K)L = (JL)- (K L)

Fig. 1 1. Illustration of axioms.
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and K J stand for this combination. Figure 10b is the diagram for axiom 4. It does

not matter whether K and L or J and K are grouped together.

The last axiom of this group concerns the cascade operation

Axiom 5. J * (K*L) = (J*K) * L (38)

This axiom is illustrated by Fig. 10c, where it is shown that the ( ) operation has no

physical significance. It is simply a matter of algebraic convenience.

Then, there are three axioms dealing with combined operations.

Axiom 6. L (J+K) = (L-J) + (L-K) (39)

The diagram for this axiom is Fig. 1 la. Axiom 6 is true because

f = x(y+z) = xy + yz (40)

where x, y, and z are the outputs of L, J, and K, respectively.

A similar axiom holds for the plus and cascade combination.

Axiom 7. (J+K) * L = (J*L) + (K*L) (41)

This is shown in Fig. 1 lb; the two systems illustrated there are equiva-

lent

Axiom 8. (J-K) * L = (J*L) (K*L) (42)

The two equivalent systems for this axiom are shown in Fig. llc.

It is also important to know which rearrangements are not legitimate. In particular,

we note that, in general,

I{ K K

L (J +K)

K

L x (J K)

K~J

K ·J) L

_LJ)· L x

K L

(LaJ) * (L X K)

Fig. 12. Illustration of combinations.
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J *K#K *J

L * (J+K) # (L*J) + (L*K)

L * (J-K) * (L*J) ' (L*K) (43)

Block diagrams for various expressions are given in Fig. 12, and these relations will
2 2

be demonstrated by means of simple counterexamples. Let J[x] = ax, K[x] = bx , and

2 22 24
L[x] = cx, where a, b, and c are constants. Then (J*K)[x] = a(bx) = abx , and

(K*J)[x] = b(ax2) = a bx4 , with the result that (J*K)[x] * (K*J)[x], and thus Eq. 43 is

established in this special case. We also have

(L*(J+K))[x] = c(ax2 +bx2)2 = c(a+b)2 (44)

and

((L*J)+(L*K))[x] = c(ax ) + c(bx2)2 = c(a +b ) x (45)

Since Eqs. 44 and 45 are not equal, Eq. 43 has been justified. Now

(L*(J.K))[x] = c(ax.bx2) 2 = ca b x8

and

((L*J).(L*K))[x] = c(ax ) . c(bx ) = c a b x

and so Eq. 43 is valid.

There are, however, two important special cases:

J * K =K J (46)
-l 1 1 1

and

L1 * (J+K) = (Li*J) + (L l *K) (47)

Equation 46 is known from the theory of linear systems (9). To prove Eq. 47, let

J[x] =y (48)

and

K[x] = z (49)

then (L 1 *(J+K))[x] = Ll[y+z]. But L 1 is a linear system, and by superposition, L1 [y+z] =

Ll[y] + L 1 [z]. Substituting Eqs. 48 and 49 in this expression gives

Ll[J[x]+K[x]] = Ll[J[x]] + LiLK[x]]

or

L 1 * (J+K) = (L 1 *J) + (L I*K)

and Eq. 47 is proved.

17
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2 4 ORDER OF SYSTEMS

As we have mentioned, the functional representation expands a system H in a series

H=H + H + .. + + ... (50)-1 2 -n

In section 1.5 H I was defined as a linear system, H as a quadratic system, and so on.

Hn is called an n th-order system, and H n[Ex] = EnHn[] where x is the input signal,nn -- -
and E is a constant. Equation 50 shows that this order differentiates between the terms

in the functional representation; that is, the first term is linear (first-order), the sec-

ond is quadratic (second-order), and so on. It is possible for a system to have a dc bias

at the output which is unaffected by the input. This bias can be taken as the result of a

zero-order system H with the property that

H=H +H + .. +H +...
- -o -1 -n

where H is specified by a constant h. However, since H does not have any input-

output relation, we shall usually not include it in the functional series.

So that a combined system can be expanded in the functional series (Eq. 50), the

effect of combinations on order must be noted. The system L, with

L=A +B (51)- -n -m

contains both nt h - and m th-order parts, as Eq. 51 shows. The system K, with

K=A · B (52)- -n -m

is a system of order m + n. This order follows because

K[Ex] = An[Ex] Bm[Ex] = em+nK[x]

The cascade system H, with

H = A * B (53)- -n -m

is a system of order mn. This is shown by

H[EX] = An[Bm[EX]] = (Em)n An[Bm[x]] = emn H[x]

in which we have used the alternative cascade definition (Eq. 33).

Now that the effect of system combination upon ordering has been explained, it is

possible to expand a combined system in the functional series or the functional polyno-

mial. Before giving an example of a combined system, several special systems will be

considered.

18
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2.5 SPECIAL SYSTEMS

We shall now introduce the notation for some special systems. The nonlinear no-

memory system will usually be denoted by N, so that f = N[x]. In polynomial or power-

series form,

N = N +N + ... + + .. N +... (54)

and then

2 mf = nx+n + ... +n + ... (55)

A particular linear no-memory system is the identity system I, which has the defini-

tion x = I[x].

The zero system 0 is defined as

0 = O[x] (56)

In algebraic equations, 0 will be used to denote the system 0.

These rather obvious properties should be noted:

H+ =H

and

I * = H * I = H

In this algebra it is often convenient to replace the nonlinear no-memory operations

by multiplication operations. To do this, consider the term N * H. By virtue of the

definition of N given by Eqs. 54 and 55,

Nm[x] nmxm (57)

Now, if x = H[y], then Nm[x] = Nm[H[y]] = (Nm*H)[y], and from Eq. 57, Nm[x] =

nm(H[y])m . By definition of the multiplication operation (Eq. 28) of this algebra, this

procedure gives

N *H H=n H H... H (58)
-m m - -- 

m times

Then, if we define

H. H .... H=H m

m times

we have

N * H = n Hm (59)
-m - m-

where nm is just a gain constant. The no-memory system Nm has been replaced by a

19
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multiplication operation thereby, and a sum of no-memory systems H can be replaced

by a sum of multiplication operations.

2.6 EXAMPLE 1.

The combined system will now be illustrated by an example. Let us consider the

system of Fig. 13 in which L = A 1* N * B 1 This system can be viewed as an ampli-

L= A m N 1 B1

Fig. 13. Illustrative cascade system.

fier with nonlinear distortion. Al and B1 are linear systems and N is a nonlinear no-

memory system. Let N have a linear and a cubic part, so that N = N 1 + N3. Then

L = A 1 * (N+N3) *B 1

and by using axiom 7 (Eq. 41), we obtain

L = A1 * (N *Bi+N *B 1 )

By use of Eq. 47, we have

L A1 * N 1 * B 1 + A * N3 * B 1

When N1 and N3 are replaced by multiplication operations, we have

L = A1 * (nlB) + A * n3 B1)

or

L = nlA * B + n A B1

since A1 is linear. Now L = L1 + L 3 , where L1 = nlA * B 1 , and L= n3 A1 B

This example illustrates how this algebra can be used to describe a system in terms

of its component subsystems. Next, we want to relate the algebraic representation to

the system impulse responses or transforms. Once this is done, we can proceed to find

the system response to various excitations. But, first, two other topics in this algebra

must be considered.

2.7 CASCADE OPERATIONS

Strictly speaking, the cascade operations involved in combining these linear subsys -

tems and no-memory nonlinear subsystems will not involve cascading nonlinear systems

20



with memory. However, algebraic simplification is often obtained by grouping a number

of subsystems to produce a composite subsystem that is nonlinear and has memory (see

sec. 2. 8 for an illustration of this point). This section is concerned with nonlinear sys-

tems with memory, in cascade.

The cascade system A n * B m has been shown to be of order mn. Now consider the

system L, in which

L = A * (Bn+C_) (60)

To determine the order of this system, we shall develop an expansion for A2 * (Bn+C__).

Now

L[x] = (A 2 *(Bn+Cm))[x] = A2[Bn[x]+Cm[x]]

Let

y = Bn[X] (61a)

z = Cm[X] (61b)

and then

L[x] = A2 [y+z]

= A2((y+z)2 )

=A 2 (y2 ) + 2A 2 (yz) + A2 (Z2

Now, substitution of Eqs. 61a and 61b gives

L[x] = A2((Bn[x])2) + 2A2 (B n[x] Cm[x]) + A2((Cm[x])2)

Then if we define

(A 2O(Bn-Cm))[x] = A(Bm[ ] Cm[X])

with the use of the operation "o", the system L becomes

L = A (Bn) + 2A2 (Bn Cm)+ A 2 o(C) (62)

(Note that A (B) = A2 Bn )

Now that Eq. 62 has been established, we see that it can be quickly obtained from

Eq. 60, as follows:

21



L = A2 * (B +C )

=A2 0(Bn+C )2

=A o (B+2B C +C z )
=2 n -n -m -m

=A 2 O(B) + 2A2 (B C)+A 2 (C)

The term A2 (Bn Cm) is an operator of order m + n because

(A 2 O(BnC_m))[Ex] = A2 (Bn[Ex] Cm[EX])

= A2 (Em+nBn[X] Cm[X] )

=m+n A2(Bn[x]' Cm[])

= Em+n(A 2(B. C-m))[x]

Therefore, Eq. 63 shows that A 2 * (Bn+C m ) can

order 2n, m + n, and 2m.

The case A3 * (Bn+C m) can be expanded in a

be expanded into three operators of

similar manner:

A *(B+C) = A ° (B+Cm)3 =A3 (B3n) + 3A (B m)-3 n - -3 n - -3 n 3 -n \-n-m)

+ 3A ° (iB.nC +A ° (C 3 )
3 -m/ 3 -m

where A3 (Bn.Cm) is of order 2n + m, and

(A°(B2C ))[x] = A(B2[x] C m[x])

This expansion of the cascade operation can be generalized to any order. For

example,

A (B +C +... +P) = A o (B+C +.. +P ) s
-s -n -m -r -m -r

and has a typical term in its expansion:

A o (BnCm...)-s s terms

s terms

which is of order n + m + ....

In this manner, a cascade combination of

operations. Each of these simple operations

associated with it, which will be given later.

systems can be split up into a sum of single

has a single transform of impulse response

22
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2.8 FEEDBACK SYSTEMS

Example 1 was for a feed-through system. Therefore, obtaining its functional expan-

sion was a straightforward procedure. We shall now develop the procedure for deter-

mining the functional expansion for a feedback system. The single -loop feedback system

is shown in Fig. 14a, in which A and B are nonlinear systems that have a known func-

tional expansion. Figure 14b is an equivalent system, in which the feedback system of

Fig. 14a has been split into the system A cascaded with a simpler feedback system.

+ A

(0)

X g f

B *A

(b)

(c)

f f

(d)

Fig. 14. (a) Nonlinear feedback system. (b) Equivalent system.
(c) System L. (d) Combination of A and L.

Let B * A = H, and let the simpler feedback system be denoted explicitly by L, as

shown in Fig. 14c. Then the feedback system of Fig. 14a, which is explicitly denoted

by K, is given by

K = A * L (65)

as shown in Fig. 14d. Since A is known, K can be obtained from Eq. 65, once L has

been determined. We shall determine L first and then find K from Eq. 65, because

this is easier than developing K directly. (In many problems K can be found directly.

In this general case, such a procedure is difficult.)

For the feedback system L, output g is related to input x by

23

--



g = x + H[g] (66)

which relates g implicitly to x. However, it is desired to have an explicit relation

g = L[x] (67)

and so, if we substitute Eq. 67 in Eq. 66, we have

L[x] = x + H[L[x]]

Writing this as a system equation, we obtain

L = I + H* L (68)

where I is the identity system. Equation 68 is an implicit equation for L. Now, we have

assumed that A = A + A2 + +A + . and B = B1 + B 2 + + B + .... Therefore

the expansion

H=H = H1 +... +H +... (69)

is known, since H = B * A.

Now, we desire to find L in the series

L=L +L + ... +L +... (70)

Therefore, Eqs. 69 and 70 are substituted in the system equation (Eq. 68), and

L + L + L + ... = I+ (H 1+_H2+H 3+...) * (L+L 2+L+3+...) (71)

Now the L can be found in terms of the H by equating the n t h -order system on the-n -n
left-hand side of Eq. 71 to the n -order system on the right-hand side. So that the

order can be recognized, Eq. 71 must be expanded as follows:

L1 + L + + ... =I+ (H*L+H*L +H *L 3+...)

+ (H 2o(L2) +2H O(L1 -L 2 )+H2 (o) + .)

+ (H 3 °(L 3) o(LZ.L) +3H+3H3 (L 1
2 )

+ H3°(L2+ )+...

Equating equal orders then yields:

L1 = I + H * L 1 (72)

L 2 = H * L + H ((L2 ) 73)

3 = 1 *L 3 + H2 (L1 .L) + H3 (L3 (74)3 nd 3 on. 2 3 

and so on.
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By way of explanation, if y = A[x] and z = -y, then z = -A[x]. Now, if g = B[x], then

f = g + z = B[x] + (-A[x]). Taking f = H[x] = B[x] + (-A[x]) gives a system equation

H=B+(-A) or H = B-A

This defines the minus sign in this algebra. The minus, or subtraction, operation obeys

all the rules for the addition operation. Thus by subtracting H1 * L 1 from both sides of

Eq. 72, we have

L1 - (H 1 *L 1 ) = I + (H1*L 1 ) - (H 1*L 1 )

or

L1 - (HI*L 1 ) =I

or

(I-Hi) * L = I (75)

because I* L1 = L 1 . Equation 75 is, then, an alternative form of Eq. 72. In a similar

manner, Eq. 73 becomes

(I-H 1 ) * L2 - H2 0 (L 2) (76)

and Eq. 74 becomes

(I-H1 ) L3 = 2H_2 0 (L 1 L2 ) + H3 ( L3) (77)

Now, if we precascade Eq. 75 (formal justification will be given in Sec. VI) by the

inverse of (I-H1 ), which is denoted (I-H1)-1, then

(I-H1 1 *(I-H L1 = (I-H1) (78)

But (I-H 1 )-I is the inverse of (I-Hi), and so (I-H1)I * (I-H1) = I, and Eq. 78 becomes

L1 = (H )- 1 (79)

(If y = _H[x], then there is a K for which x = K[y]. This K is the inverse of H and we shall

denote K by H- 1 . The inverse is considered in more detail in sec. 6. 3. The inverse

of a linear system is well defined in linear theory.)

Similarly, Eq. 76 becomes

L (IH ) *(H o(L2))

and Eq. 77 becomes

L3 = (I-H 1)-' * (2H2 o(L 1 L2 )+H3 o(L3))

In this manner, the L can be found for the feedback system L.The functional series for the feedback system K is then given by
The functional series for the feedback system K is then given by

Z5
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K =A *L

= (Al+A 2+...) * (L +L+...)

A1 *L + 2 (2) + ZA2 ° (L 1 L 2) + A3 ( )+

and thus

K = A * L (80)-1 -1 -1

K 2 = A 2 (L2) (81)

K3= 2A2 (L 1 L 2 )+ A 3 (L 1 ) (82)

and so on. The validity of the series expansion

K=K 1 + K + ... +K + ... (83)
- -1 - -n

will be considered in Section VI, but it may be said now that it is generally rapidly con-

vergent for sufficiently bounded input.

In any particular problem there are two alternatives. We could use the equations

for K for the general case of Fig. 14a (the first three equations are Eqs. 80, 81, and-n
82), and substitute the particular A and B that are being used. A better procedure is

Fig. 15. Nonlinear servo system.

to work out the Kn , by the method just described, for each particular case. This is not

too difficult after some practice.

As an example of this method, consider the feedback system of Fig. 15. In this case

L = H 1 * N * (I-L) (84)

where H1 is a linear system, and N = I + N 3 .

This system is sufficiently simple that the series for L can be obtained directly.

Equation 84 can be rewritten as

L = H1 * (I-L) + n3 H1 * (I-L)3

and substitution of the series L = L1 + L2 + L 3 + ... in this expression yields1 -2 3 ' nths3pesinyed
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1 -2 -3 1 (-L1-L2-L3-. ) + n3 H 1 * (I-L 1-L-L3- )

= (H 1*(I-L 1 )-H 1 *L -H *L3 -... )

+(n 3 H_1*(I-L 1 )3 +3n 3 H 1 * ((I-L) L2 ) +...) (85)

Therefore

L1 =H 1 (I-L) (86)

L = -H * L (87)-2 -1 -2

L3 -H 1 L 3 + n3H * (IL (88)

Rearranging Eq. 86 (in a manner similar to the rearrangement that gave Eq. 79 from

Eq. 72) yields

L 1 = (I+H1)-I * H

Equation 87 is satisfied for L2 = 0, and this is the only solution (see sec. 6. 3). Rear-
rangement of Eq. 88 gives

1 3 3L3 n3 (I+H1 )- * H1 * (-L 1 ) = n3 L1 * (-L 1 )3

Continuing this procedure gives L4 , L 5 , and so on. In particular, it can be shown that

L4 = 0

L5 = 3n3 LI *((I-L 1)2 L3 )

L = 0-6

L7 =n 3 L1 * (3(I-L 1 )L 3 ) + ((I L1)2 L5 )

2. 9 IMPULSE RESPONSES AND TRANSFORMS

It has been shown how the algebra of systems can be used to combine systems. But

before the output of a system so described can be obtained for some given input, this

algebra must be related to the system impulse responses and transforms. We shall

give the relation between the algebraic terms and the corresponding impulse responses

and transforms.

By means of this algebra, a system L is expanded in a series L = L 1 + L 2 +

L + ... , where the L are given in terms of the system's component subsystems.-n t-n
For an n -order term of the form L = A + B or Ln[X] = A[x] + Bnx] the corre--n -n n -- n -n -n
sponding functional equation is
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..f n .. n) x(t--T1 ) . . . x(t-T-rn) dT1 ... dT

J/ J n a (. Tn) x(t-T 1 ) . . x(t--Tn) d . dT

+ ... b n( ..... Tn) X(t-T 1)

... J {an(T, ... , Tn)+bn(T 1 ....

. X(t-Tn ) dT 1 ... dT n

Tn)) x(t-T 1 ) ... x(t-Tn ) dT 1 ... dT n

Therefore

1 (T1 .. Tn) = an(Tl Tn) + bn(T1 ... T n)

Hence, for the algebraic term Ln , where L = A + Bni the corresponding impulsen -n -n n'
response is

in(tl, . .. t n ) = an(tl . It n) + bn(t1 l -t n)

The corresponding transform relation is

L (s 1 .. . Sn) = An(S, 1 .'Sn) + Bn(S, ... Sn)

Similarly, it can be shown that for the simple multiplication combination, with

L n+m = An Bm, the corresponding impulse response is

1 n+(tl ... t n+m) = an(t 1 ... *tn) bm(tn+l' .. n+m ) (89)

The corresponding transform is

L n+m(sl, . n+m) = An(S1 , * * Sn) Bm(Sn+ 'S n+m) (90)

For the cascade situation, with L = A * Bn, the impulse response is-n -1 n

n (ti . tn) = al(T) bn(tl T, t 2 -T, tn-T) dT (91)

and the transform is

Ln( 1 ... Sn) = A 1 (S 1+S2+... +Sn) Bn(S 1 ... Sn) (92)

The more general cascade operation also has a relation with a corresponding impulse

response and transform. If

L =A (Bp.C...'P ) (93)

Lp+g+... +r -= An -- -q -r

then
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P1q+. .+ (t -I p+q+. . .+r ) ... an( .. . Tn) bp(t-T 1 ... t -T 1 )

XCq(tp+l-T .. t. tp+q - T) ... d .. d (94)

and

Lp+q+...+r Sl**Sp+q+... +r ) = An(S1+... +Sp Sp+l +...+Sp+q' ... )

X Bp(S1 .... Sp) Cq(SPp+ '...' p+q) (95)

Some of these combined forms, as written, are not symmetrical, but they can be

symmetrized, if it is desired. As we have stated, the impulse response h 2 (t1 , t 2) can

be symmetrized by forming

h2 (tl' t 2) + h 2 (t 2 , tl)
2 (96)

The transform H2 (s 1 , s2) can be symmetrized by forming

H 2(sl, S2 ) + H2 (s 2 , S1 )
2

Similarly, for H 3 (s1', s2' s 3 ) we can construct

6{H 3 ( s l s2' s 3 )+H 3 (s 1' s3, s2 )+H 3 (s2 s 2 , s 1)+H 3 (s 2 , s3 S1

+H 3 (s 3 , s, s 2 )+H 3 (s 3 , s 2 , s )} (98)

In general, for Hn(s 1 .. . sn), we add up the Hn with all possible arrangements of

s 1 , ... , sn and divide by the number of arrangements.

Two examples of obtaining the transforms from this algebra will be given. For the

feed-through system L (see Sec. VI):

L = -L1 + L3 (99)

L 1 nlAl * B 1 (100)

3
L3 = n3A1 B(101)

Let A1 have a transform, Al(s), and B 1 have a transform, B (s). We want to find

Ll(s), the transform of L1 , and L 3 (s 1, s 2 , 3 ), the transform of L3 . By application
2

of Eqs. 89-98, we have L (s) = nlAl(s) B(s). From Eq. 90, B1 has a transform,
3 2

Bl(Sl) B 1(s 2 ), and B 1 = 1 B1 has a transform, B(sl) Bi(sZ) Bl(s). Equation 92 then
shows that

L 3(S1 , S 2' 3) = n3Al(S1 +s2+S 3 ) Bl(S1 ) B1(S2 ) B1(S3)

29

--- -



The second system is an example of a feedback system (see sec. 2. 8), with

L1 = (I+H1)-1 * H1 (102)

L 3 = nL * (I-L1)3 (103)

L_5 3n 3 L1 * ((I-L 1 ) .L3) (104)

Let H1 have a transform, H(s ) = A/(s+a), where A >> a. Then (I+H1 ) has a transform

+ A s +A
s + a s+ a

and, from linear theory, we know that (I+H 1 )-1 has a transform

1 s+a

1 +H(S ) s+A

Then, from Eq. 92, L1 has a transform

L (S) Ss s a s+A (105)

Since (I-L1) has a transform I - Ll(s) s/(s+A), (I-L 1 )2 has a transform

S 1 S2
+ A s2 + A

from Eq. 90, and (I-L1)3 has a transform

1 S2 53
1 + A s + A 3 +A

Therefore, application of Eq. 92 to Eq. 103 shows that L 3 has a transform

n3 A s1 s2 s3
L3(S 2 s3 s +S2 + +A s +A s + A 3A (106)

Also, since (I-L1)2 L3 has a transform

s1 2s
+ A s +A L 3 (s 3 '4',s 5 )

L 5 (Eq. 104) has a transform

3n3A s 1 S
L(S 1 , 5 ) +A + L 3 (s 3 , s 4 s 5 ) (107)

S1 + S5 + s +A +A 

With some experience the transforms can be readily obtained by inspection from the
algebraic equations. We are still not in a position to use these transforms to compute
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the system output for a given input. However, at the end of Section III, these trans-

forms will be used for this purpose.

2. 10 SUMMARY

We have been concerned with expressing nonlinear systems in terms of their linear

subsystems and nonlinear no-memory subsystems. The main tool for combining sys-

tems has been an algebra of systems. The algebraic manipulations required for system

combination obey laws similar to those of other algebras. If the algebra of systems

were not used, system combination would have to proceed with involved formulas and by

a series of clumsy steps. Our algebraic notation consists of a system representation in

which only those aspects of the functional representation that are involved in system

combination are emphasized. This algebra applies the powerful concepts of operator

mathematics to nonlinear systems.

The relation between the algebraic representation and the system impulse responses

and transforms has been shown. Particular emphasis has been placed on the transforms

in the two examples presented.
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III. SYSTEM TRANSFORMS

3. 1 INTRODUCTION

We have represented a nonlinear system in terms of its impulse responses

hn(tl ..... tn), or the transforms Hn(s1 ... Sn). The system output, f(t), is given by

Eqs. 2 and 3. The problem, now, is to obtain the fn(t), and thereby the system output,

f(t).

In Section I multidimensional transforms were introduced, and we found that the

value of these transforms - just as in the linear case - lies in their making it possible

Fig. 16. Illustrative feed-through system.

to substitute multiplications for convolutions. Not only is this true in calculating the

system output, but also in cascading systems. This is shown by Eqs. 91 and 92, and

by Eqs. 94 and 95.

Another reason for using transforms is that the form of the impulse responses, even

for simple systems, is rather complicated. For example, consider the system of Fig. 16.

In this case,

L = L2 = B1 N2 * A 1

and A1 has a transform A/(s+a), B1 has a transform B/(s+p), and n2 = 1. Therefore,

from Eqs. 90 and 92, L 2 has a transform

A2B
L (s 1 ,s 2 ) = AB (108)

(s 1 +s 2 +)(s 1 +a)(s+ )

Reference to Eqs. 89 and 91 shows that the impulse response is

12 (tl ,t 2 ) =2 Be-iT Aae exp-) dT

for t, t 2 a 0, since A/(s+a) has an inverse, A exp(-at), and B/(s+p) has an inverse,

B exp(-pt). The form of the limit follows because A1 and B 1 are realizable systems,

and T is integrated from 0 to t or t 2 , whichever is smaller. Working out the integral

gives

( BA 2 )-at I -at2 -(P -a)t I -at 2
12(t , t 2 )= p-2 a e -e e

for t t >O0 and t < t 2 and
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12(tt 2 ) =(3A2 )(eatl eat2 -e atl e(Pa)t2} (109)

for tl, t 2 andt 2 < t. Comparing this result with Eq. 108 shows the simplicity of the

transform, as compared with the impulse response.

Our object, now, is to show how the transforms can be used to determine the output

of a system. Emphasis will be placed on an important special case for which the trans-

forms are factorizable. This situation arises when a nonlinear system is lumped.

We shall be in a position to apply the functional representation to the solution of

nonlinear system problems, and several examples will be given.

3.2 MULTIDIMENSIONAL TRANSFORMS

Higher -order transforms were defined by Eqs. 10 and 11, and a method of using the

transforms was indicated. The linear case is well known. If

fl(t) = hl(T) X(t-T) dT (110)

then

F 1 (s) = H 1 (s) X(s) (111)

Consider the quadratic system

f2 (t) = f h 2 (T1 , T2 ) X(t-T1 ) x(t-T 2 ) dTldT2 (112)

To use transform theory here, we must artificially introduce a t and a t 2 , so that

f( 2 )(t) t 2 ) =fh(( ' T2 ) X(tl-T 1) x(t 2 -T 2 ) dT2dT2

and then

F(z)(Sl' s 2 ) = H 2 (S 1' 2 ) X(s 1 ) X(s 2 ) (113)

Formally, at least, F( 2 )(S1 , s 2 ) could be inverted to give f(2 )(tl, t), and when f 2 (t) is

the desired output, f 2 (t) = f(2 )(t,t). This is illustrated in Fig. 17. We have f 2 (tl, t 2 ),

which could be plotted by contours on the t, t 2 plane, but we are only interested in

f2 (tl,t 2 ) along the 45 ° line where t 1 = t 2 = t. This method generalizes to higher-order

cases. For example,

f(3 )(tl'tz't 3 ) =f h 3 (' 1 , Tz , 3) X(t1 -T 1 ) x(t 2 -T2 ) x(t 3 -T 3 ) dT 1dT rdT 3
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but the quantity of interest is f3 (t), with

f 3 (t) = f(3 )(t, t, t) (114)

The procedure of taking a number of variables t, ... t n as equal will be called

"associating" the variables. The procedure that has been outlined is not particularly

t2

Fig. 17. (t, t 2 ) plane showing t1 = t 2 line.

practical, since it involves taking an n-dimensional inverse transform. A better pro-

cedure is to associate the time variables in the transform or frequency domain. That is,

given F( 2 )(sl, S2) as the transform of f( 2 )(t1l t 2 ), then F 2 (s), the transform of f2 (t), will

be found directly from F 2 (S1 , s 2 ). The formal relation is

Fz(S) = j - +jo F( 2 )(s-u,u) du (115)

where is a suitably chosen real number. A proof is given in Appendix A. 2. This

relation is similar to the Real Multiplication Theorem of linear theory (9). For higher-

order transforms, Eq. 115 can be applied successively to associate the variables, two

at a time. Then, for example, for F( 3 )(s1 , s 2 , s 3 ),

F 3 (s) =(-j)2 -jo I1 F( 2 )(s-u 1 , ul- 2 u2 ) du du (116)

This is still not very practical because convolutions must be made inrthe transform

domain. The great value of making the associations in the transform domain lies in the

fact that these associations can be made by inspection in a large class of problems. This

class is the nonlinear generalization of the linear situation in which the transforms are

factorizable. The constraint on the system is that it be lumped - that is, that all the

transforms of the linear subsystems be factorizable.

Then for the system H, where H = H + H + ... + H + .. , we have

N P. M
H 1(S) i= + i R.s (117)

i=l pii=0O

where Pi, Pi, and R i are complex constants. This is familiar from linear theory, and note

that terms of the form Pi/(s+Pi)n, for n > 1, have been left out. Such terms will be con-

sidered separately. If X(s) is the transform of the input to H, then the transform of the
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output from the linear portion H1 is given by Fl(s) = H 1 (s) X(s). If Y(s) is factorizable,

then it is known from linear theory that Fi(s) has the same form as Eq. 117, if multiple-

order poles are neglected. In the class of systems that is being studied (linear subsys-

tems with memory and nonlinear no-memory subsystems) the most general second-order

term is a summation of terms of the form

A1 (B1.C1) (118)

The determination of the transform of such a term was considered in Section II. It is

A 1 (s1 +s 2 ) B 1 (s 1 ) C (S 2)

where Al(s), Bl(s), C 1() are the transforms of the systems A1 , B1, and C1 , respec-

tively. If the input has a transform X(s), then the contribution to the system output that

is attributable to the output from the term of Eq. 118 has a second-order transform

Al(s1 +s 2 ) B 1 (S1 ) Cl(s2 ) X(sl) X(s 2 ) (119)

If Bl(s), Cl(s), and X(s) are of the same form as Eq. 117, then Bl(sl) X(s 1) and

Cl(S2 ) X(s 2 ) have this form, and Eq. 119 becomes

B. C.
Al(Sl+s2) 1 + (120)

1 2 S + S 2 + 

where B i, C i , pi, and yi are complex constants. The transform Al(s) does not have to
M

be factorizable, but it will generally be assumed to be so. Note that the terms Rs
i=O

have been excluded from the summation of Eq. 120. This is done because these terms

are the transforms of impulses, doublets, and so forth, and such functions do not exist

when squared. Should these idealizations occur in a physical problem, they must be

removed and replaced by the real physical signals.

The inspection technique can now be developed. Consider a typical term in the

second-order case (Eq. 120):

G(2 )(s, S 2 )=A 1 (S 1+S) s1 + s + 

Application of the transform-domain association equation (Eq. 115) gives

G2 (S) = 2 j f G(2 )(s-u,u) du (121)

or

_1 7( uuB C du
G2 (s) 2rrj A1 ( - u + u + du

1 ( B C duA(S) 2-7r s - u + u +--
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The term that is to be considered is

1 B C du
2j -u+ p u +y du (122)

But (B/(sl+p)(C/(s2+y)) is easily inverted, and has an inverse transform

-Pt 1 -Yt2
Be Ce tl' t 2 0

Setting t = t 2 = t gives

B Ce- (P+Y)t t > 0

This has a transform, BC/[s+(P+y)], and it is seen that

1 B C du= BC (123)
2 irj s-u + u s+(P+Y) 

Finally, we have

G2 (s) = A 1 (s) BC
s + (+y)

where G2 (s) is the transform of g2 (t); and g2 (t) = g( 2 )(t,t), where g(2 )(tl,t 2 ) is the inverse

transform of G( 2 )(s1 , s2). That is, we have made the association of t and t 2 by a

transform-domain manipulation that gives us the ordinary linear transform of the desired

time function g 2 (t). Furthermore, this manipulation can be done by inspection.

That it is an inspection technique is seen by noting that the association of t and t 2

changes

(2)(Sl, S 2) = A(Sl+S) B C (124)

into

G2 (s) = A(S) BC (125)
s + (1+y)

Examination of Eqs. 124 and 125 shows that the change is a very obvious one and can be

obtained by inspection.

Higher-order transforms can be reduced by applying the inspection procedure to

associate the variables, two at a time. For example, consider the third-order term

A B C C C (126)
Sl +s2 + 53 + a 2 + s3 + P S1 + Y 2 + Y S3 + Y

Application of the formal association equation (Eq. 115) to associate s 2 and s 3 yields
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A B C
sl + s 2 -u + + a s2- U + u + sl + y

A B
s1 + 2 a s2 +

C C
s2 -+ y + 

C 1 _ _+_ _ C C

s 1 + Y 2j j-jo s2 - U + + 

This integration is of the same type as that in Eq. 122, and it yields C/(s2+2y) (see
Eq. 123). Therefore Eq. 127 becomes

A B
s1 + s2 + a s 2 + P

C C
sl + Y s2 + 2 y

(For convenience, the procedure of associating two time variables ti and tj in the fre-

quency domain will be called "associating" the frequency variables s i and sj.) The
change from Eq. 126 to Eq. 128 is obtained by applying the inspection technique to the

variables s 2 and s 3. Now, Eq. 128 equals

A C
Sl + s2 + a Sl + Y

BC 2

2a - { 1 1

s 2 + S2 +
2 y '}

and the association procedure can be applied to associate s and s 2 .

BC 2 A
2a - s + a

s+ (P+Y)

The result is

s+3}s + 3 

Similarly, a transform of any order can be reduced to a first-order transform by

successive use of the inspection technique. For example, consider the fourth-order

term

K(s+s+s+s) A B B C C
K11(SlS+S3+S4) 1 + s 2 + a s + s + P s 3 + 4 + (131)

where Kl(s) is some transform function. Associating s 3

A B B C2

Kl(l+S2+S3) s1 + s2 + a s1 + P s 2 + P s3 + 2y

Next, associate s and s 2 . The result is

A B C 2

K1(s2+s3 S2 + a s 2 + 2 s 3 + 2¥

= K 1 (S2 + 3 )

and s 4 by inspection yields

2 AB 1 a c 2
as 2 + s 2 + 2 s3 + 2y

Finally, s 2 and s 3 can be associated, and we obtain

Ki(S) -AB (1+2 1+2a
I)2P - a ks+a2ys+2p+2a)
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Notice that s 3 and s 4 were associated first, then sl and s 2, and finally s 2 and s 3. If we

had associated s3 and s 4, s3 and s 2, and s 2 and s 1 , we would have had to handle a form

that had not been discussed. At times, when we are using the inspection technique, it

will be necessary to associate the variables in a definite order to avoid forms that we

cannot handle with the method discussed here. In a similar manner, fifth-, sixth-,

and higher-order transforms can be reduced to first-order transforms.

The method for using multidimensional transforms can be summarized as follows:

(a) Introduce artificial variables tl, t2, ... , tn, so that multidimensional trans-

forms can be used to specify the system output.

(b) Associate these variables t, ... tn with the time variable t by means of the

inspection procedure in the transform domain. The result of this procedure is the trans

form of the system output.

(c) Then, if it is desired, this first-order transform can be inverted by the ordinary

linear system analysis methods to give fl(t), f 2 (t), and so on, where the output is

f(t) = fl(t) + f2 (t) + . . . + fn(t) + . ..

Otherwise, the output signal can be interpreted in the frequency domain, as is often done

in linear system analysis.

Nonfactorizable higher-order transforms - for example, situations in which delay is

involved - can often be handled by solving the association formula (Eq. 115) in the man-

ner given by Eqs. 121-125, that is, by working partly in the time domain and partly in

the frequency domain.

As an example, consider the transform

A B (133)

(s +a)n (s +p)m

where s and s 2 are to be associated. This is the multiple-pole situation which we have

ignored previously (Eq. 120). Equation 133 is easily inverted and has the transform

A n-1 -at 1 B m- 1 2
t e t e

(n-l)! (m-l)!

Associating t 1 and t 2 yields

A B tn+m-2 -(a+p)t

(n-l)! (m-l)!

and this has a transform

(n+m-2)! 1
AB n+ml (134)

(n-i)! (m-i)! (s+a+p) n + m

which is the result of associating s and s2 in Eq. 133.

Before giving some examples of the application of the material already presented,
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we shall round out the discussion of system transforms by considering some other prop-

erties of these higher-order transforms.

3.3 STEADY-STATE RESPONSE

In linear system theory with fl = Hl[x], and x(t) = Re {XejWt, where X is a complex

constant, it is well known that in the steady state, the output fl(t) is given by

f (t) = Re XH (j) e t }

where Hl(jw) is the system transform HI(s) evaluated at s = j.

A similar result is found for the higher-order system transforms Hn(si, .. , sn)

To develop the steady-state output of a second-order system with a sinusoidal input, con-

sider the second-order operation on an input pair:

g2 = H2 (xy) (135)

The complex functions are

x(t) = Xe

and

jW2t
y(t) = Ye 2

where X and Y are complex constants. The steady-state value of g 2 (t) is given by

jo lt j 2 t
g2 (t) = XYH 2 (jOl, j 2 ) e e (136)

where H2 (jol, jo2) is H2 (sl, s2) evaluated at s = jwl and s 2 = j2. We see that the trans-

form H2 (S1 , s 2 ) has a steady-state interpretation very similar to the linear transform

Hl(s). The operation of Eq. 135 does not exist alone. In order to examine the real

situation, consider the actual secQnd-order system, with f2 = H 2 [x]. Let x = y + z, with

y(t) e

and

z(t) = ejt

Here, X is the conjugate of the complex number X. Then

x(t) = Re {Xejwt}

The problem now is to find the steady-state value of f2(t). We have

f2 = H2 ((y + z ) = H 2(y2 ) + 2H2 (yz) + H2(z2)

and, by use of Eq. 136,
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f(t) = Re {XZH 2 (j,, j) ej 2tt+XXH2 (jw, -j)}

Hence, the steady-state response of a quadratic system is composed of a dc term and

a double frequency term. This is similar to the effect of a no-memory squaring opera-

tion.

In a similar manner, the steady-state response of higher-order systems can be

formed. For the third-order case,

f(t) = Re {X3H3 (j, j, j)e 3wt+ 3X2RH3 (j, jw, -j) e jt} (137)
f(t)- 33

It should be noted that the solution of these equations depends upon Hn(si ... Sn) being

symmetric. If the operation of taking the real part is omitted, then the quantities

X3 H3(jw, jw, j), and so on, can be regarded as complex amplitudes of the corresponding

sinusoids, just as in linear system analysis.

Not only do these results furnish an interpretation of the higher-order transforms;

they also show that the steady-state response of a system can be easily obtained, once

the system transforms are known. To give an example, consider the nonlinear ampli-

fier of Fig. 13. We shall use the system transforms for Ll(s) and L 3 (s, s2', S3 ) devel-

oped in section 2. 9.

Let

As
Al(s) = 2

(s+a)2 + 2O

and

B (s)= Bs
(s+p) z + 

Then

n ABs2

L 1 (S) = 1[(s+a)2+2] [(s+P)2 +Wo]

and

n3A Bs 1 Bs 2 Bs 3

L3(s 1,s 2,S 3 [( 1 s 2 +s 3 +a) ] [(s 1 +)+ [(s2 ) [(S 3 °]

If we apply the methods that have been given for obtaining the steady-state sinusoidal

response (in particular, Eq. 137), at frequency a, we have the following complex

quantities:

(a) Linear gain,

nlABX(jw) 2

L1 ( j)j+) (j2+o2] (138)

0 0o
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(b) First-harmonic distortion, which is the amplitude of the first-harmonic term

that varies as X,

= 4 L (jo jW, -jW)

3 n 3 AB3 X3 j j) 1 (139)

[(jca) +o] (jw+p) 2+ o 12[(ji+P) 2+ o]

(c) Third-harmonic distortion, which is the amplitude of the signal at three times

the input frequency,

1
= 4 L 3 (jw, j, j)

1 n3A B 3 X 3 (j °) 3
___1 .~ 3 Xji)(140)

[(j3w>)+a) +\JW 0 + O(

where X is the amplitude of the input sinusoid.

3.4 INITIAL-VALUE AND FINAL-VALUE THEOREMS

Another useful property of the higher-order transforms is that they obey initial-

value and final-value theorems that are similar to the linear transforms. If f(n)(tl . tn
has a transform Fn)(S1. .. S n), and if fn(t) = f(n)(t, t, .. ,t), then the following rela-
tions are true:

lim f (t) lim F(n)(S1 ... sn ) 1 ... sn (141)
ts 1-oo

S -0
n

and

lim f n(t) lim F(n)(SI, * * * sn ) S1 . S (142)
t- 0o n

s n-0

Proofs of Eqs. 141 and 142 are given in Appendix A. 3. The usual linear theory con-
straints hold: all limits, in both the time and frequency domains, must exist.

These results can be used, just as in linear system analysis, to obtain the initial

and final values of system output values, slopes, and so forth, rapidly.

3.5 EXAMPLE 2.

This example is concerned with the feedback servo system of Fig. 15. H 1 is the

cascade combination of an armature-controlled dc motor and a gain factor, and

41



H 1 (s) = A/(s+a). The output f is the motor velocity, and N is a compensation device.

(See Fig. 18.) The objective of this design is to reduce the step response time of the

system.

First, consider the linear uncompensated system with N = I. The step response of

this system is

f(t) = X(1-e A t ) t 0

where X is the amplitude of the input step, and A >> a. The rise time of the system can

be reduced by increasing the gain factor A, but there is an acceleration constraint that

limits the size of A. This limit on A is

OUTPUT 3 ___ determined by X m , the maximum input
X,, 4 amplitude with which the system is to be

used, and by M, the maximum allowable

-' ^ / / i.. acceleration. In fact, the maximum gain
INPUT

XINPU for this linear system A is given by

- -43 Ap = M/X .

In this problem, we shall show that a

Fig. 18. Example 2. Characterization simple nonlinear no-memory compensating

of N. device, N = I + N3, can be used to decrease

the response time and still meet the accel-

eration constraint. Only the first two terms of the output are significant in this problem,

and hence f(t) = fl(t) + f3 (t). The nonlinear system in this problem is the same as that

of Fig. 15, and the first two system transforms have been given in Eqs. 105 and 106.

If the input x(t) has a transform X/s, then the output transforms are

FI(s) = AX(143)
1 s(s+A)

and

n3 AX3

F (si, s2 s )3 (144)
(3)( l, 3s S (s +s 2 +s3 +A)(s +A)(s2+A)( 3+A)

By using the inspection technique, we obtain

n3AX3

F 3 (s) = (145)
3 (s+A)(s +3A)

and thus

I1t) <X n3x 2 ) -At n3k 2 -3Atf(t) = Xhave - - 2 eAt - e(146)

Also, we have
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fl(t) = AXl - n3 2 e At +n 3 X 2 e3At}2 +23- e

where f'(t) represents the acceleration. It is possible to investigate various choices of

A and n 3 to obtain a rapid response and still have fax = M. A good choice is3 max

1
n = 2

4X
m

in which case the gain can be taken as

4 M
n 3X m

(148)

(149)

and the acceleration constraint is satisfied for the maximum input amplitude, X m . The

0 to 90 per cent rise time, tr, for maximum input signal is

X
t =1.8 m
r M

and for the uncompensated linear case, it is

X
t =2.3 Mr M

(150)

Therefore, the

compensation.

rise time can be decreased 20 per cent by the use of simple nonlinear

For small signals, the rise time has been decreased 25 per cent.

1.0

0.8

0.6

0.4

0.2

0.0
2

Fig. 19. System response. (All outputs are normalized to 1.)
Large-signal input: o, compensated nonlinear system;
A, uncompensated linear system. Small-signal input:
x, compensated nonlinear system; A, uncompensated
linear system.

Figure 19 shows the transient responses for maximum input steps and very small

input steps for the linear uncompensated and the nonlinear compensated systems. In
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both curves, the output is normalized to 1. Figure 18 gives the input-output character-

istic of the nonlinear device. It is specified only for an input less than X m . Outside

this region, any saturation characteristic suffices.

It is appropriate to emphasize the

importance of signal amplitude in the

} _. N analysis and synthesis of nonlinear sys-

(a) tems. In the analysis of linear systems,

the input-signal amplitude is rather inci-

dental. This is not the case with nonlin-

ear systems because the nature of the

system response is greatly dependent

upon input amplitude. Therefore in a

(b) nonlinear system problem the range of

Fig. 20. Example 3. (a) Lowpass am- input amplitude is a very important
plifier with output distortion. parameter. A knowledge of this range is
(b) Amplifier A with feedback. essential in using the functional repre-

sentation for system analysis because

this will determine how many terms of the output must be retained.

The use of nonlinear compensation in servo systems is a problem of considerable

interest. This particular example has been given not only to illustrate the use of the

functional representation for nonlinear feedback systems, but also to indicate the pos -

sible use of the representation in the study of the general problem of continuous nonlinear

compensation.

3.6 EXAMPLE 3.

The systems of Fig. 20 are: A, an amplifier with output distortion, and B, the same

amplifier with some weak feedback for reducing distortion. In this situation, the clas -

sical steady-state methods do not suffice.

Let H have a transform, H/s + a, and N = I + N3 + N 5 . The transforms of systems

A and B can both be computed by the methods previously explained and illustrated. If

the input is x(t) = Re {Xejwt}, The transforms can be used to give the distortion ratios

for the systems. (Transforms and details are given in Appendix B. 1.) For low fre-

quencies, these ratios for system A are:

First-harmonic distortion = n 3 B 2X + nB 4X4 (151)

41 n3B 2x 2 165 ngB4X (152)
Third-harmonic distortion = n 3 B X + 5 n5 X (152)

1 n B4X4
Fifth-harmonic distortion =-n B4 (153)

16 5

where X is the input amplitude, and B = HX/a is the linear low-frequency gain. Assume
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3 n B22 1 5 4aXthat n B X is approximately -, and -n5 X is approximately 20 at the maximum

value of the input amplitude, X. Then the distortion ratios for feedback system B are

as given below. (See also Appendix B. 1.) G is the ratio

H' -H
H (154)

where the gain factor H has been increased to H' to keep the linear gain of feedback

system B equal to that of system A. These ratios are:

3 225 44 15244
First-harmonic distortion = n3 BX 2 + 5 nB4X4 n B4X4G

1 3B22 5 B4X4 15
Third-harmonic distortion 1 n3 B2X2 + 1-5 n 5 B4X4 - 1 n2B4X4G

Fifth-harmonic 6 nB4X4 3X GFifth-harmonic distortion = 16 B4X _ n52B4X4

(155)

(156)

(157)

We see that feedback can be used to decrease the amount of distortion even with the lin-
2ear gain kept the same. It is interesting to note that if n 5 = 3n3G, then the distortion

from the fifth-order nonlinearities will be completely removed by the feedback.

This example could be extended to higher distortion and stronger feedback by devel-

oping more of the terms in the expansion of the feedback system.

3.7 EXAMPLE 4.

The system of Fig.

type. The input is

21a is an example of an FM detector of the phase-locked-loop

(a)

(b)

Fig. 21. Example 4. (a) Phase-locked loop. (b) Equivalent system.
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x(t) = X cos (ot +
I t

S(T) dT
-00

where wo is the frequency of the system's voltage-controlled oscillator, X is the signal

amplitude, and (T) is the modulating signal. The equation for this multiplicative

feedback system is

r(t) = -XKL1 Lcos (t + / S(T) dT) sin (<t +
-oo

r(T) dT)]

0 0

(159)

where L 1 is the ideal lowpass filter.

Expanding Eq. 159, we obtain

r(t)= -XKL 1 sin 2(w t + 1 {r(T)+s(T)} dT)

+ sin ( {r(T)-S(T)} dT
-oo 

Since L 1 is lowpass, the term with frequency centered at 2o0 can be neglected,

r = A sin {Hl[s-r]}. H1 is an ideal integrator and A is a gain constant, where A =

A diagram of this equivalent system is shown in Fig. 21b, in which

N[y] =A sin y

Solving for the first three terms of system L, we obtain

A
L1 (S) = s + A

(160)

and

XK.

(161)

(162)

1 A(sl+s 2 +S 3 )
L3(S1S'S 3 s1 + sz+ s S 3 + A

1 1 1

S1+A +A s+A s+A

L 5 (S 1 ... s 5 ) = -
A(sl+.. +s 5 )

S1 + .. . + s5 + A
A A )

(sl+S2+A)5

(164)1 1
S1 +A ''' s 5 + A

First, the system step response will be computed. If the input s(t) is a step response

Su(t), then a good approximation to the output r(t) for S /A < 0. 5 is given by

r(t) = rl(t) + r 3 (t) + r 5 (t)

Associated with rl, r 3 , and r 5 are the multiple-order transforms:
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Rl(s) = Li(s) 

R(3)(s 1. s . , s3 ) = L(s 1 , s3 ) s 1s s

S SR(s)(Sl ... .. s5) = L(Sl *.... s5) s "' s 5

Converting these to the first-order transforms Rl(s), R 3 (s), and R(5 ) , and inverting

(see Appendix B. 2 for details) gives:

( 1 5 2 65S 4 -Atr(t)=S 1 2 s-2 4 8 4e
+\\A A4

(2 S2 S4 -2At (1 S2 S4 3At
+3 2 5 4e + 6-4e

8S4 0 -4At 5s4 -5At
+ 4e 16 4e

+AAt( + S4 A4/ e-At

For small S/A, the system is linear with a response, r(t) = S(-eAt), and it departs

significantly from this linear operation as S /A approaches 0. 5. It should also be

noted that if S > A, then the system becomes unstable because the form of N (see Eq. 161)

restricts the output r to be less than A, and static balance is no longer possible.

The system steady-state distortion with sinusoidal input can be readily obtained by

the appropriate substitution of j in the system transforms (Eqs. 162, 163, and 164).

3.8 SUMMARY

The basic material for the analysis of continuous nonlinear systems with determin-

istic inputs has now been presented. An algebra of systems has been used to describe

a system in terms of its component subsystems. From this description the system

transforms can be found. These transforms can then be used to determine the system's

response to various inputs.
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IV. REMARK ON APPLICATIONS OF THE ALGEBRA OF SYSTEMS

AND SYSTEM TRANSFORMS

We shall be concerned here with several topics that are extensions of the material

presented in Sections I-III. The first topic concerns the use of the algebra of systems

for block-diagram manipulations.

4.1 BLOCK-DIAGRAM MANIPULATIONS

An example will be given to illustrate how this algebra can be used to perform block-

diagram manipulations. It will be shown how such manipulations can be performed alge-

braically, rather than through a sequence of diagrams.

f

(a)

(b)

x f
+ Lf

(c)

Fig. 22. Block-diagram manipulation: (a) feedback system; (b) first
equivalent system; (c) second equivalent system.

Consider the feedback system of Fig. 22a, in which H = H1 + H . H1 is the linear

part of the system H, and H- is the nonlinear part. The object of this example is to

show how the linear part of a feedback system can be isolated. We have L = I + H * L 

I + (H+H ) * L, and then L = I + H * L + H- * L, or, if we take H I * L over to the left -

hand side, we have

(I-H1 ) * L =I + H- * L (165)- -

Then

(I-H1) 1 * (I-H ) * L = (I-H1) * (I+H 1*L) (166)1 or

or
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L = (I-H1)1 (I+H *L) (167)1 -

Equation 167 is the system equation for the system of Fig. 22b, with the linear part of

the system concentrated in the forward loop. Note that the linear part of L is given as

L1 = (--1

Now, if K = L *L, then L = L * K, and from Eq. 165,
- -1 - -l

K = I + (H-*L 1) *K (168)

Thus, another equivalent configuration is obtained as shown in Fig. 22c. A third equiv-

alent configuration could also be obtained with L 1 in front of the nonlinear feedback

system.

There are several reasons why such changes in a feedback system may be desired.

For example, it might be more desirable to construct the system in one configuration

than in another. Or, some particular configuration could be the basis for an alternative

system expansion. For example, Zames (10) has developed the concept of expanding a

feedback system in a series about the linear part.

4.2 COMPLEX TRANSLATION

The complex translation theorem of the theory of linear analysis (9) can be stated

as follows:

If f(t) has a transform F(s), then e f(t) has a transform F(s+a).

Here, a is a complex number. A similar theorem holds for higher-order transforms:

If f(tl. ,tn) has an n-dimensional transform Fn(sl ,. n), then exp(-altl-. . -a t)

f(t 1 . . .tn) has a transform Fn(sl+al . . sn+an).

The al, a 2, ... , an are complex numbers, and the proof is essentially the same as the

proof for the linear case.

This translation can be useful in finding the envelope response of a system. For a

linear system H1 , with transform H 1 (s), let the input be the real part of x(t), where

x(t) = e(t) exp(jwlt), and e(t) is real. If the complex output, f(t), is in the form

jWlt
f(t) = o(t) e (169)

where o(t) is the complex envelope, then

O(s) = H 1 (s+jwl) E(s) (170)

as can be shown by the translation theorem. Then o(t) is the envelope of the output

sinus old.

To illustrate the use of the translation theorem for obtaining the envelope of the

output from a higher-order system, consider the third-order system H 3 , with the input
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z(t) = Re {x(t) e jwt + }

where x(t) is real. By expanding

H e -2- e + e t3 2 2

as we did for the steady-state situation, and applying the translation theorem, it can be

shown that the complex envelope of the third -harmonic output has a third -order trans -

form:

4 X(s ) X(s 2 ) X(s 3 ) H3 (Sl+jW' s 2 +jW s 3 +jW) (171)

when X(s) is the transform of x(t). The third-order transform of the enevlope of the

first-order harmonic is

4 X(sl) X(s2 ) X(s 3 ) H 3(Sl+j sZ+j,' s3 ) (172)

and the associated first-order transforms can then be found by the methods of Section III.

This procedure for finding envelope responses generalizes, in a straightforward manner,

to systems of any order.

As an example of the calculation of envelope responses of nonlinear systems, con-

sider the feed-through example of section 2. 6. For this system, Ll(s) and L 3 (Sl,S 2,s 3 )

were developed in section 3. 3.

Assume that a is sufficiently small that the third-harmonic output from the system

is negligible, and let the input x(t) be

x(t) =Xcos t t t>O

=O t<O

Then the output can be shown to be

f(t) = (ol(t)+o 3 (t)) cos wot t > 0

The transform of ol(t) is Ol(s), and a third-order transform, 0 3 (s1, s z , S3), and a first-

order transform, 03(s), are associated with o3 (t). Thus

n 1 ABX
Ol(S) = Ll(S+jw) X 

- (s+a)(s+p)

and

0 3(l, S2' 3 ) L 3(sl+j', s 2 +ji s 3-j) s1 s2 3

n3 AB 3 X3

4 (s l+S +S 3+a)(s +)(S2+P)(S3 P)
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It is assumed that a and are much less than o, and poles far away from the origin

have been neglected. By use of the inspection methods of Section III, 0 3 (S) is obtained

from 0(3)(sl, s 2 , s3), and

3 n3 KH3X3

3(s) = (s+a)(s+33)

Inverting Ol(s) and 0 3 (s) yields

nlHKX t t forte0o (t = HKX -Cat -e-P) for t > 0
(P-a)

and

(t)= n3 KH 3 X3 (e-ate 3t) for t 0

(3p-a)

where (ol(t)+o3 (t)) is the envelope of the output sinusoid.

4.3 A FINAL-VALUE THEOREM

A variation of the final-value theorem (see sec. 3.4) will now be given.

If y(t1l .. tn) has a transform Y(s1 , ... sn) then

lim y(tl, ... tn) = lim Y(s 1 *. Sn) i
t 1--Co s-0

It is also true that

lim y(t ... tn) = lim Y(s .n) sis

t.- oo s . 01 1

and so on, for any number of variables. This is proved in Appendix A. 3. The condi-

tions for validity are similar to those for the final-value theorem of linear theory. This

theorem will be applied in Section V, but there is one use of it that will be mentioned

now.

Consider the system of Fig. 16. For the second-order system, L 2 , discussed in

section 3. 1, we have

) = A 2 B

(s 1 +s 2 +P)(s 1 +a)(s 2 +a)

Let the input be x(t) = y(t) + z(t), when z(t) is a unit step that starts at t = -o, and

y(t) is some input that starts at t = 0. Then the output f2 (t) is given by
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f2
= L 2 (y 2 ) + L 2 (yz) + L 2 (z 2 ) (173)

Since the system has reached steady state before y(t) is put in, Eq. 173 shows that the

system, as far as the input y(t) is concerned, is of the form

f2 H2 (y 2 ) + H(y) + H

where H° is a zero-order system - that is, a constant - and H2 = L 2 . Hence

A2B
H2(S 2) =A 2 B

(s 1 +s 2+P )(s 1 +a)(s 2 +a)

Now, 2L 2 (yz) = Hl(y), and by applying the limit theorem, we find that

H 1 (s) = lim 2L2(s, p) P
2 p

2A2 B 1 1

a (s+p) (s+a)

The final-value theorem also gives ho , the constant associated with the system Ho, and

AZB
h= lim L 2 (s1 , s 2 ) 

Si_ 0 a21

S2 0

This problem introduces two concepts: (a) the idea of describing a system about a

dc input, and (b) the use of this modification of the final-value theorem to find the trans-

forms of the new system. In general, a system of any order can be considered in this

fashion.

4.4 DELAY THEOREM

The delay theorem states that if the system T is a pure delay (or advance), with

y(t-T) = T[y(t)], then, for any nonlinear system H, T * H = H * T.

This follows from the physical reason that it does not matter if a time delay precedes

or follows a system operation of any kind. The particular case

T *H =H *T
- -n -n

can be derived from transform theory because

-s T-...-s T
e 1 n Hn(s1 .. s n ) (174)

is the transform of T * Hn, and
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Hn(s 1 s .. .sn) e

is the transform of H * T. Obviously, Eqs. 174 and 175 are equal.
-n -

4.5 DIFFERENTIATION THEOREM

If D is a differentiating system with

D[y(t)] = y(t)

then

D *H =nH O (D.In)
- -n -n

where I is the identity system.

We shall prove this by using transform theory.

transform of I is 1, and hence from Eqs. 90 and 95

nHn(S. Sn) S

Applying the symmetrization procedure of section 2. 9

form:

The transform of D is s, and the

, the transform of nH o (D.In) is
-n(177)

(177)

gives Eq. 177 in symmetrical

Hn(S1, s n)(Sl +... + n )

The transform of D * H is
-n

(s 1+. . +sn ) Hn(S 11.' s n )

by application of Eq. 92. Since

Hn (Sl, I. +. s +sn) = (s+ . +sn) Hn(S . 's )

it follows that Eq. 176 is true.

4.6 LIMIT CYCLES

A feedback system (see Fig. 23) for which the total system operation around the

loop is L, with L = Q * P, is in force-free (no driving input) balance, in the steady state,

when

L[x] = x (178)

in the steady state. The particular functions x(t) that satisfy Eq. 178 are called "limit

cycles." It is seen that x(t) = 0 satisfies Eq. 178 (L is assumed to have no zero-order

part). Therefore all systems have at least one limit cycle. If Eq. 178 has one or more

nonzero solutions, then the system output, under appropriate initial excitation conditions,
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will tend toward some one of these solutions in the

steady state. A system is, then, unstable if nonzero

limit cycles exist.

Some of the cycles themselves may be unstable -

that is, the output will tend away from these unstable

Fig. 23. Feedback system. limit cycles, rather than toward them. If x(t) = 0 is

an unstable limit cycle, then the system is small-

signal unstable. That is, any small signal will cause a system excitation that will not

die down.

Returning to the balance equation (Eq. 178), we let L = H * K, where H1 is a linear

lowpass system, and K is a nonlinear system. In this case, the balance equation in the

steady state can be solved by assuming that

x(t) = X cos t (179)

Note that it does not matter if cascade components that make up L form a cyclic permuta-

tion. For example, A * B * C, B * C * A, and C * A * B are equivalent forms of L, as

far as Eq. 178 is concerned. All we are doing is writing the balance condition at a

different point in the loop. The particular form used is determined by finding out which

form gives the easiest answer.

Following the solution of the balance equation, we have

K[x(t)] = K(X, w) cos t + higher harmonics

where K(X, w) is a function of the amplitude X and frequency . Because of the lowpass

character of H i , the solution

H1 (jc) K(X, ) = 1

for X and o is a closely approximate solution of the balance equation. This is

the "describing function method" (8), and the value(s) of X and o, so found, give

Eq. 179 as the limit cycle(s). A limit cycle is stable if changing the amplitude X to

X + AX gives

Hl(jw) K(X+AX, ) < 1 for X + AX > X

and

Hl(jo) K(X+AX, w) > 1 for X + AX < X

Otherwise, the limit cycle is unstable.

For any system in which the loop operation L can be described by the functional

series, or polynomial, the transforms Hn(jo 1 . . . I jn) can be used to solve the balance

equation (Eq. 178) in the steady state, at least if the number of harmonics involved is

not too large. It can be assumed that

2x(t) = X ejo X e-jt + X 2e2t + X2e2t +1 1 l 2 2 .
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and the values of X 1 , X 2 , etc., and of a) that satisfy Eq. 178 can be found. The x(t) so

found are limit cycles and their stability can be investigated, as in the previous special

case, by finding the effect of a small amplitude change.

4.7 MEASUREMENT OF NONLINEAR SYSTEMS

Our final topic here is the measurement of nonlinear systems. Two techniques will

be mentioned - time-domain and frequency-domain measurements. The discussion of

the measurement topic will be completed,

in Section V, by describing a measure-

f(t1) ment procedure based on a white Gaussian-

noise input. The discussion here shows

only that measurements are theoretically

possible. Thus far, no such measure-

ments have been made.

Unlike the input-signal amplitude in

linear systems, the amplitude of the input

signal of a nonlinear system is of great

ml (t) importance. Both the analysis and meas-

urement of a nonlinear system are depend-

ent on the amplitude range of the input

signals for which the system is to be used.

to t, t2 t For this reason, the input test signals

(b) should be bounded signals, and, further-

more, the amplitude of these signals need
Fig. 24. Measurements: (a) determina-

tion of coefficients; (b) linear cover only the range that is of interest.
coefficient ml(t). For the reasons mentioned, we shall

adopt the step function for the input test

signal for time-domain measurements. Consider a nonlinear system L, with L = L1 +

L 2 + + L + + .. and f = L[x]. The output f(t) for an input step function, x(t) = Xu(t),

is

f(t) = X 11 (T) d+ ... + Xn ... 1 n(T..n T ) dT . dT ...

For a particular value of time, t,

f(tl) = Xml(tl) + XmZ2 (tl ) + ... + Xnmn(tl ) + ... (180)

where

mn(tl) = fOt / ln(Ti, ... Tn) dT 1 .. dTn
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Equation 180 is a Taylor series in X, and the output f(tl) is dependent upon X, as shown

in Fig. 24a. If f(t1 ) is found experimentally as a function of X, then it is theoretically

possible to isolate the coefficients mn(tl) in the Taylor's series. If these coefficients

are obtained at a set of times t 1 ... tn then they can be plotted, as is shown in
Fig. 24b for mI(t), to determine m (t).

The impulse response of L, can be shown to be the derivative of ml(t), and so

dt1(t) =2?mlt

Therefore, the impulse response 1l(t) can be theoretically determined.

Now, the impulse response of 2 can be found. To do this, we take as input x(t) =

y(t) + z(t), where y(t) = Xu(t), z(t) = Xu(t+T), and T is some positive number. The out-

put, then, is

f(t) = Xpl(t) + X 2 p2 (t) +. + Xnpn(t) + ... (181)

where

Pn(t) = f.. l(T .... Tn) X(t-T 1) ... x(t-Tn) dT 1 '' dTn

Again, the Pn(t) can be determined by the use of Taylor's series, as the mn(t) were.

The term Xpl(t) is not needed and can be ignored. From P2 (t) the impulse response

12 (t 1, t 2 ) can be found in the following way.

pz(t) = Lg((y+z) 2)

= L 2 (y2 +2zy+z 2)

ltf 2 (T, TZ) dTldT + 2 f TlZ(T1, TZ) dT 1dT 2

+ftTft 12 (T1 , T2 ) dT 1 dT 2

t t+T
= m 2 (t) + J 2 J 12 (T1 , T) dTldT 2 + m 2 (t+T)

But, m 2 (t) is known, and so the term

g2 (t, t+T) = 12 (T1 , 2 ) dTldT 2 (182)

can be isolated. Repeating this measurement for a number of values of T will produce

the two-variable function g2 (tl, t 2 ). Then it can be shown that
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2

12(tl, t) = at at2 g2 (tl, tz )

and now 12 (t 1 ,t 2 ) can be theoretically determined from gz(tl,t 2 ).

In a similar manner, 13 (t1 , t 2 , t 3 ) can be found by using an input triplet of step func-

tions, that is

x(t) = Xu(t) + Xu(t+T 1) + Xu(t+T2 )

Theoretically, the procedure can be continued to find the 1 n(ti I. tn) to any order n

that is desired.

The frequency-domain measurements are similar to the time-domain measurements,

in their use of Taylor's series to isolate the various terms. We have

f(t) = Hl[x(t)] + H2 [x(t)] + ... + Hn[x(t) ] + ... (183)

where H1 has a transform Hl(j ), H2 has a transform H 2 (jo), and so on. Let the input

x(t) be a sinusoid, and then

x(t) = X Re {e j Wt}

where X is a real number. Direct application of the steady-state methods of section 3.3

gives an output that is the real part of

f(t) = XH1 (jo) ej it + 1 H2(j -jw)

+12 X 2 (j+, Jo) Hw+ I X 2 H w, j) ej 2wt

+ 4 X3H (jo, j, -jw) e j t

+ 1 X 3 H (jow j, j) ej3wt

+ 3 X4H4 (jO j, -jo, -jwo) + .(184)

Steady-state harmonic measurements can be taken to determine the coefficients of

ejnt, which are

1-XH 2 (jw, -jw) + 3 XH 4 (jO, j, -jw, -jw) +

for n = 0, and

XH1 (j) + X H3(j o, j, -jo) + ..

for n = 1, and so on. With measurements for various frequencies and values of X,

the Taylor-series approach can be used to isolate Hl(jw), H2 (j, jwo), H2 (j0, -jo), and so

forth. In a manner quite similar to the previous use of multiple -step inputs, input
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sinusoids of the form

jclt jw2 t
Xe +Xe

are used to obtain H 2(jW, jW2 ). In general, multiple sinusoidal inputs can be used to

determine the Hn(jw, . ... jn)

Two methods have been described for the determination of the impulse responses or

transforms that characterize a nonlinear system. In Section V, another method, based

on a random input, will be discussed.

Note that the measurement of impulse responses and transforms is considerably

more complicated than such measurements for linear systems. This is to be expected.
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V. RANDOM INPUTS

5.1 INTRODUCTION

In Sections I-IV we have been concerned with the functional representation of con-

tinuous nonlinear systems, and with the use of this representation in conjunction with

deterministic inputs. We shall now consider random inputs. Output averages and cor-

relation functions will be computed by means of the functional representation. Gaussian

inputs will receive the principal emphasis, and certain optimum operations on Gaussian

and Gaussian-derived signals will be developed. A system-measurement technique based

on a white noise input will be discussed.

5.2 OUTPUT AVERAGES

Let us consider f = H[x], where H = H + H + + H + ... A typical term is

fn(t)= Hn[x(t)]

h , T 1 x ) x(t-T 1 ) ... x(t-Tn) dT 1 ... dTn (185)

and

f(t) = fl(t) + ... + fn(t) + ... (186)

Now, taking averages on both sides of Eq. 186, we have

f(t) = fl(t) + ... + fn(t) + ..

and the object is to find f(t) by computing the fn(t). (Here, we consider all random sig-

nals to be ergodic. Therefore, averages can be taken as time averages or ensemble

averages. The average of a signal z(t) will be denoted z(t).) This fn(t) is given by

fn t)f... h n(il n) Xt1 ... x(t-Tn) dT 1 .. dTn (187)

Interchanging orders of integration and averaging in Eq. 187 gives

fn t) f n( 1 *... Tn) x(t-T 1 ) ... x(t-Tn) dl... dT (188)

If the correlation function x(tl) . . . x(tn) is known, fn(t) can be found by performing the

integrations of Eq. 188.

It is convenient to introduce a short notation that is related to the operator notation

used previously. In this notation Eq. 188 becomes

fn =H n(XlX2'.' ' Xn)
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and the average of the output f is

fn= Hn(X1.. ' xn)
n

The subscripts 1, , ... , n refer to the subscripts of T1 , T2 , ... , Tn in Eq. 188.

Similarly, for the calculation of output correlation functions, we have

f(t) f(t+T) = {fl(t)+.. +f n (t)+. . }{fl(t+T)+. .. +fn(t+T)+. .. }

= Z fm(t) fn(t+T) (189)
m n

and

fm(t) fn(t+T) = .. . hm((Tl, Tm) x(tT... x(tTm)

dT1 .. dTm f / hn(T ... Tn) X(t+TT 1)

... x(t+T-Tn) dT 1 .. dTn (190)

After rearrangement and interchange of the order of averaging and integrating Eq. 190

becomes

fm(t) fn(t+T) = .f hm(T1 ... Tm) hn(T+Tm+1 . T+Tm+n)

x(t-T 1) ... X(t-Tm+n) dT 1 ... dTm+n (191)

The "impulse response" in this expression is that of the system H · (P*Hn ) , where P

is an ideal predictor with time shift T, and has an impulse response 6(t+T). We abbre-
T

viate this as H · H and then Eq. 189, in the short notation, becomes-m -n'

fn(t) (fm(t+T) = (Hm .HT)(x... m+n) (192)

As in the previous case, the output autocorrelation function can be computed if the

higher-order input correlation functions are known.

5.3 GAUSSIAN INPUTS

In the important situation in which the input signal is Gaussianly distributed, the

calculation of the output averages is not too difficult. Emphasis will be placed on such

inputs. First, the special case of white Gaussian inputs will be considered and then

this will be generalized. Wiener (5) has rigorously considered the white Gaussian-input

case.
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If x(t) is white Gaussian with a power density of 1 watt per cycle, then

x(t) = 0

x(t1 ) x(t2 ) = 6(t2-t 1)

x(t 1 ) x(t 2 ) x(t 3 ) = 0

x(t1 ) x(t 2 ) x(t 3 ) x(t4 ) = 6(t2 -tl) 6(t4 -t 3 ) + 6(t3-t 1 ) (t4-t 2 ) + 6(t4-t 1 ) (t 3-t 2)

and so on, where 6(t) is the unit impulse function. In general, the average is zero if the

number of x's is odd, and is a sum of products of impulse responses if the number is

even. In general,

x(tl) ... x(tn) = i 6(ti-tj) (193)

The product is over some set of pairs of numbers taken from the numbers 1, 2, ... , n,

such as (1, 3), (2, 4), (5, 7), and so forth. The sum is over all such sets.

In the nth -order case, there are N = (n-l)(n-3) ... 1 terms in the summation, and

so for n even

fn = hn(x1 x) = (T 1 T2 .· Tn) 6(Ti- Tj) dT 1 dTn

= J ... f h( 1 ' ,T 1'TZ 2 'TZ -ITn/2 Tn/ 2 ) dTldT 2 dTn/2 (194)

where hn(tl ... . tn) is symmetrical. (Note that because of this symmetry, the various

terms in the sum of Eq. 193 contribute identically in Eq. 194.) Hence, f(t) can be deter-

mined by performing the integration of Eq. 194 for each of the fn(t) in the sum

f(t) = fn(t) (195)
n

A typical term in the correlation function equation (Eq. 192) is

(iHm-HT) (xl... Xmn (196)

where (Hm-HnT ) has an impulse response

hm(t 1 . . . tm) hn(T+tm+ 1 , T+tm+n) (197)

and this impulse response is not symmetrical. Therefore it is necessary to take into

account the various terms of Eq. 193. For example,
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(H 2.HT)(x1 x2 x3 x4 ) = J h 2 (TlT 2 ) h2 (T+T3T+T 4 )

{6(T-T 1 )6(T 4 -T3 )+(T3--T 1 )6(T 4-T 2 )+(41)6(T4 3 -T2 )} dTldT2 dT 3 dT 4

=jh 2(T1 T1 )h 2 (T2,T2 ) dTldT2 + 2j h2 (T1 ,T2 ) h2 (T+Tl,T+T2 ) dTldT 2

(198)

In a similar manner, we obtain

( 1 T3 )(X 1X 2X 3X 4 ) =fffh (T )h 3 (T+T2,T+T3,T+T4 )

{6(T 2 -T 1 )6(T 4 -T3 )+6(T3-T 1 )(T 4 -T 2 )+6(T4 -T 1 )6(T 3 -T 2 )} dTldT2 dT 3 dT 4

= h(T)h 3(T+Ti,-) dTdo (199)

Generally, when we are faced with an unsymmetrical situation it is a straightforward

matter to determine the various terms of expression 197. The general term that arises

is

f. .f hm(, 1 '.. Tp 1q, T q)

Xh (T+rl, ... , T+T (rq+l,(- q+ 1 ... , -rr) d .'' d do- ... dr (200)

Here, p + 2q = m, and p + 2r - 2q = n. It should be remembered that expression 197

equals zero if m + n is odd. Once the terms (H (x xm have been determined,-m -n n' '
f(t) f(t+T) is given by Eq. 192.

The results for white Gaussian inputs can be used to obtain output averages and cor-

relation functions for non-white Gaussian inputs into a system H. In the non-white case,

the Gaussian signal can be formed from a white Gaussian signal by means of a linear

shaping filter, K 1 . This is illustrated in Fig. 25. Then, rather than work with a non-

white Gaussian input to a system H, we work with a white Gaussian input to a system

H * K 1 . Also, if the input to a system H is non-Gaussian, but formed from a white

Gaussian signal by a known nonlinear operation K (which can be expanded in the func-

tional representation), then we can work with a white Gaussian signal to a system H * K.

WHITE LINEAR NON-WHITE
GAUSSIAN SHAPING GAUSSIAN Fig. 25. Illustrating the use of shaping filter.

SIGNAL FILTER KI SIGNAL
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5.4 USE OF TRANSFORMS

The averages given, for example, by Eqs. 194 and 198 could be found by performing

the indicated integrations of the usually awkward impulse responses. However, this

difficulty can be overcome by the use of transforms. The transforms considered here

will always be Fourier transforms (see Appendix A. 1) and s = j.

To develop the use of transforms, three typical situations will be explained. First,

consider the term

H--n (x' xn) = j...j h(TL, T1 T n / 2 ' Tn/ 2 ) 1 ... dT/ 2 (201)

from Eq. 194. The transform of hn(tl, . .. tn) is Hn(S1 .. . n), and hence the trans -
form of hn(t 1 t l t 3 t, tn) can be obtained by inspection if Hn(s 1 ., ) is factorizable.

Let the transform of hn(tltl't 3... tn) be

Kn_l(sl s3 ' .... s n )

Now, the first integration of Eq. 201 can be performed. This integration is

f hn(T1 , T1 T3 · ·. ) n 1

and it can be obtained from Knl(S1 . . . s n ) by the method of section 4. 4. That is, the
transform is

lim Knl(Sl, S 3 .. Sn)

Let this expression equal Ln_2(s3' ... Sn), which is the transform of

f hn(T, T1 , T3 , * . n) 1

The operation can be repeated on Ln_2 (s 3 .. ., sn) to perform the second integration of
Eq. 201, and so on until it has been evaluated.

As an example, consider

l1 4(T1 , T1 , T2 , T2 ) dT1 dT 2 (202)

where 14(tl, t 2 , t 3 , t 4 ) has a transform

A 1 1 1 1 (203)
S1 + 2 + s3 + 4 + a + s 2 + 3

The first association gives
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A 1 1 1
1 + s3 + s 4 + a s + 2 s3 + s4 + 

and taking the limit s 1 0 gives

A 1 1 1
s 3 + s 4 + a 2p s 3+ p s 4 + 

Associating the other two variables, we obtain

1 A 1
2P s + a s + 2P

and

Jf1 4 (T1 T1 T2 , T2 ) d dT 2 = li 2 s + a s + A
s-e ZP s s+ a s + P e i4apZ

The second situation to be studied is

.f 1 *.f hn(Tl . Tn) kn(T+T 1 ...

As we have done before with transforms,

and consider

f... hn(T1 - k(T 1+T 1 ..

T+T n ) dT 1 ... dT n

we introduce T ... T into this termTn+Tn) d

Tn+Tn) dT 1 .. dT

(206)

Taking the higher-order transform of this expression yields

Hn(-l ... -Sn) Kn(sl, . s )
(207)

The actual transform of Eq. 206 can now be obtained from Eq. 207 by associating

T 1 ... .Tn with T by means of the inspection technique if the transforms are factor-

izable.

In using the inspection technique it should be noted that the contribution of terms of

the form

Ln+l(s ***. sn, Si+sj) P(si) Q(-sj) (208)

is zero when Ti and Tj are associated. This is so because the Ti and Tj in the inverse

transform of Eq. 208 are in disjoint regions; that is, Ti > 0 and T. < 0. Hence there is

no contribution for t = T. = T..

In order to illustrate the method, consider the case in which
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,2
H2 (S1 ,S2 ) H 2 (-S 1 ,-s 2 ) =

(-S -s 2+P)(s +s 2 +P)(-s a)(-s +a) (s +a)(s +a)

4a2 (-s 1-s +P)(s1 +s 2+) s2
1 + a

1 K2 1 1

4a 2 (-sl-s2+P)(s l++s2 +) (-s 1 +a)(-s 2 +a) (s +a)(s 2 +a)
1 2 1 2 1 2 1

+ 1 + 1 (209)
(sl+a)(-s2+a) (-S +a)(s 2 +a)

Associating the variables by inspection yields

K2 I 

4a2 (-s+P)(s+P) - s2as+2a (210)

and the terms involving [(sl+a)(-s 2 +a)] - 1 , and [(-sl+a)(s2+a)]- 1 give no contribution.

Equation 210 is then the transform of ffh 2(rl, T2 ) h 2 (T+T 1 , T+T2) dTldT2 , where

h 2 (t1 , t 2 ) has the transform H2 (S 1, s2).

A third situation that arises is

... hn 1 n m(Tl . ) k +T ,.. n+T' -1 1o+ * * p,. p) d T. dT - do j' 1'' n ' " p....pp....n1 'p

where m + n is even, p = (m-n)/2, and m > n. First, consider

fjJ...f m(tl ... , Itn, 1
o

1. * ,) dl .. .pp) d (211)

where km (t 1 .. tm) has a transform K m (s 1 ... , Sm ) By direct application of the

first method discussed in this section, the transform of Eq. 211 can be obtained. Once

this has been done, the situation is the same as in the second case and the method

involved there can be used. In a similar manner, the general form of Eq. 200 can be

handled.

For example, consider

hl(T) h 3 (T+T, r-, -) dTd- (212)

where h3 (t 1 , t 2 , t 3 ) has a transform

K 1 1 1 (21

Sl + 2 + S3 + a S + P S2 + 3 +

and hi(t) has a transform H/(s+a).
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Consider

h 3 (t a-, o-) da- (214)

Associating s 2 and s 3 in Eq. 213 yields

K 1 1 (215)
s1 + 2 +a + + 2Ps + a s + s + 

Let s - 0, in order to evaluate the integral of Eq. 214, and we have

K 1 1 (216)

Sl +a l1 + 

which is the transform of Eq. 214. Equation 212 has a transform

KH 1 1

2p (-s+a) (s+a)(s+p)

Inverting this transform gives

1 {Zae-Pt-(a+) e } for t > 0
2(a+p)(a-p)

and

1 ate , for t < 0
2a(a+p)

for Eq. 212.

The three main methods for handling the expressions that arise in computing output

averages or correlation functions have been presented. These are transform or

frequency-domain methods. In computing autocorrelation functions the results can be

left in the frequency domain, in which they represent the spectra.

5.5 EXAMPLE 5.

The system for this example is shown in Fig. 26. It is an apparatus for measuring

the average square of the Gaussian signal, y(t). The signal y(t) is formed from a white

Gaussian x(t) by means of the shaping filter Al, with Al(s) = A/(s+a). The system

B1 is a physical approximation to an ideal integrator, and Bl(s) = B/(s+p). The
over-all system operating on x(t) is L 2 =

B * N2 *Al, where N2 is a no-memory

X frr71VF~1 A YIN.I 8Isquarer, and n = 1.

First, we shall obtain the average

Fig. 26. Apparatus for measuring aver- square of y(t). This is the average of
age square of the signal y(t). the output of the system H2 = N2 * A
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operating on x(t). The output from H2 is y2 (t). Then

y2 (t) =H 2(XlX 2 )

= Jh 2(Tl, T2 ) 6(T 2 T1 ) dT 1dT 2

= jh 2 (T, T) d T

and h 2 (t1 ,t 2) has a transform,

A2

H 2(sl, s2 ) = A
(s l+a)(sz+a)

Associating t and t 2 gives A /(s+2a), from Eq. 203, and so

2 A2 A
y )= lim = 22

Next, we shall obtain the average output from the system L 2, where

L 2 (S1', S 2 ) =
A2B

(s l+s 2 +P)(s +a)(s 2 +a)

Associating the variables gives

A2B

(s+P)(s+2a)

from Eq. 204. Then

A 2 B A2 B
f(t) = lim 2

s-~O (s+B)(s+2a) a

and f(t) = y(t) when B = . We see that the apparatus does measure

However, the output f(t) is not a constant, but a random variable.

To conclude this example, we obtain the output spectrum f(c).

relation is given by application of Eq. 199:

the average of y2(t).

The output autocor-

If(T): JJ12(T1, T) 1 (T2 T) dTldT2

+ 2l 2 (T1 ' T2 ) 12 (T+T 1 , T+T 2 ) dTdT2 (218)

where 12 (t1 , t2 ) is the impulse response of the system. The first term of Eq. 218 can
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be shown (see Appendix B. 3) to equal (A /2a)2 , when B = . Also, from Eq. 217,

2A4B2
2L 2 (- 1 ,-S2 ) L(S ,S2 ) = 2AB (219)

2 2LZ1'2 (-S 1 -s 2 +P)(s 1 +s2+p)(-s +a)(-s 2 +a)(s 1 +a)(s 2 +a)

and application of the inspection method (see Appendix B. 3) gives

2A 4 B 2 1

o2+ p2 w + 4a 2

when jw = s. Therefore, the spectrum Of(o) is given by

2 42
A B _ (_ ) +- 2A B 1 (220)

f(o) = 2- 5(o) + 2 _ _2 _ 2 ____o + + 4a2

5.6 EXAMPLE 6.

This example is concerned with the feedback system of section 3. 5. The problem is

much the same, except that here the input is a random signal, Gaussianly distributed.

Our object is to use the nonlinear compensating device N to decrease the servo following

error and still meet a constraint on the maximum allowable rms acceleration.

The system input is x(t), the output is f(t), and the following error is e(t) = x(t) - f(t).

The acceleration of the motor is a(t) = d/dt f(t).

First, we shall consider the linear, uncompensated system with N = I. The input

spectrum is

)X(w) 2 2 (221)* co) 2 2o +p

The pertinent results (see Appendix B. 4) are:

- 2
e2 = B (222)

2A

22 AB2
a - 2 (223)

- 2
f2 B (224)

2 pe _ (225)
f2 2 A

where A > 10p, in order that the following error be small. If M is the maximum allow-

able rms acceleration, then minimum following error is obtained for A = 2M2/B 2 .

The results for the compensated nonlinear system with N = I + N 3 (see Appendix B.4)
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will also be stated:

2 4 6
2 B 3 B 3 B

e =2A 4 n3 A2 4 3 A3

Z 4 6
Z AB 3 B 4 21 Z B

a =2 4 n3 A 2 n3A 2

and

2 4 6
f2B 3 B 32 B 6

4 3A24 3 4

where n3 is taken sufficiently small that only the first three terms are significant. Now,

for example, we shall take the numerical values: B = 1/2, 2/30, and M = 5/32.

Then for the linear case, the largest allowable A = 20/32 and e /f = 0. 05.
1

For the nonlinear compensated case, with n 3 = -, the allowable A is 1, and

e2/f2 =0.021. This represents a 60 per cent decrease in the following error.

This example shows what can be done by applying the functional representation to

nonlinear systems with random Gaussian inputs. It also illustrates the possible use of

nonlinear elements for servo compensation when the input is a random signal.

5.7 OPTIMUM SYSTEMS

This section deals with the problem of obtaining the realizable system that best

approximates a desired unrealizable nonlinear system or operation. The desired sys-

tem is unrealizable because its impulse response "starts before t = 0." Best is to be

taken in the least-mean-square sense; that is, the average squared error between the

output of the realizable system and the output of the unrealizable system is minimum.

The signals upon which the systems operate are Gaussian. Barrett (6) has developed

an approach for the general (non-Gaussian) signal, but there are problems still to be

solved before we can take advantage of his approach. In this report we are restricted

to Gaussian signals or signals derived from Gaussian signals.

We shall consider an unrealizable linear system H1 with a white Gaussian input, and

we shall find the optimum realizable system. Let the impulse response h(t) be nonzero

for t < 0. Then

fl(t) = f h 1(T) x(t-T) dT
-oo

or, if we divide the region of integration into two parts, we have

fI(t)= I hl(T) x(t-T) dT + f hi(T) x(t-T) dT
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The region -oc to 0 covers x(t) in the future, and the region 0 to o0 covers x(t) in the

past. If we know only the past of x(t), then fl(t) can only be estimated. The best mean-

square estimate of f(t) is gl(t), with

gl(t) = average of fl(t) over the future (226)

or

gl(t) = h1 (T) x(t-T) dT + h1(T) x(t-T) d (227)

Equation 227 follows from Eq. 226 because x(t) is white, and therefore the past and

future of x(t) are uncorrelated. Since x(t) = 0 for a Gaussian (zero-mean) signal, Eq. 226

becomes

g(t) = h1 (T) x(t-T) d (228)

and the best estimate, g(t), has been found. Putting this another way: the unrealizable

impulse response hi(t) has been replaced by kl(t), where

r hl(t) for t O0

k (t ) = t

0 otherwise

and

gl(t) = J k1(T) x(t-T) dT (229)
-o

This is a familiar result from linear theory.

Now we shall do the same thing for a second-order system H2 , in which

f2 (t) = h 2 (T1 , T2 ) x(t-T 1) x(t--T2 ) dTldT2

Splitting the region of integration into past and future regions gives

f2 (t) = h 2 ( 1, T2 ) x(t-T1) x(t-T 2) dTldT 2

+ T2 ) tT (t) d

+ h2 (T 1, 2 ) x(t-T 1) x(t-T2 ) dldT 2

The factor 2 in the second term is obtained by taking advantage of the symmetry

of h2 (tl, t2 ) and combining two terms. Again, g(t), the best estimate of f(t), is

obtained by averaging over the future. Since x(t) is white Gaussian, the past and
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future are independent, and

g2 (t) = j h2 (i 1l T2) x(t-T)x(t-T 2 ) dTldT2

+ 2 h 2 (T l , T2) x(t-T1 ) x(t-T 2 ) dT 1 dT 2

+ / O /h 2 (T1 , T2 ) x(t-T 1 ) x(t-T 2 ) dTldT 2

Performing the indicated averages gives

/o00 o00g2 (t) = J
-oO

h2 (T, T) dT + h 2 (T1 , T2 ) x(t-T 1 ) x(t-T 2 ) dTldT 2

Thus the unrealizable system H2 has been approximated by a realizable system K,

with K = K 2 + Ko, and K2 has an impulse response

r hz(tl' t2)

k2 (t 1 ,t 2 ) =l

for t1 and t 2 >_0

otherwise

and K is a zero-order system (a constant) of value
-o

r °
ko = h2 (T, T) dT

00

In general, this procedure can be used to show that an unrealizable system H n is

replaced by a best realizable system K(n), with

n= r (n) r (230)

K--n r= r -n-r0

The Kn-r have impulse responses kn r(tl . . *Itn r), and for r odd and all t i (where

i=l . .. n),

kn-r(t . .tn-r) = 

for r even and all ti > 0,

= (r-)(r-3) 1 ...
= r .00

hn(Tl, T1 ....
-oo00

Tr/ 2 ' r/2' t1 ,t 2 . . tnr) dTl .. .dTr/2

and for r even and some ti < 0,

= 0 (231)

Now that the realizable system which is nearest, in the mean-square sense, to a
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y(t) y
2
(tT)= f(t)

(a)

(b)

(c)

-I -2

(d)

Fig. 27. Example 7. (a) Desired operation. (b) Production of x.
(c) Desired operation on x. (d) Optimum system opera-
tion on y.

desired unrealizable system has been determined for a white Gaussian input signal, the

extension to non-white Gaussian signals can be explained. By means of linear shaping

filter L 1 , a non-white Gaussian signal can be whitened. Once this is done, the optimiza-

tion can proceed with the resultant white Gaussian signal as input. That is, given a

desired operation, H = H1 + ... + Hn , the signal x(t) is whitened by L1 to produce y(t),

and the optimization is made for a desired system H * L 1 1 with input y(t). The result-

ant realizable system is K, and then the optimum system is K * L 1 .

A further generalization can be made. Suppose that the input signal is the result of

(or the statistical equivalent of) a known nonlinear operation, L, on a white Gaussian

signal. Furthermore, assume that this system L has a stable, realizable inverse, L 1 .

Then, just as before with L 1 , the optimization procedure can be preceded by the L1

operation.

5.8 EXAMPLE 7.

In this example we desire to obtain the best mean-square estimate of f(t) = y (t+T),

where y(t) is a Gaussian signal, and T is positive. In other words, we want to find the

realizable system closest to D 2 , with

d2 (t 1 , t 2 ) = 6(tl + T) 6(t 2 +T) (232)

Now, take

D2 (w2+Y 2 )

Y(o) (o2+a2)( 2 +52(co+a )( + 
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The shaping filter L1 has a transform

D(s+y)
L 1 (s) =

(s+a)(s+p)

-1
We operate on y(t) with Lll to produce a white Gaussian x(t), as shown in Fig. 27b.

The desired operation on x(t) (see Fig. 27c) is _R = D 2 * L1 , and

s T s T
R 2 (S, s2 ) = e Ll(S1 ) e Ll(S2 )

Applying Eqs. 230 and 231 to determine the best realizable operation on a white

Gaussian signal gives K = K2 + Ko and

-(ta(tlT e -P(t+T) t
k (tilt?) = P e +Q e

r( -a(t2+T) -(t2+T) 
p= 1P e +Q e for tl t 2 > 0

= 0 otherwise

and

ko = ;(P e -a+Q e )d}

where P = D(y-a)/(P-a), and Q = D(y-P)/(a-P). The optimum operation on y(t) is, then,
-1

K * L 1 , and the optimum system is shown in Fig. 27d.

5.9 EXAMPLE 8.

This example deals with the prediction of y(t), where y = (N*L 1 )[x]; x(t) is a white

Gaussian signal; N[z] = z + z3 ; and

L 1 (s) = (233)
(s+a)(s+P)

Operating on y(t) to produce

X LiL*N-L []

and performing the optimization on x(t) gives an optimum predictor J, which operates

on y(t), with

J=M K 1 * N_ (234)

and

M[z] = mlY + y3 (235)
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where

m 1+ (a)1 - e -2aA +1 - 2PA + 1 e-(a+P)A (236)m + + + (236)

Kl(s) = cl + c 2 s (237)

Se- aA + ae-pA
=1 ( (238)

(P-a)

-aA -PA
C2 = e -e (239)

(P-a)

See Appendix B. 5 for further details.

5. 10 THEORETICAL DISCUSSION ON MEASUREMENTS

The way in which the system impulse responses may be obtained by measurements

made with a white Gaussian noise input will be demonstrated here. The quantities to be

measured will be input-output crosscorrelations. However, at this time, such meas-

urements can only be discussed theoretically.

Let the input x(t) to a linear system H be white Gaussian noise, and the output be

fl(t). Then

fl(t) x(t-T) =f hl(T) x(t-T) x(t-T) dT

h I(T) 6(T-T) dT

= h 1 (T)

This method, which is known from linear theory (8), is one means of measuring the

impulse response of a linear system.

Now consider a quadratic system H 2 with input x(t) and output f 2 (t). Then

f 2 (t) x(t-T 1) x(t-T 2 ) = jh 2 (Til Tz) X(t-T 1 ) X(t-T 2 ) x(t-T 1) x(t-T 2 ) dTldT z

j h2 (T 1, T2 ) {6(T2 -T1 )6(T 2 -TL)+6(T 1 -T1 )6(T 2 -T 2)

+6(T 2 -T1 )6(T 1-T 2 )} dTdT 2

= 6(T2-T 1 )j h2 (r, T) dT + h2 (T 1 , T2 ) + h 2 (T 2 , T 1 )
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We note that 2 {h2 (T 1 ,T 2 )+H(T 2 ,T 1 )} is the symmetrical form for the quadratic impulse

response, and so

f2 (t) x(t-T 1 ) x(t-T2 ) = 6(T 2 -T 1 ) h Z(T,T) dT + hZ(T1 ,T 2 )

Measurement of this second-order crosscorrelation, f2(t) x(t-T 1) x(t-T 2 ) for T 1 T2,

therefore yields h 2 (T 1, T 2 ) for T 1 * T 2 . The function h 2 (T, T) can be obtained by cross-

correlating f2 (t) with {x2 (t-T)-x 2 (t)}. Then we have

f 2 (t){x2 (t-T)-x2 (t)} = 2h2 (T, T) (240)

For white noise x2(t) does not exist, but it does exist for any practical approximation to

white noise.

For the cubic system H3' we have

f 3 (t) x(t-T1 ) x(t-T 2 ) x(t-T3 ) = 6h3 (T 1 ,T 2,T 3 ) + 36(T 1 -T 2) h3 (T,TT 3 ) dT

+ 36(T 1 -T 3 ) fh 3(T,TT 2 ) dT + 36(T 2 -T 3 ) h3 (T,T,T) dT

which gives h 3 (T 1, T 2, T 3 ) for T 1 * T 2 * T 3 To obtain h 3 (T 1, T 2 , T 3 ) in the excluded

region, measurements similar to the measurement indicated in Eq. 240 can be made.

Higher-order systems H can be handled in an analogous manner. If the measure-
-n

ments are to be made on a system H = H1 + H + H + .+ H + .. then to extract the H1

term, for example, the measurement of f(t) x(t-T), where f(t) is the output of H with

input Ax(t), may be made for an input Ax(t) for different values of the constant, A. Then

the part of fl(t) x(t-T) that varies as A will be hl(T).

Similarly, for f(t) x(t-T 1 ) x(t-T 2 ), the part that varies as A is 2h 2 (T 1, T), for

T 1 * T 2 . Thus, the Taylor's-series method has been applied again to separate the var-

ious H of the system.-n

5. 11 SUMMARY

We have shown how output averages and correlation functions may be obtained for

nonlinear systems described by the functional representation. Emphasis has been placed

on Gaussian input signals, and frequency-domain techniques have been developed and

illustrated by examples.

A discussion was devoted to the problem of optimum nonlinear operations on Gaussian,

or Gaussian-derived, signals. Two examples of the optimization procedure were given.

The section on theoretical measurement was intended to show briefly how input-output

crosscorrelation measurements can be used to measure the system impulse responses.
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VI. THEORETICAL DISCUSSION OF FUNCTIONAL REPRESENTATION

A number of theoretical topics concerning functional representation and the algebra

of systems will now be presented. In the first few sections we shall attempt to place

certain aspects of this algebra on firmer ground. Then we shall discuss some topics

that prescribe theoretical limitations on the functional representation.

6. 1 DOMAIN AND RANGE

We have stressed the point that the amplitudes of the input signals of a nonlinear

system are very important. They are important for two reasons: (a) the system may

act in a radically different way for two signals of the same wave shape but of different

amplitudes, and (b) the method of analysis may depend on some limitations on input-

signal amplitude. Therefore, to be rigorous, we should associate a certain input limi-

tation with any nonlinear system that is being discussed. This limitation will be the

"domain" of the system. For the system H it will be denoted DH, and it is the class of

all allowable input signals. If a signal x falls in this class we write x E DH (in words,

x is contained in DH). A convenient way to particularly define DH is to say that there

exists a positive number of X that is such that if Ix < X, then x E DH. In general,

there are many ways to define the system domain.

If a DH is defined for a system H, then the outputs f that are associated with the

inputs x, where x E DH, form a class of signals. This class will be called the "range"

of the system, and will be denoted RH. If f = H[x], then f E R H, for all x E DH.

A question now arises about what happens when we additively combine two systems

of different domains. If L = J + K, where J has domain Dj and K has domain DK ,

then we shall take the domain of L, D L, to be the class of signals that are contained

in both DJ and DK. Therefore, we shall consider only inputs for L that we know are

allowable inputs for both J and K.

Similarly, for the multiplication combination L = J K, DL is the class of signals

contained in both DJ and DK.

For the cascade combination L = J * K, we must assume that the range of K, RK,

is contained in D. If this is not so, then DK must be constrained so that RK is con-

tained in DJ.

In this report we have assumed that these points were implied when we have

combined systems.

6.2 ALGEBRAIC LAWS

The validity of certain operations, which has previously been assumed (see

sec. Z.8), will be established here. These operations will be presented as a set

of theorems.
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THEOREM 1. If A = B (241)

then A + H = B +H (242)

and H+A=H+B (243)

This theorem holds also for the minus operation.

THEOREM 2. If A = B

then A · H = B · H (244)

and H A = H B (245)

THEOREM 3. If A = B

then H * A = H* B (246)

and A* H = B * H (247)

Systems A, B, and H are nonlinear. These theorems are easily proved.

Let p = A[x]; q = B[x]; and r = H[x]. Then from Eq. 241, p = q. But p + r = q + r,

and so A[x] + H[x] = B[x] + H[x] or A + H = B + H.

Axiom 1 (Eq. 34) gives H + A = H + B directly, and so theorem 1 has been proved.

The proof of theorem 2 is similar. Now, theorem 3 will be established.

Take p and q as before, and then, since p = q, we have H[p] = H[q] or H[A[x]] =

H[B[x]], and so H * A = H * B. Hence, Eq. 246 has been proved. The proof of Eq. 247

is similar.

THEOREM 4. If A and B are known systems, and it is desired to find an H with

the property that

H * A = B (248)

then H, if it exists, is unique.

In other words, there is one and only one system H that satisfies Eq. 248. (Of

course, there may be no such system. For example, if B = I and A = N2 , then, because
2

we cannot tell whether x is due to x or -x, no H exists.) It is assumed that DA = DB'

and H is only defined with a domain DH that equals the range RA.

To prove this theorem, take H and (H+K) to be two systems that satisfy Eq. 248.

Then H * A = B, and (H+K) * A = B. Hence, by theorem 1 (Eq. 242), H * A - (H+K) * A =

B - B, or K * A = 0, or K[y] = 0, with y = A[x] and x E DA. Therefore, by the defini-

tion of the zero system (see sec. 2. 5), K = 0, for domain DK equal to the range R A .

Hence the system H is unique, in this domain.

THEOREM 5. If A is a known system, and we desire to find an H which is such that

A * H = I (249)

then H, if it exists, is unique.
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To prove this theorem, we precascade Eq. 249 with H to obtain H * A * H = H. By

theorem 3 (Eq. 246), this operation is valid. Then we have

(H*A) * H = H (250)

by axiom 5 (Eq. 38). But, Eq. 250 is obviously solved by

H * A = I (251)

and by theorem 4, Eq. 251 is unique. Now, application of theorem 4 to Eq. 251 shows

that H, if it exists, is unique. Hence theorem 5 is proved.

THEOREM 6. If A * H = I (252)

then H * A = I

That A * H = I implies H * A = I was shown in the proof of theorem 5.

THEOREM 7. If A and B are known systems, and we desire to find an H with the

property that

H + A = B (253)

then H = B -A (254)

uniquely.

Substitution of Eq. 254 in Eq. 253 gives B - A + A = B, and so H = B - A is a

solution. To demonstrate uniqueness, two solutions are assumed and we use the same

procedure as in the proof of theorem 4.

6.3 FEEDBACK AND INVERSES

The feedback system that will be investigated is shown in Fig. 28a. This is a suf-

ficiently general system because, as was shown in section 2. 8, any single-loop feedback

system can be reduced to this form, followed by a feed-through system.

The system equation is L = I + H * L or after rearrangement,

(I-H) * L = I (255)

This is recognized as an equation for L of the same form as Eq. 249. From theorem 5

we know that L is unique. It exists, at least in some sense, because L is the feedback

system and can be built. Furthermore, from theorem 6, we know {hat

L * (I-H) = I (256)

Now, if

H =I- K (257)

then, by substituting Eq. 257 in Eqs. 255 and 256, we obtain

K * L = I = L* K (258)
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Thus we have shown that it is possible to use a feedback system to construct the

unique inverse of a nonlinear system K. An inverse K of a system K satisfies the

property

K- 1 *K K * K = I

The feedback system of Fig. 28a is also an inversion system because we have shown

that

(I-H) * L = L * (I-H) = I

Hence the inversion problem and the feedback problem are essentially the same. There-

fore, we can write L = K

As it stands, this feedback system for obtaining an inverse (see Fig. 26b) is not a

practical physical system because of the unity feedback. A possible way to overcome

x f

(a)

f

Fig. 28. Feedback and inversion: (a) feed-
back system; (b) inversion system;
(c) equivalent inversion system.

(b)

m(

(c)

this difficulty is to use the results of section 4. 1 to produce the equivalent system shown

in Fig. 28b, where K11 is the inverse of the linear part of K, that is, K 1, and KY

form the system (K-K 1 ).

The fact that the feedback system defines an algebraically unique system, and that

the inversion system produces the unique inverse, does not exhaust the uniqueness prob-

lem. Another uniqueness problem will be discussed in the next section.

6.4 INPUT-OUTPUT UNIQUENESS

It is quite easy to visualize a nonlinear system in which the same output is produced

by two different inputs. A simple example is found in the no-memory squarer. If we

could construct an inverting feedback system of the form of Fig. 28b for such a system,
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there would be two possible outputs for a single input. Physically, such a situation is

untenable, and the inversion system would exhibit some sort of erratic behavior.

This situation of two or more possible outputs for a single input is not limited to

inversion systems because the inversion and feedback problems are essentially the same,

and hence a feedback system may also exhibit this difficulty.

No-memory feedback or inversion systems are easily handled because the output

can be plotted as a function of the input. Therefore any lack of uniqueness at the output

is readily detected. In the feedback system of Fig. 28a the impulse responses are

bounded functions. We shall show that for such systems the input-output relation must

be unique, if an output exists.

We shall consider the system of Fig. 28a in the particular situation H = H + H2, and

we shall briefly outline a technique for handling it that was described by Volterra (1).

Let the input be x(t), and let there be two possible outputs, f(t) and g(t). Then

f = x + H[f]

and

g = x + H[g]

or

f x + Hl[f] + H 2 [f] (259)

and

g = x + Hl[g] + H2 [g] (260)

Subtracting Eq. 259 from Eq. 260 yields

f - g = Hl[f-g] + H2 [f] - H2 [g] (261)

But

H2[f ] - H2[g] = H(f 2 )
- H(g

)

= H2(f2_g 2)

= H2 ((f+g) (f-g))

Thus Eq. 261 becomes

f - g = Hl[f-g] + H2 ((f+g)(f-g)) (262)

or

p = Hl[p] + H2 ((f+g)p) (263)

where p = f-g. Equation 263 can also be written

80

_____I _�_I_ ___ _



p(t) = h(T) p(t-T) dT + h2 (T1 , T2 ){f(t-Tl)+g(t-T1 )} P(t-T 2 ) ddT 2 (264)

where hl(t) and h 2(tl, t2 ) are the impulse responses of H and H, respectively.

Now, define

k(t, T) = hl(T) = f h 2 (T, T){f(t-T l ) + g(t-T1)} dTl (265)

and Eq. 264 becomes

p(t) = k(t, T) p(t-T) dT (266)

Since hl(t) and h2 (t 1 , t 2 ) are bounded functions and f(t) and g(t) are assumed to exist

(that is, to be bounded), k(t, T) is a bounded function. Then, Eq. 266 can be shown to have

a unique solution; that is, p(t) = 0. Therefore, f(t) = g(t), and f(t), the system output,

is unique.

This can be extended to the situation H = H 1 + H2 + . + H Hn where the impulse

responses are bounded, with the result that the output is unique.

Certain unbounded impulse responses can also be considered by this method. For

example, if H = H2 = A1 * N 2' then it can be shown that the impulse response is

h 2 (tl, t2 ) = al(tl) 6(tl-t2), where al(t) is the impulse response of A1 , and n2 = 1. This is

an unbounded impulse response, and this case can be shown to be unique. The one place

where this test can fail is with H = N + K, where N is no-memory, and K has memory

or is zero. This case can exhibit a nonunique input-output relation. It seems to be a

fairly safe assumption that this is the only nonunique situation. In case of doubt, the

test procedure outlined above can be used to test for uniqueness.

It should be noted that the fact that the system output is unique does not guarantee

that the system is well behaved. The output of the system may become unbounded (fail

to exist), or some other instability, such as a limit cycle, may exist.

6.5 FUNCTIONAL TAYLOR'S SERIES

We have mentioned that the functional series is closely related to Taylor's series.

Here, this relation will be specified in more detail.

Consider a system H with an input ax(t) starting at t = 0, where a is a constant.

Let f(tl ) be the output at a time t = tl . The output will depend on a; therefore let t 1

be implicit, and consider f as a function of a and write it as f(a).

Now we can expand f(a) in a Taylor's series about a = 0. Thus

2 n n+ 
a f,, af(n) a"+l"f(n+l)(e)

f(a) = f(0) + af'(0) +2! f"(0) + ... + a (l)+ fn+l (267)

where f(n)(a) is the nt h derivative of f(a), and 0 is some number between 0 and a.
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In particular, if the input is x(t), then a = 1, and we have

1 1 f(n) 1 f(n+l)(e)f(1) = f(0) + f'(0) + f"(0) + ... + ! f(n+) (0) (268)

Since the input is 0 when a = 0, this can be called a "Taylor's series about zero input."

The last term in the series is the error term and if it could be estimated, an idea of the

truncation error for Taylor's series could be obtained. Unfortunately, we have not

been able to estimate this term.

T f 

Fig. 29. Feedback system.

In order to illustrate that Eq. 268 is indeed the functional series that constitutes

the basis of this report, we shall consider the feedback system of Fig. 29. Then

f = x + K[f] = H[x], and

f(a) = ax + Kl[f(a)] + K2 [f(a)] + K3 [f(a)] + ... (269)

Therefore

f(0) = 0 + Kf(O) + .. (270)

Since Eq. 270 is the feedback system with zero input, f(0) = 0. Now, as we know from

linear theory,

dK [f(a)] = Kl[f'(a)]da -

Also, by symmetry,

da K2 [f(a)] = da K 2 (f 2(a))

=d f 2 (Tl T21 fa, t-T 1 ) (a, t-T 2 ) d dT 2

= /k 2z(T 1, T2 ) da{f(a, t-T )f(a, t-T 2 )} dTldT 2

k= k(vT, T d2)da f(a, t--T) f(a, t-T2) + f(a, t-T) d f(a, t-T dTldT

= K2 (f'(a)f(a)+f(a)f'(a))

= 2K(F'(a)f(a))
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Similarly,

da K3 [f(a)] = K3(da f3(a)

= 3K (f' (a)f2(a))

and so on, for the higher-order terms. Then

f'(a) = x + Kl[f'(a)] + ZK 2 (f'(a)f(a)) + ...

and

f'(0) = x + Kl[f'(0)] + 2K2 (f'(0)f(0)) + ...

But f(O) = 0, and so f'(O) = x + Kl[f'(0)] and, after rearrangement, f'(O) = (I-K1 )-l[x].

Similarly,

f" (0) (Z(I-K 1 ) * K ((I-K1 ) )) [x]

and so on. Substitution of f'(O), f"(O), etc. in Eq. 268 shows that the resultant series

is the same as that obtained in section 2. 8 (see Fig. 14).

Since the functional series is so closely related to Taylor's series, we should not

expect that the functional series would always converge. The functional series

H =H +H + ... + H +...
- -1 2 -n

converges for an input x(t) if the output series

f(t) = f(t) + f2(t) + ... + f (t) + ...

where fn(t) = Hn[x(t)], converges.

For example, consider the system of Fig. 30. The system equation is

f(t) = x(t) - ) dT (271

When x(t) is a step function, starting at t = 0 and with amplitude +1, it can be shown

that f(t) = l/(l+t), for t > 0, by solution of the differential equation (Eq. 271). If the

functional series is developed for this series and the result of a unit positive step input

is obtained, we find that

f(t) = 1 -t+ t t +... for t 0

This series is not convergent for t > 1, but the solution of the differential equation shows

that the output is well behaved. Therefore, if the output of a system, which is analyzed

by the functional series, is not convergent, we still cannot assume that the output of the

system exhibits erratic behavior or becomes unbounded.
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Fig. 30. Simple feedback system.

Brilliant (4) studied the convergence of the functional series and obtained a conserva-

tive bounding procedure. His results can be extended somewhat by replacing his norm,

Ilkn , where

... f000Ilkn 11 = jkn((T1 l. I d* Tn) .. d n

by a new norm, Ilkn I T' where

IIkn lI T = T

0T 

... J kn(Tl *-v Tn)I dT 1 d Tn

In this case we must constrain our considerations of the output to the time interval

0 < t < T, rather than to the interval 0 t < oo considered by Brilliant. (We assume

here that all inputs are zero before t = 0, and that the impulse responses are realiz-

able (zero before t < 0).)

At the present time, it appears that any general convergence test should be con-

servative, and that it is best to consider the convergence of each particular case inde-

pendently. As the example illustrated, convergence difficulties can arise. From a

practical point of view, however, the representation is very unwieldy if the convergence

is not fairly rapid. But the rapidity of convergence can usually be easily determined

in any particular problem by writing out a few terms.

6.6 THE ITERATION SERIES

Even if the functional series that we have used in this report fails to converge, it

does not mean that the functional representation fails. There is always the possibility

of finding more general functional series that will converge. In this section such a

series will be briefly discussed. This series will be called the "iteration series"

because it is formed by an iteration procedure.

Consider the feedback system of Fig. 31, with f = x + H[f] = L[x]. A first estimate,

f(1)' could be made for f, where

(1)

A second estimate is

f( 2 ) = x + H[f(1 )] = x + H[x]

(272)

(273)
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and a third estimate is

f(3) = x + H[f(2 )

= x + H[x+H[x]] (274)

In general, the n h estimate is

f(n) =x + H[f(nl)] (275)

If we let

f(n)= L(n)[X] (76)

then L is an approximation to the actual system L, and(n)

L(1) I

L(2) = + H

L(3) =I + H * (I+H)

by applying Eq. 276 to Eqs. 272, 273, and 274. In general,

L(n) = I + H * L (nl(277)

In the limit as n- oo, direct substitution of L(n ) in the system equation, L = + H * L,

for Fig. 31, shows that the equation is satisfied. In practice L(n) would not be used

in the limit, but would be truncated at some point; that is, L(n) would be used with a

finite n as an approximation to L.

Any physical feedback system has a delay around the loop. This delay is usually

too small to be important, but it has an interesting effect on the iteration series. Let

the feedback element H be replaced by D * H, where D is a delay. If this is done, it

can be shown that the iteration series is automatically truncated at some _L(n ) where

n depends on the length of the delay and on the time after the input has started at

which the output is being observed. This occurs because the iteration procedure

of Eqs. 272-275, with H replaced by D * H, is the actual sequence of operations in

the system. In the first time interval, 0 to 6, where 6 is the delay time, the output

is x(t) because the delay holds back the feedback. In the next interval, 6 to 26, the

output is x(t) + D * H[x(t)], and so on for each interval. This is precisely the iteration

Xf

-~~~~~~~~~ ~ f =

Fig. 31. Feedback system. Fig. 32. Diagram of iteration series.
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procedure. This can also be visualized by means of Fig. 32 (which was suggested by

G. D. Zames). This system is equivalent to the feedback system of Fig. 31, with H

replaced by D * H.

The iteration series, then, is closely tied in with the actual sequence of operations

in a feedback system. Therefore, it seems reasonable to assume that if the iteration

series tends to become unbounded, the actual system output will tend to become

unbounded. (We note that the delay in a physical system will keep the output bounded

at all finite times, but it could get larger as time increases and the system would then

be said to be unstable.) A very simple example of this is the system of Fig. 31 when

H = A I, where A is a constant. Using the iteration series for this system yields

f(t) = x(t)(l+A+A2+A3+. .. ) (278)

and this series becomes unbounded if A > 1. It is known from linear theory that the

system is unstable if A > 1.

Thus, we see that the iteration series is much more closely connected with the

physical world then the functional Taylor's series. As a practical tool it is not, now,

very useful because experience has shown that, when the iteration series is rapidly

convergent, the functional Taylor's series is also rapidly convergent. However, it does

present the possibility of using other functional series than the functional Taylor's

series.

The convergence of the iteration series can often be determined. If a linear feed-

back system (Fig. 31 with H = H1 ) has an input that starts at t = 0, and the impulse

response h(t) is bounded, then at any finite time t, the iteration series can be shown

to be convergent (11).

Let us assume for a feedback system (Fig. 31) with a nonlinear feedback element

H that the following (Lipschitz) condition holds:

IH[x]-H[y] I K1 [X-Y] I (279)

where x and y are any input signals, and K1 is some linear system with a bounded

impulse response. (Actually, the impulse response kl(t) need be bounded only over a

time interval 0 to T if we limit our consideration of the output to this interval.) Then

we can show that the iteration series for this nonlinear system converges at any finite

time after the input has started. This is done by appropriately bounding the terms of

the iteration series of the nonlinear system by the terms of the iteration series of the

linear system obtained by replacing H by K1. Then, since the iteration series for the

linear system is known to converge, the iteration series of the nonlinear system will

converge. Referring to the results of Section V, we recall that the output of such a

system is unique, and hence the iteration series converges to the true output of the

nonlinear feedback system.

A system H that satisfies Eq. 279 might well be called a "saturation" system

because it is bounded by a linear system. An ordinary saturation curve (for example,
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the flux-current characteristic of a magnetic material) is bounded bya linear curve.

6.7 CONTINUOUS SYSTEMS

Let us consider a system H with an input x(t) and an input y(t). From an intuitive

point of view, we could say that H is continuous if H[x(t)] and H[y(t)] are close together

and if x(t) and y(t) are close together.

Brilliant (4) defined a much more rigorous concept of continuity. First, define a

distance between input functions x(t) and y(t):

t

f {X(T)-y(T)} dT
t-r

for r > 0. Define another distance:

I H[x(t)] - H[y(t)] I

between the outputs H[x(t)] and H[y(t)]. Now we have a precise measurement of dis-

tance, and so closeness and continuity can be rigorously defined. The following defini-

tion is not the only possible definition of continuity, nor are these distances the only

possible distances that could be defined.

If we have a time-stationary system H, and bounded inputs x(t) and y(t),

Brilliant's definition of continuity can be stated: H is continuous if for any E > 0,

there exists a T > 0, 6 > 0 (T sufficiently large, 6 sufficiently small), such that, if

{x(T) -y(T)} dT < 6, for 0 r < T, then H[x(t)]-H[y(t)]| < E. Brilliant also showed

that if H is continuous, then for any E > 0 there is a polynomial system H(E) , con-

sisting of the sum of a constant, a linear system with Lebesque integrable impulse

response, and products of such linear systems, such that, for any bounded input

x(t), H[x(t)]-H(E)[x(t)] < E. That is to say, if H is continuous, then it can be closely

approximated by

H +H + ... +H-o -1 -n

where

Hi: EA 1 B M1 1 ' 1

i systems

The sum is over a number of such products.

This is a sufficient condition only for a system H to be approximated by the func-

tional representation. Certainly other systems can be approximated. The statement

is, however, a precise mathematical theorem describing a set of systems that can be

expanded in the functional representation.
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6.8 CONCLUSION

In conclusion, it is appropriate to mention some of the future prospects for the func-

tional analysis of nonlinear systems.

First, of course, there is the application of this form of analysis to actual engi-

neering problems. Moreover, the general nature of this system representation makes

it a possible tool in the investigation of several general problems, for example, the

question of what constraints on the open-loop response of a nonlinear feedback system

are necessary to ensure the stability of the closed loop.

The functional representation, as it now stands, still presents problems. The

principal problem is that of obtaining a series that has rapid convergence when the func-

tional Taylor's series is not rapidly convergent, or not convergent at all.

A situation of considerable interest occurs when non-Gaussian random signals are

being investigated. Optimization problems then point to nonlinear systems, and the

functional representation seems to be a good system description to use for such prob-

lems.
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APPENDIX A

TRANS FORMS

1. SYSTEM TRANSFORMS

The one-dimensional Fourier-transform pair is defined as

F(j) = j
-00

f(t) e - jwt dt (A-1)

(A-2)f(t) = - f F(j) e+j)t dw

A multidimensional generalization of this is the transform pair:

fn(tI .. tn) dt 1 . . dtn exp(-jwltl-. . . -jwntn)

(A-3)

F n(jO 1 . ..IjWn) exp(+joltl+... +jC nt n ) d 1 . do n

(A-4)

Another generalized relation is the multidimensional Parseval theorem (6):

F .. F ' fn(tl ... t n ) gn(tl .. ..tn) dt 1 .. dtn

Fn(jc . ., jn) Gn(jl, . jn) d ... d n

where fn(tl -. tn) and Fn(j 1... j n)

Fourier-transform pairs.

If f(t) = 0 for t < 0 and

and gn(tl .* Itn) and Gn(jrl, jwn) are

0O
(A-6)

where a- is a real number, then we can define the unilateral Laplace-transform pair:

F(s) = 00 f(t) e- s t dt

1 r+joo
f(t) = j 

aJ~joO

F(s) e+st ds

where s = + j. The multidimensional generalization of this is
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(A-7)

(A-8)
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Fn QW1, - -. , j~n) 
00o

...Jr

00

.- 00
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Fn(S, . . . n) = J . fn(tl . . ., tn) dtl dtn exp(-sltl-' -Sn n

fn(tl .. t ) n a'+ jo e

n +joe
.. nj Fn( . . ., sn)

n -jo

exp(+sltl+. .. +Sntn) ds1 I ds1nfl n (A-10)

where 1, .. , rn are real numbers. If fn(tl .. . tn) is symmetrical, then a-1 = '...' =

= (T.n

2. ASSOCIATION OF VARIABLES

Assume that we are given fn(tl, .. t ) and its transform Fn(Sl, ... sn). This
transform may be Fourier (si=ji), or Laplace. The problem is to find the transform

of fn(tl, t2, t 3 . . ., tn) from Fn(S1 , . n). (Actually, we are associating any two var-
iables t i and tj. For convenience, take i = 1, j = 2. There is no loss in generality.)
Call this transform Gn l(sl, S3 ... Sn) . Now, by setting t 2 = t in Eq. A-10, we have

n To1+j oo
. n + j oo

na--jcc
Fn(sl . . n)

exp(+sltl+s 2tl+s3 t 3+... +nt n ) ds 1... dsn (A-) 1 1

fn(tl t . tn) = (21 )n j 2 +j0n n _j 00~~~-aic

,... fa-n+Jicj 1l+j o

n -joo a -jo
Fn(sl, .. .sn)

exp(+(Sl+S 2)tl) dsl exp(+s 3t 3 +. . . +sntn ) ds 2 ds n

Setting s + s 2 = ul gives

,tt, jntn) = (o) 2+ j 0
... ; n+ j r +je

rn-joe [ ~i°°
Fn(U1 -s 2 , s 2 , s 3 .s n)

exp(+ut 1 ) du} exp(+s 3 t3 +.. . +Snt) ds 2 ... ds

n- 1 n f+jo ca' 3+jo
-arrjl -3J 3-jiJ°° 3-Joe

n+-jo 1 - 2+iJo
Fn(U1 s 2 , s 2 , s 3 ,

... , s n) ds2} du 1 ds 3 ds n

Then

(A-12)

(A-13)
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where is chosen so that the integral converges. Now

fn(tl· tl t3' t n ) =
(1)n-1 f 0+j0 i O3+joo

l J rjo00 t 3 -jo00
... 

n + j ° °

uJ0n-OO

Gn-l(Sl 3''' Sn ) exp(+sltl+s3t3+...''+Sntn) dtldt 3 .. dtn
Gn i~i~ n 1 1 3 3 n n'1'3n

(A- 14)

and hence, if s 2 is replaced by u, and u1 by sl, in Eq. A-13, we have

1 r2+j00Gn-l(Sl s 3 - - Sn) 2rJ ,_Jo00 Fn(s 1-u' u, s 3 .. . Sn) du

Specification of n = 2 gives Eq. 115.

3. FINAL-VALUE AND INITIAL-VALUE THEOREMS

Consider a multidimensional function, fn(tl, . .. ,tn), and its transform, F(s 1 . s n)

Define

gl(tl;s 2 - - Sn ) =
.00

fn(ti .. tn) exp(-s 2 t .. sntn) dt2 ... dtn
o ~ ~ 2 n 00

Then the first-order transform of gl1(tl;s2 . ..Sn) is

0

= Fn(S1 ... Sn )
(A-17)

Now, if we regard s2, ... sn as fixed, gl(tl;s 2 . Sn) and Gl(sl;s2 ., I sn) make

a first-order transform pair. Then, from linear theory (9), we have

lim gl(tl;s2 . Sn) =
t -0oo1

lim
sl -0

G 1 (S 1;S 2 ..... Sn ) S1

and therefore

lim gl(tl;s2 ,
t 1-0o1

. . ., Sn) = lim
1S-

Fn(S .- - Sn) S1

;S2' . . ., Sn )
.. J fn(til . tn) exp(-s 2 t 2 -. .- sn t ) dt dt dt-n n ' n

00
= lim |

tl-ooJ

... lim f (ti 
t o°n.

·.- sntn ) dt 2 ... dtn
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(A-16)

But

(A-18)

lim g (t
t -o001

00

(A-19)

(A-20)

__ ~ ~ ~ ~ . r -I

G I(s ;S 2' - - " n)= g (t;s ' . . . Sn) exp(-s 1 tI dt I

, tn) exp(-s zt_



Therefore the transform of lim fn(tl ... , tn) is
t 1-0

lim Fn(sl . ., s n )
s - O

This justifies the limiting procedure used in section 5. 4.

Successive use of Eq. A-21 shows that

lim
t 1-oo

t -oo
n

fn(tl, .,tn) = lim Fn(S1 , . .. Sn)s . sn

1

s -O
n

Now

lim f(n)(tl . .. , tn) = lim fn(t)
t 1-o t-oo

t oo
n

where fn(t) = f(n)(t, t ..... t), and so the final-value theorem of section 3. 4 is proved.

In a similar manner, the initial-value theorem of section 3. 4 can be proved.
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APPENDIX B

PROBLEM DETAILS

In this appendix, we shall give further details for some of the problems of Sections III

and V.

1. PROBLEMS OF SECTION 3.5

System A is given by

K= N*H 1

3 5
=H +n H + + nH 1

= K t K + K (B-1)-1 -3 -5

where the coefficients associated with the nonlinear no-memory system N = I + N 3 + N5

are n3 and n5 . Since H 1 has a transform H/(s+a), the transforms of the system K are

K l (s ) = H (B-2)5+a

n3H 3

K3(s, s2 , s 3 ) = (B-3)
(s l+a)(s 2 +a)(s 3+a)

n5H5

K5 (s 1 ... s) = (B-4)
(sl+a) ... (s 5 +a)

by use of Eq. 90. The input is Re {xj't}, and, from section 3. 3, the complex amplitude

of the first-harmonic output is

3 5
(jW) + 3 K3 (j j, -jw) + 8 K5 (jW, j j, -jW, -j() (B-5)

The third-harmonic complex output amplitude is

1 5
4 K3 (j, j, jw) + 56 K(jW j, j, j, -jw) (B-6)

and the fifth-harmonic complex output amplitude is

1
IKU I.16. j) (B-7)

Substituting the expressions for the transforms (Eqs. B-2, B-3, and B-4), taking

) = 0, and defining B = H/a (the linear undistorted gain) gives the low-frequency

amplitudes:

first-harmonic amplitude = B + n 3B 3x + n B x (B-8)+ 3 85
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third-harmonic amplitude = n3 B3X3+ 6 n5B5X

fifth-harmonic amplitude = n 5B X

Defining

first-harmonic distortion =

third-harmonic distortion =

fifth-harmonic distortion =

first-harmonic amplitude - B
B

third-harmonic amplitude
B

fifth-harmonic amplitude
B

(B-11)

(B-12)

(B-13)

and substituting Eqs. B-8 to B-10 gives Eqs. 145-147 of example 2.

Now the feedback system B can be considered. The system equation is

L = N * H 1 * (AL) (B-14)

where A is a gain constant, and L represents the feedback system.

Eq. 144 for N, taking

L=L +L+...L = L1 + L2 + ..-

and determining L 1, L 2 , etc. by the methods of section 2. 8 yields

L 1 = H1 * (I+AH 1 ) 1

L3 = n(+AH1) * (-L

L5 = (I+AH 1)- * (3n 3 (L1 (AH 1 *L 3 )) + n 5 L_)

for the first three terms. (All even terms are zero.)

The transforms that are found by the relations in section 2. 9, are:

H
L I(S) s + a + AH

Substituting

(B-15)

(B-16)

(B-17)

(B-18)

(B- 19)

S1+ S + 3 + AH H H H
L3(S1 S2, 3) =S1 + s + S + AH 3 s + a + AH s2 + a + AH S3 + a + AH

(B-20)

Sl + ... + S3 + a 

L5(Sl ... S5) = + ... + S5 + a + AH 3n3Ll(SI) Ll(S2)
AH

s3 + s4 + s5 + a3 4 5

X L 3 (Sl+s2 +s 3 ) + n5 Ll(s 1 ) ... Li(s5 )} (B-21)

Calculating the distortion ratios as we did in Eqs. B-8 to B-13 gives Eqs. 148,

149, and 150 of example 2. If the conditions on the size of the distortion ratios
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given in example 3 are met, then these three terms of the series for L will be suffi-

cient.

2. PROBLEMS OF SECTIONS 3.6 AND 3.7

From the transform N = I + N 3 + N 5 , the system equation is

L = AN * H * (I-L) (B-22)

where A is the gain constant, HI is an ideal integrator, and

N[y] = sin y

Taking

L=L 1+L + L + ...

and applying the methods of section 2.6 gives

L1 = (I+AH1 ) * AH1

L 3 = -(I+AH 1) * 1 ( L 1

L 5 = (I+AH1 )- (- 1 

(B-23)

(B-24)

(B-25)

(B-26)

AA L1 (B-27)

The transforms are found by the relations in section 2. 9, and are given in Eqs. 152,

153, and 154 of example 3. The output transforms are given in Eqs. 156, 157, and 158.

The output transform R 3 (s) is obtained from Eq. 157, by the association procedure,
as follows:

AS3

3!
(Sl+S 2+S3) 1 1 1

s1 + s + s3 + A s(S 2+A sl(s2+A) s(s 3+A)

AS3 (Sl+s 2+S 3) 1 1 1
6 (s1+S2+S 3+A) s1(S1+A) A

Z 2 s2 + AS 3 s 3 + A

(B-28)

Associating s2 and s3 gives

S3 S + s2 1
R3( 6As) I+ 2 +A s 1 (S 1 +A)

S3 s + s2
1

6A2 s + s 2 + A s

and associating sl and s2 gives

i1
S2

S l+A -+2

2 1
S2 + A + 2 + ZA '}

2 }
- s +2A;l}
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s3 S 1 3 3 l )
R 3(s) - s + A s + A s + A s + 3A (B-30)

6As

Now,

S5 A 2 (s + . .. +s 1 1

R(5) (S ... ) 5 2 s + ... + s5 + A s1 + s 2 + s 3 + A sl(Sl+A)

1
s5(s5 +A) (B-31)

where the second term with coefficient 5 has been neglected because it is small. Car-

rying out the association procedure on this basis gives

1 S_5 s _ 0.5 5 8 4 0.5 3A
R5(s) 2 A4 s +A s +A s + 2A + s + 3A s + 4A + s + 5A (s+A)2

+ 6A - 3A (B-32)

(s+2A) 2 (s+3A) (B32)

The transform of the output is

R(s) = R 1(s) + R 2 (s) + R 3 (s) (B-33)

and the terms can be collected and inverted by the usual linear methods to give the

output r(t) (r(t) is given in Eq. 159 in example 4). Only one of the multiple-order poles

gives a significant contribution if A >> 1.

3. PROBLEMS OF SECTION 5.5

The transform of 12 (t1 ,t 2 ) is

A B
L 2 (S 1 s 2) = A2 B (B-34)

(s 1+s 2+ s )(s +a)(s 2+a)

and we want to calculate

12 (T, T) dT (B-35)

by the method of section 5.4. Therefore we associate s 1 and s in Eq. B-34, which

gives

A2B
(B-36)

(s+p)(s+2a)
Then
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j1 2(T, T) dT = im
s-0

A2 B
(s+p)(s+Za)

A2 B
- aP

A2

2a

if B = , and so the first term of Eq. 218 is

(A/(2a 

(B-37)

(B-38)

Next, we want to calculate the second term of Eq. 218. Equation 219 is the trans-

form of

2/f 12(T1 , T2 ) 12 (Tl+T1 , T 2 +T2 ) dTldT (B-39)

and we want to associate s and s 2 in Eq. 219 (T1 and T 2 in Eq. B-39). Thus

ZL(-S1 , -s 2) L 2 (S 1 , s 2 )
2A4B2

- (-Sl-Sz+)(s +s +P)1 2 1 4a 2 -s1 + a4aZ 

1

-S2 + a s2 + a

Associating s and s 2 gives

1 1
-s + s + -s + 2a 1 +Za

s +2aJ
= 2AZB )-s 1I

-2+P 2 _ +4a 

This is the transform of the second term of Eq. 218.

(B-41)

Setting s = j and combining the

two terms gives the transform of f(T), which is the spectrum, 

Eq. 220 in example 5.

4. PROBLEMS OF SECTION 5.6

First, we obtain Eq. 222. Linear system analysis shows that

E(s) = s X(s)s +A X(s)

The result is

(B-42)

where E(s) and X(s) are the transforms of e(t) and x(t), respectively.

X(s) B Y(s)
5 +p

where Y(s) is white Gaussian noise, and B/(s+P), from ' x() in Eq. 221, is
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the shaping filter. Then

e = K1 [Y] (B-44)

where K1 , from Eqs. B-42 and B-43, has a transform

s .B (B-45)
s+A s+p

Now

e (t) = k(T) k(T) dT (B-46)

and, by application of the output averages of section 5. 2, (eZ(t) is e(t) e(t+T) evaluated

at T = 0). The transform of kl(tl) kl(t 2 ) is

Bs 1 Bs 3 (B-47)
(s1 +A)(s 1 +p) (s 2 +A)(s 2 +p)

and by associating s 1 and s, the transform of k(t) kl(t 2) is

B13~2 f A2 2P P (B-48)

(A p)2 s + 2A s + + A a + 2p

Assuming that A >> P, we have

2 B2 A2
e (t) = lim 2 s + 2A

s-0 A2 s + 2A

2

2A (B-49)- 2A

which is Eq. 222 in example 6. Equations 223 and 224 are obtained in a similar manner.

(Equation B-49 can be obtained by standard linear methods (8); it is derived here by the

methods of Section V, in order to illustrate this application to linear analysis.)

The nonlinear compensated system will now be considered. The first two system

transforms, Ll(s) and L3 (s1 , s 2 , s3), are given in Eqs. 105 and 106. The output error

is given by

e(t) = f(t) - x(t) (B-50)

where x(t) is related to the white Gaussian y(t) by Eq. B-43. We can show (assuming

that n 3 is sufficiently small that only el(t) and e 3 (t) contribute significantly to the error

e(t)) that

e(t) = el(t) + e 3 (t) (B-51)

where

e 1 = K l [y] (B-52)
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e 3 = K 3[y] (B-53)

and K 1 and K3 have transforms

B
Kl(S) s A (B-54)

An 3 B B B
K (SlIS21s ) =) ~ (B-55)K3 (s 1 s2 s 3) s 1 + S2 + s 3 +A s 1 +A s 2 +A s 3 + A

Here, we have taken p = 0. Then

e (t) = e(t) + 2el(t) e 3 (t) + e 3 (t) (B-56)

where e(t) is given in Eq. B-49. The other two terms of e2(t) can be computed by

the methods of section 5.4.

To illustrate this point we shall compute el(t) e 2 (t). Now

el(t) ez(t) = (K 1._K 3)(Y lYzY 3Y4 )

= 3 kl(TI) k3 (T 1, T, T3 ) d 1dT 2 (B-57)

from Eq. 199, with T = 0. Let

k3 (t, T, T) dT = b(t) (B-58)

The transform of this term, B(s), has been worked out in Eqs. 213 and 214-216. Taking
3

K = AB3n3 and a = p = A in Eq. 216, gives

B(s) = 3 (s-) (B-59)

The transform of kl(tl) b(t 2 ) is

B B3 n3 (52 + A) (B-60)
s 1 +A 2

Now we can complete the evaluation of Eq. B-57 by associating s and s 2 in

Eq. B-60 to give

3Bn3 (s1) 2 (B-61)

Then
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3B n3
1 (t ) (t ) = lim 21 2 -_n 2

s+2
9-+ _2

B 4n

8 A 2

2
In a similar manner, e2 (t) can be computed.

5. PROBLEMS OF SECTION 5.9

The desired operation on y(t) is a predictor P,

d(t) = y(t+T)

= P[y(t)]

= r6(T-T) y(t-T) dT

with the desired output

(B-63)

P, therefore, has an impulse response p(t) = 6(t-T). The white Gaussian x(t)

obtained by operating on y(t) to produce

x= LL*Nl)[y]

whence the desired operation on x(t) to produce d(t) is

P * (N*L 1 ) = P * (N + N 3 ) L1

= P * L + P * (L)

(B-64)

(B-65)

This operation is the sum of a first-order system and a third-order system, and the

impulse responses are

1 (t+T) (B-66)

and

1 (t1 +T) 1(t 2 +T) 13 (t 3 +T) (B-67)

where 11(t) is the impulse response of L 1 .

Inverting Ll(s) in Eq. 233 and applying Eq. 230 gives a best realizable system H,

with

H = H(1) H(2)

H(1) = Hl_ o0 + Hl-

H(3 ) = H3_0 + 3H3_1 + H3_ 3-(3) ! -3-o --3-l --3-2 --3-3

(B-68)

(B-69)

(B-70)
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Then the optimum output f(t) is given by

f = H[x]

= (H * (_ +N- ?) (B-71)

Working out the impulse responses of H by means of Eq. 231 shows that

H * L * N 1 = M * K * N (B-72)
- -1 - - -1 -

The detailed nature of M and K 1 are given in Eqs. 235-239 in example 8.
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