
Closed-Loop Depth and Attitude Control
of an Underwater Telerobotic Vehicle

by

WENDY MARIE POWER

S.B. Aeronautics and Astronautics, Massachusetts Institute of Technology (1987)

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements of the Degree of

Master of Science in Aeronautics and Astronautics

at the

Massachusetts Institute of Technology

June 1990

© Massachusetts Institute of Technology 1990
All rights reserved

Signature of Author_
Department of Aeronautics and Astronautics

March 7, 1990

Certified by
Professor David L. Akin

Thesis Supervisor

Accepted b] - r --

Pro'ssor Harold Y. Wachman
Chairman, Department Graduate Committee

Aero

Closed-Loop Depth and Attitude Control
of an Underwater Telerobotic Vehicle

by

WENDY MARIE POWER

Submitted to the Department of Aeronautics and Astronautics
on March 7, 1990 in partial fulfillment of the requirements of the

Degree of Master of Science in Aeronautics and Astronautics

ABSTRACT

Underwater teleoperators are used in research to simulate task performance by
robots in the space environment. In order to effectively use the teleoperators, they must be
easily and accurately controlled. Difficulties in implementing an accurate closed-loop
attitude controller arise due to the torque moments resulting from the application of the
teleoperator's thrust vectors, the difficulty in quantifying the dynamics of the teleoperator
due to the effects of the water inside and outside of the robot, water drag, and the inability
to measure the yaw angle about the local vertical. This research deals with the development
of one teleoperator, Apparatus for Space Tele-Robotic Operations (ASTRO), and the
implementation of a proportional-integral-derivative attitude controller for roll and pitch
angles based on an equivalent angle-axis representation of the teleoperator orientation. A
proportional depth controller was also implemented. The controller was tested in attitude
regulation, step response to a 45 degree change in roll or pitch angle, and depth and attitude
disturbances. The controller successfully held the desired attitude to within ±5 degrees,
though the rotational drift about the gravity vector could not be completely eliminated. The
depth controller was accurate within ± 0.5 feet.

Thesis Supervisor: David L. Akin
Assistant Professor of Aeronautics and Astronautics

Dedication
This thesis is dedicated to my parents, whose constant love, understanding, and

encouragement has enabled me to set and reach ever-higher goals.

Acknowledgements
I would like to thank Professor Dave Akin for having the foresight to hire me as an

untried but persistent freshman and to encourage and support me through my many years

of growth in the Space Systems Lab. Thanks also go to Professor Sandy Alexander for his

encouragement, help, and explanations that made even the most muddled and confused

problems become clear. I would also like to recognize the many UROPs who have had a

hand in the ongoing development of ASTRO and the divers whose patience during

ASTRO's endless balancing, zeroing, and pool tests in general is greatly appreciated.

Special thanks go to those volleyball studs, Matt and Russ, whose enthusiasm for playing

gave me the opportunity to vent my frustrations on a defenseless little ball. Recognition
also goes to the residents of 33-407, both past and present, for their friendship and
willingness to share ideas and knowledge. Thanks also to the many friends who have

shared hopes, fears, and classes. Special thanks and love go to Dana Johnson whose
eternal patience, humor, and love has made the bad times better and the good times

extraordinary.
Special acknowledgement goes to the Hughes Aircraft Company, Space and

Communications Group, and especially the Control Electronics Department for sponsoring
part of my graduate study and providing me with the opportunity to work in the "real
world".

This research was supported by NASA grant NAGW-21.

Table of Contents
Section .Pag.
Dedication..
Acknowledgements..3
List of Figures... 5

List of Tables ... 8
1.0 Introduction.. 9
2.0 ASTRO Development... 12

2.1 ASTRO Physical Aspects ... 12
2.2 ASTRO Avionics ... 18
2.3 Secondary Electronic Control Station - SECS......... 24

3.0 Theory ... 28
3.1 Theoretical PID Controller .. 28
3.2 Equivalent Angle-Axis..30
3.3 PD Controller... 34
3.4 PID Controller...35
3.5 Depth Controller..36

4.0 Test Set-Up 38
5.0 Data and Analysis .. 41

5.1 PD Controller Results .. 43
5.2 PID Controller Results ... 46
5.3 Depth Controller Results .. 60
5.4 Error Analysis.. 65

6.0 Conclusions and Recommendations ... 71
References ... 73
Appendix A: ASTRO Software ..74
Appendix B: SECS Software...90
Appendix C: Matrix Calculations 105

Eigu Pagg
Figure 1.0.1 Pool Test Set-Up ... 10

Figure 2.1.1 ASTRO Shell With Internal Frame................................ 13

Figure 2.1.2 ASTRO Battery Box ... 14

Figure 2.1.3 ASTRO Control Box in Teleoperator................................... 15
Figure 2.1.4 ASTRO Front View .. 15
Figure 2.1.5 ASTRO Principal Axes, Rotations, and Thrust Vectors....................16

Figure 2.2.1 Pressure Gauge Locations 19
Figure 2.2.2 ASTRO Onboard Processor System...21
Figure 2.2.3 Flowchart of ASTRO Onboard Software 23
Figure 2.3.1 Secondary Electronic Control Station (SECS).............................. 24

Figure 2.3.2 SECS System Block Diagram ... 26
Figure 2.3.3 SECS Computer Displays...27

Figure 3.0.1 Pool and Teleoperator Coordinate Systems................................28

Figure 3.1.1 PID Block Diagram for the Teleoperator System............................29
Figure 4.0.1 Test Set-UP ASTRO and SECS System 39
Figure 5.0.1 Teleoperator Orientations.....................................42

(a) (00,00) Orientation..42
(b) (450,00) Orientation .. 42

(c) (00,450) Orientation .. 42

Figure 5.1.1 Representative Step Response Data (PD Controller)........................44
(a) 450 Roll Step Response... 44

(b) 450 Pitch Step Response.. 44

Figure 5.1.2 Representative Error Angle Data (PD Controller) 45
(a) 450 Roll Step Response Error Angle 45

(b) 450 Pitch Step Response Error Angle.......... 45

Figure 5.2.1 Sample Step Response Graphs (PID Controller)...............................47
(a) Orientation Angles For Roll Input (Integral Gains = 6) 47
(b) Orientation Angles For Pitch Input (Integral Gains = 11) 47

Figure 5.2.2 Orientation Angle Response To A 450 Roll Step Input 49

(a) Roll Angle Gamma .. 49
(b) Pitch Angle Beta ... 49

Figure 5.2.3 Orientation Angle Response To A 450 Pitch Step Input 50
(a) Roll Angle Gamma 50
(b) Pitch Angle Beta .. 50

Eigu (continued) Pagc
Figure 5.2.4 Orientation Angles During (00,00) Attitude Regulation.................... 51

(a) Roll Angle Gamma ... 51
(b) Pitch Angle Beta .. 51

Figure 5.2.5 Orientation Angles During (450,00) Attitude Regulation 52

(a) Roll Angle Gamma ... 52
(b) Pitch Angle Beta...52

Figure 5.2.6 Orientation Angles During (0O*,45-o) Attitude Regulation 53
(a) Roll Angle Gamma ... 53
(b) Pitch Angle Beta.. 53

Figure 5.2.7 Orientation Angle Response To A Roll Disturbance 55
(a) Roll Angle Gamma ... 55
(b) Pitch Angle Beta .. 55

Figure 5.2.8 Orientation Angle Response To A Pitch Disturbance 56
(a) Roll Angle Gamma ... 56
(b) Pitch Angle Beta 56

Figure 5.2.9 Orientation Angle Response To A Random Disturbance 57
(a) Roll Angle Gamma ... 57
(b) Pitch Angle Beta .. 57

Figure 5.2.10 Orientation Angles During X-Translation......................................58
(a) Roll Angle Gamma ... 58
(b) Pitch Angle Beta .. 58

Figure 5.2.11 Orientation Angles During Y-Translation 59
(a) Roll Angle Gamma .. 59
(b) Pitch Angle Beta59

Figure 5.3.1 Average Depths During Orientation Data Acquisition.......................61
(a) Depth Data During (00,00) Orientation Regulation........................... 61

(b) Depth Data During 450 Roll Step Response 61

(c) Depth Data During Roll Orientation Disturbances 62
(d) Depth Data During Free Flight Y-Translation 62

Figure 5.3.2 Depth Disturbances In (00,00) Orientation 63

Figure 5.3.3 Depth Disturbances In (450,00) Orientation.....................................63

Figure 5.3.4 Depth Disturbances In (00,450) Orientation.......................... 64

Figure 5.4.1 12-Bit Pressure Gauge Data ... 66
(a) Pressure Gauge 1 ... 66
(b) Pressure Gauge 2... 66

Eigur (continued) EPag
(c) Pressure Gauge 3 .. 67

(d) Pressure Gauge 4... 67
Figure 5.4.2 Orientation Angles From 12-Bit Pressure Gauge Data 68

(a) Roll Angle Gamma 68
(b) Pitch Angle Beta 68

Figure 5.4.3 Rotation Rate Noise - Roll 69

Figure 5.4.4 Rotation Rate Noise - Pitch 69
Figure 5.4.5 Rotation Rate Noise - Yaw................................... 70

List of Tables
Table Pae
Table 3.1.1 Thruster Combinations ... 17

Table 3.3.1 SECS Keyboard Commands.. 27
Table 6.2.1 Final PID Gains ... 60

8

1.0 Introduction
Human presence in space has opened up new and exciting fields of research. One

of these is the search for viable alternatives to the exclusively human performance of tasks
in this environment. The desire for alternatives is due to the cost of training and equipping
an astronaut, and to the potential danger of exposing a human to the space environment for
extended periods of time. Another factor is human fatigue, which limits the amount of time
available for any particular task. A robot can better perform the boring and repetitious tasks
that sometimes result in human error. The use of robots in space to assist the astronauts or
perhaps replace them for certain tasks may alleviate some of these concerns. Thus, a new
field of research is the study of man-machine systems in space, and their capabilities and
relative performance.

One of the main research interests of the MIT Space Systems Laboratory is the
investigation of man-machine systems in a simulated zero-gravity environment. For the
purpose of this research, underwater teleoperated robots have been constructed. They were
designed to test new ideas in man-machine systems, and are currently used as testbeds for
equipment relevant to tasks that will be performed in space. Testing is performed
underwater to simulate the zero-gravity of space, thus utilizing the buoyancy of the robots
to counteract the effects of gravity. To this end, three teleoperators have been developed by
the Space Systems Laboratory. The first, the Beam Assembly Teleoperator (BAT), has
been used as a testbed for several research projects related to tasks performed in space.
These include dexterous manipulation, space assembly, partial automation, and stereo
teleoperator vision. The second teleoperator developed, the Multimode Proximity
Operations Device (MPOD), was designed to perform docking tasks and to be operated
onboard as well as remotely. The most recent teleoperator, called Apparatus for Space
TeleRobotic Operations (ASTRO), was developed as a multi-purpose testbed for satellite
servicing. It will be discussed in detail below. Testing for this research was performed at
the MIT Alumni Pool and the NASA Marshall Space Flight Center Neutral Buoyancy
Simulator in Huntsville, Alabama. The general experimental system is shown in Figure
1.0.1.

ASTRO was designed to be a multi-purpose, reconfigurable second-generation
teleoperator. The physical design of the robot was intended to facilitate maintenance and to
shorten the time necessary to prepare it for testing. It was also intended to allow easy
reconfiguration of the teleoperator for future research experiments. In addition, an onboard
computer and an advanced sensor system were implemented.

Figure 1.0.1 Pool Test Set-Up

The primary goal of the sensor system was to provide information on the
teleoperator's orientation. A simple three-axis rate sensor was the easiest way to obtain
direct rate feedback data. Several options existed for measuring the teleoperator's attitude.
However, all of these were unable to measure the rotation angle about the local z axis.
This will be discussed in more detail in Section 2.2. The sensors chosen to provide attitude
data were pressure transducers. These provided depth information for specific points in the
teleoperator. This depth data was then used to calculate the roll and pitch angles of the
teleoperator.

An efficient and reliable closed-loop controller for the underwater robot was
necessary so it could be used as an easily and accurately controlled testbed. Using hand
controllers to specify XYZ translation and RPY (roll, pitch, and yaw) rotation was not
sufficient Problems with open-loop (hand controller) control were apparent when attempts
were made to "fly" the teleoperator around the pool. A specific attitude was very difficult
to maintain. Pure rotation or translation commands from the hand controllers resulted in
torques exerted on the teleoperator during flight due to the misalignment of the thrusters
with the teleoperator center of mass. In addition, the physical restrictions of the thrusters
resulted in unequal thrust levels for any given command. During testing, a subject should

10

not be required to deal with correcting all the coupling via the hand controllers. This
distracts the test subject and takes away energy and concentration from the primary test
objective. Therefore, an accurate closed-loop attitude controller was needed.

2.0 ASTRO Development
The original purpose for developing ASTRO was to provide a new testbed for

current research. The physical design of the teleoperator was based on its primary function

of servicing satellites. The necessary requirements for a satellite servicer were obtained

from reports and specifications of the Solar Maximum Mission and the Hubble Space

Telescope [1]. The results of this background research yielded many specifications on

manipulators for the robot, but only general size requirements for the robot itself. The

conclusion drawn was that the robot needed to be highly serviceable and reconfigurable.

This indicated a need for modularity. In essence, ASTRO was designed to be a generalized

testbed that could be adapted to various new manipulators (as well as to other research
projects). In addition to the above design criteria, problems associated with the two older

teleoperators were taken into account and eliminated during the design phase. These

problems included numerous separate access panels on the outside of the robot that greatly

increased preparation and repair time. In addition, the use of many sealed boxes to house

electronics, sensors, and batteries was not space efficient and provided opportunities for

leaks. The resultant design included modularity and easy access for maintenance, with

simple and easily isolated subsystems and interchangeable parts. Advanced electronics in

the form of onboard computers and sensors were also included.

2.1 ASTRO Physical Design

The basic construction of underwater teleoperators consisted of an internal

aluminum frame surrounded by relatively smooth exterior buoyancy panels made of

fiberglass and high density foam. Vital electronics and sensors, and the batteries used as

the power sources for the thrusters and electronics, were sealed inside several separate

boxes mounted at various points to the internal frame. A color video camera was sealed

inside another box and mounted on the front of the teleoperator. A scuba tank used to

pressurize the thrusters and the sealed boxes, as well as to provide high pressure for

pneumatic devices, was mounted to the internal frame. The regulator attached to the scuba

tank was used to keep the pressure in the sealed boxes (control, camera, and solenoid) one

to two pounds per square inch (psi) over the water pressure outside of them to prevent

leaks or failure of the box structure at greater depths. The solenoid box contained high

pressure solenoids that were used to operate the main power relay and pneumatic devices.

ASTRO's body was separated into three basic components: the back, which

consisted solely of the battery box; the main body, which consisted of the center propulsion

unit shell and the internal frame; and the front which was used for mounting manipulators

and cameras. Like the other teleoperators, the main (central) section of ASTRO was built

12

Battery Box

32.0"

Main Bodj
(Propulsion Unil

8.25"

s Door

32.0"

Figure 2.1.1 ASTRO Shell With Internal Frame

around an internal aluminum frame. However, instead of multiple panels around the
exterior, ASTRO consisted of a single octagonal shell mounted to the internal frame (Figure
2.1.1). This shell was a tube (32.0 inches in diameter and 22.25 inches long), that left the
front and back ends free for adding the other sections (the battery box and the front lid or
manipulator mount). This shell was removed when extensive structural work was
necessary, but for the everyday use and maintenance of the teleoperator it remained
attached. Additional access to the interior of the robot was provided by two side doors.

A single large battery box was mounted to the back end of the teleoperator. This
battery box contained all of the batteries required to meet the power demands of the
teleoperator and was removed from the main body of the robot only when necessary
(Figure 2.1.2). It was the same shape and size as the cross-section of the main body of the
teleoperator and was 8.25 inches deep. Internal dividers separated the interior of the box
into 12 square sections and four triangular ones. Each square section contained a 12 volt
lead acid gel cell battery, while the triangular ones provided surface area for mounting
connectors and fuses. The ten main batteries supplied power to the eight thruster units and
the pneumatic systems, while the control batteries powered all of the electronics and
sensors. The battery box was designed to allow charging and maintenance while attached

13

..
11

32.0"

IIIIIIIII

Control Power Batteries

Main Power Connector Out

Fuses

Main Power
Battery (10) M M

Recharging Cable and Connector

Gnd)

Main Power Ground Connector Out

Figure 2.1.2 ASTRO Battery Box

to the teleoperator, and simply required removal of the lid. The lid was held on by latches

placed around the sides of the battery box. When the box was sealed, it was purged of air

by flushing it with inert nitrogen gas to eliminate the possibility of fires. The three power

and ground connectors (separate connectors for main power and ground and a single

connector for control power and ground) passed through the back of the battery box into
the interior of the robot.

The front end of the teleoperator allowed access to all the interior systems, and was

closed during testing by a large removable lid. The control box was mounted to the internal

frame from the front of the teleoperator (Figure 2.1.3). It contained all of the critical

electronics and sensors. It could be easily removed so that the interior components could
be serviced. Figure 2.1.4 shows the teleoperator when closed. The entire configuration
made the robot very easy to work on and service, and left a significant amount of space

inside the teleoperator for later system expansion.
The shape of the teleoperator was chosen to supply a large amount of symmetrical

surface area for mounting thrusters and other hardware, and also to reduce water drag,

making underwater motion more efficient. This was important because symmetry enabled

a more equal force balance from the thrusters. The thrusters could thus be mounted in such

a way that the thrust vectors from each unit were parallel to the principal axes of the

teleoperator. This is shown in Figure 2.1.5. Each thruster could be operated at 16

different thrust levels (15 thrust levels and off) in the forward and reverse directions.

14

0E@
1-

t•,
0oOe
.O0F
-L
u

*
MMOL

.

C
4bo

C
.1

bOD

0

z - axis
z- axis

vertical translation Yaw Rotation

UPX
•777. FB

USX = Upper Starboard X
SZ = Starboard Z
LSX = Lower Starboard X

PZ = Port Z
LPX = Lower Port X
LY = Lower Y

Figure 2.1.5 ASTRO Principal Axes, Rotations, and Thrust Vectors

There were four x-thrusters (lined up so that the thrust vector was parallel to the
teleoperator's principal x-axis), two y- and two z-thrusters. Past experience with operating
underwater teleoperators showed that there was a tendency to rely mostly on x-translation

to maneuver about the pool. This was primarily due to the robot operator's reliance on the

video camera mounted on the front of the robot for a view of the worksite and flight path.
In addition, y and z translations were generally used only for minor adjustments at a
worksite, so smaller amounts of thrust were needed. Teleoperator rotations about the
principal axes were produced by using two symmetric pairs of thrusters, with one pair
operating in reverse. Figure 2.1.5 also shows the principal axes of the teleoperator and the
corresponding rotations. The right hand rule was used to determine the sign

(positive/negative) of the rotation. The thrusters were labeled according to their locations

on the robot and the directions of the output thrust vectors. Table 2.1.1 lists the thruster

combinations used for each translation and rotation. Each thruster unit was made up of a

Minnkota trolling motor, a screened duct, and driving electronics.

16

(in back)

Table 2.1.1 Thruster Combinations

Translation/Rotation Forward Thrust Motors Reverse Thrust Motors

+X UPX, LPX, USX, LSX
-X --- UPX, LPX, USX, LSX
+Y UY, LY ---
-Y UY, LY
+Z PZ, SZ
-Z --- PZ, SZ

+Roll LY, PZ UY, SZ
-Roll UY, SZ LY, PZ

+Pitch UPX, USX LPX, LSX
-Pitch LPX, LSX UPX, USX
+Yaw USX, LSX UPX, LPX
-Yaw UPX, LPX USX, LSX

To adjust the neutral buoyancy of the teleoperator, lead weights and flotation blocks

were attached to the robot by thumb screws. Screw inserts were imbedded or attached to

the robot on all of the outer surfaces. Adjustments were made, if necessary, at the

beginning of each test session when the teleoperator was first put in the water. Attempts

were made to balance it in depth (i.e. it stayed at the depth it was placed at) and in rotation

about all its axes (i.e. it stayed in any given orientation). The balance was never perfect,
but the controller derived in Section 3 was intended to compensate for the remaining error.

17

2.2 ASTRO Avionics
The most important sensors on ASTRO were those that provided the data for the

closed-loop attitude controller. There were several major factors that influenced the choice
of the sensors. The cost of the system needed to be relatively affordable, approximately in
the $5000 range, which was constrained by the research budget. The power requirements

of the system were also very important. Due to the way the batteries were connected, the
maximum input voltage to the sensors, computers, and other electronics was 12 volts. The

sensors also needed to have a low current draw so that the power supply would last for a

reasonable length of time, at least 2 hours. In addition, the sensors also had to be accurate
enough to measure the range of rates and attitudes of the teleoperator system. Another
factor that constrained the sensor choice was the size of the sensor package. There was
limited space inside of the control box to house the sensors and it would have been
inconvenient to contain them in a separate sealed box.

Sensor systems installed on previous teleoperators included a three-axis gyro
package and pendulum inclinometers. The signal-to-noise ratio on the gyro package had
degraded due to age and extensive use. This indicated a need for a more robust and
enduring rate sensing system. The pendulum system installed for attitude determination
was unreliable when attempting to measure rotations about the local vertical. In addition, it
was a fairly bulky system (-7" x 7" x 7"), and would have accounted for about a third of
the space in ASTRO's control box. Since there were no sensors that could accurately
measure the rotation angle about the local vertical in the underwater environment, the
decision was made to try a new way of measuring the attitude by using pressure
transducers.

The 3-axis rate transducer package installed on ASTRO (Humphrey RT02-0608-1)
was chosen for its small size, high accuracy, and conformance to the power restrictions of
the system. Because of its small size (2.00" x 2.75" x 3.30"), the rate sensor package was
mounted inside the control box. This made the interface between the sensor and the rest of
the control system very simple. The supply voltage needed for the rate transducer was 12
volts, which was supplied directly from the control power batteries. The sensors were
capable of measuring a rotation up to ±90 degrees per second about each axis, with an
accuracy of ±1 percent of the full scale output. The linear output of the sensors ranged
from -5.0 volts (maximum rotation rate in the negative direction) to +5.0 volts (for positive
rotations). The only problem encountered when using these sensors was the need to
constantly check the zero value and calculate the offset number. This drift was a result of
the length of time the sensor had been running and seemed to be dependent on the
temperature of the sensor and the environment in which it was sealed. The zero values

18

Figure 2.2.1 Pressure Gauge Locations

were checked and adjusted periodically by simply holding the teleoperator motionless and

recalculating the zero value.

A set of four piezoresistive pressure transducers (Omega PX242-030G-5V) were

chosen to provide depth and attitude data to the closed-loop controller. These devices were

also relatively inexpensive ($132 each). The gauges required an 8 volt (80mA) power

supply for the set of gauges. This was provided by a voltage regulator supplied by the 12

volt control power batteries. The four gauges were sealed inside a waterproof compound

to protect the electronic connections, leaving only the input port exposed to measure water

pressure. The gauges chosen were capable of measuring a pressure range of 0 to 30 psi.

The linear output of the gauges ranged from 0 to 6 volts (at full pressure). In essence, the

pressure transducers measured the depth of the teleoperator at the points where they were

mounted. Figure 2.2.1 shows the locations of the gauges. They were mounted equal

distances from each other about the approximate center point of the teleoperator. Averaging

the four gauge values provided data on the depth of the center of the robot. This data was

utilized in a proportional depth controller. The locations of the pressure transducers were

specifically chosen to provide information on the attitude of the teleoperator. A change in

the roll or pitch attitude resulted in a measurable change of depth between some

combination of the pressure transducers. Using rotation matrices, these differences in

depth were resolved into specific orientation angles. It should be noted that a rotation about

19

the local vertical could not be detected, since there was no change in depth. However, this

rotation could not be measured by any of the other sensor options investigated, so there

was no loss of information. The calculations involved with the pressure transducers are

discussed in Section 3. Additional information and specification sheets for the pressure

and rate transducers are contained in reference [2].

The leak sensors were designed to take the guess work and worry out of the sealed

boxes. Since the electronics, sensors, and batteries could not be exposed to water, it was

very important to retrieve the teleoperator from underwater as soon as possible once water

leakage had been detected (previous robots had no such detection ability). To this end, leak

sensors were installed on the interior surfaces of the battery, control, and camera boxes.
The leak sensors consisted of an etched circuit board and simple circuitry that detected a

change in voltage across the circuit board. Software was written to trigger an alarm if any

leaks were detected.
For onboard control, an IBM-PC-compatible AMPRO computer board was

installed. This was an 8088 equivalent processor running at 7.16MHz with a total of 512K
RAM. A 3.5" floppy disk drive attached to the processor facilitated program portability

and decreased the software development time. The presence of a fully operational onboard

computer made the programming and debugging process much simpler. The software was
programmed in a high level language (C). The only additional systems necessary were the
I/O expansion ports, an A/D converter, and the specialized circuitry necessary to command
the thrusters. Figure 2.2.2 shows the structure and flow of the onboard processor system

(for detailed diagrams of the circuits refer to the ASTRO Guide to Operations and Systems
[2]). A fiberoptic communications link for transmitting signal commands to and from the

surface was chosen to ensure a clear signal (no noise or voltage drop like that associated

with a long, approximately 200 feet, wire cable). The fiberoptic cable was also very light
weight, reducing the amount of cable drag on the teleoperator. The communications link
operated at 9600 baud, limited by the onboard computer. The fiberoptic circuitry converted
the light signal to one compatible with the AMPRO/PC RS232 serial port. Additional
electronics were mounted on the interface card. Communications between the AMPRO
board and the additional circuitry were carried out via the PC expansion bus and Intel
Programmable Peripheral Interface chips (8255). Pressure and rate transducer data was

acquired through a 12-bit analog to digital converter. Pulse width modulated thruster
commands were generated on the interface card and sent to each thruster with a direction

command (forward or reverse). The circuitry at each thruster was responsible for

amplifying the command and switching the thruster on and off. The light aperture on the

20

To/From

T
SECS

J Fiberoptic Communications Link

Fiberoptic Circuit

T I Serial Port

AMPRO IBM Compatable Computer 3.5" Disk Drive

PC Expansion Bus

Video Camera
Servo

Pressure Rate
Transducers Transducers

Main Power
Switch

(Pneumatics)

Figure 2.2.2 ASTRO Onboard Processor System

21

Decoding Circuitry
......

Interface Card
p . .. - a....................I

Intel 8255A Prbgrammable Peripheral InterfaceI........... ,-

S......... --------............... ----
Video Camera : Motor Encoding Circuit 12-Bit A/DServo Circuit : Pulse-Width Modulation i Converter Digital I/O

W -4

Thruster
Units

Li

JI

L F

video camera was adjusted by an actuator servo. The servo was controlled by a frequency

signal converted from a 4-bit digital command. As can be seen from the diagram, the

various components of this system were relatively easy to isolate, thus making the system

easy to service and upgrade. Power for the control system (electronics and sensors) was

provided by two 12 volt lead acid gel cell batteries. The batteries were used to power the

onboard disk drive, the 3-axis rate transducers, and the 8 volt regulator that supplied power

to the pressure transducers. The 5 volts necessary for the PC board and the additional

circuitry were supplied by a 5 volt linear (3 amp) voltage regulator, which in turn was

powered by the 12 volts of control power.

A flowchart of the onboard software is shown in Figure 2.2.3. Communications
with the surface via the fiberoptics was interrupt driven. It consisted of a formalized

message structure called PIVECS [3] which could be easily reconfigured for different

combinations of teleoperators and control stations. The main program served as a shell to

call individual functions and to handle data acquisition. These functions were divided up

along logical lines of separation and served to increase the clarity of the software and

facilitate development and debugging. Appendix A contains a complete listing of the

onboard software.

22

Read A/D Converter
Calculate Current Orientation Angles

Calculate Proportional
Control Command

Calculate Depth
Control Command

Record End Time
Start Data Dump

23

Figure 2.2.3 Flowchart of ASTRO Onboard Software

|

|

I x
Translational Rotational

Hand Controller Hand Controller

N
IBM Keyboard

Figure 2.3.1 Secondary Electronic Control Station (SECS)

2.3 Secondary Electronic Control Station - SECS
SECS is shown in Figure 2.3.1. It was not designed to be a final configuration,

human-factored control station. Rather, it was built with the bare necessities of computers,
hand controllers, and switches for running ASTRO and acquiring data. It has proved to be
adequate for the job, and has provided insight into the basic necessities and configurations
for future control stations.

SECS consists of an IBM personal computer, a color video monitor, two three

degree-of-freedom hand controllers, and eight switches. The video monitor was directly

linked to the underwater video camera mounted on the front of ASTRO, and provided the

operator with a view of the area in front of ASTRO. This view provided visual cues

regarding teleoperator orientation and rotation, using such details as the lines in the pool

and stationary objects. The two hand controllers were used for specifying XYZ translation
(left hand controller) and RPY (roll, pitch, yaw) rotation (right hand controller). The hand

controllers acted like potentiometers, with the resistance in each direction of movement

(left/right, up/down, and twist) proportional to displacement from the center (zero)

position. This resistance was transformed into a voltage, amplified, and read into the

computer through an analog to digital (A/D) converter. The eight switches were used to

control various functions including main power, proportional, derivative, and integral

control, pressure and rate transducer zero resets, and data acquisition. The switch value

24

(on/off) was read directly into the personal computer. The system diagram is shown in

Figure 2.3.2.
The software on the personal computer was used to acquire commands and to send

control station information to the teleoperator. It was also used to provide the operator with

teleoperator system command and status displays. A listing of the control station software

is contained in Appendix B. Figure 2.3.3 shows the displays and their locations. These

displayed parameters included information on leaks and whether they were in the control,

camera, or battery boxes, the status of data being received, the light aperture command for

the video camera, the proportional, derivative, integral, and depth gains, and the current

data file name. Optionally displayed were the hand controller and switch commands, and

the pressure and rate transducer uplink data. These optional displays were automatically

turned off during data acquisition to increase the speed of the system. The personal

computer keyboard was used to set new gains and orientation angles, to turn on and off the
optional display and leak alarm, to control the light aperture of the camera, and to signal
data acquisition and input data file names. Table 2.3.1 lists these keyboard commands.

The monitor cable for the onboard computer was used during testing so that the state of the
communications link between the two computers was monitored.

25

To/From ASTRO

T Fiberoptic Communications Link

Fiberoptic Circuit

T I Serial Port

IBM Personal Computer

PC Expansion Bus

Keyboard Input Signals
(By Operator)

Keyboard

Decoding Circuitry.................... a. ,...

Interface Card (PC Expansion Board)

Intel 8255A Programmable Peripheral Interface (1) 1

1rJ

T
SECS Control Panel Switches (8) External Amplifier

Translational Rotational
Hand Controller Hand Controller

Figure 2.3.2 SECS System Block Diagram

26

External Expansion Board

8-Bit A/D Converter

I

Decoding Circuitry dg

r

SQ j j 1 ERRS 02468ACE02468ACE
COM RECV PARS STCK SEND M

Desired Euler Angles: 0 0

Rate Gains: 6 8 10Intgrl Gain: 6 7Control B

Input and Euler Angle Changes and Data File N Camera BosDisplay and "Beep" Alarm When Water is DetectedBox:-1X-:-.* M .2 .. .
Figure 2.3.3 SECS Computer DisplaysDesired Euler Angles: Keyboard Commands

Depth Gain: 40 40 40
Prop Gains: 8 8 8
Rate Gains: 6 8 10
Intgrl Gain: 6 7

E Optional Display of Commands and Data

[Input Line for Gain and Euler Angle Changes and Data File Names

[Z Display and "Beep" Alarm When Water is Detected

Figure 2.3.3 SECS Computer Displays

Table 2.3.1 SECS Keyboard Commands

27

i = Increment camera light aperture (darker)
d = Decrement camera light aperture (lighter)

s = Show command and uplink data display
o = leak sensor On/Off "beep" toggle
a = Acquire (input) data file name

e = set Euler angles

t = Transmit euler angles

p = set Proportional gains

r = set Rate (derivative) gains
j = set integral (j) gains
1 =set depth (Level) gains

Figure 3.0.1 Pool and Teleoperator Coordinate Systems

3,0 Theory
The purpose of the closed-loop attitude controller was to accurately maintain a

desired orientation in inertial roll and pitch and to hold the rate of rotation to zero when no

rotation command was given. Because there was no way to measure the yaw orientation
A

angle, the only direct control of rotations about the teleoperator's z axis consisted of rate
feedback from angular rate sensors to prevent excessive yaw rotation. Figure 3.0.1 shows

the definition of the robot axis and the related rotation angles. A proportional depth
controller was also implemented to regulate the teleoperator's depth.

3.1 Theoretical PID Controller
A block diagram of the teleoperator system with a PID attitude controller is shown

in Figure 3.1.1. The difficulty in implementing this attitude controller arose from the
nonlinear components of the system. These components included the water drag on the
outside of the teleoperator, and the applied moments due to the offset of the thrust vectors

from the center of mass of the teleoperator. Another nonlinear component was contributed

by the motion of the water inside of the teleoperator. All of these nonlinear effects were

difficult to quantify. The decision was made to apply a PID type of attitude controller to the

teleoperator. However, instead of basing it on the nonlinear equations of motion, an

28

T = Non-linear Thrust Coupling

D = Non-Linear Water Drag

M = Non-linear Effect of Water Motion Inside the Teleoperator

0 = Orientation State Vector

Figure 3.1.1 PID Block Diagram for the Teleoperator System

equivalent angle-axis representation of the system was used. The basic premise of this
system was that a single rotation angle Oe about a calculated axis f could be used to correct

the orientation error. The details of this representation are discussed in the next section.

Implementation of this system was much simpler and reduced the amount and complexity

of the calculations involved. The success of this approach was, however, predicated on the
assumption that the linearized controller could overcome the disturbance effects of the

nonlinear components. This representation also encouraged thruster efficiency because the

correction commands worked together to apply a net correction torque. Efficiency was
desired to reduce the amount of power used and to extend the total flight time. The data
used to calculate the error angle was supplied by the pressure transducers. The derivative

term of the controller was based on the data provided by the 3-axis rate transducers. This

system was implemented on ASTRO to prove the feasibility of this type of controller. The

gains for each of the proportional, derivative, and integral components were set

heuristically.

29

To simplify implementation on the teleoperator thruster systems, it was assumed

that the desired correctional torque value was proportional to the torque produced by the
discrete thruster commands. An arbitrary scaling factor (kscale) was used to move the

controller gains into the integer region. The best gains were chosen after experimentation

and data analysis. It was also anticipated that the gains might be different for each axis

because of the difference in number and efficiency of thrusters mounted parallel to each

axis, and of the hydrodynamics of the teleoperator.

3.2 Equivalent Angle-Axis
The underlying idea of the equivalent angle-axis representation of the system, was

that a single rotation of magnitude Oe about a calculated unit vector tf could achieve the

desired orientation. To build up the angle-axis representation, rotation matrices were first
defined. A rotation matrix relates the three principal axes of a system to another set of
principal axes in terms of trigonometric functions of the rotation angle between the two. A
rotation matrix can be written for a single rotation, or combined by multiplication to
represent multiple rotations [4].

Successive rotations about non-fixed axes are called body axes rotations. Specific
combinations of three of these rotations are called Euler angles. One typical set of Euler
angles consists of ordered rotations about the z, y, and x axes. These are called ZYX

Euler angles. The order of the rotations is very important to avoid singularities. The ZYX
Euler angles were chosen to be implemented in the controller. A commonly used notation
for expressing individual rotations is ROT(axis,angle). Thus the combined ZYX Euler
angle rotation matrix can be expressed as

Rotation Matrix = R = ROTr(,a)ROT(y,B)ROT(x,Y) (1)

Note that the order of matrix multiplication occurs in the same order as the "rotations". The
complete matrix is

cosa*cosl cosa*sinp3*sinY-sina*cosY cosa*sinp*cosY+sina*sinY
R = sina*cos[sina*sin *sinY+cosa*cosY sina*sinp*cosY-cosasinY (2)

-sinp -cosp*sinY cosp*cosY

Since the yaw rotation angle a could not be measured, as previously discussed, it was set

to zero. This simplifies the above rotation matrix to

30

cos3 sin3*sinY sino*cosY
R 0 cosy -sinY (3)

-sino -cos3*sinY cosp*cosY

In order to use the equivalent angle-axis representation of the system, the current
and desired orientation angles needed to be determined. For the purpose of the experiment,
the desired angles were entered into the system via the control station. The current
orientation angles were calculated from the data provided by the four pressure transducers
mounted inside the teleoperator. The locations of the pressure gauges were shown in
Figure 2.2.1. The gauges were mounted inside the robot with the pressure measuring

ports pointing inward. The distances separating the gauges from each other were
essentially the same, approximately 31.5 inches. Gauges 1 and 2 were parallel to the
teleoperator's y axis, while gauges 3 and 4 were parallel to the z axis. The line defined by
the average of gauges 3 and 4 and the average of gauges 1 and 2 was parallel to the
teleoperator's x axis. The roll and pitch orientation angles were calculated in terms of the
pressure gauges by using the ZYX Euler angle rotation matrix. Each column of the rotation
matrix represented a principal axis in the teleoperator coordinate frame. Each row of the
rotation matrix represented a principal axis in the pool coordinate frame. The pressure or

depth differences between each of the gauges were related to specific terms of the rotation
matrix. The depths measured by the pressure gauges were related to the z component of
the pool coordinate frame in the rotation matrix. Therefore, the lines, Apij, defined by the

differences between gauges 3 and 4, 1 and 2, and the averages of 3 and 4 and 1 and 2,
could be related to the z component of the appropriate body axis. Thus, from the third row
of the rotation matrix:

P(r)z = -sinm = C-1 * AP(aver34 -averl2)

P(r)z = cosB * sinY = C-1 * APl 2 (4)

P~)z = cosB * cosY = C-1 * Ap34

Since the distances between the gauges were identical, the C-1 values in the equations were

equal. To avoid ambiguity, the 8 and Y angles were found by calculating an atan2 value.
Equating the y and z equations by the common C-1 value, yields:

I = atan2(Ap12,AP34) (5)

The value for B was found by isolating sin8 from the x equation and cos8 from either the z
A

or y equations. This yields:

8 = atan2(-Apq,(Ap, 2/sin7)) = atan2(-Apq,(Ap34/cosY)) (6)

31

The use of both of these equations for 8 eliminated problems associated with division by

zero. The values of B and Y calculated from current pressure gauge readings represented
the current orientation angles. It should be noted that due to the nature of the calculations,
the roll orientation angles ranged from ±1800 and the pitch angles, which were calculated
as a result of the roll angle, ranged from ±-900.

The next step was to use these angles to calculate a matrix representative of the
rotation away from the desired orientation. If Rdesired represents the desired orientation
matrix and Rcurent represents the teleoperator's current orientation, the correctional matrix

can be expressed as:

Rdesired * Rcorrection = Rcurrent (7)

Rcorrection = Rdesired- * Rcurrent = RdesiredT * Rcurrent (8)

In general, the transpose of a rotation matrix is equivalent to the inverse of the rotation
matrix because the matrices are orthonormal. Appendix C contains the matrix calculations
that result in the correctional matrix, Rcorrection, as a function of the desired orientation

angles Ydesired and Bdesired and the current angles Ycurrent and Acurrent. Shorthand notations

of these will be Yd, Bd, Yc, and Bc.The matrix, Rcor~ection (or Rc), looks like

F c(Bd-c) sYc*s(8c-Bd) cYc*s(8cd) 1
Rc = sYd*S(8d-Bc) sTc*sYd*C(BdBc) + CYd*cy, SYd*c'c*C(Bd-Bc) - CYd*sYc (9)

cYd*s(Bd-Bc) cYd*sYc*c(Bda-c) - SYd*CYc cYd*cYc*c(Bd-Bc) + SYd*sYc

where c = cosine and s = sine.
A rotation matrix for a single rotation 0e about an arbitrary axis i is

kx
Rot(,0) = Rot(ky ,0) =

Skx*kx*vO+cO kx*ky*vO-kzs0 kx*kz*vO+kyso 1
kx*ky*vO+kzso ky*kyv0+c0 ky*kz*vO-kxso (10)
kx*ky*vO-kysO ky*kz*vO+kxsO kz*kz*vO+cO

where c = cosine, s = sine, v = versine = 1 - cosO. This matrix would reduce to the more
familiar rotation matrix previously discussed if i were one of the principal axes of the
system. The derivation of this matrix can be found in various texts [4,5]. For the
purposes of the closed-loop attitude controller, the inverse result was desired, i.e. the
rotation angle Oe and axis i needed to be found [5]. If the rotation matrix is rewritten so

32

that each component is represented by rij, where i is the row number and j is the column

number, the matrix looks like
[r

1 1 r 12 r1 3
Rot(,0) = r21 r2 2 r2 3 (11)

r31 r 32 r3 3

The rotation angle Oe can then be written as:

0e = acos((rll+ r22
+ r33 1.0) / 2.0) (12)

The axis of rotation f (a unit vector) is written as:

=A ky =r11, - r3 (13)kz (2 * sine e) l3 1 (13)Skz r21- r12

Substituting in actual values for rij from Rcorrec~o n and simplifying, yields

de = acos((cos(Pd-Pc)*(1.0+cos(Yd-'c)) + cos(Yd-Yc) - 1.0) / 2.0 (14)

Skx -sin(Yd -yc)*(cos(Yd '• c)+1.0)
(2 * sin0e) -sin(3d-Ic)*(cosYd + cosYc) (15)

sin(Id- 3c)*(sinYd+sinYc)

Implementing these equations in the attitude controller was fairly straightforward.
The simplest way to obtain an output torque was to command a rotation or combination of
rotations. Since the onboard software was configured to calculate the thruster commands
from a roll, pitch, or yaw rotation command, the attitude controller commands also needed
to be put in this form. Each component of the i vector corresponded to one of the
teleoperator's principal axes. Thus the desired net rotation Oe about the vector ý was

achieved by multiplying the error angle by each weighted component of the i vector. This
results in rotation commands equal to

roll = oe * kx
pitch = ee * ky (16)

yaw = Oe * kz

Although the attitude controller was only attempting to control the roll and pitch orientation
angles, the correctional rotation included a yaw component as well. When applied
together, these rotational components yielded the single desired correctional rotation.

33

3.3 PD Controller
The single rotation Oe about the calculated axis f that could correct the orientation of

the teleoperator was now known. The next step was to incorporate this knowledge into a
proportional controller.

The proportional control equation is

- = Kp*Kpscale*e (17)

where t is the correctional torque vector, Kp is the diagonal proportional gain matrix, e0 is
the vector of orientation errors, and Kpscale is the diagonal scaling matrix that moves the

values in the gain matrix into the integer region. However, instead of simply using the
error between the desired and current orientation angles (eO = Odesired " Ocurrent), the
correctional angle 0e, weighted by the 9 vector, from the equivalent angle-axis

representation was used. The resulting proportional control equation becomes

rI kx
c = p = Kp *Kppscale * e * ky (18)

ykz

Since simple proportional control is rarely adequate for accurate closed-loop

control, a derivative feedback term was also included. The control equation then becomes

ýr kx
c = p = Kp * Kpscale * * ky I+ Kd * Kdscale* 1 (19)

{y kz {, (
where Kd is the diagonal derivative gain matrix and Kdscale is the diagonal scaling matrix

that moves the derivative gains into the integer region. The rate term was determined by the
rate of change of each of the orientation angles because the desired rotation rate was zero.
The rate of change of each of the orientation angles was provided directly by the three-axis
rate transducers installed in the teleoperator.

To simplify the control equations used in the flight software, the gains were chosen
to make the final output of the controller in the same form as regular rotational thruster
commands. This necessitated the use of a dividing factor to restrict the magnitude of the
correctional commands to the range of regular hand controller commands (0 to 15). For
both the proportional and the derivative gains, the maximum allowable error before
correction (the deadband) and the error at which the maximum thrust would be applied
were used to calculate preliminary gain values. The initial deadbands were chosen to be 50
for the proportional term and 50/second for the rate feedback term. The errors at which the
maximum correctional thrust would be applied were chosen as 450 and 450/s. These

34

values were then adjusted according to the results shown by the data gathered during
testing. Because the yaw orientation could not be directly controlled and a side effect of the

closed-loop controller was a small induced yaw rotation, it was anticipated that the

derivative gain for the yaw feedback would be significantly higher than the gains for the

other two rotations.

3.4 PID Controller

Initially, only a PD controller was tested. However, data gathered as a result of

testing revealed the presence of a constant offset angle from the desired orientation in each

of the axes. A detailed discussion of this data will be presented in the Data and Analysis

Section 5.1. Therefore, to improve the system performance, an integral term was added.

The equation for the correctional torque then became:

TC = Kp * Kpscale * 0e * ky + Kd * Kdscae * 13 + K * Kiscale* (e *At) (20)

where KI is the diagonal integral gain matrix and Kisade is the diagonal scaling matrix that

moves the integral gains into the integer region. The error was taken to be the difference

between the desired orientation angle and the current orientation angle for each axis (e =

Odesired - Ocurrent). Because the orientation about the t axis (yaw angle) could not be

specified or measured, the integral term was only calculated for the roll and pitch
orientations. The change in time, At, is the time between each sample or correctional
calculation. This cycle time was measured in the laboratory prior to data acquisition by
utilizing the computer system clock. The sample time found for the flight software with
complete closed-loop control was 0.40 seconds. For faster program execution and ease of
calculation the integral was simplified to a summation. The correctional torque equation
then becomes:

c = K * Kpscale * 0e * ky + Kd *Kd dscale * + KI * Kiscale* _(* At)
k al ~ t=O0

(21)

The final values chosen along the diagonals for the scaling factor matrices were 10 for each

axis in the proportional term of the controller, 250 for each axis in the derivative term, and

60 for the roll and pitch terms of the integral component. The scaling factor for the yaw

term of the integral component was zero because the orientation angles could not be

measured.

35

3.5 Depth Controller
Another observation made while testing the initial PD controller was that the applied

correctional torques for the orientations also affected the depth of the teleoperator. In other
words, thruster commands intended to correct orientation also had the side effect of
propelling the teleoperator up and down in the pool. Since the pressure gauges measured
depth, the average of the gauge readings provided an estimate of the depth of the center of
the teleoperator. Because the depth of the robot at any given time was the only information
available, a simple proportional depth controller was added to the closed-loop system. The
proportional control equation is

Fdepth = Kdepth * Kscale * edepth (22)

where the error in depth is the preset or desired average pressure gauge value minus the
current average pressure gauge value. The pressure gauge values were used in the integer
(bit) format rather than the depth format (floating point) to simplify calculations and
decrease processing time.

The z-axis of the teleoperator did not always coincide with the z-axis of the pool.
Thus, a rotation matrix reflecting the current orientation with respect to the pool coordinate
system, specifically the z (pool) axis, was needed. This matrix is the same as the rotation
matrix originally calculated for the attitude equations, and is restated here as

cosj sinp*sinY sint*cosY
0 cosY -sinY

-sino -cosp*sinY cosp*cosY -

The components of this matrix that show the relationship between the teleoperator's axes
and the pool's z axis are the components in the third row. Thus the vector that is needed is-sin8

Zpool = cos*sinY (23)

cos8*cosY
The implemented depth controller is therefore

Fx -sinS

Fdepth = Fy =Kdepth * Kscale* edepth * cos*sin (24)
Fz cosB*cosY

where Fdepth is the force vector required to correct the depth error, Kdepth is the diagonal

proportional depth gain matrix, Kscale is the diagonal scaling factor matrix used to move the

36

depth gain into the integer region (the values along the diagonal are equal to 75), edepth is

the error in depth, and the components of the ýPo vector are used to weight the error and

thus the correctional force.

The initial gains for the depth controller were chosen so that the deadband was

approximately 0.25 feet and the depth error that triggered the maximum thrust value for

correction was approximately 3.0 feet. It was anticipated that these values would change

after data was taken and analyzed.

37

4.0 Test Set-IU
The equipment used in the experiment were SECS and ASTRO. Communication

between the control station and the teleoperator was performed via a fiberoptic link. The
communications software shell, PIVECS, was used to transfer information up and down
the link. Color video signals were sent to the monitor on SECS via another cable. The
overall test set-up is shown in Figure 4.0.1.

In order to obtain accurate sensor values the pressure and rate transducers first
needed to be zeroed. This was done by taking a set of readings that were used as
adjustment values for the data taken during testing. These readings were taken on the pool
deck before the teleoperator was put into the water and between tests when it was
underwater. Zeroing the values while in the water required holding the robot as still as
possible for the rate readings, and leveling each pressure gauge with respect to the others
for each gauge reading. Small levels were placed on three faces of the teleoperator (the top,
port side, and 450 between them) to assist with this. The information provided by the rate

sensors and pressure gauges were read into the onboard computer through a 12-bit analog-
to-digital converter. These numbers were then converted into a usable form and utilized in
the closed-loop controller calculations. The thruster commands were sent out of the
onboard computer in the form of a 4-bit digital command. Interface circuitry converted
those commands into a pulse-width modulated signal which was then sent to the
appropriate thruster. Amplification and current switching was performed in the power
modules attached to each thruster unit.

The closed-loop controller ran directly in the onboard software. The calculated
contribution of each part of the attitude controller was added to the appropriate rotational
thruster command. The regular hand controller commands were disabled for the bulk of the
experiments in order to speed up the system execution time. The depth controller
contributions were added to the thruster x, y, and z translation commands. The output
command magnitude was limited to the maximum value of 15.

During the data run, all of the raw (12-bit) pressure and rate transducer values were
stored on ASTRO in a large array (1000 samples). Data was continuously stored until the
data acquisition was completed. At this time, the thrusters on ASTRO were disabled (main
power was turned off) and the number of samples was sent to the surface computer. The
pressure and rate transducer values were then sent to the computer on the surface in the
same manner as regular communications, except that all of the other transmissions were
overridden. When all the data was received the control station computer wrote the data into

38

I~0
E

0n

the previously specified data file along with the number of samples and the values of the
desired orientation angles. The time between samples, or cycle time, on ASTRO was
measured in previous experiments as 0.40 seconds. This measurement was made by using
the system clock to calculate the total time passed during a data run. The length of time was
then divided by the number of samples taken during the run.

40

5.0 Data and Analysis
As with any controller, the desired system results should demonstrate a stable

controller that is robust and can compensate for reasonable outside disturbances. The
disturbances tested in the research were approximately the maximum disturbances that
could be reasonably expected in this type of experimental research (i.e. those caused by
collision with the pool wall, another teleoperator, or a diver). Other desired features were a
quick response time, low overshoot, small or non-existent steady-state error, and no limit
cycling. In addition, the minimization of uncontrolled yaw rotation, despite the fact that it
could not be directly measured, was also desired.

Data files were obtained for straight regulation of (00,00), (450,00), and (00,450)

orientation angles, where the first number was the roll angle and the second was the pitch
angle. Each of these is pictured in Figure 5.0.1. Responses to step inputs and pseudo-
random disturbances, as well as attempts at free-flight were also obtained. The step inputs
were generated by changing the desired orientation angles. Disturbances were generated by
underwater divers applying a torque to each axis singly and in combination. Disturbance
files were taken by allowing the teleoperator 45 seconds to regulate (determined from
previous data to be sufficient), imparting a disturbance, and then allowing approximately
60 to 90 seconds for the system to return to equilibrium. Tests to demonstrate the overall
accuracy of the system were performed by specifying a specific orientation and then
attempting to fly the teleoperator along a straight line translation.

The performance of the depth controller was tested by setting the teleoperator in
different attitudes and applying a depth disturbance in either direction. The depth response
was also evaluated based on the data from the attitude regulation, step response, and
disturbance files. The depth disturbance files contained disturbances in both directions (the
force applied driving the robot deeper, allowing 60 seconds or more to settle, and another
force applied driving the robot shallower). The data obtained in the experiments are
presented below.

41

A

y= 450

(b) (450,00) Orientation

(c) (00,450) Orientation

Figure 5.0.1 Teleoperator Orientations

42

A

Y ASTRO

A ASTRO
x pool X ASTRO

(a) (00,00) Orientation

A
Z

A
z poo

ASTRO

A
Y pool

A

A
Z pool

ASTRO

pool

= 450

(a) (0°,0 °) Orientation

x pool

5.1 PD Controller Results
The first closed-loop attitude controller implemented was the PD controller. The

tests performed with this controller were to serve several purposes. First, the gains were

systematically adjusted in different combinations to give numerous data files that could be

used to determine the best gains for each axis. Second, the tests were to provide qualitative

data on the controller's disturbance rejection characteristics and free-flight capabilities.

The data acquired were step response files. Initially, the teleoperator was

programmed to hold an attitude of zero roll and zero pitch. A step input was obtained by
changing either the desired roll or pitch angle to positive 45 degrees. This change was
transmitted to the teleoperator along with an acquire data flag. The data files tended to be
rather small, on the average about 45 seconds. This was due to the robot's tendency to
thrust towards the bottom or surface of the pool due to incidental vertical thrust vectors
generated by the attitude hold system. A range of gains (5 to 12) was identified for the
proportional and derivative terms that varied from very slight control to limit cycling.
During testing, observations made from the video monitor served to indicate when a limit
cycle was reached. Not all combinations of gains were tested due to the shortage of time
available for the initial testing, though an attempt was made to test some combinations of
different gains for each axis. However, the data gathered was sufficient to indicate several
necessary changes.

Representative graphs of the roll and pitch angle data for roll and pitch step inputs
are shown in Figure 5.1.1. Both graphs show fairly good responses to the step input. The
response time was approximately 3.0 to 5.0 seconds (time to when the response was
within ~10 percent of the desired value or ± 5 degrees) with an overshoot of 5 to 12
degrees. The exact size of the overshoot was difficult to determine because of the offset
error angle. The orientation angles oscillated about points slightly offset from the desired
orientations by approximately 3 to 5 degrees. An examination of the graphs of the error
angles calculated from the equivalent angle-axis representation, Oe, in Figure 5.1.2 shows

the presence of an offset error angle. The magnitude of these error angles varied from 3 to
20 degrees. These offset angles and the oscillations about them were present in all of the
data files taken. However, the ones shown in the figures represent the best responses of
the data acquired for the PD controller (the gains used in the graphs are 9 and 7 for the
proportional and derivative controllers, respectively).

From this set of data, the best combination of gains are a proportional gain of 9 and

a derivative gain of 7 for each of the roll, pitch, and yaw axes. These gains were slightly
less than the ones that resulted in limit cycling. The gains corresponded to a deadband of
-~1 with an error of -170 corresponding to saturation of the correctional thrust.

43

0 5 10 15 20
time (eec)

(a) 450 Roll Step Response

(b) 450 Pitch Step Response

Figure 5.1.1 Representative Step Response Data (PD Controller)

44

7

t.66
e 5

40 4

3

2
ED

-2

7C

I 6C
E0
6L

5C

u

4 4C

' 3C

E A -12C

-21

0 5 10 15 20
time (8ec)

•Ft

0 5 10 15 20 25 30 35 40 45 50
time (sec)

(a) 450 Roll Step Response Error Angle

10
time (sec)

(b) 450 Pitch Step Response Error Angle

Figure 5.1.2 Representative Error Angle Data (PD Controller)

45

Problems with the data acquired include the relatively small sample size of each run
and the errors introduced into the data by the teleoperator impacting the bottom of the pool
or surfacing. Teleoperator surfacing corrupted data because when the robot was on the
surface at least one thruster was not thrusting against the water. For the situations when
the teleoperator hit the bottom, the bottom of the pool interfered with some attempted
rotation or else imparted a disturbance force from the force of impact. There were also
disturbances generated by the water jets at the sides of the pool which caused additional
torques and translations.

Conclusions drawn from this preliminary data included the need for an integral term
in the controller to eliminate or minimize the constant offset angles (steady-state error). In
addition, a closed-loop depth controller was needed to provide the ability for longer data
runs without interference with the bottom or surface of the pool. Finally, more accurate
gains were obtained for the proportional and derivative terms of the controller (though these
values changed slightly with the addition of the integral term).

5.2 PID Controller Results
An integral term was added to the previously tested PD controller to eliminate the

offset error from the desired orientation angles. The new PID controller was tested in
three separate test sessions. In the first one, step responses to a separate 450 change in roll

and pitch were used to determine the best integral gain. In addition, longer data files were
taken. The second session was used to fine-tune all of the gains to the step responses and
also to obtain pure orientation regulation files. The third test session was used to collect
data during free-flight (pure x and y translations along the length of the pool) as well as for
orientation disturbance responses.

In the first test session, the integral gains were systematically varied over a range of
values (5 to 12). The proportional and derivative gains used during these tests were the
ones previously shown to have the best response: proportional gains equal to 9 and
derivative gains equal to 7. Small offset angles were still apparent in the orientation angles
with integral gains of 5 in roll and 5 and 6 in pitch. Integral gains of 8 or greater seemed to
cause excessive noise in the system and instability in gains greater than 10. Therefore,
integral gains of 6 for the roll axis and 7 for the pitch axis were chosen. Figure 5.2.1(a)
shows a graph of the orientation angles for the step response to a 450 roll command using

integral gains of 6. Figure 5.2. l1(b) shows the orientation angles of the step response to a
450 pitch command using integral gains of 11. The latter system was much noisier and

appeared unstable.

46

80

70

"" 60~
41
41
~
~ 5041
~
\oJ

~ 4041...
~
.::

30~

~...
41 20~

~
.::
~ 10
~ee 0
~
~

1 0

Roll Angle (gamma)

PItch Angle (beta)

2 0 -+-_~"""'_"""-"""-""""'''T''''T''T''''T''T''''T''T''''T''''''''r-'r''''''lr-'r''''''l'''''''''''''''''''''T'T"''''''''''T''''T'''''''_~

o 5 1 0 15 20 25 30 35 40 45
time (sec)

(a) OrientatIon Angles For Roll Input (Integral Gains =6)
80...-------------------------

PItch Angle (beta)

Roll Angle (gamma)

5 0 -+-r"'T"""'l.......,r-'r"""lr-'r"""l.........-r-o...........,..._......-.,...,........................,..,.."T""T"T""T"T""T"T""T"T""T"'T"""'I"'T"""'I~

o 5 10 15 20 25 30 35 40 45
time (sec)

70

"" 60
~
41

5041
~
~
41 40
~
\oJ

'" 30
41...
~ 20.::
~

~ 10...
41
~ 0
~
.::
~ 1 0
~e 20e
~
~ 30

40

(b) OrIentatIon Angles For Pitch Input (Integral Gains =11)

Figure 5 2 1 Sample Step Response Graphs (PID Controller)

47

In the second test session, all of the gains were fine tuned to the step response. In
addition, pure orientation regulation files were taken. These files showed that the
oscillations about the desired orientation angles were partially due to the noise in the system
(noise and resultant errors are discussed in Section 5.4). Additional oscillations were due
to angle "spikes" (random and large orientation angle changes) which in turn were caused
by noise or spikes in the pressure transducer readings. In order to reduce the effects of the
spikes on the overall performance of the system, the proportional gains were reduced to 8.
With the proportional gains set to 8 and the integral gains set to 6 and 7 for the roll and
pitch axes respectively, the derivative gains were varied for each axis. The best gains for
the roll and pitch axes were determined to be 6 and 8 respectively. These gains provided
the most steady orientation angles during regulation and for the step responses. Choosing
the best gain for the yaw axis was more difficult since derivative feedback is the only
control about the pool yaw axis. When the teleoperator was in the (00,00) orientation, high

derivative feedback for the yaw axis greatly damped out unwanted yaw rotations that
occurred due to the controller correctional torques. However, if this gain was too high, it
affected the other two axes adversely. Data files were taken to determine the maximum
acceptable derivative gain for the robot's yaw axis. Graphing the data showed that a gain
of 10 minimized excessive yaw rotations while not interfering with the control of the other
axes. Figure 5.2.2 shows the step response of the system to a 450 roll input with the final

gains. The response time of the system was within 10 seconds. The large overshoot in the
roll angle (-350) was due in part to the magnitude of the step input. The system settled

fairly quickly with an error of approximately ±5 degrees. Figure 5.2.3 shows the step
response to a 450 pitch input. The response time was slightly longer, a little over 10
seconds, and the magnitude of the error oscillations were closer to 7 to 10 degrees. In
retrospect, a tradeoff should be made between the response time and the overshoot. The
final gains chosen for the controller favored fairly quick response time, but allowed a large
overshoot. Further experimentation should investigate the step response to a system with
reduced proportional and integral gains and increased derivative gains.

Data files were also taken for simple regulation of the (00,00), (450,00), and

(00,450) orientations. These are presented in Figures 5.2.4, 5.2.5, and 5.2.6,

respectively. Except for an occasional spike, the (00,00) orientation was easily held within
±50 of the desired values. The (450,00) orientation was slightly more noisy, though the

desired value still ranged within ±5 degrees. The (00,450) orientation was also a little

noisy, with the roll angle range approximately ±70 and the pitch angle range approximately

±5 degrees. Overall, it appeared that the attitude regulation was fairly consistent and that
the response to a 450 step input reached the desired values in approximately 10 seconds.

48

0 20 40 60 80 100 120 140
time (sec)

(a) Roll Angle Gamma

0 20 40 60 80 100 120 140
time (sec)

Figure 5.2.2
(b) Pitch Angle Beta

Orientation Angle Response To A 450 Roll Step Input

49

6

5

4

-2

-3-4IC

-2

-3

-4

^A

0 20 40 60 80 100 120 140 160
time (sec)

(b) Pitch Angle Beta
Figure 5.2.3 Orientation Angle Response To A 450 Pitch Step Input

50

A

40
4'

60

rg

rgh.

e•40
°

aC
P;

0 20 40 60 80
time (sec)

(a) Roll Angle Gamma

A

L4'

4'

I.p

0IID

4_WIIC0

I"

A.

100 120 140 160

0 20 40 60 80 100 120 140 160
time (eec)

(a) Roll Angle Gamma

0 20 40 60 80 100 120 140 160
time (sec)

Figure 5.2.4
(b) Pitch Angle Beta

Orientation Angles During (00,00) Attitude Regulation

51

h

4041
vL0

IV40

S

C

C

CL
£

100

O1 I I "I I I " I I I I I

0 20 40 60

Figure 5.2.5

80 100 120 140 160 180 200 220 240
time (sec)

(b) Pitch Angle Beta
Orientation Angles During (450,00) Attitude Regulation

52

'-*1T 1
-II I

I I

Ip - "l i r~ AT I
-I II I Iiln I

'I I" 'I' I
-II I

II I
-I I

(a) Roll Angle Gamma
60

50

40

, 30
6

S20

-10

-30

-30

-40 •
0 20 40 60 80 100 120 140 160 180 200 220 240

time (sec)

0 20 40 60 80 100 120 140 160
time (sec)

(b) Pitch Angle Beta
Figure 5.2.6 Orientation Angles During (00,450) Attitude Regulation

53

6

5

4
IA

t 3

4-

S2

m
S 1

-4-1-2

-3

-4
0 20 40 60 80

time (sec)

(a) Roll Angle Gamma
1

A

L
o

'u

e
*'
4'

00

o

I"

0.

100 120 140 160

The last test session was used to examine the PID controller's response to
orientation disturbances. Initially, the teleoperator was set in the (00,00) orientation and a

pure roll disturbance was imparted (45 seconds after the data file was started to allow the

robot to settle in the desired orientation). This data is shown in Figure 5.2.7. The
controller responded very quickly, and the system returned to normal within about 5

seconds. Due to the large size of the disturbance, there was a fairly large overshoot.

However, the overall response was fairly good. Figure 5.2.8 shows the system's
response (from the (00,00) orientation) to a pure pitch disturbance. The response was

again good, and closely resembled the step response data. Figure 5.2.9 shows the PID
controller's response to a random orientation disturbance when the teleoperator was in the
(00,450) orientation. The controller responded to the disturbance and damped it out within

approximately 10 seconds. It should be noted that all of the disturbances in this section
were larger than those likely to be encountered during the course of experimental research.

Good system response to these disturbances guarantees good responses to disturbances
encountered during normal operation.

The third test session was also used to show the effectiveness of the PID controller

during free-flight translation. Before the controller was implemented, free-flight translation
involved constant correction (with the rotational hand controller) in all of the rotational
axes. In addition, pure translation was impossible since a y-translation resulted in a
combined translation and yaw rotation, while a commanded x-translation resulted in a
combined translation and pitch rotation. In the free-flight test, corrections with the
rotational hand controller were allowed only for yaw rotations. Data for the pure x- and y-
translations are presented in Figures 5.2.10 and 5.2.11, respectively. The teleoperator was
flown up and down the length of the pool in the (00,00) orientation. The data shows that

while there is a little more noise present than in the pure regulatory mode, the overall
performance is quite good.

The final gains chosen for the system are listed in Table 5.2.1. The proportional
gains correspond to a deadband of -10 with an error angle of -190 corresponding to

maximum correctional torque. The derivative gains correspond to deadbands of -1.5, 1,
and .5 degrees per second (for roll, pitch, and yaw, respectively) with errors of -27, 20,
and 16 degrees per second corresponding to maximum correctional torques.

54

0 20 40 60 80 100 120 140
time (sc)

(a) Roll Angle Gamma

0 20 40 60 80 100 120 140
time (sec)

Figure 5.2.7
(b) Pitch Angle Beta

Orientation Angle Response To A Roll Disturbance

55

40
h
Ip

IV
00

40P£

4-

A
Ia

Figure 5.2.8
(b) Pitch Angle Beta

Orientation Angle Response To A Pitch Disturbance

56

5(

41

40h.G 36
m

' 2(tv
E 1W

i-e
0< -1(

o

P -2(

-3'

-4'
0 20 40 60 80 100 120 140

time (sec)

(a) Roll Angle Gamma
04

5(

4(

V 3(

, 2(

*4o

-1(

-31

-4(
0 20 40 60 80 100 120 140

time (sec)

I

nr,

0 20 40 60 80 100 120 140
time (sec)

(a) Roll Angle Gamma

Figure 5.2.9
(b) Pitch Angle Beta

Orientation Angle Response To A Random Disturbance

57

1 U

170

150

' 130

6 110

% 90

E 70
C3 50

2 30

** 1010

-10

-30

-50

1

h

-CL*

0

0 20 40 60 80 100 120 140
time (sec)

0 20 40 60 80 100 120 140 160
time (sec)

(a) Roll Angle Gamma

Figure 5.2.10
(b) Pitch Angle Beta

Orientation Angles During X-Translation

58

ft

6C

5C

e 4C

C
* 3C

-2C

CC

* -1(

-2(

-3(

7C

6(

5(

k 4(

S3(
'U

•C2C

21

IC

-30

0 20 40 60 80 100 120 140 160
time (sec)

0 20 40 60 80 100 120 140 160 180 200 220
time (sec)

(a) Roll Angle Gamma

0 20 40 60 80 100 120 140 160 180 200 220
time (sec)

(b) Pitch Angle Beta
Figure 5.2.11 Orientation Angles During Y-Translation

59

6

SC
.9

4C

Clain

• .Ie

I,
Il
i

IC

40h.

WI
40

Iv

*0

40

IC

a
*0
O

ies

5.2.1 Final PWD

5.3 Depth Controller Results

The need for a depth controller was made apparent during the tests of the original
PD controller. The effectiveness of the proportional depth controller was tested during all
of the previously discussed tests as well as with depth disturbances. The depth controller
worked very well overall during the regulatory, step response, disturbance, and free-flight
tests performed for the orientation data. It kept the teleoperator within ± 0.5 feet of the
desired depth most of the time. Sample graphs for each of these test cases is shown in
Figure 5.3.1.

Gains for the depth controller were chosen by the controller's response to depth
disturbances when in the (00,00), (450,00), and (00,450) orientations. Sample graphs of

the depth data from each of the orientations are shown in Figures 5.3.2, 5.3.3, and 5.3.4.
The final depth gains were chosen so that depth disturbances would be quickly corrected
without excessive overshoot. This goal was made slightly more difficult because of the
expansion and compression of the gases in the sealed boxes and the scuba tank as the
teleoperator moves up and down. The controller was required to not only overcome the
disturbance, but also the buoyancy of the expanded gases. The final gains chosen were 40
for each of the x, y, and z axes. This corresponds to maximum correctional thrust when
the depth error is about 2 feet.

60

7.0

6.5

*0 6.0

. 5.5P

* 5.0

4.5

4.0
0 20 40 60 80 100 120 140 160

time (sec)
(a) Depth Data During (00,00) Orientation Regulation

0 20 40 60 80 100 120 140
time (sec)

(b) Depth Data During 450 Roll Step Response
Figure 5.3.1 Average Depths During Orientation Data Acquisition

61

I

7.5

7.o

* 6.0

)P 6.0
4C

5.5

5.0

-j
I

7.0

(d) Depth Data During Free Flight Y-Translation
Figure 5.3.1. Average Depths During Orientation Data Acquisition (cont.)

62

6.5

e 6.0

e 5.5

L
G 5.0

4.5

4.0
0 20 40 60 80

time (sec)
(c) Depth Data During Roll Orientation Disturbances

--
7.0

6.5

, 6.0
e

am 5.5
Go

40
L 5.0

-C

4.5

4.0
0 20 40 60 80 100 120 140 160 180 200 220

20 4time (sec) I

I
100 120 140

Figure 5.3.3 Depth Disturbances In (450,00) Orientation

63

00%
4'

4,9he•

*046-C

0 20 40 60 80 100 120 140 160 180 200 220 240
time (sec)

Figure 5.3.2 Depth Disturbances In (00,00) Orientation
r

10.

9.

*

8.

CL

P 7.

0 6.

5.

4.
0 20 40 60 80 100 120 140 160 180 200 220 240

time (sec)

0 20 40 60 80 100 120 140 160 180
time (sec)

Figure 5.3.4 Depth Disturbances In (00,450) Orientation

64

10.

9.

* 8.

4 7.

* 6.

5.

4.

5.4 Error AnalysIs

Data files were taken to detenmne the magnItude of the sensor nOIse and the

expected accuracy of the PID and depth controller The teleoperator was weIghted down

and placed at the bottom of the pool In several d1fferent onentatlons Data files were

acqUIred In exactly the same way as the regulator files were taken except that the maIn

power SWItch on the robot was off Thus the software sampled the pressure and rate

transducers and recorded the values to the data fIles at the same sample rate as when the

robot onentatlon was actually beIng controlled The raw 12 bIt, pressure and rate

transducer data were exammed as well as the onentatIon angles calculated from them

FIgure 5 4 1 shows the raw (12 bIt) data for each of the pressure transducers The

range of values was WIthIn ±5 pOInts wIth a few larger random spIkes These partIcular

data files were taken near the beg}nnIng of the test seSSIon Although the sensors were

allowed to warm up In advance some dnft In the values sull occurred ThIS dnft was

farrly small and the pressure transducers d1d not need to be re zeroed very often As can

be seen In FIgure 5 4 2 the onentaoon angles d1d not nooceably reflect the gauge value

dnft The range of the onentatlon angles appeared to fluctuate WIthIn ±2 to 3 degrees, WIth

an occaSIonal spIke

FIgures 543 544 and 545 show the rotatIon rate nOIse All of the values

were wIthIn ±O 5 to 1 0 degrees per second However the values themselves were not

zero Ind1caong the need to reset the zero offset values These values had to be reset qUIte

often despIte the InItIal warm up tIme of approxImately 15 mInutes Dunng data

acquIsIoon an attempt was made to check the rate transducer values between every thIrd

run Thus some rotaoon error and subsequent controller error can be attnbuted to the dnft

In the rate transducer values In general, the errors dIscussed here are the same magnItude

as the errors of the atotude controller Thus the controller performed WIthIn the accuracy

of the data prOVIded by the pressure and rate transducers

65

14012040 60 80 100
time (sec)

20
2880 -+-__,,....- -_---r-_--,.-_-_---..-_-r-----.--......-__,,....---I

o

2885

2890

2895-

2920 -------------------------.......

~

III
~ 2915
::I
o
t,,)

= 2910
'="c..
1 2905..
~

Q

~ 2900

""

(a) Pressure Gauge 1

2850 ------------------------....,

2845

2840

2835

2830

2825

2820

2815

281 0 -+---,,....-...,...-_...-oy-...,..-r-...,...-~.......-...,..-..___r-__~r__.....

o 20 40 60 80 100 120 140
time (sec)

(b) Pressure Gauge 2

Figure 5 4 1 12 Bit Pressure Gauge Data

66

2880

+. 2875

c 2870
a•

2865

6

S 2860

2855

O'

2850

A 2845

2840
0 20 40 60 80 100 120 140

time (sec)
(c) Pressure Gauge 3

0 20 40 60 80 100 120 140
time (sec)

(d) Pressure Gauge 4
Figure 5.4.1 12-Bit Pressure Gauge Data (cont.)

67

2860'

IA
*0 2855

0-€-

a 2850'

Ip

S28456-

2840'

u-

* 2835'
p

2830-

A 2825-

2820-

130

(b) Pitch Angle Beta

Figure 5.4.2 Orientation Angles From 12-Bit Pressure Gauge Data

68

125

'I

416 120

E 115

a 110
IC

105

100
0 20 40 60 80

time (sec)
(a) Roll Angle Gamma

40 2Co
o

1pvo

40WIIt-CPa

CLa
IF

WI

IC
0
*'
A.

0 20 40 60 80
time (see)

100 120 140

(n

100 120 140

Figure 5.4.3 Rotation Rate Noise - Roll

0 20 40 60 80 100 120 140
time (sec)

Figure 5.4.4 Rotation Rate Noise - Pitch

69

1 3

12

o 11
o

S10

S9

0
8

09

A 7O
6

5

Figure 5.4.5 Rotation Rate Noise - Yaw

70

-2

-3

0 -4
0
Gp

S-5

* -6

IMe-7

0

-8

-9

-10
0 20 40 60 80

time (sec)

A

100 120 140

6.0 Conclusions and Recommendations
The implementation of a closed-loop PID attitude controller and proportional depth

controller greatly improved the performance of the underwater teleoperator. Desired
orientations in roll and pitch were maintained within ±5 degrees. The proportional depth

controller maintained the teleoperator's depth within ±0.5 feet. These errors, when seen on
the video monitor (through the camera mounted on the front of the robot) were of no major
consequence. The system response to a 450 step input was fairly quick (-10 seconds), but

the overshoot was rather large. Further experimentation should examine the effects of

reduced proportional and integral gains and increased derivative gains on the response time
and the overshoot.

There are several improvements to this control system that can be made which
would significantly improve performance. First, a faster onboard computer, or a computer
with a math co-processor would greatly decrease the loop execution time. The current
cycle time for the complete controller is about 0.4 seconds or 2.5 hertz. Tests performed in
the laboratory have shown that the most time consuming portions of the software are the
proportional and depth control calculations. The calculation times of these functions were
longer due to several floating point and trigonometric calculations. Accessing the 12-bit
analog to digital converter to obtain the pressure and rate transducer data also took a
significant amount of time. Portions of this software may be rewritten in assembly
language and linked to C to further decrease the execution time.

To decrease the amount of noise in the attitude controller, a simple filter to eliminate
spikes in the pressure transducer data, and thus the orientation angles, should be
implemented. Further experimentation to determine the precise source of the spikes should
be performed in order to determine whether the filter would be most effective implemented
in software or hardware. Once a filter is installed and the spikes eliminated, the
proportional attitude controller gains could be increased slightly (they were decreased to
limit response to the spikes).

Another improvement to the attitude control system would be the development of a
more complicated system to eliminate yaw rotations about the pool z-axis. This rotation
was held to less than 1.0 degrees per second with the current controller in the (00,00)
orientation due to the relatively high derivative feedback gain on the teleoperator yaw axis
(which lines up with the pool yaw axis in this orientation). However, the rotation about the
pool yaw axis was greater when the teleoperator was in other orientations. One possible
method for correcting this rotation is to use the currently calculated attitude to determine an
additional weighted rate feedback correction factor. Other methods should also be
investigated.

71

Additional improvements to the overall teleoperator system should include

expanding the internal systems monitor. On-line voltage readings for the main power as
well as a digital pressure gauge to measure scuba tank pressure could be implemented.

Thruster feedback data such as shaft rotation rate could also be monitored and tied into the
control system.

While the closed-loop attitude and depth controller developed in the course of this

research worked very well for the purposes of current teleoperator usage, a more expanded

and advanced system based on the recommendations above would further increase the
usefulness of this teleoperator for future research.

72

References
1. Quick, D.M. , "Apparatus for Space Telerobotic Operations (ASTRO)", SSL Guide,

August 7,1987.
2. Power, W.M., "Guide to Operations and Systems: Apparatus for Space Tele-Robotic

Operations (ASTRO)", SSL Report 1-90.
3. Sanner, R., "The MIT SSL Pilot-Vehicle-Control Station Communications Protocal

(PIVECS)", SSL Report in progress.
4. Craig, J.J., Introduction to Robotics: Mechanics and Control, Addison-Wesley

Publishing Company, Massachusetts, 1986.
5. Alexander, H.L., Class Notes for "Space Robotics", September 1988.

Asada, H. and Slotine, J.J., Robot Analysis and Control, Wiley and Sons, New York,
1986.

D'Azzo, J.J., and Houpis, C.H., Feedback Control System Analysis and Synthesis,

McGraw-Hill Book Company, New York, 1966.
Paul, R.P., Robot Manipulators: Mathematics, Programming, and Control, MIT Press,

Massachusetts, 1982.
Thomas, G.B., and Finney, R.L., Calculus and Analytic Geometry, Addison-Wesley

Publishing Company, Massachusetts, 1982.

73

Appendix A: ASTRO Software

/* WPVASTRO */
/* Last Modified: 3/6/90 by Wendy Power */
/* This is the compile and link program used with the onboard flight software. */

wpvastro.obj: ..\pivecs.h pvastro.h ..\pvsecs.msg wpvastro.c
cl /c /Od /Zp /Zi wpvastro.c

astrofnl.obj: ..\pivecs.h pvastro.h astrofnl.c
cl /c /Od /Zp /Zi astrofnl.c

astrofn2.obj: ..\pivecs.h pvastro.h astrofn2.c
cl /c /Od /Zp /Zi astrofn2.c

astromsg.obj: ..\pivecs.h ..\pvdata.h pvastro.h ..Npvsecs.msg astromsg.c
cl /c /Od /Zp /Zi astromsg.c

wpvastro.exe: wpvastro.obj astromsg.obj astrofnl.obj astrofn2.obj
link /NOD /CO $**, wpvastro.exe,,SLIBCE+GFCS+GFS+..\PIVECS

/* PVASTRO.MSG */
/* Last Modified: 3/6/90 by Wendy Power */
#ifndef ASTROMSGS
#define ASTROMSGS

/* This is a listing of the message headers for ASTRO */

/********************** Recognized Message List **************************/
#define COMTEST
#define COMAOK
#define SHUTDN
#define STOP

#define TXSTATS
#define TXPGAUGE
#define TXGYROS
#define TXCOUNT

#define RXTHC
#define RXRHC
#define RXSPANEL
#define RXCAMERA
#define RXEULER
#define RXPGAIN
#define RXRGAIN
#define RXIGAIN
#define RXDPGAIN

Ox00
0x08
Ox10
Ox18

0x68
0x70
0x78
0x80

OxA3
OxAB
OxB 1
OxB9
OxC4
OxCB
OxD3
OxDA
OxE3

Msg 0, No Data
Msg 1, " "
Msg 2, "
Msg 3, " "

Msg 13, " " */
Msg 14, "
Msg 15,
Msg 16,

/* Msg 20, 3 Data Bytes
/* Msg 21, 3 Data Bytes
/* Msg 22, 1 Data Byte
/* Msg 23, 1 Data Byte

/* Msg 24, 4 Data Bytes
/* Msg 25, 3 Data Bytes
/* Msg 26, 3 Data Bytes
/* Msg 27, 2 Data Bytes
/* Msg 28, 3 Data Bytes

#define BADMSG OxFF /* Msg 31, 7 data. Placeholder for Bad msgs */
/***/
#endif

/* The message structure is as follows:
#define MSGname Ox?? /* Msg # (0-31) and # of data bytes (0-7)
The number of data bytes should be 0 if transmitting, and the appropriate
number if receiving. ?? is a 2 digit hex representation of the message
number (most significant 5 bits) and the number of data bytes (3 least
significant bits).
Example: receiving message number 26 with 3 data bytes

26 = 11010 in bits, 3 = 011
combining: 11010 011 -> 1101 0011 -> hex = D3 */

74

/* PVASTRO.H */
/* Last Modified: 3/6/90 by Wendy Power */
/* This routine contains all the message handler and header

definitions, as well as all the global and fixed definition
variables for ASTRO. */

#ifndef ASTRO
#define ASTRO
#ifndef PIVECS
#include "..\pivecs.h"
#endif
#ifndef ASTROMSGS
#include "..\pvastro.msg"
#endif

extern HandlerFun4
extern HandlerFun4
extern HandlerFun4
extern HandlerFun4

static Handlers

BadMsg, ShutDown, ComCheck, ComAOK;
TX_Stats, TX_PGauge, TXGyros, TX_Count;
RX_THC, RXRHC, RX_SPanel, RX_Camera;
RX_Euler, RX_PGain, RX_RGain, RXIGain, RX_DpGain;

AstroHandlers =
(ComCheck, ComAOK, ShutDown, BadMsg,
BadMsg, BadMsg, BadMsg, BadMsg,
BadMsg, BadMsg, BadMsg, BadMsg,
BadMsg, TX_Stats, TX_PGauge, TXGyros,
TX_Count, BadMsg, BadMsg, BadMsg,
RX_THC, RX_RHC, RXSPaneL RX_Camera,
RX_Euler, RX_PGain, RX_RGain, RXIGain,
RX_DpGain, BadMsg, . BadMsg, BadMsg);

static Headers

static Byte
static Byte

AstroMsgs =
(COMTEST, COMAOK, SHUTDN,
BADMSG, BADMSG, BADMSG,
BADMSG, BADMSG, BADMSG,
BADMSG, TXSTATS, TXPGAUGE,
TXCOUNT, BADMSG, BADMSG,
RXTHC, RXRHC, RXSPANEL,
RXEULER, RXPGAIN, RXRGAIN,
RXDPGAIN, BADMSG, BADMSG,

STOP,
BADMSG,
BADMSG,
TXGYROS,
BADMSG,

RXCAMERA,
RXIGAIN,
BADMSG);

AstroHiPri = 4;
Bit[8] = (0x01, 0x02, 0x04, 0x08, OxlO, 0x20, 0x40, 0x80);

/* Define global variables (can be called from all routines). */
Byte Motors[6], thc[3], rhc[3];
Byte PwrChg, IrisChg, Iris, SPanel, PneuChg, DumpFlg, changes;
Byte Done;
unsigned long LastTHC, LastRHC, LastSPanel, count, p, g;
unsigned long data[2000][7];
long pgauge[4], gyros[3], gyroadj[3], pgadj[3], adnum[7];
int derivcmd[3], propcmd[3], rategain[3], propgain[3];
int intgain[2], intcmd[2], depthgain[3], depthcmd[3];
long cdepth, ddepth;
double kvector[3], esum[2], zvector[3];
double thetae, thetaed, sintemp, gammad, betad, gammac, betac;
double singc, cosgc;

/* Define fixed gloabal variables */
#define WLEN 0x05
#define ADMASK OxEO
#define MSBMASK OxFO
#define TMAX OxOF
#define DELAY Ox 100
#define HTGGt E 0x09

75

"c

c

c

#define LTGGLE
#define LKMASK
#define tsample
#define pi
#define BIT7
#define BON
#define BOFF
#defmine MPON
#define TogC6
#define TogC5

/* define SECS control
#define PWR_SWITCH
#define PropCtl
#define DerFdBk
#define GYRO RESET
#define DepthCtl
#define PGADJ1
#define IntgrlCtl
#define PGADJ4
#define PGADJ23
#define NOHCCMD
#define TKDATA

Ox08
Ox0E
0.395
3.14159
Ox0E
Ox01
0x00
0x80
0x40
0x20

switch names */
0x80
0x40
0x20
0x10
Ox08
Ox08
0x04
0x04
0x02
0x02
0x01

/* ASTRO Protoboard port addresses */
#define PORT1A 0x300
#define PORT1B 0x301
#define PORT1C 0x302
#define CNTRL1 0x303

#define PORT2A 0x304
#define PORT2B 0x305
#define PORT2C 0x306
#defmine CNTRL2 0x307

#define PORT3A 0x308
#define PORT3B 0x309
#define PORT3C 0x30a
#defmine CNTRL3 Ox30b

/* Astro functions */
void AstroInitO, FireMotorsO, EngageMotors();
void FirePneu(, FireCamera(), RdAtoD(), FPropCtl(), FDerFdBk();
void FDepthCtl(), FIntgrlCtl();
Byte JetSelect();

#endif

76

/* WPVASTRO.C */
/* Last Modified 3/6/90 by Wendy Power */
/* This is the main program routine running on ASTRO. All

function calls are made from this program. */

#include "..\pivecs.h"
#include "pvastro.h"
#include "..\pvsecs.msg"
#include <gf.h>
#include <stdio.h>
#include <time.h>
#include <math.h>
#include <sys\timeb.h>
#include <sys/types.h>

main() (/* Begin PiVecs driver program */
register i;
unsigned long CurrMsg = 0;
double timel, time2, deltat;
struct timeb etimel;
struct timeb etime2;

/* Initialize Pivecs and Astro Computer System */
pvInitCom(COMI, 9600, P_ODD, 1);
pvInitMsg(AstroHandlers, AstroMsgs, AstroHiPri);
Astrolnit();
pvRequest(TXSPANEL);

/* Begin main driver loop */
while (TRUE) (

CurrMsg = pvRecv();
/* Ask for current switch panel settings if it has timed out. */
if ((CurrMsg - LastSPanel) > WLEN) (

pvRequest(TXSPANEL);
LastSPanel = CurrMsg;

if (!(DumpFlg)) (/* if not dumping data to surface ... */
/* If main power ON, request THC and RHC. */
if (!(SPanel & NOHCCMD)) { /* if hand controllers are not disabled */
if (SPanel & PWR_SWITCH) (/* if main power is on */

if ((CurrMsg -LastTHC) > WLEN) (P ask for THC if timed out */
pvRequest(TXTHC);
LastTHC = CurrMsg;

if((CurrMsg -LastRHC) > WLEN) (/* ask for RHC if timed out */
pvRequest(TXRHC);
LastRHC = CurrMsg;

/* Additional data processing and data acquisition. */
RdAtoD(; /* Read Pressure Gauges and Gyros (ad363) */
if (PneuChg) FirePneu(); /* Pneu = MP */
if (IrisChg) FireCamerao; /* Change camera light aperture */

/* Check for gyro adjust reset */
if (I(SPanel & GYRORESET)) (/* if not resetting zeroes ... */
/* If main power ON, run motors (and closed loop attitude). */

if (SPanel & PWR_SWITCH)(
if (SPanel & PropCtl) FPropCtl(); /* calculate P of PID attitude */
else for (i=0O; i<3; i++) propcmd[i] = 0;

77

if (SPanel & DerFdBk) FDerFdBk(); /* calculate D of PID attitude */
else for (i--O; i<3; i++) derivcmd[i] = 0;
if (SPanel & DepthCtl) FDepthCtl(); /* calculate depth controller */
else for (i=O; i<3; i++) depthcmd[i] = 0;
if (SPanel & IntgrlCtl) FIntgrlCtl(); /* calculate I of PID attitude */
else for (i=O; i<2; i++) intcmd[i] = 0;
FireMotors(); /* calculate and output thruster commands */

else (/* Reset gyro (and pgauge) adjusts */
for (i=O; i<3; i++) (/* clear old values */

thc[i] = rhc[i] = Ox80;
gyroadj[i] = 0;

FireMotors();
RdAtoD(); /* read in A/D */
for (i-0; i<3; i++) (/* calculate new gyro offsets */

gyroadj[i] = gyros[i] - 0x800;
if ((i == 0) II (i = 2)) gyroadj[i] = -(gyroadj[i]);

/* calculate new pressure gauge adjustment values */
if (SPanel & PGADJ1) pgadj[0] = adnum[1] - adnum[0];
if (SPanel & PGADJ4) pgadj[1l] = adnum[3] - adnum[2];
if (SPanel & PGADJ23) pgadj[2] = adnum[2] - adnum[1];

/* Data Acquistion Stuff */
if (changes & TKDATA) {

if (SPanel & TKDATA) { /* starting data acquisition (upclock) */
ftime(&etimel); /* record start time */
count = 0;

else { /* end of data acquisistion (downclock) */
ftime(&etime2); /* record end time and calculate duration */
timel = etimel.time + (etimel.millitm/1000.0);
time2 = etime2.time + (etime2.millitm/1000.0);
deltat = time2 - timel;
onscreen(23,5,0,"deltat: %8.21f\t\tcount: %51d",deltat,count);
p = g = 0; /* set-up for data dump */
TX_Count(NULL);
DumpFlg = TRUE;
outp(CNTRL3,(BIT7 I BOFF)); /* disable main power (thrusters) */
TX_Stats(NULL);

if (SPanel & TKDATA) (/* write data to array during acquisition */
for (i-0O; i<4; i++) data[count][i] = pgauge[i];
for (i=0; i<3; i++) data[count][i+4] = gyros[i];
count++;

S/* end of dumpflg loop */
if (DumpFlg) (

if ((p >= (count+l)) && (g >= (count+l))) DumpFlg = FALSE;
for (i=0; i<1000; i++);
TX_Stats(NULL);

)/* End main driver loop */
pvExit();

}/* End program */

void Astrolnit() {
/* ASTRO initialization routine. */

78

register i;

/* Initialize the 8255's on the I/O protoboard */
outp(CNTRL1, 0x80);
outp(CNTRL2, 0x80);
outp(CNTRL3, 0x92);

/* Zero out all the state variables and toggle flags */
for (i = 0; i < 6; i++) (

if (i < 3)(
thc[i] = rhc[i] = Ox80;
gyros[i] = 0x800;
gyroadj[i] = pgadj[i] = 0;
propgain[i] = 9;
propcmd[i] = derivcmd[i] = depthcmd[i] = 0;
depthgain[i] = 40;

Motors[i] = 0x00;

/* Zero out all other variables. */
SPanel = Iris = 0x00;
PwrChg = IrisChg = DumpFlg = FALSE;
LastTHC = LastRHC = LastSPanel = 0;
rategain[O] = 7;
rategain[1] = 8;
rategain[2] = 10;
gammad = betad = gammac = betac = 0;
intcmd[0] = intcmd[l] = 0;
intgain[0] = 7;
intgain[1] = 8;

/* Print Onscreen Headers to Monitor (mostly fc
/* onscreen(ll11, 5, 0, "Motors: LSX USX LPX L

onscreen(9,5,0,"3-Axis Rate Gyros: ");
onscreen(7,5,0,"Pressure Gauge (digital): ");
onscreen(14,5,0,"DepthGain: ");
onscreen(15,5,0,"PropGains: ");
onscreen(16,5,0,"RateGains: ");
onscreen(17,5,0,"IntglGain: ");*/
onscreen(22,5,0,"Desired Angles: ");
onscreen(22,20,0,"%4d\t%4d",gammad,betad);

/* for (i-0; i<3; i++) (

r debugging) */
JPX LY UY SZ PZ");

onscreen(15,20+4*i,0,"%4d",propgain[i]);
onscreen(16,20+4*i,0,"%4d",rategain[i]);
onscreen(14,20+4*i,O,"%4d",depthgain[i]);

for (i=O; i<2; i++) onscreen(17,20+4*i,0,"%4d",intgain[i]);*/

79

/* ASTROFN1.C */
/* Last Modified: 3/6/90 by Wendy Power */
/* This program contains all the nonchanging functions called in

ASTRO's software (those dealing with motors, cameras, and
pneumatics. This includes thruster calculations. */

#include "..\pivecs.h"
#include "pvastro.h"

void FireCamera() /* control light aperture on underwater video camera */
/* Output light apature control 4-bit word. */
outp(PORT2B,Iris);
IrisChg = FALSE;

}

void FirePneu() (/* controls pneumatics */
if (PwrChg) (

/* Main power On/Off switch. */
if (SPanel & PWR_SWITCH) outp(CNTRL3, (BIT7 I BON));
else if (!(SPanel & PWR_SWITCH)) outp(CNTRL3, (BIT7 I BOFF));
}

void FireMotors() {
/* Outer loop of thruster calculation routines. Calls JetSelect

and EngageMotors. Displays thruster output commands and saves
old data for the next set of calculations. */

char MotorCmds[8], TmpMotors[8];
Byte signs, MotorFlips, shift;
static Byte OldSigns;
register i;

signs = JetSelect(MotorCmds);
MotorFlips = signsAOldSigns;

shift = Ox01;

/* Display motor commands (for debugging only) */
/* for (i = 0; i < 8; i++) (

onscreen(12, (20+5*i), 0, "%2d ", MotorCmds[i]);
if ((signs & shift) == 0) onscreen(12, (19+5*i), 0, "+");
else onscreen(12, (19+5*i), 0, "-");
shift = shift << 1;
} */

if (MotorFlips != 0) {
for (i = 0; i < 8; i++) (

if (MotorFlips&Bit[i]) TmpMotors[i] = 0;
else TmpMotors[i] = MotorCmds[i];

EngageMotors(TmpMotors, signs);
for (i = 0; i < DELAY; i++);

EngageMotors(MotorCmds, signs);
OldSigns = signs;

Byte JetSelect(motor)
/* This function takes the THC and RHC commands and distributes

them to the appropriate thruster. It also determines the
direction of the thrust. */

char *motor;

80

register i;
char StripTHC[3], StripRHC[3];
Byte signs = 0;

/* Strip the HC readings to +/- Ox00-Ox0F */
for (i = 0; i < 3; i++) (

if ((StripTHC[i] = (thc[i] >> 3) - 16) < 0) StripTHC[i]++;
if ((StripRHC[i] = (rhc[i] >> 3) - 16) < 0) StripRHC[i]++;

/* write commands to motor array (X,Y,Z) */
/* add in closed-loop depth control commands here */
for (i = 0; i <= 3; i++) motor[i] = StripTHC[0] + depthcmd[0]; * X */
for (i = 4; i <= 5; i++) motor[i] = StripTHC[1] + depthcmd[1]; /* Y */
for (i = 6; i <= 7; i++) motor[i] = StripTHC[2] + depthcmd[2]; /* Z */

/* write commands to motor array (Roll Pitch, Yaw) */
/* add in closed-loop attitude controller commands here */
/* Roll */

motor[4] += (propcmd[0] + derivcmd[0] + intcmd[0] + StripRHC[0]);
motor[7] += (propcmd[O] + derivcmd[0] + intcmd[0] + StripRHC[0]);
motor[5] -= (propcmd[0] + derivcmd[0] + intcmd[0] + StripRHC[0]);
motor[6] -= (propcmd[O] + derivcmd[0] + intcmd[O] + StripRHC[0]);

/* Pitch */
motor[1] += (propcmd[l] + derivcmd[1] + intcmd[l1] + StripRHC[1]);

motor[3] += (propcmd[l] + derivcmd[l] + intcmd[l] + StripRHC[1]);
motor[0] -= (propcmd[l] + derivcmd[1] + intcmd[l] + StripRHC[1]);
motor[2] -= (propcmd[l] + derivcmd[l] + intcmd[l] + StripRHC[1]);

/* Yaw */
motor[0] += (propcmd[2] + derivcmd[2] + StripRHC[2]);
motor[1] += (propcmd[2] + derivcmd[2] + StripRHC[21);
motor[2] -= (propcmd[2] + derivcmd[2] + StripRHC[21);
motor[3] -= (propcmd[2] + derivcmd[2] + StripRHC[2]);

for (i = 0; i < 8; i++) (/* set direction bits */
if (motor[i] < 0) (

signs 1= Bit[i];
motor[i] = -motor[i];

if (motor[i] > TMAX) motor[i] = TMAX; /* limit max thruster values */

return(signs);

void EngageMotors(motormags, motorsgns)
/* Routine configures and sends thruster commands and signs for

and through the 8255 ports. */

char* motormags;
Byte motorsgns;

Byte mtrout[4];

/* prepare output words 4 for the motors and 1 with directions */

/* port 300H with UY and LY */
mtrout[0] = motormags[5] << 4;
mtrout[0] 1= motormags[4];

/* port 301H with UPX and LPX */
mtrout[1] = motormags[3] << 4;

81

mtrout[1l] 1= motormags[2];

/* port 302H with USX and LSX */
mtrout[2] = motormags[1] << 4;
mtrout[2] I= motormags[0];

/* port 304H with PZ and SZ */
mtrout[3] = motormags[7] << 4;
mtrout[3] I= motormags[6];

/* output all values */
outp(PORT1A, mtrout[0]);
outp(PORT1B, mtrout[1]);
outp(PORT1C, mtrout[2]);
outp(PORT2A, mtrout[3]);
outp(PORT2C, motorsgns);

}

82

/* ASTROFN2.C */
/* Last Modified: 3/6/90 by Wendy Power */
/* This program contains all the evolving functions called in

ASTRO's software (those dealing with sensors and control
calculations. These include leak, gyro, and pressure sensors. */

#include "..\pivecs.h"
#include "pvastro.h"
#include <math.h>

void RdAtoD()(
/* Routine to read a/d363 7 ports assigned to the pressure gauges

(0,1,2,3) and rate gyros (4,5,6). Also puts data into 12-bit
datawords and adjusts them by the appropriate zero values. */

register i;
Byte adstat, tmp, wait, mask;
Byte inadnum[14];
int temp;
long x, y, q, q2;

mask = 0;
/* Set 8255-3-C 3 MSB Mask */
if (SPanel & PWR_SWITCH) mask = PWR_SWITCH;

/* Read 12-bit a/d (363) input ports 0 through 7 */
for (i=0; i<7; i++)(

outp(PORT3C, i I mask);
outp(CNTRL3,HTGGLE);
outp(CNTRL3,LTGGLE);
while((adstat = (0x01 & inp(PORT3B))) != Ox00) wait++;
inadnum[2*i] = inp(PORT3B);
inadnum[2*i+l] = inp(PORT3A);

/* Compress data for use on ASTRO (4 12-bit datawords) */
for (i=0; i<7; i++)

adnum[i] = ((tmp = inadnum[2*i]) << 4) + inadnum[2*i+l];

/* Adjust pressure gauge values */
pgauge[0] = adnum[0] + pgadj[0] + pgadj[2];
pgauge[1] = adnum[1] + pgadj[2];
pgauge[2] = adnum[2];
pgauge[3] = adnum[3] - pgadj[1];

/* for (i=0; i<4; i++) onscreen(7,35+i*7,0,"%41d",pgauge[i]);*/

/* Adjust and limit gyro values (and flip R and Y) */
for (i=0; i<3; i++) (

if (gyroadj[i] >= 0) (
if (adnum[i+4] <= gyroadj[i]) gyros[i] = OxO00;
else gyros[i] = adnum[i+4] - gyroadj[i];
)

else gyros[i] = adnum[i+4] - gyroadj[i];
if ((i == 0) II (i = 2)) (

temp = -(gyros[i]) + OxFFF;
gyros[i] = temp;
)

gyros[i] &= Oxfff;

/* Calculate current angles (roll and pitch) */
y = pgauge[0] - pgauge[1]; /* pgl - pg2 */
x = pgauge[3] - pgauge[2]; /* pg4 - pg3 */
gammac = atan2(y,x); /* roll angle */
q = ((pgauge[2] + pgauge[3]) / 2) - ((pgauge[0] + pgauge[1]) / 2);

83

if ((((gammac*180.0/pi) > 80.0) && ((gammac*180.0/pi) <100.0)) II
(((gammac*180.0/pi) <-80.0) && ((gammac*180.0/pi) >-100.0)))

q2=y/sin(gammac);
else q2 = x / cos(gammac);
betac = atan2(-q,q2); /* pitch angle */
onscreen(22,45,0,"%8.21f\t%8.21f",(gammac* 180.0/pi),(betac* 180.0/pi));
cosgc = cos(gammac);
singc = sin(gammac);

void FPropCtl() (
/* This routine calculates the proportional closed loop

attitude Torques (commanded rotations) */

register i;
double cosgd, singd, cdiffb,cdiffg,sdiffg,sdiffb;

/* Calculate cosines and sines of gammac, betac, gammad, betad
in the combinations necessary for the simplified control eqns */

cdiffb = cos(betad-betac);
cdiffg = cos(gammad-gammac);
sdiffg = sin(gammad-gammac);
sdiffb = sin(betad-betac);
cosgd = cos(gammad);
singd = sin(gammad);

/* Calculate thetae and thetaed from the correction rotation matrix */
thetae = acos((cdiffb*(1.0+cdiffg)+cdiffg- 1.0)/2.0);
thetaed = thetae*180.0/pi;

/* Calculate the kvector[i] from the correction rotation matrix */
if ((thetaed < 1.0) && (thetaed > -1.0)) sintemp = 1.0;
else sintemp = 1.0 / (2.0 * sin(thetae));
kvector[0] = sintemp*(-(sdiffg)*(cdiffb+1.0));
kvector[1] = sintemp*(-(sdiffb)*(cosgc+cosgd));
kvector[2] = sintemp*(sdiffb*(singd+singc));

/* Calculate and limit the proportional feedback */
for (i--0; i<3; i++) {

propcmd[i] = -(kvector[i]*thetaed)*propgain[i]/10.0;
if (propcmd[i] >= 15) propcmd[i] = 15;
else if (propcmd[i] <= -15) propcmd[i] = -15;

/* onscreen(19,20+i*6,0,"%4d",propcmd[i]); */

void FDerFdBk() (
/* This routine calculates the derivative (rate) feedback

contributions to the commanded rotations */

register i;
int tmpgyros[3];

/* Calculate and limit the derivative commands */
for (i=0; i<3; i++) (

derivcmd[i] = (-(((int) gyros[i]) - 2048)) * rategain[i]/250.0;
if (derivcmd[i] >= 15) derivcmd[i] = 15;
else if (derivcmd[i] <= -15) derivcmd[i] = -15;

/* onscreen(20,20+i*6,0,"%4d",derivcmd[i]); */

void FlntgrlCtl() (
/* This routine calculates the integral term of the PID controller

84

for Roll and Pitch */

register i;
double eangle[2];

/* Calculate and limit the integral commands */
eangle[0] = (gammad - gammac) * 180.0 / pi;
eangle[l] = (betad - betac) * 180.0 / pi;
for (i=0; i<2; i++) (

esum[i] += (eangle[i]) * tsample;
if (esum[i] >= 200.0) esum[i] = 200.0;
else if (esum[i] <= -200.0) esum[i] = -200.0;
intcmd[i] = esum[i] * intgain[i] / 60;
if (intcmd[i] >= 15) intcmd[i] = 15;
else if (intcmd[i] <= -15) intcmd[i] = -15;
onscreen(21,20+i*6,0,"%4d",intcmd[i]);

void FDepthCtl() (
/* This routine provides proportional depth control */
register i;

/* Calculate depths */
cdepth = 0; /* clear current depth */
for (i=O; i<4; i++) cdepth += pgauge[i];
cdepth = cdepth / 4; /* current depth */

/* Calculate and limit depth control commands */
zvector[0] = -(sin(betac));
zvector[l] = cos(betac) * singc;
zvector[2] = cos(betac) * cosgc;
for (i=O; i<3; i++) (

depthcmd[i] = (depthgain[i] * (cdepth-ddepth) * zvector[i]) / 75.0;
if (depthcmd[i] >= 15) depthcmd[i] = 15;
else if (depthcmd[i] <= -15) depthcmd[i] = -15;

/* onscreen(18,20+i*6,0,"%4d",depthcmd[i]); */

85

/* ASTROMSG.C */
/* Last Modified: 3/6/90 by Wendy Power */
/* This program contains all of the messages used for ASTRO.

Some of these include small amounts of processing or
data distribution. */

#include "..\pivecs.h"
#include "..\pvdata.h"
#include "pvastro.h"
#include "..~pvsecs.msg"

MsgHandler RX_Camera(msg) /* Receive camera aperture command */
MsgPtr msg;

{
Iris = (*msg->data) & OxOF;
IrisChg = TRUE;
return(OK);

MsgHandler ShutDown(msg)
MsgPtr msg;

register i;

SPanel = Ox00;
for (i = 0; i < 3; i++) thc[i] = rhc[i] = Ox80;
PwrChg = FALSE;
FirePneu();
FireMotors();
return(OK);

MsgHandler RX_THC(msg) /* receive translational hand controller command */
MsgPtr msg;

register i;
BytePtr datptr = msg->data;

for (i = 0; i < 3; i++) (
/* if (thc[i] != *datptr) onscreen(7, (20+5*i), 0, "%4d", (*datptr-0x80)); */

thc[i] = *datptr++;

if (!(SPanel & NOHCCMD)) {
if (SPanel & PWR_SWITCH) pvRequest(TXTHC);

LastTHC = MsgNum;
return(OK);

MsgHandler RX_RHC(msg) /* receive rotational hand controller command */
MsgPtr msg;

register i;
BytePtr datptr = msg->data;

for (i = 0; i < 3; i++) (
/* if (rhc[i] != *datptr) onscreen(9, (20+5*i), 0, "%4d", (*datptr)); */

rhc[i] = *datptr++;

if (!(SPanel & NOHCCMD)) {
if (SPanel & PWR_SWITCH) pvRequest(TXRHC);

LastRHC = MsgNum;
return(OK);

86

MsgHandler RX_SPanel(msg) /* receive switch panel commands */
MsgPtr msg;

register i;

changes = SPanel^(*msg->data);
SPanel = *msg->data;
if (DumpFlg) SPanel & Ox00;
if (changes & PWR_SWITCH) PwrChg = TRUE; else PwrChg = FALSE;

/* if (changes & PropCtl) onscreen(19,5,0," ");
if (changes & DerFdBk) onscreen(20,5,0," ");
if (changes & DepthCtl) onscreen(18,5,0," ");
if (changes & IntgrlCtl) onscreen(21,5,0," ");

*/
if (changes & IntgrlCtl) for (i=O; i<2; i++) esum[i] = 0;
if (changes & DepthCtl) (

ddepth = 0;
for (i=0; i<4; i++) ddepth += pgauge[i];
ddepth = ddepth / 4;
)

pvRequest(TXSPANEL);
LastSPanel = MsgNum;
return(OK);

MsgHandler TX_Stats(msg) /* transmit astro status to secs */
MsgPtr msg;

Byte array[2];

array[0] = RXSTATS;
array[l] = (inp(PORT3B) & LKMASK) I DumpFlg;
pvSend(array,2);
return(OK);

MsgHandler RX_Euler(msg) /* receive new desired orientation angles */
MsgPtr msg;

{
register i;

int tmp[4];
BytePtr datptr = msg->data;

for (i=0; i<4; i++) tmp[i] = *datptr++;
for (i=0; i<2; i++) (

if (tmp[i+2] > 0) tmp[i] = -(tmp[i]);
onscreen(22,20+5*i,0,"%4d",tmp[i]);

gammad = tmp[0]*pi/180.0;
betad = tmp[1]*pi/180.0;
for (i=0; i<2; i++) esum[i] = 0;
return(OK);

MsgHandler RXPGain(msg) /* receive new proportional gains */
MsgPtr msg;

register i;
BytePtr datptr = msg->data;

for (i=0; i<3; i++) propgain[i] = *datptr++;
return(OK);}

87

MsgHandler RX_RGain(msg)
MsgPtr msg;

/* receive new derivative (rate) gains */

register i;
BytePtr datptr = msg->data;

for (i--O; i<3; i++) rategain[i] = *datptr++;
return(OK);

MsgHandler TX_PGauge(msg)
MsgPtr msg;

register i;
Byte array[8];
Byte tmp;

/* transmit 12-bit pressure gauge readings */

array[0] = RXPGAUGE;
if (DumpFlg) for (i-0O; i<4; i-t-+) pgauge[i] = data[p][i];
for (i--O; i<2; i++) (

array[2*i+2] = pgauge[i] & OxFF;
array[2*i+l] = (pgauge[i] >> 4) & OxFO;

array[5] = pgauge[2] & OxFF;
array[6] = ((pgauge[2] >> 4)&OxFO) + ((pgauge[3] >> 8)&0x0F);
array[7] = pgauge[3] & OxFF;
if (DumpFlg) p++;
pvSend(array,8);
return(OK);

MsgHandler TX_Gyros(msg)
MsgPtr msg;

register i;
Byte

/* transmit 12-bit rate gyro data */

array[7];

array[0] = RXGYROS;
if (DumpFlg) for (i-0; i<3; i++) gyros[i] = data[g][i+4];
for (i=0O; i<3; i++) (

array[2*i+2] = gyros[i] & OxFF;
array[2*i+l] = (gyros[i] >> 4) & OxFO;

if (DumpFlg) g++;
pvSend(array,7);
return(OK);

MsgHandler TX_Count(msg)
MsgPtr msg;

/* transmit number of samples in datafile */

Byte array[3];

array[O] = RXCOUNT;
array[l] = (count >> 8) & OxFF;
array[2] = count & OxFF;
pvSend(array,3);
return(OK);

MsgHandler RX_IGain(msg)
MsgPtr msg;

I

/* receive new integral gains */

88

- v

register i;
BytePtr datptr = msg->data;

for (i=0O; i<2; i++) intgain[i] = *datptr++;
retum(OK);

MsgHandler RX_DpGain(msg) /* receive new depth gains */
MsgPtr msg;

register i;
BytePtr datptr = msg->data;

for (i=O; i<3; i++) depthgain[i] = *datptr++;
return(OK);

)

89

ADoendix B: SECS Software

/* WPVSECS */
/* Last Modified: 3/6/90 by Wendy Power */
/* This file is used to compile and link the control station software */

wpvsecs.obj: ..\pivecs.h pvsecs.h ..\pvastro.msg wpvsecs.c
cl /c /Od /Zp /Zi wpvsecs.c

secsfuns.obj: ..\pivecs.h pvsecs.h secsfuns.c
cl /c /Od /Zp /Zi secsfuns.c

onscolor.obj: ..\pivecs.h pvsecs.h onscolor.c
cl /c /Od /Zp /Zi onscolor.c

secsmsgs.obj: ..\Nivecs.h pvsecs.h ..\pvastro.msg secsmsgs.c
cl /c /Od /Zp /Zi secsmsgs.c

wpvsecs.exe: wpvsecs.obj secsmsgs.obj secsfuns.obj onscolor.obj
link /NOD /CO $**, wpvsecs.exe,,SLIBCE+GFCS+GFS+..\PIVECS

/* PVSECS.MSG */
/* Last Modified: 3/6/90 by Wendy Power */

#ifndef SECSMSGS
#define SECSMSGS

/* This is a listing of the message headers as used by SECS */

/********************** Recognized Message List **************************/
#define COMTEST 0x00 /* Msg 0, No Data */
#define COMAOK Ox08 /* Msg 1, " " */
#define SHUTDN 0x10 /* Msg 2, " " */
#define STOP 0x18 /* Msg 3, " " */

#define TXTHC 0x50 /* Msg 10, No Data */
#define TXRHC 0x58 /* Msg 11, " " */
#define TXSPANEL 0x60 /* Msg 12, " " */
#define TXEULER 0x68 /* Msg 13, " " */
#define TXPGAIN 0x70 /* Msg 14, " " */
#define TXRGAIN 0x78 /* Msg 15, " " */
#define TXIGAIN 0x80 /* Msg 16, " " */
#define TXDPGAIN 0x88 /* Msg 17, " " */

#define RXSTATS OxB 1 /* Msg 22, 1 Data Byte */
#define RXPGAUGE OxBF /* Msg 23, 7 Data Bytes */
#define RXGYROS OxC6 /* Msg 24, 6 Data Bytes */
#define RXCOUNT OxCA /* Msg 25, 2 Data Bytes */

#define BADMSG OxFF /* Msg 31, 7 data. Placeholder for Bad msgs */
/***/
#endif

/* The message structure is as follows:
#define MSGname Ox?? /* Msg # (0-31) and # of data bytes (0-7)

The number of data bytes should be 0 if transmitting, and the appropriate
number if receiving. ?? is a 2 digit hex representation of the message
number (most significant 5 bits) and the number of data bytes (3 least
significant bits).
Example: receiving message number 24 with 6 data bytes

24 = 11000 in bits, 3 = 110
combining: 11000 110 -> 1100 0110 -> hex = C6 */

90

/* PVSECS.H */
/* Last Modified: by Wendy Power */
/* This routine contains all the message handler and header

definitions, as well as all the global and fixed definition
variables for SECS. */

#ifndef PIVECS
#include "..\pivecs.h"
#endif
#ifndef SECSMSGS
#include "..\,vsecs.msg"
#endif
#ifndef SECS
#define SECS

extern HandlerFun
extem HandlerFuni
extern HandlerFuni
extern HandlerFun

static Handlers

BadMsg, ShutDown, ComCheck, ComAOK;
RX_Stats, RX_PGauge, RXGyros, RX_Count;
TX_THC, TXRHC, TX_SPanel;
TX_Euler, TX_PGain, TX_RGain, TX_IGain, TX_DpGain;

c

c

c

c

SecsHandlers =
(ComCheck, ComAOK, ShutDown, BadMsg,
BadMsg, BadMsg, BadMsg, BadMsg,
BadMsg, BadMsg, TX_THC, TX_RHC,
TX_SPanel, TX Euler, TX_PGain, TX_RGain,
TXIGain, TX_DpGain, BadMsg, BadMsg,
BadMsg, BadMsg, RXStats, RXPGauge,
RX_Gyros, RX_Count, BadMsg, BadMsg,
BadMsg, BadMsg, BadMsg, BadMsg);

SecsMsgs =
(COMTEST, COMAOK, SHUTDN,
BADMSG, BADMSG, BADMSG,
BADMSG, BADMSG, TXTHC,
TXSPANEL, TXEULER, TXPGAIN,
TXIGAIN, TXDPGAIN, BADMSG,
BADMSG, BADMSG, RXSTATS,
RXGYROS, RXCOUNT, BADMSG,
BADMSG, BADMSG, BADMSG,

STOP,
BADMSG,

TXRHC,
TXRGAIN,
BADMSG,
RXPGAUGE,

BADMSG,
BADMSG};

static Byte SecsHiPri = 4;

/* Global Variables (can be called by all routines). */
Byte Motors[6], thc[3], rhc[3], sndflg[3], sign[2];
Byte Stats, Switches, Changed_THC, Changed_RHC, Iris;
Byte SPanel, StateChange, Display, StatChg, nobeep;
int rategain[3], propgain[3], eulerdes[2], intgain[2];
int depthgain[3];
char AdjTHC[3], AdjRHC[3];
unsigned long LastStat, LastPGauge, LastGyros, count, j, p, g;
unsigned long data[1000][7];
long pgauge[4], gyros[3];

/* Name functions */
void SecsInito, ReadTHCO, ReadRHCO, ReadPanel(), Leak();
void InRateGain(), InPropGain(), InEulerDes(), InIntGain();
void InDepGain();
void onscmLR(), onscmY(), onscmLB(), onscmMG();
void onscrnWHO, onscrnGY(), onscrnBR();

/* List and define Fixed Variables */
#define WiLN Ox05
#define DELAY 0x800
/* define SECS 8255 ports */

91

static Headers

#define ADPORTA Ox3EO
#define ADPORTB Ox3E1
#define ADPORTC Ox3E2
#defmine ADCNTRL Ox3E3
/* Define switch names */
#define TKDATA 0 x01
#define LK_CNTRL 0x04
#define LKXCAMERA Ox02
#define LK BATBOX 0x08
#define LEAKS Ox0E
#define DATADUMP Ox01

#endif

92

/* WPVSECS.C */
/* Last Modified: 3/6/90 by Wendy Power */
/* This program runs the main loop in the SECS (control station)

software. It is responsible for obtaining all handcontroller,
switch, and keyboard commands. It will also eventually be the
sole input source for Sulu. */

#include "..\pivecs.h"
#include "pvsecs.h"
#include "..\pvastro.msg"
#include <gf.h>
#include <time.h>
#include <stdio.h>

unsigned getkey();

main()
unsigned inkey;
unsigned long CurrMsg =0;
register i;
char outname[20];
FILE *fpout;

/* Initialize Pivecs and Secs Computer System */
pvInitCom(COM1, 9600, P_ODD, 1);
pvInitMsg(SecsHandlers, SecsMsgs, SecsHiPri);
SecsInitO;

/* Begin Main Driver Loop */
while (TRUE) (

/* Keyboard input processing: ESC and camera apature control. */
if (kbhit()) (

if ((inkey = getkeyo) = ESC) break;
else if (inkey = 'd') (

if (Iris != Ox00) Iris--;
onscreen(15,20,0, "%02X", Iris);
TX_Camera(NULL);

else if (inkey = 'i') (
if (Iris != OxOF) Iris++;
onscreen(15,20,0, "%02X", Iris);

TXCamera(NULL);

else if (inkey = 'o') nobeep = !(nobeep);
else if (inkey = 's') (

Display = !(Display);
if (!(Display)) (

onscreen(5,16,0," ");
onscreen(7,16,0," ");
onscreen(9,16,0," ");
onscreen(11,20,0," ");
onscreen(13,20,0," ");

else if (inkey = 'e') InEulerDes();
else if (inkey = 't') TXEuler(NULL);

else if (inkey = 'p') InPropGain();
else if (inkey = 'r') InRateGain();

else if (inkey == 'j') InIntGain();
else if (inkey == T) InDepGain();
else if (inkey = 'a') (
onscmY(17,5,0,"Output filename: ");
scanf("% 12s",outname);

93

fclose(fpout);
fpout = fopen(outname,"w+");

CurrMsg = pvRecv();
if (I(Stats & DATADUMP)) (

/* Get Stat uplink */
if ((CurrMsg - LastStat) > WLEN)(

pvRequest(TXSTATS);
LastStat = CurrMsg;

if (Display) (
/* Get PGauge uplink */
if ((CurrMsg - LastPGauge) > WLEN)

pvRequest(TXPGAUGE);
LastPGauge = CurrMsg;

/* Get Gyros uplink */
if ((CurrMsg - LastGyros) > WLEN)(

pvRequest(TXGYROS);
LastGyros = CurrMsg;

/* Check for leaks and sound beep if leaks detected */
if (StatChg) Leak();
for (i=0O; i<3; i++) if ((sndflg[i]) && (nobeep)) printf("AG\n");

if ((SPanel & TKDATA) && (Display))(
Display = FALSE;

onscreen(5,16,0," ");
onscreen(7,16,0," ");
onscreen(9,16,0," ");
onscreen(11,20,0," ");
onscreen(13,20,0," ");

/* Data Acquisition */
if (StateChange & TKDATA) (

if (SPanel & TKDATA) (/* up clock pulse */
fprintf(fpout,'\n%4cdt%4d",eulerdes[O],eulerdes[1]);
TXEuler(NULL);
j = p = g =0;

else (/* down clock pulse */
for (i=0; i<2; i++) (

if (eulerdes[i]) eulerdes[i] = 0;
onscreen(20,30+i*8,0,"%4d",eulerdes[i]);

TX_Euer(NULL);
onscreen(13,5,0," ");

if (!(Stats & DATADUMP)) (
if (StatChg & DATADUMP) (

fprintf(fpout,"\n%41d\n",count);
for (j=0; j<count; j++) (

for (i=0; i<7; i++) fprintf(fpout,"%41d\t",data[j][i]);
fprintf(fpout,"\n");
onscreen(17,60,0,'%41d",j);

94

fclose(fpout);
onscreen(17,5,0,"

/* Read Handcontrollers */
ReadTHCO;
ReadRHC();
/* Read Switch Panel and Display */
ReadPanel();

S/* End main driver loop */

printf("No problems on loop exitn");
pvExit();

) /* End program */

void SecsInit() (

/* Control station initialization */
register i;

/* initialize SECS's 8255 */
outp (ADCNTRL,0x92);

/* Initialize RHC, THC, and motor arrays */
for (i = 0; i < 6; i++) (

if (i < 3)(
thc[i] = rhc[i] = 0x80;
sndflg[i] = 0;
propgain[i] = 9;
depthgain[i] = 40;

Motors[i] = 0x00;

/* Set to zero all variables */
SPanel = Stats = Ox00;
Iris = count = j = Ox00;
LastStat = LastPGauge = LastGyros = 0x00;
nobeep = TRUE;
rategain[0] = 7;
rategain[1] = 8;
rategain[2] = 10;
for (i=0; i<2; i++) (

eulerdes[i] = 0;
intgain[i] = 7+i;

/* Initialize handcontroller readings and set offset */
for (i = 0; i < 2*DELAY; i++);
ReadTHCO;
for (i = 0; i < DELAY; i++);
ReadRHCO;
for (i = 0; i < 3; i++) (

AdjTHC[i] = 0x80 - thc[i];
AdjRHC[i] = 0x80 - rhc[i];

AdjTHC[1] = -AdjTHC[1];

/* Onscreen Headers */
onscrnWH(5,5,0, '"THC:");
onscrnWH(7,5,0, "RHC:");

95

onscrnWH(9,5,0, "Switches:");
onscreen(15,5,0,"Aperature:");
onscreen(20,5,0,"Desired Euler Angles: ");
onscreen(21,5,0,"DepthGain:");
onscreen(22,5,0,"Prop Gains: ");
onscreen(23,5,0,"Rate Gains: ");
onscreen(24,5,0,"Intgrl Gain: ");
for (i=O; i<3; i++) (

onscreen(23,30+i*8,0,"%4d",rategain[i]);
onscreen(22,30+i*8,0,"%4d",propgain[i]);
onscreen(21,30+i*8,0,"%4d",depthgain[i]);

for (i=O; i<2; i++) (
onscreen(20,30+i*8,0,"%4d",eulerdes[i]);
onscreen(24,30+i*8,0,"%4d",intgain[i]);

onscrnY(5,40,0,"Don't forget to zero pgauges and gyros!");
onscreen(11,5,0,"Gyros: ");
onscreen(13,5,0,"PGauges: ");

96

/* SECSFUNS.C */
/* Last Modified: 3/6/90 by Wendy Power */
/* Contains all functions called in SECS software */
#include "..\pivecs.h"
#include "pvsecs.h"
#include <gf.h>
#include <asiports.h>

void ReadPanel() /* Read switch panel */

/* Read Switch Panel */
StateChange = SPanel; /* save old switch panel */
SPanel = inp(ADPORTB);
if (Display) onscrnWH(9,17,0,"%2X",SPanel);
StateChange ^= SPanel; /* shows which switches have changed */

void ReadTHC() /* read translational hand controllers */

register i;
short tmp;

for (i = 0; i < 3; i++) {
outp(ADPORTC, i);
outp(ADCNTRL, 0x09);
outp(ADCNTRL, Ox08);
outp(ADCNTRL, OxOB);
tmp = inp(ADPORTA) + AdjTHC[i];
outp(ADCNTRL, OxOA);

/* Keep the HC readings in bounds */
if (tmp > OxFF) tmp = OxFF;

else if (tmp < Ox00) tmp = Ox00;

/* Flip the y reading to keep the coordinates right handed */
if (i = 1) tmp = -tmp;
if ((thc[i] != tmp) && Display)

onscrnWH(5, (17+6*i), 0, "%4d ", (Byte) tmp-0x80);
thc[i] = tmp;

void ReadRHC() /* read rotational hand controller */

register i;
short tmp;

for (i = 0; i < 3; i++) (
outp(ADPORTC, i+3);
outp(ADCNTRL, 0x09);
outp(ADCNTRL, 0x08);
outp(ADCNTRL, Oxb);
trnp = inp(ADPORTA) + AdjRHC[i];
outp(ADCNTRL, OxOA);
if (tmp > OxFF) tmp = OxFF;

else if (tmp < Ox00) tmp = Ox00;
if ((rhc[i] != tmp) && Display)

onscrnWH(7, (17+6*i), 0, "%4d ", (Byte) tmp-0x80);
rhc[i] = tmp;

void Leak() /* look for leaks and locations, trigger alarm if detected */{

97

/* Detect and display any water leaks in control or camera boxes */
if (StatChg & LEAKS) (

if (Stats & LK_CNTRL) {
onscrnLR(7,50,0,"Water in Control Box!");
sndflg[0] = TRUE;

else (
onscreen(7,50,0," ");
sndflg[0] = FALSE;

if (Stats & LK_CAMERA) {
onscmLR(9,50,0,"Water in Camera Box!");
sndflg[1] = TRUE;

else
onscreen(9,50,0," ");
sndflg[1] = FALSE;

if (Stats & LK_BATBOX) (
onscrnLR(11,50,0,"Water in Battery Box!");
sndflg[2] = TRUE;

else (
onscreen(11,50,0," ");
sndflg[2] = FALSE;

void InRateGain() (/* read in new derivative (rate) gains */
/* Scanf rategains from keyboard (secs) when 'r' is typed */
register i;

onscrnY(18,5,0,"Rate gain input: roll = ");
scanf("%d",&rategain[0]);
onscmLB(18,22,0,"pitch = ");
scanf("%d",&rategain[1]);
onscrnMG(18,22,0," yaw = ");
scanf("%d",&rategain[2]);
onscreen(18,5,0," ");
for (i=O; i<3; i++) onscreen(23,30+i*8,0,"%4d",rategain[i]);
TX_RGain(NULL);

void InPropGain() (/* read in new proportional gains */
/* Scanf propgains from keyboard (secs) when 'p' is typed */
register i;

onscrnY(18,5,0,"Prop gain input: roll = ");
scanf("%d",&propgain[0]);
onscmLB(18,22,0,"pitch = ");
scanf("%d",&propgain[1]);
onscmMG(18,22,0," yaw = ");
scanf("%d",&propgain[2]);
onscreen(18,5,0," ");
for (i=O; i<3; i++) onscreen(22,30+i*8,0,"%4d",propgain[i]);
TX_PGain(NULL);

void InEulerDes() /* read in new desired orientation angles */
/* Scanf eulerdes from keyboard (secs) when 'e' is typed */
register i;

onscmY(18,5,0,"Desired euler angle input: roll = ");

98

scanf("%d",&eulerdes[0]);
onscmLB(18,32,0,"pitch = ");
scanf("%d",&eulerdes[1]);
onscreen(18,5,0," ");
for (i=O; i<2; i++) {

onscreen(20,30+i*8,0,"%4d",eulerdes[i]);
if (eulerdes[i] < 0) (

sign[i] = 1;
eulerdes[i] = 256 - eulerdes[i];

else sign[i] = 0;
eulerdes[i] &= Ox00FF;

void InIntGain() (/* read in new integral gain */
/* Scanf integral gains from keyboard (secs) when 'j' is typed */
register i;

onscrnY(18,5,0,"Integral gain input: roll= ");
scanf("%d",&intgain[0]);
onscrnLB(18,26,0,"pitch = ");
scanf("%d",&intgain[1]);
onscreen(18,5,0," ");
for (i=0; i<2; i++) onscreen(24,30+i*8,0,"%4d",intgain[i]);
TXIGain(NULL);

void InDepGain() (/* read in new depth gains */
/* Scanf depth gains from keyboard (secs) when T is typed */
register i;

onscrnY(18,5,0,"Depth gain input: x = ");
scanf("%d",&depthgain[0]);
onscrnLB(18,23,0,"y = ");
scanf("%d",&depthgain[1]);
onscrnMG(18,23,0,"z = ");
scanf("%d",&depthgain[2]);
onscreen(18,5,0," ");
for (i=0; i<3; i++) onscreen(21,30+i*8,0,"%4d",depthgain[i]);
TXDpGain(NULL);

99

/* ONSCOLOR.C */
/* This program provides different color screen displays */

#include "..\pivecs.h"
#include "pvsecs.h"
#include <gf.h>
#include <asiports.h>
#include <color.h>

void onscrnLR(y,x,page,fmt,a0,al,a2,a3,a4,a5,a6,a7,a 8 ,a9)
int y,x,page;
char *fmt;
unsigned aO,al,a2,a3,a4,a5,a6,a7,a8,a9;

curset(y,x,page);
rprintf(LTRED,page,fmt,aO,al,a2,a3,a4,a5,a6,a7,a8,a9);
return;

void onscmY(y,x,page,fmt,aO,al,a2,a3,a4,a5,a6,a7,a8,a9)
int y,x,page;
char *fmt;
unsigned aO,al,a2,a3,a4,a5,a6,a7,a8,a9;

curset(y,x,page);
rprintf(YELLOW,page,fmt,a0,al,a2,a3,a4,a5,a6,a7,a8,a9);
return;

void onscrnLB(y,x,page,fmLaO,al,a2,a3,a4,a5,a6,a7,a8,a9)
int y,x,page;
char *fmt;
unsigned aO,al,a2,a3,a4,a5,a6,a7,a8,a9;

curset(y,x,page);
rprintf(LTBLUE,page,fmt,a0,al,a2,a3,a4,a5,a6,a7,a8,a9);
return;

void onscrnMG(y,x,page,fmt,a0,al,a2,a3,a4,a5,a6,a7,a8,a9)
int y,x,page;
char *fmt;
unsigned aO,al,a2,a3,a4,a5,a6,a7,a8,a9;

curset(y,x,page);
rprintf(LTMAGENTA,page,fmt,aO,al,a2,a3,a4,a5,a6,a7,a8,a9);
return;

void onscrnWH(y,x,page,fmt,aO,al,a2,a3,a4,a5,a6,a7,a8,a9)
int y,x,page;
char *fmt;
unsigned aO,al,a2,a3,a4,a5,a6,a7,a8,a9;

curset(y,x,page);
rprintf(WHITE,page,fmt,aO,al,a2,a3,a4,a5,a6,a7,a8,a9);
return;

100

/* SECSMSGS.C */
/* Last Modified: 3/6/90 by Wendy Power */
/* Contains all message structures. Some calculations

and message distributions also. */

#include
#include
#include
#include

"..\pivecs.h"
"..\pvdata.h"
"pvsecs.h"
"..\pvastro.msg"

MsgHandler TX_Camera(msg)
MsgPtr msg;

/* transmits camera aperture commands */

Byte array[2];

array[0] = RXCAMERA;
array[l] = Iris;
pvSend(array, 2);
return(OK);

MsgHandler ShutDown(msg)
MsgPtr msg;

I
return(OK);

MsgHandler TX_THC(msg) /* transmits translational hand controller commands */
MsgPtr msg;

register i;
Byte array[4];

array[0] = RXTHC;
for (i = 0; i < 3; i++) array[i+l] = thc[i];
pvSend(array, 4);
return(OK);

MsgHandler TX_RHC(msg)
MsgPtr msg;

/* transmits rotational hand controller commands */

register
Byte array[4];

array[0] = RXRHC;
for (i = 0; i < 3; i++) array[i+l] = rhc[i];
pvSend(array, 4);
retum(OK);

MsgHandler RX_Stats(msg)
MsgPtr msg;

/* receives ASTRO status */

StatChg = Stats A (*msg->data);
Stats = *msg->data;

return(OK);

MsgHandler TX_SPanel(msg)
MsgPtr msg;

I

/* transmits switch panel commands */

101

Byte array[2];

array[O] = RXSPANEL;
array[l] = SPanel;
pvSend(array, 2);
return(OK);

MsgHandler TX_Euler(msg)
MsgPtr msg;

register i;
Byte

/* transmits new desired orientation angles */

array[5];

array[0] = RXEULER;
for(i-0; i<2; i-+) (

array[i+l] = eulerdes[i];
array[i+3] = sign[i];

pvSend(array, 5);
return(OK);

MsgHandler TX_PGain(msg)
MsgPtr msg;

register i;
Byte

/* transmits new proportional gains */

array[4];

array[0] = RXPGAIN;
for(i=0; i<3; i++) array[i+l] = propgain[i];
pvSend(array, 4);
return(OK);

MsgHandler TX_RGain(msg)
MsgPtr msg;

register i;
Byte

/* transmits new derivative (rate) gains */

array[4];

array[0] = RXRGAIN;
for(i=0; i<3; i++) array[i+1] = rategain[i];
pvSend(array, 4);
return(OK);

MsgHandler RX_PGauge(msg)
MsgPtr msg;

register i;
Byte
Byte
long
BytePtr datptr = msg->data;

/* receives pressure gauge data */

tmp[7];
temp;
ltmp;

for (i-0O; i<7; i++) tmp[i] = *datptr++;
for (i-0O; i<2; i++) pgauge[i] = ((temp=tmp[2*i])<<4)+tmp[2*i+l];
pgauge[2] = ((ltmp = tmp[5] << 4) & Ox0F00) + tmp[4];
pgauge[3] = ((litmp = tmp[5] << 8) & Ox0F00) + tmp[6];
if (Display)

for (i=O; i<4; i++) onscreen(13,20+i*8,0,"%41d",pgauge[i]);
if (Stats & DATADUMP) (

for (i=0O; i<4; i++) data[p][i] = pgauge[i];

102

onscreen(15,60,0,"%41d",p);
p++;
pvRequest(TXPGAUGE);

return(OK);

MsgHandler RX_Gyros(msg) /* receives gyro data */
MsgPtr msg;

register i;
Byte tmp[6];
Byte temp;
float tmprpy[3];
BytePtr datptr = msg->data;

for (i-0O; i<6; i++) tmp[i] = *datptr++;
for (i=0; i<3; i++) gyros[i] = ((temp=tmp[2*i])<<4)+tmp[2*i+l];
if (Display) (

tmprpy[0] = -89.668 + (0.043714 * (double) gyros[0l);
tmprpy[1] = -89.737 + (0.043595 * (double) gyros[l]);
tmprpy[2] = -90.218 + (0.043846 * (double) gyros[21);
for (i=0; i<3; i++) onscreen(11,20+i*9,0,"%6.2f",tmprpy[i]);

if (Stats & DATADUMP) [
for (i=0; i<3; i++) data[g][i+4] = gyros[i];
onscreen(15,65,0,"%41d",g);
g++;
pvRequest(TXGYROS);

return(OK);

MsgHandler RX_Count(msg) /* receives number of data samples */
MsgPtr msg;

register i;
Byte tmp[2];
BytePtr datptr = msg->data;

for (i=0; i<2; i++) tmp[i] = *datptr++;
count = (tmp[0] << 8) + tmp[ll];
onscreen(13,60,0,"count = %41d",count);
pvRequest(TXPGAUGE);
pvRequest(TXGYROS);

return(OK);

MsgHandler TXIGain(msg) /* transmits new integral gains */
MsgPtr msg;

register i;
Byte array[3];

array[0] = RXIGAIN;
for(i=0; i<2; i++) array[i+l] = intgain[i];
pvSend(array, 3);
return(OK);

MsgHandler TX_DpGain(msg) /* transmits new depth gains */
MsgPtr msg;

(
register i;

103

array[4];

array[0] = RXDPGAIN;
for (i=O; i<3; i++)
pvSend(array, 4);
return(OK);

array[i+l] = depthgain[i];

104

Byte

Appendix C: Matrix Calculations
This Appendix covers the matrix calculations that result in the correction matrix,

Rcorrection, as a function of the desired orientation angles Ydesired and Bdesired and the current

angles current and Bcurn t.

The matrix equations

Rdesired * correction = Rcunt

Rcorrection = Rdesired-1 * Rcurrent

Rcorrection = RdesiredT * Rcurren t

determine the form of the correction matrix, on which the form of the controller will be

based. The desired and current matrices are simply the rotation matrix found in Appendix
A, simplified to not include the yaw, or a, rotation. These matrices, represented in terms

of the desired and current angles, are:

Rdesired =

RdesiredT

Rcurrent

cos8d s. inPd*sinYd

0 cosSYd
-sin3 d cosId*sinYd

cosB d
sinId*sinYd

sin8d*CosYd

0

COsYd
-sinYd

cos8 c sin3c*sin7c

0 cosYC
-sinBc cos3c*sinYc

sinBd*CosYd

-sinYd

cosBd*CosYd

-sinBd

cosPd*sinYd

cosBd*CosYd

sin8c*cosYc

-sinYc

cosBc*cosYc

Solving the equation for Rcection yields:

c(Bd-Bc)

S•d*s(8d-Bc)

cYd*S(Bd-Bc)

sYc*s(8c-Bd)

SYc*sYd*C(8d-Bc) + c'Yd*CYc

cYd*sYc*c(Bd-I3c) - S'Yd*CYc

cYc* s(8c-d)
sYd*CYc*c(8d-c) - •Yd*SYc

cYd*cYc*C(Bd-1c) + •Yd*sYc

This matrix is the basis for the equations implemented in the flight software.

105

