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Abstract

The combination of reflectance, fluorescence, and Raman spectroscopy - which is termed multimodal
spectroscopy (MMS) - provides complementary and depth-sensitive information about tissue com-
position. As such, MMS can provide biochemical and morphological information useful in detecting
vulnerable atherosclerotic plaques, that is, plaques most prone to rupture and causing sudden death.
Early detection of these vulnerable plaques is critical to reducing patient mortality associated with
cardiovascular disease. In developing MMS into a clinical diagnostic modality, several scientific
and engineering directions are explored in this work: the physical motivation for MMS, the frame-
work of quantitative extraction of spectral parameters, the spectral probes that enable the efficient
collection of data, a clinical instrument able to provide real-time diagnosis, and, finally, a clinical
implementation of the entire methodology. The motivation for MMS is shown through a pilot in
vitro study using carotid artery specimens, which shows the promise for MMS to detect features
of vulnerable plaque. Having established the motivation, the next step describes the mathematical
tools used to extract quantitative spectral parameters and, moreover, to assess the uncertainty and
confidence of the spectral information. In order to implement MMS, the development of an efficient,
specialized MMS probe for data acquisition and a compact and practical clinical MMS instrument
are described. Lastly, in vivo and ex vivo results from a relatively large clinical study of vulnerable
plaque in humans show excellent agreement between MMS and histopathology. Specifically, MMS
is shown to have the ability to detect a thin fibrous cap, necrotic core or superficial foam cells, and
thrombus. In addition, these studies show that vulnerable plaques could be detected with a cross
validated sensitivity of 89-96%, specificity of 72-78%, and a negative predictive value of 89-97%.
These very encouraging results serve as an important step in bringing MMS into the clinical arena
as a powerful diagnostic technique.

Thesis Supervisor: Michael S. Feld
Title: Professor of Physics and Director of G. R. Harrison Spectroscopy Laboratory
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Chapter 1

Introduction

In this work, we propose a minimally-invasive spectroscopic approach to disease diagnosis, particu-

larly to the detection of vulnerable atherosclerotic plaques. The spectroscopic approach utilizes the

information provided by different spectral modalities, together with robust interpretation of data,

and the development of appropriate instrumentation and probes that demonstrate the clinical via-

bility of the methodology.

E 1.1 Disease diagnosis

Spectroscopy provides a powerful means to obtaining quantitative chemical and morphological

information about tissue that is critical to disease diagnosis. To illustrate the methodology in this

work, we will focus on the application of diagnosing atherosclerosis and, more specifically, detecting

vulnerable plaques. However, the ideas, technology, and methods are more generally applicable to

studying the progression and severity of other diseases such as cancer.

N 1.1.1 Atherosclerosis

Significance

Cardiovascular disease is the leading cause of death in the nation despite significant resources

allocated for improved diagnosis and treatment. The current prevalence of cardiovascular disease
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in the United States is 79.4 million. Mortality due to cardiovascular diseases represented 36.3%

of total mortality in 2004, a number almost double that of cancer, the second leading cause of

death. The direct and indirects costs associated with cardiovascular disease were estimated to be

$432 billion in 2007 [1] and continue to rise. It is predicted that by 2020 cardiovascular disease will

surpass infectious disease to become the leading cause of death worldwide [2].

Atherosclerosis accounts for the vast majority of cardiovascular morbidity and mortality. It is

a systemic disease, but the most common sites are the coronary, carotid and superficial femoral ar-

teries and subrenal aorta. Atherosclerotic coronary artery disease (CAD) accounts for the majority

of acute ischemic coronary syndromes, such as sudden cardiac death, acute myocardial infarction

and unstable angina. As such, it is responsible for approximately 450,000 deaths per year, which

translates into one American dying of myocardial infarction caused by CAD every minute [1]. In

addition, atherosclerosis involving the carotid and femoral arteries is also a major cause of stroke,

accounting for 270,000 deaths in 2002, and peripheral vascular disease such as gangrene, respectively

[1].

Anatomy

Three concentric layers comprise the artery wall: the intima, media, and adventitia. In normal ar-

teries, the intima measures between 50 and 300 pm in thickness and is composed of endothelial cells

threaded with collagen and elastin fibers, and some proteoglycans. The endothelium bounds the

arterial lumen and furnishes several functions, which include providing a smooth surface for blood

flow, producing extracellular matrix components, expressing factors which inhibit blood coagula-

tion, and controlling the passage of materials into and out of the bloodstream [3]. It is endothelial

dysfunction, or the loss of proper endothelial function, that ultimately leads to atherosclerosis. In
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a diseased artery, the intima produces an extracellular network of fibrillar proteins that comprise

a fibrous cap, which is predominantly composed of collagen. The dense internal elastic lamina

separates the intima from the media. The media of large elastic arteries, such as the aorta and

carotids, is primarily composed of elastin fibers and some smooth muscle cells, which enable these

vessels to to respond to highly pulsatile blood flow. In medium-sized muscular arteries, which

include coronaries, the media contains more smooth muscle cells that control blood flow through

vasoconstriction and vasodilation. The media and adventitia are separated by the external elas-

tic lamina. The outermost adventitial layer contains a network of connective tissue along with

adipocytes, nerve fibers, and vasa vasorum in the case of larger vessels.

Pathology

In atherosclerosis, arterial luminal obstruction is caused by the development of plaque, which typi-

cally progresses slowly over several decades. The initial phases of plaque formation are characterized

by lipoprotein infiltration of the intima, followed by recruitment of leukocytes, especially mono-

cytes, on the luminal surface of the dysfunctional endothelium, and migration of these cells to

the intima through the mediation of cytokines such as monocyte chemoattractant protein-1. Once

inside the intima, the monocytes engulf lipoproteins, express scavenger A and CD36 receptors that

accelerate the process of lipid endocytosis, and turn into foam cells (FC) under the influence of

mediators such as macrophage colony-stimulating factor [4]. Simultaneously, smooth muscle cells

(SMC) migrate from the media to the intima and proliferate locally, while FCs are degraded by

apoptosis, contributing to the formation of a necrotic core (NC) [5]. Smooth muscle cells subse-

quently lay down elements of the extracellular matrix such as collagen and proteoglycans, which

form a fibrous cap covering the NC. A balance between the production and degradation of collagen
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in the fibrous cap is regulated by molecules such as INF-y and matrix metalloproteinases (MMP-1,

-2, -8, -9, -13) [6]. Under certain circumstances collagen breakdown prevails, followed by thinning,

fissuring and eventual rupture of the fibrous cap. In addition, the plaque can undergo dystrophic

mineralization through the deposition of calcium salts [7].

0 1.1.2 Vulnerable plaque

The severity of atherosclerotic lesions has traditionally been assessed by imaging their location

and percentage of intraluminal stenosis. However, landmark studies over the past 10 years have

shown that up to 70% of acute cardiac ischemic events results from the rupture of previously

sub-symptomatic lesions, ending in thrombotic occlusion and, often, myocardial infarction [8, 9].

The vast majority of these thrombosed coronary artery plaques exhibit less than 75% stenosis [10],

the figure often used to define a clinically significant lesion. Thus, plaques that are not critically

stenotic can still cause acute ischemic events [11, 12].

These vulnerable plaques (also known as culprit or unstable plaques) often exhibit rupture of a

so-called thin cap fibrous atheroma: i.e. a plaque with a thin (< 65 pm) fibrous cap overlying a

large (> 2 mm) necrotic core [10]. A recent consensus paper by cardiovascular pathologists [13, 14]

has reported that additional morphological features may be associated with thrombosis, such as

erosion or denudation of the intimal endothelial layer. In both ruptured and eroded plaques, the

fibrous cap [9, 10] or superficial intima [12] is frequently infiltrated by inflammatory cells, most

often macrophages and foam cells. Exposed calcifications [10] and acute intraplaque hemorrhage or

dissection [9, 15, 16] are other common features of thrombosed plaques. In addition, the presence

of a non-occlusive intraluminal thrombus from a previous plaque rupture is another feature of

vulnerability as it leaves the plaque prone to subsequent thrombosis [17, 13]. Figure 1-1 shows the
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Figure 1-1. Morphologic features of a vulnerable carotid plaque. Thin fibrous cap (TFC), necrotic core (NC) and
superficial foam cells (SFC) are indicated. Hematoxylin and eosin stain. The scale bar indicates a 1 mm length.

histology of a carotid artery that exhibits features of a prototypical vulnerable plaque. The diseased

intima is separated from the lumen by only a thin fibrous cap, and there is a large cholesterol-rich

NC and many superficial foam cells (SFC).

At present, there does not exist a scheme for assessing the relative vulnerability of different

lesions. To address this limitation, a quantitative approach to ranking plaque vulnerability, called

the vulnerable plaque index, is proposed in Sec. 6.2.4.

E 1.1.3 Competing technologies

There is currently great interest in developing new techniques for clinical detection and imaging of

vulnerable plaque. These include x-ray angiography, angioscopy, intravascular ultrasound (IVUS),

thermography, nuclear magnetic resonance imaging (MRI), computed tomography (CT), optical

coherence tomography (OCT), nonlinear optical microscopy, and optical spectroscopy [18]. A brief

summary of each is given below.



X-ray angiography

X-ray angiography, the gold standard for diagnosing atherosclerosis, uses x-ray transmission to

image vessel narrowing and blood flow. Contrast is obtained by injecting a radio-opaque medium

into the artery lumen. This technique can quantify the severity of stenosis and identify occlusive

thrombi and dense calcifications. However, it is unable to identify the marginally stenotic vulnerable

plaques that give rise to the majority of acute ischemic events [19, 20, 21, 22, 23].

Angioscopy

Although not commonly used in general practice in this country, angioscopy has been widely ap-

plied for evaluation of coronary atherosclerosis outside the United States [24, 25]. By visualizing

the arterial surface with white light illumination through a miniature endoscope ("angioscope"),

atherosclerotic plaques and surface complications such as rupture and thrombosis can be identified.

However, angioscopy cannot probe subsurface changes such as the thinning of the fibrous cap that

are critical to identifying vulnerable plaque before rupture or thrombosis has occurred, nor can it

provide chemical information about lesion composition [20, 26, 27].

Intravascular ultrasound (IVUS)

IVUS overcomes some of the limitations of angiography and angioscopy [28, 19, 29, 30, 31, 32, 33].

Relying on changes in tissue density, that affect the reflection of sound waves, IVUS can image

several features of subsurface plaque architecture, such as fibrous cap thickness and NC depth.

However, other key features, such as the presence of inflammation or SFCs, cannot be assessed.

Again, this technique cannot provide chemical information. Interestingly, IVUS is frequently used

as a reference to evaluate pilot studies for new imaging technologies. For example, comparisons
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with IVUS have been made to validate studies using Raman spectroscopy and OCT for arterial

imaging [34, 35].

Thermography

Thermography, one of the few imaging techniques specifically targeted to vulnerable atherosclerotic

plaques, is based on detection of heat released by inflammatory cells within vulnerable plaque. This

technique is still in early stage development [36, 37].

Nuclear magnetic resonance imaging (MRI)

MRI uses radio waves to induce spin flips of (water molecule) protons in a tissue sample placed in a

high magnetic field. By applying a spatial field gradient, changes in tissue density can be imaged.

Although, in principle, MRI can provide chemical information (by targeting nuclei other than

water), in practice this is not feasible because of the relatively low concentrations of other molecules,

which translates into inadequate sensitivity. Thus, conventional MRI produces only anatomical

images. As with IVUS, MRI angiography has been used to distinguish features of atherosclerotic

plaque such as fibrous cap and NC in human cadaveric carotid endarterectomy specimens [38] and

patients undergoing carotid endarterectomy [39]. Recent studies indicate that MRI can identify

thrombus [40] and intraplaque hemorrhage [41, 42] in carotid arteries. However, imaging coronary

arteries has proven to be more difficult, because of cardiac and respiratory motion. New black-blood,

contrast-enhanced breath-holding and free-breathing respiratory-gated MRI techniques may help

overcome these limitations [43]. However, because of the small caliber and tortuosity of coronary

vessels and their close proximity to other cardiac structures, adequate spatial resolution cannot be

achieved without the use of extremely high magnetic fields [44]. Recently developed intravascular

MRI techniques may provide the spatial resolution required for imaging coronary atherosclerosis
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[45, 46].

Computed tomography (CT)

Similar advances have been made in CT imaging of atherosclerosis. Multi-slice spiral CT is a high

resolution imaging technique that has recently been applied to anatomic imaging of atherosclerotic

plaque in the coronary, carotid and peripheral arteries [47]. Cardiac motion is still a problem

but may be overcome by means of electrocardiographic gating. Ultrafast electron beam computed

tomography (EBCT) has improved spatial resolution. However, it can only detect calcifications,

and thus is blind to non-calcified plaques [12, 48, 49, 50]. As with the other more conventional

imaging techniques, it cannot assess key features of vulnerable plaques.

Optical coherence tomography (OCT)

OCT is a promising technique actively being investigated for vascular imaging [51, 52]. It uses singly

back-scattered light to obtain subsurface images as a function of depth. Similar to IVUS, which

relies on density changes in the vessel wall, OCT relies on changes in refractive index. However,

since OCT employs light rather than sound, images with much higher spatial resolution can be

achieved, on the order of 10 pm. OCT has been applied successfully in vivo [53] and has shown the

promising potential to detect key markers of vulnerable plaque including a thin fibrous cap [54, 53],

macrophages [55, 56], calcium nodules [54], and thrombus [35]. However, OCT does not provide

chemical information.

Nonlinear optical microscopy

Recently, nonlinear optical microscopy techniques have emerged as means to perform 3-D imaging

of tissues, including artery tissue. These nonlinear techniques include two-photon excited fluo-
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rescence (TPEF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering

(CARS). TPEF can be used to provide images of elastin fibers (as well as collagen and cellular

components), SHG microscopy can probe collagen fibrils, while CARS is particularly sensitive to

lipid-rich structures. Several studies have reported using nonlinear optical microscopy to provide

high resolution images of human arteries and thus serve to assess the vulnerability of plaque mor-

phology [57, 58]. However, as much as these imaging techniques may eventually replace histology,

their feasibility as in vivo intravascular modalities is yet to be demonstrated. In addition, these

techniques are most promising when they utilize sources of exogenous contrast, which have their

own disadvantages.

Optical spectroscopy

Optical spectroscopy is also being studied for evaluation of these critical lesions. Several groups have

explored the use of near-infrared spectroscopy (1-2.4 pm) to characterize atherosclerotic plaque, [59,

60], with a recent paper reporting promising results in detecting markers of plaque vulnerability such

as a thin fibrous cap, lipid pools, and inflammation [61]. A commercial device using near-infrared

spectroscopy has recently obtained FDA approval for intravascular imaging of coronary arteries

[62]. In this wavelength range, absorption is due to molecular overtone/combination vibrations and

can provide information about tissue composition. This technique is attractive because of the large

signals and potentially low cost of the instruments. However, the spectral features are broad and

overlapping, which decreases predictive ability. Further, water absorption in this wavelength range

can distort the spectral features and reduce sampling depth to well below the intimal thickness.

Other spectroscopic techniques, including [ultraviolet-visible] diffuse reflectance, fluorescence,

and Raman spectroscopy, being the subject of the present work, are discussed more thoroughly in
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the next section.

0 1.2 Optical properties and spectroscopy

When light interacts with tissue, several physical processes determine how the incident energy is

transformed. Some of the light is elastically scattered, either one or many times, before returning

to the surface. During this process, some portion of the light may be absorbed by the endogenous

absorbers in the tissue, while a portion of the absorbed light may be remitted as fluorescence

after interacting with native fluorophores. Lastly, a small fraction of the light can be inelastically

scattered through a molecule-specific process called Raman scattering. We now discuss reflectance,

fluorescence, and Raman scattering in more detail.

* 1.2.1 Reflectance

Using diffuse reflectance spectroscopy (DRS), we study the spectrum of near UV-visible light (300

- 700 nm) traversing turbid biological tissue. The resulting spectrum exhibits features due to

scattering and absorption of the incident light by the tissue. In atherosclerotic plaque, the structures

that account for scattering are the morphological components such as foam cells, collagen matrix,

and other structures that spatially vary the index of refraction. The main absorbers are hemoglobin,

associated with thrombus or acute intraplaque hemorrhage, and /-carotene, whose absorption has

been used previously for spectroscopic detection of atherosclerosis [63, 64]. A recent study of

reflectance, in the extended range of 400 to 1700 nm, perhaps overcomes some of the mentioned

shortcomings of near-infrared spectroscopy; the said study reported promising results in detecting

a large lipid core in plaques, a key feature of vulnerability, using the contributions of 3-carotene

and hemoglobin [65].
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In our laboratory, we have previously developed a model to analyze DRS spectra based on an

analytical expression for diffusion of multiply-scattered light [66]. This expression is an appropriate

simplification of a well established formula for diffuse reflectance developed by Farrell et al., who

calculated the diffuse reflectance from a narrow beam of light incident on the surface of a semi-

infinite turbid medium under the diffusion approximation [67]. This modeling and analysis enables

the extraction of the wavelength-dependent coefficients of scattering (p') and absorption (IPa). The

reduced scattering coefficient M' characterizes the scattering properties of tissue by specifying the

number of scattering events that light would, on average, undergo as it traverses the medium, and

it takes into account the anisotropy [68]. The absorption coefficient Ma characterizes the absorbers

in the tissue by specifying the average number of absorption events that would occur [68]. The

diffusion approximation, which is used here, assumes that scattering dominates over absorption,

1s4 >> Pa. A more detailed description of DRS modeling can be found in Sec. 4.3.1.

0 1.2.2 Fluorescence

Fluorescence spectroscopy relies on the excitation of molecular electronic energy levels, giving rise

to re-emission at wavelengths longer than the exciting light. The spectrum of the emitted light pro-

vides information about the fluorescing molecule (fluorophore). In addition, the emission spectrum

can vary with excitation wavelength, providing additional molecular information. The primary

fluorophores in arterial tissue are elastin, collagen, tryptophan, ceroid [69] and oxidized low density

lipoprotein [70]. A number of research groups, including our own, have employed continuous wave

[71, 72, 73], and time-resolved [74, 75] fluorescence spectroscopy to diagnose atherosclerosis, includ-

ing the detection of a thin fibrous cap [70], lipid-rich lesions [76], disruption [77], and macrophages

[78].



However, the broad overlapping spectral features of tissue fluorophores, further confounded by

absorption and scattering, are a barrier to extracting spectral information with sufficient accuracy

for quantitative analysis of vulnerable plaque. One recent study using fluorescence showed promis-

ing results in identifying thin fibrous cap atheromas, but a number of samples had to be eliminated

from the analysis due to the inability to compensate for the spectral distortions caused by scattering

and absorption [70]. Our laboratory has previously developed a method to remove these distortions

using the information from the DRS spectrum, and thus extract the intrinsic fluorescence [79, 80],

which can be decomposed into a linear combination of the spectra from fluorophores associated

with morphological structures in the tissue. Intrinsic fluorescence spectroscopy (IFS) has been

successfully employed in our laboratory for cancer diagnosis [81, 82]. A more detailed description

of IFS modeling can be found in Sec. 4.3.2.

0 1.2.3 Raman scattering

Raman spectroscopy detects molecules by exciting vibrations amongst bonds which are unique

to each molecule, and has been used extensively in biomedicine [83, 84]. Raman spectroscopy is

based on a scattering process in which monochromatic light incident on a sample sets the molecules

into vibration. The vibrating molecule takes away a small amount of the incident photon energy,

shifting the scattered light to lower frequency (i.e. longer wavelength). This frequency shift, usually

measured in wave numbers (cm-1), is equal to the molecular vibration frequency. As biological

molecules have a number of vibrations, each with characteristic frequency and Raman scattering

cross section, the Raman spectrum of a given molecule has a unique pattern. Raman signals

are weak, and thus care is required to efficiently collect and optimize them. Note that, unlike

fluorescence, the Raman spectrum manifests itself as shifts in frequency from that of the excitation
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light frequency. Previous work by our group on Raman spectroscopy of atherosclerosis identified

eight key morphological components in arterial pathogenesis that could be identified by their Raman

spectral signatures: collagen fibers (CF), cholesterol crystals (CC), calcium mineralization (CM),

elastic lamina (EL), adventitial adipocytes (AA), foam cells/necrotic core (FC/NC), beta-carotene

crystals (P-CC), and smooth muscle cells (SMC) [851. A diagnostic algorithm, using morphological

information extracted with a linear combination model similar to that used for IFS, was able to

classify in vitro coronary artery specimens as non-atherosclerotic, non-calcified plaque and calcified

plaque with 94% accuracy [86]. The development of a small-diameter, high-throughput, filtered

Raman probe [87] has resulted in the first in vivo clinical application of the Raman spectroscopy

diagnostic algorithm in real-time [88] during carotid endarterectomy and femoral bypass surgeries

[89].

* 1.3 MMS

One of the goals of the present work is to explore the diagnostic power of DRS, IFS and Raman

spectroscopy together, which we term multimodal spectroscopy (MMS). The advantages of MMS

are two-fold. First, MMS yields complementary biochemical and morphological information about

arterial tissue that no individual modality can provide by itself. Second, the information obtained

by these modalities is depth-sensitive, due to the inherently different tissue penetration by the

various incident wavelengths employed.

* 1.3.1 Complementarity

The complementary tissue information that can be obtained from MMS is the following. DRS

provides information about tissue scattering and absorption, as mentioned earlier, and allows for
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the assessment of tissue turbidity. Scattering is indicative of the presence of index varying struc-

tures such as foam cells/macrophages while hemoglobin absorption provides information about the

presence of blood, clotting, or hemorrhage. DRS is also critical in extracting the IFS signal from

fluorescence, which provides relative amounts of tissue fluorophores that are present such as colla-

gen, elastin, and low-density lipoprotein (LDL). Raman spectroscopy is very molecule specific and

is particularly useful in identifying highly Raman active components such as calcification as well

as necrotic core and foam cells. Taken together, the three modalities provides a more complete

picture of the tissue state. There are also areas where some modalities overlap and this common

information can be used to make the algorithms more robust. For example, both IFS and Raman

spectroscopy can detect collagen, while both DRS and Raman are sensitive to hemoglobin.

0 1.3.2 Depth sensing

The depth-sensing aspect of MMS comes from the relationship between tissue turbidity and wave-

length. For IFS, typical wavelengths that are used are in the ultraviolet, such as 308 nm and

340 nm excitation. DRS uses the broad visible spectrum 400-700 nm while Raman spectroscopy

uses near-infrared 830 nm excitation. Thus MMS information is spanned over a relatively large

range of wavelengths, over which tissue properties vary significantly. In Fig. 1-2, the absorption

coefficient p,a and the reduced scattering coefficient p' of artery tissue are given in this range of

wavelengths, obtained from data published by Keijzer et al. [90]. It is evident that both scattering

and absorption decrease with increasing wavelength and thus artery tissue, as with most other tis-

sues, is optically more transparent at longer wavelengths. Subsequently, the penetration depth of

different wavelengths in artery tissue will increase with wavelength. As a result, the IFS will assess

information at the most superficial level, DRS provides information at an intermediate depth, while
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la and (b) shows the reduced scattering coefficient as.

Raman spectroscopy samples deepest in artery tissue. A more detailed and quantitative discussion

of sampling depths is given in Sec. 2.2.1.

0 1.4 Data analysis

Real-time analysis of spectroscopic measurements is essential in many applications, including phar-

macokinetics [91], bioreactor monitoring [92], and medical diagnosis [93]. In our laboratory [94, 89]

and others [95, 96], real-time analysis of spectroscopic measurements acquired in vivo is under study

I
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to provide clinicians with immediate diagnoses, in lieu of histopathology. In medical applications,

the confidence in the measurement of a particular diagnostic parameter can affect the course of

disease management, with ramifications to the health of the patient. The uncertainties and the

associated confidence intervals of the parameters extracted from spectroscopic measurements serve

to assess the accuracy, stability, and diagnostic value of the data. The importance of uncertainty

is related to other figures of merit commonly mentioned in the chemometrics field: signal-to-noise

ratio, precision, limit of detection, sensitivity, error propagation and selectivity [97, 98]. Note that

measurement uncertainty (precision) is different from measurement accuracy.

The most effective way to extract quantitative information from spectral data in a linear system

is by utilizing the full spectrum (multivariate analysis) [99]. In this formalism, a spectrum, a series

of intensity values at different wavelengths, is mathematically represented as a vector. Consider,

for example, measurement of the concentration of a particular species or analyte. This requires a

model that, when applied to a measured spectrum, yields the concentration of interest. In most

cases, the model can be conveniently expressed in terms of a regression spectrum or "b-vector" for

a particular analyte; the analyte concentration (ck) of a prediction sample can then be expressed

as the inner product of the measured spectrum (s) and the analyte-specific b-vector (bk):

ck = bTs. (1.1)

When all of the chemical components are known, the model can be based on the constituent spectra,

measured directly, and ordinary least squares (OLS) analysis can be applied, yielding a b-vector

for every component of interest. If the spectra cannot be measured directly, or if one or more

components are not known, a calibration step is required to generate the b-vectors, and a direct
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calibration scheme such as classical least squares (CLS) or indirect calibration schemes such as

partial least squares (PLS) or principal components regression (PCR) can be used. The calibration

step requires a set of spectra with reference concentrations of the analyte(s) of interest. Similar

approaches can be used to measure parameters extracted from biological tissue spectra that are

used in disease diagnosis [100, 85]. A concept closely related to the b-vector is the net analyte

signal (NAS), introduced by Lorber [101], which is the portion of the signal for each analyte that is

orthogonal to the other analyte spectra. The NAS is also useful in evaluating the figures of merit

mentioned earlier [102].

In principle, one can evaluate the parameter uncertainty by repeating the measurement many

times and analyzing the standard deviation of parameters extracted from each of these multiple

measurements; however, this is not practical for applications such as medical diagnosis, in which

only one or a few measurements can be acquired. Alternatively, one can use chi-squared (X2)

analysis to calculate parameter uncertainties extracted from a single spectrum [103]. X2 analysis is

a very useful technique, but it is statistical rather than analytical and provides little insight into

the origins of uncertainty.

In addition, various research groups have worked on deriving analytical expressions for uncer-

tainty. Lorber and Kowalski have presented a complete and elegant treatment of error propagation

associated with multivariate calibration. They derived a prediction error (uncertainty) formula

that depends on the noise in the spectrum of the prediction sample and the spectra and concen-

trations of the analyte of interest in the calibration set. The formula was successfully tested on

near-infrared reflectance data analyzed by PCR [104]. One practical shortcoming of the formula

is its complexity and the difficulty in readily applying it to experimental data. Other groups have

taken similar approaches to error analysis [105, 106, 107]. One of the goals of the present work is
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to develop a simple analytical expression for characterizing uncertainty that can be expressed in

terms of physically relevant and understandable parameters and be practically useful for real-time

data analysis.

N 1.5 Instrumentation and probes

There has been extensive work, in our group and others, in the areas of instrumentation and probe

development relative to the different spectral modalities comprising MMS [108]. This section is

broken down into two subsections, the first on previous reflectance/fluorescence instrumentation

and the second on previous Raman instrumentation, as the two techniques have been pursued

separately in the past. One of the goals of the present work is to develop an integrated clinical

MMS instrument that could be used to collect data with a single MMS probe.

N 1.5.1 Reflectance/fluorescence instrumentation and probes

Our laboratory has previously developed a portable clinical instrument to collect fluorescence and

reflectance spectra called the FastEEM, for fast excitation-emission matrix (EEM) [109, 110, 111].

A fluorescence EEM is produced by means of a rotating wheel containing laser dyes, pumped by

a 308 nm XeCl excimer laser, which generates nine laser pulses at excitation wavelengths ranging

from 340 to 500 nm which, including the 308 nm pulses, provides ten laser excitation wavelengths

in all. In addition, a Xenon flash lamp produces white light pulses for reflectance. This light is

delivered to the tissue via a thin, flexible optical fiber probe that contains a ring of six collection

fibers surrounding a single delivery fiber. Spectra are collected with the probe tip in contact

with the tissue. The probe tip contains a cylindrical quartz shield shield that provides a well-

defined delivery-collection geometry for spectral data acquisition [112], and its length is chosen to
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provide substantial overlap between the delivered light spot and the field of view of the collection

fibers. Return light from the tissue is transmitted by the collection fibers to a spectrograph/CCD

detector for analysis. A rotating filter wheel in the collection beam path, synchronized to the

laser excitation pulses, prevents scattered excitation light from entering the spectrograph. Delivery

of all 11 excitation light pulses and collection of the resulting 11 emission/reflectance spectra is

accomplished in a fraction of a second, and data analysis is performed in real time (2-3 s). Our

laboratory has used the FastEEM in clinical settings to collect DRS and IFS spectra for diagnosis

of dysplasia in the esophagus, cervix and oral cavity [81, 82, 113].

* 1.5.2 Raman instrumentation and probes

Clinical applications of Raman spectroscopy have been impeded by the lack of suitable optical

fiber probes. In recent years, our laboratory has developed an efficient optical fiber Raman probe

[87] that can be used together with a compact clinical Raman instrument capable of real-time

application [88]. The instrument uses an 830 nm diode laser, delivered through the probe, to excite

Raman scattering. The probe delivers to and collects light with the probe tip in contact with

tissue. Conventional fluorescence/reflectance probes cannot be used as the tissue Raman signals

are weak and are therefore easily be masked by the probe Raman background and the elastically

scattered light. In our Raman probes, a central excitation fiber that delivers the light to tissue

is surrounded by a ring of collection fibers that connect to the spectrograph. The distal tip of

the probe contain specialized filters on both excitation and collection fibers which serve to reject

probe (fused silica) background and elastically scattered light, respectively, thus enabling efficient

collection of the Raman signals. A sapphire ball lens is tightly secured at the probe tip, and

positioned an appropriate distance from the fibers to insure a collimated beam of excitation light
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and optimal collection of light emitted from the tissue. The probe is 4 m long and less than 3 mm in

overall diameter. The light collected by the probe is passed through a spectrograph and dispersed

onto a CCD. Integrated software in the system enables rapid collection of Raman spectra (1 s) and

real-time analysis (1-2 s) of the spectral parameters. The clinical Raman system has been used for

previous studies of atherosclerosis and breast cancer [89, 94].

Another approach utilized by a different group avoids the problem of fused silica background

by collecting Raman signals in the high wave number region (2400-3800 cm-') rather than the

fingerprint region (400-1800 cm- 1 ) [114]. This approach enables the usage of a single unfiltered

fiber for both excitation and collection; however, it comes at the expense of losing some, potentially

critical, spectral information that is only present in the fingerprint region.

0 1.6 Clinical work

This section briefly describes the previous in vivo clinical work of the different spectral modalities

with relation to atherosclerosis and vulnerable plaque. One of the goals of the present work is to

demonstrate clinical in vivo application of MMS as a diagnostic tool for detection of vulnerable

plaques.

E 1.6.1 Reflectance and fluorescence of arterial tissue

To our knowledge, no [ultraviolet-visible] DRS measurements have been done in vivo on human

arterial tissue. Some clinical work has been done using near-infrared spectroscopy, as described

earlier, and spectra were collected from exposed carotid arteries at the time of surgery [59]. Among

the studies of atherosclerosis and vulnerable plaque using fluorescence mentioned earlier, no in vivo

work in humans has been reported, with the mentioned in vivo studies utilizing an animal model
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such as rabbits [73, 78]. Nevertheless, these studies, in which fluorescence spectra were collected

either from exposed arteries or via intravascular fluorescence catheters, demonstrated the promising

potential that fluorescence measurements, both continuous-wave and time-resolved, could be done

in humans as well.

U 1.6.2 Raman spectroscopy of arterial tissue

Previous in vivo Raman studies have been limited to directly accessible organs and tissues such

as the skin, oral palate, cervix and sheep aorta. Some of these studies used large and impractical

clinical systems, and those that used small diameter probes required long collection times and

exhibited poor signal-to-noise ratio (SNR) [115, 116, 117, 118, 119, 120]. Our laboratory recently

conducted the first in vivo Raman studies of human artery. The studies were conducted in the

Vascular Surgery Department of MetroWest Medical Center in Natick, MA during carotid and

peripheral vascular surgery [89]. Using the clinical Raman system and probe, 20 in vivo cases were

conducted, six carotid endarterectomies and 14 femoral artery bypass procedures. Raman spectra

were taken from 74 sites, 34 of which were then biopsied, and the specimens fixed, processed and

histologically examined. The Raman model used to fit the data included the previously described

morphological structures and, as well, the additional relevant Raman components associated with

the probe and the in vivo environment: epoxy, sapphire, water, and oxy-hemoglobin. The fit

coefficients associated with each morphological Raman structure extracted from the data were used

with the diagnostic algorithm previously established in vitro [85]. The histology generally agreed

with the Raman fit coefficients, and the overall diagnostic agreement was 74%, the discrepancies

and misdiagnoses attributed to registration errors between spectroscopy and pathology, and the

limited number of samples in the study. In addition to the classification of non-atherosclerotic,
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non-calcified plaque, and calcified plaque, the ability to detect thrombosed and ruptured plaques,

both types of vulnerable plaque, was demonstrated. Using logistic regression, the most important

morphological fit coefficients in discriminating vulnerable and non-vulnerable plaques were Hb,

CM, CF, and the sum of CC and FC/NC. Logistic regression and leave-one-out cross validation

resulted in an algorithm that could correctly identify 11 out of 14 vulnerable and 17 out of 20

stable plaques, implying a sensitivity of 79% and specificity of 85%. This was an important first

indication that Raman spectroscopy could potentially identify vulnerable plaque [89].

0 1.7 Thesis outline

This thesis aims to achieve the following goals:

* Demonstrate that reflectance, fluorescence, and Raman spectroscopy all provide valuable

diagnostic information about plaque vulnerability and should thus be combined as MMS

* Develop analytical tools for quantitative analysis of data and assessment of diagnostic confi-

dence that can be applied to a single spectrum

* Develop an integrated spectral probe that can be used to efficiently collect all MMS modalities

and accurately model its excitation/collection geometry

* Develop an integrated MMS instrument that is portable, meets clinical constraints and capa-

ble of real-time data collection and disease diagnosis

* Demonstrate that MMS can be implemented in a clinical setting and can, with high accuracy,

detect vulnerable atherosclerotic plaques

This remainder of this thesis is structured as follows. Chapter 2 provides the motivation for

MMS through an in vitro pilot study of excised tissue. Spectra are collected with two clinical
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instruments (Raman and FastEEM) and two optical fiber probes (Raman and DRS/IFS probes).

The extracted spectral parameters show correlation to the histological parameters indicative of

plaque vulnerability and thus forms the basis for the development of MMS. Chapter 3 then provides

the quantitative tools for robust data interpretation and calculation of uncertainty in extracted

spectral parameters. Specifically, a formula is presented, along with its mathematical derivation

and spectroscopic interpretation, that allows the quantification of uncertainty in extracted spectral

parameters from a single measurement. This ability is critical when designing an MMS instrument

that has limited time to acquire all spectral modalities but needs to provide quantitative spectral

parameters in real-time. The development of the specialized MMS probe used to acquire data

from tissue is detailed in Chapter 4. This probe is builds on the design of the Raman probe,

since that modality is rate-limiting, to enable efficient excitation and collection of DRS and IFS.

To enable the accurate extraction of spectral parameters, the modeling of DRS and IFS spectra

collected with this probe was modified through calibration. Chapter 5 describes the clinical MMS

instrument, a highly modular and portable system for practical applications. The automated

system contains all the necessary excitation sources, that are sequentially coupled to the MMS

probe via an optical fiber switch, and two CCDs. Moving to a clinical application, Chapter 6

discusses clinical results with the developed instrumentation and probes. Spectra were collected

from patients undergoing vascular surgeries at a collaborative hospital. Comparing the spectroscopy

to histology, an algorithm for detecting vulnerable plaque is developed that achieves excellent

diagnostic accuracy. Lastly, Chapter 7 comments on the accomplishments of each of the specified

goals of this thesis. Finally, Chapter 8 concludes with an outlook to future directions in the field.





Chapter 2

Pilot MMS study

E 2.1 Introduction

This chapter explores the potential of MMS to evaluate the morphological features of atherosclerotic

plaque and assess plaque vulnerability, particularly by the detection of intraplaque hemorrhage,

density and depth of superficial foam cells, fibrous cap thickness, and necrotic core size. The

results of the following feasibility study indicate that MMS has the potential to accurately assess

plaque vulnerability in vivo, in real-time and as a guide to future treatment. Thus, this chapter

provides the motivational rationale for pursuing MMS as a diagnostic technique. There are two

experimental subsections: 1) depth sensing, and 2) in vitro tissue study. Two relevant addenda are

also included: 1) detecting fibrous cap thickness with fluorescence, and 2) freeze/thaw effects on

spectroscopy.

N 2.2 Methods

* 2.2.1 Depth sensing

Light of different wavelengths penetrates tissue to different depths. The effective penetration depth

is defined as the depth at which the power of light incident on a tissue sample falls to 1/e of its
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incident value, and can be calculated from diffusion theory:

1 1
6 = -I 1 (2.1)

Aef f p/3/Pa(Pa + Ps)

using the values for the reduced scattering coefficient p's and absorption coefficient Pa of tissue

[68]. Based on this equation, the literature on the optical properties of aorta indicates effective

penetration depths of about 90, 140 and 1200 pm for light of wavelengths 308, 340 and 830 nm,

respectively [121]. Another study indicates values 70, 90, and 800 pm for the effective penetration

depths of 308, 340, and 830 nm in aortic tissue [90].

We performed experiments to verify these values using our instruments and probes. The pene-

tration depths at different excitation wavelengths were measured by incrementally stacking 20 pm

thick sections of aortic media. An optical fiber probe, placed in contact with the tissue, delivered

the light and a power meter measured the transmitted power as a function of tissue thickness. Note

that in the single-ended geometry of our artery studies (i.e. the probe both delivers and collects

light from the same side of the tissue), we need to account for the propagation of both the excitation

and emission light. Thus the sampling depth, 6, can be related by

1 1 1- +  1 (2.2)
8 

3
ex 6

3
em

where 6ex and 6em are the penetration depths of the excitation and emission light, respectively.

Other groups have defined the sampling depth, or probing depth, as a depth from which 90% of

the remitted fluorescence originates [122].
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E 2.2.2 Tissue study

We have performed a preliminary in vitro study to establish the effectiveness of DRS, IFS, and

Raman spectroscopy for providing information about plaque morphology and vulnerability. Spectra

were collected from excised human carotid endarterectomy specimens (n = 17) from 12 patients,

obtained from the Cooperative Human Tissue Network. The snap-frozen specimens were thawed

and rinsed in phosphate-buffered saline. The DRS and IFS spectra were obtained using a fast

excitation-emission matrix (FastEEM) instrument and probe, described in Sec. 5.1.2 and elsewhere

[110, 111]. The FastEEM probe was placed in gentle contact with the intimal layer of the tissue

while DRS and IFS spectra were collected (1 second total acquisition time). The Raman signal

was then acquired from the same location using a clinical Raman system and probe, described in

Secs. 5.1.1 and 4.1, and elsewhere [87, 88] (1-5 seconds total acquisition time). Care was taken to

insure the placement of the probes on the same tissue location.

Following spectral acquisition, the evaluation site was demarcated with India ink and the spec-

imen was fixed in formalin, routinely processed, sectioned and stained with hematoxylin and eosin.

Histopathology for each of the 17 specimens was performed by an experienced cardiovascular pathol-

ogist (Maryann Fitzmaurice) blinded to the spectroscopy results. The morphological features asso-

ciated with plaque vulnerability were assessed: fibrous cap thickness, necrotic core size, superficial

foam cells, intraplaque hemorrhage, and ulceration. In this study, we analyzed each of these vul-

nerability features independently, without going further to classify an overall lesion as vulnerable

using some combination of these features, as we do eventually with the vulnerable plaque index

(Sec. 6.2.4). The intimal or fibrous cap thickness was recorded as the range of thicknesses found

underneath the ink dot. The necrotic core size was recorded as the maximum dimension of the core

beneath the fibrous cap, if present. The foam cells were evaluated based on the most superficial
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depth at which they were found and a density grade (0 = none; 1+ = isolated single foam cells; 2+

= small clusters of foam cells; 3+ = confluent sheets of foam cells). Intraplaque hemorrhage was

identified as an accumulation of blood within the lesion, usually associated with the core. Plaque

ulceration was graded based on whether the defect in the fibrous cap did (rupture) or did not

extend (fissure) into the underlying atheroma core.

DRS spectra were used to extract the wavelength-dependent absorption coefficient Pa and re-

duced scattering coefficient ps based on a diffusion theory model [66]. A more detailed description

of DRS modeling can be found in Sec. 4.3.1. We modeled pa(A) as a linear combination of two

absorbers, oxy-hemoglobin and /3-carotene:

ia(A) = [Hb0 2] . EHb02() + [/3 - car]. -6-car(A), (2.3)

with [HbO 2] and [3-car] the concentrations and EHbO 2 and e_-car the extinction coefficients of

oxy-hemoglobin and /3-carotene, respectively (Fig. 2-2a). Deoxy-hemoglobin was not included in

the model because this is an in vitro study of frozen-thawed tissues in which the hemoglobin was

oxygenated by exposure to room air. We modeled the p,(A) spectrum as an inverse power law:

p '(A) = A ) , (2.4)

as reported elsewhere [123, 124], where A specifies the amplitude of scattering, B the power law

decay, and A0 = 1 pm is a normalization factor.

IFS spectra were obtained by correcting the raw fluorescence for the effects of scattering and

absorption [79, 80]. A more detailed description of IFS modeling can be found in Sec. 4.3.2. Based

on literature values, IFS spectra excited at 308 and 340 nm have the shallowest sampling depths
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and were used to assess the composition of the fibrous cap. Multivariate curve resolution (MCR),

a chemometric technique used to extract the individual spectra of a known number of components

from a mixture spectrum [125], was performed on the IFS spectra at each of the two excitation

wavelengths. For IFS at 308 and 340 nm, a linear combination of two MCR components (MCR 1

and MCR 2, Figs. 2-2b and 2-2c) resulted in good fits to all 17 spectra. The fit coefficient of the

blue-shifted and narrower MCR component (MCR 1) is reported as C308 and C340 for IFS at 308

and 340 nm, respectively.

Raman spectra were extracted from the raw signals by removing the Raman probe background

using a calibration spectrum collected from an aluminum block, and removing the tissue fluorescence

using a 6th order polynomial fit [87]. Then, the Raman spectra were fit using a linear combination

of basis spectra components of the eight morphological structures (CF, CC, CM, EL, AA, FC/NC,

/-CC, and SMC) and hemoglobin (Fig. 2-2d). The Raman fit coefficients were normalized to sum

to unity so that each fit coefficient specifies a percentage contribution to the fit by that respective

basis spectrum, as previously described [86, 89, 126]. The hemoglobin contribution to the Raman

spectra was zero in all of our samples as hemoglobin is a relatively weak Raman scatterer at 830 nm

excitation. The spectral parameters obtained were then correlated with the presence (or absence)

of the morphologic features of vulnerable plaque.

* 2.3 Results

* 2.3.1 Depth sensing

In our experiments, the effective penetration depths at 308 and 340 nm were measured as 85

and 105 ,m, respectively. The corresponding fluorescence emission peaks were 400 and 410 nm,

respectively, with effective penetration depths of 128 and 147 Am. Therefore, the sampling depths
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Figure 2-1. The sampling depth of light in aortic media as function of wavelength. The experimental values were

obtained via transmission measurements of light through stacked slices of aortic media. The theoretical values were

obtained using the values for Ma and p', from Fig. 1-2 and Eqs. (2.1) and (2.2).

for the IFS at 308 and 340 nm are 51 and 62 pm, respectively, accounting for the longer emission

wavelength of the fluorescent light (Eq. 2.2). Similarly, different wavelength regions of the DRS

spectra sample tissue at different depths (50 - 400 pm). A previous experiment estimated the

sampling depth of 470 pm for 830 nm Raman excitation [127]. These results are summarized in

Fig. 2-1. The above penetration depths, measured on aortic media, may vary with different types

of lesions. Nevertheless, the trend of deeper sampling depth for longer wavelength excitation light

still holds for each sample or atherosclerotic lesion.
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Table 2.1. Morphological features of the 17 specimens. IF = intimal fi
ATM = atheromatous plaque, FS = fibrotic-sclerotic plaque, C = calcified.

broplasia, ATS = atherosclerotic plaque,

0 2.3.2 Tissue study

The histopathologic parameters relating to plaque vulnerability are summarized in Table 2.1 for

each of the 17 specimens. The last four specimens exhibit the hallmarks of vulnerable plaque and

are so classified: specimen #14 contains an intraplaque hemorrhage, specimens #14-17 all have

thin (< 65 pum) fibrous caps, some of which also exhibit the presence of ulceration, superficial foam

cells, and necrotic core. The remaining specimens (#1-13) do not have the necessary combination

of features to be deemed vulnerable.

Figure 2-2 shows the model components: oxy-hemoglobin and f-carotene extinction spectra

(DRS), MCR components for IFS at 308 and 340 nm, and Raman morphological basis spectra.

Representative MMS spectra from the three modalities are shown in Fig. 2-3 for (a) intimal fibro-
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Specimen SNOMed Intimal or Necrotic Foam Foam Intraplaque Ulceration
number Classification fibrous cap core cell cell grade hemorrhage

thickness thickness depth (0-3+)
(microns) (microns) (microns) - - -

1 IF 24-64 -

2 IF 40-80 - -

3 ATS 480-500 - 480 3+ - -
4 ATS 240-440 - 40 1+ - -
5 ATS 456-536 - 456 2+ - -
6 ATM 200-320 400 280 2+ - -
7 ATM 460-640 560 - - -
8 ATM 440-500 4800 440 2+ - -
9 ATM 1000-1500 6400 1800 1+ - -
10 ATM 520-640 1340 640 2+ - -
11 CATM 140-160 1840 68 1+ - -
12 CATM 120-480 4000 120 1+ - -
13 CATM 1440-1600 240 256 1+ - -
14 CFS 0-400 - - - Acute Fissure
15 FS 40-80 - - - - Rupture
16 ATS 27-52 - 0 1+
17 ATM 0-280 1600 28 2+ - Rupture
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Figure 2-2. a) Extinction coefficients of oxy-hemoglobin and beta-carotene; b) MCR basis spectra components for

IFS at 308 nm; c) MCR basis spectra components for IFS at 340 nm; d) Raman morphological model basis spectra.

plasia, (b) non-vulnerable atherosclerotic plaque, and (c) vulnerable atheromatous plaque. The

difference between the measured spectrum and the model fit, the residual, is shown below each

spectrum. Lack of significant structure in the residuals demonstrates that the model accounts for

the majority of spectroscopic features observed and robustly describes the data.

The following spectroscopic parameters showed the best correlation with morphologic features

of vulnerable plaque: DRS hemoglobin concentration [HbO 2], DRS scattering parameter A, IFS

parameter p = C308/C 340 and Raman parameter E = CC + FC/NC.

The DRS spectra are composed of contributions from absorption and scattering. The absorption

is primarily due to oxy-hemoglobin, with a smaller contribution due to 0-carotene. The scattering

58



DRS

S0.2

- O1

300 450 600 750
Wavelength (nm)

•0.2• : 5

(b) 0.0.1

300 450 600 750
Wavelength (nm)

0.2
(c) o.

300 450 600 750
Wavelength (nm)

IFS30os IFS340
Raman

,"'

C

Wavelength (nm)
750

Wavelength (nm)

Wavelength (nm)

300 450 600 750
Wavelength (nm)

S0.8

-0.4

S0.2

0

300 450 600 750
Wavelength (nm)

300 450 600 750
Wavelength (nm)

Wavenumber (cm"1
)

Wavenumber (cm "
)

Wavenumber (cm "1
)

Figure 2-3. Representative spectra (dotted blue line), fits (solid red line), and residuals between the data and
fit (solid black line) of the MMS modalities for three specimens with different pathologies: a) intimal fibroplasia;
b) atherosclerotic plaque (not vulnerable); and, c) vulnerable atheromatous plaque. Note the progression of an

increased presence of hemoglobin (420 nm absorption dip in DRS) for the three specimens. The IFS spectra for
intimal fibroplasia are broader (characteristic of elastin) when compared to the more narrow spectra for the plaques
(characteristic of collagen in the fibrous cap). The Raman spectrum of c) is noisy, due to the decreased signal intensity
associated with hemoglobin absorption.

parameter A is related to the total amount of scattering produced by the tissue. The parameters

[HbO 2] and A are given in Figs. 2-4a and 2-4b, respectively, for the 17 specimens.

Components MCR 1 and MCR 2 of IFS at both 308 and 340 nm (Fig. 2-2) exhibit features

similar to the IFS spectra of collagen and elastin, respectively, as reported in previous studies at

similar excitation wavelengths [70, 128, 129]. According to these previous studies, the fluorescence

emission of elastin and the fluorescence emission of lipids (or necrotic core) are very similar at these

excitations. Both IFS MCR 1 and the fluorescence spectrum of collagen are blue shifted and more
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Figure 2-4. Spectral parameters for each of the 17 specimens: a) hemoglobin concentration (mg/mL) obtained from
DRS, used to detect intraplaque hemorrhage; b) scattering parameter A (relative units) obtained from DRS, used to
detect the presence of foam cells; c) p parameter (relative units) extracted from IFS 340 and IFS 3os, used to detect
a thin fibrous cap (The value of p for specimen #1 (*) is undefined as C340 is within the error for this sample); and
d) the E parameter (relative units) extracted from the Raman fit coefficients, used to obtain information about the
presence of necrotic core. The error bars indicate one standard deviation.

narrow when compared to IFS MCR 2 and the fluorescence spectrum of elastin, which has a longer

tail. Thus, we conclude that the corresponding fit coefficients C308 and C340 of MCR 1 are related

to the amount of collagen present within the tissue volume sampled. We define an IFS parameter

p as the ratio of the fit coefficients of MCR 1 at 308 and 340 nm excitation (p = C308/C340), which

is related to the amount of collagen present and the depth at which it is found. Since the sampling

depth at 340 nm excitation is greater than that at 308 nm (see Sec. 2.3.1), C340 provides information

about collagen distributed over a greater depth compared to that provided by C308. Values of p

are shown in Fig. 2-4c for each of the specimens. (For additional results relating to collagen depth
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sensing with IFS, see Sec. 2.6.) A value of p was undefined for specimen #1 as C340 was smaller

than the error in this case (see Sec. 2.3.3), implying a potential division by zero.

Previous diagnostic algorithms [86] were able to discriminate plaque content using the sum

of the Raman fit coefficients for CC and FC/NC. Similarly, we defined a parameter E = CC +

FC/NC, which is given for each specimen in Fig. 2-4d. We will use E to measure the presence of

necrotic core.

* 2.3.3 Error analysis

In order to determine the error (uncertainty) in our spectral parameters, we performed a chi-square

analysis and applied the error propagation formula [103]. Chi-squared (X2) analysis is a standard

method for calculating the goodness of a fit and the uncertainty associated with fitting parameters.

Uncertainties reported for p and E are based upon propagating the uncertainty from the individual

components. The error bars in Fig. 2-4 that indicate the uncertainty of each extracted parameter

are generated from this analysis. We could have equivalently performed the uncertainty analysis

of Raman and IFS spectra using the Ac analytical framework presented in Sec. 3.1 while X2 would

still need to be used for the nonlinear DRS fitting as described in Sec. 3.2.

* 2.4 Discussion

We compare the extracted spectroscopic parameters with the measured morphologic features, and

demonstrate how the former can be used to make inferences about the latter, and thus serve to

characterize plaque vulnerability. The small size of this sample set is somewhat compensated for

by our ability to directly compare spectroscopic features with those of pathology.



* 2.4.1 Intraplaque hemorrhage

. Intraplaque hemorrhage is an unambiguous marker of plaque vulnerability. Histopathology in-

dicates that specimen #14 is a site of acute intraplaque hemorrhage (Table 2.1, Fig. 2-5a); the

other specimens are not hemorrhagic. MMS indicates that specimen #14 also exhibits a high value

of [HbO 2] (9.5 mg/mL) as assessed by DRS (Fig. 2-4a), whereas all other non-hemorrhagic spec-

imens have relatively low [HbO 2] values (< 3 mg/mL). This indicates that a high concentration

of hemoglobin inside the plaque, as measured by DRS, is consistent with intraplaque hemorrhage.

The intraplaque hemorrhage in sample #14 was not detected by Raman spectroscopy (though the

hemoglobin basis spectrum) because of the presence of calcification in the tissue. The contribution

of CM dominates the Raman spectrum of specimen #14 and marginalizes the contribution from

all other components.

0 2.4.2 Foam cells

The presence of superficial foam cells is associated with plaque ulceration/erosion, and their de-

tection is important in assessing plaque vulnerability [130]. We compared the magnitude of the

scattering parameter A for specimens rich in foam cells and those without foam cells. It appeared

that a threshold value of A could serve as a parameter for assessing the presence of foam cells. To

enable an accurate comparison in establishing this threshold, we only considered specimens with

a relatively thick fibrous cap. Two representative specimens with superficial foam cells (#11 and

#12) had a mean value of A of 2.3 whereas two specimens without superficial foam cells (#7 and

#9) had 1.7 as the mean value of A. Based on this, a threshold value of A = 2 was selected.

Foam cells are present in all 10 specimens with A > 2 (Fig. 2-4b), and they occur at an average

depth of 250 pm below the surface of these plaques (Table 2.1; Fig. 2-5b). Foam cells are observed
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Figure 2-5. Photomicrographs of representative tissue sites: a) specimen #14, an ulcerated vulnerable plaque with
acute intraplaque hemorrhage (insert; arrows indicate red blood cells) and hemoglobin fit contribution of 9.5 (mg/mL)
(H&E; 4X); b) specimen #17 a vulnerable plaque with superficial foam cells (arrows) and scattering parameter A >
2 (H&E; 20X); and c) specimen #9, a non-vulnerable plaque with deep foam cells (insert) and scattering parameter
A < 2 (H&E; 4X).



in only 2 of the 7 specimens with A < 2, and these foam cells tend to reside deeper in the plaque,

at an average depth of 1100 pm (Table 2.1, Fig. 2-5c). Given the range of several hundred

pm sampling depth for DRS excitation wavelengths, we do not expect to sense such deep lying

foam cells; moreover, these deep-lying foam cells are not clinically relevant to plaque vulnerability.

The inverse relationship of A with foam cell depth suggests that foam cells, which contain a high

concentration of lipid vacuoles, are strong light scatterers and that their presence near the surface

should markedly enhance tissue scattering. Thus, the intensity of scattering, as measured by DRS,

can be used to indicate the presence of superficial foam cells.

0 2.4.3 Thin fibrous cap

A thin fibrous cap is the hallmark of a vulnerable plaque. As discussed earlier, the parameter

p = C308/C340 assesses the amount of collagen present in the top layer of tissue. A large value of p

indicates a thinner layer. Hence, p can provide information about the thickness of the fibrous cap.

To study this, we performed a two-layer Monte Carlo numerical simulation in which we varied the

thickness of a top collagen-rich layer, modeling the collagen that comprises the fibrous cap, where

the bottom layer (elastin or plaque core) is presumed to be semi-infinite. We assumed collimated

delivery of excitation light in a uniform beam of 200 pm diameter; fluorescence was generated in the

tissue proportional to the fluence of the excitation light within the varied top layer. The fluorescence

collected at the surface, over an area of 400 pm diameter that is specified by the ring of collection

fibers of the probe, was compared for 308 and 340 nm excitation wavelengths. As expected, the

ratio of the collected fluorescence excited by 308 versus 340 nm light is a monotonically decreasing

function of the thickness of the fluorescing layer, asymptotically leveling off, as shown in Fig. 2-6.

For a 65 pm thick layer, the value of the ratio is approximately in the middle of the range. This
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Figure 2-6. Simulated value of p as function of the thickness of the fibrous cap. The Monte Carlo simulation was
run with two layers: top collagen-rich layer (variable thickness) and bottom collagen-free layer (semi-infinite). For
each thickness of the top layer, a ratio of fluorescence (-420 nm emission) generated by 308 nm and 340 nm excitation
was calculated.

suggests that the value of p in the middle of our experimental range of p's can separate specimens

with thin fibrous caps from those with thicker caps. We thus chose p = 1.8 as the threshold value.

Indeed, of the diseased specimens (#3-17), all those with p > 1.8 (#14-16) have a minimum

fibrous cap thickness well below 65 pm (Table 2.1), whereas the remaining diseased specimens have

thicker fibrous caps. (It remains to be determined if and how the p parameter should be applied to

intimal fibroplasia, as with specimens #1-2, given that the amount of intimal collagen may vary.)

In specimen #17, the small value of p is not consistent with the histologically observed thin cap

and associated plaque rupture. However, pathology also indicates that some portions of the fibrous

cap are thick (range 0-280 pm), which can explain the small value of p. With this caveat, the
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parameter p, an indicator of the amount of collagen present in the topmost tissue layer, can be

used to estimate fibrous cap thickness.

M 2.4.4 Necrotic core

When a large necrotic core is exposed to luminal blood flow following rupture of the fibrous cap,

the coagulation cascade is triggered, resulting in thrombosis. We used the diagnostic parameter E,

defined as the sum of the Raman fit coefficients for cholesterol crystals (CC) and foam cells/necrotic

core (FC/NC), to assess presence of a necrotic core (Fig. 2-4d). Eleven of 14 specimens with E > 0.4

had either a necrotic core or were rich (> 2+) in foam cells; only 1 of 3 specimens with E < 0.4 had

a necrotic core. Specimen #8 has a large necrotic core but E < 0.4; however, this plaque has a thick

fibrous cap (> 440 pm), so the penetration depth of 830 nm light may not sufficiently sample the

necrotic core in this case, and such a deep necrotic core is not associated with plaque vulnerability.

In contrast, specimens #14 and #15 have high values of E but lack foam cells and necrotic core. It

should be noted that these specimens are fibrotic-sclerotic plaques, demonstrating a well-developed

fibrous cap but lacking a necrotic core and cholesterol crystals. Some investigators regard these

as end stage plaques, in which the necrotic core may have been resorbed. Further studies will be

needed to fully understand the significance of E, particularly in fibrotic-sclerotic plaques, but the

results from this small sample set indicate the ability of E to detect necrotic core.

M 2.4.5 Identifying vulnerable plaques

Fibrous cap thickness is a key parameter and, taken together with the presence of necrotic core or

foam cells, can serve as an indicator of plaque vulnerability. In addition, the presence of intraplaque

hemorrhage, by itself, indicates a vulnerable plaque. For our sample set, having p > 1.8 (thin fibrous

cap) taken together with A > 2 (foam cells) and/or E > 0.4 (necrotic core), correctly identifies
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three of the four vulnerable plaques (#14-16). A value of [HbO 2] > 5 (intraplaque hemorrhage) by

itself, also correctly identifies sample #14 as vulnerable. As discussed earlier, sample #17, which

exhibits rupture and is vulnerable, would be missed by this identification scheme. The ability to

localize small regions of thinning of the fibrous cap is under investigation. All non-atherosclerotic

samples (#1-2) and non-vulnerable plaques (#3-13) are correctly identified as such.

* 2.5 Summary

This pilot study demonstrates the feasibility of using a combination of diffuse reflectance, intrinsic

fluorescence, and Raman spectroscopy to detect morphological markers of vulnerable plaque. The

approach is based on the correlation of parameters obtained from different spectroscopic modalities

with pathology features and follows from a simple physical picture of the way light probes bio-

logical tissue. These spectroscopic parameters allow depth-sensing and provide information about

intraplaque hemorrhage, superficial foam cells, a thin fibrous cap and large necrotic core, morpho-

logic features that are associated with plaque vulnerability. In view of the small size of the sample

set, these results should be considered preliminary. However, given these promising results, a larger

study is warranted to establish the full potential of MMS by assessing spectral variability across

many different pathologies and patients. The larger study will permit regression and statistics to be

employed to validate these initial conclusions. Advances in instrumentation and the development of

small-diameter side-viewing probes will enable percutaneous access to vessels and potentially pro-

vide clinically relevant information about plaque morphology. Thus, this method has the potential

to guide diagnosis and treatment of atherosclerotic cardiovascular disease.



E 2.6 Addendum 1: Detecting fibrous cap thickness revisited

After publishing the results from this pilot study [131], the idea of sensing fibrous cap thickness with

IFS was revisited. Instead of using the previously described parameter p = C308/C340 that gives

the ratio of collagen contributions to IFS excited at two different wavelengths, one can propose an

alternate parameter:

Rc C340 (2.5)
C340 + E 340 '

where C340 is the collagen-like contribution and E 340 is the elastin-like contribution. (The assump-

tion is, again, that what is referred to as elastin-like fluorescence could also have originated from

lipids and/or necrotic core.) The parameter RC still assumes the two layer model: a top collagen-

rich layer overlying a bottom elastin or necrotic core layer. The advantage of the Rc parameter

is that it is computed at only one wavelength, in this case for 340 nm excitation IFS, and that it

essentially gives the relative amount of collagen observed in the IFS signal. In other words, Rc = 0

specifies a pure elastin-like contribution while Rc = 1 specifies a pure collagen-like contribution.

The diagnostic sensitivity of the proposed Rc parameter was evaluated in two ways. In the first,

an analogous Monte Carlo simulation to the one presented in Fig. 2-6 was performed and the value

of Rc was calculated for various thicknesses of the fibrous cap. Secondly, the Rc parameter was

calculated for the 17 specimens. Both of these results are given in Fig. 2-7. For ease of comparison

to the previous figure, the value of Re 1 is plotted.

From the comparison between the Monte Carlo simulations, one can conclude that the RC1

parameter is much more sensitive that the p parameter, as evidenced by the larger contrast in the

parameter value for thin fibrous caps. Moreover, the experimental diagnostic ability of the RC1

parameter is equivalent to, if not better than, that of the p parameter when applied to the 17
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specimens. One can immediately observe the much higher difference in the value of R- 1 for the

thin fibrous caps and thick fibrous caps. The relatively high value of the Rj 1 parameter can still

identify the three thin fibrous cap plaques, samples #14-16, while having the same limitation with

specimen #17 as the p parameter. As stated earlier, the value of Rc1 for specimens #1 and #2

(*) cannot be clearly interpreted, as the fibrous cap two-layer model need not apply to intimal

fibroplasia.

In summary, Monte Carlo simulations show that the Rc I parameter exhibits more sensitivity

to detecting thin fibrous caps and that proposed robustness is supported by the experimental data

for the 17 specimens.

S 2.7 Addendum 2: Freeze/thaw effects on tissue spectroscopy

Although the freeze/thaw process is known to introduce artifacts in fluorescence spectra of epithelial

tissues [132, 133, 134], it is expected that these changes are less significant in artery wall than in

epithelial tissues [70]. This is because our current artery models involve largely structural proteins,

lipids and calcium salts that are unlikely to be affected by the freeze/thaw process. Evidence from

the pilot clinical study in patients with peripheral artery disease supports this assumption, as the

Raman spectra obtained in vivo were fit well by the spectral model developed using data obtained

in vitro from frozen-thawed tissue, with the addition of basis spectra for probe components and

oxy-hemoglobin [89]. Although it is possible that the IFS and DRS spectra may be more subject to

freeze/thaw effects, this is not believed to be the case, as preliminary studies showed little difference

in DRS and IFS spectra obtained from arterial tissue before and after freeze-thawing [64]. Figure

2-8 shows some representative ex vivo spectra from artery tissue that indicate that the freeze/thaw

effect is minimal in DRS and IFS.
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Figure 2-8. Freeze/thaw effects on DRS and IFS spectra of artery tissue. DRS (top) and IFS (bottom) spectra
from two ex vivo artery tissue locations were collected, the tissue was then snap-frozen in liquid nitrogen and kept in
the freezer for 60 days, after which the samples were thawed and spectra collected again.



Nevertheless, although our data to date indicate that freeze-thaw effects are not significant in

arterial tissue for Raman, DRS or IFS, it may be necessary to obtain fluorescence basis spectra from

fresh tissues, most likely "thin" sections obtained using a fresh tissue microtome, should problems

with freeze/thaw effects arise.
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Chapter 3

Data and uncertainty analysis

This chapter describes ways to estimate uncertainty in parameters extracted from spectroscopic

measurements. It is broken down in two sections, the first dealing with linear models (Raman and

IFS) and the latter discussing the application of nonlinear models (DRS). For linear models, we

build on previous work to develop an analytical expression for estimating uncertainty from a single

measurement. On the other hand, for nonlinear models we utilize x 2 analysis owing to an absence

of valid analytical frameworks for characterizing uncertainty.

N 3.1 Linear fitting - IFS and Raman

* 3.1.1 Introduction

As overviewed in Sec. 1.4, uncertainty calculations can be performed by means of repeated measure-

ments, X2 analysis, or through mathematical modeling of the system performance. In this section,

we follow the third approach to uncertainty analysis and present a method of analysis that can be

used in conjunction with a single spectrum to provide physical insight into the sources of uncer-

tainty. The analytical expression employed for this purpose describes concentration uncertainty as

a function of measurement noise, signal strength, and spectral overlap: quantities easily extracted

from spectroscopic measurements. As such, the method can guide improvements in data modeling,
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as well as optimization of the instrument. This approach can be considered as an extension and a

complement to previous work of our research group [135]. In that study, we derived an analytical

expression for the limiting uncertainty in analyte concentrations extracted from Raman spectra

using partial least squares (PLS), and showed it to hold experimentally [135]. Uncertainty was

expressed as a function of measurement noise and the b-vector using PLS. Since then, we have

worked on characterizing the lower bound on the uncertainty in extracted concentrations using a

more generally applicable approach [136]. Other groups have employed our framework in analyzing

the uncertainties and sources of error in spectroscopic measurements [137].

Our approach is a special case of the error analysis of Lorber and Kowalski [104] where cali-

bration is very accurate and thus model uncertainty is negligible. This is often the case, because

variables such as integration time may be increased or optimized for the calibration data. There-

fore, in the limit in which calibration noise is small, uncertainty will be dominated by measurement

noise in the prediction sample.

Although we are focusing on the case when measurement noise dominates, the analytical expres-

sion presented here can be used, in many cases, even when model uncertainties are not negligible.

Therefore, we may calculate both actual uncertainty, which takes into account modeling and mea-

surement noise, as well as the limiting uncertainty, where model noise is disregarded. The limiting

uncertainty, the unavoidable uncertainty associated with the inherent spectral noise in the predic-

tion sample and the spectral makeup of the model, also specifies the smallest concentration at which

a constituent can be detected. This approach is applicable to concentration measurements and for

determining diagnostic accuracy of parameters obtained for spectral diagnosis of disease, using

linear spectroscopic techniques such as Raman scattering or fluorescence, and is very important in

system design and evaluation.
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In the following, we derive an analytical expression for the limiting uncertainty, and show its

equivalence to X2 analysis. We demonstrate that the concentration uncertainty calculated by the

analytical formula is in good agreement with that measured experimentally from aqueous solutions

of clinically-relevant analytes. Furthermore, we demonstrate that in this case the calculated actual

uncertainties are very close to the limiting uncertainties, which is indicative of the accuracy of our

data acquisition and modeling. To illustrate the biomedical application of this analytical formula,

we calculate uncertainties of parameters extracted from tissue spectra that are used in disease

diagnosis.

* 3.1.2 Theory

We adopt a linear algebra approach and notation in this paper. All vectors are column vectors and

are denoted by bold lowercase letters. Similarly, matrices are bold uppercase letters comprising

multiple column vectors, where size is indicated in parentheses (rowxcolumn). Measurements and

spectra are denoted as vectors, in that each element represents the response of a particular detector

(e.g. CCD pixel). Many of the results presented below follow from Kay [138], a standard text in

statistical signal processing.

Linear model.

We begin with the standard additive noise linear model:

s=Pc+w. (3.1)

The vector s is the observed measurement (Mxl), the matrix P contains the model constituent

vectors (MxN) and is full-rank, the vector c contains the underlying coefficients of the model
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constituents (Nx 1), and the vector w represents noise in the system (Mx 1). Here M represents

the number of wavelengths and N represents the number of model components. In other words, the

measured vector s is a linear combination of the model components in P, weighted by the coefficients

in c, and with the addition of random measurement noise w. The w is assumed to be a zero-

mean Gaussian random vector with a known or measurable covariance matrix Cw. Our goal is to

analytically determine the best estimate c (fit coefficients) of the true underlying coefficients c and

the uncertainty specified by the standard deviation of that estimate. The application of the model,

Eq. (3.1), to characterize spectroscopic measurements is appropriate. Raman and fluorescence

spectra (s) have been shown experimentally to be linear combinations of the distinct individual

spectra of the underlying chemical species that can be measured in isolation (P) and proportional to

the concentration of those species (c) [139, 140]. Measurement noise (w) is typically associated with

the measurement system and detector, and its statistics (Cw) can be readily measured; moreover,

the Gaussian assumption also holds well in practice. It should be noted that Eq. (3.1) is a special

case of a more general formulation by Lorber and Kowalski [104] that can be specialized for our

model as

s=(P+6P)c+w=Pc+w'. (3.2)

The formulation of Eq. (3.2) also includes modeling uncertainty, 6P, taking into account the un-

certainties of the concentrations and measurements of the constituent spectra. If the modeling

uncertainty is also assumed to be Gaussian, its effect can be lumped together with the measure-

ment noise as w', where the covariance of w' is greater than that of w in Eq. (3.1). As noted

earlier, in most of this paper we are interested in the limiting case in which the measurement noise

of the prediction sample, w, is the dominant source of uncertainty. In this way we calculate the



limiting uncertainty.

Estimator performance.

In determining the optimal estimator, we restrict our attention to unbiased estimators: those

that, on average, accurately return the underlying parameters c. From the linear model with the

assumptions described above and estimation theory, one can derive the minimum variance unbiased

(MVU) estimator [138]:

S= (pTC P)-1pTCw-1s. (3.3)

This estimator is desirable because out of all possible unbiased estimators, it is the one that achieves

the minimum variance for all combinations of unknown underlying parameters c. For the MVU

estimator of Eq. (3.3), it can be shown [138] that its covariance matrix is:

cov() = (pTC wlP)-1. (3.4)

The diagonal entries of this matrix specify the variances of each Ck fit coefficient. This is the most

general result as it specifies the covariance and, in turn, the uncertainty, of our estimate for any

particular noise covariance Cw and the model matrix P. The result of Eq. (3.4) can be specialized

by assuming that w is white (i.e. uncorrelated and identically distributed) Gaussian noise so that

Cw = ea2I. With this assumption, the MVU estimator and the covariance are given by [138]:

S= (PTp)-lpTs. (3.5)

cov(C.) = 0 2(pTp)- 1. (3.6)



The estimator, Eq. (3.5), can also be recognized as the OLS solution for c, and each row of

(pTp)-lpT corresponds to the b-vector for that particular component.

One final remark involves the concept of the Cramer-Rao Lower Bound (CRLB) from estimation

theory [138]. The CRLB is a lower bound on the covariance of any unbiased estimator. It can be

shown that the covariance of this MVU estimator, Eq. (3.6), is equal to the CRLB and hence the

estimator is deemed efficient [138]. Moreover, for the linear model given above, the efficient MVU

estimator implies that it is also the maximum likelihood (ML) estimator. We shall revisit this last

point later.

Simple formula: AC.

The estimation framework and the CRLB described above are well-known, general concepts ap-

plicable to any type of linear system with the above-mentioned assumptions. However, physical

insight can be provided by specializing Eq. (3.6) in order to elucidate variables relevant to spec-

troscopy. We can express P = QS, with S being a diagonal matrix where the kth diagonal entry,

Sk, is the Euclidean norm of the kth component in P, as follows:

M

Sk i(Pi,k)2. (3.7)
i=l

and the columns of the matrix Q are thus normalized to unit length. This leads to a simple

expression for the standard deviation, Ac, of the kth estimated parameter ^k:

Ac _ std(~k) = a (PTP)~(kk) QT k) = S k, )- ( Q) - olfk (3.8)



The first factor on the right hand side, a, describes the measurement noise and Sk quantifies the

signal strength of the kth model component at unit concentration. The spectral overlap factor,

olfk, indicates the amount of non-orthogonality (overlap) between the kth model component and

the other (N-1) model components. The overlap factor may take on values between 1 and oo.

If all of the columns of P (or, equivalently, Q) are orthogonal (no overlap), then olfk = 1. In

the other extreme, if the kth column of P (or Q) is nearly linearly dependent with one or more

columns (almost complete overlap), then QTQ is close to singular and its inverse does not exist. In

a generalized sense, olfk then approaches oo. (In the case of two columns being linearly dependent,

one of the two columns should be removed so that P becomes full rank, as was specified earlier). In

other words, when the model P contains orthogonal constituent spectra, the estimator uncertainty,

Ac, is equal to the ratio (a/Sk) of the measurement noise to the signal strength for that particular

component. In the extreme case of complete spectral overlap (two chemicals with very similar

Raman or fluorescence bands across the wavelength range of interest), the estimate is unreliable

so Ac approaches oo. For the more commonly encountered case of partial spectral overlap of the

linearly independent spectral components of P, we have 1 < olfk < 00 and Ac is a function of

the three physically understandable quantities: a, Sk, and olfk. The concept of overlap factors

as defined here is directly related to variance inflation factors (VIF), first proposed by Marquardt

[141]. The relation of VIFs to the concept of condition number as well as other relevant methods for

evaluation of spectral overlap are described by Kalivas [142]. The spectral overlap is also related to

the NAS of a particular analyte in that the former measures overlap (interference) while the latter

is an indication of non-overlap (orthogonality).



Limiting vs. actual uncertainty.

We note that, of the three parameters, a varies from sample to sample because shot noise is

dependent on the sample-specific raw signal, whereas Sk and olfk are sample-independent for a

given spectroscopic technique and model. The value of a can be obtained in two different ways.

One approach is to calculate a from each pixel across many repeated measurements. The alternative

approach, which requires only a single measurement, is to calculate a from the residual between

the observed spectrum and the best fit using Eq. (3.5). The former value of a specifies the limiting

uncertainty while the latter value specifies the actual uncertainty through Eq. (3.8). Therefore, we

have

Iim (Sij - )2 (3.9)S i=1 j=1

aact= (s-Pc)T(s-Pc), (3.10)

where alim is calculated as the root mean squared value (across M pixels) of the standard deviation

of a representative pixel ai calculated from L repeated measurements, while 0act is calculated from

the residual as the root mean squared between the data s and the fit Pý. Under the assumption

of Eq. (3.1) that the only source of uncertainty is measurement noise, both approaches should

yield the same value for a. However, if there are also modeling uncertainties as in Eq. (3.2), then

only the second approach yields the actual a, as the residual includes measurement and modeling

noise. Therefore, ,act > Glim, and the difference between the actual and limiting a can serve to

evaluate the accuracy of the modeling. In most of the following we use Eq. (3.10) to calculate a.

By extension, we can define Acact and Aclim using the values of c-act and aoim, respectively.
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Relation to chi-squared (X2).

A statistical method of calculating the uncertainty in extracted parameters can be implemented

through X2 analysis. This quantity is defined as

X2 N datai - fiti) (3.11)

i= 1

Maximizing the likelihood of observing a particular measured spectrum (in random Gaussian noise)

is equivalent to minimizing X2. The value of a parameter that minimizes X2 is the optimal ML value.

The X2 function (of the underlying parameter) is parabolic in the vicinity of the minimum, and the

curvature of the parabola is proportional to the uncertainty (standard deviation) in that parameter

[103]. Specifically, the variance of the parameter is equal to the reciprocal of the curvature of the X2

function [103]. Equivalently, an increase of one standard deviation of the parameter from the value

at the minimum increases X2 by unity [103, 143]. The X2 approach can be used in conjunction with

many fitting procedures, regardless of whether the underlying fitting model is known (or directly

measurable) or determinable through calibration. The analytical expression for Ac, Eq. (3.8), is

equivalent to the one obtained statistically through X2 analysis. This is to be expected, since the

MVU estimator (or the least squares estimator) is equivalent to the ML estimator. Hence the

criterion, used in determining the ML estimate, should yield the same value for the parameter

uncertainty as the analytical formula obtained for the MVU estimator. This is demonstrated in

Secs. 3.2 and 3.3 in more detail.



E 3.1.3 Methods

In this section we demonstrate the application of the above error analysis formalism to the estima-

tion of experimental uncertainty in a set of spectral measurements. Two experiments are performed,

both using near infrared Raman spectroscopy. In the first experiment, we prepare aqueous mixtures

of known concentrations of clinically-relevant analytes by dilution from stock solutions. Our goal is

to extract the concentration measurements from the spectral data using OLS fitting of component

spectra. The reference analyte concentrations are accurately known and the spectral noise of the

component spectra is minimal. Therefore, we can demonstrate both accurate extractions of con-

centrations in the prediction set and accurate assessment of their uncertainties via our formalism.

In the second experiment, we record spectra of human artery tissue from which we obtain diag-

nostic parameters. Although the spectral components of the artery tissue spectra are known with

minimal uncertainty, accurate reference concentrations are unavailable. Therefore, we again utilize

OLS, but we obtain the relative (normalized) fit coefficients for each model parameter. From this,

we demonstrate uncertainty assessment of measurements from biological tissue and the resulting

confidence in a particular diagnosis.

Concentration measurements.

Raman spectra were acquired from 60 aqueous solutions of glucose, creatinine, and urea with ran-

domized analyte concentrations ranging from 0 to 50 mM. The solutions were contained in a 1

cm fused silica cuvette that had been photobleached for one hour to deplete fluorescent impurities

prior to the start of the experiment. The Raman system consisted of an 830 nm diode laser that

was directed through a holographic bandpass filter (Kaiser Optical Systems, Inc.) and aperture to

reduce emission outside the center wavelength. An external photodiode monitored the intensity of
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the laser beam and was used to correct for intensity variations. The laser beam was then passed

through beam shaping optics and focused into the cuvette through a small hole in a gold-coated

paraboloidal mirror (Perkin Elmer). The power at the sample was 217 mW with a spot area of -

1 mm2. Backscattered Raman light was collected by the paraboloidal mirror and passed through a

2.5 inch notch filter (Kaiser) to reject the Rayleigh peak at 830 nm. The filtered light was focused

into an optical fiber bundle composed of 65 fibers, core diameter 396 pm, NA = 0.37 (Romack

Fiber Optics). The input end was in the form of a circle and the output end was a single row of 65

fibers, serving as the entrance slit of an f/1.4 spectrometer (Kaiser). The light was dispersed with

a holographic grating onto a liquid nitrogen-cooled CCD detector (1300x 1340b, Roper Scientific).

The integration time per spectrum, 2s, constituted one "frame," and 30 consecutive frames were

collected. Spectra from 280-1700 cm- 1, occupying 1000 CCD pixels, were used in all data analysis.

Owing to the large CCD size and the high-NA imaging system, the entrance slit image appeared

curved on the CCD. Direct binning of vertical pixels would result in highly degraded spectral res-

olution [144]. To correct the image curvature, a processing routine was developed that utilizes

multiple spectral lines of a strong Raman-active material such as acetaminophen for curvature cali-

bration. The algorithm preserves instrumental diffraction-limited spectral resolution and improves

wavelength accuracy of the measured spectra. The constituent spectra of the three chemically

active species (glucose, creatinine, and urea) acquired at 53 mM concentration, as well as those

of water and cuvette, are shown in Fig. 3-1. By applying the OLS fitting specified by Eq. (3.5),

the experimentally measured, offset-corrected total spectrum from each frame can be decomposed

into the concentrations of the underlying constituents. (Alternatively, if the spectral noise is not

white, Eq. (3.3) can be used in place of Eq. (3.5).) All of the spectral fitting was performed in the

wavelength (CCD pixel) domain.



0
0
0
x

0C,Y

Q
0

0r
o
o

300 500 700 900 1100
CCD pixel

I , I I

400 800 1200 1600

Wavenumber (cm')

Figure 3-1. Constituent Raman spectra - glucose, creatinine, urea, water and cuvette - plotted as functions of

wavelength (CCD pixel). The corresponding wavenumber scale is indicated below.

Some of the raw experimental spectra contained a distortion in the middle of the spectral range.

This artifact, which varied in size from frame to frame, is attributed to variations in the opening

and closing of the mechanical shutter that gates the CCD camera, which allows relatively more (or

less) light to be collected in the middle of the spectral range. Although the amplitude of this artifact

was not very large in absolute terms (50-100 counts out of , 7000), the changes in the predicted

concentrations from these faulty frames were significant, creating statistical outliers from the mean

of the 30 repeated measurements. The faulty frames were easily identified by looking at the shape

of the residuals between the data and the fit and were thus excluded from the ensuing analysis by

setting a threshold on the amplitude of the residual. This resulted in the removal of 440 frames out
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of the original 1800, so that each sample contained a set of approximately 25 measurements with

minimal experimental artifacts.

Measurement of diagnostic parameters.

We have applied the Ac analysis to experimental Raman spectra obtained from human artery

tissue to illustrate the application of this analysis method to disease diagnosis. The experiment

with excised human carotid artery tissue was part of a separate study and is described in detail

elsewhere [131]. The spectra were acquired using a clinical Raman system [88] and Raman spectral

probe [87]. The excitation wavelength was 830 nm, laser power was 100 mW, spot area - 1 mm2,

and the collection time was 5 seconds, typically acquired in 20 consecutive measurements of 0.25

seconds each. The details of the system are described in Ref. [88]. Raman spectra were extracted

from the raw spectra by performing a white light correction, removing probe-related background,

and subtracting tissue fluorescence [88, 87]. A model composed of Raman-active tissue constituents,

obtained from confocal Raman microscopy spectra of eight artery morphological structures [85],

was used to fit the data using OLS. Prior to fitting, the Raman tissue spectra were interpolated and

binned onto the same wavenumber scale as the spectral model constituent spectra. Only relative

intensities of the Raman spectral components were obtained, and those relative fit coefficients from

the eight spectral components were normalized to sum to unity, as done previously [89].

* 3.1.4 Results

Concentration measurements.

Figure 3-2 shows the data, the least squares fit using the spectral components, and the difference

between the data and the fit (the residual) for one representative mixture. We can analyze how
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Figure 3-2. Representative data spectrum (blue), the least squares fit (red) and the residual between the data and
the fit (black) obtained from a mixture solution. Spectral fitting is performed in the wavelength (CCD pixel) domain;
the corresponding wavenumber scale is indicated below.

close the predicted parameters ý are to the reference values c by means of the plot of Fig. 3-3. The

root mean squared errors of prediction (RMSEP) across the 1360 total repeated measurements for

glucose, creatinine, and urea are 0.488 mM, 0.270 mM, and 0.321 mM, respectively.

We next turn to uncertainty analysis. An empirical method to calculate the uncertainty associ-

ated with each of the extracted fit coefficients is to repeat the measurement many times, extract the

parameters from each individual measurement, and then calculate the standard deviation across

the entire set. We refer to this as the measured uncertainty. A faster and more broadly applicable

approach to estimate the underlying parameter uncertainty is to employ the analytical formula for
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Figure 3-3. Predicted concentrations using Eq. 3.5 versus the reference concentrations for the three analytes. The
predicted concentrations closely follow the reference concentrations.

Ac, Eq. (3.8). The parameter values calculated for our spectra, the noise (a), signal (sk), and

overlap factor (olfk), are given in Table 3.1.

To analyze how accurately Eq. (3.8) characterizes the true measured uncertainty, Fig. 3-4 plots

the measured uncertainty calculated from the set of repeated measurements for all 60 mixtures

versus Ac. The Ac value for each mixture in Fig. (3-4) was evaluated using an effective a equal

Sk (x 10") olfk
Cuvette 36.1 1.61
Water 59.8 2.44

Glucose 3.58 1.51
Creatinine 4.67 1.42

Urea 3.32 1.17

Table 3.1. Necessary parameters for calculating uncertainty using Eq. (3.8). The constituent glucose, creatinine
and urea spectra were measured at 53 mM concentration. The only value that varies from sample to sample is a.
The value of a in the representative spectrum of Fig. 3-2 is 14.9.
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Figure 3-4. Measured uncertainty (standard deviation from repeated measurements) vs. uncertainty calculated
by the analytic formula, Ac, for the three analytes. The dotted lines indicate the region for which the measured
uncertainty is within a factor of 1.5 of Ac.

to the root mean squared value of the individual o-'s that were calculated using Eq. (3.10) in the

set of repeated measurements. The figure also indicates a 450 line (black) to reference where Ac

equals the measured uncertainty, as well as two additional lines (dotted red) to indicate the region

where the measured uncertainty is within a factor of 1.5 of Ac. Note that every estimated analyte

concentration (Fig. 3-3) can be associated with an error bar using the Ac uncertainty (Fig. 3-4).

Measurement of diagnostic parameters.

Figure 3-5a shows a representative experimental Raman spectrum, the least squares fit using the

artery morphological model, and the residual difference between the data and the fit obtained from

a specimen of calcified carotid artery plaque with 0.25 seconds integration time. The measured
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Figure 3-5. (a) Representative experimental Raman spectrum (blue), the least squares fit (red), and the residual
between the data and the fit (black), obtained from a calcified carotid 'artery plaque in 0.25 seconds. (b) Diagnostic
algorithm, showing several representative Raman artery spectra including the spectrum above (see text for details).
The error bars in the two dimensions are calculated using the Ac equation. (CP = calcified plaque, NCP = non-
calcified plaque, IF = intimal fibroplasia.)



uncertainty in the model fit coefficients was calculated by taking the standard deviation from

the set of fit coefficients extracted from 20 consecutive measurements of 0.25 seconds each. This

measured uncertainty was compared to the average uncertainty calculated by the Ac formula from

Eq. (3.8) applied to any single one of the 20 independent measurements. For the representative

spectrum of Fig. 3-5a, the value of o was 0.041, sk ranged from 2.78 to 8.89 and olfk ranged

from 1.05 to 5.83 for the set of spectral components. The measured and Ac uncertainties for this

particular sample never deviated from each other by more than a factor of two.

A previously developed diagnostic algorithm [86] was applied to the fit coefficients extracted

from the spectrum plotted in Fig. 3-5a. The diagnostic algorithm uses the fit coefficients from three

morphological components [calcium mineralization, cholesterol crystals, and foam cells/necrotic

core (FC/NC)] to classify the artery sample as being non-atherosclerotic (intimal fibroplasia), non-

calcified plaque, or calcified plaque. Because only the relative intensities of the constituent Raman

spectra were employed, the raw fit coefficients were normalized so that they sum to unity; in

this way, the normalized fit coefficients represent the relative contributions of each morphological

feature in the observed spectrum [86]. The calculated uncertainties of each raw fit coefficient were

similarly scaled to provide uncertainties of the normalized fit coefficients: if fnorm = a fraw,

then the uncertainty propagates as Afnorm = a - Afraw. Figure 3-5b shows the diagnosis for the

artery specimen with the spectrum given in Fig. 3-5a, along with diagnoses based on several other

spectra from the artery data set, using the diagnostic space described earlier. The error bars in

the two directions indicate the uncertainty (one standard deviation) of the normalized diagnostic

fit coefficients.
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M 3.1.5 Discussion

Concentration measurements.

We first note that the values of Sk and olfk presented in Table 3.1 make physical sense. Of the

three analytes of interest, creatinine has the greatest value of screatinine, which indicates that it has

a relatively larger Raman scattering cross section compared to the other analytes. Considering the

overlap factors, we note that urea has the smallest Olfurea, which can be understood qualitatively by

the fact that its constituent spectrum does not overlap strongly with the other constituent spectra

(Fig. 3-1).

Turning to the data presented in Fig. 3-3, we note that the relatively small values of RMSEP

given the large range of concentrations means that the estimator is unbiased, as expected. In

addition, we find that the RMSEP values are not very different (<4%) if the data is fit using

Eq. (3.3), which takes into account wavelength-dependent noise variations, rather than Eq. (3.5).

(In making this comparison, Eq. (3.3) is evaluated using a noise covariance, Cw, matrix whose

diagonal elements are the calculated wavelength-dependent variances of each pixel across the set of

repeated measurements while the off-diagonal covariance terms are set to zero. Because the number

of repeated measurements (- 25) was much smaller than the number of points in the spectra (e

1000), a direct calculation of the covariance matrix results in a rank-deficient matrix. Instead of

attempting to correct this by artificially boosting the diagonal elements, we found it more sensible

to just use the individual variances on the diagonals and constrain the off-diagonal covariance terms

to be zero, since we know that our sensors are independent.)

Figure 3-4 indicates that Eq. (3.8) provides an excellent estimate of the measured uncertainty.

The measured uncertainties all lie within a factor of 1.5 of the Ac values calculated by Eq. (3.8),
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as indicated by the dotted red lines in Fig. 3-4, with an average deviation of only 11%. The largest

contribution to the vertical spread is due to the fact that the measured uncertainty is calculated

across a limited number of measurements (- 25), and is thus subject to its own uncertainty. We

calculated the standard deviation of the estimate and found it to be from 10% to 15% of the

recorded measured uncertainty. Much of the horizontal spread is due to the fact that the value of

a used in Eq. (3.8) is also calculated and is thus an estimate of the true a. This estimate is related

to the discussion of actual vs. limiting uncertainty. Any remaining deviations are likely due to

subtle uncontrollable experimental factors.

We can quantify how close we are to the limiting uncertainty by comparing values of a calculated

by Eqs. (3.9) and (3.10). Across the 60 samples, the average value of ,act as calculated by Eq. (3.10)

is about 4% higher than the value of olim as calculated by Eq. (3.9). Although ,act is greater than

C7im, the difference is very small, indicating that this measurement is very close to the limiting

uncertainty. This good agreement is evidence that the linear model is valid and that measurement

noise is the dominant source of uncertainty.

These results indicate that the analytical uncertainty analysis framework is an accurate and

useful way of characterizing the experimental uncertainty obtainable from a single measurement.

We note that great care was taken in accurately measuring the reference concentrations and min-

imizing spectral noise in the model, as well as in collecting the prediction spectra, thus fulfilling

the necessary conditions of Eq. (3.1). Because the data pre-processing steps such as curvature

correction are linear and deterministic, the assumption of uncorrelated noise holds as well for the

corrected spectra as for the raw spectra. However, we observed that the distributions (of pixel

intensities across multiple measurements) are only approximately Gaussian, and this may explain

some of the small deviation. Other sources that account for imperfect agreement between ,,act and
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aOim include the P matrix being imperfect in modeling mixtures due to chemical interactions in the

solution and perhaps other minor inaccuracies in the model.

The agreement presented in Fig. 3-4 is similar to that which would result had Eq. (3.4) been used

to calculate the uncertainties while using Eq. (3.3) to predict the concentrations (data not shown),

using Cw as described above. This result, together with consistent prediction accuracy described

above, underscores the validity of the initial assumption that, when noise is relatively constant

across pixels, Eq. (3.5) and Eq. (3.8) are valid practical approximations to the more analytically

accurate Eq. (3.3) and Eq. (3.4) for the purposes of estimating parameters and their uncertainties,

respectively. In this regime, use of Eq. (3.5) and Eq. (3.8) is advantageous as it can be applied to

a single spectrum, rather than requiring multiple repeated measurements in order to obtain Cw.

Measurement of diagnostic parameters.

The Ac analysis is particularly useful for calculating uncertainty in the parameters extracted from

artery tissue. This uncertainty translates into diagnostic error bars (Fig. 3-5b) that indicate the

confidence of the overall diagnosis. Note that in Fig. 3-5b, one of the diagnostic dimensions is

the sum of two normalized fit coefficients: cholesterol crystals and foam cells/necrotic core. The

uncertainty of the sum involves the uncertainties (variances) of each individual fit coefficients as

well as the covariance of the two, which is specified by the off-diagonal terms of the matrix in

Eq. (3.6).

Consider two specific specimens which are located on opposite sides of the decision line between

calcified and non-calcified plaque, represented by open and solid squares in Fig. 3-5b. Without

knowledge of the uncertainty in these assignments, one cannot be more or less confident of either

classification assignment. The Ac analysis allows for both qualitative and quantitative assessment
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Figure 3-6. The diagnostic probability distributions for the solid and open square from Fig. 3-5b. The mean of
each bivariate Gaussian distribution is specified by the fit coefficients while the covariance is specified by the relevant
elements of Eq. (3.6).

of the confidence of the diagnosis by assignment of error bars, which effectively specify a probability

distribution. If we assume a bivariate Gaussian distribution specified by mean corresponding to

the fit coefficients and covariance matrix calculated by Eq. (3.6), as shown in Fig. 3-6, we calculate

the probability of the solid square specimen being calcified as 80%. Similarly, we calculate the

probability of the open square specimen being non-calcified as 60%. For simplicity, here we have

considered that the classification algorithm is perfect, meaning there is absolute certainty about

the decision, regardless of proximity to the decision line. However, in practice there is an additional

probability associated with classification that arises from an imperfect decision line. Therefore, a
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more rigorous approach would be to use this classifier probability as a weighting factor on the data

point probability in calculating diagnostic confidence.

We note that the value of Uact is on average 15% higher than o'lim for the 17 artery specimens

examined, a somewhat larger discrepancy than that observed for the concentration measurements.

Although data pre-processing steps are linear and deterministic, thus preserving the assumption

about uncorrelated noise, the tissue Raman spectra are fit after interpolation and binning, which

could undermine that assumption. Therefore, we calculated the changes in 0act and 0 lim before

and after interpolation, but found only a small difference (<5%) between the two. We attribute

the remaining differences between aact and alim to minor structure in the residuals that result

in artificially high calculated values of uac,. This finding is not surprising when considering the

complex nature of tissue modeling and indicates that there is room for improvement in the modeling.

Another factor that may help explain the larger discrepancy between 0act and ulim for tissue

Raman measurements is the fluorescence removal pre-processing step. Although this procedure has

been used in numerous previous studies [86, 89, 94], removing tissue fluorescence by means of fitting

and subtracting a 6th order polynomial from the raw data may introduce some unwanted spectral

distortions. These spectral distortions, though surely small, may translate into an overestimate of

aat. Perhaps a more accurate way to remove tissue fluorescence may be by utilizing the method

of frequency shifting, described elsewhere [145]. The method of frequency shifting, or other more

advanced mathematical methods [146], may be explored in future work to address the discrepancy

between act and u1im for tissue measurements.



General comments.

Knowledge of the limiting uncertainty also provides the limit of detection. For example, under the

stated assumptions, if we calculate a value of Ac for a particular sample, we can be reasonably

certain of detecting parameters (concentrations or fit coefficients) on the order of > 3Ac. This

quantity specifies the lowest concentration of an analyte such as glucose that can be detected in

a mixture solution or, equivalently, the smallest contribution of a morphological pure component

from a tissue sample.

The differences between the actual and limiting uncertainties can be broken down into three

cases. In the first case, Uact 7rUim and the residuals are featureless. This implies that Acact

Aclim, indicating that the measurements are being made with minimal uncertainty. Given the small

difference between ,,act and clim for the concentration measurements presented, we can conclude

that these measurements fall in this category. The second case is that ac,t > Uaim and the residuals

are nearly featureless. This implies that there is noise in the model components that can be further

reduced. This case would hold true in applications where the constituent spectra were not measured

directly but rather obtained through PCR, for example; thus, the spectral components (principal

components) may be noisy and add to measurement noise. Even for direct measurements of the

spectral components, a particular component spectrum may contain more noise than others and

may need to be collected again. Most of the artery tissue measurements fall in this category, and

the uncertainty analysis should guide improvements in modeling until the limiting uncertainty is

reached. Lastly, the third case where cact > Uaim and the residuals have structure means that

there are model components missing or there is some other error in the pre-processing of the data.

Some infrequent tissue spectra fall in this category as tissue is very heterogeneous, especially when

analyzing disease progression. In this case, careful understanding of the sample properties and

96



variation, as well as accurate modeling, is needed to bring the uncertainty down to the limiting

level.

As mentioned earlier, the limiting uncertainty can also be expressed in terms of parameters ex-

tracted by indirect calibration (such as PLS), that depend on measurement noise and the b-vector

[135]. The present paper provides a natural extension to those results by demonstrating the ap-

plicability of a more general formula, Eq. (3.8), that arises naturally from the CRLB concept and

that effectively breaks up the b-vector from Ref. [135] into the signal strength and spectral overlap

contributions. When only indirect calibration is possible, such as for concentration measurements

in solutions where individual spectral contributions of the constituents cannot be measured di-

rectly, the formula from Ref. [135] should be used. When both direct and indirect calibration are

possible, both the formula from Ref. [135] and Eq. (3.8) can be used; this way, the formulas can be

utilized to test and compare the robustness of indirect (PLS) and direct (OLS) prediction methods.

Lastly, when indirect calibration is not possible but the spectral models are measurable, such as for

extracting model parameters from samples including human tissue where reference contributions

of particular morphological features are almost impossible to obtain, either formula can be used

to calculate parameter uncertainty. In fact, the two equations provide exactly the same ultimate

mathematical result. However, the advantage of using Eq. (3.8) is that it provides physical insight

into the signal strength and spectral overlap effects on the b-vector. As described earlier, the X2

approach can always be used to estimate the uncertainty by doing several constrained fits; however,

the method is statistical and does not have a functional dependence, hence it cannot provide insight

to the nature of the uncertainty.

The demonstration of experimental uncertainty being very close to Eq. (3.8) for the concentra-

tion measurements indicates the precision of our experimental apparatus and can be used to guide
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instrument improvements. For example, increasing the slit width of a spectrograph increases the

overlap factor by blurring the Raman peaks, but also increases the signal strength. This trade-off

should guide instrument optimization to yield the minimum extracted parameter uncertainty. Such

improvements are crucial in developing multimodal spectroscopy systems that require real-time er-

ror assessments of parameters extracted from multiple spectral modalities [131].

M 3.2 Nonlinear fitting - DRS

* 3.2.1 Theory

The preceding sections were based on the linear model assumption from Eq. (3.1). However, in a

generalized nonlinear problem, such as fitting DRS spectra, where we have:

s = fn (c) + w, (3.12)

the analytical approach presented in Sec. 3.1 does not apply. While it is possible to linearize a

nonlinear problem around a particular operating point, this would result in a loss of accuracy for

DRS measurements owing to a wide dynamic range of physically observable DRS signals. We can

still proceed to find the optimal estimator c by optimization of the X2 error metric from Eq. (3.11):

= arg min(X2 ) (3.13)

The uncertainty in each parameter 4k is determined from the curvature of X2 as a function of k.-

Once we obtain the optimum value for 4k from Eq. (3.13), the X2 values can be calculated for

different constrained values of ak close to the optimum by optimizing over all the other aj for jfk;

this X2(ak) function is quadratic in the vicinity of its minimum [103, 143]. The standard deviation
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of the uncertainty or error in the estimate ^k is related to the curvature by:

std(4k) = 2 7( (kk) (3.14)

This uncertainty can be calculated easily by constraining the value above and below the optimum

for each parameter, redoing optimizations over the remaining degrees of freedom, generating the

X2 function, and calculating the square root of the reciprocal of its curvature. Alternatively, using

standard optimization routines (such as fmincon in MATLAB) with X2 as the objective function, the

second derivative (Hessian matrix) of X2 at its minimum value would give the equivalent uncertainty.

U 3.2.2 Results and Discussion

A simulated example is given here for the nonlinear model using DRS. We start with the true

coefficients that define the DRS signal. The scattering parameters (A, B, C) specify the ILs through

Eq. (2.4) and the absorption parameters ([HbO2] and [3 - car]) specify the La through Eq. (2.3).

These values are given in Fig. 3-7 under "Original." Then, a level of Gaussian noise of a known

standard deviation was added, resulting in the blue spectrum shown in Fig. 3-7. The spectrum was

fit using the model of Zonios [66] specified in Eq. (4.3) as the f,l in Eq. (3.13). The fit coefficients

extracted by minimizing the X2 in (3.13) are shown under "FC". The values of extracted coefficients

were constrained to the range specified in "Range" to insure convergence of the nonlinear model.

The uncertainty is given in the last column ("Error") and is equivalent to performing the procedure

many times of adding a different instance of noise of the same standard deviation, extracting the fit

coefficients for each experiment, and calculating the standard deviation statistics across all the fit

coefficients; this is analogous to the measured uncertainty defined earlier. This uncertainty can be

calculated equivalently from just one measurement using the empirical error analysis (3.14), using
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the x2 parabolas generated for all the coefficients, as demonstrated in the middle and bottom right

panels. The agreement between the measured and calculated uncertainty holds again.

0.2 I Original Range FC Error

o 0.15- Fit - A 2.168 [0, 3] 2.215 0.0346

B 0.422 [0, 1] 0.366 0.04290.1 -
( C 0.003 [0, 1] 0.005 0.0011
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Figure 3-7. Uncertainty analysis example in for nonlinear measurements (DRS). The blue noisy simulated data is
calculated from the nonlinear DRS model that takes inputs (A, B, C, [HbO2], [f3-car]) with the given true coefficients
("Original"). The extracted fit coefficients are given in "FC" with the uncertainty associated with each estimate in
"Error".

0 3.3 Relation between X2 and Ac

The MVU estimator is equivalent to the ML estimator for the linear model described earlier [138].

In this section, we demonstrate that the standard deviation of the estimator obtained analytically

(Ac) is the same as that obtained through X2 analysis. The X2 value is defined in Eq. (3.11)

and the associated ML estimator is determined by minimizing this value as given by Eq. (3.13).

Specializing to our linear model, Eq. (3.1), and recognizing the fit as Pe, we can express X2 in the

100

x Points
- Parabola fi

III I I I I

^^

0.2l

"x



form of an inner product:

x= (S2-)T(sP^) (3.15)

The second derivative of X2 with respect to our estimate ^ has a particularly useful form. Noting

that:

d2 d2 p^)T(p^) dT2 j(pTp)6d 2 d (p) ) _ d2  2 (3.16)
d 2  d 2  a2  d62 0 .2

and using the general property, -xTAx = (A+ AT) and Eq. (3.6), we can simplify the derivative

quantity to:

d2 2 (PTP)
d2 2 = 2 -=2. cov(W)-. (3.17)

d2 2 d2 2

Note that 2-x is a Hessian matrix whose (i, j) entry specifies d . This matrix is used by

standard optimization techniques and, as we shall see, is particularly useful when evaluated at the

minimum X2 value. Dividing by 2, inverting, specializing to the kth diagonal component, and taking

the square root, we obtain:

Sd2 X2 (kk) = std(k) =- Ak (3.18)

This expression demonstrates the connection between the Ac and X2 analysis of uncertainty. That

is, the curvature of X2 (as function of ^k) is inversely proportional to the variance of the kth estimator

Ck. If we had not made the simplifying assumption that Cw = a2I for the noise vector w in Eq. (3.1),

we could still follow an analogous mathematical approach as shown above to demonstrate that the

curvature of X2 specifies the covariance as given by the more general formula of Eq. (3.4). In this

case, Eq. (3.17) would become:

d2  2(P w CwP)S2 = 2( = 2 . cov(6) - 1, (3.19)
dC2 X -U2
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and the final result of Eq. (3.18) still follows.

0 3.4 Summary

We have described a simple and direct method for calculating the uncertainty from a single spectro-

scopic measurement and demonstrated its experimental usefulness, both for solution mixtures and

human tissue. Not only does the analytic Ac expression, Eq. (3.8), provide a means of calculating

parameter uncertainties, but it also assesses the calibration and consistency of the experimental

apparatus. Because the expression from Eq. (3.8) is the CRLB, it represents the ultimate lower

bound on the uncertainty of parameters extracted from a linear system by an unbiased estimator.

Analytical expressions for characterizing uncertainty for nonlinear fitting, such as modeling diffuse

reflectance spectroscopy measurements, are also presently under investigation.
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Chapter 4

MMS probe development

The MMS probe design builds off the design of the Raman probe and appropriately modifies it

to enable efficient delivery and collection of DRS and IFS in the UV/visible wavelength region.

However, as a result of this modified excitation/collection geometry, compared to that of the Fas-

tEEM probe, the modeling of DRS and IFS spectra collected with this probe needs to be adjusted

to enable correct extraction of spectral parameters. This chapter is divided into three sections: 1)

overview of the Raman probe design, 2) description of the MMS probe design, and 3) the modeling

modifications for DRS and IFS in the MMS probe geometry.

* 4.1 Previous design - Raman probe

This section summarizes the previously developed design of the Raman probe. More detailed

information can be found elsewhere [127, 87].

* 4.1.1 Overview

As Raman signals are weak, conventional fluorescence/reflectance probes cannot be used. The in-

tense excitation light traversing the delivery optical fiber creates a very large background. Without

proper filtering, this background will be back-reflected by the tissue into the collection fiber(s), over-

whelming the Raman signal generated in the tissue. Furthermore, the excitation light back-reflected
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from the tissue will generate additional fiber background on its return path, again obscuring the

Raman signal collected from the tissue. In addition, the probe tip must be properly engineered to

collect as much of the weak Raman signal generated in the tissue as is possible. The probe must

also be sufficiently flexible to access narrow vessels such as the coronary arteries, and its diameter

must be small (< 2 mm).

0 4.1.2 Optical filters

The optical fiber background is removed by inserting optical filters in the distal tip. The excitation

fiber is filtered with a short wavelength-pass filter that transmits the excitation laser light (830

nm) and blocks the background light generated in the probe. Conversely, the collection fibers are

filtered with a long wavelength-pass filter that blocks the Rayleigh-scattered light and transmits

the Raman light generated in the tissue. These filters are mounted in the distal end of the probe

by means of a custom designed filter module that provides optical isolation between the various

components.

The problem of fused silica background can be circumvented by collecting Raman signals in the

high wave number region (2400-3800 cm - 1) rather than the fingerprint region (400-1800 cm-1),

thus enabling the use of a single unfiltered fiber for both excitation and collection [114]. However,

this approach comes at the expense of losing potentially critical spectral information that is only

present in the fingerprint region. Since all of our previous model development has utilized the

fingerprint region to characterize Raman spectra of artery tissue and since the fingerprint region

arguably contains more spectral variation, we have chosen to pursue the filtered probe design.
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E 4.1.3 Optical system design

The optical design process aims to conserve light throughput (the product of collection solid angle

and cross-sectional area at any point along the optical train) while maximizing collection efficiency.

System throughput is limited by the slit area and numerical aperture (NA) of the spectrograph.

Optical element(s) at the probe tip are needed to efficiently couple the Raman light generated in the

tissue to the collection fibers. This is achieved by using a central excitation fiber surrounded by a

ring of collection fibers, which are matched in NA to the spectrograph. The excitation fiber NA was

chosen to minimize the fiber and cladding background, and an appropriate diameter was selected to

insure safe fluence levels and, for optimal collection, to limit the size of the delivery spot on the tissue

surface. In order to design the probe collection optics, we need to determine the optimal collection

geometry. Experiments show that the Raman light scattered from the tissue was approximately

separable in emission angle and radius. Artery tissue experiments and numerical simulations are

then performed to determine the efficiency of light collection from the tissue. Maximum collection

efficiency, achieved at a 900 collection angle and 0.19 mm radius, is found to be 8.6%. This collection

is achieved by means of a sapphire ball lens attached to the probe tip.

0 4.1.4 Technical implementation

The central excitation fiber is optically isolated from the ring of 15 collection fibers by means of

an aluminum jacket. All of the fibers have 200 pm core diameter. The excitation fiber NA is 0.22,

whereas the collection fiber NA is 0.26, for reasons described above. The filter module is composed

of a short-pass filter rod that fits snugly into a long-pass filter tube, both dielectrically coated. The

filter module is attached to the fibers with index-matching optical cement. The sapphire ball lens

is tightly secured at the probe tip, and positioned an appropriate distance from the fibers to insure
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a collimated beam of excitation light and efficient collection of light emitted from the tissue. All of

the probe components are custom fabricated using medical-grade materials that that can withstand

clinical sterilization. The probe is 4 m long and less than 3 mm in overall diameter.

0 4.1.5 Probe performance

Optical design simulations were used extensively to guide probe development, achieve a clinically

acceptable excitation spot diameter, and maximize collection efficiency. Probe performance was

also tested experimentally. Known Raman scatterers such as barium sulfate were used to evaluate

the performance of the filters. Tissue phantoms were also employed, using models found in the

literature to evaluate the impact of scattering and absorption on the signal and background. Finally,

Raman spectra were taken from samples of artery tissue using 100 mW delivery power and 1 s

collection, and fit with the appropriate models. The excellent quality of spectra collected in only 1

s demonstrates the feasibility of clinically implementing Raman spectroscopy [87, 88, 89].

* 4.2 MMS probe design

The schematic of the MMS probe, which is very similar to that of the Raman probe, is shown in

Fig. 4-1. This design is that of a front-viewing probe; for more information about side-viewing

probes, refer to Sec. 8.2.1. The MMS probe is different from the Raman probe in several ways:

1) the optical fibers that are used for delivery and collection, 2) the filter characteristics of the

excitation rods and collection tubes, and 3) the type of adhesives used to glue the components in

the probe tip.
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S2mm ball lens ODRS/IFS ORaman

Figure 4-1. The schematic of the MMS probe, with the side view of the left and a cross sectional view on the right.
The single central excitation fiber (200 pm diameter, 0.22 NA) is optically isolated from the 15 collection fibers, 10
of which (200 tm diameter, 0.26 NA) are used for Raman spectra collection and 5 of which (200 tim diameter, 0.22

NA) are used for DRS and IFS collection. The probe tip contains a filter module to appropriately filter the excitation
and collection fibers and a sapphire ball lens to optimize collection.

M 4.2.1 Optical fibers

Owing to the broad range of wavelengths of light used, the MMS probe fibers needs to be optimized

for the particular modalities. The central excitation fiber needs to efficiently transmit excitation

light in the range 300-830 nm so the Superguide fiber (200 pm diameter, 0.22 NA, Fiberguide

Industries, Stirling, NJ) is used. On the collection side, the collection fibers need to be split in a

way to optimize some for transmission in the visible wavelength range and the rest for transmission

in the NIR wavelength range. The collection fibers can thus be optimized based on modalities,

so the Superguide fibers are used for the visible (DRS/IFS) and Anhydroguide fibers (200 pm

diameter, 0.26 NA, Fiberguide Industries, Stirling, NJ) are used for the NIR (Raman). Therefore,

out of the 15 collection fibers, five fibers are dedicated for DRS/IFS while 10 are dedicated for
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Figure 4-2. The filter characteristics of the MMS probe. The excitation fiber light is filtered by a shortpass filter
that transmits 300-830 nm light and blocks light > 850 nm. The collection fiber tube contains a notch filter that
transmits 300-800 nm and 850-1000 nm while blocking light around the Raman laserline (830 nm).

Raman. This would allow almost equivalent signal collection with the single MMS probe as with

the individual FastEEM and Raman probes used individually in previous studies.

N 4.2.2 Filter characteristics

The filters in the MMS probe are still constrained by the need for efficient extraction of Raman

signals. However, both the excitation and collection filters need to transmit the visible range 300-

800 nm. Hence, the excitation fiber rod contains a shortpass filter that transmits 300-830 nm

light and blocks light > 850 nm. Analogously, the collection fiber tube contains a notch filter

that transmits 300-800 nm and 850-1000 nm while blocking light around the Raman excitation

wavelength (800-850 nm). The described filter characteristics are shown in Fig. 4-2. These filters
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are custom manufactured (Barr Associates, Westford, MA) and deposited onto polished fused silica

pieces. The shortpass filter is deposited onto a cylindrical (0.5 mm diameter, 1 mm length) "rod,"

while the notch filter is deposited onto a donut-shaped (inner diameter 0.7 mm, outer diameter 1.8

mm, length 1 mm) "tube."

0 4.2.3 Adhesives

Previously, sodium silicate or epoxy were used in the Raman probe design to glue the rods and

tubes to the fibers. Ultimately, epoxy was deemed more optimal as a result of its durability and

optical properties. However, ordinary epoxy is not optically clear in the UV wavelength range.

As a result, a special epoxy (Epo-tek 305, Epoxy Technology, Billerica, MA) is used for the MMS

probe. Note that that a ball lens made of sapphire is still optimal for the MMS probe as sapphire

is optically clear in the range 300-1000 nm. The ball lens is not glued in the probe but instead held

by means of the stainless steel retaining sleeve.

* 4.3 Modeling modifications

In the past, DRS and IFS spectra were collected only with the unfiltered, six collection fibers around

one excitation fiber, FastEEM probe with a 1.5 mm long quartz shield at the tip. Specifically, the

probe geometry was such that the excitation and collection spots on the sample can be treated as two

partially overlapping circles. The DRS modeling developed by Zonios et al. [66] was dependent on

this probe geometry. Now, with the ball lens of the MMS probe, the excitation/collection geometry

has changed, specifically by decreasing the source-detector separation as well as the range of angles

that can be collected. The IFS modeling could in principle stay the same as presented by Zhang

et al. [80], with modifications done for several probe-specific parameters. Therefore, the modeling
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for both DRS and IFS in this new probe geometry needed to be revisited so that each MMS probe

could be calibrated appropriately to insure the accurate extraction of tissue parameters.

0 4.3.1 DRS modeling

This section describes the diffusion theory modeling for DRS and the associated probe calibration

procedure.

Diffusion theory model for DRS

Farrell et al. calculated the diffuse reflectance from a narrow beam of light incident on the surface

of a semi-infinite turbid medium in the diffusion approximation [67]. The following expression is

the Green's function R(A, r), in units of radial density (mm- 2), at a distance r from the point of

incidence:

_zo p 1e-prl 4 1 1 e - pr2
R(A, r) p + - 2 + 1 A p -2 + 2 (4.1)

47 s (y' r T32 r

with

A = 3Pa(Pa + Ps), zo =

ri1= z 2  T2= z 1+ A) +r 2 .

The parameter A depends on the refractive index of the tissue and is assumed to be A - 3.2 [66].

It should be noted explicitly that all p quantities are functions of wavelength. In order to calculate

the reflectance collected by a probe, Rp(A), the above Green's function must be integrated over the

delivery and collection areas, characterized by radii rd and rc, respectively, and normalized by the
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delivery area (7rr ) to obtain the unitless reflectance:

Rp(A) = 2  dc rdr d R A, r - r' r'dr', (4.2)

where r - specifies the distance between a point on the delivery area and a point on the

collection area. The parameters rd and r, are probe-specific parameters that are to be determined by

calibration. Equation. (4.2) can be evaluated numerically but it can further simplified the equation

by making the approximation of point source delivery (rd << 1). With this approximation, Zonios

et al. obtained a closed form solution [66] for the reflectance collected by a probe:

1 _rz8i e-+4r2

Rp(A) e-
,

z °  e- ( 1+A) ° zo - (1+ A zo- , (4.3)
2 (I' P+ a) r \ 3 r 2

with rl = V/z 2  and r2 = z (1+ A) 2 + r 2 . The parameter r' - r, is the effective collection

radius and is a probe-specific parameter that is also determined by calibration.

To avoid confusion, when the two values of rd and rc are discussed, it is in the context of the

model of Farrell et al.. On the other hand, the single value of r4 is germane to the model of Zonios

et al., which assumes that rd : 0.

Parameter calibration strategy

In either Eq. (4.2) or Eq. (4.3), we see that the reflectance collected by a probe, Rp(A), is a

function of tissue-specific parameters (pand ) nd a) and probe-specific parameters (rd and re, or r'4).

Our objective is to accurately extract the 1L' and pa given a Rp(A), which requires the knowledge of

the probe-specific parameters. We calculate the probe-specific parameters by means of a calibration

procedure presented in Fig. 4-3. First, a calibration set of tissue phantoms is used to determine

111



Calibration sample
params (Pa, Ps)calib

Calibration sample
spectra Rcalib(A)

Probe params
(rdI r)

Prediction
sample
spectra

Prediction
sample
params
(Pa' Ps')pred

I pred) I

Figure 4-3. The probe calibration procedure. First, a calibration set of tissue phantoms is used to determine the
probe-specific parameters, rd and re. Then, these probe-specific parameters are used prospectively on tissue spectra
to accurately extract p, and Pa.

the probe-specific parameters, rd and r,. These phantoms are designed to mimick tissue optical

properties. By recording DRS spectra of these tissue phantoms and accurately knowing their /p'

and [a, one can infer the optimal values of rd and rc that correspond to that particular probe.

Then, these probe-specific parameters are held fixed and used prospectively to extract p' and Pa

from spectra of tissue with unknown optical properties. The next several sections describe the

phantom experiments that ultimately yield the rd and rc values for the MMS probe.

Phantom preparation

Five phantoms were prepared to mimick artery tissue reflectance properties. Polystyrene beads

with 1 pm diameter and 1% solids by volume (64030 Polysciences, Warrington, PA) were used to

simulate scattering. A concentrated solution (8 mg/ml) of hemoglobin, created by dissolving 12 mg

of dry hemoglobin (H0267, Sigma-Aldrich, St. Louis, MO) with 1.5 ml of deionized H2 0, was used

for absorption. The five phantoms included variations of scattering amplitude and hemoglobin

concentration, and the mixture proportions are given in Table 4.1. Note that the scattering in

phantoms 1 and 2 is equivalent, just as is the scattering of phantoms 3 .and 4. Analogously, the
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Phantom Beads (ml) Hb (ml) H20 (ml)
1 1.4 0.2 1.2
2 1.4 0.4 1.0
3 1.0 0.2 1.6
4 1.0 0.4 1.4
5 1.2 0 1.6

Table 4.1. The mixture of beads, hemoglobin solution and deionized water that resulted in the five phantoms used
to calibrate DRS probe-specific parameters. The volume of beads indicate amount of 1% solids solution and the
volume of hemoglobin indicate amount of 8 mg/ml stock solution.

Wavelength (nm)
)0

Wavelength (nm)

Figure 4-4. The p, and ta values for the five phantoms mixed in the proportions described in Table 4.1.

absorption of phantoms 1 and 3 is equivalent (0.57 mg/ml), just as is the absorption of phantoms

2 and 4 (1.14 mg/ml). Phantom 5 contains an intermediate level of scattering and no absorption.

Those levels of scattering an absorption translate into the [ (A) and pia(A) given in Fig. 4-4. The

pu' (A) values are calculated using a standard Mie code that evaluates the total scattering cross

section os(A), which translates into p, (A) with the following relation:

ps (A) - ps(A)(1 - g) = psus(A)(1 - g), (4.4)
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where ps is the density of beads in the solution, g is the beads anisotropy parameter calculated

from the scattering phase function, and os(A) is a function of the bead size and refractive index

mismatch between the beads and water [68]. In modeling the p',(A) in tissue where the scatterer

properties are unknown a priori, a more general power-law relation can be used [123, 124]:

p ,(A) = A - (4.5)

where A and B specify the power law function and A0 = 1 pm is a normalization factor. The pa(A)

parameter is calculated using the following equation:

pa(A) = (logelO)cHb (caHbO2 (A) + (1 - a)EHb(A)), (4.6)

where cHb is the concentration of hemoglobin, a is oxygen saturation of hemoglobin, and CHbO2 (A)

and EHb(A) are the extinction spectra of oxygenated and deoxygenated hemoglobin, respectively.

Calibration: finding probe-specific rd and rc

The phantoms were mixed in small glass vials and thoroughly agitated to prevent clumping of the

beads. Then, reflectance spectra were collected using the MMS probe and the MMS instrument.

The DRS spectra were calculated using the following expression:

Reflectance(A) - Background(A)
(Spectralon(A) - Background(A))/(calibStd(A))'

where Reflectance(A) is the recorded reflectance spectrum from the phantom, Background(A) is

the background spectrum collected from an opaque cup of deionized water, Spectralon(A) is the
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reflectance spectrum recorded from a calibrated standard (20% reflectance standard, Labsphere

Inc., North Sutton, NH), and calibStd(A) is the manufacturer-specified response of the standard.

In this way, the DRS is expressed in calibrated reflectance units.

The probe-specific rd and rc values were calculated using a lookup table. First, a lookup table

was generated, for each phantom, by numerically integrating Eq. (4.2) for a range of rd and r,

values, while keeping the y' and Pa values fixed to the known values for that particular phantom.

Then the measured DRS spectrum specified by Eq. (4.7) was compared to the spectra in the lookup

table. The spectrum in the lookup table that is the best fit to the experimental DRS spectrum

is associated with particular values of rd and rc. These best fit spectra are shown in Fig. 4-5.

Figure 4-5 also shows the best fits to the experimental DRS spectra using. Eq. (4.3) to calculate

reflectance and optimizing over r' while keeping fixed the known p1 and pa values for each phantom.

We can now make several conclusions regarding the calibration of the MMS probe. Although the

optimal values of rd and rc vary slightly across the five phantoms, one can verify that intermediate

values (rd = 0.45 mm and rc = 0.30 mm) can model well all five phantoms. These average

parameters also make physical sense given the MMS probe ball lens that specifies a both delivery

spot and also a range of reflected angles that can couple into the collection fibers. On the other

hand, we observe that the simplified Eq. (4.3) does not model the experimental data well for the

MMS probe. Therefore, Eq. (4.2) should be used to model DRS spectra collected with the MMS

probe.

As an addendum, we can make some observations relating to the FastEEM probe geometry.

Using the FastEEM probe, DRS spectra were collected from the same five phantoms. The same

calibration procedure was performed using both Eq. (4.2) and Eq. (4.3). The optimal rd and r,

parameters for the FastEEM probe were in the range rd = 0.20 mm and rc 0.35 mm, which makes
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Figure 4-5. The experimental DRS spectra for phantoms
(red), and best fits using Eq. (4.3) (black).
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1-4 (blue), the best fits using a lookup table with Eq. (4.2)

physical sense given the FastEEM probe geometry. Moreover, Eq. (4.3) resulted in a much better

fit (not shown) to experimental data for the FastEEM probe compared to the MMS probe, using

rc = 0.34 mm. This is consistent with the previously published work [66] and with observation that

since rd = 0.20 mm and rc = 0.35 mm, the Eq. (4.3) assumption of point source delivery is sensible

(since rd < rc). Whereas for the MMS probe one needs to use Eq. (4.2) and the calibrated rd and

rc values, for the FastEEM probe it is sufficient to use Eq. (4.3) and the calibrated r' value.
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Figure 4-6. A prospective lookup table calculated using Eq. (4.2) for various values of 1, and LI while keeping
rd = 0.45 mm and r, = 0.30 mm.

Prediction: extracting correct DRS modeling parameters

Once the calibrated values of rd and rc are known, the second part of the process described in Fig. 4-

3 is to generate a method to prospectively extract pL and ia from an unknown tissue sample. This

is done by means of a lookup table in which DRS spectra are generated by numerically integrating

Eq. (4.2) over a range of values of u's and ya, while keeping the probe-specific parameters rd and r,

fixed. Then, an unknown tissue spectrum is compared to the entries in the lookup table to obtain

the optimal values of M'L and pa, corresponding to that entry. One such lookup table, calculated

for rd = 0.45 mm and rc = 0.30 mm is presented in Fig. 4-6. To check its validity, the prediction

table was applied to the phantom spectra and the extracted spectral parameters (A, B, cHb, and

a) were compared to the known true parameters. The deviation between the two was on average
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only a few percent which demonstrates the accuracy of the predictive fitting.

Note that a prediction lookup table is not necessary for the FastEEM probe because once

the calibrated r' value is known, one may simply use the closed form Eq. (4.3) and perform an

optimization that minimizes the difference between the data and a model-generated fit in order to

extract the spectral parameters. In principle, the constrained minimization can be performed for

MMS probes as well using Eq. (4.2) and numerical integration. However, this is computationally

much more expensive, which is why the lookup table is desirable for real-time fitting applications.

0 4.3.2 IFS modeling

This section describes the modeling needed to extract an IFS spectrum from a raw fluorescence

spectrum and the associated probe calibration procedure.

Model for extracting IFS

Raw tissue fluorescence, in additional to containing the emission spectrum of fluorophores, is also

distorted by absorption and scattering. Intrinsic fluorescence, on the other hand, is defined as the

signal free from this interference and that is thus a linear function of the concentrations of the

fluorophores. Zhang et al. [80] presented a method based on photon migration of extracting IFS

spectra from turbid media, which built on a previously developed model of Wu et al. [79]. The

IFS spectrum fm is related to the experimentally measured fluorescence spectrum Fm and DRS

spectrum Rm by means of the following expression [80]:

F,,
fm(A) xm (4.8)

() Ii x m) 1/2 (Rm + E)PsX1 (EZm Rox Rom m
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where Rx is the DRS spectrum evaluated at the fluorescence excitation wavelength, Ro0 is similar

to Rx but evaluated using Eq. (4.2) by setting pa = 0, Rom is similarly evaluated but for all needed

fluorescence emission wavelengths, and 1sx is evaluated at the fluorescence excitation wavelength

and is extracted from p•l using Eq. (4.4) and the known value of anisotropy (g). Finally, 2x and em

are evaluated at the excitation and emission wavelengths using 6 = e3 - 1, where 3 = S(1 - g), for

a fixed parameter S and anisotropy g, and 1 is related to the optical thickness of the sample.

Of all these parameters, S and 1 are probe-specific parameters that need to be calibrated for

a particular probe. This is done in a similar fashion as described by Fig. 4-3 in the case of DRS.

First, a set of known phantoms is used to calibrate the values of S and 1. Then, these probe-

specific parameters are held fixed for the particular probe and used with Eq. (4.8) for extracting

IFS prospectively from unknown samples.

Phantom preparation

The phantoms used to calibrate the IFS parameters were the same five phantoms used for the DRS

calibration, except that a small amount of furan 2 (Lambdachrome, Germany) was added to each

sample to achieve a furan concentration of 0.9 pM.

Calibration: finding probe-specific S and 1

The phantoms were remixed in small glass vials and again thoroughly agitated to prevent clumping

of the beads. Then, reflectance and fluorescence spectra were collected using the MMS probe and

the MMS instrument. The DRS spectra were extracted according to Eq. (4.7) to obtain Rm. The

fluorescence spectra were corrected by subtraction of a fluorescence background spectrum, recorded

from an opaque cup of deionized water, to obtain Fxm.

Phantom 5, which contained no absorption and hence no absorption-related artifacts, was used
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Figure 4-7. The optimal probe-specific parameters S and 1, for each phantom, that resulted in the calculated IFS
spectrum (using Eq. (4.8)) being closest to the measured IFS spectrum (phantom 5).

to model the IFS signal. Then, Eq. (4.8) was used to optimize over the parameters S and 1 until

the optimal parameters were achieved for each of the phantoms 1-4. These optimal parameters

resulted in the calculated IFS spectrum (Eq. (4.8)) being closest to the IFS spectrum (phantom 5)

and they are presented in Fig. 4-7. The values of the parameters that minimize the combined error

(calculated IFS - true IFS) for the four phantoms are S = 0.7 and 1 = 40 tm.
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Prediction: extracting correct IFS spectrum

Having calibrated the IFS parameters, any prospective raw fluorescence spectra should be corrected

using Eq. (4.8) to extract the IFS signal with the probe-specific parameters of S = 0.7 and 1 = 40

/.m. Once the correct IFS spectrum is extracted, it can be fit using least squares to a specific linear

model of constituent spectra.

M 4.4 Summary

We have described and design and calibration of an integrated MMS probe, capable of efficiently

collecting reflectance, fluorescence, and Raman signals from the same location in tissue. The probe

is approximately 2 mm in outer diameter and contains a single excitation fiber and a ring of 15 col-

lection fibers. Appropriate filters at the probe tip allow for efficient extraction of the relatively weak

Raman signals, and the probe components are optimized to enable efficient transmission of light

in the entire 300-1000 nm range. Since a probe with this excitation/collection geometry has not

been used previously to collect reflectance and fluorescence spectra, careful tissue-mimicking phan-

toms are used to characterize the optical properties of the probe. These calibration steps provide

probe-specific modeling parameters that enable the accurate extraction of spectral parameters.
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Chapter 5

MMS instrumentation development

The clinical MMS instrument is a practical and modular merging of the designs of the previously

developed clinical Raman and FastEEM systems. The MMS instrument contains all the critical

functionality of both systems with several improvements based on newer technology.

It was believed previously that two IFS excitation wavelengths, 308 and 340 nm, were needed

to detect a thin fibrous cap, as described in Sec. 2.4. As a result, the MMS instrument initially

pursued a 308 nm UV lamp to provide the additional IFS excitation. The experiments and prob-

lems associated with the 308 nm UV lamp are summarized in Appendix C, which describes the

reasons why this source was ultimately abandoned. In parallel, later analysis has indicated that a

more appropriate parameter derived from a single excitation wavelength, 340 nm, provides a more

robust way to detecting a thin fibrous cap, as described in Sec. 2.6. For these reasons, the MMS

instrument in its present state contains a single excitation wavelength rather than multiple wave-

lengths characteristic of the FastEEM instrument. It remains to be seen whether other, longer,

fluorescence excitation wavelengths that have been used in the past to study artery disease (e.g.

476 nm [71]), should also be included, at some point, as part of the MMS instrument.
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* 5.1 Previous instrumentation

As mentioned previously, two separate instruments were used for Raman and DRS/IFS studies in

the past. This section technically described both earlier systems, focusing on aspects in which they

are different from the MMS instrument.

* 5.1.1 Clinical Raman system

Our laboratory has previously developed a compact clinical Raman instrument capable of real-

time application [88]. The instrument uses an 830 nm diode laser to excite Raman scattering. The

laser light is filtered and coupled into the Raman probe, which delivers to and collects light from

tissue. The collected light is passed through a spectrograph and dispersed onto a CCD. The entire

operation of the system is fully automated and controlled via computer, as shown in Fig. 5-1.

Instrumentation

Light from an 830 nm InGaAs diode laser (Process Instruments, Salt Lake City, UT) is collimated

by a pair of cylindrical lenses and passed through a holographic bandpass filter centered at 830 nm

(Kaiser Optical Systems Incorporated, Ann Arbor, MI). The light is then coupled into the 200 um

core diameter excitation fiber of the Raman probe using a 5x microscope objective (NA=0.1, New-

port Corporation, Irvine, CA). Illumination of the sample is gated by a high-speed, 6 mm aperture,

computer-controlled shutter (LS6ZM2, Vincent Associates, Rochester, NY). The excitation fiber is

terminated with an FC connector to provide day-to-day reproducibility of alignment.

An optical fiber probe is used to transport the excitation and Raman scattered light to and from

the tissue sample at the distal end of the catheter [87]. A more detailed description of the Raman

probe is given in Sec. 4.1. For 100 mW of excitation power, the resultant irradiance is 318 W/cm2,
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Figure 5-1. Schematic diagram of the clinical Raman system (CL: Cylindrical Lens; BP: 830 nm Band-Pass filter;
M: Mirror; MO: Microscope Objective; CCD: Charge-Coupled Device detector).

which has been clearly shown to not cause any tissue damage [148]. The proximal end of the probe

contains the collection fibers that are arranged in a vertical array and serve as the entrance slit to

the spectrograph (Holospec f/1.8i, Kaiser Optical Systems), attached by means of a modified BNC

connector. The collected Raman light is dispersed onto a back-illuminated, deep-depletion CCD

detector with a 1340x400 array of pixels (Spec-10:400BR, Princeton Instruments, Trenton, NJ).

The CCD detector has a 16 bit dynamic range and was liquid nitrogen cooled to -1100C. Spectra

are obtained by vertically binning the signal from the collection fibers.
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Real-time software

The system utilizes LabVIEW software (v 6.1, National Instruments, Austin, TX) as the primary

platform to interface with various hardware components of the system and control data flow,

allowing automation of more complicated calibration and analysis routines. These subroutines

are accomplished via a direct interface with Matlab (v.6.5.0, The Mathworks, Natick, MA) to

provide relevant diagnostic parameters, such as calcification and total cholesterol in the case of

atherosclerosis, or collagen and fat in the case of breast cancer [86, 126]. The modular design of

the real-time software allows for easy adaptation of the instrument for different applications.

* 5.1.2 FastEEM system

Our laboratory has previously developed a portable clinical instrument to collect fluorescence and

reflectance spectra called the FastEEM, for fast excitation-emission matrix (EEM) [109, 110, 111].

A fluorescence EEM is produced by means of a rotating wheel containing laser dyes, pumped by

a 308 nm XeCl excimer laser, which generates nine laser pulses at excitation wavelengths ranging

from 340 to 500 nm which, including the 308 nm pulses, provides ten laser excitation wavelengths

in all. In addition, a Xenon flash lamp produces white light pulses for reflectance. This light is

delivered to and collected from the tissue via an unfiltered flexible optical fiber probe. Return light

from the tissue is transmitted by the collection fibers to a spectrograph/CCD detector for analysis.

This schematic of this instrument is shown in Fig. 5-2.

Instrumentation

The FastEEM utilizes an optical fiber probe to deliver a sequence of ten laser pulses (308-480

nm) and two white light pulses to the tissue sample. The collected white light reflectance and
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Figure 5-2. Schematic diagram of the FastEEM clinical spectrophotometer. L1, L2, L3, L4 are lenses. M1

and M2 are mirrors. (Published with permission from: Instrumentation for multi-modal spectroscopic diagnosis

of epithelial dysplasia, Technology in Cancer Research & Treatment, Volume 2, page 509, 2003, Adenine Press;

http://www.tcrt.org)

fluorescence return via the same probe and are brought to the entrance slit of the diffraction

grating spectrometer (Spectra Pro 150, Acton Research, Acton, MA), connected to an intensified

CCD detector (PIMAX, Roper Scientific, Princeton, NJ). The total collection time for all ten

fluorescence emission spectra and the two reflectance spectra is approximately 0.3 s. Several of

these acquisitions can be averaged together to increase the SNR, making a typical acquisition time

on the order of 1.5 s.

The instrument generates the excitation wavelengths between 342-480 nm by means of dye

lasers, while the 308 nm excitation comes directly from the XeCl excimer laser (8 ns pulse FWHM,

Optex XeC1, Lambda Physik, Ft. Lauderdale, FL). A Xe flashlamp (L7684, 1J @ 2.9 ps pulse
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FWHM, Hamamatsu Corp., Bridgewater, NJ) is used to generate the two white light spectra. By

using set of rapidly rotating wheels, driven by an AC motor at just over 3 Hz (180 RPM), the

FastEEM achieves its relatively short acquisition time. This "dye cell wheel" contains nine dye

cells with different dye solutions (for the 342-480 nm fluorescence excitation), one prism (for 308

nm excitation), and two open spaces (for the white light). The dye cells are 2.8 ml spectrosil quartz

cuvettes (Starna Cells, Atascadero, CA) with a 10 mm pathlength and transmission from 170-2700

nm and contain a mixture of the dyes (p-Terpenyl, PBD, Exalite 384, Exalite 398, LD 425, Stilbene

420, Coumarin 440, Coumarin 460, Coumarin 480) and a solvent (either p-dioxane or methanol).

The XeCl excimer laser pumps each dye cell as it traverses the common optical resonant cavity

(mirrors M1 and M2). The output pulses are coupled into a fiber after passing through a 10%

reflective mirror (M2) and lens (L3). In addition, the 308 nm excimer laser light is coupled to the

same fiber by the prism traversing the optical cavity. Lastly, when the two open spaces in the wheel

traverse the optical cavity, the Xe flashlamp is triggered instead of the excimer laser and the light is

coupled into a separate fiber. The two fibers, carrying either the laser excitation or the white light,

are combined into one by a fiber splitter and guided to the optical fiber probe. As the collected

light returns through the collection fibers of the probe, it passes through another synchronized

"filter wheel," containing long pass filters that remove the excitation line, and is focused onto the

entrance slit of the spectrograph.

Since the Xe lamp emits significant intensity in the range 270-800 nm and the spectrograph

operates in the first order of diffraction (i.e. the longest wavelength it can collect is twice the

shortest wavelength), this provides a range of 270-540 nm. However, light in the second order of

diffraction can enter the spectrograph above 540 nm and thus cause an artifact. To correct for

this effect, a second reflectance spectrum is collected using a long pass filter (420 nm) to remove

128



the short wavelengths and the amplitude of its spectral response is adjusted in software to match

that of the unfiltered response in the region between 460 and 530 nm. This correction enables one

continuous spectrum from 300-800 nm to be created from the merging (at 500 nm) of these two

white light spectra.

The FastEEM relies on a timer controller, consisting of a control logic circuit and a National

Instruments timer/counter board (PCI-6602, National Instruments, Austin, TX), to program the

timing of the data collection. Optical interrupters (Omron Photomicrosensors EE-SX770, Schaum-

burg, IL) mounted on the rotating wheel are used to generate trigger signals, which are used to

determine when to pulse the laser or white light source and when to gate and read data from the

detector.

Real-time software

Custom software developed in the graphical programming environment LabVIEW 7.0 (National

Instruments, Austin, TX) is used to control and operate the FastEEM. In addition, the control

software handles all data calibration and enables real-time data acquisition, providing an immediate

check on data quality. A spectrum from a mercury lamp is used to calibrate the wavelength. A

background calibration spectrum is used to correct for effects of CCD dark currents and stray

light. Since the intensity of each dye laser is inherently different from one another, the intensity of

each EEM is calibrated by measurement of a standard rhodamine B dye mixture (5 g/L, ethylene-

glycol) with a known quantum yield. Lastly, a spectrum collected from a reflectance standard (20%

reflectance standard, Labsphere Inc., North Sutton, NH) is used to calibrate the tissue reflectance

measurements.
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0 5.2 MMS integrated instrumentation

This section describes the MMS instrument. Many of the instrumentation and software aspects

of the system are either equal to or improvements upon the previously described instrumentation.

The schematic of the MMS instrument is given in Fig. 5-3.

Figure 5-3. Schematic diagram of the MMS instrument. BF = bandpass filter, LF - longpass filter, S = shutter,
FL = focusing lens, OF = optical fiber, FS = fiber switch, SP1 = visible spectrograph, SP2 = NIR spectrograph,
iCCD = intensified charge-coupled device, XTE CCD = thermoelectrically cooled charge-coupled device.
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U 5.2.1 Sources

The MMS instrument contains three excitation sources: a Xe flash lamp (L7684, Hamamatsu Corp.,

Bridgewater, NJ), a 337 nm N2 laser (NL100, Stanford Research Systems, Sunnyvale, CA), and an

830 nm diode laser (Process Instruments, Salt Lake City, UT). All are configured to be triggerable

externally through the automated software platform. The Xe lamp provides a 2.9 ps FWHM pulse

of white light, 1 J/pulse max, given an external trigger supplied by the software. The light from

the Xe lamp is passed through a -370 nm longpass filter (LP02-364RS-25, Semrock, Rochester,

NY) before being focused into a fiber; the purpose of this filter is to guarantee a collected range

of reflectance 370-740nm that is free of 2nd order diffraction effects from the spectrograph grating.

The N2 laser provides a 3.5 ns FWHM pulse of 337 nm light, 170 pJ per pulse, given an external

trigger, and is focused into an optical fiber by a UV-coated lens. The diode laser can be configured

to output a range up to 500 mW of continuous-wave 830 nm light, driven by a user-specified analog

signal. The 830 nm laser light is filtered by an 830 nm bandpass filter (LL01-830-12.5, Semrock,

Rochester, NY) and gated by a mechanical shutter (LS6ZM2, Vincent Associates, Rochester, NY)

before being focused into an optical fiber.

N 5.2.2 Coupling to probe

The excitation sources are coupled sequentially to the MMS probe using an optical fiber switch

(FSM14, Piezo Jena, Germany). This is a MEMS device that provides superior coupling of the

individual sources and interfaces simply with the control software by means of a binary code that

is user-configurable. We had previously investigated a design using a linear translation stage and a

concave mirror, which also gave promising results, but the fiber switch was chosen ultimately owing

to its better performance and alignment-free coupling consistency. The fiber switch contains a four
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input fibers and a single output fiber, all terminated by SMA connectors. The outputs of the Xe

lamp, N2 laser, and diode laser are directly channeled into the three individual input fibers of the

fiber switch. The fourth remaining input of the fiber switch is left vacant for a potential future light

source. The MMS probe is connected to the output fiber of the switch by means of an SMA-to-SMA

connector. The overall transmission efficiency of the fiber switch is -60%, broken down into an

-80% switching efficiency and an -80% SMA-to-SMA coupling efficiency. By contrast, the earlier

translation stage and concave mirror configuration had an overall efficiency of 40%.

0 5.2.3 Detection

The MMS system uses two separate spectrograph/CCD modules: one optimized for NIR detection

(Raman) and the other for visible wavelengths (reflectance and fluorescence). The operation of

both cameras is controlled by modular LabVIEW drivers (R3 Software, Princeton, NJ).

The 10 collection fibers carrying the Raman light are aligned in a linear array, effectively serving

as an entrance slit to the spectrograph (Holospec f/1.8i, Kaiser Optical Systems), resulting in a -9

cm - 1 spectral resolution. The fibers are encased in a modified male FC connector to ensure highly

reproducible alignment with the connector plate of the spectrograph. Any spectral changes incurred

by disconnecting and reconnecting the linear array are below the system's spectral resolution.

The numerical aperture of the collection fibers is f/#-matched to the spectrograph to conserve

throughput. The spectrograph contains an 830 nm notch filter that further suppresses the elastically

scattered Rayleigh light and a holographic grating to disperse the Raman scattered light onto a

back-illuminated, deep-depletion CCD detector with a 1340x400 array of pixels (Specl0 XTE,

Princeton Instruments/Acton, Acton, MA). The CCD detector has a 16 bit dynamic range and can

be thermoelectrically cooled, within minutes, down to -90 0 C, a significant practical improvement
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over the older Raman system. Spectra are obtained by vertically binning the signal from the ten

collection fibers. The continuous-wave collection of the Raman signals mandates that the all the

spectra be collected with the room lights turned off.

The five collection fibers carrying the reflectance or fluorescence light are arranged into a vertical

slit to a diffraction grating spectrometer (Spectra Pro 150, Princeton Instruments/Acton, Acton,

MA), resulting in a -6 nm spectral resolution. The collection fibers have individual male SMA

adapters that connect to corresponding female SMA adapters mounted to a plate adjacent to

the spectrograph; this insures easy reproducibility as the probe is repeatedly connected to the

system. The collected light is then dispersed onto an intensified CCD detector (PIMAX, Princeton

Instruments/Acton, Acton, MA). The CCD is operated in a gated mode, where the intensifier is

biased on for only the short period of time (-30 its) immediately prior to and after each laser/white

light pulse. The short duration of this gate ensures that the background from ambient light is

negligible, though this is less of a concern on the MMS instrument since room lights are routinely

turned off, as constrained by the Raman signal collection. Spectra are obtained by vertically binning

the signal from the five collection fibers. The PIMAX camera has a 16 bit dynamic range and is

thermoelectrically cooled to -200C.

* 5.2.4 Real-time software

The entire MMS system is controlled by a single user-friendly interface developed in LabVIEW

(National Instruments, Austin, TX). The control flow of the software for a single MMS acquisition

is presented in Fig. 5-4, describing the timing by which the various sources and detectors are

triggered to collect the MMS spectra. The software platform allows for calibration spectra to

be taken and stored, provides easy operation of the experimental data collection and storage,
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and provides instant feedback about the collected spectra, fits, and extracted diagnostic spectral

parameters. The triggering of the sources and cameras is done by two data acquisition (DAQ)

cards (6062 and 6035E, National Instruments, Austin, TX).

Figure 5-4. Control flow of the MMS instrument software.
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* 5.2.5 System calibration

In order to provide real-time data analysis and diagnosis, spectra for calibration and background

subtraction must be acquired prior to data collection.

The material used to calibrate the Raman shift axis is 4-acetamidophenol (Tylenol). The

remaining Raman fiber background signal from the optical fiber probe is characterized by acquisition

of a spectrum from roughened aluminum. The spectral response of the Raman collection system is

obtained by recording the spectrum of a calibrated tungsten white-light source, diffusely scattered

by a reflectance standard (BaSO 4).

The wavelength of the reflectance and fluorescence spectra is calibrated by recording a spectrum

from a mercury lamp. Background calibration for reflectance and fluorescence is used to remove

effects of CCD dark currents and stray light and is typically acquired by collecting a spectrum from

a opaque cup of deionized water. The reflectance amplitude is calibrated by collecting a spectrum

from a reflectance standard (20% reflectance standard, Labsphere Inc., North Sutton, NH). Since

EEMs are not collected, there is no need to routinely calibrate the fluorescence amplitude with

rhodamine; instead, the stable output from the nitrogen laser is noted with an energy meter.

The system has been designed so that it is stable from day to day, thus disconnecting and

reconnecting the probe to the system does not change the calibration parameters. However, different

probes can have significantly different calibration parameters.

0 5.2.6 Data analysis

In this section, the data analysis steps for each modality are briefly described.
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Raman

A sequence of steps is executed before a quantitative Raman information is extracted from the

raw spectrum acquired on the CCD. First, the data is corrected for the system spectral response

by dividing it by the white light spectrum. The resultant data is then normalized to maximum

peak height and truncated to the biological Raman region of interest appropriate to the models

used in this study (686 to 1788 cm-1). The next step is to remove the fiber background from

the tissue data by subtracting the spectrum acquired from roughened aluminum. The relationship

between the intensity of spectra from the aluminum and the tissue spectrum is dependent upon

the tissue's optical properties, which are unknown a priori. Therefore, we iteratively subtract

the same aluminum spectrum scaled by a range of different intensities to determine the optimal

ratio for background removal. The spectrum that results in the lowest standard deviation of the

residual between the data and the model fit is used for analysis. After fiber background removal,

the remaining broadband tissue luminescence is removed by subtracting a 6 th order polynomial

that is fit to the data [87]. This final correction step results in extraction of the Raman spectrum

of the examination site. The resultant spectrum is calibrated to a standard set of wavenumber

bins. This spectrum is analyzed with the appropriate disease model, atherosclerosis [85] or breast

cancer [100], by using ordinary least squares, which provides the relative fit coefficients of the various

chemical/morphological components of tissue. The user can toggle between the two different models

as mandated by the clinical situation.

Reflectance and fluorescence

Similarly, a sequence of steps is executed to extract information from reflectance and fluorescence.

The DRS spectrum is obtained from the raw reflectance spectrum by subtracting the background
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spectrum and dividing by the background-subtracted reflectance standard response, whose true

response is specified by the manufacturer. This calibration insures that the exictation/collection

geometry of the probe is properly accounted for. The DRS spectrum is fit to the model of Farrell

et al. [67] or Zonios et al. [66], depending on the probe that is used with the system, enabling the

extraction of DRS spectral parameters (see Sec. 4.3.1). The IFS spectrum is obtained from the raw

fluorescence spectrum by subtracting the background spectrum and applying the IFS extraction

formula from Zhang et al. [80], enabling the extraction of IFS spectral parameters (see Sec. 4.3.2).

N 5.2.7 Safety

The clinical MMS system must adhere to strict safety guidelines in the clinical environment. Any

part of the system that touches the patient directly or indirectly must be kept sterile. Sterilization

of the MMS probe was performed using cold-gas ethylene oxide. Furthermore, the excitation

laser power cannot exceed a predetermined threshold value, which is determined and safeguarded

before entering the operating room. As a precaution for safety of the operators and patient, the

continuous-wave diode laser beam is gated by a high-speed shutter, also controlled by LabVIEW.

The shutter opens automatically just before data acquisition begins and closes immediately after

the acquisition is complete. The shutter then remains closed until the system receives a signal

through LabVIEW for the next acquisition. The Xe flash lamp and the nitrogen laser are pulsed

sources and thus internally shuttered.

* 5.2.8 Clinical layout

In order for the MMS instrument to be a clinically used instrument, it needs to have a suitable,

portable layout. The various components of the system described in Fig. 5-3, were optimally placed

on optical breadboards with the help of SolidWorks softwaire. This modular placement allowed for
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Figure 5-5. The layout of the MMS instrument (left) and a photo of the actual system (right).

the construction of the instrument within bounds of a metal enclosure (dimensions 27"x27"x58"),

that can be wheeled into the operating room for clinical data collection. The layout schematic and

a photo of the finished instrument are given in Fig. 5-5.

0 5.3 Summary

We have developed an integrated instrument to be used with the MMS probe for the collection

of reflectance, fluorescence, and Raman signals. The MMS instrument is designed to be com-

pact and portable, thus ideally suited for clinical applications. All the critical diagnostic func-

tionality of previous stand-alone Raman and FastEEM instruments has been preserved, taking

advantage of technological improvements to reduce the size and cost of the system. The MMS

instrument is easy to use, backwards compatible with previously developed probes for Raman and
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reflectance/fluorescence, contains a software platform that automates instrument calibration and

data collection, and provides real-time analysis capability.
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Chapter 6

Clinical implementation of MMS

This chapter describes the in vivo and ex vivo studies using MMS that were conducted at MetroWest

Medical Center in Natick, MA.

N 6.1 Introduction

Numerous clinical studies have been undertaken by multiple research groups with the goal of char-

acterizing the arterial wall. The techniques utilized include optical coherence tomography [51],

fluorescence spectroscopy [78], near-infrared spectroscopy [59], etc. With the development of the

Raman probe [87] and clinical Raman instrument [88], our group was the first to demonstrate, sev-

eral years ago, the diagnostic application of Raman spectroscopy in vivo [89]. The present study

is, to our knowledge, the first to date demonstration of collecting all MMS modalities - DRS, IFS,

and Raman - in rapid succession, in a clinically acceptable time, in hiinan patients in situ. The

study was approved by the MetroWest Medical Center Institutional Review Board and the MIT

Committee of the Use of Humans as Experimental Subjects. A total of 12 patients participated in

the study.
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N 6.2 Methods

Spectroscopic analysis of human artery tissue with MMS was performed both in vivo and ex vivo.

Detailed histological analysis from the tissue locations was used to corroborate the spectroscopic

findings. Based on the results, a diagnostic algorithm for detecting vulnerable plaques was devel-

oped.

0 6.2.1 In vivo spectral collection

MMS data was collected in vivo during two kinds of peripheral vascular procedures: femoral bypass

and carotid endarterectomy surgeries. During a femoral bypass, a stenosed or occluded portion of

one of the arteries in the lower limbs, usually femoral, is circumvented (or bypassed) with the

attachment of a (synthetic) graft that restores adequate blood flow beyond the blocked portion

of the vessel. During a carotid endarterectomy, a severely stenosed portion of the carotid artery,

typically near a bifurcation, is treated by direct removal of the plaque, after which the artery wall

is restored with a synthetic patch.

During a particular surgery, the MMS instrument was wheeled into the operating room shortly

after the start of the surgery and placed within a few feet of the patient, just outside of the sterile

field. The MMS probe, which had been previously sterilized overnight by either cold gas etylene

oxide or Sterrad@, was connected to the MMS instrument, while keeping the proximal end in the

sterile field. The instrument was turned on and software activated for data acquisition. Calibration

spectra from the most recent procedure were loaded to enable real-time display of the acquired

spectra and the ensuing data analysis. Spectra collected in vivo typically consisted of a 2.5 second

830 nm exposure for Raman (typically 10 consecutive exposures of 0.25 seconds each), -1 second

flashlamp exposure for DRS (typically 5-7 pulses of light), and -1 second N2 laser exposure for
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IFS (typically 5-7 pulses of light), resulting in a total exposure time per tissue site of less than 5

seconds. The excitation powers for the three modalities were typically: 100 mW of the 830 nm

diode laser for Raman, ,2 AJ/pulse of flashlamp measured at 575 nm for DRS, and ,4 AJ/pulse

of the N2 laser measured at 337 nm for IFS. The operating room and surgical lights were turned

off during spectra data collection.

During a femoral bypass surgery, the surgeon would insert the front-viewing MMS probe through

the proximal anastomosis site to make direct contact with the posterior wall of the saline-flushed

artery. Spectra were also collected adjacent to the incision on the intimal side of the artery, where

the graft would later be attached. The probe was always held perpendicular to the artery wall. A

small biopsy was taken from the spectrally examined location and kept in saline until later use ex

vivo. As the graft was typically attached to healthy portions of the artery, these specimens tended

to be non-atherosclerotic, thus serving as controls. Note that biopsies could only be taken from the

location adjacent to the incision but not from the posterior artery wall.

During a carotid endarterectomy surgery, the diseased portion of the artery was clamped off

on both sides (with a shunt inserted to maintain blood flow to that half of the brain) and incised

along the artery to expose the occlusive plaque. Spectra were collected from the intimal surface

of the saline-flushed plaque with the probe normal to the artery wall (Fig. 6-1). The plaque was

then surgically removed and kept in saline until later use ex vivo. These specimens tended to be

heavily diseased plaques, with calcifications and thrombi, thus serving as potential candidates for

vulnerable plaques.

Owing to surgical procedure constraints, not every artery that was spectrally evaluated in vivo

resulted in an excised specimen that could also be evaluated ex vivo(particularly true for femoral

bypasses). Conversely, in vivo data collection was not possible in every surgery that ended up
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Figure 6-1. In vivo data collection during a carotid endarterectomy surgery. The surgeon is holding the sterilized
MMS probe in contact with the exposed carotid artery plaque, moments before data acquisition.
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yielding an excised specimen to be evaluated ex vivo. In total, we have collected MMS spectra from

40 locations in vivo from 9 patients.

U 6.2.2 Ex vivo spectral collection

The ex vivo studies were performed on the excised artery specimens from the aforementioned

surgeries in a research lab wing of the hospital. This data collection was typically done within one

hour after the excision of the specimens. Calibration spectra were obtained prior to spectral data

collection: a spectrum of 4-acetamidophenol for Raman wavenumber calibration, a spectrum from

an aluminum surface for Raman probe background, a spectrum of a white light scattered off BaSO4

for Raman spectral correction, a spectrum from a Hg lamp for DRS/IFS wavelength calibration, a

spectrum from a 20% Spectralon reflectance standard for DRS intensity calibration, and a spectrum

from deionized water in an opaque cup for DRS and IFS background characterization.

Spectra were collected ex vivo from multiple locations on the excised specimen, covering those

areas that were spectrally examined in vivo as well as other locations not examined in vivo owing to

lack of time during surgery. The probe was held normal to the artery and stabilized with a holding

clamp. The room lights were again turned off during the data acquisition. The ex vivo acquisition

was typically done with 5 seconds for Raman (20 exposures of 0.25 seconds), -1.5 seconds for DRS

(10 pulses of light), and '1.5 seconds for IFS (10 pulses of light). The excitation powers for the

three modalities were approximately the same as those used in vivo. The excitation energy of the

N2 laser on the tissue (pJ/pulse) measured each day was recorded so that the IFS spectra could

be appropriately normalized later.

Following spectral acquisition, the evaluation site was demarcated with colloidal ink (Fig. 6-

2), the specimen was fixed in formalin, and submitted for histological analysis. In total, we have
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Figure 6-2. An excised carotid artery plaque with ink dots demarcating spectral evaluation sites.

collected MMS data from 84 locations ex vivo from 11 patients.

U 6.2.3 MMS data analysis

The MMS spectra were processed and analyzed according to procedures described in previous

chapters.

The DRS spectra were extracted after removing the background from raw reflectance and divid-

ing by the response of the Spectralon reflectance standard with calibrated reflectivity (calibStd(A)),

as given below:

Reflectance(A) - Background(A)
(Spectralon(A) - Background(A))/(calibStd(A)) (

The calibrated DRS spectra were fit with the Farrell model, Eq. (4.2), and using the calibrated
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probe-specific parameters (rd = 0.45 mm and r, = 0.30 mm) as described in Sec. 4.3.1. In applying

the Farrell model, the g' and tPa coefficients were modeled as:

'(A=A. Aj (6.2)

Iia(A) = (loge10) {Cdiff - v - (a EHbO2  1 - a) " CHb(A)) + CP-,car Ef-car(A)}, (6.3)

where A0 = 1 Am, EHbO2 , EHb, and E,-car are the extinction coefficients of oxy-hemoglobin, deoxy-

hemoglobin and f-carotene, respectively, and a is the hemoglobin saturation parameter. The

parameter v is the blood volume fraction, v = CHb/(150 mg/ml), and the parameter Cdiff accounts

for the inhomogeneous distribution of hemoglobin in blood vessels [149], and is defined as:

Cdif (A, Rveis) = 1 - exp{-2 . a,b (A) Rvess (6.4)
C2. I b((, A)ev)e= (6.4)

2. Pa,bl () . Rvess

where a,bl (A) is the absorption coefficient of whole blood (at concentration 150 mg/ml) and Re,,

is the effective radius of the hemoglobin-containing vessels found in tissue.

The extinction coefficients of the said tissue absorbers at unit concentrations are presented in

Fig. 6-5a. The experimental data was fit to the model of Farrell et al. using a standard optimization

method that minimized the difference (Eq. (3.13)), in the X2 sense (Eq. (3.11)), between the DRS

data (Eq. (6.1)) and fit (Eq. (4.2)) in the range from 370 - 740 nm. The fits resulted in an estimate

of the t,' and Ma values of the tissue, which are characterized by parameters A, B, cHb, f, Cl-car,

and Rvess.

The IFS spectra were extracted by subtracting the background from raw fluorescence and

applying the IFS correction procedure of Zhang, Eq. (4.8), and using the calibrated probe-specific
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parameters (S = 0.7 and 1 = 40 pm) as described in Sec. 4.3.2. Then, as done previously [131], the

IFS spectra were used to develop an IFS model using multivariate curve resolution (MCR). The

spectral features of the IFS signals could be well characterized using two MCR components, one

collagen-like and another elastin/lipid-like, both shown in Fig. 6-5c. The IFS spectra were fit using

these two MCR components, in the range 370 - 640 nm, using least squares, Eq. (3.5), to yield the

contributions of each. The extracted collagen-like (C337 ) and elastin/lipid-like (E 337) coefficient

indicate the contributions of collagen-like and elastin/lipid-like constituent spectra to the observed

spectrum.

The Raman spectra were extracted after background subtraction, spectral response correction,

and the removal of tissue fluorescence using a 6 th order polynomial. Then, the Raman spectra,

normalized to peak height, were fit using least squares, Eq. (3.5), to the artery morphological

model [85], to yield the fit coefficients or contributions of the Raman active components: collagen

fibers (CF), cholesterol crystals (CC), calcium mineralization (CM), elastic lamina (EL), foam

cells / necrotic core (FC/NC), 3-carotene crystals (3-CC), smooth muscle cells (SMC), adventitial

adipocytes (AA), hemoglobin (Hb), epoxy, sapphire, and water. The constituent Raman spectra of

the morphological structures are given in Fig. 6-5e. The sum of the contributions was normalized to

unity for each lesion; in this way, the coefficients provide a relative contribution of each particular

constituent.

N 6.2.4 Histological analysis

The demarcated tissue specimens were routinely processed, sectioned, and stained with hematoxylin

and eosin. Histopathology for each of the specimens was performed by an experienced cardiovas-

cular pathologist blinded to the spectroscopy results. Examples of several histological features of
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the samples is presented in Fig. 6-3. The morphological features associated with plaque vulnera-

bility were assessed: thin fibrous cap (TFC), necrotic core (NC) size, superficial foam cells (SFC),

intralesional hemorrhage, and thrombus. The fibrous cap thickness was recorded as the range of

thicknesses found underneath the ink dot (Fig. 6-3b,c); the fibrous cap was also examined for pres-

ence of rupture or ulceration (Fig. 6-3d). The necrotic core size was recorded as the maximum

dimension of the core beneath the fibrous cap (Fig. 6-3c). The foam cells were evaluated based

on the most superficial depth at which they were found and a density grade (0 = none; 1+ =

isolated single foam cells; 2+ = small clusters of foam cells; 3+ = confluent sheets of foam cells)

(Fig. 6-3f). Acute intralesional hemorrhage was identified as an accumulation of blood within the

lesion, usually associated with the core (Fig. 6-3d,e). The presence of thrombus on the luminal

surface of the artery was also noted (Fig. 6-3d).

To make the histological determination of plaque vulnerability as quantitative as possible, the

following scheme is proposed. The vulnerable plaque index (VPI), developed by Dr. Maryann

Fitzmaurice, assigns a numerical score to each plaque vulnerability feature depending on severity

[89]. The VPI and the particular numerical scores have been validated through a small study of

autopsy coronary artery specimens from patients that died from a myocardial infarction; a larger

validation study is also planned. The VPI of a particular plaque is the sum of the individual scores

and if this VPI is above some threshold, the plaque is deemed vulnerable. The scoring scheme for

the various plaque vulnerability features in given in Table 6.1.

It should be noted from Table 6.1 that acute intralesional hemorrhage and thrombus are features

of post-ruptured plaques. However, the hemorrhage or thrombus, if not associated with a previous

fatal event, still pose a threat to the patient in terms of subsequent events and thus plaques with

those features should be considered vulnerable by default. On the other hand, plaques with only
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Figure 6-3. Photomicrographs of representative tissue sites: a) intimal fibroplasia (H&E; 10X; intimal thickness
indicated by arrows); b) atherosclerotic plaque with thick fibrous cap (H&E; 10X; fibrous cap thickness indicated
by arrows); c) thin fibrous cap atheroma (H&E; 10X; fibrous cap thickness indicated by arrows); d) ulcerated thin
fibrous cap atheroma, with thrombus (short arrow) and acute intralesional hemorrhage (long arrow) (H&E; 4X); e)
acute intralesional hemorrhage (H&E; 40X); f) superficial foam cells 3+ grade (H&E; 40X).
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Criteria I Score]
1. Thin fibrous capW ulceration* 10

< 65 pm 5
65-100 /pm 3

100-120 ym 1
2. Necrotic core > 500 psm 5

100-500 Mm 3
< 100 pm 1

3. Superficial foam cells (_ 65 pm) 3+ 5
2+ 3
1+ 1

4. Acute intralesional hemorrhage* 10
5. Thrombus* 10

Table 6.1. Vulnerable plaque index. The vulnerability of a particular plaque is determined by summing the scores of
the individual morphological features determined to be present histologically. *Feature by itself indicates a vulnerable
plaque. "Applies only to plaques and not to intimal fibroplasias.

the features of TFC, large NC and SFC are plaques that have presumably not ruptured yet and are

vulnerable because they are rupture-prone. As such, it is reasonable to come up with two different

approaches of using the VPI. In the first class, we can classify "early" or rupture-prone vulnerable

plaques by considering only on the first three features of the VPI, by which a plaque is pronounced

vulnerable if it has TFC, NC, or SFC that result in VPI 2 10. In the second class, we can classify

"all" vulnerable plaques (rupture-prone or post-ruptured) by utilizing all five features of the VPI

and pronouncing a plaque vulnerable if it has TFC, NC, SFC, hemorrhage or thrombus that result

in VPI > 10.

E 6.2.5 Diagnosis and classification

In the most general terms, we shall be developing tests to detect the presence of a condition, as

ascertained by some "gold standard." In our specific case, we shall be developing a spectroscopic

test or classifier to detect the presence of a vulnerable plaque, a condition assessed by the gold

standard of histology. To develop the classifier, we shall be utilizing the method of logistic regression
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[150]. We shall be evaluating the robustness of the classifier by looking at its receiver operating

characteristic (ROC) curve, as well as related metrics such as the sensitivity, specificity, positive

predictive value (PPV), and negative predictive value (NVP). In order to show that the classifiers

can generalize to prospective data, we shall be utilizing leave-one-out cross validation. More explicit

details about the terminology, logistic regression, ROC curves, and cross validation can be found

in Appendix B.

0 6.3 Results

This section overviews the results obtained from this clinical study and can be broken down into

three parts: the comparisons of in vivo and ex vivo spectra, the spectroscopic indications of plaque

morphology, and the ability to detect features of vulnerable plaque.

* 6.3.1 In vivo vs. ex vivo

We investigated the equivalence of spectroscopic data collected from patients in vivo to the spectra

collected from approximately the same spectral locations from the excised specimen ex vivo. This

comparison was performed for excised specimens kept in saline and spectrally analyzed within

one hour after surgical excision. A comparison of MMS data taken in vivo and ex vivo from

approximately the same locations of a carotid artery atherosclerotic plaque is given in Fig. 6-4. A

few sites exhibited a greater discrepancy between the spectra collected in vivo and ex vivo, which

was attributed to a registration/sampling error.

* 6.3.2 Spectroscopic information

This section correlates the spectroscopic findings for each MMS modality to histopathology. The

following analysis is based on the spectra collected ex vivo as only those could be registered to
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Figure 6-4. A comparison between in vivo and ex vivo data collected from approximately the same locations on a
carotid artery atherosclerotic plaque for (a) DRS, (b) fluorescence, and (c) Raman spectra.
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the corresponding histopathology with relatively high certainty. Representative spectra and fits

for DRS, IFS, and Raman modalities are displayed in Fig. 6-5, collected from a carotid artery

calcified atheromatous plaque. The excellent fits indicate that the spectral modeling is appropriate

and adequate in accurately characterizing the experimental spectra. It should be noted that the

DRS spectra containing a relatively large amount of /3-carotene absorption, such as the spectrum in

Fig 6-5b, did not result in a perfect fit because /-carotene has known environment-specific spectrum

and is insoluble in aqueous media [64, 63]. This deviation points to an imperfect modeling of the

/-carotene extinction spectrum (Fig. 6-5a) or the presence of an unknown absorber.

Occasional spectra were either too noisy, distorted by artifacts, or exhibited structural features

that were not found in our existing models. For example, occasional DRS spectra collected from

locations with a large amount of blood relative to sampling volume resulted in saturation of the -420

nm soret band of hemoglobin; a good fit and a reliable extraction of cHb could not be obtained

in some of these cases. Too much absorption in the DRS spectra also manifested itself in the

corresponding IFS spectra as the spectral correction to extract IFS could not compensate for this

level of absorption. Other IFS spectra simply had too low of a signal-to-noise ratio. Occasional

Raman spectra also contained too much noise resulting from a relatively high amount of tissue

fluorescence excited in the NIR relative to the Raman signal. If one of the MMS modalities did not

have a good spectrum and fit, for the reasons mentioned, the entire lesion was excluded from the

study. In total, 8 spectral locations were excluded from the study for reasons relating to the quality

of the data and goodness of fit. Therefore, a total of 76 out of 84 spectral locations analyzed ex

vivo were included in the following analysis.

The following extracted spectral parameters are utilized in the ensuing analysis of tissue charac-

terization vulnerable plaque detection. From DRS, the parameter cpcar indicated the contribution
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Figure 6-5. (a) Absorption coefficients used to model the tissue abs6rbers for DRS modeling; (b) representative
data and fit for DRS; (c) basis spectra, obtained through MCR, used to model IFS spectra; (d) representative data
and fit for IFS; (e) Raman morphological basis spectra; (f) representative data and fit for Raman. The representative
spectra in (b), (d), and (f) are collected ex vivo from the same tissue location, a carotid artery calcified atheromatous
plaque. The residuals in (b) and (f) are offset from zero for clarity.
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of P-carotene to the absorption. From IFS, two parameters were defined: CE as the energy-

normalized contribution of the collagen-like spectrum and Rc as the relative amount of collagen

specified by:

C337
CE = 337 (6.5)

< energy >'

C337
R = C337 (6.6)

C337 + E337'

where C337 is the collagen-like contribution, E 33 7 is the elastin/lipid-like contribution, and <energy>

is the excitation energy (p J/pulse) used to excite fluorescence. Lastly, two Raman parameters were

defined: CM as the extracted contribution by the calcium mineralization constituent spectrum and

E to characterize the lipid core:

E = CC + FC/NC, (6.7)

where CC and FC/NC are the contributions of the cholesterol crystals and the foam cells / necrotic

core constituent spectra. As was done previously [86] to compensate for the pre-resonant Raman

properties of /-carotene, the CM contribution was extracted by removing the contribution of the

Raman P-CC constituent spectrum and renormalizing all other components to sum to unity. Sim-

ilarly, to compensate the effects of calcification on the Raman spectrum of lipid core, the CC and

FC/NC contributions were extracted after removing the contribution of the /-CC and the CM

constituent spectra and renormalizing the remaining components to sum to unity [86].

0 6.3.3 Histological findings

Detailed histological analysis was performed on all specimens. Owing to histological processing

difficulties, two of the specimens were excluded from the study. These corresponded to samples

that would have been excluded for reasons relating to the quality of data and fits, as discussed above.
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Figure 6-6. Box plot associated with the diagnostic algorithm (left) and ROC curve (right) for detecting calcified
plaques using the Raman CM contribution. The chosen point on the ROC curve, represented by the decision threshold
line on the left panel, indicates a sensitivity of 81% and a specificity of 93%. Area under the ROC curve = 0.955.

The remaining specimens exhibited a wide variety of morphological, structural, and pathological

variations. The detailed morphological assessment following the criteria in Table 6.1 was performed

for every lesion. In terms of the "early" vulnerability criteria, 23 specimens resulted in VPI > 10

while the remaining 53 specimens had VPI < 10. Using the "all" vulnerability criteria, 36 specimens

had VPI > 10 and 40 had VPI < 10.

0 6.3.4 Detecting calcified plaques

The Raman CM parameter was used previously to detect calcified plaques [86, 89]. To compare to

those earlier studies, in Fig. 6-6 the box plot of the Raman CM contribution is given for lesions

that were assessed to be non-calcified (n=44) and calcified (n=32) histologically. The box has lines

at the lower quartile, median, and upper quartile values; the whiskers are lines, with a maximum

length of 1.5 times the interquartile range, extending from each end of the box to show the extent of

the rest of the data; outliers are data with values beyond the ends of the whiskers. Figure 6-6 also
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Figure 6-7. Diagnostic algorithm (left) and ROC curve (right) for detecting the presence of necrotic core and/or
superficial foam cells using DRS f-carotene and Raman E. The chosen point on the ROC curve, specified by the
given decision line (left), indicates a sensitivity of 80% and a specificity of 81%. Area under the ROC curve = 0.865.

displays the ROC curve for detecting calcified plaques using Raman CM and logistic regression,

indicating that a specific classifier, indicated by the decision threshold line on the left panel, can

achieve a sensitivity of 81% and a specificity of 93%. The area under the ROC curve is 0.955 out

of a maximum of unity.

N 6.3.5 Detecting NC/SFCs

Two spectral parameters were shown to have a significant correlation with the histologically con-

firmed presence of a NC and/or SFCs: the DRS ca-car (p<0.0001) and Raman E (p<0.1). Fig-

ure 6-7 presents a diagnostic algorithm based on logistic regression and an ROC curve for detecting

the presence of a large NC or SFCs, indicating a sensitivity of 80% and a specificity of 81% for one

particular classifier. The area under the ROC curve is 0.865. For the purpose of this diagnostic

algorithm, 40 out of the 76 lesions were considered to exhibit this feature as they contained a large

NC (> 500 Mm) or if SFCs (5 65 pm) with a density of at least 3+ were present. In this way, the
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algorithm is detecting at least a VPI contribution of 5 points based on the NC and SFC criteria

(Table 6.1).

U 6.3.6 Detecting a TFC

Two spectral parameters were shown to have a significant (p<0.005) correlation with the histologi-

cally thin fibrous cap, seen in 22 out of the 76 lesions: the IFS Rc and IFS CE. Figure 6-8 presents

a diagnostic algorithm based on logistic regression and an ROC curve for detecting a TFC, indicat-

ing that a sensitivity of 91% and a specificity of 62% can be achieved with a particular classifier.

The area under the ROC curve is 0.851. A TFC was considered as such if the fibrous cap thickness

was smaller than 65 pm at some location within the sampling area. In this way, the algorithm

is detecting at least a VPI contribution of 5 points based on the TFC criterion (Table 6.1). For

the purpose of developing the diagnostic algorithm only, the non-atherosclerotic intimal fibroplasia

samples were excluded from the analysis as they are not proper plaques. (However, all samples were

Detecting thin fibrous caps

Q O0=o

O 0

LL

0

C',

IFS relative collagen: RC (a.u.) 1 - Specificity

Figure 6-8. Diagnostic algorithm (left) and ROC curve (right) for detecting the presence of a thin fibrous cap (< 65
p~m) using IFS Rc and IFS CE. The chosen point on the ROC curve indicates a sensitivity of 91% and a specificity
of 62%. Area under the ROC curve = 0.851.
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included in the ensuing application of the diagnostic algorithm and vulnerable plaque analysis.)

M 6.3.7 Detecting thrombus

In the course of the study, we collected spectra from a macroscopically large (> 2 mm thick)

thrombus that was excised from the lumen of an artery. The Raman spectrum from this thrombus

can serve as a basis spectrum (Fig. 6-9a) to model the spectroscopic presence of a thrombus in

other samples. Figure 6-9b shows the Raman spectrum of a thrombotic carotid plaque that was

fit using the Raman morphological model. Some structure in the residual indicates that perhaps

not all spectroscopic features are properly accounted for in the model. However, if the Raman

morphological model is modified to also include the thrombus basis spectrum, a better fit to this

thrombotic plaque is achieved (Fig. 6-9c), indicated by less visible structure in the residual as well

as a 28% reduction in its magnitude.

All the Raman spectra were refit using a basis spectrum model that includes the thrombus

spectrum. Seven specimens had a significant contribution (-10% of normalized Raman signal)

from the thrombus basis spectrum. A diagnostic algorithm aiming to detect thrombus was de-

veloped using the Raman thrombus contribution and logistic regression. The box plot in the left

panel of Fig. 6-10 indicates specimens that contained a histologically confirmed thrombus (n=13)

had an elevated distribution of the Raman thrombus parameter. Conversely, specimens with no

histologically confirmed thrombus (n=63) had a much reduced distribution of the Raman thrombus

parameter, with the exception of several statistical outliers indicated. It should be noted that a

thrombus was assessed histologically regardless of its physical size or extent. In this way, the algo-

rithm is detecting a VPI contribution of 10 points based on the thrombus criterion (Table 6.1). The

ROC curve is shown on the right panel of Fig. 6-10 with a particular operating point corresponding
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Figure 6-9. a) Raman basis spectrum of a thrombus; b) Raman spectrum of a thrombotic carotid plaque that was
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to a sensitivity of 31% and a specificity of 97% associated with the decision threshold given on the

left panel. The area under the ROC curve is 0.661.

Non-thromb vs. Thrombotic
0.3

0.25

0.2-

E
2 0.15
I- ÷

E 0.1 - +

0.05-

0-
Non-thrombotic Thrombotic

1 - Specificity

Figure 6-10. Diagnostic algorithm (left) and ROC curve (right) for detecting the presence of a thrombus using the
Raman thrombus contribution. The chosen point on the ROC curve indicates a sensitivity of 31% and a specificity
of 97%. Area under the ROC curve = 0.661.

0 6.3.8 Detecting "early" vulnerable plaques

The described spectroscopic diagnostic algorithms were used together to detect the presence of

vulnerable plaques based on the "early" vulnerability criteria.

Plaques were considered histologically vulnerable if they had a calculated VPI > 10 based on

the first three features in Table 6.1, namely TFC, NC, and SFC. The spectroscopic algorithm

to detect the presence of "early" vulnerable plaques is presented in Fig. 6-11. The combined

diagnostic algorithm uses the two individual spectroscopic algorithms for TFC and NC/SFC as

decision stumps, requiring both to be positive for the combined algorithm to return positive. Since

each individual algorithm was tuned to detect a 5 point contribution to the VPI, the combined

algorithm would thus be detecting lesions with a VPI > 10. The specific operating points on
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- Vulnerable

Figure 6-11. Spectroscopic algorithm for the detection of "early" vulnerable plaques. The output of the algorithm
classifies a plaques as vulnerable if both of the individual spectroscopic algorithms for TFC and SFC/NC return
positive.

the ROC curve of each individual spectroscopic algorithm were chosen to maximize the combined

algorithm accuracy of detecting "early" vulnerable plaques. The ROC curve for the combined

algorithm, using logistic regression and leave-one-out cross validation, is shown in Fig. 6-12 and the

area under the ROC curve is 0.886 out of a maximum of unity. We can select a particular point on

the ROC curve (indicated) that achieves a sensitivity of 96% (22/23), specificity of 72% (38/53),

PPV of 59% (22/37), and NPV of 97% (38/39). The decision chart including breakdowns among

true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for that

particular operating point is also shown in Fig. 6-12.

Histology ("early")
E
c -VP Stable
0 U_o p.

"U o VP 22 15 59%._ Z PPV

097%
2o Stable 1 38 NPV

1o 96% 72%
sensitivity specificity

1 -Specificity

Figure 6-12. ROC curve for the combined algorithm (left) for the detection of "early" vulnerable plaques, and the
decision chart (right) for the particular operating point indicated on the ROC. Area under the ROC curve = 0.886.
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N 6.3.9 Detecting "all" vulnerable plaques

The described spectroscopic diagnostic algorithms were also used together to detect the presence

of vulnerable plaques based on the "all" vulnerability criteria.

Plaques were considered histologically vulnerable if they had a calculated VPI > 10 based on

all five features in Table 6.1, namely TFC, NC, and SFC, acute intralesional hemorrhage, and

thrombus. If the same spectroscopic algorithm that was used to detect "early" vulnerable plaques

(Fig. 6-11) is used here, it achieves a sensitivity of 81% (29/36), specificity of 80% (32/40), PPV

of 78% (29/37), and NPV of 82% (32/39). In an effort to improve the classification, the spec-

troscopic algorithm was modified to include diagnostic information from thrombus. This modified

spectroscopic algorithm to detect the presence of "all" vulnerable plaques is presented in Fig. 6-13.

The combined diagnostic algorithm uses the three individual spectroscopic algorithms for TFC,

NC/SFC, and thrombus as decision stumps, requiring either NC/SFC and TFC to return positive

or for thrombus to return positive in order for the combined algorithm to return positive. As a re-

sult, the output of this combined algorithm would be detecting lesions with VPI > 10. The specific

operating points on the ROC curves of each of the three individual spectroscopic algorithm were

chosen to maximize the combined algorithm accuracy of detecting "all" vulnerable plaques. The

Spectroscopic Thrombus -

-. VulnerableSpectroscopic TFC

Spectroscopic NC/SFC -,

Figure 6-13. Spectroscopic algorithm for the detection of "all" vulnerable plaques. The output of the algorithm
classifies a plaques as vulnerable if either the individual spectroscopic algorithms for TFC and SFC/NC return positive
or if the spectroscopic algorithm for thrombus returns positive.
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ROC curve for the combined algorithm, using logistic regression and leave-one-out cross validation,

is shown in Fig. 6-14 and the area under the ROC curve is 0.901 out of a maximum of unity. We can

select a particular point on the ROC curve (indicated) that achieves a sensitivity of 89% (32/36),

specificity of 78% (31/40), PPV of 78% (32/41), and NVP of 89% (31/35). The decision chart

including breakdowns among TP, TN, FP, and FN for that particular operating point is also shown

in Fig. 6-14.
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Figure 6-14. ROC curve for the combined algorithm (left) for the detection of "all" vulnerable plaques, and the
decision chart (right) for the particular operating point indicated on the ROC. Area under the ROC curve = 0.901.

* 6.4 Discussion

This section discusses the findings and diagnostic implications of the presented results.

* 6.4.1 In vivo vs. ex vivo

The first achievement of this study is the demonstration of the ability to collect MMS data in

vivo from human patients in clinically acceptable times. This finding underscores the potential

future use of the technique for diagnostic applications. Also, given the demonstrated equivalence
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of ex vivo and in vivo spectroscopic data (Fig. 6-4), it is justified to use the ex vivo spectral

findings correlated to histology on the assumption that the results hold for both ex vivo and in vivo

applications. Any discrepancies between the spectra collected ex vivo and in vivo are attributable

to either registration errors or subtle changes in the experimental environment (e.g. inadequate

saline rinse prior to spectral collection in vivo compared to ex vivo).

0 6.4.2 Spectroscopic information

The quantitative spectroscopic information provided by MMS correlates with the histology. More-

over, there is sound physical basis and justification for the agreement between spectroscopy and

histology rather than simply statistical correlations. For example, the CM parameter indicates the

highly specific observed signature of the calcium mineralization that is able to discern hard plaques

from soft plaques. Similarly, the absorption attributed to 0-carotene indicates the presence of this

molecule, which is known to be lipid soluble and thus likely to be found within the NC or foam cells.

In addition, the IFS contribution of collagen identifies the main component of the plaque fibrous

cap and therefore it is natural for there to be a correlation between the spectroscopic and histologic

findings. Lastly, the high molecular specificity of Raman spectroscopy can also be used to detect

thrombus on the surface of a plaque through the spectroscopic signature of a pure thrombus.

* 6.4.3 Detecting calcified plaques

It should be noted that there is no clear consensus in the literature about the impact of calcification

on plaque vulnerability. Therefore, this feature was not included in the VPI but we will nevertheless

comment on our ability to detect calcifications. The described algorithm for detecting calcified

plaques is consistent with previously published algorithms [86, 89]. The high accuracy of detection

is testament to the high molecular specificity of Raman spectroscopy relating to calcium deposits.
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The misclassified samples are easily explained: the false positive samples are most likely the result

of calcium deposits that are missed on histologic examination owing to registration and sampling

error associated with processing of slides; the false negative results are caused either by calcium

deposits that are too small in physical extent or found too deep in tissue, beyond the probe sampling

volume. It should be noted that small or deeply seated calcification may not be clinically relevant

as some suggest that it is only the exposed surface calcification that poses a risk of plaque rupture

[8].

* 6.4.4 Detecting NC/SFCs

The described algorithm for detecting NC and SFCs is consistent with previously published work,

indicating that the presence of 3-carotene from DRS [64] and the Raman E contribution [89] are

associated with plaque cores and SFCs. However, this is the first time that such an algorithm is

proposed that utilizes both DRS and Raman spectral parameters in a joint classification. It makes

physical sense that lesions that do not contain large necrotic cores or confluent aggregations of

SFCs on average exhibit a low value of DRS P-carotene and Raman lipid core (E) contributions.

Moreover, looking at Fig. 6-7, one should note that the two contributions compensate for each other.

In other words, certain lesions can contain high values of E while having low values of 3-carotene;

this can be explained either by the relatively deeper sampling depth of Raman spectroscopy that can

better assess deeper-lying NC than DRS or perhaps simply the absence of lipid-soluble 3-carotene

in that particular lesion. The reverse argument, having high amounts of 3-carotene with low values

of E is likely caused in the presence of calcification that tends to dominate the Raman signal, even

with the compensation described in computing E. The misclassified samples in the zone around the

boundary line in Fig. 6-7 are best explained by the arbitrary cutoff for defining a large NC (Ž 500
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Im) or an accumulation of SFCs (density 3+), or the presence of NC too deep in tissue, beyond

the sampling volume of the probe. It should be noted explicitly many of these misclassifications

would be expected since spectroscopy may see all the full range of gradual changes in morphology

whereas the cutoffs used to call a feature "large" or "small" histologically can create a somewhat

unnatural grouping.

0 6.4.5 Detecting a TFC

Utilizing fluorescence to detect the size of a plaque fibrous cap has been done previously [70, 131].

The diagnostic algorithm presented in Fig. 6-8 makes physical sense as thicker fibrous cap samples

had, on average, a larger contribution of collagen, indicated by the high values of both Rc and CE.

Conversely, TFC samples had lower values of those two IFS parameters. The chosen classification

boundary exhibits a very high sensitivity at the expense of a low specificity. The false positive

samples, the histologically thick fibrous caps that were misclassified spectroscopically as TFCs, are

almost all explained by the presence of SFC in the fibrous cap. Since the IFS contributions of

elastin and of lipids are similar and represented by the elastin/lipid-like IFS constituent spectrum,

an accumulation of SFC can boost the elastin/lipid signal at the expense of the collagen-like signal

to give an IFS similar to that of a thin fibrous cap over a necrotic core. The remaining false positive

samples are likely explained by the variable size fibrous cap which can be locally thinner though not

below the stated 65 pm limit. On the other hand, some of the TFC with relatively higher values of

Re and CE are explained by observing that a thin or ruptured fibrous cap can also have adjacent

regions of much thicker fibrous cap within the sampling volume of the probe. Again, it should be

noted that some of these misclassifications would be expected since the thinness of a fibrous cap is

based on the discrete 65 pm cutoff whereas the spectroscopy really sees the full range of gradual
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changes, given its sampling volume.

0 6.4.6 Detecting thrombus

Attempting to detect thrombotic plaques using the Raman spectroscopic signature of pure thrombus

has not, to our knowledge, been done before. We were able to extract a Raman spectrum from

a pure thrombus and verify features of that spectrum in several thrombotic specimens with large

thrombi. Moreover, features of the thrombus basis spectrum can be seen in the known Raman

spectra of platelets [151], fibrin [152], and hemoglobin (Fig. 6-5e), the physical constituents of

thrombus (data not shown). However, several other histologically thrombotic specimens did not

contain a contribution from the thrombus basis spectrum; these are most likely explained by the

relative small physical size (average thickness -150 pm) of these thrombi. In addition, several

specimens without histologically confirmed thrombi exhibited a significant contribution from the

Raman thrombus spectrum. These outliers are most likely explained by a registration issue or

other problem during the histology processing that could have perhaps caused a thrombus to be

overlooked histologically. Moreover, the Raman thrombus basis spectrum was not able to pick up

the presence of an acute intralesional hemorrhage. This may be somewhat surprising since thrombi

and hemorrhages are expected to be similar in composition. However, given that thrombi are on the

surface of a plaque compared to the deeper lying hemorrhages, the inability to detect hemorrhages

is perhaps explained by sampling volume considerations.

E 6.4.7 Detecting vulnerable plaques

We have demonstrated the ability to use the aforementioned individual diagnostic algorithms to

detect vulnerable plaques. The first algorithm (Fig. 6-11) detects "early" vulnerable plaques with

an excellent overall accuracy. The one false negative vulnerable plaque is the result of not being
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able to detect its thin fibrous cap by the individual TFC algorithm. The 15 false positive results

are not a concern diagnostically since six of those samples contained hemorrhage or thrombus from

an adjacent plaque which was not counted using the "early" criteria, and one may not see them as

real false positives. Moreover, the average VPI of these false positives (using the "all" criteria) was

8, which is very close to the threshold of 10 for defining a vulnerable plaque.

Turning to "all" vulnerable plaques, the combined TFC and NC/SFC algorithm (Fig. 6-11)

alone does not achieve as high of a sensitivity. It should be noted that several plaques would

be considered vulnerable by the "all" criteria by having a thrombus or hemorrhage but without

having a combination of TFC and NC/SFCs. Therefore, it is not surprising that these specimens

are missed by the algorithm that is not tuned to the exact criteria for vulnerability. The mod-

ified algorithm (Fig. 6-13) for detecting "all" vulnerable plaques by a combination of TFC and

NC/SFC or thrombus is able to significantly improve the sensitivity by detecting three additional

thrombotic plaques, with only a slight reduction in specificity owing to one additional false positive,

a plaque without a histologically confirmed thrombus that is incorrectly classified as thrombotic.

The remaining three false negatives are explained by the inability to detect plaques with an acute

intralesional hemorrhage. In our first MMS study [131], we claimed the possibility, though based

on a single specimen, to detect intralesional hemorrhage through a markedly higher contribution of

hemoglobin in DRS. In addition, previous work with Raman spectroscopy in vivo [89] indicated the

potential to detect thrombotic and hemorrhagic plaques using the Raman hemoglobin contribu-

tion. However, the underlying assumption in both cases was that hemoglobin-containing red blood

cells would be found at the site of an intralesional hemorrhage or thrombus. Several specimens in

the present data set contained intralesional hemorrhage that our spectroscopic technique probably

could not detect because the hemorrhage sites were mainly composed of platelets and fibrin with
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few, if any, red blood cells. Another explanation for the difficulty in detecting hemorrhage com-

pared to thrombus (since the two should be physically similar) is the fact that hemorrhage, found

deeper inside the artery wall, arguably contributes less to the overall signal given the sampling

volume and light attenuation in tissue, compared to a surface thrombus.

Finally, we should note that perhaps the most clinically important statistic for these classifiers

is the NPV. That is, if the MMS technique is to be used to detect vulnerable plaques and thus

indicate locations for treatment, it is of greatest importance to not miss any vulnerable plaques.

In other words, false negatives should be minimized even if it comes at the expense of unnecessary

false positives. Unnecessarily treating a stable plaque is acceptable as long as all vulnerable plaques

are also treated. Therefore, having a high NVP value and being certain that the examined artery

location is stable and does not require treatment is arguably the most important criterion. The

relatively high demonstrated NPVs of 97% and 89% for the detection of "early" and "all" vulnerable

plaques, respectively, attest to the robustness of MMS technique as a diagnostic tool.

N 6.4.8 Comparison to pilot study

In this section, we compare the ability to detect features of vulnerability of the present study to that

of the pilot study from Chapter 2. We shall compare the results from the two studies directly even

though there are several substantial differences between the two studies which may render a direct

comparison inappropriate. First, the present study utilized fresh specimens whereas the pilot study

used previously frozen specimens. Second, the present study utilized a single MMS instrument and

probe whereas the pilot study used two clinical instruments and two different probes to collect all

MMS modalities. As a result, not only were the chances of registration errors greater in the pilot

study, but the different probes sampled slightly different tissue volumes. Third, and perhaps most
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importantly, the present study is much larger, with 76 spectral locations from 11 patients whereas

the pilot study contained 17 spectral locations from 8 patients.

The pilot study claimed an ability to detect intraplaque hemorrhage using the DRS hemoglobin

contribution. However, this was based on a single hemorrhagic specimen and this result is, therefore,

not inconsistent with the inability of the much larger present study to detect hemorrhage through

DRS. Differences between tissue in the fresh versus post-frozen state may also account for the

difference.

The pilot study also claimed the ability to detect foam cells using the scattering parameter

A from DRS. However, not much distinction had been made in the pilot study regarding the

superficiality of foam cells using the 65 pm criterion as in the VPI. Also, the statistical significance

of the scattering parameter A across the two groups was not calculated in the small data set of

the pilot study. In the present study, a trend toward increased scattering and a higher scattering

parameter A for specimens with SFCs was observed (data not shown), but this trend was not

statistically significant and could not be used robustly to detect lesions with SFCs. The two

studies are consistent with associating increased scattering with foam cell presence.

The pilot study claimed the ability to detect a TFC using the parameter p from IFS excited

at 308 nm and 340 nm, or, equivalently, by using the parameter Rc from 340 nm excitation IFS.

The present study also used the parameter RC from 337 nm excitation IFS to detect a TFC. In

addition, the present study additionally used the parameter CE to provide intensity information

and improve detection of a TFC, which the pilot study did not as excitation energy information

was not available. Therefore, the present study verified the claim of the pilot study to detect a

TFC using IFS but went further to utilize two parameters. Also, the present study identified a

previously unknown limitation to specificity in detecting a TFC relating to the presence of foam
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cells in a thick fibrous cap.

The pilot study claimed the ability to detect a NC using the Raman E contribution. The present

study also utilized the E contribution. However, the present study also additionally utilized the

more diagnostic DRS 3-carotene contribution to detect the presence of NC/SFCs. The specimens

in the pilot study did not contain appreciable amounts of 3-carotene, perhaps a sampling limitation

in a small data set. Therefore, the present study verified the claim of the pilot study to detect

NC using Raman E but went further to jointly include DRS 0-carotene. The present study also

indicated across a larger data set that both of the parameters could not separate contributions of

NC from that of SFCs.

The present study demonstrated, for the first time, the ability to detect thrombotic plaques.

None of the specimens in the pilot study were thrombotic, which is perhaps another sampling

limitation of the small data set. The present study also demonstrated the ability to detect vulnerable

plaques, using two criteria, something that the pilot study could not even attempt. In conclusion,

the present study used and verified many of the claims of the pilot study, but went significantly

further and not only demonstrated a robust ability to detect features of vulnerability in a larger

set of specimens, but also the ability to detect vulnerable plaques as defined by the VPI.

* 6.5 Summary

This is the first demonstration of MMS performed in vivo in humans to study arterial lesions. We

have demonstrated the clinical feasibility of collecting and analyzing the data in the operating room,

giving real-time feedback to the physician. There is good agreement between data taken in vivo

and ex vivo with any differences attributable mainly to registration errors. The extracted spectral

parameters and the corresponding histological findings are in good agreement. We demonstrate
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the ability to detect calcified plaques, lesions with large necrotic core and/or superficial foam cells,

and plaques with thin fibrous caps. In addition, we demonstrated the ability, for the first time, to

detect a thrombus on the surface of a plaque using its Raman spectral signature. To achieve this,

several parameters from the individual MMS modalities are used, always with a physical basis for

comparisons. Most importantly, we demonstrate the ability to detect vulnerable plaques with a

sensitivity of 89-96% and a negative predictive value of 89-97%. These encouraging results indicate

the ability for MMS to serve as a robust clinical diagnostic technique.

E 6.6 Addendum: Ceroid, the unknown absorber?

As noted earlier, DRS spectra containing a relatively large amount of /-carotene absorption, such

as the spectrum in Fig 6-5b, did not result in a perfect fit using our model. This pointed to

an imperfect knowledge of the /-carotene absorption spectrum or the presence of an unknown

absorber. There is reason to believe that the unknown absorber is ceroid, a peroxidized lipid-

protein complex within which most oxidized LDL is contained in foam cell lysosomes [153]. Ceroid

is insoluble in aqueous and organic solvents and its in vivo composition remains largely speculative,

but it is believed to have toxic properties that result in plaque progression and ultimately plaque

irreversibility [154].

The extinction spectrum of ceroid is very similar to that of /3-carotene, as indicated in Fig. 6-15a;

the extinction spectrum was collected on a ultraviolet-visible spectrophotometer (personal commu-

nication from Dr. John Kramer). Figure 6-15b shows the same DRS spectrum and fit from Fig. 6-5b,

where the DRS data is fit using the extinction spectra of oxy-hemoglobin, deoxy-hemoglobin, and

/-carotene only. However, when the same DRS data is fit using, in addition, the extinction spec-

trum of ceroid, a much improved fit is obtained, presented in Fig. 6-5c. This observation, true
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(b) DRS data and fit from Fig. 6-5b, where modeling does not include ceroid; (c) DRS data from Fig. 6-5b and fit,
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across the specimens with pronounced 0-carotene-like absorption features, indicates that perhaps

ceroid is also present in those lesions and detectable through DRS.

All the DRS spectra were re-fit having the ceroid absorption spectrum included in the modeling.

The fit coefficients of DRS spectra that were dominated by hemoglobin features (and with little or

no /-carotene features), were unchanged. However, the DRS spectra with pronounced /-carotene

features usually resulted in a lower relative extracted co-,,car and a nonzero contribution of ceroid.

This effect was expected owing to the substantial spectral overlap between /-carotene and ceroid,

which allows the two extinction spectra compensate for one another.

The inclusion of ceroid in the DRS analysis does not have a significant impact on the diagnostic

power of MMS and ability to detect vulnerable plaques. The algorithm to detect NC/SFC using

only the re-fit co-car and E achieves, as anticipated, a poorer performance than described in

Sec. 6.3.5. However, if the algorithm is modified to include all three parameters (c-,,car, E, and the

contribution of ceroid), the performance is improved by a few percent relative to Sec. 6.3.5, achieving

an area under the ROC curve of 0.873. The impact of this modified NC/SFC algorithm on the

performance of the overall algorithms to detect "early" (Fig. 6-11) and "all" (Fig. 6-13) vulnerable

plaques is minimal, resulting in areas under the ROC curves of 0.896 and 0.899, respectively.
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Chapter 7

Accomplishments of this thesis

This chapter summarizes the present work by commenting on the goals that have been achieved

and discusses any limitations.

* 7.1 Diagnostic ability of MMS

This diagnostic potential of MMS was shown through a pilot in vitro study. In this study, spectra

were collected using two different instruments and two differen probes, all previously developed

in our laboratory. This study demonstrated the feasibility of using MMS to detect morphologi-

cal markers of vulnerable plaque, specifically intraplaque hemorrhage, superficial foam cells, thin

fibrous cap and large necrotic core. In view of the small size of the sample set, those promis-

ing results were considered preliminary, but they nevertheless provided the motivation to continue

pursuing MMS. The subsequent work ultimately led to the development of integrated probes and

instrumentation and the ability to apply MMS in vivo in a much larger study.

E 7.2 Quantitative data analysis

We have made a significant advancement in quantitative data analysis by developing a simple

and direct method for calculating the uncertainty from a single spectroscopic measurement. The

experimental usefulness of the analytic Ac expression was demonstrated both for solution mixtures
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and human tissue. In addition to calculating parameter uncertainties, the mathematical framework

assesses the calibration and consistency of the experimental apparatus and allows experimentalists

to verify that their spectral parameters contain the minimum possible uncertainty. Future work in

this field may include developing analytical expressions for characterizing uncertainty in nonlinear

models, such as diffuse reflectance.

N 7.3 Spectral probe development

We have made a significant advancement by developing an integrated MMS probe, capable of

efficiently collecting reflectance, fluorescence, and Raman signals from the same location in tissue.

This is, to our knowledge, the first probe capable of collecting all three MMS modalities over the

wide wavelength range of 300-1000 nm in a clinically acceptable time. We also demonstrated careful

understanding of the optical properties of the probe by performing tissue-mimicking phantom

experiments. The MMS probe can be used in many diagnostic settings apart from analyzing artery

tissue. In fact, it is presently also under investigation in studies of breast cancer. Future probe

work may include the development of side-viewing probes capable of intravascular applications as

the techniques are being pushed toward more clinical use. To enable intravascular use, several

issues would need to be resolved such as registering the probe against the artery wall and removing

blood from the field.

* 7.4 Clinical instrumentation development

We have made a significant instrumentation advancement by developing an integrated MMS sys-

tem. This instrument is used together with the MMS probe to collect reflectance, fluorescence,

and Raman signals and provide real-time diagnostic information. The MMS instrument is ideally
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suited for clinical applications as it is compact and portable, taking advantage of technological im-

provements to reduce the size and cost of the system. Similarly as the probe, the MMS instrument

can be used for multiple applications, in addition to studying arterial lesions. Future instrumenta-

tion improvements may include further miniaturization of the system by the utilization of a single

spectrograph and a single CCD camera, once the technology becomes available.

N 7.5 Clinical implementation of MMS

Finally, we have achieved a challenging clinical and diagnostic goal with the first demonstration of

MMS performed in vivo in humans to study arterial lesions. We have shown the clinical feasibility

of collecting and analyzing the MMS data from multiple patients and demonstrated the ability to

detect calcified plaques, lesions with large necrotic core and/or superficial foam cells, and plaques

with thin fibrous caps. In addition, we demonstrated the ability, for the first time, to detect

a thrombus on the surface of a plaque using its Raman spectral signature. Most importantly,

these results translate into the capability to detect vulnerable plaques with a sensitivity of 89-96%,

specificity of 72-78%, and a negative predictive value of 89-97%. Future clinical steps may be

toward intravascular demonstration of MMS. Also, understanding the scattering properties of foam

cells may improve the ability to discern foam cells from necrotic core spectroscopically. Lastly,

improving the detection of post-rupture vulnerable plaques would require a better understanding

of the chemical composition of thrombus and intralesional hemorrhage at various stages of disease.
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Chapter 8

Future directions

This chapter proposes some future directions that may be explored in light of the results of this

thesis.

* 8.1 Improving detection of VPs

* 8.1.1 Advanced classification

This work has mainly used logistic regression and a combination of decision stumps to detect

vulnerable plaques. However, this is just one method and there are multiple other avenues that can

be pursued in an effort to improve classification accuracy [150]. Instead of using "hard thresholding"

as has been done in this work, where certain features are either present or absent, one may employ

"soft thresholding" to provide a range of variation for certain features. For example, the individual

TFC and NC/SFC algorithms can output the actual value associated with the logistic function

probability of that features being present, rather than just a binary decision. As we know, histology

and pathology is not binary, and thus soft thresholding should be pursued as a method to improve

accuracy. Another method that may be explored is that of boosting [150], which would allow

different weighting factor to be assigned to each of the individual features rather than equal weights

as has been done in this work. The method of boosting may be particularly helping if the scores
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of the VPI were to change to favor certain features more heavily. Finally, other more statistical

methods, such as support vector machines [150], should also be explored. Although the objective

is to identify a physical basis for a medically-related classification, statistical correlations can be

used to potentially infer a physical relationship that may have been overlooked.

* 8.1.2 Thrombus and hemorrhage

The main limitation to detecting all post-ruptured vulnerable plaques (perhaps not vulnerable by

the "early" criteria), as described in Sec. 6.4.7, is the inability to always detect thrombus and

intralesional hemorrhage. A separate study should be conducted to further analyze the ability to

detect thrombus and hemorrhage in plaques. It is to be expected, as mentioned in Sec. 6.4.6, that

thrombi are easier to detect spectroscopically than hemorrhages as they appear, by definition, on

the luminal surface of the plaque rather than inside the arterial wall and thus provide a larger signal.

It should be noted also that the composition of a thrombus or hemorrhage, composed of platelets,

fibrin, and red blood cells, varies with the time-sensitive stage of the healing process. Therefore, it

would be reasonable to expect that the particular Raman thrombus constituent spectrum extracted

may not spectroscopically represent all thrombi at the various stages of the healing process.

* 8.1.3 SFC vs. NC

Another present limitation of the described spectroscopic method is the inability to separate the

contributions of NC and SFC. This is not surprising since both have very similar chemical com-

position, mainly dominated by lipids, and thus DRS or IFS is not picking up on differences in

absorption or fluorophores present. However, as discussed in Sec. 6.4.8, there is reason to believe

that SFC provide a more intense contribution to the scattering as compared to NC as the individ-

ual lipid vesicles found in foam cells would create a higher heterogeneity in the index of refraction.
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Another careful in vitro study examining the scattering properties of foam cells would help answer

the question whether SFCs can be reliably detected through scattering. The key benefit in identi-

fying foam cells apart from NC is that the specificity of the TFC individual diagnostic algorithm

could be improved. In the TFC algorithm, several thick fibrous caps were misclassified as thin as

they contained an abundance of SFC that gave the false impression of a NC; if those SFCs could

be identified individually, the algorithm could be modified to compensate for this effect and thus

boost overall specificity of detecting vulnerable plaques.

* 8.1.4 Raman background removal

At present, the pre-processing steps for Raman signal extraction include the removal of tissue

fluorescence by means of a 6th order polynomial fit. Although that method has been utilized in

many different studies, by our group and others, this step may also introduce some unwanted

spectral distortions of the extracted Raman spectrum. Another way to remove tissue fluorescence

would be by utilizing the method of frequency shifting [145]. Namely, Raman spectra would be

collected twice from the same location, using two separate excitation lines, for example 830 nm and

831 nm. Since the Raman spectra are a function of wave number relative to the excitation line, the

corresponding Raman peaks will undergo a slight shift in absolute wavelength. However, the tissue

fluorescence would change only minimally utilizing two very similar excitation lines. As a result, if

one of the two raw spectra is subtracted from the other, the fluorescence would cancel out, leaving

the difference between the Raman spectra in absolute wavelength. Through a final deconvolution

step, the intended Raman spectrum could be obtained from this difference spectrum, free of tissue

fluorescence. This method has the potential to remove tissue fluorescence more accurately, in a

way that a 6th order polynomial subtraction may not be able to compensate. Additionally, other
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more advanced mathematical methods to remove the background signal [146] may be explored in

future work. A more accurate correction would insure more accurate parameter extraction from

Raman spectra, particularly relevant in capture critical features of vulnerability such as a thrombus

or hemorrhage.

0 8.2 Intravascular imaging

N 8.2.1 Side-viewing probe

The studies described in this thesis have utilized a front-viewing probe to collect spectra. We have

also designed side-viewing probes, capable of collecting light in a lateral geometry, a schematic

of which is given in Fig. 8-1. Although our side-viewing probe prototype has been constructed

and tested successfully, it has not been used clinically to date. The main difference between the

side-viewing and front-viewing probe is the placement of a half-ball lens and a 45 degree mirror

at the probe tip, that channels the light laterally through a sapphire window. This type of probe

would be appropriate for intravascular use and its diameter can be made small enough (< 2 mm)

to fit through a standard introducer sheath presented at the bottom of Fig. 8-1.

* 8.2.2 Intravascular constraints

Even with a working side-viewing probe, there are several challenges that need to be overcome in

order to demonstrate intravascular viability of MMS. First, the issue of flowing blood and absorption

caused by hemoglobin would need to be addressed. One solution to this would be to use a saline

flush to remove blood from the field, something which can be done via the same introducer sheath

through which the probe is threaded. The second challenge will be to register the probe against

the artery wall internally. In order to achieve this, perhaps an inflatable balloon mechanism could
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Figure 8-1. A schematic of the side-viewing probe (top) that could be introduced via sheath (bottom) for intravas-
cular use.

be used, similar to that used for angioplasty. A collaboration with a commercial entity with more

extensive experience with catheters and balloons may be very useful in this process.

* 8.2.3 Circumferential imaging

So far, we have only demonstrated point spectroscopy with MMS. In order to provide maximum

clinical information, circumferential images of the artery wall would be a great step forward. There

are several challenges that need to be overcome. In order to achieve circumferential imaging, a

185



customized pullback and rotate mechanism would need to be designed and implemented for the

side-viewing probe. This would enable the rotation of the probe for circumferential imaging as

well as pullback for longitudinal advance through an artery. Another problem is the relatively long

exposure time, on the order of several seconds, that is presently needed for MMS signals to exhibit

an adequate SNR. The exposure time would need to be reduced and/or optimized for the different

MMS modalities. For example, DRS and IFS could serve to rapidly scan through the artery and

Raman could be used only in specific locations to boost sensitivity, for example, in locations where

a thin fibrous cap is detected with the IFS algorithm.

0 8.3 Microscopy techniques

Another avenue to be explored, apart from MMS, is the usage of advanced microscopy techniques.

These techniques, including confocal microscopy [155], OCT [51], CARS, SHG, and TPEF [58],

could be used to study ex vivo tissue samples and gain further insight into the morphology of

atherosclerotic plaques. Of these, only OCT has been demonstrated as an intravascular technique

as well. Since the axial structure of plaques is critical for vulnerability, having a method that

provides more specific information about the various depths from which the signals are being

generated is crucial for optimal diagnosis. In addition, several of these techniques could be joined

together, as in the case of OCT together with SHG or CARS [156], and thus provide even more

diagnostic information.
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Appendix A

List of abbreviations

Acronym Meaning

AA

3-CC

CAD

CARS

CC

CCD

CF

CLS

CM

CRLB

CT

DRS

Continued on Next

Adventitial adipocytes

,-carotene crystals

Coronary artery disease

Coherent anti-Stokes Raman scattering

Cholesterol crystals

Charge-coupled device

Collagen fibers

Classical least squares

Calcium mineralization

Cram6r-Rao lower bound

Computed tomography

Diffuse reflectance spectroscopy

Page.. .
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Table A.1- Continued

Meaning

EEM

EL

FC

FC/NC

FN

FP

FWHM

IFS

IVUS

IR

LDL

MCR

ML

MMS

MRI

MVU

NA

NAS

Continued on Next

Excitation-emission matrix

Elastic lamina

Foam cells

Foam cells / necrotic core

False negative

False positive

Full width at half maximum

Intrinsic fluorescence spectroscopy

Intravascular ultrasound

Infrared

Low-density lipoprotein

Multivariate curve resolution

Maximum likelihood

Multimodal spectroscopy

Magnetic resonance imaging

Minimum variance unbiased

Numerical aperture

Net analyte signal

Page...

Acronym
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Table A.1 - Continued

Meaning

NC

NIR

NPV

OCT

OLS

PCR

PLS

PPV

ROC

SFC

SHG

SMC

SNR

TFC

TN

TP

TPEF

UV

Continued on Next

Necrotic core

Near-infrared

Negative predictive value

Optical coherence tomography

Ordinary least squares

Principal components regression

Partial least squares

Positive predictive value

Receiver operating characteristic

Superficial foam cells

Second harmonic generation

Smooth muscle cells

Signal-to-noise ratio

Thin fibrous cap

True negative

True positive

Two-photon excited fluorescence

Ultraviolet

Page...

Acronym
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Table A.1 - Continued

Acronym Meaning

VIF Variance inflation factor

VP Vulnerable plaque

VPI Vulnerable plaque index

190



Appendix B

Classification

This appendix describes the necessary terminology and mathematical tools needed to perform clas-

sification of data. The first section defines the standard terminology, such as sensitivity, specificity,

positive predictive value, and negative predictive value. The second section describes the method

of logistic regression in developing classifiers. The third section describes the generation and sig-

nificance of receiver operating characteristic (ROC) curves. The final section comments on a cross

validation technique to insure that the classifiers generalize to prospective data.

M B.1 Performance metrics

The sensitivity of a test is a measure of how well the classification test identifies a condition, in

other words proportion of true positives of all the vulnerable plaques in the data set. The specificity

of a test is a measure of how well the classification test identifies the negative case or the absence of

a condition, in other words the proportion of true negatives of all the non-vulnerable plaques. The

positive predictive value (PPV) is a posterior measure that specifies the proportion of data points

with a positive test outcome that are correctly classified. The negative predictive value (NPV), is

a posterior measure that specifies the proportion of data points with a negative test outcome that

are correctly classified. There terms are summarized in Fig. B-1.
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Expressed mathematically, the relevant quantities can be defined as:

sensitivity

specificity

PPV

NPV

TP
Pr{test positive I condition true} = TP + FN

TN
Pr{test negative I condition false} = TN FP

TN +FP

Pr{condition true I test positive} = TP
TP +FP

Pr{condition false I test negative} = TN + FN'TN + FN

where TP = true positives,

as defined in Fig. B-1.

FN = false negatives, TN = true negatives, and FP = false positives,

Sensitivity Specificity
Sensitivity Specificity

-- PPV

- NPV

Figure B-1. Binary classifier plot that visually defines the relevant terms: sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV).
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U B.2 Logistic regression

There are many methods to classify points in some space [150], but we shall use logistic regression,

a commonly used method that relies on maximum likelihood. Logistic regression is a method

for finding the optimal classification boundary between two sets of labeled points. Formally, if

i = 1 ... Xia is a point in d-space, and yi e {-1, +1} is the binary label of this point, we

wish to find the classification boundary specified by a d-dimensional vector 0 and a scalar offset O0

that maximizes correct classification. In our diagnostic case, lesions are specified by vectors, whose

elements are spectral parameters, and the labels indicate, for example, whether or not the lesion is

vulnerable according to histology.

The parameters 0 and 90 specify a linear classification boundary (the O0 parameter allows the

boundary surface to lie anywhere within d-space; without this parameter, the boundary is confined

to pass through the origin) such that

Ai = Si0 + 0o (B.5)

gives the perpendicular distance of point 4i from the boundary. In this manner, the each point has

been reduced from d-dimensions ('i) to a scalar (Ai). Thus, given a classification boundary, we

would predict the label of point 'i to be Yi = sign(Ai). In other words, a point is classified as +1

if it lies above the decision boundary (its projection onto 0 is positive), and as -1 if it lies below

the decision boundary.

The optimal classification boundary would maximize the number of correctly-classified points:

ECN yiji (each term in the sum is +1 if yi and ^i match, and -1 if they are different). However, Yi

contains the sign function that has a discontinuity at 0, which in turn makes it difficult to optimize

the above objective. In order to pose a tractable optimization problem, the logistic function is used
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within a probabilistic context (maximum likelihood).

The effect of using the logistic function is to assign to each point Yi a smoothly-varying proba-

bility of belonging to a particular label group. Formally:

S=14,010) 1 ý ± '(B.6)P(9 = 1|x , 0)= _ + (B

where Ai is the same perpendicular distance from the decision boundary, as defined in Eq. (B.5).

The logistic function has a sigmoidal shape that passes through 0.5 when Ai = 0. This implies that

when a point Ai is on the decision boundary, it is equally likely to have label +1 or -1. For points

ii for which Ai > 0, the probability of having the +1 label is approximately 1, and for points

that have Ai < 0, the probability of having the +1 label is approximately 0. Note that a decision

boundary can be placed corresponding to a different threshold probability of correctly classifying

a +1 label; this translates to specifying Ai > threshold as the necessary criterion to classify a +1

label. Due to the symmetry of the logistic function, we can rewrite Eq. (B.6) more generally as

P(i = ,,) = (B.7)pi = yi 1 00) + e-yiAi '

where the inclusion of the yi term in the logistic function appropriately changes the sign in the

exponent such that the expression now gives the probability of being correctly classified, rather

than giving the probability of being classified as a particular label.

To maximize the probability of correctly classifying all the points in the test data set, we wish

to find the parameters that maximize the likelihood of estimating the proper labels yi given the
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observations 'i and parameters 0 and 0o:

N

0, 8o = arg mrax P( i = yii, 8, 80)
0,00 i=1

= arg max In jP( i = i i G,0)
(N

= arg max -In (1 + e i)
0,0o i=1

N

= arg min In (1 + e-iii) (B.8)
e,e0 i=1

Equation (B.8) has a well-defined derivative and is convex, which means that a global minimum

exists and can be reached in an iterative way (via gradient descent).

* B.3 Receiver operating characteristic (ROC)

Logistic regression determines an optimal mapping, in the maximum likelihood sense, of each point

to a probability of being classified with the correct label. This mapping is performed through

a regression vector, 0, onto which all points are projected, and the projection is related to a

probability through the logistic function, Eq. (B.6). Geometrically, a decision boundary is always

orthogonal to the regression vector 6. A decision boundary can be associated with any. particular

threshold probability from the logistic function, not necessarily only a 50% probability, by specifying

Ai > threshold as the classification criterion. For certain applications, one may wish to set a lower

probability threshold of detecting, for example, a disease even if that comes at a cost of increasing

FPs.

Each decision boundary contains an associated value of sensitivity and specificity. As the de-

cision boundaries are changed depending on the probability threshold, so is a tradeoff between
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sensitivity and specificity. In one extreme case, a decision boundary that classifies all points as pos-

itive exhibits a 100% sensitivity and 0% specificity. Conversely, a decision boundary that classifies

all points as negative exhibits 0% sensitivity and 100% specificity. A receiver operating character-

istic (ROC) curve represents the tradeoff between sensitivity and specificity. The ordinate axis of

an ROC curve contains the sensitivity and the abscissa contains 1 - specificity.

A perfect classifier, if the two sets of points are perfectly separable, is able to achieve a 100%

sensitivity and 100% specificity, corresponding to the point in the upper left corner of the ROC

space. A classifier corresponding to chance, a coin toss, corresponds to the 450 line connecting

points (0, 0) and (1, 1) in the ROC space. A classifier utilizing some useful but imperfect diagnostic

information will fall in the ROC space between the perfect classifier and the chance classifier. The

area under the ROC curve, out of a maximum of unity, may be used to compare the robustness

of a classifier. For example, the chance classifier contains an area of 0.5 while the perfect classifier

has an area of 1 since it includes the entire ROC space.

One final remark is that any ROC curve is, by definition, convex as it specifies the frontier of

optimal classifiers. In other words, when working with a finite set of data, there may be certain

classifiers that are suboptimal in that they give up, say, sensitivity without any gains in the speci-

ficity as compared to another classifier. Those particular points in the ROC space should not be

included on the ROC frontier curve. Another way to see graphically that the ROC curve has to be

convex is to realize that a classifier can be constructed from two separate classifiers (i.e. points on

the ROC) through randomization. By varying the probability with which each of the two classifiers

is applied, one can achieve any point in the ROC space on the segment joining the two individual

classifier points.
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U B.4 Leave-one-out cross validation

A classifier can be determined that works with high accuracy on the given set of points from which

it is constructed. However, a critical question is how well that classifier generalizes to prospective

data, drawn from the same distribution. There are several ways of testing the generalizability of a

classifier. For example, one may divide the entire data set in two, using a training set to develop

a classifier and then applying it to the other, testing set. The classifier is evaluated based on its

performance on the testing set and in this way the classifier is validated. However, splitting the data

in two may not be appropriate for relatively small data sets, when over-fitting may be a concern.

As an alternative, a common approach is to use leave-one-out cross validation. In this method,

one sample is removed from the data set, a classifier is developed based on the remaining points,

and then the classifier is prospectively applied to the sample taken out. This process is repeated

sequentially, leaving out each data point and applying to it a classifier obtained by training on the

remaining points.
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Appendix C

Timeline: 308 nm UV lamp

This appendix summarizes and documents the development, testing, and problems that were en-

countered with the prototype 308 nm UV lamp. This lamp was initially intended to be used as

a second fluorescence excitation source to replace the bulky, heavy, and expensive excimer laser

(Lambda Physik, Ft. Lauderdale, FL) that was used in FastEEM instruments to provide 308 nm

excitation. This lamp was developed by a start-up company (UV Solutions, Inc., Newark, NJ) in

a collaborative effort and with the feedback from our laboratory. Several designs of the lamp were

iterated by UV Solutions, each one improving on the previous, but it was finally concluded that,

at this time, the 308 nm UV lamp is not robust enough to function on a clinical instrument. As a

result, the integration of this lamp in any instrument has been discontinued, for the time being. A

photograph of the most recent lamp is given in Fig. C-1. Fortunately, additional analysis indicated

that the additional 308 nm fluorescence excitation source is not necessary for application in artery

tissue, as described in Sec. 2.6.

The following is a timeline of the development of the 308 nm UV lamp.
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Figure C-1. Photograph of the 308 nm UV lamp by UV Solutions, Inc. The lamp consists of two units: 1) a power
supply and control box, and 2) a gas chamber that produces the 308 nm emission, coupled into an optical fiber.

* C.1 April 11, 2007 (1st iteration)

UV Solutions delivered the lamp and we used our external pump to continuously pump it. The lamp

worked in continuous flow mode. When we were preparing to seal the lamp, there was a vacuum

pump failure, necessitating restarting again. There was evidence of a vacuum leak in the lamp

or contamination as the subsequent pump-down time was longer than anticipated, the maximum

output very low, and the sealed lifetime was very short. While it worked, we tested coupling into

a fiber using two lenses without much success. UV Solutions took the lamp back with them and

promised to refurbish it.
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E C.2 May 18, 2007 (2nd iteration)

UV Solutions delivered the repaired lamp, which we were able to pump and seal. Then we attempted

to couple light with an optimized UV grade lens but did not have much success as the output beam

was diverging at a skewed angle. We broached the idea of direct fiber coupling and UV Solutions

agreed that it was a good idea. We tested the lamp for a few weeks afterwards and noticed the

power dropping significantly. As a result, we modified the gas connections to quick-connect as we

needed to re-pump the lamp after the power drops.

N C.3 Circa June 15, 2007

We sent back the lamp, power supply, and an FC connected fiber (20 cm long) to UV Solutions.

Since between the last visit and now we had changed the connections to quick-connect type, it

seemed that the inside connection between one of the valves and the body of the lamp has been

broken and caused the leak. UV Solutions tried to fix the leak externally, but that was not possible

since the inside tubes were also broken. In the end, UV Solutions built a new lamp and attached

the fiber that we supplied to it.

* C.4 July 13, 2007 (3rd iteration)

UV Solutions delivered the lamp that was sealed and fiber-coupled using our fiber. Initial tests were

promising and adequate energies were recorded with the photodiode. However, the lamp started

flickering around 7/25/07 and was not coupling any light to the MMS probe. This probe coupling

problem turned out to be cause byhte FC-to-FC connector that was used. Around this time, the

lamp took much longer to turn on (4 minutes needed to hold kick switch) and eventually did not

even stay on unless the kick switch was held pressed down continuously.
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* C.5 September 5, 2007

We sent the power supply and the lamp back. UV Solutions was supposed to modify the power

supply to allow for an external trigger pulse (to be synced with camera gate) and we also sent the

lamp back since it still had the flickering problem and would not turn on unless the kick was held

pressed continuously.

* C.6 September 19, 2007 (4th iteration)

We received the lamp and power supply via courier. The lamp did not turn on at all and we felt

broken pieces inside the lamp unit. After being instructed by UV Solutions to do so, we opened

the lamp and saw the teflon pieces were dislodged; the lamp seemed broken. It was determined

that the brakeage was the fault of the shipping courier, who came and took the lamp away, issuing

some compensation to UV Solutions and destroying the lamp afterwards.

* C.7 October 24, 2007

We sent two SMA connected fibers (1 m long) to UV Solutions so that they can build another fiber

coupled lamp.

* C.8 December 6, 2007 (5th iteration)

UV Solutions delivered a new lamp, coupled to an SMA-terminated fiber. Everything seemed to

work very well that day, the lamp had high brightness and we were able to get enough energy to

collect fluorescence from artery. On 12/11/07, after we moved the lamp to a different location on

an optical table, it did not stay on, the problem continued on 12/12/07 during a phone conference

with UV Solutions. We kept testing the lamp for a few days after, and the lamp was flickering and
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did not stay on longer than 5 minutes, over a wide range of frequencies and pulse widths tested,

according to instructions from UV Solutions.

M C.9 December 18, 2007

We sent the lamp and power supply back to UV Solutions as the lamp was no longer functioning.

M C.10 January 3, 2008 (6th iteration)

UV Solutions shipped to us the lamp and power supply, saying they only modified the power

supply, better matching the driver circuit to the lamp. We tested the lamp for a few days. The

lamp would stay on, but we noticed a lot more radio-frequency output than before, manifesting

itself in much more noise recorded with the photodiode, to the extent that we were not able to

measure the power output with the lamp in the presence of this noise. Visually, the light output

from the fiber (and when connected to a probe) was much less intense than we remembered from

12/06/07 testing. Ignoring our inability to measure the energy, we repeated the same experiment

from 12/06/07 to measure fluorescence through the probe with our camera. We were not only

unable to see the fluorescence but not even the 308 nm laser line. This confirmed the suspicion

that the energy output was orders of magnitude smaller than on 12/06/07 and that fluorescence

could not be excited with the lamp in its present state.

M C.11 March 25, 2008

We send the non-functioning lamp back to UV Solutions.
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