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Abstract

Identification of protein-protein interactions is important for drug design and the treat-
ment of diseases. We propose a novel threading algorithm, LTHREADER, which
generates accurate local sequence-structure alignments and integrates various statistical
scores and experimental binding data to predict interactions. LTHREADER uses a profile
of secondary structure and solvent accessibility predictions with residue contact maps to
guide and constrain alignments. Using a decision tree classifier and low-throughput
experimental data for training, it combines information inferred from statistical interac-
tion potentials, energy functions, correlated mutations and conserved residue pairs to
predict likely interactions. The significance of predicted interactions is evaluated using
the scores for randomized binding surfaces within each family. We first apply our method
to cytokines, which play a central role in the development of many diseases including
cancer and inflammatory and autoimmune disorders. We tested our approach on two
representative families from different structural classes (all-alpha and all-beta proteins) of
cytokines. In comparison with the state-of-the-art threader RAPTOR, LTHREADER
generates on average 20% more accurate alignments of interacting residues and shows
dramatic improvement in prediction accuracy over existing methods. To further improve
alignment accuracy for all PPI families, we also introduce the program CMAPi, a two-
dimensional dynamic programming algorithm that, given a pair of protein complexes,
optimally aligns the contact maps of their interfaces. We demonstrate the efficacy of our
algorithm on complexes from PPI families listed in the SCOPPI database and from highly
divergent cytokine families. In comparison to existing techniques, CMAPi generates
more accurate alignments of interacting residues within families of interacting proteins,
especially for sequences with low similarity.
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1 Introduction

A genome of tens of thousands of genes can encode hundreds of thousands of unique

proteins (the Proteome) that make specific interactions to form multimeric complexes and

ultimately protein networks (the Interactome). These protein complexes and networks

play fundamental roles in all biological processes including the maintenance of cellular

integrity, metabolism, transcription/translation, and cell-cell communication. However

for most proteins, in particular human proteins, there is still little knowledge of their

specific binding partners. Akin to the complete sequencing of genomes, complete de-

scriptions of interactomes is a fundamental step towards understanding biological life,

and is highly relevant medically in the development of therapeutics that could manipulate

specific protein-protein interactions (PPIs) in the treatment of disease. Although high-

throughput biochemical approaches have been successful at systematically identifying

PPIs on genome-wide scales [1-4], computational tools are still required to predict

interactions due to the fact that the coverage of many high-throughput studies is still not

adequate to investigate large proteomes (i.e. Mammalian proteomes), and fail to detect

biologically relevant interactions such as extracellular PPIs and/or interactions involving

insoluble membrane proteins.

Existing computational methods for predicting PPIs can be broadly classified into

two categories: approaches that use high-throughput experimental PPI data, co-

localization, co-expression and functional information; and structure-based homology

modeling/threading techniques. Structure-based approaches are becoming feasible as the

number of complexes rapidly grows: there has been a 40% increase in the number of

complex templates in the 14 months between the two Structural Classification of Proteins



database (SCOP) versions (1.65 and 1.69)[5]. In this thesis we integrate these two ap-

proaches by 1) developing a new structure-based threading method for protein-protein

interfaces, and 2) using high-throughput experimental PPI data in conjunction with

machine-learning techniques to predict interactions.

1.1 Computational impact

Accurate alignment of protein-protein interfaces is crucial for the success of structure-

based PPI prediction. We introduce the notion of localized threading, which leads to

considerably improved accuracy of interface alignments and thus provides a starting

point for a generic structure-based PPI prediction approach. In addition, we introduce a

high-performance algorithm for aligning contact maps (topological representations of

protein-protein interfaces) using a double-dynamic programming approach. Furthermore,

we use machine-learning approaches such as decision trees to integrate various methods

of scoring putative protein-protein interfaces, which allows us to leverage the comple-

mentary information that is provided by statistical potential functions and co-evolution of

interacting proteins.

1.2 Medical impact

For most of the -3000 cell-membrane receptors in the human genome the identity of their

ligands is unknown and there is limited structural information regarding ligand-receptor

binding. One immediate application of our research is the prediction and identification of

novel extracellular ligand-receptor interactions. Many of these receptors are well-

characterized oncogenes (i.e. ERBB2, EGFR, FGFR1) and/or have been extensively

implicated in human disease. In fact, a number of successful therapeutics have recently



been developed that act to inhibit receptor activity (i.e. Herceptin, Erbitux, Etanercept,

Avastin, Rituxan) demonstrating that these proteins represent ideal targets for the design

of future therapeutics. Interaction between ligands and receptors cannot be studied

through high-throughput (HTP) experimental approaches such as yeast-two-hybrid

(Y2H). Indeed, a search of the Biomolecular Interaction Network Database (BIND) [6]

for HTP protein-protein interactions between transmembrane receptors and extracellular

proteins returns only five entries out of -40,000 non-redundant interactions determined

using Y2H. A promising application of this research is the rational design of therapeutics

that interfere with or inhibit the binding of ligands to receptors, and thus inhibit their

signaling activity.

1.3 Overview

In Chapter 2 of this thesis, we discuss the problem of protein-protein interaction predic-

tion, the challenges involved and prior work in this field. In Chapter 3 of this thesis, we

describe our localized threading algorithm in detail and predict interactions within a

single family of cytokines. In Chapter 4, we show how we can generalize our algorithm

to perform entire genome-scale prediction of PPIs. Finally, in Chapter 5, we draw

conclusions and discuss possible improvements.



2 Protein-Protein Interaction (PPI) Prediction

2.1 Introduction

Protein-protein interaction prediction is an emerging area with vast potential to impact

systems biology, genomics, molecular biology and therapeutics. Success would vastly

improve data mining from genome sequencing, structural proteomics and other large-

scale experiments that probe networks. It would also provide leads for experiments and

drug design.

The simplest way of utilizing existing protein-protein interaction (PPI) data is based

on the idea of "guilt-by-association." If two sequence domain families are known to

interact, one can infer that any two proteins containing those domains are likely to

interact. However such an inference is an oversimplification of the complex and specific

nature of physical interaction between two proteins. For example, as a result of gene

duplication during evolution an organism's genome might encode for two or more

paralogous proteins that initially shared interaction partners immediately following the

duplication event. Eventually, however, evolutionary forces alter the specificities for a

particular interaction protein or domain to reduce the number of binding partners, or

change the specificity of the partners themselves. Using such refinements organisms do

not necessarily need to evolve entirely new interaction domains, but can also limit

duplicated domains from cross-reacting with proteins that interact with the original

domain. For example, human and other higher eukaryotic genomes contain many large

families of ligands that, despite their sequence similarities, interact with only one or very

few members from a large receptor family. Furthermore, each interacting ligand and



receptor pair can be responsible for specific biological processes. To date, classical

biochemical and genetic techniques have not proven effective in determining the exqui-

site specificity of most receptor-ligand interactions. In fact, the specific ligands for many

receptors remain unknown even though structures of complexes from those families are

available.

As two proteins cannot be assumed to interact based simply on their sequence ho-

mology to known interacting proteins, a more detailed analysis of the putative interaction

surfaces is needed. When structurally homologous protein pairs do interact, analysis of

structural complexes reveals that they interact using the same binding modes. Thus

evolution, through expansion of protein families, refines protein binding specificities but

conserves the three-dimensional topology of the binding interface. In this thesis, we

exploit this observation [7] for evaluation of known protein-protein binding modes using

various statistical and machine learning-based scoring functions.

2.2 Challenges

Homology modeling approaches to PPI prediction have had considerable success in

predicting general PPIs on a genome scale [8-12], interrogating specific extracellular

ligand-receptor families [14-16] and reconstructing and predicting 3D multi-protein

complexes [13, 14]. However, homology modeling of the binding interface can be

difficult for proteins that share very low sequence similarity but clearly have a common

ancestor. The challenges in this case are two-fold. First, alignment of protein-protein

interfaces from two different complex structures of distant proteins is difficult and thus

constructing a template for a common binding mode is hard. Second, the alignment of



protein query sequences to the structural temples is often inaccurate when sequence

similarity lies within the "twilight zone" of 15-30% identity [15]. An example of binding

interfaces that have similar contact maps of interacting residues but not similar sequences

are interactions between long-chain cytokines and their receptors, where sequence

identity across the ligands is 12-17%. This thesis addresses challenges (in both sequence-

interface alignment and interface recognition) that one encounters using structural

information to predict likely protein-protein interactions for sequences with low similar-

ity to those of structural templates.

2.3 Existing knowledge base

2.3.1 Threading

A popular and highly successful approach to large-scale protein structure prediction is

threading [20-27]. Protein threading predicts the three-dimensional structure for a new

protein (the "query" or "target") by aligning its primary sequence to "templates" for

proteins in the Protein Data Bank (PDB) to see if a similar structure can be found. The

goodness of one target-template alignment is evaluated using a scoring function. The

essential computational components of any threading approach are: template construc-

tion, alignment of query sequences to templates, and fold recognition.

2.3.2 Interface template databases

The analysis of binding interfaces relies on the well-established protein domain classifi-

cation systems applied to all solved structures from the Protein Data Bank (PDB).

Hierarchical domain classification systems, such as SCOP [16] and CATH [17], divide



the set of known protein structures into families when there is clear evidence of homol-

ogy typically detectable by sequence similarity. When sequence similarity is limited but

evidence of homology is clear, domains are grouped into superfamilies. Proteins are

grouped into a common fold category when they share only a similar fold without clear

evidence of a common ancestor. Analysis of complexes of known 3D structures [18-20]

revealed that there is considerable structural conservation of domain-domain binding

interfaces, especially for pairs of domains, A-B and A'-B', where A & A' and B & B'

belong to the same families. Significant but lower binding similarities are observed at the

superfamily level but at the fold level there is no clear conservation of the binding modes.

Based on the above observations [18], several groups have recently developed data-

bases of binary domain-domain interactions by applying both sequence-based (iPFAM

[21]) and sequence-and-structure-based domain identification (SCOPPI [19, 20],

PSIBASE [20, 22] and MODBASE [18, 35]) to determine interaction networks among

protein domains. Interaction between two domains in the same structure file is defined by

the presence of significant inter-domain interaction in the solved structures. The signifi-

cance is defined by a minimum of five residue-residue contacts at 5A (PSIBASE) and/or

requirement that the buried interface has a surface of at least 600A 2 (SCOPPI). The

binary domain-domain interaction databases, such as iPFAM and PSIBASE, do not

distinguish between different structural modes of binding or different types of domain-

domain interfaces. The MULTIPROSPECTOR [23] template database has removed the

redundancy among similar domain-domain complexes by requiring that at most one chain

in the complex has <35% identity to another chain in the database. This latter approach

does not take into account the possibility of different binding modes for the same do-



mains nor does it represent conformational variation at the protein-protein interfaces.

This is important as 40% of SCOPPI family pairs have at least two different binding

modes [19, 20]. Keskin et al. [24] have used geometric features of a single domain

binding surface to identify and cluster similar binding surfaces, and later used this

clustering and conserved hot-spots of residues to predict PPIs [37, 38]. Recently Shul-

man-Peleg et al. [25] have developed an algorithm (MAPPIS) for multiple structure

alignment of protein-protein interfaces; however, MAPPIS has not yet been applied to

generation of interface templates or to prediction of PPIs by alignment of query se-

quences to templates.

Our research utilizes the SCOPPI clustering of protein-protein interfaces to generate

our own interface template database. SCOPPI takes into consideration the case when

protein domains in the same family can have different binding modes. The SCOPPI

database clusters protein-protein interfaces using a binary encoding of the sequence

residues that are involved in the interaction. First a multiple sequence alignment (i.e. with

MUSCLE [26]) is generated for each family, and for each interface the contacting

residues are mapped onto the multiple alignment. Then the interface is represented by a

binary vector and all the interfaces are clustered based on their vector representations.

2.4 Predicting protein-protein interactions

Recently, several groups [14, 23, 27-30] have applied comparative modeling and statisti-

cal potentials to predict new PPIs from known structural complexes: InterPrets [28],

MULTIPROSPECTOR [23, 31]. They use statistical potential functions to evaluate the

homology models of domain-domain interfaces and determine which have favorable



interfacial score. Both MULTIPROSPECTOR and InterPrets align the entire query

sequence to the template model of the domain. MULTIPROSPECTOR uses a threading

scoring function that combines both sequence and structure profiles and pairwise scoring

functions to align sequence-to-structure. The common feature of these approaches is the

independent alignment of query sequences to domain models for the two putative interac-

tion partners. Our group has applied a similar strategy, using the "DouBLe RAPTOR"

(DBLRAP) threading algorithm, to large scale prediction of PPIs [32]. In addition to all-

encompassing statistical potential functions to evaluate any protein-protein interface,

investigation of very specific protein-protein interfaces such as parallel 2-stranded coiled-

coils [33] has indicated that interaction prediction can be greatly improved by careful

examination of the geometry of particular residue-residue interactions and optimization

of residue-pairing patterns at the binding interface. It should be noted that there do not

appear to be published computational approaches geared toward the problem of solely

predicting interactions between extracellular ligands and their receptors. The structure-

based approach we present here first generates family-specific templates; second, both

query sequences are aligned to templates; third, in addition to various standard and

learned statistical potentials we use co-evolution to evaluate binding interfaces.

Traditional, structure-based approaches to predict PPIs have also been based on

computationally intensive techniques such as protein docking (reviews, [34, 35]). While

these methods have had some success in identifying the interaction interface between two

proteins that are known to interact, they are not able in general to predict whether two

proteins interact. Additionally, the detail of structural information needed for docking

methods is much higher than our method requires.



2.5 Gaps to be filled

In recent years, structure-based methods to predict PPIs have received significant interest.

However, there remain several challenges that limit the applicability and usefulness of

such methods. First, the accuracy of these methods needs improvement. Given two

proteins, many of these methods predict, by homology modeling and threading, the

putative interaction surface between the two and use it to score the

strength of the putative interaction. Both the former step (aligning to a template by

threading) and the latter (scoring functions) need improvement. Second, the coverage of

current methods is low, i.e., they work only if the input pair of proteins have high se-

quence similarity to some known template. While there is certainly a trade off between

accuracy and coverage, we believe there is scope to improve both (over existing meth-

ods). Finally, we believe that structure-based methods to predict PPIs are most useful

when used in conjunction with other functional genomic information. Most of the exist-

ing methods, as they now stand, are not appropriate for such integration. For example,

given an input pair of proteins, many existing methods produce a binary output

("yes/no"). A far more useful output would be a real-valued score or probability which

can be used to make fine-tuned decisions by integrating it into a machine learning classi-

fication framework. However, this raises the issue of calibration, i.e., how to determine

when a score indicates an interaction and when it does not. This issue is closely tied to

the choice of classification framework used. Below we describe how our research ad-

dresses some of these challenges.

In this thesis, we show that the accuracy of the alignments at the putative interaction

interface is critical for proper prediction of the favorable interactions. While homology



modeling/threading approaches work well when sequences are similar to their putative

templates and have good overall accuracy, they give inaccurate alignments in the putative

interaction regions for sequences with low similarity. Our LTHREADER program fills

the shortcomings of the current alignment procedures by looking for the best local

alignment in the putative interaction regions of the domain sequence. We believe the

combination of both structural templates that represent conserved features of interfaces

and localized threading of both query sequences onto these templates will generate

models of protein-protein interfaces that are most accurate for predicting interactions. A

major limitation of PPI prediction from structure is the use of only one type of informa-

tion to evaluate the complementarity of the binding interface, i.e., the information about

the preferential residue-residue contacts. This information is encoded in the statistical

potential functions derived from the structures of known complexes. Consequently, in

LTHREADER we evaluate several additional sources of information to determine the

likelihood of PPIs such as correlated mutations observed at the putative interface and

conservation across residue pairs. We also introduce an optimization method to learn

pairwise interaction potentials.

2.6 Long-term medical significance

The individual cells of an organism constantly are barraged with hundreds, if not thou-

sands, of extracellular signals that must be appropriately translated by intracellular

signaling networks that dictate the appropriate response (i.e. increased transcrip-

tion/translation, change in cell morphology, apoptosis). Interactions among extracellular

ligands and their membrane-bound receptors are thus particularly important in coordinat-

ing inter and intra-cellular signals. However, for the majority of the receptors in the



human genome the identity of their ligands remains unknown. One reason for the diffi-

culty in identifying interacting ligand-receptors pairs is a large and rapid expansion of

their families. Through the course of evolution many large ligand and receptor families,

such as different cytokine families [36-38], have emerged in higher eukaryotic organ-

isms. Those families are composed of sequences that share very little similarity and thus

pose a challenge to traditional homology modeling.

As we have outlined in the introduction, extracellular ligand-receptor interactions are

the focus of many already practiced targeted medicines. Many other therapies altering

those interactions are in clinical trials [39]. The more recently discovered cytokines and

receptors are also the focus of intensive bio-medical research. For example, it has re-

cently been shown that the interaction between RANKL (a TNF-like cytokine

TNSFSF11) and its receptor (TNSFRSF11A) is responsible for melanoma metastasis to

bone, and inhibition of this interaction by osteoprotegerin (a soluble TNF receptor-like

molecule TNSFRSF1 B) prevents metastasis [40]. Thus determination of networks of

interactions among families of ligands and receptors is crucial to understanding both the

etiology of the disease, as well as possible therapies targeting ligand-receptor interac-

tions. An advantage of our approach is that it may give structural information about the

interactions, which can eventually be valuable in drug discovery.

Furthermore, understanding the nature of the signaling networks that act downstream

of ligand-receptor interactions to regulate cellular response also remains a fundamental

biological challenge. While high-throughput methods have been implemented to study

PPIs on genome-wide scales, these approaches remain costly, time-consuming and have

limited coverage of large proteomes. Thus we anticipate that improving computational



approaches to PPI prediction by incorporating 3D-structure of interacting domains will

greatly facilitate efforts to describe both intracellular as well as extracellular signaling

networks. Here integration of these structure-based predictions with other data sources

will be a powerful tool.



3 Single Family PPI Prediction

3.1 Introduction

Interaction of extra-cellular ligands and their receptors occupy a central role in inter-

cellular signaling and biological processes that lead to the development and progression

of many diseases. Of particular importance to human diseases are cytokines. Cytokine

interactions with their receptors are responsible for innate and adaptive immunity,

hematopoiesis and cell proliferation. Etiology of cancer and autoimmune disorders can be

attributed in part to cytokine signaling through their receptors. For example, long-chain

4-helical bundle cytokines, erythropoietin and human growth hormone, are already used

for the treatment of cancer and growth disorders. Many other therapies altering cytokine-

receptor interactions are in clinical development [36].

We consider the problem of predicting whether an extracellular ligand and receptor

interact, given only their sequence information and several confirmed ligand-receptor

PPIs among members of the same structural SCOP family [16]. As stated in the previous

chapter, even when one or more complex structures is available within a ligand-receptor

family it is often a challenge to effectively use this information to predict interactions

among other members of the family. One reason is the difficulty in identifying the

interacting residues that are common among distant family members. The conformational

differences that often occur at the interface of bound proteins make such identification

non-obvious. In Figure 1.1 we compare the structural alignments for two families of

cytokines. The global structural alignment methods do not generate accurate alignments

at the interfaces (RMSD errors of 4.09A and 2.75A for the 4-helical and TNF-like



families respectively). The alignment of only one interacting domain (e.g. ligand or

receptor) from the complex also leads to poor alignment at the interface. In comparison,

when only the interaction region was considered the alignment is much improved (RMSD

errors of 1.96A and 1.73A respectively).

Our approach is to thread the sequences onto the binding interface of a solved

ligand-receptor complex and to evaluate the complementarity of the resulting surface. In

so doing, we face four challenges: (1) identifying the residues at the binding interface that

are common to a ligand-receptor family; (2) threading the query sequences onto the

binding interface; (3) scoring the resulting threaded sequences in order to differentiate

between binding and non-binding partners; and (4) evaluating the significance of the

predicted interaction scores. We initially focus our efforts on a single family of cytokine

ligands and receptors due to their medical significance and low sequence homology.

3.1.1 Related work

Many computational approaches have been applied to prediction of PPIs such as: thread-

ing of structural complexes [41-49]; homology modeling and statistical potentials [14,

27-31, 50, 51]; correlated mutations [15, 52-55]; and docking methods using physical

force fields [34, 35, 56, 57]. However, the performance of all of these methods is highly

dependent on the accuracy of the alignment to the structural template, and for distantly

related proteins is more prone to errors. For example, the PPI predictor InterPrets [28]

cannot find a confident match for any of the sequences from the cytokine families that we

consider. Integrative machine learning methods also have been applied to prediction of

PPIs and networks [58, 59]. Many of these approaches rely on HTP experimental PPI

data itself as a predictor, and this information is scarce for ligand-receptor pairs.



3.1.2 Contributions

We describe our novel threading algorithm, LTHREADER, which incorporates secon-

dary structure (SS) and relative solvent accessibility (RSA) predictions with residue

contact maps to guide and constrain alignments. While existing threading algorithms (e.g.

RAPTOR, [49] are not so successful at aligning interacting residues in sequences with

low homology [60], LTHREADER achieves much higher accuracy. The improvements

were achieved by introducing a concept of localized threading that focuses on generating

accurate alignment for the putative binding interface. When multiple structural com-

plexes are available for a ligand-receptor family, our algorithm uses alignment of contact

maps to generate accurate local templates for the interaction regions. Given interaction

data from gold-standard low-throughput experiments, LTHREADER predicts ligand-

receptor interactions using statistical scores: statistical potential, correlated mutations and

residue conservation. We demonstrate that just with the localized threading and a single

complex structure the accuracy of prediction is improved. The addition of multiple

complex data further increases the accuracy.

We apply our algorithm to the cytokines, performing significantly better than exist-

ing in silico methods. We investigate two structurally distinct cytokine families: 4-helical

bundle cytokines and the TNF-like family belonging to the all-beta structural class.

Cytokine interactions with receptors are particularly difficult to predict because they

display a high level of structural similarity but almost no sequence similarity, preventing

the effective use of simple homology-based methods or general threading techniques.

Those methods perform very well when there is a significant sequence similarity among

sequences that can be determined by PSI-BLAST [61]. Furthermore, experimental



interaction data for cytokines is available only from the low-throughput methods, and the

structures for only a few cytokine-receptor complexes have been determined. Therefore

given the variability in sequence and structure, accurate prediction of cytokine interac-

tions is a good indicator of the success we can achieve with our algorithm. Finally, our

method predicts previously undocumented cytokine interactions which may have impli-

cations for disease. We evaluate the significance of our predictions by comparing them to

those of randomized interaction surfaces.

3.2 Materials and methods

Our algorithm threads two given protein sequences onto a representative template com-

plex in order to determine and score the putative interaction surface. Our interaction

prediction algorithm is divided into three stages (Figure 1.2).

In the first stage (Figure 1.2, Stage 1) using a set of template complexes, we deter-

mined the residues that are most likely to be involved with ligand-receptor binding. We

did this by generating a multiple alignment of clusters of interacting residues from each

complex and determining the positions that were most conserved. We built a generalized

profile for each position in the alignment of interacting residues [62]. In the second stage

(Stage 2), the profile was used to identify the most likely location of interacting residues

in the query sequences. The locations of the interacting residues in the query sequences

defined the putative interaction surface. In the third stage, this surface was scored using

several methods and an interaction prediction is made using a decision tree classifier

which integrates these scores with experimental data (Stage 3). The significance of the

classification was then evaluated by estimating the probability of predicting an interac-

tion between the ligand-receptor pair using a randomized interaction surface.



3.2.1 Datasets

In the 4-helical bundle family we focused on a receptor binding site (site II) that is

common to all cytokines and is the major determinant of binding. The 4-helical bundle

cytokine data set included 12 ligands and 7 receptors (see Appendix A). Our set of

template cytokine-receptor complexes consisted of the following structures from the

Protein Data Bank (PDB) [23], listed as PDB code (ligand-receptor): lcd9 (CSF3-

CSF3R), lcn4 (EPO-EPOR), 1hwg (GH-GHR), lpvh (LIF-GP130), and lp9m (IL6-

GP130). Our gold-standard positive interaction set was obtained from the KEGG data-

base (http://www.genome.ad.jp/kegg). The training set consisted of 12 positive

interactions derived from low-throughput experiments and 14 putative negative interac-

tions based on membership in different subfamilies (see Appendix A).

In the TNF-like family we focused on the 90's loop binding site on the receptor

common to known structural complexes [63]. The TNF-like cytokine data set included 13

ligands and 21 receptors (see Appendix A). Our template complexes consisted of five

PDB structures listed as PDB code (ligand-receptor): IdOg (TNFSF0O-TNFRSF10OB),

loqd (TNFSF13B-TNFRSF17), loqe (TNFSF13B-TNFRSF13C), ixul (TNFSF13-

TNFRSF13B) and lxu2 (TNFSF13-TNFRSF17). The gold standard positive and negative

interaction set was taken from the results of the flow-cytometry assays reported in [64].

The training set consisted of 20 positive and 20 negative interactions determined experi-

mentally (see Appendix A).

For both families, the set of non-interacting pairs was chosen from the same ligands

and receptors as those in the set of known interacting pairs to ensure that the classifier

distinguishes complementarily of the interfaces rather than their composition. For each



sequence we identified a set of orthologs from the available genomic databases. Since

cytokines belong to families that were greatly expanded and diversified in mammalian

evolution we included the sequences from the following genomes: M.Musculus, C.

Familiaris, B.Taurus, R.Norvegicus, P.Troglodytes and S.Scrofa. We initially addressed

the challenge of calculating correlated mutation scores by insisting that ligands and

receptors from the same family have the same set of orthologs. We thus had to omit

S.Scrofa and P. Trogodytes orthologs for the 4-helical and TNF-like families respectively.

For each protein a multiple sequence alignment (MSA) of orthologs was created using

CLUSTALW [65].

3.2.2 Algorithm

Figure 1.2 shows an overview of the LTHREADER algorithm and each stage is described

in detail below.

3.2.2.1 Stage 1: Generation of Localized Profiles for Interaction Cores

In this stage, we assume that if a set of ligands and receptors have similar structures and

binding orientation, then their corresponding interface surfaces will have good alignment.

We first examine the ligand-receptor pairs that have solved structures for their bound

complex and align the ligand and receptor structures separately using POSA [66]. Then,

clusters of interacting residues are identified within these complexes and mapped to their

corresponding ligand and receptor sequences, thus delimiting core regions of interaction

within each sequence. Given a set (minimum two) of complexes, the positions of the

cores are then optimized to ensure that the locations of the interactions contained in the

clusters overlap as much as possible between complexes. Finally, generalized profiles



are computed for each residue in the core regions of all pairs of ligand-receptor se-

quences.

Clustering of Residue Interactions. For two interacting domains in a complex struc-

ture we define the interface residues as those in contact with residues from the other

domain. We define two residues to be in contact if the distance between any two of their

heavy atoms is less then 4.5A. This cutoff is the same as that used by Lu et al. [31] to

determine statistical potentials for contacting residues.

We define a contact map as a matrix C such that cij = 1 if the ith residue of the

ligand and the jth residue of the receptor interact, and cij, = 0 if they do not. Given a

contact map C, we group together clusters of interacting pairs (non-zero entries of C) by

using a simple index-based distance function to determine inclusion. The distance be-

tween two interacting pairs {ii,ji} and {i2 j 2} in C, where i1 and jl are the ligand and

receptor indices respectively for the first interacting pair, and i2 and j2, for the second

pair, is defined as follows:

dist({i4,jl},{l, j2 }) = (i -2 + (i l - 12)2
C , Ci.,J

which indicates infinite distance when any two residues do not interact. Using k-

neighbor joining clustering we identify contact clusters in a contact map. We chose k=3

where k is defined by the distance measure dist in equation 1. This choice of k clusters

residues that are spatial nearest neighbors on the same side of a f3-strand or a-helix as

these secondary structures are defined by periodicities of i,i+2 and i,i+ 3. Interacting

residue pairs that are separated by a distance, dist, less than four are considered members

of the same cluster. A cluster in contact map C implies a corresponding sub-matrix



whose non-zero entries are members of that cluster. Note that cluster edges delimit a

contiguous sequence stretch on both the ligand and receptor sequences, referred to as a

core (Figure 1.5). Thus we can define a notation for indexing a cluster by the index of its

corresponding cores in the ligand and receptor.

Given contact map C, we denote Ck,'l as the sub-matrix containing the cluster in-

dexed by the kth core in the ligand and the lth core in the receptor. The size and position

of Ck,' within C can vary as long as the requirement that only one cluster can be con-

tained within CkI is not violated.

Alignment of Clusters for a Pair ofLigand-Receptor Complexes. The next step of our

algorithm optimizes the length and location of cores within a pair of ligand-receptor

complexes so that the similarity score of corresponding clusters is maximized. Let C be

the contact map for the first complex, and D be the contact map for the second complex.

Let m be the number of cores in the ligands for both complexes, and n the number of

cores in the receptor for both complexes. Let Cklrefer to the k, l-th cluster in C, and Dk,'

to the corresponding k, l-th cluster in D. We set the height (ligand axis in Figure 1.5) and

width (receptor axis in Figure 1.5) of both sub-matrices to the maximum of the height and

width of each sub-matrix. (Note that this accounts for the rare case when two clusters in

one complex map to a single larger cluster in another.)

The precise alignment of the interaction cores is the goal of the following optimiza-

tion procedure. For the k,l-th cluster we fix the starting position of Ck,' , but allow the

starting position of Dk,' to vary. Let D1,q be equal to Dk,' offset by p along the first



dimension of D and offset by q along the second dimension. Our goal then is to maximize

the objective function,

f(p,,...,pm4,.,q... .) sim(C k,',Dk ), for 1 <k<m and 1 <l<n (2)
{k,}l)

subject to the following constraints: -4 s l,..., Pm s 4 and -4 s ql,...,qn 4.

sim(A, B) is the measure of similarity between matrices A and B (both of dimension

m x n) and is defined by the sum of all entries in the Hadamard product of the two

matrices: sim(A, B) = > ai,jbi,j . Since there are only a few cores in the ligand and recep-

tor (<5 in most cases), we use a brute-force iteration over all possible values of the offset

variables p,q in order to maximize f.

Multiple Alignment ofInteraction Cores. The above method allows us to find the lo-

cation of cores in the ligand and receptor sequences that maximizes the overlap of

interacting residues between a pair of complexes. For more than two complexes in the

training set, we extend the pairwise-alignment method in a way that optimizes their

multiple alignment using a variant of the neighbor-joining method of Saitou and Nei [67].

At each step of the neighbor-joining procedure, we create a new contact matrix from the

union of the Hadamard products of the contact matrices from each complex. The final

result is a contact matrix representing the interaction surface common to all complexes

(referred to as the average map; Figure 1.3). From the multiple alignment of core regions,

we construct a generalized profile from relative solvent accessibility (RSA), secondary

structure (SS) and sequence at each interaction core position. RSA and SS values are

calculated using DSSP [68].

IRACC (interacting residues accuracy): Given a multiple alignment of N complexes

IRACC is defined by:



2 N-1 N
iracc = II iracci. (3)

N(N-1) i=1j=i+l

Where iracc, is the alignment accuracy for a pair of template complexes ij and is

defined as: iracc nagn (i nal(i,j) is the number of aligned interacting residue

positions between two complexes and n• (i, j) is the minimum number of interacting

residue positions in complexes i and j, the maximal number of contacts that can be

aligned.

3.2.2.2 Stage 2: Threading of Query Sequences onto the Template

In this stage we determine which residues in the query sequence pair would be part of the

putative interaction surface by threading their sequences onto a template complex. To do

this, we devise a localized threading algorithm that aligns sequences to the generalized

profile of the interaction cores. The interaction cores can be localized in the sequence

relative to secondary structures such as P-strands, ar-helices or coil regions.

In order to reduce errors, we first limit the search space to the region in the query se-

quence most likely to contain the interaction cores by using predicted SS from SABLE

[69]. In the template structure the interaction cores are localized to specific regions on the

sequence delimited by the secondary structure elements: a-helices (H), P-strands (B) and

loops (L). Aligning the predicted secondary structure (SS) elements to the template

structure elements identifies the likely positions of interaction cores. Specifically the

alignment of secondary structure tags, where tag=(HLHLBLB....) and a score for a match



is 1 and a mismatch -1 with 0 gap penalty, between the template and the predicted SS

determines the position of the interaction cores in the query sequence.

Second, we predict RSAs for residues in the query sequence pair, again using

SABLE. Finally, the generalized profile of the core calculated in the previous stage are

used to search the query sequences using the predicted RSAs and SSs [62]. The search is

performed by sliding a window of length equal to that of the core along the query se-

quence. The position, p, at which the window best matches the profile defines the

location of the putative core. We search for interaction cores (ICs) within five residues

before and after a predicted SS element that contains the core to account for SS predic-

tion errors. We define ps and pe to be the start and end position, respectively, of a

predicted SS element within the query sequence. We compute p, the position of the

predicted IC within the query sequence restricted to positions between ps-5 and pe+5 as

follows:

p = argmaxp 5,, +5] 2- T SEQ(aa1.,,aaci ) + 6(ss,,+,ssci) - sa, - (4)

where aai+p is the amino acid, ssi+p is the predicted SS and sai+p is the RSA of the residue

at position i+p in the query sequence. " and at are the mean and standard deviation,

respectively, of the RSA at position i within the IC multiple alignment, and ssci is the SS

of the core position and aacti is the amino acid from the template complex structure t. 8 is

an indicator function for equality. N is the length of the IC multiple alignment profile,

and T is the total number of complex structures used as templates. For the sequence

similarity matrix, SEQ, we will use BLOSUM62 [70]. We have adopted the relative



weights of different score contributions, sequence (SEQ) versus structure (SS and RSA),

as previously determined by others [62, 71].

Profile-profile alignments. An alternative to the above method of threading the

query sequence onto the template is to use PSI-BLAST to compute sequence profiles of

the query sequences and the template sequences and then perform a profile-profile

alignment. In our tests, we use the log-average scoring method of von Ohsen et al. [72]

to score profile alignments:

2020 pG(,)
score(ot9= 2 g 0 (5)

1.1 P/?

where ( and @ are amino acid frequency vectors at two different profile positions, pre is

the probability distribution of related amino acid pairs and pi is the background amino

acid probability distribution. The value of prel(i,j)/pipj can be derived from the BLOSUM

matrix and is equivalent to 2(BLOSUM(ij)2). Only the sequence profiles corresponding to

core regions are aligned, and the search space within the query sequence is limited by

using predicted SS values from SABLE as described above.

3.2.2.3 Stage 3: Scoring the Interaction Surface

After the interaction surface is determined for the ligand-receptor complex, it is scored

and normalized as follows. Each contact from the aligned contact map calculated in

Stage 1 is characterized by w0, the residue-residue distance averaged over the set of T

T

complexes w, =1 ITYd'y , where dt is the Euclidean distance between pair of residues
t-1

[73] in a complex t. The contact pairs in each complex map are used to calculate the total

surface complementarity score as defined by:



S=min S1i (6)
tE" {i,j}EC(t) Wij

where C(t) is the contact map of complex t defined by the interaction cores, and Syi is the

score of the pair. In our studies of the cytokine families we included the following

measures of different properties of the putative binding interface between proteins:

statistical potentials, correlated mutations, residue conservation, force-field energies.

Each is described in detail below. The putative binding interface is defined by the align-

ment of query sequences to complex templates generated by LTHREADER.

Statistical Potentials (SP). For each residue pair located in the interaction surface,

we assign a pair-wise potential energy. This energy is not calculated from the physical

force fields, but instead, is statistically derived from a set of known pair-wise interactions

between residues in solved structures. In our case, we use the pair-wise potentials

determined by Lu et al. [31]. To compute the SP score, we calculated the weighted sum

of the potentials corresponding to all interacting residue pairs as defined by equation 6.

Correlated Mutations (CM). In order to calculate this score, we first obtain a multi-

ple sequence alignment (MSA) for each ligand-receptor sequence SL, SR from a set of

orthologous species common to both the ligand and receptor. Let X1,...,XN be the se-

quences in the MSA for SL, and YJ,...,YN be the sequences in the MSA for SR. We then

compute the Pearson correlation between positions i andj in SL and SR respectively, as in

[54].

1 NN(Dikl - D-)(Djkl - Dj)
N k-11-1 iii j

Here, Dikl is the similarity between the residues at position i in sequences Xk and X1, and

Djkl is the similarity between the residues at position j in sequences Yk and YI. Di is the



2 NN
average sequence similarity at position i. Di = 1 D and Uo is its standard

N(N - 1) k-11<k

deviation. We use the BLOSUM62 similarity matrix to compute D. Since we are inter-

ested in evaluating the likelihood of interaction, we only sum the correlation scores CMy

over all pairs (ij) within SL and SR that are within the putative interaction surface.

Conserved Residues (CR). This is a sequence based scoring method for determining

whether the conservation across species of the interacting residues in the threaded com-

plex plays a predictive role. It is based on the assumption that residues that are contained

within an interaction region are less likely to mutate than those outside of the region [74].

We compute the conservation score at each residue position within the ligand and recep-

tor from an MSA. The conservation score at the position i in the alignment is defined by

average sequence similarityD, as above. CRj = -D-Dj

AMBER Force-Fields (FF). This score is equal to the calculated energy of the puta-

tive interface surface within the threaded complex. We use the SCWRL 3.0 side-chain

packing program [75] to first determine the coordinates for all the side-chain atoms in the

ligand and receptor. Second, we fix atom positions for all residues that do not belong to

the interface. Third, allowing the flexibility of interacting residues we perform 20 steps of

conjugated gradient minimization using the molecular dynamics package BALL [76] and

the AMBER force-fields [77]. The energy values typically reach a stable minimum after

few steps of minimization. As the last step we compute the energy, FF, of the interface

surface by applying the AMBER force-field function using BALL. The force-fields are

calculated only among the residues within the putative interaction surface and are not

weighted by the averaged distance as are other scores. These calculations produce

detailed all-atom interface models.



Normalization of scores. In order to put scores across all receptors and ligands on

the same scale, we introduced the following formula to determine new normalized values

for the scores. For each pair of ligand L and receptor R from the family we have the raw

score S(L,R) calculated by one of the above methods S={CM, SP,FF,CR}. The normal-

ized scores are then given by:

S(L, R) = S(L,R) (8)(S(L, R)) -(" S(L, R))

Classification. For classification purposes we associate with the pair L and R, a vec-

tor of scores SLR = (S1,...,S4) that is generated from each of the scoring methods described

above (when applied to L and R). We then use experimentally determined positive and

negative interactions, to train a decision tree DT. We have used the publicly available DT

software OC1 [78]. We have used information gain as a cost function and the oblique

mode, as opposed to axis-parallel, of partitioning the attribute space (the score space). DT

is then used to classify each pair based on SLR. We used decision trees because they

provide a very intuitive understanding of the contributions and relative strengths of the

different scoring variables used for prediction.

Randomized Interaction Surfaces. In order to estimate the significance of the pre-

dicted interaction for any ligand-receptor pair we have implemented the following

probabilistic procedure. From all ligands and receptors within a family we create pools of

ligand, L =U Efamily r, and receptor, R U,ef•,,iy rr, residues where r, and r, belong to

the putative binding interface. For each ligand-receptor pair we generate 100 randomized

interaction surfaces by grafting onto the interaction cores amino acids randomly drawn

from pools PL and PR. We then score and classify them to determine f, the frequency at



which the randomized surfaces are predicted to interact. 1-f is the significance of pre-

dicted interactions within the ligand-receptor family for the non-randomized surfaces.

3.3 Results

3.3.1 LTHREADER algorithm

LTHREADER was able to predict ligand-receptor interactions in two of the most chal-

lenging protein families: the hematopoietins from the SCOP family long-chain 4-helical

bundle and TNF-like all-beta cytokines and their corresponding receptor families. When

tested on the 4-helical bundles LTHREADER was able to correctly predict interactions

with 75% sensitivity and 86% specificity with 40% gain in sensitivity compared to

RAPTOR. For the TNF-like cytokines LTHREADER achieved 70% sensitivity and 55%

specificity with 70% gain in sensitivity compared to RAPTOR. These cytokine families

are the most challenging test cases due to their low level of sequence similarity, and

unavailability of high-throughput PPI data.

3.3.2 Alignment of interacting residues

The alignments of interacting residues generated by LTHREADER are more accurate

than those by the structural alignment program POSA and the sequence alignment

program MUSCLE. LTHREADER employs contact maps between ligand and receptor

to align interface regions in complexes of proteins belonging to distantly related families.

The contact maps generated from the set of template complexes representing the 4-helical

bundle and TNF-like families in our data set showed local similarity in the interface

region (Figure 1.3). Figure 1.3 illustrates that in the interaction regions defined on ligand

and receptor sequences, interacting residues have similar patterns of contacts in similar



complexes. Despite the low similarity of the cytokine sequences, the similarity of the

contact maps is apparent. The contact maps from multiple complexes were aligned using

the algorithm described in the Methods. We evaluated the accuracy of aligning contacts

using the IRACC measure defined by equation 3 in the Methods. Figure 1.4 shows the

alignments that were used to compute the IRA CC scores. The accuracy of alignments

generated by LTHREADER, POSA and MUSCLE is shown in Table 1. In comparison to

POSA, the best performing algorithm, LTHREADER improves the accuracy by 14% and

4% for 4-helical and TNF-like cytokines respectively. LTHREADER correctly aligns

interacting residues across all complexes while MUSCLE and POSA generate register

errors for 2 and 1 complexes from the multiple alignment. Thus, the use of structural

alignments generated by LTHREADER should lead to more accurate templates of the

interaction interfaces.

Next we evaluated the accuracy of the alignments of sequence pairs to the template

complexes using LTHREADER, RAPTOR, and PSI-BLAST. We used RAPTOR to

thread each partner of the complex independently. This choice of approach to threading a

complex structure has been guided by our group's previous investigations with the

DBLRAP program [59]. Separately threading each partner of a heterodimer complex

using RAPTOR gives more accurate alignments than treating the entire complex as one

structural template and threading the concatenated sequences (with a linker) of both

components of the heterodimer. Straightforward threading of both sequences as one chain

gives worse alignments because the larger partner contribution dominates the score

optimization leading to poor alignment of the smaller protein. For PSI-BLAST align-

ments, novel localized profiles were computed for both the query sequences and the



template complexes within the core regions and then aligned using log-average scoring

[72] (see Profile-profile alignments). It is important to note that this localized PSI-

BLAST method produced better alignments than the global alignments commonly

performed with standard PSI-BLAST. In fact, in most cases, when one complex in the

training set was PSI-BLASTed against the non-redundant (NR) sequence database at

NCBI [61], none of the remaining complexes were amongst the hits. Thus the standard

PSI-BLAST cannot generate an alignment for most of the cytokine complexes in our

dataset. We cross-threaded the sequences from known structures (Table 7) onto the other

available complexes and compared the accuracy of the threading alignment. In the case

of LTHREADER, the sequence profile of interacting cores was generated based on the

multiple alignment of core regions from all available template complexes. For RAPTOR

and PSI-BLAST localized alignments, only a profile based on the target template com-

plex was used. Due to the high sequence similarity and low loop length variability of the

4-helical bundle receptors, the main challenge in this case was accurately aligning the

ligands. The receptors can be correctly aligned using existing sequence alignment

methods such as MUSCLE or PSI-BLAST. In the case of the TNF-like cytokines,

aligning the receptors is the more difficult task. Below we only report the results of these

more challenging alignments.

When threading the low-similarity cytokine sequences onto the templates, we

achieved better results with LTHREADER than either RAPTOR or PSI-BLAST profiles

despite the fact that all methods used the same structural templates and RAPTOR used

the same secondary structure and relative solvent accessibility information. Table 2

shows how successful each algorithm was at identifying the locations of interacting



residues. We see that even with low sequence similarity (between 15 to 25%),

LTHREADER performs well at identifying interacting residues while RAPTOR strug-

gles. This is not surprising as RAPTOR's accuracy, like most standard threaders,

decreases as the sequence similarity to the template decreases [49]. We could not com-

pare our threading results with the MULTIPROSPECTOR [51] threader since the

program was not publicly available. The individual improvements in the accuracy of

alignment by LTHREADER were substantial, ranging from 6% to 32% (Table 1). For 21

out of 24 cross-threaded complexes LTHREADER significantly improved the accuracy

of the alignment at the interface. In the three cases when LTHREADER did not perform

as well as RAPTOR the accuracy is lower by 1% for the EPO-EPOR complex threaded

onto the GH-GHR template and lower by 2% and 4% for threading TNFSF10-

TNFRSF10B onto the TNFSF13-TNFRSF13B and TNFSF13B-TNFRSF13C templates.

In the few cases where LTHREADER performed worse the decrease in accuracy is

minimal and is caused by wrongly identified core boundaries. Notably localized PSI-

BLAST profiles also improve the alignments over RAPTOR by an average of 10%. It is

important to note that in the case of PSI-BLAST only one complex template is required

for alignment. Thus, localized threading with PSI-BLAST provides an adequate approach

to address cases when only one complex template is available within a ligand-receptor

family.

As further evidence of the limitations of standard threaders in handling distantly re-

lated sequences, the PPI predictor InterPrets [28] could not even find a confident match

to a complex for any of the sequences from the cytokine families.



3.3.3 Prediction of ligand-receptor interactions

From the alignment of multiple complexes we have identified the core interaction regions

in the sequences of both ligands and receptors. For each core region in a template com-

plex we have constructed a generalized sequence profile as described in the Methods. We

then have aligned the query sequences to the template profiles; the query residues aligned

to the interacting template residues define the putative interaction surface. This stage of

LTHREADER uses the putative interaction surface to calculate the surface complemen-

tarity scores for a pair of ligand-receptor sequences and learns using the available

experimental data what distinguishes interacting from non-interacting ligand-receptor

pairs. Below we describe the comparisons of performances of different scoring methods

and effects of the score normalizations.

LTHREADER integrating multiple statistical scores outperforms any single scoring

method in predicting ligand-receptor interactions. First, we have investigated contribu-

tions of single scores and combinations of four different surface complementarity scores:

Statistical Potentials (SP), Correlated Mutations (CM), Conserved Residues (CR) and

physical Force Fields (FF). Each of those scores is described in more detail in the Meth-

ods. In Figure 1.6 we show the distributions of the calculated scores for interacting and

non-interacting pairs in the principal components space for both families. From the

distributions one can infer that there is some, but not exceptional, degree of clustering

within true positive (interacting) or true negative (non-interacting) pairs. Among different

machine learning approaches (SVMs, decision trees, regression), we chose to use a

decision tree classifier to combine our standalone scoring methods due to the small size

of our data set. The inclusion of all scores resulted in higher prediction accuracy than the



individual scoring methods, even when the latter are given the same alignments of the

interaction surface. In order to measure the improvement of the integrated solution over

the individual scoring methods, we compared the sensitivity and specificity of each one

to that of the integrated solution for both families (Table 3). The performance was

determined using leave-one-out cross-validation using the data sets described in the

Methods and structural complexes listed in Table 7. The initial examination of the raw

scores of the interaction surface revealed that for some receptors the scores were consis-

tently high across all putative ligands (e.g. the CM score highly depends on the variability

of sequences in the multiple sequence alignment-[MSA]). Normalizing scores for the

interaction surface using the method described in Materials and methods equation 8

greatly improved the performance of the method for both the individual and the com-

bined scores (Table 4). In summary using both integrated scores and normalization leads

to the best performance of the classifier. While the integrated solution had comparable

specificity to the single-score-based methods, it had higher sensitivity for the 4-helical

bundle and TNF-like cytokines (75% and 70% respectively).

The significance of our interaction predictions was evaluated by estimating the prob-

ability of predicting an interaction between the ligand-receptor pair using a randomized

interaction surface. If interactions between a pair were predicted with high frequency for

the randomized surfaces, then an interaction predicted by LTHREADER was considered

to be of low significance (see Randomized Interaction Surfaces in Materials and meth-

ods). To determine how significance affects the specificity and sensitivity of the decision

tree classifier, we computed ROC curves for the two families using varying significance

value cutoffs. The results are shown in Figure 1.7. The 4-helical bundles perform better



than the TNF-like cytokines, but in both families the true-positive rate increases signifi-

cantly faster than the false-positive rate.

The LTHREADER integrating multiple complex data and all scores has performance

superior to RAPTOR and localized PSI-BLAST. Using RAPTOR and localized PSI-

BLAST alignments we have predicted the putative interaction interface and calculated

the corresponding surface complementarity scores. We have used the same set of scores

(CM, SP, FF, CR) and normalization procedure as for LTHREADER to predict ligand-

receptor interactions. We have employed decision trees to integrate different scores and

calculated the performance using leave-one-out cross-validation (Table 5). We evaluated

the significance of our predictions of cytokine-receptor interactions by comparing them

to those of randomized interaction surfaces as described in Materials and methods. For

4-helical bundles, the predicted LTHREADER interactions had the overall significance

of 0.62 and for TNF-like cytokines, 0.81, also higher than standalone methods (see Table

3), RAPTOR and PSI-BLAST. In comparison, predictions obtained from RAPTOR

alignments had much lower sensitivity and lower significance. This is due to the fact that

very few ligand-receptor pairs (or none in the case of zero sensitivity) were predicted as

interacting in these cross-validated tests by RAPTOR. Both RAPTOR and localized PSI-

BLAST use one template complex structure to generate alignment. However, the local-

ized PSI-BLAST outperforms RAPTOR and is the second-best prediction method with

sensitivity higher by 25% and 60% then RAPTOR. Specificity of localized PSI-BLAST

is lower then LTHREADER only for the 4-helical bundle cytokines and its sensitivity is

higher than single score predictions that start from the LTHREADER alignments. This



indicates that localized PSI-BLAST with multiple scores is an adequate method for

ligand-receptor interaction prediction when only one complex structure is available.

We also investigated the influence of the number of available complex structures on

the accuracy of LTHREADER interaction predictions. For the 4-helical family the

average sensitivity (specificity) in predicting correctly the interacting pairs using leave-

one-out cross validation was 75%(86%), 50%(71%), 50%(50%), 42%(64%) for 4, 3, 2, 1

complexes used for the template construction, demonstrating the importance of inclusion

of diverse complexes.

Finally, we measured the impact each scoring method had on the final prediction by

re-computing all of our predictions multiple times, but removing a scoring function

during each iteration. The results are shown in Table 6. Removing force field (FF)

scores from our classifier has the least effect on the overall prediction accuracy while

removing any of the other scores significantly reduces specificity and/or sensitivity in at

least one of the cytokine families. The lack of improvement in prediction accuracy with

FF included is likely a consequence of the high level of sensitivity of the AMBER force-

field function to the accuracy of the alignments and of side-chain packing following

threading. This result demonstrates that FF contributions should be omitted from the

combined method since they are unlikely to reflect the favorable complementarity of the

ligand-receptor biding interfaces.

3.3.4 Novel predictions

In order to apply LTHREADER to prediction of new ligand-receptor interactions we

have trained the classifier using the complete set of available interaction data. FF scores

were omitted for these predictions since they were shown to add no value to predictions



(see above). In Figure 1.8 we show the resulting decision trees for 4-helical and TNF-like

cytokines. Applying those classifiers to the other possible interactions in the families

LTHREADER identified several new cytokine-receptor pairs as likely binding partners.

The predicted interacting partners are given in Table 8. Only predicted interactions with

a significance value > 0.5 are shown.

3.3.5 Discussion

We have shown that more accurate localized threading and integrating several existing

methods for cytokine ligand-receptor interaction prediction can greatly improve accuracy.

The strength of our method comes, partially, from leveraging a novel threading algorithm

that circumvents low-sequence similarity. By integrating the high-quality threading

results with various kinds of statistical scores and experimental data we achieved high

prediction accuracy and statistical significance.

It would seem that the success of our approach depends on the availability of struc-

tural templates and orthologous sequences. As with cytokines, other therapeutically

interesting extracellular ligand-receptor families often have several complex structures

available. Thus our method helps fill a void in predicting ligand-receptor interactions that

are traditionally challenging and are important for human diseases. In the case where

multiple complex structures are not available, we have shown that a localized PSI-

BLAST approach can improve interaction prediction. In the next chapter, we show how

we can scale the LTHREADER approach to scale to whole genomes.



4 Genome-Scale PPI Prediction

4.1 Introduction

There has been limited previous work on protein-protein interface alignment. A number

of different representations have been used to describe protein structure and thus protein-

protein interfaces, from contact maps to all-atom representations. In the previous chapter,

we described the LTHREADER program that uses a contact map representation of

protein interfaces and generates an accurate alignment of binding interfaces for cytokines.

When multiple structural complexes are available for a ligand-receptor family,

LTHREADER performs interface alignment in two stages: First, it identifies interaction

core regions by clustering contacts within a specified distance threshold; then, it aligns

contact maps by maximizing the overlap between the submatrices defined by the core

regions. A limitation of this method is that cores are defined before they are aligned

which has the potential to generate sub-optimal contact map alignments. The other

existing algorithm for interface alignment is MAPPIS, which uses an all-atom representa-

tion of protein interfaces and optimizes the alignment of interface regions with similar

physico-chemical properties [79]. MAPPIS is useful for certain applications such as

function prediction that require recognition of conserved structural patterns of physico-

chemical interactions. However, since MAPPIS uses a physical, all-atom based represen-

tation of interfaces, it may be sensitive to small differences caused by conformational

changes in the interface surface.

In this chapter, we introduce a polynomial-time algorithm for optimal pairwise con-

tact map alignment of protein interfaces (CMAPi) using two-dimensional dynamic



programming. For multiple alignment, we apply a neighbor joining algorithm akin to

that used for multiple sequence alignment [65]. We evaluate our algorithm on the

SCOPPI database [20], which classifies all protein-protein interfaces into similarity

classes, and measure its performance according to the percentage of interacting residues

aligned correctly (see Methods.) We demonstrate CMAPi produces more accurate

alignments than existing methods such as MAPPIS and MUSCLE [79, 80], especially for

protein sequences with low similarity. Compared to LTHREADER, CMAPi is faster,

automated and as accurate, allowing large-scale application. Moreover, our new approach

aligns entire contact maps without having to first identify core regions. Instead, cores are

automatically determined by the algorithm as a post-alignment step and then used to

generate sequence profiles of the interaction cores. By applying CMAPi to all of the

known PPI families in SCOPPI and generating the corresponding profiles (as described

previously for LTHREADER), we are able to predict many more interactions.

4.2 Materials and methods

4.2.1 Algorithm

CMAPi finds alignments of similar protein-protein interfaces using a contact map repre-

sentation. First, we generate optimal pairwise interface alignments and then use a version

of the neighbor-joining algorithm to align multiple interfaces.

The contact map representation used in CMAPi contains more information than just

the binary values present in the LTHREADER contact maps. A CMAPi contact map is a

two-dimensional matrix X indexed by the residues i E L and j E R from the interacting

proteins L and R. Entry Xij in contact map Xis defined as

Xij= mm (dhh (1)
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which is the minimum distance between all heavy atoms, hi and hi, of residues i andj. In

our contact maps we include all the residues that have at least one contact with the

minimum distance less then 10A. This initial cutoff distance is much more generous then

the strict 4.5A threshold used for defining contacts in single complexes [31, 81]. The

more generous initial cutoff allows for alignment of contacts that may pass the strict

cutoff in one complex but not others.

Given two contact maps, C and D, our goal is to find the alignment of C and D that

maximizes the overlap between interacting residues. Our alignment algorithm uses two-

dimensional dynamic programming to optimize the alignment score [82]. We allow for

gaps in the maps by assigning a gap penalty that penalizes gap insertions between highly

interacting residues. The justification for this penalty is that adjacent residues that are

highly interactive should be part of the same interaction core and therefore should not be

split.

The first step in the dynamic programming approach is to create a four-dimensional

scoring matrix M, where Mi,j,k,m is the maximum score at position i,j,k,m (0 s i <

width(C), 0 j < height(C), 0 5 k < width(D), 0 r m < height(D)). Entry Mij,k,m is then

determined from previously solved sub-problems as follows:

0 if ijkm = 0

M i-1,-lmn + S(i,j,k,m),

MiJl,-1 +S(i,j,k,m),

Max M ij_ + wc(C,i), (2)Max + (C), otherwise (2)
Mijrkm- + wr(C,j),

Milj, m + wc(D,k),

MiJlkm + wr(D,m)

M iJ M = -k~



where wc(X,i) is the gap penalty for inserting a gap at column i in contact map X and

Wr(Xj) is the gap penalty for inserting a gap at rowj in contact map X. In order to ensure

that clusters of interacting residues are not split, we assign a high penalty for gap inser-

tions in rows and columns containing a high number of interactions. Specifically, we

used the following gap penalty functions:

(3)

w,(x,j)=- x
x,.4

S(ij,k,m) is the similarity score between the interaction at i, j in contact map C and

interaction k, m in contact map D. We use the following similarity function:

S(i,j,k,m) ,1 (4)
CjDk$,

Although here we used a simple similarity function based on inter-residue distance within

an interaction, one can define a more complex similarity function that incorporates

physical and chemical properties of the interacting residues. We note that both the

scoring function and gap penalty functions are defined in the same units of inverse square

of the distance.

Once all values of M are computed using (2), the optimal alignment of contact

maps is determined by backtracking through the scoring matrix as in standard dynamic

programming. Movements within the scoring matrix correspond to the following align-

ment actions:



Change in (ij,k,m) Contact map C Contact map D
(+1, 0, +1, 0) align column i align column k
(0, +1, 0, +1) align rowj align row m
(0, 0, +1, 0) gap at column i
(0, 0, 0, +1) gap at row j
(+1, 0,0,0) gap at column k
(0, +1, 0, 0) gap at row m

An optimal alignment of contact maps is a mapping A(ij)=(A(i), A(j)) of the pair of (ij)

indices from a complex C onto the (k, m) pair in a complex D where (k,m)=(A(i),A(j)).

Multiple alignment of contact maps is accomplished using the same neighbor-joining

algorithm as in CLUSTALW but with similarity of contact maps as a distance metric:

dc = S(i,j,k= a(i),m= a(j)) (5)

The final step of our algorithm identifies core regions within each of the interface se-

quences. We consider two consecutive residues in one sequence to be part of the same

core if they both interact with the same residue in the second sequence. For a given

SCOPPI family consisting of complexes of proteins {L} and {R}, let i and j denote the

aligned positions among all contact maps between the {L} and {R} proteins. The residue

positions i and i+1 from a set of aligned 'ligand' sequences {L} belong to the same

interaction core if for any residuej from the 'receptor' sequences {R}, the contact map

distance is less then 4.5A for any complex in the family. A similar definition is applied to

define interaction cores in {R} sequences. Thus the interaction cores consist of contigu-

ous stretches of aligned residues within the {L} and {R} protein sequences.

4.2.2 Performance analysis

Since the CMAPi algorithm explores the entire space of possible alignments between

contact maps and optimizes the contact map similarity function (4) we can claim that it is



optimal for pairwise alignment. In fact, by concatenating the rows in a contact map and

creating a one-dimensional sequence of contacts, the CMAPi algorithm can be mapped to

a specific case of one-dimensional sequence alignment with a complex, position-

dependent gap penalty structure as defined by (3). In the case of multiple alignment of

contact maps, although the neighbor-joining method is not optimal, it has been shown in

practice to perform nearly as well as an optimal, exhaustive search for multiple sequence

alignment [83]. In terms of computational complexity, while single-chain contact map

alignment (introduced by [84]), has been shown to be NP-hard by [85], PPI interface

alignment is tractable because gap insertions in the two interacting protein sequences

defining the contact maps are independent. Furthermore, multiple alignment is also

tractable since we are using the polynomial-time neighbor-joining algorithm. Specifi-

cally, pairwise alignment is of order O(k4) where k is the number of interface contacts in

a protein complex and multiple alignment is of order O(k4m2) given m contact maps. In

the SCOPPI database, we found that on average ka83 and me5. See Figure 2.2 for the

distributions of k and m.

4.3 Results

4.3.1 CMAPi Algorithm

To evaluate the accuracy of our dynamic programming algorithm, we compared our

results to those produced by MAPPIS [79] and LTHREADER [81]. We also compared

our algorithm to purely sequence based alignments generated by MUSCLE [80] as a

baseline for our test. MUSCLE was chosen from among many different sequence align-

ment algorithms for development of the SCOPPI database. Alignments were scored using

the same IRACC function defined in the previous chapter:



N-1 N

iracc = N- iracc (6)
N(N- 1)• .I-1 i+

where iracc,i is the alignment accuracy for a pair of template complexes ij and is defined

as:

naigrac (i(7)
iracci= n min (i,j)

CMAPi generates the most accurate interface alignments for cytokine families, one of the

more challenging cases previously investigated by LTHREADER. In this case, since

LTHREADER generates different core boundaries than our algorithm, we measured the

accuracy of CMAPi and MAPPIS using LTHREADER's core definitions. CMAPi has

accuracy almost identical to LTHREADER while not requiring pre-defined interaction

cores (see Table 9).

In addition, it shows an improvement over MAPPIS by 5% for 4-helical bundles and

6% for TNF-like cytokines and much higher accuracy than MUSCLE (over 11% for 4-

helical bundles and 10% for TNF-like cytokines). The use of structural information by

both MAPPIS and CMAPi leads to significantly better alignments when compared to

MUSCLE, which only uses sequence information.

We also investigated alignment accuracy as a function of sequence similarity and

demonstrated CMAPi's superior performance as sequence similarity declines (see Figure

2.3). To evaluate the influence of sequence similarity on the performance of different

algorithms (MUSCLE, MAPPIS CMAPi), we aligned complexes from PPI families listed

in the SCOPPI database. Only families containing at least three complexes were chosen

to ensure that enough structure information was available to generate alignments. The



current release of SCOPPI contains 219 such families. Results from this evaluation are

shown in Figure 2.3.

While both methods generate significantly better alignments than MUSCLE at all

sequence similarities, CMAPi performs better than both MAPPIS and MUSCLE when

sequence similarity is below 75%. Moreover, CMAPi improves alignments over MAPPIS

by about 5% for structures that are typically considered for homology modeling, where

sequence similarity is 50-70%. This result indicates that CMAPi may also be useful as a

first step in building the detailed homology models of protein interfaces from multiple

complex structures.

4.3.2 Discussion

We have shown that the alignment accuracy of our CMAPi algorithm is higher than other

existing interface alignment algorithms and in particular MAPPIS. Our algorithm is

optimal for pairwise alignment of contact maps and near-optimal in practice for multiple

alignment, while having polynomial-time complexity. We believe our method generates

better alignments of interacting residues due to its use of a contact map representation of

protein interfaces instead of the all-atom based representation used by MAPPIS. The all-

atom representation is helpful in situations where the fine details of the structure can be

predicted with high confidence, such as homology modeling of very similar proteins.

However, in the case when fine details cannot be predicted accurately, representations

using coarser features, such as contact maps, lead to better predictions. CMAPi is tolerant

to conformational changes and thus aligns more of the interaction surface.



5 Future Work

We hope to further improve the prediction accuracy of LTHREADER by enhancing

existing and developing new scoring functions that utilize randomized surfaces to better

separate signal from noise. With the current accuracy of alignments generated by

LTHREADER (or localized PSI-BLAST) the important contributions to the predictions

come from the statistical type scores (SP, CM, CR) while the FF contributions are clearly

too noisy. It is possible that for perfectly correct alignments FFs could prove beneficial.

Also, due to high computational intensity of FF calculations it is clear that there is no

justification to apply FF on a scale of an entire interactome. Alternatively, we will

investigate smoother energy functions derived from side-chain rotamer distributions that

are more tolerant to small alignment errors.

In addition, we intend to use the CMAPi alignment algorithm to build profiles for

every family of interacting proteins defined in the publicly available SCOPPI database.

For each family, we will use the multiple alignment of contact maps corresponding to

each PPI complex within the family and generate aligned core regions within each

sequence pair. The aligned cores will then be used to derive sequence profiles that will

be used for PPI interaction prediction as described in LTHREADER. The improvements

in the alignment of interacting residues for sequences with 50-70% similarity indicate

that CMAPi could also be helpful in building better homology models of protein-protein

interfaces when multiple complexes are available as templates. In this work, we have

used a pre-existing classification of protein-protein binding modes provided by SCOPPI.

In the future we will investigate if CMAPi can be used to classify protein binding modes

based on clustering of similar contact maps.





Tables

4-Helical Bundles TNF-Like

LTHREADER 0.85 0.70

POSA 0.72 0.66

MUSCLE 0.48 0.40

Interface Structure Alignment 0.70 0.60

Global Structure Alignment 0.48 0.35

Table 1: Comparison of alignment accuracy IRACC (as defined in Methods eq.3 )
for various alignment methods for the 4-helical bundle and TNF-like cytokine
families. In both cytokine families, LTHREADER achieves the highest accuracies
(0.85 and 0.70). The structure-based POSA alignments and the interface alignments
perform similarly and achieve the second highest level of accuracy. The sequence-
based MUSCLE alignments and the structure-based global alignment perform the
worst at nearly half the accuracy of LTHREADER.



Query L-R Pair % acc
Template Complex % id (% sim)

(4-helical cytokines) RAPTOR LTHREADER PSI-BLAST

GH-GHR IL6-GP130 12(23) 33 53 17

GH-GHR EPO-EPOR 15(15) 30 55 39

GH-GHR CSF3-CSF3R 14(20) 31 63 57

EPO-EPOR IL6-GP130 15(24) 29 51 24

EPO-EPOR GH-GHR 15(25) 44 43 42

EPO-EPOR CSF3-CSF3R 14(18) 31 58 50

IL6-GP130 GH-GHR 12(22) 28 52 58

IL6-GP130 EPO-EPOR 15(17) 40 63 29

IL6-GP130 CSF3-CSF3R 17(21) 42 66 75

CSF3-CSF3R IL6-GP130 17(24) 51 57 50

CSF3-CSF3R EPO-EPOR 14(19) 33 61 44

CSF3-CSF3R GH-GHR 14(25) 32 52 53

Average 15(21) 35 56 45

Query L-R Pair Template Complex % ace
% id (% sim)

(TNFSFx-TNFRSFy) (TNFSFx-TNFRSFy) RAPTOR LTHREADER PSI-BLAST

13B-17 13-13B 12(23) 41 68 52

13B-17 10-SF10OB 8(16) 30 55 51

13B-17 13B-13C 16(39) 60 82 71

13B-13C 13-13B 17(29) 35 65 49

13B-13C 10-10OB 9(18) 25 45 47

13B-13C 13B-17 16(39) 54 66 60

10-10B 13-13B 14(29) 56 54 45

10-10B 13B-17 8(16) 32 58 34

10-10B 13B-13C 9(18) 42 38 41

13-13B 13B-17 12(23) 56 74 62

13-13B 10-10B 14(29) 40 62 65

13-13B 13B-13C 17(29) 45 84 51

Average 13(25) 43 63 52

Table 2: Comparison of threading accuracy between the RAPTOR, LTHREADER,
and PSI-BLAST profile alignment algorithms. We have threaded 4-helical (top) and
TNF-like (bottom) cytokines and their receptors (identified in column 1) onto other
known template complexes (identified in column 2) and determined accuracy by the
percentage of positively identified interactions out of all interacting pairs in the
template complex. The identifiers for the TNF-like cytokines have been abbreviated
by a generic ligand-receptor identifier TNFSFx-TNFRSFy, where x and y denote a
specific family member. The sequence similarity (% sim) is measured by the num-
ber of similar residues in the alignment generated by CLUSTAL divided by the
length of the alignment. The percentage of interacting residue pairs correctly
identified (% acc) is given for RAPTOR, LTHREADER, and PSI-BLAST profile
alignments.



Algorithm LTHREADER

Scoring Function

Cytokine Family CM SP FF CR All

4-Helical

Sensitivity (%) 58 67 33 50 75

Specificity (%) 93 50 100 64 86

Significance 0.4 0.32 0.55 0.45 0.62

TNF-Like

Sensitivity (%) 10 30 30 55 70

Specificity (%) 35 35 70 30 55

Significance 0.35 0.28 0.46 0.64 0.81

Table 3: Comparison of single (CM, SP, FF, CR) and combined (All) scoring meth-
ods using leave-one-out cross validation on experimentally confirmed binding and
non-binding pairs of ligands and receptors. The significance of predicting interac-
tions is equal to 1 minus the frequency of predicting interactions between pairs
using randomized interaction surfaces.



Table 4: Comparison of sensitivity and specificity
standalone and combined methods.

for raw vs. normalized scores for

Table 5: Performance of LTHREADER, RAPTOR and localized PSI-BLAST
integrating all surface scoring methods using leave-one-out cross validation on
experimentally confirmed binding and non-binding pairs of ligands and receptors.
The significance of predicting interactions is equal to 1 minus the frequency of
predicting interactions between pairs using randomized interaction surfaces. The
results for LTHREADER are the same as in Table 3 for easier comparison.

CM SP FF CR Combined
(%) Sens Spec Sens Spec Sens Spec Sens Spec Sensitivity Specificity

4-helical

Raw 33 57 33 50 17 93 42 50 33 50

Normalized 58 93 67 50 33 100 50 64 75 86

TNF-like

Raw 10 25 10 20 30 45 35 25 45 25

Normalized 10 35 30 35 30 70 55 30 70 55

Algorithm LTHREADER RAPTOR LOCAL PSI-BLAST

cytokine family

4-Helical

Sensitivity (%) 75 33 58

Specificity (%) 86 36 71

Significance 0.62 0.45 0.5

TNF-Like

Sensitivity (%) 70 0 60

Specificity (%) 55 75 55

Significance 0.81 0.55 0.68



Family All-CM AII-SP All-FF All-CR All

4-Helical

Sensitivity (%) 58 83 75 75 75

Specificity (%) 64 71 86 71 86

TNF-Like

Sensitivity (%) 60 35 60 50 70

Specificity (%) 30 55 70 50 55

Table 6: Comparison of predictions done with LTHREADER while removing one
score at a time (CM, SP, FF, CR). Predictions were done using leave-one-out cross
validation on binding and non-binding pairs of ligands and receptors.

Table 7: Template complexes from the 4-helical bundle
families

and TNF-like cytokine

4-Helical Bundle Cytokine Complexes
Ligand Receptor PDB ID

CSF3 CSF3R Icd9

EPO EPOR Icn4

GH GHR lhwg

IL6 GP130 lp9m

LIF GP130 lpvh

TNF-Like Cytokine Complexes
Ligand Receptor PDB ID

TNFSF1O TNFRSF10OB Idog

TNFSF13 TNFRSF13B Ixul

TNFSF13 TNFRSF17 lxu2

TNFSF13B TNFRSF13C loqe

TNFSF13B TNFRSF17 loqd
TNFSF 13B



Family Ligand Receptor Significance

4-helical cytokines Leukemia inhibitory factor Interleukin 12 receptor 0.65

Leukemia inhibitory factor Colony stimulating factor 3 0.61

receptor

Leukemia inhibitory factor Erythropoetin receptor 0.59

Leukemia inhibitory factor Prolactin receptor 0.57

Ciliary neurotrophic factor Erythropoetin receptor 0.51

TNF-like cytokines OX40 antigen ligand (OX40L) TNF receptor, member 9 0.58

Table 8. Predicted novel ligand-receptor interactions within families of 4-helical
bundle and TNF-like cytokines using LTHREADER without the FF component.
Significance values for each prediction are also shown.

4-Helical Bundles TNF-Like

CMAPi 0.84 0.72

LTHREADER 0.85 0.70

MAPPIS 0.80 0.64

MUSCLE 0.73 0.62

Table 9. Comparison of alignment accuracy, IRACC, for various alignment meth-
ods for the 4-helical bundle and TNF-like cytokine families. In both cytokine
families, our CMAPi algorithm achieves higher alignment accuracy than MAPPIS
and MUSCLE and the same accuracy as LTHREADER.



Figures

Global Alignment Receptor Alignment

Global RMSD: 2.58 A Global RMSD: 3.56 A
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(a)
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Figure 1.1a: Figure 1.1a (left) shows the alignment that minimizes the RMSD for the
entire complex. In this case the RMSD over all residues is 2.58A but the RMSD for
the interface residues is even higher at 4.09A. Figure 1.1a (middle) shows the align-
ment that minimizes the RMSD for just the receptor residues. This results in a
higher overall RMSD of 3.56A and an RMSD for the interface residues of 2.87A.
Figure 1.1a (right) shows the alignment for the same set of complexes using just the
interface residues. In this case the overall RMSD is very high (4.65A) while the
RMSD for the interface is low (1.96A). Clearly, the "localized alignment" based on
just the interface residues (Figure 1.1a, right) is able to capture the structural
variation that exists on the interface surface. By generating templates based on just
the interface surface, we are able to better capture this variation.

Figure 1.1b: RMSD errors for the entire structure and the interface surface for
various structural alignments of the TNF-like cytokine template complexes.



Figure 1.2: Schematic of LTHREADER. In Stage 3, CM is the compensatory muta-
tion score, SP the statistical potential score, FF the force field score, and CR the
conserved residue score.



SF13B-RSF13C (loqe)

SF13-RSF13B (lxul) SF13-RSF17 (lxu2)

Figures 1.3: Contact maps for residues from complex structures of 4-helical bundle
(Figure 1.3, top) and TNF-like cytokines (Figure 1.3, bottom) and their receptors.
Only the residue positions from the interaction cores are shown. Columns corre-
spond to residues from receptors and rows, ligands. Horizontal lines de-lineate the
interaction core is in the receptor and vertical, in the ligand. The shading of the
contacts corresponds to the distance between residues, defined by the shortest
distance between any two heavy atoms. The darker colors reflect shorter distance.
The aligned core map shows aligned positions and the colors indicate the distance
averaged among aligned pairs from all five complexes.

Average

SF10-RSF10B (1dog) SF13B-RSF17 (loqd)



LTH

9?9?JY · Y l999 V I 9919 Vj V I T T

110 120 130 140 150
... ... D P DLI .•iED, ~W K T2K f --

TL PEPpL -'ItSL K ~ RiCK- WAL LH L- - -- -V-D...
--I--,-E I JI & " I I I' LD I '''LI E"II
K•,PELaA•P L KA-K-ElI-P--- DPD---.

110 120 130 140 150
NIsL V ' aDNVYDVD•LRLEDG PRT IKQT- <KLD-
-- PELGP LDTL cWG-M'APA L---CP Q'GA-
.L.LH3KLNAT lKi-HV1 --- -VD VT. -----
-- ES- T •MTý Kc-i• -N-LD T•---ý TPDP TN rI
PWEPL 1 ALGQ- K-EA 1 P---0PD------- RP

110 120 130 140 150
LV MVG-sDsNVDLLRLEDG S PRTGQI -K" 3F D----
--- PELGPTLDTL AWZ E G-MAPAL--QTG-

~-KILNPSALsLHs K LTLLCSKY -HVi-- -VD1
Z-E T TmQKKA.--N-LDAIT- TPDPTTNAS

(a)

,r tlit n 03tt0 ittlr#l #Ct9l t il., ll, , #

RICPGMKVncPWDICVXa

GH: L
READER CSF3:-L

LIF: L
IL6:L
EPO: L

GH: L

POSA CSF3:L
LIF:L
IL6: L
EPO: L

GH: L
MUSCLE CSF3:L

LItF: L
IL6: L
EPO: L

TNFR10BFO
READER S•-'-a C

T•WRS713C
TNFR8F13B

TNFRSOF0B
POSA Tara7

TNFRSF13C
TNFRSFP13B

TNFR8F10B

MUSCLE Tar 1,7
TNFRBF13C

RTGCPRCG•VKVGDCTPWSDIECVHEKE

- 5 ---- N FM
ltll WIIlttlU l W l0 Ila Wl I V# 1 WaV Ia1 *lIW*VII lII*

TRNTVC(

-SL8CI

SM

rVT

10 20 30 40
DCTPWSD

.CAYFCE

Figure 1.4: Comparison of interface alignments generated by LTHREADER, POSA
and MUSCLE. Figure 1.4a shows the alignments of ligands within the 4-helical
bundle cytokine family. Figure 1.4b shows the alignments of receptors within the
TNF-like cytokine family. Residues involved in an interaction are highlighted in
green. Misaligned interacting residues are highlighted in red.
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Figure 1.5: An illustration of how ligand (red) and receptor (blue) cores are derived
from a clustering of interactions within the interaction map (at right). The yellow
dots correspond to interacting residues and the green dots in the interaction map
indicate an interaction. A black line in the cartoon on the left denotes that an
interaction occurs between the residues at its endpoints.
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Figure 1.6: Plots of top three principal components of the normalized interface
scores for 4-helical bundle and TNF-like cytokine pairs. Green dots correspond to
interface scores for interacting pairs and red dots for non-interacting pairs. In the
plot for the 4-helical bundles, the interacting pairs cluster fairly well with the
exception of three pairs. In the plot for the TNF-like cytokines, non-interacting
pairs cluster together in the middle. This clustering indicates that classifiers should
be able to perform fairly well on these two families.
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Figure 1.7: ROC curves for the 4-helical bundle and TNF-like families of cytokines.
The curves show the change in the true positive and false positive rates as the
different significance values are used as a threshold for training the decision-tree
classifier.
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Figure 1.8: Decision tree classifiers for 4-helical bundles and TNF-like cytokine
families. Hyperplanes for 4-helical bundles: Root: CM = 0.760, L: SP = 0.777.
Hyperplanes for TNF-like: Root: CR = 0.924, R: CM = 0.406, RL: CR = 0.942.
"Yes" indicates that an interaction is predicted. "No" indicates that no interaction
is predicted.
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Fig. 2.1. Contact map representation of the aligned interfaces of five 4-helical
bundle cytokine complexes. Each color represents a complex and the gray map on
the left is the average contact map of the aligned interfaces.
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Interface Size (k) Distribution

Fig. 2.2a. Distribution of k (interface size). The average interface size is 83 contacts.

Fig. 2.2b. Distribution of m (family size). The average family size is 4.7 complexes.
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Accuracy v. Sequence Similarity
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Fig. 2.3. Comparison of alignment accuracy (IRACC) versus the similarity of
sequences within complexes using the CMAPi, MAPPIS and MUSCLE algorithms.
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Appendix A

4-Helical Bundle Cytokines
Abbreviation Name

EPO Erythropoietin
CSF3 Colony stimulating factor 3
GH Growth hormone
IL6 Interleukin 6
LIF Leukemia inhibitory factor

OSM Oncostatin M
CNTF Ciliary neurotrophic factor
IL23 Interleukin 23
IL12 Interleukin 12
LEP Leptin
PRL Prolactin

EPOR Erythropoietin receptor
CSF3R Colony stimulating factor 3 receptor
GHR Growth hormone receptor
GP130 GP130
IL12R Interleukin 12 receptor
LEPR Leptin receptor
PRLR Prolactin receptor

Dataset: Long-chain 4-helical bundles



TNF-Like Cytokines
Abbreviation Name

TNFSF1 Lymphotoxin alpha (LTA)
TNFSF2 Tumor necrosis factor (TNF)
TNFSF3 Lymphotoxin beta (LTB)
TNFSF4 OX40 antigen ligand (OX40L)
TNFSF5 CD40 antigen ligand (CD40L)
TNFSF6 Fas antigen ligand (FASL)
TNFSF10 TNF-related apoptosis inducing ligand (TRAIL)
TNFSF1 1 Receptor activator of NF-kappa-B ligand (RANKL)
TNFSF12 TNF-related weak inducer of apoptosis (TWEAK)
TNFSF13 APOL-related leukocyte expressed ligand 2 (APRIL)
TNFSF13B B-cell activating factor (BAFF)
TNFSF15 TNF ligand-related molecule 1 TL1A

TNFRSF1A Tumor necrosis factor receptor 1 (TNFR1)
TNFRSF1B Tumor necrosis factor receptor 2 (TNFR2)
TNFRSF4 OX40 antigen (OX40)
TNFRSF5 CD40 antigen (CD40)
TNFRSF6 Fas antigen (FAS)
TNFRSF6B Decoy receptor 3 (DcR3)
TNFRSF10OB TNF-related apoptosis-inducing ligand receptor 2 (TRAILR2)
TNFRSF11A Receptor activator of NF-kappaB (RANK)
TNFRSF11B Osteoprotegerin (OPG)
TNFRSF12 DR3
TNFRSF12A Type I transmembrane protein Fnl4
TNFRSF13B Transmembrane activator and CAML interactor (TACI)
TNFRSF13C B-cell activating factor receptor (BAFFR)
TNFRSF17 B-cell maturation factor (BCMA)
LTBR Lymphotoxin B receptor

Dataset: TNF-like cytokine ligands and receptors



4-Helical Bundle Cytokine Complexes

Ligand Receptor PDB ID

CSF3 CSF3R Icd9

EPO EPOR Icn4

GH GHR 1hwg

IL6 GP130 lp9m

LIF GP130 lpvh

TNF-Like Cytokine Complexes

Ligand Receptor PDB ID

TNFSF10 TNFRSF10B Idog

TNFSF13 TNFRSF13B ixul

TNFSF13 TNFRSF17 1xu2

TNFSF13B TNFRSF13C loqe

TNFSF13B TNFRSF17 loqd

Dataset: Template complexes



Comparison of single and combined scoring methods using 1-fold cross validation
on experimentally confirmed binding and non-binding pairs of ligands and recep-
tors. YES indicates the method predicted the pair binds, NO that the pair does not
bind. Green shading indicates that the prediction agrees with experimental data;
red that it does not.

4-Helical Bundle C tokines
I,.. *1 I -,. -

Sensitivity 58% 67% 33% 50% 75%
Specificity 93% 50% 100% 64% 86%
Significance 10.62
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Raw Normalized
CM Sensitivity 33% 58%
CM Specificity 57% 93%
Combined Sensitivity 33% 75%
Combined Specificity 50% 86%

Comparison of sensitivity and specificity values for raw versus normalized scores
for both the standalone CM and combined methods.

Query Template % similarity of % of interacting % of interacting
Ligand- Complex query ligand to residue pairs cor- residues correctly
Receptor Pair template rectly identified identified

ligand (RAPTOR) (LTHREADER)
GH-GHR IL6-GP130 23 33 53
GH-GHR EPO-EPOR 15 30 55
GH-GHR CSF3-CSF3R 20 31 63
EPO-EPOR IL6-GP130 24 29 51
EPO-EPOR GH-GHR 25 44 43
EPO-EPOR CSF3-CSF3R 18 31 58
IL6-GP130 GH-GHR 22 28 52
IL6-GP130 EPO-EPOR 17 40 63
IL6-GP130 CSF3-CSF3R 21 42 66
CSF3-CSF3R IL6-GP130 24 51 57
CSF3-CSF3R EPO-EPOR 19 33 61
CSF3-CSF3R GH-GHR 25 32 52
Average 21 35 56

Comparison of alignment accuracy between RAPTOR and LTHREADER for 4-
helical bundles.



Query Template % similarity of % of interacting
Ligand- Complex query receptor residue pairs % of interacting
Receptor Pair to template correctly identi- residues correctly

receptor fled identified
(RAPTOR) (LTHREADER)

TNFSF13B- TNFSF13-
TNFRSF17 TNFRSF13B 23 41 68
TNFSF13B- TNFSF10-
TNFRSF17 TNFRSF10OB 16 30 55
TNFSF13B- TNFSF13B-
TNFRSF17 TNFRSF13C 39 60 82
TNFSF13B- TNFSF13-
TNFRSF13C TNFRSF13B 29 35 65
TNFSF13B- TNFSF10-
TNFRSF13C TNFRSF10OB 18 25 45
TNFSF13B- TNFSF13B-
TNFRSF13C TNFRSF17 39 54 66
TNFSF10- TNFSF13-
TNFRSF10OB TNFRSF13B 29 56 54
TNFSF10- TNFSF13B-
TNFRSF10OB TNFRSF17 16 32 58
TNFSF10- TNFSF13B-
TNFRSF10OB TNFRSF13C 18 42 38
TNFSF13- TNFSF13B-
TNFRSF13B TNFRSF17 23 56 74
TNFSF13- TNFSF10-
TNFRSF13B TNFRSF10OB 29 40 62
TNFSF13- TNFSF13B-
TNFRSF13B TNFRSF13C 29 45 84
Average 25 43 63

Comparison of alignment accuracy
like cytokines.

between RAPTOR and LTHREADER for TNF-


