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Abstract

This thesis addresses one of the last hurdles to optoelectronic integration on silicon,
namely the incorporation of room-temperature, electrically-pumped edge-emitting
laser diodes. To this end, thin (-6 pm) InP-based multiple quantum well (MQW)
ridge laser platelets emitting at a wavelength of 1550 nm have been manufactured
and integrated by metal-to-metal bonding onto silicon substrates.

These laser platelets can be thought of as freestanding optoelectronic building
blocks that can be integrated as desired on diverse substrates. These blocks are fully
processed lasers, with both top side and bottom side electrical contacts. The thinness
of these optoelectronic building blocks and the precision with which their dimensions
are defined are conducive to assembling them in dielectric recesses on a substrate, such
as silicon, as part of an end-fire coupled, coaxial alignment optoelectronic integration
strategy. They are assembled by a micro-scale pick and place technique that allows the
blocks to be picked up individually and placed as desired on any substrate. Integration
is accomplished by metal-to-metal solder bonding.

To enable the manufacture of these laser blocks, a novel micro-cleaving process
technology has been developed. This novel micro-cleaving process is used to simulta-
neously obtain both smooth end laser facets and precisely defined laser cavity lengths.
As a proof of concept, this process has been shown to achieve nominal cavity lengths
of 300 pm +/- 1.25 pm. It is believed that this micro-cleaving process could be used
in the future to make thin platelet lasers having much shorter cavity lengths and with
better than 1.25 pm length precision.

For the 300 pm long, 6 ,am thin, micro-cleaved ridge platelet lasers integrated
onto silicon substrates, continuous-wave lasing at temperatures as high as 55 "C and
pulsed lasing at temperatures to at least 80 oC have been achieved. These lasers have
output powers as high as 26.8 mW (at T = 10.3 oC), differential efficiencies as high
as 81% (at T = 10.3 oC), and threshold currents as low as 18 mA (at T = 10.3 oC).
The characteristic temperatures, To and T1, of the lasers on silicon were measured to
be 43 K and 85 K, respectively.

To put the performance of these integrated micro-cleaved ridge lasers on silicon



in perspective, conventionally cleaved multiple quantum well (MQW) ridge lasers on
their native InP substrate were also fabricated and tested. The thin micro-cleaved
ridge platelet lasers integrated onto silicon outperformed the conventional lasers on
InP in terms of thermal characteristics (maximum operating temperature, To, and
T1), output power, and differential efficiency.

The structure of this thesis is as follows. First, the motivation for this work and
the historical evolution of the optoelectronics field are briefly described. Next, the
various optoelectronic integration techniques that have been pursued over the years
and their limits are presented. The novel fabrication processes developed to manufac-
ture these platelet lasers is then described in detail. Specifics on the characterization
methods and measurement results of both the micro-cleaved ridge lasers on silicon
and the conventionally cleaved ridge lasers on native InP substrates are presented. A
technique, Magnetically Assisted Statistical Assembly, that could be potentially used
to scale the integration technology to ultra-high densities of optoelectronic compo-
nents is then theoretically described. Finally, the thesis concludes with a comparison
with other state of the art results in the literature and proposes further directions for
this research effort.

Thesis Supervisor: Clifton G. Fonstad, Jr.
Title: Professor
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Chapter 1

Motivation for Optoelectronic

Integration

1.1 Introduction - Examples of Optoelectronic Prod-

ucts and their Impact

From the ways in which we communicate, to the ways our health is monitored, to the

ways we are entertained, optoelectronic devices are becoming more pervasive in soci-

ety. To provide the reader with some detail on the growing impact of optoelectronics

on society, a couple of applications in the medical field and the field of communications

strongly impacted by optoelectronic products will now be discussed.

In the medical field, doctors can now non-invasively monitor the oxygen level in

a patient's bloodstream by using an optoelectronic instrument, known as a pulse

oximeter. Operationally, when this device is placed on a patient's finger, toe, or ear

lobe, light emitting diodes (LEDs) shine light that is either transmitted through or

is absorbed by the blood. On the opposite end of the emitter array, a photodetector

array measures the light that is transmitted. The amount of light transmitted depends

on the amount of oxygen present in the blood.1 Taking only a matter of seconds, this

1In its simplest form, the measurement utilizes two wavelengths of light, red (i.e., wavelength
around 650 nm) and infrared (i.e., wavelength around 900 nm). Hemoglobin with significant oxygen
content absorbs more at infrared wavelengths than at red wavelengths as is shown in Figure 1-1.



non-invasive measurement allows medical professionals to continuously monitor the

oxygen level in a patient's bloodstream. This fast accurate measurement is vital to

the health of the patient since oxygen deprivation can result in brain damage within a

few minutes. Before the commercialization of these devices, detecting the amount of

oxygen in the bloodstream was a time consuming (i.e., tens of minutes) and painfully

invasive process.

Non-invasive blood glucose monitoring for diabetics is another application in the

medical field in which researchers are working to commercialize optoelectronic prod-

ucts.2 The impact that such a device could have is far reaching as several hundred

million people suffering from diabetes are at present resigned to drawing blood several

times a day to measure their blood glucose level[62].
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Figure 1-1: a.) A typical pulse oximeter [53] b.) Absorption spectrum of fully oxy-
genated hemoglobin and non-oxygenated hemoglobin[32].

Although the impact of optoelectronic devices on the medical field is impressive,

it is arguable that optoelectronics has had its most significant impact in the field of

communications, especially in long distance communications. In particular, the long

distance undersea telecommunications network, which includes the link between Eu-

rope and North America, demonstrates how the development of several optoelectronic

devices can revolutionize a field.

2Several companies, including VeraLight, Inc., are working to create non-invasive blood glucose
monitors using optoelectronic devices.
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There was a time when the undersea communication networks consisted of long

spans of electrical coaxial cable with intermittently spaced electrical signal regen-

erators. However, near the end of the 1970s, the practical capacity (i.e., bits of

information transmitted per second) limits of the the electrical network began to

be approached. The problem with the electrical undersea network, as is the poten-

tial problem with all electrical interconnect networks, was that electrical interconnects

have several frequency dependent parasitic impedances (i.e., resistances, capacitances,

and inductances) which can degrade the transmitted signal. Specifically, the trans-

mission capability for an electrical interconnect is limited by either skin effect 3 loss

as the signal transmission frequency is increased or resistive loss as the interconnect

gets too long [67].

According to Miller et al., the transmission capacity of an electrical interconnect

is directly proportional to the cross-sectional area of the interconnect and inversely

proportional to the interconnect length squared:

Capacity a [67] (1.1)

Thus, for an electrically interconnected network, capacity increases can only be

made by enlarging the coaxial core diameter, reducing the spacing between signal

regenerators, or by utilizing more complicated modulation schemes. By the late 1970s,

the capacity limit for coaxial undersea networks had been reached for all intents and

purposes[10].

Optical signals, on the other hand, do not suffer from this signal distortion as

the length of transmission or the signal transmission frequency is increased. Thus, in

the 1980s, with the tremendous quality improvements (i.e., lower loss) having been

made in optical fibers combined with the development of semiconductor lasers and

corresponding photodetectors, undersea electrical networks began to be replaced with

optoelectronic networks consisting of long spans of optical fiber with intermittently

3 The skin effect is the phenomena that as the frequency of a signal is increased, the electromag-
netic waves and thus the current density associated with this signal penetrate less and less into a
conductor. As the current density is constrained to a thinner and thinner thickness of the conductor,
the effective resistance increases substantially.



spaced optical-to-electrical-to-optical signal regenerators. This resulted in significant

capacity increases as is shown in Figure 1-2.

In the 1990s, the optical-to-electrical-to-optical signal regenerators were replaced

with newly commercialized Erbium Doped Fiber Amplifiers. This invention along

with the development of large channel count wavelength division multiplexers enabled

the capacity of the undersea network to increase even more substantially as is shown

in Figure 1-2.
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Figure 1-2: Historical transatlantic undersea network capacity [20].

The optoelectronics industry has recently entered a new phase in its development.

This phase is aimed at integrating many of the powerful optoelectronic devices that

have revolutionized the communications field onto a single chip, a process referred to

as optoelectronic integration.

Using the communications field as a vehicle, the historical evolution of the opto-

electronic integration research effort will now be detailed.

I In the optical era (88-01), capacity has been multiplied by 3000
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1.2 Historical Evolution of the Optoelectronic In-

tegration Effort

The research topic of optoelectronic integration is not a new one. The concept of

optoelectronic integration dates back to the late 1960s when Stewart Miller of Bell

Labs published the paper "Integrated Optics: An Introduction" in the Bell System

Technical Journal [68]. In this paper, Miller presented the idea of "miniature optical

circuitry" that could transport optical signals much like newly developed microelec-

tronic circuits that carried electrical signals.

To provide some context, less than a decade earlier, the first semiconductor laser

had been demonstrated [35]. In the microelectronics industry, companies such as

Intel (1968), Advanced Micro Devices (1969), and Fairchild Semiconductor (1957)

had just been formed and were pioneering semiconductor microfabrication techniques

to make miniature electronic circuits. It was an exciting proposition to extend the

use of these techniques to manufacture integrated optoelectronic devices. Optical

communications, however, was still at its infancy stage. The best optical fibers at this

time had transmission losses in the tens of dB/kilometer [36]. The best semiconductor

lasers could not yet run continuous wave at room temperature. Then, there was the

significant issue of coupling light from the devices into the micron size diameter fiber

cores. Unfortunately, the device technology was not yet at a mature enough level to

seriously consider optoelectronic integration.

With the idea of optoelectronic integration planted way back in the late 1960s,

the quality and diversity of photonic devices increased significantly over the next

few decades. By the 1970s, low loss silica fiber was manufactured on a large scale.

By the 1990s, highly reliable low threshold single mode semiconductor lasers were

being manufactured. There are a great number of accounts detailing the optical

communications technology development during this time [88, 36, 87]

With these device improvements, optoelectronic integration began to be consid-

ered more actively in the research community. In the 1990s, the optoelectronic in-

tegration research effort really took off when new devices, most notably the Erbium



Doped Fiber Amplifier (EDFA) and the Arrayed Waveguide Grating (AWG) were

commercialized. These devices enabled the implementation of Wave Division Multi-

plexing (WDM).4 A simple WDM system where four different signals are wavelength

multiplexed onto a single fiber is shown schematically in Figure 1-3.

1
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Figure 1-3: Functional schematic of a basic WDM network where four wavelengths are
multiplexed on a single fiber, travel a long distance and then are demultiplexed[28].

With the increased transmission capacity provided by WDM, there was now a

need for a large number of narrow linewidth lasers as well as many other complemen-

tary devices such as variable optical attenuators, channel equalization filters, optical

modulators, and photodetectors. In response to the burgeoning market demand for

these devices in the late 1990s, companies rushed in trying to profit. With the con-

fluence of these major device breakthroughs along with the hypercompetition in the

optoelectronic components industry, combining many of these high quality devices on

a single substrate to produce cost-effective solutions was the logical next step. Thus,

the optoelectronic integration research and development effort grew substantially.

A number of integrated products were introduced in the market during this time.

For example, several companies manufactured distributed feedback (DFB) lasers in-

4Theorized in the 1970s, WDM involves simultaneously transmitting multiple optical signals,
each at a different wavelength, on a single fiber. This enables the network capacity to be increased
significantly without laying new fiber.



tegrated with electro-absorption (EA) modulators[60, 31. Bookham, Inc. introduced

an AWG multiplexer with integrated variable optical attenuators (VOAs)[2]. NTT

integrated optical amplifiers and photodetectors with AWGs (see Figure 1-4).
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Figure 1-4: a.) Schematics and picture of a 16 channel AWG integrated with 16
photodetectors, b.) Schematic and picture of a monolithically integrated AWG mux,
demux, and semiconductor optical amplifier (SOA) array[59].

Although significant progress was made in terms of integration capability, the

optoelectronics market growth seen in the late 1990s up through 2001 could not be

maintained. The demand projections for optoelectronic components turned out to be

gross overestimations as so many working in the photonics industry during this time,

including the author of this thesis, disappointedly found out. From 2000 to 2001, the

total market for laser-diodes was cut in half (Figure 1-5) and the photonic integrated

circuit market performed nearly as poorly (Figure 1-6).

Undoubtedly, this optoelectronic product demand collapse (i.e., "the busting of



6

4

0

3

2

0
1997 1998 1999 2000 2001 2002 2003 2004 2005

Year
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the telecom bubble") impeded the integration effort. From 2001 to 2004, 655 telecom-

munications companies with aggregate assets of 749 billion USD filed for bankruptcy

[11].

Almost a decade after the telecom boom years, the telecommunications market is

growing again. These gains are primarily due to the surging demand for broadband

resulting from the ever increasing preponderance of video online.5 Moreover, by the

beginning of 2007, the percentage of adults in the United States with home broadband

access had risen to near 50% compared to only 10% back in 2002[11]. Equipment

spending in the telecommunications sector is growing substantially (Figure 1-7). This

bodes well for the funding of optoelectronic integration research in the near future.
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Figure 1-7: Historical telecommunication equipment sales [11].

5Back in the bust years, the main bandwidth consuming application was online music which
consumes roughly a factor of one thousand times less bandwidth than video[11].



1.3 Modern Optoelectronic Integration Effort

With all the progress made in the communications industry in the late 1990s, it is

not surprising that the primary area today which could be profoundly impacted by

increased optoelectronic integration is still the field of communications. Differentiat-

ing between the two eras, the development in the late 1990s seemed to be focused

on the long-haul telephony or wide-area network markets; whereas, today, the effort

has shifted to shorter distance communications, including the last mile of the optical

network, as well as chip-to-chip and on-chip interconnection.

1.3.1 Last Mile of the Optical Network

Fiber-to-the-home (FTTH) / Fiber-to-the-premises (FTTP) are synonymous tech-

nologies that address the last mile of the optical network. As their names imply,

FTTH/FTTP refer to extending the optical network by the installation of optical

fiber directly to homes. Presently, the last mile of the communications network, by

and large, consists of twisted pair wire electrical interconnects.

In terms of performance, FTTH offers orders of magnitude bandwidth improve-

ments over competing electrical interconnect technologies such as digital subscriber

lines (DSL) and cable modem systems as is shown in Figure 1-8.

The use of FTTH technology has expanded considerably in the past several years

as service providers in Asian nations like Korea, Japan, and European nations like

Denmark and Sweden have made significant installments [24]. In North America, the

largest potential market for FTTH equipment in the world, installations have risen

significantly in the past couple years (Figure 1-9), but still lag behind the aforemen-

tioned countries in terms of percent market penetration.

A powerful role optoelectronic integration could play in FTTH is by enabling

the manufacture of high data-rate, low cost optoelectronic transceiver products that

convert the signals from the optical network to electrical signals that a computer can

understand as well as convert electrical signals from a computer to optical signals

that can be used to communicate with the optical network.
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Figure 1-8: Bandwidth comparison between DSL, cable modem, and FTTH technolo-
gies. Note DSL, cable, and FTTH GE-PON (Passive Optical Network) are in volume
deployment; whereas, the FTTH GPON is still in development[74].
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Specific products in the FTTH market that could be impacted by increased in-

tegration capability are triplexers and diplexers [75]. A triplexer (Figure 1-10a) is

essentially an optical transceiver which receives optical signals at wavelengths of 1490

nm and 1550 nm, converts them to electrical signals and transmits a optical sig-

nal back at 1310 nm. Utilizing such a product, the electrical signals can then be

interpreted by a personal computer or set-top box in one's home.

A diplexer (Figure 1-10b) operates in a very similar manner to the triplexer, but

instead of receiving two input wavelengths, it only is prepared to receive one.

If the 1310 nm laser, photodetectors and electronics could be integrated together

on a single chip, the costs of the diplexer and triplexer products could be reduced

dramatically. These reduced component costs could help accelerate the growth of the

extremely price sensitive FTTH market.
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Figure 1-10: Schematic of a.) FTTH triplexer, b.) FTTH diplexer. Note, PD = pho-
todetector, MPD = monitor photodetector, and TIA = transimpedance amplifier[91].

1.3.2 Chip-to-Chip and On-chip Optical Interconnects

Of great interest now in the research community is the role optoelectronics can play in

ultra-short distance communications; in other words, communicating between chips

or between devices on a single microchip. Chip-to-chip interconnection, as its name

implies, refers to an optical link between two or more separate chips. In this case, the

optical signal is typically transmitted over a distance of about 5 to 100 mm. On-chip

interconnection, involves interconnecting different devices on a single chip. In this

application, optical signals are usually transmitted over a distance of no more than

20 mm. Not as commercially developed as the FTTH/FTTP market, the work on

chip-to-chip and on-chip optical interconnects is primarily a research effort now.

As was the case for longer distance communications networks, the allure of an op-

tical solution for short distance applications is an increase in bandwidth. Moreover,
the same problems which limited the capacity of the longer distance electrical net-

works, namely, interconnect parasitics and related signal degrading phenomena such

as the skin effect, are the same issues that will likely limit the bandwidth of these
shorter distance electrical interconnects.

1310 nm



Chip-to-chip Interconnects

Applied to chip-to-chip interconnection, optoelectronic integration could enable a

significant bandwidth improvement between a microprocessor and other chips on

a motherboard such as other microprocessors, memory, or chipsets. The standard

electrical interconnect medium used today, copper traces, will likely be limited to data

transfer rates of 15 to 20 gigabits per second due to the parasitic effects described

earlier [95].

In anticipation of reaching these bandwidth limits, several research groups are

pursuing optoelectronic solutions [48, 95]. Specifically, researchers at Intel Corp.

have demonstrated a chip-to-chip twelve channel optical link consisting of GaAs Ver-

tical Cavity Surface Emmiting Lasers (VCSELs), Si p-i-n photodiode arrays, polymer

waveguide arrays, and a Complementary Metal Oxide Silicon (CMOS) transceiver

chip (Figure 1-11) that reached speeds of greater than eight giga-transfers per sec-

ond. This chip-to-chip optical interconnect prototype is shown in Figure 1-11.
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Figure 1-11: Intel chip-to-chip optical interconnect prototype [95].
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On-chip Interconnects

On-chip interconnection is even more ambitious than the chip-to-chip integration

effort; whereby, the ultimate goal is to replace the metal wiring, that has been the

defacto industry standard since the birth of the microelectronics industry, with light

carrying optical waveguides.

One of the significant accomplishments of the microelectronics industry has been

the tremendous scaling of device dimensions that has been achieved. With this device

geometry scaling, the number of devices that can be integrated on a single chip has

increased considerably and the costs per component on an integrated circuit have

gone down appreciably as is shown in Figure 1-12.6
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Figure 1-12: Number of transistors integrated on a single chip and the related cost
per transistor[31].

6The prediction of the rate at which the number of transistors per microchip would increase and
the associated cost savings due to this scaling was proposed by Intel founder, Dr. Gordon Moore,
in 1965, and is referred to as Moore's law [70].
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This tremendous shrinking of device dimensions coupled with the steady increase

in signal clock frequencies has made the parasitics associated with transmitting signals

on the metal interconnect lines more problematic.' Specifically, as the transistor

dimensions have been scaled to smaller and smaller dimensions, so too have the

electrical pipes carrying the information from device to device. As the cross-sectional

area of the individual pipes is made smaller, the transmission capacity decreases due

to resistive losses. Similarly, as the signal frequency increases, parasitics such as the

skin effect degrade the signal. In addition, as interconnects are scaled to smaller

dimensions, so too are the dielectrics separating the metal interconnects. With this

narrower spacing between metal lines, the parasitic capacitance between adjacent lines

increases, resulting in what is called cross-talk noise. A further complication of scaling

the interconnect cross-sectional area smaller is the phenomena of electromigration 8

[52].

In the microelectronics industry, there have been several approaches to combat

the aforementioned parasitic effects. First, instead of scaling the interconnect so ag-

gressively, more metal interconnect levels are often utilized. While this has proven to

be a useful approach, ultimately, it is likely that the addition of more and more metal

interconnect layers will negatively impact the yield due to technical challenges related

to planarization and photolithographic patterning. Second, electrical signal repeaters

are sometimes inserted intermittently along a long interconnect line to reduce signal

degradation. Unfortunately, these repeaters do not come without a cost as they con-

sume power, and take up chip real estate. Third, to reduce the parasitic capacitances

of the interconnect lines, low dielectric constant materials are being used as the insu-

lation material between metal interconnects. Fourth, the industry has largely made

the switch from aluminum to copper metal interconnects in order to reduce intercon-

nect resistivity and electromigration issues. All of these improvements have enabled

electrical interconnects to remain the technology of choice for ultra-short distance

7It should be noted that clock speeds have recently hovered in the range of 3 to 4 GHz due to
the issue of power dissipation.

8Electromigration is the phenomena seen with electrical conductors in which high current densities
cause electrons to impact atoms of the conductor so strongly that a void in the metal forms.



on-chip interconnects for the foreseeable future.

Optical interconnects are also not without problems and many of these issues be-

come glaring when they are considered for short distance applications. The capability

of manufacturing extremely low loss planar dielectric waveguides already exists; how-

ever, moving to ultra-short interconnect lengths, the quality of the optical link begins

to be overwhelmed by the quality of the laser, modulator, and photodetector as well

as the coupling between these devices and the dielectric waveguides. Techniques that

efficiently integrate these optical devices with CMOS compatible electronics are still

being researched and developed.

Researchers at Intel have investigated when it may be advantageous to move

from electrical interconnects to optical interconnects. They concluded that on-chip

optical interconnects do not appear to be worth the trouble in the near term (i.e.,

for technology nodes down to 22 nm Li,) for either clock or signal distribution

applications[69].

Ultimately, the feasibility of implementing on-chip optical interconnects will be a

great deal clearer after robust processes for manufacturing highly integrable optical

active devices are developed. The goal of this thesis is to invent a new approach for

manufacturing highly integrable active optical devices, such as lasers and amplifiers,

that will get us closer to achieving optoelectronic integration for applications such as

on-chip interconnection on silicon.

1.4 Overview of Thesis

This thesis describes the development of a novel process for creating highly inte-

grable active optical devices and their integration on silicon. Structurally, this thesis

consists of seven chapters with three appendices of supplemental details. Chapter 2

provides an overview of the different optoelectronic integration approaches that have

been used both in academia and in industry. Chapter 3 introduces the goal of this

thesis, a process technology for highly integrable active optical devices. Moreover,

the requirements for the process technology are described and alternative approaches



are presented. Chapter 4 details the process technology developed to create highly

integrable edge-emitting semiconductor lasers. The results, including the characteri-

zation of the process technology and the device are presented in Chapter 5. Chapter

6 presents a novel technique, known as magnetically assisted statistical assembly, to

integrate these optoelectronic devices using a high-volume batch process. Chapter

7 concludes the thesis and proposes future work. Appendices A and B contain the

process flows developed for the conventionally cleaved edge-emitting lasers and the

highly-integrable edge-emitting laser platelets, respectively. Appendix C contains de-

tails on the specific metal deposition, photolithography, etching, and various other

process steps. Appendix D contains detailed expressions for the magnetic scalar

potential and associated constants for the magnetically assisted statistical assembly

theory.

1.5 Lab Facilities

Most of the fabrication described in this thesis was carried out in the Exploratory Ma-

terials Laboratory (EML), which is part of the Microsystems Technology Laboratories

(MTL). The semiconductor dry etching was performed at MIT Lincoln Laboratory

with the assistance of Jason Plant. Many of the wet chemical etching steps, as well

as the electrical characterization was carried out in Professor Fonstad's group labora-

tories. The vibrating sample magnetometer characterization of the magnetic samples

was carried out in the laboratory of Dr. R.C. O'Handley. The profilometer, scanning

electron microscope, and micro-cleaving precision characterization work was carried

out in the Shared Experimental Facilities (SEF), which is part of the Center for

Materials Science and Engineering (CMSE).



Chapter 2

Approaches aimed at

Optoelectronic Integration

2.1 Key Deliverables of an Integration Strategy

The ultimate goal of the optoelectronic integration research effort is to provide a

solution for combining both active optical devices that emit, detect, and modulate

light, passive optical devices that direct and transport light, and electronic devices

that perform information processing and optical device controlling operations.'

There are several questions one may ask when evaluating optoelectronic integra-

tion techniques. First, does the specific technique enable products or applications

that would otherwise be impossible to produce? Second, for products or applications

where other technologies (i.e., purely electrical solutions) exist, does the integrated

optoelectronic solution offer a significant performance advantage? Third, does the

optoelectronic solution allow for a sizable cost savings over competing technologies?

Fourth, does the optoelectronic integration process allow for flexibility in terms of

the heterogeneity of devices that can be combined? Fifth, does the throughput of the

integration technique scale to VLSI-size integrations?

IThere is sometimes a distinction made in the literature between devices (i.e., photonic integrated
circuits) that integrate strictly optical functionality, and devices (i.e., optoelectronic devices) that
integrate both optical and electrical functionality. Note that in this chapter, the use of the term
optoelectronic is used to refer to either of these two integrated devices.



In terms of the commercial adoption of optoelectronic integration methods, tech-

niques used include the hybrid technique of flip-chip bonding as well as full monolithic

integration. Unfortunately, there are limitations associated with both of these tech-

niques which have restrained their widespread adoption and have motivated a signif-

icant research effort in optoelectronic integration today. These research efforts range

from strategies aimed at full-monolithic integration to hybrid integration strategies

such as wafer bonding, fluidic assembly and flip-chip bonding. These techniques and

their advantages and disadvantages will be discussed in this chapter.

2.2 Monolithic Integration Strategies

The holy grail of the optoelectronics field is a material system from which one could

fabricate a dense arrangement of seamlessly interconnected high quality electrically

pumped active and passive optical devices, of varying size and shape, along with asso-

ciated electronics on a single substrate. Some monolithically integrated optoelectronic

products have in fact been brought to market. For example, commercial devices such

as telecom edge-emitting lasers with integrated electro-absorption modulators have

been commonly fabricated for several years using monolithic techniques. Infinera has

taken this level of integration further by developing a monolithic photonic integrated

circuit technology (PIC) that has combined sixty optical components, including ten

different wavelength lasers on an Indium Phosphide (InP) substrate[86]. Aside from

this effort of Infinera, the flexibility and scale of monolithic integration techniques in

industry has been limited. As a result, most commercial monolithic products inte-

grate only a small number of different devices. In addition to InP, semiconductors

such as silicon and gallium arsenide have been used for monolithic optoelectronic

integration development. A brief overview of the integration work using these three

material systems will now be presented.



2.2.1 Monolithic Optoelectronic Integration in Silicon

Silicon is the material of choice for high density electronic circuits because of its ability

to implement low static power complementary metal oxide semiconductor (CMOS)

technology. Silicon has been the dominant semiconductor material in the electronics

industry for over forty years.2 Because of this success and the gained maturity of

the silicon material system in microelectronics, much investigation has occurred with

the silicon system in the field of optoelectronics. A silicon containing compound, sil-

icon dioxide (Si0 2) is the most commonly used material to make optical fibers. Not

surprisingly, high quality, low loss planar waveguides composed of silicon dioxide,

silicon oxynitride, silicon nitride, and silicon are the dominant optical planar waveg-

uide technology in the market today. Furthermore, high density optical multiplexers

(i.e., Arrayed Waveguide Gratings (AWG)) are also most often fabricated on a silicon

wafer.

However, the development of active optical devices in the silicon material sys-

tem has proved most challenging. The problem centers on the fact that silicon is

an inefficient light emitting material due to its indirect energy bandgap. The im-

plementation of monolithic optoelectronic devices in silicon has been stifled by this

poor material property. Nonetheless, a significant research effort has been focused

on trying to find ways to overcome these material problems. Specifically, researchers

investigating porous silicon have achieved visible wavelength light emission through

optical pumping with an emission efficiency of up to approximately 23%[13]. Electri-

cally pumped devices have been realized as well, but offer extremely poor emission

efficiencies of approximately 1%[54]. Similarly, researchers have demonstrated optical

amplifiers fabricated on silicon wafers. These waveguide amplifiers typically consist

of rare earth ion (i.e., Erbium ions) doped dielectric waveguides deposited on sili-

con. While a gain medium is achieved in this Erbium Doped Waveguide Amplifier

2Low static power consumption electronics are vital for applications such as SRAM memory
where most transistors remain in a certain state for an extended period of time. Silicon CMOS
technology is used in memory applications due to the fact that it operates with no static power
dissipation. Thus, if a CMOS circuit is not being switched from on to off or vice versa, a CMOS
circuit will not dissipate power. By keeping the static power to a minimum, it is possible to prevent
the circuit from overheating.



(EDWA) structure, these devices require another laser, such as a 980 nm or 1480 nm,

laser to induce optical amplification of the incoming 1550 nm signal [93, 92].

Recently, the world's first continuous-wave optically pumped silicon laser has been

achieved by a team at Intel Corp[34]. The laser structure is a standard silicon-on-

insulator rib waveguide with multi-layer dielectric mirrors on the waveguide facets.3

Utilizing the Raman effect to achieve lasing, the device is pumped with a several

hundred milliwatt 1550 nm laser to achieve continuous-wave lasing at a wavelength

of around 1690 nm. Another notable result in silicon laser research has been the

demonstration of optical gain in silicon nanocrystals by Pavesi et al. [551 In addition,

Kimerling et al. have measured optical gain from strained germanium grown on silicon

substrates[45]. Although these demonstrations represent tremendous breakthroughs,

it is apparent that to make silicon the material of choice for monolithic optoelectronic

integration, the development of an efficient electrically pumped light emitting device

is required. To date, this has yet to be accomplished.

2.2.2 Monolithic Optoelectronic Integration in Gallium Ar-

senide and Indium Phosphide

Given the difficulty with manufacturing efficient silicon optical emitters, a significant

research effort has pursued monolithic optoelectronic integration using the Indium

Phosphide and Gallium Arsenide semiconductor systems. This is not unwarranted

as III-V semiconductors, such as GaAs and InP, are the industry standard for radio

frequency (RF) communication electronics (Figure 2-1) and are the most commonly

used semiconductor materials in the production of lasers. Taking advantage of these

semiconductors orders of magnitude electron mobility advantage over silicon, com-

mercial RF designs utilizing high electron mobility transistors (HEMTs) and hetero-

junction bipolar transistors (HBTs) are common. Moreover, high quality detectors,

waveguides, and modulators can all be fabricated from these semiconductor systems.

3The waveguide forms the intrinsic (i) region of a reversed biased p-i-n diode that was im-
plemented to reduce a free-carrier absorption problem that had earlier prevented continuous-wave
operation.



Figure 2-1: 2006 International technology roadmap for semiconductors, radio fre-
quency and analog/mixed-signal technologies for wireless communications working
group[6].

The primary area where compound semiconductors performance is inferior to sil-

icon is large scale memory intensive electronics. Compound semiconductors are not

optimal for this application because of issues such as electron and hole carrier mobility

mismatch and gate dielectric leakage which make implementation of a CMOS style

technology difficult. It is possible to create complementary III-V circuits; however,

the technology is not as well developed as it is for silicon. Moreover, the smaller III-V

substrate sizes put III-V semiconductors at a huge disadvantage compared to silicon.

However, there are many products on the market today that make use of mono-

lithic integrations in these compound semiconductor material systems. For exam-

ple, in the field of telecommunications, 1550 nm edge-emitting lasers and associated

electro-absorption modulators are typically manufactured monolithically in the InP

system. In addition, full monolithic integration of strictly passive devices is not un-

common in these material systems.

While monolithic integration in these semiconductor materials is in industry pro-

duction, there are limitations on the scale and complexity that can ultimately be

a



achieved. What has limited the monolithic optoelectronic effort in InP and GaAs

has not been material inadequacy, but instead fabrication process incompatibility

and costs. In terms of process incompatibility, issues can result from the contrast-

ing dry and wet etch chemistries, thermal processing budgets, and photolithographic

specifications required for the different devices.

As a simple example of potential thermal incompatibilities, consider the integra-

tion of any device with metal connections. Once this device is fully processed, if

there is a desire to integrate other devices, the subsequent processing temperatures

would be allowed to rise no higher than 450 'C[58]. This severely limits processing

capabilities. In terms of photolithographic incompatibilities, there are often problems

due to the discrepancies in thickness between different optical devices and electrical

devices. Typically, optical devices are much thicker than electronic devices (orders of

magnitude thickness differences). If these topographic features persist and the sur-

face of the semiconductor cannot be kept planar, photolithographic patterning of the

devices can be very problematic.

In terms of cost, compound semiconductor substrates are over an order of mag-

nitude more expensive than silicon. Figure 2-2 shows the volume leading substrate

sizes of the three semiconductor systems. Epi-ready silicon wafers having an 8 inch

diameter typically cost slightly less than $50 a wafer; whereas, the 4 inch InP and 6

inch GaAs are roughly an order of magnitude more expensive than the larger silicon

wafer.4 A much more significant cost in manufacturing is the value-added or addi-

tional processing that is undertaken. This is also a negative aspect for III-V devices

because more processing needs to be performed to create the same number of devices

as can be made from silicon wafers. This follows from the significant substrate size

advantage silicon offers over III-V semiconductors.

4Presently, the largest substrate sizes commercially available in InP and GaAs (i.e., 6 inch diam-
eter) are half the diameter of the largest available silicon wafer (i.e., 12 inch diameter)



Silicon Indium Phosphide Gallium Arsenide
8 in diameter wafer 4 in diameter wafer 6 in diameter wafer

Figure 2-2: Typical substrate sizes used in industry for silicon, indium phosphide and
gallium arsenide.

2.3 Hybrid Integration Strategies

Because of these problems with pure monolithic optoelectronic integration, the com-

mercial manufacture of optoelectronic devices typically involves a hybrid technique

where heterogeneous devices are optimally processed separately prior to integration.

Then integration consists of either wire bonding or flip-chip bonding the devices to a

target substrate or package (Figure 2-3).

Flip-chip is an acceptable solution at the moment since integration has primarily

involved only small numbers of light sources, waveguide devices, and photodetectors.

To implement large-scale optoelectronic integration for high bandwidth systems, then

a technique offering less assembly time with less parasitics must be developed. Fur-

thermore, it would be ideal to have a technology where further processing could be

undertaken after the devices have been integrated.

Research of hybrid integration of compound semiconductors with silicon has been

investigated for over two decades. For large-scale optoelectronic integration, the two

techniques that have garnered considerable attention during this time period are

direct epitaxy and wafer bonding. These methods attempt to integrate entire wafers

of devices at once, and thus offer an improvement in scale over wire bonding and



flip-chip bonding. Most recently, techniques involving fluidic assembly have gained

popularity in the research community.

2.3.1 Flip-chip Bonding

Flip-chip, first commercialized in the 1960s, is the well-established integration technol-

ogy used in the optoelectronics industry today. In practice, flip-chip bonding involves

the deposition of solder bumps on a target substrate wafer and the alignment of a die

to the substrate. Once aligned, pressure is applied and the temperature is increased

in order to aid in the bonding. An underfill is often deposited between the die and

the substrate to reduce the stress between the device and the substrate that results

from the thermal expansion coefficient mismatch of the materials being integrated.

Mold
Compound Die

Die Attach Wire Bond Epoxy Underll Mo CapMoldcCap

I Solder Ball Rigid
Solder Ball Rigid Laminate

Laminate

Figure 2-3: Hybrid integration techniques a.) Wire bonding b.) Flip-chip bonding[82].

Flip-chip bonding offers markedly better performance than wire bonding with

regards to assembly time and parasitics. Unfortunately, issues with flip-chip bonding

still remain. First, a significant issue with flip-chip bonding is the scalability of the

technique in terms of the total number of devices that can be integrated. Consider

the integration of a large array of small square devices on a target substrate (Figure

2-4a). Since the square devices are homogeneous, they could all be fabricated on

their native substrate and a 2 cm x 2 cm piece of this substrate could be bonded

to the target substrate in one flip-chip bonding step. There are two limiting factors

regarding this scenario. First, the bonding precision with which the die can be aligned

to the target substrate is typically limited to +/- 10 pm. Second, since the large array

a ii a
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of devices will be integrated (i.e., flip-chip bonded) at once, the square device yield

must be perfect unless redundancy is included (which would add to the complexity).

As another instructive example, consider the integration of a number of devices,

each with a different material structure, size and shape. Figure 2-4b). In this case, a

flip-chip bonding step would be required for each type of device and in some instances

for each device (where homogeneous devices are not situated side by side). In a

situation where there are an inhomogeneous batch of thousands or more devices to

be integrated, flip-chip would not be an acceptable solution.

2 cm

2 cm

a.) b.)

Figure 2-4: Demonstration of flip-chip bonding limits: a.) Homogeneous array of
devices to be integrated. b.) Inhomogeneous array of devices to be integrated.

It should also be noted that there are upper and lower limits to the die sizes

that can be reliably flip-chip bonded. Typically, acceptable die sizes vary from ap-

proximately 100 pm x 100 Mm up to a few cm 2. This upper limit arises due to the

requirement that as the bonded die size increases, the temperature and time required

for bonding increase as well. Exposed to high temperatures for extended periods

of time, the underfill between the die and substrate undergoes significant stresses.

In addition, the larger size of the die, the more difficult it is to flow the underfill

between the die and substrate without encountering air bubbles. For the communi-
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cations industry, where reliability standards are stringent, flip-chip is an imperfect

solution.

Flip-chip is an acceptable solution at the moment since integration has primarily

involved only small numbers of light sources and detectors with associated electronics

for low data rate systems. A commercial example of an optoelectronic product that

makes use of flip-chip bonding techniques is the Fiber-to-the-home (FTTH) triplexer

(Figure 2-5) manufactured by Enablence Technologies.

Figure 2-5: Top-down picture of a triplexer product manufactured by Enablence
Technologies using flip-chip bonding techniques. A FTTH triplexer, as described in
Chapter 1, has multiple photodetectors, one at 1490 nm and the other at 1550 nm,
as well as a 1310 nm laser and electronics[85].

It is interesting to compare the requirements of flip-chip assembly in optoelectronic

integrations versus those in system-on-a-board electronics integrations. Typically, the

alignment tolerances in optoelectronic integrations are much tighter than in purely

electrical integrations. Moreover, the bonding forces that can be used in flip-chip

bonding optoelectronic components are less than can be used in flip-chip bonding of

electrical components. This follows from the fact that many of the semiconductor

substrates, like InP and GaAs, used for high speed optoelectronics are more fragile

than silicon, the dominant semiconductor used in the electronics industry.

2.3.2 Direct Epitaxy

Direct epitaxy has been investigated with the goal that one day it could allow for a

truly monolithic optoelectronic integration process. Using the integration of Si and

GaAs as a reference, direct epitaxy is typically carried out by epitaxially growing a



thick layer of GaAs on Si. By growing a thick layer, the goal is to enable the lattice

deep inside the GaAs to relax from its tensile strained state at the GaAs/Si interface

that results from the 4% lattice constant mismatch. Unfortunately, if the devices are

functional after processing, their lifetimes prove to be very short due to the lattice

mismatch and the stress related to the mismatch of the materials' thermal expansion

coefficients (CTE). Since GaAs has a CTE almost three times that of Si, the elevated

temperature of the growth process often results in catastrophic stress related defects

[51].

Table 2-1 Material parameters of Si, Ge, GaAs, and InP [51][80].

To alleviate the problems with the lattice mismatch, some research groups buffer

the interface between Si and GaAs with intermediate lattice constant materials. One

approach uses SiGe buffer layers to achieve three orders of magnitude reduction in

the dislocation density from 109 cm - 2 to 106 cm- 2 from the direct epitaxy of GaAs

on Si [66]. Typically, the process begins by growing layers of SiGe having a high Si

content on a Si substrate. As more and more layers are grown, the content of the

layers are given higher and higher Ge content. Finally, the GaAs layer is grown.

Still, even with the issue of the lattice constant mismatch essentially removed,

further processing of the devices following growth, can cause catastrophic stresses

due to the thermal expansion coefficient mismatch of the different semiconductor

materials used in the implementation.

2.3.3 Wafer Bonding

Wafer bonding improves upon direct epitaxy by allowing for the optimum processing

of devices prior to integration. While lattice constant mismatch is less of a problem

for wafer bonding, the CTE mismatch remains a difficult obstacle to overcome[51].

Parameters Si Ge GaAs InP

lattice constant (A) 5.43095 5.64613 5.6533 5.8686

CTE (x10- 6 oC- 1) 2.6 5.9 6.86 4.75



The typical wafer bonding process involves the joining together of a semiconductor-to-

semiconductor or a semiconductor-to-insulator interface. This differs from flip-chip

bonding where a metal-to-metal contact is achieved. The wafer bonding process

is performed at elevated temperatures though and the thermal changes the wafers

undergo result in severe stresses due to the materials differing coefficients of thermal

expansion[51]. The stress problem is magnified since the devices are all linked together

and thus the stresses couple across the entire wafer.

Learning from the work in wafer bonding, Fonstad et al. developed the technique

of Aligned Pillar Bonding (APB) to reduce the problems associated with the CTE

mismatch[51]. The APB process involves optimally processing the devices to be

integrated separately. For instance, silicon devices are optimally fabricated on a

silicon wafer and GaAs-based devices are manufactured on a GaAs wafer. Then,

the GaAs devices are patterned by a combination of photolithographic steps and

etch steps, leaving behind arrays of device pillars with contact metals sticking up

from the GaAs wafer. Similarly, dielectric recesses are formed on the silicon wafer,

mirroring the protruding devices on the GaAs wafer. The two wafers are then aligned

and metal-to-metal bonded. The GaAs substrate is then chemically removed, thus

eliminating the link between the devices (through their native substrate). With this

link removed, further elevated temperature processing can be undertaken without the

extreme risks to device integrity seen with standard wafer bonding.

APB is not without its own issues, namely, that it is quite wasteful of semiconduc-

tor materials (like all other wafer bonding techniques), it requires a very challenging

alignment procedure, and in many cases it does not allow for the testing of devices

prior to integration.

2.3.4 Fluidic Assembly Techniques

Given the stress issues involved with wafer bonding and direct epitaxy, research is

being performed involving the parallel integration of uncoupled pre-processed devices

in solution. Like wafer bonding, these techniques involve the optimum processing of

devices on their own device specific wafer prior to integration. In the fluidic assembly



technique's most basic form, one wafer will have large numbers of unconnected devices

and the other target wafer will have interconnected components and recesses with

dimensions corresponding to the devices on the device wafer. Improving on wafer

bonding, the devices are etched free from their substrate, thus decoupling them from

one another. The etched free devices are then drawn to and retained at the target

wafer by some force mechanism. The main techniques in the literature are Fluidic

Self-Assembly, Electric Field Directed Assembly, and DNA Assisted Assembly.

Fluidic Self-Assembly (FSA):

Fluidic Self-Assembly utilizes the force of gravity to direct trapezoidal shaped devices

to a target wafer having correspondingly shaped recesses (Figure 2-6). Micromachin-

ing the devices and recesses into a particular shape ensures that the devices assemble

with the proper orientation. Once etched free from their sacrificial substrate, the

devices are flowed over the target wafer in a fluid and self-assemble in the recesses.

Once properly in the recess, a device remains there by a combination of the Van der

Waals force and the force of gravity[78, 94].

A

Figure 2-6: Fluidic self-assembly (FSA) schematic[94].

Fluidic Self-Assembly offers great potential in terms of scale and flexibility com-



pared to the previously mentioned integration techniques. For integrations of smaller

scale though (i.e., less than ten devices), fluidic assembly is not worth the trouble.

Another drawback of fluidic assembly is in cases where the orientation of the device

is of significant importance. In these cases, using a fluidic assembly process requires

devices to be micro-machined into complex shapes to ensure that they are assembled

with the right orientation. Silicon based devices are often used in these orientation

sensitive situations because of the existence of well developed anisotropic etches (like

potassium hydroxide (KOH)) which can be used to pattern the devices. For complex

device structures that incorporate a number of different materials, a suitable etchant

that can be used is often hard to find. Another issue with Fluidic Self-Assembly is

that devices are weakly retained on their target substrates after assembly and are

prone to being knocked loose.

Electric-Field Directed Assembly (EFDA):

Whereas, FSA utilizes the force of gravity and the complementary geometries of the

devices and recesses, Electric field directed assembly, as its name implies, uses electric

fields to direct individual devices to a specific location on a target wafer (Figure

2-7). The principle by which this assembly technique operates is electrophoresis.

Electrophoresis is the condition where attractive or repulsive forces act on particles

due to an electric field. By making use of this concept, devices can be placed at

specific locations on a target substrate. EFDA requires the fabrication of electrodes

on the target wafer. When a voltage is applied to an electrode present on the host

substrate, an electrophoretic force is created that moves the device toward the biased

electrode [29, 18].

One drawback of EFDA is that it requires the incorporation of electrodes on

the target wafer. This requirement limits the type and arrangement of devices on

the target substrate upon which integration occurs. Moreover, once the devices are

assembled and the bias on the electrodes is stopped, the assembled devices are not

held strongly to the target substrate and thus could become misaligned or even fall

off the target substrate.
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Figure 2-7: Electric field directed assembly (EFDA) schematic [29].

DNA Assisted Assembly:

As in EFDA, devices are directed toward specific locations on a target substrate

by appropriately biasing electrodes on the target substrate: Retention is performed

by coating the device and the specific target location with complementary DNA

sequences (Figure 2-8) [27].
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Figure 2-8: DNA assisted assembly schematic[27].
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2.4 Our Approach and the Rationale Behind It

In this research and development, a hybrid integration approach is being pursued

whereby each device can be manufactured on its own separate substrate, tested, and

then assembled on an inexpensive target substrate (Figure 2-9). The main reason for

choosing a hybrid technique is that it enables the use of optimal native substrates and

ideal process chemistries, temperatures, and tools. Furthermore, the hybrid technique

presented in this thesis offers the flexibility to integrate many different types of devices

manufactured from many different material systems.

By allowing for the testing of devices prior to integration, our hybrid technique

should enable a higher overall yield process than achievable with monolithic integra-

tion. By taking into account both performance and costs when choosing a substrate

material, the total costs should be much reduced from those encountered when im-

plementing a monolithic integration strategy in InP or GaAs. Since the expensive

substrate is used to form large numbers of devices without having to worry about in-

terconnection, the expensive compound semiconductor substrates can be jam packed

with devices, enabling the cost effective use of material.

Assembly can be performed using a micro-scale pick and place technique when

the number of devices to be integrated is small or a fluidic approach similar to those

described earlier when the number of devices to be integrated is large.

The complexities in our process will be with regard to the individual processes

required to manufacture the highly integrable devices. These must be considered on

a device by device basis.
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Figure 2-9: Schematic of our hybrid integration strategy whereby devices are opti-
mally processed on their own substrates, tested, and removed from these substrates
and assembled on a target substrate.
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Chapter 3

Edge-Emitting Lasers for

Integration with Low Loss

Dielectric Waveguides

In the previous chapter, the many problems associated with a monolithic optoelec-

tronic integration strategy were outlined, thus motivating the use of a hybrid inte-

gration approach. The focus of this thesis is to devise a strategy for creating in-plane

active optical devices, such as edge-emitting lasers or semiconductor optical ampli-

fiers, that can be integrated with passive optical components on a single substrate.

Specifically, this thesis focusses on the fabrication of edge-emitting lasers that can be

integrated with silicon based dielectric waveguides. To begin the discussion on this

topic, the building blocks of an integrated optoelectronic system; namely, the inte-

gration platform upon which devices are integrated, the passive dielectric waveguides

which interconnect active optical devices, and the focus of this thesis: the highly

integrable edge-emitting lasers will be discussed.



3.1 Silicon, a Platform for Hybrid Optoelectronic

Integration

A significant decision faced when developing an integration framework is what to

use as the carrier substrate. Several substrate materials, such as silicon, gallium

arsenide, indium phosphide, sapphire, and germanium, have been suggested or used

as platforms for integrated optoelectronic systems. A number of concerns go into

deciding which of these substrate materials will make the best integration platform

for our purposes here. First, at a minimum, the platform must be amenable to

fabricating high quality, low loss waveguides which could ultimately interconnect our

active optical devices. Typical materials used to form low-loss waveguides, their

typical propagation losses at 1550 nm, and the substrates on which they are easily

fabricated are shown in Table 3-1.

Waveguide Material SiO 2  Si SiOxNY Polymers GaAs InP

Propagation Loss (dB/cm) 0.1 0.1 0.1 0.1 0.5 0.2

Substrate Silicon Silicon Silicon Any GaAs InP

Table 3-1 Typical propagation losses at 1550 nm for dielectric waveguides made of

SiO 2, Si, SiOxN,, GaAs, and InP. [30]

As shown in Table 3-1, waveguides made from these different materials have very

similar propagation losses. Thus, it should be no surprise that these materials are all

used to some degree in optical interconnecting applications in the photonics industry

today.

Since the devices being integrated (i.e., lasers or semiconductor optical amplifiers

(SOAs)) can generate a lot of heat during operation, the integration platform should

be a material which can effectively conduct heat away from the device. Thermal

conductivity is the property which quantifies how well a material can disperse heat

and is used here as an evaluation metric.

Before evaluating which substrate would be best at dispersing heat, let us first

discuss why the active optical devices generate this heat in the first place and how



this heating negatively impacts device performance. There are a number of causes of

this device heating. For example, active optical devices require a significant amount

of current to operate (i.e., current densities in the hundreds of Amperes per cm 2 are

typical). With this significant amount of current passing through even just a small

amount of series resistance, a great deal of power can be dissipated, which can result in

significant Joule heating of the devices. In addition, there is significant device heating

due to non-radiative electron-hole recombination that can take place in the laser active

region. Photon absorption in the semiconductor results in even further heating of the

devices. If the materials surrounding the laser are poor thermal conductors, then this

heat cannot be readily removed and the device temperature rises.

Heating has many deleterious effects on the performance of semiconductor lasers.

Specifically, the laser threshold current, Ith, increases exponentially with increasing

temperature. This temperature dependence is often modelled by the relation

Ith = Ithoe r /T o (3.1)

where To is a parameter referred to as the characteristic temperature [22]. Essen-

tially, the lower the characteristic temperature of a device, the much more sensitive

the device is to temperature excursions. The laser slope efficiency, rd, which is related

to the output laser power (mW) per unit of input current (mA)' , decreases as the

temperature is increased. For most InGaAsP quantum well lasers, characteristic tem-

peratures are typically around 50 to 70 K, whereas for quantum well GaAs/AlGaAs

lasers, To values usually fall in the 150 to 180 K range[22].

The characteristic temperature, T 1, used to evaluate how sensitive qrd is to tem-

perature. In equation form,

rid = d,Oe - T / T 1  (3.2)

The threshold current increases and the slope efficiency degradation as a function

of increasing temperature is the result of several phenomena including increased car-

1This parameter is calculated from this optical output power-current relationship when the device
is biased above threshold.



rier leakage over heterojunction barriers and increased non-radiative recombination

(i.e, defect recombination, interface recombination, and Auger recombination).

An additional negative effect that temperature has on a semiconductor laser is

that the emitted lasing wavelength shifts to longer wavelengths as the temperature

increases. The shifting of the emission wavelength can be qualitatively explained by

semiconductor energy bandgap narrowing that occurs as the temperature is increased.

The bandgap energy's dependence on temperature is often modeled by the Varshni

equation

aT 2

E,(T) = Eg(O) - ' (3.3)O+T

where E,(0) is the bandgap energy at T = 0 K, a is an empirical constant, and 0 is

a constant associated with the Debye temperature [80]. Typical values for a, /, and

E,(0) for a few semiconductors are given in Table 3-2.

Waveguide Material Si GaAs InP

a (10- 4 eV/K) 7.021 8.871 4.906

P (K) 1108 572 327

E,(0) (eV) 1.15 1.52 1.42

Table 3-2 Typical a, 0, and Eg(0) values for Si, GaAs, and InP. [381

Ultimately, if there is not an efficient way to remove heat, the device will cease

to operate. Specifically, as the temperature rises, the carriers will be given thermal

energy which will result in smearing out of the Fermi-Dirac distribution. This causes

a reduction in the gain. As the temperature rises more and more, the distribution

smears out more and at a certain point the losses exceed the gain and the device

ceases to lase.

Another thermal-related failure mechanism is the result of laser facet heating.

Specifically, the mirrors at the end of an in-plane laser are not perfectly reflecting,

and therefore, some light absorption occurs through the surface states at these mir-

ror locations. This absorbed light results in heating (i.e, through phonon electron



interactions) of the regions near the mirrors and the semiconductor energy bandgap

narrows in these mirror regions. Over time, this phenomena can result in thermal

runaway; whereby, a positive feedback process occurs that catastrophically damages

(i.e., melts) the mirror facets 2

Therefore, keeping the active device at a cool temperature is essential for main-

taining device functionality. Cooling is an even more important issue when working

with long-wavelength (i.e, 1300, 1550 nm) based lasers since these lasers typically

have very low characteristic temperatures, as is shown in Table 3-2. 3

Table 3-2 Typical characteristic temperature ranges of semiconductor lasers [44]

With an understanding of the potential sources of heat and the degrading effects

that this heat can have on the active optical devices, let us now evaluate poten-

tial optoelectronic (OE) integration platform materials in terms of their effectiveness

at dispersing heat. Table 3-3 shows the thermal conductivities of several substrate

materials used in the optoelectronics industry. 4

Parameter Si Ge Sapphire GaAs InP Si02

thermal conductivity (W/(cm°C) 1.3 0.58 0.42 0.55 0.68 0.014

Table 3-3 Thermal conductivity of Si, Ge, Sapphire, GaAs, and InP. [41]

As shown in Table 3-3, silicon soundly outperforms the other substrate materials in

terms of thermal conductivity.
2This failure mechanism is typically seen in very high power lasers and is referred to as Catas-

trophic Optical Damage (COD).
3It is possible to install a thermoelectric cooler on the platform that will ensure a cool device;

however, installing this device reduces the cost-effectiveness that makes integration so attractive.
4A higher thermal conductivity value is desired for our integration platform because it allows for

more heat to be dispersed away from the lasing device.

Emission Wavelength (nm) To

900 120-200 K

1300 60-100 K

1550 40-70 K



A third metric used to evaluate a proposed OE platform material is the cost effec-

tiveness of the material. An integration strategy offering the same performance will

never be adopted unless it offers a considerable costs savings. Today many devices

are individually packaged and then interconnected by fibers and bulk lenses because

integration is not yet a cost effective alternative. A significant cost in the manufac-

ture of optoelectronic devices is the substrate cost. In Section 2.2, we emphasized

that silicon substrates are an order of magnitude less expensive than InP and GaAs

substrates. 5

With the strong properties of silicon with regards to the formation of low-loss

waveguides, thermal conductivity, and cost, silicon is a logical choice as the platform

material for our hybrid integrated system. The basic parameters of our proposed

edge-emitting laser / Si-based dielectric waveguide system will now be presented.

3.2 Introduction to our Proposed Edge-Emitting

Laser - Dielectric Waveguide System

Our hybrid approach to large scale optoelectronic integration involves fabricating

device building blocks, such as laser diodes or optical amplifiers, using their optimal

material systems and processes, and assembling these blocks in dielectric recesses on

a silicon platform. Optical signals can then be routed between device blocks using low

loss dielectric waveguides that can be optimally fabricated on the silicon platform.

Figure 3-1 schematically shows the integration of an in-plane laser with a dielectric

waveguide with the typical dimensions labeled.

Aside from the fabrication challenges in manufacturing the dielectric waveguide

and the in-plane laser device, the major challenge in achieving this integration is the

efficient coupling of light between the in-plane laser and the dielectric waveguide.

5Another aspect of cost is the expense of fabricating the devices. With over forty years of silicon
fabrication development in the microelectronics industry, silicon based device processing is the most
mature of the possible substrate materials and there is significant infrastructure in place in terms
of foundries. Many of the fabrication techniques developed for silicon are transferable to the other
substrate materials, but silicon does still have an edge in terms of processing capability.
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Figure 3-1: Top-down and cross-sectional schematics showing the integration of a
edge-emitting laser with a dielectric waveguide on silicon.

The coupling scheme used in our approach is standard end-fire coupling. End-fire

coupling involves the direct alignment of the laser and waveguide core regions in both

the horizontal and vertical planes with little or no gap spacing between the laser and

waveguide facets. How well the device can be aligned to the waveguide determines

how lossy the coupling will be. Thus, the dimensions of the dielectric waveguide, the

in-plane laser, and the dielectric recess formed on the silicon platform must all be

precisely controlled. In Figure 3-1, there are three alignment tolerances which are

labeled. Ax corresponds to the gap spacing between the in-plane laser and dielectric

waveguide facets. Ay denotes the spacing between the non-facet plane of the in-plane

laser and the dielectric recess wall. Az represents the vertical offset between the in-

plane laser and the dielectric waveguide core regions. Dr. Edward Barkley, did a

thorough analysis of the coupling loss as a function of these alignment tolerances and

the results are shown in Figure 3-2.

It is instructive to evaluate how difficult it is to keep the three alignment offsets to

a minimum. The dielectric waveguide layers can be deposited with precise thickness

using Plasma Enhanced Chemical Vapor Deposition (PECVD)6 . The dimensions of

6Typical wafer-to-wafer thickness variation of state of the art deposition tools is on the order of
1% [65].
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Figure 3-2: Simulation work carried out by Dr. Edward Barkley on the coupling loss
as a function of a.) vertical offset, Az , b.) lateral offset (related to Ay), and c.) gap
spacing, Ax. [15]



the dielectric recesses can be controlled by state of the art photolithography 7 and

anisotropic dry etch processes.

The vertical location of the layers comprising the semiconductor laser can be accu-

rately controlled by modern Metal Organic Chemical Vapor Deposition (MOCVD)8

or Molecular Beam Epitaxy (MBE) processes. The non-facet planes of the semi-

conductor laser can be dimensioned precisely using modern photolithography and

anisotropic dry etch processes.

Thus, it has been argued that modern photolithography and standard dry etch

processes can be used to keep Ay, the space between the recess wall and the non-facet

side of the laser, small. The vertical offset between the devices, Az, is kept small by

proper device design and standard epitaxial laser device growths and waveguide CVD

processes.

However, the complication is in accurately and consistently dimensioning the

length of the laser and thus in keeping the gap, Ax, between the laser and waveg-

uide facets small. This complication arises from the requirement that the precisely

dimensioned device must also have smooth facets with sufficiently high reflectivity.

Poor reflectivity, in addition to resulting in higher threshold currents, can ulti-

mately lead to the failure of laser diodes 9. With the requirement that the facets be

mirror smooth 10, rudimentary wet and dry etching processes are ruled out as options

for defining the laser length 11. The ideal laser facet is one that has been cleaved

along the natural cleavage plane of the semiconductor crystal. Unfortunately, typical

processes used to cleave semiconductors can position the location of the cleave to a

precision of no better than +/- 5 pm [64].

This lack of precision in defining the laser length coupled with the fact that the

7Resolutions down to smaller than 0.1 pm are achievable.
8typical thickness variation of state of the art deposition tools is better than 2.5% [23]
9Recall, the earlier description of the thermal runaway effect known as Catastrophic Optical

Damage (COD).
"0 Laser facets are often coated with a thin film that further enhances the reflectivity of the facet.
"There has been significant development over the last several years developing dry etch processes

that have achieved highly reflective facets; however, these processes are not the industry standard.
Furthermore, these novel processes and the requisite equipment to execute these processes were not
at the disposal of the author of this thesis. The recent etched facet development will be discussed
later in this chapter



dielectric recess, in which the laser will be assembled, has specific pre-defined dimen-

sions, makes it very difficult to achieve small gap spacings between the laser and

waveguide facets. Since the coupling loss increases significantly as this gap spacing

increases, this integration strategy is unfeasible using industry standardized manual

cleaving techniques. Therefore, the formation of highly reflective, precisely dimen-

sioned edge-emitting laser diodes is a major obstacle in the implementation of this

proposed end-fire coupled integration scheme. An approach to obtain edge-emitting

lasers with precisely dimensioned lengths and smooth cleaved facets is a major focus

of this thesis and will be introduced in this chapter.

3.2.1 Competing Approach in the Literature

Another approach in the pursuit of active optical device integration on silicon utilizes

evanescent coupling between the III-V semiconductor laser and silicon-based waveg-

uide. Evanescent coupling occurs by placing two waveguides in proximity with one

another (Figure 3-3). By optimizing the spacing, dx, between and the offset, dy, along

the lengths of the guides, it is possible to couple a signal from one waveguide to the

other. To get the best evanescent coupling results, the waveguides are designed to

have as similar an effective refractive index as possible.

,lay

Figure 3-3: Arrangement of two evanescently coupled waveguides, labelled 1 and 2.

Using this evanescent coupling scheme, researchers at the University of California



at Santa-Barbara (UCSB) and Intel have achieved hybrid integration of a InP-based

laser with an silicon-on-insulator waveguide (SOI) on a silicon substrate. To ac-

complish this, they utilized low temperature oxygen plasma assisted bonding of the

as-grown laser substrate to a patterned SOI waveguide wafer. Once bonded, the InP

laser substrate is wet etched and the laser structure is etch defined.
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Figure 3-4: a.) Schematic and b.) SEM showing the Intel-UCSB approach of inte-
grating an edge-emitting laser with a dielectric waveguide on silicon[33].

As seen in Figure 3-4, the laser is bonded directly above the SOI waveguide struc-

ture. With both the laser cavity and the SOI waveguide in close proximity, the

evanescent field associated with the laser light output gives rise to propagating wave

modes which couple to the silicon-based waveguide. One limit of the device is that

the length of the laser cavity needs to be fairly long to compensate for the fact that

the optical mode only partially overlaps the quantum well gain region [19]. The char-

acteristics of this laser will be compared with the laser described in this thesis in the

concluding chapter of this thesis.

Returning to the discussion of our scheme for active optical device integration



on a silicon platform, the dielectric waveguide and edge-emitting laser components

of our integration strategy will now be briefly introduced. The analysis of dielectric

waveguides was solely the work of Dr. Edward Barkley.

3.2.2 Dielectric Waveguides Basic Structure

Dielectric waveguides, consisting of a 0.7 pm thick silicon oxynitride core layer, a 3

pm thick silicon dioxide lower cladding layer, and a 3 pm thick silicon dioxide upper

cladding layer, were formed on a silicon substrate. Recesses, having sufficient depth

and area to hold a integrable edge-emitting laser block, were etched through the

dielectric layers. A simple schematic showing the basic structure is shown in Figure

3-5.

Well Etch:
~ 7 pm deep,
~ 300 pm long x 150 pm wide

Figure 3-5: Schematic of the dielectric waveguide with SiON, core and SiO2 cladding
as well as the dielectric recess. [151

Further details on the design and process development relating to these dielectric

waveguides and recess formation on silicon can be found in the Ph.D. thesis of Edward

Barkley [15].



3.2.3 Edge-Emitting Laser Basic Structure and Operation

An edge-emitting laser typically consists of a 500 or more micron long laser cavity

that is bounded by two mirrors (i.e., reflective facets). In terms of the cross-sectional

structure of this Fabry-Perot laser cavity, there is a thin (i.e., less than one pm)

and narrow (i.e., a few pm) width active region sandwiched in between two lower

refractive index cladding layers (Figure 3-6)

Several
hundred pm

< 10 um

< 1 umrn

Ohmic contact

P-type Cladding

I Core I

N-type Cladding

Ohmic contact

7

Figure 3-6: Simple schematic of an edge-emitting laser with five essential layers.

The ohmic contact layers allow electrical contact to be made to the device. The

p-type and n-type cladding regions, are designed to inject a large density of electrical

carriers (i.e., electrons and holes) into the active core region when the device is forward

biased. The cladding layers have wider energy bandgaps and smaller refractive indices

than the core region and thus help concentrate the optical wave in the active core

region. The active core region is the region where electron and hole recombination

occurs resulting in stimulated optical emission (i.e., lasing) 12

A specific type of edge-emitting laser used in this research effort is shown in Figure

3-7 and is known as a semiconductor ridge laser. In this realization, the cladding is

made from doped n-type and p-type InP. The active core region consists of a multiple

12The active region is typically undoped to minimize losses from free-carrier absorption.

I
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quantum well structure made from InGaAsP quaternary compounds. 13

Ir

:lad
aAsP MQW
)re
:lad

InP

< 150 p.m

Figure 3-7: Schematic showing the basic structure of a edge-emitting laser.

The ridge laser is operated by adjusting the bias applied between the top and

bottom contacts (i.e., n-type and p-type contact layers). To turn the laser on, a

forward bias voltage is applied and results in the injection of carriers (i.e., electrons

and holes) into the active region. Initially, when the bias is small (i.e., low tens of

millivolts of forward bias), small numbers of carriers are injected resulting in weak

carrier inversion. In this case, low levels of light, referred to as spontaneous emission,

is output from the device. If the bias is increased, more carriers are injected and it

is possible to achieve strong carrier inversion. A nontrivial amount of the generated

light is not emitted from an end facet, but instead travels back and forth between the

two end facets. This light has a wavelength determined by the length of the resonant

cavity. In this case, the light travelling back and forth in the resonator stimulates
13 The multiple quantum well (MQW) structure offers many benefits, most notably a lower thresh-

old current than offered by conventional double heterostructure lasers. A detailed description of
MQW laser structures and their benefits can be found in the literature [21, 22, 81].
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carriers to recombine which results in light having the same wavelength and phase as

the stimulating light to be emitted. This marks the onset of lasing and is visible as

Fabry-Perot peaks in the output emission spectrum.

Reasonably low threshold currents are characteristic of ridge lasers due to the

presence of lateral current confinement structures. Lateral current confinement is

achieved by etching through the cladding region to a layer just above the active

region. While this does a good job of concentrating the current above the active

region, at and below the active region the current can spread laterally which can

ultimately result in electron-hole recombination that does not contribute to lasing

but does add to the heating of the device. Nonetheless, this approach was used in

this work and results in reasonable, though not ultra-low, threshold currents.

There are a number of designs which could result in better current confinement.

One approach is to ion implant the regions on both sides of the semiconductor ridge

thus transforming them into either p-type or semi-insulating regions. This process

can induce damage and increase non-radiative recombination at the stripe edges, but

if controlled would result in lower threshold currents. Another approach to achieve

better current confinement is to etch down completely through the active and lower

cladding regions; however, this would negatively impact the laser by contributing to

carrier scattering loss and nonradiative surface recombination.

Photon confinement is achieved by the formation of the ridge. The presence of

the ridge lowers the effective refractive index of the regions beside the stripe and thus

helps concentrate the optical mode in the active region under the ridge. As discussed

earlier, vertical photon confinement is achieved by utilizing small energy bandgap

(high refractive index) material for the active region and larger energy bandgap (lower

refractive index) materials for the cladding regions.

As mentioned earlier, the key requirements of highly integrable edge-emitting

lasers given priority in the present work were smooth facets with high facet reflectivity

and precisely defined lengths. The various approaches that could be used to create

edge-emitting lasers with these characteristics will now be presented.



3.3 Approaches to Create Accurately Dimensioned

Lasers With Highly Reflective Optical Facets

3.3.1 Cleaved Facet Lasers

The ideal laser facet is formed by cleaving the semiconductor along a natural cleavage

plane. When this technique is done properly, un-coated facet reflectivities around 30%

are routinely achieved for semiconductor lasers. However, attempts to cut or break

the wafer in directions even just a few degrees off axis of the cleavage plane, can result

in poor facets [40].

Since the early 1970's, there has been automated commercial cleaving equipment

produced by manufacturers such as Dynatex International and Loomis Industries

[89]. This equipment characteristically treats cleaving as a manual two step process;

whereby, the wafer is first diamond scribed along the cleavage plane and then a suffi-

cient pressure is applied to propagate this scribe line cut through the semiconductor

substrate. The first step in the process, the scribe procedure, results in a small cut

made in the semiconductor that is typically from 3 to 5 pm wide [42, 39]. Figure 3-8

pictorially describes two techniques, referred to as the roller break method and the 3-

point bending method, utilized by Loomis Industries in their commercial automated

cleaving tools to propagate the break along the scribe line. Both of these techniques

work by the application of tensile strain to the scribed wafer.

The precision of these automated cleaving processes is reported in the literature

to be no better than +/- 5 pm [64]. Looking at Figure 3-2c, this level of impre-

cision results in coupling losses in upwards of 6 dB/facet which makes our end-fire

integration scheme impractical.

3.3.2 Etched Facet Lasers

It is quickly recognized that if one could etch low loss highly reflective facets, then

the issue of creating well dimensioned lasers is fairly trivial. This would have im-

portant consequences for the present integration strategy as well as the whole laser
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Figure 3-8: a.) Schematic showing the two general techniques, roller break and 3-
point bending, used in the Loomis Industries automated cleaving process LSD-100
tool. b.) The LSD-100 tool. [39]

manufacturing industry in general. Unfortunately, over twenty five years of research

has been done on laser facet etching, but today manual or mechanical cleaving is still

the preferred manner of forming end facets[56]. The issue with etched facets is that

the etching process seems to invariably impart roughness on the facets. This rough-

ness arises either by the etching process in general or by roughness in the material

used to mask the etch. Francis et al. studied the effect of etch roughness on laser

performance[26].

A few companies have begun to implement etched facet technology in their pro-

duction lines. BinOptics claims to have developed a chemically assisted ion-beam

etching process that can be used to obtain mirror smooth facets in InP, GaAs, and

GaN [16]. Similarly Xponent Photonics, Inc., reports that it etches the facets on its

commercial Fabry-Perot and Distributed Feedback (DFB) lasers [7].

3.3.3 Micro-Cleaved Facet Lasers

Over the past two decades, several researchers have looked at controlled micro-

cleaving of active devices. Most of these approaches involve etching deep grooves

on the wafer backside to weaken the crystal so that application of force at these

3
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locations results in cleaving.

For instance, Bowers et al. used photoelectrochemical means to etch 80 ym deep,

20 pm narrow grooves on the backside of the InP substrate (Figure 3-9a). When the

etched substrate was flexed, 65% of the devices cleaved in the deep groove areas and

short lasers having cavity lengths of 38 +/- 4.2 pm were achieved [50].

Wada et al. utilized a cantilever structure (Figure 3-9b) to achieve micro-cleaved

facets for AlGaAs/GaAs ridge lasers[71]. The general fabrication process associated

with this micro-cleaving technique is shown in Figure 3-9b. Specifically, selective

etching is used to obtain a cantilever device structure. When a force is applied

to the two cantilever ends, micro-cleaving results. Other research efforts utilized

a combination of deep groove etching, manual scribing and bending of the wafer

to cause cleaving, while others focussed their work on cleaving epitaxially lifted-off

GaAs/AlGaAs lasers by attaching the released epi-layer to a metal sheet and manual

flexing the sheet [37]. Patterning of the deep groove had a precision of approximately

1 pm, but no mention was made of the precision of the resulting micro-cleave.

While these techniques achieved cleaved facets and fairly precise dimensional con-

trol, all of these techniques unfortunately relied on some manual component such as

flexing of the substrate or scribing. Thus, they do not lend themselves to inexpen-

sive, high-volume production. Even more importantly, none of these techniques used

to produce ultrathin resulted in the continuous-wave laser operation on non-native

substrates. Only pulsed laser operation was achieved.

3.4 Our Novel Micro-Cleaving Approach

Given the desire for an integration platform utilizing end-fire coupling between a re-

cess mounted edge-emitting laser and a silicon-based dielectric waveguide, the need

for an edge-emitting laser with both smooth facets and precisely defined dimensions

has been motivated. It has been argued that the current techniques in industry used

to obtain mirror smooth cleaved facets do not offer the precise control of laser di-
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mensions that are required to keep the gap spacing between the laser and waveguide

facets small and thus the coupling loss low. While etched-facet technologies are be-

coming commercialized more and more today, it is understood that an etched facet

is not an ideal facet. Etched facets often have characteristic roughness which reduces

facet reflectivity and compromises the device quality. While many groups have in-

vestigated micro-cleaving techniques, these techniques, by and large, rely on some

manual component such as flexing of the substrate or diamond scribing. Moreover,

these techniques have not resulted in CW lasing on non-native substrates. It would

be ideal to develop a process devoid of any manual component while still achieving

optical quality cleaved facets and CW lasing on non-native substrates.

Identifying the need for a fabrication process that results in both cleaved mirror

smooth facets and precisely dimensioned laser cavity lengths, the approach taken

was to develop a novel micro-cleaving process. A brief overview of the general micro-

cleaving technique, which in theory could be applied to a multitude of in-plane optical

devices requiring cleaved facets and precise dimensions, will now be given.

As is the case for the fabrication of all InP and GaAs semiconductor lasers, our pro-

cess starts with a (100)-oriented compound semiconductor wafer upon which has been

grown an in-plane laser or semiconductor optical amplifier epitaxial layer structure.

This wafer crystal orientation is chosen since the cleavage planes of these materials

lie along the (011) and (0il) planes, or in other words, the orthogonal directions on

a (100)-oriented wafer as is shown schematically in Figure 3-10.

Starting with this orientation, full front-side device processing is carried out. This

front-side processing could involve, but is not limited to, top-side ohmic contact for-

mation, current confinement implementation, photon confinement realization (i.e.,

such as the formation of a ridge in a semiconductor ridge laser), and device pla-

narization. It should be emphasized that this micro-cleaving process aims to put no

restrictions on the device front-side processing. After this device front-side processing

is completed, the fabrication steps specific to the micro-cleaving process are under-

taken. First, a pattern consisting of a large array of rectangular bars are aligned over

the devices so that the short and long faces of the rectangular bars are aligned with
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Figure 3-10: Schematic showing a (100) InP wafer and the associated cleavage planes

the two cleavage planes as is shown in Figure 3-11a.

Upon closer examination, these rectangular bars have notches in them which di-

vide each long rectangular bar into three rectangular sub-bars in between two square

sub-bars as is shown in Figure 3-11b. The rectangular sub-bars, labeled Li, L2, and

L3, correspond to the desired active optical devices. The square sub-bars, labeled

D1 and D2, denote the dummy devices. 14 The distinguishing feature between the

dummy devices and the desired active optical devices, is that after the micro-cleaving

process is completed, the desired devices will have two micro-cleaved facets, while the

dummy devices will have one micro-cleaved facet and one etched facet. An SEM of

an array of bars patterned into a InP-based device wafer is shown in Figure 3-12.

After this micro-cleave enabling bar pattern is etched into the device wafer, one

of a multitude of techniques, such as selective substrate removal or epitaxial layer

release, is utilized to etch these bars free from the substrate.

Once the bars are released from their native substrate, the task is to induce

cleaving. To understand how this bar pattern will enable the cleaving, a few key

14To conserve real-estate on the expensive compound semiconductor wafer, the size of the dummy
devices are kept small.
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Figure 3-12: Array of bars formed on the front-side of a InP substrate upon which a
InP/InGaAsP epitaxial structure has been grown.



concepts will first be described.

First, it is a well-known fact that crystalline materials will most easily break

(i.e., cleave) along certain dimensions which are referred to as cleavage planes. The

location of cleavage planes in semiconductors can be due to favorable atomic densities

along certain planes (i.e., Silicon (111)) or electrical surface neutrality conditions (i.e.,

GaAs, InP). For compound semiconductors, like InP, cleavage planes lie along the

non-polar crystal planes [14].

(100) InP and GaAs semiconductor wafers will most easily break (i.e., cleave)

in two dimensions, one that is parallel to the plane of the wafer flat, and the other

dimension which is perpendicular to the wafer flat. These cleavage plane locations

are specifically why the bar pattern was aligned with the wafer flat.

With the bar pattern aligned with the cleavage plane, the notches are used to

reduce the length. over which the cleave must take place to achieve a cleaved facet.

This reduction in the required cleavage length increases the likelihood that the cleave

will occur in this region and that a good cleave, producing a smooth facet, will result.

The precision in terms of the location where the actual cleave takes place should

be enhanced by making this notch as narrow and as long as possible. In other words,

by making 12 and w narrow, as is shown in Figure 3-13.
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Figure 3-13: Schematic of the micro-cleave enabling bar pattern.
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There are practical limits to how narrow the notch width and how long the notch,

11, can be. Theoretically, 12 must be wider than the semiconductor ridge. This ridge

is most typically narrower than 10 p m wide and for single mode operation, could be

considerable narrower than this. The minimum size of the notch width, w, is limited

by the device topography that is present when the bar patterning process step is

reached. This topography will limit the achievable resolution of the photolithography

process used to pattern the bar pattern. The minimum notch width is further limited

by the process technique used to etch the bar pattern into the semiconductor. If wet

etch techniques are used, the minimum width would be on the order of the thickness of

the device structure. Dry etching could enable narrower notch widths, but phenomena

such as aspect ratio dependent etching need to be addressed. Aspect ratio dependent

etching (ARDE) is the term used to describe the phenomena where the etch rate of

narrow openings proceeds at a slower rate than wide openings. ARDE encountered

while etching a micro-cleave bar is shown in Figure 3-14 where the narrow notch

region etched slower (and to a shallower depth) than the region outside the notch.

More details on these dry etch phenomena are found in Ref.[46].

Figure 3-14: Aspect Ratio Dependent Etching in notch region

An intriguing way to increase the cleave precision even when w and 12 reach

their practical limits, is by incorporating other non-crystalline material as is shown

in Figure 4-15. This Figure shows a situation where metal is deposited along a

I



semiconductor ridge except for a narrow region in the notch area.
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Figure 3-15: Schematic of the micro-cleave enabling bar pattern with detail of the

semiconductor ridge and ridge metal ohmic contact.

In this example, a metal can be patterned to a resolution of w2 which is nar-

rower than the notch width, w. An opportunity like this could arise, for instance,

if during the metal patterning step, the wafer is much more planar than during the

bar patterning step. From our experience, micro-cleaving within the notch region is

significantly enhanced by the presence of non-crystalline materials in regions outside

the notch region.

The process technology used to manufacture the micro-cleaved ridge lasers will

now be discussed in Chapter 4.

semiconductor ridge except for a narrow region in the notch area.
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Chapter 4

Edge-Emitting Laser Process

Development

Semiconductor fabrication processes were developed for both a conventionally cleaved

ridge laser and a highly integrable micro-cleaved ridge laser. Many of the same

fabrication steps and techniques are used to manufacture both of these devices. In

this chapter, the process used to fabricate the conventionally cleaved ridge laser will

first be detailed. Then, the more innovative process for manufacturing the micro-

cleaved ridge laser will be explained. In the course of describing these fabrication

processes, the similarities and differences between the two processes will be clarified.

Full process flows for both the conventionally cleaved ridge laser and the micro-

cleaved ridge laser are included for the reader as a reference in Appendices A and B

respectively.

4.1 Starting Semiconductor Material

For both the conventionally cleaved ridge laser and the micro-cleaved ridge laser,

the process began with the procurement of a 1550 nm Fabry-Perot laser epitaxial InP

wafer from Landmark Optoelectronics. The layer structure of the purchased epitaxial

wafer is shown in Figure 4-1.

The substrate is a 350 pm thick n-type (i.e., highly doped with Sulfur to the level



200 nm InGaAs (p-type)

7 nm InGaAsP

Figure 4-1: Cross-sectional schematic of the 1550 nm laser structure grown on InP.

ND = 2-8 x 1018cm-3) InP wafer. The epitaxial n-type InGaAs layer is included

specifically for the micro-cleaved ridge laser process 1. If only conventionally cleaved

ridge lasers were being fabricated, this layer would not be included. For the micro-

cleaved ridge laser, the n-type InGaAs layer serves a dual purpose. First, since it has

a narrower energy bandgap than InP and is highly doped (i.e., ND = 2 x 1018cm-3),

it is useful for forming a low resistance ohmic contact to the bottom of the device.

Second, this layer acts as a reliable etch stop 2

The 2800 nm thick n-type InP layer serves multiple purposes as well. First, since

it has a lower refractive index than the core region, it forms the lower cladding of the

laser and guides the optical wave produced in the laser active region. Second, with its

high n-type doping (i.e., ND = 5 x 1017cm-3), this InP layer enables a large density

of electrons to be injected into the active region when the device is forward biased.

This large injected carrier density is vital to the laser's operation. Third, this layer

isolates the optical wave in the core region from the bottom n-type InGaAs contact

layer, which has a characteristic high refractive index.

1InGaAs is used as shorthand for Ino. 53Gao.47As, the material which is lattice matched to InP.
2During subsequent front-side and back-side etch processes, it is useful to controllably stop the

etch at a specific point. This layer will be used for this purpose.

1500 nm InP (p-type)
200 nm InP (p-type)
270 nm InGaAsP Multiple QW Core (undoped)

2800 nm InP (n-type)

500 nm InGaAs (n-type)

InP Substrate (n-type)



The InGaAsP multiple quantum well core consists of four 6 nm wide InGaAsP (A•

= 1.71 Am) quantum wells separated by three 9 nm wide InGaAsP (Ag = 1.25 sm)

barriers and bounded by two 110 nm thick InGaAsP (Ag = 1.25 Am) layers. This

270 nm thick structure forms the active (i.e., gain) region of the laser 'device and is

shown in Figure 4-2. Note that these layers are undoped to lessen the optical mode

loss from free-carrier absorption.

Figure 4-2: Cross-sectional schematic of the 270 nm thick active region of the 1550

nm laser epitaxial InP wafer.

The 200 nm thick p-type InP layer, with its low refractive index compared to the

active core region, serves as part of the upper cladding layer. Moreover, this layer

is a buffer layer between the active region and the ridge structure that is processed

above this layer. If this buffer layer was left out of the device structure and instead

the semiconductor ridge extended all the way down to where it just met the active

layer, increased non-radiative recombination losses would likely result and the ridge

would have to be considerably narrower to ensure single lateral mode operation.

The 7 nm thin InGaAsP layer serves as an etch stop that is useful for forming the

ridge structure. In this case, hydrochloric acid has proven to be an extremely useful

etchant in this process because it selectively etches InP at a high rate while it etches

Mupa WCre(nopd



InGaAsP a negligible amount.

The 1500 nm thick p-type InP layer serves many of the same purposes as the 2800

nm thick n-type InP layer. Specifically, this layer forms the upper waveguide cladding

that guides the laser generated optical wave in the core region. Also, this layer with

its large p-type doping (i.e., NA = 5 x 1017cm - 3 ) enables a large density of holes to

be injected into the active region when the device is forward biased. This layer also

provides optical isolation from the high refractive index p-type InGaAs contact layer.

Finally, the 200 nm thick highly doped (i.e., NA = 2 x 101'cm - 3) p-type InGaAs

layer, similar to the bottom n-type InGaAs layer, aids the formation of an ohmic

contact to the device.

4.2 Conventionally Cleaved Ridge Laser Process

Development

As a test vehicle for developing the process for the highly integrable edge-emitting

lasers, work was undertaken to produce conventionally cleaved ridge lasers starting

with the structure shown in Figure 4-1. The front-side and back-side device processes

will now be discussed.

4.2.1 Front-Side Device Processing

A schematic cross-sectional view of the basics of the conventionally cleaved edge-

emitting laser process is shown in Figure 4-3.

Top Ohmic Contact Formation

The process begins with the deposition and lift-off of a Ti/Pt/Au ohmic metal stack

on the top surface of the epitaxial wafer. To accomplish this, image reversal pho-

tolithography 3 is performed. As is shown in Figure 4-4, care is taken to line up the

3Using an image reversal process is optimal in this case because it results in a sloped photoresist
profile, that allows the metal to be easily lifted off in the areas where it is in contact with photoresist.
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Figure 4-3: Conventionally cleaved ridge laser front-side process flow schematic: a.)
Top ohmic contact formation through b.) Semiconductor ridge formation.
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Figure 4-3: Conventionally cleaved ridge laser front-side process flow schematic con-
tinued: c.) Dielectric layer deposition and planarization through d.) Top large area
contact formation.
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ridge pattern with the cleavage plane of the (100) InP substrate. This alignment is

critical for the cleaving process ultimately resulting in mirror smooth cleaved facets.

[o0T]

I [011]

Figure 4-4: Schematic showing the alignment of the metal ohmic contact ridge pattern
to the cleavage planes of the InP wafer.

Once photolithography is complete, the electron beam (e-beam) deposition of

the Ti(300 A)/Pt(200 A)/Au(2500 A) material is performed 4. Each of the metals

deposited in this stack plays an important role in the ohmic contact formation. The

titanium layer provides strong adhesion of the metal stack to the semiconductor.

The platinum layer acts a barrier to prevent gold diffusion into the semiconductor

substrate 5 as well as indium out-diffusion from the substrate [43]. The top gold

layer is chosen for its low contact resistivity and high chemical inertness, which make

it quite useful as a pad for probing the device [77, 8]. It should be noted that the

electron beam currents and time duration of the application of these currents are

controlled to ensure that the deposition process does not heat up the InP substrate
4This ohmic contact metallization is commonly used in the industry to obtain ohmic contacts on

p-type InP and p-type InGaAs. The details of this process and other individual processes are found
in Appendix C

5At elevated temperatures, gold can diffuse into the semiconductor which results in increased
contact resistance



too much 6. If the substrate heats up too much, the photoresist can be rendered

irremovable even by chemical (i.e., acetone or Microstrip remover) or ashing means.

Following this metal deposition, the sample is placed in a acetone (or Microstrip

2001, a proprietary solvent) bath and with the aid of slight ultrasonic agitation, the

metal film is lifted off the substrate surface, remaining only where the film directly

touched the semiconductor. After the lift-off process is complete and all of the pho-

toresist has been removed from the sample, it is optimal to rapid thermal anneal

(RTA) the sample for 385 'C for 30 seconds in a forming gas (95% N2 , 5% H2) am-

bient to lower the contact resistance 7. Another benefit of performing the annealing

step is that it improves the adhesion of the metal contact to the semiconductor ridge.

In some early trials of the conventionally cleaved laser process development, the sam-

ple did not undergo this annealing step and the ohmic metal peeled off following the

semiconductor ridge wet etch (Figure 4-5).

Semiconductor Ridge Formation

Using the ohmic metal ridge contact as a self-aligned etch mask, the semiconductor

is wet etched. First, the top p-type 200 nm thick InGaAs layer is etched in a room

temperature solution of 20:1:1 deionized water (DI H20): hydrogen peroxide (H2 0 2 ,

30%) : sulfuric acid (H2 SO 4, 96%). This etchant selectively etches InGaAs at a rate

of approximately 500 nm/minute and stops on the InP layer.

Then, concentrated hydrochloric acid (HCl, 37%) is used to selectively etch the

1.5 pm thick InP layer 8. Due to the strong selectivity of this etchant for InP over

InGaAs and InGaAsP, this etch stops on the 7 nm InGaAsP etch-stop layer.

Concentrated hydrochloric acid is just one of several wet etch chemistries that offer

good selectivity between InP and its InGaAs ternaries and InGaAsP quaternaries.

Extensive characterization of these etch characteristics can be found in the literature

[9].
'Significant heating of the substrate often occurs when depositing such high melting temperature

materials like platinum (TmeIt = 1769 -C.)
7Annealing of this ohmic contact leads to alloying at the Ti-InGaAs interface [77].
8HCl etches InP according to the reaction InP(s) + HC1(aq) -- + InCl3 (aq) + PH3 (g)



Figure 4-5: Scanning electron micrograph of an unannealed ohmic contact metal to

semiconductor ridge after the semiconductor ridge etch.



Dielectric Layer Deposition and Device Planarization

With the semiconductor ridge formed and ohmic contacted, a large area electrical

contact needs to be made to the ohmic ridge. However, at this stage of the process

there is device topography of around 2 um around the ridge as is shown in Figure

4-6a. Therefore, the device must first be planarized. The material used to planarize

the device is Cyclotene produced by DOW Chemical. Cyclotene, a material which

is primarily composed of B-staged bisbenzocyclobutene-based (BCB) monomers, is a

strong insulator with low dielectric constant (2.5 to 2.65) and large breakdown field

(5 x 106 V/cm). The basic planarization process is shown in Figure 4-6.

a.) b.)

c.) d.)

Figure 4-6: Schematic of the dielectric layer deposition and planarization procedure:
a.) Starting sample, b.) First coat of Cyclotene and cure, c.) Second coat of Cyclotene
and cure, d.) Cyclotene etch-back.

First, a layer of cyclotene is spun on the wafer. The wafer is then cured at a

temperature of 210 'C for 40 minutes in an annealing furnace. During this curing

step, precautions are taken to prevent oxidation of the BCB film. Specifically, the



oxygen is flushed out of the furnace by sending a high flow of nitrogen into the

furnace for thirty minutes prior to ramping up the furnace temperature. This flow

of nitrogen continues as the furnace temperature is eventually raised and while the

sample is curing. Next, a second coat of cyclotene is applied and the sample is cured

at a temperature of 250 'C for 60 minutes. 9

At this stage, the sample is quite planar according to profilometer measurements,

having gone from 2 pm tall features to topography of around 50 nm. However, a thin

layer of cyclotene is now covering the top of the ohmic metal ridge where electrical

contact needs to be made. Thus, an etch-back process is used to uniformly etch-back

the cyclotene until the metal ridge contact is exposed.

The specific etch-back process developed is a reactive ion etch (RIE) process per-

formed in a Plasmatherm etch tool with a 6:1 oxygen (02): silicon hexafluoride (SF 6)

chemistry at a relatively high pressure (200 mtorr) and low radio frequency (RF)

power (150 W). Due to variations in both the cyclotene thickness as well as the cy-

clotene etch rate across a sample, a slight over-etch is used. With this over-etch,

there will be times when the ions are directly bombarding some areas of the ridge

metal ohmic contact. For this reason, low power is chosen to reduce the likelihood

of metal sputtering of the ohmic contact metal. The pressure is kept high to obtain

a reasonably high etch rate (i.e., approximately 70 nm/min) and nondirectional or

isotropic etching. Endpoint detection was performed manually. That is to say every

couple of minutes, the dry etching process was halted and the sample was removed

from the machine and visually inspected under a microscope.

Scanning electron micrographs were taken of the laser after this dielectric layer

deposition and device planarization process sequence and these images are shown in

Figure 4-7.

Top-Side Large Area Electrical Contact Formation

Once the planarization and etch-back processes are completed, a large area electrical

contact is formed on top of the ridge. Specifically, image reversal lithography is used

9Further details on this process can be found in Appendix C.



(a) Cross-sectional view of a metallized ridge laser.

(b) Top-down view of a pair of metallized ridge lasers.

Figure 4-7: Scanning electron micrographs of ridge lasers after the BCB planarization
and etch-back process.



to designate the deposition area and a thick (i.e., few hundred nm) layer of gold (with

a few tens of nm chromium adhesion layer 10) is electron-beam deposited and a lift-off

process is performed. SEMs of the cross-section of the resulting structure are shown

in Figure 4-8.

This large area electrical contact formation step is a critical step in the laser

process. This can be understood if one thinks of the resistive nature of a metal layer.

The resistance of a material can be defined by the following relation

Resistance = pL (4.1)
A

where p is the material resistivity, L is the length of the material between the electrical

probes, and A is the cross-sectional area of the metal pattern. Metals in general, gold

in particular, have very small resistivities, p. However, if the gold pattern is very long

and/or if the gold pattern has a small cross-sectional area, the resistance associated

with it can be appreciable. This is just the case for our ohmic metal ridge contact.

This contact is nominally 0.25 pm thick, and less than 9 pm wide. This gives a

unit resistance of roughly 50 Ohms/mm along the length of a ridge. For a typical

device length of 0.2 to 1 mm, the voltage drop along the length of ridge would range

from 0.5V to 2.5V assuming a 50 mA current driving the device. Since the device

exhibits a diode electrical characteristic with a sharp turn-on around 0.6 V, this large

voltage drop is problematic. Specifically, what happens is only regions near where

the electrical probe contacts the ridge turn on and spontaneously emit light. This

result is clearly shown in Figure 4-9 which displays the light output characteristic

when the ridge laser was probed at two distinct locations along the length of the

ohmic ridge contact; namely, one location near the facet closest to the photodetector

and the other location several hundred pm down the length of the ridge away from

the photodetector.

In both of these cases shown in Figure 4-9, lasing operation is not achieved. In-

stead, only spontaneous emission results. In essence, the voltage drop along the

10 The chromium provides an extremely strong adhesion of the gold layer to the cyclotene pla-
narization layer and to the top metal ridge.



(a) Zoomed-out cross-sectional view.

(b) Zoomed-in cross-sectional view.

Figure 4-8: Scanning electron micrographs of ridge lasers after the top large area
electrical contact formation. Note that the nodules visible on the metal are likely a
result of contamination that occurred due to the high pressure of several pTorr during
deposition.
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Figure 4-9: Experimental L-I characteristic of the edge-emitting laser, with 9 pm

wide semiconductor ridge, probed at two distinct points on the ohmic ridge contact.

length of the ridge prevents the entire length of the device from being biased above

threshold.

When a large area electrical contact is formed on top of ohmic ridge ridge contact,

the effective cross-sectional area of the metal line increases by about a factor of about

thirty. With this factor of thirty reduction in the resistive drop along the length of

the ridge ohmic contact, lasing operation can be achieved.

4.2.2 Back-Side Device Processing

Once the front-side device processing has been completed, the back-side processing

is undertaken. The goals here are to first thin the substrate sufficiently in order that

the device will cleave cleanly during the manual cleaving process. This is essential for

mirror smooth facets. Then, once the substrate is thinned, the ohmic contact to the

n-type bottom layer of the device will be formed. The basic back-side process flow is

schematically shown in Figure 4-10.

101



a.)

b.) :;2~

\i;g ~~

nm InGaAsP

:i~c~·~~~
9; r' r "r *"
~~~:~" t

)1
-aW~"i~"-~I;P
"-i·iNg"r.~ a

~*,·~:~'

·"r ~-+2~~

r·~~~g~~;
x~ ~~~ ~i

n

-t~~·Rr·;:

41~6/*.F"I ; ::
li~:·'

·.- x "~-.
~i~l *~*~·

Figure 4-10: Conventionally cleaved edge-emitting laser back-side schematic process
flow: a.) Front-side protective coat, b.) Substrate mounting. Continued on next
page.
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Figure 4-10: Conventionally cleaved edge-emitting laser backside schematic process

flow continued: c.) Substrate thinning, d.) Backside ohmic contact formation. Con-

tinued on next page.
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e.)
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Figure 4-10: Conventionally cleaved edge-emitting laser backside schematic process
flow continued: e.) Schematic cross-section of three finished devices, f.) Top-down
photograph of three finished devices.
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Substrate Thinning

At the start of this back-side process, the InP substrate is nominally 350 pm thick.

The goal in this step is to remove approximately 100 to 150 Jim of the substrate

thickness. A number of approaches can be used to thin the substrate. Typically

in industry and often reported in the literature, the substrate is chemo-mechanical

polished on a flat mirror smooth chuck using fine grit. For the present process, though,

it was decided to just wet etch the substrate using hydrochloric acid.

Before placing the wafer in the etch solution, it is imperative that the wafer

front-side be protected from the etchant. To provide this protective layer, a thick

photoresist (AZ 4620) is applied to the sample front-side. The sample is then mounted

face down on a rigid silicon substrate using a Apiezon® wax adhesive. The sample

backside is then wet etched at a nominal etch rate of 6 pm/minute.

Back-Side Ohmic Contact Formation

Once the substrate is thinned, the sample is placed in an e-beam evaporation cham-

ber whereby an n-type ohmic metallization stack consisting of Ni(50 A)/Au(100

A)/Ge(600 A)/Au(900 A)/Ni(300 A)/Au(1750 A) is deposited. The nickel layers

primarily act as adhesion layers. It is also suggested in the literature that the nickel

layer enhances the diffusion of the Ge into the InP substrate [61]. Germanium is used

to increase the doping in the n-type InGaAs layer, thus aiding ohmic contact forma-

tion. Specifically, during the subsequent annealing process, Ge will to diffuse into the

n-type InGaAs contact layer and increase the doping near the surface. Gold is used

because of its extremely low contact resistance, which makes it an ideal material on

which to electrically probe the device.

For the Ni/Au/Ge/Au/Ni/Au contact to a 350 Mm thick n-type InP substrate, the

results of the TLM measurements are shown in Figure 4-11. Both the as-deposited

and annealed were found to be ohmic and had measured contact resistivities of ap-

proximately 2 x 10- 5  cm 2 and 1 x 10-6 Q cm 2, respectively.

Once the ohmic metal deposition is complete, the sample is placed in a solvent
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Figure 4-11: TLM of a Ni/Au/Ge/Au/Ni/Au contact to a 350 p m thick n-type InP
substrate

solution of trichloroethylene (TCE). This TCE solution quickly dissolves the black

Apiezon® wax without affecting the device.

The laser is then manually cleaved, using a scribe, into shorter bars. These bars

then undergo a short 30 second, rapid thermal anneal at 385 'C in a forming gas (95%

N2, 5 % H 2) ambient. This anneal acts to lower the n-type ohmic contact resistance.

At this point the laser is ready for testing. The results of this laser characterization

are presented in Chapter 5.

4.3 Micro-Cleaved Ridge Laser Process Develop-

ment

The micro-cleaved ridge laser process development builds on the processing knowledge

gained from the conventionally cleaved ridge laser development. This process will now

be detailed. In the course of describing this process, references will be frequently made

to the the conventionally cleaved ridge laser process development.
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4.3.1 Front-Side Processing

Top Ohmic Contact Formation

This ohmic contact process is similar to that of the conventionally cleaved ridge

laser with one significant exception. Recall that for the conventionally cleaved laser,

the Ti/Pt/Au contact to the semiconductor ridge was continuous along the length

of the substrate. In this micro-cleaved ridge laser process, the Ti/Pt/Au ridge is

discontinuous along the length of the substrate as is shown in Figure 4-12. Specifically,

narrow regions where the metal is discontinuous correspond to notch regions in the

micro-cleave enabling bar pattern (Figure 3-11) where the individual device facets

will be formed by micro-cleaving.

I(/!

[1 rol]

[01oT]

Regions wher
micro-cleavin
will occur

Figure 4-12: Schematic showing how the metal ohmic contact ridge pattern is aligned
to the cleavage planes of the InP wafer: a.) Micro-cleaved ridge laser process, b.)
Conventionally cleaved ridge laser process.

107

I

e "

I

I I I m

I | • rr



This discontinuity of the ridge metal is a key enabling element of the process since

if a metal or any other non-crystalline material remains in the notch region between

the individual devices, the devices will not easily micro-cleave. A typical micro-

cleaved device where non-crystalline material was left in the notch region between

devices is shown in Figure 4-13a.

Figure 4-13: Scanning electron micrographs showing micro-cleaved devices where a.)
the ohmic contact metal was continuous across multiple devices, b.) the ohmic contact
metal was discontinuous in the notch regions between devices.

For characterizing the Ti/Pt/Au contacts to the 500 nm thick p-type InGaAs

layer, the TLM measurement results are shown in Figure 4-14. Both the as-deposited

and annealed (temperatures of 380 'C to 450 oC for 30 seconds) had a measured con-

tact resistivity of approximately 6 x 10- 4 Q2 cm 2 . In industry, p-type ohmic contacts

often have an order of magnitude lower contact resistivity than achieved here. The

lower quality contacts achieved here is likely a result of the rather high base and run

pressures associated with the e-beam evaporation tool used. Typically, base pressures

of no better than 10-6 torr are capable with this machine. Also, run pressures typi-

cally are no better than 2 x 10-' torr. At these pressures, there can be quite a lot of

particles incorporated in the deposited film. In industry, base pressures of 10- 7 torr

are standard.
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Figure 4-14: TLM of an annealed Ti/Pt/Au contact deposited on a 500 nm thick
p-type InGaAs layer.

Semiconductor Ridge Etch

Since the ohmic contact layers are discontinuous in the notch regions between the

devices, it is not possible to use the ohmic metal as a self-aligned mask for etching

the semiconductor ridge. Therefore, a photoresist mask overlaying the ohmic metal

and the notch region is patterned (Figure 4-15) and the semiconductor ridge is then

etched using HC1.

Dielectric Layer Deposition Device Planarization

The Cyclotene spin coating and etch-back processes are identical to those explained

for the conventionally cleaved ridge laser. It is important to note that for the micro-

cleaved ridge laser process the Cyclotene is removed from the notch region between

the devices. This follows from our experience that having non-crystalline material in

the notch region seriously compromised the micro-cleaving process (Figure 4-13a).
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Figure 4-15:
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Schematic showing the semiconductor ridge pattern aligned over the
ohmic contact.
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Top-Side Large Area Electrical Contact Formation

Once the planarization and etch-back processes are completed, a large area electrical

contact is formed on top of the ohmic ridge contact as was the case in the convention-

ally cleaved ridge laser process. The alignment of this large area electrical contact to

the device structure is schematically shown in Figure 4-16.

] Top metal contact
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Semiconductor
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E
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I
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Figure 4-16: Schematic detailing how the top large area electrical contact is aligned
over the ohmic ridge contact.

Micro-Cleave Pattern Transfer

With the semiconductor ridge formed, the device planarized, and the low resistance

contacts formed to the top of the device, the next step is to pattern the device into

the micro-cleaving enabling bar pattern (Figure 4-17). This process involves the

anisotropic dry etching of the semiconductor. Specifically, the etching is carried out

at Lincoln Laboratory with the assistance of Jason Plant using a SAMCO Inductively

Coupled Plasma (ICP) Etching System (Model RIE 200).

This process first involves the sputter deposition of a thick ( greater than 300 nm)
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Figure 4-17: Schematic showing the alignment of the micro-cleave bar pattern to the
semiconductor ridge, the ohmic metal ridge contact, and the top large area electrical
contact.
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film of Si0 2 . This Si0 2 hard-mask is then patterned by wet chemical etching (i.e.,

buffered hydrofluoric acid) into the micro-cleave bar pattern (Figure 4-18). As shown,

care is taken to align this bar pattern over the semiconductor ridge, the ohmic ridge

contact, and the large area electrical contact, which at this stage of the process are

already formed on the wafer. It is also important to point out that these bars are

also aligned with the semiconductor cleavage planes. This alignment is necessary for

the micro-cleaving of the devices to ultimately be successful.

A schematic cross-section of the device structure both before and after the dry

etch process are shown in Figure 4-18. As displayed, the semiconductor etch proceeds

to a depth of roughly 3500 nm, and stops in the middle of this InGaAs layer. It should

be noted that the dry etch chemistry is not selective over InGaAs11 .

The chemistry of the dry etch process is silicon tetrachloride (SiC14) /chlorine

(C12)/Argon (Ar) with flows of 0.5 seem/0.5 sccm/10.0 seecm. The other operating

parameters of this process include a plasma generating power of 250 W, a bias power

of 250 W, and a substrate temperature of 220 oC. With these process parameters,

the InGaAsP/InP semiconductor etch proceeds at a rate of approximately 180 to 250

nm/minute while etching the SiO 2 hardmask at a rate of roughly 30 nm/minute.

SEMs of the etching results achieved are shown in Figure 4-19.

Once this etching sequence is complete, any remnants of the SiO2 hard-mask are

removed with buffered oxide etch.

In the development of this micro-cleaved bar pattern etch, a number of other

etching techniques and chemistries were vigorously explored. For instance, wet etch

solutions consisting of HCl/H3 P0 4 were attempted. However, they proved to not be

as selective as required. Moreover, an etch used to selectively etch the InGaAs layers

proved to be incompatible with the Cyclotene planarization layers.

Reactive ion etching using a methane (CH4) / hydrogen (H2 ) chemistry was at-

tempted as well. With this chemistry, a nickel hard etch mask was chosen. Unfor-

tunately, significant sputtering of the hardmask occurred which resulted in severe

"lThe reason it is desirable to etch some of this bottom InGaAs layer is related to the back-
side photolithography process. This is described later in this chapter in Section 4.3.2 Back-Side
Processing, Sub-Section Back-Side Ohmic Contact Formation.
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> 300 nm SiO2 hardmask

a.)

b.)

Figure 4-18: Schematic cross-section of the device a.) prior to dry etching, b.) after
dry etching and SiO2 hardmask removal.
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a.) b.)

Figure 4-19: Scanning electron micrographs of: a.) An array of micro-cleave enabling

bar patterns formed by ICP dry etching on the front-side of an InP substrate, and

b.) Zoomed-in SEM of one notch. Note, these images are of etches on dummy InP

material and not the actual laser epitaxial material.

micro-masking, as Figure 4-20 illustrates.

4.3.2 Back-Side Processing

With the front-side processing completed, the semiconductor substrate must be thinned

and the back-side ohmic contacts need to be formed to every individual laser bar. This

process development will now be detailed.

Substrate Thinning to Etch Stop Layer

The back-side process starts with the coating of the wafer front-side with a protec-

tive layer that will shield the devices from the harsh chemicals and processes used

to remove the substrate. The sample is then mounted front-side down on a rigid

substrate. The substrate is removed using a selective wet etch chemistry that stops

in the middle of the 500 nm n-type InGaAs epilayer.

Whereas the conventionally cleaved ridge laser substrate thinning process was

accomplished fairly straightforwardly using a thick photoresist protection layer and
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Figure 4-20: Scanning electron micrograph of an array of circular InP-based diodes
patterned by reactive ion etching using a methane/hydrogen chemistry.

Apiezon® wax adhesive layer to a rigid silicon substrate, the back-side process for

the micro-cleaved ridge laser is significantly more challenging. For the micro-cleaved

ridge laser process, the difficulty lies in the requirement that photolithography must

be performed on the device back-side. Recall, that for the conventionally cleaved

ridge laser a blanket ohmic contact deposition was performed over the entire wafer

back-side. Thus, no photolithography was necessary and the process was simplified

considerably.

Five different sets of materials were evaluated as protective/adhesive layers in our

back-side process development. These materials are listed in Table 4-1 along with

their performance in terms of four performance criteria; namely, are they resistant to

hydrochloric acid etches, can they be easily removed, are they resistant to solvents

such as acetone and methanol, and finally will they survive a metal lift-off process.
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Material Etch Resist. Easily Removed Solvent Resist. Lift-off Compliant

Photoresist Limited Yes No No

Brewer ProTekTM Yes No Yes N/A

Apiezon® Wax Yes No Limited No

Photoresist+Apiezon® Yes Yes No No

Brewer WaferBONDTM Yes Yes Yes Yes

Table 4-1 Materials experimented with (listed in order of experimentation) in

pursuit of a protective layer/adhesive layer for the micro-cleaved ridge laser

back-side process.

Looking at Table 4-1, one begins to appreciate the issues at play in developing the

micro-cleaved device back-side process. Photoresist was a crude choice of a back-side

process protection layer because it does not hold up well to the harsh acids used

to remove the InP substrate. The Brewer Science ProTekTM  polymer, was much

more resistent to the harsh semiconductor chemical etching; however, it was very

challenging to ultimately remove the polymer from the devices as is shown in Figure

4-21.

As was the case with the ProTek TM  polymer process, the Apiezon® wax holds

up well to the semiconductor etch chemistry, but it is difficult to remove from the

individual devices as is shown in Figure 4-22.

With the durability of the Apiezon® wax to the harsh chemicals, and the ease

of removal of the photoresist, a process was developed that utilized both layers in

the back-side process. This also became the workhorse process for the conventionally

cleaved ridge laser process. This process looked as though it would also work very

well for the micro-cleaved edge emitting laser process. It was possible to remove the

semiconductor substrate completely without attacking the protective polymer or the

wafer front-side. However, when it came to the back-side photolithography process
12, a sufficient amount of height variation was present on the sample backside making

it difficult to pattern the desired features, as Figure 4-23 shows.
12The process was tweaked to utilize lower temperature bakes and the contact lithography process

was performed as delicately as possible to minimize the likelihood of poor results.
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TM
Figure 4-21: Pictorial results of the Brewer Science ProTek polymer process where
arrays of heterostructure diode pills clumped together.

Figure 4-22: Pictorial results of ApiezonO wax process where arrays of heterostructure
diode pills clumped together.
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a.)

Figure 4-23: Pictorial results of the Apiezon ® wax/photoresist process a.) Post-
substrate removal, b.) Post back-side photolithography.

To recount the process travails, during the alignment phase of the photolithogra-

phy process, the wafer was brought just out of contact with the mask. During the

alignment of the substrate to the mask pattern, it became apparent that areas of the

sample were at different heights. As the sample chuck was micro-positioned, the mask

was still in contact with some unusually tall areas of the substrate. Thus, a number

of bars mounted with the PR/wax began to move as they were pressed against the

mask.

It is important to point out that even if it were possible to obtain an extremely flat

wafer prior to the contact lithography process, this ApiezonO wax/photoresist process

would still be imperfect. The imperfection is due to the fact that the wax/photoresist

process is not impervious to solvents like acetone or processes like oxygen plasma

ashing which are commonly used to strip photoresist. Basically, if a problem occurred

during the lithography step, the photoresist could not be removed without completely

releasing all of the ridge laser bars prematurely.

Finally, after much experimentation, a material was found that satisfied all the

criteria listed in Table 4-1. This material, Brewer Science WaferBOND , is a pro-

prietary polymer, that is extremely resistant to acids, bases, and most solvents. It
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can be applied to a thickness of greater than 10 pm in just one spin coat, and can

withstand process temperatures as high as 180 °C.

a.) b.)
Figure 4-24: Pictorial results of the WaferBOND process post back-side metalliza-

tion and lift-off processing, a.) Zoomed-out image, b.) Zoomed-in image. Note that

there appears to be some residue in the notch regions. What looks like residue is, in

fact, InGaAs. Since this thin InGaAs layer aids the ohmic contact formation, it is

etched off only after the liftoff process is complete. This way the ohmic metallization

is used as a self-aligned etch mask.

Back-Side Ohmic Contact Formation

Using the Brewer Science WaferBOND TM material as our protection layer/adhesive

to a silicon wafer, back-side photolithography was a relatively straightforward process.

Figure 4-25 schematically describes the process.

First, the sample is placed in a solution of the Brewer Science WaferBOND T

remover proprietary solvent for a quick twenty second dip. This step removes any

WaferBOND TM from the edge or back-side of the substrate. Next, the substrate is

chemically removed in concentrated HC1. Then, the n-type InGaAs layer is etched

slightly, with roughly 300 nm removed. Note, care is taken to not completely remove

the InGaAs layer. The development of this InGaAs etching procedure resulted from

the need to align our photomask to the laser bars. If the InGaAs layer was etched
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(a) After the front-side protection and wafer bonding steps.

(b) After the InP substrate removal process.

(c) After the InGaAs thinning step.

Figure 4-25: Cross-sectional schematics of ridge lasers during the back-side process.
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(a) After the back-side photolithography step.

(b) After the back-side ohmic contact lift-off process.

Figure 4-26: Cross-sectional schematics of ridge lasers during the back-side process
continued.
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slightly, it was possible to punch through the InGaAs in the areas surrounding the

bars, while still keeping a thin InGaAs layer on the bars themselves. The InGaAs

around the bars is thinner than the InGaAs over the bars because during the front-

side bar patterning process, the bottom InGaAs layer was etched halfway. This thin

InGaAs layer on the bars should ultimately lead to lower contact resistances than if

it was completely removed because of the properties of InGaAs mentioned earlier.

Now, negative photoresist (with sloped sidewalls to aid the lift-off process) is

spun on the sample, the photomask is aligned, and the pattern is exposed and devel-

oped. At this time, the back-side ohmic metallization Ni(50 A)/Au(100 A)/Ge(600

A)/Au(900 A)/Ni(300 A)/Au(1750 A) is performed in an e-beam deposition system.

The sample is then placed in an acetone or Microstrip 2001 solution; whereby, the

metal is lifted off the sample, remaining only on the laser bar back-side as is shown

in Figure 4-26.

The TLM results are shown in Figure 4-27 and 4-28 for the Ni/Au/Ge/Au/Ni/Au

contact to the 500 nm thick n-type InGaAs layer. The as-deposited contacts had a

measured contact resistivity of approximately 2 x 10- 5 Q cm2, while the annealed

contacts had a measured contact resistivity of approximately x 10i-5 Q cm 2. 13

Platelet Release and Collection

With the back-side metallization process complete, the WaferBOND TM layer is then

dissolved using the Brewer Science WaferBONDTM remover proprietary solvent. This

process releases the long bars onto a teflon substrate as is shown in Figure 4-29 14

With care taken not to disturb the bars, the Brewer Science solvent is removed

from the glassware containing the teflon substrate and bars. Next, the bars are rinsed

off. This cleaning process involves filling the glassware with acetone, and the acetone

130hmic contacts to n-type InP are easier to form than ohmic contacts to p-type InP. Primarily
this is due to the lower Schottky barrier height for a wide variety of metals on n-InP which arises
because of Fermi level pinning[84]. One way to help form the p-type ohmic contact is to insert a
lattice matched low energy bandgap p-type layer, InGaAs, on top of the p-type InP.

14 Early experimentation was done collecting micro-cleaved devices on smooth silicon substrates
instead of teflon. Unfortunately, when the fluid surrounding the micro-cleaved platelets evaporated,
the platelets were strongly attached to the silicon substrate. The roughness of a teflon substrate
prevents this strong bonding and allows for easy manipulation of the platelets.
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Figure 4-27: TLM of an as-deposited Ni/Au/Ge/Au/Ni/Au contact deposited on a

500 nm thick n-type InGaAs layer.
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Figure 4-28: a.) Photo of contact pattern on InGaAs showing the importance of

a flat surface when annealing or activating the contacts. b.) TLM of an annealed

Ni/Au/Ge/Au/Ni/Au contact deposited on a 500 nm thick n-type InGaAs layer.
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Figure 4-29: Pictorial results of the laser bars released in solution.

is decanted. This acetone rinse is done twice. Then, the glassware is filled with

methanol, and the methanol is decanted. This methanol rinsing is repeated. Finally,

the glassware is filled with isopropanol.

This cleaning procedure to remove the remnants of the Brewer Science WaferBond

removing solvent is vital to the long-term quality of the devices. Figure 4-30 shows

that if trace residues of the solvent are left on the device, the top large area metal

contact is easily scratched off during electrical probing due to the weakened state of

the underlying BCB.

In light of the dangers that the WaferBond solvent poses to the long-term device

quality, great care is taken to flush the WaferBond removing solvent from the devices

using treatments of acetone, methanol, and isopropanol. After cleaning, the micro-

cleaved samples are baked out at a temperature of 115 'C for at least thirty minutes.
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Figure 4-30: Top-down image of typical micro-cleaved ridge laser before and after
electrical probing.

Micro-Cleaving

With the bars resting on a teflon substrate in a glass container filled with isopropanol,

the bars are agitated ultrasonically causing them to preferentially cleave in the notch

region. An SEM of a collection of micro-cleaved dummy and real devices, as well as

long uncleaved bars is shown in Figure 4-31.

The micro-cleaved devices have characteristically smooth facets as is shown in

Figure 4-32.

An SEM of a micro-cleaved facet showing the various layers of insulators and

metals is shown in Figure 4-33.

It should be noted that the micro-cleaving process does not always work perfectly.

Figure 4-34 shows some common failure mechanisms seen in the course of developing

the process. The platelet in the lower half of the picture actually cleaved along the

semiconductor ridge (with metal contact) in addition to cleaving in the notch region.

It is evident from the large micro-cleaved platelet in the upper half of the picture

that the quality of this sample was further compromised by non-crystalline material

which was left in the notch region.
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Figure 4-31: Scanning electron micrograph of a large quantity of micro-cleaved lasers,
micro-cleaved dummy devices, as well as long uncleaved bars.

Figure 4-32: Scanning electron micrographs of a typical facet achieved with the micro-
cleaving process, a.) zoomed-out image, b.) zoomed-in image.
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Figure 4-33: Scanning electron micrograph of a micro-cleaved platelet showing the
various layers realized during the front-side processing of the device.

Figure 4-34: Scanning electron micrograph of a couple of poorly micro-cleaved
platelets.
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However, as the process has been gradually developed and refined, from micro-

cleaving of platelets with no metal whatsoever, to micro-cleaving of platelets with just

metal ridge contacts, to micro-cleaving of fully-metallized platelets with planarization

layers and top large area metal contacts, the quality of the micro-cleaving process has

improved. For instance, problems like those seen in Figure 4-34 have practically been

eliminated. This is attributable to the incorporation of non-crystalline materials

such as Cyclotene planarization layers, and metals. These materials, unlike single

crystalline materials, like our InP semiconductor, do not break (i.e., cleave) easily.

Thus, it is very difficult for a cleave in the device to propagate through these layers.

Since the notch regions are the only areas devoid of these non-crystalline layers, the

cleaving of these devices should only take place in these notch regions.

While the use of these non-crystalline layers really helps improve the micro-

cleaving process, the presence of these layers on just one-side of these devices adds

stress which can cause some warping in the platelet along its length. Figure 4-35

shows three micro-cleaved platelets, one with significant warping, one with less warp-

ing, and one without warping whatsoever. The first micro-cleaved platelet (Figure

4-35a) has front-side planarization layers and large area metal contacts, but no back-

side metal contacts. The second micro-cleaved platelet (Figure 4-35b) has front-side

planarization layers and large area metal contacts, as well as back-side metal con-

tacts. The third micro-cleaved platelet (Figure 4-35c) has no metal whatsoever on

the front-side or the back-side. This figure clearly shows the great deal of stress that

these planarization and metal layers can place on a device.

Warping seems to be a significant concern for our integration approach of end-fire

coupling. However, experiments were conducted that involved the thermal bonding

of these warped platelets under pressure on a silicon substrate. Figure 4-36 shows

that the warping of the device is removed from the bonding process and an extremely

flat device results.

With the process of fabricating both the conventionally cleaved and micro-cleaved

ridge lasers described in detail, the tools used to manipulate the devices will now be

discussed.
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c.)

Figure 4-35: Scanning electron micrographs of: a.) A micro-cleaved platelet with
front-side planarization and large area metal layers, but no back-side metal, b.) A
micro-cleaved platelet with front-side planarization and large area metal layers, and
back-side metal layers, c.) A micro-cleaved platelet with no front-side planarization
and large area metal layers, and no back-side metal layers either.
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(a) Laser bonded on silicon substrate

(b) Up-close SEM of bonded laser

Figure 4-36: Scanning electron micrograph of a laser bars indium bonded down on a
silicon substrate.
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4.4 Manipulation and Bonding of Micro-Cleaved

Platelets

In order to characterize these small (i.e., nominally 300 pm long, 150 pm wide, <

10 pm wide semiconductor ridge) ridge laser platelets, there must first be a way to

manipulate the platelets. Recall, that after the micro-cleaving process, a large batch

of platelets rests in an unordered state on a teflon sheet. The transformation of these

platelets into a state where the relevant electrical and optical properties of the device

can be measured involves a combination of micro-scale pick and place assembly and

thermo-compression bonding.

First, individual platelets are transported from the teflon sheet to a location of

our choosing using micro-scale pick and place assembly. The specific tool used to

perform this assembly operation was designed by Professor Clif Fonstad and former

graduate student Mindy Teo and is shown in Figure 4-37.

Figure 4-37: Picture and schematic of the micro-pipette tool used to pick up and
move individual platelets.

The tool consists of a microscope and a narrow (i.e., 20 pm) opening glass micro-

pipette that is connected to a three-axis micro-positioning stage. A vacuum is con-

nected to the micro-pipette which creates a suction force on platelets when the pipette
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approaches them. The end of the micro-pipette is beveled so that its tip is flush with

the platelet.

Although this technique allows for the manipulation of the platelets, it is a rather

cumbersome and slow process (i.e., greater than ten minutes per device assembly). If

large numbers of platelets are required to be assembled, this pick-and-place technique,

as it stands now, is impractical. Therefore, a new technique, referred to as Magnet-

ically Assisted Statistical Assembly, aimed at large-scale micro-device integration, is

being considered. The theory underlying this assembly technique will be introduced

in Chapter 6. It is suggested that the combination of this technique with the platelet

manufacturing processes described earlier in this thesis, large scale optoelectronic

integration will be more ably pursued.

However, for our purposes here, where only small numbers of platelets are to be

assembled, the micro-scale pick and place assembly process performs very well. This

process has been used to assemble InP-based ridge waveguide platelets in dielectric

recesses on a silicon substrate and InP-based ridge laser platelets on metallized silicon

wafers. These assembly results and the post-assembly thermo-compression bonding

process that is performed on the InP-based ridge laser platelets will now be presented.

4.4.1 Assembling InP-based Ridge Waveguide Platelets in

Dielectric Recesses on a Silicon Substrate

Micro-cleaved InP-based ridge waveguide platelets were fabricated using many of the

same processes described for the micro-cleaved ridge laser platelets. A top-down pic-

ture and cross-sectional schematic of a completely fabricated ridge waveguide platelet

is shown in Figure 4-38.

Using the micro-scale pick and place assembly tool, many micro-cleaved ridge

waveguide platelets were assembled in dielectric recesses on a silicon substrate as is

shown in Figure 4-39. Emanating from two ends of the recess is the SiOXN, waveguide.

The assembled ridge waveguide platelets just rest at the bottom of these recesses as no

bonding operation is performed. Care must be taken when handling this integration
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7 500 nm nGaAs (n-n ve)

Figure 4-38: Picture and cross-sectional schematic of an InP-based micro-cleaved
ridge waveguide platelet.

substrate to prevent platelets from being dislodged from the recesses. A thin

couple hundred nm thick) coating of silicon dioxide was sputter deposited over

substrate with hopes that it would help retain the platelets. Unfortunately, it

not successful and most platelets came out of the recess.

(i.e,

this

was

As can be seen from Figure 4-40, it is possible to assemble these platelets in

tightfitting recesses, thus allowing for narrow gaps between the platelet facets and

the SiON waveguide facets.

Figure 4-39: Picture of two InP-based micro-cleaved ridge waveguides assembled in
dielectric recesses on a silicon substrate.

134

_ ~~~_

--- --------- -----



(a) Zoomed-in image showing the end-fire coupled arrangement of the micro-cleaved
ridge waveguide with the silicon oxynitride waveguide on silicon.

(b) Scanning electron micrograph of a micro-cleaved ridge waveguide platelet as-
sembled in a dielectric recess and end-fire coupled to a silicon oxynitride dielectric
waveguide on silicon.

Figure 4-40: Images of micro-cleaved ridge waveguides assembled in dielectric recesses
on a silicon substrate.
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4.4.2 Assembling InP-based Ridge Laser Platelets on Metal-

lized Silicon Substrates for Device Characterization

To facilitate their characterization, ridge laser platelets were picked up using the

micro-scale pick and place tool and positioned on a silicon substrate that had been

coated with a metal stack of gold and indium. Care was taken to position the platelets

with the ridge side up. This orientation is desired to allow for the optimal bonding of

the platelet to the silicon substrate and the resulting heat sinking effectiveness that is

characteristic of well-bonded platelet/substrate system. The ridge side of the device

can have upwards of a couple hundred nanometer topography which can compromise

bonding and associated heat sinking if this side is bonded to the silicon substrate.

Once the device was placed on the carrier substrate, a thermo-compressive bonding

process was undertaken. To accomplish this, a bonding chamber, designed and built

by Professor Clif Fonstad and former graduate student Mindy Teo, was utilized. A

schematic of this bonding chamber is shown in Figure 4-41.

pressure outer chamber

rt ing

aphite
trip

Base and inner chamber with heater strip

Figure 4-41: Schematic of the bonding chamber used.

The metallized silicon substrate on which the micro-cleaved ridge laser platelet
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rests, is first placed on a thin glass slide on the graphite heating strip15 . The film

support ring is then screwed tightly down on top of the sample. The high pressure

outer chamber is then clamped down in place surrounding the inner chamber. Nitro-

gen is flowed into the outer chamber and this action causes the polymer film to be

pressed downward onto the substrate to be bonded. Forming gas is flowed into the

inner chamber to prevent oxidation of the sample as the temperature of the heating

strip is increased. Entire control of the bonding temperature is provided through

a Lindberg power controller. Temperature feedback is provided via a thermocouple

which is mounted underneath the graphite heating strip. Successful platelet bonding

was carried out for six minutes at a temperature of 210 'C and a pressure of 40 to 45

PSI.

Bonding proved to be a critical step in getting the micro-cleaved devices to lase

on silicon. Figure 4-42 shows the light output characteristics of two micro-cleaved

devices. Figure 4-42a shows the characteristics of two devices that just rested (i.e.,

was not bonded) on a silicon substrate. In this case, just low levels of spontaneous

emission were detected. Figure 4-42b shows the characteristic of a micro-cleaved

device which was poorly bonded to a metallized silicon wafer. This device did not

lase, but a significantly greater level of spontaneous emission was detected. When

probing this device, it was apparent that the bonding process was substandard as

the device came loose from the silicon substrate. Problems with the bonding process

centered on the application of a pressure that was too low (i.e., 20 PSI) and the use

of an indium film that was too thin (i.e., 100 nm).

By increasing the bonding pressure to greater than 40 PSI and using indium thick-

nesses of 500 nm, solid bonding was achieved and continuous-wave lasing operation

of the micro-cleaved devices on silicon was achieved. The characterization of these

devices as well as the conventionally cleaved devices will now be presented in Chapter

5.

15The glass slide is used to create an insulating barrier between the graphite strip and the bonding
sample. Without this barrier, current that flows through the graphite strip during the bonding step
would likely also travel through the substrate being bonded. This could cause serious damage to
the platelet device.
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(a) L-I characteristic of unbonded micro-cleaved device on silicon.
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(b) L-I characteristic of poorly bonded micro-cleaved device on silicon.

Figure 4-42: Light output characteristics of unbonded and poorly bonded micro-
cleaved ridge platelets on silicon.
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Chapter 5

Micro-Cleaved Ridge Laser

Characterization

With the novel process technology to manufacture highly integrable micro-cleaved

ridge lasers described, the measurements performed on these devices will now be

presented in this chapter. First, the characterization experiments used to determine

the precision with which the micro-cleaving process defines laser cavity lengths is

detailed.

The optical and electrical characterization of the lasers is then presented. First,

the analysis of several conventionally cleaved ridge lasers on native InP substrates is

presented. Continuous-wave light output characteristics (L-I curves) are shown and

parameters such as threshold current, Ith, differential efficiency, rd, characteristic

temperatures, To and TI, are extracted. Values for internal quantum efficiency and

intrinsic loss, are reported for the laser epitaxial material. The output emission

spectrum measured at three different drive currents is presented with the observed

Fabry-Perot mode peak spacing agreeing with theory. The electrical characteristics

of the conventionally cleaved lasers are detailed and values for the laser diode series

resistance and diode ideality factor are extracted.

Electrical and light output characteristics of micro-cleaved ridge lasers integrated

on a silicon substrate are then presented. Continuous-wave L-I curves measured at a

number of different stage temperatures are shown. Peak output powers, differential
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efficiencies, and threshold currents are presented. Characteristic temperatures, To

and TI, measured for the micro-cleaved ridge laser on silicon are shown. In addition,

the results of pulse measurements are detailed.

An analysis of all six tested micro-cleaved devices lasing on silicon concludes this

chapter. The values of threshold currents, differential efficiencies, To, Rseries, and

Vturn-on for these micro-cleaved lasers on silicon are compared and contrasted and

reasons for their parameter value differences are suggested.

5.1 Micro-Cleave Precision Characterization

Given the end-fire coupling scheme for optoelectronic integration proposed in Chapter

2, it is extremely important that the active optical devices that are to be integrated

have very precise dimensions. As was argued in Chapter 3, the most difficult di-

mension to precisely control for edge-emitting active devices is the cavity length.

To produce edge-emitting lasers with both well-controlled cavity lengths and mir-

ror smooth facets, a precision micro-cleaving technique was developed. Details on

the micro-cleaving technique were presented in Chapter 3 and the specific process to

realize micro-cleaved laser platelets was outlined in Chapter 4.

In Chapter 3, it was suggested that as the micro-cleave notch is narrowed, the

precision with which the laser cavity lengths are dimensioned will increase. To inves-

tigate this hypothesis, several samples, each with a different micro-cleave bar pattern

notch width, were fabricated and the notch widths were measured for completeness.

Then, the micro-cleaving operation was performed and the cavity lengths of these

micro-cleaved platelets were measured. These notch width and cavity length mea-

surements were made using a Carl Zeiss AxioSkop microscope system outfitted with

an AxioCam MRc digital camera and the AxioVision digital imaging software. This

method produces an overall measurement reproducibility of better than 0.21 pm.1

Other methods were first considered for performing this characterization study.

'Ten independent measurements of the cavity length of one specific platelet were carried out
and the standard deviation of these measurements was used as an estimate for the measurement
reproducibility.
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For example, for measuring the notch widths, a profilometer 2 was first tried. However,

it was quickly realized that there was an inherent error in these measurements due

to the size and shape of the profilometer stylus. The stylus has a conical shape with

radius, R, as is shown in Figure 5-1. When measuring notches, the measurement

always suggests that the notch is narrower than it actually is. This phenomena is

labelled "groove loss" by the profilometer manufacturer. The accompanying table in

Figure 5-1 shows the groove loss as a function of stylus radius and groove depth.

Groove Width Lossfor Differen Radii and Gmove Depths

Stylus

Trace - --

Sample
Groove Depth

Stylus TID
Stylus Groove Depth (Pm)
Radius
(m) .02 .05 .1 2 .4 .8 1.6 2.5 5 10 20 25

12.5 1.4 2.2 3.2 4.5 6.3 8.8 12 15 20 26 38 43

5.0 ,89 1,4 2.0 2,8 3.9 5.4 7.3 8.7 12 17 29 35

2.0 .56 .89 1.3 1.7 2.4 3.2 4*2 5.2 8.1 14 25 31

1.0 .40 .62 .87 1.2 1.6 2.1 3.0 4.0 6.9 13 24 30

0.4 .25 -39 .53 .69 .92 1.4 23 3.4 6.2 12 24 29

0.2 .17 .26 .35 .46 .69 1.2 2.1 3.1 6.0 12 23 29

0.0 .02 .06 .12 .23 .46 .92 1.9 2.9 5.8 12 23 29

Figure 5-1: Schematic and table detailing the effect of profilometer stylus radius on
the lateral measurement accuracy[83].

For the Tencor P-10 profilometer available on campus at the MIT Center for

Materials Science and Engineering (CMSE), the smallest stylus available has a radius

of 2 jm. From Figure 5-1, profiling 5 pm groove depths, using this stylus, would

result in groove width losses of roughly 8 pm. This groove width loss varies as a

function of stylus radius and groove depth and thus adds another uncertainty in the

measurement of the notch width. Moreover, if the sidewalls of the notch are sloped,

the actual notch width is even more difficult to determine using a profilometer. Due

to these issues with using a profilometer, the Carl Zeiss AxioSkop system was used.

The specific experimental protocol followed for each sample involved first measur-

ing the realized notch widths of fifteen different bars from the same sample process
2Two widely used commercial profilometers are the DekTak and the KLA Tencor P-10 instrument.
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run. Sample notch width measurements are shown in Figure 5-2. Averaging these

fifteen notch widths, an estimate is determined for the notch width of that sample.

The average notch width variation across a given sample is typically 0.45 ,m for dry

etched samples and upwards of 0.8 Am for wet etched samples.3 With the notch width

of a given sample estimated, the cavity lengths of ten different micro-cleaved platelets

from that same sample were measured as is shown in Figure 5-3. The standard devi-

ation of these ten measurements gives an estimate of the laser cavity length precision

for a specific notch width.

Combining these notch width and cavity length standard deviation measurements,

a plot of the estimated laser cavity length precision as a function of notch width is

shown in Figure 5-4. Horizontal error bars are present to account for notch width vari-

ation specific to each sample. Vertical error bars corresponding to the measurement

repeatability of 0.21 Am are also included.

This experimental study confirms the hypothesis that as the micro-cleave bar

pattern notch width is narrowed, the precision with which the laser cavity lengths are

defined increases. The lowest device length standard deviation obtained was 1.16 Am

and the narrowest notch patterned was 5.5 ,m. The benefits of patterning narrower

notches seem to be diminishing as we pattern the notches narrower than 7.5 Am.

Notches having widths in the 5.5 jm to 7.5 Am range all had similar device length

standard deviations. It is believed that by significantly narrowing the notch width

to values closer to 1 Am that the device length standard deviation could be further

reduced. A number of experiments were carried out in attempts to pattern narrower

notches. These experiments relied on both reactive ion etching of the SiO2 etch mask

and the InP/InGaAsP semiconductor. Notches as narrow as 3 /m were patterned

in photoresist using contact lithography. The notches typically widened to between

4 and 5 Am during the reactive ion etching of the 1 Am thick Si0 2 hardmask. The

InP/InGaAsP high density plasma dry etch widened the notches slightly to near 5.5

pm because of sloped features on the SiO2 hardmask. It is believed that with higher

3 The standard deviation of the notch width measurements on a given sample provides an estimate
for this.
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Figure 5-2: Pictures taken with the Carl Zeiss Axioskop microscope system of a
number of notches from one given sample.
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Figure 5-3: Pictures taken with the Carl Zeiss Axioscope microscope system of a
number of micro-cleaved platelets from one given sample.
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Figure 5-4: Experimental results of the micro-cleave process device length variability
as a function of notch width.
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resolution lithography tools and a dedicated high density plasma dry etch tool for

dielectrics, significantly narrower notches could be achieved.

Ultimately, the notch width will be limited by the planarity of the device struc-

tures just before the bar pattern photolithography process step. The micro-cleaving

precision characterization experiments discussed here were carried out on flat In-

GaAsP/InP laser wafers and thus should reflect the best possible results achievable

with the processing equipment used in this work. Real micro-cleaved ridge lasers

are non-planar when they reach the bar pattern photolithography step. In fact due

to the ridge pattern and metal contacts, there is around 2 Am of topography. So,

instead of 5.5 Am notch widths, the notch widths on actual realized devices were a

few microns wider. Even with this topography, notches narrower than 7.5 Am should

be easily achieved with the use of modern photolithography and etching tools. This

process capability would allow device standard deviations better than 1.25 Am to be

attained. Tight control like this of the micro-cleaved length dimension should make

the end-fire coupling integration strategy feasible. For integrating devices which need

to be end-fire coupled at both facets (i.e., SOAs), the average gap spacing on the

input and output facets should be less than 1.25 pm. Coupling losses to SiON, di-

electric waveguides, assuming no gap fill, are estimated to be only a few dB per facet

for gaps of this length[15]. For integrating devices which only need to be end-fired

coupled at one facet (i.e., laser), it should be possible to minimize the gap spacing

by assembling the device right up to the dielectric waveguide facet. In this case the

coupling loss should be even lower.

5.2 Ridge Laser Optical and Electrical Character-

ization

Continuous-wave (CW) characterization of both conventionally cleaved (CC) and

micro-cleaved (MC) ridge lasers was carried out using the setup schematically shown

in Figure 5-5. During testing, the devices rest on a stage at the end of which is
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situated a large area long wavelength photodetector. A Wavelength Electronics Model

LFI-3751 Thermoelectric Temperature Controller was used to control and read the

stage temperature. The lasers were electrically driven with a Newport Laser Diode

Driver Model 5005 and the laser light emission was detected using an ILX Lightwave

OMH-6708B InGaAs Power head detector which was connected to an ILX Lightwave

OMM-6810B Optical Multimeter.

Electrical Probes

Electrical Probes

I 1

Top-down view Side view

Figure 5-5: Test setup for the ridge laser light output characterization.

5.2.1 Conventionally Cleaved Ridge Laser

Conventionally cleaved ridge lasers were first fabricated and tested to ensure that

the semiconductor epitaxial material was capable of lasing and to provide a reference

for comparing the micro-cleaved ridge laser results to. A top-down photograph of a

typical conventionally cleaved ridge laser is shown in Figure 4-10. Both optical and

electrical characteristics of these ridge lasers were measured and these results will now
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be presented.

Light Output Characteristics

Room temperature CW light output characteristics of several CC ridge lasers having

different lengths were measured and these characteristics are shown in Figure 5-6.

0 20 40 60 80 100 120 140 160 180 200

I (mA)

Figure 5-6: Experimental light output characteristics of CC ridge lasers (6.8 ym wide
ridge) of various cavity lengths measured at room temperature and under continuous-
wave conditions.
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Threshold current values were extracted from light output characteristics of CC

lasers and are plotted as a function of laser cavity length in Figure 5-7. The linear

OU -
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Figure 5-7: Threshold current as a function of laser cavity length for CC ridge lasers
(6.8 pm wide ridge) measured at room temperature and under continuous-wave con-
ditions.

relation between these lasers' threshold currents and their cavity lengths obtained

'from the linear fit is

Ith(mA) = 0.045L(pm) + 13.6 (5.1)

If a 300 pm long conventionally cleaved ridge laser was produced from this epitaxial

material, this laser would likely have a room temperature threshold current of ap-

proximately 27 mA. Since the micro-cleaved lasers that will be discussed later in this
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chapter have nominal lengths of 300 pm, this extracted CC threshold current value

will be useful for comparison.

0.25

0.2

0.15

0.1

0.05
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-0.1

-0.15

-0.2
20 40 60 80
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100

Figure 5-8: dL/dI vs. I characteristic for a CC ridge laser (6.8 ,m wide ridge, 328.5 ym
long device) measured at room temperature and under continuous-wave conditions.

A plot of the derivative of the light output power with respect to input current for

one output facet is shown in Figure 5-8. Taking note of the dL/dI value just beyond

threshold at the point of operation just before the dL/dI starts to decrease as I is

increased, a value of 7)d was calculated using the following equation

q dLtot
77d = () dIhv dl

(5.2)

where Ltot is the total light power emitted from both facets. Note that if only one

facet is measured then the total dL/dI is usually assumed to be equal to twice this
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dL/dI value measured for one facet. The inverse of the differential efficiency can be

expressed by

1 a 1= ( i )L+ - (5.3)
77d =riln(1/R) rli

where ai is the net internal optical loss, ri is the internal quantum efficiency, and R

is the mirror reflectivity. Values of the differential efficiency, 77d, were extracted for

several CC ridge lasers. By fitting a line to a plot of the inverse of the differential

efficiency as a function of cavity length, several device properties can be extracted.

For the CC ridge lasers, this plot is shown in Figure 5-9. A value of 87.6% is extracted

for 77i and 19.4 cm-' for ai/ln(1/R).

1,N = (CA(Yj In(1/R)))L + h1l

3.2

3.0

2.8

2.6

2.4

2.2

2.0

1.8
300

ayrA,I n(~ R))

400 500 600 700 800

Cavity Length, L (.Im)
900 1000

Figure 5-9: Inverse of the maximum differential efficiency as a function of laser cav-
ity length for CC ridge lasers (6.8 pm wide ridge) measured at room temperature
and under continuous-wave conditions. Extracted parameters are 77i = 87.6%, and
ai/ln(1/R) = 19.4 cm - 1.

To determine ai, the mirror reflectivity, R, must be known. Assuming normal
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incidence of the optical wave at the laser facet between air and the semiconductor, R

is given by the relation

R = (ne 1)2 (5.4)
(neff + 1)2

where neff is the effective refractive index of the ridge laser. From theoretical cal-

culations, the fundamental TE mode of the ridge laser structure used in this work

was found to have an effective refractive index of approximately 3.2[15]. It is possible

to experimentally verify this effective refractive index. Since the CC ridge laser is

a Fabry Perot laser, there are several longitudinal modes visible as narrowly spaced

peaks in the output spectrum. These peaks are spaced according to the relation

6A = A( 2Ln 1) (5.5)2Lng - A

Thus, if one knows the emission wavelength, A, the cavity length, L, and the mode

spacing, 6A, then the group index, n,, can be estimated using the following relation.

n = L[ + T] (5.6)

The output spectrum and corresponding light output characteristic of a 328.5

pm long CC laser are shown in Figure 5-10 and Figure 5-11 respectively. The output

spectrum has 5A = 1.0 nm. Given this observed mode spacing of 1.0 +/- 0.08 nm,4 ng

= 3.6 +/- 0.3. This extracted value of the group index, as expected is slightly higher

than the value of the effective refractive index. With nff = 3.2, R is approximately

27.4% and a2 is 25.1 cm - .

To gain a perspective of the thermal performance of the laser, light output char-

acteristics were measured at a number of different stage temperatures. A typical set

of L-I curves measured for a 1170 pm long, 6.8 ym wide CC ridge laser (CC1) is

4The resolution bandwidth of the ANDO Optical Spectrum Analyzer is 0.08 nm.
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Figure 5-10: Optical output spectrum of a CC ridge laser with length = 328.5 p m
and ridge width of 6.8 pm measured at room temperature and under continuous-wave
conditions.
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Figure 5-11: Light output characteristic of a CC ridge laser with length = 328.5 Am
and ridge width of 6.8 Am measured at room temperature and under continuous-wave
conditions. This output spectrum corresponding to this laser is shown in Figure 5-.

shown in Figure 5-12 for reference. From this plot, it is possible to extract the char-

acteristic temperatures, To and T1, for the devices. To, as was described in Chapter

3, relates the dependence of the threshold current on the temperature. T1 relates the

dependence of the differential efficiency on temperature. The higher the character-

istic temperatures the less sensitive the devices are to temperature. The threshold

current, Ith, is related to the characteristic temperature, To, through the expression

In(th) = ln(Ith,o) + T0
(5.7)

By fitting a line to a plot of the natural logarithm of the threshold currents vs. stage

temperature, estimates for To and Ith,O were found (Figure 5-13). This analysis was

carried out on four CC lasers and the results are shown in Figure 5-14. The dimensions

of these four CC lasers are shown in Table 5-1.
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Figure 5-12: Light output characteristic as a function of stage temperature for an
1170 pm long, 6.8 ,um wide CC ridge laser (CC1) measured under continuous-wave
conditions.
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Linear Regression: In(J) = In(I•d + TIT
P aram eter Value E rror

(I(Ih) -4.5559 0.18461
l T 0.02627 6.13509E-4
---------- ------- ------- -----------------
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Figure 5-13: In(Threshold current) as a function of stage temperature for a
continuous-wave tested conventionally-cleaved ridge laser (CC1).

Table 5-1 Dimensions of CC lasers that underwent characterization at different

stage temperatures.

The characteristic temperatures of these CC lasers are rather low. For state of

the art InP-based MQW ridge laser designs with facet coatings, Tos of greater than

50 K are commonly achieved. There are several improvements which could be made

to the laser to improve To. One way to increase To would be to implement a current

confinement structure to reduce current spreading.' For instance, by making the

51t should be noted that this thesis work was focussed on demonstrating the proof of concept of
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CC3 6.8 1169.7
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Figure 5-14: Characteristic temperatures, To, and the 0 K threshold currents, Ith,O,
of four conventionally cleaved ridge lasers tested under continuous-wave conditions.

semiconductor regions below the BCB layers resistive (Figure 4-10e) (i.e., by ion or

proton implant), would direct the current to the active region of the device under

the ridge where carrier recombination translates into lasing. This type of current

confinement structure is typically incorporated in commercial laser designs. Another

improvement that could be made to achieve better thermal performance is by lowering

the laser diode series resistance. With the characterization of the ohmic contacts

(Figure 4-11, 4-14) showing the contact resistivity roughly an order of magnitude

higher than is typically seen in commercial ohmic contacts, this presents one logical

area for device improvement and a potential increase of To.6

The differential efficiency, rd, is related to the characteristic temperature, T1,

through the expression

a laser on silicon. Thus, the laser design used was simple and a number of improvements could be
made to achieve lower threshold currents and higher temperature operation.

6As current passes through a resistive region, power is dissipated causing the region to heat up.
This heating up could cause a lower To reading when using continuous-wave measurements to extract
To.
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ln(rd) = ln(d,O) - T

A line was fit to

(CC1) (Figure 5-15)
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- 1.25 -

-1.30 -

-1.35-

-1 AO-

296

a plot of ln(rld) vs. T, and values of 38.5 K (CC3) and 46.9 K

were obtained for the characteristic temperature, T1.

In(rqd) = In(Yidd - T Ir,
U Parameter Value Error

In(fIrd 5.87192 1.19478
-1/T -0.0231 0.00391

. .. .. .

-- --- -- - - --- - - -- - - -

298 300 302 304 306 308 310 312 314

Stage T(K)

Figure 5-15: In(differential efficiency) as a function of stage temperature for a
conventionally-cleaved ridge laser (CC1) tested under continuous-wave conditions.

Electrical Characterization

Current(I)-Voltage(V) characteristics were measured and analyzed for several CC

ridge lasers. Figure 5-16 shows the I-V with corresponding L-I characteristic for CC1

ridge laser. The diode has an observed turn-on voltage of approximately 0.8 V.

From the I-V characteristics, it is possible to extract electrical device parameters

such as the diode's ideality factor, n, and the electrical series resistance, Rseries. To

accomplish this, the diode is modelled with the simple relation
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Figure 5-16: Light output and current-voltage characteristics for a ridge laser (CC1)
measured at a stage temperature of 20 'C and under continuous-wave conditions.

V= Io - 1)
I = IO(enkT - 1)

where Vd is the voltage across the diode, and 1o is the diode's saturation current. The

voltage applied to the contact of a diode is given by the relation

V = Vd + IRseries (5.10)

where a voltage drop occurring between the contact probes and the diode is accounted

for. To perform this device parameter extraction, it is useful to analyze a plot of

IdV/dI vs. I. If the laser diode is operated below threshold and I is still much larger

than Io, then the following relation holds
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dV nkT
I- = - + IRseries

dl q
(5.11)

If the laser diode is biased above threshold where I is much larger than I0, then the

following relation applies[22]

dV
I- d = IRseries

dl
(5.12)

The IdV/dI vs. I characteristic for the CC1 ridge laser is shown in Figure 5-17.

The series resistance is approximately 4 Ohms and the ideality factor is 1.2. Similar

10 20 30 40 50 60 70 80 90
I (mA)

Figure 5-17: IdV/dI vs. I for a CC ridge laser (CC1)
and under continuous-wave conditions.

measured at room temperature

analysis was done for the other CC lasers and they were found to have series resistance

values near 4 Ohms as can be seen in Figure 5-18.
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Figure 5-18: Diode forward series resistance as a function of stage temperature for
three different conventionally cleaved ridge lasers, CC1, CC2, and CC3.

5.2.2 Micro-Cleaved Ridge Laser

When all the processes used to manufacture the micro-cleaved ridge laser work as

designed, the quality of the ridge laser integrated onto a silicon substrate can be quite

high. The analysis performed on the MC ridge laser, which had the most optimal

processing, will first be described in detail. A top-down photograph of this micro-

cleaved ridge laser is shown in Figure 5-19. After presenting the characterization

results for this micro-cleaved ridge laser on silicon, other micro-cleaved ridge laser

characteristics will be presented and the variation among them will be addressed.

Light Output Characteristics

Figure 5-20 shows the continuous-wave light output characteristics of micro-cleaved

laser, MC6, on silicon at several stage temperatures. For this device, output powers

as high as 26.8 mW (at T = 10.3 'C) have been detected (from one facet) and the

device lases at stage temperatures as high as 55 0C. By plotting dL/dI vs. I (Figure 5-

21) for the output of one laser facet, and taking note of the dL/dI value just beyond
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Figure 5-19: Top-down photograph of micro-cleaved ridge laser (MC6) bonded on
silicon.
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Figure 5-20: Light output characteristic for micro-cleaved ridge laser (MC6) on silicon
as a function of stage temperature and under continuous-wave conditions.
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threshold before the dL/dI starts to decrease as I is increased, a value of r7d was

calculated using equation (5.2). Note that this dL/dI extracted from Figure 5-21

needs to be multiplied by two to account for the power output from both facets. At

a stage temperature of 20 'C, r7d is 73%. At 10.3 'C, rid = 81%.
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Figure 5-21: dL/dI vs. I characteristic for a micro-cleaved ridge laser (MC6) measured
at a stage temperature of 20 'C and under continuous-wave conditions.

A To of 38.1 K was extracted for MC6 by performing a linear fit to the In(Ith)

vs. T plot (Figure 5-22) and using equation (5.7). From a linear fit to the ln(rid) vs.

T plot (Figure 5-23) and using relation (5.8), a T1 value of 85 K was extracted for

MC6. Both of these characteristic temperatures are higher than was measured for

any of the CC ridge lasers. The improved thermal properties are believed to be due

in part to the fact that silicon is a better thermal conductor than InP and that the

metal bonding layers, namely gold, acts to spread heat from the laser active region.

Gold has been shown by Tauber et al. to be an efficient heat spreader when used as

an interface layer between an epitaxial laser structure and an InP substrate[25].
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Figure 5-22: In(Threshold current) as a function of stage temperature for a
continuous-wave tested micro-cleaved ridge laser (MC6).
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Figure 5-23: In(differential efficiency) as a function of stage temperature for a micro-
cleaved ridge laser (MC6) tested under continuous-wave conditions.
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Pulse measurements were made of the micro-cleaved ridge laser at a number of

stage temperatures as is shown in Figure 5-24.

0 20 40 60 80 100 120 140 160 180 200

I(mA)

Figure 5-24: Light output characteristic for micro-cleaved ridge laser (MC6) on silicon
as a function of stage temperature and under pulse conditions.

Pulsed lasing occurred to a temperature of at least 80 'C. Since 80 'C was the

temperature limit for the stage thermoelectric cooler (TEC), testing was not carried

out at higher temperatures. Taking note of the threshold current values at the various

stage temperatures, a value of To equal to 42.9 K was extracted. This measurement of

To is thought to be a more accurate estimate than that made under continuous-wave

conditions. This follows from the fact that pulsed laser testing prevents the laser

diode junction from heating up well-beyond the stage temperature as can happen

when the diode is continuous-wave biased.

Electrical Characterization

The I-V and corresponding L-I characteristic for the MC6 ridge laser are shown in

Figure 5-25. The I-V characteristic is very clean with the diode exhibiting a turn on
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voltage of 0.8 V.

5

5

Figure 5-25:
laser (MC6)
conditions.

I (mA)

Light output and current-voltage characteristics for a micro-cleaved ridge
measured at a stage temperature of 20 "C and under continuous-wave

Performing the derivative analysis (Figure 5-26) of the electrical characteristics,

a value of 8.8 Ohms is extracted for the diode series resistance and a value of 1.3 for

the diode ideality factor.
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Figure 5-26: IdV/dI vs. I for a micro-cleaved ridge laser (MC6) on silicon measured
at a stage temperature of 20 'C and under continuous-wave conditions.
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5.2.3 Comparison of the Micro-Cleaved Ridge Lasers

In total, nine micro-cleaved ridge lasers were assembled on silicon substrates. Of these

nine lasers, six resulted in lasing. The dimensions of these six micro-cleaved lasers

are shown in Table 5-2.

Table 5-2 Dimensions of the MC lasers that were characterized.

For comparison, the light output characteristics of all six micro-cleaved ridge lasers

measured at several stage temperatures are shown in Figure 5-27. The threshold cur-

rent values for the six MC ridge lasers are plotted as a function of stage temperature

in Figure 5-28. To give the reader an idea of the spread in threshold currents, Ith

measured at a stage temperature of 20 'C varies from 23 mA for MCI and MC6, the

two best MC lasers, to 43 mA for MC4. The differential efficiency values for the six

MC ridge lasers are plotted in Figure 5-29. To give the reader an idea of the spread

in differential efficiencies, rld measured at a stage temperature of 20 'C varies from

73% for MC6, the best MC laser to 23% for MC5. The characteristic temperature

(To) values for the lasers are plotted in Figure 5-30.

The variation in micro-cleaved laser characteristics, such as threshold current and

peak output power, is believed to be tied to variation of the electrical contact prop-

erties among the devices. To help understand these variations, it is instructive to

compare the micro-cleaved ridge laser I-V characteristics. Both the L-I and the I-V

characteristics of all six tested micro-cleaved ridge lasers are shown in Figure 5-31.

Note that all of these measurements were made at a stage temperature of 20 'C.
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Laser Ridge Width(pm) Length(pm)

MC1 7.7 298.1

MC2 7.6 315.3

MC3 7.6 294.3

MC4 7.2 294.3

MC5 7.1 294.3

MC6 7.6 300.7
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Figure 5-27: Light
a function of stage

output characteristics for all tested micro-cleaved ridge lasers as
temperature measured under continuous-wave conditions.
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Figure 5-29: Differential efficiency, rqd, at a stage temperature of 20 'C extracted from
continuous-wave measurements of micro-cleaved ridge lasers on silicon.
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Figure 5-30: Characteristic temperatures, To, and and the 0 K threshold currents,
Ith,0, extracted from continuous-wave measurements of six micro-cleaved ridge lasers
on silicon.

The first parameter to evaluate with respect to the laser diode I-V characteristics

is the diode turn-on voltage (Figure 5-32). The best performing MC laser in terms of

output power and maximum temperature operation, MC6, has a sharp 0.8 V turn-on

voltage. All of the other diodes have higher turn-on voltages. In some cases, such

as for MC2 and MC5, the turn-on voltages are considerably higher. A higher diode

turn-on voltage is one sign of poor electrical characteristics. Another sign of poor

electrical characteristics is high diode series resistance. The series resistance for the

six micro-cleaved ridge lasers are shown in Figure 5-33. Of note is the fact that MC4,

which has the lowest To and highest Ith, also has the highest diode series resistance.

Another characteristic to evaluate with respect to the I-V curve is how clean

the curve is. Regarding this point, MC2 and MC5 have very noisy or unclean I-V

characteristics. Noisy characteristics suggest issues with the electrical contact to the

diode. They are problematic because they can result in resistive heating of the diodes,

which ultimately leads to increased threshold currents and lower peak output powers.

Although the stage temperature was kept constant during these measurements, it
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Figure 5-31: Light output and current-voltage characteristics for all micro-cleaved
ridge lasers measured at a stage temperature of 20 'C and under continuous-wave
conditions.
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Figure 5-32: Turn-on voltages for for
stage temperature of 20 °C and under
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all micro-cleaved ridge lasers measured at a
continuous-wave conditions.
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Figure 5-33: Laser diode series resistance for for all micro-cleaved ridge lasers mea-
sured at a stage temperature of 20 'C and under continuous-wave conditions.
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is very likely that the junction temperature rose significantly due to these resistive

heating effects.

Identifying the electrical contact as the discriminating characteristic between the

realized micro-cleaved ridge lasers, it is useful to consider the possible mechanism

resulting in poor contacts. One possible cause could be variation in the micro-cleaved

laser to silicon bonding process. Poorly bonded lasers could have loose electrical

connections and thus noisy I-V characteristics. They would be less well heat sunk

and thus their maximum operating temperatures would be low. Their threshold

currents would also be higher and their differential efficiencies lower due to poor heat

sinking. Limitations with the BCB planarization process seems to be another possible

root cause of the electrical contact quality variability. The main problem with the

planarization process is that all of the development work was carried out on small

area samples (i.e., areas less than or equal to 1 cm 2). Endemic to the BCB spin-coat

process is the presence of an edge bead. Right from the beginning, regions along

the die edges on the order of 100s of jpm are unusable due to this edge bead (up to

approximately 3000 pm). In addition, the limited performance (i.e., repeatability and

uniformity) of the Plasmatherm dry etching tool, resulted in large variation in the

BCB thickness across the sample as is shown in Figure 5-34.

Due to the variation in the BCB thicknesses across the sample, there exists a sit-

uation where, after the BCB etchback process, many devices still have BCB covering

some if not all of the metal ridge contact. Thus, when the top large area electrical

contact is deposited, this contact does not make a good contact to the ohmic metal

ridge. This failure mechanism is clearly shown in a cross-sectional SEM shown in

Figure 5-35. If the large area metallization does not contact the entire length of the

ohmic ridge contact, then there will be a voltage drop occurring along the length of

the ridge. This voltage drop can prevent areas of the device from being biased above

threshold and diode turn-on.

If the BCB is overetched to avoid this problem, the step height between the BCB

and the ohmic metal ridge contact will be too high when depositing the large area

contact and can result in lateral gaps between the ohmic metal ridge and the large
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Figure 5-34: Step height of ridge to planarization layer following the BCB etch-back
process. Note that the data point taken at 2700 um from the sample center is 900
pm from the sample edge.

area contact.

For the micro-cleaved ridge lasers characterized here, care was taken to minimize

this BCB to ohmic ridge contact step height. Therefore, it is not surprising that not

all of the BCB was removed from the top of the ohmic metal ridge contact prior to

the large area contact formation.

It is believed that by transferring this micro-cleaved ridge laser process to larger

wafers (i.e., 2 inch diameter and greater) and by using higher quality, dedicated

dry etch tools, significantly better planarization results would be achieved. Thus,

the electrical characteristics across micro-cleaved lasers produced from a single wafer

would also become more uniform.

With the less than ideal performance of MC2, MC4, and MC5 being attributed

to contact properties, 7 an explanation of the performance of the MC3 device needs to

be made. MC3's I-V characteristics are not very noisy and MC3 has comparatively

7MC2 and MC5 have noisy I-V characteristics. MC4 has the highest series resistance and turn-on
voltage of all the lasers.
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(a) Successful process.

(b) Device process failure where BCB still covered the ohmic ridge contact.

Figure 5-35: Scanning electron micrographs (SEM) of the cross section of a ridge
laser after the top large area contact formation process.
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low Rseries and Vturn-o, so problems with the electrical contact do not seem to be

the issue. To investigate the devices further, SEMs were taken of the top-side as well

as the output facets of MC3, MC4, MC5, and MC6 (Figure 5-36, 5-37). The facets

of these devices look good with the exception of MC3 which has some significant

roughness. The presence of this facet defect seems to explain MC3's poor thermal

performance.

(a) MC3

(b) MC4

Figure 5-36: SEMs of micro-cleaved ridge lasers on silicon (MC3, MC4).
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(a) MC5

(b) MC6

Figure 5-37: SEMs of micro-cleaved ridge lasers on silicon (MC5, MC6).

179



180



Chapter 6

Enabling Higher Density

Integration - Magnetically Assisted

Statistical Assembly

A hybrid approach for achieving optoelectronic integration has been proposed. The

fundamental building blocks for this system have been realized, namely the highly

integrable ridge laser platelets and the dielectric waveguides[15]. Up until this point,

the manipulation of these platelets has involved a manual pick-and-place assembly

technique. However, the question remains, is there a way to achieve large scale

optoelectronic integration with our hybrid integration approach? A technique which

we believe will enable this large scale integration is referred to as Magnetically Assisted

Statistical Assembly.

6.1 Magnetically Assisted Statistical Assembly

Magnetically Assisted Statistical Assembly (MASA) is a fluidic assembly technique

having many similarities with the fluidic assembly techniques described in Chapter

2. However, the mechanism in MASA by which a device is ultimately retained at

the target substrate is novel. The MASA technique utilizes the inherent properties

of ferromagnetic thin films to aid in the retention of devices on a target substrate.
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Especially suited to our hybrid integration approach, the MASA technique, shown

simplistically in Figure 6-1, begins by optimally processing two separate semiconduc-

tor wafers. On the device wafer, devices are fully processed with a soft ferromagnetic

film deposited on one side of them. On the other wafer, referred to as the target

wafer, dielectric recesses having geometries corresponding to the devices are formed.

At the bottom of these dielectric recesses are located patterned hard ferromagnetic

films.

Diectnc Recess

a.) DeNice wafer and Target
wafer arc optimally processed.

Target Wafer Device Wafer

Frf, rii~r#-&

b.) Deice Plls are flowed over
the target substrate resulting in
assembly.

Did1ectnc Layr

c.) Device Pills are fully
integrated with target substrate.

Figure 6-1: Magnetically assisted statistical assembly technique.

Once the devices are fully processed with an integrated magnetically permeable

layer, they are etched free of their native substrate and collected in a solution. These

freestanding devices are then flowed over the target wafer where they fall by gravity

into recesses. Proper device orientation1 and retention 2 in the recess is enabled by

the magnetic force acting between the two aforementioned magnetic films.

1In theory, pills are assembled and then the target substrate is turned upside down so that

incorrectly oriented pills fall off the target wafer due to the force of gravity. Thus, for MASA to

work the magnetic force density should be larger than the force density due to gravity only for

separations less than the thickness of a typical pill.
2One can think of this retentive force as the same force encountered when a big bulk permanent

magnet attracts a magnetically permeable material. The only difference is that the magnets used
in MASA have dimensions on the order of microns.
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6.1.1 Properties of the Ferromagnetic Films used in MASA

Two types of ferromagnetic films are utilized in MASA. The magnetic film on the

target substrate acts as the permanent magnet in the system. Thus, it is desirable

that this film have high remanent magnetization and reasonably high coercivity. On

the device, a soft magnetic film is desired. The optimal magnetic properties for this

film are low remanent magnetization, high permeability, and low coercivity. When

considering these films, both the magnitude and the orientation of the magnetic

properties of these films must be considered. In terms of the magnetization orientation

in these films, there are two extremes. In-plane films define a class of magnetic films

that are magnetized easily in a direction in the film plane.3 Perpendicular films label

a class of magnetic films magnetized easily in a direction out of the plane of the film.4

The orientation of these films can depend on several factors such as the shape

of the film, stresses between the magnetic film and the substrate upon which it was

deposited, the crystalline nature of the film, as well as surface effects that occur when

ultra-thin layers are used[72, 171. For ferromagnetic thin films, the dominant factor

in determining the orientation is usually the shape of the film. This dependence

of the magnetic properties on the shape of the magnetic material is referred to as

shape anisotropy. Shape anisotropy causes the magnetization to orient along the

longest dimension of the magnetic material. Due to shape anisotropy, most magnetic

thin films, especially homogeneous films have in-plane preferential characteristics.

To create perpendicular magnetic films, effects such as surface anisotropy, magneto-

crystalline anisotropy, or magneto-elastic anisotropy must be utilized to overcome the

dominant in-plane shape anisotropy.5

A couple of different materials have been evaluated for use as the hard magnetic

film in the MASA technique. The magnetic films considered are a Co/Pd multi-layer

film which was produced by Prof. T.C. Chong at the Data Storage Institute at the

3In-plane hard magnetic films have higher remanence directed in the film plane.
4Perpendicularly oriented hard magnetic films can have high remanent magnetization directed

out of the plane of the film and little or no remanence directed in the plane of the film.
5In general, in-plane oriented thin films are simpler to produce than perpendicularly oriented

thin films.
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National University of Singapore, and a SmCo film, which was produced by Prof.

Cadieu of the Department of Physics at Queens College of the City University of

New York (CUNY). Both films have been patterned, the former patterned into an

array of stripes geometry 6, and the latter film patterned into an array of squares 7

geometry as is shown in Figure 6-2.

Vibrating sample magneto-meter (VSM) measurements have been performed on

both samples and the results are shown in Figure 6-3. From these VSM measurements,

the perpendicular anisotropy present in the Co/Pd multi-layer film and the in-plane

anisotropy present in the SmCo film are obvious.

6.1.2 Theory Underlying the MASA Technique

The simple system used to analyze the magnetic retention force is shown in Figure 6-

4. In short, a compound semiconductor device block having a soft magnetic film with

permeability, ps, is situated at a height, g, above a target substrate having a hard

magnetic film with magnetization, M. The expression for the magnetic field resulting

from the hard magnetic material has been modelled assuming this geometry.

Starting with Ampere's current law and applying the magneto-static approxima-

tion in every region of the system shown in Figure 6-2,

VxH= J+ (6.1)

VxH = J (6.2)

Since no free current is assumed, the magnetic field H can then be written in terms

of a quantity referred to as the magnetic scalar potential, b,

H = v4 (6.3)

6This film was patterned by ion milling at the National University of Singapore.
7Processing techniques have been developed to pattern the SmCo films by photolithography and

wet etching. Details on these processes are included in Appendix C.
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(a) Co/Pd film patterned into an array of stripes.

(b) SmCo film patterned into an array of squares.

Figure 6-2: Patterned hard magnetic films.
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(a) Co/Pd film patterned into an array of stripes.

E
E

H (kOe)

(b) SmCo film patterned into an array of squares.

Figure 6-3: Magnetization vs. Applied Magnetic Field for patterned hard magnetic
films.
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Figure 6-4:
modeling[1].

Schematic of the system under consideration for the magnetic force

Gauss' law for the magnetic field states

--.

The constitutive relation between the magnetic flux density, B,

field, H, is

B = o0(H + M)

and the magnetic

(6.5)

where M is the magnetization and p is the permeability of free space.

Gauss' law for the magnetic field and the constitutive relation

v7 B = Vo(H+ M)=0

0o(V H + V. M) = 0

-.H= -M4

Combining

(6.6)

(6.7)

(6.8)

A relation between the magnetic scalar potential and the magnetization is deduced

--

V- (-V) =-V-M
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V 22 = V M (6.10)

The magnetization, M, depends on the properties of the magnetic material and its

geometry. By assuming an expression for the magnetization, relations for the scalar

magnetic potential, 0, the magnetic field, H, and the magnetic flux density, B, are

deduced. Given expressions for the magnetic field, the magnetic retention force can

be modelled using the Maxwell Stress Tensor approach. In the treatment considered

here, an expression for Myv, the magnetization in Region IV, is assumed to have a

periodic distribution related to the geometry of the hard magnetic film pattern. It is

also assumed that MI, MII, M111 , and My are all equal to zero due to the absence

of hard magnetic material in these regions.

6.2 Derivation of Magnetic Field Expressions

In this theoretical treatment, the two M orientation extremes, in-plane and perpen-

dicular hard ferromagnetic films are considered. Expressions for the magnetic fields

in the system shown in Figure 6-4 are derived assuming two hard magnetic pattern

geometries, an array of squares and an array of stripes. These two hard magnetic

film geometries are shown in Figure 6-5.

6.2.1 Hard Magnetic Film with Perpendicular Anisotropy

Assuming perpendicular anisotropy, the expressions for the magnetization vectors in

the hard magnetic film (i.e., Region IV) are given by

004 1 1 1

MIv = Mr d sin kxm sin kyny + - sin kIx + -sin kyy + iz
"2mn xm 7rn 4

m,odd n,odd

(6.11)

for the array of squares geometry and

1 2 001 A
Mv = Mr + - - sin, (6.12)

n,odd
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(a) Hard magnetic film in an array of squares pattern.
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(b) Hard magnetic film in an array of stripes pattern.

Figure 6-5: Graphical representations of the hard magnetic material patterns.
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for the array of stripes geometry where km = 2 ky, = -Ln L, is the pattern

period in the x direction, LY is the pattern period in the y direction, and Mr is the

remanent magnetization.

For hard magnetic films having these geometries and anisotropy, V -M = 0. Thus

in each region, Equation (6-10) simplifies to Laplace's equation

V2V = 0. (6.13)

Concerning the array of squares hard magnetic film geometry, expressions for the

magnetic scalar potential in Regions I through V have been solved for and are given

in Appendix D.

Expressions for the magnetic field, H, and the magnetic flux density, B, are derived

using relations (6.3) and (6.5) respectively as well as the boundaries conditions that

the tangential magnetic field is continuous

i(H - H 2) = J,= 0 (6.14)

and the normal magnetic flux density is continuous.

, (Bi - B2) = 0 (6.15)

The general expressions for the magnetic scalar potentials and magnetic fields

for the array of stripes hard magnetic film geometry are obtained most easily by

simplifying the expressions derived for the array of squares geometry in the limit

kXM = 2 + 0. Expressions for the magnetic scalar potentials, given this hard

magnetic film geometry and magnetization orientation, are given in Appendix D.

6.2.2 Hard Magnetic Film with In-Plane Anisotropy

Assuming in-plane anisotropy, the expressions for the magnetization vector charac-

teristics of a hard magnetic film patterned into an array of squares (Figure 6-5a) and

an array of stripes (Figure 6-5b) are
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00 00 _ A

MIv = Mr sin k,, x sin kyy + - sin k,, x + - sin kyry + - ix
m,odd n,odd

(6.16)

and
+1 2 - 1 X ̂ ( 6 1 7

MIv = Mr - +- -sin kx i (6.17)

respectively. Since for the array of squares pattern, M v varies in the direction in

which it is directed, Laplace's equation in Region IV is not satisfied, but rather

8M 1 2M. MiV
V • Miv = 82 M = COS 1 

k mx sinkyy+ -r cosk (6.18)
m,odd n,odd 

m,odd

Concerning this array of squares hard magnetic film geometry, expressions for the

magnetic scalar potential in Regions I through V have been solved for, and are given

in Appendix D.

For the case where the hard magnetic material is patterned into an array of stripes,

Laplace's equation (6.13) is satisfied in each region. Assuming the infinite extent of

the pattern and that the magnetization is aligned along the stripe due to shape

anisotropy, the expressions for o, and H evaluate to zero in all the regions.

6.3 Derivation of the Magnetic Retention Force

Expression

An expression for the magnetic force acting between the patterned hard magnetic

material on the target substrate and the soft magnetic film on the device block is

derived using the Maxwell Stress Tensor. In this treatment, we will first consider the

array of squares geometry. As is the case in solving for the magnetic field expressions,

the force relation for the array of stripes is easily extractable from the array of squares

analysis. Reference [90] provides a more in-depth description of Maxwell Stress Tensor
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analysis.

For the case of the magnetic retentive force, we are interested in the force in the

z direction. This is given by

fz = s (Tzxnx + + Tn+ Tznz)dS (6.19)

where the Stress Tensor components are given by

TzX = pHxH,ý

Tz, = pHyHz

(6.20)

(6.21)

(6.22)Tzz = ,HzHz - -±HkHk
2

where k = x, y, and z.

With a general relation for the force, an appropriate surface needs to be chosen in

order to evaluate this expression. The dashed line shown in Figure 6-6 outlines the

surface over which the integration is performed.

7[77-I
Rnion U -*

If 1- ___________________

WOOIV-*m mmm

Figure 6-6: Schematic depicting the surface chosen to evaluate the force integral,
where the six faces of this volume are labeled 1, 2, 3, 4, 5, and 6.

With the labelling in Figure 6-6, the magnetic force can be expressed as

2 -TdS + 3 TzdS + -TzzdS + J TzdS + -TzxdS (6.23)
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Considering the periodicity of the array of squares pattern in the x and y directions

-TzydS + TzydS = 0
3

(6.24)

and

STzxdS - TzxdS = 0 (6.25)

The Maxwell Stress Tensor force expression thus simplifies to

fz = TzzdS+ J -TzzdS
J4

(6.26)

Taking into account the exponential decrease of the magnetic field in the semicon-

ductor (Region I), we approximate

TzzdS = 0 (6.27)

The force expression is thus given by

fz = -TzzdS = -
2

[H2 iz - H,]dSHIJIZ - HIJIX ildS (6.28)

where HIrjz, H 11 y, and HIII, are the magnetic fields along surface 4 in the gap region

(Region III) in the x, y and z directions respectively.

Assuming a perpendicular magnetization orientation with this array of squares

pattern, the expression for the magnetic force density can be expressed as

Fz 0 2 M o E

m,odd n,odd

2
1,mL ,[e- 2

kzm,n [(1
(e2kz,nt - 1)(L2 - 1)

e2kzm),n]t(_Z + 1)2 - (s _ 1)2
1

+ [e-2kmg [(l -
4m 2

e ,md)2]- (e2kxmt - 1)(/.- 1

e2k•mt(7 1F + 1)2 - (, - 1)2 ]

1 (e2kYti - 1)(A 2 - 1)

4n2 [ - 2 2knt + 12 - (s - 1)2 ]
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where km = km + k . Assuming an in-plane magnetization orientation with this

array of squares pattern, the force density can be modelled by

4WM L0 2 2kzm,nt 2 (
Fz 4(m 2L2 + n2L2) [e-2k"zmg][(1 - e-kzmnd) 2

1 [ (2 1 ---- 1)_
4 2(ML 2 + n2 2 + 2kzm,• n (i )2 _ ]j2m,odd n,odd y -

2m2 4 (e 2kxm -
+ Y [C-2k.mg]9[(I _ e-kxmd)2][ 5

n2 (m 4 L4 + n4L4 + 2m 2Ln 2 L2 ) n d)2][ e2 kxzmt(y. + 1) 2 _ - 1)2

(6.30)

If we now apply Equation (6.23) to the array of stripes geometry, taking note of

the assumed infinite extent in the x direction of the stripes pattern, the magnetic

field in the x direction has evaluated to be zero for all regions. Thus for all surfaces,

the stress component Tz~ evaluates to zero.

Combining this with the results obtained for the array of squares case, the force

expression simplifies to

f = -TdS = j2 j[H2 iz - HI2 Y]dS (6.31)

Given expressions for the magnetic field derived earlier, an expression for the

magnetic retention force can be derived. As an example, the magnetic force density

expression when the hard magnetic film is assumed to be an array of stripes with

perpendicular anisotropy is given by

M2_ 0 (e •0 2 ky, t  )
Fz= IL 2 E I[e-2kyg)[I - ekn 2 2 kv d ( 2 -s ] (6.32)

_M
7r2

_ n-- dn e2k.-(/Z, + 1)2 - (MS - 1)2 (6.32)
m,odd n,odd

First order force density expressions for the square geometry with both in-plane

and perpendicular magnetic anisotropy, are plotted alongside the stripe geometry

with perpendicular magnetic anisotropys in Figure 6-9. These characteristics were

8For films with in-plane anisotropy, the stripe geometry will produce little force since the mag-
netization will align along the longest stripe dimension due to shape anisotropy.
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generated assuming typical thicknesses and magnetic property values of the SmCo and

Co/Pd hard magnetic films and soft magnetic materials such as nickel and permalloy.9

- Stripe Pattern with Perpendicular Anisotropy
-- s-- Square Pattern with Perpendicular Anisotropy

--- Force of Gravity
opy

A LA

1 2 3 4

O44M44444.b

5

Separation, g (prn)

Figure 6-7: Magnetic retention forces for the various magnetization orientations and
pattern geometries assuming Lx = L, = 5 pm, Mr = 1000 emu/cm3 , /z, = 50, d = t
= 0.25 jm.

6.3.1 Magnetic Force Density Dependencies

The magnetic force density expressions can be analyzed as a product of four factors.

These factors are given by

9The force density due to gravity is calculated assuming a cylindrical GaAs devices with thickness
of 5 ym, and radius 50 pm.
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f(Mr) = 2  (6.33)

f(g, L) = e- (6.34)

f(d, L) = (1 - e )2 (6.35)

(e2kt - 1)(p_ - 12
e2kt(1, + 1)2 - (5, - 1)

Three of these factors, f(g, L), f(d, L), and f (pu, t, L) have magnitudes less than

one. The behaviors of the functions, f(Mr) and f(g,L), are straightforward with the

former increasing quadratically with increasing remanent magnetization and the lat-

ter decreasing exponentially with increased gap separation, g. The function f(d,L)

increases with increasing thickness, d until it saturates at a value of one for larger

values of d as is shown in Figure 6-8a. The function f(/u~,t,L) is plotted in Figure

6-8b.

To make the technology viable for large-scale integration, we would like to keep

the magnetic film thicknesses as thin as possible. However, from Figure 6-8, we see

that if the magnetic films are too thin, the magnetic force density will be reduced sig-

nificantly. If higher permeability magnetic films are used, reducing the soft magnetic

film thickness has a less profound effect on the magnetic force density.

To obtain the highest retentive forces at approximately zero separation between

the device block magnetic layer and the target substrate magnetic layer, it is advan-

tageous to pattern the hard magnetic film into a very fine pattern. For instance, a

pattern period of 2 pm offers approximately a factor of 4 larger magnetic force density

than a pattern period of 5 pm and a factor of 16 larger magnetic force density than a

pattern period of 10 ym when the separation narrows to near zero. A consequence of

this fine pattern is that the magnetic force will decay at a faster rate than for more

coarse patterns. This is shown in Figure 6-9.
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(a) First order component of f(d,L) plotted as a function of d/L.
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Figure 6-8: Dependence of the force expression on
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Figure 6-9: Magnetic retention force for the array of stripes pattern with perpendic-
ular anisotropy as a function of pattern period.

6.3.2 Magnetic Force Verification

Dr. James Perkins developed a technique to measure the magnetic force between a

permeable nickel film and a SmCo hard magnetic layer. Specifically, Dr. Perkins

fabricated micro-cantilevers upon which he deposited a thin film of nickel. These

micro-cantilevers were then brought in close proximity with the SmCo film, which

was patterned into an array of squares. By measuring the deflection of the micro-

cantilever as the two magnetic films were brought close together, a measurement of

the magnetic force between the two films was attained. At a gap separation just

less than 1 pm, a force of approximately 300 to 400 N/m 2 was measured. This is

on the order of what we expect from the theoretical model. More details on these

measurements can be found in Reference [73].

198



Chapter 7

Concluding Remarks

With the key missing link in silicon optoelectronics, namely electrically pumped,

continuous-wave edge-emitting lasers achieved with this thesis work, a significant step

has been made towards the realization of a building block optoelectronic integration

architecture. Having described the processes used to manufacture and integrate the

micro-cleaved ridge platelet lasers and their performance on silicon, these results will

now be put into perspective and possible future research directions will be outlined.

7.1 Alternative Approaches to Achieving III-V Lasers

on Silicon

Prior to and simultaneous with the work described in this thesis, a number of groups

have pursued the integration of III-V semiconductor lasers on silicon using epitaxial

lift-off processes. Most notable among these are the efforts of Pollentier et al. and

Seo et al. who achieved pulsed lasing of GaAs-AIGaAs GRIN-SCH SQW lasers on

silicon and InP-InGaAsP MQW ridge lasers on silicon, respectively[37, 76].

Pollentier et al. indium bonded epitaxial 250 ,pm long GaAs-based thin film,

graded-index, separate-confinement, single quantum well (SQW) lasers to silicon.

The cleaved facets of the edge-emitting lasers were formed prior to integration by

affixing the thin film laser to a flexible carrier substrate and bending. Pulsed (i.e.,

199



20 kHz repetition rate, 1 ps wide pulses) laser operation was achieved; however, the

device did not lase under continuous-wave conditions[37].

Seo at al. metal bonded epitaxial 200 pm long InP-based thin film, MQW ridge

(5 Mm wide) lasers to silicon substrates. As in the Pollentier et al. effort, the cleaved

facets of the edge-emitting lasers were formed prior to integration by attaching the

thin film laser to a flexible carrier substrate and bending. Biasing the devices with 0.5

ps wide pulses at a 10% duty cycle, the devices lased at a threshold current of 25 mA

and a peak output power of less than I mW (measured using an integrating sphere

and a photodetector). The devices did not lase under continuous-wave biasing[76].

Since these aforementioned research efforts resulted in pulsed, not continuous-wave

lasers on silicon, to put this thesis work in perspective, it is most useful to compare it

with other work that has achieved electrically pumped, continuous-wave lasing on sili-

con. For example, Van Campenhout et al. integrated tiny (7.5 ,m diameter) thin film

(1 pm) InP-based microdisk lasers emitting at a wavelength of 1600 nm with silicon

on insulator (SOI) waveguides on silicon substrates. These lasers utilize evanescent

coupling from the laser to the SOI waveguide and have achieved continuous-wave

lasing at ultra-low threshold currents of 0.5 mA and maximum output powers of 10

yW at room temperature. This approach to integrating lasers on silicon has a great

number of advantages, namely the devices have a very small footprint and they have

extremely low threshold currents. Drawbacks of the device are that it sits on top of

a poor thermal conductor (i.e., SOI waveguide) and it only has been shown to emit

low levels of light[47].

Another interesting approach is the recent combined effort of Intel and UCSB

which has received the most attention in the press[63]. This Intel/UCSB effort has,

like this thesis work, resulted in electrically pumped CW 1.55 pm wavelength cleaved

facet lasers on silicon. Whereas this thesis work has resulted in a stand-alone laser

integrated on silicon, the Intel/UCSB effort has achieved an integration with an SOI

waveguide. Since this Intel/UCSB laser has received the most acclaim of all the

competing lasers on silicon, it is interesting to compare the results of this thesis work

with it. Several performance characteristics of the two lasers are listed in Table 7-1.
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Parameter MIT Intel/UCSB

Wavelength (pm) 1.55 1.55

Length (/.m) 300 860

Max Operating T (°C) 55 40

Jth (kA/cm2 ) 0.96 1.89

To (K) 38.1 39

Rseries (Ohms) 8.8 7.5

Table 7-1 Comparison between MIT edge-emitting laser on silicon and that of the

Intel/UCSB discrete cleaved facet laser [49].

Comparing the properties of the two lasers, most striking is the distinction in

temperature performance. The MIT device lased at temperatures as high as 55 'C

versus 40 'C for the Intel/UCSB device.1 The Intel/UCSB laser threshold current

density, Jth, is also almost twice that of the MIT laser. The discrepancy in max-

imum operating temperatures and threshold current density between the MIT and

Intel/UCSB lasers is glaring given that the Intel/UCSB laser utilized proton im-

planted current confinement structures to reduce current leakage, whereas the MIT

approach did not[49]. The Intel/UCSB devices requires such a large threshold cur-

rent because of the small overlap (3 %) the optical mode in the device has with the

III-V quantum wells. Moreover, the thermal performance of the Intel/UCSB device

is limited because the laser sits on an SOI layer which as we saw in Chapter 3 is a

very poor thermal conductor. The characteristic temperatures, To, measured under

CW conditions for the two lasers are similar with the MIT device having a value of

38.1 K compared to 39 K for the Intel/UCSB device. The areas of the devices need to

be taken into account when interpreting the diode series resistances. The MIT ridge

is approximately 300 jm long and 7.6 pm wide whereas the Intel/UCSB device has

a 2.5 ptm wide ridge and a 860 pm long cavity. Normalizing for area, the MIT laser

has resistance per unit area of 0.0038 Q/pum 2 versus the Intel/UCSB laser which has

a resistance per unit area of 0.0035 Q/lm 2 .

'In fact, the MIT lasers integrated on silicon had better thermal performance than the MIT
conventionally cleaved lasers tested on native indium phosphide substrates.
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Comparing the peak output power is not appropriate since the Intel/UCSB max

output power of 7.2 mW reported at 15 oC is the power emanating from an SOI

waveguide which the InP laser is evanescently coupled to. The MIT device, which

is not coupled to a waveguide, emits a peak output power of 23.96 mW at 15 0C.

If the MIT laser was integrated with a waveguide, the integration could have as

much as a 5.2 dB coupling loss for the MIT laser to have equivalent to or better

performance with respect to peak output power than the Intel/UCSB laser. From

theoretical calculations, the estimated end-fire coupling loss between an MIT laser and

a SiOxN, dielectric waveguide is less than 5 dB for air gaps less than 2 Pm between

the two device facets. These results have been verified experimentally. Theoretical

analysis has further shown that if higher refractive index gap fill materials are used

in the regions between the laser facet and the dielectric waveguide facet, coupling

losses as low as 1 or 2 dB are achievable. Furthermore, if the laser mode size is

tailored for coupling to the dielectric waveguide, coupling losses of less than 1 dB

should be reachable[15]. Gap spacings of this magnitude or better are feasible given

the measured precision of the micro-cleaving process developed in this thesis work.

There are several comparative advantages of the MIT edge-emitting laser over

the competing Intel/UCSB laser. First among these is with regards to heat sinking.

The MIT laser is attached to the silicon substrate using metal-to-metal bonding;

whereas, the Intel/UCSB laser is bonded to a silicon dioxide dielectric layer on a

silicon substrate.2  Since the MIT laser's bond to the silicon substrate is through

a good thermal conductor, it should offer superior high temperature performance.

Looking at the maximum operating temperature of the two devices, this advantage

of the MIT laser is confirmed.

Another advantage of the MIT laser is in its process flexibility. Only a quick six

minute, 200 'C bonding step is needed to attach the laser to a silicon chip; whereas,

the Intel/UCSB laser requires a 12 hour long 300 'C oxygen assisted plasma bonding

step[49].

2Due to the benefits in evanescent coupling of having the laser effective refractive index similar
in value to the coupling waveguide refractive index, an SOI waveguide was likely chosen over other
possible dielectric waveguides for the Intel/UCSB integration scheme.
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The MIT building block integration approach could potentially offer higher yields

than the Intel/UCSB approach. The reasoning behind this is that before bonding to

the silicon substrate, the MIT laser is fully processed. Therefore, it may be possible

to yield screen (i.e., pulse characterize) these lasers prior to integration, and assemble

only the best performing devices. The Intel/UCSB laser, on the other hand, requires

a significant amount of processing after bonding to the silicon wafer. For instance,

all the backside processing, including InP substrate removal, device etch patterning,

and n-type and p-type ohmic contact formation, still needs to be carried out. Thus,

in the case of the Intel/UCSB laser, if problems occur with the InP processing, the

entire silicon device will be wasted.

The MIT integration approach offers a smaller overall footprint than that of the

Intel/UCSB approach. Therefore, the MIT laser allows for a very cost effective use

of substrate materials like InP. To achieve integration on silicon, the Intel/UCSB

effort utilizes a racetrack laser structure[12]. As its name implies, the device looks

strikingly like a racetrack. It is an extremely large device with racetrack radius of

200 pm and total laser cavity length of 2656 pm. The dimensions need to be so

large because of the weak optical confinement of the InP-based laser and Si-based

waveguide evanescently coupled pair. Additionally, the cavity needs to be long to

compensate for the fact that the optical mode only partially overlaps the quantum

well gain region [19]. Due to its use of end-fire coupling, no long coupling regions,

like those seen in evanescent approaches, are required for the MIT laser on silicon.

Thus, the MIT integrable devices can be kept rather compact. Figure 7-1 shows the

comparative footprints of the two integration structures.

The MIT integration approach is more flexible with regards to the variety of de-

vices that can be integrated than is the Intel/UCSB approach. Since fully processed

MIT devices are assembled like building blocks (by metal-to-metal bonding), it is not

necessary to tailor the silicon based waveguide composition every time a new type of

device is integrated. One could imagine, integrating lasers operating at a number of

wavelengths, as well as photodetectors, and amplifiers with the MIT approach. Cou-

pling to silicon-based waveguides could be tailored by making use of tapers and other
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Intel/UCSB Laser integrated MIT Laser integrated with
with Waveauide Wavequide

300 pm

Figure 7-1: Schematic detailing the comparative size of the Intel/UCSB Racetrack

laser and the MIT laser integrated with a dielectric waveguide[12].

coupling regions on the specific device being integrated without making adjustments

to the silicon-based waveguides.

The MIT approach allows individual building blocks (i.e., individual lasers in

this work) to be assembled. It is uncertain if it is practical for individual lasers to be

integrated with the UCSB/Intel technique due to the requirements of the long oxygen

assisted plasma bonding step.

The MIT approach allows the cavity length of the edge emitting lasers to be

precisely controlled. The micro-cleaving process used to form the facets already has

been used to create batches of 300 um long edge-emitting lasers with a standard

deviation in lengths of less than 1.25 pm. Strategies have been suggested in this

thesis to improve this precision even more. For instance, by incorporating thin non-

crystalline materials, like metals, on top of the semiconductor in the region between

the micro-cleave bar pattern notches, cleaving can be prevented in areas where it is

not desired. It is uncertain how well the Intel/UCSB cavity length can be controlled

but it's assumed that a typical length variation of approximately +/- 10 pm is likely

seen.

There are a number of qualities that both lasers share. First, both laser fabrication

processes can be tailored to produce the highest quality laser diodes incorporating

current confinement structures, for instance. Second, both lasers are extremely thin,

approximately 5 ypm thick in the case of the MIT laser, and thus common dielectric
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layers routinely deposited in industry can be used to planarize the integrated chip

and allow for post-integration processing of the devices.

7.2 Future Directions

This achievement of electrically pumped, continuous-wave lasing on silicon opens the

doors for significant future work. This work could be divided into four main areas,

device improvements, micro-cleaving improvements, integration with other optoelec-

tronic components, and new integrable devices.

Device Improvements

The laser realized in this thesis was a simple ridge laser device and a rudimentary

process technology was used to create the devices. Therefore, a large number of

device improvements could likely be made. Along these lines, state of the art designs

that incorporate current confinement structures, could be executed. These design

improvements would likely result in lower threshold operation and extend continuous-

wave laser operation to even higher temperatures than 55 'C.

Second, moving the process to a higher quality fabrication facility would likely re-

sult in significant performance improvement. As an example, the n-type and p-type

laser ohmic contacts in this development work had contact resistivities on the order

of 10- 5 Q cm 2 and 10- 4 Q cm 2, respectively. This is more than an order of magnitude

worse than is readily achieved in industry. Another possible process improvement is

the conversion of the ridge patterning process from a combination of contact lithog-

raphy and wet etching3 to high resolution photolithography and anisotropic semi-

conductor dry etching. Doing this would enable narrower ridges and significantly

lower threshold lasers. Incorporating high reflectivity facet coatings would also result

in improved laser performance. Right now the facet reflectivity is less than 30%,

so there is a significant amount of improvement that could be made here. Process-

ing larger samples than the 1 cm 2 area samples used in this development work would

3 Wet etching typically offers much worse dimensional control than dry etching.
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lend itself to more uniform results and larger batches of devices to conduct integration

experiments.

Micro-cleaving Improvements

Improvements to the micro-cleaved process could be made that allow for the realiza-

tion of narrower micro-cleave bar notches. As was pointed out in Chapter 5, micro-

cleaving bars with notches in the 5.5 ym to 7.5 pm width range result in micro-cleaved

cavity length precision of nearly 1.25 ym. It remains to be seen whether narrowing

these notches further would have beneficial consequences, but with better fabrication

equipment at our disposal, a study of the effect of narrowing the notches could be

carried out. Furthermore, a thorough analysis of the micro-cleaving could be carried

out. This analysis would ideally include studies of the frequency of the ultrasonic

agitation, the effect the liquid solution plays on the micro-cleaving process, and the

intensity of the agitation process. Along these lines, it would be interesting to develop

a theoretical model for the micro-cleaving process and use this model as a tool for

improving the process. Possibly, one could model the micro-cleaving bar as a reso-

nant system and tailor the length of the bar, and the location of the notches with the

applied drive frequency and amplitude.

Moreover, studies on the geometries of the bar and notch geometry should be

carried out to see not only how narrow the notches can be made, but also how deep

they can penetrate in toward the ridge structure. It would also be very interesting

to further investigate the use of patterned thin films of non-crystalline material, such

as metals, and study if these materials can help precisely locate cleaving locations

without the need for deep semiconductor etching in narrow notch regions.

The micro-cleaving process has been shown to be very capable of producing 300

pm long devices. It would really be interesting to see how short devices could be made

using this micro-cleaving technique. Allowing for an even more reduced footprint and

more efficient use of material, this could have very significant implications in terms of

integration. It would also be instructive to investigate how long a device can be made

using this micro-cleaving process before effects like warping make it impractical.
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Integration with other Optoelectronic Components

With regards to integration, work related to the design and optimization of the cou-

pling between a ridge laser platelet on silicon and a dielectric waveguide is a logical

next research effort. Integration work would be significantly aided by improvements

in the ridge laser fabrication process. For instance, the ability to pattern very narrow

semiconductor ridges, which enable single lateral mode operation, would be useful.

Also, the investigation of gap fill materials between a ridge laser platelet facet and a

dielectric waveguide facet should be undertaken.

In terms of assembly, a great deal of work could be done on the demonstration of

magnetically assisted statistical assembly (MASA), the integration technique theoret-

ically described in Chapter 6. Some basic experiments filling recesses and measuring

the magnetic force have been done, but a thorough set of assembly experiments have

yet to be carried out. Graduate student Diana Cheng is researching MASA now and

will be carrying out the desired assembly experiments.

New Integrable Devices

Finally, the process technology developed in this thesis could be extended to other

optoelectronic building blocks. For example, semiconductor optical amplifiers (SOA)

would be a logical choice for the extension of this technology. The epitaxial layer

structure for an integrable SOA should be much like that of the integrable laser

and thus the process to make these SOAs should be very similar as well. The only

foreseeable complications for the integrable SOA are with regards to the device length

and facet requirements. The SOA would likely need to be significantly longer, at least

two or three times the length of the ridge lasers described in this thesis, to provide

the gain necessary to make its integration worthwhile. Recalling the device warpage

which was seen with the ridge lasers, it is reasonable to expect worse warpage with

the much longer SOAs. This warpage could be combatted by making the devices

wider and slightly thicker to reduce the discrepancy in dimensions. It is understood

that to make it most attractive for integration, the device should be kept relatively
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thin, so the main dimension that could be adjusted to lessen the warpage is the

width. Regarding the facet requirements of the SOA, it is acknowledged that the

facet reflectivity must be kept sufficiently low so that light can be both coupled into

and out of the device. However, the facet must also be smooth so as to minimize

loss. Therefore, micro-cleaving would still be a good approach to define the facets,

but instead of forming the facets orthogonal with the ridge, it would be optimal to

form them at angle of approximately 70 off axis from the ridge. This requirement

would therefore affect the alignment of the facet to the wafer flat and would likely

mandate the use of a dry etch process to etch the semiconductor ridge.
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Appendix A

Conventionally Cleaved Ridge

Laser Process Flow

InP-based Laser (Conventionally Cleaved) Process Flow (Page 113)

Sample Number:

Date:

100 Start with InP wafer upon which InP-based laser structure has been grown

Cleave substrate, Solvent Clean, N2 Blow Dry
200 -- Starting with a (100) InPw afer, cleave rectangular bars so that

the long side of the rectangular is perpendicular to the wafer flat

Stripe Photolithography
-- AZ5214E (Image Reversal) Static dispense, 2k rprm, 35 sec total Scrape edge bead at
-- Oven Bake 90 C, 30 minutes or cleave at comers

300 -- Exposure 45sec (incl. 4 sec rarpup, 2.8-3 mW/crr?) - High Res Aligner w ith long wavelength filter before exposure to
-- Hotplate Bake 105 C, 52 sec enable high res litho
-- Flood Exposure 2.7 min Broadband Aligner
-- Develop 60 sec (AZ422)

400 Native Oxide Strip
-- (7:1 Buffered Oxide Bch) No agitation 8-10 sec, D01 O0 rinse, N Blow Dry

P-type Ohmic Contact Metal Deposition
500 -- Base Pressure - 104 torr, Dep Pressure < 6x10Q torr

-- Ebeam Evap. Ti(300A)IPt(200A)YAu(2500A)
600 Metal Liftoff Process

-- Acetone, slight agitation

Figure A-i:
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InP-based Laser (Conventionally Cleaved) Process Flow (Page 213)

Sample Number:
Date:

700 Ohmic Contact Anneal
-- RTA, 15 min > 3 scfh forming gas (95% N2, 5% H,) flow; 30 sec 385 C, forming gas flow

Verify Ohmic Contact Electrically
-- HP Semiconductor Parameter Analyzer/Probe Station

Solvent Clean, N2 Blow Dry, 130 C Oxen Bake
Semiconductor Ridge Etch
A.) 200 nm InGaAs etch Stir 6.5 min, Room Temperature, Etch Time < 20 sec

-- BEchant 1:1:20 HSO4 : 0,O : -LO --> Etch rate > 450 nmfmin

B.) WIcroscope hInspection
C.) 1.5 urn InP Etch HCI: During Etch No agitation, Etch Time < 15 sec
-- Etchant Conc. HCO (37%) --> Etch rate > 5.8 umrrmin, Etch InP substrate - 6.8 urn'min

D.) Mcroscope hspection
Profilometry (accurate measure of ridge height)
-- CMSE Profilometer

Solvent Clean, N2 Blow Dry, 130 C Oven Bake
Planarization Layer 1 (BCB) Deposit
-- AP3000 Static Dispense, 300 rpm (5 sec), 2-3k rpm (20 sec)
-- Hotplate Bake 100 C, 5 min

-- BCB Static Dispense, 500-750 rpm (5 sec), 3k rpm (25 sec) - 1.3 um thickness
-- Hotplate Bake 100 C, 1 min

Planarization Layer 1 (BCB) Cure
-- EtIL Furnace - Put Samples in at T < 100 C, Close end of furnace
-- Flow • (>20 scfh) for 30 min
-- Ramp Temp up to 210 C, Set N flow down to - 5-15 scfh
-- 40 nin at 210 C
-- Ramp down temp

Planarization Layer 2 (BCB) Deposit
-- BCB Static Dispense, 500-750 rpm (5 sec), 2k rpm(25 sec)
-- Hotplate Bake 100 C, 1 min

Planarization Layer 2 (BCB) Cure
-- EML Furnace - Put Samples in at T< 100 C, Close end of furnace
-- Flow N' (>20 scfh) for 30 min
-- Ramp Temp up to 250 C, Set N, flow down to - 5-15 scfh
-- 60 min at 250 C
-- Ramp down temp

Planarization Layer (BCB) Etch
-- EML Plasmatherm Chamber Clean (30 sccm 02, 45 rmtorr, 250W, 35 rin) -- no samples
-- MPl Rasmatherm Chamber Season (15 sccm SF., 90 sccm 0, 150W, 15 min)
-- EBL Rasmatherm BCB Etch (15 sccm SF,, 90 sccrnm 0,, 150W) - Short etches and inspection.
-- CMSE Profilometer/Bectrical Probe Station to determine etch endpoint

Electrically Verify BCB Removed from Metal
-- HP Semiconductor Parameter Analyzer/Probe Station

Solvent Clean, N2 Blow Dry, 100 C Hot Plate Bake

Figure A-2:
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If InGaAs etch results
look spotty, etch a few
sec more, agitate
slightly. If InP etch
results look spotty,
etch a few sec more,
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of the sample. Pour
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InP-based Laser (Conventionally Cleaved) Process Flow (Page 313)
Sample Number:

Date:

Done? Step Process Description Notes:
Top Large Area Contact Photolithography
-- NR1-3000P (Negative Resist) Static dispense, 2.5k rpm, 37 sec total
- Hotplate Bake 150 C, 135 sec

2000 -- Exposure 45 sec high res aligner
-- Hotplate Bake 100 C, 180 sec
-- Develop 40 sec (RD6)

Top Large Area Contact Metal Deposition
2100 -- EML Ebeam Evaporator

- Cr(250A)/Au(3250A)
2200 Metal Liftoff Process

-- Acetone, slight agitation

BCB Etch
- EML Plasmatherm Chamber Clean (30 sccm 02, 45 mtorr, 250W, 35 min)

2300 - EML Plasmatherm Chamber Season (15 sccm SF', 90 sccm O, 150W, 15 min)
-- EML Plasmatherm BCB Etch (15 sccm SFs, 90 sccm 0,, 150W) - Short etches and inspection.
- Etch until no BCB outside of metal contact area

Protective Layers Deposited on Sample Frontside
2400 -- AZ4620 Static Dispense, > 2 k rpm, 80 sec total

- Oven Bake 90 C, 70 minutes
Mount Laser piece on a silicon carrier substrate

2500 - Cleave a Silicon piece that will act as the carrier substrate
-- a.) Melt wax on silicon piece (hotplate T - 120 C).

b.) Mount laser face down in melted wax.

2600 Scrape PR/Wax from the edge and backside of the laser substrate
2700 InP Substrate Thinning

-- Concentrated HCI (37%) - 8-10 umknin --> Thin substrate to around 150 um or so; Thus, etch 20-25 min
Backside N-type Ohmic Contact Metallization

2800 -- Base Pressure - 10"4torr, Dep Pressure < 6x10 6torr
-- Ebeam Evap. Ni(50A)/Au(100A)/Ge(600A)/Au(900A)~Ni(300A)/Au(1750A)

2900 Metal Liftoff Process
-- Acetone room temperature (or Microstrip 2001, 85 C) slight agitation

Detach Laser from Carrier Silicon wafer
3000 -- Trichioroethylene solution removes apiexzon wax

-- Acetone, Methanol, Isopropanol rinse, Nz blowdry

Figure A-3:
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Appendix B

Micro-cleaved Ridge Laser Process

Flow
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InP-based Laser Microcleaving Process Flow (Page 1/4)

Sample Number:
Date:

200

300

400

500

600

700
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900
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1200
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1400

1500

Figure B-1:
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Start with InP wafer upon which InP-based laser structure has been grown
Cleave substrate, Solvent Clean, N2 Blow Dry
-- Starting w ith a (100) InPwafer, cleave rectangular bars so that

the long side of the rectangular is perpendicular to the wafer flat
Stripe Photolithography
-- AZ5214E (Image Reversal) Static dispense, 2k rpm, 35 sec total
-- Oven Bake 90 C, 30 minutes

-- Exposure 45sec (incl. 4 sec rampup, 2.8-3 rmW/cnr) - High Res Aligner with long wavelength filter
-- Hotplate Bake 105 C, 52 sec
-- Flood Exposure 2.7 rrin Broadband Aligner
-- Develop 60 sec (AZ422)

Native Oxide Strip
-- (7:1 Buffered Oxide Etch) No agitation 8-10 sec, DI l-O rinse, N2 Blow Dry

P-type Ohmic Contact Metal Deposition
-- Base Pressure - 10- torr, Dep Pressure < 6x10 6 torr
-- Ebeam Evap. Ti(300A)/Pt(200A)/Au(2500A)

Metal Liftoff Process
-- Acetone, slight agitation

Ohmic Contact Anneal
-- RTA, 15 rnin > 3 scfh forning gas (95% N, 5% -) flow; 30 sec 385 C, forming gas flow

Verify Ohmic Contact Electrically
-- HP Semiconductor Parameter Analyzer/Probe Station

Solvent Clean, N2 Blow Dry, 130 C Oven Bake
Stripe Positive Photolithography (Mask Set 3, Mask b)
-- HMDS Static Dispense, > 3k rpm, 45 sec total
-- Oven Bake 130 C, 10 minutes
-- OCG-825 20CS (Standard PoFbsitive Resist) Static dispense, 3k rpm, 40 sec total
-- Oven Bake 90 C, 30 min
-- Exposure 0.55 rrmin (incl. 4sec rampup, 2.8-3 rmW/crr) High Res Aligner with long wavelength filter
-- Develop 80 sec (934 1:1)

-- Pbst-exposure oven bake (130 C) 3.5 min
Semiconductor Ridge Etch

A.) 200 nm InGaAs etch Stir 6.5 min, Room Temperature, Etch Time < 20 sec
-- Etchant 1:1:20 H-SO4: -10 : - HO --> Etch rate > 450 nrnmnin

B.) Mcroscope inspection

C.) 1.5 um InP Etch HCI : During Etch No agitation, Etch Time < 15 sec
-- Etchant Conc. HO (37%) --> Etch rate > 5.8 urrnnin, Etch InP substrate - 6.8 umfmin

D.) Microscope inspection
Photoresist Strip
-- Mcrostrip 2001, 85 C, 15 nin

Profilometry (accurate measure of ridge height)
-- CMSE Prof ilometer

Solvent Clean, N2 Blow Dry, 130 C Oven Bake
Planarization Layer 1 (BCB) Deposit
-- AP3000 Static Dispense, 300 rpm (5 sec), 2-3k rpm (20 sec)
-- Hotplate Bake 100 C, 5 nin

-- BCB Static Dispense, 500-750 rpm (5 sec), 3k rpm (25 sec) - 1.3 umthickness
-- Hotplate Bake 100 C, 1 min

Scrape edge bead at
or cleave at comers
before exposure to
enable high res litho

If InGaAs etch results
look spotty, etch a few
sec more, agitate
slightly. If InP etch
results look spotty,
etch a few sec more,
agitate slightly.

Make certain no BCB
gets on the backside
of the sample. Pour
BCB only in center of
sample, not at edges.



InP-based Laser Microcleaving Process Flow (Page 214)

Sample Number:
Date:

1600

Planarization Layer I (BCB) Cure
-- E&L Furnace -Put Samples in at T < 100 C, Close end of furnace
-- Flow N (>20 scfh) for 30 min
-- Ranp Terp up to 210 C, Set N2 flow down to -5-15 scfh
-- 40 min at 210 C

-- Ramp down temp

Planarization Layer 2 (BCB) Deposit
-- BCB Static Dispense, 500-750 rpm (5 sec), 2k rpm (25 sec)
-- Hotplate Bake 100 C, 1 min

Planarization Layer 2 (BCB) Cure
-- EML Furnace - Put Samples in at T < 100 C, Close end of furnace
-- Flow N, (>20 scfh) for 30 min
-- Ramp Temp up to 250 C, Set NI flow down to - 5-15 scfh
-- 60 min at 250 C

-- Ramp down temp

Planarization Layer (BCB) Etch
-- EML Plasmatherm Chamber Clean (30 sccm 0,, 45 rtorr, 250W, 35 min) -- no samples
-- EMPl Rasmatherm Chamber Season (15 sccm SF,, 90 sccm 0, 150W, 15 min)
-- EM RPlasmatherm BCB Bch (15 sccm SF,, 90 sccm 0,, 150W) - Short etches and inspection.
-- CMSE Profilometer/Bectrical Probe Station to determine etch endpoint

Electrically Verify BCB Removed from Metal
-- HP Semiconductor Parameter Analyzer/Probe Station

Solvent Clean, N2 Blow Dry, 100 C Hot Plate Bake

Top Large Area Contact Photolithography
-- NR1-3000P (Negative Resist) Static dispense, 2.5k rpm, 37 sec total
-- Hotplate Bake 150 C, 135 sec
-- Exposure 45 sec high res aligner
-- Hotplate Bake 100 C, 180 sec
-- Develop 40 sec (RD6)

Top Large Area Contact Metal Deposition
-- EVL Ebeam Evaporator
-- Cr(250A)/Au(3250A)

Metal Liftoff Process
-- Acetone, slight agitation

BCB Etch
-- EvL Pasmatherm Chamber Clean (30 sccrnm 0, 45 mtorr, 250W, 35 min)
-- ElL Plasmatherm Chamber Season (15 sccm SF,, 90 sccm 02, 150W, 15 min)
-- EML Plasmatherm BCB Bch (15 sccm SF,, 90 sccm 02, 150W) - Short etches and inspection.
-- Bch until no BCB outside of metal contact area

Solvent Clean, N2 Blow Dry, 100 C Hot Plate Bake

SiO 2 Hardmask Deposited x 3 -> resulting in total SiO2 thickness > 500 nm
-- 30 min SiO, dep dummy run to ensure target is ready to dep. SiO, and chuck is encapsulated
-- SiO, Sputter Deposited.

Pbe < 2x104 torr, 60 sccmAr, 300 W RF FPw er, 85 min (- 2 nrnrmin)
Film etrics SiO2 thickness (thick of SiO2 on Si dummy)

Solvent Clean, N2 Blow Dry, 100 C Hot Plate Bake

Figure B-2:
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Rest sample on the
backside of a Si wafer.
to prevent sticking.

Make certain no BCB
gets on the backside
of the sample.

Rest sample on the
backside of a Si wafer.
to prevent sticking.

Include dummy Si with
BCB samples around
edge of EEL sample
to minimize edge etch
effects.
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InP-based Laser Microcleaving Process Flow (Page 3/4)

Sample Number:
Date:

Microcleave Photolithography
-- HMDS Static Dispense, > 3k rpm, 45 sec total
-- Oven Bake 130 C, 10 minutes
-- OCG-825 Static dispense, 3k rpm, 35 sec total
-- Oven Bake 90 C, 30 minutes

-- Exposure 10sec (incl. 4 sec rampup, 2.8-3 mWl/crr) Broadband OR 0.55 nin High Res Aligner
-- Develop 55 sec (934 1:1)

SiO2 Hardmask Etch x3
-- (7:1 Buffered Oxide Bch), No agitation, > 6 rrin

Photoresist Strip
-- Dimethyl Suffoxide, 85 C, 15 rnin, 350 rpm magnetic stirrer agitation

Profilometry (accurate measure of step height before etching)
-- CMSE Profilorneter

InP Microcleave Etch
- Lincoln Lab ICP Etch (0.5 sccm %C, 0.5 sccm SiCL4, 10 sccrn Ar)
-- Take out after short etches and P10 step heights
-- ~ 265 nnrrmin through the heterostructure device

Profilometry to determine etch depth
-- CMSE P10

InP Wet etch dip to bottom etch stop layer
-- HCI (37%) 5-10 sec

Profilometry to determine etch depth
-- CMSE P10

SiO2 Hardmask Strip
-- (7:1 Buffered Oxide Etch) No agitation 2 nin

Electrically Verify All Dielectric has been removed from metal surface
-- HP Semiconductor Parameter Analyzer/Probe Station

Protective Layers Deposited on Sample Frontside
-- Waferbond Static Dispense, > 2 k rpm, 20 sec total
-- Hotplate Bake 110 C, 1.5 minutes

Bond Laser piece to a silicon carrier substrate
-- Cleave a Silicon piece that w ill act as the carrier substrate
-- a.) Pump down chamber for - 1.5 min, b.) Turn off vacuum, c.) Open N, to a pressure of -22 psi

d.) Flow forming gas. e.) Rarrmp-up temp to 160 C for - 6 min
Removal of WaferBond Polymer from the edge and backside of the laser substrate
-- Immersion in WaferBond removal solution, Room Temperature, time - 20 sec
-- Spray rinse in isopropanol to w ash off removal solution

InP Substrate Removal
-- Concentrated HCI (37%) - 8-10 umrrnin --> Around 46-52 nin etch duration

Partial Etch of InGaAs etch stop layer
A.) 200 nm InGaAs etch Stir 6.5 min, Room Temperature, Etch Time < 20 sec
-- Etchant 1:1:20 ,-SO,: ,0, : :FO --> Etch rate> 450 nnmmin

B.) Mcroscope inspection

Stop just short of the
bottom etch stop layer

Figure B-3:
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InP-based Laser Microcleaving Process Flow (Page 4/4)

Sample Number:
Date:

Backside Ohmic Photolithography
- NR1-3000P Static Dispense, 3k rpm, 37 sec total
-- Hotplate Bake 100 C, 2 nin

4500 -- Exposure 45-52 sec high res aligner
-- Hotplate Bake 100 C, 3 rin
-- Develop 60 sec (RD6)
-- Mcroscope inspection

4600 Native Oxide Strip
- (7:1 Buffered Oxide Etch) No agitation 8-10 sec, DI I-O rinse

Backside N-type Ohmic Contact Metallization
4700 -- Base Pressure - 10" torr, Dep Pressure < 6x10 " torr

-- Ebeam Evap. Ni(50A)/Au(100A)/Ge(600A)/Au(900A)/N(300A)/Au(1750A)

4800 Metal Liftoff Process
-- Mcrostrip 2001, 85 C, slight agitation

Bars released from Carrier Substrate
-- Sample turned upside dow n and layed on a Teflon substrate that is immersed in

4900 WaferBond removal solution, Room Temperature, time - 2.5 min no disturbance sec
-- Lift sample up slightly after this 2.5 min to see if the laser bars are coming loose. Allow sarple

to remain in solution for another few minutes

-- Remove Carrier substrate, just leaving released bars. Pppette out Waferbond removing solution.
-- Pipette isopropanol into glassw are to allow pills to rinse

Bars of Laser are microclealed
-- Isopropanol solution containing bars of connected lasers is stimulated ultrasonically

5000 -- Mcroscope inspection of pills sitting in solution
-- Ultrasonically agitate more as needed
-- Pipette out isopropanol

-- Allow teflon piece upon which the micro-cleaved devices now rest to dry in the fume hood

Figure B-4:
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Appendix C

Process Recipes

C.1 Lithography Process Recipes

1.) Standard Positive Photoresist (OCG-825) Lithography

i.) Solvent Clean (Acetone, Methanol, Isopropanol, N2 blow dry)

ii.) Pre-bake: Oven Temp = 200 0C, time = 10 min

iii.) HMDS Coating: Static Dispense, 30 sec at 4000 rpm

iv.) Bake: Oven Temp = 130 0C, 10 min

v.) Photoresist Coating: Static Dispense, 5 sec at 750 rpm

then 30 sec at 3000 rpm

vi.) Softbake: Oven Temp = 90 0C, 30 min

vii.) Exposure: Karl Suss MJB3 Contact Aligner, 4.5 sec

viii.) Develop: 934 1:1 solution, 105 sec

2.) Thick Positive Photoresist (AZ4620) Lithography

i.) Solvent Clean (Acetone, Methanol, Isopropanol, N2 blow dry)

ii.) Pre-bake: Oven Temp = 200 0C, time = 10 min

iii.) HMDS Coating: Static Dispense, 30 sec at 4000 rpm

iv.) Bake: Oven Temp = 130 0C, 10 min

v.) Photoresist Coating: Static Dispense, 10 sec at 1500 rpm,

then 60 sec at 3000 rpm, then 10 sec at 5000 rpm
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vi.) Softbake: Oven Temp = 90 'C, 60 min

vii.) Exposure: Karl Suss MJB3 Contact Aligner, 24 sec

viii.) Develop: AZ 440 solution, 150 sec

ix.) Hardbake: Oven Temp = 90 0C, 30 min

3.) Image Reversal Photoresist (AZ5214E) Lithography

i.) Solvent Clean (Acetone, Methanol, Isopropanol, N2 blow dry)

ii.) Pre-bake: Oven Temp = 200 0C, time = 10 min

iii.) HMDS Coating: Static Dispense, 30 sec at 4000 rpm

iv.) Bake: Oven Temp = 130 0C, 10 min

v.) Photoresist Coating: Static Dispense, 30 sec at 2000 rpm,

vi.) Softbake: Oven Temp = 90 0C, 30 min

vii.) Exposure: Karl Suss MJB3 Contact Aligner, 14 sec

vii.) Post Exposure Bake: Hotplate Temp = 105 'C, 52 sec

ix.) Flood Exposure: Karl Suss MJB3 Contact Aligner, 2.7 min

x.) Develop: AZ 422 solution, 60 sec

4.) Thick Negative Photoresist (NR7-3000P) Lithography

i.) Solvent Clean (Acetone, Methanol, Isopropanol, N2 blow dry)

ii.) Pre-bake: Oven Temp = 200 0C, time = 10 min

v.) Photoresist Coating: Static Dispense, 10 sec at 1500 rpm,

then 60 sec at 3000 rpm, then 10 sec at 5000 rpm

vi.) Softbake: Oven Temp = 90 0C, 60 min

vii.) Exposure: Karl Suss MJB3 Contact Aligner, 24 sec

viii.) Develop: AZ 440 solution, 150 sec

ix.) Hardbake: Oven Temp = 90 0C, 30 min

5.) Thin Negative Photoresist (NR1-1000P) Lithography

i.) Solvent Clean (Acetone, Methanol, Isopropanol, N2 blow dry)
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ii.) Pre-bake: Oven Temp = 200 0C, time = 10 min

v.) Photoresist Coating: Static Dispense, 10 sec at 1500 rpm,

then 60 sec at 3000 rpm, then 10 sec at 5000 rpm

vi.) Softbake: Oven Temp = 90 0C, 60 min

vii.) Exposure: Karl Suss MJB3 Contact Aligner, 24 sec

viii.) Develop: AZ 440 solution, 150 sec

ix.) Hardbake: Oven Temp = 90 0C, 30 min

C.2 Etching Process Recipes

C.2.1 Reactive Ion Etching

Tool: EML Plasmatherm Waf'r Batch 700D

1.) Material: GaAs/AlGaAs

a.) Recipe 1

Gas Flows: 12 seem BCI3, 30 seem Ar, 5 seem

Ar Pressure: 15 mtorr

Power: 200 W

Etch Rate: 320 - 375 nm/min

Comments: Very fast etch results in some lateral etching. Lateral etching

should be able to be decreased by reducing BCl3 flow.

b.) Recipe 2

Gas Flows: 12 seem BCl3

Pressure: 10 mtorr

Power: 250 W

Etch Rate: 80-100 nm/min

Comments: For deep etches (i.e., deeper than a couple of microns), problems

are encountered with the etch products building up, the etch rate
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slowing down, and further etching being ultimately prevented.

2.) Material: SiO2

a.) Recipe 1

Gas Flows: 25 sccm HC23

Pressure: 20 mtorr

Power: 250 W

Etch Rate: 20 nm/min

Comments: Etch rate is for the PECVD SiO2 with a refractive index of 1.41.

b.) Recipe 2

Gas Flows: 20 sccm HC14 (CF 4)

Pressure: 25 mtorr

Power: 300 W Etch

Rate: 35 nm/min

Comments: Etch rate is for the silicon rich PECVD deposited SiO2.

3.) Material: Cyclotene Benzocyclobutane (BCB)

Gas Flows: 15 sccm SF6, 90 seem 02

Pressure: mtorr

Power: 150 W

Etch Rate: 35 nm/min

Comments: BCB was fully cured at 250 0C for 60 minutes.

Tool: Lincoln Lab SAMCO ICP

1.) Material: InP/InGaAs/InGaAsP

Gas Flows: 0.5 seem SiC14, 0.5 seem C12, 10 sccm Ar

Pressure: 0.5 Pa

Temperature: 220 'C
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Bias Power: 250 W

ICP Power: 250 W

Etch Rate: 180-250 nm/min

Comments: Sputter deposited SiO 2 hardmask etches at approximately 30 nm/min.

C.2.2 Sputter Etching

Tool: EML Materials Research Corp. 8620 Sputtering system

1.) Material: Gold

Base Pressure: < 2 x 10- 6 torr

Gas Flows: 50 sccm Ar

Power: 150 W

Etch Rate: Sputter etches faster than nickel.

2.) Material: Nickel

Base Pressure: < 2 x 10-6 torr

Gas Flows: 50 sccm Ar

Power: 150 W

Etch Rate: > 12.5 nm/min

3.) Material: Chromium

Base Pressure: < 2 x 10-6 torr

Gas Flows: Argon, 50 sccm

Power: 150 W

Etch Rate: N/A

C.2.3 Wet Etching

1.) Material: GaAs

a.) Recipe 1
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Chemistry: 10:1:1 DI H20 : H20 2 (30%) : H3PO4 (85%)

Temperature: Room Temperature

Agitation: Yes, 400 rpm, magnetic stirrer

Etch Rate: 400 nm/min

Comments: Not AlGaAs/GaAs material selective.

b.) Recipe 2

Chemistry: 1:1 H20 2 (30%) : NH4 0H (30%)

Temperature: Room Temperature

Agitation: Yes, magnetic stirrer

Etch Rate: 5 pm/min

Comments: Not AlGaAs/GaAs material selective.

c.) Recipe 3

Chemistry: 30:1 H20 2(30%) : NH 40H (30%)

Temperature: Room Temperature

Agitation: Yes, magnetic stirrer

Etch Rate: 4 pm/min

Comments: Etches GaAs preferentially over AlAs with a selectivity of greater than 100.

2.) Material: Gold

Chemistry: Transene Gold Etchant GE-8148

Temperature: Room Temperature

Agitation: No

Etch Rate: 300 nm/min

Comments: This etchant does not attack nickel.

3.) Material: Nickel
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Chemistry: Transene Nickel Etchant Type TFB

Temperature: Room Temperature

Agitation: Yes, 400 rpm, magnetic stirrer

Etch Rate: 180 nm/min

Comments: Lateral etching tends to be very significant and the degree

of lateral etching varied considerably over a small sized sample.

This etchant does not attack gold films.

4.) Material: InP

Chemistry: Hydrochloric Acid

Temperature: Room Temperature

Agitation: No

Etch Rate: 6 pm/min

Comments: This etchant does not attack InGaAs.

5.) Material: InGaAs

Chemistry: 20:1:1 H2 0 : H2SO 4 (%) : H20 2(30%)

Temperature: Room Temperature

Agitation: No

Etch Rate: 450 nm/min

Comments: This etchant does not attack InP.

5.) Material: Sputter Deposited SiO 2

Chemistry: 7:1 Buffered Oxide Etchant

Temperature: Room Temperature

Agitation: No

Etch Rate: 100 nm/min

Comments: This etchant does not attack photoresist. Be

sure to bake the photoresist prior to BOE etching as it will
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help prevent lifting off of the photoresist.

5.) Material: SmCo

Chemistry: 500:15 H 20 : HN03

Temperature: Room Temperature

Agitation: No

Etch Rate: 1 pm/min

Comments: This etchant does not attack photoresist.

C.3 Deposition Processes

C.3.1 Plasma Enhanced Chemical Vapor Deposition (PECVD)

Tool: EML Plasmatherm Waf'r Batch 700D

1.) Material: SiO 2 (refractive index, n = 1.4)

Base Pressure: < 4 x 10- 4 torr

Gas Flows: 600 sccm SiH 4 , 300 sccm N20

Temperature: 250 'C

Dep. Pressure 500 mtorr

Power: 25 W

Deposition Rate: 2 pm/hr

C.3.2 Sputter Deposition

Tool: EML Materials Research Corp. 8620 Sputtering system

1.) Material: Chromium

Base Pressure: 1 x 10-6 torr

Gas Flows: 50 sccm
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Ar Power: 300 W

Deposition Rate: N/A

Comments: Clean target for 15 minutes prior to deposition.

2.)Material: Nickel

Base Pressure: 1 x 10-6 torr

Gas Flows: 50 sccm Ar

Power: 350 W

Deposition Rate: 14 nm/min

Comments: Target clean before deposition needed to make sure native

oxide and other contaminants are removed.

3.) Material: Gold

Base Pressure: < 2 x 10- 6 torr

Gas Flows: 50 sccm Ar

Power: 200 W

Deposition Rate: 25 nm/min

Comments: Short target clean prior to deposition needed to

clean target of contaminants.

4.) Material: SiO 2

Base Pressure: < 2 x 10- 6 torr

Gas Flows: 60 sccm Ar

Power: 200 W

Deposition Rate: 2.25 nm/min

Comments: Short target clean prior to deposition needed to

clean target of contaminants.
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C.3.3 Electron-Beam Deposition

Tool: EML E-beam Deposition System

1.) Material: Chromium

Base Pressure: 1 x 10-6 torr

Run Pressure: < 3.5 x 10-6 torr

Current: 50 mA

Deposition Rate: 1-2 A/s

2.)Material: Nickel

Base Pressure: 1 x 10-6 torr

Run Pressure: < 3.5 x 10-6 torr

Current: 100 mA

Deposition Rate: 1-2 A/s

3.) Material: Gold

Base Pressure: < 2 x 10-6 torr

Run Pressure: < 3.5 x 10-6 torr

Current: 120 mA

Deposition Rate: 2-3.5 A/s

4.)Material: Titanium

Base Pressure: 1 x 10-6 torr

Run Pressure: < 3.5 x 10-6 torr

Current: 50 mA

Deposition Rate: 1-2 A/s
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5.)Material: Platinum

Base Pressure: 1 x 10-6 torr

Run Pressure: < 3.5 x 10-6 torr

Current: 225 mA

Deposition Rate: 1.5-2.5 A/s

6.)Material: Germanium

Base Pressure: 1 x 10-6 torr

Run Pressure: < 3.5 x 10- 6 torr

Current: 80 mA

Deposition Rate: 1.5-2.5 A/s

6.)Material: Indium

Base Pressure: 1 x 10-6 torr

Run Pressure: < 3.5 x 10-6 torr

Current: 25 mA

Deposition Rate: 1.5-3.5 A/s

C.3.4 Electrodeposition

1.) Material: Nickel

Solution: Technic Inc. Nickel "S" solution

Anode: Nickel

Current Density: 74 mA/cm2

Temperature: 38 'C

Deposition Rate: 0.342 J nm/s where J is the current density in mA/cm 2
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2.) Material: Cobalt

Solution: 375 g/1 CoC12 6H 20, 37.5 g/l H3BO 3, pH 3.6

Anode: Cobalt

Current Density: 20 mA/cm2

Temperature: Room Temperature

Deposition Rate: 7.02 nm/s

2.) Material: Gold

Solution: Technic Inc. Techni-Gold 25E

Anode: Platinum Clad

Current Density: 19.4 mA/cm2

Temperature: 60 'C

Deposition Rate: 20.5 nm/s

C.4 Photomask Making Process

i.) Develop: MIF 915 or MIF 917 solution, 80 sec

ii.) DI H20 Rinse and N2 Dry

iii.) Chrome Etch CR7, 80 sec

iv.) DI H20 Rinse and N2 Dry

v.) Visual Inspection

vi.) Chrome Etch CR7, 20 sec or more until complete

vii.) DI H2 0 Rinse and N2 Dry

viii.) Photoresist Strip: Nanostrip (Sulfuric Acid, Hydrogen Peroxide solution), 10 min

230



Appendix D

Magnetic Retention Force

Theoretical Model

D.1 Hard Magnetic Film with Perpendicularly Ori-

ented Magnetization

D.1.1 Array of Squares Pattern

I sinkxxsinkyyA e - k z(z- - g- t) + sin A2-kx -g-) + sinkyyA e - k (z -g-t)

m,odd n,odd

(D.1)

II= sinksinky B(le-k(z- -g-t )

m,odd n,odd

+ C ekz (z- -g-t))

+ sin kx (B 2 e- k x(z- - g - t) + C 2ekx(z - - g - t)) + sin kyy (Bae-k(z- - g - t) SC3eky(z- -g-t)

(D.2)

S= sin ki x sin kyy D e
- kz(z- )

m,odd n,odd

+ sin kyy (D 3 e-kY(z-) + E3 eky(z-))

+ Elekz(z-)) + sin kz (D 2e-k(z- ) + E 2ekx(z-))

(D.3)
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mdd= nodd
m,odd n,odd

sin kx sin kyy (Fl e- kzz + Glekzz)

+ sin kx (F 2 e-kzz + G2ekxz) + sin kyy (F 3 e-kVyz + G3 ekyz ) +Kz] (D.4)

sin kxx sin kyyH1ekz(z+ ) + sin kxxH 2ekx(z+ ) + sin kyyH 3eky(z+2 )]v = E
m,odd n,odd

(D.5)

where k2 = k2 + k2 and Ai, Bi, Di, Ei, Fi, Gi, Hi, and K for i=l to 3 are constants and given

in the Derived Parameters subsection.

Derived Parameters
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D.1.2 Array of Stripes Pattern
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D.2 Hard Magnetic Film with In-Plane Oriented

Magnetization
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