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Abstract

Recovery of buried unexploded ordnance (UXO) is very slow and expensive due to the high
false alarm rate created by clutter. Electromagnetic induction (EMI) has been shown to
be a promising technique for UXO detection and discrimination. This thesis uses the EMI
response of buried targets to identify or classify them.

To perform such discrimination, accurate forward models of buried UXO are needed. This
thesis provides a survey of existing target models: the dipole model, the spheroid model, and
the fundamental mode model. Then the implementation of a new model, the spheroidal mode
model, is described and validated against measurements of a UXO. Furthermore, an in-depth
study of the effects of permeable soil, modeled as a permeable halfspace, is presented. This
study concludes that the discontinuity created by the air to permeable soil interface produces
minimal effect in the response of a buried object. The change is limited to a magnitude
shift of the real portion of the EMI response and can be reproduced by superposition of a
permeable halfspace response on the response of the same object in freespace. Accurate soil
modeling also allows one to invert for soil permeability values from measured data if such
data are in known units. However, the EMI sensor used in this study provides measurements
in consistent but unknown units. Furthermore, the instrument is from a third party and is
proprietary. Therefore, this thesis describes the development of a non-invasive method to
model and calibrate non-adaptive instruments so that all measurements can be converted
into units consistent with modeled data. This conversion factor is shown to be a constant
value across various conditions, thus demonstrating its validity.

Given that now a more complete model of the measurable response of a buried UXO is
implemented, this study proceeds to demonstrate that EMI responses from UXO and clutter
objects can be used to identify the objects through the application of Differential Evolution



(DE), a type of Genetic Algorithm. DE is used to optimize the parameters of the UXO fun-
damental mode model to produce a match between the modeled response and the measured
response of an unknown object. When this optimization procedure is applied across a library
of models for possible UXO, the correct identity of the unknown object can be ascertained
because the corresponding library member will produce the closest match. Furthermore, re-
sponses from clutter objects are shown to produce very poor matches to library objects, thus
providing a method to discriminate UXO from clutter. These optimization experiments are
conducted on measurements of UXO in air, UXO in air but obscured by clutter fragments,
buried UXO, and buried UXO obscured by clutter fragments. It is shown that the optimiza-
tion procedure is successful for shallow buried objects obscured by light clutter contributing
to roughly 20 dB SNR, but is limited in applicability towards very deeply buried UXO or
those in dense clutter environments.

The DE algorithm implemented in this study is parallelized and the optimization results
are computed with a multi-processor supercomputer. Thus, the computational requirement
of DE is a considerable drawback, and the method cannot be used for real time, on-site
inversion of measured UXO data. To address this concern, a different approach to inversion
is also implemented in this study. Rather than identifying particular UXO, one may do a
discrimination between general UXO and general clutter items. Previous work has shown
that the expansion coefficients of EMI responses in the spheroidal coordinate system can
uniquely characterize the corresponding targets. Therefore, these coefficients readily lend
themselves for use as features by which objects can be classified as likely to be UXO or
unlikely to be UXO. To do such classification, the relationship between these coefficients
and the physical properties of UXO and clutter, such as differences in size or body-of-
revolution properties or material heterogeneity properties, must be found. This thesis shows
that such relationships are complex and require the use of the automated pattern recognition
capability of machine learning. Two machine learning algorithms, Support Vector Machines
and Neural Networks, are used to identify whether objects are likely to be UXO. Furthermore,
the effects of small diffuse clutter fragments and uncertainty about the target position are
investigated. This discrimination procedure is applied on both synthetic data from models
and measurements of UXO and clutter. It is found that good discrimination is possible for
up to 20 dB SNR. But the discrimination is sensitive to inaccurate estimations of a target's
depth. It is found that the accuracy must be within a 10 cm deviation of an object's true
depth.

The general conclusion forwarded by this work is that while increasingly accurate discrim-
ination capabilities can be produced through more detailed forward modeling and application
of robust optimization and learning algorithms, the presence of noise and clutter is still of
great concern. Minimization or filtering of such noise is necessary before field deployable
discrimination techniques can be realized.

Thesis Supervisor: Bae-Ian Wu on behalf of Jin Au Kong
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Buried Unexploded Ordnance:

General Introduction

1.1 Motivation

Buried unexploded ordnance (UXO) constitute a class of launched munitions or explosives

which have not detonated and still remain in the ground despite not serving any purpose.

Normally about 5 to 10% of expended munitions are "duds" and do not explode when

deployed [7]. Their continued presence in the soil is dangerous due to the possibility of

future detonation or the leeching of dangerous chemicals into the ground water. At present,

the ability to detect and discriminate UXO with good reliability does not exist. Therefore,

the clean up of land contaminated by UXO is extremely expensive and slow due to a high

false alarm rate. Much of the cost of UXO clean up is expended on the pursuit of these false

alarms [56] which are usually from pieces of metal refuse, shell casings of exploded ordnance,
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or other remnants of civilization. A quick and reliable method to distinguish UXO from

these surrounding clutter objects would be a valuable tool in aiding the clean up process.

Therefore, the ultimate goal of this research is to identify buried UXO through their response

signature or, more generally, distinguish UXO from clutter.

The problem of distinguishing UXO from clutter encompasses many areas of investigation.

Figure 1-1 illustrates the topics of concern when addressing the UXO problem. In broad

terms, one must deal with the UXO target itself, the surrounding soil environment, the

nearby clutter objects, and the sensor in use. For example, signals used to detect a subsurface

object may be reflected by the air-to-earth interface created by the soil or attenuated by the

soil before reaching the target of interest. And nearby objects that are not of interest

may create additional response signals. Large clutter items may be mistaken for UXO and

contribute to false alarms. Small diffuse clutter pieces may distort the target's response.

As a result, there are several key issues that must be addressed and are the focus of each

chapter in this thesis.

1. Chapter 1: What techniques are used to detect buried? What are the benefits and

drawbacks of each?

Given that UXO are buried, a remote detection system must be used to exploit some

measurable response of the target. Since UXO are always metal, electromagnetic phe-

nomenology can be exploited. Several techniques will be discussed, and motivation

will be given for concentrating current research efforts on one of the techniques, elec-

tromagnetic induction (EMI).
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Figure 1-1: This graphic depicts an overview of the relevant areas of interest in UXO inversion

research. Understanding a UXO's response characteristics is not enough to realize a method

to do discrimination in a realistic setting. One must account for the effect of permeable soil

and the influence of both large and small, diffuse clutter. Furthermore, the sensor in use

must be characterized. The complexity of this system makes discrimination a challenging

task.



2. Chapter 2: Are accurate forward models available? To what extent are these models

accurate?

As will be shown, distinguishing UXO from clutter first requires understanding the

characteristics of the detected response for the targets of interest. This requirement can

be fulfilled with forward models that are able to predict the response of targets under

any relevant conditions. What distinguishes the work in this thesis is the inclusion of

environmental effects and the practical implications of utilizing proprietary instruments

to detect buried objects. To this effect, Chapter 2 has three main parts:

(a) Modeling of the UXO target itself: Several forward models have been developed

in the past and the strengths of each are examined. A new model for UXO is

discussed, and its prediction is compared to measurements.

(b) Modeling of the soil: In realistic settings where UXO are buried, the soil may

have a significant contribution to the measurable response of a target. Under-

standing the extent of this effect is necessary before implementing any method

to discriminate or identify buried objects. Previous work on calculating source

and permeable halfspace interaction is discussed. A new approximation for the

response of a halfspace with an embedded target is introduced and validated

through comparison to measurements. Furthermore, soil permeability values are

recovered from measured soil responses.

(c) Modeling of the effect of the sensor: To fully understand UXO and clutter re-

sponses and to distinguish between objects, one must first be able to characterized
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the sensor in use. Given that many UXO detecting instruments are proprietary

and manufactured by third parties [93], part of this research is in developing

a novel method to characterize instruments in a non-destructive manner. This

chapter discusses this development and identifies aspects of sensors which must

be analyzed prior to any identification or classification attempts.

3. Chapter 3: How can a UXO be identified through its electromagnetic response sig-

nature? In other words, how can sensor measurements of a buried object be inverted

to produce the identity of the object?

Once the responses of known objects are sufficiently characterized, one can match

these known signals to the measured response signals of an unknown target in order

to ascertain its correct identity. Identifying each particular target is one method of

distinguishing UXO from clutter. Therefore, this chapter will discuss a new imple-

mentation of a searching and matching algorithm that can identify unknown objects

among a library of possible candidates. The performance of this algorithm on both

measured and synthetic data will be presented.

4. Chapter 4: What key discriminators can be extracted from UXO signatures and used

to distinguish UXO from clutter? How are these features reflected in EMI measure-

ments? What method or algorithm can be used to separate UXO from clutter on the

basis of these key features?

Rather than identifying each particular target, one may be able to extract information

about their physical properties from the received response signal. UXO and clutter
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items are often very physically dissimilar so unknown targets can be recognized as

UXO or clutter on the basis of their distinct physical properties which can be inferred

from the EMI responses. Therefore, this chapter will discuss the spheroidal mode coef-

ficients, which can be extracted from EMI responses. These coefficients can be shown

to be properties of the object and relate to the object's physical characteristics. There-

fore these coefficients are well-suited for use in a classification scheme to discriminate

objects that are likely to be UXO.

1.2 Overview of UXO Detection Techniques

The basis of any detection system is the exploitation of a physical phenomenology of the

target that produces a response. That response may either be passively detected or actively

created. Electromagnetic techniques have a long history of application in remote sensing

and detection of obscured targets [10, 48, 49, 66, 93]. However, there are four principle elec-

tromagnetic techniques generally used in detecting landmines and UXO [38]:

1. Electromagnetic induction (EMI) relies upon the secondary magnetic field created

by induced currents and possibly polarization in the buried target. EMI instruments

can be further subdivided into time domain and frequency domain instruments.

(a) Frequency domain EMI instruments operate at frequencies under roughly

300kHz. As will be discussed in more detail, in this regime the natural envi-

ronment is transparent. These instruments are continuous wave and often incor-



porate complex designs to cancel out "primary" transmitted fields in the vicinity

of the receiver so that only secondary fields are measured.

(b) Time domain EMI instruments saturate the target with a static magnetic pri-

mary field and record any transient response once the primary field is shut off.

One large disadvantage is that instead of querying the object equally at all fre-

quencies like frequency domain EMI instruments, time domain instruments only

provide a response equivalent to an unevenly weighted frequency response of the

object. Very late time transients past 0.01 seconds, corresponding to low fre-

quency responses roughly below 100 Hz, are often poorly represented in time

domain responses. As will be shown, much discriminatory ability can be derived

from the behavior of a target at extremely low frequencies.

2. Ground penetrating radar (GPR) describe frequency domain instruments operat-

ing usually in the range of 50 MHz to about 1000 MHz. While often useful in locating

the depth of UXO targets because GPR can resolve objects on the order of one half

a wavelength, GPR is often hampered by signficant noise due to soil [16, 70]. Even

in only moderately conducting media such as clay or wet soils, GPR often has poor

penetration.

3. Magnetometers are passive instruments which utilize the Earth's natural magnetic

fields and detect the minute perturbations of the fields caused by ferrous objects. These

instruments are therefore only usable on ferrous objects and have limited resolution.

4. Infrared cameras are passive instruments that utilize the different heat transfer
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properties of soil that does and does not contain UXO targets. Thermal contrast can

be seen with such cameras. However, this method is highly dependent on surface

vegetation, time of day, and weather conditions.

While each of these sensing techniques has its proponents within the UXO research

community, the relative transparency of background media when using the EMI method is

highly attractive. Thus, the majority of the research presented in this thesis involves using

frequency domain EMI data to distinguish UXO from clutter.

1.3 EMI Background

When an time varying electromagnetic field interacts with a conducting body, electric cur-

rents will be induced on the target. At higher frequencies for wavelengths on the order of

a meter or less, this activity is confined to the surface and scattering of the incident waves

occurs. The general behavior has been extensively studied [82]. Radar is a common ex-

ample of a useful application of this phenomenon. For electromagnetic waves at very low

frequencies where the wavelengths are on the order of kilometers, the induced currents can

penetrate into imperfectly conducting targets and are called "eddy currents." These eddy

currents create a secondary magnetic field which can be detected by the appropriate sensors.

Furthermore, permeable targets will have a magnetic polarization aligned with the incident

magnetic field.

Detecting the currents and magnetic polarization induced by low-frequency magnetic

fields forms the basis of the electromagnetic induction (EMI) technique which has been
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regarded as a useful tool in UXO detection and discrimination [10, 49]. In this method,

a magneto-quasistatic field of under roughly 300 kHz is transmitted above ground, near

the buried object of interest. This field generates currents in conducting targets and also

magnetic polarization in permeable targets. The currents and possible polarization in the

target produce additional magnetic fields. These induced "secondary" magnetic fields are

picked up by a receiver, often a wire loop. The received signals can then be studied in

the time domain or frequency domain to identify buried objects as UXO or to distinguish

potential false alarms [18,37].

1.4 EMI Formulation and Assumptions

Quasistatic approximations can be shown to be valid under certain conditions. Maxwell's

equations are applicable at all frequencies [50]. From Ampere's Law,

V x H = aE - iwE (1.1)

one can take the curl and apply Gauss's Law and Faraday's Law to obtain

V2H = -iwalH - H (1.2)

for homogeneous media. In all calculations, homogeneous media are assumed. The first term

on the right of Equation 1.2 is the conduction current and the second term is the displacement

current. In the low frequency quasistatic regime, the displacement current can be neglected



in comparison to the much larger conduction current [40,76]. This approximation leads to

the diffusion equation,

V 2 H = -iwapiH. (1.3)

No true waves are generated because iw represents only the first derivative with respect to

time.

It behooves the UXO researcher to then demonstrate that this quasistatic approximation

is indeed accurate for the frequency range of the EMI detection and for the problem at hand.

Generally, there are three media of interest in the UXO problem: air, soil, and the metal

which comprises the target.

1.4.1 Quasistatic Argument for Air

Air is normally regarded as freespace. In freespace, there is no conduction current term.

However, given that top of the EMI frequency range is 300 kHz, the corresponding wave-

lengths of interest are one kilometer or more. In the UXO problem, the typical distances

between sensor and target are on the order of one meter. Thus, over these short distances,

the field is essentially static, and the displacement current can also be ignored. Therefore,

the magnetic fields in air are irrotational with V x H = 0 and can be represented by the

gradient of a scalar potential,

H= -VU. (1.4)



1.4.2 Quasistatic Argument for Metal

In the interior of the spheroid, one can be justified in ignoring the displacement current

and assuming quasistatic conditions because the ratio of conduction current to displacement

current, a/we, is very large for even a worse case scenario: a relatively high EMI frequency of

w = 106 rad/s acting on a moderately conducting object of 105 S/m, typical of some poorly

conducting metals, with c on the order of 10-1 0 F/m. Given that the objects of interest

normally have a - 107 S/m, one can see Equation 1.3, the diffusion equation, is valid.

1.4.3 Quasistatic Argument for Soil

One can demonstrate that the EMI magnetic fields can be considered irrotational even in

slightly conducting media like soil. Soil conductivity is very reasonably assumed to be

a < 10- 2 S/m. Poorly conducting dry soil is on the order of 10- 3 S/m, and a reasonable

lower bound would be 10- 4 S/m [14]. First one can confirm that displacement current

does not exceed conduction current through an examination of the ratio between highest

possible displacement current and lowest possible conduction current. The permittivity of

soil cannot reasonably be expected to exceed a value on the order of 10- ' F/m. And the

highest frequency w of interest is of order 105 rad/s. Even under these extreme conditions,

one can see that displacement current cannot significantly exceed conduction current. At

worst these two values are on the same order.

Next, one can further demonstrate that the conduction current is also negligible. Due

to boundary conditions, the electric field E will be on the same order of magnitude both



inside the conducting target and in the soil immediately surrounding that object. Therefore

the ratio of currents in metal and soil will be approximately equal to the ratio of their

conductivities. Considering that the metal targets of interest have conductivities on the

order of 106 S/m or greater, the relative conduction current even in warm seawater with

a - 25 S/m would still be comparably small [47]. Therefore, in soil, both right hand

terms of Equation 1.2 can be considered zero, producing an an irrotational field that can be

obtained from the gradient of a scalar potential satisfying the Laplace Equation as shown in

Equation 1.4.

While a background medium similar to soil will produce no challenge to the validity of the

quasistatic assumption, this analysis does not fully describe the EMI response of permeable

soil. Even a weakly magnetic soil will create a halfspace response due to the air to soil

interface. Furthermore, the soil to air discontinuity of strongly magnetic soil may interact

with the target. Part of the research presented in subsequent chapters will address the

impact of the soil and any ramifications it may create on distinguishing UXO from clutter.

1.5 The Behavior of UXO Responses to EMI Excita-

tion

A typical EMI response of a metal object to a uniform excitation is shown in Figure 1-2.

The object is a permeable sphere with a = 2 x 106 S/m, radius a = 0.05 m, and p = 100/o0.

In the figure, "I" denotes the response that is in phase with the excitation and "Q" denotes



the response that is in phase quadrature with the excitation. I and Q correspond to the real

and imaginary parts of the secondary field, respectively. In the geophysics convention, the I

term is always plotted so that its sign is reversed.

The trends and characteristics of this plot can be more easily understood by examining the

high and low frequency limits. At near static frequencies, the response is mainly due to the

magnetic polarizability of the object. The response will align itself with the incident magnetic

field and be wholly Inphase. If the object were not permeable, very little response would be

seen at the low frequency end of the EMI spectrum. At the highest frequencies, activity will

be largely limited to surface currents that generate an opposing response as stated by Lenz's

law and again will be entirely Inphase but of opposite sign. At mid-frequencies, the finite

conductivity of the target provides resistance as volume currents circulate within the target

in their attempt to oppose changes in the primary field. Therefore, the secondary magnetic

fields produced by these currents will lag behind the incident magnetic field and produce a

significant Quadrature response.

In the mid-frequency range, there is a frequency where peak Quadrature-implying peak

volume current-occurs. For permeable objects, this quadrature peak is related to a time

constant r where fpeak = 1/(27r). Time constant T is given by T = a2oupt/p~ where ~r =

p/•to. This time constant relates to the exponential decay rate for the fundamental mode

of the sphere when subject to a step down excitation [7, 9]. Therefore, the quadrature peak

can be associated with the lowest dominate decay mode which creates peak volume current

effects. As one can see, much information about the physical characteristics of the target
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Figure 1-2: This graphic shows a typical EMI response. The response is calculated using a

model of a steel sphere. Examining an object's response over frequency provides information

about its physical characteristics which may be used to discriminate UXO from clutter.

can be gained by studying the EMI response as a function of frequency.

An object's EMI response with respect to orientation and position can also be studied.

Figure 1-3 shows the measured Inphase response at 47,970 Hz of the UXO shown in Figure

1-4. All measurements contained in this thesis were conducted by the US Army Cold Regions

Research and Engineering Laboratory (CRREL). All photographs contained in this thesis

are courtesy of CRREL as well. The object is located at the origin with the nose pointed

in the northeast corner. This thesis identifies UXO types by their Aberdeen Test Center

(ATC) number. In Figure 1-4 the UXO is ATC118.

The measurements shown in Figure 1-3 are made by a frequency domain EMI monostatic

.A-3



sensor on a 7 by 7 square grid with 10 cm spacing. The sensor's receiver coil lies within and

in the plane of the transmitter coils. A more detailed discussion of the sensor is provided

in Chapter 2.4. When the instrument is near the UXO, a stronger response is naturally

generated. When the distance between the target and sensor is greater, the response is

much weaker. Despite the object being located at the origin, the peak of the response is

slightly shifted towards the northeast corner. This shift agrees with the known orientation of

the object: when the incident magnetic fields are most aligned with the axis of the UXO, the

strongest response is produced. As this example indicates, studying the response of a UXO

for various positions relative to an EMI sensor can provide some insight into the object's

orientation and location.

It is this study of an object's EMI response as a function of frequency, orientation,

and position which enables one to distinguish between objects or to identify objects. As

will be shown in subsequent chapters, the responses of UXO are often obfuscated by the

environment, sources of noise, and the complexity of the targets themselves. Therefore, as

discussed in the next chapter, modeling of the targets and their surrounding environments

are needed before any discriminatory capability can be assessed.
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Figure 1-3: This graphic shows the Inphase EMI response measured from UXO ATC118. The

measurement was taken with a monostatic EMI sensor. Examining an object's response at

many sensor and receiver positions provides much information about the target's orientation

and location. All measurement data contained in this thesis were obtained by the US Army

Cold Regions Research and Engineering Laboratory (CRREL).

Figure 1-4: This UXO is ATC118. UXO are identified in this thesis by their Aberdeen Test

Center (ATC) number. Photograph is courtesy of CRREL.

I



Chapter 2

UXO, Soil, and Sensor Modeling

2.1 Introduction

The goal of reducing false alarms can be addressed by identifying or classifying buried ob-

jects based on their EMI response. However, to perform such discrimination, forward models

are needed beforehand to predict the secondary magnetic fields produced by targets under

various conditions. Many inversion techniques require some prior knowledge of the target's

response under specific conditions. Normally, it is not financially or logistically feasible to

take measurements of UXO or related targets for every orientation and position of interest.

Therefore, forward models form an integral part of inversion research. Furthermore, accu-

rate forward models of UXO or similarly shaped metal objects form a critical part of the

understanding of their response to EMI stimuli.

What largely distinguishes the work discussed in this thesis from all previous forward

modeling work is the attention to modeling UXO within realistic environments and using
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real instruments. This complete model consolidates the effects of soil and the effect of the

relationship between actual secondary EMI fields and the measured fields as reported by the

sensor. All previous modeling work was limited to modeling targets in freespace. Accurate

modeling of the measured EMI response of buried UXO in realistic environments is comprised

of three key components: the UXO itself, the soil, and the sensor in use.

2.2 UXO and Target Modeling

This section will first provide an overview of pre-existing frequency domain models for canon-

ical shapes and for UXO targets. Then, a new modeling method is introduced and validated

against measured data. These models predict the responses of UXO or canonical shapes in

freespace. The investigation into the effect of permeable soil on a buried object's response

will be discussed in the subsequent section.

2.2.1 Previous Work: Existing Models for Target Object

2.2.1.1 Dipole Model

The tri-axial magnetic dipole model is a well studied and popular model for UXO [10, 99].

The target is assumed to respond like an infinitesimal magnetic dipole. This assumption is

founded on rigorous known physics: the dipole response is more dominant than any higher

order response modes because it decays at a slower rate. This model is widely used mostly

due to its simplicity and low computational cost.

Within the framework of the dipole model, targets are characterized by an infinitesimal
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dipole with a frequency dependent magnetic polarizability tensor M. The magnetic field

response, also known as the secondary field HS, can then be calculated by,

S 3H - IHS(r 3 = rr . (2.1)
4wr3

where

m = M ./ P R  (2.2)

and where HPR is the primary field at the location of the target. The unit vector i and r

denote the direction and distance from the target to the observation point, respectively.

Thus, with prior knowledge of the target's location, of the value of HPR at that location,

and of the value of M over frequency, Equation 2.1 can be used to predict the secondary

magnetic field response in the frequency domain over all observation points. Obtaining an

analytical expression for M is normally difficult except for simple canonical objects like

permeable, conducting spheres. Unlike general objects, a homogeneous sphere will only

produce a dipole response to a uniform primary field. In other words, Equation 2.1 is

complete and accurate in describing the response for such a sphere excited by a uniform

field.

For objects other than a sphere, the corresponding, best fitting M can be found by noting

that Equation 2.1 is a set of linear equations for samplings of HS at multiple receiver posi-

tions. Therefore, one can solve for M given enough data about HS, paired with knowledge

of the location of the target and the value of IPR at that location.
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Figure 2-1: UXO ATC118 has composite geometry and material composition. The hetero-

geneous nature of many UXO makes the dipole model a very poor representation of their

EMI response. Photo courtesy of CRREL.

Solving for the magnetic polarizability tensor of a target in this fashion can be viewed as

falling under the inversion portion of UXO research while solving for HS through Equation

2.1 falls under the domain of forward modeling.

Limitations of the Dipole Model

While the dipole model is suitable for many types of buried targets, it can be shown to be

ill-suited for heterogeneous objects comprised of dissimilar metals. Many UXO objects are

of this nature as shown in Figure 2-1. This UXO is composed of many different metals.

As mentioned, given measurements from non-canonical objects, one can still apply the

dipole model by finding the optimal equivalent polarizability matrix that fits the data. How-

ever, the fitting may be poor, and there is no guarantee that the equivalent polarizability

matrix will be unique for the given target [77]. Arguments have been advanced for model-



ing these heterogeneous objects with two or more independent dipoles [99]. But as shown

in [77], this method is prone to over-fitting data and providing non-unique solutions. The

issue of non-uniqueness in the recovered dipole parameters also creates difficulty in using

these parameters as discriminators in any inversion method. Clearly there is a need for both

more powerful models and more unique object discriminators in UXO research.

2.2.1.2 Spheroid Model

To satisfy the need for a more powerful model, a broadband EMI spheroid model was

developed at Center for Electromagnetic Theory and Applications (CETA) from 1998 to

2004 [3,5,12]. This model predicts the frequency domain EMI responses from metal spheroids

of arbitrary conductivity and permeability values in response to any excitation. Spheroids

are a good approximation for UXO because many UXO are elongated bodies of revolution

and are similar in shape to spheroids.

This model of the EMI response of spheroids is based on using spheroidal coordinate sys-

tem equations characterizing the magnetic fields interior and exterior to the object and then

matching boundary conditions. It is most natural to use the spheroidal coordinate system,

as shown in Figure 2-2, because the surfaces of the spheroids can then be defined with only

one coordinate parameter ( when the spheroidal coordinate system is chosen with the same

foci as those which define the spheroid of interest [34]. The spheroidal coordinate system

is a 3 dimension orthogonal coordinate system, resulting from rotating the two dimensional

elliptic coordinate system about the axis containing the foci.

As previously argued, all magnetic fields exterior to the target can be considered to be
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Figure 2-2: The spheroidal coordinate system. d refers to the interfocal distance. ( indicates

the particular spheroidal surface. 0 is the rotational angle, and rl refers to the distance along

the surface (.
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irrotational for the low frequencies and poorly conducting background media of interest.

Therefore, the primary and secondary magnetic fields outside of the metal object can be

written in terms of the gradient of a scalar potential: UPR() for the primary potential

created by the transmitter and US(rJ for the secondary potential created by the object.

Furthermore, these two potentials can be expressed as a linear superposition of a finite num-

ber of modes, each of which is a solution to Laplace's Equation in the spheroidal coordinate

system:

d 0 001
UPR(1) = E • bpmnPm (7)Pnm()TPm(¢) (2.3)

m=O n=m p=O

d o0 o0 1
uS() = d= E E Bpmn nP(m )Qm Tpm (¢), (2.4)

m=O n=m p=O

where

Tpm( = cos(mO) p = 0 (2.5)
sin(mq) p = 1

and where ' refers to the observation location. Coordinates are defined in terms of ( which

indicates a spheroidal surface and q and € which describe the azimuthal and rotational

positions, respectively. In Equations 2.3 and 2.4, Pn() and Qm() are the associated Legendre

functions of the first and second kind. The parameter d is the interfocal distance of the

spheroidal coordinate system. The different permutations of the summation indices (p, m, n)

indicate the different modes of the equations. For the sake of compactness, one can write

(p, m, n) using one index, each value of which corresponds to one permissible combination
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of p, m, and n. Thus, index j is used for the primary potential, and the index k is similarly

used for the secondary potential. Furthermore, one can represent the associated Legendre

functions and Tpm using the symbols TPR in Equation 2.3 and TkS in Equation 2.4. Using

this notation, Equations 2.3 and 2.4 become Equations 2.6 and 2.7, respectively:

uPR() 2 b jPR() (2.6)

US(s) = Z BkS (). (2.7)
k

The primary and secondary magnetic fields can be obtained by taking the gradient of

Equations 2.3 and 2.4:

#PR(F) = -d b bjVo P R() (2.8)

-~r7) 2 d BIv S(F)•  (2.9)
k

The total magnetic field external to the spheroid can be written as a sum of the primary

and secondary fields, i.e.,

H 1 = PR s = -VuPR - VU S . (2.10)

In the quasi-magnetostatic regime, the magnetic field inside the spheroid satisfies the

vector wave equation,

V x 2 - k222 = 0 (2.11)



where kI = iwU2 P2 for a metal target of permeability pu2 and conductivity o2 . This field can

be expanded using the divergence free vector spheroidal wavefunctions, 1M and N, of the

first kind [34] and which are regular at the origin:

00 00 1
H =A \= \ElAM r(l) q,$) + Ah N() (c2 ( )H = o L-tpMn pmnk(C2; •)- pmn pmn (C2,; •,)

m=O n=m p=O

(2.12)

where

c2 = k2d/2 (2.13)

in which d is the interfocal distance of the spheroid.

Low Frequency: Exact Solution

By solving Equation 2.12 and matching the boundary conditions,

(2.14)

(2.15)

(2.16)

one can solve for Bk of the target once the primary field is specified. Since the primary field

is described as modes associated with bj then Bk can be expanded into Bj . Here k indicates

the response modes for any particular incident mode j. Further discussion of this expansion

H1, = H271

HIO = H2q

pIHIg = p2H2(,



is provided in Section 2.2.2.

There are two limitations to applying this solution [5]. First, the angular and radial

spheroidal wave functions are generally not orthogonal to each other. Therefore, infinite

sets of equations arise when matching the boundary conditions. To deal with this issue,

normally this set of equations is truncated. The truncation point relates to highest order

mode of interest [3].

The second, more pressing limitation is that the radial and angular spheroidal wavefunc-

tions are only readily computed for low frequencies due to numerical instability at higher

frequencies, Therefore, the exact solution for the spheroidal wavefunctions is only available

up to c2 = k2d/2 r 30. The computational limit occurs at lower frequencies for more

elongated spheroids and for highly permeable and conducting spheroids [4]. This limitation

is of great concern since UXO tend to be highly conducting, often highly permeable, and

elongated. Therefore approximations are used at high and mid frequencies.

High Frequency: Small Penetration Approximation

At very high frequencies, calculating the wavefunctions of Equation 2.12 can be avoided by

assuming that all internal fields of the target are only nonzero in a thin layer beneath the

surface. Under this assumptions, the equations governing the tangential components of the

magnetic field at the surface become decoupled and are in the form of differential equations.

The technique was dubbed Small Penetration Approximation (SPA) [3].



Mid Frequency: Asymptotic Expansion of the Spheroidal Wave Function

In the frequency range between the domains where the exact solution and SPA method are

applicable, asymptotic approximations of the angular and radial spheroidal wave functions

are shown to provide less than 5% error for spheroids with aspect ratio of (1/6) < e <

6 when compared to the numerical finite element/boundary integral method [5, 6]. The

implementation of this method for the mid-frequency range completed the broadband forward

model for the EMI response of metal spheroids [5].

2.2.1.3 Fundamental Mode Model

The previously described forward model provides the solution for the canonical spheroid

shape. While it is a good approximation for many targets of interest, real UXO are often

materially heterogeneous and have a more complicated geometry. Numerical models may

accurately describe more complex targets but are too slow to be utilized in many inversion

schemes. In response to the need for accuracy and speed, a model based on the superposition

of analytically specified modes of excitation for specific UXO types was implemented [79]. In

this method, for each unit magnitude spheroidal excitation mode, corresponding to bj, the

response of the target is represented by a number of rings of magnetic charges located on an

auxiliary spheroid surface surrounding the target. The amplitudes of the magnetic charges

for any arbitrary target can be recovered from sufficient measurement data.

Once these charge values are known for an object, future modeling of that particular

target would entail only decomposition of the excitation into a sum of fundamental modes and



summation of corresponding magnetic fields created by charges associated with each mode.

Therefore, this model is very fast. However, this model requires detailed EMI measurements

of every object one wishes to model in order to create the corresponding database of magnetic

charges. Such extensive measurements may not be possible particularly for clutter objects

which encompass a wide range of geometries and materials. Typically the model is limited to

selected items of interest. In this regard, despite the potential accuracy of the fundamental

model model, the spheroid model is not rendered obsolete since it does not depend on

measurements. The spheroid model can produce EMI responses for a wide range of random

spheroid shapes from extremely, long pencil-like prolate spheroids to extremely flat disk-like

oblate spheroids of any arbitrary permeability and conductivity. As will be discussed, one

can also construct assemblages of spheroids to model complex objects. This ability to model

a wide range of objects will be shown to be of great use for inversion schemes based on

machine learning in a subsequent chapter.

2.2.2 Spheroidal Mode Model for UXO

The spheroidal mode model for UXO is a natural extension of the prior research into re-

trieving spheroidal mode coefficients from data [18] and is similar in structure to the fun-

damental mode model. It must be emphasized that the spheroidal mode model is distinct

from the spheroid model. The spheroid model is analytical and only models spheroids. The

spheroidal mode model-though drawn from the analytical framework of the magnetic re-

sponse in the spheroidal coordinate system-is similar to the fundamental mode model in



that its parameters are obtained from EMI measurement data and can model metal objects

of any shape provided sufficient measurements are available. Whereas the fundamental mode

model describes objects using sets of magnetic charges, the spheroidal model model utilizes

the coefficients of the spheroidal modes of the target's response.

In preceding sections, it was shown that in the spheroidal coordinate system, the magnetic

fields exterior to the target can be represented using analytical modes. Suppose only one

unit magnitude excitation mode j is incident on the target. Let H' represent the secondary

field response to that single unit excitation mode j. Then for any arbitrary excitation, the

secondary response is the sum of the response to each unit magnitude mode of the primary

excitation, scaled by the corresponding strength of each excitation mode which is given by

bj. This expansion is shown as the first equivalency in Equation 2.17.

~S~r = C-dS = Z bCj!(rd = b B SV M.)(rs. (2.17)
2 k k

Taking the middle part of Equation 2.17 one step further, one can decompose .S in

the same manner as done for HS in Equation 2.9 to obtain the B" coefficients as given in

the second equivalency of Equation 2.17. These coefficients correspond to the kth mode of

the spheroidal response to the jth mode of the spheroidal excitation. They are independent

of the particular primary excitation used since information about the primary field is in bj

with all position and orientation effects encompassed by V'k S . As a result, for any specific

spheroidal coordinate system defined by the interfocal distance d, axis orientation, and a

chosen origin, the Bi only depend on the physical properties of the target. In addition, it



can be rigorously, mathematically proven that all objects with unique EMI responses also

have unique BM coefficients [3,5]. Obtaining an object's BM coefficients is sufficient to create

a model of its frequency domain response to any form of excitation.

2.2.2.1 Retrieval of Spheroidal Coefficients from Data

The successful recovery of BM from secondary magnetic field data was shown by [18]. The

reader is directed to that reference for detailed discussion. However, it remains beneficial

to understand the general framework by which one can obtain the B' used in this study.

The previous discussion on the spheroid model involved matching boundary conditions and

finding Bj analytically. As shown, this method is difficult even for canonical shapes due to

computational issues.

However, one can understand that Equation 2.17, which relates B3 to the secondary

magnetic field, describes a system of linear equations. Given sufficient measurements of

the magnetic field, HS at varying observation positions, it is possible to solve for B3 in a

least squares manner very similar to how one would recover the diagonal elements of the

magnetic polarizability matrix under the dipole model framework. In matrix form, V' sW

becomes a Mp x Njk size matrix where Mp is the number of measurements available and

Njk is the product of the number of j and k modes required to form an accurate solution.

In theory there are infinitely many j and k modes, but recovering the values of BY requires

the creation of a finite matrix and also, as consequence, the truncation of these modes.

Futhermore, the selection of particular modes one wishes to invert for is also critical. As

discussed in greater detail in [18], attempting to recover higher order modes often leads to
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an ill-conditioned matrix. That reference gives a listing of the lowest order modes which are

j = (0,0,1), (0,0,2), (0,1,1), (1,1,1), (0,0,3), (0,1,2), (1,1,2) and k = (0,0,0), (0,1,1), (1,1,1),

(0,0,1), producing a total of 28 B1 coefficients. These low order modes dominate the solution

and are sufficient to reproduce it [18, 19]. Therefore, all studies presented in this thesis will

be limited to to the aforementioned 28 Bj coefficients.

2.2.2.2 Formation of Model: Synthetic Composite Object

To demonstrate the viability of using Bi recovered from an object's EMI response to make

predictions of the object's response to any arbitrary EMI stimuli, one can compare such

predictions to the predictions made by independently validated models or with measurements

of the target of interest. It is useful to first do this validation with synthetic data before

using measured data.

Modeling of Composite Objects Using the Spheroid Model

A composite object which is half steel, half aluminum, and orientated horizontally as shown

in Figure 2-3 can be modeled through the superposition of the response of a steel spheroid

with an aluminum spheroid. This superposition creates an accurate approximation for the

response of a heterogeneous object when only one component is permeable [72].

The permeable portion has ,u = 100 and a = 2 x 106 S/m. The non-permeable portion

has a = 2 x 107 S/m. Each spheroid is 15 cm long along the major axis and 10 cm long

along the minor axis.

For each spheroid, the secondary fields are calculated for 7 by 7 grids with 10 cm spacing
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Figure 2-3: Plot depicts the orientation and position of the composite object for the calcu-
lated response shown in Figure 2-4. Object position and orientation is fixed for all calcula-
tions and predictions.

on observation planes at 0.35 and 0.45 meters above the target. To mirror the behavior of the

actual measurement sensor in use [93], the transmitter and receiver are modeled as current

carrying coils colocated within the same head. Therefore, all measurements are taken in a

monostatic manner. The particulars of instrument modeling are discussed more throughly

in Section 2.4.

Resolving Bj for each spheroid as given in Equation 2.17 requires calculation of VXF S and

bj. Given that the measurement positions relative to the spheroid location are known, VT Sk

can expressed analytically. The bj coefficients are not analytically known for the excitation

created by a current carrying coil. However, these coefficients can be recovered through

a point matching scheme on an arbitrary spheroidal surface [18]. Note that independent

sets of bj must be recovered for each measurement position given the monostatic setup. The

resulting set of 98 samples of HzS can then be calculated through Equation 2.17. This process

is repeated for each spheroid in Figure 2-3 to obtain 98 synthetic data points for the response



of the target.

Formation of Equivalent Spheroidal Coordinate System

The synthetic data points are then used to form linear equations governed by Equation 2.17.

These 98 data points are overly sufficient to retrieve the aforementioned 28 B y coefficients

of interest for every calculated frequency.

However, Equation 2.17 describes activity within a single spheroidal coordinate system

whereas HS is calculated from two independent coordinate systems, centered on and con-

forming to each separate spheroid. Therefore, to find the B3 describing the entire object, a

new spheroidal coordinate system must be chosen to encompass both spheroids. This new

spheroidal coordinate system is centered between the spheroids and has an interfocal dis-

tance of 0.2828 m which corresponds to a spheroid that is 30 cm along the major axis and

10 cm along the minor axis.

Within this new spheroidal coordinate system, 28 Bj coefficients are retrieved through

Equation 2.17. These 28 coefficients can then be used to predict the response of the composite

target for new observation positions. It should be noted that 28 B3 can be solved accurately

in this manner. The appropriate sensitivity tests have been conducted to demonstrate the

reliability of solving for even more than 28 modes [19]: that study showed that it is possible

to retrieve even 63 reasonable Bi -reasonable in the sense that they create responses that

deviate less than 25% from known "truth" responses-with 10% Gaussian noise added to the

EMI signals used to invert for those Bi . For all studies described in this paper, no more

than 28 Bj are ever used.



Also, it is helpful to understand that specific low order Bk coefficients actually correspond

to each dipole moment as described earlier. While 28 B3 modes may sound like very many

modes, for each 7 excitation j modes we are only solving for 4 k modes: the 3 modes which

correspond to the dipole moments and one additional mode. Though the response modes are

very low order, the improvement over the dipole model comes via the combination of higher

order excitation modes with these response modes. This combination enables one to model

any non-symmetry in a response. Also of note is that the modes corresponding to the dipole

moments found through the spheroid mode framework are the true dipoles one would see at

an infinite distance. As will be shown, the dipole moments found under the dipole model

framework as described earlier can be shown to be highly distorted by the heterogeneity of

object and the limited number of samples of •S.

Validation and Comparison

Verification of the accuracy of spheroidal model model can be shown by comparing its pre-

diction to an independent model or measurements. Figure 2-4 (a) shows the superimposed

spheroid model prediction for the response of the same horizontally orientated composite

target as described in the previous section for a grid with 5.5 cm spacing on a measurement

plane at an elevation of 0.55 m. Using the previously retrieved B3 , the spheroidal mode

model calculates the expected response at 0.55 m and the result is shown in part (b). This

figure demonstrates that 28 B3 can accurately characterize complex heterogeneous objects.

However, as mentioned previously, for many realistic objects and particularly for compos-

ite objects, the dipole model is not sufficient to describe the EMI response. To characterize
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the extent of this insufficiency, it is enlightening to also use the same magnetic field data

Hs on the 0.35 m and 0.45 m elevation planes to retrieve the diagonal elements of the mag-

netic polarizability matrix of this target. Then the dipole model is used to calculate the

secondary field for the measurement plane at a distance of 0.55 m. In contrast to Figure 2-4

(b), one can easily see that the dipole model's response shown in (c) provides a much poorer

characterization of the object and is unable to capture the non-symmetry of the response.

In addition, the location of the predicted peak in the response is incorrect.

A previous study suggested not constraining the location of the dipole in order to better

characterize responses [99]. However, it recently has been shown that even this more sophis-

ticated dipole model does poorly for composite objects and suffers from non-uniqueness [77].

2.2.2.3 Formation of Model: Real UXO Object

The previous example with synthetic data demonstrates that the spheroidal mode model is

valid but does not show any practical need for such a model since it becomes redundant given

that the spheroid model is used to generate all the data. Therefore, a better demonstration

of the applicability of the spheroidal mode model lies in its ability to predict responses

of objects that cannot be directly modeled in such a manner, such as real UXO targets.

Characterization by Bj coefficients first requires measurements of the target of interest.

Measurements are taken using the GEM-3 broadband EMI frequency domain instrument

[93]. As noted briefly earlier, the transmitter and receiver are current loops which are

concentrically located on the same plane within the instrument head. Therefore, the GEM-3

operates in a monostatic manner. Furthermore, the GEM-3 records magnetic fields, not the



Figure 2-5: UXO ATC081 with a ruler. Measurements of this object are used to validate
the spheroidal mode model. Photograph courtesy of CRREL.

time derivative of the magnetic fields as one would expect. A more detailed discussion on

the GEM-3 and instrument modeling is given in Section 2.4.

The ATC081 UXO object is selected as the measurement target. As shown by Figure

2-5, it is roughly 51 cm long from nose (right) to tail (left).

ATC081 is tilted so that the nose is 45 degrees from vertical and pointing towards the

third quadrant, ie, a q rotation angle of 3U/4. The measurements are on a plane located 26.7

cm above the nose of the target and again are aligned on a 7 by 7 grid with 10 cm spacings.

10 measurements were taken at each point on the grid and then averaged to form a set of

49 measurements over a range of frequencies from 30Hz to 47970Hz. These measurements
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are then used to recover the 28 lowest Bi values of the target. To serve as comparison, the

dipole polarizability matrix is also recovered from this set of measurements. The dipole is

located at the center of the object and with one axis aligned with the axis of the UXO.

Validation and Comparison

To validate the correctness of the retrieved Bi values for the ATC081 target, one can com-

pare the measured secondary field values at new locations to the predicted secondary field

using the Bi . The new measurements were taken at 31.7 cm above the target, following

the same grid pattern as before. Shown in Figure 2-6 is the comparison between measured

and predicted values for this new plane above the target. One can easily see the spheroidal

model model produces a much closer prediction. In quantitative terms. the spheroidal mode

model produces an error of 0.15 across all frequencies. The dipole model produces an error

of 0.33. Error calculation is discussed thoroughly in Section 3.4, but these values can be in-

terpreted as 15% and 33% error difference for the spheroidal mode model and dipole model,

respectively.

2.2.3 Time Domain Differential Step Response of a Sphere

The previous models provide frequency domain predictions. Recently, numerical methods

were implemented to model the time domain response of spheroids and body of revolution

shapes [53-55]. For the canonical sphere, Wait resolved the time domain step response for a

permeable and non-permeable conducting spheres [89]. For a non-permeable sphere of radius

a and conductivity a in a uniform magnetic field of Hoeiwt, the step input time response in
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polar coordinates is,

SO-a 3 H
a)= cos(O)h(t)

h(t) = 3 T +
/T\

- 2 E {T1/2erf'
rnm=1 (T2)- 2m- erfc (T )

where

(2.20)

and where erf and erfc are the error function and complementary error function given by

erf(z) z e-t2dt = 1 - erfc(z).V7o1 (2.21)

However, most time domain instruments record the time derivative of the step down

response. This response can be derived from Wait's expression

a"H Oh(t)
Hnew(r, 0, t) = +V 2- cos(0)

2r-2 Of

(2.22)

" 1 m
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For a permeable sphere of radius a, a, and permeability p1, the analogous expression to

Equation 2.19 was given by Wait and others [86] as,

h(t) = K n=1,2,3 (K + 2)(K - 1) + Sn2
2(K - 1) u(T),
K+2

t
T =

a•la2

(K - 1)S6
tan 6 = K - 1 + 6, (2.27)

The derivative of the step down response can be found using Equation 2.22 and substi-

tuting the following expression for Equation 2.23:

ah(t)
at

0 -b---exp[-65T]]
6K E ua 2  - u(T) +

n=1,2,3... (K + 2)(K - 1) + 6

0 exp[-6 T] 2(K - 1) 6(T)
+ 6K 3 (K+ 2)(Kl)+56 - K+2 Jula2'

n=1,2,3... (K + 2)(K - 1) + 62 K+2 opla
(2.28)

where 6(T) is the Dirac delta function, not to be confused with J6.

The solution of the permeable conducting sphere requires solving for Jn which can be
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(2.24)

(2.25)

K = p1/0o,

and where ,n are the solutions of

(2.26)



accomplished by moving the left hand expression of Equation 2.27 to the right and finding

the zeros of the equation,

S(K- 1)6,S= - tan 6S. (2.29)K - 1 + 6,

These zeros are then found numerically by expanding and checking the limits of a small

interval near an initial guess until a change in sign is found. The interval is then searched

for the zero crossing. All zeros within a finite range can be found by utilizing a densely

spaced collection of initial guesses and then removing any redundant recovered zero values.

Figure 2-7 shows Equation 2.29 with the first twelve zeros successfully recovered through

this algorithm.

2.2.3.1 Validation

The time domain solution can be validated by the comparison to measurements of small metal

spheres. Measurements were taken of an aluminum sphere with a diameter of 3 inches. The

measurements and the corresponding modeled response are shown in Figure 2-8. Given that

the man portable vector (MPV) time domain EMI instrument has a transmitter coil with a

radius of 37.5 cm and that the measurements were at a distance of 36 cm [33], a uniform field

at the vicinity of the sphere is a good approximation. The delta component of the modeled

response is not calculated in the solution.
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2.3 Soil and Halfspace Modeling

Soil is considered completely transparent to EMI devices that detect UXO only to the extent

that a weakly conducting, weakly permeable homogeneous background medium, typical of

most soils can be considered equivalent to free space under quasistatic conditions.

However, due to the discontinuity in p created by an even slightly permeable ground, the

soil halfspace can contribute significantly to the secondary fields measured above ground.

Furthermore, this planar interface of the surface of the soil may interact with the response

of the buried object. Thus in realizing any complete forward model of a buried UXO, one

must account for all possible effects of soil.

Past work in halfspace modeling is first discussed. Then a new approximation for the

response of a target embedded in a permeable halfspace is introduced and compared with

measurements. Comparison with the response of the same object in freespace shows that the

discontinuity of the background medium for the range of realistic soil permeabilities has very

limited effect on the EMI response of a buried metal target. Finally, it is shown that soil

permeability values can be recovered from EMI measurements of soil by matching modeled

permeable halfspace responses with measurements.

2.3.1 Previous Work

There has been very limited previous work in the EMI regime in regards to the possible

interaction between the soil-to-air interface and a buried object. While models for a dis-

continuous background medium with embedded targets for higher frequency regimes have



been suggested [57], the models for the frequency range of interest have largely been for

conducting backgrounds and non-permeable targets [51]. The most extensive study of any

type for target and halfspace interaction in the EMI regime was conducted by Das [28] who

proposed an approximation for a non-permeable conducting sphere buried in non-permeable

conductive ground where the response of the sphere can be replaced with two independent

but co-located dipoles.

To date, previous treatments of permeable targets in permeable soils largely do not ad-

dress any possible coupling effects [45]. Models for buried targets are simply the superposition

of the targets response in free space with the soil's halfspace response. However, the validity

of such models has never been studied. The research described in this chapter addresses this

oversight by creating a model for a buried object which accounts for the interaction between

the target and a discontinuity in the background medium which represents the soil to air

interface.

2.3.2 Research Overview

The research into soil effects on a buried target has three main components, each addressed

by a question the researcher must ask:

1. How can one model a permeable half-space's response to an EMI instrument?

2. How does an object embedded in a permeable halfspace respond to an EMI instrument?

How does this response differ from the response of the object in free space?



3. Given these models of soil, can useful information about soil properties be obtained

from measured soil EMI responses?

2.3.3 Modeling of Soil Response

2.3.3.1 Response of a Homogeneous Half Space

The simplest model for soil assumes it is a non-conducting, homogeneous halfspace of per-

meable material. As argued in Section 1.4.3, conduction current in the soil is insignificant

when compared to the current in the metal targets. Therefore this model is valid.

Wait [88] obtained the solution for the magnetic potentials in the upper and lower regions

of a half-space when illuminated by a magnetic dipole in the upper half-space as shown in

Figure 2-9. In the upper half-space,

_P = 4p + Vs (2.30)

where IP is the "primary" potential created by the dipole and VS is created by the interaction

between the dipole and the boundary of the half-space. The primary potential of a vertical

dipole with a moment of m,, located h above the ground plane is,

S z h) (2.31)
47rri

where rl is the distance from the observation point to the dipole. Without loss of generality,

the origin is chosen to be on the surface of the halfspace, directly beneath the dipole. The
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Figure 2-9: Schematic for the calculation of a halfspace response to a dipole excitation.

positive z axis points upwards toward the dipole.

The secondary potential in the upper half space can be calculated through image theory.

The region of interest is the upper half space. There is an image dipole situated in the lower

half-space. Wait found through matching boundary conditions that an extra coefficient is

needed to describe the image dipole. Therefore, the position of the image dipole mirrors the

real dipole but their magnitudes, which may be of opposite sign, differ from each other. For

example, a vertical transmitting dipole over a halfspace creates a the secondary potential



seen in the upper half space as,

mzo(z + h)(s = Kol 3 (2.32)

where

Ko1 [i1 o (2.33)
L1 + ILO

and where r2 is the distance to the image dipole from the observation point. K 01 is the

relative strength factor of the image. This factor can also be thought of as a "reflection"

coefficient as the fields attempt to traverse from region "0" to region "1" as denoted by the

subscript order.

By matching boundary conditions again, Wait found that Op in the lower half space is

attenuated by a factor Tol. This attenuation factor may be also thought of as a transmission

coefficient as the fields crosses from region "0" into region "1." The potential in the lower

half space created by a vertical transmitting dipole in the upper halfspace is then,

1 Tmzo(z - h)S= To 3 (2.34)

where

2po
Tol- (2.35)

A1 + Po

Hl, the magnetic field in the lower halfspace is then easily derived from Equation 2.34.



For simplicity, it may be expressed in the cylindrical coordinate system where p and P refers

to the radial distance and direction from the transmitting dipole to the observation location:

1  mzo 3(z - h)p 2(z - h)2 -p 2  . (2.36)

4= (p2 + (z- h))5/2+ (p2 + (z- h)2)5/2  (2

Horizontal transmitting dipoles can be analyzed in a similar fashion. Suppose a magnetic

dipole of strength mxo is oriented in the X direction. The secondary potential in the upper

halfspace would be

(s = Kol0  r . (2.37)

The potential in the lower halfspace would be

S= To01 4r (2.38)

Since time domain EMI instruments always measure transients following a step down

excitation, a non-conducting permeable halfspace should produce no measurable activity.

The response of the halfspace should always be instantaneous with no relaxation activity [20].

While this is a good approximation of the FD soil responses considered in this study, TD

instruments may show some soil relaxation response that is obscured in the FD data [33].

Such transient responses can be represented by the same solution obtained above, at each

point in time, scaled by a factor that depends on soil relaxation times. These must be

obtained on a case by case basis.



2.3.4 Approximation of the Response of a Sphere Buried in Soil

While a complete model of a metal target embedded in a permeable halfspace is always

possible with numerical models such as finite-difference time-domain, or analytical methods

as proposed by [30], such accuracy may not be necessary given that soils are typically only

weakly magnetic with pr < 1.01. A more parsimonious use of resources is to first obtain

an estimate of the extent to which the soil interface does or does not affect the response of

buried objects before determining whether more precise modeling is necessary.

The approximation described in the following sections is a variant of the Foldy-Lax

technique which has been used to solve both scattering problems [21] and EMI problems [13].

2.3.4.1 Formulation

Suppose there is sphere of radius a and conductivity a2 and permeability P2 buried a distance

d below a halfspace. The center of the coordinate system is taken to be on the surface of the

halfspace directly above the sphere. The excitation source is at some elevation h and radial

distance r. One can approximate the response of a halfspace with an embedded sphere as

having two main components: the one directly due to a halfspace in absence of the sphere,

and one due to the sphere itself which includes the interactions it has with the halfspace

interface. Calculation for the first component was shown in the previous section. Calculation

of the second component is the focus of the current section.

One simplification utilized in this study is the assumption that all excitation may be

considered locally uniform within the vicinity of the sphere. Since a sphere only produces a
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dipole response under uniform excitation, its response can be characterized as dipole. The

induced dipole moment of the sphere, Msphere, depends on the magnetic polarizability tensor

M and the incident magnetic field.

rsphere = Msphere *i (2.39)

The magnetic polarizability tensor for a sphere in free space with radius a, permeability

/12, and conductivity a 2 is

Msphere = P ' (2.40)

where 0 is

3 (2/12 + A1)(1 - k2a cot k2a) - 2ll(k2a)2
= 27a (2.41)

(12 - A1)(1 - k2a cot k2a) + 111(k2a)2

and

k2 = iw 2 2  (2.42)

as derived by Wait [87] and many others [7,46].

The dipole response of the sphere, as characterized by its moment Msphere = < mz, mp >,

can be computed from the known polarizability matrix and incident magnetic field on the

target. Note that the cylindrical coordinate system can be rotated so that 0 is not a factor
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Figure 2-11: Sphere and the image of the sphere when the lower halfspace is the region of
interest.

in the calculation.

In Equation 2.39, the total incident magnetic field on the sphere is not simply from the

transmitter as calculated by Equation 2.34. Rather, the sphere also sees an image of itself

due to the halfspace discontinuity. Consider the lower halfspace the region of interest; the

image is located in the upper halfspace. Since the sphere is assumed to only produce a dipole

response, then this image must also be a dipole as shown in Figure 2-11.

Therefore, the total incident magnetic field on the sphere has two components: H1 directly

Im~n~ of the

interes

ýto



from the transmitter and attenuated by Tol as discussed previously and Hisi due to the image

of the sphere. Equation 2.43 gives this relationship.

nsphere - Msphere" [H1 + Hsi] (2.43)

The greatest difficulty in Equation 2.43 is that Hsi is unknown because rsphere is

unknown. However, since the sphere and the image of the sphere are both dipoles, the

equation describing the field produced by the image of the sphere where the lower halfspace

is the region of interest is perfectly analogous to Equation 2.32. The pertinent coefficient

is now K10 = •o The expression for Hsi contains -sphere. However, for the sake of

clarity, one can first write the contribution to Hsi due to the mz component of msphere:

!si 3mz(z - d)p 2mz(z - d)2 - p 2

HZ = Kjo- + Kjo z (2.44)m KlO(p 2 + (z - d)2)5/2 + 4 (p2 + (z - d)2)5/ 2

where z and p is the observation position in the lower halfspace.

Klo = - (2.45)
[o + A1

Since the image of the sphere is directly above the sphere and thus directly above the

origin, p = 0 and the equation is greatly simplified and produces the z component of Hsi as

shown in Equation 2.46:

si Komz (2.46)
S 16d 3 (2.46)



Likewise, upon examining the contribution to Hsi due to the mp component of rnsphere,

one can find the p5 component of Hsi

si Klom,. (2.47)
" 32rxd3

Equations 2.46 and 2.47 can be substituted into Equation 2.43. Gathering and factoring

out the terms with rnsphere components meets the objective of solving for rnsphere:

OH1
m = 1 (2.48)

-1 327rd3

)HI
m --z = z (2.49)

167rd
3

where H1 and HI refer to the i and p components of the magnetic field in the lower halfspace,

H 1, created by the transmitting dipole as given in Section 2.3.3.1. Note that since the

cylindrical coordinate system was originally chosen so that the q component of msphere is

irrelevant, HI does not enter into the calculation either. Using Equations 2.48 and 2.49, the

dipole moment of a buried sphere can be found for any specified H1 at the location of the

sphere.

As an illustrative example, a vertical transmitting dipole of moment m,, is considered.

Section 2.3.3.1 provided the corresponding expression for H1. Both Hl and Hl created by

this dipole can be calculated at the location of the sphere. Therefore, the dipole moments

of the sphere are



To mzo3(-d-h)r
0 1 4r(r2 (-d-h)2)5/ 2

mP= 1 g- o (2.50)
1  327rd3

mzo(2(-d-h)2-r 2)
01 4(r 2+(_dh)2)5/ 2

mz = 1 -K (2.51)
S167rd

3

The most interesting components in the above equations are Tol factor in the numerator

and the PK 10 term in the denominator. If ,1 = Po, these equations reduce to the dipole

response of a sphere in free space for the specified excitation. However, due to the difference

in permeability between the upper and lower halfspaces, the dipole response of the sphere is

altered. The extent of this alteration will be analyzed in Section 2.3.5. Note that some care

must be taken in the construction of Equations 2.50 and 2.51 since the original Equation 2.36

for H'P is written with the origin located below the transmitting dipole while these equations

are written with the origin located above the sphere.

A similar treatment for an excitation by a horizontal transmitting dipole mo, aligned in

the +X direction can also be carried out:

-PTolm cos 3p2
4T r (p2+ 2 (p2+(z-h)2 ) 5 2) (2.52)

mp = 1 -5 (2.52)
S327rd3

__ •r mXo sin (
.014r(p2+(z_h)2)3/2 (2.53)

m = 1 - i(2.53)
- 32xd3



To mnzo(3pcos 4(z-h))
01 47r(p2+( 2-h)2)5/2 (2.54)m1 = 1 Kio (2.54)

S167d 3

2.3.5 Analysis of the Half Space Interaction Model

The aforementioned model for the response of a sphere embedded in a half space is im-

plemented in Matlab. Using this model one can determine if the presence of the halfspace

interface significantly alters the response of the sphere. This goal can be achieved through

the comparison of the response of a sphere with the rmsphere as in described the previous equa-

tions and the predicted response of the same sphere in free space. The results for various

values of soil p1 are examined.

Figure 2-12 shows the comparison for a 2.5 cm radius steel-like sphere of o2 = 4 x 106

S/m and A2 = 150p 0 . The two sets of curves show the modeled response of the sphere in

free space versus one embedded in a halfspace of relative permeability 1.01 at a depth of

15 cm. The dipole transmitter is 15 cm above the halfspace. At this point, the curves are

indistinguishable. The difference, when regarded as noise, is equivalent to more than 40dB

SNR. If p~ of the soil is increased to 1.1, the two sets of curves become distinct as seen

in Figure 2-13. However, we are not aware of any naturally occurring soil that has such a

high relative permeability. For example, some of the most magnetic soils in the world are

in Hawaii due to the high concentration of volcanic ash. However, even there the relative

permeability is well below 1.01 [61, 74,84].

Given the very small impact of the halfspace interface on the sphere's response for the
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Figure 2-12: Modeled response of 2.5 cm radius sphere with pr = 150, U2 = 4 x 106 S/m,
and buried 15 cm below a Pr = 1.01 halfspace. Excitation source is 15 cm above halfspace.
Response is calculated at the same location as the transmitter. The blue curves do not
contain the direct halfspace response of the soil, created by the image of the transmitting
dipole. Therefore, the blue curves can be compared to the response of the same object in
freespace, represented by the black curves. For this halfspace permeability value, the two
sets of curves are indistinguishable. For a higher permeability value as shown in Figure 2-13,
the curves are more distinct. However, no naturally occurring soil has a relative permeability
greater than 1.01. Therefore the response of a buried object can be accurately modeled by
superimposing the direct halfspace response of the soil onto the response of the target in
freespace.
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Figure 2-13: Modeled response of 2.5 cm radius sphere with pr = 150, U2 = 4 x 106 S/m,
and buried 15 cm below a pr = 1.1 halfspace. Excitation is 15 cm above halfspace. Response
is calculated at the same location as transmitter. The blue curves do not contain the direct
halfspace response of the soil, created by the image of the transmitting dipole. Therefore,
the blue curves can be compared to the response of the same object in freespace, represented
by the black curves. For this halfspace permeability value, the two sets of curves are distin-
guishable. However, no natural soil has permeability above 1.01 so the modeled scenario of
this figure is unrealistic.
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range of realistic soil permeability values, one can confirm the original assumption of the

soil being effectively transparent to EMI instruments and insignificance of any sphere to

halfspace interaction. However, the previous analysis do not included the direct response of

the halfspace interface. The expression for risphere only encompasses the response of the

sphere and not the entire Hs stemming from os of Equation 2.32 as noted earlier.

In this simple, non-conducting soil, Equation 2.32 has no frequency dependent compo-

nent. Therefore, the direct response should be Inphase and constant over frequency. The

overall effect on the received signal will be reduced to a magnitude shift of the Inphase re-

sponse. Though the permeability of soil is low, this offset may be significant when compared

to responses of objects buried in typical soil as will be shown in the following sections.

2.3.6 Comparison to Measured Response of Buried Spheres

The conclusions of the modeling study described in the previous sections can be validated

by comparing measurements of buried objects to measurements of those same objects in free

space. Shown in Figure 2-14 are measurements of a steel sphere buried in ground and in

free space. These measurements were conducting by CRREL using typical "backyard" soil

not known to be particularly magnetic. The difference between the response of the sphere in

free space and in soil is limited to a constant, frequency independent magnitude shift of the

Inphase signal, confirming the earlier hypothesis. This observation is more clearly shown in

Figure 2-15 where the Inphase portion of the buried sphere's response can be shifted back

to provide an excellent match to the response of the sphere in free space. Differences at the
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Figure 2-14: Comparison of EMI measurement of a steel sphere in free space and buried
under soil. Responses have been normalized relative to the quadrature signals to account for
any differences in sensor to target distances. Measurement data courtesy of CRREL.

highest frequencies are most likely distortions, as the instrument is prone to some amount

of drift in that domain.

2.3.7 Retrieving Soil Information from the Measured Ground Re-

sponse

Given EMI measurements of the ground response, one can ascertain the relative permeability

values of the soil in question by utilizing the previously mentioned half space soil model and

a sufficiently accurate model of the sensor in use. Shown in Figure 2-16 is the comparison
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Figure 2-15: Comparison of EMI measurement of a steel sphere in free space and buried

under soil. The depicted data is the same as the data for the previous figure but now the

Inphase response of the buried sphere has been shifted by 0.71 (normalized ppm). The

agreement between the two sets of curves demonstrate the effect of the presence of soil to

air interface is limited to only a superposition of a Inphase response that is constant over

frequency.



between the measurement of a soil test bed located at CRREL and the fitted model. Again,

this soil is considered "common" backyard soil and is not known to be particularly magnetic

or conductive. This view is corroborated by the measurement data: the response is domi-

nated by the Inphase signal which can be attributed to a relative permeability of less than

1.0008.

The recovered soil p value is well within the range typical of most soil [74]. This value is

found by utilizing the forward model of a halfspace response as described by Equation 2.32.

Various values for the soil p parameter are tested until the best match to data is obtained.

Though the Inphase signal is not perfectly constant, the deviation is small enough that it

can be attributed to sensor drift or general noise. The non-zero value of the Quadrature

signal can also be attributed to these same factors. At most, one can say the soil may be

very weakly conducting. More complex soil models have been proposed which account for

frequency dependent susceptibility [23-27]. But given the minimal evidence of relaxation or

frequency dependent susceptibility in these measurements, the inversion analysis presented

in subsequent chapters will consider the simple non-conducting homogeneous halfspace as a

sufficient soil model.
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Figure 2-16: Comparison of EMI measurement of soil and fitted permeable halfspace model.
This fitting enables one to ascertain the soil permeability from in-situ measurements. For
this sample, the relative permeability is about 1.0007, with a range of roughly 1.00066 to
1.00075 found by fitting the modeled curves to the upper and lower bounds indicated by the
error bars. Measurement data is courtesy of CRREL.



2.4 Modeling of the Interactions between Sensor and

Target for Physical Interpretation of Measurement

Data

Given that secondary fields are always dependent on primary fields, a complete forward

model of UXO in realistic environments as measured by real instruments also requires an

accurate model of the sensor in use. Much of the research in inversion relies on using

third-party, proprietary instruments. Therefore, knowledge of the inner workings of these

instruments may be limited. While, for example, the geometry of the transmitter coils may

be divulged by the manufacturer, often the measurements of induced secondary magnetic

fields are reported in some units that are effectively arbitrary relative to standard EM units

such as A/m or Teslas. This situation is the case with the frequency domain EMI sensor,

GEM-3, used by this investigation.

The lack of understanding of the target to receiver interaction can have a significant

impact on inversion studies. A very clear example of this impact can be shown in the

procedure to recover soil permeability as described in the previous section. One must match

the measured secondary response with the analytical model of a half-space response. The

susceptibility of the soil corresponds to the value of the model's susceptibility parameter that

produces the best match to calculated response. However, in order to do such comparison,

one first needs to convert all sensor readings into units consistent with the model of the soil,

e.g. standard EM units used in the calculations of the soil response. The work described in



this section details obtaining such a conversion to permit meaningful comparison between

modeled and measured data. The retrieval of soil permeability and the ability to classify

objects based on their measured EMI responses, described in a following chapter, is possible

due to the success of this research in converting the measurements obtained by the GEM-3

instrument into units consistent with forward models.

2.4.1 Previous Work

In many prior studies of this nature, the secondary fields are reported in units of parts

per million (ppm) of the primary field intensity [8, 15, 22, 35, 36, 42, 44, 59, 64, 69, 100, 101].

Examining the past work reveals one key aspects which differentiates the work presented

in this thesis. The prior studies assumed that the results reported by their instruments

were truly ppm relative to a specific primary field sample. When such an assumption is

made and knowledge is available of how the primary field is sampled, this type of normalized

secondary fields as reported by the instruments can be modeled analytically. Therefore, there

is no question of how to compare a model's output to measurements. Given that many of the

authors of those studies participated in the manufacture of the instruments in the references

cited, this may be a fair position for them to take. However, many researchers involved in

UXO inversion studies often purchase instruments from third parties and may not be privy

to the detailed inner mechanisms of such devices. Therefore, a complete analytical or even

numerical model to calculate the ppm secondary fields may not be possible.

While it may be possible to directly measure the primary fields created by the instru-



ment's transmitter, such measurements cannot characterize any post-processing of an ob-

ject's response as received by the instrument to create the measured data. Many modern

EMI detectors include filters, amplifiers, etc, attached to particular components, the details

of which a general user has no way of knowing. Therefore the user is without knowledge

of the relationship between actual transmitted and received fields in A/m or Teslas and the

units of the reported measurement.

This argues for a simple, fast, non-invasive method of both assessing the performance of

instruments and converting the measurements into known, universal units. The latter goal is

required to compare secondary fields produced by a model with measured data and produce

scientific inferences, such as estimates of ground magnetic susceptibility.

2.4.2 Research Overview

The GEM-3 instrument as shown in Figure 2-17 used throughout this study is a very typical

EMI instrument in that it reports secondary fields in terms of ppm but the instrument is

not known to have any adaptive processing properties. Therefore one can assume that the

instrument always obtains signals from received fields in the same way. The instrument's

transmitter consists of current carrying fixed loops. The size and physical properties of

these loops are known. But the specific current carried on these loops is unknown and not

particularly important given that all received fields are normalized by some sample of the

primary field. Therefore, the relationship between the measured secondary field reported

by the GEM-3 and any modeled response given the same loop geometries and an arbitrary



assumed constant transmitter current would amount to a scaling factor, a constant K:

HGEM-3 = K - Hmodel. (2.55)

To recover this scaling factor, this study utilizes three metallic spheres to calibrate the

modeled response to the GEM-3 measurements. This comparison between modeled response

and measurements will determine the correct scaling factor. The full characterization of the

GEM-3 sensor consists of three parts:

1. Create model of GEM-3 transmitter loops

2. Create model of receiver loop

3. Recover translation factor that converts instrument readings into the units consistent

with the modeled received field.

(a) Measure canonical objects using the GEM-3 instrument.

(b) Model the response of the canonical object using the model of the GEM-3 trans-

mitter to generate the primary field.

(c) Scale the modeled response to match the measurement.

(d) Repeat for many different sensor positions and targets types to ensure accuracy.

(e) Note the scaling factor from (c)-(d) and retain for use in converting signals from

other cases into standard EM units.



Figure 2-17: Photograph of the GEM-3 instrument. Courtesy of CRREL.

2.4.3 Modeling of the GEM-3 Sensor

The GEM-3 sensor is manufactured by Geophex [93]. The transmitting sensor head consists

of two current carrying loops with radii of 20 cm and about 11 cm. The smaller loop is placed

concentrically inside the larger loop and serves as a bucking coil, approximately nulling the

primary field at the center of the sensor head, where the receiver coil resides. There are 8

windings in the outer and 4 windings in the inner transmitter coil. This study assumes the

wires in the transmitter coils carry 10 Amps, reflecting the actual current for the device's

lower operating frequencies. As mentioned earlier, this is not necessarily the true amount

of current in use by the GEM-3 at all frequencies. However, the instrument is designed to

report measurements as if some fixed level of current is in use at all frequencies. Therefore,

the assumption of any amount of constant current within the model is valid: the recovered



conversion factor is not designed to convert GEM-3 measurements into the actual A/m units

of the secondary field that was created during the measurement process. Rather, the factor

will convert the measurements into the framework of the model with the assumed 10 Amp

current. As long as one remains consistent in using the same model for the transmitter coils

in all inversion studies, the recovered conversion factor will always be valid.

2.4.3.1 Modeling of Transmitter Current Loops

A set of idealized wire loops can be used to analytically model the GEM-3 instrument. The

complete elliptical integral functions of the first and second kind can characterize the mag-

netic vector potential and vector field from a circular current loop in a cylindrical coordinate

system. This calculation method is well established [67, 75, 83]. For a current loop of radius

a and the plane of the loop normal to the z axis in the z = z, plane and with Io current

flowing in the q direction, the transverse and axial fields are,

/olo (z - zo) _2_2___ o_2B,(r, , z) =( (z - [-K() + r2 + a2 + ( ) 2  (k)] (2.56)
27r r[(r + a)2 + ( - / (r - a)2 + ( - ) E(k2

Bz(r, , z) K(k) - r a2 + (E(k) (2.57)27[(r + a)2 + 21/2 (r - a) 2 + (Z - 2 2



where

4ar
k 4ar (2.58)(r + a)2 + (Z - 2,)2.

K and E are the complete elliptical integral functions of the first and second kind, re-

spectively. These equations will produce the primary magnetic fields at any position. The

variables (r, 0, z) are coordinates in the standard cylindrical coordinate system.

The total primary field of the GEM-3 is created from, the superposition of two current

loops that correspond to the two actual transmitting loops in the sensor head. The model

agrees with the alternative method of using numerical brute force integration and application

of Biot-Savart's Law as shown in Figure 2-18. The elliptic integral model has the added

benefit of being computationally more efficient and is therefore used in all simulations.

2.4.3.2 Modeling of Receiver Coils

The secondary magnetic field is captured by the current generated on a pickup coil in the

center of the GEM-3 by the time varying magnetic field. The pickup coil may either lie on

the plane of the instrument allowing the GEM-3 to record the field in the z direction or

additional coils may be mounted perpendicular to the the plane of the instrument, allowing

measurements of the activity in the x and y directions to be possible. In all cases, the

instrument reports the response in units that are proportional to the integral of magnetic

flux over the receiver coil or coils, normalized by the transmitted field as sampled by an

additional coil within the sensor head to produce ppm. It is of some importance to point

out that the GEM-3 reports measurements that are proportional to Bz, not dBz/ot as one

100
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Figure 2-18: Percent error between the elliptic model of a current carrying
Biot-Savart brute force integral model of the same loop. The loop is located
The difference is given a percent error and plotted over space.

loop and the
at the origin.
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might expect. But since the instrument is proprietary, the exact mechanism behind this

measurement and other post processing effects are not known.

Furthermore, in the past, the receiver coil was always taken to be of negligible size so

that the modeled response of any target is only calculated at a single point per measurement

position, usually coinciding with the center of the receiver loop. The sampling at this single

point was considered adequate to characterize the average of the magnetic fields passing

through the finite sized receiver loop. Therefore, no specific model of the receiver loop was

previously implemented.

But given that the receiver loop is 6 cm in radius and that accuracy is of utmost im-

portance in inversion, the impact of a finite receiver loop size was deemed worthy of further

investigation. If the sensor is close to the target, the field at the center of the loop can be

much higher than the average of all the fields passing through the receiver as shown in Figure

2-19. This figure shows the sampling of the magnetic fields within the receiver loop area.

The fields are produced by a modeled steel sphere 13 cm below the sensor. This sphere is

3 cm in radius with Ur = 100 and a = 1 x 106 S/m. The sample at the center of the loop

differs from the overall average by more than 14%. When the target is relatively far away,

as shown in Figure 2-20, the error reduces to about 2%.

The previous examples show that one must integrate to produce an accurate model of

the actual received fields. Since this integration must be numerical, the question of fineness

of the discretization must be answered. Shown in Figure 2-21 is the value of the integral of

the fields over the loop area as a function of the number of discretization divisions. Good

102



Steel: Real(H) field over receiver loop
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Figure 2-19: Sampling of the modeled magnetic fields within the receiver loop produced by

a 6 cm radius steel sphere at 13 cm directly beneath the sensor. The sample at the center of

the loop differs more than 14% from the true average of the magnetic fields across the loop
area.
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Steel: Real(H) field over receiver loop
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Figure 2-20: Sampling of the modeled magnetic fields within the receiver loop with produced

by a 6 cm radius steel sphere at 13 cm beneath and 30 cm laterally displaced from the sensor

head. The sample at the center of the loop differs only about 2% from the true average of

the magnetic fields across the loop area.
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Figure 2-21: The value of the integral of the fields over the loop area as a function of the
number of discretization divisions. Good convergence is seen for over 300 divisions.

convergence is seen for over 300 divisions.

2.4.4 Modeling of Metallic Spheres

We model metallic spheres as a special case of the spheroid model. This model is well vali-

dated and produces EMI secondary field predictions for spheroidal objects with any conduc-

tivity and permeability values and in response to arbitrary excitation [3,5,12]. Furthermore,

the model produces secondary field predictions in terms of A/m. The three specific objects

that were modeled correspond to the measured metal spheres: steel, brass, and aluminum,

all 3 inches in diameter as shown in Figure 2-22. The exact material parameters were not

105

-,-w Integrated Im(H)

-' - -- - - ' - . . . . .

-I

-3_-3 K It



Figure 2-22: Three metal spheres used in GEM-3 calibration. From left to right: brass,
aluminum, and steel. Photograph courtesy of CRREL.

provided. Therefore, recovery of those parameters was also a part of the process to obtain

the scaling factor which will be described in later sections.

2.4.5 Calibration of Sensor Measurement Data to Modeled Re-

sponse

2.4.5.1 Measurements

Measurements were taken of each metal sphere shown in Figure 2-22 by placing the GEM-3

instrument above at points in a 2-D vertical grid. Horizontal spacing was in 2 cm increments

from -30 cm to +30 cm across the sphere. Vertical spacing was in 5 cm increments from

13 cm to 28 cm above the surface of the sphere. The frequency range was from 30 Hz to

47 kHz. This wide range of measurement points both in space and frequency was taken to
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ensure that the recovered scaling factor is consistent: given that the GEM-3 is not adaptive,

there must not be any variation due to object distance, frequency, or choice of target object.

In other words, all the data must point to a scaling factor of the same value.

2.4.5.2 Matching Algorithm Utilizing a Fibonacci Search

The main impedance to the recovery of the scaling factor is the uncertainty of the metallic

spheres' exact permeability and conductivity values. Therefore, to match the model's EMI

prediction with measurements, both the scaling factor and p and a must be simultaneously

recovered. As a simplification, the aluminum and brass spheres can be assumed to be

non-permeable, and thus only their a values and the scaling factor need to be recovered.

Approximate values of o for these materials are available from standard textbooks, furnishing

a reasonableness check. For the highly permeable steel sphere, only the ratio between a and

p affects the secondary response [79]. Therefore, relative p is assumed to be 100 and c/p

ratio is recovered along with the scaling factor.

A Fibonacci search is applied on the range of possible values for each of these variables

[32]. To perform a Fibonacci search, one must first determine the range of possible values

for the parameter that one is searching. One must specify the upper and lower bounds the

underlying conversion factor and a or of/p should fall within. The range of values forms the

search domain. This search domain is divided into two parts. A candidate value for the

unknown parameter is drawn from the middle of the first domain and a second candidate

value is drawn from the middle of the second domain. Whichever part produces a better

match will become the new search space and the process repeats until a sufficient number of
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Figure 2-23: Flowchart depicting a nested Fibonacci search.

iterations have passed or the solution has met some quantitative measure.

Since the problem at hand requires solving for two parameters, the scaling factor K and

a/p, two Fibonacci searches may be nested as shown in the flowchart of Figure 2-23.

This search method converges very quickly by eliminating half the search space in each

iteration. To prevent convergence on incorrect solutions, a reasonable initial search space

for K and a/p must be chosen. In this study, the bounds on a for brass are from 0.7 x 107

to 4 x 107 S/m. For aluminum, the bounds were from 1.5 x 107 to 3.4 x 107 S/m. For steel,

the bounds on a/p are from 6 x 104 to 9 x 104. In all cases, the bounds on the search space

for the scaling factor K are from 4 x 103 to 6 x 103.
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Figure 2-24: Figure showing the matching between model and measurement of a steel sphere
at a single grid point.

2.4.5.3 Matching Results

Figure 2-24 shows the match between the modeled response and the measurement of the

steel sphere. The match is extremely well save for the lowest and highest frequency points.

We have observed that the GEM-3 can have difficulties capturing consistent responses at

very low and very high EMI frequencies. Therefore, the lowest and highest frequency data

are ignored during the matching process. After repeating this search for every measurement

of the steel sphere, one can examine the scaling factor recovered at every sensor position.

Figure 2-25 plots the recovered conversion factors for the steel sphere as a function of
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Figure 2-25: Plot of the retrieved conversion factor for the steel sphere as a function of

position.

position, assuming the GEM-3 is positioned at (0, 0) on the axes. This analysis is useful

because the scaling factor must be constant over space given that the instrument is non-

adaptive. Any radical departure from this phenomenology would signify that either the

matching algorithm and the recovered scaling factor are incorrect or that the instrument

does not behave as advertised.

Figure 2-25 as shown is not particularly illuminating, but all the data can be converted

into a percent error from the averaged conversion factor of 4.93 x 103. This variation of

the scaling factor can likewise be plotted over space, shown in Figure 2-26. As the figure

110

I I I I I ;600

;500

p400

5300

5200

5100

5000



13

E
18

0
4-,

' 23

28

Steel: percent error
i I I

-20 -15 -10 -5 0 5 10
Lateral position (cm)

Figure 2-26: Plot of the variation of the retrieved conversion
4.93 x 103, for the steel sphere as a function of position.
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factor, as a percent error from

demonstrates, the variation is minimal with under 5% error. One can see similarly good

results for the brass and aluminum spheres shown in Figures 2-27 and 2-28, respectively.

2.4.6 Effect of Finite Receiver Loop Size

If we can assume the secondary field is constant over the receiver loop, then it would be

unnecessary to numerically integrate the fields within the loop area. This shortcut would

save considerable computational time since the forward model would need to calculate only

once per grid point as opposed to over 300 times per grid point. Shown in Figure 2-29 is
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Brass: percent error
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Figure 2-27: Plot of the variation of the retrieved conversion factor, as a percent error from

4.93 x 103, for the brass sphere as a function of position.
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Aluminum: percent error
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Figure 2-28: Plot of the variation of the retrieved conversion factor, as a percent error from4.93 x 103, for the aluminum sphere as a function of position.
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Variation of the scaling over space when compared to the scaling factor recovered
measurement point. This high amount of variation is undesirable.

data analogous to Figure 2-26 except that no numerical integration was performed over the

receiver coil. The average magnetic field over the receiver loop was assumed to be the same

as the field in the very center of the loop. Using this method, a new scaling factor, averaged

from the closest 9 measurement points, was obtained: 4.24 x 103. Since the figure shows

spatial variation of over 20% for the scaling factor from the averaged value, we conclude that

numerically integrating the fields within the receiver loop is necessary.

This variation of error is very systematic as would be expected given the pattern of

deviation as seen in Figures 2-19 and 2-20.
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The current section has shown that integrating over the receiver loop area has consider-

able effect in one's ability to match a modeled response to measurement. However, in future

work, the significance of this mismatch should be cast in terms of one's ability to do correct

and meaningful inversion.

In all prior studies using the GEM-3 instrument or similar instruments with receiver

loops, no such integration over the receiver loop has ever been used in conjunction with

inversion studies. This omission is due to the increased computational demand: integration

will create the need to calculate the response of the object at many points per measurement

position and thus may create difficulties if one seeks to model many objects within a timely

manner. If omitting the integration can still, produce acceptably good discrimination results,

then the mismatch may be disregarded.

2.5 Conclusion

This chapter discusses modeling of buried UXO. It is shown that several forward models

of UXO and spheroids are available. Furthermore, the limitations of the dipole model are

evident when one attempts to model heterogeneous objects. Previous work has shown that

the coefficients of the spheroidal response modes, B3 , can be retrieved from data and that

these coefficients can uniquely characterize an object and its response. Therefore, as a

natural extension, Bj is retrieved from measurements of a UXO and shown to be accurate

in predicting that object's response at new sample points. This work, in effect, produces a

new forward model.
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These models, however, only produce the objects' response in freespace. Therefore, re-

search is done into the effects of a discontinuous background medium, created by the perme-

able soil to free space interface, on the response of buried targets. Through the implemen-

tation of an approximate model for a buried sphere, the effects are shown to be limited to a

superposition of a halfspace response for realistic soil permeability values. This superposition

effect enables one to model buried all metal objects in the EMI regime.

It is also shown through comparison between permeable halfspace models and measure-

ments of soil that soil permeability values can be retrieved. However, to do this direct

comparison between model and measurements, characterization of the sensor is required.

Since the sensor used by this study reports the measured magnetic fields in unknown units,

this investigation obtained a conversion factor to transform instrument readings into known

units consistent with models.

This realization of a complete model of the measurable response of buried UXO en-

ables one to proceed with inversion studies which produce methods that identify or classify

unknown objects based on their EMI responses.
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Chapter 3

Inversion Through Application of

Differential Evolution: Identification

3.1 Introduction

Predicting the output of a system given specific input values requires a model that follows

some basic underlying laws governing the system. This prediction constitutes the "forward

problem." Conversely, the "inverse problem" attempts to recover the input values when

given the response of a system.

The forward problem in regards to UXO research can be resolved with accurate modeling

of UXO objects and the environment. As shown in the previous chapters, several reliable

forward models have been developed and are readily available. That aspect of UXO research

is relatively mature.

However, the inverse problem of identifying UXO objects through their EMI responses is a
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Figure 3-1: Inversion problem and forward problem as they pertain to UXO. The previous

chapter concentrated on solving the forward problem for UXO in realistic settings. The

current and next chapters focus on the inverse problem of identifying or classifying UXO

based on their EMI response.

topic currently of great interest. As illustrated in Figure 3-1, this work directly addresses the

motivation behind UXO research: to lower false alarm rate, one must be able to discriminate

the response signals produced by UXO from those produced by clutter items. Discrimination

entails utilizing the response signal to identify the specific target object or simply make a

binary decision whether target is a UXO or not. However, since the inverse problem for

UXO is still plagued with many difficulties, it is still an area of active research.

There are several approaches to general inverse problems. If the system can be de-

scribed by a set of linear equations, the input parameters can be solved when given sufficient

output data. If the system is non-linear but characterized by a closed form expression, the

inverse problem can often be solved through various calculation techniques such as the Gauss-

118

'"
'*

"-



Newton algorithm. However, given the complexity of the UXO problem where the target is

often buried at an unknown location, depth, and orientation, no closed form expression can

completely describe the entirety of the system.

3.1.1 Previous Work

The previous studies on the inverse UXO problem encompass a broad spectrum of methods to

represent the target and algorithms to compute the inverse solution. These studies propose

various ways of uniquely characterizing UXO: dipoles model parameters [41], response decay

constants [81], or by a Gaussian function fitted to the response measured over a plane [91].

The authors of those studies suggest that such characteristics can form the features by which

objects can be identified or classified.

Given the EMI response characteristics, the authors go on to suggest various classification

or identification algorithms which span everything from supervised machine learning such as

neural networks or statistical comparisons [17,52,81,94], or Bayesian measures [80], simulated

annealing [95], or other form of pattern recognition [31]

3.2 Research Overview

The inverse problem for UXO encompasses two general forms. The first form, addressed

in the current chapter, uses the EMI response signal to resolve the identity of the target

from a library of standard, representative UXO types. Items whose identities cannot be

resolved are then considered clutter items. The second form of inversion, addressed in the
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next chapter does not identify particular UXO but makes a general discrimination between

all UXO targets and clutter.

One can view the object identification problem as a type of optimization problem. Opti-

mization describes a process where one searches for the optimal values of a model's input so

that the model's output will correctly match given data. Cast in terms of the UXO problem,

optimization requires measuring the EMI response of the unknown target in question and

comparing this signature to the predicted responses from a library of models for possible

UXO targets. The input parameters of the models are adjusted until the "best" match, as

evaluated by an objective function, is achieved. The member of the library which produces

the closest match with an acceptable level of accordance will correspond to the identity of

the unknown object. The general procedure is shown in Figure 3-2.

There are three basic components of the optimization inversion scheme: the model, the

search algorithm, and the objective function. Each component has the potential of rendering

the optimization unsuccessful and must be thoroughly evaluated and tested [97].

1. The Model: To make the calculation tractable, the model must be computationally

fast because the optimization process will require many evaluations over the course of

the search process to find the most optimal input parameters. The fundamental mode

model and the spheroidal mode model are both analytical models which only involve the

summation of a finite number of response components, represented as magnetic charges

or B3 modes respectively, and do not involve inverting large matrices. Therefore, both

are comparably fast and suitable for use in an optimization scheme. However, as will
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Figure 3-2: Graphic depicting an overview of optimization. Optimization, as it relates to
UXO inversion research, is essentially a search to find the most optimal input parameters
for a UXO forward model such that its prediction best matches the measured response of an
unknown object. By finding the optimal input parameters, one can identify if the unknown
object corresponds to any particular UXO and obtain its location and orientation.

be discussed, due to the differences in the specific implementation structure of each

model, the fundamental mode model is favored because it can accomodate a faster

search method.

2. The Search Algorithm: The process of searching and adjusting the input parameters

until a good match between modeled response and data is found requires multiple

evaluations by the model. Any actual buried UXO will be at an unknown position

and orientation underneath the soil. Therefore the search process involves checking

combinations of position and orientation-which are the only inputs of the fundamental

mode model-for each library member until the best match is obtained. An exhaustive

brute force search would not be feasible even for a relatively fast model such as the fun-
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damental mode model. As will be discussed, this study employs differential evolution

(DE), a type of genetic algorithm, as an effective search strategy. However, despite the

improvement over a brute force method, DE still requires considerable computational

time. To counter this deficiency, the DE computation is parallelized using Message

Passing Protocol (MPI).

3. The Objective Function: Since the optimization procedure searches for the best match

between model output and measurement data, some quantitative measure of "goodness

of fit" is required. Normally this measure is a analytical expression for the difference

between the model output and data. This expression is called the "objective function."

Section 3.4 gives the description of the weighted, normalized difference used to calculate

error in this study.

The first topic, the fundamental mode model, has previously been discussed [79]. The

second and third topics, the search algorithm and objective function, will be described in

detail as follows.

3.3 Background on Differential Evolution

In response to the need for a search algorithm in the optimization scheme, this study im-

plemented a Differential Evolution (DE), a type of genetic algorithm. Genetic algorithms

describe a family of algorithms which employ evolution strategy optimization. This form of

optimization is based on the genetic mechanisms and evolution in biology. Many possible
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solutions to the problem of interest are evaluated by how well they solve the problem. Good

solutions are allowed to remain while poor solutions are discarded. This selective process

parallels the idea of evolution which mandate the "survival of the fittest" for individuals

within a population inhabiting a hostile environment. Very fit individuals are also likely to

have fit offspring in the next generation due to passing on favorable genes. The genes of the

offspring are similar to but slightly modified from the genes of the parents as governed by the

known genetic mechanisms of crossover and mutation. This slight change has the potential

of improving the genes which may be passed on to the next generation and so on. This

process is mirrored in genetic algorithms. An individual is now a solution to the problem

of interest. The population therefore is a finite collection of possible solutions. Instead of a

hostile environment determining the likelihood of survival, a solution's "fitness" is measured

by how well it solves the problem at hand. Solutions are culled when they under perform.

"Generation" in computational terms refers to a complete cycle of evaluation for all the

solutions by the objective function. Instead of reproduction, new solutions are generated

to be slightly altered versions of the good solutions belonging the previous generation. In

subsequent generations, these slight changes should allow the solutions to converge upon the

best possible solution. Genetic algorithms have been used to facilitate searches and provide

optimal solutions to non-linear problems.

Differential Evolution is largely distinguished by its use of vector differences of randomly

selected population members to perturb the current population and produce the subsequent

generation. As shown in Figure 3-3, a member of the population is simply a set of input vari-

123



ables for the model and thus represent one possible solution. These variables have assigned

values and are arranged as vectors where each vector represents possible. In Figure 3-3 (a),

to determine if member C1 of the population at generation g should remain in the next

generation, it is compared to a new candidate C' calculated by altering a random member

of the population by the scaled difference of two other random members of the population

in part (b). If this new candidate is determined to be more fit, it will replace C1. For this

specific UXO problem, fitness is determined by the closeness of match between the data and

the model prediction corresponding to the candidate solution as shown in (c). Quantitative

measure of likeness is calculated by an objective function. If the new candidate C' is not

more fit, then C1 remains and is carried over into the next generation. The algorithm tests

the remaining members of the population in the same manner. Once all members of the

population have been evaluated thusly, the population is then at generation g + 1 and the

process repeats. DE, although relatively slow to converge, has been demonstrated to be

resistant to converging on local minima [62]. What this robustness provides is the ability to

find the best possible solution instead of converging on a less optimal solution.

Another aspect of DE is that it is very well suited for parallelization since each mem-

ber of a population can be evaluated independently with regards to whether it should be

replaced or be allowed to remain in the subsequent generation. This flexibility allows for

decreased calculation time without the loss of the ability to converge on the most optimal

solution. Like all genetic algorithms, DE is very computationally expensive. Given the cur-

rent state of computing power, inversion is very time consuming unless the DE algorithm
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is parallelized, using such methods as the Message Passing Interface (MPI) protocol, and

run on a supercomputer. For this investigation, the US Army Research Laboratory's High

Performance computing center's Cray supercomputers with MPI-compatible software was

used to perform the DE optimization.

3.3.1 Background on Message Passing Interface

Message Passing Interface (MPI) was developed by a consortium of computer scientists in

industry and academia in 1993 to 1994 to address the need for a portable and consistent

protocol for parallelizing programs [1, 2]. MPI has since become the de facto standard for

parallelizing programs written in many programming languages such as C and FORTRAN

and on many platforms. The MPI capabilities are integrated as bindings into the respective

compilers.

The MPI protocol is also adaptable for users both unfamiliar and familiar with parallel

programming. In its most basic form, a program can be parallelized with only six basic MPI

commands. However, MPI also offers up 128 commands if the user wishes to create more

complex communication such as distributing calculation work across tree-like topologies. At

the heart of MPI are explicit "send" and "receive" commands which allow the user to specify

the results that must be reported back by each processor after completing computation.

These results are received and aggregated by a root process.

For this inversion study of UXO using DE, each processor is assigned to determine if one

member of the current population should be allowed in remain in the next generation. First,
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Figure 3-3: Differential evolution optimizes outputs of the forward model to measurements.

In step (a), a population is shown at generation "g." To test whether the first member should

be replaced, one random member of the population is altered by the differential of two other

random members of the population. This new candidate is then used as input into a forward

model. The output of the forward model, a predicted UXO response, is checked against the
measured data. If the new candidate provides a closer match than the first member of the
population, then that member will be replaced by the new candidate. DE then proceeds to

check and test the second, third, and subsequent members of the population in the same
manner. Once all members have been examined, the generation is then at "g+1" and the

process repeats.
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the processor creates a potential replacement for one current member as shown in Figure

3-3 (b). Then it calculate the fitness level of the potential replacement. This calculation

involves utilizing the forward model to produce the corresponding predicted response for the

new candidate population member C'. Then the objective function is evaluated to yield the

level of fitness. The fitness level of the candidate is compared to the existing population

member. Whichever solution is more fit is returned to the root processor which aggregates

the solutions from all the processor, increments the generation count, and parcels out the

solutions to each processor once again. For this study, the use of MPI is integrated into the

FORTRAN implementation of DE and the fundamental mode model.

3.4 Selection of Objective Function

The objective function is a measure of how well a proposed solution satisfies the problem

of interest. Various objective functions have been proposed and used in inversion research

[43]. For the UXO inversion problem, the objective function must compare simulated EMI

responses HJ,f created by a model to measured "data" EMI signals Hd"f where each signal

provides a sampling of the secondary magnetic field at N_ observation positions indexed by

x and Nf frequencies indexed by f. Given the variability of the signal's amplitude across

space and frequency, a simple difference, normalized by the number of samples, between the

two signals offers an incomplete picture of how well these two signals correspond:

1 N Nf 'f (31)E = N Nf - H E.12 (3.1)
12Nf =f=1
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In these equations it is assumed that H denotes the magnetic field in the Z direction, cor-

responding to what is measured by the GEM-3 instrument. To demonstrate the inaccuracy

of the preceeding objective function, one can imagine obtaining measurements of a UXO at

two elevation planes. The upper elevation plane would measure weaker signals. Differences

between weaker signals would be smaller than differences between stronger signals. Signals

differences arising from the stronger signal samplings will dominate the calculated error.

Therefore, the final calculated error would be incorrectly biased towards values from the

lower plane [96]. To prevent this bias, the difference must be point-wise normalized by the

magnitude of the data such that the difference at any sample point becomes a percentage of

the signal at the same sample point as shown in Equation 3.2:

1 N NfI Hzf - Hz'flE = N H (3.2)E = NX= I1 H d

This objective function would prevent biasing when determining the overall error. But

this measure also produces some undesirable results by permitting very small outlying, noisy

data points to contribute equally to the error. Therefore, one must specify a lower bound

on the normalizing value such that the effect of very small differences arising from signals

weaker than 6 will be negated as shown in Equation 3.3:

1 N Nf Hmxf - HxfE = E E (3.3)NE - Nf =1 f=1 max(6, |Hd'e)(

This measure can be used as universal benchmark for all signals which may vary in

strength and sample size, producing an appropriately weighted percentage error. A form of
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this error function has also been previously used [18]. For the results shown in this thesis, 6

is equal to 0.08 times the maximum value of |IHdfl.

3.5 Methodology

3.5.1 Selection of Forward Model

As stated earlier, DE requires multiple, successive evaluations of the forward model. There-

fore, it is advantageous to select the fastest model of acceptable accuracy. The fundamental

mode model and the spheroidal mode model are both comparably fast given that both com-

pute responses as a sum of a finite number of modes derived from stored values. However, the

fundamental mode model is implemented in FORTRAN while the spheroidal mode model is

written in Matlab. This difference is critical due to the lack of Matlab-based MPI capabili-

ties at the Army Research Laboratory High Performance Computing facility which provided

the parallelized processors. Therefore, the fundamental mode model is used as the forward

model in this portion of the inversion study.

It should be noted that the fundamental mode model was derived from GEM-3 measure-

ments of actual UXO. The values of the magnetic charges which characterize the response of

an object in this model reflect the units by which the GEM-3 reports all measurement data.

Any prediction made by the fundamental mode model has the same units as all measure-

ments outputted by the GEM-3. Therefore, the application of the scaling factor derived in

the previous chapter to ensure consistency between forward model and measurements is not
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needed. The scaling factor, however, must be applied whenever a wholly analytical forward

model, such as the spheroid model, is in use. This scenario corresponds to the research into

UXO classification described in the next chapter.

3.5.2 Implementation of Differential Evolution

Because the FORTRAN source code for the fundamental mode model is available, DE is

written into this code to provide full integration and therefore eliminate any associated

communication latency which would contribute to a slower performance. The appropriate

MPI commands are then added into the code to provide the parallelization effect as described

in Section 3.3.1

3.5.3 Model Setup

The fundamental mode model [79] was previously shown to provide to provides predictions

for specific UXO types. Therefore, it may be more accurate to refer to the fundamental model

as a library of specific UXO models. Of the available UXO types within the model, four are

selected to form this library and to be used as part of the optimization scheme. These four

UXO are shown in Figure 3-4. In each test case, described in the subsequent sections, either

only one or none of the library members correctly corresponds to the unknown target. For

each UXO type within the fundamental mode model, only the orientation and position of

the object is needed as input. Therefore, for each object in the library, DE will recover the

(x, y, z) position and (0, ¢) orientation that will create the best match to the signal from
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ATC081 ATC188 ATC300 ATC1 18

Figure 3-4: A four member library of UXO models is used to test the DE optimization

algorithm. The relative sizes of the pictures are to scale. From left to right, these items are

ATC081, ATC188. ATC300, and ATC118. Their lengths, from left to right are roughly 51

cm, 48 cm, 41 cm, and 64 cm. Photographs are courtesy of CRREL.

an unknown target. The library object which has the closest match is then taken to be the

identity of the unknown object.

3.5.4 Differential Evolution Setup

Given that the search parameters are (x, y, z) and (0, ¢) for each library member, each

candidate in the population is a vector of length 5. References state a population size should

be roughly 10 or more times the number of search parameters [62]. In the later part of

this chapter, the forward model will be extended to include soil half space effects. Soil
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permeability p will form the sixth input parameter into the model. Therefore, for all work

presented in this chapter, a population size of 60 is used.

DE also requires the user to specify the bounds of each search parameters. The inclination

parameter 0 which specifies the angle from the positive z axis to the x - y plane is allowed

to vary from 0 to v rad. The rotation angle, 0, varies from 0 to 27r rad. In the simulation,

x and y span from -0.3 m to 0.3 m. The sensor is located on the z = 0 plane or above.

The depth of the target's center, z, spans from -0.1 m to -0.7 m. Candidate solutions whose

parameters create a non-physical possibility, such as the UXO intersecting the measurement

plane, are explicitly rejected. These parameters are first initialized randomly with values

drawn from their permitted ranges.

The value of the "F" parameter shown in Figure 3-3 is the amplification factor. A

larger F indicates a more aggressive change and produces a faster but less robust solver. A

smaller F indicates a more gradual change producing a slower but more robust solver [62].

Through trial and error, it was found that the use of F = 0.4 provides the most consistent,

correct convergence. Some literature suggest using crossover and mutation, "M" as shown

in Figure 3-3, to complement the differential change [62]. While this study implemented

these additions, no appreciable difference was observed when these features were added to

DE. Therefore, all results shown in this thesis were created without the use of crossover and

mutation.
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3.5.5 MPI Setup

The population size in use determines the number of processors MPI divides the work across.

Each processor is assigned to one population member so 60 processors are used in parallel.

In addition, one more processor must be used for the controlling and aggregating process.

Since DE is implemented in FORTRAN and integrated into the source code of the fun-

damental mode model, the MPI FORTRAN commands are likewise inserted into this code.

3.6 Inversion Results

The following inversion results present four basic cases, each progressively more difficult:

1. Inversion for a target in freespace

2. Inversion for a buried target

3. Inversion for a target underneath clutter in freespace

4. Inversion for a buried target underneath clutter

In each case, models are first used to produce synthetic data. This synthetic data is

then used by the inversion algorithm to determine the identity of the target and ascertain

any limitations on accuracy of the inversion. After the synthetic data study, corresponding

measurements of the target are taken and processed by the inversion algorithm in a likewise

manner.

133



Table 3.1: Differential evolution optimizes outputs of the forward model to measurements.
In doing so, it recovers the position and the orientation with a high degree of accuracy.

x (m) y (m) z (m) 0 (rad) q (rad)

Real Value 0.100 0.100 -0.350 37r/4 7r/2

Optimized 0.107 0.0991 -0.351 2.37 1.94
Value

3.6.1 Inversion of Objects in Freespace

As the first test for a target in freespace, only synthetic data is used. The model's output is

matched with outputs previously generated. This test allows the verification of the capability

of the DE algorithm and the selected objective function. In all tests, the measurements and

calculated responses were on a 7 by 7 grid of 10 cm spacing. For synthetic data, the plane was

0.35 m above the center of the object. The synthetic data are generated by the fundamental

mode model with input parameters x = 0.1 m, y = 0.1 m, z = 0.35 m, 0 = 37r/4 rad, and

0 = 7/2 rad.

3.6.1.1 Inversion of Synthetic Data for a Single Object

For this test, the DE algorithm uses 50 members in the population and runs for 100 gen-

erations. Shown in Table 3.1 are the true and recovered position and orientation values for

object ATC188. The recovered position deviates roughly 1 cm away from the true position.

Given that this object is more than half a meter in length, this deviation is comparatively

small.

One can also examine the convergence of the DE algorithm through successive genera-

tions. Shown in Figure 3-5 is the lowest objective function value within each generation.
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Figure 3-5: Convergence of the DE algorithm is shown by the fitness measure of the best
fitting population member. Here F equals 0.4 and produces very low error.

Past 60 or so generations, this value shows convergence.

3.6.1.2 Comparison of F values within DE

The F value of 0.4 used in the previous example provides the most suitable balance between

correct convergence and speed. A faster convergence would mean fewer generations and thus

faster running times. However, increasing the F value can lead to improper convergence

where the optimized (x, y, z, 0, 0) values are much less accurate. This inaccuracy and im-

proper convergence can be shown by examining objective function as shown in Figure 3-6.

Here, F = 0.7. While DE converges rapidly, it converges on a solution which has a much

higher error than that created when F = 0.4 as shown in Figure 3-5.
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Figure 3-6: Convergence of the DE algorithm is shown by the fitness measure of the best
fitting population member. Here F equals 0.7 and produces higher error although the process
converges more quickly. This analysis demonstrates that lower values of F are needed for
correct optimization.
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Library object

SATC081 ATC188 ATC300 ATC118
E•

ATCO81 0.07 0.22 0.20 0.22
ATC188 0.19 0.03 0.21 0.23
ATC300 0.21 0.21 0.09 0.24

S ATC118 0.23 0.21 0.25 0.03

Figure 3-7: The normalized root mean square measure error when testing the DE optimiza-

tion algorithm with synthetic data. The low error values on the diagonal correspond to good

matches.

3.6.1.3 Optimization for Library Members

The above analysis can be extended to a large range of targets. First, the fundamental mode

forward model generates responses for the four members of the library. Using these modeled

responses, DE recovers the orientation and location of each member of the library that will

produce the best match to the data. In addition to confirming the applicability of DE and

the selected objective function, this test will also specify the lower bound on error. Any error

will be inherent to the DE method and will not be due to any inaccuracy of the forward

model or measurement noise. Shown in Table 3-7 are objective function measure of error.

As stated earlier, this error can be thought of as a percentage of the mean of the overall

response. The rows correspond to data generated from the model for each particular UXO.

The columns correspond to the candidates in the library. The diagonal values correspond

to the correct match between object producing the synthetic data and the library member.

Therefore, the low error values on the diagonal are the lowest in their respective row and

demonstrate that identification of UXO is achievable with DE.
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3.6.1.4 Inversion Using Measured Data

As a first step in using real data, DE is used to match measurements of a known object with

its corresponding model. Measurements are taken of object ATC188 in freespace on a 7 by

7 grid with 10 cm spacing. The measurement plane is 15 cm above the nearest point in the

object. The object is roughly at the center of the grid and has a 0 value of about r/2 rad.

Given the impreciseness of measuring the UXO position, The object's exact position and

orientation are unknown and must be retrieved as part of the inversion process. Therefore,

producing a table analogous to Table 3.1 would be misleading. One can show, however,

the goodness of fit between the output of the optimized forward model for ATC188 and

measured data as shown in Figure 3-8. This match produces an error of 0.08 as measured

by the objective function.

The next logical step is to extend the inversion to a wider range of objects and optimize

using the four member library. Measurements were taken of various objects, some corre-

sponding to the four library members and others which were artificially constructed large

clutter objects as shown in Figure 3-9.

The relative error shown in Figure 3-10 are the result of a "blind" optimization test. The

researcher was unaware of the true identity of any of the test objects until after these errors

scores were obtained.

The red colored entries in the table of Figure 3-10 represent the error between measured

object and optimized library member. Since each red entry is the lowest in their respective

rows, the DE algorithm has correctly determined the identity of each measured UXO. For the
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Figure 3-8: Differential evolution optimizes outputs of the forward model to measurements.
In doing so, it can match the EMI signal with good accuracy.
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Clutter 6

Clutter 5 Clutter 7

Figure 3-9: Measurements were taken of these four discrete clutter items and used to test

the DE optimization algorithm. Photographs courtesy of CRREL.

Library object

ATC081 ATC188 ATC300 ATC118
ATC118 0.23 0.27 0.29 0.11

Clutter object 4 0.29 0.26 0.23 0.25
Clutter object 5 0.21 0.20 0.23 0.20

ATC188 0.18 0.08 0.22 0.21
ATC300 0.21 0.20 0.10 0.23

Clutter object 6 0.18 0.18 0.24 0.21
Clutter object 7 0.27 0.27 0.21 0.25

ATC081 0.12 0.21 0.24 0.19
ATC118 0.21 0.23 0.25 0.13

Figure 3-10: Relative error of the best matches for a four member library. The lowest error

is created by the correct object.
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clutter items, the errors for all library members are relatively high. The lack of a significantly

low error in each row can be used to determine that the unknown object is not a member of

the library. If the library encompasses all UXO types that are likely to be present, the lack

of a good match for an unknown object can be used to determine that the object is likely a

piece of clutter.

3.6.2 Effect of Soil in Differential Evolution Inversion

The previous DE inversion results are for objects measured in a laboratory environment

where free space is a good approximation for the background medium. Inversion of a UXO

buried in soil is considerably more difficult due to the environmental noise. And as shown

previously, a halfspace will create an offset in the Inphase portion of the EMI response which

must be taken into account during the inversion process.

3.6.2.1 Accounting for Soil Offset

Accounting for soil offset within the inversion process may be done in two ways. The first

method involves removing the effect of the soil offset from the data prior to inversion. This

may be done by taking measurements of nearby soil that do not contain UXO targets and

then subtracting that data from the measurements of the buried UXO. This technique,

however, requires access to "uncontaminated" soil that has the same material properties

as the soil containing UXO. Furthermore, the unevenness of the surface of the soil will

create varying distances between sensor and the surface. In measurements this variation

will manifest itself as noise. Therefore, a smooth soil surface is desired in all measurement.
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While these conditions can be reproduced in controlled environments, the same cannot be

said of all real UXO recovery scenarios.

The second method to account for the present of soil is to invert for the soil properties

within the overall UXO inversion scheme. Much like how DE recovers an object's position

and orientation in the optimization process, DE can also recover a soil's permeability value.

A halfspace response can be added to the fundamental mode forward model. Given known

transmitter characteristics and elevation, this halfspace response can be determined by a

single p parameter as shown in Chapter 2.3. Therefore, as part of the optimization process,

p must be explicitly recovered along with (x, y, z) and (0, ¢).

For the analysis of synthetic data created by modeling UXO in permeable backgrounds,

the second method to account for soil is applied. The analysis of measurements of real

buried UXO utilizes the first technique of subtracting the background response from the

UXO measurements as discussed in Section 3.6.2.3.

3.6.2.2 Inverting Synthetic Data with Modeled Permeable Soil Response

A buried UXO's EMI response is modeled as a superposition of a permeable halfspace re-

sponse on the response of the UXO in freespace as calculated by the fundamental mode

model. This approximation was shown to be valid for realistic soil permeability values in

Chapter 2.3. Therefore a forward model can be constructed for the response of a buried

UXO in this manner.

This same model is also then used within the DE inversion algorithm by extending the

search to include an unknown soil permeability value p. For DE, this can be done by having
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-o Library object

E ATC081 ATC188 ATC300 ATC118
0 ATC081 0.12 0.26 0.23 0.27

ATC188 0.22 0.08 0.24 0.26
a 0 ATC300 0.23 0.24 0.11 0.26

ATC118 0.24 0.24 0.27 0.07

Figure 3-11: Table of error for synthetic data with permeable halfspace offset.

each population member include one more variable to specify the soil permeability.

Given a known sensor elevation, only the value of soil p governs the contribution of the

soil to the modeled response. Therefore, 6 parameters must be recovered by DE: (x, y, z),

(0, 0), and soil y. Following the guidelines stated earlier, a population size of 60 is used. Fur-

thermore, the algorithm is now allowed to run for 120 generations. To test the performance,

a simulation analogous to the one specified in Section 3.6.1 is conducted. First the synthetic

UXO response data is overlaid with the response of a halfspace with some unknown but

reasonable permeability value. Then this synthetic data is used by DE to retrieve (x, y, z),

(0, 4), and soil [t for all library members as shown in Figure 3-11. As earlier, the correspond-

ing library member in each row is correctly identified because it produces the lowest error.

Errors for the incorrect library members are at least roughly double the error corresponding

to the correct target.

3.6.2.3 Inverting Measurements Taken from Objects Buried in Soil

Shown in Figure 3-12 are the optimization results for measurements taken of an ATC081

buried at three different depths: 5, 10, and 15 cm. The target is roughly oriented and

positioned at 0 = 7r/4 rad, 0 = 0 rad, and x = y = 0 m in all measurements. Depth
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Library object
SATC081 ATC188 ATC300 ATC118
D ATCO81 buried under 15cm soil 0.24 0.25 0.27 0.28

cu ATCO8I buried under 10cm soil 0.19 0.25 0.27 0.29
o IATC081 buried under 5cm soil 0.14 0.24 0.28 0.26

Figure 3-12: Relative error of the best matches for a four member library. The measurements
were taken of a buried UXO target. The lowest error is created by the correct library member
for measurements of the object at depths of 10 and 5 cm. Depth is measured from the surface
of the soil to the nearest point on the target. When the object is buried at a depth of 15
cm, however, the error values are roughly equal amongst all the library members, indicating
that DE has difficulty identifying more deeply buried objects.

is measured from the surface of the halfspace to the nearest point on the target. The

measurement grid is 7 by 7 with 10 cm spacing and at a 11.25 cm elevation above the soil

surface.

The data clearly shows that DE is able to find better matches for objects buried at more

shallow depths. The trend can also be graphically depicted as shown in Figure 3-13. This

phenomenon can be explained by the lower SNR for deeply buried objects: as shown in a

previous chapter, the soil response is an image of the sensor. Therefore, the magnitude of

the soil response will remain relatively constant for all measurements at the same sensor

elevation. However, if the target is buried more deeply, its measurable secondary response

becomes much weaker due to the increased distance to the sensor. The response from the

target decays roughly in proportion to - where r is the distance between target and sensor.

This loss represents the - loss between transmitter and target and another - loss between

target and receiver.
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Figure 3-13: Graphical interpretation for the relative error of the best matches for a four
member library. The measurements were taken of a buried UXO target. The lowest error is
created by the correct library member for measurements of the object at depths of 10 and
5 cm. Depth is measured from the surface of the soil to the nearest point on the target.
When the object is buried at a depth of 15 cm, however, the error values are roughly equal
amongst all the library members, indicating that DE has difficulty identifying more deeply
buried objects.
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3.6.3 Effect of Clutter on Differential Evolution Inversion

Another large contributor to noise is the presence of very small diffuse metal clutter objects,

often very near the surface of the soil. While these clutter items are much smaller than

the large discrete clutter depicted in Figure 3-9, small diffuse clutter may still create a very

strong EMI responses when the sensor passes above. Therefore, the impact of diffuse clutter

pieces on the overall EMI response of buried UXO must be taken into account. This study

first examines the effect of modeled small clutter in the inversion of synthetic data before

proceeding to measurements of UXO overlaid with clutter.

3.6.3.1 Synthetic Clutter Estimates

Small pieces of clutter can be modeled as dipoles and their combined response can be super-

imposed onto a UXO forward model prediction of the secondary field. This superposition

creates a model for a UXO obscured by clutter. The modeled clutter is comprised of 20

dipoles, characterized by a magnetic polarizability matrix of a metal sphere in a uniform

field. These dipoles are randomly dispersed over an area of 0.6 by 0.6 m and a depth of up

to 0.5 m, corresponding to the allowable range for the position of the modeled UXO target.

The distribution of the locations for the spheres is uniform random over this volume. The

spheres range in size from 0.5 cm to 2 cm in diameter. Their diameter is randomly selected

from this range with a uniform distribution. These spheres have material properties equal

to either typical steel (Pr = 100 with a = 2 x 106 S/m) or typical aluminum (Pr = 1 with

a = 2 x 107 S/m), randomly selected with equal probability. Monte Carlo simulations with
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Library object

E ATC81 ATC188 ATC300 ATC118
S ATCO81 0.15 0.26 0.26 0.29

ATC188 0.24 0.12 0.25 0.28
o ATC300 0.26 0.25 0.13 0.28

ATC118 0.25 0.24 0.27 0.12

Figure 3-14: The objective function computer error when testing the DE optimization al-
gorithm with synthetic data. The low error values on the diagonal correspond to good
matches.

10 trials suggest the presence of these spheres creates a level of noise that is comparable to

about 19dB SNR. For the modeled volume of 0.18 m3 , a total of about 35 cm3 is comprised

of metal from these small spheres.

Using this model of a UXO obscured by clutter, synthetic data can be created and used

to test the DE optimization in the same manner as described in Section 3.6.1.3. It should be

noted that while the synthetic data is generated by the model that includes clutter, within

the DE algorithm the forward model does not include any clutter or soil modeling.

The 5 parameter DE optimization is used to recover (x, y, z, 0, q) for each library member.

DE matches the forward models to the noise corrupted signatures of the targets, identifying

the best matching object amongst the candidates in the library as described in Section 3.6.1.

This inversion uses a 50 member population, running for 100 generations. As shown in Figure

3-14, the correct library member still produces the lowest error in each row. However, as one

might expect, the errors are larger than in previous examples where no clutter was present

in the synthetic data.
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3.6.3.2 Real Clutter Measurements

EMI measurements are taken of UXO in freespace overlaid by a surface of small disperse

metallic clutter pieces as shown in Figure 3-15. This mat shows the "full clutter" scenario

with about 50 cm 3 in volume of clutter. Measurements were also obtained where half this

volume of clutter obscured the target UXO. Information about the total mass of these clutter

items is unavailable to the author.

DE optimizes the fundamental mode model of the four candidates in the library to match

these noisy measurements. This optimization is repeated for varying amounts of clutter. The

inversion is successful for cluttered measurements which had signal-to-noise ratios up to 17.5

dB. This result is shown in the second row of Figure 3-16 where the correct library member

produces the smallest error. However, when a denser collection of clutter is overlaid above

the target, an SNR of 11.2 dB results and DE is unable to distinguish the correct UXO from

the other members of the library. This is shown in the third row of the same figure where

the error produced by the correct library member is indistinguishable from the others. The

relative differences can be interpreted more easily when seen in a graphical form as shown

in Figure 3-17.

3.6.4 Combined Effect of Clutter and Soil on UXO Identification

The ultimate test of any UXO inversion system is to identify a target buried in magnetically

responsive soil that is also obscured by clutter. To this end, one must investigate the effect

of both soil and clutter. Once again, a synthetic test precedes the analysis of measured data.
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Figure 3-15: A mat of diffuse clutter pieces at a concentration deemed very significant for
UXO contaminated land. This mat corresponds to the "full clutter" scenario. Photograph
courtesy of CRREL.

Library object

o

Cua)

Figure 3-16: Relative error of the best matches for a four member library. The measurements
were taken of a UXO target obscured by a layer of clutter. The lowest error is created by
the correct library member in the "no clutter" and the "half clutter" scenarios.
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* No clutter
* Half clutter
* Full clutter

*O

I /
ATC081 ATC188 ATC300

UXO optimized model

Figure 3-17: Graphical interpretation for the relative error of the best matches for a four
member library. The measurements were taken of a UXO target obscured by a layer of
clutter. The lowest error is created by the correct library member in the "no clutter" and
the "half clutter" scenarios.
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Library object

ATC081 ATCI88 ATC300 ATC118
ATC081 0.18 0.27 0.27 0.27
ATC188 0.28 0.19 0.25 0.28
ATC300 0.27 0.25 0.22 0.26
ATC118 0.29 0.26 0.30 0.18

Figure 3-18: Table of error for synthetic data generated from model of buried UXO with

clutter.

3.6.4.1 Modeled Response of Buried UXO with Clutter

A model of buried UXO obscured by clutter can be created by superimposing both a per-

meable halfspace response and the response of a collection of small metal spheres onto the

fundamental mode model for the response of the target of interest. These small spheres are

as described in Section 3.6.3.1.

There are now two distinct sources of noise in the synthetic data: soil and clutter.

The DE inversion then attempts to match this noisy signal by optimizing the sensor-target

configurations of each of the four candidates in the UXO library.

While the synthetic data is generated by a UXO model which includes the effect of

permeable soil and diffuse clutter, the forward model used within the DE optimization

algorithm includes the effect of the permeable soil but not any diffuse clutter. In other

words, the inversion scheme is the same as that described in Section 3.6.2.2.

Given the effect of soil permeability, the subsequent need to optimize 6 parameters instead

of only 5, and the noise due to the clutter, the match now is less successful than the prior

tests as shown in Figure 3-18. While the correct library member provides the lowest error

in each row, the margin of difference is much narrower particularly for ATC300.
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Figure 3-19: A mat of diffuse clutter pieces at a concentration seen at heavily contaminated

UXO sites. Photograph courtesy of CRREL.

3.6.4.2 Measurements of Buried UXO with Clutter

To test DE with real data, measurements were taken of buried UXO overlaid with a sheet of

clutter. The sheet of clutter is shown in Figure 3-19. The mass and volume of this clutter

sheet is unknown, but it was created by researchers familiar with UXO contaminated sites

and is representative of typical clutter concentrations seen there. The buried test objects

are ATC118, ATC188, and ATC300. As shown in Figure 3-20, the match is considerably

worse. Unlike the previous cases, one cannot always distinguish the correct identity among

the members of the library. This suggests the level of noise due to both the clutter and soil

is far too strong when compared to the UXO response.
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Figure 3-20: Table of error for inversion of buried targets overlaid with a clutter sheet.
The higher error values for the correct library members, shown in bold, indicate that DE
optimization is unable to identify targets reliably under these conditions.

3.7 Conclusion

While DE is shown to be able to identify an unknown target, it is significantly hampered by

two large problems. First, sources of noise due to the soil and clutter significantly reduces

the ability of DE to correctly identify objects. The sheets of clutter used in this study

are representative of what may typically be found in UXO sites. Therefore, methods of

filtering or suppressing the clutter response are needed before DE matching algorithm, as

implemented here, can be used as a practical method of inversion.

The second issue is that DE is very slow. The calculations shown here require more than

a week on a desktop computer and at least several hours when the algorithm is parallelized

and run on multiple processors. Given the current computer power, real time inversion is not

possible. However, one may recall that the UXO problem posed earlier was to identify UXO

from clutter and thus reduce false alarm rate. This identification process may be reduced

to a simple discrimination between general UXO and clutter. Therefore, a development of

a much faster inversion method which does this type of binary discrimination is the subject

of the next chapter.
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Chapter 4

Inversion Through Application of

Machine Learning: Classification

4.1 Introduction

While DE inversion in the previous chapter is shown to be capable of recovering the identity

of buried targets when given a library of candidates, that technique is hampered by the

computational requirements. Despite use of parallelization and access to supercomputers,

processing requires at least a few hours. Given current computing limitations, DE is therefore

not a suitable method for real time, on-site inversion. While computational power is steadily

increasing with time, there is always motivation to obtain a faster solution that may be

obtained within the confines of the present computing capability. Furthermore, the DE

method requires compiling a library of specific possible objects and has difficulty generalizing

for UXO objects not included in the library because the optimization procedure produces
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similar levels for goodness of fit between disparate objects. A UXO not in the library would

go unrecognized. Therefore, an alternative method to pursue is to discriminate all UXO from

clutter generically, as opposed to identifying particular UXO or UXO types. The inversion

problem can be considered as a classification problem: given the EMI response of an unknown

object, one must classify the object as either a UXO or a piece of clutter.

4.1.1 Previous Work

While general UXO inversion work by other researchers was mentioned in the previous

chapter, the work in this chapter is most similar to statistically based classification [17, 52,

81,94] and pattern recognition [31]. However, the previous work implement discrimination

based on features of the EMI response which cannot be proven to be unique properties of the

associated target. For example, parameters of an axial dipole response can be used [41], but

as shown earlier, the dipole model does a poor job of characterizing heterogeneous objects.

The work described in this thesis is unique in that it makes use of B' , the coefficients of

the spheroidal response modes. Since B3 have been proven to be unique properties of the

target [3], they readily lend themselves as inputs into any discrimination algorithm.

4.2 Research Overview

To form such a discriminator, several topics must investigated:

1. What characteristics distinguish UXO from clutter objects? The most basic

question one can ask is how UXO can be physically distinguished from clutter objects.
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To that end, the following section will discuss four basic physical characteristics of

UXO not found in typical clutter.

2. How are these physical characteristics represented in the UXO's EMI re-

sponses? The physical properties of objects dictate their corresponding EMI response.

Therefore, it may be possible to find distinguishable traits or features within these EMI

responses that relate to the physical nature of the target. Section 4.4 discusses utilizing

the B' coefficients as such features.

3. What is the relationship between these features and the physical charac-

teristics of the object? If it is possible to derive distinguishable features of EMI

responses which relate to the physical nature of the object, then the next objective

would be to decipher such a relationship. Section 4.5 discusses how to recover this re-

lationship through example data with the application of machine learning techniques.

One particular machine learning method, support vector machines, will be introduced

and discussed.

Once the relationship between Bi values, characteristics of the target which may be found

through the corresponding EMI response, and the physical nature of the targets is known,

classification would only require examining the BM values of any new target to determine if

the object physically is more similar to UXO or to clutter. As discussed in earlier chapters,

B3 values may be recovered from any target given enough EMI measurements. Therefore,

this method has the potential to classify objects in a real time, on-site process when enough

measurement data of the buried target are taken. Therefore, this method has several distinct
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advantages over DE inversion and warrants investigation.

4.3 Determining Clutter and UXO Characteristics

To perform discrimination between UXO and clutter, it is necessary to ask what physical

characteristics distinguish clutter objects from UXO targets. The earlier discussion on DE

inversion included examples with larger clutter objects and sheets of very small diffuse clutter

pieces. Large clutter pieces can possibly be mistaken for UXO while small diffuse clutter

largely contribute noise to the measured EMI response. Figure 4-1 shows clutter pieces of

various sizes that were recovered from UXO sites. Note both the shape and size of these

clutter objects. The largest is around 10 cm. The UXO shown in Figure 4-2 is around 80

cm. It is elongated and has a general body of revolution shape. From such inspections, one

can decided upon several basic key physical features to distinguish UXO from clutter [98]:

1. Body of Revolution (BOR): UXO are almost always a BOR. Even the presence of fins

or other small deviations on a UXO does not affect the response of the object to the

extent that one is able to distinguish it from true BOR objects [71]. In contrast, clutter

can have any random shape.

2. Size: Field workers involved in UXO cleanup are particularly interested in distinguish-

ing larger objects from relatively smaller clutter items. These clutter items can have a

strong EMI response if they are buried at shallow depths which is a common scenario.

Since the strength of the object's response is a poor indication of the object's size,
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Figure 4-1: Large discrete clutter objects recovered from UXO sites. Photograph courtesy
of CRREL.

more sophisticated discrimination processing is necessary to avoid the costly task of

digging up these clutter objects.

3. Homogeneity: UXO are usually composed of a number of different materials while

clutter, often fragments and casings from exploded ordnances, are often homogeneous.

Realistic obstacles to successful discrimination must be considered when developing any

practical classification method. The classification must be general enough to be applied to
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Figure 4-2: Typical UXO object. Photograph courtesy of CRREL.
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a wide range of possible objects since there is a substantial range of possible clutter items

and UXO. The classification must be robust enough to be minimally affected by sensor and

environmental noise. Furthermore, for real time application, the classification must be fast.

All of these points are addressed in this research.

4.4 Selection of Feature Vector: Distinguishable Pa-

rameters of EMI Responses

While the DE inversion study discussed in previous chapter uses the EMI response of objects

directly, these responses are highly dependent on target's orientation, location, and sensor

in use. One would like to find features of the EMI response which only relate to the physical

nature of the object. These features may offer clues to the object's generic characteristics,

such as size, shape, and symmetry, which may strongly indicate whether the object is a

UXO or clutter. One such feature came to light as the result of previous work in developing

the spheroidal mode forward model within the spheroidal coordinate system. As discussed,

within this coordinate system, the excitation and response of a UXO or any other object can

be described in terms of scalar spheroidal modes consisting of associated Legendre functions.

The spheroidal response modes each have a coefficient B3 which correspond to the kth

mode of the spheroidal response due to the jth mode of the spheroidal excitation [12]. The

BI have been proven to be unique properties of an object in the sense that objects producing

different scattered fields must have different Bi [12, 18]. For a coordinate system aligned
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and centered on the target, Bi are completely independent of the excitation, orientation, and

location of the object. Thus Bi values only depend on the physical properties of the object.

Consequently, these BI coefficients, which can be recovered from the measured signal, are

appropriate inputs into classification algorithms.

4.4.1 Motivation for the Use of Spheroidal Mode Coefficients

The motivation for the use of BJ coefficients rather than parameters of a simpler model,

namely the dipole model, stems from the comparison between the spheroidal mode model

and the dipole model given in 2.2.2.2. The dipole model is insufficient to model composite

objects. Characterizing objects solely by the associated polarizability factors, fitted to the

measurement data in a least-squares sense, has no guarantee of uniqueness as shown by [77].

Furthermore, examples in Section 2.2.2.2 show that dipoles poorly characterize heterogeneous

objects.

Therefore, this study proceeds with classification using B' parameters. Some measure-

ment configurations and associated data limitations may pose computational problems, limit-

ing the number of modes that one can treat. But since prior work has shown that a significant

number of B3 can be reliably obtained from noise-corrupted signals [18, 19], the focus here

is on analyzing whether good classification is possible when accurate B. are obtained. The

relationship between the number of utilized BI values and classification accuracy is also

studied. Furthermore, the sensitivity tests will demonstrate the level of accuracy possible

when the classification uses Bi derived from noisy signals.
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4.5 Background on Learning Machines

As stated earlier, determining whether an object is a piece of discrete clutter or a UXO by

using the Bi coefficients of the object requires an understanding of the relationship between

the coefficient values and the physical nature of the object. One can easily hypothesize

that this relationship must produce patterns in the Bj coefficients of particular objects.

However, these patterns may be difficult to recognize by an unaided human. Such pattern

recognition problems can be found in many other fields of study from handwriting analysis

to face recognition [60, 90]. In many of these applications, features from the data are used

to form correct conclusions about the data samples much like how Bi is used to classify

objects in this study. The ability to form accurate conclusions about complex data using

the selected features, however, requires an algorithm or "machine" to recognize or "learn"

the relationship between such data and the features.

Machine learning is learning from experience: given features of some object, it is able

to generalize the behavior of the system governing the object and then make predictions

about the nature of the object. Most often this prediction involves labeling of the data.

For example, suppose an object is characterized by features x and has some associated label

y. Given some new x' data from a new object, one must infer the appropriate y' label.

Supervised machine learning is one subset of general machine learning where examples with

correct labels are first studied before predictions are made about new unlabeled examples.

More specifically, given a set of I observations, consisting of an input vectors xi E Rn , i =

1, ..., 1 and the associated labels yi, the supervised learning machine finds the correct mapping
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x -* y for general data. This process to find the mapping is called "training." The initial set

of xi and yi input vectors are appropriately named the "training data." The performance

of a trained machine can then be evaluated with a set of new xt test data for which the

machine must perform the mapping. The correct associated Yt is known but withheld from

the machine. The yt that is found through the mapping is then compared to the true Yt to

gauge accuracy. A machine is over-trained if it is only able to recognize and produce the

correct output for x that are extremely similar to or even exactly like the xi members of

the training data. This scenario creates a machine that inaccurate for noisy data or slightly

different input cases. On the other hand, an under-trained machine is simply too general

and does not recognize enough of the specific underlying mapping between x and y, leaving

it unable to correctly classify test examples. An ideal machine is capable of generalizing

and finding the accurate labels for a very broad range of inputs. Once a learning machine

is confirmed to be accurate in the aforementioned manner, it may be used to find the labels

for new x where the associated y are truly unknown.

Many machine learning techniques have been shown to be highly capable of dealing

with complex and large sets of input values. This method of classification using supervised

learning has been applied to a wide range of topics such as data mining, finance [58], and

diagnosing hereditary cancer using thousands of genes as input x [63]. Given that the UXO

classification problem uses B- values at several frequencies, the ability to handle a large

number of features describing an object is also highly attractive. However, one might argue

the use of complex pattern analysis algorithms is unwarranted if the relationship between
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B' and the physical properties of the object is very obvious. As described in the next section,

research was done to demonstrate that this relationship is not simple and the use of machine

learning is needed.

4.5.1 Motivation for the Use of Machine Learning Techniques

Beyond motivating the use of the B' system, one should also demonstrate that, having

obtained a set of BM , the use of sophisticated classification methods like machine learning

is necessary. Some information about the physical natural of the unknown target can be

directly gleaned by examining the EMI response. For example, a permeable object would

produce a strong Inphase response at low frequency while a non-permeable object would not.

Therefore, one might believe such apparent patterns might also appear in the B values of

the objects. For example, one might think the overall magnitude of Bi coefficients for an

object would be related to the object's size. However, this relationship is not strictly true

even for simple, homogeneous objects. Such strict correlation between large B3 values and

large object size only exists for the very simple case of comparing two objects that are exact

scaled versions of each other and of the same material. However, this study is most interested

in collections of objects of variable shapes and composed of various materials. This degree of

freedom and the choice of frequencies of interest will directly affect the Bj values under study.

For example, Figure 4-3 shows low frequency B3 values from a small permeable spheroid

and a larger non-permeable spheroid. The smaller spheroid clearly has larger Bi values at

this frequency. For another example, in Figure 4-4 the objects' elongation is varied but the
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material is the same for both. These two objects have the same volume. But one can find a

frequency where the B' of one is larger than the B1 of the other. In a third example, one

can observe the magnitude of the B' coefficient that corresponds to the z direction dipole

response for uniform 2 magnetic field excitation over frequency in Figure 4-5 for two objects

of the same size but different material. These values can vary quite a bit over frequency and

one curve is not consistently greater than the other. And while the patterns in the data shown

in the previous figures can be explained with basic known EMI behavior of metallic objects,

the point is that these patterns are made much more complex by the simultaneous variability

of object size, material, and shape. Therefore, the conclusion is that the B3 patterns and

magnetic polarizability patterns are too complex to permit size classification by more simple

means such as measuring overall B3 magnitude. What machine learning provides is the

ability to characterize these patterns in a structured framework so that the classification is

systematic.

4.5.2 Background on Support Vector Machine and mySVM

The main machine learning algorithm selected for use in this study is Support Vector Machine

(SVM). SVM is a linear classifier where each input training vector X is a point that is mapped

into an n-dimensional space with n being the length of the vector. The example shown in

Figure 4-6 only depicts a 2-D space for clarity. The basic objective of an SVM is to find the

optimal hyperplane, i.e. a plane in n-dimension space, that correctly separates the points of

the two classes as completely as possible. In the example shown, the hyperplane is reduced
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Figure 4-4: Bj I values corresponding to x, y, and z dipoles in response to uniform excitation
in each corresponding direction. Spheroid A has an elongation ratio of 2 while spheroid B
has a ratio of 1.5, and both objects are of the same material. Even though both objects have
the same volume, at 2 kHz it is possible to have dissimilar B' values.
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Figure 4-5: |B I coefficient corresponding to z dipole moment as a function of frequency.
These objects are of the same size but are of different materials. They produce z dipole
responses that vary across frequency.

to a line. When a test vector is presented, a trained SVM only has to find on which side of

the hyperplane the new point falls to determine its class. Therefore, the classification process

is normally very fast, making it attractive for the purposes of this study. A constraint is

that SVM can normally only do binary classification. However, this constraint is acceptable

for this study: the output y is a binary value, being either -1 or +1, and represents the two

possible classes of a physical trait that distinguishes UXO from clutter. For example, one

can discriminate large objects from small objects. Thus the problem is a binary classification

problem. One can then consider each input vector zi to be the set of B3 for an object.

More specifically, suppose there are a total of M training points, indexed by t. Further,

for each t data point, the corresponding binary label Yt is +1 or -1. As shown in Figure 4-6,

there is a line which correctly divides, or "shatters" in SVM jargon, all the data into two

classes. This divider can be defined by a normal vector w'. Therefore, finding the correct
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Figure 4-6: A line which correctly divides the data into two classes can be found in this
example.
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Figure 4-7: The most optimal
in this figure.

line

Class +1

Class - 1

which correctly divides the data into two classes is shown

divider is equivalent to finding a W' that satisfies

ytT "- - > 0
.tWXt>O (4.1)

for each t. However, one can also see from Figure 4-6 that there are many possible dividing

lines and thus many possible solutions for W'. Common sense would lead one to choose the

dividing line which has the largest margin possible from the nearest training data points as

shown in Figure 4-7. This stipulation is akin requiring the divider to be in the center of the

widest possible margin between the two groups.

Since this line will be used to classify new data, using a line much too close to any training

data increases the likelihood of misclassification due to a smaller margin of error. Assume,

then that there is some 7y > 0 where ywTxT > 7y which ensures each example is classified
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correctly with a finite margin. The distance between the dividing line and nearest data point

can be shown to be y7/|1|| [29]. Therefore, to ensure the widest possible margin, one needs

to

maximize /yll lll subject to ytW T . X > 7. (4.2)

The equivalent would be

1
minimize |w'112 subject to ytW > 1. (4.3)

This equation is a quadratic programming problem where the objective is a quadratic

with linearly constrained parameters. Solving this quadratic programming problem requires

an optimization and search mechanism and is implementation dependent. Several quadratic

programming solvers are available such as quadprog within Matlab.

The previous example is linearly separable and finding a line which correctly divides the

data is straight forward. However, shown in Figure 4-8 are two examples of 1-D data where

one is linearly separable and the other is not. The divider here is a single point rather than

a line. However, this data can be mapped onto 2-D where x, -- (xl, xi). Now the data is

linearly separable as shown in Figure 4-9. In this manner, all non-linearly separable data

can be mapped onto a higher dimension where it is linearly separable. The specific mapping

used is generally implementation dependent and subject to much research in it of itself [68].

For further explanation of SVM and the mapping selection, the reader is directed to

references [29, 85]. This study utilized mySVM, a freely distributed and highly optimized
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Figure 4-8: Examples of linearly separable and non-separable data in 1-D.
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Figure 4-9: A specific mapping I-D data into 2-D can transform the formerly non-separable
data of Figure 4-8 into separable data.
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Layer 1 Layer 2 Layer 3

Output

Figure 4-10: Examples of a topology for a three hidden layer neural network.

implementation of SVM based on SVMLight [65, 85]. For the experiments described in

this chapter, mySVM operates in its "pattern matching" mode with a radial kernel function.

Training of mySVM is very quick, converging in less than a minute for a 1800 member training

set on a 3.6 GHz Pentium 4 machine with 3.5 GB of memory. mySVM automatically finds

the ideal balance between over training and under training.

4.5.3 Background on Neural Networks

A NN consists of a collection of interconnected processing elements, called "neurons" to

collectively perform the xi --* yi transformation. The neurons each have an input and output

with a transfer function and a bias. The neurons are organized into layers with outputs of

one layer interconnected to the inputs of the subsequent layer. The output of the last layer

provides the desired yi.

Shown in Figure 4-10 is the topology of a neural network with three hidden layers. The

node on the farthest right provides the output and is not considered hidden. Each arrow

between the NN input and the nodes of the first layer or between different nodes has an
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associated weight. Each node also has a bias. The biases and all the weights are first

initialized to some random or preset value. To produce the correct output yi, the difference

between the calculated and expected outputs is examined for each member of the training

data set. This difference determines how the weights and biases are incrementally adjusted

during training to produce the correct mapping function. Like SVM, a trained NN is very

fast in finding the output for a given input.

The adjustment and training process requires in-depth explanation and readers are pro-

vided with references [11,92]. A great concern, however, is that a NN may be over trained.

Cross validation and limiting the training cycles helps to prevent over training. An overly

complex network with too many weights make cause the algorithm to be erratic and unreli-

able. The final architecture is highly dependent on the nature of the input data. Therefore,

starting with a very simple network and then adding more neurons until low error on the

training data and good cross validation performance is achieved is one method to obtain a

reliable network [92].

4.5.3.1 Implementation of a Neural Network

Unlike mySVM which was developed elsewhere, the NN used in this study is developed

by the author. Matlab's NN toolbox was utilized to efficiently implement a three hidden

layer feed forward NN consisting of 10, 10, and 3 neurons in order from input to output.

Since 112 values serve as input into the system, 24 node bias and 1253 weights between

the nodes need to be determined to form a trained neural network. All nodes have a tan-

sigmoid transfer function except the final output node which is a linear transfer function.
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The weights and biases of the network are initialized with random values, taken from -1

to 1. The architecture of this neural network was found by starting with a 3 node, one

layer network. Nodes were incrementally added to this layer but was not found to increase

classification accuracy beyond 10 nodes. An additional 3 node layer was added. Increasing

the number of nodes in this second layer did not produce an increase in accuracy beyond

the 10th node. Finally, a third layer was added to created acceptable classification accuracy.

While it may be possible that a comparable level of accuracy can be achieved by a three

layer neural network with few nodes per layer, resolving the most optimal topology would

require a more comprehensive search. Batch training was used: the weights between the

nodes are updated only after all the training examples have been exposed to the network.

Levenberg-Marquardt back-propagation was used in training. This type of back propagation

was found in practice to provide the best results. While this training requires more memory,

it is comparatively faster than other common training methods. Even so, training the NN

is much slower than training the SVM. Where the SVM takes under a minute with 1800

training objects, the NN takes close to 20 minutes using the same computer.

One significant feature of the NN is that the inital weights and biases are random. There-

fore, separate attempts to train with the same data will produce realizations of networks that

have differing classification ability. In our experience, using a larger number of training sam-

ples helps to minimize but not completely remove the effects of unfortunate choices for initial

weights and biases. The benefits of a large training set must also be weighed against the

time needed by the forward model to generate the data. Therefore, for each set of training
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data, NN is independently initialized and trained 10 times. The best performing NN is then

selected for use.

4.6 Methodology

The study of using machine learning algorithms to infer an object's physical properties from

associated Bi values of their response has four major steps to be discussed in the subsequent

sections:

1. Creation of Training Data: SVM requires the Bi values of a large set of repre-

sentative objects to form the training data. A large set is required to ensure that

the trained SVM can generalize for all objects one may encounter. A forward model

must be used to create this training data because is not normally possible to find and

measure enough objects to create training data composed solely of real targets. Of

the forward models available, the spheroid model is most suitable for the creation of

the training data because it can predict the response of any arbitrary shaped spheroid

target of any a and p value. This flexibility ensures the the training data will be broad

and encompass many dissimilarly shaped objects.

2. Creation of Test Data: Unlike training data, test data need not be numerous and

may be taken from forward models or from measurements. Synthetic test data, from

forward models, may also include additive noise factors or other uncertainties which

model the noise seen in measurement data.
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3. Obtaining Bj Values: All synthetic data and measurement data are comprised of

magnetic fields at various sensor locations. To form the appropriate inputs into the

learning machines, the Bj values pertaining to the target must be extracted from these

magnetic fields.

4. Examining Accuracy of Trained Learning Machines: Once the BI values for

the training data are obtained, the learning machines can be trained. Their level of

error in classifying the test data will determine the ability of the learning machines to

distinguish between objects with qualities similar to UXO from those with qualities

unlike UXO. The effect of noise on classification accuracy is also investigated.

4.6.1 Object Modeling and Composition

This investigation uses three different object types. First, the simplest object is a single

spheroid as shown in Figure 4-11(a). The spheroid has two possible permeability and con-

ductivity values: either p, = 100 with a = 2 x 106 S/m or pa = 1 with a = 2 x 107 S/m.

These values approximate steel and aluminum, two metals commonly present in UXO and

clutter. The elongation of each spheroid, the ratio of major axis length to minor axis length,

is taken from a uniform distribution ranging from 0.1 to 4. The volume is likewise random

and uniformly distributed, ranging from 0.001 m3 to 0.08 m3 for all objects. The value of

0.04 m3 is the cutoff between "large" and "small" objects. This range of values corresponds

to the variety of UXO and clutter objects one would expect to encounter in the field. If

different ranges of volumes are of interest, new training data can be created and the learn-
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ing algorithms can be retrained to recognize different cutoff values. The orientation of the

spheroids is always 0 = 0 rad with the axis of rotation parallel to the z axis.

These spheroids are modeled using the spheroid model. The main difficulty in the gener-

ation of synthetic data is the amount of time needed to create enough objects for the training

set. To generate data for 1800 objects, around two days are needed on a 3.6 GHz Pentium

4 PC. While the computational time is substantial, the creation of the training data occurs

infrequently: once a learning method is trained using a training data set, it may be repeat-

edly used to classify any object without requiring any further significant calculation. In this

regard, classification by machine learning is much faster than identification by optimization

which must proceed through the entire lengthy optimization process for every measurement

with every library member.

The second type of object one can model is a heterogeneous object composed of two

small spheroids that are coaxial and are separated by a distance of 1 mm as shown in in

Figure 4-11(b). Thus the object is a body of revolution (BOR). Since it is composed of

two different materials, it is referred to as a BOR composite object. This object is always

positioned so that the gap is fixed at the center of the coordinate system. The two spheroids

that form a composite object are always given two different permeability and conductivity

values: Pr = 100 with or = 2 x 106 S/m and p, = 1 with a = 2 x 107 S/m . The elongation

of each spheroid is again random. The total volume of both spheroids ranges from 0.001 m3

to 0.08 m3. To obtain the response of a composite object, the magnetic field response of

each spheroid is independently calculated and then summed. This study assumes that the
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Figure 4-11: Three different configurations of spheroids: single, BOR composite, and non-
BOR composite. The B3 of these three objects are used for SVM and NN training and
testing.

interaction between the two spheroids does not affect the fields at the observation points

which are at least a characteristic length away. As mentioned earlier, prior research has

shown that this is a reasonable assumption even for closely spaced objects as long as one

object is not permeable and the observation point is more than one characteristic object

length away [73].

The third type of object under study is shown in Figure 4-11(c). This object is similar

to the BOR composite object except now the axes are parallel to each other and the z-axis.

The gap between the two spheroids is again 1mm and is positioned at the center of the

coordinate system. This object is referred to as a non-BOR composite object.

The excitation calculated by the model of the GEM-3 sensor described in an earlier

chapter. This model is validated and shown to be faster than other methods [78]. The

GEM-3 instrument, the primary tool to produce EMI measurements, is manufactured by

Geophex [93]. As mentioned earlier, this instrument consists of two current loop in a bucking

coil arrangement to generated primary magnetic field. The secondary magnetic field is
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Figure 4-12: Diagram of the measurement locations used in the inversion process.

captured by the current generated on a pickup coil in the center of the instrument by OB/Ot.

However, the instrument reports this current in units that are proportional to the integral

of magnetic flux over the receiver coil through a division by iw of the receiver coil current as

implemented in hardware and post-processing.

4.6.2 Retrieval of Bj from Magnetic Fields

For the training data and some of the test data, the Bi are recovered from magnetic fields

generated from a forward model. The magnetic fields are sampled at at 578 points in space,

thus ensuring the problem is overdetermined. These points were distributed over a 2 m by 2

m grid at two elevations, 1.1 m and 1.3 m from the center of the spheroid. Figure 4-12 gives

a graphical depiction of this arrangement.
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As before, only the lowest order modes are used, and they correspond to j = (0,0,1),

(0,0,2), (0,1,1), (1,1,1), (0,0,3), (0,1,2), (1,1,2) and k = (0,0,0), (0,1,1), (1,1,1), (0,0,1),

giving a total of 28 Bi coefficients. Previous work demonstrated that these low order modes

dominate the solution and are sufficient to reproduce it [18]. The modes (0, 1, 1), (1, 1, 1),

and (0, 0, 1) for k correspond to the magnetic dipole moments in x, y, and z directions for

each excitation mode. Thus for each j, we are only solving for one more mode in addition

to the three modes which correspond to the triaxial dipole moments. Each B3 is a complex

value. But due to the limitations of the SVM algorithm, the real and imaginary parts are

considered independent inputs when processing. For each object, we consider the B3 at two

frequencies: one high at 10950 Hz and one low at 210 Hz. This choice of frequencies is

due to the nature of the EMI response: these frequency extremes can capture the largest

variation in an object's Inphase frequency response. Consequently, a vector of total length

n = 112 serves as input for each object into the machine learning algorithm. This number

is calculated from 28 x 2 x 2, representing the 28 Bj , separated into real and imaginary

parts, and at two frequencies.

The method of obtaining Bi from the magnetic fields can be applied to both measured

data and synthetic data from a forward model that provides the EMI response of various

objects. Both measured data and synthetic data are examined in the following sections.

It should also be stated that while it is true that one must know the actual location

of objects to create the object-centered spheroidal coordinate system to solve for B3 , ob-

ject position data can come from complementary techniques such as GPR. Furthermore,
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subsequent sections show that this classification algorithm is robust enough to cope with a

significant level of uncertainty in the object's position and orientation.

It should also be noted that since Bj comparisons must be made across many differ-

ent objects, one needs to select one specific spheroidal coordinate system as the framework

in which to retrieve Bj values. Bj values always pertain to a specified coordinate system

as governed by the interfocal distance. The spheroid model supplies the BI values in the

spheroidal coordinate system which has the same interfocal distance as the target spheroid.

However, the equivalent Bj values in a different spheroidal coordinate system can be found

by calculating the expected secondary magnetic fields and solving for B3 in the new coordi-

nate system as was done in Section 2.2.2.2.

4.7 SVM Classification Results

4.7.1 Large vs Small

For all tests, the training data is a set of 1800 objects that are evenly divided into the

two possible classes of large and small. The test data set has 200 members and is generated

independently from the training data set. Adequate classification can be achieved with as few

as 600 training examples for the simple case of single spheroid test objects with no additive

noise. However, past experience demonstrate that the more complex objects presented in

the subsequent sections require larger training sets to be optimally classified. Therefore,

to permit reasonable comparison of the classification performance for different objects, all
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training sets have 1800 members. Many classification studies employ small training sets and

larger test sets because the training sets, often derived from measurements and collected

data, are difficult to obtain. However, the forward model can provide large amounts of

training data within a reasonable amount of time so larger training sets are used.

In the first test, when single objects are classified by a trained SVM, only 2 objects

are misclassified. Table 4.1 is the confusion matrix that of the result of classifying the test

data. SVM misclassifies 2 objects out of a total of 200, yielding an error of 1%. For the

sake of brevity, this error is used as the overall figure of merit as opposed to separate false

positive and false negative rates. In most cases, the contribution to error was nearly equal

between the false negatives and the false positives, or more appropriately false "small" and

false "large" for classifying objects by size. The reader will be notified of cases where this

observation is not true.

One can identify the members of the test data by assigned classification in the scatter

plot shown in Figure 4-13. The horizontal axis of this plot is a rough metric for overall size

of B! while the vertical axis is the actual volume of the object. The errors made by SVM

are concentrated close to the boundary between "large" and "small." While the clustering

of markers suggests some correlation between object size and overall Bk magnitude, the

relationship is not strict as we have discussed earlier. One can clearly see many large objects

with lower BM than smaller objects and visa versa.

Furthermore, the decision to use 28 B3 coefficients for each object comes about after

examining the error rates created using more or fewer coefficients when classifying 200 single
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Figure 4-13: Scatter plot for SVM classification of single objects. Each marker represents
one object, plotted against its corresponding true volume and square root of the sum of the
squares of the 28 B' used in classification. The marker's face is determined by its class as
predicted by SVM. The horizontal dotted line represents the boundary between large and
small objects.

Table 4.1: Confusion Matrix for SVM Classification of Single Objects

True Large I True Small
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Table 4.2: SVM Classification of Single Objects Using Various Number of Coefficients

16 Bi 28 Bi 42 Bi

Percent Error 9.5% 1.0% 2.5%

spheroid objects as shown in Table 4.2. We aim to use the fewest, lowest order Bj coefficients

that would still give good results. Recovering higher order B3 may be unreliable. This prob-

lem becomes even more apparent when recovering B3 from measured data [18]. However,

using too few coefficients does not encapsulate enough information about the object and

leads to higher classification error.

Table 4.3 shows how SVM is able to generalize for different types of objects. There

are three sets of test data and three sets of training data. These three sets correspond to

the three different types of objects as shown in Figure 4-11. All cases use 200 test objects

and 1800 training objects. The lowest errors are generated when we train and test using

the same type of object. When SVM is trained on single spheroids and tested on BOR

composite objects or visa versa, it is able to generalize across these two object types to a

certain degree. But it has difficulty classifying non-BOR objects when trained on any of

the other two types or visa versa. For this table, the exact 50% errors were obtained when

SVM simply classified all objects as large or all objects as small. A similar phenomenon

created the 47.5% error where nearly all objects were classified as small. This unsuccessful

classification may be due to the peculiarity of BOR objects in that they have values of zero

for many specific Bj coefficients while non-BOR objects do not have this constraint [18].

Due to this very distinct difference in pattern, we expect SVM to have greater difficulty
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for SVM Classification with Different Training and Testing Sets

Train: Single Train: Composite Train: Composite
(BOR) (BOR) (non-BOR)

Test: Single 1.00% 24.0% 50.0%

Test: Composite 18.5% 3.00% 47.5%
(BOR)

Test: Composite 50.0% 50.0% 1.50%

(non-BOR)

when generalizing across BOR and non-BOR objects.

However, when SVM is given sufficient training data, it can adequately classify all objects.

Table 4.4 shows the effects of training on a combination of single and BOR composite objects

and a combination of all three types of objects. Once again, the 50% error in this table is

created when SVM classifies all objects as large. Remarkably, training on a combination of

BOR composite and single objects allows SVM to be even more accurate in classifying BOR

type objects. Furthermore, training with all three object types creates a more general SVM

that can classify all objects with under 5% error.

For any classification technique to be of practical use, it must be able to generalize for a

wide range of objects. Thus, this use of dissimilar training and testing objects characterizes

the generalizability of each trained learning method. Furthermore, mixed training sets,

comprised of two or more types of objects, helps to illustrate how broadening the scope of

the training sets improves generalizability and leads to overall robustness.
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Table 4.4: Table of Error for SVM Classification with Mixed Training Sets

Train: Single and Train: All Three
Composite (BOR) Types

Test: Single 1.00% 2.50%

Test: Composite 0.00% 4.50%
(BOR)

Test: Composite 50.0% 4.50%

(non-BOR)

Table 4.5: Confusion Matrix for Neural Network Classification

True Large True Small

Predicted Large 99 0

Predicted Small 1 100

4.8 Comparison to Neural Network Classification

All the training and test data that are used to generate the results for SVM are also used

for training and testing the implemented NN. Table 4.5 and Figure 4-14 show that the NN

is able to achieve comparable and perhaps even slightly better results when compared to the

SVM results for single spheroid classification.

Table 4.6 shows how well the NN is able to generalize for different objects. The NN

has more difficulty generalizing for a test object type that differs from the training object

type. While SVM trained on single objects produces an error rate of 18.5% when tested

with composite objects, this error is significantly larger when the NN processes the same

data. This suggests that our current NN has somewhat less ability to generalize between
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Figure 4-14: Scatter plot for NN classification of single objects. Each marker represents
one object, plotted against its corresponding true volume and B' magnitude. The marker's
face is determined by its class as predicted by NN. The horizontal dotted line represents the
boundary between large and small objects.

the single spheroid objects and the composite BOR object. However, once the NN is trained

with all three types of objects, it is able to correctly classify all objects with low error as

shown in Table 4.6. One interesting feature of the NN performance is that, unlike the SVM

classification, the entries in the table where error is roughly 50% are created from nearly

equal amounts of false "small" labels as false "large" labels.

4.9 Effect of Additive Gaussian Noise

As mentioned earlier, using dissimilar training and test objects is done to understand the

limitations of each trained learning algorithm when exposed to entirely foreign objects. The

wide variety of clutter objects and UXO makes understanding and minimizing this limitation
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Table 4.6: Table of Error for NN Classification with Different Training and Testing Sets

Train: Single Train: Composite Train: Composite
(BOR) (BOR) (non-BOR)

Test: Single 0.500% 41.0% 50.5%

Test: Composite 28.5% 1.50% 48.5%
(BOR)

Test: Composite 49.0% 47.5% 3.50%

(non-BOR)

Table 4.7: Table of Error for NN Classification with Mixed Training Sets

Train: Single and Train: All Three
Composite (BOR) Types

Test: Single 0.500% 1.50%

Test: BOR Composite 1.00% 3.00%

Test: non-BOR Com- 51.0% 2.00%
posite
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absolutely necessary for any classification technique to be of practical use. Another realistic

obstacle to accurate classification is the effect of noise. This noise can be in the form of

additive instrument noise and environmental noise which corrupts the received magnetic field.

This noise in turn leads to small changes in the retrieved B. coefficient. The relationship

between the amount of change in seen Bj and the amount of noise in the EMI signal has

already been investigated. Despite an addition of Gaussian noise that is 10% of the true

field strength, Bj can be recovered accurately: for secondary responses at new measurement

points, there is less than a 10% error between the direct prediction by forward models and

the recovered Bi [18, 19]. For this investigation, it is then necessary for us to study how

much that small change in B. affects classification ability.

This study defines noise in terms of SNR, using additive Gaussian noise of 20dB SNR

as an estimate of light background and instrument noise. First Bk are retrieved from noisy

magnetic fields. Then the noise corrupted B. are given to both the SVM and the NN. This

study limits the investigation of additive noise effects to only single spheroid objects. The

performance is outlined in Tables 4.8 and 4.9. Since the goal is to have both an SVM and

a NN that can generalize for noisy data, we train both with clean training data, or noisy

training data, or a combination of equal amounts of noisy and clean training data. In all

cases, the training data is limited to 1800 members. Then noisy and clean test data are

given to each trained learning algorithm. From the results it seems both NN and SVM have

difficulty classifying noisy data if they are only trained on clean data. However, both methods

have considerably lower error once they are trained on noisy data. NN is able to provide
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Table 4.8: Table of Error for SVM Single Object with Noise

Test: No Noise

Test: 20dB SNR

Table 4.9: Table of Error for NN Single Object with Noise

Test: No Noise

Test: 20dB SN]

slightly lower error rates compared to SVM. Furthermore, training on noisy data does not

cause NN to have any significant change in error rate when classifying clean data. Both

methods show no further improvement if they are trained on both noisy and clean data. The

effect of this training is confirmed when repeated on BOR and non-BOR composite objects

as shown in Tables 4.10 and 4.11. Classification is much more difficult for composite objects.

One can speculate that this phenomenon is due, in part, to the heavier reliance of the EMI

response on higher order modes which are more difficult to recover accurately from noisy

signals.

Table 4.10: Table of Error for Classification of BOR Composite with Noise

SVM Train: NN Train:
20dB SNR 20dB SNR

Test: No Noise 14.00% 9.50%

Test: 20dB SNR 17.00% 12.50%

191



Table 4.11: Table of Error for Classification of Non-BOR Composite with Noise

SVM Train: NN Train:
20dB SNR 20dB SNR

Test: No Noise 17.00% 12.00%

Test: 20dB SNR 20.50% 15.50%

4.10 Effect of Position Error

In the previous simulations, all objects were at fixed positions and aligned with the coordinate

system. This arrangement, however, does not reflect real life situations where there may be

uncertainties about the exact location of buried objects. It is therefore more realistic to

estimate the location of an object and center the spheroidal coordinate system near the

true center point of the target. This uncertainty will introduce noise into the recovered

B' coefficients. To study the effects of that noise, we recover the B' from single spheroids

which have four types of misalignments in position and orientation from the origin and

orientation of the assumed coordinate system: depth deviation in z, lateral deviation in z,

rotational deviation in 0, and rotational deviation in q. These four types are summarized

in Figure 4-15. The volumes and material properties of the objects are otherwise similar to

the previous cases of single spheroids. From the modeled data, the BM are inverted using

an assumed coordinate system that is misaligned by a specified deviation. The deviation is

generated randomly using a uniform distribution. Both training and test data are generated

in this manner. While the NN shows slight improvement over the SVM, the significantly

longer training time made the algorithm unattractive in for additional investigations where

the permissible ranges of variation in x, z, 0, 5 were not very well known. Therefore, the
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Figure 4-15: Figure showing the bounds on (a) z variation, (b) x variation, (c) 0 variation,
and (d) ¢ variation in the study on position and orientation uncertainty. All objects have
random volumes, dimensions, and material properties.
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SVM was chosen as the learning algorithm in this portion of the investigation.

For z variation, the centers of the spheroids are allowed to vary within a ±5 cm range

of random deviation (up to 5 cm below and above the center of the assumed coordinate

system), a ±10 cm range of random deviation, or a ±20 cm range of random deviation, as

depicted in Figure 4-15 (a). The object and the coordinate system are kept at a fixed 0 angle

of 7/4 and a fixed 0 angle of 0. While the dimensions of the modeled objects are determined

randomly from a range of possible volumes and elongations, the largest possible dimension

of the spheroids is 1 m.

Table 4.12 reports the errors for different combinations of testing and training data. As

in the additive Gaussian noise cases, training with noisy data improves SVM's ability to

classify noisy test data. We see that our method tolerates a ±5 cm variation quite well with

under 10% error when we use noisy training data drawn from either the ±5 cm and ±10 cm

ranges. When the training data is drawn from the ±5 cm range, our methods can obtain

an under 10% error for ±10 cm range test data. An uncertainty of ±20 cm in either the

training or the test data produces significantly less accurate results.

Next, we examine the effect of lateral deviation. Here the objects are permitted up to

a ±20 cm deviation in the x direction from the fixed center of the coordinate system. The

object and the coordinate system are kept at a fixed 0 angle of 7r/4 and a fixed q angle of

0. This arrangement is depicted in Figure 4-15 (b). From Table 4.13, we see that a large

lateral uncertainty has a much smaller effect than an equally large vertical uncertainty.

The third type of variation concerns object orientation. The coordinate system is oriented
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Table 4.12: Table of Error for SVM with Z Position Deviation

Train: No Train: ±5 Train: ±10 Train: ±20
Deviation cm Devia- cm Devia- cm Devia-

tion tion tion

Test: No 1.00% 2.00% 2.00% 7.00%
Deviation

Test: ±5 cm 12.0% 1.50% 3.50% 38.0%
Deviation

Test: ±10 46.0% 7.50% 10.5% 21.5%
cm Devia-
tion

Test: ±20 44.0% 22.0% 16.0% 36.0%
cm Devia-
tion

Table 4.13: Confusion Matrix for SVM Classification of X Position Deviation 20 cm

True Large True Small

Predicted Large 96 4

Predicted Small 4 96
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Table 4.14: Table of Error for SVM with 0 Orientation Deviation

Train: No Train: Train: Train:
Deviation +7/16 ±7r/8 De- +7i/4 De-

Deviation viation viation

Test: No 1.00% 1.00% 3.50% 4.50%
Deviation

Test: ±ir/16 2.00% 2.00% 1.50% 3.00%
Deviation

Test: ±-/8 1.50% 7.00% 1.50% 4.50%
Deviation

Test: +7r/4 4.50% 4.50% 4.00% 6.00%
Deviation

Table 4.15: Confusion Matrix for SVM Classification of 0 Orientation Deviation

True Large True Small

Predicted Large 87 0

Predicted Small 13 100

at 0 = -/4 but the object's 0 is permitted to vary up to ±ir/16, ±ir/8, and ±7r/4 from 7/4.

The b angle is fixed at 0. This arrangement is depicted in Figure 4-15 (c). Table 4.14

shows that variation in 0 orientation does not have a significant impact on the classification

accuracy.

The final type of variation concerns object orientation in the 0 direction. The coordinate

system is oriented at 0 = 0 but the object's q is permitted to vary up ±7/4 from 0. The

0 angle is fixed at 7r/4. This arrangement is depicted in Figure 4-15 (d). Table 4.15 shows

that variation in 0 orientation creates a classification error of 6.5% which is on par with the

0 variation scenarios. The classification errors for all orientation variations are under 10%.

These results suggest that a depth accuracy of under 10 cm should be achieved to create
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Table 4.16: Confusion Matrix for SVM Classification of Clutter Items and UXO

True Large (UXO) True Small (Clutter)

Predicted Large 4 0

Predicted Small 0 4

a viable solution for UXO discrimination. In addition, these results indicate that the larger

effort should be placed in accurately resolving an object's depth rather than finding an

object's orientation and x, y location with great precision.

4.11 SVM Results with Measurements

The SVM classification is then tested using data from measured objects. The Bi values were

obtained from four UXO shown in Figure 3-4. Futhermore, the Bj values were obtained from

clutter item 7 to 10 of Figure 4-1. The largest clutter item has a volume of 53 cm3 . The

largest UXO has a volume of roughly 2000 cm3 while the smallest has a volume of about

700 cm3 . Therefore, a new SVM training set with added Gaussian noise was created where

the random spheroids had volumes within the range of 10 cm 3 to 2500 cm3 with 300 cm3 as

the boundary between small and large. When the trained SVM was presented with B' drawn

from measurements of these four objects, it correctly distinguished the very large objects

from the small objects as shown by Table 4.16.
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Table 4.17: Confusion Matrix for SVM Classification of BOR Items and non-BOR Items

True BOR True non-BOR

Predicted BOR 100 0

Predicted nonBOR 0 100

4.11.1 BOR vs Non-BOR

Distinguishing BOR composite objects from non-BOR composite objects is another area of

investigation. The 1800 member training data has equal parts BOR and non-BOR compos-

ite spheroids. When trained on this data, SVM is very accurate in classifying a similarly

generated 200 member test set as seen in Table 4.17. This accuracy is likely due to the

distinct and easily distinguishable pattern for the B' of BOR objects. In BOR objects, only

specific low order BM are non-zero [18].

4.11.2 Homogeneous vs Heterogeneous

Investigation into the ability to distinguish homogeneous composite spheroids from hetero-

geneous composite spheroids is conducted in much the same way. Homogeneous composite

spheroids are formed from two steel or two aluminum spheroids. Heterogeneous objects are

formed from one steel and one aluminum spheroid. Steel has yr = 100 with a = 2 x 106 S/m,

and aluminum has p, = 1 with a = 2 x 107 S/m as indicated in previous sections. All com-

posite objects are BOR in shape. Once again, a 1800 member training set and 200 member

test set are used. As shown in Table 4.18, classification accuracy is somewhat less than in

previous cases and indicates a possible area for future study.
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Table 4.18: Confusion Matrix for SVM Classification of Homogeneous and Heterogeneous
Items

True Homog. True Heterog.

Predicted Homog. 71 1

Predicted Heterog. 29 99

4.12 Conclusion

In this chapter the problem of classification by volumetric size and other physical character-

istics of metallic objects using their EMI response is solved by decomposing that response

into Bj coefficients and then using a SVM and a NN to process those coefficients. The

performance of each method is compared. Since one can demonstrate that there is no sim-

ple relationship between sizes of objects and the overall magnitude of their B3 coefficients

and magnetic polarizabilities, learning algorithms may be useful in classifying these objects.

Furthermore, both learning algorithms are able to generalize for different object types with

varying degrees of success. Both algorithms are capable of classifying single objects when

trained on BOR composite objects or visa versa. However, both have difficulty classifying

non-BOR objects when trained on any of the other two types or visa versa. One can hypoth-

esize that this increased error is due to the single spheroid also being BOR so the non-BOR

objects are very different from the other two types. When trained on all three types of

objects, both the NN and the SVM are able to classify all objects with a good degree of

accuracy. Futhermore, screening out non-BOR objects from BOR objects can be done with

high accuracy so that, theoretically, classification based on size need not encompass both

BOR and non-BOR objects.
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Some investigation is also conducted in classification by object heterogeneity or BOR

characteristics with encouraging results. One aspect of machine learning which has not been

included in this study is the topic of feature selection. The 28 low order B3 at two selected

frequencies are an educated guess for which Bj are the most significant in classification.

However, there may be more optimal subset of these B3 values at the currently used fre-

quencies or other frequencies which serve as better inputs into learning machines. This facet

of machine learning research is called "feature selection" [39] and may be a possible area for

future work.

Furthermore, there is a possibility of developing this technique into a real time applica-

tion. Training each learning method is not instantaneous but still within the realm of being

practical. Once a learning algorithm is trained, it can be used for an extended period of time

until the user feels more accurate training data is available. Therefore training need only be

a rare occurence.

Generating synthetic training data is the most time consuming part of our research, but

this data can be stored and used as long as the researcher deems the training data to be valid.

The actual classification of test data by SVM or NN is nearly instantaneous. Solving for the

appropriate Bi from measurements is also nearly instantaneous. Therefore, classification of

a buried object as UXO or a piece of clutter can theoretically be obtained as quickly as the

EMI measurements can be completed when the object position and orientation are known

or are estimated within bounds such as those indicated earlier.

In addition, both methods show an ability to generalize for noisy test data when trained
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with noisy data. This noise can be in the form of additive Gaussian noise or small variations

in the position or orientation of the objects relative to the coordinate system. Training

on noisy data helps to increase the accuracy of both learning algorithms when classifying

objects with noisy Bi . In the analysis on the effects of uncertainty in object position and

orientation, one can see that large deviations in an object's depth can significantly decrease

the SVM classification accuracy. Since accuracy with noisy measured data is very critical

for any classification method to be viable in the field, one can conclude that training must

always be done using data with added noise and uncertainty to help increase the robustness

of the classification method. However, this classification method and the DE optimization

method described in the previous chapter have limitations in regards to the level of noise in

the EMI responses. Various clutter suppression or signal separation [41] methods have been

advanced. Integrating such methods into these inversion algorithms will further the work in

realizing a practical, field deployable solution to the difficult problem of UXO inversion.
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Chapter 5

Conclusion

This thesis covers both modeling and inversion of UXO. The modeling portion of the study

focused on increasing accuracy over existing UXO models through more sophisticated mod-

eling techniques and through accounting for the natural environment. It is concluded that

permeable soil has very little effect on the response of buried UXO. The effect is essentially

limited to a constant Inphase offset. Characterization and calibration of a non-adaptive

sensor is also found to be possible when using measurements of canonical objects.

Identification of UXO is shown to be feasible when utilizing Differential Evolution.

Through this method a target, its position, and orientation can be identified by compar-

ing with library of specific object models. This identification process is shown to be accurate

for low clutter conditions and for targets buried at shallow depths. However, Differential

Evolution is slow and requires a comprehensive library.

Classification of UXO is shown to be possible through application of machine learning

on the Bi of the target objects. These B3 can be used to distinguish between general UXO
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and clutter. Use of both Support Vector Machines and Neural Networks creates accurate

classifiers which can distinguish between objects physically resembling UXO from those which

do not resemble UXO. Both of these classifiers, once trained, are fast and can be potentially

used for in-situ, real time inversion. However, the great drawback of classification through

the use of Bj is the requirement that an estimation of target position must be obtained

beforehand.

There is research into methods to reduce noise and to estimate object location and

orientation from measurement data. Therefore, both of these inversion methods may be

improved up in the future to produce a practical discriminator for the important task of

UXO remediation.
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