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Abstract

The ability to control quantum systems with high fidelity is of fundamental impor-
tance to a variety of scientific experiments. This thesis describes the frequency stabi-
lization of a laser which is used to coherently manipulate both the internal electronic
state and quantum harmonic motion of a trapped "SSr+ ion via its 4D5/2 +-+ 5S1/2
transition. The laser is locked with a linewidth on the order of 1Hz to the resonance of
a high-finesse optical cavity. However, acoustic and thermal noise in the cavity broad-
ens the laser's linewidth to several hundreds of Hertz. Despite the noise, we find that
the ion's internal electronic state can be manipulated by the laser with a high degree
of precision: 17 consecutive Rabi oscillations can be driven with a contrast exceeding
80 percent, and Ramsey inteferometry indicates that phase coherence decays with a
time constant of 342±6ps. Because the laser's dominant spectral broadening occurs
on a slow timescale, phase coherence can be maintained by spin echoes for over 5ms.
In addition, laser pulses detuned to the first blue motional sideband are able to con-
trol the ion's quantum state of motion well enough to use the ground and first excited
states as a second qubit. This allows a two-qubit controlled-NOT gate, the quantum
analog of an XOR gate and a fundamental building block of quantum computation,
to be demonstrated on a single "8 Sr+ ion with a classical fidelity of 0.89±0.02.

Thesis Supervisor: Isaac Chuang
Title: Associate Professor, Departments of Physics and EECS
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Chapter 1

Introduction

1.1 Context

Ion traps create a nearly ideal environment in which to explore one of Nature's purest

and most elegant quantum systems: the atom. Because trapped ions are suspended

in free space by electromagnetic fields, they can be extremely well-isolated from in-

teraction with their environment. Laser cooling and spectroscopy techniques used in

combination with ion traps have historically provided important tests of the funda-

mental principles of quantum mechanics[BHI+91, SNBT86, For93].

Today there is a growing emphasis in atomic physics experiments on high-fidelity

control over quantum systems, another task for which ion traps are ideally suited. In

precision spectroscopy, a properly entangled ensemble of N atoms could reach a quan-

tum limit of resolution that is below the shot noise limit by a factor of v/N[GLM04].

Quantum information techniques have also enabled the creation of an atomic clock

from trapped Al+ and and Be + that has an astounding 17 digits of precision[RHS+08].

Feynman famously noted that many computationally intractable problems in physics

could be efficiently simulated by a well-controlled quantum system [Fey82], and idea

that was further expanded by Deutsch into the universal quantum computer [Deu85].

Networks of ion traps arranged on the surface of a chip provide a potentially scalable

architecture for quantum simulation and computation[CZ95]. In this scheme, each

ion holds a qubit in its internal electronic state and information is transferred via the



collective motional modes of several ions in the same trap.

The same sensitivity to phase that makes quantum information so powerful also

presents an enormous challenge to experimentalists, who are charged with creating a

system that is paradoxically both isolated and controllable. In this thesis, the system

of choice is the optical 4D5/ 2 + 5S1/2 qubit of a single 88Sr+ ion. The energy level

structure is essentially identical to that of 40Ca+, which has played an important

role in the development of trapped-ion quantum computers[SKHR+03, RLCB+03].

Strontium has the additional advantage that all relevant transitions are addressable

by commercially available diode lasers, which require less experimental overhead. The

monumental task of building a system to trap the ion in a pristine environment has

already been accomplished by the painstaking efforts of previous students. This work

focuses on controlling the ion's state while introducing as little additional noise as

possible.

1.2 Overview

This thesis can be conceptually divided into three parts. The first contains introduc-

tory material. The second shows the construction of a laser frequency stabilization

system for the 674nm qubit laser, designed to bring a high level of precision to our

control of the strontium ion via the 4D5/ 2 -+ 5S1/ 2 transition. The third and final

portion describes a few of the explorations made possible by this new tool.

In the course of this discussion, I have two main questions in mind. First, what is

the longest coherence time that can be achieved while controlling the ion's electronic

state? In addition to evaluating the purity of the classical control signals carried

by the new laser, we can explore methods of recovering from decoherence that take

advantage the unique and counterintuitive properties of quantum information. The

second question is, can the quantum motion of the ion be coherently controlled by

coupling it to the ion's electronic state? This is difficult because the weakness of this

coupling makes for slow interactions that push the boundaries of available coherence

time.



Here is a guide to the chapters in this thesis:

Chapter 2 introduces the coherent control of trapped SSSr+ ions with lasers. Sec-

tions 2.1 and 2.2 describe the interaction of a coherent light source with an atom's

electronic and motional states. Section 2.3 is devoted to the decoherence of quan-

tum information: how it arises in our system, and a series of experiments to better

understand its nature. Section 2.4 explains the relevant level structure of "SSr+.

Chapter 3 begins the discussion of laser stabilization. Section 3.1 is a theoretical

description of the Pound-Drever-Hall laser locking technique, which uses a high finesse

optical cavity as a frequency reference. In section 3.2, the design of such a frequency

stabilization system is presented.

Chapter 4 evaluates the performance of the system designed in chapter 4. Section

4.1 measures the stability and linewidth of the optical cavity frequency reference.

Section 4.2 examines the lock's ability to hold the laser to this reference.

Chapter 5 explores the coherence of quantum information stored in the atom's

internal state. Section 5.1 shows the increased duration and amplitude of coherent

driven oscillations. In section 5.2, Ramsey interferometry and spin echo techniques

are used to explore phase coherence. Section 5.3 implements the BB1 algorithm for

generating composite pulses that are less sensitive to laser amplitude noise.

Chapter 6 demonstrates quantum control of both the "SSr+ ion's internal and

motional state, made possible by the increased coherence times associated with the

newly stabilized laser. Section 6.1, shows the sideband Rabi oscillations that indicate

coherent control of quantum motion. Section 6.2 describes the measurement of single-

pulse rotations acting on both qubits. Section 7.3 demonstrates a controlled-NOT

operation, a fundamental building block of quantum control.

Chapter 7 concludes with a discussion of the experimental results.

Appendix A describes in more detail how the abstract quantum system of chap-

ter 2 is realized experimentally. Section A.1 explains how ion traps confine SSSr+ in

oscillating electric fields. Section A.2 presents an overview of the apparatus.
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Chapter 2

Background: Coherent

Manipulations of Trapped 8 8Sr+

Ion traps are an important tool for atomic physicists because they allow a simple

quantum system to be almost completely isolated from decoherence caused by in-

teraction with its environment. Experiments of fundamental importance in preci-

sion spectroscopy [WIBH87, BSW82] and tests of quantum mechanical principles

[BHI+91, SNBT86, For93] have been performed in ion traps. Trapped ions have also

been used to make very stable atomic clocks[MBH+04, DUB+01]. The same prop-

erties that make trapped ions so ideal for precision experiments have also motivated

their use in the field of quantum computation, where trapped ions have been proposed

as the.basis for a scalable quantum architecture [CZ95].

Ion traps enable precision experiments not only because they provide isolation,

but also because they allow for highly controllable interactions mediated by lasers.

In this chapter, I explain how a trapped "SSr+ ion's quantum state can be coherently

manipulated by resonant pulses of light. Section 2.1 describes the ion as a two-state

system suspended in a harmonic potential, and shows how it interacts with a coherent

light source. Section 2.2 introduces the theory of coherent operations on abstract

qubits, and shows how these concepts can be applied to a trapped ion. Section

2.3 discusses the decoherence of quantum information that makes coherent control

so challenging in practice. Included in this discussion are experimental tools for



I1\
v-I A

I
u I

')U

k

112)
110) ,

102) -
101) -
100M

i a)

in

+-

r

Figure 2-1: The internal (left) atomic energy levels are dressed by the motional states

(center) of the ion trapped in a harmonic potential. As shown on the right, a laser

beam detuned by hw, addresses a transition between internal and motional states

simultaneously.

understanding and mitigating the effects of decoherence, which are used in chapters

5 and 6. Finally, section 2.4 introduces the 8 8Sr+ ion, the atomic system in which all

of these experiments take place.

2.1 Atom-laser interactions

At the most fundamental level, this thesis is about the interaction of a single-mode

coherent light source with a two-level atom trapped in a harmonic potential.

2.1.1 The atom-laser system

Consider an atom with two states 10) and 11), which are separated in energy by hwa.

Using these states as the basis for a two-dimensional vector space, define the Pauli

operators
0K

ax
0
i 

y

1 0
0 -10

(2.1)

and the atomic raising and lowering operators

= (2 x + i0y) =
2

1
a2 = (ax - icy) =

--------------

F
I--!

(2.2)



The potential that confines the atom in free space can be approximated by a harmonic

well with frequency w, where the atom has motional eigenstates In). The harmonic

raising and lowering operators are defined such that,

at n) = + n l+ 1) (2.3)

aln) = nln- 1) (2.4)

An atom's hamiltonian in this situation is composed of two terms, the first represent-

ing the atom's internal two-state system and the second representing its motion in

the harmonic potential.

Ho = Watz + & ata + (2.5)

Hamiltonian Ho has eigenstates la, n) where a E {0, 1} is the atom's internal state

and n E {0, 1, 2, 3...} is its motional state, as shown in figure 2-1. Pulses of laser

light directed along the x axis are used to manipulate and measure these states in

our experiments. The interaction between the atom and a single-mode coherent light

source has the hamiltonian[WMI+98],

H, = 2• (u1 + 7-) [ei(kx-wLt+) - e-i(kx-wLt+)] (2.6)

where the light source has angular frequency WL, phase 0, and wavenumber k. Q is the

interaction strength between the atom and the light field. The connection between

H, and the harmonic oscillator is made more explicit by noting that x = xo(a + at),

where x0 = h is a characteristic length scale for the atom's motion in the trap.

m is the atom's mass. Defining the Lambe-Dicke factor r =- kxo,

HI = h (Q + r-) ei(n(a+at)-w Lt +±) + h.c. (2.7)

HI acts both on the atom's internal and motional states. For clarity, we can rewrite

it in terms of the strength •n,m with which light is coupled to each atomic transition



H, = n,mei( -WLt) (+ + -) Im) (n + h.c. (2.8)
n,m

where £n,m = Q(mlei'7(a+at) n). For the experiments described in this thesis, the atom

is confined to a space much smaller than the wavelength of incident light so that

7 << 1. The exponent ein(a+at) can safely be expanded to first order in 77, allowing us

to calculate the relevant coupling coefficents n,,m.

rn,, = ( 1 -f (2n + 1) (2.9)

+,,1,, = OrQJn + 1 (2.10)

,n-1,n = Qvn (2.11)

It is often more natural to describe the interaction between the laser and atom

in the Interaction Picture, where the frame of reference rotates with Ho so that the

atom's states are stationary in the absence of laser light. Defining U = eiHot/h and

dropping the fast-rotating terms,

H = UtHjU = h n,mei(-at)+|m)(nI+h.c. 6 WL-W-(m-n)w (2.12)
n,m

2.1.2 Resonant interactions in the atom's rotating frame

Resonant light (WL = Wa) couples the 10, n) and 1i, n) states. Such a transition that

leaves n unchanged will be called a carrier transition. In this case, the Hamiltonian

becomes:

H, = 2 Q', (eioa+ + ±e-i - ) (2.13)

10, n) -+ I1, m).



The effect of a laser pulse of finite duration T is a rotation of the atom's state' by

angle 0 = i2T, which will be discussed in more depth in section 2.2.

R(O, ¢) = exp [-iHT/h] = exp -i 0(ei~ + i eC-) (2.14)

When the laser is detuned such that WL = Wa + w,, it addresses the blue sideband

transition 10, n) - 1, n + 1). Much like a carrier pulse, a blue sideband pulse of

duration T rotates the atomic and motional states simultaneously by an angle 0 =

Qn,n+lT.

R+(O, 0) = exp [-iHT/h] = exp [i (eic 7+a + e-+i'-at) (2.15)

Similarly, the action of a red sideband pulse couples 10, n) and I1, n-1) with a rotation

by 0 = On,n-IT:

R-(0, ) = exp i (eio+at + e-i-a)] (2.16)

Because they manipulate the atomic and motional states in concert, sideband

pulses are useful for the cooling, measurement, and control of the atom's quantum

motion. Section 2.2.2 also examines the importance of the square-root dependence

of 0 on n during sideband pulses (see equation 2.10), which allows for conditional

rotations of the atom's internal state.

2.1.3 Off-resonant interactions

A strong oscillating light field that is detuned from the atomic resonance introduces

a small shift 6 AC in the transition's resonant frequency. This is often referred to as

the AC or dynamical Stark shift. To first order[HGR+03],

6AC - - a (2.17)

1Because the atom is typically cooled to the ground state of its motion in our experiments, we
approximate equation 2.9 as On, n = Q.



The Rabi frequency of the non-resonant light field , £AC, is slower than Q as non-

resonant light is more weakly coupled to the transition:

c = - (WL - 2. (2.18)

A pulse of light tuned to the blue sideband, which is used to control the ion's

motion, can couple off-resonantly to the carrier transition and introduce a systematic

linear phase shift of

¢AC = 6AcT (2.19)

between the atomic 10) and |1) levels. Here, T is the length of the pulse. This phase

shift is clearly undesirable in experiments that demand coherent control of the atom's

state, but fortunately it can be somewhat compensated by shifting the phase ¢ of the

subsequent laser pulse by qAC-

Equation 2.13 becomes more complicated for off-resonant light due to the different

rates of rotation of the laser (HI) and atom (Ho) Hamiltonians. A more accurate

compensation scheme for Stark shifts that reconciles the two different rotating frames

is proposed in Labaziewicz's PhD thesis[Lab08], but was not implemented in time for

the experiments in this current thesis.

2.2 Coherent manipulations of atomic states

After introducing a physical model for the trapped ion, the next phase of this chapter

is to describe the trapped ion in the more general terms of quantum information. This

section explains how resonant laser pulses can perform arbitrary unitary operations

on the qubit formed by two atomic energy levels, and how the ion's quantized motion

can used to store a second qubit in the strontium ion.
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Figure 2-2: A state vector represented on the Bloch sphere.

2.2.1 A single qubit

Qubits are the fundamental units of quantum information. The general state of a

qubit is

I0) = a10) + b 1) (2.20)

where the complex coefficients a and b are normalized such that la12 + Ib12 - 1. Up

to an overall phase that has no physical consequence, the state of a qubit can also be

represented by two angles 0 and 0:

0 0

0) = cos 0 0) + e- i sin 011) (2.21)

It is helpful to visualize the state of the qubit as a vector of unit length, with direction

defined by the angles 0 and 0 from the z-axis and x-axis respectively. This vector

is constrained to point to locations on the surface of a unit sphere called the Bloch

sphere, as shown in figure 2-2.

Coherent operations on a single qubit are represented by unitary 2x2 matrices

acting on the vector space { 10), 11) }. For example, the quantum NOT gate exchanges

the coefficients a and b, performing the function of a classical NOT gate when the

qubit is initially in one of its eigenstates.

NOT = 1 (2.22)
1 0
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Figure 2-3: A carrier pulse R(O, 4) rotates the atom's state by an angle 0 about q.

This NOT gate happens to be identical to the Pauli matrix ax.

Our goal is to find a connection between coherent operations and resonant atom-

light interactions, so that the atom's states can be controlled at a quantum level by

laser pulses. In general [NCOO], any unitary operation on the qubit can be written as

a rotation of the state vector about an axis f.

U = RA(0) = exp [-i i e (2.23)

where ' = uo. + au9 + az. For example, the NOT gate can be written as R,(ir) up

to an unobservable global phase. Furthermore, an arbitrary single-qubit rotation can

in turn be represented by a series of rotations about only two fixed axes. In other

words, there exist real numbers a, 3, -, and 6 such that

U = e aRx (0)R,(7)R,(6) (2.24)

for any unitary operator U acting on a single qubit.

To see how laser pulses can be used to implement any unitary gate, recall from

equation 2.14 that the action of a resonant laser pulse of phase ¢ and duration T can

also be written as a rotation by angle 0 = QT. The rotation is about an axis h in

the x - y plane that is separated from the x axis by an angle ¢. Figure 2-3 shows an



example rotation on the Bloch sphere.

R(O, q) = exp[-iHIT/h] = exp -i- (eio+ + -iea- ) (2.25)

For appropriate values of €, laser pulses can generate the x and y rotations required

to build an arbitrary unitary operation using equation 2.24:

R,(0) = R(O, 0) = exp -i 2x

R (0) = R(O, 2) =exp 2

(2.26)

(2.27)

2.2.2 Multiple-qubit operations

The prototypical two-qubit gate is the controlled-NOT (CNOT) gate, which condi-

tionally flips the state of a target qubit. With a combination of CNOT gates and

single-qubit rotations, it is possible to perform arbitrary unitary operations on any

number of qubits[NCOO]. The CNOT can be represented by a matrix as,

UcNOT = (2.28)

which is expressed in the basis {100), 110), 101), i11)}. The first qubit is the target and

the second is the control. The CNOT gate as it is written above does not lend itself

easily to physical implementation. It can, however, be constructed from a controlled-

phase gate, which is a form of the conditional rotation that was alluded to in the



previous discussion of sideband pulses.

UCPHASE

100 0

0 1 0 0

001 0

0 0 0 -1

Continuing to define R(O, 0) as an independent rotation of the first qubit only (which

is implemented using a carrier pulse),

UCNOT= R(i ,0)UCPHASER( ,r) (2.30)

The lowest two eigenstates of the atom's quantum motion can be used as a control

qubit in the implementation of a CNOT gate using a single atom[CZ95]. To see how

this works, recall that a laser pulse tuned to the blue sideband of the atomic resonance

rotates the atom's internal and motional states simultaneously. The action of a pulse

with duration T and phase / is,

R(0, ) = exp i (eiu+a + e-io-at)1 (2.31)

where 0 = ,n,+,T = (r + Q1) T. The internal atomic state is rotated by an angle

0 on the Bloch sphere, which depends on n via Qn,1+l (see equation 2.10). Carefully

selected pulse sequences can therefore perform conditional logic operations that use

the motional state as a control qubit.

One problem with this scheme is that the same pulses that couple 100) to I11) will

also couple 101) to 112), which is outside of the subspace of the atom's states in which

we desire to operate. This subspace of the states of a harmonic oscillator, unlike

the two-state system, is not closed under arbitrary rotations. However, it has been

shown[CC01] that sideband rotations by 0 = j·rvf2 constrain the atom to the desired

state space for integers j. Using this knowledge, a CNOT gate can be implemented

(2.29)



using carrier and blue sideband pulses on a single ion:

UCNOT = R(-, 0) R+( R ()R(r, O)R+( 7 2)R+(7, 0) R(- , 7) (2.32)
2 ' 22 2 2

UCPHASE

A similar sequence was used to implement a CNOT gate on two 40 Ca+ ions[SKHR+03].

An additional complication is introduced by off-resonant coupling to the carrier

transition during sideband pulses (section 2.1.3). A phase shift accumulates between

the atomic 10) and I1) states that is proportional to the total duration of previous

pulses on the blue sideband. By shifting the phases subsequent laser pulses in the

opposite direction, the effects of off-resonant coupling can be partially cancelled.

UCNOT = R(2, 20,, + 20,,/-)R+( ' 2 + 20
7 + - -7r)

7 r 7r ( -
R+ (ir, q, + )R+( 7 2 + 7)R+(wr, 0)R(2, ) (2.33)

where €, = o•AC and /,/- = o6Ac are the phases accumulated during the 7r

and r/v'2 blue sideband pulses, respectively. We can measure their values with a

Ramsey experiment, which is described in the next section.

Equation 2.33 shows the pulse sequence that will be used to demonstrate a

controlled-NOT operation on a single 88Sr+ ion in chapter 6. Such entangling op-

erations between spin and motional states are important even in a system with many

individual ions, because their collective motional modes are used as a form of com-

munication.

2.3 Decoherence

The ultimate limit on coherence time is constrained by the lifetime of the atomic

transition. In many cases, there are sources of decoherence in the experimental appa-

ratus that prevent coherence times from reaching this limit. These errors can either

come from a loss of information through undesired interactions with the atom's en-



vironment, or from errors communicated by the classical control system.

2.3.1 Experiments for measuring decoherence

This section presents a series of experiments that can be used to characterize decoher-

ence processes. They are useful for understanding what types of scientific experiments

are possible as well as for pinpointing ways that the apparatus could be improved.

Rabi oscillations

A resonant laser beam that is well-coupled to the atomic transition will drive coherent

oscillations in the relative populations of the atomic states, as described in equation

2.13. These Rabi oscillations [Rab37] are often used as an initial demonstration of

quantum control. The measurement procedure is simply to initialize the atom in state

10) and apply a pulse of duration T. The probability of finding the atom in the 10)

state, which is the quantity measured in our experiments, should be given by

P 0) (T) = cos2 (QT/2) (2.34)

In practice, decoherence causes the amplitude of the oscillations to decay as a function

of T. This decay is often caused by instabilities in the Rabi frequency Q, which in

turn depends on the incident laser power as well as the detuning of the laser from

resonance.

It is also useful to measure Rabi oscillations that are driven by blue sideband

pulses, which address both the internal and motional states of the ion. Compared

to carrier transitionions, coupling to sideband transitions is weaker by a factor of r7.

As a result, the Rabi oscillations are slower and coherent manipulations of motional

states using sideband pulses are more likely to run up against the limitations imposed

by short coherence times. This makes the blue sideband Rabi frequency ,n,n+1 worth

knowing when planning experiments.



Ramsey interferometry

Experiments based on Ramsey interferometry [KPRS50, LGRS04] are an important

tool for investigating noise in the classical control system as well as for calibrating

the phase shift corrections for AC Stark shifts.

The most basic Ramsey experiment is used to measure the frequency stability

of the laser. First, the atom's internal state2 is initialized in the 10) state. A ir/2

pulse rotates the atom into the (10) + 11))/v/2 state. During the subsequent period

of free evolution, detuning of the laser from resonance causes the atom to precess in

the laser's rotating frame. The accumulated phase q between laser and atom is then

transferred to the population of the atomic state with a second 7/2 pulse. We can

write the pulse sequence mathematically as

R(',0)7R(2,0) (2.35)
2 2

where 7 is the length of the free evolution period. The population of the 10) state at

the end of the experiment is (1 + cos(o)). For a constant detuning of the laser, ¢ is

proportional to T and the florescence signal oscillates sinusoidally with T - generating

the famous "Ramsey fringe" pattern. Fluctuations in the laser-atom phase, origi-

nating for example in drifts of the laser's frequency during the free evolution period,

cause a decay in the amplitude of the Ramsey fringes with a time constant of T2

Ramsey interferometry can also be used to find the phase shift qAC = 6 ACT

induced by a blue sideband pulse due to the AC Stark effect. The result of this

measurement is used in pulse sequences to offset the AC Stark effect, as demonstrated

in equation 2.33. In this experiment the total time between the 7r/2 pulses remains

constant and the length of a sideband pulse is scanned:

R(2, 0)TR 6(QAc(1 - 7), 0)R(2, 0). (2.36)

Here, R6 (0, 0) is a pulse that is neither resonant with the carrier nor the blue sideband,
2The quantum motion is cooled to its ground state for all experiments involving only manipulation

of the internal state, so I will omit the second qubit from these equations to lighten the notation.
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Figure 2-4: Recovery of phase coherence with a spin echo. Top: measured population
of the 10) state vs. time. Bottom: the pulse sequence. A second 7r/2 pulse at a
variable time T + 70 must be added to prepare the state for measurement.

but is detuned from the carrier by 6. The population of the 100) state evolves as

(1 - cos(6 ACT)). Using equation 2.17, the phase shift at the sideband frequency can

be extrapolated by measuring the effect of off-resonant pulses at several frequencies.

Spin-echo recovery

The decay of phase coherence with time limits our ability to control the ion's state.

For certain types of noise, phase coherence can be recovered with a spin echo long after

the original decay with the judicious insertion of a 7r pulse into the pulse sequence

[Hah50].

R( 2, 0)TR(wr, 0)ToR(2 , 7r) (2.37)
2 2

Consider the case where T = To. During the free evolution period of a Ramsey

experiment with no laser detuning, the state of the atom should remain stationary.

Errors in the laser's frequency cause an undesired precession of the atom's state in the

laser's frame. A 7r pulse inserted in the middle of the free evolution period reverses

the direction of the precession, effectively canceling the effect of a constant frequency

error. When scanning T, an echo of the orignal signal reappears centered at T = 70,

as shown in figure 2-4.

The amplitude of the recovered signal will decay exponentially with a time con-

stant of T2 as 70 increases. By scanning the length of both time delays in concert we

I I __ m



can come close to directly measuring T2.

R(2, O)rR(7r, O)rR(2, r) (2.38)

This spin-echo technique can only recover from noise that is effectively constant over

the length of T. If the phase is refocused more frequently using the Carr-Purcell

sequence[CP54], and the dominant noise sources are slower than time between the

echoes, it is possible to extend the coherence time even further:

R( , 0) R(7r, 0) R(7r, 0) ...R(7r, 0) 7R(7r, 0) (2.39)
2 2n n n n 2n

where the spin is echoed n times. This sequence is used in chapter 6 to measure T2.

2.3.2 Minimizing decoherence with composite pulses

Imperfections in the classical control of a quantum system are inevitable in any re-

alistic experimental situation. Fortunately, sequences of consecutive pulses can be

designed that are self-correcting in the face of many common control errors [Lev86].

The use of these composite pulses has been fantastically successful in NMR experi-

ments, but their applicability can often be extended to the quantum control of any

two-level system[VC05].

In this thesis, we are curious to see if we can make use of one particularly popular

type of composite pulse called BBl[Wim94]. Systematic errors in laser amplitude

or pulse length can distort any rotation by 0 into a rotation by 0[1 + E]. BB1 com-

posite pulses experience a reduced distortion of 0[1 + O(E()], without requiring any

prior knowledge of the magnitude of the error. For a desired rotation of R(0, 0), the

corresponding BB1 composite pulse can be generated algorithmically:

RBB1(e) = R(7r, q)R(27r, 34)R(7r, O)R(6, 0) (2.40)

where q = cos-1(-9/4w).

Figure 2-5 shows the trajectories of a composite ir/2-pulse in the presence of



Figure 2-5: The trajectories of a spin driven by a BB1 composite pulse in with 25%
under-rotation error (left), no systematic rotation error (center) and a 25% over-

rotation error. Reproduced with permission from [VC05].

systematic errors that cause over- or under-rotation. The first step of the trajectory

is the uncorrected pulse, R(O, 0). Even for errors as large as 25%, it is clear that

BB1 can make a big difference. This is tested experimentally in chapter 6. As the

functionality of BB1 composite pulses is already well-established, our goal is instead

to diagnose the level of laser amplitude noise in the experiment: if the composite

pulses outperform uncorrected pulses, it indicates an area where the apparatus would

benefit from an upgrade.

2.4 The "8 Sr+ ion

Singly-ionized strontium is the ion of choice for our experiments. It has a single

electron and no nuclear spin, resulting in a simple hydrogenic energy structure. The

quadrupole transition from 4D5/2 to 5S1/ 2 has an exceptionally long lifetime of 345ms

with a corresponding natural linewidth of only 0.4Hz, making it an excellent qubit

candidate. An additional advantage of using ssSr+ is that all of the relevant transi-

tions are accessible to diode lasers, which allows a more straightforward experimental

apparatus (appendix A).
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Figure 2-6: The energy levels of "SSr+ that are encountered in this thesis. Reproduced
with permission from [RicO08]

2.4.1 Electronic energy levels

Figure 2-6 shows the energy levels of SSSr+ that are relevant to the experiments in this

thesis. Coherent manipulations are performed on the 4D5/2 -+ 5S1/2 quadrupole tran-

sition. More specifically, the 4D5/2(m = - ) and S 1/2(m = -) Zeeman sublevels'

are used as the I1) and 10) states of a qubit.

The 4D5/2 metastable state has a very long lifetime of 345ms, which sets a high

upper bound for the number of consecutive quantum operations that could theoreti-

cally be performed coherently. In current experiments however, a much lower limit is

imposed by frequency fluctuations in the 674nm qubit laser; the natural linewidth of

the atomic transition is 0.4Hz, fifteen orders of magnitude smaller than the frequency

of the incoming light. Because our desire for long coherence times places such strict

demands on this classical control system, the construction of an additional frequency

stabilization system for the 674nm laser is a major component of this thesis. Its

design is described in chapter 3 and its performance is characterized in chapter 4.
3The 4D5/2 level is separated into m = {+, ,±-,±5} and the 5S 1/2 level into m = {1}

sublevels by a magnetic field.

52E~,



An additional laser at 1033nm is used during state initialization to pump the ion

from 4D5/2 to 4P3 /2, which rapidly decays to the 5S1/ 2 (10)) state. The atom can

alternatively be initialized in the 4D5/2 (11)) state by applying a ir pulse with the

674nm laser after the ion has been pumped to 5S1/ 2.

In addition to having a qubit with a long coherence time, the "8 Sr+ energy level

structure offers a relatively straightforward measurement scheme. The 5P1/2 excited

state rapidly decays to the 5S1/ 2 ground state with a lifetime of 7.9ns, emitting a single

photon each time. If the ion is initially in the S state, resonant 422nm light drives it

to cycle rapidly between S and P and emit a bright florescence signal. No florescence

is observed when the ion is shelved in the D state. Each measurement, which returns

a binary value based on a threshold for the strength of the florescence signal, projects

the atom's state onto 4D5/2 or 5S1/ 2. The relative probability of finding the atom in

the S state is estimated from the average outcome of 100 identical state preparations

and subsequent measurements.

From the 4P1/2 state, the ion decays to the metastable 4D3/2 state with a prob-

ability of 1/14 and disrupts the cycling of the 422nm S -+ P transition. A laser at

1092nm is therefore necessary to repump the ion back to the 4P1/2 state. This is

useful both during state readout and when the 422nm transition is used for Doppler

cooling.

2.4.2 Laser cooling

Uncontrolled thermal motion of the ion in the trap broadens the atomic resonances

and prevents the internal states from being manipulated coherently. At the beginning

of each measurement, lasers cool the ion to the ground state of its quantum motion in

the ion trap's harmonic pseudopotential. After laser cooling [WDW78, NHTD78], the

ion's motion can be controlled coherently by sideband pulses of the 674nm laser. The

motional state then becomes quite useful as a second qubit, as described in section

2.2.2.

Laser cooling is performed in two stages. First, the 422nm laser is detuned to

the red of the 5S1/2 + 5P 1/ 2 transition to Doppler cool the atom. Light is Doppler-
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Figure 2-7: Sideband cooling.

shifted onto resonance for atoms moving towards the laser beam. The absorption

of a resonant photon with wavenumber k imparts a momentum hk in the opposite

direction of the atom's motion. When the photon is spontaneously re-emitted, the

atom recoils in a random direction. On average, the atom's velocity is slowed down

by each interaction with a photon.

After Doppler cooling, the thermal broadening of the 4D5/2 +-+ 5S1/ 2 transition

is reduced to the point where motional sidebands can be spectrally resolved. The

red 674nm laser is then used to sideband cool the atom to the ground state of its

motion according to the diagramm in figure 2-7. The laser drives an ion from the

IS, n) to the ID, n - 1) state, removing one motional quanta. Because the lifetime of

the metastable 4D5/2 state is so long, the 1033nm laser is used to pump the ion into

the 5P3/2 , which has a much shorter lifetime and decays rapidly to the 5S1/2 ground

state. This cycle is repeated until the ion is cooled to the ground state of its motion

with n = 0.

2.5 Summary

This chapter showed how the basic elements of quantum control can be implemented

by using pulses of laser light to address the internal and motional states of a 88Sr+



ion. A theoretical description of the interaction of ions with light was presented in

the first section, which was then translated into the language of quantum information

in the second section. There, the use of the ion's quantum motion as a second

qubit was described. The next section was dedicated to understanding the behavior

of quantum information in less-than-ideal experimental conditions. Experimental

techniques for investigating decoherence and mitigating its effects were presented. In

the final section, we saw how the energy level structure of "SSr+ provides the narrow

qubit transition and efficient readout scheme that make these experiments possible.



Chapter 3

Stabilization of the 674nm Qubit

Laser to a Fabry-Perot Cavity:

Theory and Design

Our desire to implement sequences of coherent quantum logic operations places strict

demands on the precision of the classical control system. In this chapter, I describe the

theory and design of an electronic feedback system that locks the 674nm qubit laser's

frequency to the resonance of a high finesse Fabry-Perot etalon using the popular

Pound-Drever-Hall (PDH) technique [Bla00, ZH92]. This lock significantly extends

the capabilities of the existing laser system [LRB+07] by providing a second stage of

frequency stabilization.

The chapter begins with a theoretical discussion of PDH laser locks in section 3.1.

Then, section 3.2 contains a detailed description of the construction and design of

the entire feedback system. Chapter 4 describes the characterization of the lock, and

analyzes the laser's frequency stability relative to the optical cavity. In chapter 5,

the laser is put to the test with a series of experiments that measure the improved

coherence time of the optical strontium qubit.
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Figure 3-1: Left: A standing wave in a Fabry-Perot etalon. Right: The reflection

spectrum for an etalon with mirror reflectivity I7 = 0.9. The reflected amplitude

drops to zero for resonant light, which is completely transmitted through the cavity.

Such resonances occur periodically, whenever an integer number of wavelengths fits

exactly between the mirrors. The distance between these resonances is called the free

spectral range, VFSR.

3.1 Theory

The Pound-Drever-Hall (PDH) technique enjoys broad application wherever extremely

stable optical frequency sources are required, including gravitational wave interfer-

ometers [AAD+92], precision spectroscopy [LHN+07], and the development of optical

atomic clocks [OBS+07]. The PDH scheme employs lock-in detection to compare a

laser's frequency to the resonance of a Fabry-Perot etalon, which decouples the laser's

frequency and amplitude noise. Another feature of this detection method is that the

error signal is approximately linear with frequency deviations from resonance, allow-

ing the use of straightforward control techniques to suppress noise in the laser.

3.1.1 The Fabry-Perot Cavity as a Frequency Reference

For our purposes, a Fabry-Perot etalon is a resonant optical cavity formed by two

parallel mirrors that face each other. Light shines into the cavity along the axis

that connects the two mirrors. When an integer number of wavelengths fits exactly

between these mirrors, light constructively interferes so that a standing wave forms

inside the cavity. Some of this light then leaks back out through the mirrors at the

same intensity as it is being injected by the laser. On resonance, this leakage beam is

'
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Figure 3-2: The magnitude and phase of the light reflected from a Fabry-Perot etalon
near resonance.

exactly 180' out of phase with the directly reflected beam; the total reflected power

is zero due to destructive interference. Such resonances occur periodically as shown

in figure 3-1. Their frequency separation is given by the Free Spectral Range (FSR):

c
VFSR = (3.1)

2L

where L is the mirror separation distance and c is the speed of light. Far from

resonance, very little power can build up inside of the cavity and subsequently leak

out to interfere with the directly reflected beam. Therefore, all of the off-resonant

light is reflected from the cavity.

The reflection spectrum is more fully described by the etilon's complex reflection

coefficient F(w'), which is the ratio of reflected and incident electric fields. Here, w is

the laser's frequency, and wo is a resonant frequency of the etalon. For convenience,

we can write the detuning of the laser from resonance as w' = w - wo.

Ereflected Vs (exp(i VFSR'

F(w ) - w' (3.2)F() Eincident 1 - 12 exp(i )(3.2)
VFSR

where 1R is the mirror reflectivity. The intensity and phase of the reflection coefficient

is plotted in figure 3-2.

A common metric for the quality of a Fabry-Perot cavity is its finesse F, which is

Reflection coefficient magnitudeReflection coefficient magnitude



the the ratio of the free spectral range VFSR to the resonance linewidth Av:

VFSR C 21r(7CF= (3.3)AV 2LAv 2L

where 7 is the lifetime of a photon in the cavity. A high finesse indicates that reso-

nant photons bounce between the mirrors many times before escaping, constructively

interfering to build up a large amount of power in the optical cavity. As mirror

reflectivity approaches unity, the finesse is well approximated by

I7 (3.4)
1-R (1 - R)2

It is clear from the above equations that highly reflective mirrors are the key to

making a Fabry-Perot etalon with spectrally narrow resonances. The stability of the

resonance frequency, on the other hand, relies on a perfectly constant mirror separa-

tion distance. Mechanically stable optical cavities with highly reflective mirrors can

have reliable, spectrally narrow resonances and act as excellent frequency references.

3.1.2 Pound-Drever-Hall Locking

Armed with an understanding of the inner workings of Fabry-Perot etalons, we now

turn our attention to the question of how to employ such frequency references in the

stabilization of lasers. The following section is largely based on a derivation from

Black's review paper [Bla00] on the same topic.

Generation of the error signal

Looking back to the plot of the reflection coefficient F in figure 3-2, notice that

the intensity of light reflected from a Fabry-Perot cavity is symmetric about each

resonance. The intensity of reflected light can only reveal the magnitude of the laser's

deviation from resonant frequency, but has nothing to say regarding which direction

the laser's frequency must be adjusted to correct the error. The phase of the reflected

light, however, is an odd function across the resonance - this is precisely what we



need.'

To encode the phase of F into the reflected laser beam, the phase of the incident

light is itself modulated at a frequency Q that is much larger than the resonance

linewidth. The resulting electric field takes the following form:

E -= Eoei(w' t + ,3 sin( t)) , Eo [Jo()ew't - Ji(3)e'(w'-)t + Jl(3)ei(w'+)t] (3.5)

where Jo and J1 are Bessel functions, and 0 represents the strength of the phase

modulation. The incident beam is now composed of three separate beams: a carrier

oscillating at the laser frequency w, and two sidebands at w + Q. After reflection

from the etalon, each of these three beams is multiplied by the complex reflectivity

coefficient, F, at their respective frequencies (recall that F was defined in equation

3.2).

Eref = Eo [F(w')Jo(0)e_ "'t - F(w'- Q)Jl(0)ei(w' -n)t + F(w' + Q)Ji(()ei(w+I)t]

(3.6)

When a photodiode measures the intensity of the reflected light, Iref = IEref 2,

the carrier and sideband peaks interfere. This generates beat signals at DC, Q, and

2Q as well as an assortment of optical frequencies. The beat signal's intensity at the

modulation frequency 0 contains the sought-after phase information:

lerr(t) = -2Jo(0)J1(0)|Eol2Im {F(w')F*(w' + ± ) - F*(w')F(w' + Q)} sin(Qt) (3.7)

Once Ierr is detected in the photodiode, the signal can be demodulated to yield

the DC signal shown in figure 3-3. The full detection process will be described in

the next section - but first, let us admire this PDH error signal for a moment. Very

close to resonance, the reflection coefficient F and error signal Ierr becomes linear

'Another common solution to this dilema is to lock the laser's frequency to a side of the etalon's
resonance peak, where a small shift in the laser's frequency generates a large change in reflected light
intensity. This approach is problematic because fluctuations in laser amplitude have an identical
effect on the reflected power as do fluctuations in frequency.
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Figure 3-3: The PDH error signal as a function of the laser detuning w', for a cavity

with finesse around 300. The three resonances are spaced by the modulation frequency

Q. A higher finesse cavity, like the one used in this thesis, will have much narrower

resonances in comparison to the distance between the carrier and sideband signals.

with frequency:
i Sw'F(w') (3.8)

The error signal is also linear near resonance, making it straightforward to employ

traditional control techniques such as PID feedback for holding the laser's frequency

constant:
4Jo(O)J1 (3)jEol2 6w

lerr e (3.9)

Since the lock typically has enough gain to hold the laser's frequency in this linear

region, the slope of the error signal on resonance gives a good measure of the system's

sensitivity to frequency shifts. To optimize the sensitivity, one can make the error

signal taller by aligning light very well to the cavity mode and optimizing the modu-

lation depth f to be 0.4 [Bla00]. The width of this linear region, which we would seek

to minimize, is approximately equal to the cavity's spectral linewidth. A Fabry-Perot

cavity with very high finesse is therefore an important component of the detection

system.

Another important quality of a Fabry-Perot cavity is the stability of its reference

frequency, which is controlled by the mirror spacing L. Equation 3.9 assumed that L

was constant. For fluctuations 6L in the cavity spacing and Sw in the laser's frequency,
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Figure 3-4: Design overview: the PDH lock loop. The light from the existing laser
(which I call the monolaser) passes through an optical isolator and then an Acousto-
Optic Modulator (AOM), which the lock uses to shift the laser's frequency to subtract
errors. A small portion of the main beam is sampled and sent through a polarization-
maintaining fiber to and Electro-Optica Modulator (EOM), which modulates the
laser's phase at 10.24 MHz. A polarizing beamsplitter cube reflects the modulated
light to the optical reference cavity, which has its polarization rotated by passing
through a A/4 plate twice so that light from the cavity is transmitted to a photodi-
ode. From there, a mixer picks out the error signal carried at 10.24 MHz and sends
it through a low-pass filter (LPF) to a servo controller. The DC control signal is
translated by a Voltage-Controlled Oscillator (VCO) into a sine wave that drives the
AOM's frequency correction of the laser.

the error signal can be rewritten:

lerr -8Jo(0)J1(0)|Eo2 --[6 + (3.10)

We see that fluctuations in the cavity length masquerade as fluctuations in the laser's

frequency. In order to effectively stabilize the laser's frequency, the cavity's length

must also be extremely well-controlled. Two major sources of distortion in the cavity's

length are acoustic vibrations [CHY+06] and thermal fluctuations [NML+06].

I



3.2 Design and Construction

The previous section described the theory behind PDH locking. In this section, I show

the design for the laser lock that was implemented in our apparatus. A high-level

diagram of the PDH laser stabilization system is shown in figure 3-4. A small sample

of polarized 674nm laser light is sent through a single-mode fiber to a small optics

breadboard that is rigidly mounted to a vacuum chamber that holds the optical cavity.

The light first passes through an electro-optic modulator (EOM), which is driven at

10.24 MHz by a local oscillator to modulate the laser's phase as described in equation

3.5. A polarizing beam splitter reflects the light into the etalon. Since the reflected

light passes twice through a A/4 plate, its polarization is rotated by 900 before it

returns to the beamsplitter where it can now be transmitted to a photodiode.

When the 10.24 MHz photodetector signal is mixed with the 10.24 MHz local

oscillator, a DC error signal is generated which indicates the laser's distance from

the Fabry-Perot resonance frequency (shown in figure 3-3). This error signal is then

fed to a PI controller, which adjusts the laser's frequency by driving an acousto-optic

modulator (AOM) via a voltage-controlled oscillator.

More details on each of the laser lock's subsystems are given in the remainder of

this section.

3.2.1 The Optical Reference Cavity

The Fabry-Perot etalon is formed by two highly reflective mirrors that are optically

contacted to a cyllindrical 10 cm spacer made from ultra-low expansion (ULE) glass.

It was manufactured by AT Films in Longmont, CO. The center of the spacer is

hollow with a small vent halfway between the mirrors, so that the optical path can

be pumped out to vacuum pressure. The manufacturers provided a schematic, which

is shown in figure 3-5. To confine a gaussian beam in the cavity, one mirror is curved

with a radius of 500mm and the other is flat. Light is focused into the cavity such that

the beam waist falls at the flat mirror and the wavefront has a radius of curvature of

500mm when it strikes the curved mirror.
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In equation 3.10 we saw that changes in this spacer's length shift the cavity's

resonance, which is clearly undesirable.

'err oc + (3.11)

For our laser frequency of w = 27r - 440 THz and a cavity length L = 10 cm, a

fluctuation in mirror separation of 6L = 0.1 picometer has the same effect as a laser

frequency fluctuation S• = 27 -0.44 kHz. It is extremely important that the cavity's

length be as stable as possible. Thermal length fluctuations certainly exist on this

scale even with ULE material, so the cavity's environment is actively temperature

controlled. It is also essential to isolate the cavity from vibrations that might stretch

the mirror separation distance. The design of the cavity's housing is designed with

this in mind, based on many helpful suggestions found in [NMYH05].

The etalon is mounted vertically by a copper ring affixed to its center using torseal,

as shown in figure 3-6. This copper ring is supported by three teflon rods, which aid in

both vibrational and thermal isolation. A thin, cyllindrical copper sheath surrounds

the cavity to prevent thermal gradients from developing. On the outside of this copper

shell, there is a small sensor to measure the cavity's temperature. An aluminum shell

wrapped in heater wire surrounds the whole copper assembly. This entire system is

then placed in a vacuum chamber, which is evacuated by an ion pump.

A unique feature of this temperature control system is the sensor made from a

quartz crystal whose oscillation frequency is sensitive to temperature. Unlike a ther-

mistor, this sensor has a negligible calibration drift over many years - an attractive

feature for a system entombed in a vacuum enclosure. It is also less sensitive to am-

bient electrical noise. The quartz oscillator circuit shown in figure 3.2.1 is designed as

a Pierce oscillator with a buffered output, generating a square wave whose frequency

changes linearly with temperature. A Field Programmable Gate Array (FPGA) then

measures the frequency and uses a PI controller to adjust the heater power.

A small optics breadboard is rigidly attached to the vacuum chamber that contains

the optical cavity's mount. The optics on this board are responsible for modulating
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Figure 3-6: The optical cavity mounting scheme. (1) The two halves of the cyllindrical
copper sheath that surrounds the cavity are attached to the center mounting ring with
screws. (2) The full assembly suspends the cavity by its copper mounting ring on
three hollow teflon rods. Heater wire is wrapped around the outer aluminum layer.
Center diagram is to scale.

I
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Figure 3-7: The quartz crystal temperature sensor is a Pierce oscillator with an output
buffered by CMOS inverters. It is based on a design provided by Statek Inc, who
manufactured the crystal (part number CX-1V-03 171 kHz). The addition of the
Schottky diodes, as well as adjustments to the values of the biasing resistors and load
capacitors, further improved the duty cycle and insensitivity to fluctuations in the
supply voltages. The crystal goes across pads 1 and 2.
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Figure 3-8: A fiber (bottom right) brings a sample of the main beam to the optical
cavity (mounted vertically under the optics breadboard, bottom left). The reflected
signal is detected by a photodiode (top left). The optical cavity has one flat mirror on
the bottom, and another with a radius of curvature of 500mm. The mode-matching
lens in between the beamsplitter and cavity has a focal length of 250mm so that the
beam is focused on the cavity's flat mirror.

laser phase with an EOM, directing the modulated beam into the etalon, and mea-

suring the reflected signal as shown in figure 3.2.1. Light is delivered to this optics

subsystem via a single-mode fiber.

Finally, the entire vacuum enclosure and optics breadboard are placed in a foam-

lined box that further insulates the cavity from thermal and acoustic disturbances. It

also prevents changes in room lighting from affecting the error signal measurements.

The box floats of four legs made of sorbothane, a visco-elastic polymer optimized for

vibrational isolation.



3.2.2 Laser frequency detection

The first step of generating the PDH error signal is to modulate the laser beam's

phase. An EOM is made from a y-cut KTP crystal2 that displays a strong Pockels

electro-optic effect: the index of refraction varies linearly with applied electric field.

The polarization of the incident laser beam is first filtered with a Glann-Taylor po-

larizer before traveling through the crystal. An amplified 10.24 MHz local oscillator

drives a voltage across two copper plates mounted to opposing faces of the crystal,

creating a sinusoidal variation in the index of refraction and hence the light's travel

time through the EOM.

After the laser beam travels through the EOM and is reflected from the Fabry-

Perot cavity, it is incident on a photodiode detector. Section 3.1.2 described how the

phase of the cavity's reflection coefficient, and hence the laser frequency's detuning

from resonance, is carried by a 10.24 MHz beatnote in the photodiode signal. This

beatnote is isolated with a bandpass filter, and then combined with the local oscillator

in a mixer. Because the two paths traveled by the local oscillator signal are not the

same, a tunable phase shift is introduced between the oscillator and the mixer. Two

signals are created at the mixer's output: one at DC and one at 2.10.24 MHz. The

DC error signal is isolated with a lowpass filter and then sent to a PI controller which

feeds back to the laser, as discussed in the next subsection.

3.2.3 Feedback mechanism

Once the error signal is measured it is fed to an LB1005 PI servo controller made

by Precision Photonics of Boulder, CO. The PI controller drives the feedback that

cancels frequency fluctuations in the laser. Its output is the sum of two signals: one is

Proportional to the magnitude of the error signal and corrects instantaneous errors;

the other is proportional to the Integral of past errors, and corrects residual steady-

state offsets. The integral controller also speeds up the settling process as control

values adjust to slow fluctuations in the laser's frequency.

2Ours was manufactured by Casix.



To convert the DC signal at the output of the PI controller into a shift in the laser's

frequency, a crystek CVCO55CL-0184-0190 voltage-controlled oscillator (VCO) is

used to drive an acousto-optic modulator (AOM). The VCO is an electrical circuit

that generates a sine wave at a frequency that can be tuned by a DC input. In our

case, the output frequency is centered at 200 MHz and can be shifted 3 MHz/V by

the PI controller's output signal.

The VCO/AOM actuator system was chosen because it can be completely external

to the existing 674nm laser, which already provides a steady 10 kHz-wide laser beam

that is easy to lock to. Direct feedback to the laser's current drive is another popular

choice for an actuator in this type of laser lock. Its primary advantage over an AOM is

speed - the propagation delay of sound waves in the AOM limits our servo bandwidth

to about 1MHz. On the other had, the AOM's response to control inputs is more

linear than the response of a laser to its injection current. A third option is to use

both an EOM3 and AOM in series [ZH92]. A high-pass filter sends faster control

signals to the EOM, which has a quick response but a narrow tuning range, and a

low-pass filter sends the remaining control signal to the AOM, which has a slower

response but a much broader tuning range. The main disadvantage of this system is

simply the equipment overhead and setup-time required; it may be worth revisiting

in the future.

3.3 Summary

The 88Sr+ optical qubit is extremely sensitive to fluctuations in the frequency of the

laser that addresses the 5S1/ 2 --+ 4D5/2 qubit transition. This chapter has described

the theory and design of a new system to stabilize that laser's frequency. We chose to

use a Fabry-Perot cavity as a frequency reference, and to lock the laser's frequency to

a resonance peak by monitoring the phase of reflected light in the style of a Pound-

Drever-Hall lock. The next chapter will characterize this system's performance.

3EOMs can be configured as frequency shifters with a careful adjustment of bias voltages that
places all of the power into a sideband.





Chapter 4

Characterization of Laser

Frequency Lock

In the previous chapter, we saw the theory and design of a new frequency stabilization

system for the laser that addresses the optical qubit formed by the 4D 5/2 and 5S 1/2

states of s"Sr+. The ultimate goal of this system is to improve the precision with

which we can manipulate these atomic states, and for this we need an exceptionally

stable laser frequency. This chapter describes the diagnostic tools that are used to

evaluate the laser lock and provides a characterization of the laser's frequency noise.

It begins in section 4.1 with an analysis of the optical cavity as a frequency reference,

discussing both the spectral width and time-dependent fluctuations of its resonance.

In section 4.2, we turn our attention to the locking mechanism that is responsible for

keeping the laser in tune with the cavity resonance.

4.1 The Optical Reference Cavity

A characterization of the optical reference cavity's performance allows us to place

limits on the expected performance of the entire PDH frequency stabilization system.

In addition, the frequency response of this reference cavity will be necessary to inter-

pret the noise spectrum of the error signal in terms of frequency fluctuations in the

laser itself.
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Figure 4-1: The response of the transmitted light signal to a square pulse of resonant
light. A more negative amplitude represents a higher power incident on the photo-
multiplier tube. Shortly before t=100 ps, the laser was turned off, and then turned
on again at 300 ps. The power stored in the cavity decayed exponentially with a time
constant of 75.4+1 ps after the resonant light was switched off.

4.1.1 Resonance Linewidth and Finesse Measurements

One method of finding an optical cavity's finesse is by measuring the lifetime 7 of

photons stored between the mirrors, which is related to finesse by the following for-

mula:

L = (4.1)
L

Here L is 20 cm and c is the speed of light. To measure T, square pulses of resonant

laser light are directed into the optical cavity. During resonant pulses, power builds

up to a maximum inside of the cavity. The amount of power that leaks out of the

cavity through its mirrors is proportional to this power stored inside. The time-

dependent intensity of transmitted light is then measured with a PMT. When the

resonant laser light is switched off, the stored power decays exponentially as photons

escape the cavity without being replaced by incoming light. This decay reveals the

characteristic lifetime of photons in the cavity.

An example measurement of the photon lifetime in the optical reference cavity

is shown in figure 4-1. The average of two such measurements indicates a lifetime

of 7 = 75 ± 1 ,ps, which corresponds to a resonance full width at half maximum of

Av = 4.24 ± 0.06 kHz and a finesse of 708,000±10,000, which is even better than the

manufacturer's claims of a finesse between 100,000 and 500,000. The first time that



Figure 4-2: The optical reference cavity, with the top half of its copper sheath re-
moved.

cavity ringdown times had been measured, the finesse was found to be only 10,000

and it was returned to have its mirrors cleaned.

The linewidth measurement can also be used to estimate the cavity's gain as a

function of1 frequency f, which will be useful for building a model of the entire locking

system. The frequency response of an optical cavity in this arrangement is typically

Lorentzian:

IH(f) 2 =2 (4.2)

IH(f) 2 was measured directly by injecting noise into the laser and observing the

cavity's response using a lock-in amplifier. The data agrees well with the predicted

1There are two different types of frequencies involved in characterizing the lock: the optical
frequency distance between the laser and resonance, and the rate at which such frequency fluctuations
occur. Here, I refer to the latter.
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Figure 4-3: The magnitude of the optical cavity's transfer characteristic, as a function

of the speed at which the laser's frequency is fluctuating. The Y axis plots IH(f)l2

times an arbitrary constant. The results of the photon lifetime measurement agree

well with a direct measurement of the cavity's transfer function, both exhibiting a

gain rolloff near 2.1 kHz. This shows that the optical cavity's frequency measurement

has the most gain for fluctuations slower than the photon storage time.

IH(f) 2 from the photon lifetime measurement of the cavity's linewidth, which is

plotted in figure 4-3.

4.1.2 Stability of the resonance frequency

Recall equation 3.10 from the previous chapter, which shows that fluctuations 6L in

the mirror separation distance shift the optical cavity's resonance frequency and have

an identical effect on the error signal to fluctuations 6w in the laser's frequency:

'e r SLlerr oc + 6wLJ
(4.3)

Because the laser lock attempts to drive the error signal to zero regardless of the source

of its deviation, instabilities in L are directly projected onto the laser's spectrum. This

section will examine the impact of two sources of instability in the optical cavity's

resonance frequency: thermal fluctuations and acoustic vibrations.

. . . . . . . I . . . . . . . . .
_ . · experimental data --• --.. •..,._ ifit to HWHM...

......... ... HWHM from pioton lifetime .......

....................................................i~~

-................·................................... ..... .... ..... . ................................. .
.................................................................... .• -.............................."°.•%

.................................. !............................ . . .•. . . . _ ......................

-.... ............ i ...

.................................. .................................. :............................: •

-.. · ·· · ·. . , . . . . . .. |~··'···

I . . . . . . . . . . . . . . . . .'

1



Step-response of Temperature Control Loop
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Figure 4-4: Response of the optical cavity's PI temperature controller to a step in

the setpoint.

Thermal fluctuations

The expansion coefficient a of ULE glass varies slightly with temperature, but is

specified by Corning to lie within +30ppb/Co at temperatures from 5Co to 35C'. The

ULE cavity is typically held at 30C'. Rough measurements of the cavity resonance

relative to the Strontium ion's 4D5/ 2 -- 5S1/ 2 indicate that a e 7ppb/C ° . This

means that for a temperature shift of 1mK the mirror spacer's length changes by

0.7pm, which corresponds to a frequency drift of 3 kHz in the cavity resonance.

As described in section 3.2.1 of the previous chapter, the temperature control

system consists of a quartz crystal oscillator circuit with a temperature-dependent

frequency that is measured by a Field Programmable Gate Array. The FPGA also

coordinates the output to a heater wire coiled around the optical cavity mount with

a simple PI controller. In the absence of temperature control, the optical cavity

system's temperature responds to power from the heater with a time constant of 12

hours. The response of the temperature-controlled system to a step of 0.1 K is shown

in figure 4-4. After an initial overshoot of 3mK, the temperature error crosses zero

after two hours and settles to a final stability of +0.6 mK within 19 hours.



Figure 4-5: A vibration sensor was made by wiring three piezoelectric transducers

in series and then fixing them between two optics mounts with torrseal. This con-

figuration allowed the sensor to be rigidly attached to the optics breadboard that

directs light into the Fabry-Perot cavity. A wide-base optics post was attached to

the top of the sensor so that its weight would increase the sensitivity of the vibration

measurement. The AC component of the voltage across the three PZTs was fed to

an HPSA 3562A spectrum analyzer.

Although the magnitude of thermal fluctuations in the cavity is potentially prob-

lematic, the resulting frequency drifts of the laser are glacially slow in comparison to

sub-millisecond timescale on which measurements and quantum gates are executed,

and are not a limiting factor in the precision of our experiments.

Acoustic vibrations

The ULE glass has a large Young's modulus of approximately 68 GPa. A force of

1mN between the mirrors shifts the cavity length by about 0.2 pm and mimics a

frequency shift of 900 Hz in the laser. This renders the optical cavity's resonance

frequency extremely sensitive to vibrations.

To investigate the effect of the laboratory's ambient acoustical noise on the laser's

spectrum, a sensor was fashioned from three piezoelectric transducers as shown in

figure 4-5. A subwoofer was placed on top of the box that contains the optical

cavity's vacuum enclosure, with the speaker directed downwards. The subwoofer

was driven at a conversational volume by a signal generator's sine-wave output. To

measure the projection of acoustic noise onto the laser spectrum, the output of the

PI servo controller to the VCO (see figure 3-4) was measured on a spectrum analyzer.
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Figure 4-6: Top: the response of a vibration sensor and the control output from
the PI controller to the sound of subwoofer tuned to 140 Hz (at a conversational
volume). Bottom: Ambient noise spectra in the laboratory. There appears to be a
correlation between peaks in the vibration spectrum and peaks in the spectrum of
the PI controller signal.

The vibrational spectrum at the optical cavity's vacuum enclosure was measured

simultaneously.

A strong correlation was observed between the vibration spectrum and laser con-

trol spectrum when the subwoofer was driven at frequencies up to 300 Hz. An example

spectrum is shown in the top half of figure 4-6 for a subwoofer frequency of 140 Hz - a

corresponding peak at 140 Hz is clearly visible in the servo controller's output to the

VCO. The ratio of the spectral powers in this peak of the VCO spectrum to the same

peak in the vibration spectrum is plotted as a function of drive frequency in figure

4-7. From this data we can extract a very rough estimate for the gain with which

acoustic vibrations are projected onto the laser. Unfortunately, this measurement

reveals what is most likely a mechanical resonance in the cavity mount at 63 Hz. In
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Figure 4-7: Measured response of laser frequency to acoustic vibrations. Each point
is extrapolated from a measurement like the one shown in the top plot of figure
4-6. In the measurement, a signal generator drives a speaker to generate acoustic
vibrations at a single frequency, which show up as a sharp peak in both the VCO
input (PI controller output) spectra and the vibration spectra. The ratio of the
magnitudes of the VCO signal and the vibration measurement are plotted. This
provides an approximate transfer function to describe the gain with which acoustic
noise is projected onto the laser's spectrum.

retrospect, it is clear that the mechanical structure of the cavity mount should have

been more carefully modeled ahead of time in order to predict or prevent this reso-

nance, especially because it happens to be so close to the 60 Hz at which laboratory

equipment containing electric motors is likely to produce vibrational noise.

The second graph in figure 4-6 shows the ambient vibration spectrum in the lab

and the corresponding VCO input spectrum. A third trace combines the ambient

vibration data with the gain curve measured in figure 4-7 to estimate the contribution

of ambient vibrational noise to the spectrum of the laser. It shows that existing

ambient vibrations at a speed of 100's of Hz could cause the lock to pull the laser's

frequency by 100's of Hz or even kHz. These frequency fluctuations occur on the

timescale of quantum logic operations, and have a significant impact on their fidelity.

Chapter 2 discusses how the effects of this noise are mitigated by using spin echoes.
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4.2 Lock Performance

So far, this chapter has described the optical reference cavity's performance. Mea-

surements in this section reveal how well the laser's frequency is locked to the cavity

resonance, which is used to estimate the laser's spectrum.

4.2.1 The PDH Error Signal

The error signal is important both as the basis for the laser lock and as a mechanism

by which we can measure its performance. A theoretical plot of this error signal as

a function of frequency was given in figure 3-3. Figure 4-8 shows an experimental

measurement of the error signal, which was gathered by sweeping the unlocked laser's

frequency rapidly across the resonance.

The most important region of this error signal is the central linear region to

which the laser's frequency is locked. The width of this region, which is often called

the dynamic capture range, should be roughly equal to the resonance linewidth of

4.24±0.06 kHz. 40 percent of incident laser power is coupled to the cavity when the

laser is locked, resulting in a reasonably large amplitude for the error signal. By

averaging over many sweeps of the laser across resonance, the height of the error

signal was found to be 510 ± 7 mV. Therefore, the sensitivity to fluctuations in laser

frequency is KPDH = 10 mV/kHz = 0.12±0.01 mV/Hz. This number is important

for converting measurements of the error signal into measurements of deviations in

the laser's frequency, as described in the next subsection.

4.2.2 Laser noise spectral density, relative to optical cavity

After such painstaking efforts to create a stable and narrow frequency resonance in

the Fabry-Perot etalon, we must be sure that the locked laser is indeed tracking its

reference. A plot of the loop gain as a function of the rate of frequency fluctuations

is shown in figure 4.2.2.

The detection electronics have a bandwidth of approximately 500 kHz. Because

gain increases rapidly for decreasing frequencies below the PI corner, the location of
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Figure 4-8: The central peak of the PDH error signal, measured by sweeping the
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after the laser is swept past the resonance in either direction, but this is an artifact
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Figure 4-9: A sketch of the frequency response of the lock loop, in dB vs Hz on a
log-log scale. The highest gains occur at low frequencies. The transfer funciton of
the optical reference cavity in isolation, which rolls off at 2.12 kHz, was discussed
in figure 4-3. At frequencies below the PI corner at 100 kHz, the servo controller's
integrator contributes a gain with slope of -20 dB/decade. Near 500 kHz, the locking
electronics run into speed limitations and there is an RC rolloff that decreases the
slope of the transfer function from -20 dB/dec to -40 dB/dec for high frequencies.
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this corner was chosen to be 100 kHz. The region between 100 kHz and 500 kHz has a

relatively shallow slope of -20 dB/decade. Proportional gain Kp in the PI controller

was adjusted to bring the point of 0 dB (unity) gain into this shallow region. Higher

gains push the unity gain point beyond the servo bandwidth of 500 kHz, where the

phase shift around the loop approaches 180 degrees. This creates positive feedback

at higher frequencies and causes oscillations in the lock. Too low a proportional gain

would prevent the system from holding the laser's frequency in the linear region of the

PDH error signal, making it difficult to lock at all. In order to understand the true

impact of Kp, it is useful to calculate an effective gain Keff that includes the constant

gains associated with the error signal measurement, which converts frequency shifts

to voltages, as well as the VCO, which converts voltages back into laser frequency

shifts.

0.00012V 3. 10 6Hz
Keff = Kp . KPDH Kvco = 1 0

- 26dB/10 = 0.9 (4.4)
Hz V

This represents the DC gain at which frequency corrections are applied to the laser,

relative to the size of the error. In the construction of a complete model for the laser

lock this number would be particularly useful, however this modeling project was

set aside due to time constraints - it was realized that understanding the vibration

response of the reference cavity has a much larger impact on the quality of the lock

as a whole.

Figure 4-10 shows the power spectral density Sf(f) of the PDH error signal in

units of Hz2/Hz. The error signal is measured at the input to the PI controller

(see figure 3-4) with two spectrum analyzers. An HP 3562A measures the Sf(f) for

lower frequencies below 100kHz, in terms of mW/Hz. An Agilent E4407B spectrum

analyzer measures Sf(f) for higher frequencies, in dBm/Hz, which is then normalized

to a measurement bandwidth of 1Hz and converted to mW/Hz. Using the input

impedence of 50Q mW/Hz is converted to V2/Hz for both signals. Finally, multiplying

by K2DH = (0.12 Hz/V) 2, we get the power spectral density in terms of the magnitude

of the frequency deviations on the y axis vs. the rate at which they occur on the x



axis.

At low frequencies, the error signal(figure 4-10) has a flat spectral density that

is characteristic of white noise. It drops off sharply above 500kHz, the bandwidth

of the detection electronics. A purely white signal with constant power spectral

density Sf would correspond to a laser with a gaussian frequency spectrum having a

linewidth of 7rSf. The noise on the laser's error signal has an approximate constant

level of 0.1 Hz2/Hz, so we can estimate a linewidth of 0.31 Hz for the laser's frequency

relative to the optical cavity. It is worth strongly emphasizing that this is not the

actual linewidth of the laser. Instead, it means that the lock is doing a very good

job of driving the error signal to zero for fluctuations slower than 500 kHz - even

when shifts in the error signal are not caused by deviations in the laser's frequency.

Because electronic noise, thermal fluctuations of the cavity length, and especially

acoustic vibrations of the optical cavity mount also affect the error measurement,

these noise sources will dominate in the laser's spectrum.
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4.3 Summary

This chapter characterized the laser stabilization system designed in chapter 3. The

laser is locked to the resonance of a high-finesse optical cavity to an accuracy on

the order of 1 Hz. Noise in the laser's spectrum is therefore dominated by any

instabilities in the reference to which it is so tightly locked. Even the smallest change

in the separation distance between the mirrors of the optical reference cavity can shift

its resonant frequency dramatically - this is because the fractional stability of this

distance essentially becomes the fractional stability of the cavity's resonant frequency.

A frequency shift by 10 kHz is only four parts in 1011 of the resonant frequency of the

cavity, and a part in 1011 of the mirror separation distance is less than a picometer.

There are two major sources of instability in the mirror separation distance. The

first is thermal noise: instabilities in the cavity's temperature cause slow drifts on

the order of 10 kHz, but are mostly too slow to affect experiments. In the design

process, great care was taken to shield the cavity from thermal gradients and to build

a reliable temperature controller, which has allowed this noise to remain as low as it

is in magnitude. The second is acoustic vibration, which contributes about 500 Hz

to the laser's linewidth on a timescale that is more problematic for experiments. An

additional stage of vibration isolation may be needed to further protect the entire

cavity mount and vacuum assembly from acoustic noise in the laboratory.

The next two chapters demonstrate the capabilities of the newly stabilized laser

by performing coherent manipulations of the ion's quantum states.



Chapter 5

Coherence measurements of the

4D 5/2 +-+ 5S1/ 2 qubit

When working with quantum systems, it is generally desirable to extend the coherence

time as long as possible. So far, this thesis has described the construction of a

laser stabilization system designed to reduce the decoherence introduced by classical

control. This chapter puts the laser to the test with a series of experiments that were

proposed in chapter 2.

In section 5.1, driven coherent oscillations on the carrier transition provide a rough

indication of how many consecutive operations could be performed coherently. Section

5.2 uses Ramsey interferometry and spin echo techniques to better understand sources

of phase decoherence. In section 5.3, BB1 composite pulses are implemented. The

results of these experiments serve to inform our choices of future experiments and to

identify potential improvements to the apparatus.

5.1 Rabi oscillations: carrier transition

When the 5S1/2 +- 4D5/2 transition is driven resonantly by a coherent light source, the

transition probability oscillates sinusoidally at the Rabi frequency Q [Rab37]. This

frequency indicates the strength with which light is coupled to the atomic resonance

as well as the speed at which coherent manipulations of the atom's internal state can



be executed. The theory behind coherent manipulation of atomic states with pulses

of light is described more fully in chapter 2.

Fluctuations in the incident laser frequency and power alter the Rabi frequency.

These and other sources of decoherence cause a decay in the amplitude of Rabi os-

cillations with time, limiting the number and fidelity of the coherent manipulations

that can be performed on the atom. The Rabi frequency also depends on the ion's

motional state in) (see equation 2.9). Motional heating in our experiments occurs on

the time scale of 1 quanta of motion per second [LGA+08], which does not make a

large contribution to decoherence on the timescale of this measurement.

Rabi oscillations are measured by scanning the duration of a single resonant laser

pulse, as described in chapter 2. Recall the state-space convention introduced in figure

2-1: the full state is given by two qubits la, n) where a E {0, 1} is the atom's internal

state and n E {0, 1, 2, 3...} is its state quantum motion in a harmonic potential. As

with all experiments in this chapter, the ion is initially prepared in the 100) by laser

cooling. We use the state-dependent florescence signal from the short-lived S +- P

cycling transition to measure the atom's internal state. Each data point represents

the average of 100 measurements, a process that is described in more detail in chapter

2. Results are plotted in figure 5-1. The data is fit to

f (T) = 50 + Ae - (rT) 2/2 [sin2 (QT/2) - 0.5] (5.1)

where T is the pulse duration. The Rabi oscillations begin with an initial contrast of

A = 98 1 % and decay with a time constant of 1/F= 195±4ms. The contrast decays

to 80 percent in about 130 ps, enough time for 17 full oscillations. For this particular

measurement, the Rabi frequency Q is 826.7±0.2 kHz, which means that a single 7-

pulse has a duration of 3.800±0.001 ps. This value is an important parameter in the

pulse sequences that generate coherent operations. In practice, the Rabi frequency

depends on current experimental conditions and must be remeasured at least every

few days. Small shifts in the beam alignment and laser power can cause the Rabi

frequency to fluctuate by as much as 10 percent over days.
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Figure 5-1: Coherent driven oscillations on the 5S 1/ 2 +- 4D 5/2 transition.

5.2 Ramsey interferometry

In this section we use Ramsey interferometry [KPRS50] to investigate sources of

noise in the ion trapping system, both for the sake of planning future experiments

and identifying potential improvements to the apparatus. The atom is first initialized

in the 100) state and then subjected to a r/2-pulse. After a variable period of free

evolution, a second w/2-pulse projects the accumulated phase between the atom and

laser onto the z axis of the bloch sphere so that it can be measured via the usual

S +-+ P florescence signal.

A constant detuning of the laser causes the atom's state vector to precess in

the laser's rotating frame, generating the famous "Ramsey fringes" - in our case, a

sinusoidal oscillation in the amplitude of the florescence signal. Should the detuning of

the laser drift over the course of the free evolution period, leading to a mismatch in the

7/2-pulses, the contrast of the Ramsey fringes will be reduced. The noise introduced

by a laser having a gaussian spectrum with linewidth F would, for example, result in

a gaussian envelope on the Ramsey signal with a standard deviation of T2* = 1/(2irr).

Here, T2* can be seen as a conservative lower bound to the experimental coherence

time T2.

The result of the Ramsey measurement is shown in figure 5-2. We see a decay in

phase coherence with a gaussian envelope of T2 = 342±6 ps which could be caused by,

among other things, a laser with broadband gaussian frequency noise and a spectral

width of about 465 Hz. However, initial diagnostics of the 674nm laser pointed to a

comparatively large spectral component at frequencies below 500 Hz as a dominant
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Figure 5-2: The contrast of Ramsey fringes also decays with a gaussian envelope.

noise source. The cases of band-limited noise that only exists at low frequencies vs.

broadband noise can be distinguished by spin echo experiments.

5.2.1 Recovery of phase coherence using spin echo

In this experiment, the Ramsey experiment begins with a 7r/2-pulse as usual, followed

by a period of free evolution with duration To; next, a 7r-pulse reverses the direction of

the atom's state evolution in the laser frame; after a variable time delay T, the second

Ramsey (7r/2) pulse measures the phase between laser and atom. Dephasing that is

constant over the time scale of the experiment is effectively cancelled by symmetry

when r = To [Hah50].

Figure 5-3 shows the results of several spin-echo measurements for a few values

of To0. The amplitude of the Ramsey fringes can be recovered to 94±2 % of its

original value when To = 0.5 ms, the length of approximately 100 7r-pulses on the

carrier transition. This recovered amplitude decays as a function of To, which is

plotted in figure 5-5. An inability to recover phases coherence indicates the time

scale has become sufficiently long that noise is no longer constant over the course

of the experiment. Based on these results the dominant noise appears to be slower

than 1 kHz - consistent with the estimated acoustic spectrum in the optical reference

cavity that directly measured in section 4.1.2.

In addition to pinpointing specific noise sources, we are interested in understanding
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Figure 5-5: Summary of 5S1/ 2 +-+ 4D5/2 coherence measurements.

the current limitations of our coherent control of the "8Sr+ ion. The Carr-Purcell

sequence [CP54] is employed to observe the decay of phase coherence that cannot

be recovered with spin echo pulses - this decoherence can be mostly attributed to

an irreversible loss of information to the surrounding environment. Informed by the

results shown in figure 5-3, 7r-pulses are spaced 1 ms apart at 0.5 ms, 1.5 ms, 2.5 ms,

3.5 ms, 4.5 ms, and 5.5 ms. The decay in the amplitudes of successive echoes reveals

that the coherence time T2 is at least 5ms. Figure 5-5 summarizes the measurements

of coherence times made with Ramsey spectroscopy.

5.3 BB1 composite pulses for amplitude errors

BB1 composite pulses, which are described in chapter 2, are widely used in NMR

systems to correct for errors in the pulse length T [Wim94]. Fluctuations in the

incident laser intensity, for example from fiber noise or unsteady alignment to the

atom, would affect 0 via Q in our system. The effect of an error which distorts all

rotations by 0 into rotations by 0[1 + e] is reduced to a distortion of 0[1 + O(E3 )] in

composite BB1 pulses. In this experiment, uniform pulse length errors are deliberately

introduced into the BB1 composite pulses designed to perform R(ir, 0) and R( , 0):

RBB1(Tr, 0) = R(r, 01)R(27r, 301)R(7r, 01)R(Tr, 0) 01 = 82.80 (5.2)

RBB1 (,0) = R(7r, 2)R(27r, 3¢ 2)R(2r,0 2)R(, 0) 02 = 75.50 (5.3)2 2
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..... ................. ...................

... .... . ..- ............ ...------ ---- ------------- --------- -- ----- ----- ----- ------ ----------- ----- -- -

--. ------ ----- ----- --------------------- S in g le sp in e c h o ......+-- -- ......
........... ... :....;... ............ e h .c,...veryim s ... .. ....-.-

rrrrr



BB1 corrected Pi/2 rotation
I VU

80

60

40

20

0
-0.5 0 0.5 1 1.5 2 2.5

Error (epsilon)

BB1 corrected Pi rotation
100

80

60

40

20

-1 -0.5 0 0.5 1 1.5 2
Error (epsilon)

Figure 5-6: Systematic laser amplitude errors and pulse length errors both distort the
rotation angle 0 to 0[1 + c]. BB1 composite pulses are more resistant to the effects of
such errors, as shown by the flat regions near 6 = 0 for both ir/2- (top) and 7-pulses
(bottom).



These composite pulses have a longer duration by 47r compared to their uncorrected

counterparts, a disadvantage that must often be carefully weighed against the benefits

of using composite pulses.

Figure 5-6 shows the result of scanning c for the BB1 composite pulses described

above. For a normal uncorrected pulse this action simply generates Rabi oscillations,

which are also plotted. The results of these measurements are modeled in Mathemat-

ica in the absence of noise, and then fit to two free parameters': the amplitude A

and the Rabi frequency Q. These fits had reduced X2 values of 15.2 and 6.7 for the

fits to 7r and 7r/2, respectively.

When c = 0, the florescence signal of the BB1-corrected 7r-pulse shows no im-

provement in amplitude over the uncorrected version. This result implies that slow

fluctuations in the laser's intensity are not a significant source of decoherence on the

timescale of these experiments. However, once more significant sources of error are

minimized, BB1 pulses could be useful in compensating for systematic pulse length

errors caused by an incorrect measurement of the Rabi frequency.

5.4 Summary

Frequency stabilization of the laser has increased the reliability of its coupling to the

atomic transition, allowing for coherent Rabi oscillations with an initial contrast of

98 ± 1% to persist for 17 cycles before the contrast decays to 80%. A measurement

of the relative laser-atom phase stability, also greatly improved, was consistent with

direct measurements of the magnitude and frequency of vibrational noise in the optical

cavity. The amplitude of Ramsey fringes decayed with a time constant of T2 = 342±6

pis. After a sequence of five spin echoes spaced 1 ms apart, the Ramsey fringes could

be refocused to about 80 % of their original value. Therefore, a conservative lower

bound for the coherence time T2 of the atom's internal state is 5 ms.

In their first published trial with a trapped-ion system, BB1 composite pulses

'A is modeled as a constant based on the data in figure 5-1, which shows that the amplitude of
Rabi oscillations decays on a time scale much longer than that of a single Rabi flop.



behaved in agreement with theory when systematic pulse length errors were deliber-

ately introduced. They did not otherwise improve fidelity. It can be concluded that

systematic laser amplitude noise is not a leading cause of decoherence.

The results in this chapter indicate a high degree of control over the "8 Sr+ optical

qubit. In the next chapter, we seek to learn how well this control can be extended to

the ion's quantum state of motion.





Chapter 6

Coherent manipulations of 88Sr+

In the previous chapter we saw that the SSSr+ ion's internal state can be controlled

with high fidelity, thanks to the laser stabilization system discussed in chapters 3 and

4. Is it possible to extend the use of these tools to a more complex quantum system?To

individually address multiple ions in a trap has been done before [SKHR+03], but

is beyond our current experimental capabilities. Chapter 2 showed how, by using

the ground and first excited states of motion, a single ion could act as a two-qubit

system. This chapter describes experimentally the coherent control of both qubits in

a SSSr+ ion, including the demonstration of a CNOT gate similar to one previously

implemented on 40Ca+ [RLCB+03]. It is, however, the first CNOT to be implemented

using a SSSr+ ion.

Section 6.1 demonstrates coherent driven Rabi oscillations on the blue sideband,

an important signature of quantum control over the motional state. Then, section 6.2

describes the measurement of two-qubit gates, which is used to measure single-pulse

rotations on the carrier and sideband transitions. In section 6.3, these pieces are

combined to measure a two-qubit gate.

6.1 Rabi oscillations: blue sideband transition

Laser light detuned to the blue sideband drives transitions in the ion's internal and

motional states simultaneously, which is the essential first step towards control over
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Figure 6-1: Blue sideband Rabi oscillations show coherent control of the ion's quantum
motion.

the ion as a two-qubit system. Experimental measurements of coherent driven oscil-

lations on this transition are plotted in figure 6-1 and they look quite promising. The

data is fit to

f(T) = 50 + Ae - (rT) 2/2 [sin 2 (QT/2) - 0.5] (6.1)

where T is the pulse duration. The oscillations begin with an initial contrast A =

95.3±0.7 and decay with a time constant of 1/F = 1.2±0.2 ms. The Rabi frequency

Q is 46.7±0.1 kHz, which means that a single 7r-pulse has a duration of 66.8±0.2 ps.

The possibilities for manipulating the ion's quantum state of motion are therefore

more strongly limited by coherence times than they are for the internal electronic

state, where the same operation takes only 3.80±0.01 ps.

6.2 Characterization of two-qubit gates

The high contrast of the blue sideband Rabi oscillations indicates a level of coherent

control sufficient to realize two-qubit gates on a "SSr+ ion. The other major require-

ment for building such a gate is a method of characterizing its operation, which in

turn requires methods for preparing input states and measuring the resulting ouputs.

State initialization to any of the computational basis states {ISO), IDO), IS1), ID1)}

is relatively straightforward. An experiment always begins with the ion initialized in

the ISO) state. A i7-pulse on the carrier or blue sideband brings the ion to the either

"'



IDO) or JD1) respectively. A second 7 pulse on the carrier can take the ion from IDl)

back down to IS1). The initialization of superposition states can be done in a similar

fashion.

Measuring the state of the ion after the gate is a much more difficult problem.

An ideal measurement would produce an operator that maps every possible input

density matrix to the corresponding output density matrix. Unfortunately, there is

no mechanism for directly observing the ion's quantum motion - it must instead be

mapped onto the electronic state using sideband pulses, which is not a process that

can be performed with high fidelity at this stage. Thanks to a clever sequence of

pulses devised by Labaziewicz, which I will not describe here [Lab08], it is at least

possible to observe the relative populations of the four states after a gate has been

performed.

By combining the state initialization and population measurement sequences sys-

tematically, one can find the probabilities of transitions between each pair of compu-

tational basis states. Arranged into rows and columns according to the states they

connect, these measurements form something like a probabilistic truth table. This

simplified form of tomography gives only a classical representation of a fundamentally

quantum process. Phase is completely neglected. However, it reveals the classical na-

ture of a gate as well as the means to calculate a rough estimate of its fidelity, which we

shall call classical fidelity. The classical fidelity between two probability distributions

{p,} and {q,} is defined by,

F(px, qz)= • .f (6.2)

6.2.1 Single-pulse rotations on the carrier transition

The tomography sequence is first tested with an identity (no laser pulse at all) oper-

ation as well as 7r and 7r/2 pulses on the carrier transition, because their behavior is

already well-understood from the previous chapter. The ideal truth tables for these
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three operations are,

1 0 0 0 0 1 0 0 .5 .5 0 0

0100 1000 1 0 .5.5 0 0
R(0, 0) : R(w, 0) : R(-, 0): (6.3)

0 0 1 0 0 0 01 2 0 0 .5 .5

0 0 0 1/ o 0 1 0 0 0 0 .5 .5

where the input states are ordered{ISO), IDO), IS1), ID1)} from left to right and the

output states follow the same order from top to bottom. The results are plotted in

figure 6-2. Each plot represents the average outcome of fifty consecutive identical

experiments.

The carrier pulses under test last a small fraction of the time that is required for

state initialization and readout sequences. This means that the results in figure 6-2

can be seen as a measure of the classical fidelity of state preparation and readout.

The classical fidelities of the identity, 7r, and 7r/2 gates are 0.981, 0.979, and 0.982 re-

spectively. Therefore, the classical fidelity of the measurement and state initialization

is 0.981±0.002.

6.2.2 Single-pulse rotations on the blue sideband

Having so far demonstrated coherent control of the motional state with the Rabi

oscillations in figure 6-1, and established a measurement procedure for two-qubit

operations, the next logical step is to try a simple operation that acts on both qubits.

Figure 6-3 shows the measurement of a ir-pulse on the blue sideband. The truth table

for this operation is,
0.0 x 1

R+(r, 0) : 0 (6.4)

1 0 x 0/

The third column is undefined because this pulse couples IS1) to ID2), which is

outside of the 2-qubit Hilbert space in which our computations operate. As described
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Figure 6-3: Truth table of a blue sideband 7r-pulse. Note that this operation drives

a transition from 101) to 112), which is outside of the computational subspace. As

with the previous similar measurements, this represents the average of 50 independent

trials.

in chapter 2, an important limitation of using the motional state as a qubit is that

only certain allowed angles of rotation preserve the computational subspace. For

the well-defined transition, the operation performs as expected. The ISO) --, ID1)

and ID1) - ISO) transitions are executed correctly and the IDO) is not coupled to

any other states as we expect. For these three transitions, the classical fidelity is

0.97±.002.

One important problem that is not conveyed by figure 6-3 is the systematic phase

shift caused by off-resonant AC Stark coupling to the carrier transition during side-

band pulses. As described in chapter 2, the offending shift qAC = 6AcT accumulates

linearly with the length T of the sideband pulse. By shifting the phases of subsequent

pulses by kAC in the opposite direction, the effects of the coupling can be partially

cancelled. Ramsey interferometry was used to measure /AC induced by sideband laser

pulses as a function of T, as described in [HGR+03]. From these measurements 6AC

was measured to be approximately 27r.7 kHz. Since 6 AC depends on experimental

conditions such as laser alignment, it must be remeasured at least every time the

cryostat is temperature cycled.



6.3 Implementation of a controlled-NOT gate

So far, we have seen coherent control of the ion's internal qubit and motional qubits,

as well as the demonstration of an accurate measurement procedure for characterizing

a gate. All of the necessary ingredients have been assembled for a CNOT gate. The

pulse sequence selected for this experiment is based on one that was previously used

by Schmidt-Kaler et al [SKHR+03] to build a CNOT gate between two 40 Ca+ ions,

and is explained in chapter 2.

UCNOT = R(,7 2~, + 2¢r,/•)R+(- 2' 2 + 2q, + r/jv)

x R+(r,, +, + 1 ),/)R+( 2 + 0)R+(r, 0)R(, 7r) (6.5)

The phases ~, and 0/,/- are added to compensate for systematic phase errors due

to off-resonant coupling to the carrier transition during sideband pulses. The values

of 14 and 0/,/2 were initially found using the calibration described in section 6.2.2,

which occurred immediately before the beginning of the CNOT experiments. We

were surprised to find that the fidelity of the CNOT operation appeared consistently

higher when the estimated strength 6 AC of the stark shift was multiplied by 1.3. The

CNOT gate that was measured with this optimized value of JAC is shown in figure

6-4. This figure represents the average of data from 20 consecutive, identical trials.

The classical fidelity of the operation is 0.89±0.02.

It is believed that an incomplete compensation for the effects of off-resonant cou-

pling was a significant source of decoherence in this measurement. Since the data was

gathered, a more sophisticated model for the AC Stark shift has been derived [Lab08]

that better explains the observed behavior, and may result in even higher fidelities

through improved pulse sequences in the future.
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6.4 Summary

This chapter described coherent control of the motional and internal states of a sin-

gle SSSr+ ion. Rabi oscillations on the blue sideband were observed with a period of

133.6±0.4 ps and an initial contrast of 95.3±0.7 percent, indicating that coherent con-

trol of the ion's motional state was possible. The characterization of two-qubit gates

is complicated by the fact that there is no direct way to observe the ion's motional

state. A simplified tomography scheme that measures the transition probabilities

between each of the computational basis states was tested on gates constructed from

single carrier and sideband pulses. A controlled-NOT gate was then demonstrated

with the atom's quantum motion acting as a control bit and the internal state as a

target bit. The classical fidelity of this operation was 0.89±0.02.



Chapter 7

Summary and Conclusions

In this thesis, I have described the frequency stabilization of a laser and its applica-

tion to coherent manipulation of a trapped "SSr+ ion. There were two main objectives

with these experiments, the first of which was to see how long and by which methods

the coherence time of the ion's internal qubit could be extended. In addition to eval-

uating the purity of the classical control signals carried by the new laser, we had the

opportunity to explore methods of recovering from decoherence that take advantage

the unique and counterintuitive properties of quantum information. The second goal

was to form a two-qubit system from a single ion by coherently controlling the ion's

quantum harmonic motion. Such manipulations place stronger requirements on the

phase coherence of the atom-laser system than do manipulations of the electronic

state. However, they allow immediate access to a richer quantum system and lay

some of the ground work for scalable control of multiple ions.

7.1 Laser frequency stabilization

The lifetime of the metastable 4D5/ 2 state is on the order of 1 second, which places a

very high upper bound on the theoretically acheivable coherence time of the optical

88Sr+ qubit. The corresponding sub-Hertz natural linewidth of the atomic transition

must be addressed by a laser of comparable spectral purity in order for us to begin

approaching this coherence time, however. The desire to perform quantum manipu-



lations with high fidelity therefore motivated the construction of a system to stabilize

the laser's frequency. A Pound-Drever-Hall scheme was used to lock the laser to the

resonant frequency of a high-finesse optical cavity with an accuracy on the order of

1Hz. The lock bandwidth allows frequency drifts that occur as quickly as 500 kHz to

be corrected.

In the end though, it is not the tightness of the lock that determines the laser's

frequency as much as the stability of the reference it is locked to. The resonant fre-

quency of the optical cavity is highly sensitive to the distance between its mirrors,

which are held apart by a ULE glass spacer. A contraction of this distance by even

one one-tenth of a Bohr radius shifts the frequency by more than ten kilohertz. Ther-

mal noise causes fluctuations of this magnitude that are mostly too slow to affect

experiments. Vibrations in the laboratory at frequencies below 300 Hz were found to

propagate to the reference cavity and affect the mirror spacing, introducing a spec-

tral broadening on the order of 500 Hz. This is believed to be a dominant source of

technical noise.

7.2 Coherence time of the optical qubit in 88Sr+

Despite the acoustic noise, the laser stabilization project was quite successful and we

find that the ion's internal electronic state can be manipulated by the laser with a

high degree of precision. Ramsey inteferometry indicates that phase coherence decays

with a time constant of 340±6ps. Because the laser's dominant spectral broadening

occurs on the slow timescale of acoustic noise, phase coherence can be maintained

by spin echoes for over 5ms. This is equivalent to 1000 full Rabi oscillations, ample

time for a large number of coherent operations. Future improvements to the acoustic

isolation of the optical reference cavity could substantially reduce our dependence on

spin echoes for achieving long coherence times.

We also experimented with the use of BB1 composite pulses, which display a

reduced sensitivity to systematic errors in the amplitude or duration of control pulses.

They are widely used in NMR experiments, but this is the first published use of BB1



on a trapped ion. BB1 composite pulses behaved in agreement with theory when

systematic pulse length errors were deliberately introduced. They did not otherwise

improve fidelity in our measurements. This implies that our apparatus does not suffer

from the types of systematic errors that BB1 pulses are designed to resist. Though it

makes for a less interesting demonstration, this comes as a relief to those who would

have had to build a lock loop to control the laser's power.

7.3 Manipulations of quantum harmonic motion

Encouraged by the success with coherent manipulations of the atom's internal state,

we found it was a natural next step to extend control to a more complex quantum

system. Coherent Rabi oscillations on the blue motional sideband of the qubit tran-

sition had an initial contrast above 96 percent, indicating a level of coherent control

sufficient for treating quantum motion as a second qubit. This level of control was

demonstrated more decisively with the implementation of a two-qubit CNOT gate on

a single trapped "8 Sr+ ion with a classical fidelity of 0.89±0.02.

Similar experiments traditionally use a second, carefully detuned laser beam to

correct for systematic phase shifts caused by off-resonant coupling during sideband

pulses. Our implementation instead attempted to compensate for these effects by

adjusting phases in the pulse sequences. It was later realized that several approxima-

tions made in calculating these shifts resulted in incomplete corrections that could

be a limiting factor in gate fidelity. In the future, more precise corrections should

allow for higher fidelities in all operations that involve control of the ion's motion,

including the CNOT gate.

7.4 Outlook

At this point, the basic building blocks have been assembled for more sophisticated

quantum control experiments. The laser stabilization project described in this thesis

has brought a high level of precision to our manipulation of quantum information



stored in trapped stronium ions. Measurement of the outcomes of these quantum

operations, however, is currently limited to classical probabilities; the implementation

of a more complex readout sequence that measures phase would access the fully

quantum nature of the system. Many of the most interesting applications of quantum

control also involve systems having more than two qubits, where uniquely quantum

effects such as entanglement come into play. The controlled-NOT gate demonstrated

in this thesis is an important step towards scaling our coherent operations to several

ions, because the coupling between internal states and collective motional modes can

be used as a form of communication. In the long term, the scaling to quantum control

of larger systems has important applications in a variety of scientific pursuits that

make use of quantum information techniques, such as the study of quantum-enhanced

measurements or even quantum computation.
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Appendix A

Apparatus for Trapping 88Sr+

The quantum systems explored in this thesis have been presented in a fairly abstract

manner. The purpose of this appendix is to provide some information on how these

systems are realized experimentally. Section A.1 describes how an ion trap confines

an ion in oscillating electric fields. Section A.2 gives an overview of the experimental

apparatus that hosts the ion trap, including the laser system.

A.1 Ion traps

Ions, by virtue of their electric charge, can be confined in electromagnetic potentials.

However, to simply create a static three-dimensional potential minimum in free space

using an electric or magnetic field alone is forbidden by the laws of classical electro-

dynamics. One way to circumvent this restriction is to confine ions in time-dependent

electric fields that create effective potential minima when averaged over longer time

scales. Such traps were developed first by Wolfgang Paul[Pau90, PS53]. Another al-

ternative is to use Penning traps, which combine electric and magnetic fields[JPD87].

All of the data in this thesis was gathered using microfabricated linear quadrupole

Paul traps[CLS+04], which closely approximate the potential of the four-rod trap

discussed below.

An ion trap can be created from four rod-shaped electrodes arranged in a square

pattern as shown in figure A-1. DC voltages on the endcaps of the rods confine the
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Figure A-1: Left: a cross-section of a four-rod Paul trap. Right: a side view of the

same trap, with endcaps shown. A DC bias on the endcaps confines the ion along the

axial direction z. Reproduced with permission from [Geo08].

ion in the axial z direction and RF voltages between diagonally opposite rods confine

the ion in the x - y plane.

When electrodes A and C are grounded and a voltage Vo is applied to electrodes

B and D, a saddlepoint potential forms in the x - y plane that is perpendicular to

the direction of the rods. This potential is approximately hyperbolic:

¢ d V0 1 - 2 (A.1)

Though the stationary saddlepoint is not a stable confining potential, oscillating

voltages on electrodes B and D can generate a time-dependent field that confines the

ion to the center of the x - y plane. To see how this works, imagine that just as

the ion moved down the saddlepoint potential to escape the trap, you quickly flipped

the sign of the voltage on electrodes B and D - the ion now finds itself at a higher

potential, and is drawn back to the center of the trap. A continuous rotation of the

saddlepoint about the z axis creates an effective potential such that the atom always

finds itself at a higher energy when it begins to escape the trap. In this case,

V0 cos(QTt) 1- . (A.2)
2 ro

A rigorous analysis of the motion of ions in Paul traps requires the solution of

the Mathieu equations[Gho95], which is beyond the scope of this thesis. These are

I---- II

I I



important for understanding which choices of field strengths, frequencies, and geo-

metric parameters allow for a stable trapping potential. Howevever, a discussion of

the secular approximation can still build useful intuition about the system. In the

limit that QT is much faster than the ion's motion, an effective harmonic potential

is created in the x - y plane. For clarity I will only describe the motion in the x

direction, since the solutions are essentially identical for y. The equation of motion

for an ion with charge Q is,

QV0i = - cos((rTt) (A.3)
mro

This motion has two components: a relatively slow oscillation in the effective

harmonic potential called secular motion (xsec), and a much faster jitter at the drive

frequency QT that is called micromotion (x,). The total motion is given by x =

xsec + x.. In the limits of the secular approximation, the micromotion has a much

smaller amplitude and much larger frequency than the secular motion.

xp < Xsec Xi > isec (A.4)

The motion in equation A.3 then reduces to

QVo
i, = m2 Cos(Tt)xsec (A.5)

and we can also find that

X QVo cos(R2Tt)xsec (A.6)mro2 T

Plugging these last two equations back into equation A.3, we have

sec = - cOS2 (~Tt)Xsec (A.7)

2sec V- 2 ee -- -Xsec (A.8)
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where we have assumed that the cos2(QT) is fast enough to average out to I on the

time scale of the slow secular motion in the harmonic potential, which has a frequency

of wJ,.

To summarize the linear quadrupole trap, ions are confined in the axial direction

by DC voltages on the endcaps. In the radial directions, the ions are more tightly

confined by the oscillating RF potential between the rods. The result is a cigar-shaped

effective confinement potential that can trap a long chain of ions. This potential is

approximately harmonic, with radial oscillator frequencies of Lw = y = 2mr 2 TQ

A.2 The ion trapping system

This section presents an overview of the experimental apparatus that is used to trap

ions. The goal of this system is to isolate an ion as well as possible from interactions

with its surrounding environment, while still allowing optical access for measurement

and interaction with lasers. I present only enough details here to understand the data

in chapters 5 and 6; the authoritative reference on this system's design and operation

is the PhD thesis of Labaziewicz[Lab08].

A.2.1 Cryogenic vacuum environment

Because collisions with background gas disrupt the trapping process, the chamber

containing the ion trap is held at a pressure better than 10-10 Torr. Such vacuum

levels are more easily achieved at cryogenic temperatures, where activated charcoal

getters can pump out residual gas and the suppression of outgassing allows for ma-

terials that are not typically considered vacuum-friendly. Interestingly, it has also

been found that decoherence of the ion's motional state is dramatically reduced at

low temperatures[LGA+08]. This effect appears to be related to fluctuations in the

electric field on the metal surface of the ion trap[LGL+08].

The trap is operated inside of a bath cryostat. It is fixed to a baseplate that is

held at 4K by a tank of liquid helium, as shown in figure A-2. A 77K thermal shield,

cooled by a tank of liquid nitrogen, surrounds the helium bath and trapping region.



Figure A-2: Left: a schematic of the cryostat. Right: a view of the inside of the

cryostat, looking from the bottom up. The trap is mounted to the square CPGA

socket in the center. Optical viewports for lasers are located at the left, right, and

bottom edges of the picture. At the top of the picture is the RF resonator (in the

copper cylinder) that drives the trap potential. Reproduced with permission from

[Lab08].
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Windows in the sides and bottom of the vacuum shield allow optical access to the

surface of the trap. The entire vacuum enclose is pumped with a turbo pump.

Due to the Zeeman effect, the energy splitting between the 4D5/ 2 and 5S1/ 2 qubit

states has a first-order sensitivity to fluctuations in magnetic field strength - this is

often an important source of decoherence. The magnetic field is first biased using

Helmholtz coils wound around the outside of the cyrostat. Superconducting niobium

rings are also placed above and below the ion trap. This geometry utilizes the ten-

dency of superconductors to resist changes in magnetic flux, and provides a high

degree of magnetic field stabilization.

Strontium ions are also produced inside of the cryostat. First, a resistive oven

ejects nuetral atoms from a piece of strontium metal. The nuetrals are then pho-

toionized in a two stage process by laser light at 460nm and 405nm. Once charged,

the ions can be trapped.

A.2.2 Optics and laser system

Light is our primary method of interacting with the ion. Lasers at six different

frequencies must be aligned to the trap through the cryostat's side windows in order

to produce, control, and observe an ion. A light collection system, used to detect the

ion's florescence signal, is located on the other side of a window in the bottom of the

cryostat.

Ion imaging and scatter detection

The 422nm light scattered by the ion's S-P transition is used both for state detection

and imaging of trapped ions. Scattered light is first collumnated with a 24mm aspheric

lens located near the trap. Outside of the cryostat, the light is passed through a

422nm notch filter and a 70/30 beamsplitter. The stronger beam is focused on a

photomultiplier tube, which uses the strength of the florescence signal to measure

the ion's quantum state in the shelving scheme that was described in section 2.4.1.

A CCD camera measures the weaker beam. Before trapping, this camera is used to



view the trap and simplify the alignment of lasers. While loading the trap, it is used

to measure the position and number of trapped ions.

Monolithic laser system

Four lasers are used to control the atomic transitions of SSSr+: 422nm for cooling

and readout, 1033nm and 1092nm for repumping, and 674nm to address the optical

qubit. The fact that all of these wavelengths can be generated by commercially

available semiconductor laser diodes was part of the reason that the SSSr+ ion was

chosen for our experiments. Laser diodes are reliable, compact, and often cheap.

However, with a typical linewidth of 1MHz they do not possess the level of spectral

purity that is required for coherent control.

A monolithic laser system built around these laser diodes narrows the output

linewidth to 10kHz[LRB+07], shown in figure A-3. Each diode is installed in an

Extended Cavity Diode Laser configuration, with an external medium-finesse filter

cavity used to remove background florescence and stabilize the laser frequency. The

diode, ECDL, and cavity are mounted on a temperature-stabilized aluminum base-

plate inside of an evacuated box. Each of these laser systems is referred to as a

monolaser.

The monolithic 674nm qubit laser is able to cool the ion to the ground state

of its motion and drive coherent Rabi oscillations on the 4D5/ 2 +-+ 5S1/2 transition.

However, further stabilization is required before more advanced quantum control is

possible. The theory and design of a secondary frequency stabilization system, which

uses a high-finesse optical cavity as a reference, is presented in chapter 3.
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Figure A-3: A schematic of a monolithic laser setup, with a superimposed laser beam.
Reproduced with permission from [LRB+07]. A digital feedback system controls the
phase and piezo gratings based on the signal at the photodiode in the external filter
cavity.
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