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Abstract

Engineering cellular solids, such as honeycombs and foams, are widely used in
applications ranging from thermal insulation to energy absorption. Natural
cellular materials, such as wood, have been used in structures for millennia.
However, despite their extensive use, a comprehensive understanding of the
dynamic interaction between the interstitial fluid in the cells of the foam and the
foam itself has yet to be developed. In this thesis, we explore the dynamic,
compressive response of low-density, reticulated, elastomeric foam impregnated
with Newtonian and non-Newtonian fluids. To develop tractable analytical
models for this complex, non-linear phenomenon, a study is first undertaken on
the permeability of foam under deformation. Using these results, a model is
developed for the dynamic, uniaxial compressive response of low-density,
reticulated, elastomeric foam filled with a viscous Newtonian fluid. This
comprehensive model is found to be well approximated by a simpler model,
based on the lubrication approximation. Furthermore, in the lubrication limit, a
model for the dynamic, uniaxial compressive response of foam filled with a non-
Newtonian fluid is also developed. All of the models presented in this thesis are
supported by extensive experimental studies. The experiments also suggest that
these models are applicable over a wide-range of parameters, such as strain,
strain rate, and pore size. Finally, these models are used in two case studies to
assess the feasibility of composite structures containing a layer of liquid-filled
foam in dynamic loading applications. The first case study focuses on
applications in energy absorption with the experimental design of a motorcycle
helmet. The second case study focuses on applications in mitigating the effects
of blast waves with a parametric study of the design of a blast wall. These
studies provide insight into the usefulness of the models and demonstrate that
composite structures with a layer of liquid-filled foam have enormous potential
in a wide range of dynamic loading applications.
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Nomenclature

C, C1  Empirical constants associated with the dynamic response of fluid-filled foam

d Average cell diameter of porous media

D The distance between an explosive and the target in meters

E* Effective foam modulus

Es Modulus of material from which foam is made

h Height of cylindrical foam specimen in axial compression direction

4 The rate of change of the height of a cylindrical foam specimen

Jo Zero order Bessel function of the first kind

k Intrinsic permeability of porous media

ke,' Intrinsic permeability of open-cell foam at the elastic buckling strain

kd Intrinsic permeability of open-cell foam at the densified strain

m Consistency index for power-law fluid

n Power-law exponent for power-law fluid

P Local pressure in fluid

Pro Maximum reflected overpressure caused by an explosive blast on a plate

R Radius of foam specimen

V Local velocity vector of fluid

W Weight of an explosive in kg

z Scaled blast distance parameter

Xel Volume fraction of cells in at the elastic buckling strain

Xd Volume fraction of cells at the densified strain

r Strain taken to be positive in compression

i Strain rate of foam specimen in axial compression

Ee* Elastic buckling strain

Ed Densified strain

CD Fully densified strain

Volume fraction of particles in non-Newtonian dispersion

SShear rate of fluid

S Strain rate tensor of fluid

r7 Dynamic viscosity of non-Newtonian fluid

/ Dynamic viscosity of Newtonian fluid

v Poisson's ratio



p Density of fluid

po' Initial density of foam at 0% strain

ps Density of solid from which foam is made

po'/ps Relative density of foam

Go Average uniform stress response of dry foam under axial compression

oel* Average uniform elastic buckling stress response of dry foam under axial compression

of Average uniform stress contribution of fluid in dynamically compressed fluid-filled foam

r Stress tensor of fluid



1 Introduction

"If I have seen further it is by standing on the shoulders of giants."

Sir Isaac Newton (1676)

Throughout history, cellular materials have been utilized in engineering design

(Gibson and Ashby, 1997). From the Egyptians to the Greeks to the Romans,

nearly every civilization has utilized cellular materials for their strength to

weight ratio and their ability to sustain large elastic deformation. Today, one of

the most common types of cellular materials found in engineering structures is

foam. Fig. 1.1 shows a sample of low-density, open-cell (reticulated)

polyurethane foam, used throughout this thesis. Foam can be manufactured

from nearly any material over a wide range of microstructural configurations.

This versatility has resulted in the widespread use of foams in applications

ranging from energy absorption to thermal insulation to chemical filtration.

The mechanical behavior of foam has drawn the greatest interest in research,

which has resulted in an extensive body of comprehensive literature (Wendlle,

1976; Hilyard, 1982; Suh and Webb, 1985; Hilyard and Collier, 1987; Hilyard and

Cunningham, 1994; Weaire and Fortes, 1994; Gibson and Ashby, 1997). One of

the unique characteristics of the microstructural behavior of foam under

compression is that the stress response is relatively constant over a large range of

strain. This characteristic behavior is particularly useful in energy absorption

applications. First, the ability to undergo large deformations gives foam the

capacity to absorb a substantial amount of energy. Second, the relatively

constant stress under deformation ensures the underlying body is not exposed to

excessively high loads or accelerations. Numerous studies have explored



applications of foam to energy absorption in vehicles (Fuganti et al., 2000; Chen,

2001), helmets (Shuaeib et al., 2007), and protective equipment (Hager et al.,

2001). But this characteristic behavior of foam may also be useful in engineering

structures which require a time-delayed response, such as in the case of a

structure exposed to a blast wave. Recently, one of the most promising structural

designs for blast protection has proven to be sandwich panels, consisting of a

low-density, rigid, cellular-core sandwiched between two parallel plates (Fig.

1.2). Numerous analytical and computational studies on the expected

performance of various types of sandwich panels under a range of blast loads

have been conducted (Xue and Hutchinson, 2003; Fleck and Deshpande, 2004;

Xue and Hutchinson, 2004; Qiu, Deshpande, and Fleck, 2005; Hutchinson and

Xue, 2005). The advantage of this type of composite structure under blast

loading was first recognized by Taylor (1963) and explained in detail by

Kambouchev, Noels, and Radovitzky (2005); The fundamental concept is that the

motion of the structure, due to the deformation of core, relieves the pressure

acting on it, reducing the transmitted impulse.

While foam has shown theoretical potential in a variety of energy absorption and

blast protection designs, there are a number of practical scenarios where the

thickness of the foam, the weight of the foam, or the rigidity of the foam limits

the implementation of a sandwich structure with a standard, rigid foam layer. In

these scenarios, we propose the use of a layer of low-density, flexible, reticulated

(open-cell) foam, impregnated with a high viscosity Newtonian or non-

Newtonian liquid (after Bettin, 2005b). A standard foam is impregnated with air

(an extremely low viscosity fluid), which adds a negligible contribution to the

response of an open-cell foam (Gibson and Ashby, 1997). However, in the

proposed liquid-filled foam design, the viscous contribution of the liquid to the
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dynamic response of the structure can be significant. This liquid-filled foam

design also allows for more controllable energy dissipation, by means of viscous

flow, over a much smaller compressive deformation. Therefore, a thinner, often

lighter-weight design can be used to efficiently absorb energy from an impact or

mitigate the effect of a blast wave. This liquid-filled structure also has a number

of additional potential advantages over a standard design. One of the primary

advantages is that liquid-filled, elastic foams are inherently highly reversible

under deformation. Even under large deformations, the microstructural damage

to elastic, open-cell foam is minimal (Shen et al., 2000). Therefore, the ability of

the foam to contain the fluid should not be dramatically affected. In addition, for

the case of a non-Newtonian, shear thickening liquid, the shear thickening

process is largely reversible, allowing for the fluid to behave consistently under

repeated loading (Bender and Wagner, 1996). Standard, inelastic foams,

however, dissipate energy through permanent plastic deformation, making them

inherently irreversible. Therefore, liquid-filled structures are more capable of

efficiently protecting against repeated loading. Furthermore, the liquid-filled

composite structure is passive, giving them a tremendous advantage over active

systems. These benefits are often realized when technologies are introduced into

the field and exposed to adverse operating conditions. Finally, the adaptable and

formable nature of liquid-filled, elastic foams makes them highly versatile. Their

versatility gives them potential in a variety of commercial applications from

impact protection equipment (helmets, pads, vehicles, etc.) to military blast

protection equipment (personnel, vehicles, infrastructure, etc.).

There is always a need to improve the efficiency of commercial protective

equipment, particularly for protecting the head. The Center for Disease Control

estimates there are roughly 1.5 million traumatic brain injuries (TBI's) in the U.S.

25



each year from transportation accidents and sporting related injuries (Sosin,

Sniezek, and Thurman, 1996). Over 50,000 of these brain injuries result in

fatalities (Sosin, Sniezek, and Waxweiler, 1995). The total cost to the U.S.

economy for TBI's was estimated to be $37.8 Billion for 1985 (Max, Mackenzie,

and Rice, 1991). To combat this epidemic, the government has invested

substantial funds for research and development of protective equipment for

vehicles, giving $86 million to crash worthiness testing in 2007 (DOT, 2007).

While a significant amount of research on impact protection of vehicles is being

undertaken, there is still a substantial need for research in the field of personal

protective equipment, such as in the field of motorcycle helmets. For instance, in

1999, 2,470 motorcyclists were killed and more than 50,000 were injured in traffic

accidents in the United States (NHTSA, 1999). The NHTSA found that brain

injury is the primary cause of death in motorcycle accidents and that motorcycle

helmets are 67% effective in preventing brain injuries (NHTSA, 1996a); however,

many motorcyclists avoid wearing helmets because of their excessive size and

weight. In 1996, 51% of the motorcyclists between the ages of 15 and 20 who

were fatally injured in accidents were not wearing helmets (NHTSA, 1996b).

Improving the weight efficiency of motorcycle helmets by incorporating a thin,

composite layer of liquid-filled foam may increase the utilization of helmets and

dramatically reduce the number of motorcycle fatalities.

While development of protective equipment for energy absorption applications

has been ongoing for decades, development of protective equipment designed to

mitigate the effects of blast waves has only recently received attention (Gama et

al., 2001; Fedorenko et al., 2004; Talaslidis et al., 2004; and Liang et al., 2005). The

reason for the increased interest in this field is due to the fact that terrorist

bombings have increased dramatically in recent years, becoming one of the most
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prominent threats worldwide. According to the U.S. Department of State the

frequency of terrorist bombings increased by 30% from 2005 to 2006 with over

19,500 facilities bombed or targeted worldwide in 2006 (U.S. Dept. of State, 2006).

The results of these attacks have been devastating with a corresponding increase

in fatalities of 39%. The resulting fatalities from terrorist bombings constituted a

majority of the total terrorist related fatalities in both 2005 and 2006 (14,618 and

20,498, respectively). Currently, much of the research in the field of blast

protection is focused on protection of infrastructure utilizing specially designed

barriers or blast walls (Boh et al., 2004; Louca et al., 2004; and Davidson, 2005).

However, the threat of terrorist attacks with improvised explosive devices

(IED's) is not only to infrastructure, but also to military personnel. While a

number of researchers have explored the design of stand-off, blast walls, very

little research has been done on the development of an inexpensive, lightweight

armor, which can effectively protect personnel, vehicles, and structures from a

blast wave. A recent study of injuries sustained by marines in Iraq, conducted

from March through August of 2004, found that 97% of injuries were caused by

IED's or mines (Gondusky, 2005). Of these injuries, primary blast injuries,

caused entirely by pressure waves, were found to be of greatest concern; these

primary blast injuries constituted 33% of injuries indoors and 12% of injuries

outdoors (Gondusky, 2005). Fortunately, armor with an integrated layer of

liquid-filled foam has the potential to effectively protect against primary blast

injuries. By delaying the propagation of the impinging stress wave, the novel

armor reduces the peak stress transmitted to the underlying body, and thus,

reduces the pressure gradient across critical organs. Preventing these primary

blast injuries is crucial since they can be severe, consisting of damage to the

lungs, the brain (traumatic brain injury), the central nervous system, the
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tympanic membrane, and the intestinal tract (DePalma, 2005; Coppel, 1976;

Leibovici, 1999; and Trudeau, 1998). The most immediately life-threatening

primary blast injury is typically associated with barotrauma of air-filled organs,

such as the lungs, (Mellor et al., 1989 and Haberstroh, 2004) where large pressure

gradients across the alveolar-capillary interface can lead to microscopic

hemorrhaging and sudden fatality.

Unfortunately, with the increasingly tumultuous political atmosphere and the

increasing availability of high power explosives, attacks on personnel, vehicles,

and structures are on the rise. Fig. 1.3 shows the dramatic increase in the

number of fatalities of U.S. soldiers in Iraq over the past four years caused by

improvised explosive devices. The effectiveness of these terrorist attacks has the

potential to encourage further incidences in the future. Therefore, the need to

develop a lightweight, inexpensive, blast-resistant armor for personnel, vehicles,

and structures only promises to grow.

While existing technologies do very little to resist against multiple impacts in a

motorcycle accident or mitigate the effects of primary blast injury caused by an

explosive, composite structures, with a layer of liquid-filled foam, demonstrate

the potential to protect against these scenarios in a weight-, size-, and cost-

efficient manner. However, developing an optimal design for such a structure

requires a comprehensive understanding of the dynamic behavior of the liquid-

filled foam. Although the mechanical response of open-cell foam under

compression is well understood (Gent and Thomas, 1959; Gent and Thomas,

1963; Wendlle, 1976; Hilyard, 1982; Suh and Webb, 1985; Hilyard and Collier,

1987; Hilyard and Cunningham, 1994; Weaire and Fortes, 1994; Gibson and

Ashby, 1998), developing a detailed understanding of the dynamic interaction
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between the interstitial fluid in the cells of the foam and the foam itself in

compression is still on the frontier of research. Outside of a brief computational

and experimental analysis by Hilyard (1971), who developed a third order, non-

linear equation of motion, nearly all exploration of the dynamic response of

liquid-filled foams has been entirely computational (Rehkopf, McNeice, and

Brodland, 1996; Mills and Lyn, 2002; and Schraad and Harlow, 2006).

This thesis explores the dynamic, compressive response of fluid-filled foam and

its applications. In addition, it delves into methods for using the models, which

describe the response of this structure, in practical engineering design. In

Chapter 2, an extensive literature review is provided on the mechanical behavior

of foams as well as the on the interaction of foams with fluids. Moreover, a brief

review of non-Newtonian fluids (NNF) is presented along with a discussion of

shear thickening fluids (STF) and their properties. Finally, a discussion of

applications of liquid-filled foams to energy absorption and blast wave

protection is given in conjunction with a detailed review of the motivation for

technological improvements in these fields. In Chapter 3, a model for the

microstructural behavior of low-density, open-cell foam under compressive

strain is proposed. Using this model, a tractable relationship between the

permeability and the applied compressive strain of open-cell foam filled with a

Newtonian liquid is developed. Experimental studies are found to strongly

support the resulting deformation behavior model and permeability model for a

wide range of parameters. Based on the permeability model, in Chapter 4, a

model is developed for the complete dynamic response of a cylindrical specimen

of low-density, reticulated, elastomeric foam impregnated with a viscous

Newtonian fluid under axial compression. This model is compared with

experimental results and found to describe the data well for a large range fluid
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properties and foam properties. In addition, this comprehensive model is found

to converge rapidly toward a simpler lubrication model; where a lubrication

model assumes that the characteristic dimension in the radial direction is much

greater than that in the axial direction. In Chapter 5, a robust lubrication model

for the dynamic compressive response of a non-Newtonian-fluid-filled (NNF-

filled) foam is presented. Similar to its Newtonian counterpart, the NNF-filled

foam model, developed for high rate loading of highly shear thickening fluids

impregnated in open-cell foam, is also tested and supported experimentally. In

Chapter 6, the previous models are used qualitatively in an experimental design

processes, exploring the development of motorcycle helmets comprised of

composite structures with a composite layer of liquid-filled foam. In particular, a

motorcycle helmet design is sought, which reduces the weight and increases the

protection to multiple impacts over existing standard designs. Chapter 7 utilizes

the models developed in this thesis in a numerical study of blast protection

technologies. An in depth parametric study is performed on a composite blast

wall containing a layer of liquid-filled foam. This blast protection technology

demonstrates the potential to outperform existing state-of-the-art technologies

and dramatically reduce the peak loading on a structure exposed to a blast wave.

Finally, conclusions based on the results of this thesis are summarized in Chapter

8 in along with recommendations for potential extensions of the work presented

in this dissertation.
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Figure 1.1: Open-cell polyurethane foam (70 pores per inch).

A) Optical micrograph; B) Scanning electron micrograph.
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Figure 1.2: Sandwich panel design for blast protection.

A) Actual sample; B) Theoretical schematic.
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Figure 1.3: Fatalities of U.S. soldiers in Iraq caused by improvised explosive
devices. Information supplied by U.S. Department of Defense (2007).





2 Literature Review

2.1 Mechanical Properties of Foam

Although there are many types of cellular materials, foam is one of the most

ubiquitous cellular materials in engineering. Because of its widespread use,

there is an extensive literature on foams examining everything from their

microstructure to their mechanical properties to their response under various

loading scenarios. In general, foams have three-dimensional polyhedral cells

that can be either closed-cell or open-cell (Gibson and Ashby, 1997). Fig. 2.1

shows micrographs of both closed- and open-cell foam. Closed-cell foams, as the

name describes, have cells that are completely isolated from their neighbors by

cell faces, such that no fluid can pass from one cell to another. Open-cell

(reticulated) foam is comprised entirely of cell struts (edges), which readily

allows for the passage of fluid between cells. Because the interconnected

network of cells allows open-cell foams to be impregnated with liquid, open-cell

foams are utilized throughout this dissertation.

The properties of open-cell foam are related to its structure, its density, and the

material from which the foam is made. The microstructure of the foam governs

the initial relative density of the foam p/jps, where p* is the initial density of the

foam at zero strain, and A is the density of the solid from which the foam is

made (Gibson and Ashby, 1997). At any given strain E, the current relative

density of the foam is given by p/•. Another critical property related to the

microstructure and relative density of the foam is the pore size, characterized by

the grade of the foam, which is often measured by the number of pores per linear

inch (ppi). In this thesis, we are concerned with foams which can be readily

impregnated with high viscosity fluids; therefore, we primarily consider low-



density, open-cell, elastomeric foams, with relative densities on the order of p,/lps

= 0.03, and foam grades ranging from 70 to 90 ppi.

2.1.1 Quasi-Static Compressive Response of Open-Cell Foam

The quasi-static, compressive response of open-cell foam has been studied

extensively. Numerous authors provide in-depth reviews (Wendle, 1976;

Hilyard, 1982; Suh and Webb, 1985; Hilyard and Collier, 1987; Hilyard and

Cunningham, 1994; Weaire and Fortes, 1994; Gibson and Ashby, 1997). The

unique deformation response of open-cell foam under compression has received

a great deal of attention (Bart-Smith, et al., 1997; Gibson and Ashby, 1997; Wang

and Cuitino, 2002; Gong and Kyriakides, 2004). For elastic, open-cell foam under

compression it has been observed that cells behave linear-elastically up to the

elastic buckling strain ai, at which point layers of cells buckle and collapse,

generating local densified bands of large deformation in which the average

diameter of the cells is reduced substantially as shown in Fig. 2.2 (Bart-Smith et

al., 1997; Gong and Kyriakides, 2004). A detailed discussion of this banding

phenomenon, which is widely seen in open-cell polymeric foams, is given by

Gioia et al. (2000). As the initial collapse band forms, the rest of the specimen

remains in the linear elastic regime, at a strain close to the elastic buckling strain,

a&i . As the overall strain increases, cells adjacent to the collapsed band also

collapse, so that the length of the densified band increases while that of the

remainder of the foam in the linear elastic regime decreases (Fig. 2.3).

The compressive stress-strain response of open-cell foam is a direct result of this

unique microstructural deformation behavior. The kinematics of deformation

lead to the well known quasi-static, stress-strain response of open-cell foam

under compression as shown in Fig. 2.4. The stress-strain behavior in Fig. 2.4 is



classified into three distinct regimes (i.e. linear-elastic, plateau, and densified

regimes). The elastic buckling strain occurs at the point in which the stress

response leaves the linear elastic regime and enters the "plateau-like" response.

The characteristic "plateau-like" response is caused by the near constant stress

required to initiate buckling and then collapse a layer of cells, resulting in

propagation of the densified regime. Early attempts were made to describe the

compressive stress-strain response of open-cell foams both through

micromechanics perspectives (Gent and Thomas, 1959; Gent and Thomas, 1963)

and through phenomenological based methods (Rusch, 1969). Since this early

effort, phenomenological models have appeared sparsely (Massimiliano et al.,

2007) along with some finite element models (Everett et al., 1998), primarily

developed for numerical simulation. However, the continued development of

micromechanics models has provided great insight into the compressive

response of open-cell foam (Dementev and Tarakanov, 1970; Warren and

Kraynik, 1988; Warren and Kraynik, 1997; Zhu et al., 1997; Michalska et al., 2003;

Gong et al., 2004).

Much of the micromechanics modeling has been based on the Kelvin foam model

of a cell. According to Gibson and Ashby (1997), Lord Kelvin showed in 1887

that space could be partitioned into identical tetrakaidecahedral cells of equal

volume and minimal surface area. This tetrakaidecahedral or Kelvin foam model

consists of repeating Kelvin cells, comprised of six quadrilateral surfaces and

eight non-planar hexagonal surfaces. Although the tetrakaidecahedral unit (with

planar faces, sometimes called the Kelvin cell) model of foam has been nearly

universally adopted in micromechanics models for quite some time, the

complexity of micromechanics models has continued to increase with time. Gent

and Thomas (1959) and Lederman (1971) began with models based on simple

stretching of cell walls. Gibson and Ashby (1997) identified bending as the

primary mode of deformation in low density foams in the linear elastic regime



and used dimensional arguments to deduce the moduli. They also analyzed

elastic buckling of the cell edges in open cell foams to obtain an equation for the

plateau stress. More recently, Warren and Kraynik (1988) and Zhu et al. (1997)

have developed more comprehensive models incorporating stretching, bending,

and twisting of cell walls. However, the complexity of the more comprehensive

models prevents the analysis of more than a few cells, nearly prohibited their

widespread adoption. Gibson and Ashby's (1997) model for the compressive

stress-strain response of reticulated foam has become the standard

micromechanics model because of its tractable nature. They relate the effective

modulus of the foam E*, and the elastic buckling stress o*, to the modulus of

solid from which the foam Es, and the relative density of the foam p/ps by:

E =E,(p'/lp,) (2.a)

' = CE, (p'/p,)2 (2.1b)

where C is a constant, typically 0.05. They also developed relations governing

the quasi-static stress response of the foam where the average, uniform stress

response or the axial compressive force divided by the cross-sectional area of the

foam is taken to be a*. As previously discussed, under axial compression cells

begin to buckle and collapse at the elastic buckling strain. The corresponding

stress at the elastic buckling strain is the elastic buckling stress o*, which is a

critical parameter in the study of open-cell foams. The primary relations

governing the compressive response of foams are given by (Gibson and Ashby,

1997):

r* = EE* 0 < E < ~6, (2.2)



*' = o e < E < - + 1i e (2.3)D D

c6 = E>6D +6el (2.4)

where E is the strain, taken to be positive in compression and given by the

compression deformation of the foam over the initial height of the foam, &i* is the

elastic buckling strain, and g and D are constants associated with the

microstructure of the foam. For polyurethane foams, Gibson and Ashby (1997)

give the constant g as unity. The fully densified strain ED, is the strain at which

point the cells have collapsed sufficiently that opposing cell walls touch; further

deformation beyond this strain compresses the cell wall material itself. The fully

densified strain is given by

ED = 1-1.4P . (2.5)

The constant D is given by

D = (2.6)
ED - p

where the strain p*•, corresponds to the strain at which the stress at the end of the

plateau region begins to exceed the elastic buckling stress. It is important to

note, the model presented by Gibson and Ashby, like all of the continuum

models discussed, assumes cells are isotropic, neglecting the inherent anisotropy



associated with the manufacturing of actual open-cell foam. Despite this

assumption, this model has demonstrated the ability to accurately represent the

response of open-cell foam, and therefore, has gained wide-spread acceptance.

2.1.2 Dynamic Compressive Response of Open-Cell Foam

Similar to the models for the quasi-static response of foam, models for the

dynamic response of open-cell foam under compression are prolific. It is well

known at high strain rates, inertial effects contribute to the dynamic compressive

response of open-cell foam (Gibson and Ashby, 1997). Gibson and Ashby (1997)

attribute large contributions in this field to a select group of authors consisting of

Reid, Stronge, and Wierzbicki. Gibson and Ashby (1997) have provided a

succinct summary of the primary results of their publications, pertinent to the

field of inertial effects in dynamic compression of foam (Abramowicz and

Wierzbicki, 1988; Shim, Yap, and Stronge, 1992; Reid, Reddy, and Peng, 1993).

The contribution to the enhanced strength under dynamic crushing is attributed

to three dynamic factors: localization, micro-inertia, and densification (Gibson

and Ashby, 1997). Localization is the concentration of deformation, at a given

instant, into a thin layer, resulting in strain rates which are much larger than the

apparent nominal strain rate. Localization is particularly important when

considering the micro-inertia of the cell walls, which is associated with rotation

and lateral motion of cell walls when they buckle. This suppresses the more

compliant buckling modes, increasing the crushing strength, and diffuses the

crushing wavefront. Diffusion of the wavefront leads to densification, which

causes the stress to increase dramatically due to contact of the cell walls with one

another. The combination of these three effects leads to the rate dependence

found in the dynamic compression of open-cell foams.



Various models have been proposed to characterize these phenomena, such as

the phenomenological models developed by Zhao and Gary (2002). More

recently broad experimental studies have shown promise to aid in the

development of models (Lee, et al., 2006; Yu, Li, and Hu, 2006). While inertial

effects can be important, the most significant contribution to the enhanced

dynamic response of foam under compression is often that from the viscous and

inertial effects of fluid flow through the foam. However, the complexity of

modeling the contribution of fluid flow to the dynamic response of porous media

has resulted in this subject becoming one of the most challenging areas of

research in the field of cellular solids, and in particular, in the field of open-cell

foam. In essence, the topic of this thesis is the viscous flow contribution to the

dynamic response of fluid-filled foam. Prior to exploring the literature on this

subject in Section 2.3, it is first important to consider the types of fluids which

could be impregnated in open-cell foam and their properties.

2.2 The Properties of Newtonian and Non-Newtonian Fluids

The most common fluid found in open-cell foam is air. Because air has a small

density and an extremely low viscosity, the contribution of air to the dynamic

response of low-density, open-cell foam is often negligible. However, the

contribution of some liquids can be much more substantial. There are two types

of liquids which are considered for impregnation into an open-cell foam:

Newtonian and non-Newtonian. Although the focus of this thesis is on liquids,

we will not limit our discussion to merely liquids, but we will also discuss fluids

in general. The properties of Newtonian fluids are well-known. The definition

of a Newtonian fluid is a fluid where the shear stress exerted by the fluid is

linearly proportional to the velocity gradient perpendicular to the direction of

shear (shear rate), where p is the constant of proportionality or the Newtonian

dynamic viscosity (White, 1999). The behavior of a non-Newtonian fluid,



however, is much more complex. A thorough review of the vast field of non-

Newtonian fluid dynamics is given by Bird et al. (1987). Although there are

many types of non-Newtonian fluids, in this thesis, we only consider the

"generalized Newtonian fluid". The "generalized Newtonian fluid" captures

one of the most important characteristics of a non-Newtonian fluid, in that the

viscosity t, can be dependent upon the shear rate. However, it cannot describe

normal stress effects or time-dependent, elastic effects, which often occur with

this unique class of fluids (Bird et al., 1987). In general, the stress tensor r, can

be written in terms of the viscosity 1, and the rate of strain tensor >, in the form

~= -r (2.7)

where q, is a function of the scalar invariants of f; (Bird et al., 1987).

It has long been observed in engineering that the viscosity of many non-

Newtonian fluids exhibits a unique relationship with respect to the strain rate of

the fluid (Bird et al., 1989). It is often found that there is a highly linear

correlation between the log of the viscosity and the log of the strain rate. This is

characteristic of a power-law model, which is one of the most fundamental

empirical models for "generalized Newtonian fluids". Power-law models have

been used extensively to describe the behavior of many non-Newtonian fluids

(Bird et al., 1987). The viscosity of a power-law fluid is given as

S= n(2.8)

where m is the consistency index, n is the power-law exponent, and ; is the

magnitude of the rate of strain tensor or the shear rate of the fluid. j is



calculated by taking the square root of one-half of the dot product of the rate of

strain tensor with itself. The power-law exponent n, which effectively describes

the slope of the line on a log-log plot, can be used to further characterize the

fluid. If n =1 and m = j, the power-law model reduces to a standard Newtonian

fluid. If n < 1, the fluid is called a pseudoplastic or shear thinning fluid, and if n

> 1, the fluid is called a shear thickening fluid. Since this model is tractable and

found to accurately describe a broad range of fluids, it has become one of the

most widespread empirical models used to describe the behavior of non-

Newtonian fluids.

2.2.1 The Behavior of Shear Thickening Fluids

In this thesis we consider a special type of non-Newtonian, field-activated fluid

commonly referred to as a shear thickening fluid. The behavior of these fluids

has been studied for over half of a century; by 1989, Barnes (1989) already

counted over 100 references on the subject of shear thickening fluids. Even more

recently, shear thickening fluids have received a great deal of attention for use in

novel applications because of their unique ability to transition from a low-

viscosity state to a high-viscosity state beyond a critical shear stress (Decker et

al., 2007). A sample of this shear thickening phenomenon is given for a 50%

volume fraction precipitated calcium carbonate (PCC)/Ethylene Glycol (EG)

mixture in Fig. 2.6. This transition is marked by a rapid and sometimes

discontinuous increase in viscosity with incremental increases in shear stress (or

shear rate) (Hoffman, 1974; Barnes 1989). The type of shear thickening fluid

which has received the most attention is generally comprised of concentrated

suspensions of nonaggregating particles disperse in a carrier fluid (Barnes et al.,

1989). This thickening behavior for particle dispersions is only known to occur at

high volume fractions where the density of the particles is such that their



separation is less than that of the particle diameter; and therefore, multiple-body

interactions and lubrication forces between the particles become important

(Stickel and Powell, 2005). Comprehensive reviews of the behavior of shear

thickening fluids are given by Barnes (1989), Hoffman (1982; 1998), Laun and

Bung (1991), and Stickel and Powel (2005).

Explanations for the mechanism for shear thickening have been proposed, but

the literature has not reached a consensus as to the exact mechanism. Numerous

studies have concluded shear thickening in colloidal suspensions is due to the

formation and jamming of clusters of particles ('hydroclusters') bound together

by hydrodynamic lubrication forces between particles (Boissis and Brady, 1989;

Farr et al., 1997; Foss and Brady, 2000; Catherall et al., 2000) as shown in Fig. 2.7.

This critical transition occurs when the hydrodynamic forces driving particles

together exceed the repulsive forces due to interparticle (i.e. electrostatic or

steric) potentials and Brownian motion (Maranzano and Wagner, 2001a).

Detailed reviews and quantitative descriptions of the mechanisms for shear

thickening of colloidal suspensions are given by Bender and Wagner (1996),

Maranzano and Wagner (2001a), and Maranzano and Wagner (2001b). Hoffman,

however, has proposed another mechanism for the shear thickening effect, the

'order-disorder' mechanism. He proposed that as a monodisperse suspension is

sheared, particles align in hexagonally packed layers parallel to the plane of

shear (Hoffman, 1972). After a critical stress is achieved, instabilities in the flow

begin to grow, inducing particles out of their ordered layers; these particles then

collide and jam into one another, resulting in a dramatic increase in the viscosity

of the fluid (Hoffman, 1972). His most recent work couples the 'order-disorder'

theory with the 'hydrocluster' theory in that once the particles have been driven



out of their ordered layers, they may form hydroclusters of particles both with

and without particle contact, which then jam into one another (Hoffman, 1998).

2.2.2 Effect of Composition of Shear Thickening Fluids

The behavior of a shear thickening fluid is strongly governed by the composition

of the fluid. Many studies have examined the effect of the properties of the

suspension on the rheological properties of shear thickening fluids. Some of the

properties that have been studied include the particle size, the particle shape, the

volume fraction of particles in the fluid, the polydispersity of particles, the

particle charge, the particle surface characteristics, the Brownian energy of the

particles, and the fluid viscosity (Hoffman, 1972; Bossis and Brady, 1989; Bender

and Wagner, 1996; Maranzano and Wagner, 2001a). Comprehensive reviews of

the effects of these parameters can be found in Laun et al. (1991), Barnes (1989),

and Stickel and Powell (2005). Barnes (1989) considered the following six

properties as the most important factors: the volume fraction of particles in the

fluid, the particle size, the polydispersity of particles, the particle shape, the

particle-particle interaction, and the fluid viscosity. Understanding the effects of

these properties is critical in that they allow a shear thickening fluid to be

designed according to desired specifications.

Barnes (1989) suggests the rheology of shear thickening fluids depends

substantially upon the volume fraction of particles in the dispersion '$. The

shear thickening effect has only been observed to occur at relatively high volume

fractions where the particles are within close enough proximity to one another

that interparticle forces can play a role. The exact volume fraction, which

induces the shear thickening effect, is based upon the properties of the particles

and the suspending fluid. The range of volume fractions of particles in

dispersions which have exhibited shear thickening characteristics is quite large,



varying from as low as 10% to greater than 60% (Clark, 1967; Hoffman, 1972;

Barnes, 1989; Egres et al., 2006). However, most recent studies utilize near hard

sphere dispersions, which tend to exhibit shear thickening beyond 40-50%

volume fraction at relatively low-strain rates (Bender and Wagner, 1996;

Maranzano and Wagner, 2001a; Gopalakrishnan and Zukoski, 2004). These

studies also reveal commonly known trends that as the volume fraction is

increased, for any given shear thickening fluid, the critical shear stress required

for shear thickening decreases, the overall viscosity increases, and the

corresponding magnitude of the viscosity jump increases as shown in Fig. 2.8 by

Egres et al., 2005.

The effect of the size of particles and the distribution of the sizes of particles on

shear thickening fluids has also been the subject of numerous investigations

(Wagstaff and Chaffey, 1977; Barnes, 1989; D'Haene and Mewis, 1994; Chow and

Zukoski, 1995; Hoffman, 1998; Maranzano and Wagner, 2001a; Egres and

Wagner, 2005). The primary effect of the size of the particles has been shown to

be on the transition value of the critical stress (Hoffman, 1972; and Barnes, 1989).

Models have been developed by Bender and Wagner (1996), which relate the

critical shear stress transition value to the characteristic particle size. In general,

for monodisperse spherical particles, the shear stress is expected to scale with the

characteristic radius of the particles to the third power for electrostatically

stabilized particles and to the second power for Brownian suspensions. The

distribution of the characteristic particle sizes also has an effect on the critical

shear stress. In general, it is well known that increasing the polydispersity

increases the critical shear stress transition value and decreases the overall shear

thickening effect (Wagstaff and Chaffey, 1977; Barnes, 1989; D'Haene and Mewis,

1994; Bender and Wagner, 1996).



In addition to the size of particles, the shape of the particles, the particle-particle

interactions, and the continuous phase viscosity also have a dramatic effect on

the behavior of a shear thickening fluid. As particles become more anisotropic,

both Barnes (1989) and Egres and Wagner (2005) found the shear thickening

effect occurs at much lower volume fractions and the magnitude of the critical

jump in viscosity increases. The interparticle interactions also govern the

magnitude of the increase in the viscosity. There are three types of suspensions:

Flocculated, neutral, and electrostatically charged particles (Barnes, 1989).

Flocculated suspensions do not exhibit shear thickening, but rather shear

thinning. Neutral particles (Brownian or hard spheres) exhibit shear thickening

and repulsive particles (electrostatically charged particles) demonstrate even

more dramatic shear thickening (Barnes, 1989). Barnes proposes an explanation

for this observation; as the distance between the particles increases, the effective

volume fraction increases, decreasing the critical shear stress. This phenomenon

can be more clearly envisioned by realizing increasing the distance between

particles is similar to increasing the effective diameter of each particle, which, as

previously discussed, results in a larger effective volume fraction. Finally, the

continuous phase viscosity also contributes significantly to the behavior of shear

thickening fluids. Barnes (1989) noted that for like dispersions, changing the

continuous phase viscosity by a factor changes the suspension viscosity by the

same factor.

2.2.3 Commonly Studied Shear Thickening Fluids

Knowing the effects and contributions of various characteristic properties of a

dispersion has allowed researchers to begin to focus on designing more tailored

fluids, which exhibit a behavior that may be advantageous in certain

applications. Recent literature has focused heavily on a specific type of colloidal

dispersion utilizing monodisperse, spherical nanoparticles (Bender and Wagner,



1996; Maranzano and Wagner, 2001a; Maranzano and Wagner, 2001b; Lee and

Wagner, 2003; Gopalakrishnan and Zukoski, 2004). In most of these studies, near

hard-sphere, silica nanoparticles with diameters on the order of 100 nm are

suspended in ethylene glycol or polyethylene glycol at volume fractions typically

ranging from 40% to 60%. There are a number of advantages to this type of fluid.

One of the primary reasons this particular shear thickening fluid has received a

great deal of attention is that it exhibits reversible shear thickening on very short

time scales (Bender and Wagner, 1996; Maranzano and Wagner, 2001a). It also

demonstrates dramatic shear thickening with jumps in the magnitude of the

viscosity of several orders of magnitude. Moreover, these fluids are practical,

being comprised of relatively inexpensive and nonhazardous materials. While

much of the attention in this field has been on silica based dispersions, more

recently other colloidal suspensions have also been the subject of numerous

investigations. Egres and Wagner (2005; 2006) have examined acircular-

precipitated calcium carbonate colloidal suspensions. This type of shear

thickening fluid is also practical economically, and it has shown potential to have

an even more dramatic shear thickening effect. In this thesis we examine the

potential for both of these types of shear thickening fluids.

2.2.4 Rheology of Non-Newtonian Fluids

Characterizing the behavior of shear thickening fluids is a complex and

challenging area of research. Although there have been some studies on the

complex viscosity under dynamic shear (Lee and Wagner, 2003) and on the

extensional flow properties (Bettin, 2005a), the majority of research has only

consider steady state shear behavior (Bender and Wagner; Maranzano and

Wagner, 2001). One of the greatest problems with performing any rheological

studies of highly shear thickening fluids is the problem of wall slip (Hu and



Larson, 2002; Yoshimura and Prud'Homme, 1988). Hu and Larson (2002) and

Yoshimura and Prud'Homme (1988) provide detailed discussions of slip and

methods for mitigating it. Slip between the fluid and the instrument occurs

because inhomogeneous fluid properties occur at the solid boundaries. A

reduced fluid viscosity is often observed at the boundary, creating a thin layer of

fluid having a large velocity gradient that can be treated as a slip layer

(Yoshimura and Prud'Homme, 1988). Bettin (2005a) found the effect of slip

could be completely eliminated for monodisperse suspensions by roughening the

surfaces to a roughness on the order of the characteristic size of the particles.

Roughening the surfaces of instrumentation is most readily done with the

parallel plate fixtures utilized for steady shear experimental configurations.

Thus, the ability to eliminate slip in steady state experiments has resulted in it

being one of the most widely used methods for characterizing the rheology of

shear thickening fluids.

2.3 Fluid Flow Through Porous Media

Flow through porous media has been studied for over a century, dating back to

Henry Darcy in 1856. Darcy (1856) published one of the most noteworthy

articles in this field on his study of water flow through sand. In this study, he

developed what is now known as Darcy's Law, which is a phenomenological

model relating the characteristic properties of the fluid to the characteristic

properties of the flow through a factor called the intrinsic permeability k, and

given as

AP = (2.9)
k



where P is the local pressure in the fluid and V is the local velocity vector of the

fluid. The permeability is a property of the porous media and is a measure of its

porosity and tortuosity or the effective resistance to flow. Although Darcy's

work is only applicable to low-Reynolds number flow, where viscous forces

dominate inertial forces, much of the field of flow through porous media has

been built upon his work. This is primarily because most flows encountered in

engineering have sufficiently low Reynolds numbers to be dominated by viscous

forces. Over time, modifications to Darcy's law have been made to account for

the translational flow between boundaries (Brinkman, 1947) and inertial effects

with the Forchheimer equation (Dupuit, 1857); however, the utilization of these

more complex equations in permeability studies has been limited.

2.3.1 Intrinsic Permeability of Porous Media

Understanding the intrinsic permeability of porous media is relevant to a vast

array of disciplines from chemical engineering to geophysics to fluid mechanics.

Because of its importance in many engineering disciplines, this topic has received

a great deal of attention over the past century. Even by 1975, a number of

extensive reviews had been published in the field (Bear, 1972; Dullien, 1975);

however, only recently have more advanced topics on the flow of non-

Newtonian fluids through porous media been explored.

A number of studies have been undertaken on non-Newtonian fluid flow

through porous media (Kawase and Ulbrecht, 1983; Comiti and Renaud, 1989;

Sahimi, 1993; Sabiri and Comiti, 1996; Shah and Yorsos, 1995; Seguin et al., 1996;

Comiti et al., 2002; Chen et al., 2005). All of these studies examine similar

capillary-type flow models, which directly follow from Darcy's law and are only

applicable in the viscous regime where inertial forces can be neglected. These

capillary-type models allow for the components of the permeability (porosity



and tortuosity) to be clearly distinguished and studied. Since both the models

and the experiments in these papers are designed for high viscosity fluids with

low Reynolds number flows through low porosity materials, such as packed

granular beds, Darcy's law is highly applicable. The treatment of these analyses

is further simplified with the use of power-law based descriptions of the non-

Newtonian fluid. Despite the relatively simple treatment, these studies

developed comprehensive models for both the mass transfer and the pressure

drop, which were shown to describe experimental results remarkably well (Sabiri

and Comiti, 1996; Seguin et al., 1996; Comiti et al., 2002).

For over a century one of the greatest challenges has been modeling the

transition from the creep regime, where Darcy's law is applicable, to the regime

where inertial effects become important. Various experimental studies found

characteristic Reynolds numbers marking the transition for open-cell foam (Gent

and Rusch, 1966), porous rock (Tek, 1957), and fixed beds of spheres and

cylinders (Dybbs and Edwards, 1984). More recently, significant advances have

been made by Seguin, who developed models for the case of flow rates

applicable to Darcy's law, which describe experimental data well (Seguin et al.,

1998a; Seguin et al., 1998b; Seguin et al., 2000).

In addition to developing a better understanding of the flow rates applicable to

Darcy's law, considerable advances have also been made in understanding what

types of porous materials Darcy's law can be applied to. Although Darcy's law

was developed for low porosity media, such as soils, it has also been shown to be

applicable to highly porous structures, such as low-density foams by Jones and

Fesman (1965) and Gent and Rusch (1966) who examined the flow of air through

open-cell foam and described relationships between the cell structure and the

permeability of the open-cell foam. Gent and Rusch (1966) also developed a

model for the deformation of open-cell foam under compression in the linear



elastic regime. Their hypothesis of the kinematic behavior of open-cell foam was

supported by permeability studies. Hilyard and Collier (1987) later extended

their work, developing and testing a theoretical capillary-based model for

predicting the effect of strain on the permeability of reticulated, flexible foam in

the regime where inertial forces cannot be neglected. Innocentini et al. (1999)

also successfully examined the applicability of Forchheimer's modified Darcy

equation to the more complex flow regime, where inertial effects cannot be

neglected. Finally, Sabiri (1996) recently examined the pressure drop of non-

Newtonian fluid flow through open-cell foam. He developed a capillary-type

model based on Forchheimers' modified Darcy's law with a power-law fluid.

While his model was successful in describing the characteristic trends observed

experimentally, the models failed to accurately describe the magnitude of the

response observed.

Overall, the success of analytical models in providing a comprehensive

description of the flow of fluids through highly porous materials, such as low-

density, open-cell foam, has been limited. This has resulted in the development

of numerous computational methods for modeling the permeability of open-cell

foam (Mills and Lyn, 2002; Fitzgerald et al., 2004; Mills, 2005). Although the

analytical extension of Darcy's law to highly porous materials and the numerous

computational studies have been a substantial contribution to the field of flow

through open-cell foam, there is still a need to examine this field further. Despite

these extensive studies, a tractable permeability model for open-cell foam,

applicable to a wide range of foam grades and a large range of compressive

strains, has yet to be developed. Moreover, an understanding of the intrinsic

permeability of open-cell foam under deformation has yet to be extended to

model the response of fluid-filled foam under dynamic loading.



2.3.2 Dynamic Compressive Response of Fluid-Filled Foam

A logical extension of quasi-static study- of flow through porous materials is the

study of the response of a fluid-filled, porous material under dynamic loading.

Despite the enormous number of applications, this subject has received very little

attention in the literature. There could be multiple reasons for this, including the

fact that modeling the deformation behavior of porous media is complex, and

modeling the effect of the fluid flow on the kinematics of the porous media is

even more difficult. To date, there is no in-depth model for the response of fluid-

filled foam under dynamic compression; however, a handful of experimental

studies of this subject have been carried out.

Hilyard and Kanakkanatt (1969) carried out one of the first studies of the

mechanical damping properties of liquid-filled foams. Their experiments

examined how temperature changes affect fluid damping in liquid-filled,

flexible, open-cell foam. Hilyard (1971) followed this experimental study by

developing the first computational model for the response of liquid-filled, open-

cell foam under dynamic compression. Hilyard (1971) developed a third-order,

non-linear equation of motion describing the contribution of the fluid to the

impact behavior of open-cell foam. His study was shown to be in good

agreement with experimental results. However, this model is highly intractable

and requires multiple empirical constants, which vary strongly with small

changes in the parameters of the system. Therefore, the results of this analysis

could only be taken as a qualitative description of the dynamic response of fluid-

filled foam. Recently, more robust numerical analyses on closed-cell foams have

been carried out and verified with comprehensive experimental studies

(Rehkopf, McNeice, and Brodland, 1995; Rehkopf, McNeice, and Brodland, 1996).

Rehkopf and colleagues successfully developed computational models for the

compressive response of fluid-filled, closed-cell foam under cyclic dynamic

compression. Their models separated the response of the fluid (air) inside the



cells from that of the foam. Using this model, they demonstrated as foam

undergoes cyclic compression, the foam structure degrades and the contribution

of the fluid to the response of the fluid-filled foam decreases.

More advanced computational methods for the complete dynamic response of

fluid-filled, open-cell foams have been developed by Mills and Lyn (2002) and

Schraad and Harlow (2005). In particular, Schraad and Harlow (2005) have a

comprehensive code, which can be utilized on a broad range of problems, but the

complexity of their code has limited its use. In addition, there is insufficient

experimental data to verify their code. The only known experimental studies

have been carried out by Tyler and Ashby (Gibson and Ashby, 1997) who

examined for a narrow range of experiments. Their studies are compared with a

tractable scaling model developed by Gibson and Ashby (1997) for the

contribution of a fluid to the dynamic compressive response of fluid-filled foam.

This model, based on scaling relations, is considered to be the only known

closed-form model describing this phenomenon. Gibson and Ashby considered

a simple 2-D axial compression model for fluid-filled foam as shown in Fig. 2.9.

They assumed viscous flow where Darcy's law governs the flow. Furthermore,

they described the kinematics of deformation by extending the Gent and Rusch

model, derived for the small strain limit, which approximates the average

diameter of a cell d, as a function of strain g, and the initial diameter do (Gent and

Rusch, 1966):

do ( 1- e)2. (2.10)

dP
Furthermore, they assumed the gradient of the pressure in the fluid -i-, is

proportional to the local stress in the fluid ar, and the characteristic length scale of

the foam R, and is given as (after Gibson and Ashby, 1997)



dP -
- w - - (2.11)
dr R

Coupling these previous relations with Darcy's law and continuity conditions,

the average stress contribution of the fluid to the dynamic compressive response

of the fluid-filled foam over the entire width of the foam is determined to be

(after Gibson and Ashby, 1997)

I C /f : oR = (2.12)

where C is an empirical constant on the order of unity and & is the strain rate of

the foam or the time rate of change in the height of the foam h, divided by the

current height of the foam h. One of the main advantages of this model is the fact

that it is tractable and useful for engineering design. Moreover, it readily allows

for the contribution of each parameter to the response of the system to be

identified. The key scaling observations are that the stress scales proportionally

to the strain rate and the viscosity to the first power and the radius to the second

power. The stress is also inversely proportional to the cell-size to the second

power. Therefore, adjusting the characteristic dimensions of the foam has a

much more significant impact than adjusting the properties of the fluid or the

rate of deformation. This model is only applicable to Newtonian fluids since the

scaling arguments do not allow for introduction of a strain-rate-dependent

viscosity, which is required to describe a non-Newtonian fluid. Gibson and

Ashby (1997) demonstrated this model qualitatively describes experimental data

well for Newtonian flow over a limited range of strains and strain rates.

However, they did not propose a range of parameters over which their model is

valid nor is the model validated experimentally; therefore, the general



applicability of this model to a wide class of problems is not known. Overall, the

flow of fluids through porous media, and in particular open-cell foam, has been

investigated extensively for a variety of engineering applications, but

characterizing the contribution of fluid to the response of fluid-filled foam under

dynamic loading remains a critical area of research.

2.4 Applications of Fluid Impregnated Foam

Society could benefit greatly from the introduction of fluid-filled foam into a

variety of engineering applications. In particular, fluid-filled foam is envisaged

to have enormous potential in the area of protective equipment for energy

absorption and blast wave protection. The versatile characteristics of fluid-filled

foam, such as its flexibility, formability, and scalability, allow for it to be useful in

everything from commercial helmets to vehicle armor. In addition, the inherent

robustness due to its passive and reversible nature, makes fluid-filled foam

suitable for long-term applications in adverse environments with little

maintenance. Moreover, economically and practically, the low-cost and thin

characteristic design make it appealing to both the manufacturer and the

consumer. Finally, the highly controllable nature of fluid-filled foam (i.e. pore

size, porosity, fluid properties) allows for it to be easily tailored to protect against

a wide-range of design criteria, making it useful in mitigating the effects of

dynamic impacts and blast waves.

2.4.1 Prior Art - Fluid Impregnated Materials

Recently, the effectiveness of fluid impregnated composites has been recognized

in a variety of energy absorption research (Hayes and Robinovitch, 1997; Lee et

al., 2003, Maranville and Ginder, 2005; Tan et al., 2005; Fischer et al., 2006;

Deshmukh and McKinley, 2006; Decker et al., 2007;). All of these studies have



examined the use of either active or passive field-responsive fluids or fluids that

change their properties in response to an externally applied field or load. The

primary active fluids examined in these studies are magnetorheological fluids

(Maranville and Ginder, 2005; Deshmukh and McKinley, 2006). These studies

have shown magnetorheological fluids demonstrate enormous potential for

controlled energy absorption applications; however, the disadvantage to active

fluids is the need to control an externally applied field (i.e. magnetic or electric).

This inherently builds in complications, such as reliability issues, increased cost,

and increased weight. Therefore, passive fluids, such as shear thickening fluids,

which respond automatically to an applied stress, have a substantial advantage

over active fluids.

Shear thickening fluid impregnated composites have been proposed for hip

protection pads (Hayes and Robinovitch, 1997), ballistic resistant armor (Lee et

al., 2003 and Tan et al., 2005), blast resistant armor (Bettin, 2005a), and stab

resistant fabrics (Decker et al., 2006). Each of these designs exhibited high

flexibility, making them comfortable to wear as personal protective equipment.

They also demonstrated the ability to harden during high rate impact, absorbing

and shunting energy effectively. The results of each are summarized as follows:

1) the hip protection design reduced the load on the femur by approximately

50% over the impact load; 2) the ballistic resistant armor reduced the projectile

penetration depth by 10-20% over neat Kevlar, 3) the stab resistant fabrics

increased the peak load before penetration by 100-200%. Fig. 2.10 shows a

sample image of the enhanced stab resistance of Kevlar impregnated with a

shear thickening fluid over that of neat Kevlar alone (Decker et al., 2007). The

success of these studies indicates composites impregnated with shear thickening

fluids are some of the most promising novel technologies in the area of protective

equipment.



2.4.2 Energy Absorption

With the dramatic increase in fatalities each year from high energy impacts in

transportation and sports, the need for improved energy absorption technologies

is becoming increasingly apparent. As previously discussed, one of the primary

areas of research in this field is to protect the head from impact loading.

Recently, numerous studies have examined new energy absorbing technologies

for bicycle helmets (Gilchrist and Mills, 1996; Mills and Gilchrist, 2006; Mills and

Gilchrist, 2007), motorcycle helmets (Gilchrist and Mills, 1994; Shuaeib et al.,

2002a; Shuaeib et al., 2002b; Shuaeib et al., 2007), and vehicle impacts (Fuganti et

al., 2000; Deshmukh and McKinley, 2006). Using knowledge of the biomechanics

of head injury, these studies have considered everything from new geometric

configurations to revolutionary materials, such as magnetorheological fluid-filled

foams (Deshmukh and McKinley, 2006), and novel metallic and polymeric

foams (Fuganti et al., 2000; Shuaeib et al., 2007). They have also developed

extensive finite element models (Gilchrist and Mills, 1994; Aare and Kleiven,

2005; Mills and Gilchrist, 2006; Shuaeib et al., 2007) to predict the effects of

varying design parameters on the impact protection of commercial and military

helmets. These techniques have great promise in helping to develop the optimal

design configuration.

Ideally, protective equipment for the head would be lightweight, thin,

comfortable, inexpensive, and reliable. In addition, it must efficiently absorb the

energy of an impact without causing the head to exceed certain acceleration

standards. Shuaeib et al., (2002a) provides an overview of the primary

acceleration based standards for preventing brain injury, but the most commonly

used standard is the Peak Linear Acceleration (PLA) standard. The PLA

standard requires the head accelerates less than 300 g under direct impact of a 5

kg mass traveling at 6 m/s to 7.5 m/s (90 J to 40 J) (BS6658, 1985; Gilchrist and

Mills, 1994; Shuaeib et al., 2007 ). Knowing the weight of the head (plus helmet if



applicable), the maximum allowable acceleration can be translated into a

maximum peak load on the head or "threshold load" (Gilchrist and Mills, 1994).

To make the design as thin and lightweight as possible, the deformation distance

over which energy is absorbed would be minimized and the area over which the

load is applied would be maximized. Therefore, since helmets are already

designed to maximize the load distribution over the head, the optimal helmet

design would absorb a given level of energy at the maximum achievable load.

Since the maximum achievable load is limited by safety standards (threshold

load), the optimally configured helmet would absorb the necessary amount of

energy at the threshold load. Because the "plateau-like" stress response of foam

under compression is ideal, foam has been accepted as the standard energy

absorption material in helmets (Gilchrist and Mills, 1992; Shuaeib et al., 2002b).

Currently, to absorb the necessary amount of energy, foam in helmets is usually

relatively thick and made of an inelastic material (Shuaeib et al., 2007). This

results in cumbersome helmets, which are only useful in single impact scenarios.

Moreover, they are often brittle in nature, making them difficult to manufacture

and uncomfortable to wear (Shuaeib et al., 2007). Shuaeib et al. (2007) has

recently proposed a new, more resilient and flexible foam to address comfort

issue and improve the multi-impact protection; however, this design still

requires a relatively large thickness.

A liquid-filled foam composite helmet, on the other hand, can be engineered to

have the desired dynamic response while being thin, lightweight, and cost

effective. One of the greatest advantages of this type of design is its ability to

enhance the multi-impact protection of helmets. This is an essential feature since

real accidents often involve multiple, successive impacts. Shuaeib et al. (2007)

discussed the crash kinematics of motorcycle accidents and noted successive,

helmeted-head impacts may be equally as dangerous as the initial helmeted head

impact. Therefore, the study of liquid-filled foam composite helmets is of



interest since they have enormous potential to reduce the overall thickness and

weight of current brittle foam helmets while increasing the multi-impact

protection.

2.4.3 Blast Wave Protection

Of possibly greater import is developing new technologies capable of defending

against explosive devices. In the past much of the research in developing armor

has focused on providing protection against ballistics. This research has

culminated in highly advanced armor for defending against projectiles, but left

armor highly inefficient at protecting against the enormous pressure gradients

generated by explosive devices (Cheeseman, 2003). The recent surge in terrorist

bombing has revealed the urgent need to focus on blast protection technologies.

Fortunately, the scientific community has met this need with a recent deluge of

research papers covering blast protection technologies; these studies have

explored everything ranging from mechanized systems to infrastructure to the

human body.

In today's tumultuous military climate some of the most critical lines of defense

are armored transport vehicles and vessels. Although, there is a growing need

for increased protection of armored vehicles from IED's, much of the current

research on protecting military transport from blast waves is focused on marine

vessels. Marine vessels can readily experience catastrophic failure from

underwater explosions because of the wave propagation characteristics of water

and higher pressures on submerged vessels. In particular, since the advent of the

submarines, the effects of blast waves on marine vessels has become an even

more important area of research. However, much of this research has been

funded by national governments and remains restricted for the purposes of



national security. Nevertheless, a plethora of literature exists on the fundamental

transient response of basic structures subjected to blast waves (Geers, 1971;

Huang 1969; Huang, 1974). Recently, with the inception of commercially

available finite element and finite volume codes has made numerical simulations

of the devastating impact of blast waves on increasingly complex structures has

become publicly available. Liang and Tai (2006), Greenhorn (1988), and Hung et

al. (1999) all provide in depth numerical analyses of the transient response of

marine vessels subjected to underwater explosions. These studies demonstrate

that developing a blast-resistant armor for marine vessels remains a critical area

of research. Many promising technologies have been proposed to protect

military vessels from blast waves. Most of the current research focuses on

integrated composite armor technologies. Abrate (2003), Tasdemirci et al. (2003),

and Mines (2004) examine simple analytical stress wave analyses for.lightweight

multi-layer composite armor. Gama et al. (2001) explores the effects of

incorporating an aluminum foam layer into composite armor to better defend

against blast waves. Fleck and co-workers provide detailed analytical models for

the response of sandwiched structures to shock loading (Fleck and Deshpande,

2004; Qiu et al., 2005). In addition, Hutchinson and Xue also studied the

performance of various sandwich structures under impulse pressure loads (Xue

and Huctchinson, 2005; Xue and Hutchinson, 2004; Hutchinson and Xue, 2005).

Recently Mahfuz (2006) has also contributed to this field studying external effects

such as temperature and rate sensitivity. All of these studies found composite

armor with either foam or honeycomb layers has great potential to efficiently

defend against blast loading. However, these technologies utilize irreversible,

plastic deformation to defend against shock waves, making them ineffective

against repeated loading. Furthermore, while these designs are relatively



lightweight, the thickness of the foam layers prohibits their use in some

applications.

Due to the dramatic increase in terrorist bombings, developing armor for the

protection of infrastructure from blast waves has recently been driven to the

forefront of research. Elliot et al. (1992) and Ngo et al. (2007) provide excellent

overviews of the effects of blast loading, caused by high explosives, on buildings.

A number of researchers have explored experimental techniques for determining

the most suitable materials for blast mitigation and containment (Fedorenko, et

al., 2004; Louca, et al., 2004; Davidson, 2005). Clutter (2004) presents methods of

using hydrocode simulations to asses the vulnerability of structures while

Talaslidis et al. (2004) uses a standard finite element technique. Davidson et al.

(2005) and Morison (2006) also use numerical simulations to analyze methods of

mitigating the damage caused by blast waves using reinforced structures.

Luccioni (2004) and Smith et al. (2001) experimentally analyze the effects of high

explosives on infrastructure in urban settings and discuss schemes for protecting

infrastructure against blast waves. With the increased use of improvised

explosive devices (IED's) in urban warfare, improved methods for protecting

infrastructure against blast loading is becoming more essential. One of the most

well researched methods of defending buildings from the effects of blast loading

is by way of a passive blast wall. Boh et al. (2005) provides a detailed overview

of the state-of-the-art knowledge of the effectiveness of blast walls. However,

utilizing blast walls in most structures is not practical due to space constraints

and the high cost. A more promising, commercially available technology for the

protection of infrastructure from blast waves is BlastWrap® manufactured by

BlastGard Int. (Clearwater, FL). BlastWrap®uses a combination of multi-phase

materials designed to absorb energy through permanent deformation. It has
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shown great potential and is already being implemented in structures in

Washington D.C. Unfortunately, this technology uses a non-reversible process to

absorb energy, making it inefficient at resisting multiple impacts. It is also only

suitable for structural applications where size and weight are not of critical

importance.

Similar to structural protective measures, developing personal protective

equipment, which has the ability to efficiently defend against blast loading, has

historically been an active area of research. This area of research has dated back

more than two centuries. In 1788, Jars first described the phenomenon of blast

injury, which corresponds to today's definition of primary blast injury

(Richmond, 1991). Primary blast injury describes an injury, typically to organs

containing air, sustained directly from a blast wave impacting the body.

Although records of fatalities caused by primary blast injuries can be found in

nearly all major conflicts in the past century, blast injuries did not receive much

attention until aerial bombings of civilian centers in World War II (Richmond,

1991). In the 1940's the U.S. government performed studies on air blasts and

determined primary blast injury are of greatest concern for people in confined

spaces or in submerged marine vessels (Richmond, 1991). However, over the

past few decades, the strength of high explosives has increased, and the risk of

blast injuries has risen dramatically in every part of society. This is most evident

in recent terrorist attacks where improvised explosive devices are used in

densely populated urban areas. These attacks have resulted in a significant

number of military and civilian casualties due to blast injury.

Recent studies have concluded high-frequency, small amplitude waves play the

dominant role in lung injury from blast loading, generating large pressure
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gradients in the lung, as opposed to thoracic compression, caused by low-

frequency, large-amplitude waves (Grimal, 2005, Cooper, and Richmond (1991)).

Schardin (1950) proposed three primary mechanisms of injury. The first

considers an engineering analysis of a shockwave propagating from a dense

medium to a less dense medium. In this case much of the wave is reflected

backwards as a tension wave, causing spalling at the interface of the media

(Richmond, 1991). Another proposed mechanism of injury is based on the fact

that the air in many organs is more readily compressed than other fluids. For

large enough pressure gradients across membranes with fluid-air interfaces, the

resulting stress can result in severe microstructural damage. For example, a

pressure gradient across the alveolar-capillary interface on the order of 5x10 6

N/m3, can result in microscopic hemorrhaging and air embolisms caused by

rupture of the alveolar septa and interstitial vessel walls (Argyros (1989),

Candole (1967), Coppel (1976), and Leibovici et al. (1999)). A third mechanism of

injury proposed relates to inertial effects. A shock wave is expected to cause

matter of different masses to accelerate at different rates, which can also lead to

microscopic hemorrhaging and air embolisms. All of these injury mechanisms

can result in air entering adjacent pulmonary veins and causing cardiac arrest.

It is well known that a significant reduction in the magnitude of the pressure

gradient of a blast wave would have enormous potential to prevent primary

blast injuries. During World War II methods of protecting the body from blast

waves were explored. Single layers of both soft and rigid materials were found

to be ineffective at preventing injury (Richmond, 1991). In fact, many studies

found a decrease in the threshold level of injury compared to controls without

protection. Moreover, it was also discovered combinations of soft and rigid

materials in the wrong order increased the potential for injury (Richmond, 1991).
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However, when rigid materials, such as Kevlar, were placed over softer

materials, such as foam, the resulting armor was found to be effective at

significantly reducing the severity of injuries. This protection was provided by

the impedance mismatch between the rigid and soft layers (Richmond, 1991).

While this result was promising, a practical composite armor, capable of

protecting against projectiles as well in a weight- and size- efficient manor, was

not developed.

Composites with layers of open-cell, liquid-filled foam have extraordinary

potential in all blast protection applications. The layer of liquid-filled foam is

designed to impede shockwaves by increasing the time it takes stress waves to

propagate through the foam medium and decreasing the resulting pressure

gradient experienced by subsequent media. When a shockwave encounters a

typical outer protective layer of armor, such as Kevlar, it is typically reflected,

imparting a large momentum. In the case of standard body armor, this would

impart a large impulse to the body under a very short time period. As the fluid-

filled foam compresses, more of the stress wave is allowed to propagate through

to the underlying structure. The effect is a delay in the transmission of the

impulse into the underlying structure, and thus, a reduction in the pressure

gradient of the shockwave, as it is forced to propagate through the composite

armor over a longer duration of time. Liquid-filled foam armor not only has

potential to increase the ability of armor to protect against blast waves, but it also

has a number of other advantages. As previously discussed, the thickness and

the weight of liquid-filled composite structures can be substantially less than

many other designs. This is especially true considering there is no additional

weight necessary as in the case of active components, such as the batteries and

circuits necessary for electrorheological and magnetorheological systems. In fact,
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the weight can be reduced even further by utilizing shear thickening fluids

comprised of hollow spheres. In addition, the versatile characteristics of fluid-

filled foam, such as their flexibility, functionality, reliability, and scalability,

make them extremely attractive for a range of military applications where all of

these factors are crucial. Moreover, economically, their low-cost is ideal for

military blast protection technologies where mass production is a necessity.

Finally, the highly controllable response of liquid-filled foams allows for them to

be readily engineered to protect against a wide-range of blast loads, making

them ideal for a plethora of blast mitigation technologies.
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Figures

A)

C)

Figure 2.1: Optical micrographs of foams. A) Open-cell polyurethane foam; B)
Open-cell aluminum foam; C) Closed-cell aluminum foam; D) Closed-cell

aluminum foam.



Figure 2.2: Compression of a saturated, 90 ppi, polyurethane foam specimen at
40% strain.
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Figure 2.3: Magnified compression laps photos of densified region for a

saturated, 90ppi, polyurethane foam specimen. (a) 20% strain (b) 40% strain (c)
60% strain (d) 80% strain.
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Figure 2.4. Typical quasi-static stress-strain response of 70 ppi foam under

uniaxial compression.



Figure 2.5: Tetrakaidecahedral cell model for a Kelvin foam made in Solidworks.
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Figure 2.6: Viscosity plotted against shear stress for shear thickening precipitated
calcium carbonate (PCC)/PEG suspension with a PCC volume fraction of 0.50.
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Equilibrium Shear Thickening

B)

Figure 2.7: Model of distribution of spherical nano-particles in a suspension. A)

in static equilibrium; B) undergoing shear, resulting in shear thinning; C)
undergoing shear, resulting in the formation of hydroclusters, which is proposed

to result in the shear thickening effect.
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Figure 2.8: Steady shear viscosity plotted against shear rate (left) and shear stress

(right) for shear thickening precipitated calcium carbonate (PCC)/PEG
suspensions at several volume fractions. (Egres et al., 2005 with permission)
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Figure 2.9: Axial compression of fluid-filled, open-cell foam. (after Gibson and
Ashby, 1997).
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Figure 2.10: Images of back layers armor after drop tower spike testing at m =

2.33 kg and h = 0.75 m. A) Neat Kevlar; B) STF-impregnated Kevlar (Decker et

al., 2007 with permission).
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3 Permeability of Open-Cell Foam Under Compressive Strain

3.1 Introduction

Developing a comprehensive understanding of the dynamic response of fluid-

filled foam requires knowledge of the fluid-structure-interaction under

deformation. In this chapter, a model is explored, which relates the characteristic

properties of the fluid and the foam to the characteristics properties of the flow

through a factor called the intrinsic permeability. First, a model for the behavior

of low-density, open-cell foam under compressive strain is proposed. Using this

model, a tractable relationship between the normalized permeability and the

applied compressive strain of open-cell foam filled with a Newtonian fluid is

developed. An experimental study of the effect of strain on the permeability of

open-cell, polyurethane foam is presented. The experimental results are used to

determine a single empirical constant for the model. The experiments are

performed using a Newtonian fluid in the fully laminar regime, where viscous

forces are assumed to dominate. The model is found to describe the

experimental data well and be independent of the foam cell size, the direction of

flow with respect to the foam rise direction, and the properties of the saturating

fluid.

3.2 Literature Review

The intrinsic permeability of open-cell foam has received limited attention in past

research. However, Gent and Rusch (1966) studied the permeability of open-cell

foam and demonstrated a significant finding, that the average cell diameter is a

function of the applied compressive strain. They proposed a qualitative,



empirically based relation between the strain and the average cell diameter,

developing a simple model based on flow through an array of smooth tubes. The

theoretical transition from the fully laminar regime, where Darcy's law is

applicable, to the inertial dominated regime should occur for Re > 2000 in a

smooth walled tube. However, experimentally, they found the transition from

viscous to inertial dominated flow in open-cell foam occurred for Re = 1. This

result corresponded with the experimental findings of Tek (1957) for flow

through porous rock and Dybbs and Edwards (1984) for fixed beds of spheres

and cylinders. In all of these cases, the flow path is more tortuous than the case

of flow through a smooth tube. Comiti et al. (2000) developed a theoretical model

for this transition, proposing a theoretical transition value of Re = 0.83 = 1 for flow

through porous media.

Hilyard and Collier (1987) extended Gent and Rusch's work, developing and

testing a theoretical model for predicting the effect of strain on the permeability

of a reticulated polyurethane foam. However, their experiments focused on air

flow through foams with relatively large cell sizes. For all of their experiments

Re > 1, so the effect of inertial forces could not be neglected. The flow of highly

viscous fluids through open-cell foam under compressive loads, on the other

hand, is laminar and dominated by viscous forces for nearly all achievable strain

rates. Neither Gent and Rusch (1966) nor Hilyard and Collier (1987) studied this

flow regime in depth.



3.3 Permeability Model

Assuming the foam can be described as isotropic, the relative density under

uniaxial compression, is given as

P" Po 1- = - (3.1)
P, P, (-e)(l+ve)2

where p* is the density of the foam at strain E, and vis Poisson's ratio of the foam.

For compressive strains above about 0.075, the cells in open-cell flexible foams

buckle and collapse without expanding laterally, so that their Poisson's ratio in

this regime is approximately zero. Since the focus of this analysis is primarily in

the behavior at high strains, ve is taken to be zero for low-density, open-cell,

flexible foams. Substituting Eq. (3.1) into the porosity term of Brace's equation

for porous media given by Eq. (3.2a), the intrinsic permeability k, of the foam is

given by Eq. (3.2b) (after Brace, 1977)

k = Ad2J 1-P (3.2a)

k = Ad 2 o1- PO J (3.2b)
( p, (1+ E)

where A is an empirical constant given by Brace as 0.025 for a porous

microstructure consisting of tubes with circular cross-sections and d is the

average diameter of the cells.



As the foam is compressed beyond the elastic buckling strain a*f'of 0.075,layers of

cells buckle and collapse, generating local bands of large deformation in which

the average diameter of the cells is reduced substantially. A detailed discussion

of this banding phenomenon, which is widely seen in open-cell polymeric foams,

is given by Gioia et al. (2000). As the initial collapse band forms, the rest of the

specimen remains in the linear elastic regime, at a strain close to the elastic

buckling strain, a&. As the overall strain increases, cells adjacent to the collapsed

band also collapse, so that the length of the densified band increases while that of

the remainder of the foam in the linear elastic regime decreases. The strain of the

collapsed cells in these densified bands is assumed to be uniform and given by

the densified strain &i (Fig. 3.1). It is important to distinguish the densified strain

Ea, from the fully densified strain eD given in Chapter 2, where the former

represents the onset of the densification regime, and the latter represents the end

of the densification regime. In Fig. 3.1 the average velocity of the fluid flowing

through the foam is given by U, the permeability of the foam in the elastic

buckling regime and the densified regime are given by k'el and kd, respectively,

and the volume fractions of the cells remaining in the linear elastic regime and

the densified regime are given by fel and Xd, respectively. Fig. 3.2 demonstrates

the existence of the two regimes in reticulated polyurethane foam with an

approximate relative density of 0.03 under a compressive strain of 0.4. Fig. 3.3

shows magnified images of the collapsed cells for compressive strains ranging

from 0.2 to 0.8. The collapsed cells at strains of less than or equal to 0.6 are of

comparable size while at higher strains, cells begin to densify further. Therefore,

the densified strain is taken to be a& = 0.6 for all grades of reticulated

polyurethane foams with an approximate relative density of 0.03. This

corresponds well with Hilyard and Collier (1987) who proposed the compaction

of cells invalidates any relations between the average cell size and the strain
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beyond compressive strains of 0.60. Therefore, we focus our model at strains less

than 0.60.

Gent and Rusch (1966) consider the foam to be modeled as an array of circular

tubes. The average diameter of a cell, proportional to the ratio of the volume of a

tube to the wetted surface area of a tube, is found to be proportional to the

diameter of the cross-section of the tube. For a small uni-directional compressive

deformation of low-density foam, they assume the cross-section of the flow

channels deforms in the same proportion as the bulk material. Using a small

strain approximation, they give the average diameter of a cell under 1-

dimensional compressive strain in the elastic regime by

de, d o (1- E)' for 0 < E6 e (3.3)

where do is the average cell size at 0% strain.

This model for the current average diameter of a cell as a function of the nominal

strain was supported by experimental results. In this analysis we provide

additional support to the applicability of this model using a finite element

software ADINA (ADINA R&D inc., Watertown, MA) for strains up to the elastic

buckling strain. As previously discussed a commonly used model for the

repeating cell in foam is the tetrakaidecahedron. For the tetrakaidecahedron

model shown in Fig. 3.4, we assume the material is taken to be a typical isotropic

polyurethane, low-density foam with Poisson's ratio and Young's modulus of 0.3

and 150 Mpa, respectively. The length and diameter of the struts are taken, for

simplicity, to be 100 gm and 10 ýpm, respectively. The loading is distributed as 4



equal point loads on the four comer nodes (P21, P22, P23, and P24) of the

tetrakaidecahedron where the load is anticipated to be transmitted. Boundary

conditions are applied at 3 of the base nodes (P1, P2, and P4), such that the nodes

are allowed to translate and rotate in the x and y planes, but they are fixed in

translation and rotation in the z plane. In order to have a fully stable structure

node P3 is fixed in all degrees of freedom. It is important to note in a real cell all

of the boundary conditions at all four base nodes should be identical, but since

this model only consists of one cell, one node must be fixed to satisfy the

structural stability. The discrepancy in boundary conditions should have

negligible effect on determining the average diameter of a cell as a function of

strain since this analysis only considers small deformations.

A characteristic diameter of the tetrakaidecahedral cells DH, can be developed

based on the hydraulic diameter found in fluid mechanics, given as six times the

volume of the cell (V, = 8f2Lc3 ) divided by the surface area of the cell

(A = (6 + 24, ) L2 ), where Le is the average length of a cell wall. In the linear

elastic regime, the diameter of a cell as a function of strain was found to

correspond well to the Gent and Rusch model given in Eq. (3.3). For example,

the finite element analysis determined the ratio of the diameter at a strain of 0.03

to the initial diameter is 0.99, which corresponds well (to within rounding error)

with the value predicted by the Gent and Rusch model (also found to be 0.99).

Fig. 3.5 shows the finite element simulation of the deformation of the

tetrakaidecahedral cell at a strain of 0.03. This figure demonstrates as a cell is

compressed in the z-direction expansion takes place in the x- and y-directions,

further supporting the Gent and Rusch's model, which proposes the cell

diameter does not decrease linearly proportionally to the compressive strain.



Overall, the finite element simulation provides strong support to the model

proposed by Gent and Rusch, which gives the average cell diameter as a function

of the strain in the linear-elastic regime. We further propose the average

diameter of a cell in the densified regime dd follows a similar form and is given as

dd =do(1-c)a for E = Ed

where a is an empirical constant. The corresponding permeabilities in the linear

elastic regime ket, in the elastic buckling regime kei, and in the densified regime

kd, are determined by coupling Eq. (3.2-3.4) and are given by

P,3

PS (1- Ed

for 0 < < e (3.5)

for E = el

for = Ed

(3.6)

(3.7)

Furthermore, the corresponding volume fractions of the cells remaining in the

linear elastic regime Xer, and the densified regime %d, after the onset of cell

buckling, are given by

for IE e d (3.8)

(3.4)

(Ed - E)( +l)
+ E Ed -el



Xd for g _ EEd (3.9)
X + (1+E)(d ) del )

Gent and Rusch (1966) developed a model relating the total pressure drop Ap

across a specimen to the fluid properties, foam properties, and flow velocity U:

AP = / U+ P U2 (3.10)
h kT BT

where h is the length of the specimen in the direction of flow, kr is the effective

permeability of the foam, and BT is the inertial flow coefficient of the foam. The

inertial flow coefficient has the dimensions of length and is characteristic of the

geometry of the media, the cell size, and the nature of the flow. They attributed

the first term on the right hand side of the equation to viscous forces,

corresponding to Darcy's law governing laminar flow, and the second term to

inertial forces dominant in the turbulent regime. The flow of highly viscous

fluids in open-cell foam is dominated by viscous forces for nearly all achievable

strain rates. Therefore, the focus of this analysis is the fully laminar regime,

dominated by viscous flow, where the second term on the right-hand side of Eq.

(3.10) can be neglected. Assuming the flow is laminar and dominated by viscous

forces, the pressure drop Api across each regime of the foam is given by

Ap _ U (3.11)
h, k,

where hi is the length of each regime in the direction of flow and ki is the intrinsic

permeability of each regime. The flow velocity U is assumed uniform and taken



to be constant through each regime because of continuity. Combining Eq. (3.10)

and Eq. (3.11), noting the total pressure drop across the specimen is equal to the

sum of the pressure drops across each regime, and noting that the length of each

regime is proportional to the volume fraction of each regime, the effective

permeability as a function of strain is given by

kT = ke,

kT = kk* .X,,kd + Xdk

for 0_: _ 6e

for E',6 •! Ed

(3.12)

(3.13)

Coupling the previous relations for low-density foam the normalized intrinsic

permeability kT/ko can be approximated as

kT

ko

k (I_ Ed)
2

a ( lE)

ko Zel(1-d) +Zd d -el

for 0 6 e (3.14)

for e.6 .6d c (3.15)

where ko is the permeability at 0.00 strain.

3.4 Materials and Methods

3.4.1 Materials

Specimens of open-cell, flexible, polyester-based polyurethane foams (Foamex,

Linwood, PA), with nominal cell diameters of 175 jim, 210 gm, and 235 gm based



on manufacturers specifications (corresponding to grades of 90, 80, and 70 pores

per inch (ppi), respectively) were used in the tests. The densities of the foams

ranged from 0.0318 to 0.0322 g/cm 3. The relative density of the foams was taken

to be p/ps _ 0.03, based on the manufacturer's value of the density of the solid

polyurethane (ps = 1.078 g/cm3). The foam was cut using a round arch punch

(McMaster-Carr Supply Co., Princeton, NJ) into uniform cylindrical specimens of

36.0 mm diameter with heights ranging from 32 to 34 mm. The dimensions of

each sample were measured using a digital caliper (CD-6" CSX, Mitutoyo,

Aurora, IL) accurate to within 0.01 mm. The mass of each sample was measured

using an electronic balance accurate to 0.1 gram (PB3002, Mettler Toledo,

Switzerland).

3.4.2 Experimental Procedure

The permeability of each specimen was measured for compressive strains

ranging from 0.00 to 0.60, in increments of 0.05 and at the elastic buckling strain

of 0.075. Prior to testing, each sample was fully saturated under a vacuum of 762

mm of mercury to ensure that every pore was completely filled with water, the

working fluid. After saturation, the foam samples remained submerged in water

for the duration of the experiment. Water was driven through the specimen

using gravity-driven flow between two adjustable reservoirs, which stabilized

the flow (Fig. 3.6).

The specimen was contained in a cylindrical glass tube with an inner diameter of

35.8mm (McMaster-Carr Supply Co., Princeton, NJ). The inlet and outlet of the

tube were sealed with rubber stoppers equipped with pressure taps, allowing for

measurement of the pressure drop across the foam specimen using a manometer
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and a traveling microscope which read to the nearest 0.0254 mm (Titan Tool

Supply Co, Buffalo, NY). The pressure drop was measured across the cylindrical

glass tube and compression device alone (i.e. without the foam specimen) and

found to be negligible for all flow rates used in this experiment. The flow rate

was determined by measuring the mass of the water exiting the second reservoir

over a specified period of time. The velocity of the fluid entering the specimen

was found from the flow rate and the cross-sectional area of the glass tube,

assuming the velocity distribution through the specimen was uniform. The

sample time for each experiment was selected to be 90 seconds to ensure high

accuracy. At each strain, six flow rates between 0.7 cm3/sec to 2.0 cm3/sec were

selected and the corresponding pressure drop was measured. The temperature

of the water in the system was maintained at 25.0 oC and continuously monitored

at the inlet and exit reservoirs using digital thermometers. The viscosity of water

at 25.0 oC is 8.9 x 10-4 Pa sec.

The foam within the cylindrical glass tube was compressed using mesh highly

porous, copper grate mesh "platens" (McMaster-Carr Supply Co., Princeton, NJ)

that were screwed together as shown in Fig. 3.7 to impose increasing strain; the

mesh has less than 1% cross-sectional interference with the specimens. The

specimens were compressed axially, parallel to the direction of fluid flow. The

glass tube had an inner diameter of 35.8 mm, giving negligible cross-sectional

interference when the foam was uncompressed. However, the cross-sectional

interference was sufficient to prevent flow around the foam specimen.

As previously discussed, the specimens do not significantly expand radially for

the range of compressive strains used in these tests, so that the cross-sectional

interference of the foam with the glass tube remains negligible. The large strains
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used in these tests could result in some microstructural damage to the specimen.

To ensure the specimens are as uniform and similar as possible, each specimen

was precompressed to 0.75 strain once prior to testing.

To satisfy Darcy's law for laminar flow and neglect the inertial term in Eq. (3.2),

all of the experiments were conducted with Re < 1. For instance, the maximum

Reynolds number in the experiments was found to be 0.53, corresponding to a

velocity of 2 mm/s in a 70 ppi foam with average cell diameter of 235 gnm. For a

maximum velocity of 2 mm/s, the viscous term in Eq. (3.2) is two orders of

magnitude larger than the inertial term, so that the inertial term can be neglected.

This allows the permeability to readily be determined from the slope of a plot of

the pressure drop vs. the flow rate.

Nearly all prior experimental studies of permeability of an open-cell foam use air

as the working fluid. In this experiment water is used, which is a highly polar

fluid, known to have an effect on the properties of the solid polyurethane. In

order to ensure these effects do not bias or invalidate the results, the effects of

polar fluids on polyurethane foam were examined. Uniaxial compression tests of

foam specimens were performed before saturation with the polar fluid, during

saturation, and after removal of the fluid. The time degradation effects of

saturating the foam with a polar fluid were also examined. The tests were

performed using a Texture Analyzer (TA XT Plus, Stable Microsystems,

Hamilton, MA), which is a commonly used mechanical testing machine for 'low

strain rate' (10-6-100 s-1) characterization of materials. The corresponding

compression velocity of the machine ranges from 0.01 mm/s to 10 mm/s, with

linear or exponential velocity profiles. This machine can utilize a number of

interchangeable fixtures, but in these experiments a 1.5" diameter cylindrical flat
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platen was selected. The load cell of the Texture Analyzer can measure up to a

force of 50 kg with a resolution of 0.1 g, and the vertical displacement is

determined with a resolution of 10-3 mm. The data acquisition system used was

the Texture Exponent 32 code, which acquires both loading and positioning

information for each test at a rate of 1 sample per second. The specimen was

precompressed to 0.75 strain twice prior to testing. Based on Shen et al. (2000)

the difference in the stress plateau between the 3rd, 4th, and 51h compressions

should be negligible. The specimen was allowed to fully recover 24 hours

between compression tests. The specimens were loaded to 0.60 strain at a strain

rate of lx10-3 s-1, which is assumed to be the quasi-static response, so the

contribution of the fluid flow to the strength and stiffness of the foam was taken

to be negligible.

3.5 Results

3.5.1 Permeability vs. Strain Relation

A typical curve of the pressure drop vs. flow rate for an 80 ppi foam specimen

with strains from 0.00-0.60 is given in Fig. 3.8. The coefficients of determination

for these regressions were all above R2 = 0.99. The permeability was determined

from the slope of each of these regressions at the corresponding strain, ranging

from 0.00-0.60. The small deviation of each regression from the origin is

neglected and can be attributed to small air bubbles trapped in the pressure taps

and the effect of surface tension in the manometer readings. These experiments

were repeated with three different specimens for each of the three types of

foams. The permeability measurements were highly repeatable with all data

points falling within 15% of the average value. The permeability of the
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specimens measured at 0.00 strain is given the symbol ko. This value was

determined before and after precompression of each specimen as shown in Table

1. Experimental data for the normalized permeability kT/ko is plotted against the

strain e in Fig. 3.9a-3.9c. The solid regression line represents the model

presented by Eq. (3.12) and Eq. (3.13) where the coefficient a, is fitted to satisfy kd.

The best-fit coefficient a, for each grade of foam is given in Table 1. The broken

regression lines are representative of the data found by Gent and Rusch (1966)

and Hilyard and Collier (1987) for low density foams. Their data is found to be

well approximated by the following regression equations:

Gent and Rusch Data k (1- )1.8 for 0 d (3.16)
ko

Hilyard and Collier Data kT (1- )2.2  for 0 s 6 e, (3.17)k,

where ko is the initial permeability after the precompression. Fig. 3.10 is included

to compare the model presented in this analysis for the normalized permeability

to the models presented by Gent and Rusch (1966) and Hilyard and Collier

(1987). The Gent and Rusch (1966) model is the same as the relation found in Eq.

(3.14). The Hilyard and Collier (1987) model, which is based on empirical

relations for low-porosity foam, is slightly more complex, containing non-linear

functions of the porosity and strain. The data plotted in Fig. 3.10 corresponds to

the data in Fig. 3.9b for 70 ppi polyurethane foam. It is clear the model

presented in this analysis improves upon the Gent and Rush model and provides

a similar fit to the Hilyard and Collier model.
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The low-density foams in this experiment are anisotropic with cell lengths in the

rise direction approximately 1.8 times larger than those in the plane

perpendicular to the rise direction. Experiments were performed with the fluid

running either parallel or perpendicular to the rise direction with strain applied

in the direction of fluid flow. For the 70 ppi specimens, the permeability at 0.00

strain was measured for flow parallel to the rise direction of the foam and for

flow perpendicular to the rise direction of the foam. Table 1 shows the difference

between these two measured permeabilities is negligible. A sample plot of the

normalized permeability plotted vs. strain for 70 ppi foam with fluid flowing

both perpendicular and parallel to the rise direction of the foam is given in Fig.

3.11. Fig. 3.11 demonstrates that the relationships between the normalized

permeability and the strain for the flow parallel or perpendicular to the rise

direction of the foam are nearly identical.

3.5.2 Effect of Polar Fluid on Model

Fig. 3.12 plots stress vs. strain curve for an 80 ppi foam under uniaxial

compression before saturation with the polar fluid, during saturation with the

polar fluid, and after removal of the polar fluid. Fig. 3.12 verifies the previously

established results that saturating a polyurethane foam with a polar fluid

reduces the stiffness and strength. Once the polar fluid is removed and the foam

is completely dried, the stress-strain response of the foam is nearly restored. Fig.

3.13 shows the stress-strain curves for a foam specimen saturated with water

over a 72 hour period. The curves are for a specimen compressed to 0.60 at a

strain rate of 1x10 -3 s- . Fig. 3.13 shows the plateau stress and modulus remain

approximately constant over the time frame utilized for these experiments. Both

Fig. 3.11 and Fig. 3.13 are plotted through 0.30 strain to provide higher resolution
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of the linear elastic regime and plateau stress. The plateau stress and modulus

remain approximately constant over the duration of the time frame considered.

3.6 Discussion

The permeability of each specimen measured before precompression is

consistent with the range of expected values previously reported by the

manufacturer (Foamex, Linwood, PA) and follows the expected trend with

average cell size; permeability decreases with decreasing pore size. However, the

permeability at 0.00 strain after precompression is not consistent with the

expected trend. This phenomenon is also observed in Hilyard and Collier's

(1987) study. Their data shows after mechanically conditioning (i.e.

precompressing) the foam, the permeability was changed dramatically and the

normal trend relating the permeability to the average cell size was no longer

valid. In addition, the effect of saturating the foam with a polar fluid, may have

affected the microstructure of each grade of foam differently, making one grade

of foam disproportionately more compliant and more permeable than another.

The solid regression lines, representing the model for the normalized

permeability as a function of strain, given by Eq. (3.12) and Eq. (3.13), describe

the data in Fig. 3.9a-3.9c well. The normalized permeability at the elastic

buckling strain kel*/ko, is nearly constant for all three grades of foam (Table 1).

The deviation on average from the elastic model given by Eq. (3.12) is

approximately 2%. The normalized permeability at the densified strain ka/ko,

differs slightly for all three grades of foams, giving distinctly different values for

the best-fit coefficients a. However, averaging the coefficients for all three grades
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of foams, giving a = 0.80, provides a reasonable model which fits the data well for

all three foam grades.

In addition, this average model corresponds well with previously reported

experimental results given by Gent and Rusch (1966) and Hilyard and Collier

(1987). The range of cell sizes examined in these studies was up to an order of

magnitude larger than those presented in this analysis, indicating the relation

between the normalized permeability and the strain is independent of the cell

size of the foam. Therefore, the model presented in Eq. (3.14) and Eq. (3.15) with

coefficient a = 0.80 is taken to be applicable to all cell sizes of low relative density

foam.

Fig. 3.10 compares the model presented in this analysis to the models given by

Gent and Rusch (1966) and Hilyard and Collier (1987) for an 70 ppi polyurethane

foam. The model presented in this analysis is found to improve significantly

upon the model given by Gent and Rush and provide a similar fit to the Hilyard

and Collier model. However, the model developed in this analysis provides a

more physically based description of the behavior of the foam under

compression. This allows for the model to be readily extended to more complex

analyses such as analyzing the contribution of fluid flow to the stress-strain

response of foam under dynamic compression as presented in Chapter 4.

Moreover, this model is also observed to be independent of whether the

orientation of the rise direction of the foam is perpendicular or parallel to the

direction of fluid flow. Fig. 3.11 shows a negligible difference in the best fit

relation between the permeability and the strain for the two flow directions.

Therefore, the relations given in Eq. (3.14) and Eq. (3.15) are taken to be
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independent of whether the rise direction of the foam is parallel or perpendicular

to the fluid flow direction.

Furthermore, to ensure the model is independent of the saturating fluid, the

effects of saturating the foam with a polar fluid were also examined. Fig. 3.12

verifies the previously established results that saturating a polyurethane foam

with a polar fluid immediately reduces its stiffness and strength. The polar fluid

acts to weaken the microstructure of the foam by interfering with the hydrogen

bonding, resulting in a decrease in the modulus of the solid polyurethane. Once

the polar fluid is removed and the foam is completely dried, the stiffness of the

foam is nearly restored. This is expected since the interference of the polar fluid

with the hydrogen bonding of the polymer chains is removed. This corresponds

well with the theory of Hogan et al. (1973); once water molecules are completely

removed from the foam, hydrogen bonds in the polymer reform, and the original

strength of the foam is restored. The slightly lower plateau stress in Fig. 3.12

indicates the polar fluid allows for more rapid microstructural degradation

during loading than a dry foam experiences. The buckling strain of the saturated

foams also indicates microstructural changes to the foam are more readily caused

by loading a foam where the hydrogen bonds are weakened by a polar fluid.

Unlike the modulus and maximum buckling stress, which depend on the

material properties, the buckling strain is completely dependent on the

microstructure. The buckling strain of the foam saturated with water is slightly

lower than that of the dry, unsaturated foam, indicating minute microstructural

damage. Although saturation of a foam with a polar fluid weakens the bonding

and allows for deformation to more readily damage the microstructure, the

minor additional deformation due to a polar fluid should not alter the
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permeability significantly from the permeability measured with a non-polar

fluid.

In addition, in Fig. 3.13 the plateau stress and modulus remain approximately

constant, demonstrating saturating a polyurethane foam with a polar fluid does

not degrade the microstructure over the time frame considered. Hogan et al.

(1973) shows similar findings that the effect of relative humidity on the time

degradation of polyurethane foam is negligible over the time frame considered in

this study. Therefore, neglecting the effect of the polar fluid on the permeability

of the foam specimens is valid, and the proposed relations given in Eq. (3.14) and

Eq. (3.15) are found to be independent of the saturating fluid.

This chapter studies the effect of strain on the permeability of reticulated

polyurethane foam saturated with a polar fluid in the laminar regime. Using the

fact that the permeability is a function of the applied compressive strain, a

physically based composite model, based on the permeability of the linear elastic

regime and that of the densified regime, is developed. This relation is found to

be applicable to a range of foam cell sizes, and independent of the direction of

flow relative to the foam rise direction. Overall, this model is an important step

toward the development of a comprehensive understanding of the complete

fluid-structure-interaction of foam impregnated with a fluid under dynamic

compression.
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Tables

Table 3.1. Data for each grade of foam. The permeability at 0% strain for each
grade of foam before and after precompression. The coefficient a is the best-fit
exponent which satisfies Eq. (3.8). 1 and I I correspond to the direction of flow

being perpendicular and parallel to the rise direction, respectively.
Before Pre- After Pre-

Compression Compression
Foam Type Avg. Cell

(ppi) Dia. (jm) ko (1xl0-9 m2) ko(1x10-9 m2) kr*/ko kd/ko a

701 I 235 4.85 5.62 0.893 0.221 0.75
70 1 235 4.67 5.02 0.902 0.214 0.76

80 210 3.70 3.68 0.897 0.198 0.80
90 175 3.24 4.98 0.900 0.181 0.85
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Figure 3.1. Model of fluid-filled cylindrical foam specimen compressed beyond
elastic buckling strain, ei*.
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Figure 3.2. Compression of a saturated, 90 ppi, polyurethane foam specimen at
0.40 strain.
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C
Figure 3.3. Magnified compression laps photos of densified region for a

saturated, 90ppi, polyurethane foam specimen. A) 0.20 strain; B) 0.40 strain; C)
0.60 strain; D) 0.80 strain.
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Figure 3.4: ADINA Tetrakaidecahedron Model
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Figure 3.5: Deformation of the tetrakaidecahedron model at 0.03 strain. A) Side

view (loading parallel to plane); B) Top view (loading into plane).
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Figure 3.6. Schematic of the experimental setup.
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Foam Specimen

Platens

Figure 3.7. Foam compression device.
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Figure 3.8. A typical plot of pressure drop vs. flow rate for an 80 ppi specimen.
Each regression line corresponds to a different strain varying from 0.00 (0) to

0.60 (+) in increments of 0.05. The slope of each line increases correspondingly
with increasing strain.
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Figure 3.9a. The normalized permeability k/ko plotted vs. strain e for 70 ppi
polyurethane foam. Gent and Rusch regression (-- - ), Hilyard and Collier

regression ( ........ ), Dawson, Germaine, and Gibson Model (- ). Experimental
data from this study (e).
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Figure 3.9b. The normalized permeability k/ko plotted vs. strain s for 80 ppi
polyurethane foam. Gent and Rusch regression ( - - - ), Hilyard and Collier

regression ( ........ ), Dawson, Germaine, and Gibson Model (- ). Experimental
data from this study (E)
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Figure 3.9c. The normalized permeability k/ko plotted vs. strain cfor 90 ppi
polyurethane foam. Gent and Rusch regression ( - - - ), Hilyard and Collier

regression ( ........ ), Dawson, Germaine, and Gibson Model (- ). Experimental
data from this study (A).
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Figure 3.10. The normalized permeability k/ko plotted vs. strain efor the Gent
and Rusch model ( - - ), Hilyard and Collier model ( ........ ), and Dawson,
Germaine, and Gibson Model (-) against experimental data for 70 ppi

polyurethane foam from this study (0).
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Figure 3.11. Flow orientation independence. The normalized permeability k/ko
plotted vs. strain e for grade 70 ppi polyurethane foam. Direction of flow is

perpendicular (- - - A), parallel (- 0) to the rise direction.
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Figure 3.12. Fluid degradation effect. Stress plotted vs. strain for an 80 ppi foam.
(- - - ) Prior to saturation with water, (- ) saturated with water, ( .......... )

after removal of water.
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Figure 3.13. Fluid degradation effect with time. Stress plotted vs. strain for an 80
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4 Dynamic Compressive Response of Open-Cell Foam

Impregnated with a Newtonian Fluid

4.1 Introduction

This chapter explores the complete dynamic response of Newtonian fluid-filled

foam. We consider the flow of a highly viscous Newtonian fluid in reticulated,

elastomeric foam undergoing dynamic compression. As previously discussed,

some complex, computational models have been developed to determine the

dynamic response of open-cell foam impregnated with a Newtonian fluid, but

there is currently no known closed-form analytical model. In this analysis, we

develop a tractable, but comprehensive, analytical model for the additional

contribution of viscous Newtonian flow to the stress-strain response of low-

density, reticulated, fluid-filled, elastomeric foams under dynamic axial

compression.

Elastomeric foams are known to deform uniformly in a linear-elastic manner,

primarily by cell wall bending at strains below the elastic buckling strain. At

strains between the elastic buckling strain and the densified strain, local bands of

cells collapse, so that the foam has both a linear-elastic regime and a densified

regime (bimodal behavior). As the overall strain increases, the densified regime

expands at the expense of the linear elastic regime as discussed in Chapter 3. We

consider a model which governs both the single regime behavior and the

bimodal behavior of the fluid-filled foam. Therefore, the model is applicable for

strains up to the densified strain for all grades of low-density, open-cell,

elastomeric foam.
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Based on the low values of the characteristic Reynolds number in the pores, the

flow of highly viscous Newtonian fluids in reticulated foam is dominated by

viscous forces for nearly all achievable strain rates; therefore, Darcy's law is

assumed to govern the flow. Darcy's law is selected instead of the slightly more

complicated Forchheimer-Darcy model, which incorporates both a viscous

contribution and an additional term, attributed primarily to the inertial forces

dominant in the high Reynold's number regime as discussed in Chapter 3. For

the more complex bimodal regime problem, Darcy's law is used to formulate a

boundary value problem with Laplace's equation as the governing differential

equation. The solution to Laplace's equation in cylindrical coordinates for the

pressure distribution in the fluid is formulated in terms of an infinite series of

Bessel functions. The solution rapidly converges within the first few terms and is

readily evaluated numerically. The pressure distribution is used to find the first

known analytical model for the contribution of the fluid to the stress-strain

response of the fluid-filled foam. The model is compared with experimental

results of the stress-strain response of low-density polyurethane foam filled with

glycerol under dynamic compression. The model is found to describe

experimental data well for foam grades varying from 70 to 90 pores per inch

(ppi) and for strain rates varying from 2.5x10 -3 s-1 to 101 s-1. The full model can

also be well approximated by a simpler model, based on the lubrication

approximation; the lubrication approximation assumes the dimension of the

foam in the direction of fluid flow (radial) is much greater than the dimension of

the foam in the direction of loading (axial). The boundary value model is found

to rapidly converge to the lubrication model in the limit of increasing aspect ratio

given by the ratio of the radius R, to the height h, of the foam specimen. The

error between these models is found to be negligible for aspect ratios greater

than R/h -4.
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4.2 Literature Review

4.2.1 Microstructural and Global Response of Foam under Compression

To determine the accuracy of any model developed for the contribution of

viscous fluid flow through open-cell foam under dynamic compression, we first

must develop a comprehensive understanding of the dynamic response of open-

cell foam alone. Gibson and Ashby (1997) previously developed a model for the

compressive stress-strain response of reticulated foam, neglecting any

contribution of a viscous fluid. This model and the governing equations were

previously described in Chapter 2, Eq. (2.1) - Eq.(2.6). In Chapter 3, a detailed

discussion of the microstructural behavior of low-density, reticulated foam

under compressive strain is presented. Based on this model, we assume in the

case of dynamic compression of fluid-impregnated, open-cell foam, the cells of

the foam remain elastic up to the linear-elastic buckling strain (Fig. 4.1). As the

foam is compressed beyond the elastic buckling strain, cells buckle and collapse

without expanding laterally, so that the Poisson's ratio in this regime is

approximately zero. As in the case of dry foam, these collapsed regions generate

local bands of large deformation in which the average diameter of the cells is

reduced substantially. The strain of the collapsed cells in these densified bands

is assumed to be uniform and given by the densified strain E&, while the cells

outside the densified bands remain in the linear elastic regime, at strains given

by the elastic buckling strain (Fig. 4.2). Therefore, for strains less than the elastic

buckling strain, the entire specimen is assumed to be uniform and completely

within the linear elastic regime, resulting in a single regime problem. For strains

greater than the elastic buckling strain but less than the densified strain, the foam
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is assumed to be a two regime problem with both a linear-elastic region and a

densified region (Fig. 4.2). The corresponding values of the elastic buckling

strain and the densified strain are based on the values presented in Chapter 3.

Furthermore, using the models presented in Chapter 3, the volume fraction of the

cells remaining in the linear elastic regime and the densified regime as well as

the local permeability of the foam can be determined for any strain.

4.2.2 Flow in Porous Media

The flow of highly viscous Newtonian fluids in low density, open-cell foam with

small cell sizes (typically less than 500 microns) is dominated by viscous forces

for nearly all achievable strain rates. Therefore, the model presented in this

analysis only considers flows in which the viscous effects dominate the inertial

effects. The Reynolds number Re, a measure of the inertial forces to the viscous

forces, can be used to determine where this model is applicable. A characteristic

pore Reynolds number based on the average diameter of a pore d, and average

relative velocity of the fluid with respect to the foam through that pore V, is

given by

Re = pVd (4.1)

Based on an analytical study, Comiti et al. (2000) proposed a transition from the

viscous dominated regime to the inertial dominated regime at a critical pore

Reynolds number of Re* = 0.83 for flow through low-density, porous media.

Therefore, the model presented in this analysis is taken to be applicable for Re <<

1 when viscous forces dominate. Based on a transition number of Re = 1, the
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maximum strain rate for which this analysis accurately models the flow of a

highly viscous fluid in open-cell foam can be determined. The experimental

results presented in this analysis consist of dynamic compression glycerol-filled,

reticulated foam with an approximate radius and average cell diameter of 12.7

mm and 235 glm, respectively. At 23oC the density and viscosity of glycerol are

taken to be p = 1260 kg/m3 and p = 1.1 Pas, respectively. The maximum strain

rate for which the flow will remain in the viscous regime is found to be

approximately 600 s-1. The maximum strain rate of the foam specimens in the

experiments presented is 10 s-1, which thus lies well within the viscous

dominated regime.

4.3 Analysis

4.3.1 Fluid Contribution to the Stress-Strain Response

A comprehensive model for the contribution of the fluid to the stress-strain

response of fluid-filled, elastomeric foam under dynamic compression can be

developed by extending the model for the permeability of open-cell foam under

compressive strain, presented in Chapter 3. We consider the case of axial

compression of a cylindrical foam specimen where the lower plate is fixed and

the upper plate is moving with the magnitude of the velocity given by Ih k, or the

time rate of change of the height of the foam specimen as shown in Fig. 4.1 and

Fig. 4.2a. The initial height and radius of the specimen are taken to be ho and R.

As the foam undergoes compression, the radius of the specimen remains

unchanged while the current height is given as h(t). This analysis considers both

the response at strains less than the elastic buckling strain and the response at

strains greater than the elastic buckling strain but less than the densified strain.
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For strains less than the elastic buckling strain, the entire specimen is assumed to

be uniform and completely within the linear elastic regime, resulting in a single

regime problem (Fig. 4.1). For strains greater than the elastic buckling strain but

less than the densified strain, the foam is assumed to coexist in two states with

both an linear-elastic regime and a densified regime (Fig. 4.2a-4.2b).

4.3.2 Single Regime Model s < Fel*

We first consider the single regime problem with strain less than the elastic

buckling strain. As the upper plate compresses the foam, the foam is assumed to

deform uniformly. The relative velocity of the fluid with respect to the foam in

the compression direction (z-direction) is taken to be zero throughout the foam.

Any non-zero relative velocity in the z-direction would require flow up a

pressure gradient in the radial direction, which violates Darcy's law. Therefore,

neglecting gravitational effects, the pressure gradient throughout the foam in the

z-direction is taken to be zero. Thus, the radial velocity of the fluid in the linear-

elastic regime Ve, is uniform in the z-direction and given as (after Gibson and

Ashby, 1997)

-hr
Ve = for 0• • _ (4.2)2hO

where # is the porosity of the foam, r is the radial distance, h is given by h(t) =

ho(1-e). According to Darcy's law the gradient of the pressure across the

specimen aP/ar for viscous Newtonian flow in the r-direction is given as (Darcy,

1856)
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P -- V for O<<e _( e (4.3)
8r k,

where the linear-elastic permeability ke, is taken to be isotropic. Combining Eq.

(4.2) and Eq. (4.3) and integrating gives

P* 4=hke ( -R2) for 0 <c!E e (4.4)

where P* is the local pressure minus the atmospheric pressure at the free surface

of the foam. Neglecting inertial effects, a force balance can be used to find an

equivalent average uniform stress distribution cr, applied by the fluid to the top

compression plate by integrating the pressure field over the radius giving

-,U]hR 2

S= 8hk for 0 < _<e; (4.5)
f 8(Dhke

4.3.3 Bimodal Regime Model el*< 6 < Ed

For strains beyond the elastic buckling strain but less than the densified strain,

the cells of the foam are assumed to be either at the elastic buckling strain or at

the densified strain, corresponding to the bimodal regime model previously

discussed. The resulting pressure distribution in both regimes is more complex

than in the single regime problem and can be solved by means of coupling two

boundary value problems. In formulating the boundary conditions for this

problem, a model for the behavior of the foam must be developed. Under axial

compression, densified bands are commonly observed to initiate in the center of

the sample. Our model assumes the densified regime initiates in the center of the
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foam and symmetrically propagates toward the plates through the elastic

buckling of one layer of foam (of roughly one cell thickness) at a time as shown

in Fig. 4.2a. The foam in the elastic regime below the densified regime (Region 1)

is stationary while the foam in the elastic regime above the densified regime

(Region 3) is moving downward with the upper plate at velocity IJ• as shown in

Fig. 4.2a. Therefore, the densified regime (Region 2) is moving downward at

velocity ½ Ih ~. In the reference frame of the densified regime of the foam, the

problem can be viewed as a completely symmetric problem with the elastic

regimes (Region 1 and Region 3) of the foam moving toward the densified

regime, in opposite directions, at a speed of ½ I h 1. Since there is no flow across

the center of the densified regime, by symmetry, we analyze only the top half of

the foam in the reference frame of the densified regime as shown in Fig. 4.2b.

The problem is analyzed as two one-regime models with local reference height ½

he and 1/2 hda for the elastic and densified regimes, respectively, given as (Fig. 4.2)

he = Zh (4.6)

hd = dh (4.7)

The boundary conditions at the foam-plate interfaces are no flux conditions since

the relative velocity of the fluid with respect to the foam is zero. Therefore,

according to Darcy's law, the corresponding pressure gradients in the z-direction

are zero at both foam-plate interfaces. Boundary conditions applied at the

interface between the two regimes are given. The pressure field is taken to be

continuous between the two regimes with a discontinuity in the pressure

gradient, corresponding to the change in the permeability. In addition, a mass
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flux corresponding to the fluid exiting the layer undergoing elastic buckling

enters both the linear-elastic and the densified regimes at the interface between

the two regimes. We note the cross-sectional surface area of the layer

undergoing elastic buckling, between the linear-elastic regime and the densified

regime, is much greater than the perimeter surface area of the buckling layer at

the free surface of the foam. Therefore, we neglect the radial flow in the buckling

layer out of the foam and assume all of the fluid exiting the layer undergoing

elastic buckling flows vertically into either the elastic or the densified regimes.

The boundary conditions for the two regime problem are given as

Pd = P = 0 on r = R (4.8a)

BPd=d = 0 on z = 0 (4.8b)
az

P-= 0 on z = h (4.8c)
az

=aP-(l-) on z = hd (4.8d)
az 2 kd

-a = -ao-- on z = hd (4.8e)
az 2ke;

Pd = Pe1 on z = hd  (4.8f)

where a, determined below, is a constant representing the fraction of the flux

into the linear-elastic regime, Pe* is the pressure in the linear-elastic regime, and

Pd* is the pressure in the densified regime.
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As before, Darcy's law is assumed to govern the flow of a viscous Newtonian

fluid throughout each regime of the foam and is given as (Darcy, 1856)

VP - (4.9)
k

where V is once again the relative velocity of the fluid with respect to the foam.

Taking the divergence of both sides of Eq. (4.9), applying continuity for an

incompressible Newtonian fluid, and considering there is no variation in the

velocity of the foam within each region gives Laplace's equation

V2 2P* 1 a 2 * P 2P *  -puV V
V2P= +-- + + p -0. (4.10)

ar 2  r 8r r 2 92 z2  k

A well known method of solving Laplace's equation in cylindrical coordinates is

separation of variables. We assume the pressure is not a function of the

circumferential direction (0-direction) and propose a solution in the form

P* = R(r)Z(z). (4.11)

Substituting Eq. (4.11) into Eq. (4.10) and dividing through by R(r)Z(z) gives

1 a2R(r) 1 aR(r) 1 a2Z(z)+ + = 0. (4.12)
R(r) ar2  rR(r) ar Z(z) az2

Since the first two terms are functions of r only and the last term is a function of z

only, Eq. (4.12) can be broken up into the following two equations:
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1 d2Z(z)
= -2A (4.13)

Z(z) dz2

1 d2R(r) 1 dR(r)+ = A (4.14)
R(r) dr2  rR(r) dr

where A is a constant. Equation (4.13) is a standard second order differential

equation, which is readily solved. Equation (4.14) is one form of Bessel's

equation and solutions can be expressed in terms of Bessel functions. Combining

these solutions, the solution to Laplace's equation for the pressure distribution in

either regime of the foam is given as

00

P*= (Aez + B,,e-kz ) J (kr) (4.15)
n=l

where the index i represents either the elastic regime or the densified regime with

indices e and d, respectively, Ani, Bni, and kn are constants, and Jo is a zero order

Bessel function of the first kind.

Applying both the Neumann and Dirichlet boundary conditions in Eq. (4.8) to

the solution to Laplace's equation given in Eq. (4.15), the pressure distribution

throughout the foam can be determined. It is recognized that each term in Eq.

(4.15) will satisfy the free surface boundary condition given by Eq. (4.8a) if

Jo(k,R) = 0. (4.16)
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Equation (4.16) therefore gives the values of k,, corresponding to the zeros of the

zero order Bessel function. The values can be determined from a table of Bessel

functions. Typically these solutions converge very quickly, so we assume only

the first 5 terms of the infinite series are necessary for most values of h/R. The

corresponding values of k, are given as

2.405 5.520 8.645 11.792 14.931
k, = ; k2 = ;I k3= f k4- , k- = (4.17)

R R R R R

To solve for the unknowns Ani and Bni, the following orthogonality principle of

zero order Bessel functions is utilized:

R

JrJo(k,r)Jo(kmr)dr =0 for nt m (4.18)
0

where Jo(knr) is orthogonal to Jo(kmr). Applying the boundary conditions given by

Eq. (4.8b-4.8e) to Eq. (4.15), multiplying each side by r times a zero order Bessel

function, and integrating, allows for each coefficients Ani and Bni to be determined

by the following set of equations:

R

(Andk, - Bdk. ) rJ(kr)dr = 0 (4.19)
0

Aneekne2 Bnekne 2 k )frJ(kr)dr = 0 (4.20)

1,(hd 2kkh
(Anddkfe 2 

h-Bndkend 2 kr)n dr = frJo (knr) dr (4.21)
0 d 0
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Anekne 2knhd ke knhd rJ2, (knr)dr = JrJ0 (kr)dr. (4.22)

Solving Eq. (4.19)-Eq. (4.22) gives the coefficients Ani and Bni as

An = 2-(1- a)puhRJ1 (knR) (4.23)
2kd(k,R) 2 sinh( khd)[J2 (k,R) + J2 (k,,R)]

Ane apyRJ, (k,R)
e k; (k,R) 2(1-eknhe ) [J,2 (kR) + J2 (k,R)]

Bd -(1- a), uhRJ (kR)
" 2kd (k,R) 2 sinh(½ k,hd) J,2(kR) + J2 (kR)]

Bne = apRJ (kR)eknhe
Ske, (k,R)2 (1- ekhe ) J2 (kR) + J?2 (k,R)]

where Ji(knR) is a first order Bessel function. Substituting Eq. (4.23) - Eq. (4.26)

into Eq. (4.15) and applying Eq. (4.16) gives the adjusted pressure distribution in

both the densified regime and the elastic regime as

*. -(1- a)puhR cosh(k,z)Jo (kr)
Pd Z d (4.27)

n=1 kd(k,R)2 sinh( kfhd)J (k,R) e• _ • Ed (4.27)
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R(e z-hd) ek(h-z+hd))J(k

Pe* = E IE: < d (4.28)P,= k' (kR) 2 (-eknhe ) J(kR) 6d (4.28)

hd z ih

Applying the remaining boundary condition in Eq. (4.8f), the constant a can be

determined numerically. Since the terms of the pressure distribution given in Eq.

(4.27) and Eq. (4.28) decay rapidly, a good approximation to a can be given using

only the first term in the series

ke• tanh(½kkhe)a = (4.29)ke' tanh(½ klhe) + kd tanh(½ klhd)

The fraction of the flux into the linear-elastic regime a, as a function of strain is

given in Fig. 4.3. A force balance can be used to find an equivalent uniform

stress distribution oy, applied to the top compression plate by integrating the

pressure field in the elastic regime at z = 1/2h over the radius as follows:

R

a7R2= e Ih_ 2;rdr eI :6 < 6 d (4.30a)
o 2

oafR 2 = (k,,r)dr e It 6 Ed (4.30b)

2 4apkhR
°'fR2 R )2 (- k ,(½ h , ()

n={ k, (kR)2 (e e ) -e(k,,R)
'el -6 6 d (4.30c)
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-2auhR O 1
a- = hR __E__ _Ed (4.30d)

S k~ n=, (kR)3 sinh( k,h,)

Equation (4.30d) is taken to be the contribution of the fluid to the stress-strain

response of foam filled with a Newtonian fluid under dynamic compression in

the two regime model. The dependence of the response given by Eq. (4.30d) on

strain is built in through the terms a and he, which are functions of the volume

fraction of the cells remaining in the linear-elastic and densified regimes, and

therefore, are functions of the strain.

4.3.4 The Effect of Tortuous and Anisotropic Foam Microstructure

A discrepancy is typically found between analytical models for flow through

porous media and experimental measurements. Models are often adjusted by an

empirical constant, which accounts for the tortuous shape of the foam

microstructure (Comiti et al., 1988). Similarly, empirical constants have also been

used to account for the tortuous microstructure of foam in studies of heat

transfer through porous media. Glicksman (1994) determined an efficiency

factor of 2/3 accounted for the effective loss in the thermal conductivity of porous

media. Furthermore, it is known that the permeability of low-density, open-cell

foam is slightly anisotropic, which may also lead to deviations of the model

presented in this analysis from experimental data. The combination of these

effects necessitates the addition of empirical constant C to the model. Therefore,

we propose the stress contribution of a Newtonian fluid to the response of a

fluid-filled foam under dynamic loading is given by

-CpItR 2

-, = e, (4.31)S8bhke
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-2CauphR 1(4.32)
0- = -'ce, (4.32)f- kh,S k, =1 (k,R)3 sinh( k,,h)

where C is a single constant to be determined by regression from experiments.

4.3.5 Squeezing Flow between Parallel Plates

We now proceed to develop a more tractable model for the dynamic response of

fluid-filled foam, which can be used to approximate the boundary value model

in the lubrication limit, where the aspect ratio of the foam is much greater than

unity. We first consider a model for squeezing flow between two parallel plates

in the absence of an open-cell foam where the lower plate is fixed and the upper

plate is moving similar to Fig. 4.1. The flow is assumed to be incompressible and

locally fully-developed with no variation in the circumferential direction (9-

direction). The gravitational effects are assumed to be negligible. Since the flow

is assumed to be dominated by viscous forces, inertial effects can also be

neglected. The following velocity profiles are assumed:

V, = V, (r, z); Vz = V (z); Vo = 0 (4.33)

where Vr, Vz, and Vo are the velocity components in the radial (r), axial (z) and

circumferential (0) directions, respectively. Coupling the equation of continuity

with the full Navier-Stokes equations of motion, this problem is readily solved.

The equation of continuity and the Navier-Stokes equations of motion in the

radial and axial directions reduce to
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1 a(rJ§) av,+ =0
r Br 8z

aia a2v 0
yrrr O r z2 ar

r - - Or . . .-
r r O r r z 2 Oz

(r-direction) (4.35)

(z-direction) (4.36)

where P is the local pressure within the fluid. To solve Eq. (4.34-4.36) we initially

impose a lubrication approximation in which the square of the ratio of the

characteristic dimension in the radial flow direction to that in the axial

compression direction is assumed to be much greater than unity, (R/h)2 > 1. The

resulting equations of motion are given as

•z2 Or

aP
= - 0 .

(r-direction) (4.37)

(z-direction) (4.38)

The corresponding boundary conditions are

zL'h= 0; =0; V, z== 0; VzIz=h=•; PIrR=Pa;
Oz Z=Y 

=

(4.39)
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where Pa is the atmospheric pressure on the free surface, and the magnitude of

the velocity of the top plate is given by I h . Solving Eq. (4.37-4.38) gives the

pressure profile as

P- Pa= 3h-(r2R2) (4.40)

The pressure distribution is found to be independent of the z- and 9-directions.

We propose that the pressure field given by Eq. (4.40) for squeezing, viscous flow

is similar to the pressure field for squeezing flow in a low-density foam.

Therefore, in the lubrication limit, the pressure field for an incompressible,

viscous Newtonian flow through low-density foam is assumed to be

independent of the z- and O-directions.

4.3.6 Stress-Strain Response in the Lubrication Limit

The model of viscous squeezing flow between two parallel plates described

above does not completely describe the flow field for axial compression of a

fluid-filled foam because of the fluid-structure-interaction and the non-linear

behavior of the foam under deformation; however, we assume that the pressure

field of the parallel plate model is representative of that found in a lubrication

model of a fluid-filled foam. Therefore, we take the pressure field in axially

compressed fluid-filled foam to be independent of the z- and 9-directions.

Using this assumption, we extend the model given in Chapter 3 for reticulated

foam under compressive strain. We consider the case of axial compression of a

cylindrical foam specimen where the characteristic radius is much greater than
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the characteristic height. The initial radius and height of the specimen are taken

to be R and ho. As the foam undergoes compression the radius of the specimen

remains unchanged while the instantaneous height is given as h(t). Compression

occurs between two plates where the lower plate is assumed to be fixed and the

magnitude of the velocity of the upper plate is h I as shown in Fig. 4.1-4.2. This

analysis considers both the response at strains less than the elastic buckling strain

and the response at strains greater than the elastic buckling strain but less than

the densified strain. We first consider the single regime problem with strain less

than the elastic buckling strain. The average radial velocity of the fluid in the

elastic regime at any point in the specimen Ve, is given as (after Gibson and

Ashby, 1997)

Ve O• E0 E* (4.41)2h el

According to Darcy's law the gradient of the pressure across the specimen 8P/ar

for viscous Newtonian flow is given as (Darcy, 1856)

oP -jiV,op = -PV 0 _ < c (4.42)
Br k,

Combining Eq. (4.41) and Eq. (4.42) and integrating gives

P-P= 4h ( r 2 R2) < ee, (4.43)4 hk(
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Neglecting inertial effects, a force balance can be used to find an equivalent

uniform stress distribution of, applied to the top compression plate by

integrating the pressure field over the radius giving

- -uhR2

S86hk,
0 e_6 cel (4.44)

For strains beyond the elastic buckling strain but less than the densified strain,

the model is taken to be a two regime model as shown in Fig. 4.2. Based on the

previous assumptions regarding no axial variations in the pressure field, the

pressure drop from the any radius r to the outer radius R is assumed to be the

same in both the elastic region and the densified region. Coupling this relation

between the pressure drops in each region with Eq. (4.42) gives

V V

k;, kd
Lel <- Ed (4.45)

where Vd is the velocity of the fluid at any radius r in the densified region. Using

Eq. (4.45), mass conservation about a cylindrical volume at any given r gives

2hX(exk:, +Xdkd)
•~e -e Ed (4.46)

Coupling Darcy's law with Eq. (4.46), gives the pressure gradient across the

specimen 8P/8r for viscous Newtonian flow (Darcy, 1856)
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r 2h(XZek;l + Xdkd)
•E1 < -e Ed (4.47)

Integrating Eq. (4.47) and applying the atmospheric pressure boundary condition

at the free surface gives

P-P,, = + (r2 -R2 )
4h(Xekel +Xdkd

6ei E-- d (4.48)

As before, neglecting inertial effects, a force balance can be used to find an

equivalent uniform stress distribution rf, applied to the top compression plate by

integrating the pressure field over the radius giving

-a= _uhR
2

8hXe(x1 kel + Xd kd)
EI < -e Ed (4.49)

4.3.7 Convergence of the Boundary Value Model to the Lubrication Model

In this analysis, we consider the convergence of the boundary value model to the

lubrication model in the limit of large R/h. A parametric study is used to

compare the model given by Eq. (4.31) and Eq. (4.32) for varying ratios of R/h to

the lubrication model given by Eq. (4.44) and Eq. (4.49). The models can be

readily compared if each model is rewritten in the following form

0f, = -C, Os 6 •e (4.50)
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af = -C,•( hks 6  • 6Ed (4.51)

where C1 is the dimensionless coefficient corresponding to the numerically

evaluated portion of each model, including the empirically derived coefficient C,

which will be determined in the experimental section of this chapter. For strains

less than the elastic buckling strain, the coefficient C1 for the model presented in

this analysis is independent of the aspect ratio of the specimen. Therefore, for

strains less than the elastic buckling strain, the model presented in this analysis is

identical to that presented in the lubrication analysis for all aspect ratios of the

foam. Thus, there is no difference in the coefficients C1, for the lubrication and

boundary value models in this regime. However, for strains greater than the

elastic buckling strain but less than the densified strain, the coefficient Ci for the

boundary value model is a function of the aspect ratio of the foam and the strain

while that for the lubrication model is only a function of strain. Therefore, the

convergence of this bimodal model toward the lubrication model, with

increasing aspect ratio, is presented for three different strains in Table 4.1. To

determine the coefficient C1 for both the bimodal model presented in this

analysis and the lubrication model, the necessary parameters are evaluated

numerically based on the data. As given in Chapter 3, the permeability of the

foam at the densified strain is taken to be 20% of that of the foam at the elastic

buckling strain, kd = 0.20 ke*, the elastic buckling strain is taken to be &e* = 0.05;

the densified strain is taken to be &d = 0.60; the porosity is taken to be # = 0.97.
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4.3.8 Solid Matrix Contribution to the Stress-Strain Response

To accurately assess the contribution of the fluid to the dynamic response of the

fluid-filled foam, we must also determine the contribution of the solid foam

matrix to the stress-strain response. The models given in Eq. (2.1) - Eq. (2.6) are

useful in determining the contribution of the foam matrix to the overall dynamic

response of fluid-filled foam. All of the parameters required for evaluating those

equations are readily acquired, except for the modulus of the foam. Gibson and

Ashby (1997) present a model for the quasi-static, effective modulus of the foam,

which depends on the modulus of the solid from which the foam is made Es, and

the relative density of the foam:

E*= = Es P (4.53)

Based on a material modulus Es, of 150 MPa and a relative density of 0.03, the

Gibson and Ashby model predicts a quasi-static, effective foam modulus E*, of

0.135 MPa for open-cell, flexible, polyurethane foam. However, the effective

modulus of the foam is known to depend strongly on the strain rate due to

viscoelastic effects in the quasi-static loading regime and due to micro-inertial

effects and localization phenomenon in the high-rate loading regime. Since no

known analytical model exists to assess the magnitude of these effects on the

effective modulus, a finite element analysis using ADINA is performed based on

the tetrakaidecahedral cell presented in Chapter 3. This analysis is useful in

determining an order of magnitude estimation of the contribution of micro-

inertial effects to the effective modulus of foam. We first examine the accuracy of

the finite element model by performing a quasi-static analysis and comparing the

resulting quasi-static modulus to that given by the Gibson and Ashby model (Eq.
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4.53). Then a fully dynamic analysis is performed, to assess the effect of the

loading rate on the effective modulus.

The model of a tetrakaidecahedral cell presented in Chapter 3 is used to

determine the quasi-static modulus in the linear-elastic regime with an 8

subdivision x 2 node meshing scheme. To determine the stress the sum of the

four point loads is divided by the cross-sectional area of the foam over which the

load is applied on a macroscopic basis. This equivalent cross-sectional area of a

tetrakaidecahedral cell is 5.828 L2, where L is the length of one strut. The finite

element model results in the stress-strain plot given in Fig. 4.4 for a

tetrakaidecahedron under quasi-static loading. The calculated effective modulus

is determined to be 0.130 MPa, which is supported by the Gibson and Ashby

prediction of 0.135 MPa. Furthermore, a meshing efficiency study was

performed to assess the quality of meshing in the finite element simulation. The

8x2 meshing scheme was found to be more than sufficient for the purposes of

this analysis, generating the largest displacement of the meshes considered. The

largest displacement ensures this structure has the most degrees of freedom,

allowing the model to behave more like a continuum and more accurately

represent the actual behavior of the structure.

Considering the finite element simulation accurately models the quasi-static

scenario, we extend this analysis to the dynamic loading scenario. The first step

in a dynamic analysis is to determine the natural frequencies of the structure

(without consideration of loading). The lowest natural frequency of the

tetrakaidecahedral structure is found to be 4.5x10 4 rad/sec. Using a highly stable,

implicit Newmark method, a dynamic analysis was carried out over 20 time

steps up to a strain of 0.03 to determine the modulus as a function of the load
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rate. The time step is taken to be the period of the lowest natural frequency over

20, giving approximately 7x10 6s. To ensure the period of the applied loading is

greater than the natural period of the structure, the applied loading was

analyzed over three periods of 1x10-5 s, lx10-4 s, and x10-3 s. The results for the

effective modulus of the tetrakaidecahedral cell as a function of the loading

period are shown in Table 4.2. As the strain rate is decreased, the effective

modulus converges toward a value, which is very close to the static modulus, as

expected. This convergence is expected since it is known that the deviation from

the static response decreases substantially as the frequency of loading converges

toward the first natural frequency of the structure. As the frequency of the load

rate is increased (strain rate of the foam is increased), the effective modulus is

found to increase due to micro-inertial effects. The change in the effective

modulus with increasing strain rate is evident, but not dramatic, increasing

approximately 50% over two orders of magnitude in the strain rate. Therefore,

the dynamic effects do not result in dramatic changes in the effective modulus of

the foam, especially over the loading rates considered in this analysis; however,

they are significant enough that they should not be neglected. From this finite

element analysis it is apparent that the effective modulus of low-density, open-

cell, polyurethane foam should be on the same order of magnitude over several

orders of magnitude in strain rate. This finding is useful in supporting the

results presented in the experimental section of this chapter where a simple

method to account for the affect of dynamic loading on the effective modulus is

developed (Section 4.4.4).
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4.4 Experiments

4.4.1 Materials

Specimens of open-cell, flexible, polyester-based polyurethane foams (New

Dimension Industries, Moonachie, NJ), with nominal cell diameters of 175 jPm,

210 ptm, and 235 pm based on manufacturers specifications (corresponding to

grades of 90, 80, and 70 pores per inch (ppi), respectively) were used in the tests.

The densities of the foams ranged from 0.0318 to 0.0322 g/cm3 . Based on the

manufacturer's value of the density of the solid polyurethane (p = 1.078 g/cm3)

the relative density of the foams was taken to be p*o/lp 0.03. Using Eq. (1.4) the

corresponding fully densified strain, is determined to be ED = 0.958. The foam

was cut into uniform cylindrical specimens with diameter and height, D = 25.4

mm and h = 12.8 mm, respectively. The dimensions of each sample were

measured using a digital caliper accurate to within 0.01 mm. The Newtonian

fluid used in these experiments is glycerol (VWR, West Chester, PA) where the

density and viscosity are measured to be p = 1260 kg/m3 and p = 1.1 Pa-s at 23 oC.

4.4.2 Experimental Testing Apparatuses

To examine a large range of strain rates (several orders of magnitude), both a

Texture Analyzer (TA XT Plus, Stable Microsystems, Hamilton, MA) and a

servohydraulic Instron testing machine (Instron Model 1321, Instron Corp.,

Canton, MA) were used in these experiments. As previously discussed in

Chapter 3.4.2 the Texture Analyzer is commonly used for 'low strain rate'

experiments (10-6-100 s-1) with corresponding compression velocity ranges from

10-2 mm/s to 101 mm/s. The load cell of the Texture Analyzer can measure up to a

force of 50 kg with a resolution of 0.1 g, and the vertical displacement is
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determined with a resolution of 10-3 mm. The data acquisition system used was

the Texture Exponent 32 code, which acquires both loading and positioning

information for each test at a rate of 1 sample per second. The Instron testing

machine is typically used for 'mid-range strain rates' (10-3-101 s-1) with

corresponding velocities of approximately 10-2 to 102 mm/s. Two Instron load

cells were used, depending on the expected output load, for higher resolution of

the data. The load cells were a 10,000 lb load cell and a 1 kN load cell with a load

resolution of 0.1 N and a distance resolution 0.01 mm. The maximum cross-head

speed of the Instron is 250 mm/s. The data acquisition system utilized Labview

software and was able to take data at a rate in excess of 1000 samples per second.

4.4.3 Experimental Procedure

Prior to testing, each sample was saturated with glycerol. Since the viscosity of

glycerol is a strong function of temperature, it was heated to 400C before

saturation to aid in the saturation process (Incufridge, RS-IF-202, Revolutionary

Science, Lindstrom, MN). Samples were axially compressed by machine, while

submerged in glycerol, and uncompressed at 1 mm/s. This process was repeated

a minimum of three times while flipping the samples in between each

compression cycle to remove as much air from the fluid-filled foam as possible.

Hager and Craig (1992) demonstrated the indentation force deflection loss (a

measure of the load bearing capability of flexible polyurethane foam) of

polyurethane foam compressed to 0.75 strain for a short duration of time is

almost completely recoverable. Therefore, a compressive strain of 0.75 was

selected for saturating the sample to minimize the microstructural damage

caused by the filling process. After saturation, the fluid-filled foam was brought

to a steady temperature of 23oC and allowed to recover (Incufridge, RS-IF-202,
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Revolutionary Science, Lindstrom, MN). Based on data for the recovery of low-

density polyurethane foam after 0.75 compression presented by Hager and Craig

(1992), a recovery time of 2 hours was selected.

The compressive stress-strain response of each glycerol-filled specimen was

measured with the rise direction of the foam parallel to the direction of loading,

from 0 to 0.60 strain over a range of strain rates from 2 = 2.5x10-3 s-1 to 101 s-1. For

strain rates of ý = 1 s-' or less a Texture Analyzer was used at constant strain rate;

for strain rates greater than ý = 1 s-1 an Instron testing machine was used at

constant velocity. The samples were removed from the incufridge (Incufridge,

RS-IF-202, Revolutionary Science, Lindstrom, MN), which maintained the

temperature of the samples at 23.0oC ± 0.1oC, and tested immediately in an

environment also maintained at 23.OOC to ensure the glycerol retains nearly a

constant viscosity. Since the flow is assumed to be instantaneously fully

developed, the model presented in this analysis is applicable to both constant

velocity and constant strain rate loading. Experimental results are presented for

144 specimens in this chapter, spanning 3 foam grades, and several orders of

magnitude in strain rate.

4.4.4 Experimental Results

A typical plots of the stress-strain response of 90 ppi foam filled with glycerol

loaded at a constant strain rate of e = 0.01 s-1 is shown in Fig. 4.5. This strain rate

is assumed to most accurately represent quasi-static loading where the loading is

slow enough that the fluid is not expected to contribute significantly to the

response of the specimen, yet fast enough that viscoelastic effects in the foam are

negligible. Using Fig. 4.5, the parameters and constants governing the response
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of the foam structure, given in Chapter 2 (Eq. (2.1) - Eq. (2.6)), can be determined.

A detailed discussion of the microstructural behavior of open-cell foam under

compressive loading in the direction of the rise direction of the foam is given by

Gong and Kyriakides (2005). They discuss the complex local and global buckling

behavior of low-density, open-cell foam. We consider a simplified model for the

elastic buckling strain a*, taken to be the average value of the strain at which the

behavior of the foam begins to deviate from the linear-elastic regime and the

strain corresponding to the peak stress prior to the plateau region as shown in

Fig. 4.5. The elastic buckling stress oei, is taken to be the stress at the elastic

buckling strain &a*. As previously discussed, ep* corresponds to the strain at

which the stress at the end of the plateau region is equal to the elastic buckling

stress as shown in Fig. 4.5. The values for the elastic buckling strain a&*, the

strain at which the stress at the end of the plateau stress is equal to the elastic

buckling stress &*, and the corresponding constant are provided for grades of 70,

80, and 90 ppi foam in Table 4.3. The elastic buckling strains correspond well

with previous literature on low-density foams (Gibson and Ashby, 1997).

The final unknown parameter in the model for the response of the saturated

foam structure given in Chapter 2 (Eq. (2.1a)) is the effective modulus, E*. As

previously discussed, the effective modulus of the saturated foam is known to

depend strongly on the strain rate. In the quasi-static loading regime, the

effective modulus depends on the viscoelastic effects, while in the high-rate

loading regime, it depends on micro-inertial effects and localization

phenomenon. Based on the finite element simulation in Section 4.3.8, it is

determined that the dynamic effects do not have a dramatic effect on the

effective modulus used in Eq. (2.1) - Eq. (2.2), but they should not be neglected.

A simple way to account for the dynamic effects on the effective modulus of the
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fluid-filled foam is to develop an empirical model by measuring the modulus

over a range of strain rates where the fluid contribution is considered to be

negligible. Using this technique, an empirical model for the effective modulus of

the foam saturated with a polar fluid E*, can be found. This effective modulus

can then be evaluated in Eq. (2.2) to determine the dynamic contribution to the

stress response from the foam matrix. The modulus E*, is found to be well

approximated by E* = X ln( / o) + Y over the strain rates presented in this

analysis where i o is taken to be i o = 1 s-1 and the constants X and Y are provided

in Table 4.3. Based on Eq. (2.2) - Eq. (2.4) and the parameters given in Table 4.3,

the contribution of the foam matrix to the total dynamic response of fluid-filled

foam can be determined.

To plot the fluid model, the permeabilities at the elastic buckling strain and at the

densified strain are required. These values are obtained using the equations for

the local permeability supplied in Chapter 3 and the corresponding intrinsic

permeability at zero strain ko. It has been observed that large strain compression

causes microstructural damage to low-density foam, altering the permeability at

zero strain (Hilyard and Collier, 1987). Therefore, the permeability at zero strain

for each specimen was measured after the specimens were subjected to the

compressive filling technique used for saturating the foam with glycerol. The

permeability was measured using the technique given in Chapter 3. Table 4.4

provides the measured permeability at zero strain and the corresponding

permeabilities utilized in modeling the stress-strain response.

A typical plot of the stress-strain response for 70 ppi foam filled with glycerol

loaded at a constant strain rate of 6 = 1.0 s-1 is given in Fig. 4.6. The actual
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response of the fluid-filled foam is plotted along with the model for the total

contribution to the stress-strain response, resulting from the combination of the

solid contribution given in Chapter 2 and the fluid contribution given by Eq.

(4.31-4.32). The solid and fluid contributions are also given separately to

demonstrate their relative contributions.

To fit the constant C, given in Eq. (4.31) and Eq. (4.32), a measure of the goodness

of fit is established. The measure for the goodness of fit R2, is taken to be the sum

of the squares of the difference between the experimental values and the average

experimental value divided by the sum of the squares of the difference between

the experimental values and the predicted values. This measure of the goodness

of fit was maximized, over the sample of experimental data discussed in the

following sections, to establish the empirical constant.

In Fig. 4.7 we show the stress response of 70 ppi foam filled with glycerol at e=

0.60 strain, corresponding to an aspect ratio of 2.5, plotted against the strain rate.

Each data point is the average of three experiments with error bars

corresponding to 1 standard deviation. The error bars for most data points are

not apparent since they are smaller than the size of the data points. The fluid and

solid contributions of the stress, given in Chapter 2 and Eq. (4.32), respectively,

are plotted separately showing their relative contributions. In Fig. 4.8 we show

the stress at 6= 0.30 strain and e= 0.60 strain, corresponding to aspect ratios of

1.4 and 2.5, respectively, for all three grades of reticulated foam filled with

glycerol plotted against the strain rate. Each data point is again the average of

three experiments with error bars corresponding to 1 standard deviation. The

total contribution to the stress-strain response, resulting from the combination of
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the solid contribution and the fluid contribution given by Eq. (4.32), is also

shown in Fig. 4.8.

All of the data used to generate the plots in Fig. 4.8 is used to determine the

empirical constant C. Using each data point along the 0.3 and 0.6 strain curves,

consisting of the average of three experimental points, for all three foam grades,

the empirical constant is determined to be C = 0.59. Based on the data in Fig. 4.8,

the R2 values for each grade of foam at both = 0.30 and e= 0.60 are given in

Table 4.5; it is clear that the model describes the data well up to the densified

strain for a range of foam grades and strain rates as shown in Fig. 4.8. The

empirical constant C, which primarily accounts for the tortuous and anisotropic

microstructure of the foam, is independent of all of the parameters considered in

this analysis. Fig. 4.8 supports this initial assumption, demonstrating that C is

independent of the cell-size of low-density foam, the aspect ratio of the foam, the

strain imposed on the foam, and the strain rate applied to the foam. Additional

experimental studies, not presented here, varying the aspect ratio of the foam

specimen also support this proposal. Using C =0.59, the model given by Eq.

(4.32) accurately describes data for fluid-filled foam samples over several orders

of magnitude of strain rate with an aspect ratio of approximately 10 at e= 0.60.

4.5 Discussion

A boundary value model for the contribution of viscous Newtonian fluid flow to

the stress-strain response of a fluid-filled foam under dynamic compression is

given by Eq. (4.31) and Eq. (4.32). The model governing viscous flow in the

bimodal regime of the foam is given in the form of an infinite series of Bessel
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functions. As expected, this solution converges rapidly with an increasing

number of terms, such that the boundary value model is readily evaluated

numerically with only the first few terms. Based on the permeability studies in

Chapter 3, the models presented in this analysis are taken to be applicable for all

grades of low-density foam and independent of whether the orientation of the

rise direction of the foam is perpendicular or parallel to the direction of fluid

flow. As previously discussed, the models in this analysis assume that the flow

is dominated by viscous forces, which is shown to be the case for nearly all

achievable strain rates. The boundary value model further assumes an

instantaneous change in the velocity field of the foam at the elastic buckling

strain &*, which is the strain at which the model transitions from the single

regime to the bimodal regime. The transition behavior between these two

regimes is neglected, resulting in a small discontinuity in the stress response of

the boundary value model. However, as the aspect ratio of the foam R/h, is

increased, the effect of the assumed velocity field of the foam becomes negligible,

and the boundary value model rapidly approaches a continuous solution. In

addition, with increasing R/h, the bimodal model becomes independent of the

location of the densified bands of the foam.

The boundary value model presented in this analysis is found to describe the

experimental results presented in this chapter well for foam grades varying from

70 to 90 ppi and strain rates varying from ý = 2.5x10 -3 s-' to 101 s-1. All of the

strain rates in these experiments satisfy the viscous flow requirements of the

models with Re < 1. The maximum Reynolds number in the experiments was

found to be Re = 0.017, corresponding to strain rate of = 10 s-' in a 70 ppi foam

with average cell diameter of 235 pm.
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Fig. 4.6 shows the individual contributions of both the solid model and the

boundary value fluid model to the model of the total stress-strain response of 70

ppi fluid-filled foam. The total model fits the data well over the entire range of

interest, slightly overestimating the response at low strains. The previously

discussed discontinuity in the models near the buckling strain is evident but

shown to be negligible. Furthermore, Fig. 4.7-4.8 demonstrate that the boundary

value model is representative of the actual response of the fluid-filled foam at

both E= 0.30 and e= 0.60 for a range of foam grades and strain rates. The

standard deviations of nearly all of the data are observed to be very small; on the

order of the size of the data point. Overall, the goodness of fit measure given in

Table 4.5 demonstrates that the boundary value model fits the data well for all

grades of foam at both e= 0.30 and e= 0.60 for the range of strain rates

considered. The boundary value model also fits the data well over all strains less

than the densified strain, but the strains of e= 0.30 and e= 0.60 were selected as

representative strains. The empirical constant C = 0.59, primarily accounts for the

tortuous and anisotropic microstructure of the foam and is found to be similar to

the efficiency factor of 2/3 found by Glicksman (1994) in his study of the thermal

conductivity of porous media. Furthermore, the empirical constant is proposed

to be independent of all of the parameters considered in this analysis. Fig. 4.8

supports this proposal demonstrating that C is independent of the cell-size of

low-density foam, the aspect ratio of the foam, the strain of the foam, and the

strain rate of the foam.

While the boundary value model is readily evaluated and compared with

experimental results, extending it to a more advanced study of dynamic loading

of non-Newtonian fluid-filled foam is challenging. However, this model is

useful in validating the applicability of the more tractable lubrication model,
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which assumes the radius of the foam is much greater than the height of the

foam. The boundary value model is found to converge rapidly to within 5 % of

the lubrication model for aspect ratios greater than four (R/h >4). The small

discrepancy between the coefficient for the lubrication model and that for the

boundary value model may be attributed to the fact that the lubrication model

assumes a uniform radial flow, neglects pressure gradients in the z-direction,

and neglects the flow in the z-direction; whereas the boundary value model does

not make these assumptions.

Table 4.1 demonstrates that as R/h is increased, the numerical coefficients at 6=

0.05 and 6 = 0.30 strain increase asymptotically while the coefficient at 6 = 0.60

strain decreases asymptotically. At any given strain, the coefficient C1 is

governed primarily by the following two factors: the aspect ratio of the foam

sample and the distance between the collapsing band and the compression plate.

For all strains as R/h is decreased, the dependence of the stress, given by Eq.

(4.51), on R/h also decreases. In the limit of very small R/h, the stress contribution

of the fluid becomes completely independent of R/h.

At e= 0.60 strain the stress is independent of the distance between the collapsing

band and the compression plate (1/2 he) since the collapsing band is effectively

always at the interface between the compression plate and the foam. Therefore,

it is expected that as R/h decreases, the coefficient Ci would increase

proportionally, such that the stress is independent of R/h in the limit of very

small R/h. However, at 0.05 and 0.30 strain, the distance between the collapsing

band and the compression plate (½2 he) is also an important factor, which strongly

influences the coefficient C1. As R/h is decreased, the relative distance between

the fluid in the collapsing band and the compression plate (½ he) to that of the
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fluid in the collapsing band and the free surface (-R) increases; therefore, it is

expected that the overall stress on the compression plate would decrease. For

lower strains this effect is more pronounced since the band is effectively farther

from the compression plate, explaining the phenomenon observed in Table 4.1.

In the limit that R/h >> 1, the effect of the distance between the collapsing bands

and the compression plate is found to be inconsequential for all strains, and the

stress becomes independent of the vertical location of the collapsing bands.

Table 4.1 demonstrates the model presented in this analysis becomes

approximately independent of the aspect ratio of the foam for R/h > 4. As

expected, this indicates the lubrication model provides a good approximation to

the flow for a large range of R/h values. Overall, the convergence of the more

comprehensive boundary value model toward the lubrication model strongly

supports the validity of the lubrication approximation. This is an important

finding since the lubrication model is readily extended to more complex

analyses, such as the study of the stress-strain response and energy absorption

capabilities of a foam filled with a rate-dependent non-Newtonian fluid under

dynamic loading.

4.6 Conclusion

In this analysis, a comprehensive boundary value model for the contribution of

viscous Newtonian fluid flow to the stress-strain response of a fluid-filled,

elastomeric foam under dynamic compression is presented. Experimental results

strongly support this model for a variety of foam grades over several orders of

magnitude of strain rate. A simple explicit analytic solution based on a
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lubrication approximation is also presented. The robust boundary value model

is found to converge rapidly toward the lubrication model as the aspect ratio of

the foam is increased. This validation of the lubrication model is important since

it is more readily extended to more complex analyses, such as the dynamic

response of foam filled with a non-Newtonian fluid. Furthermore, using a

lubrication model, both the Newtonian and non-Newtonian models can be

extended to determine the energy absorption and impact resistance capabilities

of a fluid-filled foam under dynamic loading, which is critical to the

development of energy absorption equipment or armor capable of impeding

shockwaves.
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Tables

Table 4.1. Table of coefficients for the bimodal model as a function of the aspect
ratio of the foam and for the lubrication model, corresponding to Eq. (4.50) and

Eq. (4.51).

R/h C, (6 = 0.05) C, (. = 0.30) C, (E= 0.60)
1/2 0.031 0.111 0.827
1 0.057 0.127 0.501
2 0.069 0.132 0.404
4 0.072 0.133 0.378
8 0.073 0.133 0.371

16 0.074 0.133 0.369
32 0.074 0.133 0.368

Lubrication 0.076 0.137 0.380
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Table 4.2. Effective modulus of tetrakaidecahedral structure under various
loading rates using ADINA finite element software.

Period of Loading (sec) Effective Modulus (Pa)
1.00E-05 1.80E+05
1.00E-04 1.28E+05
1.00E-03 1.18E+05

170



Table 4.3. Static parameters and constants. The elastic buckling strain geI*, the
strain at which the stress begins to exceed the plateau stress ep*, and the

constants X, Y, and D for use in Eq. (2.2) - Eq. (2.6).

Foam Grade (ppi) e.,* ep* X(Pa) Y(Pa) D
70 0.058 0.55 1.07E+04 1.35E+05 2.3
80 0.049 0.54 1.28E+04 1.70E+05 2.3
90 0.057 0.55 1.09E+04 1.42E+05 2.3

171



Table 4.4. Permeability data for pre-compressed foam. The permeability at zero
strain ko, for each grade of foam is given after being subjected to the saturation

process. The permeabilities at the elastic buckling strain and densified strain are
determined using the equations supplied in Chapter 3.

Foam Grade (ppi) ko(lxl0" m2) k,*(lxl10 9 m 2) kAlxl10 9 2)

70 5.82 5.45 1.28

80 5.21 4.93 1.04

90 4.68 4.39 0.85
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Table 4.5. The measure for the goodness of fit of the boundary value model at
0.30 and 0.60 strain for each grade of foam.

R2

Foam Grade (ppi) 0.30 Strain 0.60 Strain
70 0.97 0.99
80 0.99 0.99
90 0.95 0.99
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Figure 4.1. One-regime model of fluid-filled cylindrical foam with strain less than
the elastic buckling strain, e < &I*. Absolute velocity of fluid ---. Relative

velocity of fluid with respect to velocity of foam ......... * .
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Figure 4.2b. Top symmetric half of bimodal-regime model of fluid-filled
cylindrical foam compressed beyond elastic buckling strain, &, * < e < Ed, in the

reference frame of the densified regime. Relative velocity of fluid with respect to
velocity of foam .......... .
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Figure 4.3. The fraction of the flux into the linear-elastic regime (a) as a function
of strain in the bimodal model.
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Figure 4.4. Stress-strain response of tetrakaidecahedral. The effective modulus of
the foam is given by the slope of the regression equation.
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Figure 4.5. Stress-strain response of 90 ppi foam filled with glycerol under a
quasi-static load rate of t = 1x10 -2 s-1 . The deviation from linear-elastic regime is

denoted by (i). The peak stress before the plateau region is denoted by (ii).

179

.00

-- --

I



20

oL 15

, 10

5

0

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Strain (mmlmm)

Figure 4.6. Stress plotted against strain for 70 ppi foam filled with glycerol
loaded at 1.0 s-1. Experimental data (*). Contribution to the stress response of

fluid model given by Eq. (4.31-4.32) ( - - - -), solid model given in
Chapter 2 ( - -- ), and the total model (-).
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Figure 4.7. Stress plotted against strain rate for 70 ppi foam filled with glycerol at
6 =0.60. The experimental data ( m ), the contribution to the stress response of

fluid model given by Eq. (4.31-4.32) ( - ) and solid model given in
Chapter 2 ( - - - ).
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Figure 4.8a. Stress plotted against strain rate for 70 ppi foam filled with glycerol.
The experimental data at 0.60 strain ( N ), and 0.30 strain (0 ), respectively.

Model given by combining the solid model with Eq. (4.32) at e = 0.30 (-) and
c =0.60 (- - -).
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Figure 4.8b. Stress plotted against strain rate for 80 ppi foam filled with glycerol.
The experimental data at 0.60 strain ( U ), and 0.30 strain ( ), respectively.

Model given by combining the solid model with Eq. (4.32) at e =0.30 (- ) and
E=0.60 (- - -).
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Figure 4.8c. Stress plotted against strain rate for 90 ppi foam filled with glycerol.
The experimental data at 0.60 strain ( U ), and 0.30 strain (0 ), respectively.

Model given by combining the solid model with Eq. (4.32) at E = 0.30 (-) and
e =0.60 (- - -).
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Supplement

The velocity profiles in the absence of foam for the analysis in section 4.3.5

Squeezing Flow between Parallel Plates are given as

V. (r, z) =3r _ 2 (4.53)h ( h (4.54)

V (r, z) = 6h ,• • (4.54)2 h 3 h
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5 Dynamic Compressive Response of Open-Cell Foam

Impregnated with a Non-Newtonian Fluid

5.1 Introduction

In this chapter, the response of a non-Newtonian fluid-filled (NNF-filled), low-

density, reticulated, elastomeric foam under dynamic axial compression is

studied. Under compression beyond local strain rates on the order of 1 s-1, the

non-Newtonian fluids examined in this chapter undergo dramatic shear

thickening and then proceed to shear thin. The response after these fluids have

undergone shear thickening is particularly important since the fluid will nearly

always be in this regime for most engineering designs under dynamic loading.

Scaling arguments demonstrate that after the shear thickening transition, the

contribution of the foam itself and the contribution of the fluid-structure

interaction to the overall response can be neglected. Based on these arguments,

an analytically tractable lubrication model for the stress-strain response of a non-

Newtonian fluid-filled, reticulated, elastomeric foam under dynamic

compression between two parallel plates, at varying instantaneous strain rates, is

developed. The resulting lubrication model is applicable when the characteristic

dimension of the foam in the direction of fluid flow (radial) is much greater than

that in the direction of loading (axial). Based on the response of reticulated foam

filled with a Newtonian fluid under dynamic compression given in Chapter 4, we

assume this model is valid if the ratio of the radius to the height of the foam is

greater than unity. The corresponding range of instantaneous strain rates of the

NNF-filled foam over which this model is applicable is also given. It is

anticipated this model is applicable for nearly all expected instantaneous strain
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rates caused by either impact loading or blast wave loading. The lubrication

model is analytically tractable, depending only on the characteristic fluid

properties, the characteristic radius to height ratio of the NNF-filled foam and

the instantaneous strain rate of the foam. Furthermore, it is independent of all of

the parameters of low-density, elastomeric foam, such as foam grade. While a

number of authors have studied the pressure drop of general power-law, non-

Newtonian fluids through porous media (Seguin et al., 1996; Comiti et al., 1989;

Sabiri et al., 1995), this is the first known comprehensive model for the response

of non-Newtonian fluid-filled foam under dynamic compression.

Experimental characterization of two types of non-Newtonian, shear thickening

fluids are presented. A discussion of the complex behavior of these fluids under

various strain rates is given and related to the observed dynamic response of

NNF-filled foam. Furthermore, experimental measurements of the dynamic

compressive response of low-density, polyurethane foam filled with one of the

non-Newtonian fluids is presented. The previously derived model is found to be

strongly supported by experimental results for a range of aspect ratios and

instantaneous strain rates of the foam. Finally, the significance of this model is

discussed with respect to the design of energy absorption and blast wave

protection equipment.

5.2 Analysis

5.2.1 Model Assumptions

This analysis considers dynamic axial compression of a low-density, elastomeric

foam fully saturated with a non-Newtonian, power-law fluid between two
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parallel plates. The fluid is assumed to remain in a cylindrical shape with

uniform radius while undergoing deformation, where the radius of the cylinder

can be determined by conservation of mass of an incompressible fluid (Fig. 5.1).

In addition, the fluid is assumed to be a power-law fluid with a highly shear

thickening regime, such that the maximum viscosity is several orders of

magnitude greater than the minimum viscosity. For known nano-particle based

non-Newtonian fluids, this will result in a maximum viscosity greater than 103

Pas. In this viscosity range, the stress within the fluid is three orders of

magnitude greater than that in the foam alone. Furthermore, the characteristic

dimension of the colloidal particles in the fluid is several orders of magnitude

smaller than the characteristic dimension of the foam pore size. These two

observations ensure that the response of the elastomeric foam, as well as the

fluid-structure interaction between the foam and the non-Newtonian fluid, can

be neglected, so that the system behaves as if the foam were non-existent. This

assumption is supported by Fig. 5.2 where magnified images of the cells of the

foam are shown before loading and during loading. In Fig. 5.2 it is evident that

the foam struts are readily torn apart by the highly viscous fluid flow at

relatively low strain, supporting the hypothesis that the structural support from

the foam and the fluid-structure interaction is negligible. This result is in

contrast to the result presented in Chapter 4 for lower viscosity, Newtonian fluid-

filled foam where the structural response of the foam and the fluid-structure

interaction are significant. The analysis presented in this chapter is also based on

a lubrication approximation, which assumes the ratio of the characteristic radius

of the specimen to the characteristic height of the specimen, the aspect ratio, is

much greater than one. Chapter 4 gives a detailed analytical description of the

applicability of the lubrication approximation to a comparable problem with a

Newtonian fluid and demonstrates the rapid convergence of the lubrication
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model to the exact solution as the aspect ratio increases. They conclude that

beyond aspect ratios of four, the lubrication model can be used to approximate

the exact solution; however, even beyond aspect ratios of unity the lubrication

solution is shown to approximate the exact solution to within 10% for most

strains. Finally, after the shear thickening transition, the flow is assumed to be

dominated by viscous forces for all instantaneous strain rates of the foam

considered in this analysis.

5.2.2 Fluid Flow in a Rectangular Channel

We first consider a model for pressure driven flow of a power-law fluid through

a rectangular channel (Fig. 5.3) where the length of the channel is L, the width is

W, and the height is 2B with 2B << W << L. The flow is assumed to be

incompressible and locally fully-developed. The gravitational effects are

assumed to be negligible. Since the flow is assumed to be dominated by viscous

forces, inertial effects can also be neglected. The following velocity and pressure

profiles are assumed:

V,= V(x,y);
Vx = V = 0; (5.1)
P = P(z);

where Vx, Vy, and Vz are the velocity components in the horizontal (x), vertical

(y), and axial (z) directions, respectively. Coupling the equation of continuity

with the full Navier-Stokes equations of motion, this problem is readily solved.

Applying the lubrication approximation, the Navier-Stokes equations of motion

in the axial direction reduces to

190



dz dP

_y ap
ay az

(z-direction) (5.2)

where Tyz is the shear stress in the fluid. In this flow the shear stress in the fluid is

related to the corresponding component of the rate of strain tensor and the

viscosity q7, and given by

T = -17 ay, (5.3)

As given before, the viscosity for a power-law fluid is given by the relation

17 = mW (5.4)

j is calculated by taking the square root of one-half of the dot product of the rate

of strain tensor with itself. Using Eq. (5.2) the shear stress in the fluid can be

written in terms of the pressure drop and given by

ap Cy. =--y+Caz 1
(5.5)

where C1 is a constant determined using the boundary conditions. Using Eq.

(5.3) and Eq. (5.4) the shear stress in the fluid can also be related to the shear rate

of the fluid and the power-law parameters as
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,y. = -my =M :-m .

The necessary boundary conditions are based on symmetry and no wall-slip at

the wall and can be given by

ryZ ly=B = 0;

V ly=O = O;
(5.7)

Combining the expressions for the shear stress in the fluid in Eq. (5.5) and Eq.

(5.6) and applying the boundary conditions given by Eq. (5.7), the velocity profile

is found to be

I P 1 I B (B"y (5.8)V m z +1

Integrating the velocity profile over the area gives the flow rate, Q

Q=2WB2  B aP 1(5.9)m 8z (L+2)

which corresponds with the results presented by Bird et al. (1987).

5.2.3 Radial Fluid Flow in a Cylindrical Specimen Squeezed Between Parallel

Plates

In the lubrication limit, flow in a rectangular channel can be transformed to

radial squeezing flow between two parallel plates where the lower plate is fixed

192

(5.6)



and the upper plate is moving as shown in Fig. 5.4. As previously discussed, the

fluid is assumed to remain in a cylindrical shape with uniform radius while

undergoing deformation. By conservation of mass the aspect ratio at any given

axial strain e, is given by

R Ro- ij (5.10)

where Ro is the initial radius of the NNF-filled foam at zero strain, ho is the initial

height at zero strain, and 6 is given by (1-h/ ho ) (Fig. 5.4). In Fig. 5.4 the

magnitude of the velocity of the top plate is given by I h I. The transformations

from the 2-dimensional, rectangular channel, planar flow problem in Section 5.2.2

to the squeezing flow problem between parallel plates in cylindrical coordinates

are given as (after Bird et al., 1987)

Q - Q(r);
W 2xr;

h
B --+ -•; (5.11)

2
aP aP
Oz ar

Eq. (5.9) can be rewritten for the lubrication squeezing flow between parallel

plates as

Q(r) = rrh2 -h P)" ( 2) (5.12)
2m ar (1+ 2)
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which accordingly corresponds with Bird et al. (1987). Furthermore, the

equation of continuity can be used to find a relation between the volumetric flow

rate and the change in height of the fluid giving

Q(r) = rr2 (- ). (5.13)

Combining Eq. (5.12) and Eq. (5.13) and solving for the pressure profile gives

2m(-h)" 2n +1 R"'' _ r "n+I
P(r)- Pa = 2n+1 1 -1 I (5.14)

For a power-law fluid o-= is zero on the surface of the plate. Neglecting inertial

effects, a force balance can be used to find an equivalent uniform stress

distribution or true stress oy, applied to the top compression plate by integrating

the pressure field over the radius and dividing by the area of the plate giving

nn+1 n 3(n+l)

S= 2 ( ) 1 1, (5.15)( n n+3 hk h 1-.6

where -h / h is the instantaneous strain rate of the NNF-filled foam. It is

important to distinguish the instantaneous strain rate of the foam from the

magnitude of the strain rate of the fluid f, which is also referred to as the local

strain rate. In our experiments described below, the fluid flows through an

open-cell foam, which introduces a tortuosity to the fluid path. We account for

the tortuosity by introducing a constant into Eq. (5.15).
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5.3 Experimental Methods

5.3.1 Materials

Specimens of open-cell, flexible, polyester-based polyurethane foams (New

Dimension Industries, Moonachie, NJ), with nominal cell diameters of 175 jm,

210 jm, and 235 gm (corresponding to manufacturer specified grades of 90, 80,

and 70 pores per inch (ppi), respectively) were used in the experiments. The

densities of the foams ranged from 0.0318 to 0.0322 g/cm3 . Based on the

manufacturer's value of the density of the solid polyurethane (A = 1.078 g/cm3),

the relative density of the foams was p*opI = 0.030. The foam was cut into

cylindrical specimens with nominal diameter D = 25.4 mm and height ho = 12.6

mm. In this chapter experimental results are presented for 55 samples of 70 ppi

foam, 2 samples of 80 ppi foam, and 2 samples of 90 ppi foam. The dimensions

of each sample were measured using a digital caliper accurate to within 0.01 mm.

Selecting the appropriate non-Newtonian fluid is imperative in this study.

Ideally, during characterization of the non-Newtonian fluid it would exhibit

reversible behavior with no slip. As previously discussed in the Chapter 2, the

two most commonly used non-Newtonian fluids are precipitated calcium

carbonate (PCC) suspensions and silica suspensions in ethylene or polyethylene

glycol (Egres et al., 2005 and Bender and Wagner, 1996). To select the best fluid

for this analysis we examine these two fluids consisting of precipitated calcium

carbonate nanoparticles (Opcarb, Minerals Technologies, Inc., New York, NY)

and silica nanoparticles (Fuso Chemical Co., Osaka, Japan) suspended in

ethylene glycol (VWR, West Chester, PA). Images of the particles were taken

using the scanning electron microscope (XL30 FEG ESEM, FEI/Philips, Hillsboro,
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Oregon) as shown in Fig. 5.5. The characteristic diameters of the silica particles

were determined using SEM images. The characteristic dimensions of the PCC

particles were not determined from the SEM images because the variation in

particle shapes and sizes was too large to have sufficient confidence in the

results. The diameters of 100 silica particles were measured and analyzed using

Scion Image analysis software (Scion Corporation, Frederick, Maryland). The

average particle diameter of the silica particles was found to be nearly

monodisperse (Fig. 5.5c) with an average diameter of 293 nm +- 31 nm. The

density of the PCC and silica nanoparticles was taken to be that given by the

supplier of 2.83 g/cm3 and 1.95 g/cm3, respectively. The density and viscosity of

the ethylene glycol suspending fluid were taken to be p= 1.11 g/cm3 and/ =

2.1x10 -2 Pa-s at 20 oC.

5.3.2 Preparation of the Shear Thickening Fluid

The non-Newtonian suspensions were first washed with ethylene glycol three

times. The washing process began by centrifuging the solution at 2,700 g for 4

hours using a Sorvall Legend Mach 1.6 Centrifuge (Fisher Scientific, Suwanee,

Ga). After this centrifuging process, the suspension consisted of a sedimented

layer and a layer of supernatant, which was subsequently poured off. Ethylene

glycol was then added to the remaining sedimented layer and the mixture was

resuspended using a VWR digital vortex mixer (VWR, West Chester, PA ). In

order to determine the volume fraction of the sedimented particles after

centrifuging and removal of the supernatant, the sediment, for instance, was

dried until no significant change in mass over a 24 hour period was detected.

Based on this drying experiment, the volume fraction of the silica sediment was

determined to be ~69% particles by volume. The volume fraction of the sediment
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after centrifuging and removal of the supernatant was found to be constant to

within measures of uncertainty. The sediment was immediately redispersed in

ethylene glycol after centrifuging to achieve the final suspension volume

fraction. To redisperse the sediment and create the desired volume fraction, a

vortex mixer was used until the sediment appeared to be completed suspended

in the fluid. Then the NNF was sonicated for 1 hour using an ultrasonic bath.

5.3.3 Selection of a Shear Thickening Fluid

To determine which fluid is preferred for experimental testing of the model

presented in this analysis, the steady state rheological properties of the PCC and

colloidal silica suspensions (non-Newtonian fluids) under shear flow were

measured using a controlled stress rheometer (ARG 2000, TA Instruments, New

Castle, DE). The initial geometry was selected to be a 40 mm aluminum parallel

plate geometry with a gap ranging from 250 gm to 1000 gm. Although a cone

and plate geometry is preferred for steady state shear properties, the parallel

plate geometry is more suitable for use with sandpaper, which is required to

reduce slip of a high viscosity fluid. A detailed discussion on the effects of wall

slip in rheological measurements can be found in Yoshimura et al. (1988). In

summary, the presence of slip in viscosity measurements is detected by

substantial shifts in the viscosity plots with varying gap thickness between the

parallel plates (in some cases shifts in the viscosity can be in excess of an order of

magnitude). To eliminate slip in the rheological measurements, the parallel plate

geometry was covered with 1000 grit sandpaper, for which the characteristic size

of the grit or roughness is of the same order of magnitude as the diameter of the

particles. The rheological measurements of the silica based NNF were found to

be very similar with gap ranges varying from 250 gm to 1000 pm, indicating this
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sandpaper nearly eliminated the effect of wall slip; however, the effect of wall

slip was not successfully eliminated with the PCC based NNF. Fig. 5.6 gives a

plot of the viscosity against the shear stress in the fluid for both a PCC based

suspension with a volume fraction of approximately -50% and a silica based

suspension with -48% volume fraction of particles. The PCC based suspension

clearly demonstrates a variable viscosity plot with varying gap height, indicating

slip is present (Fig. 5.6a); however, in the case of the silica based suspension, the

negligible change in the viscosity plots between a gap of 250 ýpm and 500 pLm

demonstrates that for silica based non-Newtonian fluids slip can be successfully

eliminated (Fig. 5.6b). The reason for the differences between the reduction of

slip between these two fluids may be attributed to the anisotropy of the particles,

particularly in that the PCC has a highly non-uniform distribution. In addition

to slip studies, both fluids were examined to determine their reversibility.

Ascending and descending stress sweeps were performed for both suspensions.

The PCC suspension repeatedly demonstrated a strong tendency to have

irreversible behavior (Fig. 5.7a) while the silica based suspension demonstrated

minimal hysteresis (Fig. 5.7b), exhibiting the reversibility of the silica based fluid

found by Bender and Wagner (1996). These hysteresis or reversibility studies are

evident in Fig. 5.7, where plots are given for the viscosity of each fluid against

the shear stress. Based on these studies, it was determined the silica based non-

Newtonian fluid is more ideal for this analysis; therefore, all experiments

discussed throughout the rest of this chapter utilize this silica based suspension.

5.3.4 Viscosity of the Silica Suspension

To fully characterize the silica based non-Newtonian fluid the following

procedures were followed. The steady state rheological properties of the
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colloidal silica suspension under shear flow was measured using a controlled

stress rheometer (ARG 2000, TA Instruments, New Castle, DE). As before, the

parallel plate geometry was covered with 1000 grit sandpaper to eliminate the

possibility of slip during the experiments. The final geometry was selected to be

a 40 mm aluminum parallel plate geometry with 500 pm gap. All experiments

were performed at 22.5 oC and controlled with a Peltier temperature control. A

volume fraction of 61% silica particles was selected as the highest achievable and

standard for these experiments. Based on the assumption of ideal mixing, the

density of the resulting NNF was estimated to be 1.6 g/cm3.

After loading the sample into the viscometer, the sample was loaded under a

preshear stress ramp from 10 to 100 Pa and then allowed to rest for 15 minutes to

eliminate any effects of sample loading. A stress sweep was performed from 10

Pa to a maximum shear stress in the fluid of approximately 15,400 Pa with 10

points per decade, each of which was measured for 60 seconds. However, for

samples with a lower volume fraction of particles than the standard 61% sample,

the maximum shear stress value in the fluid could not be achieved due to rate

limitations of the rheometer, so the maximum shear stress achievable was

recorded. The steady state shear viscosity was measured along with the shear

stress in the fluid and local shear rate under controlled stress loading. Because of

the complexity of the manufacturing process, determining the exact volume

fraction of silica particles is difficult, so variations in the volume fraction are

expected. To assess the sensitivity to variations in the volume fraction of silica

and determine the overall characteristic behavior of high volume fraction silica

based fluids, this procedure was used for volume fractions of approximately

-48%, -50%, -52%, and -61%. Note, these volume fractions themselves may also

have errors and should not be used for extracting detailed information.

199



5.3.5 Dynamic Compression Tests on Non-Newtonian Fluid-Filled Foam

Samples of reticulated, polyurethane foam saturated with the 61% volume

fraction silica-based NNF were then prepared. Since even the minimum

viscosity of the NNF is large, samples of reticulated foam were filled by the

capillary effect through axial compression cycles while submerged in a bath of

NNF shaken by a vortex mixer. Hager and Craig (1992) demonstrated that the

deflection of a polyurethane foam compressed to 0.75 strain for a short duration

of time is almost completely recoverable. Therefore, an attempt was made not to

exceed a strain of 0.75 during the filling process to minimize the microstructural

damage caused by the filling process. After saturation, the NNF-filled foam was

allowed to recover for 2 hours prior to testing, based on data for the recovery of

low-density polyurethane foam presented by Hager and Craig (1992).

The compressive true stress-strain response of the NNF-filled foam was

measured with the rise direction of the foam parallel to the direction of loading,

up to a strain of 0.6 and over a range of instantaneous strain rates of the foam

from -h / h = 1.0 s-1 to 4x10 2 s-1. For instantaneous strain rates less than -h / h= 50

s-' an Instron testing machine (Instron Model 1321, Instron Corp., Canton, MA)

was used at constant velocities (-h = 12.5, 31.25, 62.5, 93.75, 125, and 250

mm/sec); for instantaneous strain rates greater than -h / h = 50 s-1 a Dynatup

drop-tower (Dynatup 9200 Series, Instron Corp., Canton, MA) was used. The

Dynatup drop-tower has the capability to impact specimens with energies in

excess of 1600 J at speeds in excess of 20 m/s using a spring assisted velocity

accelerator. The load cell is able to record forces up to 45 kN at a speed of 5

MHz. The tup and bottom fixture were modified to produce an impact between

two flat, circular plates. The drop-tower impact experiments were arranged to be
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nearly constant velocity. Data was only collected up to strains of approximately

50%, at which point built in stoppers in the drop tower absorbed the remaining

energy. The drop-tower weight was approximately 21.7 kg, resulting in an

impact energy that was substantially greater than the energy absorbed by the

NNF-filled foam or the energy gained due to potential energy effects. Since the

energy of the drop-tower weight was nearly constant, the resulting experiments

were nearly constant velocity (-h/ z 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75,

and 3.00 m/sec). During testing the temperature was maintained at 22.50C to

ensure the fluid properties are consistent. Since the flow is assumed to be

instantaneously fully developed, the model presented in this chapter is

applicable to constant velocity loading.

5.4 Fluid Viscosity Results and Discussion

In Fig. 5.8 the viscosity is plotted against the shear stress in the fluid and the local

strain rate for a series of NNF fluids with volume fractions of ~48%, ~50%, and

~52%. The rheological behavior of the fluid under steady state shear viscosity

testing in the controlled stress rheometer was consistent for all volume fractions

tested. The viscosity data also correspond well with similar experiments

performed by Maranzano and Wagner (2001a). We assume that the viscosity

plots in Fig. 5.8 are typical of the behavior for all silica-based, non-Newtonian

fluids with the shear thinning and thickening regimes discussed in this chapter.

Fig. 5.9 provides more detail of the characteristic behavior of these curves for the

~50% volume fraction sample by denoting regimes of distinct behavior. At

extremely low local strain rates the fluid acts as a shear thinning fluid (regime
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Ri). The shear thinning or "yield stress" behavior observed at low local strain

rates occurs when the particles in an ordered phase begin to orient themselves so

that the direction of closest packing of the spheres aligns with the flow velocity,

such that the planes containing the closest packing spheres are parallel to the

shearing surfaces (Lee et al., 1999). Therefore, the three-dimensional ordered

phase transforms into a two-dimensional layered phase that permits flow,

resulting in a dramatic drop in viscosity. At a critical local strain rate dramatic

shear thickening occurs, evident in regime R2. The onset of this dramatic shear

thickening occurs when the hydrodynamic forces driving particles together

exceed the repulsive forces due to interparticle (i.e. electrostatic or steric)

potentials and Brownian motion (Maranzano and Wagner, 2001a). At this point

the particles fail to remain in their ordered state and begin to form three-

dimensional clusters of particles. This dramatic shear thickening is also evident

in Fig. 5.9b at nearly constant local strain rate. This dramatic shear thickening is

often termed "critical shear thickening" when a discontinuity is observed as

shown in Fig. 5.9b. As previously discussed the jamming phenomenon is

attributed to shear thickening, but critical shear thickening is only observed for

very high volume fractions of solid particles. Following shear thickening, a

plateau viscosity is reached (regime R3). A number of theories have been

proposed for this phenomenon, but it is generally accepted that the clusters

begin to break down and form a random three-dimensional packing (Barnes,

1989). These first three regimes are characteristic of most non-Newtonian fluids

with shear thickening regimes (Barnes, 1989). However, after the maximum

plateau, the fluid is often found to enter one of three stages: fracture, an extended

plateau viscosity independent of shear rate, or a shear thinning regime (Barnes,

1989). This regime of behavior is controlled by particle size distribution, particle

content, the volume fraction of particles, particle-particle interactions, and the
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viscosity of the continuous phase. For the particular fluid discussed in this

chapter, another shear thinning regime, R4, occurs and finally, for suspensions

with particle volume fractions of -48%, -50%, and -52% a lower plateau viscosity

is reached (regime R5), which is approximately equal to the minimum viscosity

previously obtained (Fig. 5.8). A large body of literature attempts to explain the

behavior in all the regimes described (Hoffman, 1998; Bender and Wagner, 1996;

Laun et al., 1992; Boissis and Brady, 1989) but the explanations for some

phenomenon are still under dispute, so a detailed description is excluded from

this discussion. However, the general regimes described here are found to be

consistent with this body of literature as seen in Hadjistamov (1984) and Barnes

(1989). The primary debate around this shear thinning regime is whether or not

slip is causing it. In addition to the evidence presented by Hadjistamov (1984)

and Barnes (1989), Hoffman (1974) also demonstrated distinct shear thinning

regimes after shear thickening for monodisperse polymeric resin colloids. We

believe much of the recent literature has avoided the debate around this topic by

not publishing data in the high stress regime examined in this study. For

instance, the maximum shear stresses examined for comparable silica-based non-

Newtonian shear thickening fluids given by Bender and Wagner (1996), Fagan

and Zukoski (1997), Lee et al. (1999), and Maranzano et al. (2001a) range from the

order of 100 Pa to the order of 1000 Pa. None of these studies attempts to

examine the stress regime approaching and exceeding 1 x104 Pa, presented in this

study. However, more recent studies by Egres and Wagner (2005) have

demonstrated measurements in this regime are possible. They have also shown

with a precipitated calcium carbonate based STF distinct plateau regimes,

corresponding to R3, followed by what appears to be the beginning of shear

thinning regimes, corresponding to R4. In addition to this support, we believe a

number of factors indicate slip is not contributing to the behavior in this regime.
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The first is the extensive slip study that was previously discussed (Fig. 5.6). The

results of that study were that varying the gap thickness had a negligible effect

on the viscosity plots. Furthermore, it is evident in Fig. 5.8 that the shear thinning

transition occurs over a range of magnitude in shear stress. We believe if slip

were causing this behavior the shear stress at which it would appear would be

more consistent. Moreover, the consistency in the slopes of the shear thinning

regime, indicate this behavior is not being induced by slip, which in all

likelihood would result in a more erratic result. Finally, the results of the stress-

strain response of the NNF-filled foam, discussed later in this chapter, provide

further evidence that this shear thinning regime really does exist.

Fig. 5.10 plots the viscosity against the shear stress in the fluid and the local

strain rate for 61% volume fraction silica/ethylene glycol solution. Limitations in

the maximum torque capacity of the viscometer did not allow us to obtain data

for the full range of regimes R4 and Rs. Assuming that the trends in the viscosity

of the fluid with 61% volume fraction silica particles are similar to those at lower

volume fraction of particles, we can extrapolate the existing R4 data using a linear

regression of the log data (equations shown on the figures). We note that, for

particle volume fractions of ~48%, ~50%, and -52%, the value of the viscosity for

the lower plateau (Rs) is similar to that at the minimum of Ri; we expect the

transition from R4 to R5 to be similar for the fluid with 61% volume fraction of

particles. For the 61% volume fraction NNF, the parameters m and n for the

power-law model in regime R3 and R4 are found to be m = 7,700 Pas; n = 1.0 and m

= 10,800 Pas; n = 0.19, respectively, as shown by the plateau data points and the

shear thinning trend line in Fig. 5.10.
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5.5 Fluid-Filled Foam Results and Discussion

A plot of the true stress-strain responses of the 70 ppi foam saturated with the

61% volume fraction non-Newtonian fluid loaded at constant velocities ranging

from 31.25 mm/sec to 250 mm/sec is given in Fig. 5.11a. The dramatic increase in

the true stress of the NNF-filled foam with strain is evident. The true stress of

the NNF-filled foam is taken to be the load divided by current area, which is

calculated based on conservation of mass, as previously discussed. At any given

strain, the true stress of the NNF-filled foam and corresponding instantaneous

strain rate of the foam can be determined. The recorded data and Fig. 5.11a are

used to generate the sample curve of the true stress response of the NNF-filled

foam plotted against the instantaneous strain rate of the foam given in Fig. 5.11b.

For instantaneous strain rates less than 50 s-1, strains varying from 0.1 to 0.6 are

plotted in increments of 0.1, corresponding to aspect ratios ranging from

approximately 1 to 4. For instantaneous strain rates greater than 50 s-1 strains

varying from 0.1 to 0.4 are plotted, corresponding to aspect ratios ranging from 1

to 2.

The dynamic compressive response of the saturated NNF-filled foam exhibits

multiple regimes of behavior similar to the simple shear behavior of the fluid

itself given by the previous rheological experiments (Fig. 5.8-5.10). As shown in

Fig. 5.11b, this behavior corresponds to the first four regimes (R1-R 4) of the fluid,

previously discussed. At low instantaneous strain rates of the foam, the rate of

increase of true stress of the NNF-filled foam with instantaneous strain rate is

actually less than that of a comparable Newtonian fluid, indicating the viscosity

is dropping with increasing instantaneous strain rate, corresponding to the shear

thinning regime, Ri. The onset of the shear thickening regime, corresponding to
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R2, is also evident and, as expected, is found to occur with increasing strain (or

aspect ratio) or increasing instantaneous strain rate. Similarly, behavior

corresponding to regimes R3 and R4 are also evident. While distinguishing the

transition between the upper plateau regime, R3 and the shear thinning regime,

R4 in Fig. 5.11b may be difficult at the given scale, the distinction is more

apparent in expanded scales provided later in Fig. 5.12.

In this study, we are primarily interested in modeling the behavior after shear

thickening has occurred (R3 and R4) since most engineering applications will

utilize the NNF in this regime. For example, the expected impact velocities for a

helmeted head in a motorcycle accident and a chest covered by standard body

armor subjected to a 1 kg TNT blast wave at a distance of 1 meter are on the

order of 5 m/sec and 10 m/sec, respectively. This results in instantaneous strain

rates for a 0.01 m thick foam sample of 500 s-1 and 1000 s-1, which are clearly

beyond the instantaneous strain rate of the foam required for the fluid to

transition from regime R2 to regime R3 (Fig. 5.11b). In addition, our focus was on

modeling the behavior in regime R3 and beyond because analytically modeling

the behavior at strain rates less than those of regime R3 is a complex task, which

requires accounting for the fluid structure interaction and the dramatic variation

of the viscosity across the specimen. As previously discussed this problem is

avoided for strain rates beyond the transition strain rate between regimes R2 and

R3, where the effects of the fluid-structure interaction and the foam itself can

effectively be neglected.

To compare our model (Eq. 5.15) with our data, in the upper plateau regime, R3

and in the shear thinning regime, R4, we examine data beyond the transition
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strain rate between regimes R2 and R3. Fig. 5.12 shows the true stress response of

70 ppi foam filled with the non-Newtonian fluid under dynamic compression

plotted against the instantaneous strain rate of the foam for a range of strains

varying from e= 0.10 to e= 0.40 and a range of instantaneous strain rates

ranging from -50 s-1 to -400 s-1. Each point is the average of 4 data points with

error bars corresponding to one standard deviation. The error bars in the true

stress direction are quite large, as expected, since small variations in the volume

fraction of the silica particles in the fluid can result in large changes in viscosity

but nearly no change in the exponent variable n. Correspondingly, the error bars

in the instantaneous strain rate direction arise because changes in the energy

absorption of the NNF-filled foam result in changes in the energy of impacting

drop tower, and thus, its velocity. The true stress contribution predicted by the

model given by Eq. (5.15) is plotted in Fig. 5.12 for both the plateau regime, R3

and the shear thinning regime, R4 with their corresponding parameters m and n.

To fit the true stress model constants CRi were introduced for each regime (where

i corresponds to the regime) into Eq. 5.15 giving

n+1 3(n+1)

avg = 2C 2n++1 m ( 7) h -E1 2 (5.16)n n+3= k (5.16)

The constants CR and CR4 given in Eq. (5.16) were found by establishing a

measure of the goodness of fit and finding the value of CR and CR4 which

maximizes this measure. The measure for the goodness of fit R2, is taken to be

the sum of the squares of the difference between the experimental values and the

average experimental value divided by the sum of the squares of the difference

between the experimental values and the predicted values. Based on this
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measure of the goodness of fit, the empirical constants for regimes R3 and R4 are

determined to be CR3 = 0.94 and CR4 = 80, respectively. These constants can be

attributed primarily to two factors. First, as previously discussed, even small

variations in the volume fraction of particles can result in large changes in the

viscosity curves, and thus, the observed average true stress. Second, the

increased tortuosity of the fluid path in the foam may also play a substantial role

since the flow through the foam is not identically in shear flow.

Using the constants CR and CR4, the transition between the plateau regime R3 and

the shear thinning regime R4 is found by setting Eq. (5.16), evaluated with

constants (m and n) corresponding to the plateau regime, equal to Eq. (5.16),

evaluated with constants (m and n) corresponding to the shear thinning regime.

The resulting equation governs the transition between R3 and R4 and is found to

be

CR4 ) 3  (1h-o ) (5.17)
h 3CR 3  Ro

Using Eq. (5.17), for any given initial aspect ratio and strain, the instantaneous

strain rate, corresponding to the transition between regimes R3 and R4, can be

determined. While Eq. (5.17) is not generalized for all fluids discussed in this

chapter, it is applicable to the 61% silica-based non-Newtonian fluid, which is the

focus of this analysis. Since there is no model for the transition between the

shear thickening regime R2 and the plateau regime R3, the onset of the behavior

corresponding to R3 is not predicted in this study; the model was plotted down to

an arbitrary instantaneous transition strain rate of the foam selected to be 50 s-1.
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The constants CP and CR4, are found to be independent of the initial aspect ratio,

the strain, and the instantaneous strain rate of the foam as demonstrated by Fig.

5.12. Furthermore, the constants CR3 and CR4, are also found to be independent of

the grade of the foam beyond the shear thickening transition. An additional

study was performed to analyze the effects of varying the pore size of the foam.

The true stress response of the NNF-filled foam was compared for 70, 80, and 90

ppi foam both prior to and after shear thickening (regimes R2 and R4). Prior to

shear thickening, the true stress response is found to be highly dependent upon

the grade of the foam as demonstrated with Newtonian fluids (Dawson,

McKinley, and Gibson, 2008). Prior to shear thickening, the standard deviation

in the true stress response of the three foam grades as a percentage of the average

value was found to be 17.7%, which corresponds well with the results presented

in Dawson, McKinley, and Gibson (2008). However, after shear thickening has

occurred the true stress response of the NNF-filled foam is found to be

independent upon the grade of the foam, with a standard deviation in the true

stress as a percentage of the average value of only 2.7%. This finding further

supports the evidence shown in Fig. 5.2 that the fluid-structure interaction is

negligible at high loading rates (high stresses) after shear thickening has

occurred. Thus, the constants CR3 and CR4, are independent of the grade of the

foam beyond the shear thickening transition.

The need for the introduction of the empirical constants CR3 and CR4, is expected.

These constants can primarily be attributed to the fact that small variations in the

volume fraction of the silica particles in the fluid can result in large changes in

viscosity, corresponding to m in Eq. (5.16), but nearly no change in the exponent

variable n. This effect could readily account for such an apparently large

constant while explaining the fact that the true stress scales accurately with all of
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the parameters in Eq. (5.16). The need for different empirical constants for each

regime (CR3 vs. CR4) can also be seen through this argument. If the actual plateau

viscosity is higher than that measured in the rheological experiments, the need

for a constant greater than unity is evident for regime R4. Correspondingly, this

effect would necessitate a constant greater than unity in regime R3 as well;

however, since regime R3 only spans a very short range of local strain rates and

local strain rates are expected to vary strongly over the radius of the foam, it is

expected that not all of the fluid is accurately modeled by the maximum plateau

viscosity (regime R3). This would result in the model overestimating the average

viscosity in the fluid and necessitate a constant less than unity to account for this

overestimation. This effect would be less pronounced in the shear thinning

regime R4, since the range of local strain rates spanned by this regime is much

larger than that of R3. Therefore, the need for different constants for each regime

(CR3 VS. CR4) is evident. The effects, overall, result in a constant for regime R3,

which is on the order of unity and a constant for regime R4, which is much

greater than unity.

The empirical constants CR3 and CR4, may also indicate that a number of effects,

which have been neglected based on the assumptions of the analysis, may be

important. For instance, this analysis does not consider the tortuosity in the fluid

path in the open-cell foam, which may also contribute to the need for the

constants CR3 and CR4, to be introduced. In addition, this model assumes that the

radial velocity is uniform in the z-direction or that the fluid remains in a

cylindrical shape as it undergoes deformation. This is a strong assumption as

demonstrated by Fig. 5.1, where little variation in the radius up to 0.30 strain is

detectable. However, even small variations in the radius of the NNF-filled foam

can result in changes in the local shear rate profile. This would give rise to large
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discrepancies between the predicted viscosity and the actual viscosity in the

experiment, and thus, a discrepancy in the true stress response of the NNF-filled

foam. Furthermore, this model uses the lubrication approximation, which

assumes that the velocity in the z-direction is much less than the velocity in the r-

direction, and that the corresponding pressure drop in the z-direction is

negligible compared to that in the r-direction. The lubrication approximation

technique is known to be a powerful method for solving complex viscous flows.

When applied to actual systems, the fluid response is often found to converge

very rapidly to the lubrication approximation as the aspect ratio is increased. In

Chapter 4, it was discovered that the lubrication approximation for a Newtonian

fluid-filled foam under dynamic compression is highly applicable beyond an

aspect ratio of four; however, examining the data shows even for aspect ratios as

small as one, the lubrication model provides a good approximation. In the

experiments presented in this chapter the aspect ratios ranged from 1.17 to 3.95.

Again, this could result in a small discrepancy between the model and the

experimental results. Moreover, the fluid flow may not be considered entirely in

shear flow, which would result in a much lower predicted true stress response

than actually observed experimentally. In addition, the local shear rate of the

fluid may actually differ from that predicted by the model, in part, due to

dependence on the fluid-foam interaction. Although, this contribution is

expected to be negligible since the load response of the NNF-filled foam is three

orders of magnitude beyond that of the foam alone, and the characteristic

diameter of the particles in the silica suspension is three orders of magnitude

smaller than the characteristic pore size of the foam. Lastly, as previously

discussed, this model assumes that the flow is dominated by viscous forces. This

is an extremely robust assumption for the experiments presented in this analysis,

considering the fluid viscosity increases approximately 3 orders of magnitude
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and approaches that of "solid-like" behavior after the shear thickening transition.

As previously discussed, the shear thinning regime R4 occurs over roughly four

orders of magnitude of the local strain rate of the fluid, based on the behavior of

fluid with lower volume fractions of particles, which have plateau regimes R5 at a

viscosity corresponding to the minimum viscosity of the fluid. Therefore, it is

expected that the shear thinning regime R4, would also last several orders of

magnitude of the instantaneous strain rate of the NNF-filled foam. Based on this,

the fluid maintains an extremely high viscosity, with increasing instantaneous

strain rate, for several orders of magnitude beyond the transition between the

shear thickening regime R2 and the plateau regime R3. In the experiments

presented in this chapter, the maximum Reynolds was Re = 0.027, which is much

less than unity, demonstrating that the assumption that the flow is dominated by

viscous forces is highly applicable. However, for extremely high-rate loading

scenarios inertial forces may become more important and this viscous fluid

assumption may no longer be valid. Therefore, this model may only provide an

order of magnitude estimate beyond loading velocities of ~50 m/s (instantaneous

strain rates of ~5x103 s-1) for samples with similar aspect ratios as those discussed

in this chapter. As previously discussed, nearly all comparable engineering

designs used in dynamic compression, ranging from motorcycle helmets to blast

loading protective equipment, would have loading rates applicable to this

model.

Overall, the model for the true stress response of a non-Newtonian fluid-filled

foam under dynamic compression given by Eq. (5.16) is strongly supported by

experimental results, despite the need for a constant in each regime to account

for some of the assumptions of the model. The model is found to describe the

experimental results well for a variety of aspect ratios, strains, and instantaneous
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strain rates of the foam on the order of -h / h = 1.0x10 2 s-1. It is also found to be

independent of foam grade for low-density elastomeric foam. The model is

found to fall within one standard deviation of all of the experimental data

presented in Fig. 5.12. A method is also presented to identify the transition

instantaneous strain rate between regimes R3 and R4, given an initial aspect ratio

and strain.

5.6 Conclusion

A model for the true stress-strain response of a shear-thickening-fluid-filled,

reticulated, elastomeric foam under dynamic compression beyond the shear

thickening transition is presented. This model is analytically tractable and useful

in developing an understanding of the effects of material design parameters on

the response of an NNF-filled foam under dynamic loading. To the authors'

knowledge this is the first such analytical model, which explains this complex

phenomenon for this select group of non-Newtonian fluids and may be useful in

the development of innovative new products in the field of protective

equipment. In particular, this analytical model will be an essential step toward

the successful development of a composite armor capable of impeding

shockwaves caused by blast loading by providing insight into the energy

absorption capabilities and wave propagation characteristics of an NNF-filled

foam under dynamic loading.
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Figures

A)

B)

C)

D)
Figure 5.1: High resolution images of 70 ppi foam filled with ~61 % volume
fraction silica based non-Newtonian fluid loaded in axial compression at
250mm/sec. A) 0.00 strain; B) 0.10 strain; C) 0.20 strain; D) 0.30 strain.
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A) B

Figure 5.2. Optical micrographs of NNF-filled foam. A) e= 0 strain; B) E= 0.3
strain.
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Figure 5.3. Model of rectangular channel flow.
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Figure 5.4. Lubrication fluid flow model assuming the absence of foam.
A) At 0% strain; B) At any given strain e.
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Figure 5.5. SEM Images of: A) Precipitated calcium carbonate particles;
B) Silica particles; C) Silica Particles.
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Figure 5.6a. Viscosity plotted against shear stress. ~50% volume fraction of PCC

based non-Newtonian fluid. Gap: 500 gm (A); 1000 gm (0).
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Figure 5.8a. Viscosity plotted against shear stress.
non-Newtonian fluid -48% (m); -50%
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Figure 5.8b. Viscosity plotted against local strain rate. Volume fraction of silica
based non-Newtonian fluid -48% (m); -50% (A); and -52% (e).
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Figure 5.9a. Viscosity plotted against shear stress for -50% volume fraction silica
based non-Newtonian fluid.
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silica based non-Newtonian fluid.
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Figure 5.10a. Viscosity plotted against shear stress for -61% volume fraction
silica based non-Newtonian fluid.
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Figure 5.10b. Viscosity plotted against local strain rate for ~61% volume fraction
silica based non-Newtonian fluid.
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Figure 5.11a: True stress plotted against strain for 70 ppi foam filled with ~61%
volume fraction silica based non-Newtonian fluid. -h = 31.25 mm/sec (0); 62.5
mm/sec (A); 125 mm/sec (+); 250 mm/s (0), corresponding to instantaneous

strain rates of 2.5 s-1, 5 s-1, 10 s-1, and 20 s-1 at 0.0 strain, respectively.
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Figure 5.11b: True stress plotted against instantaneous strain rate for 70 ppi foam
filled with -61% volume fraction silica based non-Newtonian fluid. Regimes R1-

R4 correspond to fluid behavior regimes.
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6 Applications of Liquid-Impregnated Open-Cell Foam in

Motorcycle Helmet Design

6.1 Introduction

The novel liquid-impregnated, open-cell foam discussed throughout this thesis

can be used in a variety of energy absorption applications. As previously

discussed, improving protective equipment is one of the most critical areas of

research in the field of energy absorption. In particular, the need to enhance the

protective capabilities of motorcycle helmets has been made manifest over the

years with the disproportionately large number of fatalities associated with

motorcycle accidents. This chapter uses experimental methods to examine the

advantages of incorporating a layer of liquid-impregnated, open-cell foam in

motorcycle helmets.

Improving upon existing helmet designs requires a comprehensive

understanding of head injury mechanisms and preventative measures currently

in use. A brief discussion of the various types of injury mechanisms is presented

along with the state-of-the-art or standard helmet technology used to prevent

head injury. Based on the biomechanics of head injuries and the state-of-the-art

technology, we propose modified helmet designs that demonstrate a substantial

weight reduction over existing designs and satisfy current standards for

preventing head injuries. These designs tend toward a more optimal use of the

dense outer shell material, typically ABS (Acrylonitrile Butadiene Styrene

copolymer). In particular, one of these designs incorporates a unique, weight

efficient composite layer of highly dense, reticulated, polyurethane combined

with low-density polyurethane saturated with a highly viscous liquid. This
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design has potential to improve multi-impact performance, which is of great

importance since a single crash may involve multiple impacts. The other design

examines a similar reduction in the thickness of the outer-shell layer and a

corresponding increase in the thickness of the standard energy absorbing

material already utilized in helmets. The primary advantage of these designs is

the dramatic reduction in the weight of the helmets, which should encourage

increased utilization of helmets; and therefore, reduce the number of motorcycle

accident fatalities.

The focus of this chapter is on experimental methods for the design of a helmet

with a layer of liquid-filled foam. Experimental results are presented comparing

the performance of each design presented in this chapter to a comparable

composite plate representing the state-of-the-art existing helmet design. Flat

composite plates are loaded in a drop tower according to the existing standards

for motorcycle helmets. The energy absorption characteristics of each design are

found to be comparable, but the proposed designs presented in this analysis

demonstrate substantial reductions in the overall weight. A discussion of the

potential of these designs in motorcycle helmets, and in particular the liquid-

filled foam design, is presented based on the experimental findings.

6.2 Literature Review

6.2.1 Head Injury Mechanisms and Standards

To develop an improved motorcycle helmet requires a comprehensive

understanding of the head injury mechanisms and current safety standards.

Severe head injuries can typically be classified into three categories: 1) skull
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fracture; 2) focal brain injuries; 3) diffuse brain injuries (Voo et al., 1994). Skull

fracture is typically not considered a primary concern for a helmeted head since

brain damage caused by excessive acceleration is often found to occur at much

lower loads than those required to cause skull fracture (Shuaeib et al., 2002a).

Moreover, skull fracture which does not result in brain injury can be argued to be

a natural energy absorption method. For a non-helmeted head, a conservative

measure for depressed skull fracture in the temporal area is given by a localized

pressure exceeding 4 MPa over an area of 5 cm2 (2 kN localized force) (Hume,

1995). In order to achieve such a loading for a helmeted head, the impacting

object would have to be sharp and rigid enough to penetrate entirely through the

helmet. One of the strictest criterion for helmet standards requires the helmet

prevents a conical steel indenter with a 90 J impact energy from penetrating to

touch the head form (BS 6658, 1985). Since the frequency of such highly localized

loads in real life accidents is extremely small, Hume et al. (1995) argued helmet

testing standards should reflect more realistic loading scenarios. Instead of the

use of conical anvils, Hume et al. (1995) proposed hemispherical or flat strikers as

more representative of actual penetration loading scenarios.

However, the primary purpose of a helmet is not to prevent penetration of rigid

objects but to prevent large accelerations of the brain, which can result in

traumatic brain injury (TBI). The two main types of non-penetrating TBI are

diffuse and focal brain injury. Diffuse brain injuries refer to bulk mechanical

effects associated with axonal, neural, microvascular, and brain swelling injuries,

typically affecting large volumes (Bandak, 1996). Focal brain injuries are

typically localized regions of the brain subjected to large tensile or compressive

stresses, often resulting in injuries such as subdural hematomas. Shuaeib et al.

(2002a) provide an extensive review of the mechanisms for brain injury,
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concluding that diffuse brain injuries are of primary concern in helmeted head

impacts and reducing the acceleration of the brain during an impact is an

extremely important parameter in helmet design. In particular, reducing the

linear (translational) acceleration is important since Mills and Gilchrist (2006)

concluded the rotational acceleration is typically insufficient to cause serious

diffuse brain injuries.

Standards for brain injuries are much better established than those for skull

fracture. Shuaeib et al. (2002a) provides an overview of the primary acceleration

based standards for preventing brain injuries. For the purposes of this analysis,

we only consider the most commonly used standard which is based on the Peak

Linear Acceleration (PLA) criterion that only requires a single design parameter.

Most international standards require the maximum acceleration of the head does

not exceed 300g under a direct impact of a 5 kg mass traveling at 6 m/s to 7.5 m/s,

resulting in impact energies ranging from 90 J to 140 J, respectively (Shuaeib, et

al. 2007). Further consideration should be given to the applicability of this

standard to motorcycle helmet design. While most helmets designed for other

applications weigh less than 1 kg, motorcycle helmets often weight more than 1

kg, as shown by Gilchrist, A., et al (1996) who experimented with a motorcycle

helmet weighing 1.33 kg. Considering the 50th percentile human head has a mass

of 4.4 kg (Muzzy et al. 1986), a more accurate standard for motorcycle helmets

would incorporate an impact mass between 5.5 kg and 6 kg.
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6.3 Standard Design vs. Proposed Design

The current design of the state-of-the-art commercial helmets used today is

relatively standard. The helmet design consists of three primary layers as shown

in Fig. 6.1: 1) the shell, 2) the foam liner, and 3) the comfort foam. The shell of

the helmet is primarily for penetration resistance of sharp, rigid objects as

previously discussed. Often the shell is either injection molded ABS or rubber-

toughened polycarbonate thermoplastic. While the shell also absorbs energy, the

primary energy absorbing component of a helmet is the foam liner, which is

usually made from polystyrene beads. To allow a helmet to comfortably fit a

range of head sizes, a third layer of comfort foam, typically made of low-density,

reticulated polyurethane, is included as the innermost layer in the helmet design.

Much of the focus on improving helmet design is on enhancing the energy

absorbing, foam liner. Polystyrene is often selected as the foam liner because of

its low density, economic molding process, and high impact energy absorption

capability. However, recent research has examined other suitable materials to

replace polystyrene (Shuaeib et al., 2007) since it has exhibits poor multi-impact

performance, presents challenges in manufacturing associated with ventilation

holes, and has limitations in fitting a range of head sizes. While improving the

foam liner is important, an even more substantial improvement can be made by

optimizing the use of the outer ABS shell. Recent research has suggested the

outer ABS shell thickness could be reduced. Shuaeib et al. (2007) proposed if the

ABS shell thickness was reduced to 3mm from the typical 5 mm, it would still

provide sufficient penetration resistance for existing standards. Shuaeib et al.

(2002b) also indicates in existing helmet designs the shell absorbs very little of

the total impacting energy. In the standard helmet design if the thickness of the
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outer shell was reduced, the thickness of the inner polystyrene layer would have

to be increased slightly or another layer of energy absorbing material would

have to be added in order to maintain similar energy absorption characteristics.

Maintaining similar energy absorption characteristics, which are characterized

by the maximum load sustained under the standard testing procedure

previously defined, is essential in minimizing the acceleration of the brain under

impact loading, and therefore, minimizing potential brain damage. Further

reductions in the outer ABS shell thickness could also be considered with the

development of more accurate testing standards. As previously mentioned,

many experts in the field suggest changing existing standards to more accurately

represent expected loading scenarios by replacing the conical anvil indenter with

a hemispherical anvil or a flat anvil (Hume et al., 1995; Shuaeib et al., 2002b).

This change in existing testing standards could result in a dramatic reduction of

the outer shell thickness required to prevent penetration of the helmet. Provided

a thin, light-weight layer could be added to compensate for the energy absorbing

capacity of the displaced ABS, this change in testing standards would allow for

an even more dramatic reduction in the thickness of the ABS shell, and thus, in

the overall weight of the helmet.

In this chapter, we discuss two proposed, more weight efficient, modifications to

the standard design. The first design (D1) reduces the thickness of the ABS shell

and replaces it with the same thickness of polystyrene. The primary advantage

of this design is a substantial weight reduction. However, the polystyrene layer

absorbs more energy through plastic deformation than the ABS shell, so it is less

efficient in multi-impact scenarios compared to the standard design (Si). The

second design (D2) is slightly less cumbersome than the standard design and

demonstrates improved multi-impact performance. This design replaces a

234



portion of the outer ABS shell with a lighter-weight composite layer that is more

resilient under repeated loading. The additional composite layer consists of a

combination of low-density, reticulated polyurethane foam impregnated with a

high viscosity fluid and high-density, reticulated polyurethane foam as shown in

Fig. 6.2. The fluid is contained in the foam by the capillary effect. The design

given in Fig. 6.2 was determined empirically by a trial and error approach, using

combinations of parameters, including the diameter and thickness of the fluid-

filled foam as well as the volume fraction of the fluid in the foam and the

material constituents of the polyurethane based materials. The ideal ratio of the

cross-sectional area of the high-density foam to that of the low-density foam

(area ratio) found in this analysis is approximately 4:1. It is important to note

that this ratio was found empirically and could be further refined to improve the

overall performance. In addition, the ratio was selected to reduce the weight

while maintaining similar energy absorption characteristics to that of the

equivalent standard design Si. Other parameters on which this design could be

optimized will be discussed later. The inherent advantage of a composite layer

of polyurethane foam is the increased resilience and therefore enhanced multi-

impact performance, especially for successive low-energy impacts, which are

characteristic of actual loading scenarios experienced in an accident.

Furthermore, the highly efficient energy absorption capabilities of high viscosity

fluid flow through porous media described in Chapters 3 and 4 allow for this

design to maintain similar energy absorption characteristics as the standard

design at equivalent thickness and at a reduced weight.
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6.4 Experiments

6.4.1 Materials

The outer shell material was comprised of ABS (Famell, Leeds, U.K.) with a

density of 1.08 g/cm3 , which acts as the primary penetration-resistant layer on the

outside of the helmet (Fig. 6.1). The primary energy absorption layer was high-

density polystyrene (Cordek, West Sussex, U.K.) with density 0.055 g/cm3 . Two

types of open-cell, flexible, polyester-based polyurethane (PU) foams were used

for the energy absorption layer in design D2 presented in this chapter. The first

was a high-density, reticulated polyurethane (McMaster Carr Supply Co.,

Atlanta, GA) with density 0.32 g/cm3 . The second was a low-density, 90 pore per

inch (ppi), reticulated polyurethane foam (New Dimension Industries,

Moonachie, NJ) with density 0.032 g/cm3. The high viscosity Newtonian fluid

used to impregnate the low-density polyurethane was glycerol of density and

viscosity measured to be 1260 kg/m3 and 1.1 Pa-s, respectively at 23 oC. The third

layer of comfort foam was omitted from experiments since its energy absorption

capacity is negligible compared to the other layers.

6.4.2 Experimental Procedure

Experiments were performed to simulate the weight efficiency improvement of

the designs presented in this analysis over the standard motorcycle helmet

design utilized commercially. Every sample was made of square cross sections

of 100 mm x 100 mm, which is assumed to accurately approximate the cross-

sectional area of the helmet used to absorb most of the impact energy under

standard testing conditions (after Gilchrist and Mills, 1994). While the curvature

in actual helmets increases the loading resistance and energy absorption
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capabilities, for the purpose of demonstrating the weight efficiency

improvement, flat plates are used in these experiments. As previously discussed,

the standard design (Si) consists primarily of two energy absorbing layers: a

layer of ABS and a layer of polystyrene (Fig. 6.1). The first proposed design (D1)

presented in this chapter, consists of the same materials as the standard design

but modifies the thickness of both the ABS shell and the polystyrene foam. The

second proposed design (D2), incorporating an additional composite PU/PU-

glycerol layer into the standard design, is shown in Fig. 6.2. A cross-sectional

view of the PU/PU-glycerol composite layer is shown in Fig. 6.2b. All of these

designs are compared in Table 6.1, which gives the thickness and weights of each

design. All of the designs are of equivalent overall thickness, determined from

the standard design (Si) which is consistent throughout most studies (Gilchrist

and Mills, 1996; Shuaeib et al., 2002b). The outer ABS layer for the proposed

designs is 2mm thinner than the standard design, based on the previous

discussion and, the thickness of the inner energy absorbing layers are adjusted

correspondingly. The specimens were prepared by bonding the corresponding

layers together using a lightweight, high-strength adhesive (Gorilla Glue,

McMaster Carr Supply Co., Atlanta, GA), which added negligible mass to the

design. Design D2 required saturation of the low-density polyurethane foam

with glycerol. The low-density foam was filled by repeated compression while

submerged in a bath of glycerol, utilizing the capillary effect. These fluid-filled

polyurethane foams were then press-fit into the high-density polyurethane foam.

Each layer was again bonded by a lightweight, high-strength adhesive, which

added negligible mass.

237



After allowing the samples to completely cure for 8 hours, the samples were

loaded in a Dynatup drop-tower (Dynatup 9200 Series, Instron Corp., Canton,

MA). The drop tower mass was 7.15 kg, and the impact velocity was set to 6 m/s.

The overall impact energy was approximately 129 J, in accordance with most

international standards for head protection. A flat, cylindrical striker with a 4 cm

diameter was used to impact the center of the 10 cm x 10 cm samples following

the research of Gilchrist and Mills (1996). The compressive load-displacement

response of each sample under impact was measured. The impacted sample was

then retested under the same loading conditions to determine its resistance to

repeated loading. The strain under the second impact test was based on the

height of the specimen after the first loading.

The optimal performing design D2, which is given in Table 6.1 was selected

based on a parametric study. In the parametric study a number of parameters of

the PU/PU-glycerol layer were adjusted including the vertical placement of the

composite layer, the thickness of the layer, and the ratio of the cross-sectional

area of the high-density PU (HDPU) layer to the low-density PU (LDPU) layer,

which from here on is referred to as the area ratio. The performance of the

overall design was found to be substantially reduced when the composite

PU/PU-glycerol layer was not directly in contact with the ABS layer, so the

results of these experiments are not included in this study. In addition, the

studies including variations in thickness are also neglected in this chapter since

increasing the thickness of the PU/PU-glycerol layer only resulted in a decreased

performance. Therefore, the thinnest layer composite commercially obtainable

was utilized (3 mm). The primary parameter adjusted in this parametric study

was the area ratio. The parametric study sought to minimize the weight of the

design while providing superior impact performance for both single and
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successive loading scenarios. Experiments were performed using samples with

area ratios ranging from approximately 1:1 to 9:1 (i.e. 50 cm2 : 50 cm2 ; 66 cm 2 : 33

cm 2; 75 cm2 : 25 cm 2; 80 cm2 : 20 cm2; 83 cm2 : 17 cm2; 86 cm 2 : 14 cm2; 88 cm2 : 12

cm2 ; 89 cm 2 : 11 cm 2 ; 90 cm2 : 10 cm 2 ). All of the configurations were developed to

have a uniform, repeatable pattern, such that the loading response would be as

consistent as possible, independent of the impact site with respect to the two

layers comprising the composite PU/PU-glycerol foam.

6.4.3 Experimental Results

As previously discussed, to determine the optimal configuration for design D2 a

parametric study was performed varying the area ratio of the design from 1:1 to

9:1. Fig. 6.4 plots the maximum load sustained for each configuration under the

given testing conditions previously specified for the first impact of each sample

against the weight of that specimen normalized by the standard weight of

sample Si. The optimal area ratio was selected to be that which minimized the

weight while maintaining similar energy absorption characteristics to that of the

standard design S1. The energy absorption characteristic of the standard design

is represented by the maximum load under the specified testing conditions given

by the horizontal line (-10 kN) in Fig. 6.4. Based on this criterion, the optimal

area ratio is approximately 4:1, which is given as the circled point. In Fig. 6.4 as

the area ratio is reduced toward 1:1, the maximum load is reduced but the

weight of the sample increases dramatically because the heavier fluid-filled layer

comprises more of the composite layer. Similarly, as the area ratio is increased,

the overall weight of the composite is decreased, but the load bearing capability

of the layer, and thus, that of the overall design, also decreases dramatically.

Therefore the configuration for the optimized design D2 was based on an ideal
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area ratio of 4:1. We selected this optimization method since the current design

satisfies existing standards and our primary objective is to minimize the weight

and improve the multi-impact performance; however, other methods for

optimizing this design could also be selected. One such method is to find the

point on a unit normalized scale at which the tangent line to the area ratio curve

is at 45o to the axes, which would represent an optimization based on minimizing

the weight and the energy absorption, simultaneously.

A typical plot of the load-strain response for all three designs given in Table 6.1

is given in Fig. 6.5. All designs satisfy the international standards for maximum

acceleration of 300g, which can be translated into a maximum force of 15 kN for a

5 kg helmeted head. The energy absorption characteristics of all three designs on

the first impact are approximately the same, giving maximum loads within 20%

of one another under the standard helmet testing conditions. However, at an

equivalent thickness, designs D1 and the optimized design D2 demonstrate

significant weight savings over the standard design SI of approximately 30% and

11%, respectively. Fig. 6.6 plots the maximum load sustained normalized by the

maximum allowable load (15kN) under the given testing conditions previously

specified for the first impact of each sample against the weight of that specimen

normalized by the standard weight of sample Si. Each data point represents the

average of 3 repeated experiments and the corresponding error bars signify one

standard deviation. Ideally, a superior performance would minimize both the

weight and the maximum load under a given loading scenario as indicated by

the arrows in Fig. 6.6. To determine the optimal design a theoretical optimal

design point must be established. The optimal design point shown on Fig. 6.6 is

determined by assuming an idealized minimal weight material (0.10 g/cm3)

could absorb the specified amount of energy under a constant load over a
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deformation of 0.90 strain. Using the required energy absorbed under impact

and assumed deformation, the ideal maximum load is determined to be 4.81 kg.

Based on this plot it is clear the best overall performance is achieved by design

D1; however, the optimized design D2 also shows substantial improvement over

the standard design.

To determine the performance under repeated loads, which are expected to occur

in real accidents, all of the samples were retested again under the same loading

conditions. Fig. 6.7 plots the normalized maximum load sustained under the

standard testing conditions for the second impact of each sample against the

weight of that specimen normalized by the standard weight of sample Si. This

plot clearly shows the optimized design D2 has superior multi-impact

performance characteristics when compared to either of the other two designs.

6.5 Discussion

It is clear there is a need to reduce the weight of existing helmets, particularly

motorcycle helmets, without sacrificing performance. The primary performance

metric which must be considered in the design of an improved helmet is the

ability of a helmet to prevent diffuse brain damage due to excessive acceleration.

In this chapter, we follow the proposal by Shuaeib (2002b) that the thickness of

the outer ABS shell of a helmet can be reduced while maintaining acceptable

performance levels and penetration resistance. Moreover, there is strong

evidence to support changing existing testing standards to more accurately

represent actual loading scenarios, which would allow for an even greater

reduction in the thickness of the ABS shell. In this analysis we found replacing
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this displaced layer with a light-weight energy absorbing layer of equal thickness

results in a significant reduction in the overall weight of the helmet and a

reduction in the maximum load sustained during impact loading.

Design Di clearly demonstrates the best overall performance of the three designs

in this analysis under initial loading, tending toward the theoretical optimal

design achievable in Fig. 6.6. The primary advantage of this design is its

substantial decrease in weight over the standard design of approximately 30%.

While the experimental composite plates in this analysis do not exactly represent

the actual performance of a comparable helmet under the same loading

conditions, similar improvements in the weight efficiencies of helmets using the

designs presented in this analysis are expected. The implications of this design

are that significant weight savings may be achievable in a variety of helmet

designs if the thickness of the outer shell of helmets is optimally designed for the

required penetration resistance. One of the most prominent applications can be

clearly be seen in motorcycle helmets where the reduction of the overall bulk (of

up to 30%) could lead to a dramatic increase in the utilization of helmets.

Furthermore, implementing this design change could be readily done because

little change is needed to the existing manufacturing process. Therefore, a

substantial increase in the overall cost of this design is not expected and market

penetration could occur quickly.

While design Di demonstrates the greatest overall performance under initial

impact, the optimized design D2 has the capacity to substantially enhance the

multi-impact performance of the helmet. This is an important feature since real

accidents typically involve multiple, successive impacts. To the author's

knowledge it would be very difficult to determine if brain damage resulted from
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the initial impact or successive impacts in a real accident scenario. Therefore, we

believe increased multi-impact performance coupled with a lighter-weight

helmet has great potential to reduce the overall number of brain injuries from

motorcycle accidents. Furthermore, a computational study, which

parametrically established the optimal design parameters for the optimized

design D2 could result in even better performance and greater weight savings.

However, the increased manufacturing difficulty of this design may prohibit its

practical application. While the cost of materials is extremely low, the

manufacturing process becomes slightly more complex, which could increase the

cost of manufacturing this design significantly.

6.6 Conclusion

A review of the current state-of-the-art motorcycle helmet design along with

existing safety standards is given. A discussion is presented on improving the

weight efficiency and material utilization in existing motorcycle helmets. Based

on the efficiency improvements, two new motorcycle helmet designs are

proposed. The first design, which utilizes existing technology, exhibits the most

substantial weight improvement over the standard design, but sacrifices multi-

impact performance. The second design, utilizing a liquid-filled foam composite,

demonstrated a slight weight improvement over the standard design while

maintaining comparable first impact energy absorption characteristics; however,

the liquid-filled foam composite exhibited exceptional performance upon

repeated loading, which the other designs did not. This improvement is due to

the recoverable nature of the composite comprised of elastic, open-cell

polyurethane foams. The composite layer, which couples a fluid-filled, low-
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density polyurethane foam with a high-density polyurethane foam, is found to

reduce the overall weight of a helmet by -10%. While both of the proposed

designs in this analysis are more weight efficient than the standard design, the

optimized liquid-filled composite design exhibits enhanced multi-impact

protection, which may be useful in preventing injuries in motorcycle accidents.

This enhanced multi-impact protection alone is a major advancement in

motorcycle helmet design. Furthermore, the potential for weight reduction may

lead to a substantial increase in the utilization of helmets by motorcyclists,

preventing countless injuries and fatalities.
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Tables

Table 6.1: Design specifications for a standard helmet design (S1) and proposed
helmet design (Di and D2). (100 mm x 100 mm)

Material Thickness (mm) Weight (g)

ABS 5 54.0

SI Polystyrene 25 13.8

Total 30 67.8

ABS 3 32.4

Di Polystyrene 27 14.9

Total 30 47.3

ABS 3 32.4

D2 Polystyrene 24 13.2

PU/PU-Glycerol 3 14.8

Total 30 60.4
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Figures

Shell (ABS)

Foam Liner (Polystyrene)

Comfort Foam (Polyurethane)

Figure 6.1. Model of standard helmet design (Si).
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Shell (ABS)

-

Resilient Absorbing Layer
(PU/PU-Glycerol)

Comfort Foam (Polyurethane)

Figure 6.2a. Model of proposed helmet design (D2).
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High Density
Polyurethane

Low Density Polyurethane
Impregnated w/Glycerol

(PU/PU-Glycerol)

Figure 6.2b. Model of cross-section of proposed helmet design (D2). Optimal
configuration based on parametric study (area ratio -4:1).
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Figure 6.3 Maximum load plotted against the sample weight normalized by the
weight of the standards sample Si. All experiments are for Design D2 With

varying area ratios ranging from 1:1 to 9:1 in increments of approximately 1. The
maximum load for the standard design is given by the horizontal line.
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Figure 6.4. Load plotted against strain for the three helmet designs. Standard (Si)
(- ); Design 1 (Di) ( .......... ) and Design 2 (D2) ( XXXX ).

253

i I I I 5 i I I I 5 I I I I

.Ir r

r
i
r

r

1

·1
I
1
1

1"

I

lr

I

5EI



0.8
O0
-j

E 0.6
E
X

0.4

N
= 0.2

E
0
Z n

I

0 0.2 0.4 0.6 0.8 1

Normalized Weight (gig)

Figure 6.5. Maximum load normalized by the maximum design load plotted
against the sample weight normalized by the weight of the standards sample Si.
Standard (Si) (U); Design 1 (Di) (0 ); Design 2 (D2) (A); Optimal Design ( + ).
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Figure 6.6. Maximum load normalized by the maximum design load plotted
against the sample weight normalized by the weight of the standards sample S1 .

Standard (Si) (N ); Design 1 (Di) (0) ; Design 2 (D2) (A); Optimal Design ( +);
Maximum design load ( - -- ).
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7 Applications Liquid-Impregnated Open-Cell Foam in Blast

Protection of Infrastructure

7.1 Introduction

For the past four centuries terrorist plots to bomb critical infrastructure have

plagued society. Today, it has become one of the most prominent forms of

terrorism worldwide. The novel liquid-impregnated, open-cell foam discussed

throughout this thesis may have potential to protect against such terrorist

attacks. Specifically, in this chapter, we examine a new composite blast-resistant

technology for the protection of critical infrastructure from a potential explosive

attack. This new technology has the potential to substantially reduce the

maximum load imparted to a building by an explosive device compared to that

imparted to a building without any modifications while being simple,

inexpensive, lightweight, and robust.

To assess the performance of a blast plate, which incorporates a layer of liquid-

impregnated foam, requires a comprehensive understanding of blast wave

loading of structures. A brief review of blast waves and their interaction with

structures is presented along with a review of the current explosives threat to

critical infrastructure and the current state-of-the-art technology to protect

against such a threat. Based on the expected dynamic loading of a structure from

an explosive device and the previously developed models given in Chapter 4 and

Chapter 5, a highly efficient infrastructure protection technology can be

developed, consisting of a steel face plate backed by a layer of low-density,

reticulated, flexible, fluid-filled foam. Coupling relations for momentum

conservation and the dynamic response of fluid-filled foam, a numerical scheme

257



is developed to analyze the performance of the design. This numerical code is

utilized in a parametric study to identify designs that minimize the peak stress

on the underlying structure as well as the weight of the design. The parameters

included in this study are the thicknesses of each composite layer, the ratio of the

thickness of each layer to one another, the properties of the fluid in the fluid-

filled core, the aspect ratio (ratio of the radius of the foam core to the thickness of

the foam core), and the number of composite layers. Through this parametric

study, the effects of various design parameters on the effectiveness of a fluid-

filled, blast-resistant plate can be readily determined. Moreover, this study

identifies a range of parameters for which the proposed blast-resistant plate

demonstrates substantial reductions in the peak load transmitted to a structure

under a prescribed blast loading. Based on this study, it is evident that a fluid-

filled blast-resistant plate, configured according to the optimization trends, could

readily defend infrastructure against a standard terrorist attack. Using the

parametric study, an optimal configuration is presented, which demonstrates the

potential to reduce the peak stress on an underlying structure by as much as 90%

over a monolithic plate. Furthermore, this optimal configuration also shows

promise to outperform existing state-of-the-art blast protection devices with a

greater reduction in the peak stress at a given thickness.

7.2 Literature Review

7.2.1 State-of-the-Art Blast Protection Technologies

While blast protection technologies have existed for decades, recently, research

on advanced materials and structures for blast protection has drawn tremendous

interest. One of the most promising structural improvements for blast protection
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has proven to be the development of composite plates with a low-density,

porous, metal core also termed 'sandwich panels'. The three primary authors

spearheading this area of research have been J.W. Hutchison, V.S. Desphande

and N.A. Fleck. They have conducted numerous analytical and computational

studies on the expected performance of various types of sandwich panels under

a range of shock loads (Xue and Hutchinson (2003); Fleck and Deshpande (2004);

Xue and Hutchinson (2004); Qiu, Deshpande, and Fleck (2005); Hutchinson and

Xue (2005); Radford, Fleck, and Deshpande (2006)). The advantage of this type

of composite structure under blast loading was first recognized by Taylor (1963)

and explained in detail by Kambouchev, Noels, and Radovitzky (2006). The

fundamental concept is that the motion of the structure due to the deformation of

core relieves the pressure acting on it, reducing the transmitted impulse. Due to

this phenomenon, optimized sandwich plates have demonstrated the ability to

outperform monolithic plates of comparable weight under impulsive loads by

incompressible fluids (Fleck and Deshpande (2004) and Xue and Hutchinson

(2004)). A more detailed discussion of the findings of Fleck, Deshpande, and

their coworkers is presented in this analysis. While Taylor's analysis primarily

held for the case of a fluid of negligible compressibility impinging on a plate,

Kambouchev, Noels, and Radovitzky (2005) found that the effect of nonlinear

compressibility further enhanced the mitigation of transmitted impulse provided

by the fluid-structure-interaction. This finding suggests that blast mitigation

strategies utilizing sandwich panel construction may be even more beneficial in

the case of blasts where the impinging fluid is a highly compressible fluid, such

as air.
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While the models developed by Hutchinson and coworkers as well as Fleck,

Deshpande, and their coworkers demonstrated that sandwich panels have

enormous potential to protect against impulsive-pressure loading, all of these

models utilized the assumption that the time scales of the fluid-structure-

interaction stage and the core-compression stage were substantially different.

This assumption allowed these authors to separate the analysis of the two stages

to limit the computational complexity. In this analysis, we do not make that

assumption so that the duration of the fluid-structure-interaction stage and the

core-compression stage are not considered disparate enough to separate as in the

case of an air blast. Furthermore, previous research has resulted in the

development of analytical and computational models applicable to composite

structures with porous metallic cores where the pores are filled with a fluid with

negligible viscosity, such as air. None of these models has attempted to describe

the dynamic response of a composite plate loaded by a blast loading where at

least one of the composite layers is flexible, reticulated foam filled with a high

viscosity, incompressible fluid. In this analysis, the performance of such a fluid-

filled blast protection device is examined. It is also compared to that of an

equivalent, state-of-the-art design, which is based on current technology and the

models presented by Fleck, Deshpande, and their coworkers.

7.2.2 Blast Loading Assumptions

The greatest explosive threat to critical infrastructure is typically delivered in the

form of a vehicle bomb. Excellent reviews of terrorist attacks on infrastructure

are given by Elliot et al. (1992) and Ngo et al. (2007). Elliot et al. (1992) provides a

detailed discussion of possible attack mechanisms. Moreover, they propose

critical infrastructure should be designed for a maximum size vehicle bomb of
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230 kg (500 lb) of TNT equivalent explosive. While size or weight W, of an

explosive is an important consideration, it is not the only consideration. Possibly

of greater importance is the distance between the explosive and the target, D. A

generally accepted practice is to measure the effectiveness of an explosive by the

scaled blast distance parameter, Z, which is given as

D
Z = (7.1)

where W is the equivalent weight of the explosive in kg of TNT and D is the

distance between the explosive and the target in meters.

Improvised explosive devices (IED's) can come in many forms and be comprised

of many materials, but the primary threat today is in the form of solid-state,

secondary, high explosives, which when detonated generate a blast (shock) wave

(Ngo et al., 2007). Common examples of this form of explosive are

trinitrotoluene (TNT) and ammonium nitrate-fuel oil (ANFO). These explosives

are known to generate widespread damage to the surroundings and have been

studied extensively. The resulting blast waves from these explosives have been

classified into three categories: free-air blasts, air blasts, and surface blasts

(Remennikov, 2003). The latter two types of blasts consider coupling of reflected

pressure waves off the surroundings with the incident pressure wave, resulting

in an amplified reflected pressure wave impacting the structure. However, most

studies neglect these secondary effects and only consider free-air blasts since the

surroundings are often difficult to incorporate into an analysis. Furthermore,

analyses often focus on the case of free-air blasts since standard charts have been

well established for this case (U.S. Army, 1986). In the free-air blast loading
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scenario, reflection is also very important. Taylor (1963) found that the perfect

reflection of an incoming wave by an infinitely rigid structure would result in an

imparted momentum to that object that is nearly twice that of the incoming

wave. However, Taylor's work is not applicable to strong air shocks where the

compressibility of the air adds to the momentum imparted to the structure. In

this case, reflection factors may enhance the incident pressure waves by as much

as an order of magnitude. In fact, Elliot et al. (1992) gives the reflected pressure

wave ranging from two to thirteen times the incident pressure wave in the worst

case scenario where the wave interacts with the structure at a zero angle of

incidence.

In this analysis, the design of a blast plate subjected to the worst case reflected

pressure generated by a vehicle bomb filled with 233 kg of high explosive at a

distance of 2 m from the blast plate is examined. The effective power of this

explosive corresponds to a scaled blast parameter of Z = 0.325 m/kgl/3 . Based on

the TM5-855-1 chart given in the Fig. 7.1,which was developed by the U.S. Army

(1986) and converted to S.I. units by Elliot et al. (1992), the initial maximum

reflected over pressure on the plate is taken to be approximately Pro = 100 MPa.

Since this analysis only considers air blasts, the contribution of the dynamic

pressure component is negligible (-0.07 MPa, based on 1.2 kg/m3 air traveling at

the speed of sound) in comparison to the reflected static pressure component. In

addition, the effects of diffusion of the pressure wave around the structure and

drag on the structure are neglected (Elliot, 1992). The pressure exerted on the

structure by the blast wave P, is known to decay over time t, and is given by

(Fleck and Deshpande, 2004)
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P(t) = Poe-i '/ (7.2)

where r is the time constant of the pressure decay, which both Fleck and

Deshpande (2004) and Xue and Hutchinson (2004) assumed to be on the order of

0.1 ms. This assumption is consistent with the results presented by Hetherington

and Smith (1994), who developed charts for the time constant as a function of the

characteristic blast distance parameter. For characteristic blast parameters less

than unity (m/kgl/3), corresponding to relatively large blasts, Hetherington and

Smith (1994) demonstrated the duration of the positive pressure phase of a blast

is on the order of 1 ms. This indicates the duration of the time constant for the

blast pressure decay is on the order of 0.1 ms. Therefore, in this analysis the time

constant for the pressure decay is assumed to be 0.1 ms. The response of the

blast wall also has a characteristic time constant associated with it, which is

dependent upon the properties of the structure. In the analysis of Fleck and

Deshpande (2004), the characteristic time for the core compression stage is on the

order of 0.4 ms. While Fleck and Deshpande (2004) consider the time constants

to be distinct enough to separate the analyses for the blast loading phase and the

core compression phase, reducing the computational complexity, in this analysis

we do not make that assumption. Instead, the time scale for the blast-wave-

structure-interaction and the response of the structure are taken to be of the same

order of magnitude and the response is analyzed accordingly.
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7.3 Analysis

7.3.1 Proposed Blast Protection Designs

This analysis considers a blast protection technology designed to be attached to

the exterior of a building. This technology is necessary in the case where critical

infrastructure does not have the adequate stand-off distance from a potential

explosive device. Two types of new cylindrical blast shield designs are proposed

as shown in Figs. 7.2 and Fig. 7.3. The first design, referred to as the single-core

design, consists of an outer steel face plate and an inner, fluid-filled foam core,

which is attached flush against the structure (Fig. 7.2). In Figs. 7.2 and Fig. 7.3

the numerical subscript 1, corresponds to the layer and the index subscript i,

corresponds to the single-core design. The outer face plate has thickness h ii and

density p ii. The inner fluid-filled foam core has thickness h 2i(t), Which is a

function of time as the core undergoes compression. The second design, referred

to as the dual-core design, consists of two alternating layers of face plates and

fluid-filled foam cores with the outermost layer being a face plate layer and the

innermost layer, adjoined to the structure, being a fluid-filled foam core as

shown in Fig. 7.3. Again each layer has a specified thickness, with the solid face

plates having thicknesses h iii and h 3ii and the fluid-filled cores having

thicknesses h 2ii(t) and h 4ii(t).

Each design is assumed to be loaded by a uniform pressure load (given by Eq.

(7.2)) on the outermost face plate. The steel face plates and the underlying

structure are considered infinitely rigid compared to the fluid-filled foam.

Therefore, there is no deformation in either the face plates or the structure itself

during the dynamic compression of the core. The dynamic compression of the
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core is assumed to be similar to that given in Chapter 4. Under extremely high

strain rates, such as those experienced in a large blast load, the expected stress

response of the Newtonian fluid-filled foam given in Chapter 4, based on the

permeability of the foam, exceeds that presented by the experiments for a non-

Newtonian fluid-filled foam given in Chapter 5. Therefore, based on the

discussion given in Chapter 5, the fluid-structure interaction can be neglected for

high stresses, such as expected under blast loading, since the structure of the

foam is readily destroyed by the stress in the fluid. Thus, for blast loading, the

fluid-structure-interaction is neglected for both the Newtonian and non-

Newtonian fluid-filled foam under blast loading. The model developed in

Chapter 5 for the non-Newtonian fluid-filled foam is given for a power-law fluid

where the viscosity of the fluid q, can be described in various regimes by

7 = m() - . (7.3)

As given in Chapter 5, the average stress applied over the core filled with a non-

Newtonian fluid (NNF) can be modeled as

0o- = 2 2n+n1  (7.4a)( n n+3 h h

The equivalent Newtonian-fluid-filled foam model can be derived from the fact

that the power law exponent n, is equal to unity for a Newtonian fluid and the

power law coefficient m, is equal to the dynamic viscosity u. Therefore the

average stress applied over the core for a Newtonian fluid-filled foam is given as
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a = 3 2_ . (7.4b)'2 h h

7.3.2 Global Conservation Equations

Utilizing both the external pressure loading as a function of time (Eq. 7.2) and the

internal dynamic response of the fluid-filled foam (Eq. 7.4), a global conservation

of momentum can be taken around each solid plate in the system. The dynamic

response of each blast wall and the resulting loading on the underlying structure

can then be determined. Conservation of momentum M, in the differential form

can be written around each plate for both designs as follows:

Single-Core Design

dM, dVdM = p,hhd = P- rf_2i (Plate li) (7.5)
dt dt

where Vii is the velocity of the outer plate and of_2i corresponds to the average

stress distribution in the foam layer. Again, the numerical subscripts correspond

to the layer and the index subscripts correspond to the single-core design (i) vs.

the dual-core design (i). The corresponding rate of change of the height of the

foam layer h2, is given by

h2i = -V, (7.6)

Dual-Core Design
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dM,. dV
dM = pl h, :' P (Plate lii) (7.7)
dt dt - -

dM, _ ph dV-
d : h3 = pih-2" -f4i (Plate 3ii) (7.8)

dt dt - -

The corresponding rate of change of the heights of the foam layers h2, and h,,

are given by

h2ii = V3ii - Vii, (7.9)

h4ii = -V3ii . (7.10)

For each design a system of first order, ordinary differential equations is given.

The initial conditions are given as all layers are in static equilibrium with zero

velocity prior to the blast wave impinging on the outermost plate. As previously

discussed, the duration for the response of the blast wall is on the same order of

magnitude as the time constant for the decay of the applied pressure from the

blast loading; therefore, the final state of the system is assumed to be

approximated by the solution at ten time constants (1.0 ms). Both designs are

also subject to a constraint that the maximum allowable compressive strain of a

core layer is 0.90. If this strain is exceeded prior to the desired final state, the

design is rejected.

7.3.3 Material Properties

Solving the system of equations for conservation of momentum also requires

knowledge of the material properties in each design. Each design consists of at
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least one layer of steel with density of 7.80 g/cm3 and at least one layer of fluid-

filled foam. The fluid-filled foam is assumed to be 80 ppi, open-cell, flexible,

low-density, polyurethane foam with density of 0.032 g/cm 3, corresponding to a

relative density of approximately p*olp = 0.03. The dynamic response of each

design is compared using three types of fluid. The first fluid is a relatively high

viscosity, Newtonian fluid (after honey with 15.5% H20), corresponding to a

density and viscosity @ 250C of 1.45 g/cm3 and u = 13.8 Pa-s, respectively. The

second fluid (glycerol) is a slightly lower viscosity Newtonian fluid, and was

used in previous chapters. The density and viscosity are given again to be 1.26

g/cm3 and p = 1.49 Pa-s, respectively. The third fluid is a non-Newtonian, shear

thickening fluid, comprised of 50% silica particles suspended in ethylene glycol

with a density of 1.5 g/cm3 . The parameters n and m are given for each regime in

Table 7.1 based on the data in Fig. 7.4, given in Chapter 5. The transition between

each power-law regime in the fluid-filled foam is derived from Eq. (7.4a) by

equating the average stress for each regime and solving for the transition value

y/, of the strain rate hý/h, multiplied by the current aspect ratio R/h, as given in

Table 7.1. The transition between each power-law regime is more clearly seen in

the plot of the viscosity against the strain rate of the fluid given in Fig. 7.4.

7.4 Results and Discussion

7.4.1 Parametric Studies

Equations (7.5-7.10) can be used in a parametric study to analyze the proposed

design for protection against explosive devices. An optimal design would

reduce the maximum load imparted to a structure while minimizing the overall
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cost. Since peak stress orp, is a measure of the maximum load imparted to a

structure and weight (or areal density) is a measure of the total cost of

implementing the design, these two variables are calculated. The measure of

performance is determined by normalizing the peak stress imparted to the

structure by the maximum pressure exerted on the outer face plate, Pro, which is

the equivalent of the peak pressure exerted on the structure if there was no

protective blast wall. The areal density of the design is given by wf. A number of

free variables are used for the parametric study including the radius to thickness

ratio of the fluid-filled foam layers, the thickness of each layer of material, the

properties of the fluid impregnating the open-cell foam, and, for the dual-core

design, the ratio of the thickness of each similar layer of material.

7.4.2 Single-Core Design

First, consider the single-core design (Fig. 7.2), which provides insight into the

effects of the aspect ratio, the thickness of each layer, and the properties of the

impregnating fluid on the performance of the blast wall. Throughout the

parametric study, the performance of each design is compared by plotting the

normalized peak stress on the structure against the areal density of the design.

In Eq. (7.4) the average stress in the fluid-filled foam is proportional to the aspect

ratio raised to a power greater than unity, making the aspect ratio, or the ratio of

the radius of the foam to the height of the foam a critical parameter to study.

This indicates changes to this parameter have a more significant impact on the

response of the system than comparable changes to either the velocity at which

the foam is compressed or the properties of the impregnating fluid. Fig. 7.5 plots

the normalized peak stress on the structure p / Pro, against the areal density wj,
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for a single-core design with glycerol as the impregnating fluid, where the outer

face thickness is selected to be 10 mm. Three different values of the radius of the

foam were selected of R = 0.5 m, 0.75 m, and 1 m, and the initial thickness of the

core h2o, was varied from 5 mm to 100 mm in increments of 5 mm, allowing the

effect of the aspect ratio R/h to be studied.

Some of the most important findings in this analysis are directly related to the

effect of the initial aspect ratio on the performance of each design. In particular,

two limit phenomena are observed throughout all of the parametric studies as

the initial aspect ratio tends toward infinity and zero. This can be observed in

Fig. 7.5 on any of the constant radius lines as the initial core thickness h2o, tends

toward zero or infinity. As aspect ratio R/h2, approaches infinity and the initial

core thickness approaches zero, the stress response becomes extremely large, as

shown by Eq. (7.4). This dramatic increase in the stress response results in the

fluid-filled foam acting much like the infinitely rigid plate. Therefore, in the case

of a simple infinitely rigid plate, the peak stress on the building is expected to be

that of the peak pressure on the plate. Hence, as the initial core thickness tends

toward zero (or the initial aspect ratio tends toward infinity) the normalized

stress is expected to tend toward unity, which is clearly observed in Fig. 7.5. In

the other limit, as the aspect ratio R/h2, approaches zero, as the initial core

thickness becomes very large, Eq. (7.4) indicates a negligible amount of stress

will be absorbed for a majority of the initial compression distance, since the

aspect ratio over most of the deformation is comparably small. Therefore, in this

limit, the outer face plate is effectively freely loaded by the blast wave without

influence from the response of the core. During the free loading phase, the plate

achieves a certain velocity characteristic of its inertia. Then as the core thickness

decreases during the compression, the stress contribution from the fluid-filled
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foam becomes significant. Thus, in the limit of very large initial core thickness

(small initial aspect ratio), the dynamic response of the system is approximately

independent of the initial core thickness, explaining the plateau response on the

right hand side of Fig. 7.5. In some cases the response between these two limits

is not monotonic; this is observed for R = 0.5 m in Fig. 7.5. This phenomenon can

be explained by first reconsidering the fact that the inherent difference between

the limit of very small initial aspect ratios and very large initial aspect ratios is

that the outer plate is either "freely loaded" during the blast loading or there is

resistance from the core during the blast loading period. In the limit of very

small initial aspect ratios, the freely loaded plate is accelerated with little

resistance from the core. Based on the aspect ratio arguments previously seen, a

small radius design (i.e. R = 0.5 m) would require a small core thickness to result

in a response of the core that is not negligible. Therefore, in the limit of large

initial aspect ratios (small R/h2o) a large core deformation is required to achieve

this smaller core thickness during compression. Since the stress response in Eq.

(7.4) is proportional to the core thickness raised to the third power, a substantial

and dramatic increase in the stress response of the foam is observed to impede

the incoming plate. This explains the relatively high normalized peak stress

plateau response for the small radius R = 0.5 m. However, in the case of R = 0.5

m, as one decreases the initial core thickness h2o, the initial aspect ratio is

increased. At some point the initial aspect ratio results in a stress response that is

no longer negligible during the blast loading period. This results in a more

uniform response of the core and a lower normalized peak stress, which can be

observed in Fig. 7.5 as the non-monotonic response.

In between these two limits, it is apparent in Fig. 7.5 that increasing the initial

aspect ratio, or the radius at a constant initial core thickness (as shown by the
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contour lines), results in a substantial reduction in the normalized peak stress on

the underlying structure at a constant areal density. This effect is intuitive since

increasing the radius corresponds to a higher stress response over a longer core

compression distance. This more closely approaches the ideal plateau stress

response where the normalized peak stress is minimized. As previously

discussed, there are limits to the applicability of this result. In practical

considerations, blast plates for infrastructure with radii larger than -1 m become

impractical to install and may be less aesthetically pleasing. Furthermore, too

avoid the rigid plate response previously discussed in the limit of large initial

aspect ratio, as the radius is increased, the thickness of the core must also be

increased. Therefore, there is a practical limit based on initial core thickness and

areal density, at which increasing the radius no longer gives the desired optimal

response. Considering all of these factors, the optimal radius is selected to be 1

m.

In addition to the initial aspect ratio, other important parameters include the

thicknesses of the face plate and the thickness of the core. In Fig. 7.6, the effect of

changing these two parameters is examined. The single-core design

impregnated with glycerol is selected to have a radius of 1 m. Four different face

plate thicknesses are examined, ranging from 5. mm to 20 mm in increments of 5

mm, for a range of initial core thicknesses from 5 mm to 100 mm. It is observed

that increasing the face plate thickness hi, increases the areal density and reduces

the peak stress. This observation can be understood by considering the inertia of

the plate. In the limit of small initial aspect ratios, a thin plate with lower inertia

is accelerated freely by the blast loading to a higher velocity than a thicker plate

with higher inertia. Accordingly, more work is done on the plate with less

inertia since the same pressure has been applied over a greater distance.
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Therefore, it is logical that a larger normalized peak stress would be required to

dissipate the larger amount of energy carried by the plate with lower inertia.

However, it is important to consider the initial loading assumption. In this

analysis, the worst case maximum reflected pressure is assumed, which is only

applicable for an infinitely rigid system. In the case of a lighter plate, which is

allowed to move during loading, the actual maximum reflected pressure would

be less than that applied to a heavier plate. Therefore, a strong assumption in

this analysis is that the plates are all loaded by a consistent uniform pressure.

Overall, this analysis shows the advantage in reducing the normalized peak

stress gained by increasing the plate thickness must be balanced with the

corresponding increase in the areal density of the design. Based on this

parametric analysis, the optimal plate thickness for the specified loading is

selected to be hi = 20 mm and the best initial core thickness h2o, is between 25 and

50 mm.

Fig. 7.6 also demonstrates important findings with regard to the initial core

thickness h2o. As expected, increasing the initial core thickness results in a

decrease in the peak stress transmitted to the underlying structure. But there is a

relatively dramatic transition where the rate of reduction in the peak stress with

respect to increasing initial core thickness dramatically decreases. This transition

is dependent upon the fluid and plate properties, but for the parameters in this

analysis it typically occurs when the initial core thickness is such that the areal

density of the core is between 20% and 40% the areal of the plate.

The final parametric study for the single-core design involves analyzing the

effect of the fluid properties. In particular, the effect of the viscosity on the

performance of the blast wall is studied with consideration of both Newtonian
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and non-Newtonian fluids. In Fig. 7.7, the performances of the single-core

design impregnated with glycerol, honey, and a silica based NNF is given where

the silica based NNF is modeled by the power-law model. Each design considers

an outer face plate thickness of 20 mm and radius of 1 m, which tend toward the

optimal design. Again, the initial core thickness is varied from 5 mm to 100 mm.

The viscosities of the three fluids in Fig. 7.7 range from a minimum of 1 Pas to a

maximum of 40 Pas. In this range, the optimal fluid viscosity is actually shown

to be the middle viscosity for most designs considered, corresponding to the

honey-filled foam. Using this methodology, the optimal fluid viscosity could be

selected based upon the desired performance metrics. Under the loading

conditions with the materials and dimensions selected for this analysis, a fluid

with a viscosity on the order of honey appears to be approaching the optimal

fluid. It is also important to consider the tradeoff between areal density and

viscosity. Since honey is a high density fluid, the rate of reduction in the peak

stress with increasing initial core thickness is less steep than in a comparable

lower density fluid, such as glycerol. One advantage of a non-Newtonian fluid-

filled foam is that, despite its higher density, it is still capable of demonstrating a

dramatic rate of reduction in the peak stress with increasing initial core thickness

for small core thicknesses as seen in Fig. 7.7. Although the non-Newtonian fluid

is approximately the same areal density as honey, for small initial core

thicknesses the variable viscosity is more conducive to a dramatic reduction in

the peak stress with increasing initial core thickness.

7.4.3 Dual-Core Design

The dual-core design is useful in examining if enhancements in performance can

be achieved through increasing the number of layers. To determine the effect of
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increasing the number of layers, all comparisons between the dual-core design

and the single-core design are done on a comparable areal density and thickness

basis. Therefore, it is assumed the combined thickness of the two face plates in

the dual-core design is equal to the thickness of the one face plate in the single-

core design, and the combined thickness of the two cores in the dual-core design

is equal to that of the core in the single-core design. In Fig. 7.8, the normalized

peak stress imparted to the structure is plotted against the areal density for the

dual-core design. Again, the radius is selected to be 1 m, and the impregnating

fluid is glycerol. The inner and outer plate thicknesses were selected to be equal

as were the initial inner and outer core thicknesses. The combined thickness of

the inner and outer plates is varied from 5 mm to 20 mm, as in the case of the

single-core design. Similarly, the combined thickness of the cores is varied from

5 mm to 100 mm. In comparing the performance of the dual-core design (Fig.

7.8) to that of an equivalent single-core design (Fig. 7.6), it is clear the single-core

design has superior performance at comparable areal density.

Although the uniform equivalent dual-core design is not as efficient as the

single-core design, the dual-core design provides the ability to vary more

parameters. In particular, the effects of varying the thickness ratio of the outer

face plate to that of the inner face plate is examined in Fig. 7.9. Again, the radius

is taken to be 1 m, with glycerol as the impregnated fluid, and the core layers are

of equal thickness, but the combined thickness can be varied as in previous

single-core analyses. Three curves are plotted corresponding to inner plate

thicknesses of 2.5 mm, 5.0 mm, and 7.5 mm where the combined face plate

thickness is 10 mm. It is apparent as the ratio of the thickness of the outer plate

to that of the inner plate is decreased, the peak stress on the underlying structure

is reduced. Although the peak stress is substantially less than that analyzed in
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Fig. 7.8 for equal face plate thicknesses, the overall performance is still not as

good as the single-core design (Fig. 7.6). In addition, if the ratio of the face plate

is improperly designed, the system can actually perform worse than if there was

no protective blast plate (which results in a peak stress on the structure equal to

the peak pressure of the blast wave). Improper coupling between the layers can

actually amplify the peak stress on the underlying structure above that of the

maximum reflected pressure as shown by the top curve in Fig. 7.9.

The dual-core design not only allows for the study of the effect thickness ratio

between the outer and inner face plates, but it also allows for the study of the

thickness ratio between the outer and inner cores as shown in Fig. 7.10. For a

dual-core design with radius 1 m, impregnated with glycerol and outer face plate

thickness of 2.5 mm with inner face plate thickness of 7.5 mm, the normalized

peak stress is plotted against the areal density of the design. The ratio of the

initial outer core thickness to that of the inner core is varied from 1/15 to 15. In

Fig. 7.10 it is shown that reducing the initial outer core thickness is also optimal.

For ratios of the initial thickness of the outer core to that of the inner core less

than unity, the performance is approximately constant. This can be observed by

the overlapping results for this region. Overall, Fig. 7.9 and Fig. 7.10 indicate

that in the limit of decreasing outer plate thickness and decreasing initial outer

core thickness the optimal solution is achieved. Therefore, the results from Fig.

7.9 and Fig. 7.10, also support the conclusion from Fig. 7.8 that the single-core

design is ideal.
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7.4.4 Optimal Design

Overall, Fig. 7.7 and Fig. 7.9-7.11 indicate the optimal configuration is found to

tend toward a single-core layer design. For the characteristic loading scenario

presented in this analysis, the ideal configuration also tends toward maximizing

the radius, within practical constraints. Furthermore, the ideal configuration for

minimizing the peak stress also tends toward maximizing the plate thickness hi;

however, increasing the plate thickness also results in an increased areal density.

Similarly, increasing the initial core thickness h2o also tends to decrease the peak

stress on the underlying structure while increasing the areal density of the blast

plate. However, with increasing initial core thickness there is an apparent

transition where the rate of reduction in the peak stress with respect to increasing

initial core thickness dramatically decreases. This transition depends on the

loading scenario and characteristics of the blast plate, but is found to be

approximated by a initial core thickness such that the areal density of the core is

on the order of 30% that of the plate. The ideal fluid impregnating the foam

would intuitively have a minimum density, but the optimal viscosity is

dependent upon the blast loading and the characteristic properties of the

composite blast plate. However, it can be concluded a relatively high viscosity

fluid, on the order of 10 Pas, is preferred. It is also noted that the characteristic

behavior found in some shear thickening fluids has a desired effect on the

response of the composite blast plate. Considering all of these optimal

parameters, the composite blast plate with a layer of fluid-filled foam has the

potential to reduce the normalized peak stress up to 85% at an areal density of

approximately 220 kg/m2 and by more than by more than 90% with an areal

density in excess of 300 kg/m 2.
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7.4.5 Comparable Standard Blast Shield Design

To assess the viability of a new blast protection technology, it is important to

compare its performance to existing technology. As previously discussed, a

number of commercially available blast protection walls are available. Since

there are many types of blast protection technologies, such as those that require

active control (i.e. magnetorheological or electrorheological fluids) and those that

require a stand-off distance from the structure, the comparison in this analysis is

limited to similar technologies. Comparable designs are assumed to be adjacent

to the structure and to be comprised of inexpensive materials that do not require

active control. Most designs of this nature are in the form of a standard

sandwich panel, where a semi-compressible core is placed in series with one or

more layers of comparably rigid face plates. It is envisaged that as the outer face

plate is accelerated by the blast load, the core material is allowed to deform,

absorbing energy and reducing the maximum force applied to the underlying

structure.

One such standard, wall-mounted, blast shield designed to protect against a

6001b ANFO blast, is available from Creative Building Products. This standard

attachable blast wall contains three steel face plates with a combined thickness of

10 mm and density of p = 7800 kg/m3 . The face plates are separated by two layers

of sand-filled, open-cell, polyethylene plastic core material. The areal density of

this protective blast wall is 330 kg/m2. This gives an idea as to the typical

standard areal density, which can be used to assess the efficiency of both the

optimally designed fluid-filled sandwich blast plate and the optimally designed

standard sandwich blast plate. However, since the behavior of the internal core

is not readily modeled, to develop an accurate model for the performance of this

design, a modified design based on the results of Fleck and Deshpande (2004) is
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considered. They considered a blast plate comprised of a three layer composite

with inner and outer steel face plates sandwiching a porous, steel core. They

analyzed a variety of microstructure core configurations, but one of the most

commonly used cores they analyzed was the foam configuration, which is

known to demonstrate superior performance in sandwich plate designs.

In this analysis, the standard blast plate foam core is assumed to be made of steel

(p s = 7800 kg/m3 ; o-y = 300 MPa) with an initial density po, current relative density

p, and yield strength, ony. The core is treated as a rigid, ideally plastic, crushable

solid with a normal compressive strength any = 0.3(~5 )15 o-y (after Gibson and

Ashby, 1997). After densification has been achieved, it is assumed that the core is

rigid. Both commercially available blast walls and theoretically proposed blast

walls have a variety of layering configurations. To compare the ideal fluid-filled

design to the standard design, in this analysis, we consider one outer face plate

layer and one foam core layer (identical to the proposed designs shown in Fig.

7.2 with the fluid-filled foam core replaced by the steel foam core). This design

differs slightly from the Fleck and Deshpande sandwich structure in that there is

no inner face plate layer. Since this design is attached directly to the underlying

structure, which is assumed infinitely rigid, there is no need for an infinitely

rigid inner face plate layer. To maintain the comparison between the optimal

fluid-filled design and the standard design, the face plate thickness is selected to

be 20 mm. Selecting a face plate with smaller thickness may have a greater

reduction in the weight of the standard design, but would not provide the same

rigidity or resistance to shrapnel from the blast. A practical constraint is also

placed on the core thickness of the standard design. Since one of the main

disadvantages of a standard foam core design is typically the large thickness
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required, we require the core thickness to be less than 100 mm for all of the

designs considered. This constraint is also applied to the core thickness of the

optimal fluid-filled core design.

Fig. 7.11 plots the normalized peak stress imparted to the structure against the

areal density for the honey-filled composite blast plate and the standard blast

plate with foamed steel core. Three standard designs are shown with initial

relative core densities of po/p = 0.25, 0.2, and 0.15, corresponding to densities of

1950, 1560, and 1170 kg/m3 , respectively. For each design the initial thickness of

the core h2o, is varied up to the maximum allowed core thickness of 100 mm in

increments of 5 mm. The results of the standard design are independent of the

radius of the design, so a radius of 1 m is selected. From Fig. 7.11 it is clear the

standard foamed steel core design also substantially reduces the peak stress on

the underlying structure at areal densities comparable to that of the honey-filled

blast-resistant plate. It is also apparent, minimizing the initial relative density of

the standard steel, foam core design tends toward an optimal configuration for

reducing the peak stress at a given areal density; however, the applicable range

of core thicknesses of this design is also dramatically reduced. The optimal

relative density of the steel foam core is taken to be 0.15 since densities lower

than this require core thicknesses greater than 100 mm to mitigate the incoming

blast wave. Table 7.2 gives the optimal configuration for both the fluid-filled

composite blast-resistant plate and the standard foam composite blast-resistant

plate. While there is very little difference in the level of blast mitigation at a

given areal density between the optimal fluid-filled design and the optimal

standard design, the optimal fluid-filled design results in a significant reduction

in the overall thickness compared to the standard design at a given areal density.

This can be more clearly seen in Fig. 7.12 which is a magnified plot of Fig. 7.11.
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In Fig. 7.12, the points corresponding to initial core thicknesses of 75 mm and 100

mm are overlaid on the plots for the optimal honey-filled configuration and the

optimal standard configuration. For a comparable thickness the optimal honey-

filled design demonstrates reductions in the normalized peak stress of

approximately 15% over the optimal standard design.

7.5 Conclusion

This chapter examines the potential of a novel blast protection composite, which

incorporates a layer of low-density, flexible, reticulated foam filled with either a

Newtonian or a non-Newtonian fluid. A review of blast loading of structures

and the current state of the art technology for protecting against such loads is

given. The potential of the proposed design to protect against blast loading and

reduce the maximum stress transmitted to the underlying structure is assessed.

Tractable relations are developed which readily allow for a parametric study of

this design. An optimal design is found to be a single-core layer with a relatively

large initial aspect ratio saturated with a relatively high viscosity, Newtonian

fluid. In addition, a critical transition for the thickness of the core is also

observed, at which point the rate of reduction in the peak stress with respect to

increasing initial core thickness dramatically decreases. Furthermore, it is

observed that increasing the thickness of the face plate increases the areal density

of the design but results in similar percent reductions in the peak stress

transmitted to the underlying structure. Overall, the optimal design is found to

reduce the normalized peak stress on an underlying structure by more than 90%

compared to that on an unmodified structure. Moreover, the optimal design is

shown to outperform comparable blast plate designs with greater reductions in
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the peak stress at a given thickness. Finally, this analysis of composite, fluid-

filled blast protection technologies, shows this design has enormous potential to

be readily extended to the development of new protection equipment for a range

of energy absorption applications. In particular, this technology may be useful in

the design of blast protection equipment for military personnel and vehicles as

well as impact protection equipment for commercial helmets and vehicles.
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Tables

Table 7.1: Viscosity exponents n, and coefficients m, for power-law models of
50% silica based non-Newtonian fluid in various regimes.

n m (Aspect Ratio)(Strain Rate),
1.00 40 i < 32
0.17 1200 V> 32

285



Table 7.2: Optimal configurations and performance for both the fluid-filled and
standard blast-resistant plates.

Fluid-Filled Core Design Standard Core Design

Honey-Filled Steel FoamCore Material Honey-Filled Core Material Steel Foam
PU Foam pop, = 0.15

h i (mm) 20 h, (mm) 20

h2o (mm) 100 h2o (mm) 100

p, (kg/m 3) 7800 p, (kglm3) 7800

p20 (kglm 3) 1290 p2o (kg/m 3) 1170
w (kg/m3) 300 w (kg/m 3) 273

ojdPro 0.09 adPro 0.11
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Figure 7.1 Blast parameters for spherical TNT charge in free air (Elliot, 1992)
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Figure 7.2. Model of Single Core Blast Protection Design.
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Figure 7.4. The viscosity of the silica based non-Newtonian fluid plotted against
the shear rate of the fluid.
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Figure 7.5. The peak stress on a structure protected by a single-core, glycerol-

filled composite plate normalized by the maximum blast pressure plotted against

the areal density of the composite plate. Radius of blast plate: 0.5 m (- ); 0.75

m (- - ); 1 m ( ....... ). Outer face plate thickness hi = 10 mm.
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Figure 7.6. The peak stress on a structure protected by a single-core, glycerol-
filled composite plate normalized by the maximum blast pressure plotted against
the areal density of the composite plate. Outer plate thickness hi: 5 mm ( ....... );

10 mm (- -); 15 mm (- - ); 20 mm (- ); R = 1 m.
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Figure 7.7. The peak stress on a structure protected by a single-core, fluid-filled
composite plate normalized by the maximum blast pressure plotted against the
areal density of the composite plate. Fluid: Honey ( ....... ); Glycerol (- ); Silica

Based NNF (- ). hi = 20 mm; R = 1 m.

293

I i I I I u l i I I I I I1 1 I i

,

h 2 25 mm
h 2 = 50 mm ... ."

h o 75 mm -"  "--

JJLL Wýff0fh . o = 1 00pmfm

1



")
N

E 0.75
0-.

b

S 0.5

0 0.
o x 0.25
4.,

0)

a 0 80 160 240 320

Areal Density wf (kg/m2 )

Figure 7.8. The peak stress on a structure protected by a dual-core, glycerol-filled

composite plate normalized by the maximum blast pressure plotted against the

areal density of the composite plate. Total combined plate thickness hlii + h3ii:

5 mm( ...... ); 10 mm (- -); 15 mm (- - ); 20 mm (- ). R = 1 m.
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Figure 7.9. The peak stress on a structure protected by a dual-core, glycerol-filled

composite plate normalized by the maximum blast pressure plotted against the

areal density of the composite plate. Ratio of plate thicknesses h 1/h 3:

3/1 ( ....... ); 1/1 (- - ); 1/3 (- ). R = 1 m; hlii + h3ii = 10 mm.

295

>t



a,

N

E 0.875E

0Z:0bS. 0.75

r-C
r= n

o x 0.625

4.)
0)

C. 0 80 160 240 320

Areal Density wf (kg/m 2 )

Figure 7.10. The peak stress on a structure protected by a dual-core, glycerol-
filled composite plate normalized by the maximum blast pressure plotted against

the areal density of the composite plate. Ratio of initial core thicknesses
h 2o/h 4o: 15 (*); 7 (e); 3 (i); 1 (A); 1/3 (0); 1/7 (0); 1/15 (0);

Where all areal densities uf, are exactly 128 kg/m 2, but the lower cluster of points
are offset to make them more visible. R = 1 m; hlii + h3ii = 10 mm.
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Figure 7.11. The peak stress on a structure protected by a single-core composite
plate normalized by the maximum blast pressure plotted against the areal

density of the composite plate. Core: Honey-filled (0o); Standard steel foam po/ps
= 0.15 (- -); Standard steel foam po/ps = 0.20 (-- ); Standard steel foam po/,s =

0.25 (- ). hi = 20 mm; R = 1 m; h2o varied from 5 mm to 100 mm.
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Figure 7.12. The peak stress on a structure protected by a single-core composite
plate normalized by the maximum blast pressure plotted against the areal

density of the composite plate. Core: Honey-filled (-,A, a); Standard steel
foam po/ps = 0.15 (- -, A, 0); hi = 20 mm; R = 1 m; h2o varied from 5 mm to 100

mm.
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8 Conclusion and Recommendations

8.1 Conclusions

It is apparent that there is a tremendous and rapidly growing need to develop

improved protective equipment for both resisting high energy impacts and

impeding blast waves. The overarching goal of this dissertation is to address this

need by exploring the potential of a novel, fluid-impregnated foam suitable for

both energy absorption and blast wave protection. In this thesis, we have

established a robust theoretical and experimental foundation upon which future

research in this field can be grounded.

While it has been well known for sometime that the permeability of open-cell

foam is a function of the applied compressive strain, in this analysis we develop

a highly tractable, physically based analytical model describing the relation

between the compressive strain and the permeability. This model was based on

the observation that after cells in the foam begin to buckle and collapse, the cells

remain at either one of two strains, the elastic buckling strain or the densified

strain. Experimental results provided strong support for this model over a wide

range of strains and cell sizes, and also demonstrated the model to be

independent of the anisotropy of the foam and the fluid properties.

Understanding the microstructural behavior of foam under deformation was a

critical step toward the development of a comprehensive description of the

dynamic compressive response of fluid-impregnated foam. In this dissertation,

the first known comprehensive, analytical model describing the complex

phenomenon of the dynamic compressive response of Newtonian fluid-
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impregnated, reticulated, elastomeric foam is presented. Extensive experimental

studies were carried out, which strongly support this model for a range of

strains, a variety of foam grades, and several orders of magnitude of strain rate.

A more simple explicit analytic solution based on a lubrication approximation is

also presented. The generalized, comprehensive model is found to converge

rapidly to within 5% of the lubrication model as the aspect ratio of the foam is

increased beyond four. One of the primary advantages of this tractable

lubrication model is that it reveals important scaling relations for the dynamic

response. Specifically, the average stress response is found to scale proportional

to the characteristic dimension in the direction of flow (radial) to the second

power and to the viscosity and the strain rate of the foam to the first power. It is

also found to be inversely proportional to the permeability to the first power.

These scaling relations are extremely useful in the design of dynamic engineering

systems incorporating a layer of fluid-impregnated foam. Furthermore, the

lubrication model can be readily extended to more complex analyses, such as the

dynamic response of foam impregnated with a non-Newtonian fluid.

In addition to a Newtonian model, the first known, comprehensive model for the

dynamic compressive response of a non-Newtonian, shear thickening fluid-

impregnated foam was also discussed in this dissertation. Like the Newtonian

model, scaling relations were also observed for the dynamic response of the non-

Newtonian fluid-filled foam model, which are useful in engineering design. This

non-Newtonian model only considered the response beyond the shear

thickening transition, corresponding to strain rates where most high rate,

dynamic engineering applications will operate. Primarily, this model is

developed for the latter shear thinning regime (regime R4), which is expected to

occur for several orders of magnitude in strain rate. While the exact mechanism
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of this shear thinning regime is under debate, we have provided several pieces of

evidence supporting the existence of this regime. Specifically, extensive slip

studies were conducted with the shear thickening fluid and no slip was found to

occur. In addition, the consistency of the slope in the shear thinning regime,

indicates it is not caused by an erratic slip phenomenon. Furthermore, it is

evident that the shear thinning transition occurs over one order of magnitude in

shear stress, depending on the volume fraction of the fluid. Finally, the dynamic

response model based on this shear thinning regime, provides the strongest

evidence. The overall dynamic response model was found to be supported by

experimental results with all data points lying within one standard deviation of

the predicted values. Again, the model is independent of the foam grade and

applicable over a large range of strains, strain rates, aspect ratios, and shear

thickening fluids.

The fundamental research developed in the beginning of this thesis has been

applied in two case studies. The first examines the unique ability of fluid-filled

foam to efficiently absorb significant amounts of energy under a controllable

stress level at low cost. The need for improved protective, energy absorption

equipment has become increasingly apparent, particularly for motorcycle

helmets, where there is a great need for an energy absorption technology which

is both lightweight and suitable. In this dissertation, we examine the benefits of

a fluid-filled foam composite helmet over existing technologies. The main

advantage of the fluid-filled foam composite helmet is found to be its resistance

to multiple impacts, which is of utmost importance in a real accident scenario.

Suggestions are also made to reduce the overall weight of motorcycle helmets

without sacrificing performance. The proposed helmet technology with reduced

weight and enhanced multi-impact protection has potential to increase the
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utilization of helmets and reduce the overall number of brain injuries from

motorcycle accidents.

In addition, a case study on the development of blast-resistant plates, with a

layer of fluid-filled foam, for infrastructure protection is also presented. A

parametric study is used in conjunction with the models from this thesis to

determine the effects of various parameters on the ability of a blast protection

plate to minimize the peak stress transmitted to an underlying structure. A

number of important discoveries were made including the fact that a single-core,

single face plate design is more efficient and more versatile than a comparable

dual-core design. In general, the ideal liquid would have a minimum density

and a relatively high viscosity, but not so high that the response is similar to a

solid, reducing the benefit of a compressible foam core as seen in the case of a

non-Newtonian shear thickening fluid. It was also determined the optimal

design tends toward maximizing the radius and the face plate thickness to within

practical constraints. Furthermore, increasing the initial core thickness h2o tends

to reduce the peak stress on the underlying structure while increasing the areal

density of the blast plate; however a critical transition phenomenon is also

observed, at which point the rate of reduction in the peak stress with respect to

increasing initial core thickness dramatically decreases. Overall, the optimal

design is found to reduce the normalized peak stress on an underlying structure

by more than 90% compared to that on an unmodified structure. The optimal

design is also found to have an areal density comparable to standard

commercially available blast-resistant designs. Finally, this parametric case

study demonstrates that the models developed in this thesis have potential in the

practical design of technologies incorporating a layer of fluid-filled foam and
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that these novel structures have potential to protect against impact loading and

blast loading.

All in all, this dissertation has revealed there is potential for fluid-impregnated

foam in a variety of engineering applications, such as energy absorption devices

and blast protection equipment. The intrinsic versatility of fluid-impregnated

foam makes it a promising technology for effective energy absorption and blast

protection devices, which are efficient, cost-effective, reliable, and scalable.

Moreover, the comprehensive analytical models presented in this dissertation

provide a clear, tractable, and robust method for successfully developing and

implementing this novel technology into engineering structures.

8.2 Recommendations for Future Research

While the models presented in this dissertation have demonstrated potential in

describing the dynamic compressive response of fluid-impregnated foam in a

tractable way, the derivation of these models required a number of assumptions.

Extending the models developed in this thesis by reexamining the key

assumptions, has the potential to result in even more robust models that are

more descriptive and more applicable to a wider class of problems encountered

in real applications. In particular, reexamining the assumption that the fluid-

structure-interaction can be neglected beyond a certain loading rate is important

if the foam matrix has a higher relative density or higher yield strength than the

foam considered in this thesis. This assumption arose because this thesis

considered low-density polyurethane foam where the local stress in the fluid far

exceeded the yield stress of the polyurethane under high rate loading. If a
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different foam matrix material was used, this would be of importance in high

rate loading applications such as blast protection equipment. Moreover, under

high energy impact or blast loading, the strain in the foam could exceed the

densified strain, so extending the models to this regime would be highly

advantageous. In addition, under extremely high rate loading, the inertial effects

may also become important. Extending the analytical studies to account for this

contribution would be a substantial contribution to modeling the overall

dynamic response of fluid-impregnated foam. Finally, real loading scenarios

may also involve out of plane loads (i.e. shear, torsion, etc.) and different

geometric configurations (i.e. not cylindrical). Developing analytical scaling

arguments to assess the importance of out of plane loads compared to the

uniaxial compressive load would be useful in a comprehensive design.

Furthermore, developing an understanding of more realistic geometric

configurations would also help in more precise analytical descriptions of actual

designs.

While analytically treating all of the previously described phenomena would be

ideal, the inherent complexity of these phenomena limits this approach.

Therefore, we suggest a rigorous experimental approach to fully characterize the

effects of each. Of most importance is studying the response under realistic blast

loading scenarios. This study will elucidate the importance of inertial effects and

out-of-plane loads. Another major experimental study, which should be

undertaken involves the practical implementation of a fluid-impregnated foam

in any design. Additional methods for impregnating the foam on a large scale

should be explored, particularly with regard to high viscosity liquids, such as the

non-Newtonian fluids discussed in this dissertation. One such possibility is to

utilize evaporative techniques to impregnate the foam with a highly
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concentrated suspension. Developing an energy and cost efficient way

impregnate the foam on a commercial scale is crucial to the successful

deployment of fluid-impregnated foam in any commercial application.

Although analytical and experimental methods for characterizing the foam are

essential, dramatic improvements could also be made through computational

methods. Specifically, more comprehensive parametric studies on new

technologies utilizing fluid-impregnated foam could be performed. Even more

advanced optimization techniques could also be explored. With the large

number of tunable parameters in these systems, Monte Carlo methods or quasi-

random techniques (such as the Sobel sequence) could be particularly

advantageous. The techniques could result in generalized code that could be

applicable to optimizing the weight and stress transmission of a wide range of

designs, which incorporate fluid-filled foam.

These additional computational studies would be useful in developing a better

understanding of the applications in which the fluid-impregnated design is most

advantageous. In addition to an extensive search of energy absorption

technologies as well as blast protection technologies, a search for other

technologies where improvements could be made using fluid-impregnated

foams could also be carried out. This search could be constrained to technologies

which require high rate or cyclic loading in a device that is required to be

inexpensive, efficient, reliable, and geometrically confined.

Also, consideration of more complex structures could increase the number of

applications in which fluid-impregnated foam could be used. As previously

discussed, allowing for variable geometric configurations would substantially
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increase the applicability of this technology. But possibly other advances have

even more potential, such as developing new foam matrix materials or new types

of fluids. The fluids for instance, could have higher viscosities or lightweight,

hollow particles giving them a lower density or consist of a solvent that has a

larger temperature range for which it remains a liquid. In addition, considering

innovative methods for using these structures can also be highly beneficial. One

such proposal is to add confining, elastic membranes around the fluid-

impregnated foams, which rupture at specified strains or stresses, allowing the

fluid to expand to a new geometry. This type of design would give greater

control over the energy absorption profile, allowing for a larger compression

distance and increased compression time at a tailored stress level. Another

proposal is to utilize networks of interconnected fluid-filled foams in both

parallel and series to readily control the stress response of an engineering

system. Overall, increasing the number of parameters and their ranges of

properties increases the usefulness of fluid-impregnated foam by providing more

ways to tailor an engineering design. All in all, there is great potential to

improve the understanding of the dynamic response of fluid-impregnated foam

and discover new methods of implementing this unique technology in fields

such as energy absorption and blast mitigation.

306



Acknowledgements- This thesis benefited greatly from the insight provided Professor Lorna J.

Gibson of the Department of Material Science and Engineering, Massachusetts Institute of

Technology. In addition, I am thankful for the assistance of Professor Gareth H. McKinley and

Professor Anette E. Hosoi of the Department of Mechanical Engineering as well as that of Dr.

John T. Germaine and Professor Chiang Mei of the Department of Civil and Environmental

Engineering. This research was performed while on appointment as a National Defense Science

and Engineering Graduate Fellow administered by the American Society for Engineering

Education (ASEE). This material is based upon work supported by the National Science

Foundation under Grant No. 0408259. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation or ASEE.

307



308



Author's Publications

Dawson, M.A. and Gibson, L.J., (2006), "Biomimetics: extending nature's design of thin-wall
shells with cellular cores", Design and Nature III. WIT Press Southhampton, UK.

Dawson, M.A. and Gibson, L.J., (2007), "Optimization of cylindrical shells with compliant cores",
Int. J. Solids and Struct., 44, (3-4), 1145-1160.

Dawson, M.A, Germaine, J., and Gibson, L., (2007), "Permeability of Open-Cell Foams Under
Compressive Strain", Int. J. Solids Struct., 44, (16), 5133-5145.

Dawson, M.A., McKinley, G.H., and Gibson, L.J., (2008a), "The Stress-Strain Response of Open-
Cell Foam Impregnated with a Newtonian Fluid Under Compression," J. Applied Mech.,
(In Press).

Dawson, M.A., McKinley, G.H, and Gibson, L.J., (2008b), "The Dynamic Response of Open-Cell
Foam Impregnated with a Non-Newtonian Fluid Under Compression" J. Exp. Mech.(to be
submitted.)

309



310



Appendix I: Matlab Code

The following scripts (.m files) were used in Matlab to assess the performance of various blast-
resistant plate designs:

A.1 Code for single-core, fluid-filled design (Newtonian and non-Newtonian

fluids)

function []= BlastLoadingSingleCore(varargin)

% Sample of How To Run Code:
%BlastLoadingSingleCore()
% BlastLoadingSingleCore('write','on','radius', R, 'core_thickness', h2, 'plate_thickness', hl,
%'method', 'glycerol')
%
%Description: Code is designed to perform a parametric study for a single-layer core with single
%layer face plate composite protective blast plate for building armor. This code can be used to
%study the effects of various parameters.

%Assumptions: Based on assumption of time constant for overpressure order 0.1 ms and the
%fluid stress governed by fluid only behavior %since the stress is very high.

% Inputs:
% varargin: variable inputs

% Outputs:
% Max Stress on Building
% Weight of Design

%Copyright Matthew A. Dawson 2007. All Rights Reserved.

close all

% displays error if odd number of inputs
if mod(nargin,2)=1

error('Incorrect number of inputs');
end

% Examine pairs of inputs
m=length(varargin);
for i=1:2:m

switch lower(varargin{i))
case 'method'

method=lower(varargin{i+1});
if strcmp(method,'glycerol')=l1

method=1;
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fname = 'Glycerol (Newtonian Fluid)';
elseif strcmp(method,'nnf')=1

method=2;
fname = 'Silica/EG 50 (Non-Newtonian Fluid)';

elseif strcmp(method,'honey')=1
method=3;
fname = 'Honey (Newtonian Fluid)';

else
error('Method Not Recognized')

end
case 'maxtime'

max_time=varargin{i+1};
case 'corethickness'

h2=varargin{i+1};
case 'platethickness'

hl=varargin{i+1 1);
case 'radius'

R=varargin{i+1);
case 'mass tnt'

W=varargin{i+1};
case 'distance'

D=varargin{i+11};
case 'plot'

graph=lower(vararginli+l1);
if strcmp(graph,'on')=1

graph=1;
elseif strcmp(graph,'off')=1

graph=0;
else

error('Graph command not recognized')
end

case 'write'
writedata=lower(varargin{i+1});
if strcmp(writedata,'on')=1

data=1;
elseif strcmp(writedata,'off')=1

data=0;
else

error('Write command not recognized')
end

end
end

% Set Defaults
%Choose Design NFF,NNFF, or Standard
if exist('method','var')==0

method=1;
fname = 'Glycerol (Newtonian Fluid)';
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end
%Max Time
if exist('max_time','var')==0

tspan=[0,.002]; %Integration Time
else

tspan=[0,max_time]; %Integration Time
end
%Thickness of Core Layer
if exist('h2','var')=--

h2=0.02;
end
%Thickness of Outer Plate Layer
if exist('hl','var')==o

hl=0.01;
end
%Radius
if exist('R','var')==O

R=1;
end
%Plotting Command
if exist('graph','var')==O

graph=0;
end
%Writing Command
if exist('data,'var')==O

data=0;
end

%{
%Specify Blast Mass TNT (kg)
if exist('W','var')==O

W=230;
end
%Specify Distance (m)
if exist('D','var')=-0

D=-2;
end

%)

%Material Parameters (All units SI standard: m, Pa, m/s, etc.)
%Outer Plate Layer (Steel)
rowl=7800; % Density
%Middle Fluid-Filled Foam Layer
h2o = h2;
if method -=1 %(@20C Glycerol = 1260kg/m3;1.49 Pas

row2 = 1260; % Density
mu = 1.49; % Viscosity
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elseif method =2 %(Silica/EG 50% NNF = 1500 kg/m3)
row2 = 1500; % Density
n = 0.166; % Power-Law Exponent
m = 1200; % Power-Law Coefficient
CR4 = 1; % Power-Law Empirical Constant

elseif method =3 %(Honey @25C and 15.5% H20 content = 1450kg/m3; 13.8 %Pas)
row2 = 1450; %Density
mu = 13.8; %Viscosity

end
%Weight Core Normalized by Weight Face sheets (kg/kg)
Wc_Wf = row2*h2o/(rowl*hl);
%Weight of Standard Design Assume 67.5 lbs/ft^2 330.25kg/mA2 as seen %with sand steel
%design
WT_Norm = (rowl*hl+row2*h2o)/(330.25);

%Blast Properties
tconst = 1E-4;
if exist('W','var')==0

Pr = 1E8;
else

if exist('D','var')==0
D=2;

end
Z = D/(WA(1/3)); %Scaled blast parameter distance
Pa = 101.3E3;
Ps = 1E3*(1772/(ZA3)-114/(ZA2)+108/Z);
Pr = 2*Ps*(7*Pa+4*Ps)/(7*Pa+Ps);
Disp('Peak Reflected Pressure Calculated from Input Blast Weight and Distance')

end

% Initialize and Solve ODE's
if (method = 1 I I method = 3)
yO=[O h2o]; %inital y values [Vlo h2o]
options = []; %Dummy Vector for ODE45
[T,Y] = ode45(@odenewtonian,tspan,y0,options,hl,rowl, R,mu,Pr);
elseif method = 2
yO=[O h2o]; %inital y values [Vlo h2o]
options = []; %Dummy Vector for ODE45
[T,Y] = ode45(@odeNNF,tspan,y0,options,hl,rowl,R,n,m,CR4,Pr);
end

% Calculate Results
if (method = 1 I I method =3)
sigN = 1.5*mu*(R^2)*(1./Y(:,2)). 3.*(Y(:,l))/(Pr);
elseif method = 2

for ii = 1:length(Y(:,1))
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if Y(ii,1)<.25
TestVelocity(ii) = 0;

else
TestVelocity(ii)=Y(ii,1);

end
end
sigN=zeros(1,length(Y(:,2)));
for ii = 1:length(Y(:,2))

if (RA2*TestVelocity(ii)/(Y(ii,2)A3) > 32)%180)%if (Y(ii,1)/Y(ii,2)> 180)
n = 0.166; m = 1200; CR4 = 1;

else %(Y(ii,1)/Y(ii,2) > 70)
n = 1; m = 40; CR4 = 1;

%else
%n = 0.42; m = 8.7; CR4 = 1;

end
sigN(ii) = 2*CR4*((2*n+1)/n)^n*m/(n+3)*(TestVelocity(ii)/Y(ii,2)).An.*(R./Y(ii,2)).^2./Pr;

end
%Note: Stress not exact beyond transition to second regime

end
PressureNorm = exp(-T(:,l)/tconst);
strain = 1-Y(:,2)/h2o;

% Check Constraints
max_strain = max(strain);
if (max_strain > 0.9)

disp(['Failure! Strain exceeded maximal allowable ',num2str(max_strain)])
endwrite=1;

else
endwrite=0;

end
%

%Plotting Stress, Velocity of Outer Plate and Height of Foam with Time
if graph ý 1
figure(l)
plot(T,sigN,T,PressureNorm)
title('Normalized Stress Applied to Building')
xlabel('Time (s)')
ylabel('Stress Normalized by Maximum Reflected Pressure (Pa/Pa)')

figure(2)
plot(T,Y(:,l))
title('Velocity Outer Steel Plate')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
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figure(3)
plot(T,Y(:,2))
title('Height of Foam')
xlabel('Time (s)')
ylabel('Heigth Specimen (m)')

end

% Display Results
disp(fname)
disp(['Strain ', num2str(strain(end))])
disp(['R = ', num2str(R,'%7.3E \n')])
disp('hl h2o W_Tot_NormEquiv W_Core_Norm_Face Max_Stress_Norm_Pmax
Max_Stress_Norm_Standard')
disp([num2str(hl,'%7.3E \ n'); num2str(h2o,'%7.3E \ n'); num2str(WT_Norm,'%7.3E \n');
num2str(WcWf,'%7.3E \n'); num2str(max(sigN),'%7.3E \n');
num2str((max(sigN)/.4626),'%7.3E\n')])
disp(' ')

% Write Data
if (data =1 && endwrite =- 0)

Output=[hl, h2o, WT_Norm, WcWf, (max(sigN)), (max(sigN))/.4626];
dlmwrite('NNFIIISinglehlh2.txt', Output,'delimiter', '\t','-append');

end

% ODE Functions
function dy = odenewtonian(t,y,hl,rowl,R,mu,Pr)
tconst = 1E-4;
% y(1)=V1; Velocity of outer plate
% y(2)=h2; Core Thickness
dy = zeros(2,1); % a column vector
dy(1) = (1/(rowl*hl))*(Pr*exp(-t/tconst)-1.5*mu*(y(1)/y(2))*(R/y(2))^2);
dy(2) = -y(1);

function dy = odeNNF(t,y,hl,rowl,R,n,m,CR4,Pr)
tconst = 1E-4;
% y(1)=V1; Velocity of outer plate
% y(2)=h2; Core Thickness
dy = zeros(2,1); % a column vector
if (RA2*y(1)/(y(2)A3) > 32)%180)

if (y(1) < .25 && t > 1E-4)
dy(1)= 0;

else
dy(1) (1/(rowl*hl))*(Pr*exp(-t/tconst)-

2*CR4*((2*n+l)/n)An*m/(n+3)*(y(1)/y(2))an*(R/y(2))A2);
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end
else

n = 1; m = 40; CR4 = 1;
dy(1) = (1/(rowl*hl))*(Pr*exp(-t/tconst)-2*CR4*((2*n+1)/n)^n*m/(n+3)*(y(1)/y(2))An*(R/y(2))A^2);
2*CR4*((2*n+l)/n)An*m/(n+3)*(y(1)/y(2))An*(R/y(2))A2);

end
dy(2) = -y(1);
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A.2 Code for dual-core, fluid-filled design (Newtonian and non-Newtonian

fluids)

function [] = BlastLoadingDualCore(varargin)

% Sample of How To Run Code:
% BlastLoadingDualCore()

% BlastLoadingDualCore('write','on','radius', R, 'corethickness 2', h2, 'corethickness_4', h4,
%'plate_thickness_l', hl, 'platethickness_3', h3,'method', 'glycerol')
% -
%-

% Description: Code is designed to perform a parametric study for a dual-layer core composite
%plate with two face plate layers for a blast plate-resistant building armor. This code can be used
%to study the effects of various parameters.

%Assumptions: Based on assumption of time constant for overpressure order 0.1 ms and the
%fluid stress governed by fluid only behavior since the stress is very high.
%
% Inputs:
% varargin: variable inputs

% Outputs:
% Max Stress on Building
% Weight of Design
%
%Copyright Matthew A. Dawson 2007. All Rights Reserved.

close all

% displays error if odd number of inputs
if mod(nargin,2)--l

error('Incorrect number of inputs');
end

% Examine pairs of inputs
m=length(varargin);
for i=1:2:m

switch lower(varargin{i})
case 'method'

method=lower(varargin(i+1l);
if strcmp(method,'glycerol')1l

method=1;
fname = 'Glycerol (Newtonian Fluid)';

elseif strcmp(method,'nnf')=1
method=2;
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fname = 'Silica/EG 50 (Non-Newtonian Fluid)';
elseif strcmp(method,'honey')=1

method=3;
fname = 'Honey (Newtonian Fluid)';

else
error('Method Not Recognized')

end
case 'maxtime'

max_time=varargin{i+1};
case 'corethickness_2'

h2=varargin{i+1};
case 'core_thickness_4'

h4=varargin{i+1 };
case 'plate_thickness_1'

hl=varargin{i+1};
case 'plate_thickness_3'

h3=varargin{i+1};
case 'radius'

R=varargin(i+1};
case 'mass_tnt'

W=varargin{i+1};
case 'distance'

D=varargin{i+1};
case 'plot'

graph=lower(varargin{i+1});
if strcmp(graph,'on')=1l

graph=1;
elseif strcmp(graph,'off')=1

graph=0;
else

error('Graph command not recognized')
end

case 'write'
writedata=lower(varargin{i+l));
if strcmp(writedata,'on')=1

data=1;
elseif strcmp(writedata,'off')=1l

data=0;
else

error('Write command not recognized')
end

end
end
% Set Defaults
%Choose Design NFF,NNFF, or Standard
if exist('method','var')=--0

method=1;
fname = 'Glycerol (Newtonian Fluid)';
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end
%Max Time
if exist('max_time','var')=0

tspan=[0,.002]; %Integration Time
else

tspan=[0,max_time]; %Integration Time
end
%Thickness of Core Layer 2
if exist('h2','var')=0

h2=0.01;
end
%Thickness of Core Layer 4
if exist('h4','var')=0

h4=0.01;
end
%Thickness of Outer Plate Layer 1
if exist('hl','var')=O

hl=0.005;
end
%Thickness of Outer Plate Layer 3
if exist('h3','var')=0

h3=0.005;
end
%Radius
if exist('R','var')=0

R=1;
end
%Plotting Command
if exist('graph','var')=0

graph=0;
end
%Writing Command
if exist('data','var')=0

data=0;
end

%{
%Specify Blast Mass TNT (kg)
if exist('W','var')=0

W=230;
end
%Specify Distance (m)
if exist('D','var')=0

D=2;
end

%

%---~====__----------
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%Material Parameters (All units SI standard: m, Pa, m/s, etc.)
%Outer Plate Layer (Steel)
rowl=7800; row3 = 7800;
%Middle Fluid-Filled Foam Layer
h2o = h2;
h4o = h4;
if method =1 %(@20C Glycerol = 1260kg/m3;1.49 Pas

row2 = 1260; row4 = 1260; %Density
mu = 1.49; %Viscosity

elseif method =2 %(Silica/EG 50% NNF = 1500 kg/m3; ? Pas)
row2 = 1500; row4 = 1500; %Density
n = 0.166; %Power-Law Exponent
m = 1200; %Power-Law Coefficient
CR4 = 1; %Power-Law Empirical Constant

elseif method =3 %(Honey @25C and 15.5% H20 content = 1450kg/m3; 13.8 Pas)
row2 = 1450; row4 = 1450; %Density
mu = 13.8; %Viscosity

end
%Weight Core Normalized by Weight Face sheets (kg/kg)
Wc_Wf = (row2*h2o+row4*h4o)/(rowl*hl+row3*h3);
%Weight of Standard Design Assume 67.5 lbs/ftA2 = 330.25kg/mA2 as seen with sand steel design
WT_Norm = (rowl*hl+row2*h2o+row3*h3+row4*h4)/(330.25);

%Blast Properties
tconst = 1E-4;
if exist('W','var')==0

Pr = 1E8;
else

if exist('D','var')==0
D=2;

end
Z = D/(WA(1/3));
Pa = 101.3E3;
Ps = 1E3*(1772/(ZA3)-114/(ZA2)+108/Z);
Pr = 2*Ps*(7*Pa+4*Ps)/(7*Pa+Ps);
Disp('Peak Reflected Pressure Calculated from Input Blast Weight and Distance')

end

% Initialize and Solve ODE's
if (method = 1 I I method = 3)
yO=[0 h2o 0 h4o]; %inital y values [Vlo h2o V3o h4o]
options = []; %Dummy Vector for ODE45
[T,Y] = ode45(@odenewtonian,tspan,y0,options,hl,h3,rowl,row3,R,mu,Pr);
elseif method = 2
yO=[0 h2o 0 h4o]; %inital y values [Vlo h2o V3o h4o]
options = []; %Dummy Vector for ODE45
[T,Y] = ode45(@odeNNF,tspan,y0,options,hl,h3,rowl,row3,R,n,m,CR4,Pr);
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end

% Calculate Results
if (method = 1 II method =3)

%Stress Normalized Exerted on Building, Depends only on h4 and V3
sigN = 1.5*mu*(RA2)*(1./Y(:,4)).^3.*(Y(:,3))/(Pr);

elseif method = 2
for ii = 1:length(Y(:,3))

if Y(ii,3)<2
TestVelocity(ii) = 0;

else
TestVelocity(ii)=Y(ii,3);

end
end
sigN=zeros(1,length(Y(:,3)));
for ii = 1:length(Y(:,3))

if (TestVelocity(ii)/Y(ii,4) > 180)
n = 0.166; m = 1200; CR4 = 1;

else
n = 1; m = 40; CR4 = 1;

end
sigN(ii) = 2*CR4*((2*n+l)/n)An*m/(n+3)*(TestVelocity(ii)/Y(ii,4)).^n.*(R./Y(ii,4)).A2./Pr;

end
end
PressureNorm = exp(-T(:,l)/tconst);
strain2 = 1-Y(:,2)/h2o;
strain4 = 1-Y(:,4)/h4o;
%

% Check Constraints
max_strain = max(max(strain2),max(strain4));
if (max_strain > 0.9)

disp(['Failure! Strain exceeded maximal allowable ',num2str(max_strain)])
endwrite=1;

else
endwrite=0;

end

%Plotting Stress, Velocity of Outer Plate and Height of Foam with Time
if graph = 1
figure(l)
plot(T,sigN,T,PressureNorm)
title('Normalized Stress Applied to Building')
xlabel('Time (s)')
ylabel('Stress Normalized by Maximum Reflected Pressure (Pa/Pa)')
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figure(2)
plot(T,Y(:,1),T,Y(:,3))
title('Velocity of Steel Plates')
xlabel('Time (s)')
ylabel('Velocity (m/s)')

figure(3)
plot(T,Y(:,2),T,Y(:,4))
title('Heights of Foam Layers')
xlabel('Time (s)')
ylabel('Heigth Specimen (m)')
end

% Display Results
disp(fname)
disp(['Strain ', num2str(strain4(end))])
disp(['R = ', num2str(R,'%7.3E \n')])
disp('hl h2o h3 h4o W_Tot_Norm_Equiv W_Core_Norm_Face
Max_Stress_Norm_Pmax Max_Stress_Norm_Standard')
disp([num2str(hl,'%7.3E \n'); num2str(h2o,'%7.3E \ n'); num2str(h3,'%7.3E \n');
num2str(h4o,'%7.3E \n'); num2str(WT_Norm,'%7.3E \n'); num2str(Wc_Wf,'%7.3E \n');
num2str(max(sigN),'%7.3E \n'); num2str((max(sigN)/.4999),'%7.3E \n')])
disp(' ')

% Write Data
if (data =1 && endwrite = 0)

Output=[hl, h2o, h3, h4o, WT_Norm, Wc_Wf, (max(sigN)), (max(sigN))/.4999];
dlmwrite('GlycerolDoubleh2vsh4.txt', Output,'delimiter', '\t','-append');

end

% ODE Functions
function dy = odenewtonian(t,y,hl,h3,rowl,row3,R,mu,Pr)
tconst = 1E-4;
% y(1)=V1; Velocity of outer plate
% y(2)=h2; Core Thickness
dy = zeros(4,1); % a column vector
dy(1) = (1/(rowl*hl))*(Pr*exp(-t/tconst)-l.5*mu*((y(1)-y(3))/y(2))*(R/y(2))A2);
dy(2) = y(3)-y(1);
dy(3) = (1/(row3*h3))*(Pr*exp(-t/tconst)-l.5*mu*(y(3)/y(4))*(R/y(4))^2);
dy(4) = -y(3);

function dy = odeNNF(t,y,hl,h3,rowl,row3,Rn,m,CR4,Pr)
tconst = 1E-4;
% y(l)=Vl; Velocity of outer plate
% y(2)=h2; Core Thickness
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dy = zeros(4,1); % a column vector
if (y(l)/y(2) > 180)

dy(1) = (1/(rowl*hl))*(Pr*exp(-t/tconst)-2*CR4*((2*n+l)/n)An*m/(n+3)*((y(1) -

y(3))/y(2))An*(R/y(2))^2);
else

n = 1; m = 40; CR4 = 1;
dy(1) = (1/(rowl*hl))*(Pr*exp(-t/tconst)-2*CR4*((2*n+1)/n)An*m/(n+3)*((y(1)-

y(3))/y(2))an*(R/y(2))A2);
end
dy(2) = y(3)-y(l);
if (y(3)/y(4) > 180)

dy(3) = (1/(row3*h3))*(Pr*exp(-t/tconst)-2*CR4*((2*n+1)/n)An*m/(n+3)*(y(3)/y(4))An*(R/y(4))^2);
else

n = 1; m = 40; CR4 = 1;
dy(3) = (1/(row3*h3))*(Pr*exp(-t/tconst)-2*CR4*((2*n+1)/n)An*m/(n+3)*(y(3)/y(4))An*(R/y(4))A2);

end
dy(4) = -y(3);
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A.3 Code for single-core, Fleck Deshpande design (Newtonian and non-

Newtonian fluids)

function [] = BlastLoadingSingleCoreHC(varargin)
%
% Sample of How To Run Code:
% BlastLoadingSingleCoreHCO

% Description: Code is designed to perform a parametric study for a single-layer solid, foam core
%composite plate with one face plate layer for a blast plate-resistant building %armor. This code
%can be used to study the effects of various parameters.

%Assumptions: Based on assumption of time constant for overpressure order 0.1 ms.
%Function for Compression of outer plate with fluid filled foam core against infinitely rigid wall

clear all
tspan=[0,.003]; %Integration Time
yO=[0 0.1]; %inital y values [Vlo h2o]
options = [];
hl = 0.02; %Face plate thickness
Pr = 1E8; %Peak reflected pressure
rowl=7800; %Density outer face plate
sigysteel = 300E6; %Steel yield stress
h20 = 0.1; %Core Thickness
reldeno = .11; %Initial relative density
row20 = 7800*reldeno; %Steel density core
[T,Y] = ode45(@odefun,tspan,y0,options,hl,rowl,h20,Pr,sigysteel,reldeno);
sigN = .3*(reldeno./(Y(:,2)./h20)).^1.5*sigysteel/1E8;

figure(l)
plot(T,sigN)
title('Normalized Stress Applied to Building')
xlabel('Time (s)')
ylabel('Stress Normalized by Maximum Reflected Pressure (Pa/Pa)')

figure(2)
plot(T,Y(:,1))
title('Velocity Outer Steel Plate')
xlabel('Time (s)')
ylabel('Velocity (m/s)')

figure(3)
plot(T,Y(:,2))
title('Height of Foam')
xlabel('Time (s)')
ylabel('Heigth Specimen (m)')
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weight = rowl*hl+h20*row20;
strain = 1-min(Y(:,2))/h20;
if (strain > 0.5)

disp(['Failure! Strain exceeded maximal allowable ',num2str(strain)])
end

%Display Results
disp(['Core Thickness ', num2str(h20)])
disp(['Weight ', num2str(weight)])
disp(['Normalized Stress ', num2str(max(sigN))])
disp(num2str(h20))
disp(num2str(weight))
disp(num2str(max(sigN)))

function dy = odefun(t,y,hl,rowl,h20,Pr,sigysteel,reldeno)
tconst = 1E-4;
dy = zeros(2,1); % a column vector
dy(1) = (1/(rowl*hl))*(Pr*exp(-t/tconst)-.3*(reldeno/(y(2)/h20)).^1.5*sigysteel);
dy(2) = -y(1);
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Appendix II: Suppliers and Distributors

ADINA R&D Company
Phone: (617) 926-5199
Address: 71 Elton Avenue, Watertown, MA 02472, USA.
Materials: ADINA finite element analysis software.

Cordek
Phone: 44 (0) 1403-799600
Address: Stane St, Slinfold, Horsham, RH13 OSZ, United Kingdom.
Materials: High-density polystyrene.

Farnell Leeds
Phone: 01830-9277
Address: Units 4-5 Gofton Court Jamestown Road, Finglas, Dublin, Ireland.
Materials: ABS.

FEI Company
Phone: (503) 726-7500
Address: 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124 USA.
Materials: Scanning electron microscope (XL30 FEG ESEM).

Fisher Scientific
Phone: (770) 614-1090
Address: 2775 Horizon Ridge Ct, Suwanee, GA 30024.
Materials: Sorvall Legend Mach 1.6 Centrifuge.

Foamex
Phone: (800) 776-3626
Address: 1000 Columbia Avenue, Linwood, PA 19061.
Materials: Polyester-based, open-cell, polyurethane foam.

Fuso Chemical Company
Phone: (06) 6203-4771
Address: 3-10, Koraibashi 4-chome,Chuo-ku, Osaka-shi, Osaka, Japan.
Materials: Spherical silica nanoparticles.

Instron Corporation
Phone: (800) 877-6674
Address: 825 University Ave., Norwood, MA 02062-2643.
Materials: Dynatup drop-tower 9200 Series, Instron Model 1321.
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McMaster-Carr Supply Co.
Phone: (609) 689-3000
Address: 200 New Canton Way, Robbinsville, NJ 08691.
Materials: General Supplies: Clamps, Glassware, Hammers, Rubber Stoppers,
Thermometers, Tubes, etc.

Mettler-Toledo, Inc.
Phone: (800) 638-8547
Address: 1900 Polaris Parkway, Columbus, OH, 43240.
Materials: Electronic Balance.

Minerals Technology
Phone: (212) 878-1800
Address: 405 Lexington Ave., New York, NY 10174.
Materials: Precipitated calcium carbonate nanoparticles (Opcarb).

Mitutoyo
Phone: (630) 820-9666
Address: 965 Corporate Blvd., Aurora, IL 60502.
Materials: Digital Caliper (CD-6" CSX).

New Dimension Industries
Phone: (800) 251-7462
Address: 220 Anderson Avenue, Moonachie, NJ 07074.
Materials: Polyester-based, open-cell polyurethane foam.

Revolutionary Science
Phone: (651) 257-0633
Address: 13229 Saint Croix Ave., Lindstrom, Minnesota 55045.
Materials: Incufridge (RS-IF-202).

Scion Corporation
Phone: (301) 695-7870
Address: 82 Wormans Mill Ct, Frederick, MD 21701.
Materials: Scion Image analysis software.

Stable Microsystems
Phone: 44 (0)1483-427345
Address: Vienna Court, Lammas Road, Godalming, Surrey GU7 1YL, UK.
Materials: Texture Analyzer (TA XT Plus).
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TA Instruments
Phone: (302) 427-4000
Address: 109 Lukens Drive, New Castle, DE 19720.
Materials: Controlled stress rheometer (ARG 2000).

Titan Tool Supply Co.
Phone: (716) 873-9907
Address: 68 Comet Ave., Buffalo, NY 14216.
Materials: Traveling microscope.

VWR International
Phone: (800) 932-5000
Address: 1310 Goshen Parkway, West Chester, PA 19380.
Materials: Ethylene Glycol, Glycerol, Digital Vortex Mixer.
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