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Abstract

Nonwoven fabrics are sheet structures created by bonding or interlocking a web (network) of
fibers through mechanical, thermal or chemical processes. In general, the mechanical response
of nonwoven fabrics exhibits two major characteristics. First, the mechanical response can
vary significantly when the fabric is loaded along different directions, depending on the exis-
tence of a preferential orientation in the fiber arrangement and/or in the pattern of inter-fiber
bonding/entanglement. Second, the mechanisms of deformation include elastic and inelastic
components, accompanied by an irrecoverable evolution of the texture of the fiber network.

In this work, we propose a three-dimensional, large strain continuum model for the consti-
tutive behavior of nonwoven fabrics that accounts for the fiber network characteristics respon-
sible for its anisotropic behavior, and captures the effects of deformation mechanisms at the
micro-scale (fiber and bonds/entanglement) level. The model consists of two constitutive com-
ponents: a nonlinear elastic component representing the resistances to recoverable deformation
mechanisms, and a non-linear inelastic component representing the resistances to irrecoverable
deformation and texture evolution. For nonwoven fabrics in which the anisotropy of fiber orien-
tation is combined with random entanglement processes, we propose to capture the combined
effects of fibers and junctions orientation distributions using a single tensorial representation
of the network anisotropy (fabric ellipsoid). An orthotropic elastic constitutive model for the
elastic response of nonwoven fabrics is then formulated based on this structural measure and
deformation mechanisms of the network structure. The inelastic component of the model is
then prescribed in terms of an evolution law for the fabric ellipsoid.

A needlepunched web of high strength polyethylene fibers, "Dyneema Fraglight", is selected
as the representative material, to be used as a test case to validate the proposed modeling ap-
proach. The model is shown to capture the macroscopic nonlinear anisotropic elastic-inelastic
response of the fabric in planar deformation, as well as the underlying micromechanical defor-
mation mechanisms, such as fiber stretch, and irrecoverable evolution of fabric texture. The
proposed model can be used to predict the mechanical behavior of nonwoven fabrics and can be
combined with other continuum models to aid in the design of multi-component structures. In
addition, the proposed elastic formulation can be used to model different classes of anisotropic
network materials, such as biological tissues, and tissue engineering scaffolds.
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Title: d'Arbeloff Assistant Professor of Mechanical Engineering





Acknowledgements

Given the scope of this work, I would not have accomplished it alone without support of many

individuals. My appreciation goes out to them, and I would like to acknowledge some of them

here.

First of all, I would like to thank my thesis advisor, Professor Simona Socrate, for her

insightful guidance and continued support over these years at MIT. I consider myself quite

fortunate to be able to work with an advisor who is as caring and as dedicated to her student

as she is. I cannot thank you enough for what you have done for me. Thanks Simona!

I also would like to express my gratitude to Professor Parks and Professor Rutledge for

serving on my thesis committee and providing thoughtful suggestions.

I would like to thank my past and present officemates at MIT: Mike King, Anastassia

Paskaleva, Kristin Myers, Asha Balakrishnan, Bruce Wu, Timothy Johnson, Thibault Prevost,

Jamie Kofoid. You guys are great! My life at MIT was so enjoyable because of all of you. I

also would like to thank Una Sheehan and Ray Hardin for all the administrative support and

every words of encouragement they provided over the years.

After having been away from home over these long years, I have developed a group of Thai

friends who are more like another family here. I would like to thank my second family at the

16 Corinthian - Wang, Fu, N Fang, P Gift, P Tik, Sup, P Peng, and Joy. Thanks for being

there to listen when I had something to say, for sharing all the good and bad times together,

and for living with me. I would like to acknowledge people who have been sharing great time

with me in Boston - N Kai, N Ton, N Jin, N Prae, N Gift, N Bird, N Ta, N Kob, Pounds, P

Yai, and many others.

Finally, I would like to thank my family in Thailand for their advice, support and love they

have provided. Thank you for always being there for me.





Contents

1 Introduction 17

1.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Background ..................................... . . 18

1.3 Objective ................................. ......... 22

1.4 Model formulation approach .............................. 23

1.5 Thesis organization ......... ..... ... ......... ....... .. . 24

2 Experimental Characterizations of Nonwoven Fabrics 27

2.1 Characterization of fabric structure ................... ....... 28

2.1.1 Microstructural analysis .............. ..... ........... 29

2.1.2 Tensile response of individual fibers . .................. .. 36

2.2 Macroscopic mechanical response of nonwoven fabric . ............... 39

2.2.1 Fabric macroscopic response under uniaxial tensile loading ..... . . . 39

2.2.2 Fabric macroscopic response under biaxial tensile loading ........ . 51

2.3 Chapter summary ................................... 55

3 An orthotropic continuum model for the elastic response of distributed fiber

networks

3.1 Literature review ..................... ...............

3.1.1 Directional m odel ...............................

3.1.2 Orthotropic eight-chain model . . . . . . . . . . . . . . . . . . . . . . . .

3.1.3 Transversely isotropic hyperelastic model for distributed fiber network . .

3.2 Sources of Mechanical Anisotropy in Distributed Fiber Networks .........



Anisotropic Elasticity for Orthotropic Distributed Fiber Networks . . . . . . . .

Chapter summ ary .................................

4 A Continuum Model for Needlepunched

4.1 Continuum mechanics framework . . . .

4.1.1 Kinematics ............

4.1.2 Kinetics ..............

4.1.3 Rate of Mechanical Work . . . .

4.2 Application to nonwoven fabrics . . . .

4.2.1 Algorithm and Implementation

4.3 Chapter summary

98

Nonwoven Fabrics

5 Model Validation and Verification

5.1 Determination of model parameters ....................

5.2 Model validation against experimental findings . . . . . . . . . . . . .

5.2.1 Simulations of fabric response under uniaxial tensile loads . . .

5.2.2 Simulations of fabric response under biaxial tensile loads . . .

5.3 Sensitivity analysis .............................

5.3.1 Model sensitivity to the parameters of the elastic component

5.3.2 Model sensitivity to the parameters of the inelastic component

5.3.3 Model sensitivity to the components of the fabric ellipsoid . . .

5.4 Chapter Summary .............................

83

. . . . . . 84

. ... . . 84

. . . . . . 87

. . . . . . 87

. . . . . . 88

. . . . . . 98

101

. ... .. 101

.. ... . 103

. ... . . 103

. ...... 115

...... 122

. .. .. . 122

...... 123

... . .. 132

. . . . . .137

6 Concluding Remarks 139

6.1 Summary of Accomplishments ............................. 139

6.2 Recommendations for future work .......................... 141

A Relationship between Orientation Distribution of Junction-to-junction Dis-

tance (JJD) and Fiber Orientation Distribution (FOD) 145

A.1 Simplified straight fiber model ............................ 145

A.2 Structural analysis ............... ................... 147

3.3

3.4



B Application of the Effective Stretch 151

B.1 Formulation of an orthotropic elastic model based on the effective stretch and

the exponential force-stretch relation of individual fibers . ............. 152

B.2 Concluding Remarks .................................. 156





List of Figures

1-1 Nonwoven fabric applications: (a) nano filter, (b) protective gear, and (c) com-

posite mat ....... ............ .................. .. 17

2-1 Schematic of material directions ................... ......... 29

2-2 Images of Dyneema Fraglight taken from random locations of the fabric surface.

The images were obtained using a standard microscope using transmitted light

source ................... ....................... 30

2-3 Random bonding pattern in Dyneema Fraglight . .................. 31

2-4 A histogram of the fiber orientation distribution for Dyneema Fraglight obtained

from averaging 3 sets of 10 random images (dash lines) and 30 images (solid line)

(left) and the polar plot of the averaged FOD of 30 images (right) . ....... 32

2-5 Ellipse fit of the measured FOD. . .................. ........ 34

2-6 Fiber coupon specimen (half of fiber highlighted for clarity) . ........... 37

2-7 Tensile test results of Dyneema Fiber ................... ...... 38

2-8 Images of fiber irregularities and two populations found in Dyneema fibers . . .. 38

2-9 Dogbone specimen (left) and custom designed fabric fixture - front view (middle)

and side view (right). Each end of the fabric strip is wrapped around a bar, and

then clamped between two grooved jaws of the fixture. A contact extensometer

is used in this configuration ................... ......... . 40

2-10 Tensile test configuration ................... ........... 41

2-11 Loading schematic of uniaxial cyclic loading test . ................. 43

2-12 Schematic of two-step uniaxial tensile loading test: (top) the specimen for the

first loading step, and (bottom) the specimens for the second loading step . . . . 44



2-13 Uniaxial tensile responses of Dyneema Fraglight in different loading directions

(C-cross, R-roll, P-needlepunch run, and X-orthogonal to the needlepunch run) . 45

2-14 Uniaxial tensile test result for the roll direction of Dyneema Fraglight ...... 46

2-15 Uniaxial tensile test result for the cross direction of Dyneema Fraglight ..... 47

2-16 Inelastic deformation mechanisms in uniaxial cyclic loading of needlepunched

nonwoven fabrics .................................... 49

2-17 Results of 2-step uniaxial monotonic loading tests . ................. 50

2-18 Evolution of the fiber orientation distribution after 20% strain in the roll direction 51

2-19 dimensions of biaxial test specimens and biaxial tensile test configuration . . . . 52

2-20 Equibiaxial stretch response of Dyneema Fraglight . ................ 53

2-21 Deformed structures of Dyneema Fraglight under equibiaxial stretch with crosshead

displacement of (a) 0 mm (reference) (b) 10 mm (c) 20 mm and (d) 30 mm . . . 54

3-1 Drawback for full-chain models (and for the D-model with higher-order poly-

hedra): when fibers along the maximum principal stretch reach their limiting

extension, the RVE response becomes overly stiff. . ................. 61

3-2 Representative volume element of the B-model [12] . ................ 61

3-3 The macroscopic extensibility in the B-model is biased by the magnitude of the

base vectors . . .. .. . ... . ... .. .. .. .... . ... . ... .. ... . . 63

3-4 Deformation response of the isotropic AB model the cubic B-model. In shear,

the AB-RVE is oriented along the principal directions of stretch while the B-

RVE is fixed to the material frame. Hence, the shear response of the B-model

is controlled by the response of the dominating chains, and not by the average

response of all chains in the network .......................... 64

3-5 Illustrations of orientation distribution of fiber density and orientation distribu-

tion of junction-to-junction distance ......................... 67

3-6 Representative Volume Element for distributed orthotropic network ...... . 69

3-7 Responses of the B-model and the JS-model under uniaxial tension for different

levels of orthotropy. Response of the AB-model reflects the isotropic case. .... 77

3-8 Responses of the B-model and the JS-model under simple shear for different

levels of orthotropy. Response of the AB-model reflects the isotropic case. .... 78



3-9 Comparisons between D- and JS-models under uniaxial tension with equivalent

stiffness in the low-stretch regime ........................... 79

4-1 Rheological representation of the proposed fabric model . ............. 84

4-2 Multiplicative decomposition of the deformation gradient . ............ 85

5-1 Fitted simulation prediction with the experimental data of the uniaxial cyclic

loading test of the Dyneema Fraglight ................... ..... 105

5-2 Model prediction of uniaxial monotonic loading tests along the C-, R-, P- and

X- directions ...................................... 106

5-3 Model prediction of the deformed shape and the textural evolution of rectangular

fabric strip under uniaxial tension along the C-direction . ............. 108

5-4 Model prediction of the deformed shape and the textural evolution of rectangular

fabric strip under uniaxial tension along the R-direction . ............. 109

5-5 Model prediction of the deformed shape and the textural evolution of rectangular

fabric strip under uniaxial tension along the P-direction . ............. 110

5-6 Model prediction of the deformed shape and the textural evolution of rectangular

fabric strip under uniaxial tension along the X-direction . ............. 111

5-7 Experimental measurements and simulation predictions of the lateral contraction

of the centerline in the rectangular strip specimen under uniaxial loading along

the R- and C- directions ................................ 112

5-8 Experimental measurements and simulation predictions of the rotation of the

centerline in the rectangular strip specimen under uniaxial loading along the P-

and X- directions .................. ................. .. 113

5-9 Model prediction of two-step uniaxial tensile experiment ........... . . . 114

5-10 Biaxial tensile test configuration and model simulation ........... . . . . 116

5-11 Experimental result and model prediction of equibiaxial tensile stretch experiment 116

5-12 Model prediction of fabric texture under equibiaxial stretch (1) .......... 118

5-13 Model prediction of fabric texture under equibiaxial stretch (2) .......... 119

5-14 Evolution of fiber orientation distribution in the fabric under biaxial tensile loadingl20



5-15 Fiber orientation distribution observed in the experiment and the corresponding

model prediction .................

Model sensitivity due to variations in . . . .

Model sensitivity due to variations in AL . . . .

Volumetric effect due to variations in AL . . . .

Model sensitivity due to variations in m . . . .

Model sensitivity due to variations in O . . . .

Model sensitivity due to variations in So . . . .

Model sensitivity due to variations in a . . . .

Model sensitivity due to variations in principal

B 2 /A2) ......................

................... 121

. . . . . . . . . . . . . . . . . . .124

. . . . . . . . . . . . . . . . . . .125

. . . . . . . . . . . . . . .... .126

. . . . . . . . . . . . . . . . . . .128

. . . . . . . . . . . . . . . . . . .129

. . . . . . . . . . . . . . .... .130

. 131

in-plane components of G (( =
. . . . . . . . . . . . . . . . . . . 135

5-26 Model sensitivity due to variations in principal out-of-plane component of G ..

6-1 Strain rate effect of Dyneema Fraglight: (Top) Experiments and (Bottom) Model

fit (m = 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A-1 Schematic of the simulation: an approach to calculate a JJD ellipsoid from a

given FOD ellipsoid in a simplified network of straight fibers . . . . . . . . . . .

A-2 Schematic of fiber-intersection ..........................

B-1 Uniaxial responses of the orthotropic model for networks with an exponential

force-stretch relation .................................

5-16

5-17

5-18

5-19

5-20

5-21

5-22

5-25

.136

.143

.146

.149

.157



List of Tables

2.1 Properties of Dyneema Fraglight provided by the manufacturers . ........ 28

2.2 Approximated values of the JJD ellipsoid from the measured FOD ellipse. All

simulations were done using n=2000 and d=2 . .................. . 36

2.3 Mechanical properties of Dyneema fibers measured from the experiments ..... 39

2.4 Reference and deformed FOD and the corresponding JJDs . ............ 51

5.1 Fitted model parameters obtained from uniaxial loading tests along principal

directions (Roll = GAA, Cross = GBB) .. ................. .... 104

5.2 Comparison of the JJD obtained from the simplified straight fiber model and the

JJD predicted by the simulation ................... ........ 115

A. 1 Examples of the calculated JJD ellipsoid for a given FOD ellipsoid from numerical

simulation and analytical solution ................... ........ 148





Chapter 1

Introduction

1.1 Motivation

Nonwoven fabrics have been widely used in conventional applications such as apparels and

protective clothing. With the advancement of related technologies, nonwoven fabrics have

become an integral part of novel applications. For example, nonwoven fabrics manufactured

from nano-size electrospun fibers can be used as filters for molecular-size particles, or scaffolds

for tissue engineering. Nonwoven fabrics created from high strength-low density polymer fibers

are used in a variety of structural applications, ranging from ballistic protective gears to the

reinforcement in composite materials (Figure 1-1).

Increasing numbers of nonwoven fabric applications create a demand for a better under-

Figure 1-1: Nonwoven fabric applications: (a) nano filter, (b) protective gear, and (c) composite
mat



standing of the mechanical behavior of nonwoven fabrics. Early studies of the mechanics of

nonwoven materials focused primarily on applications for apparel and protective clothing in-

dustries. Attention was given to the development of fabric characterization techniques and

nonwoven models that were capable of predicting the behaviors of textile materials. How-

ever, the introduction of novel technologies, especially in composite technology, requires new

approaches for studying nonwoven fabrics as components of more complex structures.

1.2 Background

Nonwoven fabrics are sheet structures created by bonding or interlocking a web (network) of

fibers through mechanical, thermal or chemical processes. In general, the mechanical response

of nonwoven fabrics exhibits two major characteristics. First, the mechanical response can

vary significantly when the fabric is loaded along different directions, depending on the exis-

tence of a preferential orientation in the fiber arrangement and/or in the pattern of inter-fiber

bonding/entanglement. Second, the mechanisms of deformation include elastic and inelastic

components, accompanied by an irrecoverable evolution of the texture of the fiber network.

This study focuses on the mechanical response of high performance ballistic nonwoven fab-

rics. Many of the commercially available ballistic nonwoven fabrics are provided in the form

of needlepunched nonwoven felts. In this work, a web of high strength polyethelene fibers

manufactured by DSM "Dyneema Fraglight" is selected as the representative material. This

needlepunched fabric is created by entanglements of a single fiber material, hence, its mechan-

ical response is governed by the properties of the web layout, which usually are expressed in

terms of statistical distributions of the geometrical features such as fiber entanglement, fiber

curl and fiber orientation, and the mechanical properties of constituent fibers.

Previous experimental characterizations of nonwoven fabrics can be classified into two cate-

gories. The first category focuses on the characterization of the fabric morphological properties

by means of image analysis techniques. A number of image analysis algorithms were devel-

oped to measure specific geometric properties such as fiber orientation distribution [34], [64],

fiber curl distribution [78], and fabric weight distribution [22], [33] from images of the fabric

surface. Ad-hoc algorithms were typically developed for input images taken from specific acqui-



sition systems such as front illumination with filtration [64], or backscattering light [33], [34].

Most algorithms also required pre-conditioning of the input images using a sequence of image-

processing methods [64]. The second category focuses on the characterization of the mechanical

macroscopic response, and the mesoscale deformation mechanisms of nonwoven fabrics under

in-plane modes of deformation, particularly uniaxial tension (e.g., [8], [23], [61]). For additional

references on the mechanical characterizations of nonwoven fabrics, see [43].

A number of nonwoven fabric models were developed based on the mechanical response

observed in the experiments. In general, these models can be categorized into four main ap-

proaches based on the method of idealizations of nonwoven materials.

The first approach models the macroscopic response of nonwoven fabrics by idealizing them

as either a homogeneous continuum or a composite of homogeneous components. This ideal-

ization forgoes the analysis of fiber interactions within the fabric microstructures for an ability

to predict the macroscopic response of the fabrics at a low computational cost. The fabric

continuum models can be easily interfaced with other continuum material models to create

complex models for hierarchical structures. Examples of the "single homogenous continuum

models" include the linear elastic orthotropic model by Backer and Petterson [4] for an area-

bonded nonwoven fabric, and by Chocron [23] for a needlepunched nonwoven. These models

do not retain any information relating to the structure of the material at the mesoscale (fiber)

level, such as the non-uniform distribution of fiber entanglements in needlepunched nonwo-

vens, or the bond pattern in area-bonded nonwoven fabrics, and cannot account for the effects

of mesoscale deformation mechanisms on the macroscopic fabric response. A second class of

continuum models idealizes nonwoven fabrics as composite structures consisting of many con-

tinuum components, representing idealized elements of the fabric structure. Lee and Argon [51]

proposed a self-consistent model which idealizes the fabric as a composite structure consisting

of stiff linear through-thickness disks, representing the junction points, surrounded by a softer

matrix, representing the unconstrained fibers. This model was developed primarily to predict

the fabric bending behavior, and is not applicable to predict the fabric behaviors under other

modes of deformation. To incorporate the effect of non-uniform fiber orientation distribution,

Bias-Singh et al. [8] and Liao and Adanur [53], [54] proposed composite laminate models, con-

sisting of planar fiber layers, each with a single fiber orientation. The mono-directional layers



are then stacked at relative angles from each other in an arrangement that tries to match the

"average" fabric macroscopic anisotropy. The models are implemented in planar finite element

frameworks. The layers of different fiber orientations (laminae) are stacked and bonded along

the entire contacting interface, and the model response is calculated according to the lami-

nate composite theory. These models are shown to capture some aspects of fabric anisotropy

arising from non-uniform fiber orientation distribution, particularly in the small strain regime.

However, because the fibers are fixed within the laminae, and the laminae cannot slide relative

to one another, re-orientation of the fibers is over-constrained. Also, because the laminae are

bonded at the interface, modeling locally irrecoverable deformation mechanisms, such as fiber

slipping, fiber disentanglement, and bond breaking, is not feasible. Liao and Adanur's model

tries to account for the macroscopic effects of fiber rupture during the deformation process, by

introducing a failure criterion at the element interfaces.

The third approach models nonwoven fabrics as a complex fiber-network structure, and the

macroscopic response of the fabric is calculated from the interactions between the components of

the structure, particularly at the fiber and bond levels. This microstructurally-based approach

has the benefit of capturing the physics of fabric deformation mechanisms at the expense of

a high computational cost. Typical microstructurally-based models idealize nonwoven fabrics

as a two-dimensional network consisting of an arrangement of individual fibers and bonds

that tries to mimic the observed fabric morphological properties. A number of the models

that were developed based on this approach consider the fibers as the essential elements of the

fabric. They construct an idealized fiber network, and follow fiber deformation and displacement

histories, accounting for interactions between the constituent fibers and considering the bonds as

"indestructible" [15]-[17], [75]. A complementary approach considers the bonds as the essential

elements, following the displacement history of the bonds and allowing for some evolution of

the bond structure [36], [44]. Due to their extremely high computational costs, network models

are typically limited to two-dimension. Therefore, these models cannot be used to predict out-

of-plane bending and twist response of the fabric. In an attempt to overcome this limitation,

Termonia [70] introduced a discrete lattice model as a computationally efficient compromise

that allows some consideration of three-dimensional effects to predict the bending behavior of

heat-bonded sheets. In this model the fabric is represented as a stack of initially-planar arrays



of fiber strands aligned along x-y edges of lattice layers. Fibers are bonded within the same

layer and across all layers in the stack at locations consistent with the heat bonding patterns.

The model was shown to capture the fabric bending behavior with good degree of accuracy.

However, its practical applicability is limited by the high computational expense required to

formulate even a small area of fabric as an array of discrete lattices.

The fourth approach models the macroscopic response of nonwoven fabrics by homogeniz-

ing the response of a representative volume (or area) element of the material. This class of

models enjoys the benefits of both continuum and microstructurally-based approaches by being

computationally efficient while still capturing the physics of fabric deformation mechanisms.

Petterson [63] introduced the 'fiber web' model, an analytical approach that treats the fabric

as a periodic array of "unit cells" containing a statistical distribution of fibers with orienta-

tions consistent with the macroscopic fabric texture. The macroscopic response of the fabric is

obtained by homogenizing the response of the unit cell to a given mode of deformation (e.g.,

uniaxial tension). The fibers in the cell are straight, the junctions are rigid, and the fiber net-

work is taken to deform affinely with the macroscopic deformation. The fabric normal stress

component in a given direction is obtained by integrating the fibers tension contributions across

a cutting plane normal to that direction. The fiber web model was later modified by Hearle et

al. [39] to incorporate the effect of fiber curls, and again by Kothari and Patel [50] to include

the creep response of individual fibers by formulating an empirical fiber stress-stretch response

as a function of time. This class of models has been developed to provide the response of the

material under uniaxial loading, and has not been cast in terms of a generalized formulation in

which the complete stress state is obtained in terms of an arbitrary deformation history. The

fiber web model and its variations were shown to capture the small strain responses of both

needlepunched and thermal bonded nonwoven fabrics under uniaxial tension. However, some

inelastic deformation mechanisms, such as irrecoverable textural evolution, are notably missing

from these models. Narter et al. [58] introduced a micromechanics-based anisotropic contin-

uum model for the small-strain elastic response of fibrous materials that incorporates the effects

of fiber orientation and inter-fiber interactions in a representative cubic volume element. The

fabric anisotropy was modeled by expressing the coefficients of the elastic stiffness matrix as a

linear combination of the spherical harmonic coefficients of the fiber orientation distribution.



However, no experimental validation of the model was provided.

The phenomena that control the compaction of fiber web materials, such as volume exclu-

sion, are quite distinct from the fiber-stretching mechanisms that control their tensile behavior.

Correspondingly, a separate class of microstructurally-based continuum models was developed

primarily to capture the fabric compressive behavior. Van Wyk [73] pioneered this area by

analyzing the bending behavior of two orthogonal yarn families based on the classic beam

theory. Van Wyk's fiber-on-fiber compression model was later modified by Pan and Carnaby

[60], Carnaby and Pan [20], and Komori et al. [48]-[47] to include the effects of fiber curl and

fiber orientation distributions. Wilde [74] proposed another microstructurally-based continuum

model for the compression behavior of goosedown. This model was formulated based on three

underlying mechanisms; fiber bending, fiber straightening and fiber slipping. The model also

addresses the effect of fiber orientation, as well as the softening behavior observed in the cyclic

loading experiments of the material. This class of models focuses on capturing the compression

behavior of nonwoven webs, and is generally not effective in predicting fabric response under

other modes of deformation.

1.3 Objective

The objective of this project is to develop a continuum model for nonwoven fabrics that meets

the following requirements:

1) The model should be able to predict the macroscopic response of the fabrics (i.e., stress

and strain or load and displacement responses) as well as to capture the important features of

the deformation mechanisms at the structural level, such as the fiber re-orientation, and the

interactions between fibers.

2) The model should be of practical use. Many of the proposed models, although they

can effectively predict fabric response under certain modes of deformation, are not of practical

use because of the high computational expense or the limitations imposed by the models. In

addition, the fabric model should also be able to interface with other material models to aid in

the design of multi-component structures required by the new technologies.

With such requirements, the most suitable approach to model the mechanical response



of nonwoven fabrics is by means of microstructurally-based continuum approach. The main

advantage of the continuum models is their efficiency in modeling a large scale fabric application.

And by homogenizing the response of the representative fiber network accounting for the elastic

and inelastic deformation mechanisms based on the fabric macroscopic response, the continuum

models can also capture the fabric behavior at the microstructural level. In addition, the

continuum models can be easily interfaced with the continuum models of different materials to

formulate models of hierarchical structures.

1.4 Model formulation approach

This project is divided into two parts. The first part addresses the characterization of fabric

microstructure and the investigation of deformation mechanisms of nonwoven fabrics under

different modes of deformation. The second part relies on the characterization of morpho-

logical properties of the material and the observed deformation mechanisms, to formulate a

microstructurally-based continuum model for nonwoven materials. In formulating the fabric

model, attentions are given to (1) the effects of material anisotropy arising from directional

variations in fabric morphology, and (2) the inelastic effects of irrecoverable textural evolution.

The model formulation is divided into a 2-step approach:

Step 1) Formulating an anisotropic elastic continuum model based on the material

anisotropy In developing the anisotropic elastic model we consider two primary morpholog-

ical sources of mechanical anisotropy in nonwoven fabrics:

1) Fiber orientation distribution (FOD) - This distribution represents the normalized proba-

bility of having fibers aligned in each material direction, and gives rise to deformation resistance

biased toward the directions of preferential fiber alignment.

2) Orientation distribution of junction-to-junction distance (JJD) - the normalized distance

between two junctions in each material direction. This distribution is related to the anisotropy

of the extensibility limits of the network, and gives rise to the stress contributions that are

biased in the directions of long junction-to-junction distances.

For nonwoven fabrics in which the anisotropy of fiber orientation is combined with random

entanglement processes, we propose to capture the combined effects of fibers and junctions



orientation distributions using a single tensorial representation of the network anisotropy (fabric

ellipsoid). An appropriate orthotropic form for the stress tensor based on this structural measure

will be derived.

Step 2) Incorporating anelastic effects arising from irrecoverable texture evolution

The orthotropic elastic model from Step 1 will be modified to include unrecoverable defor-

mation mechanisms observed in the nonwoven fabric experiments. The inelastic component

of the constitutive model will reflect the evolution of the network structure due to irrecover-

able realignment of the constituent fibers, as well as other resistive mechanisms to inelastic

deformation, such as inter-fiber friction and volume exclusion.

1.5 Thesis organization

This thesis will be organized as follows. Chapter 2 presents the experimental characterizations

of nonwoven fabrics. Attention is given to the investigation of deformation mechanisms of

nonwoven fabrics under different modes of deformation as well as the characterization of fab-

ric microstructure. Motivated by deformation mechanisms in nonwoven fabric observed in the

experiments, we propose a microstructurally-based continuum model consisting of two consti-

tutive components: a nonlinear elastic component representing the resistances to recoverable

deformation mechanisms, and a non-linear inelastic component representing the resistances to

irrecoverable deformation and texture evolution. Chapter 3 discusses the formulation of a consti-

tutive relation for the elastic response of nonwoven fabrics. Specifically, we present an approach

to incorporate fabric network structure into a continuum model via a tensorial representation

(fabric ellipsoid) of morphological sources of network anisotropy. An orthotropic elastic con-

stitutive model for the elastic response of nonwoven fabrics is then formulated based on this

structural measure and deformation mechanisms of the network structure. Chapter 4 discusses

an extension of the orthotropic elastic model to account for inelastic deformation mechanisms,

particularly the irrecoverable evolution of the fabric structure. The inelastic formulation is

prescribed in terms of an evolution law for the fabric ellipsoid. Chapter 5 demonstrates the pre-

dictive capability of the proposed fabric model by comparing model simulations under uniaxial

tension and equibiaxial tension to the corresponding experimental data. The model sensitivity



to the model parameters is also investigated. Chapter 6 summarizes the accomplishments of

this work and discusses venues for further improvement.





Chapter 2

Experimental Characterizations of

Nonwoven Fabrics

Nonwoven fabrics are sheet structures created by bonding or interlocking a web (network) of

fibers through mechanical, thermal or chemical processes. In general, the mechanical response

of nonwoven fabrics exhibits two major characteristics. First, the mechanical response can

vary significantly when the fabric is loaded along different directions, depending on the exis-

tence of a preferential orientation in the fiber arrangement and/or in the pattern of inter-fiber

bonding/entanglement. Second, the mechanisms of deformation include elastic and inelastic

components, accompanied by an irrecoverable evolution of the texture of the fiber network.

This study focuses on the mechanical response of high performance ballistic nonwoven

fabrics. Many of the commercially available ballistic nonwoven fabrics are in the form of

needlepunched nonwoven felts, which are typically fabricated by entangling fibers of the same

material. Therefore, the mechanical response of this class of materials is governed by the mor-

phological properties of fiber web, such as fiber entanglement, fiber curl and fiber orientation,

and the mechanical properties of constituent fibers. In this work, A web of high strength poly-

ethelene fibers manufactured by DSM "Dyneema Fraglight" is selected as the representative

material.

In this study, the investigation of the properties of Dyneema Fraglight is carried out in a

two-step approach. First, the fabric structure is characterized in terms of its morphological



Properties Unit Dyneema Fraglight
Roll Width cm 160
Areal Density g/m 190-220

Table 2.1: Properties of Dyneema Fraglight provided by the manufacturers

properties and the mechanical behavior of individual constituent fibers using image analysis

techniques and single-fiber tension test, respectively. Then, the fabric macroscopic response

under in-plane modes of deformation is investigated. Attention is given to the evolution of the

fabric structure with macroscopic deformation, and to damage mechanisms associated with

fiber slip and fiber disentanglement. These experimental results serve as a guidance in model

development, as well as validation for the proposed modeling formulation.

2.1 Characterization of fabric structure

Dyneema Fraglight is manufactured by needlepunching overlays of combed fiber mats and pro-

vided in rolls of 1.6m width. Table 2.1 shows the geometric properties of Dyneema Fraglight

provided by the manufacturer. Note that the value of the fabric thickness was not provided

by the manufacturer. By our measurement at different locations of the fabric roll, the fabric

thickness falls in the range of 0.8 - 1.4 mm.

In order to establish a set of terminology for the directionality of this material, the direction

along the fabric roll is termed "roll" (R) direction, and the direction perpendicular to the fabric

roll is termed "cross" (C) direction. Upon inspection, the fabric appears to have marking lines

on one side of the fabric surface at approximately 7mm interval along an angle of 30 degrees

to the cross direction. These marking lines were created by the needle-punching machine along

the directions of multiple needlepunch runs. In the following sections, the direction along the

needlepunch run markings is termed needlepunch machine run, denoted by P-direction, and the

direction orthogonal to the needlepunch machine run is termed X-direction. Figure 2-1 shows

the schematic of the material directions.
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Figure 2-1: Schematic of material directions

2.1.1 Microstructural analysis

Following standard approaches, the microstructure of the fabric is analyzed by means of image
analysis. Microstructural images are usually obtained by photographing the fabric with a digital
camera (reflective or transmitted light source), or by using an optical microscope. Because of
the highly reflective surface of this fabric, we determined that the images of this fabric were
best obtained under a transmitted light source. Thirty micrographs of the Dyneema Fraglight
were obtained at random locations on the fabric surface using a standard optical microscope.
Selected samples of the micrographs of the fabric surface at the virgin state are illustrated in
Figure 2-2. These images show that the Dyneema Fraglight is a web of curly self-entangled
fibers with preferential alignments along the cross direction. In addition, the fibers appear to
be preferentially aligned along the plane of the fabric.

In order to characterize the punch pattern resulting from the needlepunching process, an-
other set of images of Dyneema Fraglight was taken at a larger length scale using a digital
camera with a transmitted light source. Figure 2-3 shows that the punch pattern in Dyneema
Fraglight is approximately random with weak bias along the needle run direction (P).

In the characterization of fabric structure we focus on determining two critical morphological

:: - i---- : - : :: i ::·:::::



Figure 2-2: Images of Dyneema Fraglight taken from random locations of the fabric surface.
The images were obtained using a standard microscope using transmitted light source.



Figure 2-3: Random bonding pattern in Dyneema Fraglight

properties that are related to the anisotropy of the material response.

1) Fiber orientation distribution (FOD) - This distribution represents the normalized proba-

bility of having fibers aligned in each material direction, and gives rise to deformation resistance

biased toward the directions of preferential fiber alignment. The FOD can be measured using

various image analysis techniques, e.g., [641 [65] and [42]. In this work, we employed an al-

gorithm based on the orientation of simple neighborhoods proposed by Jahne [42] to quantify

the FOD of the Dyneema Fraglight. The algorithm was implemented in a Matlab code by

Dimitrios Tzeranis from the So Bioinstrumentation Lab at MIT. In summary, the algorithm

uses a numerical differentiation scheme to calculate the derivatives of the image intensity along

x-y directions in the fabric plane . The derivatives from individual 15x15 pixel windows form

a "structure tensor" in which the eigenvectors and eigenvalues represent the orientation of the

fiber signal and its significance, respectively. This algorithm was used to analyze the fiber ori-

entation distribution from micrographs at the scale represented in Figure 2-2. Three analyses

were performed on 10 randomly selected images from the set of 30 micrographs. The analysis

results are plotted together with the averaged FOD of all 30 micrographs in Figure 2-4. It is
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Figure 2-4: A histogram of the fiber orientation distribution for Dyneema Fraglight obtained
from averaging 3 sets of 10 random images (dash lines) and 30 images (solid line) (left) and the
polar plot of the averaged FOD of 30 images (right)

clear from Figure 2-4 that the average FOD for 10 micrographs are consistent with the average

FOD for 30 micrographs. Therefore, the averaged FOD of randomly selected images consti-

tutes a sufficient representation of the FOD of the fabric. When represented as a polar plot, the

averaged FOD can be approximated to the second-order accuracy by an elliptical distribution.

The ellipse fit of the FOD can be obtained using the following procedure.

Consider the general quadratic equation of an ellipse with the center at the origin:

ax2 + 2bxy + cy 2 + f = 0, (2.1)

where x and y are expressed in the Cartesian coordinate system eA - eB, and are related to the

fiber distribution m (0) and the orientation angle 0, by

x = m(8) cos(0), (2.2a)

y = m(0)sin(0). (2.2b)

Equation 2.1 represents an ellipse when b2 < 4ac. By using the ellipse fitting algorithm by

Fitzgibbon et al. [29] on the FOD histogram, the coefficients of the best-fitted ellipse are given

Polar plot of averaae fiber orientation distributionFiber orientation distribution



by a = 1.0000, b = 0.0694, c = 0.0461 and f = -1.8504e - 006. A non-zero b indicates that

the FOD ellipse is slightly rotated due to misalignment in the image acquisition stage (e.g.,

misalignment of the fabric sample or the camera). The ellipse equation 2.1 can also be cast in

terms of a structural tensor M, and the vector m = XeA + yeB by the following relation [37]:

1 = mT (Mm) = - b c (2.3)

Although the measured structural tensor M is derived from the ellipse equation, the coeffi-

cients a, b and c do not represent the semiaxes of the ellipse, and therefore M is not the proper

representation of the ellipse distribution 1. The measured structural tensor M is called "inverse

ellipsoid" by Zysset [81], because the magnitudes of M is inversely related to the orientation

distribution.

The measured structural tensor M can be transformed so that it represents the FOD dis-

tribution using the following steps. First, consider the tensor M in the principal frame so that

M = Mi(eM eM , and Mi and eM represent the eigenvalue and eigenvector of M in the
i=1,2

direction i, respectively. In the principal frame, 2.3 becomes

in (Mim) = x M ]([ (2.4)
S( 0 M2 yM (2.4)

= M 1x 2 + M2y 2 = 1 (2.5)

where FT = xMe M + yMeM. Equation 2.4 represents the ellipse equation when the axes are

aligned along eM and eM . 2.4 can also be written as

x2  y2
1)2-_ = 2 1, (2.6)

1 1

where 1 and represent the semiaxes of the ellipse. Hence, the FOD ellipse can be

1Consider, for example, the components of M along the eA and eB directions. From the parameters a and
b of the best-fitted ellipse equation, a > b, suggesting that there are more fibers along eA than along eB, but
Figure 2-4 suggests otherwise.
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Figure 2-5: Ellipse fit of the measured FOD.

represented by a structural tensor W in the following form:

0
W V= (2.7)

0 1

1.0 0
The ellipse fit of the FOD with the structural tensor W = 0.0014 is shown in

0 5
Figure 2-5.

2) Orientation distribution of junction-to-junction distance (JJD)2 - the normalized distance

between two junctions in each material direction. This distribution is related to the anisotropy

of the extensibility limits of the network, and gives rise to stress contributions that are biased

in the directions of long junction-to-junction distances. The junctions of distributed fiber

networks can be further categorized into two broad classes based on the mechanisms by which

junctions are created: patterned junctions created by controlled bonding processes, and random

2 In this work, 'junctions' are defined by the spatial positions where two or more fibers are inter-connected by
thermal or chemical bonding processes or, in the case of Dyneema Fraglight, by physical entanglements created
by the needlepunching process



junctions created by random bonding process (e.g., thermal bonding of quasi-melted fibers in

electrospinning or random entanglements created by needlepunching of fiber webs). The JJD of

distributed networks with patterned junctions can be directly measured from the images of the

network structure. On the other hand, the JJD of distributed networks with random junctions

cannot be easily measured by the currently available image analysis techniques. However, the

JJD of distributed networks with random junctions can be related to the FOD of the network

because the locations of inter-fiber junctions are statistically biased by the number of fiber

intersections, which is related to the fiber orientation distribution.

A relationship between the JJD and the FOD of a network with random bonding process

can be obtained using the simplified straight fiber model described in Appendix A. Basically,

this model assumes that a distributed fiber network can be represented by a three-dimensional

network of straight cylindrical inter-penetrable fibers arranged in a spherical window according

to a prescribed fiber orientation distribution. By tracking the locations of the inter-fiber inter-

sections, and by relating the average inter-fiber intersection distance to the fiber orientation,

the model can provide an approximated relationship between the fiber orientation distribution

and the distribution of the inter-fiber intersections. Because in a network with random bonding

pattern, the junction density of the network directly scales with the intersection density, this

simplified straight-fiber model can be used to obtain an approximate relationship between FOD

and JJD as well.

As noted in Figure 2-3, the bonding (punch) pattern of the Dyneema Fraglight is approx-

imately random. Therefore, the JJD of this fabric can be obtained from the measured FOD

of the fabric using the simplified straight fiber model. The measured in-plane FOD was repre-

sented as a two-dimensional (ellipse) distribution. However, to apply the approach described in

Appendix A, a fully three-dimensional representation of the FOD is needed, with a 3D ellipsoid

replacing the 2D ellipse. Consistently with microstructural observations (and the manufactur-

ing process), we assume a low density of fibers arranged in a direction normal to the plane of

the fabric. This condition can be expressed in terms of a representation on the semiaxes of the

ellipsoid, where the out-of-plane semiaxis is taken to be less or equal to the smallest in-plane

semiaxis of the 2D FOD ellipse. By varying the value of the out-of-plane component and fixing

the ratio of the in-plane components of the FOD ellipsoid, an appropriate ratio for the in-plane



Input FOD Ellipsoid 4  Output JJD Ellipsoid

WAA WBB WCC GAA GBB GCC GBB/GAA
1 5 1 0.7985 1.4024 0.7985 1.7562
1 5 0.8 0.7820 1.4516 0.7662 1.8561
1 5 0.7 0.7615 1.5027 0.7357 1.9733
1 5 0.5 0.7441 1.5514 0.7044 2.0848
1 5 0.3 0.7071 1.6455 0.6472 2.3269
1 5 0.1 0.6550 1.7635 0.5814 2.6922
1 5 0.01 0.6438 1.7893 0.5668 2.7793
1 5 0.001 0.6286 1.8171 0.5541 2.8904

Table 2.2: Approximated values of the JJD ellipsoid from the measured FOD ellipse. All
simulations were done using n=2000 and d=2

components of the JJD ellipsoid can be inferred (Appendix A). Table 2.2 provides a list of

different ratios between the semiaxis of the JJD ellipsoid obtained from the simplified straight

fiber model, with different values of the out-of-plane FOD component and a constant ratio of

the in-plane components of the FOD ellipsoid3 .

According to Table 2.2, the ratio of the in-plane components of the JJD ellipsoid _ should

fall between 1.7 to 3. These approximated values of the JJD ellipsoid will be used for model

validation in Chapter 5.

2.1.2 Tensile response of individual fibers

The mechanical response of constituent fibers is investigated as a means to gain a better un-

derstanding of the macroscopic response of the fabrics under tensile loading, particularly in the

large strain regime. To test the fibers of a needlepunched nonwoven fabric, a bundle of fibers is

pulled out of the fabric using tweezers, and the damaged fibers displaying defects such as kinks

or frays are removed. An individual fiber is isolated from the bundle, looped around a small,

thin rod, such as a staple or paper clip, and bonded to the rod by a drop of 5-minute epoxy.

The assembly of fibers and rod is then glued to a paper coupon cut into 40 by 20 mm with

a center slot of 20 by 10 mm, creating a coupon specimen with approximately 20 mm initial

gauge length. Figure 2-6 shows a coupon specimen of Dyneema Fraglight fiber. The coupon

3 The accuracy of the relationship between FOD and JJD relation decreases as the network becomes highly

anisotropic due to numerical instability in the simplified network model
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Figure 2-6: Fiber coupon specimen (half of fiber highlighted for clarity)

specimens can be gripped directly on any jaw inserts of regular tensile testing machine. In this

study, the Dyneema fibers were tested using a Zwick tensile tester model BTC-FRO10TH.A50.

After gripping the coupon in the testing machine, the coupon lateral legs are cut prior to each

test so that the fiber carries the entire applied load. A preload of approximately one millinew-

ton was applied to the fiber before each test to eliminate kinks and slacks on the fibers. Ten

tests were performed at a nominal strain rate of 0.01 s - 1 . The test results for the Dyneema

Fraglight fibers shown in Figure 2-7, suggest the presence of two families of fibers with different

stiffnesses.

A study of individual Dyneema ® fibers under a microscope reveals that the fibers contain

many defects including bulges, kinks, splits and fray. Observations of a number of fiber images

suggest that there are two main populations of fibers: one population is a cylindrical shape

fiber with a diameter of 20 microns; the fibers in the second population are composed of two

joined 10 microns fibers as illustrated in Figure 2-8. This observation provides an interpretation

for the two stiffness levels observed in the load-strain plots of tensile tests (Figure 2-7). The

average tensile properties of the individual fibers are calculated as shown in Table 2.3.

PI
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Figure 2-7: Tensile test results of Dyneema Fiber
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Figure 2-8: Images of fiber irregularities and two populations found in Dyneema fibers



Properties Unit Dyneema Fiber
Diameter [am 10-20
Young's Modulus GPa 32
Strength MPa 2000
Elongation at Break % 6.0

Table 2.3: Mechanical properties of Dyneema fibers measured from the experiments

2.2 Macroscopic mechanical response of nonwoven fabric

The primary use of Dyneema Fraglight is in ballistic (fragment) protection applications, where

the membrane response of the fabric is of critical relevance. As a preliminary step in under-

standing the fabric behavior, attention is given to the fabric response under in-plane tensile-

dominated modes of deformation. In this work, the governing deformation mechanisms of the

fabric under tensile loads are identified using two types of mechanical testings: uniaxial tensile

tests and equibiaxial stretch tests. The results of these experiments serve as guidance in the

development of a microstructurally-based continuum model for nonwoven fabrics, as well as

validating cases for the proposed formulation.

2.2.1 Fabric macroscopic response under uniaxial tensile loading

A number of standard techniques have been established in the literature to test nonwoven

fabrics under tensile loads. Examples of these are a grab test of narrow-width specimen (ASTM

D1682-64), and a grab test of wide-width specimen (ASTM D4595-86). According to the ASTM

D5034-95, the standard grab test is only applicable when the total fabric deformation is less

than 11% nominal strain. However, the Dyneema Fraglight has been reported by Chocron

[23] to undergo uniaxial deformation more than 100% strain before failure, and therefore, the

standard tensile testing methods are at least not suitable for characterizing the large strain

response of this fabric. In this study, a new technique that allows the measurement of fabric

deformation at large strains is proposed as described below.

First, the fabric is cut into dogbone-shape strips as illustrated in Figure 2-9. This specimen

shape ensures that the central region of the specimen is subjected to a uniform uniaxial stress

state for all levels of deformation. A new set of custom made grips was fabricated to perform

the fabric tensile strip tests, see Figure 2-9. By wrapping the sample around a small bar which
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Figure 2-9: Dogbone specimen (left) and custom designed fabric fixture - front view (middle)
and side view (right). Each end of the fabric strip is wrapped around a bar, and then clamped
between two grooved jaws of the fixture. A contact extensometer is used in this configuration



Figure 2-10: Tensile test configuration

fits in a groove between the jaws inserts, the fabric strip is prevented from slipping out of the

jaws. The clamping edges define the fabric initial gauge length. In its initial unloaded, gripped

configuration, the specimen has a total length of 4 inches; 3 inches of this length is in the

constant narrow width region. The displacement is measured by a contact extensometer with

an initial gauge length of one inch positioned in the central region of the specimen as shown

in Figure 2-9 (middle and right). All tests were carried out on the same tensile tester as in

the single fiber tests, but with a load cell with a larger load limit. Figure 2-9 shows a typical

uniaxial tensile test configuration. Figure 2-10 shows an alternative testing configuration where

the deformation of the specimen is monitored by digital imaging techniques.

Three types of uniaxial loading tests were conducted on the fabric strips using the dogbone

configuration: monotonic loading test, cyclic loading test, and two-step monotonic loading test.

The monotonic loading test provides a means to measure the fabric tensile properties, to

determine the fabric anisotropy, as well as to identify the deformation mechanisms of the fabric

under tensile loads. To investigate the effects of fabric anisotropy, the uniaxial monotonic

loading tests were conducted along the principal directions of the fiber orientation, or the roll



(R) and the cross (C) directions. Additional tests were conducted along the P- and the X-

directions to identify the effects of the needlerun markings. All tests were performed at a

nominal strain rate of 0.01 s- 1 until failure.

The cyclic loading test was conducted to gain further insight into the inelastic mechanisms

of deformation, and texture evolution due to irrecoverable reorientation of the fibers. The cyclic

loading test is a displacement controlled test with a series of loading-unloading sequences, each

following the pattern described below:

1) Load - the specimen is pulled up to a pre-specified strain,

2) 1st Hold - the specimen is held at the pre-specified strain for a short interval

3) Unload - the strain on the specimen is decreased to reach a condition of zero load

4) 2nd Hold - the specimen is held at this lower strain for a short interval

The cycle continues with higher values of pre-specified loading strains until the specimen

fails. Figure 2-11 shows the schematic of the nominal strain history for the uniaxial tensile cyclic

loading test. To closely approximate a true strain rate response of the fabrics, the test speed is

varied between the cycles, and is calculated so as to obtain the same constant nominal strain

rate with respect to the specimen length at the beginning of the loading step. For example, if

the desired true strain rate is 0.01 s- 1 and the specimen length at the beginning of the third

cycle is 5 mm, the test speed of that particular cycle is 0.05mm s- .

The two-step monotonic loading test is used primarily to quantify the degree at which the

fabric texture has evolved under monotonic loadings. The two-step loading test is a series

of two uniaxial monotonic loading tests with the following loading protocol. In the first step,

a fabric specimen four times larger than the regular uniaxial tensile specimen in Figure 2-9 is

uniaxially stretched to a pre-specified strain that is well below the onset of fabric failure. After

the specimen is completely unloaded, a set of fabric specimens with the same aspect ratio but

only half the size of regular specimens, are cut from the center region of the large specimen

orthogonal to the first loading direction. In the second step, the smaller specimens are tested

under monotonic uniaxial tension until failure. Figure 2-12 shows a schematic of the two-step

uniaxial tension test protocol.
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Figure 2-11: Loading schematic of uniaxial cyclic loading test

Fabric response under monotonic uniaxial loadings

Results of the fabric response under monotonic uniaxial loadings along the R,C,P, and X di-

rections are plotted in terms of load per unit specimen width and nominal strain in Figure

2-13. Dyneema Fraglight exhibits a highly anisotropic nonlinear response under uniaxial ten-

sile loads. The fabric response along the cross direction presents the highest stiffness with the

shortest elongation at break, and further deviation from the cross direction results in a decrease

in stiffness and an increase in elongation at break.

Similarity in the quantitative behaviors in different fabric directions implies that the fab-

ric undergoes similar deformation mechanisms under uniaxial tension. In the initial compliant

region of the load-strain plot, macroscopic deformation is primarily accommodated by realign-

ment of constituent fibers. As the strain increases, the fibers realign along the loading direction

resulting in a contraction of the specimen along the transverse direction. The fibers realignment

continues until the fibers are uncurled and densely compacted. At this point, further defor-

mation can only be accommodated by fiber stretching and fiber slipping out of the junctions

(termed junction unraveling). As the deformation progresses, fiber slippage out of the junc-
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Figure 2-12: Schematic of two-step uniaxial tensile loading test: (top) the specimen for the first
loading step, and (bottom) the specimens for the second loading step
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Figure 2-13: Uniaxial tensile responses of Dyneema Fraglight in different loading directions
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Uniaxial cyclic test: Dyneema Roll
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Figure 2-14: Uniaxial tensile test result for the roll direction of Dyneema Fraglight

tions dominates other deformation mechanisms. The sample eventually fails by a combination

of junction unraveling and fiber failure.

The results in Figure 2-13 are consistent with the microstructural analysis of the fabric tex-

ture in Figure 2-4. Because most of the fibers are already aligned along the cross direction, the

response of the fabric along this direction is very stiff because the deformation is accommodated

by fiber stretch and junction unraveling. On the other hand, the fabric response along the roll

direction is mostly accommodated by fiber re-orientation because the fibers are initially aligned

orthogonal to the loading direction. Because the resistance to fiber re-orientation is lower than

the resistance to fiber stretch and fiber slippage, the fabric response along the roll direction is

much more compliant than the fabric response along the cross direction.

Fabric response under cyclic uniaxial loadings

Typical results of the cyclic loading tests are shown in Figure 2-14 for the roll direction of

Dyneema Fraglight, and Figure 2-15 for the cross direction. These results suggest that the

^
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Figure 2-15: Uniaxial tensile test result for the cross direction of Dyneema Fraglight
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deformation of the fabric is mostly accommodated by inelastic mechanisms, as illustrated by a

small elastic recovery at each load-unload cycle. In addition, the stiffness in each successive loop

appears to be increasing as more fibers are aligned along the loading direction. The fiber-level

deformation mechanisms corresponding to different stages of the cycle for the roll direction are

illustrated in Figure 2-16. In the loading step, the fabric first undergoes an elastic extension

accommodated primarily by stretching of the fiber network (image C). Once a sufficient stress

level is reached, fiber realignment become the dominant deformation mechanism, with a marked

decrease in stiffness (image D). When the fabric deformation reaches the target strain, the fabric

is held at constant stretch for a short period over which the stress relaxes by means of fibers

slip and realignment. When the fabric is unloaded, the elastic component of deformation is

recovered. As indicated by the graph, the magnitude of the load in the reloading step is usually

lower than that in the loading step at the same strain, mainly due to the inelastic deformations

accumulated over the hold period.

Fabric response under two-step monotonic loadings

The fabric response under the two-step monotonic loading is similar to the uniaxial monotonic

tensile loading since the material undergoes the same type of deformation mechanisms. Figure

2-17 shows the results of 2-step monotonic loading tests for three cases of fabric conditions:

(1) a virgin fabric loaded along the roll direction (1st step Roll), (2) a virgin fabric loaded

along the cross direction (1st step Cross), and (3) a deformed fabric after 20% strain in the roll

direction, loaded along the cross direction (2nd step Cross). The plots are presented in terms of

normalized load per unit specimen width versus nominal strain to facilitate comparison among

the three cases. The response in the second step test appears to be more compliant than the

one of the virgin fabric loaded along the cross direction. This result suggests that the fabric

texture has evolved in the course of the first load-unload step, and has become less biased along

the cross direction.

The fiber orientation distribution of the fabric texture after the 1st step can be analyzed

using the same approach as described in Section 2.1.1. Figure 2-18 shows the fiber orientation

distribution after the first load-unload step. As expected, the fiber orientation has become

less biased along the cross direction due to the 20% stretch along the roll direction. Table 2.4



Figure 2-16: Inelastic deformation mechanisms in uniaxial cyclic loading of needlepunched

nonwoven fabrics
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Figure 2-17: Results of 2-step uniaxial monotonic loading tests
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Figure 2-18: Evolution of the fiber orientation distribution after 20% strain in the roll direction

shows the change in the measured FOD tensor and the approximated JJD obtained from the

simplified straight fiber model. These data will be used for a model validation in Chapter 5.

2.2.2 Fabric macroscopic response under biaxial tensile loading

The Dyneema Fraglight fabric was tested under biaxial tensile loadings in order to gain addi-

tional insight into the evolution of the fabric network structure. In this test, fabric specimens

of cruciform shape shown in Figure 2-19 were loaded at a constant displacement rate of 10mm

Measured FOD (WAA:WBB) JJD from SSF 5model (GAA:GBB)

Undeformed 1:5 1:1.9733

after 20% Roll 1:3.9265 1:1.6897

Table 2.4: Reference and deformed FOD and the corresponding JJDs



Figure 2-19: dimensions of biaxial test specimens and biaxial tensile test configuration

per second along the orthogonal principal directions of the fabric (i.e. R and C). The test

configuration of the biaxial tensile test is illustrated in Figure 2-19. An optical extensometer

system is used to observe the deformation mechanisms of the fabric structure. With simulta-

neous orthogonal loadings, the biaxial test specimen undergoes a complex deformation pattern

due to the combination of two uniaxial tensile loads along the cruciform legs, resulting in a

complex tensile-shear deformation (as a result of superposition) at the center of the cruciform

specimen.

Figure 2-20 shows the macroscopic response of Dyneema Fraglight fabric under biaxial

loading plotted in terms of load and machine crosshead displacement. The response indicates

a highly anisotropic response where the stiffness along the cross direction is significantly higher

than that along the roll direction. Images of the biaxial specimen at different stages of defor-

mation in Figure 2-21 demonstrate a biased evolution of the fabric texture with fibers at the

center of cruciform specimen reoriented toward the cross (stiff) direction. Fabric tear by means

of fiber slippage and bond breakage is also observable along the boundary of the compliant

cruciform leg and the center of the cruciform specimen. The result of this test indicates that

the dominating deformation mechanism in this material is the irrecoverable reorientation of

fabric texture.
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Figure 2-20: Equibiaxial stretch response of Dyneema Fraglight
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Figure 2-21: Deformed structures of Dyneema Fraglight under equibiaxial stretch with
crosshead displacement of (a) 0 mm (reference) (b) 10 mm (c) 20 mm and (d) 30 mm



2.3 Chapter summary

This chapter reviewed our investigation of the morphological properties and the in-plane me-

chanical response of Dyneema Fraglight fabric. Characterization of the fabric microstructure

indicates that Dyneema Fraglight is a web of curly fibers preferentially oriented along the cross

direction, and aligned within the plane of the fabric. The investigation on the morphologi-

cal sources of fabric anisotropy focused on the characterization and quantification of the fiber

orientation distribution and junction-to-junction distance distribution.

Uniaxial tensile testing of the fabric reveals that Dyneema Fraglight exhibits an anisotropic

response with the cross direction stronger and stiffer than the roll direction, consistent with the

observed fabric structure. The deformation mechanisms governing the fabric response under

tensile loads include textural evolution by means of reorientation of constituent fibers, fiber

stretch and junction unraveling. The results of the cyclic loading tests indicate that the tensile

deformation of the fabric is a combination of elastic deformation from fiber stretch, and inelastic

deformation from irrecoverable reorientation of fibers, relative fiber slip as well as fiber disen-

tanglement. Experimental observations in uniaxial cyclic loading tests indicate that the fabric

response is dominated by inelastic deformation mechanisms, especially irrecoverable textural

evolution and junction unraveling. Results from biaxial tensile tests confirm this observation.





Chapter 3

An orthotropic continuum model for

the elastic response of distributed

fiber networks

"Distributed fiber network" is a term that can be used to describe a class of materials composed

by a web of fibers or macromolecules, entangled or bonded, either randomly or systematically,

by mechanical or chemical processes. A number of engineering materials can be categorized as

a distributed fiber network, including synthetic polymers, elastomers, biological tissues, engi-

neering scaffolds, papers, and nonwoven fabrics. The mechanical response of these fiber network

materials is generally very complex: it is highly nonlinear, anisotropic, and governed by elastic

mechanisms (e.g., stretching and rotating of the constituent fibers), as well as viscoelastic mech-

anisms (e.g., fiber creep), and irrecoverable mechanisms (e.g., fiber slip, fiber rupture and bond

breakage). To formulate a micromechanics-based continuum model for this class of materials,

the fiber network response is typically decomposed into a number of constitutive components,

each representing a type of deformation mechanism. A constitutive component may consist

of an equilibrium (elastic spring) element, a time-dependent (viscous dashpot) element, or a

combination thereof, e.g., a viscoelastic element. This modeling approach has been successfully

used in formulating a large number of constitutive models for distributed fiber network materi-

als, including viscoelastic models for elastomers [7], models for thermoplastics [57], models for



filled elastomers [26], and models for protein based materials [76]. Even though varied in de-

tails and formulations, the models listed above share one common assumption: the fibers within

the network are randomly distributed, and therefore, the macroscopic response of the network

is assumed to be initially isotropic. Many of these models share a common representation

of the underlying isotropic network elasticity based on an "eight chain" representation of the

macromolecular network structure, with non-Gaussian statistics governing the entropy-driven

behavior of individual chains. The eight chain model was initially introduced for elastomeric

materials [2], [72] and accurately captures the cooperative nature of network deformation while

requiring a minimal number of parameters.

Yet, the macroscopic response of many distributed fiber network materials, such as particle-

filled elastomers, nonwoven felts, and biological tissues, can exhibit some directional dependence

due to (a) a biased distribution of the constituent fibers, and/or (b) preferential alignment of

the inter-fiber junctions/bonds/entanglements. Several attempts have been made to incorporate

these morphological sources of anisotropy into constitutive models. The approach followed by

Bischoff et al. [12], [13], and by Diani et al. [25] relies on homogenization of the response of

an anisotropic representative volume elements, while Gasser et al. [32] employed a tensorial

representation of a transversely isotropic fiber network structure in a continuum formulation.

The purpose of this work is to introduce an alternative approach to formulate an anisotropic

constitutive relation for the elastic response of distributed fiber networks combining the desir-

able features of the models proposed in the literature. As in [6], [7], [13] the microstructural

properties of the constituent fibers and the microstructural sources of network anisotropy consti-

tute the foundation for the macroscopic response; these microstructural features are captured in

a tensorial representation which is embedded (as in [13]) in a continuum formulation. The mor-

phological sources of network anisotropy are represented by a second-rank, symmetric positive-

definite fabric tensor derived from the orientation distribution of microstructural features of

the network structure. Following the physical interpretation of the morphological source, the

structural tensor is incorporated into an orthotropic constitutive model for the elastic response

of the distributed fiber network. We compare the proposed formulation with models in the

literature and demonstrate how the proposed model can efficiently and effectively capture the

morphological sources of mechanical anisotropy and the macroscopic response resulting from



the distributed nature of the fiber network.

3.1 Literature review

The mechanical response of distributed fiber networks is governed by the deformation and

interactions of the constituent fibers (or macromolecules). A number of constitutive models for

fiber networks proposed in the literature ([2], [6], [7], [9], [12]-[13], [19], [25]-[26], [72], and [77])

follow the representative volume element (RVE) approach. In this approach, the fiber network

is represented by a spatially periodic volume element (polyhedron), which contains a number

of fibers embodying the essence of the microstructure under consideration; the macroscopic

response of the network is obtained by homogenization of the RVE response. Notable examples

of this approach include the three-, four-, eight- and full- chain models (see [19] for a review

of these models). Note that these models were originally developed for isotropic networks, and

therefore all chains within the RVE are identical. Among these formulations, the isotropic

eight-chain model proposed by Arruda and Boyce [2] (referred to as the "AB-model" in the

following) is widely employed because of its simplicity and efficiency. In the AB-model, eight

representative chains are joined at the RVE center and directed along the diagonals of a cubic

RVE. At each material point, the RVE edges are aligned with the principal stretch directions,

so that the chain stretch (identical in all chains) is directly related to the first invariant of

the Left Cauchy-Green tensor, B = FF T , where F is the macroscopic deformation gradient.

As a consequence, the AB-model can be interpreted in a purely continuum framework by

introducing the concept of an effective network stretch: Aeff = t without any reference

to the underlying micromechanical RVE representation [2].

Constitutive models development for anisotropic distributed network materials often rely

on generalizations of the isotropic models. In the following sections, we discuss in detail three

anisotropic models for elastic networks: (a) the directional model by Diani et al. [25], (b)

the orthotropic eight-chain model by Bischoff et al. [12], and (c) the transversely isotropic

distributed fiber network model by Gasser et al. [32]. The first two models are based on the

RVE approach, while the latter incorporates the fiber network anisotropy using a tensorial

representation of the network structure.



3.1.1 Directional model

The directional model proposed by Diani et al. [25] (referred to as the D-model in the following)

idealizes the network structure through representative volume elements defined by symmetric

polyhedra (e.g. a tetrahedron, a cube, an octahedron or a dodecahedron). For each solid, a

set of fibers are considered along directions defined by linking the center of the solid to each

vertex. Thus, four fibers are defined by a tetrahedron, eight fibers by a cube, six fibers by an

octahedron, and twenty fibers by a dodecahedron. Each of the fibers in the RVE can be assigned

a different statistical weight to reflect the anisotropy in the fiber orientation distribution in the

distributed network. For an adequate representation of distributed network anisotropy, higher-

order polyhedra are necessary. The macroscopic response of the model is derived through a

hyperelastic formulation where the strain energy density is obtained by summing contributions

from each fiber. The model enforces an incompressibility constraint, and captures the force-

stretch relations for individual fiber using Langevin statistics. This model has been shown to

capture with good approximation the uniaxial and biaxial responses of a filled natural rubber

[26]. For formulations in which the fibers display a nonlinear response with a limiting (locking)

stretch, the response of the model at large stretches tends to be overly stiff, as it tends to

be dominated by the stress contributions of the chains aligned with the maximum principal

stretch. This model shortcoming is particular significant for higher-order polyhedra, where it

mirrors well recognized effects in the full-chain model [77] (Figure 3-1).

3.1.2 Orthotropic eight-chain model

Bischoff et al. [12], [13] proposed an orthotropic hyperelastic model (referred to as the "B-

model" in the following) which relies on a rectangular prism RVE with eight identical non-

Gaussian chains arranged along its diagonals (Figure 3-2). As in the D-model, the macroscopic

response of the network is derived through a hyperelastic formulation where the strain energy

density of the RVE is obtained by summing contributions from each chain. The model was

originally proposed with a force-stretch relation for the individual chains based on Langevin

statistics, and then extended to arbitrary force-stretch relationships in [14]. The B-model is

formulated for compressible materials and accounts for additional mechanisms of resistance

to volumetric deformation through a distinct isotropic contribution, !bulk, to the RVE elastic
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prevent further deformation

Figure 3-1: Drawback for full-chain models (and for the D-model with higher-order polyhe-
dra): when fibers along the maximum principal stretch reach their limiting extension, the RVE
response becomes overly stiff.

Figure 3-2: Representative volume element of the B-model [12]



strain energy:

IB = 'Pchain (C, a, b, ) + ~bulk (J) (3.1)

where Tchain is the strain energy due to entropic and repulsion contributions from the individual

chains, C is the right Cauchy-Green tensor, a, b and c are the orthogonal basis vectors of the

RVE ( = aea; b = b c =be) , and J = det (F) is the ratio of the deformed to the undeformed

volume. At each material point, the basis vectors of the RVE are aligned with the principal

directions of material anisotropy in the undeformed configuration, and biased to capture the

degree of directionality in the material response. The anisotropy of the macroscopic response

for the B-model stems from the bias in the RVE dimensions. To visualize this effect, consider

a material with preferential chain alignment along a single direction, and a corresponding RVE

where b is aligned with the preferential direction so that b >> a, c (Figure 3-3). Consider

a chain behavior characterized by a limiting locking stretch, and the different effects of (1) a

macroscopic stretch (Ab) aligned with the b basis vector, and (2) a macroscopic stretch of the

same magnitude (Aa = Ab) aligned now with the a basis vector. It is easy to prove (Figure 3-3)

that Ab will introduce larger chain stretches, and cause the RVE to "lock" at lower levels of

macroscopic axial stretch. In other words, the B-model implicitly accounts for the anisotropy

of material extensibility, where the "macroscopic locking stretch" depends on the direction of

elongation 1

This feature of the response of the B-model is in good agreement with experimental mea-

surements of distributed fiber network responses [9], [12].

The main shortcomings of the B-model becomes apparent when considering that the sym-

metry of the RVE is reduced to cubic, and not isotropic 2, in the limiting case of unbiased fiber

orientation (a = b = c). Note that the representation of the cubic RVE appears identical to

the RVE for the isotropic AB model. However, the responses of the cubic B-model and that

of the AB-model are identical only when the principal directions of the applied macroscopic

stretch are aligned with the basis vectors of the cubic RVE. If the principal stretch directions

'In this aspect, the B-model differs from the D-model, where the macroscopic limit extensibility is not biased

by the anisotropy of fiber distribution.
2 This can be easily seen by considering the response of the B-model to pure shear and simple shear and by

showing that the stress responses do not simply differ by a rotation.
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Figure 3-3: The macroscopic extensibility in the B-model is biased by the magnitude of the

base vectors

are not aligned with the RVE basis vectors (e.g., the RVE is sheared), the response of the cubic

B-model is substantially stiffer, as shown in Figure 3-7 and 3-8. This discrepancy is interpreted

in the schematic in Figure 3-4 which illustrates how the shear response of the B-model is dom-

inated by the response of the stretched diagonal chains, while the RVE of the AB-model is

oriented with macroscopic stretch and captures the effect of deformation through a uniform

chain stretch. The significance of this shortcoming of the B-model is not limited to cases of

isotropic or nearly-isotropic chain distributions. Rather, it underlies the limitation of a model

in which the entire network response is calculated on the basis of the deformation of eight par-

ticular chains. There are no special reasons to assume that these eight chains should be able to

embody the response of the entire distributed network.

Notwithstanding these arguments, we note that the B-model exhibits many desirable fea-

tures and, in the case of coalignment of macroscopic stretch and RVE orientation, it is able to

capture, with remarkable simplicity of implementation, complex effects in anisotropic distrib-

uted elastic networks [12].
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Figure 3-4: Deformation response of the isotropic AB model the cubic B-model. In shear, the
AB-RVE is oriented along the principal directions of stretch while the B-RVE is fixed to the
material frame. Hence, the shear response of the B-model is controlled by the response of the
dominating chains, and not by the average response of all chains in the network.
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3.1.3 Transversely isotropic hyperelastic model for distributed fiber network

Gasser et al. [32] recently introduced a transversely isotropic hyperelastic formulation (re-

ferred to as the "G-model" in the following) for the elastic layers of arterial walls. The authors

proposed a composite model consisting of distributed collagen fibers embedded in a "ground

substance". The collagen network was idealized as a transversely isotropic incompressible con-

tinuum with an exponential stress-stretch response, while the surrounding ground substance

was modeled through an incompressible isotropic neo-Hookean formulation. To capture the

distributed nature of the collagen fibers, the density distribution of the fiber orientation was

represented by a transversely isotropic, symmetric, positive definite structural tensor. This

model was shown to accurately and efficiently capture the elastic response of the arterial layers,

but its applicability is limited to transversely isotropic networks.

In summary: the D-model and the B-model represent network anisotropy using biased RVEs:

the D-model considers RVEs with unbiased dimensions but biased weights of the representa-

tive fibers, while the B-model considers an RVE with biased dimensions and equally-weighted

fibers. These RVE approaches only account for the deformation resistance of "representative"

network fibers in directions identified by the specific RVE geometry. For distributed fiber net-

work materials, this approach might prove inadequate since the effects of the deformation are

selectively accounted for only for the "representative fibers" while forgoing the effects of fiber

deformation in all other directions. In this regard, the tensorial approach proposed by Gasser et

al. is more appealing because it efficiently incorporates the contributions of all fibers. Yet, the

current G-model is only limited to a transversely isotropic incompressible network formulation.

In this work, the tensorial approach will be generalized to include network compressibility and

orthotropic symmetry.

3.2 Sources of Mechanical Anisotropy in Distributed Fiber Net-

works

Directionality in the macroscopic response of a distributed fiber network may arise from a

number of sources, including:

- preferential orientation in the fiber distribution



biased distribution of junction-to-junction distance (e.g., from needlepunch pattern)

overlays of multiple families of different constituent fibers.

Here, we consider a distributed network created from entanglements of one family of fibers,

and hence, the network anisotropic response arises from the first two sources:

1) Fiber orientation distribution (FOD) - This distribution represents the normalized proba-

bility of having fibers aligned in each material direction, and gives rise to deformation resistance

biased toward the directions of preferential fiber alignment. This morphological property can

be measured by a number of image analysis techniques, (see, e.g., [64]-[65], and Jahne [42]).

2) Orientation distribution of junction-to-junction distance (JJD)3 - the normalized dis-

tance between two junctions in each material direction. This distribution is related to the

anisotropy of the extensibility limits of the network, and gives rise to the stress contributions

that are biased in the directions of long junction-to-junction distances (analogously to the

schematic interpretation in Figure 3-3). The junctions of distributed fiber networks can be fur-

ther categorized into two broad classes based on the mechanisms by which junctions are created:

patterned junctions created by controlled bonding processes, and random junctions created by

spontaneous bonding of structural fibers in their quasi-melt state (e.g., in mats created by elec-

trospinning. The JJD of distributed networks with patterned junctions, as in needlepunched

nonwoven fabrics, can be directly measured from the images of the network structure. On the

other hand, the JJD of distributed networks with random junctions cannot be easily measured

by the currently available image analysis techniques. However, the JJD of the distributed net-

work with random junctions can be related to the FOD of the network because the locations

of inter-fiber junctions are statistically biased by the number of fiber intersections, which is

related to the fiber orientation distribution4

The directionality of morphological sources of anisotropy can be captured in a contin-

uum framework by expressing such morphological sources in terms of orientation distribution

functions (or density functions). Following Kanatani [45], an orientation distribution function

(ODF) can be represented by a spherical harmonic series;

3 In this work, 'junctions' are defined by the spatial positions where two or more fibers are inter-connected. The

junctions are assumed to be "unyielding", i.e., fiber slippage at junction points is not considered as a deformation

mechanism.
4See Appendix A for a relationship between the JJD and the FOD for a simplified network with straight

cylindrical inter-penetrable fibers.
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Figure 3-5: Illustrations of orientation distribution of fiber density and orientation distribution

of junction-to-junction distance

w (n) = 1 + W' : ( ®n) + A' : (n0 no ri n ) + HOT (n 6) , (3.2)

where w (n) is the orientation distribution function, n is the unit direction, 1 is the scalar first

order coefficient representing a uniform distribution (i.e., spherical), W' is the deviatoric second-

rank symmetric coefficient tensor, A' is the deviatoric fourth rank symmetric coefficient tensor,

and HOT indicates the higher order terms5 . Because the ODF is a probability density function,

it must satisfy the normalization condition when integrated over all material directions;

w () = 1. (3.3)
47rr

For most materials where the assembly of the fiber network is dominated by random

processes (as in the lay-up for electrospun mats), the resulting orientation distribution is not

limited to a select number of preferential directions (as in unidirectional composites) but is

more "distributed" in nature. For these systems, the orientation distribution function can be

approximated to the second order accuracy by an ellipsoidal distribution, represented by a

5 This development applies to distribution functions which are even functions of vector n, i.e., the distribution
for which w (n) = w (-n)



second-rank symmetric structural tensor W. In this case, the orientation distribution function

w (n) and the fabric ellipsoid W are related by

w (n) = 1 + W' : (na n) = W : (n_ ® n). (3.4)

Equation 3.4 is only applicable when W satisfies the normalization condition tr (W) =

3, which is consistent with the normalization condition (3.3)6. Note that the second-rank

fabric ellipsoid is only capable of representing materials with isotropic, transversely isotropic or

orthotropic symmetries.

With the assumption that both the FOD and the JJD can be well approximated to second

order accuracy, they can be expressed in terms of their ellipsoidal texture tensors, and these

structural measures of material anisotropy can be used to capture the macroscopic response of

distributed networks. For distributed networks in which the anisotropy of fiber orientation is

combined with random entanglement processes, the combined effects of FOD and JJD are well

captured by the microstructural representation of the RVE in Figure 3-3. This representation

provides a heuristic interpretation for a corresponding tensorial representation of the network

anisotropy through a single "fabric ellipsoid", Go0 .

With reference to the RVE in Figure 3-6, the principal directions of the representative

network microstructure are denoted by LA, fB, eC with corresponding junction-to-junction dis-

tances A, B, C. Parameters A, B, C represent average values of the actual distances between

entanglement/junction points in the material network. The average end-to-end (unstretched)

fiber length for each of the 8 fiber segments in the RVE is defined as

r o = A2 + B2 C 2 , (3.5)

with a total end-to-end (unstretched) fiber length in the RVE (along the four diagonals) given

by:

L = 4V/A2 + B 2 + C 2, (3.6)

6Recall that f [ (I : (9 : n)) + W' : (9 n)] dr =
4ir



Figure 3-6: Representative Volume Element for distributed orthotropic network

and a number of fiber segments per unit volume:

no = 8 (3.7)
ABC'

The fully-extended (locked) fiber length associated with the RVE can be related to L through

the fiber locking stretch 7, AL, so that a relationship between total fiber length per unit volume

PL, an experimentally measurable parameter), and RVE parameters can be obtained as

ALL 4ALA 2 + B 2  2 (3.8)
PLABC ABC

To provide a dimensionless representation of the network anisotropy, we introduce a char-

acteristic network length, do, defined as the junction-to-junction distance of an equiaxial RVE

(A = B = C = do) with the same value of end-to-end (unstretched) fiber length ro:

1 /2 B 6 / A 2 + B 2 + C2
r 0 = A 2  B 2 +C 2 = -do - do = (3.9)

2 2 3

7The fiber locking stretch can be related in nonwoven fabrics to the average fiber curl between junctions.



The normalized junction-to-junction distances along principal directions are then defined as

A B C
Ao= A , Bo =d , Co - . (3.10)do do do

We can now introduce a tensorial representation of the network structure in terms of the

normalized "fabric ellipsoid", Go:

-o = AOeA 0 AOeA + BOgB 0 BoeB + Coec 0 Coec. (3.11)

The normalization (3.9) results in tr (Go) = 3, so that Go can be interpreted in terms of

the first two terms of the expansion for an orientation distribution function (3.4).

The junction-to-junction distance in direction p can be obtained in terms of the normalized

fabric ellipsoid Go and the characteristic network length do as:

= do G (pEp), (3.12)

which provides an average junction-to-junction distance for the network

1 1
= i 2( dp = do j20 : (P_ p) dp =do. (3.13)

47r 
47 r

Note that, consistently with the micromechanical representation of the network structure,

the end-to-end (unstretched) fiber length in direction p scales with the junction-to-junction

distance in direction p through a geometric factor :

r = d = o• (po), (3.14)

which, when averaged over all directions yields back the average end-to-end (unstretched) fiber

length ro:

O = d --- do = ro.(3.15)

In the following section we introduce a constitutive formulation for the elastic response of

a distributed orthotropic network characterized by the fabric ellipsoid Go.



3.3 Anisotropic Elasticity for Orthotropic Distributed Fiber

Networks

The proposed formulation is specialized to networks of elastic "fibers" with limited extensibil-

ity. This class of material encompasses nonwoven fabrics as well as elastomers and biological

materials with macromolecular components such as elastin, collagen, titin, and DNA. The

force-stretch relationship for this class of fibers (macromolecules) has been described through

a number of formulations including the worm-like-chain model, and the freely-jointed chain

model. Most models introduce a measure for the limiting stretch of the fibers, which we will

refer to as the "locking stretch" AL, and express the force-stretch relations for the fiber in terms

of the fiber stretch ratio X = • , where AI is the end-to-end fiber stretch. In order to formulate

a continuum model for the network response we introduce the following assumptions:

1) The junctions can be modeled as material points which displace in an affine manner

with the continuum. The contravariant structural tensor Go is transformed by the deformation

gradient, F, according to the push-forward operation:

e= FG• F T, (3.16)

where G represents the junction distribution in the deformed (loaded) configuration.

2) The structural tensor Go in the unloaded configuration does not evolve with deformation

and the original network texture is recovered upon unloading.

3) Fibers do not undergo any inelastic deformation, do not rupture and do not slip from the

junctions, so that the end-to-end unstretched fiber length, and the number of fiber segments

per unit volume are constant.

Within this framework we can define an effective measure of fiber stretch Aeff as follows.

As the network deforms, and the fabric ellipsoid Go is transformed to G (Equation 3.16),
the end-to-end length of fibers in reference direction p can be obtained as

v13-d = 13d0 ýG_ (3.17)rP = 2 = d V ( )= 2 do F (( ),pJ
with an average end-to-end fiber length



P = (rP)2 dp = dI 1  (Gof :p)dp (3.18a)
41r (2 0 4r _

tr (FGoFT)= -do (3.18b)2 3

An effective stretch can be defined as

r tr (FG 0FT)
Aeff - r 3 (3.19)

and an effective fiber stretch ratio can be defined as:

Aeff tr (FGoFT)Xe• f (3.20)
AL 3(AL)2

We can offer an alternative, qualitative interpretation for the derivation of expression (3.20).

This interpretation relates to directionality effects on the macroscopic locking stretch for the

entire network, as schematically illustrated in Figure 3-3. Consider uniaxial loading of the RVEs

in Figure 3-6 along the principal directions of anisotropy. Neglecting all resistance to volumetric

compaction, and assuming that all the representative fibers in the RVE can pivot around the

junction points, becoming aligned with the loading direction, and stretch to their extensibility

limit, the dimensions of the stretched RVE in the loading and transverse directions tend toward

[ALro,0, 0], respectively. This configuration corresponds to macroscopic locking stretches

-A r0  V AL -B or0  AL C L
AL = A ;AL =AL - - A AL (3.21)

A 2 Ao' B 2 Bo ' C 2 Co

in principal directions eAB, eC, leading to the notion of a direction-dependent macroscopic

locking stretch which scales in inverse proportion to the junction-to-junction distance in that

direction. The macroscopic locking stretch in direction p can be then cast in the form

AL p) AL (3.22)

A macroscopic deformation F, would lead to an effective stretch ratio in direction p biased



by the direction-dependent macroscopic locking stretch:

F :-! : (p (9 p (Go :A (P) = oc (3.23)AL (2) (L) 2

so that the relationship (3.20) can be interpreted as an average over all material directions of

(3.23), relating (3.20) to the notion of a direction-dependent macroscopic locking stretch for the

network. In other words, the directional bias in the macroscopic locking stretch for the network

is captured in (3.20) by considering an isotropic macroscopic locking stretch, but biasing the

continuum stretch (FFT) by the structural tensor Go.

In order to formulate a continuum model for the distributed fiber network, we need to select

a specific form for the force-stretch relation for individual fibers. A direct comparison between

the proposed model (which we will refer to as the JS-model in the following), the D-model, and

the B-model predictions is facilitated by selecting the same force-stretch relations, based on

Langevin statistics, for the constituent fibers. This formulation is rigorously appropriate only

for fibers (macromolecules) with persistence length much lower than the end-to-end length, so

that the entropic contribution to elasticity dominates. However, the force-stretch relation corre-

sponding to this formulation has also been shown to be able to phenomenologically capture the

response of networks of fibers with large persistence length and internal energy-dominated elas-

tic response; examples include applications of this modeling approach to collagenous networks

in biological tissues (e.g., [10]) and electrospun PCL mats [27].

The strain energy associated with the stretch of a single fiber segment can then be cast in

terms of the end-to-end stretch, Af , as (see, e.g., [21):

Ofiber (Af) = 2 (x) + In [sin-hl(X) l) + ± , (3.24)

where 77 is a scaling coefficient with units [Joule], AL is the locking stretch of the fiber, 0 (X)

is the inverse Langevin function defined by X = = coth (3 (x)) - , and o is a constant

normalizing the strain energy to zero for Af = 1.

In the proposed model, we evaluate the strain energy density -fiber associated with the

stretching of no fiber segments per unit (reference) volume, in a network with anisotropy cap-

tured by the fabric ellipsoid Go, by relying on the concepts of effective fiber stretch Aeff (3.19),



and effective stretch ratio Xeff (3.20):

Tnetwork (Aeff) = no0 2 A eff (ff Xeff ) + In +no 0 . (3.25)

Note that the strain energy in (3.25) is minimized at Aeff = 0 [12], since it does not account

for effects that arise from inter-chain repulsion and prevent entropic collapse.

The corresponding macroscopic (network) second Piola-Kirchhoff stress can be obtained by

differentiating the strain energy in (3.25) with respect to the right Cauchy-Green tensor:

network AL 3 (Xeff) o, (3.26)
tr (Go) ,Aeff

with corresponding Cauchy stress

network no (Xeff) F G 0 FT, (3.27a)
Jtr (GO) Aeff

where J = det(F) is the volumetric Jacobian of the deformation.

The stress expressions in Equations (3.26 and 3.27a) only account for contributions due

to the stretch of individual fibers and, in agreement with the minimization condition for the

corresponding strain energy (3.25), yield a stress-free configuration only for Aeff = 0.

To enforce equilibrium conditions in the reference configuration (and recover stability for de-

formations at constant Aeff , additional contributions reflecting the repulsion of individual chains

must be added to the strain energy density (Trepulsion) and to the network stress (Trepulsion)

[11], [121. A tensorial forms of Trepulsion consistent with the formulations proposed in [11], [12]

can be cast as:

norl --,\ UIG U-1l (3.28)
Trepulsion -tr( L 1 , (3.28)

where = () and U is the right stretch tensor defined by U2 = C.

By combining the contribution from individual fibers 3.27a and the repulsion term 3.28 we

can obtain an expression for the macroscopic (network) second Piola-Kirchhoff stress:



Ts = network + Trepulsion - tr [AL (Xe(ff )- - ALO [-1 [ -1, (3.29)

with corresponding Cauchy stress:

Js = JtrA [AL (Xeff ) FGoFT - ALPoRGoRT. (3.30)-JS Jtr (Go) I eff

where it = nor• is a scaling modulus with units of [Pa].

Note that, for materials in which additional mechanisms of resistance to volumetric de-

formation are present (as in the case of an elastic network embedded in an hydrated ground

substance), the stress expressions (3.29, 3.30) might need to be augmented by isotropic terms al-

lowing increased control over the compressibility of the material model. A number of alternative

formulations for these (energetic) contributions are reviewed in [11].

For the special case of deformations in which the fiber network is simply stretched (with

macroscopic stretches AA, AB, Ac) along the principal directions of material anisotropy EA, fiB, .C,

the deformation gradient can be expressed as:

F = AA 9A (9 A + AB fB RB + A C c ( ec. (3.31)

Under these conditions, the JS-model provides a form of the macroscopic stress identical to

the form provided by the network component of the B-model [12]8, with Cauchy stress:

aJS = UAA A 9 -A + BB 9B B + cc f+aC eC, (3.32)

and principal components .:

8 Not including the ad-hoc isotropic bulk contribution, B sinh(J - 1), which is added in [12] to account for
possible additional mechanisms of resistance to bulk deformation.

9Note that the magnitude of the base vectors in the B-model (a, b, c) are related to the G o principal values
(Ao, Bo, Co) through a scaling factor 2 AL.V'3_



AA - Jtr( 0  Xe) A O- ; (3.33a)

SJt 0 o)[ (Xf) 2B - \LOO; (3.33b)
Jt- (WO) L -Xe •

OAA \t 0  Xeff) C - LO (3.33c)

It is then not surprising that under (tensile) uniaxial loading along principal material direc-

tions the JS-model yields predictions identical to the B-model, as illustrated in Figure 3-7. For

convenience of illustration, a single measure of anisotropy, a, is introduced (a = Ao/Bo; Co = 1),

and model predictions for the macroscopic axial stress-stretch response along the eA and eB

directions are compared for increasing levels of anisotropy (a=[1., 1.5, 2., 2.5]). Predictions in

figure 3-7 have been obtained for model parameters [[L = 1MPa, and AL =2]. Note that under

this mode of deformation both the JS-model and the B-model recover the isotropic AB-model

response for a = 1.

Conversely, model predictions for the JS-model and the B-model differ for deformations

with directions of principal stretch which are not co-aligned with the principal directions of

anisotropy. This effect is illustrated in Figure 3-8, which compares model predictions in simple

shear for the same levels of anisotropy considered in figure 3-7. Figure 3-8 compares model

predictions for the shear stress cAB in response to an imposed deformation F = 1+ YABeA EB,

where 1 is the 2nd rank identity tensor. The general trends of resistance to shear deformation are

consistent between the two models: the material becomes more shear-compliant for increasing

levels of anisotropy. The B-model predictions are generally stiffer, as the shear response is

dominated by the stretch of two of the diagonal chains, as schematically illustrated in Figure

3-4. Also, as previously discussed, the B-model predictions do not recover the isotropic AB-

model prediction for an equiaxial RVE (a = 1), while the JS-model predictions corresponding

to a = 1 recover the isotropic solution.

In order to compare the JS-model predictions with predictions of the D-model, we introduce

an approximate incompressibility constraint by augmenting the stress expression in 3.30 with
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Figure 3-7: Responses of the B-model and the JS-model under uniaxial tension for different
levels of orthotropy. Response of the AB-model reflects the isotropic case.
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Figure 3-8: Responses of the B-model and the JS-model under simple shear for different levels

of orthotropy. Response of the AB-model reflects the isotropic case.
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Figure 3-9: Comparisons between D- and JS-models under uniaxial tension with equivalent
stiffness in the low-stretch regime

a hydrostatic contribution to the Cauchy stress:

g h = K (J - 1)1. (3.34)

with K >> I. Note that the contribution of the hydrostatic term 3.34 enforces incompressibility

through a "penalty" approach, which becomes less effective as the network stretch approaches

its extensibility limit.

Predictions of the D-model are dependent on the specific polyhedron selected to represent

the RVE. For this comparison we have selected the simple 14-chain model proposed in [25] to

fit the anisotropic response of calendered rubber specimens. The force-stretch relations for the

component fibers in the JS-model and D-model are based on the same Langevin statistics, so

we can select identical levels of locking stretch, AL = 2, and macroscopic moduli, A = 1MPa

A direct correlation between anisotropy measures in the two models cannot be determined

since they rely on different micromechanical representations/interpretation of the sources of



anisotropy. The D-model RVE is primarily designed to capture the effects of fiber orientation

distribution, biasing the stress in the direction of increased fiber density and it does not account

for the directional dependence of the network extensibility limit. This is apparent in Figure 3-9,

which compares model predictions in uniaxial loading along the eA and eB principal directions.

The JS model predictions are obtained for [Ao/Bo = a; Bo/Co = 2]. The bias in fiber density

for the D-model has been selected so as to provide a good fit between model predictions in

the low-stretch regime. However, as evident in Figure 3-9, model predictions diverge at large

stretches, as the D-model predicts identical extensibility limits for the network in all material

directions.

Remarks

1) To be consistent with the tenets of continuum mechanisms, the presented constitutive relation

in Equation 3.30 must satisfy (a) objectivity and (b) material symmetry. An objective consti-

tutive relation must remain invariant under a change in frame of the observer. To demonstrate

the objectivity of the presented constitutive relation, we consider a reference frame rotated

by an arbitrary rigid body rotation Q, and consider the corresponding deformation gradient

F+ = Q F, so that the Cauchy stress in the rotated frame becomes:

aJS - J+tr (Go) A+ (Xe)-Q GOTQT - \LRT (3.35)

where + denotes quantities in the rotated frame. Note that J+ = J,

Str (F:GoF+ T)_ tr (F+TF+G) _ tr (FTFGo)
A+eff - = Aff (3.36)ef f 3 _ 3

and Xeff = Xeff so that

7), = Q JgQ_. (3.37)

verifying objectivity.

The symmetry requirement states that the an orthotropic constitutive law must, and its cor-

responding Cauchy stress measure, must remain unchanged under orthotropic transformations,

Q, of the reference configuration.



Because Go is the second-rank symmetric tensor representing the orthotropy of the material,

it is invariant under the transformation Q:

- - -T
= QGOQ = G 0 .  (3.38)

The Cauchy stress aJS can then be expressed in terms of the deformation gradient F = FQ

and the structural tensor Go as:

aJS - t (-eff _. _ L F - AL/o TOlO Qt R . (3.39)Jtr(Go) AefI
where ~ denotes quantities related to the transformed reference configuration. Note that J = J

trf= ( OT) - tr ( 3-T) t = Aeff, (3.40)
Ae f 3 3 3 (

and XefI = Xeff so that

aJs = r Js. (3.41)

satisfying the symmetry requirements.

2) Even though the current model is formulated based on a force-stretch relation for the

constituent fibers derived from Langevin statistics, the concept of effective stretch, and effective

stretch ratio can be employed in alternative formulations relying on different models for the

response of individual fibers, e.g., the wormlike-chain model [56], and exponential Hart-Smith

model [38] 10

3) The model has eight independent material parameters: /I is a modulus-like parameter,

AL captures the nonlinearity of the stress-strain response, and the six independent components

of the fabric ellipsoid Go represent the anisotropy of the distributed network.

10 Appendix B presents another application of the effective stretch formulated from an exponential force-stretch
relation.



3.4 Chapter summary

We presented a new approach to formulate a microstructurally-based orthotropic continuum

models for the elastic response of distributed fiber networks in a framework motivated by

experimental studies of nonwoven fabrics. For distributed networks in which the anisotropy

of fiber orientation is combined with random entanglement processes, we proposed to capture

the combined effects of fibers and junctions orientation distributions using a single tensorial

representation of the network anisotropy (fabric ellipsoid), Go.

The fabric ellipsoid can be interpreted in terms of a micromechanical representation of a

volume element of the network. This representation guided the derivation of the concept of an

"effective stretch" of the network to be employed in the constitutive formulation. The concept

of effective stretch was used in conjunction with a force stretch-relation for single fibers based

on Langevin statistics to formulate a continuum orthotropic elastic model for the macroscopic

response of the distributed network. The proposed model, termed JS-model, was shown to

capture effects related to the distributed nature of the junctions and fiber orientations, and was

favorably compared to the eight-chain orthotropic model proposed by Bischoff et al [12] and

the directional model proposed by [25]. Though motivated by a mechanistic interpretation of

the deformation mechanisms in nonwoven fabrics, the proposed framework is applicable to any

materials with distributed network structures.



Chapter 4

A Continuum Model for

Needlepunched Nonwoven Fabrics

The experimental results of the Dyneema Fraglight suggest that the governing deformation

mechanisms of the fabric can be categorized into two parts: (1) an elastic part from re-orienting

and stretching of constituent fibers, and (2) an inelastic part from time-dependent and irrecover-

able mechanisms including permanent evolution of the web structure, and damage accumulated

from inter-fiber friction and inter-fiber compaction. The two parts of deformation contribute to

the overall deformation, and gives rise to the complex nonlinear elastic-inelastic behavior of this

material. To account for the effects of each type of deformation mechanisms, we propose a con-

stitutive model for nonwoven fabrics that consists of two constitutive components: a nonlinear

spring representing the resistances to elastic deformation mechanisms, and a non-linear viscous

dashpot representing the resistances to inelastic deformation mechanisms. The two constitutive

components are connected in series, as shown by a rheological representation in Figure 4-1, to

reflect the coupled effect of both types of deformations.

A full three-dimensional constitutive model following this rheological representation will be

developed based on continuum mechanic framework. The discussion begins with a review on the

general framework of finite deformation kinematics, kinetics, mechanical work, and dissipation

inequality (the second law of thermodynamics), followed by a specialization of the framework to

nonwoven fabrics. For additional reference on the theory of continuum mechanics, see Holzapfel



Fe

F'

Figure 4-1: Rheological representation of the proposed fabric model

[41].

4.1 Continuum mechanics framework

4.1.1 Kinematics

A continuum body is assumed to deform in an affine manner, i.e., the deformations at the struc-

tural level follow a macroscopic deformation defined by a deformation gradient F . Physically,

the deformation gradient F serves as a one-to-one mapping function of a material point X in

the reference state to its current (deformed) location x;

dx
F= .(4.1)dX

The ratio of the deformed to the reference volume is given by J = det (F). To relate

the elastic and inelastic contributions to the overall deformation, the macroscopic deformation

gradient F is multiplicatively decomposed into elastic and inelastic components consistent with

the Kroner-Lee decomposition [41]:
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Figure 4-2: Multiplicative decomposition of the deformation gradient

F = FeFi . (4.2)

Fe represents a deformation of segments dX in the reference state to segments dl = F'dX in

the relaxed state due to dissipative mechanisms, and F e represents a deformation of segments

dl in the relaxed state to segments in the deformed configuration dx = Fedl due to elastic

mechanisms, see Figure 4-2. Hence, the inelastic deformation gradient representing the relaxed

configuration can be obtained by elastically unloading the body to a stress free state. We define

elastic and inelastic volumetric changes by

je = det (Fe) , Ji = det (Fi) , and jije = j. (4.3)

The right and left elastic and inelastic polar decompositions of F are given by

Fe = ReUe = VeRe and Fi = RiUi = ViRi (4.4)

where R e and Ri are the elastic and inelastic rotations, U e, V e , Ui and Vi are the symmetric

right and left stretch tensors for elastic and inelastic deformations, respectively.

40



The right Cauchy-Green tensor for the elastic deformation are defined by

Ce = FeTF e = Ue2

The rate at which the material deforms is defined by a velocity gradient:

L = FF-1 .

From Equation 4.2, the velocity gradient can be decomposed into elastic and inelastic parts:

L = L e + FeLiF e- 1

where

Le = FeFe-1, and Li = F F' - 1F

The velocity gradients can be further decomposed into stretch and spin:

L = D+ W; D= 1 (L + LT) ; W= 1 (L - LT) ;2 2
Le = De+We De= (Le + LeT); = (Le _ Le) ;
L = D+Wi; D (Li + LiT) Wi 1 Li)

(4.7)

(4.8)

(4.9a)

(4.9b)

(4.9c)

where D's are the symmetric stretching tensors and W's are the skew-symmetric spin tensors.

From Equation 4.8, the rate of change of the inelastic deformation gradient becomes

Fi = LiF i . (4.10)

Eq 4.10 can be employed in a discretized explicit integration scheme to evolve the inelastic

deformation gradient at each time increment; the elastic portion of the deformation gradient is

then obtained from

(4.5)

(4.6)



Fe = FF - 1. (4.11)

4.1.2 Kinetics

Deformation gives rise to interactions between neighboring material points in the interior of the

body. One of the consequences of such interactions is stress, a kinetic measure that describes

the effects of external forces (tractions) onto the body. Following Cauchy's stress theorem, the

external surface traction on a body in the current configuration, t, is related to Cauchy stress,

a, a symmetric second-order tensor describing the effects of the traction at every points inside

the body, by:

t ds = .nds (4.12a)
an2 an

= div (a) dv (4.12b)

where n is the direction of the outward surface normal, f ds is the external surface of the
an

body 0, and fdv is its volume 1. Following the kinematic description in Figure 4-2, the stress

measures in the reference and the relaxed configurations can be obtained by the pull-back

operation on the Cauchy stress;

T = JF-laF- T and T e = JeFe-laFe-T , (4.13)

where T is the symmetric second Piola-Kirchhoff stress defined in the reference configuration,

and T e is the equivalent measure defined in the relaxed configuration.

4.1.3 Rate of Mechanical Work

With reference to [41], the rate of internal mechanical work can be expressed in terms of the

contraction between the Cauchy stress tensor and its conjugate rate of deformation integrated

'Eq 4.12a transforms to Eq 4.12b using divergence theorem.



over the entire volume in the current configuration;

Wint = J : D dv. (4.14)

Following the elastic-inelastic decomposition in Figure 4-2, the rate of internal mechanical

work can be defined in the relaxed configuration by:

Wint = J : D dv = !: sym (Le + eLFe-1 )dv (4.15a)

S Je (a : De) dvi + Je (FeT aFe-T : Li) dv (4.15b)

S 1 Te : :e)dvi + (CeTe : Li) dvi. (4.15c)

where dvi = je-' dv is the differential volume defined in the relaxed configuration, and Ce e

2FeTDeFe. The first term in Eq 4.15c denotes the rate of work done by the elastic deformation

Fe, while the second term denotes the work done by the inelastic deformation FP. For the

system to satisfy the 2nd law of thermodynamics, the work done by the inelastic deformation

must be dissipative, i.e.,

E: L' > 0. (4.16)

Eq (4.16) is known as the local dissipation inequality, and the quantity = CeTe is commonly

referred to as the Mandel stress.

4.2 Application to nonwoven fabrics

Needlepunched nonwoven fabrics can be treated as a continuum by means of homogenization of

the network structure. Clearly, this approach is only appropriate for applications in which the

characteristic length of the problem is much larger than the characteristic length of the fiber

network, do. In order to formulate a continuum model for the network response we introduce

the following assumptions:

1) The junctions in nonwoven fabrics can be modeled as material points which displace in



an affine manner with the continuum.

2) The fabric texture can be captured through a single structural tensor Gt which evolves

with time in an affine manner with the inelastic deformation F i . The fabric anisotropy in the

unloaded configuration at time t can then be described by the fabric ellipsoid:

Gt = F (t) GoEi T (t). (4.17)

3) the elastic response of the network can be obtained as proposed in the JS-model using

the evolving structural tensor Gt in place of the structural tensor in the reference configuration,

Go.

4) Fibers do not undergo any inelastic deformation, do not rupture and do not slip from the

junctions, so that the number of fiber segments, the total fiber length in fdv , and the average

end-to-end unstretched length of fiber segments are considered constant.

We introduce the spectral representation of the network structure G as

Qt = At et,A ® At _t,A + Bt t,B 9 Bt ft,B + Ct t,c ® Ct ct,C- (4.18)

Analogously to the expressions 3.9, and 3.10 which apply in the reference configuration, the

average end-to-end (unstretched) fiber length rt in the unloaded configuration at time t can be

expressed as:

rt dt A + B + O2 (4.19)

where the characteristic network length, dt is defined as the junction-to-junction distance of an

equiaxial RVE with the same value of end-to-end (unstretched) fiber length rt.

As a consequence of the 4th constitutive assumption rt = const = ro, the following condition

is obtained:

A 2 + B 2 + C2 = const= A + B + C 2 ,  (4.20)

or, equivalently,



tr (Gt) = tr (Go) = 3. (4.21)

As the total number of fiber segments in fdv , is constant and the volume in the unloaded

configuration scales with the volumetric jacobian of the inelastic deformation, the number of

fiber segments per unit volume, nt, in the unloaded configuration evolves as:

nt = no. (4.22)

Following the 3rd constitutive assumption, the 2nd Piola Kirchoff stress in the unloaded

configuration is obtained as:

F --1 -Ti

Tet -  n AL [O -_oLe U, ]e (4.23a)
tr (2) A eff eft

where the elastic effective stretch is defined by A = tr( . The macroscopic Cauchy

stress (i.e., stress in the current configuration), a, is calculated from 4.13, and is given by

= - FeTeFeT  (4.24)Je- - -
= nt? _ _ AL e Fe FeT / e e. (4.25)

jet, e : [Oef !Lt- - R (4.25)
Jetr (Gt) A\f

where nt is given by 4.22. Using 4.3, and following the notation [I = no0 introduced in Chapter

3, the Cauchy stress can be expressed as:

Jtor= AL [O f F] (4.26)
- () Aeff

To complete the constitutive formulation a framework for the evolution of the inelastic

component of the deformation must be prescribed.

The experimental results from the uniaxial cyclic loading tests demonstrate that most of the

fabric deformation is accommodated by irrecoverable mechanisms, as illustrated by the small

elastic recovery in each loading cycle. Dominating inelastic mechanisms include irrecoverable

evolution of the network structure, and damage accumulated from inter-fiber friction, and



fiber slip from junction points. Consistently with the 4th constitutive assumption, the current

formulation does not include effects related to fiber damage. The irrecoverable evolution of

the network anisotropy is demonstrated by the tendency of constituent fibers to permanently

align along the direction of applied load. For irrecoverable alignment to occur, the constituent

fibers must overcome two types of resistances: (1) inter-fiber friction that provides resistance

to relative sliding of the component fibers past each other, as the network realigns, and (2)

a "volume exclusion" component which results from resistance to compaction at high levels

of fiber volume fractions. It can be observed in the experiment that the 'rate' of structural

evolution decreases as the fiber network becomes aligned along the tensile loading direction.

The re-orientation of the network eventually terminates when the volumetric Jacobian of the

inelastic deformation reaches a lower limit, related to the fiber volume fraction in the reference

configuration.

Following the 2nd constitutive assumption, and 4.10, the rate of evolution of the structural

tensor Gt and the inelastic velocity gradient in the unloaded configuration are related by:

1t = piGo T + .F- 
T  (4.27a)

= L~iFi ofO + FiGoFir LiT  (4.27b)

= LiGt + G tL i .  (4.27c)

In order to derive a relation motivated by the underlying physical mechanisms of texture

evolution we cast the flow relationships in terms of the rate of change, Ot, of the structural

tensor Gt . This allows us to incorporate with ease the condition 4.21, which, in rate form, can

be recast as

tr (G) = 0. (4.28)

The constitutive prescription for the rate of change of the structural tensor Gt must be cast

in an objective framework by introducing a relationship between an objective measure of the
V

driving stress and the co-rotational (Jaumann) rate, _t, of Qt [411,



t = G - wG + _tw, (4.29)

where w is a skew-symmetric tensor representing the structural spin. Because the fabric ellipsoid

is taken to transform in an affine manner with the inelastic deformation, the structural spin

is equivalent to the spin of the unloaded configuration of the continuum, i.e., w = W' . The

rotation associated with the relaxed configuration can be arbitrarily chosen (see e.g., Dafalias

[24], Avaras [3]); in this formulation we consider a spinless relaxed configuration ([18], [28]),

i.e., we prescribe:

W_ = 0. (4.30)

Consequences of this constitutive choice are

(1) the structural spin identically vanishes, w = 0,

(2) the time derivative of the fabric ellipsoid is objective Gt = -t, and

(3) the inelastic velocity gradient is symmetric L' = D', so that 4.27c can be recast in the

form:

t = D'iG + Gt Di. (4.31)

Note that 4.31 implicitly defines D1 in terms of !t and Gt, so that, with the constitutive

prescription 4.30, E~ is univocally determined by prescribing t:

In general terms, a flow rule controlling the evolution of the fabric tensor can then be cast

in the form:

G = "N, (4.32)

with j being a scalar measure of the magnitude of the rate of evolution, and N its tensorial

direction. Note that, consistently with 4.28, the tensor N must be deviatoric. Physically, we

expect -y to scale with the magnitude of a "driving stress" and the direction N to be aligned to

the direction of the stress deviator.

In order to identify an appropriate stress measure driving the evolution of Gt, we consider

now the dissipation constraint 4.16, which, for symmetric L• , becomes



S: D' > 0. (4.33)

As 4.31 defines D' only implicitly, we introduce an approximate measure for Di

Di =l4 tG_ + - lG) (4.34)

and impose the constraint:

+ 2 1 0, (4.35)

or, equivalently,

(Q 1G' + >G1 ) : 0. (4.36)

We introduce

Tflow = 2 (EGT' +-G ) , (4.37)

as the stress measure driving the evolution of the fabric ellipsoid. Phenomenologically, this

form also captures observable effects of the fabric anisotropy on structural evolution. To gain

an intuitive understanding of this effect, consider a fabric ellipsoid Gt with At >> Bt = Ct,

corresponding to a fiber network with a high degree of alignment along the fA axis. Now consider

two uniaxial loading configuration: (1) the first with the axial loading direction aligned with the

EA axis and (2) the second with the loading direction aligned with the eB axis. For equal levels

of axial stress in the two loading configurations, the rate of inelastic network realignment for

configuration (2) will be substantially higher than the rate for configuration (1). Relationship

4.37 captures this effect, as for configuration (1) the driving stress will scale with and for

configuration (2) the driving stress will scale with 1.

We can therefore define the direction of !t as:

dev (Tflow)N= dev(Tf )' (4.38)



where dev (T flow) is the deviator of the driving stress, and introduce a measure for the magni-

tude of the driving stress:

dev (T110w) (7= (4.39)

We propose a constitutive relationship for 7 in the form:

= o --TO (detGt - v det G); ; (r - o) & (det Gt - v det Go) > 0 (4.40a)

0 = 0 ; (7 - ro) 5 0 or {det N < 0& (det Gt - v det Go) = 0} (4.40b)

where jy is a dimensional constant with units [l/s]. In the following we provide a physical

interpretation for the two factors in relationship 4.40:

fi = ( -TO (4.41a)

f2 = (det Gt - v det Go) . (4.41b)

The first term, fi, is meant to capture the (nonlinear) dependence of the rate of structural

evolution on the magnitude of the driving stress. This term relates to the contribution to

the resistance to texture evolution arising from inter-fiber friction. The constitutive parameter

T• represents an initial (threshold) resistance to structural evolution corresponding to initial

barriers to inter-fiber sliding2 . The constitutive parameter m captures the nonlinearity of the

dependence of the evolution rate on the driving stress. The factor St represents the material

flow strength at time t. Experimentally, the resistance to network realignment increases with

inelastic deformation. This effect is captured by introducing an evolution law for the strength

parameter:

St = ov', (4.42)

2 In nonwoven fabrics these effects are related to surface treatments, coating, starching, etc.



so that

t

St = So + 1 adt, (4.43)
0

where So and a are a material parameters, with So representing the initial flow strength.

The second term, f23 , is meant to capture "volume exclusion" effects which result from

resistance to compaction at high levels of fiber volume fractions. This term is cast in the

simplest phenomenological form resulting in a complete cessation of structural evolution when

the fiber network reaches a maximum level of compaction. Physically, the material parameter v

is expected to scale with the initial volume fraction of fibers ff in the reference configuration,

with 1 > v > ff , reflecting the fact that the fiber network can never reach 100% compaction.

For the applications presented in this work, we only considered in-plane tensile loading and

in-plane deformation of nonwoven fabric sheets with in-plane dimensions much larger than the

specimen thickness. By direct imaging of the fabric structure 2-2 it is apparent that most

of the constituent fibers are aligned in-plane. Consistently with typical fabrication processes

for this kind of nonwovens4, the thickness direction is one of the three principal directions of

anisotropy. The associated principal value for the structural tensor Gt is usually an order of

magnitude smaller than the principal values associated with the in-plane principal directions.

Experimentally we note that the evolution of the fabric thickness (and of the corresponding

component of the structural tensor which evolves in an affine manner with the continuum)

with in-plane deformation is minimal. For efficiency of implementation, we therefore introduce

a modified (2D) version of the proposed evolution law for the structural tensor Gt, where we

impose Ct = Co and ec = _o, c at all t, and only consider the evolution of the planar component

of the structural tensor:

t2 D = At Et,A ® At it,A + Bt ft,B 9 Bt ft,B.  (4.44)

3Note that this term can also be written in terms of an inelastic volumetric jacobian J' and a constant det Go
by (detGt - v det G) = detG 0 ( -v

4According to the manufacturer, and the parallel study on this fabric by Chocron et al. [23], the process
to obtain this material is to cut short fibers of around 5cm, comb and stack them in several layers, and needle
punched the layers to add structural rigidity.



For in-plane loading conditions, the Cauchy stress can be expressed as

a= al _e ® ef + 02 e! ® ef + 0 _t,c 9 ft,c .  (4.45)

where e, and e_ are the principal stress direction in the eA - eB plane.

These loading conditions, combined with the condition that the thickness direction is a

principal direction of anisotropy5, lead to a driving stress Tflow with non-zero components only

in the plane of the fabric. We therefore introduce a 2D measure of the driving stress

To w = T2D T T 2 D e e (4.46)

with direction

- dev (T)2D (4.47)
Aev Tflow)

and magnitude

Idev (T2 D )I2D ow (4.48)

The rate of evolution of the planar structural tensor is then expressed as

2D 2D (4.49)

with

= -- (o '0 (detGt - v det Go) ; (T2D _ 70) & (det ~t - v det Go) '(4150a)

0 = 0 ; (2D - 0TO) O or {det N < 0 and (det Gt - v det Go) = 01 (4.50b)

5 In this case all transverse shear components of the deformation gradients vanish.



Remarks

(1) The proposed formulation does not take into account two important factors in the evolution

of textural anisotropy.

The first relates to processes of damage, breakage, and slip of individual fibers from junction

points. These effects are limited in materials where the junctions are created by chemical or

thermal bonding processes, but are pervasive in nonwovens in which the junctions are created

by physical entanglement (e.g., needlepunching). Possible avenues to include these effects in

the proposed constitutive framework, includes the introduction of an evolution equation for the

average unloaded end-to-end length of fibers between junctions, which, in the current formu-

lation would correspond to an evolution condition for tr(Gt), and a modified equation for the

evolution of nt, to ensure conservation of the total fiber length.

The second relates to the form of the resistance to compaction. In the proposed formula-

tion, these effects are accounted for by the term f2 in equation 4.41b and the corresponding

condition on !t, which sets the rate of change of Gt to zero when the fiber fraction reaches a

maximum compaction level. These terms are isotropic in nature and do not capture the effects

of anisotropy on the resistance to compaction. An extended formulation could account for

these effects by introducing a tensorial back-stress, coaligned with the Gt tensor, reflecting the

increased resistance to evolution along directions of high compaction. As a simpler alternative

to this approach we can introduce an additional condition on the evolution of the principal

values of Gt, selectively arresting components of _t along principal directions for which a max-

imum compaction has been reached (while allowing continued evolution in the transverse plane

following the 2D formulation presented above).

(2) This constitutive model requires a total of 13 parameters to completely describe the

mechanical response of nonwoven fabrics:

- six parameters for the components of the fabric ellipsoid in the reference configuration:

_G

- two parameters for the elastic component: IL, AL

- five parameters for the inelastic component: m, 7o0 , So, a, v

Determination of the model parameters and its effect on the model response will be discussed

in the following chapter.



4.2.1 Algorithm and Implementation

The constitutive model outline above has been implemented in a commercially available implicit

finite element code ABAQUS/Standard via a user material subroutine UMAT. For this finite

element code, the deformation gradient of each material point at an instantaneous time t is

given as an input, and the time-integration algorithm in UMAT outputs the corresponding

stress at each material point.

A time-integration algorithm for the finite element code UMAT is given as follows;

For each state of deformation, given

- deformation gradient of the current time step Ft+dt

- structural tensor of the previous time step Gt

- structural tensor flow rate of the previous time step !t

Integration Procedure

1) explicitly update the structural tensor for the current time step __t+dt = G! + Gtdt

2) solve for the symmetric inelastic stretch Dj from (4.31)

3) obtain the deformation measures at time t + dt

calculate EF+dt from Ft+dt = Ft + DFdt and ft+dt from 4.11

4) obtain the network response ait+dt from 4.26

5) calculate the flow stress T2fo from 4.13 and 4.37

6) calculate the magnitude and direction of the flow rate from 4.40, 4.38

7) calculate the structural flow rate Gtt+dt from 4.32

4.3 Chapter summary

This chapter presents a systematic approach for formulating a microstructurally-based anisotropic

elastic-inelastic continuum model for nonwoven fabrics motivated by the fabric network struc-

ture and its underlying deformation mechanisms. For nonwoven fabrics in which the anisotropy

of fiber orientation is combined with random entanglement processes, we proposed to capture

the combined effects of fibers and junctions orientation distributions using a single tensorial rep-

resentation of the network anisotropy (fabric ellipsoid). We relied on this structural measure



to construct constitutive relations for the elastic and inelastic responses of nonwoven fabrics.

The proposed model consists of a nonlinear elastic component representing the resistances to

recoverable deformation mechanisms, and a non-linear inelastic component representing the

resistances to irrecoverable deformation and texture evolution. This model requires 13 parame-

ters to completely describe the fabric behavior: six of which define the network anisotropy at

the reference state, two parameters capture the elastic response, and the remaining parameters

control the evolution of the fabric texture.



100



Chapter 5

Model Validation and Verification

The constitutive model for needlepunched nonwoven fabrics formulated in the previous chap-

ter is validated against the experimental findings presented in Chapter 2. We first discuss an

approach to determine the model parameters from the fabric responses under uniaxial cyclic

loadings along the principal material directions. With the fitted parameters, the model is used

to simulate the fabric responses under (1) uniaxial monotonic loading along the off-principal

directions, (2) 2-step uniaxial loading, and (3) equibiaxial tensile loading. Additional exper-

imental data on the uniaxial tensile response of rectangular fabric strips is also presented as

additional test for model validation. In comparing the model predictions to the experimen-

tal data, particular attention is given to the model ability to predict the complex nonlinear

elastic-inelastic response as well as the evolution of fabric texture. The chapter concludes with

a discussion on the model sensitivity to changes in the values of model parameters.

5.1 Determination of model parameters

The proposed fabric model requires 13 constitutive parameters to completely describe the fabric

behavior:

- six parameters for the components of the fabric ellipsoid in the reference configuration:

- two parameters for the elastic response: A, AL

- five parameters for the inelastic response: m, r0, So, a, v



The fabric ellipsoid is a tensorial measure of material anisotropy representing the combined

effects of anisotropic fiber orientation distribution (FOD) and the resulting orientation distrib-

ution of junction-to-junction distances (JJD). Physically, the components of the fabric ellipsoid

are directly related to the orientation distribution of junction-to-junction distances of the fab-

ric texture. However, difficulties arise when measuring the JJD of the network with random

junctions, e.g., Dyneema Fraglight, because of the limitations in the current image analysis

techniques. As a result, the components of the fabric ellipsoid are currently determined by

fitting the model simulations to the fabric response under uniaxial cyclic loadings along the

principal material directions.

The two parameters for the elastic modeling component control the stiffness and the lim-

iting stretch of the model response. The modulus-like parameter IL controls the stiffness at

small deformation, whereas the locking stretch AL controls the nonlinearity of the response,

particularly the transition from a compliant response at small deformation to a stiff response as

the stretch of the fibers in the network reaches the extensibility limit described by the locking

stretch AL. As it will be illustrated in Section 5.3, the locking stretch AL also controls the

volumetric response of the model. Therefore, in selecting values for the elastic parameters of

the model, the axial stiffness of the fabric response guides the selection of fitting values for A,

and AL, while the volumetric response is also taken into consideration in selecting an optimal

AL value.

The three parameters for the inelastic component, including the initial barrier to flow ro,

the initial flow strength So, and the linear coefficient to the evolution of flow strength a, are

obtained by fitting the simulation predictions to the load-unload portions of the fabric response

under uniaxial cyclic loading. The parameter v scales with the initial volume fraction of fibers,

and directly controls the termination of the textural evolution. This parameter must be selected

such that the volumetric response of the model matches with the level of compaction of the

fabric texture observed in the experiment. The rate sensitivity parameter m was included in

the model to extend its applicability to a broad range of strain rates. However, an investigation

of strain rate effects was not a primary objective for this stage of model development, where

all tests are conducted at similar quasi-static displacement rates. Within this limited range

of application, we found that the inelastic constitutive response of the fabric could be well
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approximated by a quasi-linear dependence of the texture evolution rate on the driving stress.

Therefore, we selected a value m = 1.1 for the rate sensitivity parameter. As further discussed

in section 5.3, additional experimental investigation conducted on a broader range of strain

rates might provide useful information to select a more appropriate value for this parameter.

In summary, all parameters can be obtained by fitting the simulation predictions to the

fabric responses under uniaxial cyclic loadings along the in-plane principal directions (roll and

cross). The relative stiffnesses of the two data sets can be fitted to obtain the modulus-like

parameter 1L, the locking stretch AL, as well as the in-plane components of GO. The out-of-

plane component of Go can be used as a free parameter to fit the volumetric response of the

material. All other parameters for the inelastic component are obtained by fitting the load-

unload response of these two data sets.

5.2 Model validation against experimental findings

The proposed fabric model is implemented in a commercially available implicit finite element

code ABAQUS/Standard via a user material subroutine UMAT. The following model simula-

tions were performed using eight-node brick elements (C3D8). Because the fabric thickness is

not provided by the manufacturer, an averaged fabric thickness of 1.1 mm will be assumed for

all simulations.

5.2.1 Simulations of fabric response under uniaxial tensile loads

To determine fitting values for the model parameters, two simulations are created to replicate

the uniaxial cyclic loading test of the Dyneema Fraglight along the in-plane principal directions

(R and C). The fitted model prediction and the corresponding experimental results are shown

together in Figure 5-1, and the model parameters obtained from these simulations are presented

in Table 5.1. Consistently with the notations used throughout this text, the eA-direction denotes

the compliant in-plane direction (i.e. R-direction), the eB-direction denotes the stiff in-plane

direction (i.e., C-direction) and the ec-direction denotes the out-of-plane direction of the fabric.

Good agreements between the fitted model predictions and the experiments in Figure 5-

1 demonstrate the capability of the proposed model to capture the nonlinear elastic-inelastic
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p•.= le6 Pa AL = 1.21

GAA = 0.654 GBB = 2.307 Gee = 0.039
GAB = 0 GAC = 0 GBC = 0

0o = 0.0029 1/s m = 1.1 TO = 1e4 Pa
So = le4 Pa a =2.5e3 Pa v = 0.25

Table 5.1: Fitted model parameters obtained from uniaxial loading tests along principal direc-
tions (Roll = GAA, Cross = GBB)

response of the Dyneema Fraglight. In particular, the model captures the reorientation and

stretch of the fiber network described by a compliant response at small strain followed by an

increase in stiffness at large strain, respectively. The model also captures the increasing stiff-

ness in each successive load-unload cycle. The inelastic mechanisms especially the irrecoverable

evolution of network structure are also captured successfully, as indicated by a small elastic

recovery in the unloading path. Note that the model over-predicts the stiffness of the fabric

response in the roll direction at large deformation. This discrepancy arises because the defor-

mation mechanism in this range is dominated by junction unraveling and fiber rupture; two of

the inelastic mechanisms that are not considered in the current formulation.

To investigate the predictive capability of the proposed model to capture the effect of texture

anisotropy, a series of simulations corresponding to the uniaxial monotonic loading tests of fabric

strip along the roll (R), cross (C), needlepunch run (P), and perpendicular to the needlepunch

run (X) directions are generated using the model parameters in Table 5.1. The input fabric

ellipsoids for the simulations of the P- and X-directions are obtained by rotating the fabric

ellipsoid in Table 5.1 by 30 degrees with respect to the C- and R-directions, respectively. The

load per unit width and nominal strain plots of these simulations are shown to be in good

agreements with their respective experimental findings until the effects of fiber slippage and

junction unraveling dominate the fabric responses, see Figure 5-2.

In addition to the uniaxial tensile tests of the dogbone specimens, additional uniaxial tensile

tests were conducted on rectangular fabric strips of 50.4 mm (2in) width and 101.6 mm (6in)

gauge length using standard pincer grips. Because of the lateral constraint imposed by the

standard pincer grips, the fabric specimen undergoes a complex mode of deformation described

by a combination of tensile deformation due to the applied load and shear deformation induced

by the grip constraint. The specimens are loaded at a nominal rate of 0.01 s- 1 until failure.
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1n4 Uniaxial cyclic test: Dyneema Cross

-------- Mode

) 5 10 15 20
Nominal strain (%)

25 30 35

Uniaxial cyclic test: Dyneema Roll

0 20 40 60 80 100 120
Nominal strain (%)

140 160 180

Figure 5-1: Fitted simulation prediction with the experimental data of the uniaxial cyclic
loading test of the Dyneema Fraglight
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Uniaxial test Dyneema
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Figure 5-2: Model prediction of uniaxial monotonic loading tests along the C-, R-, P- and X-
directions
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An optical extensometer system is used to observe the deformation mechanisms of the fabric

structure. These uniaxial strip tests are primarily used for validation of the model, especially

in regards to the ability to capture the macroscopic deformation (deformed shape) as well as

the evolution of fabric texture.

The model simulations of the rectangular fabric strip tests along the C-, R-, P- and X-

directions are shown in Figure 5-3 to 5-6, respectively. In each of these figures, a set of three

images is presented for each level of axial strain: the left image represents the fabric texture

recorded from the experiment, the middle image shows the deformed shape of the simulation,

and the right image shows the fabric texture predicted by the model. The fabric texture is

represented by vector plots of the principal eigenvectors and eigenvalues of the fabric ellipsoids.

The length of the eigenvectors indicates the relative magnitudes of the eigenvalues of the fabric

ellipsoid in each principal direction. Because the fabric ellipsoids are related to the fiber ori-

entation, the length of these vectors can be associated with the preferential alignment of the

constituent fibers. Note that the images only illustrate half of the fabric strip because of the

symmetric boundary condition. Therefore, the top edges of these images represent the center of

the specimen, and the bottom edges represent the constrained boundary imposed by the grips.

Figure 5-3 to 5-6 show good agreements of the deformed shapes predicted by the model and

the experimentally observed fabric configuration. The simulation along the C-direction shows a

noticeable level of lateral contraction especially at the centerline of the specimen, in agreement

with the experimental observation. On the other hand, the simulation prediction of the fabric

response along the R-direction shows a uniform stress distribution throughout the fabric strip,

except for a small region near the constrained boundary. The model also captures the develop-

ment of lateral contraction at the centerline of the fabric strip as deformation progresses. The

model appears to over-predict the lateral contraction in the R-direction at large deformation.

This discrepancy arises because the effects of junction unraveling, which is experimentally iden-

tified as the dominant mechanism at this range of deformation, are not accounted for in the

current formulation.

To validate the model capability in capturing the deformed shape, the lateral contractions

of the centerline of the fabric strip from the experiments and the simulations are measured

and compared. Figure 5-7 shows good agreements between the model predictions and the
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Figure 5-3: Model prediction of the deformed shape and the textural evolution of rectangular
fabric strip under uniaxial tension along the C-direction
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Figure 5-4: Model prediction of the deformed shape and the textural evolution of rectangular
fabric strip under uniaxial tension along the R-direction
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Figure 5-5: Model prediction of the deformed shape and the textural evolution of rectangular

fabric strip under uniaxial tension along the P-direction
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Figure 5-6: Model prediction of the deformed shape and the textural evolution of rectangular
fabric strip under uniaxial tension along the X-direction
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Lateral Contraction in Dyneema

0C
0

1)

0l5.

Axial Stretch

Figure 5-7: Experimental measurements and simulation predictions of the lateral contraction

of the centerline in the rectangular strip specimen under uniaxial loading along the R- and C-

directions

corresponding experimental measures of the lateral contraction of the centerline of the fabric

strips, indicating that the model can accurately capture the macroscopic deformation of the

fabric when loaded along the principal material directions.

The model simulations of the fabric loaded along the off-principal directions (i.e., P and X)

indicate that the fabric deforms by a combination of tensile and shear deformations. The non-

uniform stress distribution due to the combined tensile-shear effects can be observed in Figure

5-5 and 5-6. The model also predicts the regions of stress concentration near the constrained

boundary, which is consistent with the effects of the lateral constraint imposed by the grips in

the experiment.

Analogous to the lateral contraction of the centerline in the tests along the principal di-

rections, the rotation of the centerline in the tests along the off-principal directions can be

measured from the fabric images and the simulations. Figure 5-8 shows that the experimen-

tal data indicates larger differences between P- and X-directions than predicted by the model.
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Rotation of the center line in the uniaxial tensile loading specimen
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Figure 5-8: Experimental measurements and simulation predictions of the rotation of the cen-
terline in the rectangular strip specimen under uniaxial loading along the P- and X- directions

This discrepancy can be attributed to fiber slip effects, or more possibly, to the approximations

introduced by reducing the FOD and JJD to the second-order representation (Figure 2-5).

Figure 5-3 to 5-6 also demonstrate the capability of the model in capturing the evolution

of fabric texture. At the reference state, the fabric texture along the principal directions is

indicated by the fabric ellipsoid eigenvectors initially aligned with the loading direction. In

comparison, the fabric texture along the off-principal directions (i.e., P and X) are indicated

by a uniform distribution of rotated eigenvectors. In the simulation of the fabric strip test

along the C-direction, the model predicts a highly anisotropic fabric texture biased along the

loading direction. On the other hand, the model prediction of the uniaxial strip test along the

R-direction illustrates an evolution of the fabric texture from one initially biased against the

loading direction to a texture biased along the loading direction as the deformation progresses.

At 120% axial strain along the R-direction, the model predicts a fabric texture that is almost
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Figure 5-9: Model prediction of two-step uniaxial tensile experiment

completely aligned with the loading direction. The simulation predictions of both loading cases

are in good agreements with the experimental observation.

The simulations of the fabric strips loaded along the off-principal directions show an evo-

lution of the fabric texture that is accommodated by stretching and reorienting of the fabric

ellipsoids. As the fabric ellipsoids re-orient along the load, the fabric undergoes shear defor-

mation contributed by the biased alignment of the fabric texture with respect to the loading

direction. Note that the rotation of the eigenvectors is accomplished by inelastic sliding and

not by rigid body rotation, as evident when considering that the eigenvectors rotate counter-

clockwise while the material lines (mesh line) rotate clockwise.

The model capability in the macroscopic response of the Dyneema Fraglight is further

validated by comparing the model simulation predictions and the experimental data of the two-

step monotonic uniaxial loading tests. Recall that the fabric specimens in the two-step loading

test have the same aspect ratio as those in the uniaxial monotonic loading tests. Therefore, the
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JJD from SSF model (GAA:GBB) JJD from the fabric simulation
Undeformed 1:1.9733 (fitted) 1:1.9365
after 20% Roll 1:1.6897 (predicted) 1:1.5594

Table 5.2: Comparison of the JJD obtained from the simplified straight fiber model and the
JJD predicted by the simulation

simulation of the fabric response in the first loading step is identical to the simulation predictions

of the monotonic loading tests. The simulation for the second loading step is carried out by

using as starting level for the state variables (the fabric ellipsoid Gt and the flow strength

St) the evolved values for these quantities obtained at the end of the first loading step. To

be consistent with the test protocol, we simulated the model response in the first step along

the roll direction up to 20% axial strain, and in the second step along the cross direction to

30% axial strain. The simulation predictions after the 2nd step is plotted together with the

experimental data in Figure 5-91. Good agreements between the model predictions and the

experimental data in both loading steps confirms the model ability to predict the macroscopic

response of this material under uniaxial tensile loadings.

Recall that the fabric texture after first loading step was thoroughly analyzed in Section

2.1.1. To validate the model ability to capture the evolving fabric texture, Table 2.4 is restated

here with an additional column representing the ratio of the in-plane components of the fabric

ellipsoid predicted by the model. The results in Table 5.2 indicate that the JJD approximated

from the simplified straight fiber model exhibits the same trend as the JJD predicted by the

model.

5.2.2 Simulations of fabric response under biaxial tensile loads

The proposed model is used to simulate the fabric response under equibiaxial tensile stretch

using the fitted parameters from the simulations of uniaxial tensile tests. Figure 5-10 shows the

schematic of the simulation for the biaxial tensile tests. The simulation results in Figure 5-11

show good agreements between the model predictions and the corresponding experimental data,

'Note that in predicting the 2-step uniaxial test, the model parameter corresponding to the resistance to
network evolution, 70, has been changed to le2 instead of the fitted value of le4. This change was necessary
because the fitted value was obtained from the experiments performed two years prior to the 2-step experiment,
and the response of nonwoven fabrics, particularly the junction strength, are known to be degrading with time.
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Figure 5-10: Biaxial tensile test configuration and model simulation
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Figure 5-11: Experimental result and model prediction of equibiaxial tensile stretch experiment
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especially the nonlinear anisotropic responses along both loading directions. Slight discrepancies

of the model prediction at large displacement along both loading directions arise from the

exclusion of fabric failure mechanisms, such as junction unraveling and fiber rupture, in the

proposed model.

The model capability to capture the macroscopic deformed shape and the evolution of

the fabric texture under biaxial tensile stretch is illustrated by a set of three images at each

level of deformation in Figure 5-12 and 5-13. These figures show that the model can predict

the macroscopic deformed shapes as well as the evolution of the fabric texture under biaxial

tensile loading. In the reference state, the fabric texture is represented by a uniform fabric

ellipsoid biased along the cross direction. As the deformation progresses, the fabric ellipsoids

in the cruciform legs are stretched along their respective loading directions, while those at the

center of the cruciform exhibit preferential alignment along the cross (stiff) direction. The

fabric ellipsoids at the boundary of the roll direction and the center of the cruciform specimen

undergo both rotation and stretch, resulting in a biased fabric texture similar to the constrained

boundary of the uniaxial tensile simulations along the off-principal directions. This complex

texture evolution predicted by the model is in good agreement with the deformed fabric texture

observed in the experiment.

The model is further validated for its capability to capture the evolution of the fiber ori-

entation. Figure 5-14 shows a series of images illustrating the fabric texture at each level of

deformation. In this figure, the images in the first row represent the experimentally observed

fabric texture. The images in the second row represent the contour plots of fiber orientation

obtained by the image analysis algorithm for fiber orientation distribution ([42], section 2.1.1).

The images in the third row represent the contour plots of the principal values of the fabric

ellipsoid with respect to the cross direction (eB • GeB). In the contour plots of this figure,

the green (light) area corresponds to the preferential alignment of the fibers along the roll di-

rection, while the red (dark) area represents a preferential alignment of the fibers along the

cross direction. Figure 5-15 shows the model prediction of the fiber orientation distribution

and the experimentally observed fabric texture after 30mm crosshead displacement (do). Good

agreements between the model prediction of the fiber orientation and the fiber orientation dis-

tribution measured from the experiment confirm the model capability to capture the evolution
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Figure 5-12: Model prediction of fabric texture under equibiaxial stretch (1)
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Figure 5-13: Model prediction of fabric texture under equibiaxial stretch (2)
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Figure 5-14: Evolution of fiber orientation distribution in the fabric under biaxial tensile loading
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Figure 5-15: Fiber orientation distribution observed in the experiment and the corresponding

model prediction
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of fabric texture.

5.3 Sensitivity analysis

To investigate the effects on the model behavior due to variations in each material parameter,

the model is analyzed using a sampling-based sensitivity analysis. Recall that the proposed

constitutive model requires 13 parameters to completely describe the fabric behavior: p, and AL

control the nonlinear stress-strain response, m, TO, So, a,and v specify the structural evolution

as well as the load-unload behavior, and six components of the fabric ellipsoid in the reference

state Go describe the orthotropic network texture. The sensitivity analysis is performed by

perturbing each of the model parameters in Table 5.1, and studying its effect on the model

response under uniaxial tensile simulation. Each parameter controls different aspects of the

model response, and therefore, the sensitivity analysis focuses on part of the model response

where the effects of the parameter dominate. The sensitivities of I, AL, and v are analyzed

from the model response under monotonic loading along the in-plane principal directions. The

volume response for variations in AL and v under this loading condition is also evaluated

because these two parameters directly affect the volumetric response of the model. For the

remaining inelastic parameters (m, 70So, a), the analyses focus on the load-unload response

of the model under uniaxial cyclic loading along the in-plane compliant direction, because the

deformation in this case is dominated by inelastic mechanisms, particularly the evolution of

fabric texture. The model sensitivity on the components of the fabric ellipsoid in the reference

state is investigated by comparing the model response under uniaxial monotonic loading at

different levels of anisotropy.

5.3.1 Model sensitivity to the parameters of the elastic component

The two parameters for the elastic component control the stiffness of the model response.

The modulus-like parameter /p controls the stiffness at small deformation, whereas the locking

stretch AL controls the nonlinearity of the response, particularly the transition from a compliant

response at small deformation to a stiff response as the stretch of the fibers in the network

reaches the extensibility limit described by the locking stretch AL. The model sensitivity due
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to variations in the modulus-like parameter p is shown in Figure 5-16 for the uniaxial response

along the in-plane stiff (eB) direction and along the in-plane compliant (eA) direction. Similar

plots for the locking stretch are presented in Figure 5-17. Note that a perturbation in I produces

a proportionated change in the axial stiffness (i.e, increasing p -- increasing axial stiffness),

whereas a perturbation in the locking stretch causes an adverse shift in the nonlinear transition

of the model response (i.e., increasing AL -+ decreasing axial stiffness). The effects of these

parameters are discernible at large deformation where the contribution of the elastic component

dominates that of the inelastic component.

In addition to the axial stiffness, a variation in the locking stretch leads to a change in the

model volumetric response. Figure 5-18 shows a plot of the volumetric strain and axial strain

with various degrees of locking stretch. The result shows that a decreasing locking stretch

results in an increasing bulk compressibility. The results from Figure 5-17 and 5-18 indicate

that the locking stretch not only controls the nonlinearity of the axial stiffness, but also governs

the bulk response of the model.

5.3.2 Model sensitivity to the parameters of the inelastic component

Recall from Equation 4.40 that the magnitude of the rate of evolution of fabric texture, -, can

be physically interpreted as a combination of two contributions:

fi = To (5.51a)

f2 = (det Gt - v det Go0 ). (5.51b)

The fi term relates to the contribution to the resistance to texture evolution arising from

inter-fiber friction. This term captures the nonlinear dependence of the rate of structural evolu-

tion on the magnitude of the driving stress, and its contribution can be directly related to the

load-unload behavior of the model. Therefore, the model sensitivities to the four parameters

To, So, a, and m controlling the magnitude of the fi term can be described by examining the

model response under uniaxial cyclic loading.

The constitutive parameter r0 represents an initial (threshold) resistance to structural evo-
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Figure 5-16: Model sensitivity due to variations in j
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Figure 5-17: Model sensitivity due to variations in AL
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Variations in XL - Stiff direction
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Figure 5-18: Volumetric effect due to variations in AL
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lution corresponding to initial barriers to inter-fiber sliding. As shown in Figure 5-20, the

parameter r 0 controls the onset of textural evolution. Note that a variation in To does not

directly influence the load-unload behavior, because the rate of the structural evolution is con-

trolled by the flow strength St, the strain rate-sensitivity parameter m, and the difference

between the magnitude of the driving stress the threshold resistance (r - To).

The initial flow strength So and the coefficient to the rate of flow strength a directly control

the material flow strength St. Because the flow strength St inversely scales with the rate of

the textural evolution, an increase in either So or a results in a decrease in the structural

evolution rate. Consequently, the model response exhibits an increase in the axial stiffness as

the contribution to the overall deformation from the inelastic component decreases. Figure 5-21

shows that the initial flow strength So governs the load-unload behavior as well as the onset of

the textural evolution. In comparison, Figure 5-22 shows that the coefficient to the rate of the

flow strength a directly scales with the axial stiffness when the model response is dominated

by the inelastic deformation.

The constitutive parameter m captures the nonlinearity of the dependence of the evolution

rate on the driving stress. To illustrate the effects of m, two simulations of the uniaxial cyclic

loading tests along the in-plane compliant direction are created using the parameters in Table

5.1 with two variations: (1) m = 2 and ro = 7e3, and (2) m = 4 and to = 5e3. Figure

5-19 shows that the model predicts overly similar responses for both sets of parameters when

simulating at a loading nominal strain rate of 0.01 s- 1. However, when simulating loading at

a nominal strain rate of 0.1 s- 1, the simulation predictions of the two sets diverge, and the

simulation of set (1) appears to be stiffer than that of set (2). In another word, the constitutive

parameter m reflects the dependence of the model response on the rate of deformation. The

model response is highly sensitive to the rate of deformation for low values of m, and becomes

less sensitive as m increases.

The f2 term in the magnitude of the rate of evolution is designed to capture the volume

exclusion effect. The contribution of the f2 term is independently controlled by the constitutive

parameter v, which specifies the termination of the structural evolution when the fiber network

reaches a maximum level of compaction. In contrast to the fi term, the f2 term primarily

serves as a scaling factor to the rate of the structural evolution and does not contribute to
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Figure 5-19: Model sensitivity due to variations in m
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Figure 5-21: Model sensitivity due to variations in So
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the load-unload behavior of the model. Therefore, the model sensitivity to v can be captured

by considering by the model response under uniaxial monotonic loading along the in-plane

principal directions. Figure 5-23 and 5-24 show the axial responses and the corresponding

volumetric responses of the model due to the variations in v. As v increases, the structural

evolution terminates at a lower level of compaction. As a result, the contribution from the elastic

component, which directly controls both axial and bulk responses, increasingly dominates the

model response as v approaches unity.

5.3.3 Model sensitivity to the components of the fabric ellipsoid

The model sensitivity to the components of fabric ellipsoid can be described by the variations

in (1) principal in-plane eigenvalues (A0 and B12), and (2) principal out-of-plane eigenvalue

(Ca2). All other variations of the components of the fabric ellipsoid can be related to the

variations of these two cases. For convenience of illustration, two measures of anisotropy, ( and

are introduced: ( = B2 /A2 represents the ratio of the in-plane principal components, and

S A G/CO represents the ratio of the in-plane compliant to the out-of-plane component. The

model sensitivity to the in-plane components is performed by increasing the level of in-plane

anisotropy [6 = 1,2,3,3.75,5], while constraining the out-of-plane anisotropy to a constant

(( = 1). Figure 5-25 shows the effect of various degrees of anisotropy due to the variations

of the in-plane components of the fabric ellipsoid. Note that for the special case of in-plane

isotropy (( = 1), the model responses along the eA- and eB-directions coincide as expected.

The sensitivity analysis on the principal out-of-plane component is performed by vary-

ing the degrees of in-plane to out-of-plane anisotropy, [( = 1, 16, 32,1601 while keeping the in-

plane anisotropy constant (6 = 3.75). Figure 5-26 shows the model sensitivity to the variations

in (. As ( increases, the relative magnitude of the in-plane components to the out-of-plane

component increases, resulting in an increase in the in-plane stiffnesses.

The effects of the variations in the principal components of the fabric ellipsoid can be

analogously compared to the effects of the variations in the locking stretch. While a variation

in the locking stretch AL affects the model response in all directions, a variation in one of the

principal components of the fabric ellipsoid results in a change in the axial stiffness in that

particular direction relative to the other directions.
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5.4 Chapter Summary

This chapter presents the validation of the proposed fabric model against the response of

Dyneema Fraglight. Direct comparisons between the model simulations and the correspond-

ing experimental data show that the model can capture the complex nonlinear anisotropic

elastic-inelastic response of this material. Specifically, the model was shown to capture the

load-unload behavior due to irrecoverable textural evolution and damage accumulated from

inter-fiber friction and inter-fiber compaction. The model was also shown to accurately pre-

dict the macroscopic deformed shape and the evolution of the fabric texture under in-plane

tensile-dominated modes of deformation.

The model sensitivity to the variations in the model parameters was investigated using

the sampling-based sensitivity analysis. The results show that for the model parameters in

Table 5.1, the contribution of the inelastic component dominates the model response until

the structural evolution terminates after reaching the maximum compaction level. The model

response after the termination of inelastic flow is controlled by the elastic component of the

model. The analyses also show that the stress-stretch response of the model depends on all

parameters, whereas the volumetric response is dominated by AL, v and Go. The load-unload

response of the model is controlled by the following parameters: m, To, So, a. The components

of the fabric ellipsoid Go control the anisotropic response of the model. In addition to the

verification of the effects of each model parameter, the sensitivity analysis confirms that the 13

constitutive parameters are independent, and represent a minimal set of parameters required

to describe the fabric deformation mechanisms under consideration.
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Chapter 6

Concluding Remarks

6.1 Summary of Accomplishments

This thesis presents a systematic approach to characterize the mechanical response of needlepunched

nonwoven fabrics and to formulate a continuum model for this class of materials based on the

experimental observation and the material underlying mesostructure. A web of high strength

polyethelene fibers manufactured by DSM "Dyneema Fraglight" was selected as the represen-

tative material. A number of mechanical characterization techniques have been employed on

Dyneema Fraglight in order to analyze the fabric network structure, and to investigate the fabric

deformation mechanisms under in-plane tensile-dominated modes of deformation. In charac-

terizing the fabric structure, attention was given to quantifying the morphological sources of

fabric anisotropy. The fabric structure was characterized via optical microscopy and its fiber

orientation distribution was measured using an image analysis technique.

Uniaxial tensile testing of the fabric revealed that this material exhibits an anisotropic

response biased toward the direction of preferential alignment of constituent fibers. The defor-

mation mechanisms governing the fabric response under tensile loads include textural evolution

by means of reorientation of constituent fibers, fiber stretch and junction unraveling. The

results of the cyclic loading tests indicate that the tensile deformation of the fabric is a com-

bination of elastic deformation from fiber stretch, and inelastic deformation from irrecoverable

reorientation of fibers, relative fiber slip as well as fiber disentanglement. Experimental observa-

tions in uniaxial cyclic loading tests indicate that the fabric response is dominated by inelastic



deformation mechanisms, especially irrecoverable textural evolution and junction unraveling.

Results from biaxial tensile tests confirm this observation.

Motivated by the fabric network structure and the underlying deformation mechanisms, a

constitutive model for needlepunched nonwoven fabrics was developed with a microstructurally-

based continuum framework. The proposed model consists of two constitutive components: a

nonlinear element representing the resistance to elastic deformation mechanisms, and a non-

linear viscous element representing the resistance to inelastic deformation mechanisms. For

nonwoven fabrics in which the anisotropy of fiber orientation is combined with random entan-

glement processes, we propose to capture the combined effects of fibers and junctions orientation

distributions using a single tensorial representation of the network anisotropy (fabric ellipsoid).

An orthotropic elastic model (JS model) for the distributed network is then formulated based on

this structural measure and deformation mechanisms of the network structure. The proposed

elastic model was shown to capture effects related to the distributed nature of the orientation

of fibers and junctions, particularly the contributions due to fiber stretch, and recoverable re-

orientation of the fibers. It was also favorably compared to the other existing anisotropic models

for distributed networks. Though motivated by a mechanistic interpretation of the nonwoven

fabrics, the proposed elastic formulation can be used to model different classes of anisotropic

network materials, such as biological tissues, and tissue engineering scaffolds.

An inelastic component of the model was proposed to capture mechanisms including irrecov-

erable textural evolution and other dissipative effects. Experimental characterizations identified

the irrecoverable evolution of fabric texture as the dominating inelastic mechanism. Conse-

quently, the inelastic component was prescribed in terms of an evolution law for the network

texture (fabric ellipsoid). The proposed evolution law accounts for mechanisms of resistance to

inelastic deformation including resistance to inter-fiber sliding and resistance to volume com-

paction. The driving stress for the evolution of the fabric texture was defined in terms of a

macroscopic stress measure biased against the fabric ellipsoid to capture observable effects of

the fabric anisotropy on structural evolution. The proposed fabric model requires 13 parame-

ters to completely describe the fabric behavior: six of which define the network anisotropy at

the reference state, two parameters capture the elastic response, and the remaining parameters

control the evolution of the fabric texture.
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The proposed fabric model was validated against the experimental results of tests on

Dyneema Fraglight under uniaxial and equibiaxial tensile loadings. Direct comparisons be-

tween the model simulations and the corresponding experimental data show that the model can

capture the complex nonlinear anisotropic elastic-inelastic response of this material. Specifi-

cally, the model was shown to capture the load-unload behavior due to irrecoverable textural

evolution and damage accumulated from inter-fiber friction and inter-fiber compaction. The

model was also shown to accurately predict the macroscopic deformed shape and the evolution

of the fabric texture under in-plane tensile-dominated modes of deformation. Generally good

agreement between the model simulation predictions and the experimental results confirm that

the proposed constitutive model can be effectively and efficiently used to predict the complex

behavior of needlepunched nonwoven fabrics.

6.2 Recommendations for future work

As discussed previously, the proposed formulation does not take into account two important

factors in the evolution of textural anisotropy. The first area relates to processes of damage,

breakage, and slip of individual fibers from junction points. These effects are limited in materials

where the junctions are created by chemical or thermal bonding processes, but are pervasive in

nonwovens in which the junctions are created by physical entanglement (e.g., needlepunching).

Possible avenues to include these effects in the proposed constitutive framework, include the

introduction of an evolution equation for the average unloaded end-to-end length of fibers

between junctions. In the current formulation these effects can be captured by an evolution

condition for tr(Gt), and a modified equation for the evolution of nt, to ensure conservation of

the total fiber length.

The evolution law for the fabric ellipsoid can also be improved. Currently, the evolution

of the fabric ellipsoid accounts for the resistance to compaction using the term f2 in equation

4.41b and the corresponding condition on Gt, which sets the rate of change of Gt to zero when

the fiber fraction reaches a maximum volumetric compaction level. These terms are isotropic

in nature and do not capture the effects of anisotropy on the resistance to compaction. An

extended formulation could account for these effects by introducing a tensorial back-stress, co-



aligned with the Gt tensor, reflecting the increased resistance to evolution along directions of

high compaction:

Tdriving = Tflow - Tback (t) . (6.52)

Physically, this backstress represents the effects of the flow resistance due to the compaction

of neighboring fibers. Therefore, the constitutive form of the backstress may be derived from

the micromechanics-based models for inter-fiber contact (see, for example, Komori et al. [47],

Lee [52], and Pan [60], among others).

The effects of the rate of deformation on the response of Dyneema Fraglight have not been

addressed in the current work. As a preliminary study of the strain rate effects on the mechanical

response of this material, additional uniaxial cyclic loading tests along the R-direction were

performed at three nominal strain rates of 0.001 s- 1, 0.01 s- 1 and 0.05 s - 1 . Figure 6-1 shows

comparable responses for the three loading rates, indicating a low degree of rate sensitivity for

the considered range of strain rates. To demonstrate the model capability to capture strain

rate effects, this limited set of experimental data are fitted by varying the parameter m, which

controls the rate sensitivity of the model response, with all other parameters as presented in

Table A.1. An acceptable fitting of the model prediction can be obtained by choosing m = 8, see

Figure 6-1. Note that the experimental response of large strains seems to present a larger degree

of rate sensitivity. As fiber disentanglement plays a critical role in increasing fabric compliance

at large stretches, it is not surprising that an increase in deformation rate will limit the extent

of fiber slippage from junctions, and therefore, result in an increase in asymptotic stiffness.

These effects will need to be incorporated in the constitutive formulation for the evolution of

the G t . More extensive studies over a broader range of deformation rates are needed to properly

characterize the strain rate dependence of the fabric response.

In this microstructurally-based continuum model for nonwoven fabrics, some of the model

parameters are directly connected to the characteristics of the network structure. For example,

the locking stretch AL, which represents the extensibility limit of the network, can be physically

related to the curliness of the constituent fibers, and the modulus-like parameter y can be related

to the stiffness of the fibers. The parameter representing the maximum compaction limit v is

expected to scale with the initial volume fraction of fibers. Though exact relationships between
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these physically motivated parameters and the actual characteristics of the network have not

been established in the current work, they can be verified by performing additional analysis on

the fabric texture.

The relationship between the fitted fabric ellipsoid and the experimentally measurable mor-

phological properties of the fabric should be further verified. Currently the in-plane components

of the fabric ellipsoid are estimated from the two dimensional images of fabric structure, while

the out-of-plane component serves as a fitting parameter. The robustness of the microstruc-

tural representation via fabric ellipsoid cannot be tested until related technique enabling the

measurement of fabric structural properties in three dimensions are developed.

The proposed fabric model assumes that nonwoven fabrics can be represented, via ho-

mogenization, by a continuum with uniform properties. However, the characterization of the

Dyneema Fraglight structure reveals an inhomogeneous texture due to non-uniform spatial dis-

tributions of fibers with increased fiber density around entanglement points. Consequently, the

fabric exhibits an inhomogeneous response at areas of higher fiber density. Following standard

approaches in the characterization of fabric texture, the fabric inhomogeneity can be analyzed

using image analysis techniques. e.g., [66], [67], and quantified in terms of gray-scale intensity

distribution. The inhomogeneity data can be incorporated into the current model by relat-

ing spatial statistical variations in model parameters (e.g., the modulus p) to the measured

intensity distribution.

This project was the preliminary step to develop a model capable of capturing the nonwoven

fabric response under ballistic impact. The current model has been implemented only for quasi-

static in-plane implicit analysis. To capture the fabric ballistic response, the model must be

implemented in a 3D membrane (or shell) formulation in conjunction with an explicit code for

dynamic analysis.

Further development in the areas described above will result in a model capable of predicting

the mechanical response of nonwoven fabrics both at macro and mesostructural levels in a wide

range of applications.
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Appendix A

Relationship between Orientation

Distribution of Junction-to-junction

Distance (JJD) and Fiber

Orientation Distribution (FOD)

For a fiber network with junction points defined by random bonding pattern (e.g., self-entanglement

of constituent fibers), the junction-to-junction distance distribution (JJD) of the network can

be related to its fiber orientation distribution (FOD) because the locations of inter-fiber junc-

tions are statistically biased by the number of fiber intersections, which is related to the fiber

orientation distribution. This appendix demonstrates a preliminary attempt to relate the two

orientation distributions in a simplified network of straight, cylindrical, inter-penetrable fibers

using (1) numerical simulation (termed "simplified straight fiber model") and (2) structural

analysis.

A.1 Simplified straight fiber model

To evaluate the relationship between the JJD and the FOD of a network with a random bonding

pattern, we performed a numerical simulation of a simplified network of infinitely long, straight,
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calculate a JJD ellipsoid from a given

cylindrical, inter-penetrable fibers randomly located in a three dimensional spherical window.

The relationship between the fiber orientation distribution (FOD) and the junction-to-junction

distance distribution of this network is determined by assigning the orientations of the simulated

fibers according to the prescribed FOD, and calculating the corresponding JJD of the network.

The calculation procedure in Figure A-1 can be described as follows.

Given a network of n fibers that are oriented according to the prescribed FOD ellipsoid

(figure A-1(a)), the intersections of the network can be determined using the following track-

ing algorithm. First, the shortest distances between every pairs of fibers in this network are

calculated. If the distance between two fibers is less than a threshold value d, a intersection

is created on each fiber at the location of the shortest inter-fiber distance. With the locations

of all intersections specified (figure A-1(b)), the intersection-to-intersection distance in a given

direction can be determined by averaging the distances between every neighboring intersections
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on each fiber. The averaged intersection-to-intersection distance is then plotted as a function

of the fiber orientation in Figure A-1(c). The fabric ellipsoid describing the orientation distri-

bution of junction-to-junction distances is assumed to scale with the intersection distribution

and is subsequently constructed by fitting a three-dimensional ellipsoid over this plot using a

simplex algorithm (figure A-1(d)).

Note that the repeatability of the results obtained with this method increases with the

number of fibers being simulated (i.e., the size of the computational volume). However, the

computational cost also increases exponentially for increasing fiber numbers. This calculation

typically fails under two circumstances: (1) when the input FOD ellipsoid is highly anisotropic,

in which case, numerical singularity arises when locating the junctions in the non-preferential

direction, and (2) when the simplex algorithm does not converge.

The measured FOD and JJD pairs presented in Table A.1 are obtained from simulations

of n number of fibers with d diameter in a spherical window of radius 50L, where L being an

arbitrary length scale.

The simulation results indicate that for a network with random bonding pattern (1) the

principal directions of the JJD ellipsoid co-align with the principal directions of the FOD

ellipsoid, and (2) the JJD ellipsoid may be approximated from the FOD ellipsoid.

A.2 Structural analysis

To verify the simulation result, we performed a structural analysis of the simplified straight fiber

network. The analytical relation of JJD and FOD provided here is a modification of the analysis

of inter-fiber contact by Komori et al. [48]-[47] and Toll [71]. Suppose that the network under

consideration consists of n fibers per unit volume arranged according to a given fiber orientation

distribution w (p) (See Eq 3.4 for the relationship between the orientation distribution function

w (p) and the corresponding fabric ellipsoid W). The fibers in this network are allowed to

inter-penetrate, and the intersections are defined by these inter-penetration points. Consider a

test fiber with average length L and diameter d aligned in the unit direction p, see Figure A-2.
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Input FOD Output normalized JJD G
Component of W simulation prediction analytical solution

n d (AA) (BB) (CC) (AA) (BB) (CC) (AA) (BB) (CC)
4000 2L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4000 2L 1.800 0.600 0.600 1.353 0.819 0.827 1.243 0.878 0.879
4000 2L 2.143 0.429 0.429 1.420 0.790 0.790 1.405 0.798 0.797
4000 2L 2.500 0.250 0.250 1.840 0.547 0.613 1.701 0.649 0.650
4000 L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4000 L 1.800 0.600 0.600 1.346 0.830 0.824 1.243 0.878 0.879
4000 L 2.143 0.429 0.429 1.303 0.859 0.837 1.405 0.798 0.797
4000 L 2.500 0.250 0.250 2.020 0.570 0.410 1.701 0.649 0.650
2000 2L 1.000 1.000 1.000 0.999 1.001 1.000 1.000 1.000 1.000
2000 2L 1.800 0.600 0.600 1.371 0.810 0.818 1.224 0.885 0.891
2000 2L 2.143 0.429 0.429 1.359 0.834 0.806 1.394 0.803 0.803
2000 2L 2.500 0.250 0.250 2.050 0.468 0.481 1.685 0.657 0.658
3000 2L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3000 2L 1.800 0.600 0.600 1.372 0.814 0.814 1.247 0.879 0.874
3000 2L 2.143 0.429 0.429 1.420 0.790 0.790 1.424 0.787 0.788
3000 2L 2.500 0.250 0.250 1.840 0.580 0.580 1.713 0.644 0.644
3000 2L 1.200 1.200 0.600 1.063 1.063 0.874 1.049 1.040 0.910
3000 2L 0.857 1.714 0.429 0.932 1.384 0.684 0.939 1.218 0.843
3000 2L 0.750 2.000 0.250 0.936 1.412 0.652 0.873 1.360 0.767
3000 2L 1.250 1.500 0.250 1.199 1.221 0.580 1.058 1.139 0.803
3000 2L 0.750 1.000 1.250 0.912 1.020 1.068 0.932 1.006 1.062

Table A.1: Examples of the calculated JJD ellipsoid for a given FOD ellipsoid from numerical
simulation and analytical solution
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Figure A-2: Schematic of fiber-intersection

The number of points N on the test fiber that are in contact with fibers in an arbitrary

direction p' is given by (Toll [71])

N (p,1p) = n [A (p, pJ L + V], (A.1)

where V = -d2 is the volume of the fiber, and A (p, p) = dL 1p x 21 + • p.pPl is the projected

area of the test fiber into the direction p' For non-aligned slender fibers (i.e., >> 1),

Equation A.1 reduces to

N (p,p) = ndL2 Ip x p . (A.2)

Now consider the average number of contact points on the test fiber made by the fibers in all

other directions;

(pj N (p, ) w (p) dp'= ndL2f (p), (A.3)

where f (p) = p x pl w (p) dp'. The average spacing between the contact points (inter-

junction distance) along the test direction is given by
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L 7rd
( (p) - (A.4)N() 40f (p) '

and ¢ = n d L is the volume fraction of the fibers. The inter-junction distance in each material

direction is a product of the junction-to-junction distance orientation distribution (g (p)) and

the average inter-junction distance 1;

1 (p = g (p) L (A.5)

By substituting A.5 into A.4 and using g (p) = G : (p_ p), Equation A.4 may be cast in term

of the JJD ellipsoid

4011G: (p_®p) = p (f ipxp (W": (p'p_))d . (A.6)

The analytical expression in Equation A.6 illustrates a complex relationship between JJD

and FOD ellipsoids in the network with infinitely-long, straight, cylindrical fibers. The analyt-

ical solution is compared to the simulation predictions in Table A.1. Good agreements between

the two approaches confirm that in this simplified network of straight fibers with random bond-

ing pattern the JJD ellipsoid and the FOD ellipsoid are related. Therefore, the JJD ellipsoid

can be determined from a given (experimentally measurable) FOD ellipsoid.
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Appendix B

Application of the Effective Stretch

The concept of effective stretch introduced in Chapter 3 is an effective yet simple-to-implement

approach to model the complex effects due to stretching of fibers in anisotropic distributed

elastic networks. This concept relates the contribution of the stretch of single fibers in the

network to the macroscopic stretch of the network using a tensorial measure of deformation (F)

and a structural measure (fabric ellipsoid Go) representing the network anisotropy. In Chapter

3, we demonstrated the applicability of this concept by formulating a continuum model for a

network with the force-stretch response of the constituent fibers following Langevin statistics.

The JS-model was subsequently formulated by combining the effects of stretch of individual

fibers and inter-fiber repulsion, and was shown to be favorably compared to the other orthotropic

network models with the same form of force-stretch relation. Though the concept of the effective

stretch was initially developed for a network of fibers with extensibility limit, we demonstrate

in this appendix that this concept can be extended (with care) to model the response of an

orthotropic fiber network with no extensibility limit as well.



B.1 Formulation of an orthotropic elastic model based on the

effective stretch and the exponential force-stretch relation

of individual fibers

Consider a distributed fiber network in which the mechanical response of the constituent fibers

can be described by an exponential force-stretch response similar to the form given by Holzapfel

[40] as follows:

f (A) = 2k (Af - 1) (exp (k2 (Af 1)2 . (B.1)

where Af represents the end-to-end fiber stretch, f (AI) is the resultant force, kl and k 2 are

the constitutive parameters. Integrating the force-stretch expression in B.1 with respect to an

incremental displacement rodAf, where ro is the end-to-end (unstretched) fiber length, yields

the strain energy associated with the stretching of a single fiber segment:

Af

•pexpo / _
fiber (f) f (A) rodA' = exp k2  . (B.2)

1

Note that the exponential force-stretch relation in B.1 does not account for the extensibility

limit of the fibers, whereas the force-stretch relation in terms of Langevin statistic accounts for

the extensibility limit in terms of a locking stretch, AL.

Following the concepts of the effective stretch, the strain energy density of the network

-network associated with the stretching of no exponential fiber segments per unit (reference)

volume in a network with anisotropy captured by the fabric ellipsoid G o is given by:

network exp 2 (Aeff . (B.3)

Differentiating B.3 with respect to the right Cauchy Green tensor yields an expression for

the macroscopic second Piola-Kirchhoff stress of the network:

T ork (Ae_• - 1) (exp k2 (Aeff - 1)) , (B.4)netw(ork - 3 Ae f f
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with corresponding Cauchy stress

expo I (Aef - 1 ) exp k 2 (Aeff - 1)2)) oF (B.5)Unetwork - 3J Aeff -

where M = norokl represents a modulus-like parameter for this form of constitutive relation.

B.4 and B.5 account for contributions due to the stretch of individual fibers, and yield a

stress-free configuration for Aeff = 1. In contrast to the formulation of the JS-model, the

forms of macroscopic stresses derived from the effective stretch and the exponential force-

stretch relation need not be augmented by an additional constitutive term to enforce equilibrium

conditions in the reference configuration. However, because the formulation in B.3 does not

account for the effects of inter-fiber interaction, e.g., inter-fiber repulsion or bulk compressibility,

it has no resistance to the deformation at constant effective stretch Aeff = 11.

To account for the contribution of network resistance to the volume compaction, a strain

energy representing the isotropic bulk compressibility is added to B.3 (similar to [12]);

,vot (J) = n (Jln (J) - J), (B.6)

The strain energy of the network with the contributions of fiber stretch and bulk compress-

ibility becomes

= •network + vol, (B.7)

with the second Piola-Kirchhoff stress,

= (Aef - 1) exp k2 (Aeff - 1)2 o,+J In (J) C- (B.8)

and the corresponding Cauchy stress

= (Aef- 1) exp (k2 (Aef - )) T + n (JI. (B.9)

'There exists a combination of a non-trivial deformation gradient (F 5 1) and the fabric tensor that yields a

stress free state with Aeff = 1, e.g., GO = Aoe A + BO eB ± f + Co c, and F = ;B A -e A +
1 eB 9 eB + le c 9 ec .
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B.9 resembles the compressible form of the transversely isotropic hyperelastic model by

Gasser et al. [32] 2 . As proven in [32], this form of stress is stable when modeling a distributed

fiber network with isotropic or transversely isotropic symmetry. When extended to a network

with orthotropic symmetry, however, the expression B.9 is unstable. The proof of instability is

given as follows.

Consider a special case of deformations in which the fiber network is stretched (with macro-

scopic stretches AA, AB, Ac) along the principal directions of material anisotropy _A fB, eC, the

deformation gradient can be expressed as:

F = AA  A  e A  AB  B  e B +• Ac c C  eC. (B.10)

In this state of deformation, the effective stretch is given by

A.2  tr (FGoFT) 1 2A•• 2 + C2 (B. 11)

eff = 3 3 (AOA + BO), (B.11)

and the volumetric strain is given by

AAABAC = J. (B.12)

Now, consider a non-trivial stretch along the ec-direction (Ac k 1) while constraining the

material to the stress-free state (Aeff = 1, andJ = 1). Under this special case, B.11 and B.12

become

A2 2 2 2 +f22 22Ao A + BA2B OAC (A + B2 + Ck) , (B.13a)

AAABAC = 1. (B.13b)

The non-trivial stretches in the lateral directions AA and AB obtained from the conditions B.13a

and B.13b are given by

2with some parameter adjustments and without the effects of the ground substance.
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(tr (Go) -02C) 0)( C2) A 1
A = 2A ;A2  2 (B.14)

The existence of non-trivial stretches (AA B 1,AB # 1,Ac ý 1) in a stress-free state proves the

instability of B.9.

It can be inferred from the development of B.9 that a model which accounts for the con-

tribution of fiber stretch (via the effective stretch) and the bulk compressibility does not have

sufficient constraints to describe distributed networks with an orthotropic symmetry. To attain

sufficient stability, the formulation in B.9 can be augmented by an additional constitutive con-

tribution representing the effects of inter-fiber repulsion. The strain energy representing the

inter-fiber repulsion is phenomenologically prescribed by:

-repulsion = P (E*) 2 , (B.15)
2

with
tr (C- GO)

E= tr (G -o) 1, (B.16)
tr(Go)

and corresponding Cauchy stress

[LE*
2repulsion- Jt F-TO F - 1 .  (B.17)

The strain energy of the inter-fiber repulsion in B.15, though seemingly arbitrarily pre-

scribed, is chosen because the measure, E*, combined with the effective stretch measure Aeff
S-tr(F T ) = and the volumetric strain J = det (C) represent a set of linearly

independent group of invariants of C and Go. It can be shown that alternative energy contribu-

tions can be proposed in place of B.15, provided that they are expressed in terms of invariants of

C and Go and are linearly independent from tr (CGo) and det (C). For other possible invariants

of C and Go, refer to the work by Spencer [69], Zheng [80], and Zysset [81].

By including the contribution from the inter-fiber repulsion, the orthotropic elastic model

for distributed network with an exponential force-stretch relation of the constituent fibers can

be written in the following form:
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' = ,network + Trepulsion + Tvol (B.18a)

"= (exp (k 2 (eff - 1)2)) + (E*) 2 + K (Jln (J) - J). (B.18b)
2 2

with corresponding stress

r = (GA ( (Aeff - 1) (exp (k2 (Aeff 1)2 EoFT - E*F- oF + In (J) I.
(B.19)

With the additional constraint for the stress-free configuration provided by B.16 (E* = 1), B.19

is always stable. Figure B-1 show the uniaxial responses of the exponential model along the

three principal directions of the fabric ellipsoid using 1L = le6Pa, k2 = 2, r = le6Pa, Ao = 1.33,

Bo = 1.00,and Co = 0.67.

B.2 Concluding Remarks

We introduced an alternative formulation for the response of an orthotropic elastic network-

ing using the effective stretchin an exponential force-stretch relation. In this formulation, we

showed that a model that only accounts for the contributions of fiber stretch (via the effective

stretch) and bulk compressibility does not have sufficient constraints to describe a distributed

network with orthotropic symmetry. An additional energy contribution representing the effects

of inter-fiber repulsion was prescribed as a function of tr (C-1Go) to ensure the stability of

the model. With the contribution from the fiber stretch, the inter-fiber repulsion, and the bulk

compressibility, the proposed model is complete, and can be used to predict the response of

orthotropic fiber networks.
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Figure B-1: Uniaxial responses of the orthotropic model for networks with an exponential
force-stretch relation
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