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Abstract

The properties of a frustrated quantum antiferromagnet are interesting topics in con-
densed matter theory. Among the quantum antiferromagnets, Cs2CuC14 gains at-
tention as one of the candidates for materials with ground state spin liquid phase.
The recent experimental results show that there exist several ground state phases in
the presence of magnetic field which cannot be explained with classical Hamiltonian.
In the thesis, I numerically studied the ground state of Cs2 CuC14 using a modified
classical Hamiltonian, and I compared the result with previous experiments and clas-
sical analysis. The resulted magnetic phase diagram contains two phases, cone and
ferromagnetic phase, which are separated by second order transition and a first order
transition line for intermediate longitudinal field which ends up with a critical point.
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Chapter 1

Introduction

The modern condensed matter physics deals with many exciting phenomena in huge

range of materials with many-body systems. Among them, the frustrated quantum

antiferromagnet becomes a hot material in experimental and theoretical researches

because of its potential of having strong quantum fluctuation which leads to exotic

spin-liquid ground states.[1][10] Especially, the quantum antiferromagnet Cs 2CuC14,

which has spin-1/2 triangular spin lattice structure, gains lots of attention as a can-

didate for such material. In several published result of inelastic neutron scattering

experiments on Cs2CuC14 , a broad continuum is observed,[8] and one of the expla-

nations for this continuum uses spin-liquid states. [3][4] [14] As well as the spin liquid

states of Cs 2CuC14, the low-temperature states of Cs2CuC14 in the presence of mag-

netic field also have interesting aspects. The low-temperature states depend on the

strength and direction of magnetic field. The states with three directions of mag-

netic field are studied separately. One is a direction perpendicular to the plane of

triangular lattice, marked by a, and the other two directions are within the plane of

lattice, marked by b and c. With the magnetic field in a-direction, there is a phase

transition at the critical field of B, = 8.44T.[7] The phase with magnetic field less

than B' is a cone phase. For the stronger field, the magnetization is saturated and

every spin vector point the direction of magnetic field.[7] The phases with magnetic

field within b-c plane are more complicated, so they will be discussed later. There

are some recent efforts to understand the nature of these phases theoretically. Some



phases of ground states of Cs 2 CuC14 in the magnetic field can be understood using a

semi-classical method which includes quantum fluctuation effect.[13]

However, the result of semi-classical method still cannot explain several phases

with intermediate field in b-c plane. Moreover, the differences between phase diagrams

for magnetic fields in b-direction and c-direction cannot be explained by semi-classical

analysis. In understanding the nature of this difference, difference between phase

diagrams in different directions, the phase diagram for magnetic field in all direction

can be a strong tool. When we can determine the phases for all B = (Ba, Bb, BC),

we may predict the reason for this difference easily. However, the phase diagram for

low-temperature states in the presence of magnetic field in out of axis direction is not

constructed yet. To resolve this problems, I will introduce the numerical method I

used to find the ground state phase diagram of Cs 2CuC14 with an abstract magnetic

field B = (Ba, 0, Bc). I will also report the resulting phase diagram and analyze the

result.

In Chapter 2, I will describe the crystal structure and spin Hamiltonian of Cs2 CuC14.

The classical analysis will be introduced in Chapter 3. Chapter 4 contains the main

result of this paper. I will introduce the models I used for the numerical calculation

and corresponding results in Chapter 4. Analysis of the results with order parameters

will be illustrated in this chapter too. Chapter 5 will give a summary of the result.



Chapter 2

Properties of Cs 2CuC14

2.1 Crystal Structure of Cs 2CuC14

The crystal structure of Cs2 CuC14 is described in Figure 2-1.[8] It is orthorhombic

structure with lattice parameters at 0.3 K of a = 9.65A, b = 7.48Aand c = 12.26A,

and consists of CuC12- tetrahedra arranged in layers separated in a-direction.[6] The

magnetic moments are carried by Cu 2+ ions in tetrahedra. Each Cu 2+ ion carries a

spin of 1/2. The magnetic sites in a single layer is shown in Figure 2-2.[13] As it is

shown in the figure, the magnetic moments of Cs2CuC14 form a triangular lattice with

exchange interactions. Because of the geometric effects, this triangular lattice has a

anisotropic property. The exchange interactions with parameter J along the same

chain, which is parallel to b-direction, are larger than exchange interactions between

the adjacent chains J'.[7] There are also interlayer exchange interactions between

nearest neighbors. However, the previous experiments by Coldea et al[6] shows that

this interlayer interactions are far weaker than the in-plane couplings. Therefore, we

can consider Cs2CuC14 as a quasi-2D low-exchange quantum magnet.[8]
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Figure 2-1: Crystal Structure of Cs 2CuC14[8]

b

Figure 2-2: Magnetic sites with couplings in a single layer of Cs 2 CuC14[13]



2.2 Experimental Results

Several experiments for determining the B-T phase diagram of Cs2CuC14 in low

temperature were made.[7][6][12] The experimental results for determining magnetic

phase diagram in the magnetic field along the a axis were given in the references [6]

and [12].

The Figure 2-3[12] shows that one phase transition appears in the experimental

data for the magnetization. The solid lines are experimental data, and the dashed,
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Figure 2-3: (a)Reduced Magnetization, (b)susceptibility, and (c)ground state energy
of Cs2 CuC14 vs reduced field along the a-axis.[12]

dash-dotted and dotted lines are semi classical mean-field prediction, linear spin-wave

theory with 1st order quantum corrections and Bethe-ansatz prediction for 1D chains
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along the b-axis.[12]

The results of neutron scattering experiment performed by Coldea et al.[6] suggests

that the phase transition for the magnetic field along the a-axis appears at the critical

field B, = 8.44(1) T. The Figure 2-4[6] shows the results of this experiment. The

B (T)II a
0 2 4 6 8

, 1.5

0.,5

0.0

o 0.07

3 0.,06

!o 0.04

& 0.03

10 :12

Figure 2-4: (a)Magnon energies, (b)amplitude of perpendicular ordered moment Sc,
and (c)Incommensuration vs field along the a-axis. [6]

measured spin order forms an elliptical cone phase below the critical field.

SR = Sb cos Q. Rb + Sc sin Q. - Ai+ Saai (2.1)

Q denotes the wavevector of the spin wave which is made by projection of the cone

into the b-c plane. R indicates the location vector of each spin. Above the critical



field, every spin point the direction of magnetic field, and ferromagnetic property

appears.[6] Resulting B-T phase diagram is illustrated in Figure 2-5[7]. The square

U. Z5

0.6

0.4

0.2

B (T) II a

Figure 2-5: B-T phase diagram of Cs 2CuC14 in a field along the a-axis. [7]

points are the data from neutron scattering[6][5], and the circle point is from the

susceptibility. [12]

The magnetic phase of Cs2CuC14 for the field along the b and c axes are more

complicated. The magnetic phase diagram of Cs 2CuC14 with the magnetic field along

the b and axes is studied using the magnetization curves of Cs 2CuC14.

5 10
B (T)

Figure 2-6: (a)Magnetization
directions of axes. [12]

0 5 10
B (T)

and (b)susceptibility of Cs2 CuC14 vs fields along the

As we can see in the plot of susceptibility vs magnetic field in Figure 2-6, several



phase transitions of Cs2 CuC14 in the magnetic field along the b and c axes were

discovered. The vertical arrows in the susceptibility curves indicate the points of phase

transition. The temperature condition is 0.05K for the curves with field along the a

and b axes and 0.07K for the curve with field along the c axis. The reported value of

the critical field for saturation is B, = 8.44(2), BI = 8.89(2) and B' = 8.00(2).[12]

Above this critical field, paramagnetic phase appears. The collected result of B-T

phase diagram for the magnetic field in b-c plane is described in Figure 2-7.[12] The

"Spiral" on the phase diagram denotes the planar spin wave phase where every spin

vector is in b-c plane with spin wavevector Q which appeared in the equation (2.1).

"E" on the phase diagram for the field along the c-axis indicates the elliptical phase.

This phase appears for 1.4 T < Bc < 2.1 T. In the elliptical phase, the structure of

the spin vectors has elliptical shape with large elongation along the c-axis. [7] For the

field along the b-axis, this elliptical phase does not appear, and the system evolves

from spiral phase to a phase without long-range order. In the case of magnetic

phase diagram for the field along the c-axis, the system does not have any long-range

order for the magnetic field above 2.1 T and the system is in a spin liquid state.[7].

The appearance of the phases in this range of field cannot be explained with semi-

classical analysis. Further experiment with neutron scattering method may tell us the

magnetic properties of these phases. The appearance of spiral and elliptical phases

are explained with semi-classical method including the quantum fluctuation effect. [13]

I will discuss the theoretical calculation by introducing spin Hamiltonian in the next

section. In the strong field limit, B > B•, both phases with the field along b and c

axes evolve into a paramagnetic phase.
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Figure 2-7: B-T phase diagram of Cs 2CuC14 for the field along the b and c axes. [12]
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2.3 The Spin Hamiltonian of Cs 2CuC14

In classical model, the spin Hamiltonian of Cs 2CuC14 consists of three parts as fol-

lowing.

7 = -•10 +~ DM + "B (2.2)

7-/o is the Heisenberg exchange energy and can be expressed as following equation.[13]

Ho = [JS R+66
R

+J'(SR SR+61 + SR SR+62) (2.3)

+J"SR SR+63]

The vectors 61 and 52 are same as vectors in the Figure 2-2[13]. The other vector 63

is an out of plane vector between the spins on adjacent layers. R is a position vector

for each site. Therefore, the first term in the equation (2.3) denotes the exchange

interaction between spins on the same chain along the b-axis. The second term

represents the interaction between spins on adjacent chains. The last term of the

equation demonstrates the weak interlayer interactions between spins on adjacent

layers. The values of parameters, J, J' and J" depend on the applied magnetic

field. For a strong field, their values were determined experimentally. Their values

at Ba = 12T are 0.374(5), 0.128(5) and 0.017(2) meV respectively.[6] The interlayer

interaction is very small when compared to inplane interactions. One can directly

find that the Heisenberg exchange Hamiltonian is perfectly symmetric in 3D and, as

a result, has SU(2) symmetry which means that energy does not change when we

rotate every spin by same angle in any direction.

The second term of the equation (2.2) is called Dzyaloshinskii-Moriya(DM) inter-

action. [9][11] The energy for the DM interaction is given by

HDM = - (-1) D. SR x [•R+6 1 + SR+62], (2.4)
R

where D = (D, 0, 0) is associated with the oriented bond between the coupled spins.[13]



The value D = 0.020(2) meV is acquired experimentally. [7] The presence of the DM

interaction makes spins prefer to lie on b-c plane because the direction of D is the

along the a-axis. Also the inclusion of DM interaction reduces the spin symmetry.

Since D is in a-axis, NDM contains rotation symmetry about a-axis. However, there

is no spherical rotation symmetry anymore. The DM interaction allows Z2 symmetry

since it does not change when we change the sign of the each component of a spin.

Therefore, the DM interaction reduces spin symmetry of the Hamiltonian from SU(2)

to Z20 U(1). In the factor (-1)n , n denotes the layer index, and this factor makes

the sign of DM interaction alternates between odd and even layers. Another impor-

tant aspect of the DM interaction is that it prefers specific chirality of the spin order.

When two nearest spin vectors in b-c plane separated by S1 have angle difference 9,

the presence of the DM interaction decides the spin which has to have larger angle.

This chirality becomes a important factor when we decide a sign of the wavevector of

spin wave in the next chapter.

The last term of the Hamiltonian is the Zeeman energy which is given by

RB = - gIPSB'SB, (2.5)
R

in a magnetic field B = (Ba, Bb, Bc).[13] gi is the gyromagnetic tensor g = (2.20, 2.08, 2.30).

[2] This term in the spin Hamiltonian makes spins like to lie along the direction of

the magnetic field. As a result, paramagnetic phase appears for the strong magnetic

field. The presence of magnetic field breaks symmetry again. When we apply a field

along a-axis, it breaks the Z2 symmetry and reduces the symmetry to U(1). When

we put a field in b-c plane, it breaks U(1) symmetry, and the spin symmetry becomes





Chapter 3

Classical Analysis

The classical analysis of the ground states of Cs2 CuC14 starts from the spin Hamilto-

nian in equation(2.2) [13]. For the simplicity, I will neglect the interlayer interactions

since the magnitude of interlayer interactions with parameter J" is much smaller

than that of the in-plane exchange interactions with parameter J and J'.[6] Since the

Hamiltonian parameters J, J' and D may depend on the magnetic field, I used their

ratios at B' = 12T[7] for the analysis. In this chapter, I will discuss the classical

analysis of the ground states of Cs2 CuC14 without external magnetic field first. Then

I will expand our analysis into the ground states with a magnetic field.

3.1 The Ground State of Cs 2CuC14 in the Absence

of Magnetic Field

When there is no magnetic field in the system, we can eliminate the Zeeman energy

term from the equation(2.2) [13]. The resulting Hamiltonian has following shape.

1H =Y [JSR SR+6 1+6 2
R

+J'(SR. SR+6, + SR SR+S2) (3.1)

_(_)n.D SR x [SR+61 + SR+6211]]



From now on, I will set n = 0 for the simplicity of expressions.

The Figure 3-1 shows the unit cell of the anisotropic triangular lattice of Cs2 CuC14.

Black points denote the spin sites. The paths for the exchange interactions of the

unit cell are drawn with solid line. Each of the four points in the unit cell has its

dimensionless site vector marked by R1. The DM interaction favors state in which

Ry(1/2, 1/2)
•RW 1.....,2, J ....jr

,'O)
· I

I I01/i
pim ,n-

w1~

~q.

C

/

Figure 3-1: The unit cell and interaction paths of the triangular spin lattice of
Cs 2CuC14.

spins lie in the b-c plane as we have mentioned above. Since there is no preferred

direction of spin vectors in Flo of equation (2.4), without magnetic field, every spin

lies in b-c plane because of the DM interaction. Since the spin system has U(1)

symmetry and every spin sites are isotropic, we can assume that the spins have spin

wave structure with some wavevector Q = (Qb, Qc). Thus the assumed model for the

spin configuration can be written as follow.

SR = S(cos(Q -R + a)b + sin(. -R + a)6) (3.2)

S is the length of a spin S = 1/2. Here, we can make a prediction on Q. Since the

triangular lattice plane has symmetry against the b-axis, Qc = 0 is expected for the

ground state. The Figure 3-2 shows the spin configuration for the ground state of the



model with Qb = 7r/3 and Qc = 0 in the absence of a magnetic field.

Figure 3-2: The spin configuration of the classical model without magnetic field.

The energy of the unit cell can be derived directly by putting (3.2) into the

Hamiltonian. With set up of a = 0 and choices of Rs as in Figure 3-1, energy can be

written as follow.

E 1 1,COS(b) Cos Qb c' + cos Qb Qc)E = -Jcos(Qb) +OS4 4 2 2 2 2
-ID sin ( • + + sin Q b  Q)) (3.3)4 2 2 2 2

The factor 1 is from the square of the length of a spin S = 1/2. Minimizing this

function of Q with reported ratios of J, J' and D[6][7] gives Qb = 3.48 and Qc = 0.

As expected already, the wavevecotr of spin wave Q is along the b-axis. This quantity

means that two spins on sites separated by distance nb, where b is the spacing of lattice

in b-axis, in b direction have angle difference of n x 3.48 radian.



3.2 The Ground State of Cs 2CuC14 in a Transverse

Magnetic field

In the presence of a transverse field along the a-axis, spin Hamiltonian becomes

t=Z [JR. SR+6 ,+6 2

R

+J'(SR . SR+61 + SR SR+62)

-D -SR x [ R+61 + SR+62]

-gaInBa'S•]. (3.4)

Since the presence of a field along the a-axis does not break U(1) symmetry, the

projection of the spins onto the b-c plane stays same. However, a magnetic field favors

spins along the direction of the field. Therefore the result configuration becomes a

cone with its axis pointing a-axis. This cone state can be written as follow.

SR = -(cos 0 + sin 0 cos(• . R)b + sin 0 sin(Q -.)8) (3.5)

Here, h/2 cos 0 is the height of a cone. In this state, spin directions at different sites

form a cone with its axis pointing a-axis. The value of 9 can be expressed by a

function of Ba when we minimize the following unit cell energy in (3.6).

E = J sin2 0cos(Qb) + sin2 COS + cos Q
4 4(c 2 2 )2 2//

sin2  in b + sin Q- 2 B 2 a COS 0 (3.6)

Since the addition of sin 0 term does not change the dependence of energy on Q, the

value of Q stays same as in plane phase. Minimizing this equation for 0 gives,

cos 0 = - (3.7)
J cos Qb + 2J' cos - - 2D sin (3.7)



However, this classical result does not agree nicely with experimental results. The

disagreement is described in the Figure 2-3 (a). The dashed line marked by "Mean.

field" represents this classical result where the magnetization(oc cos 0) is proportional

to Ba. For more accurate calculation, we have to use a Hamiltonian with quantum

effects.[7] The exact treatment of the quantum Hamiltonian gives Ba = 8.36T[6]

where the reported experimental result is 8.44T. The small difference between these

values are due to the neglected interlayer interaction. Since there is a large difference

between the classical result (3.7) and experimental results, the absolute value of

critical field strength is meaningless in classical calculation. Therefore, in the rest of

this paper, I will use the notation h' for the renormalized field hi = BiIB", where

B's are the field strengths where the ferromagnetic states appear.

3.3 The Ground State of Cs 2CuC14 in a Longitu-

dinal Magnetic Field

The ground state of Cs2 CuC14 with a longitudinal field shows more complexity than

the ground state with a transverse field. There is no simple model which agrees well

with experimental results for all range of field 0 < h < 1. However, the tilted cone

approximation gives a good agreement with numerical calculation. [13]

SR = - [ (sin 0 cos(Q R) cos77 + cos 0 sin q)a^

+ sin 0 sin(Q. -R) (3.8)

+(cos 9 cos 77 - sin 0 cos(Q - A) sin 77) ]

Vector (3.9) represents a cone spin configuration which tilted at an angle r to the

c-axis and has a height cos /2. The more detailed analysis of spin configuration

with classical Hamiltonian with a longitudinal field will be discussed with results of

numerical calculation in the next chapter.





Chapter 4

Numerical Calculation

To investigate the ground state structure of Cs2 CuC14 in the presence of magnetic

field in all direction, I calculated spin configurations by minimizing classical energy

functions with or without quantum fluctuation effect. The system used in numerical

analysis consists of 100 unit cells, 10 by 10 spin lattice, with open boundary condition.

For the Hamiltonian, I chose the ratios J/J' = 2.92 and D/J' = 0.156 which are based

on the experimental results in a strong magnetic field.[6] I neglected the interlayer

interactions. Since the classical energy functions still have a U(1) symmetry with a

magnetic field along a-axis, the spin configurations with B' and Bb can represent all

spin configurations with magnetic fields in any directions. Although there is a slight

difference in scales because of the gyromagnetic tensor, the basic spin configuration

phase diagrams become identical to the Ba-Bb phase diagram after a renormalization.

Therefore, I chose the free B a and Bb as variables used to investigate spin structure

and axes for the resulted phase diagram.

4.1 Ground State Spin Configuration of Cs 2CuC14

in Classical Model

First, I numerically obtained spin configurations with classical model which fixes a

spin length S = 1/2. The results of the numerical calculation is illustrated in the



phase diagram in Figure 4-1 There are two main phases in the spin configuration for

0.9 2nd order

S2nd order Ferromagnet88~' -2nd order
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UJ.4 .:
0.3 -0.2

1 st order
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Figure 4-1: Ba-Bb phase diagram of the ground state of Cs2 CuC14 derived by numer-
ical calculation without including quantum fluctuation effects

the ground state of Cs2 CuC14 with fixed spin length. For a strong magnetic field in

any direction, every spin lie along the direction of the applied magnetic field and a

ferromagnetic property appears. For a weak field, a tilted cone phase discussed in

Section 3.3 appears. In the field along the a-direction, the axis of this cone points at

the a-direction and its height which is correspond to a magnetization is proportional

to the applied magnetic field. The transition from the ferromagnetic phase to the

tilted cone phase is second order transition and breaks the translation symmetry of

ferromagnetic phase. However, with a field purely in b-direction, the axis of the cone

does not point at b-axis. It has a small angle r to b-axis as described in equation (3.9).

This is a result of DM interaction which prefers spiral projection of spins into the b-c

plane. The direction of the tiltedness can be & or -a with Ba = 0. Therefore, Z2

symmetry is broken in this region. However, when we add B a too, the side in which a

cone is tilted is decided by a sign of B a. As a results, there is a jump in the function

of 77(Ba) across the line Ba = 0, or b-axis as marked by thick solid line in Figure 4-1.

2nd order

/A:



Above the b-axis, r has positive value and below the b-axis, 7r has negative value. In

contrast, the axis of a cone changes smoothly cross the a-axis. The field strengths at

the phase boundary ha and h b have ratio h' /h = 1.05 which is consistent with the

ratio of the components of the gyromagnetic tensor, ga/gb = 1.06.[2] The ratio from

the experimental result is 8.89(T)/8.44(T) = 1.05.

The spiral or distorted cycloid, planar phase which appeared for small Bb and

B a = 0 in previous experiment[12] and numerical calculation[13] does not appear in

this model. To investigate the planar spin configuration, change of the length of spin

by quantum fluctuation is required.

4.2 Ground State Spin Configuration of Cs2CuC14

in Classical Model with Quantum Fluctuations

The effect of quantum fluctuations can be approximately represented by simply

adding a term a(S- IS 2)2 to the Hamiltonian in equation(2.2) with an ansatz which

does not have a fixed length of spins. The coefficient a determines the degree of the

effect of quantum fluctuations. Small value for alpha results huge fluctuations in spin

lengths. In numerical calculation, I used two setups with a = 1 and a = 100. I

renormalized the length of the spins with S = 1 for the simplicity of calculation. The

ansatz I used basically generated from a spiral and a cone phase.

Sa(R) = Sa cos(Q" .R) + S sin(Q.' R) + Sa

Sb(R) = Si cos(•.R) + Sb sin(Q.' R) + Sf (4.1)

Sc(/) = Sc cos(Q.ý ) + S, sin(Q. R) + Sr'

I calculated the values of free parameters Sj (i = a, b, c; j = 1, 2, 3), Q, and Qy which

minimize the Hamiltonian. The vector S3 = (S, Sb3, S,) describes the height and

the direction of the axis of a cone. Q describes the wavevector of the spin wave.

In this model, the resulted spin configuration with a magnetic field along the a-axis

is identical to the spin configuration appears in the classical model in the previous



section. As illustrated in Figure 4-2, the magnetization along the a-axis, which is

represented by S,, is again proportional to Ba. However, in this case the value of S3

exceeds S(= 1) and keeps increasing until the energy term of quantum fluctuations

grows faster than the decrease of the Zeeman energy. At ha = ha there is a second

S3vs. b with a=1 B =0.0
a b

ha air

Figure 4-2: The plot of magnetization Sa vs ha

order phase transition from the cone state to ferromagnet state. Where the transition

happens, there is a kink in the plot of magnetization into a-direction as illustrated in

Figure 4-2.

The properties of the ground states with a field along b-axis is more complicated.

The plot of the first and second order derivatives of the ground state energy against

the magnitude of the applied magnetic field shows that there are two second order

phase transitions at hb - h~ and hb = 0.23h b . As it is shown in Figure 4-3, there

dE/dBb s Bb with r=l B"=0
u.u01

0.009
0.008

-0.00

0.003eom

0 002

0O.10.061

b bh cr

d2 EIdBb2 vs Bb with c=1 Ba0O

-0 0.2 0.4 0.6 0.8

hbhbr

Figure 4-3: the plots of dE/dBb and d2E/d(Bb)2 vs hb.

1 1.2



are two jumps in second order derivatives. To figure out whether the transition point

at hb = 0.23hb, is a critical point, the comparison between the plots of the first order

derivatives of ground state energy with ha = 0 and ha # 0 is needed. The average

dE/dBb VS Bb with &=1 Ba...0 dEldBb VS Bb with <<=1 Ba=00001Bb

S2,2-e
0 2.1

2

0.215 0.22 0.225 0.23 0U235 0.24

hb ibCr

3 o E/dx V b Ota= B30d/ bvsBbvt =1B=001B
.10 ~1 n c

0.216 0.22 0.225 0.23 0.235 0.24

hbc
b
cr

Figure 4-4: the plots of dE/dBb with B a = 0 and B a = 0.0001BA.

slopes of the plots in Figure 4-4 are reduced for the close look. As it is illustrated in

the figure, the kink of dE/dBb with no field along the a-axis becomes smooth when

field along the a-axis is turned on. It shows that the transition point at ha = 0 and

hb = 0.23h', is a critical point.

The result of S' with a magnetic field along the b-axis is described in Figure 4-

5. It shows that there is a planar phase in weak field range. As it is described in

S3 vs Bb with c Ba=

0.06

004

0.02

0

-002

-0.04

-0.06

02294 0.2296 0.2298 0.23 0.2302 0.2304 0.2306 0.2303

hbhbcr

S3 vs Bb with a=1 Ba= 0.01 Baa cr

0.215 0.22 0.225 0.23 0.235 024 0.245 025 0.255

hb/h bcr

Figure 4-5: (a) The plot S3 vs hb for ha = 0 and (b) the plot S3 vs hb for ha = 0.01h a .

Figure 4-5 (a), a planar phase evolves to a tilted cone state with phase transition at

around hb /h = 0.23. In the planar phase, the collection of spin vectors from each

site makes a circle centered at (0,b,0) for non zero b. However, if a magnetic field

23

S2.2

S2.1

19

18

XY



has component in a-direction, the planar phase disappears as illustrated in Figure 4-5

(b). In this case, the value of Sa3 changes smoothly and there is no phase transition.

Following plots in Figure 4-6 shows the different properties between the planar

phase and tilted cone phase. Each dots in the plot shows the result of one numerical

E vs Ba with a=1 Bb=0.16Bb E vs Be with a=1 Bb=0.33Bb
cr Cr

-6.595

-6.6

'6.M5

w W
-6.62

-6.625

-6.63

-0.02 -0G015 -0.01 -0.005 0 1005 0.01 0.015 0.02
ha/ha ha/ha

cr cr

Figure 4-6: (a) The plot of energy versus h' for hb = 0.16h b, and (b) the plot of
energy versus ha for hb = 0.33hb.

calculations which include many local minima. When points with lowest energies are

connected, the curve describing ground state energy is created. There is no crossing

lines of energy in (a) for a weak magnetic field where the spin configuration becomes

planar at h' = 0. It means there is no phase transition along this line in phase

diagram. However, for a intermediate field strength which has tilted cone state for

ha = 0, there are two energy states which cross each other at ha = 0, and this means

that a first order transition happens on b-axis. When we see the plot of Sa versus ha

this property can be clearly understood. Two plots in Figure 4-7 shows the change of

Sa against a magnetic field in a-axis across the b-axis for two points. The connected

solid lines describe the S 3 values with ground state energies. The first one shows that

when B' crosses 0 at weak field in b-direction, the tilted angle changes smoothly from

positive value to negative value. However, in (b) there is a jump of the values of S 3

when B a changes are made for intermediate Bb where only tilted cone state exists.

The discontinuity of Sa3 is decreased as Bb approaches the critical point where spin

configuration transforms into a ferromagnet.

The Figure 4-8 shows the S3 and energy for a strong field hb = 1.22h, where
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Figure 4-7: (a) The plot of S' versus ha for hb = 0.16h r and (b) the plot of S' versus
h a for hb = 0.33h b .cr"
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ground state energy versus ha and (b)the plot of S'

spins lie along the direction of magnetic field. As it is shown in the figure, S3 is

proportional to the component of magnetic field in a-axis, and ground state energy

changes smoothly. Thus, it can be inferred from the above results that there are first

order transition lines along the b-axis for 0.23hr < hb < hC. In other words, the first

order phase transition across the Bb axis appears for 0.23hb < hb < hr .

The plot of ground state energy in Figure 4-9 helps to investigate the character-

istics of phase transition at the both ends of the first order phase transition line. As

it is appeared in the plot, there are three phases for a field along the b-axis. Point

A denotes where planar phase transforms into tilted cone. B indicates the transition

point where tilted cone evolves into ferromagnetic phase. The energy splittings in

both transition point indicates that both of the phase transitions are second order

I
I
I
I
I
I
I
I
I
I
I
I



transition. The above results can be summarized by the phase diagram shown in

Figure 4-10. The dashed line for planar phase indicates that there is no phase tran-

sition across the line. The thick solid line in b-axis is a first order transition line

and starts from a critical point at hb = 0.23h b. For the case of alpha = 1 the ratio

har/h r is almost equal where the reported ratio is 0.95[12]. It is due to the increasing

magnetization of the ferromagnet phase for h>ho. as explained above. The second

order phase transition from ferromagnetic phase to cone or tilted cone phase breaks

the translation symmetry. The second order phase transition from the spiral phase

to tilted cone phase on Bb axis of the phase diagram breaks the Z2 symmetry of the

spin configuration. Therefore, all of the cone, ferromagnetic and spiral phase have

different symmetry properties in their spin configurations. As a result, although our

numerical calculation could be applied only for the zero temperature ground state,

we can expect that all of these phases appear for a finite temperature condition in

real experiments.
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Figure 4-9: The plot of the ground state energy versus Bb for Ba = 0
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Figure 4-10: Ba-Bb phase diagram of the ground state of Cs2CuC14 derived by nu-
merical calculation with quantum fluctuation effects, a = 1

By setting a = 100, stronger restriction on quantum fluctuations can be made.

With a = 100, the second order transition at A of Figure 4-9 appears at weaker

field strength. The transition point is about 0.15hr. Since the effect of quantum

E vs Bb with a=100 Ba=0

0.12 0.13 0.14 0.15 0.16 017 0.18

hb rb
hCF
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Figure 4-11: (a) The plot of the ground state energy versus
(b) the plot of the Sz3 versus Bb for B a = 0, a = 100

Bb for Ba = 0, a = 100

fluctuation is too small for large a, the center of the circle is very close to the origin.

Therefore, < S, > is nearly zero and the energy of planar phase almost does not

change much by Bb. The resulting phase diagram for a = 100 is described in Figure 4-

12. When this phase diagram is compared with a = 1 and the phase diagram of simple
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Figure 4-12: Ba-Bb phase diagram of the ground state of Cs2CuC14 derived by nu-
merical calculation with quantum fluctuation effects, a = 100

classical model in previous section, it is reasonable to have smaller range of planar

phase for smaller quantum fluctuations on spin length, given by large a.

4.3 Order Parameter

The phase diagram of the ground state of Cs2CuC 4 in Ba and Bb can be understood

by two order parameters n' and cos 0 with potential U given by,

U = a cos2 2 - b(nBa + nbBb) cos 0 + c(n 2 + n1) + d(n 2 + n2) 2  (4.2)

where n' is a unit vector which indicate the direction of the axis of a cone which consists

of spins in each site. cos 9 denotes the height of the cone. Since the magnetic field

used in numerical calculation has no unit, we can renormalize the field strength as

B' = B/B, where B9 is the transition point between the cone phase and ferromagnet

with a field along a-axis. In this unit, B b is also 1.00.

The ratios between coefficients can be derived from the location of phase tran-

sitions. Since the minimization of the potential function requires nc = 0, U can be



simplified as follow by setting a= 1.

U = COS 2 0 - b(naBa + nbB b) cos 9 + cn2 + dn4 (4.3)

When Bb = 0, potential function has its minimum value for cos 0 = bBa Using the

fact that cos 0 = 1 at B a = 1, b is 2.

For BI I, U becomes a function of two order parameters nb and cos 0.

U = cos2 0 - bnbBb cos 0 + cn2 + dni (4.4)

This function has minimum value at nb = 0 when (Bb)2 is less than c. Using that

nb is zero for Bb < 0.23Bbr = 0.23 with a = 1, the value of c is determined as 0.053.

For large Bb, minimization of U for cos 0 gives,

1 (bBb)2
nb (-2c+ ) (4.5)4d 2

Since nb is 1 when B b = Br = 1, d is 0.69. Therefore, the potential as a function of

cos 9 and nb for a field in a-b plane,

U = cos 2 0 - 2(1 - riB2 a B+ nbB b) cos 0 + 0.053n 2 + 0.69nri (4.6)

The interpretation of each terms in the potential function can be made by comparing

to the original Hamiltonian. The length of a spin in b-c plane is proportional to

sin 2 0 = 1 - cos 2 0. Therefore, the first term describes the energy from exchange

interactions. The second term represent the Zeeman energy. The third and fourth

term requires nb and n, be small which means they prefer spins on b-c plane. Thus,

these terms describes the effect of DM interaction with small coefficient. The potential

function in equation (4.6) predicts that in the boundary of tilted cone phase,

naBa + nb b = cos = 1. (4.7)



This condition suggests a ferromagnet phase where spins lie along the direction of

n = (Ba, Bb, 0).



Chapter 5

Conclusion

In this paper, I studied the spin configuration of the ground state of Cs2CuC14 in

the presence of magnetic field. The numerical result for the spin configuration with a

magnetic field along the a-axis consists of a cone phase for low field and ferromagnetic

phase for high field which agrees with the experimental result. Ground state with

longitudinal field has three phases which are separated by second order phase transi-

tions. For weak field of hb < 0.23hb, the spiral planar phase appears. However, the

phase appears with our model is not a distorted cycloid but a circle with a slight shift

of center into the direction of field. For intermediate field range, 0.23 < hb/h' < 1,

the tilted out of plane cone phase appears and breaks the Z2 symmetry. The phase

with no long range order which appeared in previous experiments did not appear in

this model. For high field of hA < hb, ferromagnetic phase appears. In the presence

of both of longitudinal and transverse field, the spin configuration is a tilted cone for

a low field and becomes a ferromagnetic phase for a high field. The phase transition

between these two states is a second order transition. This result can be compared

to [13]. In [13], the transition between a distorted cycloid phase and phase for the

intermediate field is a first order transition. However, the numerical calculation pre-

sented in this paper shows slightly different features. This difference is due to the

neglecting the interlayer interaction and newly added term in our Hamiltonian which

represents the quantum fluctuation effect. It will be also interesting to investigate

the spin configuration with longitudinal magnetic field with a new Hamiltonian with



additional terms which breaks U(1) symmetry since the experimental result shows

different phase diagrams for two longitudinal field directions b and c. Moreover, the

numerical calculation with those additional terms and interlayer exchange interactions

will be helpful to understand the real magnetic phase diagram.
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