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Abstract

Two approaches based on first-principles method are developed to qualitatively and
quantitatively study electronic structure and phase-coherent transport in molecular
and nanoscale electronics, where both quantum mechanical nature of electrons and
dimensionality of systems play the critical roles in their electronic, magnetic and
optical properties.

Our first approach is based on Green's function method with ab initio quasi-
atomic orbitals within Landauer formalism. To efficiently and accurately apply
Green's function method, we develop a minimal basis-set of quasiatomic orbitals
from plane-wave density functional theory (DFT) results. This minimal basis-set re-
sembles quasi-angular momentum characteristics in solid state systems and it further
validates Slater's original idea of linear combinations of atomic orbitals. Based on
their ab initio tight-binding matrices, the accuracy, efficiency and stability of our
scheme are demonstrated by various examples, including band structure, Fermi sur-
face, Miilliken charge, bond order, and quasiatomic-orbitals-projected band structure
and quasiatomic-orbitals-projected Fermi surface. Remarkably these quasiatomic or-
bitals reveal the symmetry and chemical bonding nature of different molecular, surface
and solid systems. With this minimal basis-set, quantum conductance and density of
states of coherent electron transport are calculated by Green's function method in the
Landauer formalism. Several molecular and nanoscale systems are investigated in-
cluding atomic wires, benzene dithiolate, phenalenyl dithiolate and carbon nanotube
with and without different types of defects. Conductance eigenchannel decomposition,
phase-encoded conductance eigenchannel visualization, and local current mapping are
applied to achieve deeper understandings of electron transport mechanism, including
spin dependence, dimensionality dependence, defect dependence, and quantum loop
current induced by time-reversal symmetry breaking.

Our second approach naturally arises due to the fact that electron transport is an
excited state process. Time-dependent density functional theory (TDDFT) is a funda-
mental approach to account for dynamical correlations of wave functions and correct
band gap in DFT. In our second approach, we mainly focus on the mathematical



formulation and algorithm development of TDDFT with ultrasoft pseudopotentials
and projector augmented wave method. Calculated optical absorption spectrum gives
correct positions and shapes of excitation peaks compared to experimental results and
other TDDFT results with norm-conserving pseudopotentials. Our method is further
applied to study Fermi electron transmission through benzene dithiolate molecular
junction sandwiched by two gold chains. It is first verified that group velocity of Fermi
electron in the gold chain obtained by TDDFT agrees with that from band structure
theory. Then under rigid band and zero bias approximations, a tiny Fermi electron
wave packet from the chain is injected into the molecular junction. Transmission
coefficient evaluated after the scattering process is around 5%. This is in agreement
with the result from Green's function method. The two methods also show similar
characteristic propagation channel. This nice agreement verifies that Green's func-
tion approach based on DFT reaches the TDDFT result without dynamical electron
correlations in the linear response region.

With further development, our quasiatomic orbitals can serve as a minimal basis-
set to combine non-equilibrium Green's function and TDDFT together with GW
quasi-particle corrections. The unified method will provide a more accurate and
efficient way to explore various molecular and nanoscale electronic devices such as
chemical sensor, electromechanical device, magnetic memory, and optical electronics.

Thesis Supervisor: Sidney Yip
Title: Professor of Nuclear Science and Engineering
and Professor of Materials Science and Engineering
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Chapter 1

Electronic structure of solids

1.1 Many-body problem of atoms

The nature never stops astonishing us from the very big, such as the universe, to the

very small, such as atoms. It is due to the fact that the physical world consists of

numerous interacting many-body systems over different length and time scales. The

complexity of the interacting many-body problem at different scale gives rise to the

emergence of new types of phenomena and patterns.

A simple example is the emergence of quantum mechanics. Although classical

mechanics had been established for a long time, it was not until the beginning of the

last century that people became aware of a whole new world - the world of quantum

mechanics, where wave nature of particles such as electrons, plays an important role

in both ground state and excited state properties. This small world has become the

playground of condensed matter physics, modern chemistry, nano-materials science,

and etc. Most problems in the above areas are many-body problems involving both

nuclei and electrons. Interacting many-body system of nuclei and electrons is governed

by Schrbdinger equation, which is the central equation of quantum mechanics. For

a given set of nuclei at position R - {RI} and electrons at position r - {ri}, the

Schrddinger equation of the system without considering the relativistic effect is

H/I!(r, R) = ET(r, R), (1.1)



where H is the Hamiltonian operator, E is total energy and XJ(r, R) is many-body

wave-function of all nuclei and electrons. H contains their kinetic energy and inter-

acting potential operators,

H = He + Hn + H•e. (1.2)

Without taking account of external electric and magnetic fields, electron Hamiltonian

He, nucleus Hamiltonian H!I and electron-nucleus interaction Hamiltonian Hen are

defined in the following equations

Ne h2 Ne Ne 2

He(r) = Te + Ve = - V2 + ZZ : (1.3)
i=1 2m i=1 j>i Iri - rj
NA N 2  Nn Nn ZiZje2

Hn(R) = Tn + Vn- - -2M ~ R - Rj (1.4)

Nn Ne Z7e2
Hen(r, R) = Ven = - E E - (1.5)

I=1 j= il J

h, m, e, MI, ZI, Ne and N, are Dirac constant, electron mass, electron charge,

nucleus mass, nucleus charge, number of electrons and number of nuclei respectively.

The opposite sign of electron and nucleus's charges are taken into account by the

minus sign in Eq.(1.5). Eq.(1.1) looks very simple at first glance. It is nothing

else but kinetic energy and Coulomb interaction. However, currently the largest

number of many-body system that people can solve is no more than one hundred. To

accurately solve this equation for many-particle system at larger scale without any

approximation is extremely challenging. Therefore, to solve Eq.(1.1) efficiently with

reasonable accuracy, various physical approximations have to be introduced.

1.1.1 Born-Oppenheimer approximation

The first approximation is Born-Oppenheimer (BO) approximation[1, 2] or adiabatic

approximation. Since nucleus mass M, is much larger (more than 1,800 times) than

electron mass m and nucleus velocity is about (m/Mi) 3/4 of Fermi electron velocity,

nucleus motion and electron motion can be often treated as two decoupled motions.



Under this approximation, electrons adjust their positions adiabatically with respect

to nuclei's configuration, and thus many-body wave function can be written as the

product of wave functions of nuclei and electrons. That is,

T(r,R) = E 4)n(R)eFn(r,R), (1.6)
n

where (Dn (R) and Xen (r, R) describe the states of nuclei and electrons respectively,

subject to the orthogonality condition,

(4DlAm) = ,n,m (1.7)

(penIem) =n,m. (1.8)

With Eq.(1.6), (1.7) and (1.8) it is easy to prove that many-body wave function is

normalized to be 1, which means total probability to find the given set of nuclei

and electrons in the whole space is one. Since operators He and Hen only affect the

electronic wave function 'en(r, R), Eq.(1.1) can be re-written as

ET (r,R) = (He + H + Hn en) T (r,R) (1.9)

= Hnl(r,R)+ EýZn(R)[(He + Ht•e) en (r,R)] (1.10)
n

Assuming Een is eigen-energy of electronic wave function en (r, R) subject to the

Hamiltonian operator He + Hen, we then have a set of equations to replace Eq. (1.1),

(f•n + Een - E)•n(R)Ten(r,R) = 0, (1.11)
n

(fte+ft en - Een)Jen(r,R) = 0. (1.12)

In a more simple form they are

E = EE, (1.13)

S+Eennn(R) = E (R), (1.14)
(/fn+ Een)4I)(R) =En(D(R), (1.14)



He + en) en(r, R) =Een'en(r, R),

where En is eigen-energy of nuclear wave function In(R).

With the BO approximation, the original Schrodinger equation for interacting

many-body system including nuclei and electrons is transformed into a set of decou-

pled equations of motion for nuclei and electrons respectively. It greatly simplifies

the original problem and the effect of a given set of nuclei at {RI} has been incorpo-

rated into electronic Hamiltonian as a fixed set of parameters. However, Eq. (1.15)

still tells us nothing about how to solve this equation efficiently and accurately. The

remaining problem is still a many-electron system. Meanwhile, the Pauli exclusion

principle for fermions needs to be considered.

1.1.2 Fock space for N-identical-particle system

To include the Pauli exclusion principle, we need to first establish the Fock space -

the Hilbert space of N-identical-particle system.

Identical particles: bosons and fermions

The objects here that we deal with are atoms and electrons. They are identical

particles which can not be distinguished from each other by their intrinsic properties,

such as mass, charge and spin. That means any physical measurement on many-body

state T of identical particles and permuted (exchanged) many-body state P 3 'I will

have the same results. Here permutation operator PAij is defined as exchange operation

on the positions of particle i and particle j,

PjT(ri,r2,'",rirj,-.',rN) = T(rl,r 2,...,r i,r ,. .. ,rN). (1.16)

The above statement implies that Hamiltonian H of many-body system and permu-

tation operator PSi commute with each other: [H, Pij] = 0. Many-body state T is

(1.15)



eigenstate of H and Pij for any i and j simultaneously,

PijIF(ri, r2, r, .i rN ) = pijN(ri, r2, . . . ..j.ri, rN) , (1.17)

where Pij is eigenvalue of operator Pi. It is easy to see that many-body state after

two successive permutations will be the same as original many-body state,

A 2 -= pjJ = qj, (1.18)

which gives

Pjj = +1. (1.19)

Therefore, pij divides identical particles into two groups,

Pij = +1: Pjj = +I (bosons), (1.20)

Pij = -1: Pij = = -I (fermions). (1.21)

The antisymmetry of fermion wave function in the above equation gives rise to the

Pauli exclusion principle.

Fock space for bosons and fermions

Up to now we are still dealing with many-body wave function I as a function of

all the space spanned by N interacting identical particles. However, a good starting

point will be a system consisting of N non-interacting particles. The state of each

identical particle is assumed to be given by single-particle Hilbert space - an element

in a Hilbert space X. The Fock-space of N identical particles is the Hilbert space to

describe the space spanned by an unknown number of identical particles. Then the

Fock space is the direct sum of tensor products of all N single-particle Hilbert spaces

7-i,
N

•F = H ,," n ,  (1.22)
n=O

29



where S, is either the symmetrization operator for bosons with v = +1 or the anti-

symmetrization operator for fermions with v = -1. A state in Fock space, for exam-

1le, can be written as

JII) =- 101, 02,'' O N), (1.23)

It is a good basis for bosonic system, but it is not a good basis to represent N-

fermion system since permutation of any two particles in the above many-body state

will not give anti-symmetric wave function. However the Slater determinant of all

single-particle states can fulfill the requirement of the Pauli exclusion principle. The

more elegant way to describe the Fock space of fermions is to use second quantization

representation.

1.1.3 Second quantization

The original quantum mechanics is expressed in first quantization, where particles

are treated as quantum wave functions and their surrounding environment is taken

to be classical field. However, it is much more convenient to describe the interacting

many-body fermion system and their quantum statistics in second quantization.

In second quantization, the environment of many-body system is further quan-

tized. Classical fields in first quantization become quantum operators acting on quan-

tum state to create new particles or destroy existing particles in the system. Quan-

tum state of the vacuum is often denoted by 10), which stands for a state containing

zero particle. Vacuum state is the starting point of any other quantum state which

contains particles. Quantum state of an interacting many-body system is obtained

through creation or annihilation of particles with single-particle creation operator at

and annihilation operator aj,

Imiri2, ) = aic4...l0). (1.24)

which describes number of nl particles in single-particle state 11, 0, 0, 0...), number

of n2 particles in single-particle state 10, 1, 0, 0. - - -) and so on. Quantum statistics



of bosons and fermions are embedded in the commutation and anti-commutation

relations of creation and annihilation operators. For bosons, at and ai commute with

each other

[as, a;] = aia - a= -6(1.25)

while for fermions two operators anti-commute with each other

{a2 , a } = aja + a.a- = Si,. (1.26)

The number of particles in state i is

a = aa. (1.27)

For fermions ni is either 0 or 1 because single-particle state q(riai) can at most hold

one fermion (ai is singe particle spin state) by the Pauli exclusion principle.

One way to construct an N-electron wave function which satisfies the Pauli ex-

clusion principle is the determinant of single-particle wave functions 0(roia). In first

quantization notation, it is

1I (rlal, r 2 2 , .. ,rNo) ( )P P[(rl)(r 2 2) ... (rNN)], (1.28)
VlNV- P

where P is permutation operator defined in Eq.(1.16). In second quantization, how-

ever, we never need to explicitly sum over all the possible permutations of single-

particle state. Similar to Eq. (1.24), an N-electron wave function is written as

nl ,n2, ntN) t ... at 0). (1.29)

The states described in above second quantization notation form the basis vectors of

Fock space F, of N-fermion system.

Once second quantization is applied, immediately Hamiltonian operator involving

multi-body interactions can be represented by annihilation and creation operators.

For example, one-body and two-body Hamiltonian operators are simply reformulated



into

HI = E(i| HI j)alay (1.30)
i,j

and
1

H2  E (ijtH 2Ikl)atajaeak. (1.31)
i,j,k,l

It is obvious that Hamiltonian acting on electron wave function in Eq. (1.15) only

contains one-body and two-body Hamiltonian operators. From now on, we use He as

full electronic Hamiltonian to represent (He + Hen) in Eq. (1.15). Then we have the

following new electronic Hamiltonian of interacting N-electron system in the second

quantization form

t 1

ke =Z(ikHiIj)aiaj + 2 E (ijII2 kl)aaýaalak, (1.32)
i,j i,j,k,l

where

2 Nn Z e2

H1  = Ti+ Ven(r) = V2 - _E (1.33)
2m = RI - riI'

e 2
H2 = Vee(ri, r 2 ) = r 2l (1.34)

In momentum space single-particle plane-wave states will diagonalize the elec-

tronic kinetic energy,

Ck(r) = e-'kr /v. (1.35)

Then the field creation operator which creates an electron at r with spin o is defined

as

q(r) = e-ikrat /V-V. (1.36)
k

1.2 Hartree-Fock theory

With second quantization of many-body electronic Hamiltonian and wave function,

we can continue to solve the Schrodinger equation of N-electron quantum system



with additional approximations beside the BO approximation.

1.2.1 Hartree approximation

The first straightforward assumption in addition to the BO approximation, known as

Hartree approximation, is that the ground state of many-body system is the same as

the ground state of non-interacting system. Then the original interacting many-body

problem is approximately mapped to a non-interacting many one-body problem and

each single-particle state feels the averaged interacting potential from all the other

single-particle states.

First we only consider one-body Hamiltonian Hi = Hl(rju2 ) term in total elec-

tronic Hamiltonian in Eq. (1.32), then we have

He f Hi (1.37)
i

and

ZH!I'(rual, r 2 2,.. ,rNgN) = EIF(rl, r2U2, ... ,r gN). (1.38)
i

Consequently the solution of many-body wave function T(rla , r2a2,..., rgaN), called

Hartree wave function, is the product of all single-particle wave functions,

T(rlal,r 2U2,... ,rNUN) = ¢ 1(r2o2 ) 02(r292 ) ". O (rNNN). (1.39)

Therefore, many-electron Schrodinger equation Eq. (1.38) is reformulated into single-

electron Schrodinger equation,

H!q$ (r au) = Eoi (riui). (1.40)

Then total energy including both one-body interaction term H1 and two-body inter-

action term H2 is written as

1
E = •(q/jHi/¢) + - (i/q5jHI2 100j) (1.41)

i 2 ,j



In second quantization notation, it is

1
E = (i iIi) (a ai) + - • (ij-IH2 ij) (aaj)(atai), (1.42)

i z,3

= -(iHiIi)ni + (ijHi2 j)njni. (1.43)
i ij(i~j)

From the variational principle, the minimum of total electronic energy is the energy

at stationary point in the variational space,

6[E - E E(( kb) - 1)] =0, (1.44)
i

where E1 is Lagrangian multiplier and single-particle state Oi satisfies orthogonality

condition (¢jj¢) = 6jj. It is worth to mention that Ej in Eq. (1.44) is different

from E in Eq. (1.40) which only considers one-body interaction term. Then Hartree

equation for single-particle state ¢i is written as

(ft1 + E nj( |f^2 i) = E I 0). (1.45)
Xjoji)

1.2.2 Hartree-Fock approximation

Hartree equation Eq. (1.45) faces a fundamental problem that many-electron wave

function obtained from the product of single-electron states is not anti-symmetric with

respect to the interchange of any two single-electron states. One simple solution to

this problem is to use the Slater determinant of single-particle states ¢(riai) described

in Eq.(1.28), which automatically satisfies the requirement of anti-symmetry. Then

the expectation value of electronic Hamiltonian He is

E = (xl(rlal,r 2U2, ... ,rNgN) fHe I(rT,1,r202, . .. ,rNUN)) (1.46)

= Z(i I^tli)nj + I (ijI fI2kl)(atatatak). (1.47)
i ijkl



Since ak and a, will only affect Ink) and Inj) respectively, the expectation value of

four creation and annihilation operators can be evaluated,

(atataiak) = (nknlcataalaklnknl) = (Sjl6ik - 5ilJk)nknl (1.48)

Therefore, the Hartree-Fock energy is rewritten into

1

iE = j(i1i)nj + 2 •(ijjIH2Ikl)(Jjik - 6iljk)nlnk (1.49)
i ijkl1

= -(i|Hi1i)ni+ I ((ij|H2 |ij) - (ij|H2 ji))njni. (1.50)
i ii

From the comparison between Eq.(1.50) and Eq.(1.43), it is clear to us that, beside

one-body interaction Hamiltonian (il HIli) and two-body repulsive Coulomb interac-

tion Hamiltonian (ijIH2 ij), Hartree-Fock energy contains another important term

- exchange interaction (ijIH2 ji). Notice that the Coulombic kernel e2/ r - r2

in exchange interaction only involves the distance between two particles. With ex-

plicit expression of single-particle wave function in both position space and spin space

Oi(ro) = oi(r)xj(u), we can further simplify the exchange interaction Hamiltonian

(ij H12 ji) = (&jIH2-2 kj i)(Xi Xj) = 5iaj(ij•2 =ji)"- 6=ij 3(ijIH2|ji), (1.51)

which means exchange interaction only have effect on the interchange of two electrons

with the same spin. Therefore, Hartree-Fock energy is

E = Z(iIHiIi)nj + 11: ((ij| H21ii) - Jo, (ij|H2 )njni, (1.52)
i 21 ij

= (i{Hti)nj + 1 E (Uij - ,jJ, i)njni. (1.53)
i 23

Here Usj and Jij are Coulomb energy and exchange energy respectively,

Uij= (ijIH2 ij), (1.54)

Ji = (ijIH 2 ji). (1.55)



Similar to the derivation of Hartree equation - Eq.(1.45), we apply variational princi-

ple to obtain Hartree-Fock equation for Hartree-Fock Hamiltonian and single-particle

states,

(H-1 + njZ(Oj -IH2 10j)) I 0) - Z_•,•nj(Oj Ik2 10) I0j) = Ej I0). (1.56)
j J

Remarkably, Hartree-Fock approximation treats exchange interaction between like-

spin particles exactly. More importantly this exchange effect is attractive with neg-

ative energy, which means electrons with the same spin will attract each other. To

clearly see it, let us do more analysis on the second and third terms of Eq.(1.56) in

first quantization. The second term Ej nj(j1 H2 1j) ki) is pure repulsive Coulomb

interaction due to the presence of electron density from each single-particle state

Ij) with p (r') - Ej nj¢0(r')qj(r'), while the third term - j Z a nj (j 11I2 ) IOj)

introduces an extra charge density due to exchange of two like-spin particles. Simi-

lar to p (r'), we can reformulate the third term to see this exchange charge density

explicitly,

0n) 1 0jI) (1.57)
- 6, •,-nj(Ojjftl¢•)jCj) =- E6Gri•j n ¢ (Oj I H2 I Oi) L-(15

i0i

= -E ~ nj ft2  ) ij), (1.58)

therefore, exchange density for single-particle |i) is

0(r) j(r') j(r) O(r')
p (r, r') = - 6,,,j (r) (ri(r) (1.59)

Here are several remarks for the above results:

1. When j = i, the term in p (r, r') will exactly cancel the term in p (r), therefore

Hartree-Fock approximation automatically avoids unphysical self-interaction er-

ror.

2. In Hartree-Fock approximation, each single-particle state li) "sees" the same



Coulomb interaction potential and different exchange potential since the latter

depends on the position of the state ji).

3. It is easy to show that integration of both Coulomb charge density and exchange

charge density over r' will be equal to -1,

J p (r')dr' = pX (r,r')dr'= -1. (1.60)

p (r, r') (negative sign) attracts particles with the same spin and creates an

exchange hole, while Coulomb charge density p9(r') (positive sign) is always

repulsive and it keeps electrons away from each other no matter if they are in

the same spin state or not. The probability to find two electrons in any two

single-particle states at the same position r and the same spin a is zero. This

is given by

[p (r') + p (r, r')] (1.61)

-- [njo(r')Oj(r') - Jo1 jnj *(r 0; ()j(r)¢ (r') (1.62)

= nj q(r) j(r) - nj¢ (r) j(r) (1.63)

= 0. (1.64)

The above result is very important since it points out that under Hartree-Fock

approximation we will have an exchange hole around the electron at position r

for filling other like-spin electrons nearby. This exactly comes from the Pauli

exclusion principle.

4. In Hartree-Fock approximation the Coulomb energy term is always positive and

increases eigen-energy Ei, while the exchange term is always negative and lowers

eigen-energy Ej.



With the use of pX(r, r') and pC(r), we have a more simplified version of Hartree-

Fock equation e.+ ÷ =F
+ Ven +1/F VHi) Eij i , (1.65)

where VHý is defined as

r p (r') + pX(r, r')
Vei(r) = dr' (1.66)

Ir-r'I

Eq. (1.66) explicitly shows that original complicated electron-electron interaction Hamil-

tonian in Eq.(1.56) can be viewed as orbital-dependent effective electron-electron po-

tential. However it will be more convenient for practical calculations to have an

orbital-independent effective potential. To achieve this goal, Slater [3] proposed an

averaged exchange charge density fix(r, r') for single-particle state i) at position r

by averaging p (r, r') with charge density of state ji) at position r as the weighting

factor
Ei pi(r)p (r, r') (1.67)

ix (r, r') = r(1.67)
E pi (r)

with single-particle density pi(r) = 0*(r)Oj(r). Then the new effective potential for

state ji) in the modified Hartree-Fock equation does not explicitly depend on state

Ii).
It is important to notice that the sum of all the eigen-energies Ej of occupied

single-particle state ji) is not equal to total energy E(N) of N-electron system with

N = Ej ni. Instead they are related by the following equation

E(N) = njEj - E (Uij - 6o,,Jij)njni, (1.68)
i 2i

with

E = (il // 1 Ii) + (UVi - 60,i Jij)nj. (1.69)

The physical meaning of Ei is given by Koopmans' theorem by adding or subtracting

one electron in Eq.(1.53). It simply states that the energy of Hartree-Fock single-

particle state, Ej, is the energy needed to add an electron into the original unoccupied



state ii) or remove one from the original occupied state li).

From the above derivations, we can see that Hartree-Fock approximation has

exactly included exchange interaction between electrons with the same spin. Hartree-

Fock wave functions in the Slater determinant automatically satisfies anti-symmetric

property with any interchange between two electrons. Exchange effect can be viewed

as one type of correlations. However, other important correlations are not considered

in Hartree-Fock approximation. For example, there is no appropriate treatment about

the interaction between two electrons with opposite spins beside the pure Coulomb

interaction.

1.2.3 Feynman diagram view of Hartree-Fock method

Up to this section, we have applied Born-Oppenheimer approximation and Hartree-

Fock approximation to solve interacting many-electron problem. Mathematically

under these approximations we have mapped interacting many-body problem onto

non-interacting many one-body problem and that leads us to solve electronic Hamilto-

nian for single-particle state with nuclear Coulomb potential and other single-electron

states as the parameters. However, it is worth to re-visit Hartree-Fock approxima-

tion by using Feynman diagram, which can give us a more direct view of many-body

problem.

In general we can use perturbation theory to solve many-body problem step by

step. We can extract those most important perturbation terms by physical intuition

and use Green's function to evaluate one by one. This method will be very hard

when dealing with high-order perturbations. Feynman diagram developed by Richard

Feynman, however, gives an extremely simple way to evaluate perturbations and it is

a pictorial interpretation of perturbative terms of scattering phenomena in quantum

field theory.



Three pictures

Before going into the details of Green's function and Feynman diagrams, it is neces-

sary for us to study three important pictures of the Schrodinger equation, including

Schr6dinger picture, interaction picture and Heisenberg picture.

The Schrodinger picture is the traditional description of the Schr6dinger equation,

where Hamiltonian H is usually time-independent and wave function Js(t) evolves

with time,

a
ih aI s(t)) = H Is(t)), (1.70)

jIFs(t)) = e-iH(t-to)/h Is(to)). (1.71)

In the interaction picture both operator and wave function are time dependent.

Suppose we have Hamiltonian

H = Ho + V, (1.72)

where Ho is unperturbed Hamiltonian and V is the perturbation on Ho. Then oper-

ator and wave function will be

|I'i(t)) = eik-t/hI s(t)) = ei(0o--I)t/hlqs(O)) = e-iVt/hlIfs(O)), (1.73)

01(t) = ei!ot/ah6se- iHot/h. (1.74)

Then time evolution operator U(t, to) is defined as the operator to bring wave function

from time to to time t in the interaction picture so that I'i(t)) = U(t, to) IIF(to)). By

a simple derivation we have

U(t, to) = eiot/h-i(tto)/hioto/. (1.75)

Differentiating on the above equation, we have

ih-U(t, to) = V(t)U(t, to). (1.76)at



And the solution will be

U(t,to) = 1- -I dtlV(tl)U(tl,to). (1.77)

By iterative operation we have the final integrated form of U(t, to)

0C) n t t A .~ j

U^(t, to) = E , dt, --- dtnT V(tl) V(tn) , (1.78)
n00

n=O n! f t0 tto

where T is time-ordering operator which arranges all the operators in bracket in

time-ordered series. It will put the operator in the earliest time on the right and so

on.

In the Heisenberg picture the wave function is time independent,

IH(t)) eifI(tto)/h JT)) S O)), (1.79)

then correspondingly any operator Os in the Schrodinger picture will transform into

OH in the Heisenberg picture

OH(t) = eiH(t- to)/h Os e- 'iH(t- to)/h. (1.80)

It should be kept in mind that although we can work in any picture the expec-

tation value of physical operators will remain unchanged simply due to the unitary

transformation.

Single-particle Green's function

Single-particle Green's function can be viewed as the resolvent of Hamiltonian of

many-body system. At zero temperature single-particle Green's function in real space

and time, or propagator, is defined in the Heisenberg picture as the following

G(r 2t2, rlt) = -i(2ol j1T[1(r2t2)4t(rltl)] o) (1.81)
= -i(Q'ol '(r 2t2) (rtl) IJo) (t2 > ti,electron propagator) (1.82)



= +i('Iol t,(rit 1)(r 2t2) RO) (t 2 < t1 , hole propagator),

in which j' o) is the normalized Heisenberg ground state wave function and T is time-

ordering operator including a factor of (-1)P due to permutation of operators. P is

the number of permutations to bring a series of operators into the time-ordered form.

Single-particle Green's function for t2 > t1 in Eq.(1.83) is called retarded Green's

function Gr(r 2t2, rt1 ) and the other for t2 <t 1 in Eq.(1.83) is called advanced Green's

function Ga(r 2t 2, rtt 1 ). 4(rt) in Eq.(1.82) is Heisenberg field operator defined by

/(rt) = eiHtl•s(r)e- i t/h. (1.84)

The physical meaning of single-particle Green's function, for example in the case

of t2 > t1 , is that if at time t1 an electron is added into N-electron ground state at

position r 1, then the probability amplitude to find the added electron at position r 2

and time t2 is +iG(r2t2, rit1 ). For t2 < t, if at time t2 a hole is added into N-electron

ground state at position r 2, then the probability amplitude to find the added hole at

position r, and time tl is -iG(r2t 2, r 1ti).

Green's function is not restricted in position eigenstates r and time space t. We

can define Green's function in arbitrary single-particle eigenstates o (r) and frequency

space w. Here k labels quantum number for an arbitrary eigenstate qk(r). One simple

choice of qk(r) is eigenstates of the unperturbed Hamiltonian Ho0

Ho01k) = EkI/k). (1.85)

Therefore, we will have the corresponding single-particle Green's function G(k2 , kj, t 2-

tj) in time space or G(k2, kj, w) in frequency space. Then we can directly evaluate

free-field propagator of unperturbed system,

1
Gr a (k, w) = 1 (1.86)

where 6 is a positive infinitesimal. G(k, w) is retarded free-field Green's function and
where 6 is a positive infinitesimal. G'(k, w) is retarded free-field Green's function and

(1.83)



G'(k, w) is advanced free-field Green's function. It is important to notice that w = k

is the pole of retarded Green's function. In general the pole of single-particle Green's

function is the energy difference between excited state energy of the interacting (N +

1)-particle system and ground state energy of the N-particle system. Therefore,

single-particle Green's function is extremely useful for the study of single-particle

excitation spectra, which can be directly compared to experiment results.

Obviously it is almost impossible to directly calculate Green's function of many-

body system since the above definition of Green's function is still built on many-body

wave function and full Hamiltonian. However we can use perturbation theory and

Wick's theorem to evaluate Green's function. Without the detailed derivation of

Wick's theorem, we simply give its conclusion here. By Wick's theorem, the pertur-

bation expansion of Green's function only involves the contracted field operators (free

field propagator Go) and interaction potential V in interaction picture.

Feynman diagrams

Feynman diagrams are directly related to Green's function defined in the previous

section. Instead of writing single-particle Green's function explicitly, Feynman used

a simple straight line and a wavy line to represent Go and interaction potential V

respectively. (For general introduction, see Ref. [4])

In Fig. 1-1 we list four basic ingredients of Feynman diagrams for fermions: (a)

single-particle unperturbed Green's function, (b) single-particle perturbed Green's

function, (c) interaction potential, and (d) non-propagating Green's function. Their

physical values are listed in Table 1.1. According to Wick' theorem the perturbed

retarded Green's function (Fig. 1-1(b)) is the sum of all possible connected Feynman

diagrams with only two external lines. Therefore, we can use this table to evaluate

the perturbed retarded Green's function.

As an example we use Feynman diagram to carry out eigen-energy in Hartree-Fock

approximation. Assume that the unperturbed Hamiltonian is one-electron Hamilto-

nian Ho and perturbation is two-electron Coulomb interaction potential Vklmn -

f d~r f dr2¢ 1(rj) ¢(r 2) m (rl)qn(r2). We simply show Feynman diagram of
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Figure 1-1: Four types of basic Feynman diagrams

Table 1.1: Feynman rules of Feynman diagrams
diagram description value

Fig. 1-1(a) unperturbed retarded Green's function iG (k, w) =

Fig. 1-1(b) perturbed retarded Green's function iGr(k, w)
Fig. 1-1(c) interaction potential -iVklmn =-i(klVlmn)
Fig. 1-1(d) non-propagating Green's function iGg(k) = -1(IkI < kF), or 0

each Fermion loop -1
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Figure 1-2: Feynman diagram for Hartree-Fock approximation
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Figure 1-3: Feynman diagram for Hartree-Fock approximation after partial sum
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perturbed Green's function Hartree-Fock approximation in Fig. 1-2. The main cor-

rection comes from two diagrams: one is bubble diagram corresponding to Hartree

Coulomb interaction and the other is oyster diagram corresponding to like-spin ex-

change interaction. Fig. 1-2 has infinite number of perturbation terms which only

contain bubble and oyster diagrams, however by partial sum we can obtain the infi-

nite sum result as shown in Fig. 1-3. Using the Feynman rules in Table 1.1 we can

evaluate this perturbed Green's function in Fig. 1-3,

1iGr (k, w) =- 1 1 , (1.87)irk, ) iGr (k, w)] Ekk, [(-l1)x-iVklkl) (- 1) + (-iVIkkl) (- 1)] ,(.7

then the final form of Green's function Gr(k, w) is

1
Gr (k, w) = 1 (1.88)

W - k l<Ek, (Vklkl - Vlkkl) + 6

with quasi-particle energy equal to w = Ek + Z<kF (Vklkl - Vlkkl) - iS. Comparing

this quasi-particle energy with the eigen-energy in Eq. (1.69), we immediately see that

real part of w, Ek, VklkI and Vlkk1 correspond to Ej, (iIHlIi), Uij and J2j of Eq.(1.69)

respectively. Therefore, the energy correction from Hartree-Fock approximation can

be treated as one type of self-energy correction to the original Hamiltonian H0 . Since

the imaginary part of w is inversely proportional to life time of quasi-particle, Hartree-

Fock quasi-particle is infinity life time. This is because Hartree-Fock approximation

only considers time-independent first-order correction and it does not include dynam-

ical correlations due to the motion of other electrons, which will in turn give rises to

dynamically screened Coulomb interaction. The latter gives the finite imaginary part

of quasi-particle energy w and the consequent finite life-time of quasi-particles.

1.3 Density functional theory

Density functional theory(DFT) [5, 6], developed by Hohenberg, Kohn and Sham,

is another method to solve many-body problem by mapping interacting many-body



problem onto non-interacting many one-body problem. Briefly speaking DFT al-

lows people to use 3-dimensional particle density as basic variable instead of 3N-

dimensional many-body wave functions to solve many-body problem. DFT has

achieved great success in solid state systems including bulks, surfaces and molecules

[7], where ground state properties can be easily obtained from DFT calculations such

as atomistic structures, lattice constant, elastic constants, phonon spectra, and sim-

ulated STM images.

1.3.1 Hohenberg-Kohn theorem

Theorem I

The first Hohenberg-Kohn theorem [5] states that ground-state energy E of interacting

many-body system is determined by the ground state density n(r).

(a) Ground state electron n(r) is uniquely determined by external potential Vext(r).

Since Hamiltonian of interacting N-particle system with a given external potential

Vext(r) consists of kinetic energy, electron-electron Coulomb interaction and external

potential, the external potential Vext(r) completely fixes the Hamiltonian. Therefore,

ground state wave function T is fully determined by Vext(r). Obviously ground state

electron density n(r) is determined by n(r) = VT* , hence n(r) is uniquely determined

by external potential Vext(r).

(b) Conversely, except a trivial additive constant, external potential Vext(r) is a

unique functional of n(r). Assume that there exists another external potential Ve'xt(r)

and ground state wave function V' such that n(r) = n'(r). Then the new ground

state energy is E' = (,'IT + Vee + Ve'xt(r)I|'), which should be lower than the energy

(TIT + Vee + Ve'xt(r)I|F). V' and TI will not be same unless two external potentials

differ by a constant. Consequently,

E' <E + J d3rn(r)(Ve'xt - Vext). (1.89)



Similarly, we will have another equation

E < E' + J d'rn(r)(Vext - V'x. (1.90)

The sum of the above two equations leads to the inconsistency

E' + E < E + E'. (1.91)

The above derivation proves that external potential Vext(r) is a unique functional of

n(r) except a trivial additive constant, and so is Hamiltonian H. Therefore the full

many-body ground state is a unique functional of n(r).

Theorem II

The second HK theorem [5] shows the existence of variational principle for the total

energy density functional E[n]. Based on the first HK theorem, we can define F

as the sum of kinetic energy and electron-electron Coulomb interaction energy with

F[n] - (IT + VeeI•). Obviously it is a universal functional of electron density n(r)

and it does not dependent on external potential Vext.

For a given external potential Vext, we can write down the total energy functional

Ev

Ev [n] n(r)Vext(r) + F[n]. (1.92)

It is known that, for a given interacting N-electron system, the total energy functional

of J' defined by Ev['P'] - (T'I T+Vee+Vext I'V) has the minimum at the correct ground

state Q' = =I. Suppose we have ground state I' with a different external potential

Ve'xt, then we will have the following conclusion,

v [V] = n'(r)Vext(r) + F [n'] > Ev [T] = n(r)Vext(r) + F [n]. (1.93)

Therefore, we have the variational principle for total energy

Eo = Ev[n] < Ev[n'], (1.94)



in which Eo0 and n is the ground state energy and electron density and n' is arbitrary

trial electron density.

Hohenberg-Kohn theorem establishes the following one-to-one mapping,

Vext(r) ==> H ==* I =- n(r) z4 Vext(r) -4 Ev[n]. (1.95)

It provides a theoretical foundation to obtain the ground state properties by searching

3-dimensional ground state electron density based on the variational principle without

dealing with 3N-dimensional many-body wave functions if the exact form of energy

density-functional F[n] is known. It has also been extended to several other theories:

* spin density functional theory with spin degree of freedom included

* finite temperature and ensemble density functional theory for many-body sys-

tem in thermal equilibrium

* density and current density functional theory to include electromagnetic field

However, Hohenberg-Kohn theorem does not tell us how to systematically obtain

the universal energy density functional F[n] and there is no rigorous proof to show

that DFT is directly related to excited state properties of many-body system.

1.3.2 Kohn-Sham method

Kohn and Sham(KS) [6] suggested a practical approach to deal with unknown energy

functional F[n] which Hohenberg-Kohn theorem does not solve.

First they map the interacting many-body problem with true potential onto a non-

interacting many one-body problem with effective potential assuming that ground

state density of the original interacting many-body system can be represented by

that of auxiliary system of non-interacting single-particles. Then they use N single-

particle state 4i(r) as the main variables to obtain the density of the non-interacting

system
N

n(r) = V 4,i(r) 12. (1.96)

i=48

48



Similar to the Hartree-Fock case, the exact ground-state wave function of this system

is the Slater determinant of single-particle states,

ITs(r)- 7= (-1)P - P[0102"" "..N. (1.97)

The N single-particle states ¢(r) are the N lowest eigenstates of one-electron Hamil-

tonian H.

Hs5 i4) = eilki), (1.98)
82

H = V 2 + vs. (1.99)
2m

and vs is the Kohn-Sham effective potential for single-particle states. In this single-

particle representation, kinetic energy functional T,[n] is simply defined by

N h2

Ts[n] = Ts[{4}] = - (04~ 1V2 10,). (1.100)
i= 2m

Consequently the original exact universal energy functional F[n] is decomposed into

three terms

F[n] = Ts[n] +÷ E[n]+ Exc[n], (1.101)

Ex0 [n] -- T[n] - Ts[n] + Eee[n] - Ee,[n]. (1.102)

Exc, known as exchange-correlation energy functional, includes two parts: (a) the

difference between true kinetic energy functional T[n] and fictitious single-particle

kinetic energy functional T7 [n] and (b) the difference between true electron-electron

interaction energy functional Eee [n] and single-particle electron-electron Hartree en-

ergy functional Ee [n]. Hence by this transformation the original problem of searching

universal energy functional F[n] has been moved into the searching of exchange cor-

relation energy functional E,,[n].

From Eq.(1.92) and Eq.(1.101), the single-particle Kohn-Sham effective potential



vs can be obtained

E[n] [n]
vs -- Vxt + 4- 6n Vext (r) + vH (r)+ Vxc(r) (1.103)

with single-particle Hartree potential VH

/ n(r')

vH (r) = - rdr' (1.104)

and exchange-correlation potential vxc

6Exe [n]
vx 6Ex[n] (1.105)

So far the Kohn-Sham approach does not solve many-body problem at all, and actu-

ally it just moves the difficulty of finding F[n] into another difficulty of finding Exc[n].

However, it has three major advantages:

* After Kohn-Sham single-particle transformation, two unknown functionals, in-

cluding the original kinetic energy functional T[n] and electron-electron inter-

action functional Eee[n], has been squeezed into one energy functional Exc[n].

* Single-particle kinetic energy functional Ts [n] is much better than that in early

Thomas-Fermi theory of energy functional of Fermi gas, which does not include

the gradients of wave functions.

* Compared to Hartree and Hartree-Fock approximations, Kohn-Sham approach

is still an exact theory and it provides an elegant and rigorous way to sys-

tematically improve the accuracy of total energy by searching better exchange-

correlation functional since Ex~ [n] only depends on electron density.

1.3.3 Exchange-correlation functionals

From the Kohn-Sham method it is clear that once we have a suitable exchange-

correlation energy functional Ex~ [n], self-consistent calculation can be easily per-



formed based on Eq.(1.96), Eq.(1.98), and Eq.(1.103). In another word, the key

task of DFT is the search for good exchange-correlation energy functional Exc[n].

Kohn and Sham use a simple but useful exchange-correlation energy functional

with Local Density Approximation(LDA) [6, 8, 9, 10]. For a slowly varying electron

density n(r), they show that

Exc[n] = n(r) exc[n(r)] dr, (1.106)

in which one replaces the true exchange-correlation energy density with that exc[n(r)]

of uniform electron gas. Then exchange-correlation potential in the Kohn-Sham ef-

fective potential Eq.(1.103) is approximated by

6Exc [n] dexc[n(r)] (1.107)
Vxc - xn P •xc[n(r)] + n(r) dn(1.107)

One further step to improve LDA is to include the dependence of gradient of

electron density into Exc [n]. This approach is called Generalized Gradient correc-

tion Approximation(GGA) [11, 12, 13]. However, both LDA and GGA give wrong

asymptotic behavior of total energy since their potential decays exponentially at large

distance instead of correct - - behavior. The intrinsic reason is the presence of incor-r

rect self-interaction in both approximations where electrons interact with themselves.

Consequently the first ionization energy from £homo is too small. Meanwhile their exci-

tation spectra do not show discrete Rydberg series of bound states, instead they often

give continuous spectra. Noting this problem, Becke [11] suggests a self-interaction

corrected GGA to give the correct - asymptotic behavior and greatly improve the

previous results from LDA and GGA.

Another popular hybrid exchange-correlation potential, called B3LYP [14, 15, 16,

17], is widely used for molecular systems in the quantum chemistry society. It com-

bines the contributions from the local spin density approximation(LSDA), Hartree-

Fock and GGA together. It gives much better agreement with experiments. The

success of B3LYP reminds us that in molecules the exchange potential is more im-

portant than other correlations. However B3LYP does fail for metals and other



extended systems with small band gap while B3PW91 works better[18]. It is because

the prescription of B3LYP functional underestimates the correlations of homogeneous

electron gas, which is very important for systems with a significant itinerant character

such as metals and small gap semiconductors. However, it should be mentioned even

with exact exchange-correlation functional we still can not obtain correct band gaps

since the exact Kohn-Sham band gap is not the true band gap. This problem will be

discussed in the next section.

1.3.4 Band gap

Although density functional theory is a theory for ground state, people usually want

to compare DFT Kohn-Sham band gap with experiments and results from expensive

quantum chemistry methods such as HF, MP2, CCSD, CCSDT, CCSDTQ and etc.

Unfortunately DFT calculations often underestimate band gap by 30% - 100%.

Initially people tried to argue that the discrepancy came from non-exact exchange-

correlation functionals such as LDA and GGA. It is shown by the work of Sham and

Schliiter [19] and that of Perdew and Levy [20] that true band gap A is the sum of

two components: Kohn-Sham band gap AKS and the gap Axc from the derivative

discontinuity of exchange-correlation functional:

A = AKS +- Axc, (1.108)

with

Axc = lim (1.109)-+ [6n(r) 5N+ 6n(r) N-6

That implies: (a) exchange-correlation potential vxc should have derivative disconti-

nuity at integer number of electrons, which is not true for LDA and GGA; (b) even

with exact exchange-correlation energy functional which contains the correct discon-

tinuity, Kohn-Sham gap AKs itself is still not the true band gap; (c) the success

of current exchange-correlation functionals such as LDA, GGA, or hybrid functional

B3LYP is due to the error cancellation.



1.3.5 Relation between Kohn-Sham method and Hartree-

Fock method

Kohn and Sham realize that exchange-correlation potential in general should be non-

local. One typical nonlocal term is exchange potential of single particle states with

the same spin state. They suggested in their method to replace exchange-correlation

energy functional Ex,[n] with exchange energy Ex[n] of Hartree-Fock approach plus

the remaining correlation part Ec[n]

Exc [n] = Ex [n] + Ec[n] (1.110)

with
1 e2Ex[n] = 1 6___*(r)_ (r')_ rj(r) 0(r') drdr' (1.111)

2 Ir - r/I
and

Ec [n] = n(r)ec.(r) dr. (1.112)

Correspondingly we obtain the new Kohn-Sham equation

[hV2 v•+H +•Jc[n]>n i + [J_  i(r') r, 0i(r') dr' ]j(r)= e•oi (1.113)2m Jn E - r/|

The new Kohn-Sham equation, Eq. (1.113), is almost the same as the Hartree-Fock

equation Eq.(1.56) except one additional correlation potential term. From this point

the Kohn-Sham equation goes beyond the Hartree-Fock approximation.

The above conclusion leads us to a possible way to systematically and visually im-

prove exchange-correlation functional Exc[n]. In Sec. (1.2.3) we apply perturbation

theory on many-body problem in the non-interacting many single-particle picture, ex-

press the first order time-independent terms in infinite Feynman diagrams and finally

obtain the Hartree-Fock approximation by partial sum of all those Feynman diagrams.

Similarly, we may incorporate other important energy contributions into Feynman di-

agrams including time-independent and time-dependent perturbation terms, and then

find the corresponding form of additional correlation energy functionals from the pole



of Green's function. Indeed this idea shares the same essence as several cases includ-

ing random phase approximation(RPA) for van der Waals dipolar interactions and

GW approach for quasi-particles. In principle it will go beyond static DFT as long

as perturbation theory in single-particle picture does not break down.

1.4 Practical methods of density functional theory

calculations

To perform practical DFT calculations of realistic systems such as molecules, surfaces

and solids, there are two big problems we have to address: (a) how to deal with such

large number of atoms and electrons? and (b) how to treat so many electrons even

in one atom? These will be answered by Bloch theorem and pseudopotential method

respectively in the next three small sections. In the last part, we will formulate

Kohn-Sham equation with ultrasoft pseudopotentials in plane-wave basis-set.

1.4.1 Bloch theorem and Brillouin sampling

When electron moves in a crystal, it feels a periodic potential U(r) with

U(r) = U(r + R) (1.114)

for all R in a Bravais lattice. Then the corresponding Schr6dinger equation for

electrons in the crystal is written as

H =n -c n'n, (1.115)

h2
H = V2 + U(r), (1.116)2m

in which e, and 'O are eigen energy and eigenstate of crystal Hamiltonian H. It is

easy to prove that translation operator TR and crystal Hamiltonian H commute with



each other: [TR, H] = 0. That means they simultaneously share the same eigenstates

TR n = CR (1.117)

Since two successive translation

ation TR1 +R2

operations, T• R and TR2 , are equivalent to one oper-

TR1 TR2 = TRj+R 2
(1.118)

(1.119)

The only non-trivial solution of the above equation is

CR = e ik R ,

therefore

TR'Ok(r) = bk(r + R) = e'nk (r).

Alternatively, we can define a function Unk(r)

Unk(r) = e-ikrk(r),

and immediately using Eq. (1.121) we can see Unk(r) is a periodic function

Unk(r) = Unk(r + R).

(1.120)

(1.121)

(1.122)

(1.123)

In another word, eigenstate Onk(r) can be expressed as

lation and a periodic function

k(r) = euikrUnk(r).

the product of phase modu-

(1.124)

The above equation is the well-known Bloch theorem, which states that eigenstate

)nk of electron in periodic potential U(r) with crystal momentum hk is a periodic

CR CR2 = CR1+R2.



wave Unk modulated by a universal wave eikr. With the Bloch form of wave functions,

the Schr6dinger equation for Unk(r) is reformulated into the following equation

- + ik)2 + U(r) Unk(r) = EnkUnk(r). (1.125)2m I

Bloch theorem further implies that

Onk(r) = Vn,k+K(r) (1.126)

Enk = En,k+K (1.127)

where K is reciprocal lattice vector and satisfies eiKR = 1. That means we only need

to consider those k in the first Brillouin zone.

Bloch theorem [21, 22] has a significant impact on our realistic calculations since

it demonstrates that it is not necessary to solve the Schr6dinger equation for all

atoms and electrons in the crystal. We only need to consider a small unit cell with

limited number of particles as a result of translation symmetry of crystals. One

typical boundary condition of the small cell is the Born-von Karman (BvK) boundary

condition.

The BvK boundary condition for wave function bn(r) confined in a Bravais lattice

is

sk (r) = Pfk(r + NiRj), (1.128)

where i = 1, 2, 3 for three different lattice vector directions and Ns is integer. With

the aid of Bloch theorem, we have

-nk(r + N ) = eSgNi nk(r) = Onk(r). (1.129)

Then the allowed k-points in the first Brillouin zone are

3

k = Kj (1.130)
i=1 ns

with reciprocal lattice vector K = 2irR 1 and mi = 1, 2, - -, Ni. The BvK boundary



condition simply says that after we obtain wave function Pnk(r) in one unit cell, we can

build the corresponding wave function in total N1N2N3 unit cells by different phase

modulations in different unit cells. This enables us to think in the Bvk boundary

condition while performing calculations in one unit cell for all allowed k-points in the

first Brillouin zone.

Eq. (1.130) defines the well-known Monkhorst-Pack [23] k-point sampling in the

first Brillouin zone and it has been extensively used in various density functional

theory software packages. People often shift the center of the first Brillouin zone to

the origin point, but it does not change any physics. All the DFT calculations in this

thesis use Monkhorst-Pack k-point sampling.

1.4.2 General theory of pseudopotentials

Even with Bloch theorem, there still exist two issues with utmost importance when

it comes to computational cost: choice of basis sets and pseudopotentials [24]. For

ground-state DFT calculations that involve a significant number of metal atoms (e.g.

surface catalysis), the method that tends to achieve the best cost-performance com-

promise is the ultrasoft pseudopotentials (USPP) [25, 26, 27] with planewave ba-

sis, and an independent and theoretically more rigorous formulation, the projector

augmented-wave (PAW) [28] method.

The idea of pseudopotential [24] comes from two facts: (a) core electrons of an

atom almost always tightly follow the motion of the nucleus; (b) the energy levels of

core electrons are often well separated from those of valence electrons. Core electron

band structure has almost negligible dispersion and very narrow band width. They

are normally far away from valence bands by the order of 10 eV. It implies that core

electrons usually do not precipitate in chemical bonding process and they are very

localized around the nucleus. In another word, the effect of core electrons on valence

electrons will be very similar to nucleus's Coulomb interaction except the opposite

sign of charges. If all the electrons are included in the calculation, not only number

of electrons will increase, but also the plane-wave cutoff will increase a lot due to the

nodes in the radial part of wave functions. Therefore, we can separate an atom into



two parts: (a) its nucleus with core electrons and (b) valence electrons. This is so

called frozen-core approximation. Under this approximation we can replace the effect

of nucleus and core electrons with an effective core potential - pseudopotential.

The Schr6dinger equation for an atom can be written as

HIpc) = -ecoc), (1.131)

HIg)v = E vji), (1.132)

where 0, and o are core and valence electron eigenstate respectively. We split valence

state Ov into two parts

,) = I v) + E acv Ic), (1.133)
C

in which ýv is pseudo valence wave function without any node in its radial part. From

the orthogonality condition between the core state and the valence state: (Ic $v) = 0,

we then have

acv = -(Vc| V) (1.134)

and

I v) = IV) - E Ic)(•~1cv) = (1 - 0c)(OC1) 1 v). (1.135)
C C

Then the Schr6dinger equation for valence state will change to

H + E(ev - 6c) 10c) (Oc] I V) = EV |'), (1.136)
CI

which means pseudo Hamiltonian for pseudo valence state ?, is H = H + Ejc(ev -

ec) 1,c) (Oc. The eigen energy, however, is still the same as that of true valence state

v. Correspondingly, the effective core potential V for pseudo valence state v is

= - + Z ( - E)Icc< I. (1.137)
r c

After the above transformation we obtain a smooth and nodeless pseudo valence

wave function 4v and the corresponding eigenvalue is still the true eigen energy. The
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Figure 1-4: Pseudopotential concept for valence electrons

effective core potential V obviously contains nonlocal component. It can be divided

into local part VL and nonlocal part VNL, while VNL can be further approximately

expanded in the form of spherical harmonics Yim(0, q) for angular dependence and

vps(r). That finally gives

oo I00 1
V(r, r') = VL(r)6(r - r') + 1 vp,(r)llm)(lm|. (1.138)

l=0 m=-l

However, as illustrated in Fig. 1-4, norm-conserving pseudopotential(NCPP) [29,

30] has an additional requirement that the pseudo wave function $' of valence electron

exactly matches the true wave function Ov outside a certain cutoff radius r,. For

computational convenience, the radial parts of local and nonlocal pseudo potential

are usually fitted into some analytical functions.

1.4.3 Ultrasoft pseudopotentials

As we have mentioned before, the computational cost of planewave DFT calcula-

tions strongly depends on the selected type of pseudopotentials. Compared to tra-

ditional norm-conserving pseudopotentials (NCPP), Vanderbilt's USPP [25, 26, 27]



and Bl6chl's PAW [28] method achieve dramatic savings for first-row elements (2p-

elements like C,N,O, 3d-transition metal elements and 4f rare-earth elements), with

minimal loss of accuracy. USPP/PAW are the workhorses in popular codes such as

VASP [31, 32] and DACAPO [33, 34, 35].

The key idea of USPP/PAW [25, 26, 27, 28] is a mapping of the true valence

electron wavefunction P(x) to a pseudo-wavefunction O(x): < +-+ 4, like in any

pseudopotential scheme 1. However, by discarding the requirement that O(x) must

be norm-conserved ((010) = 1) while matching 4(x) outside the pseudopotential

cutoff, a greater smoothness of O(x) in the core region can be achieved; and therefore

less planewaves are required to represent V(x). In order for the physics to still work,

one must define augmentation charges in the core region, and solve a generalized

eigenvalue problem

H/1•) = eSInS4), (1.139)

instead of the traditional eigenvalue problem, where S is a Hermitian and positive

definite operator. S specifies the fundamental measure of the linear Hilbert space

of pseudo-wavefunctions. Physically meaningful inner product between two pseudo-

wavefunctions is always (01SI4') instead of (4 '). For instance, (0m10n) 7 6mn

between the eigenfunctions of (1.139) because it is actually not physically meaningful,

but (OmAISI )- ('ml4n) = 6mn is.

H consists of the kinetic energy operator T, ionic local pseudopotential VL, ionic

nonlocal pseudopotential VNL, Hartree potential VH, and exchange-correlation poten-

tial Vxc,

H T + VL + VNL + VH+ Vxc. (1.140)

The S operator is given by

S= 1 + q,- 0j) (f3[, (1.141)
i,j,I

where i (Tim) is the angular momentum channel number, and I labels the ions. S

'For the convenience in the rest of this chapter, we will (a) use ' for true wave function and V
for pseudo wave function and (b) set h = c = m = e = 1



contains contributions from all ions in the supercell, just as the total pseudopotential

operator VL + VNL, which is the sum of pseudopotential operators of all ions. In the

above equation, the projector function /3(x) - (xIJi[) of atom I's channel i is

(x) = 3i(x - X,), (1.142)

where X, is the ion position, and Oi(x) vanishes outside the pseudopotential cutoff.

These projector functions appear in the nonlocal pseudopotentials as well

VNL = E DýIZJ)( f, (1.143)
i,j,I

where
= .,()

DJ' - D o) + dx(VL(x) + VH(x) + Vxc(x))QI (x). (1.144)

The coefficients D °) are the unscreened scattering strengths, while the coefficients

DJi need to be self-consistently updated with the electron density

p(x) = 1n{ l[+j,2 i(x)(nl)( n)} f(En), (1.145)

in which f(e6) is the Fermi-Dirac distribution. Q (x) is the charge augmentation

function, i.e., the difference between the true wavefunction charge (interference) and

the pseudocharge for selected channels,

QI(x) - *(x)() --1*(x) /(x) (1.146)

which vanishes outside the cutoff. Q/ (x) is further expressed by pseudocounterparts,

Qc Q (x)= c i  r(x)YLM (), (1.147)
LM

where c~M' are Clebsch-Gordan coefficients and Q!r"d(x) is the effective radial function



for charge augmentation function. There is also

q, dxQ,(x). (1.148)

Thus the total energy is given by

V2 +V(o) 1
Etot - E(Vn - + ±VN n) + V VH(x)p(x)dx + fexc(x)p(x)dx + Eion, (1.149)

n

where the nonlocal operator is the bare nonlocal operator with

V( ) = DIo,) 1l[. (1.150)
i,j,I

Terms in Eq. (1.145) are evaluated using two different grids, a sparse grid for the

wavefunctions # and a dense grid for the augmentation functions Q%(x). Ultrasoft

pseudopotentials are thus fully specified by the functions VL(x), Oji(x), D/o), and

Qj~ i(x). Forces on ions and internal stress on the supercell can be derived analytically

using linear response theory [27, 32].

1.4.4 Kohn-Sham equation in plane-wave basis-set

Kohn-Sham equation can be solved with various basis-sets such as Gaussian basis,

wavelet basis, plane-wave basis and etc. Different basis may affect final results in

calculations. Plane-wave basis is the most popular one since it has several advantages

compared to other basis-sets:

* Both accuracy and convergence of plane-wave basis are controlled by single pa-

rameter Ecut- plane-wave energy cutoff. Therefore, they can be systematically

improved by increasing energy cut off Eut.

* It is very easy to implement plane-wave basis in density functional theory

code. Meanwhile, fast Fourier transform(FFT) can speed up transformation

of wave functions, local potentials and nonlocal potentials between real space

and Fourier space.



* Any gradient operator will simply introduce an imaginary Fourier space vector

i(k + G), therefore the kinetic energy has a very simple form.

* Different from Gaussian basis-set, plane-wave basis is independent of atom posi-

tions, therefore we do not need to change origin of basis-set with ionic motions.

In plane-wave basis the periodic part unk(X) of eigen wave function nkk(X) is

written as

Unk(X) = Cn,k+Ge
G

and from Bloch theorem Eq (1.124) we have

(1.151)

(1.152)'Cnk(X) = Cn,k+ Gei(k+G)xe
G

Here Cn,k+G is plane-wave coefficient. So the full plane-wave basis for Bloch wave

function 'nk(X) is

(xlk + G) = V ei(k+G)x (1.153)

and Bloch wave function in Dirac notation is

/nk) -= Z Cn,k+Glk + G).
G

(1.154)

Now we can express Kohn-Sham equation with ultrasoft pseudopotentials in plane-

wave basis

Hk+G,k+G' Cn,k+G' = Enk Sk+G,k+G' Cn,k+G', (1.155)

where Hamiltonian element Hk+G,k+G' is

Hk+G,k+G' (k + G| Hk + G') (1.156)

= k+G 2 GG+ VL(G - G') + VNL(k + G,k + G') (1.157)
2 G G

+VH(G - G') + Vxc(G - G'). (1.158)



VL(G - G') is Fourier space representation of local pseudopotential

VL(G - G') (k + GIVLIk + G') (1.159)

I1 e",-i(G-G')Xiz -r/(iG-od l 11 0= - i- G'X V.c (G¢•- -- G/) (1.161)

and VNL(k + G, k + G') is Fourier space representation of nonlocal pseudopotential

VNL(k + G, k + G') (k + GIVNL k + G') (1.162)

= DýDi(k + GIj) (0/ |k + G') (1.163)
i,j,I g I ! Ge-i(G-G')XI
= Dji3f(k + G)O*'(k + G)i(GG')x. (1.164)
i,j,I

Nonlocal projector 1[ is a spherical harmonics multiplied by a radial function, fl(x) =

R! (r)Yim, (0, 4). Similarly, the ultrasoft overlap element is

Sk+G,k+G k + GI SIk + G') (1.165)

= 1 Q+ (k + GI• )(fIk + G') (1.166)
i,j,I

S1 + Q ji3f (k + G)ofl/(k + G')ei(G-G')XI. (1.167)

i,j,I

With total electron density in Fourier space

p(G) = • p(x)e-iGx = psoft(G) + E In(G)(kk) •i = oR, (1.168)
i,j,I,n

Hartree potential from electron-electron Coulomb interaction is given by

4p(G)
VH(G) = 47r G12  (1.169)

and exchange-correlation potential Vxc (G) is given by

1Vxc(G) = Vxc(x)eiGx. (1.170)
Vxc (G) = Vxc(X)e - •G • (1.170)



The plane-wave cutoff Ect is defined by maximum kinetic energy of for all the G

vectors.
1IlG| 2 < Ecut, (1.171)2

which gives Gmax = VIE. For ultrasoft pseudopotentials and PAW method, there

is another dense grid Eautg for augmentation charge density beside the sparse wave

function grid. It is often set to Eaut = 4Eut and thus G' = 2Gmax, which means

the total number of G vectors in the dense grid is about 8 times of that in the sparse

grid in the three-dimensional space.

1.5 Time-dependent density functional theory

Density functional theory with the Kohn-Sham reference kinetic energy functional of

a fictitious non-interacting electron system has become a leading method for treating

many electrons in solids and molecules. While initially formulated to describe only

the electronic ground state, it has been rigorously extended by Runge and Gross

[36] to treat time-dependent, driven systems (excited states). TDDFT is therefore a

natural theoretical platform for studying electron conduction at the nanoscale.

There are two flavors in which TDDFT is implemented. One is direct numerical

integration [37, 38, 39, 40, 41, 42] of the time-dependent Kohn-Sham (TDKS) equa-

tions. The other is a Gedanken experiment of the former with an added assumption of

infinitesimal time-dependent perturbation, so a linear response function may be first

derived in closed form [43, 44, 45], which is then evaluated numerically. These two

implementations should give exactly the same result when the external perturbation

field is infinitesimal. The latter implementation can be computationally more efficient

once the linear-response function has been analytically derived, while the former can

treat non-infinitesimal perturbations and arbitrary initial states.

A key step of the TDDFT dynamics is updating of the Kohn-Sham effective poten-

tial by the present excited-state charge density p(x, t), gVKS(t) = ViKS[p(X, t), ...]. This

is what sets TDDFT apart from the ground-state DFT estimate of excitation ener-

gies, even when TDDFT is applied in its crudest, so-called adiabatic approximation,



[43] whereby the same exchange-correlation density functional form as the ground-

state DFT calculation is used (for example, the so-called TDLDA approximation

uses exactly the same Ceperley-Alder-Perdew-Zunger functional [8, 9] as the ground-

state LDA calculation.) This difference in excitation energies comes out because in

a ground-state DFT calculation, a virtual orbital such as LUMO (lowest unoccupied

molecular orbital) experiences an effective potential due to N electrons occupying the

lowest N orbitals; whereas in a TDDFT calculation, if one electron is excited to a

LUMO-like orbital, it sees N - 1 electrons occupying the lowest N - 1 orbitals, plus its

own charge density. Also, the excitation energy is defined by the collective reaction of

this coupled dynamical system to time-dependent perturbation (pole in the response

function) [46], rather than simple algebraic differences between present virtual and

occupied orbital energies. For rather involved reasons beyond what is discussed here,

TDDFT under the adiabatic approximation gives significantly improved excitation

spectra [43, 44], although there are still much to be desired. Further systematic im-

provements to TDDFT such as current density functional [47] and self-interaction

correction [48] have already made great strides.

The detailed derivations of time-dependent Kohn-Sham equation with ultrasoft

pseudopotentials and PAW method will be presented in Chapter 5.



Chapter 2

Quantum transport

2.1 Introduction

The development of molecular scale electronic devices has attracted a great deal

of interest in the past decade, although major experimental and theoretical chal-

lenges [49, 50, 51, 52, 53] still exist. To date precise experimental control of molec-

ular conformation is lacking, resulting in large uncertainties in the measured elec-

trical conductance. On the other hand, great effort has been made in the theo-

retical approaches such as nonequilibrium Green's function (NEGF) method within

Landauer formalism for phase-coherent transport. Although NEGF has achieved

many successes in describing electron transport at the meso [54, 55] and molecular

[56, 57, 58, 59, 60, 61, 62, 63, 64] scales, issues such as dynamical electron correlation

and large electron-phonon coupling effects [65, 66] are far from fully resolved.

In this chapter we will first introduce different characteristic length scales which

determine various electron transport behaviors and point out the difference between

classic and quantum transport. We then follow Meir's approach [67] to derive elec-

tric conductance for interacting many-electron systems. Finally we focus on phase-

coherent approximation of Meir's general expression and recover multichannel Lan-

dauer formula [68, 69, 70, 71] with Green's function method [54, 72, 64], which will

be combined with our non-orthogonal localized quasiatomic orbitals to calculate elec-

trical conductance of nanowire, carbon nanotube and molecular junctions later.



2.2 Electrical conductance

Classic electron transport theory tells us that electrical resistance R of a macroscopic

conductor with cross-sectional area A and length L is given by Ohm's law

L
R = Lp, (2.1)

where p is resistivity which depends on materials property only. Electrical conduc-

tance is the inverse of resistance

1 A
G a (2.2)

R L

with electrical conductivity a = 1/p. However the above formula will encounter se-

rious problem when it is applied onto smaller and smaller electronic devices, where

quantum nature of electrons becomes more and more important and electric con-

ductance strongly depends on its environment such defects, impurities, phonons and

other electrons along its wave propagation path through materials. In such small

scale, the change of dimensionality due to confinement will also affect electron trans-

port significantly.

Typical transport regimes can be classified by the relations among four important

characteristic length scales: device length (L), Fermi wavelength (AF), momentum

relaxation length (Lm) and phase-coherence length (L,). Fermi wavelength is the de

Broglie wave length of electrons at Fermi energy and it is determined by the momen-

tum of Fermi electrons through AF = 27r/kF. Momentum relaxation length (Lm), also

called mean free path, is the average traveling length of electrons through materi-

als before collisions make their motion totally uncorrelated from initial momentum.

Phase-coherence length (L.) is the length above which the phase of electron wave

becomes incoherent and phase information is totally lost. The source of phase deco-

herence only comes from inelastic scattering with phonons, electrons and magnetic

impurities, however both elastic (such as static ions) and inelastic scatterings will de-

crease momentum relaxation length (Lm). These characteristic length scales can be



changed by different materials or different experiment setups such as concentration

of ionic and magnetic impurities, operating temperature, electric and magnetic fields.

With the above four length scales, we can characterize electron transport phe-

nomena into the following four regimes:

* Classical transport regime (L > Lm, LW, AF). In this regime all quantum effects

are negligible, therefore overall resistance can be viewed as the result of the

particle-like collisions.

* Localization regime ( L > Lc > Lm). In this regime, high concentrations of

elastic scattering sources introduce a large amount of phase shifts of electron

waves, therefore in the one-dimensional case electrical resistance is shown to

increase exponentially with the increase of device length L.

* Diffusive transport regime (L, > L > Lm). This is the region we will deal

with by both Green's function method and time-dependent density functional

method later. In this regime, quantum wave scattering inside the device and

at the interface between the device and electron reservoirs dominates electron

propagations, therefore reduces total conductance.

* Ballistic transport regime (L, Lm > L). In this regime like pure conduc-

tors and quantum point contacts, there is no momentum relaxation and phase-

decoherence at all, thus electrons keep staying in its propagating wave state.

Here we will focus on the phase-coherent transport where phase-coherence length

L. is much longer than the device length scale L.

2.3 Generalized Landauer formalism for interact-

ing electrons

Pioneering work of Landauer [68] and Biittiker [73] leads to a simple formula of elec-

trical conductance through two-terminal and four-terminal electronic devices in terms



of total transmission of electrons. They pointed out quantized conductance - conduc-

tance quantum Go = 2e2/h - of single conducting channel. Fisher and Lee [70] then

related the multichannel conductance of the Landauer formula to the transmission

matrix obtained from the standard Kubo's linear response theory of conductance. All

those derivations, however, were based on non-interacting one-electron picture. Later

Meir and Wingreen [67] extended the original Landauer formula into a more general

one which considers the current through a conductor region of interacting electrons

instead of non-interacting electrons. The general Landauer formula scales the origi-

nal one by the self-energy correction to the conductor region due to electron-electron

interactions. Recently Ferretti et al. [74, 75] and Thygesen et al. [76] use the above

general formula and calculated the electrical conductance through one-dimensional

small junctions with electron-electron interactions included. Some differences of elec-

trical conductance between non-interacting and interacting systems are investigated

in their work.

Let us consider a general conductor(C) sandwiched by left(L) and right(R) leads

along one direction. Both leads are also connected to two reservoirs with chemical po-

tential UL and AR respectively. Instead of using delocalized Bloch state characterized

by momentum k in the case of Meir's derivation, we choose to express our system's

total Hamiltonian in an orthonormal localized basis-set containing both orbital and

spin degrees of freedom

H = HL + HCL+ Hc + HCR+ HR (2.3)

where HL (HR) is the Hamiltonian of left (right) lead given by

Hb = Hbi,bjCbiCbj, b = {L, R} (2.4)
ii

and Hc is the conductor Hamiltonian given by

HC = H•Und dm n, m E C. (2.5)
nm



ctb (cbi) is the creation (annihilation) operator which creates (destroys) an electron in

state i of the left or right lead. dn and dn are the similar operators for the conductor

region. In addition to these Hamiltonian matrices of each part, HCL (HcR) describes

the interaction between conductor and left(right) lead

HCb = E (bH,nCtd, + H.c.). (2.6)
i,n

Then according to Heisenberg equation, the current traveling through the system is

given by the current passing through left or right lead, or statistic average of the time

derivative of the number operator Nb = Ei cbcbi for the left or right lead [72],

ie
J JL = -e(NL) = - ([H, NL]). (2.7)

Since Hc, HL and HR commute NL, one can find

JL = e [HLi,n CL (t)dn(t)) - Hii,n(d (t)Li(t)) (2.8)

eE [HLi,n (t)G•(t, ()- , t)], (2.9)

where we define the Keldysh Green's function [77, 72] GnLi (tl, t 2 ) and Gi,n(t, t2 )

,Li ( 2) i(ctLi (t2)d (tl)) (2.10)

Gi,n(t, t2) i(dt (t2)cLi(tl)). (2.11)

It is easy to see that G,(t,t) = -[GaL(t,t)]*. A general relation for the contour-

ordered Green's function GL~ (t, t') is given by equation of motion technique [78]

G,Li (t, t') = dtGnm(t, tl)HZj,m(t1)gLj,Li(t1, t'), (2.12)
3m

where gLj,Li(t1, t') is Green's function of left lead. Replacing Gn,Li (t, t') in the JL

equation with the above expression and taking time-independent limit [67, 78], we



then have
ie &d) r _ G)

A =h 2J Tr [fL(G - GC ) + rLGC]. (2.13)

With the steady state condition of current J = JL = -JR = (JL - JR)/2, the final

expression for the de current at the steady state is given by

J = ih J 2 Tr (fLFL - fFR) (G - G) + (FL - rR) G<], (2.14)

where coupling function FL,R is defined through the retarded and advanced self-energy

matrices of left and right leads - denoted by Er and Ea
L,R L,Ri

rb = i(Er- _Ea) b = L, R (2.15)
Er a = HCb gr,a Hbc. (2.16)

Here g',a is the retarded or advanced Green's function of lead b in the equilibrium

condition with electron occupation number fL,a. Similarly G• in Eq.(2.14) is the

retarded or advanced Green's function of conductor region, while Gb'> is its lesser

or greater Green's function. All these matrices including GE, LR and XLa are

frequency-dependent Nc x Nc matrices. In general Gg'> and G a are determined by

solving the Keldysh equation for lesser and advanced Green's functions and Dyson

equations for retarded and advanced Green's function

G'> = G ;<'> Ga (2.17)

G r,a _ _,a -LO-,a •r,a r ,a 2.8

C -= G•, G -• ,•Ja 0 G (2.18)

where G ,ac is the retarded or advanced Green's function for the non-interacting case

and Er-a is the self-energy of conductor region due to the coupling with left lead, right

lead and other interactions within conductor region

~,Ja ra + Erroa + E, (2.19)
c e --erL -(-reoR (b)-corro

corr can be (a) electron-electron correlations, (b) electron-phonon interaction, (c)



electron-impurity interaction and etc. Meanwhile, since left and right leads are con-

sidered to be in equilibrium, the lesser and greater self-energy matrices due to the

interactions between conductor and leads are given by

L,R i fL,R PL,R, (2.20)

E>, -i(1 - fA,R) T ,R, (2.21)LRL,Rý

where fL,R is Fermi occupation function for both leads fL,R = f(w - 1L,R).

In summary, the above approach is very similar to Feynman diagram analysis

of Hartree-Fock approximation in the first chapter. The general Landauer formula

in Eq. (2.14) treats quasi-particle electron transport through two terminal devices

by including carrier-carrier and carrier-environment interactions into quasi-particle

Green's function and self-energy.

2.3.1 Landauer formalism for phase-coherent transport

In the non-interacting limit of the general Landauer formula, we do not consider the

contribution of E'ar. Therefore, lesser and greater Green's functions for conductor

region are rewritten as

G< - Gr (ifL FL + ifR FR) G , (2.22)

G = G [- i(1 - fL,R) L - i(1 - fL,R) PrR] G. (2.23)

Together with the relation Gr - Ga = G> - G<, we then have

GC - G = -iGC (FL + rR) GC. (2.24)

Then substituting Gr - Ga and G< in the general Landauer formula - Eq. (2.14)

- with their expressions above, we will have

- ief d
J z f 28 Tr[ (LrL - fRrR iGE r(L + R)G a



+ (FL - R)G (ifL rL + ifR rR) GF,
- & J r [f(w) - fR(w)] Tr[PLG&r G] (2.25)

=- d [fL(w) - fR(w)] T(w), (2.26)

where T(w) is the total transmission function

T(w) = TrFLGrcR GC ]. (2.27)

It has been proved by Xue [79] that the original Landauer formula for orthonormal

basis-set is still applicable to non-orthogonal localized basis-set.

If we take spin degeneracy into account, we finally obtain the original Landauer

formula

J = 2e dw[fL(w) - fR(w)]T(w). (2.28)

with total electrical conductance G

2e2  2e2 G r G2 r
G = hT(w) = Tr r CG .(2.29)

Conductance quantum Go for spin-degenerate single channel is defined as

2e2

Go = 2e 77.48 MS. (2.30)

Actually this conductance quantization in units of Go was first observed [80, 81] in

1988. We further define transmission matrix t

1 1

t = F L2TG r, (2.31)

then

T(w) = Tr[ tt]. (2.32)

The above total transmission formula from transmission matrix t is first derived by

Fisher and Lee [70] who related the multichannel conductance in Landauer formula



with transmission matrix from standard Kubo's linear response theory of conduc-

tance. It is worth to mention that here electrical conductance G is the conductance

for multichannels between two reservoirs [71], which has included contact quantum

conductance. If we try to measure the conductance ( of the conductor region between

two leads without reservoirs, then it is

T
G = Go 1-T' (2.33)

which means G will be infinite if there is no scattering within conductor and the

corresponding resistance R is 0.

In this thesis we will use the original Landauer formula for non-interacting elec-

trons. However, we are not limited by this case. Since we have localized quasi-

atomic orbitals which will be introduced in the next chapter, we can efficiently build

electron-electron interaction matrix under this basis-set and use GW approach to

calculate quasi-particle Green's function with all self-energy due to electron-electron

and electron-phonon interactions included. Therefore, we can efficiently apply the

Meir's generalized Landauer formula for interacting electrons to calculate electrical

conductance.

2.4 Green's function method with non-orthogonal

localized basis-set

2.4.1 Two-terminal device setup

Two-terminal device is usually represented by the standard structure [56, 79]: left

electron reservoir - left lead(L) - conductor(C) - right lead(R) - right electron reservoir

as shown in Fig. 2-1. The total Hamiltonian of the device region without reservoirs

is

H =HL +HCL H + H CR+ HR. (2.34)
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• ,.......... % ........ ...... . ......

Ha' Ho HeCL H 0o HO Ho

Figure 2-1: Standard two-terminal device: reservoir-lead-conductor-lead-reservoir

HL and HR are Hamiltonians for semi-infinite leads, and HCL and HCR are the

coupling matrices between conductor and semi-infinite leads. Although the leads are

semi-infinite, Hamiltonians in the non-orthogonal localized basis-set for both leads

and conductor are localized. In another word, the non-zero off-diagonal terms of all

the Hamiltonians are quite localized around the diagonal terms. Since usually left and

right leads are extended systems, we may treat a number of unit cells as a principal

layer H' (H') where i = 0, 1, 2,. The size of principal layer should be large

enough so that in the localized basis-set the Hamiltonian H'- (HRiin) between the

i-th principal layer and the [i + n]-th principal layer is negligible for n > 2, and thus

only H'•i±l (H%1l) needs to be considered. That should also apply for the interaction

between the conductor and principal layers so that HC,Li and HC,Ri will be non-zero

for i = 0 only. Several issues should be emphasized:

* Since we will use non-orthogonal localized basis-set, there will be a correspond-

ing orbital overlap matrix for each Hamiltonian shown in Fig. 2-1.

* The localization and total number of basis-set is very crucial for computational

cost since more delocalized basis will give larger principal layer and require more

computation power for Green's function calculations.

* The choice of basis-set will strongly affect the accuracy of conductance calcula-

tions.

I •. . . . . . . . . . .



* The conductor region should be defined large enough so that there is no coupling

between left and right leads.

For realistic calculations, we need to further simplify the total Hamiltonian and

its Green's function. We first explicitly write the total Hamiltonian H and overlap

matrix S in terms of each part of the device

HL

HCL

0

H+L
Hc

H+R

0

HcR

HR

SL

SCL

0

S+L
LC L

Sc

SR

0
SCR

SR

Retarded Green's function of Hamiltonian is defined as (zS-H)G' = I with z = w+irj

and 7 is an infinitesimal positive number. Its corresponding expanded form is written

as

ZSL - HL

ZSCL - HCL

0

zSc

zSCR

- HC+
- Hc

- Hc
H+R

0

zScR - HCR

zSR- HR

Since we have short-ranged Hamiltonian and overlap matrices, GR and G•R of direct

couplings are negligible. Thus we have the following solution for the retarded Green's

function of the conductor

- (zSc - Hc - EL - ER) - 1 ,

- (zscL - HCL) (zS- ~ H ),
S(zSCR - HCR)g(zSAR -H ,

- (zSL - HL ,
S(zsR -HR_ .

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

G r

GE rGCL

GRL

G rGLR

G&RGCR =

G)0 0
Ic 0

0 IR

Grc
GrC

Gkc

IL
0

0

(2.35)



EL,R is the self-energy due to the coupling between conductor and leads, and gr, is

the retarded Green's function of left and right leads, which are expanded in terms of

principal layer Hamiltonians. Here we take ELL as an example,

- 0 0 zSc,L- Hc,LO ) X

... zSo - Ho

... zS - HOl

0

zS - H1°

zS o - H o

zSl - HOl

0 0 zSC,Lo - Hc,LO )

- (zSc,LO - Hc,Lo) (zSc,Lo -

0

zS10 - H

zSo - Ho

2
• g g

... 12
12

gL

02.. 9 L 9

[,Lo).

21

T1.L

01oL

-1

20
g9L
10

gL

0
gL

ZS+ALC 1o0

0

0
ZS+,o -- H +

CLO C,LO

(2.41)

go is the self-energy of the first principal layer near the conductor C. The similar ex-

pression for go can be directly obtained by changing "L" to "R" in the above formula.

With the various quantities listed above, we can calculate electrical conductance using

Landauer formula
= 2e2  2e2  a]

=hT(w) = y-Tr L'LGCR GCj, (2.42)

and total density of states Nc(w) for the conductor region is given by

Nc(w) = - 1Im Tr [GSC] (2.43)

The corresponding local density of states N(r, w) is also easy to compute for any

localized basis-set 0m(r)

(2.44)Nc(r,w) = 1 liE Im[Gc(w + irl) ] 0 (r) 4n(r).

- (...

- HLO



2.4.2 Surface Green's function

The most difficult task is to evaluate gL and g. If we continue to iteratively evaluate

g0, g1, . ", we will easily obtain the following recursion relation for the n-th principal

layer

(2.45)zSn - H - (zSnnl H1,n+) gnl (zSnl,' H - l,n)

The above equation can be directly solved by iterative calculations until go converges.

However, another method by Sancho and et al. [82, 83, 84] can evaluate the surface

Green's function gO much more efficiently.

We follow Sancho's method [82] by expanding the Hamiltonian and retarded

Green's function explicitly

zS o - H o zS 0 - H10 0
zSO - HOl zS o - H o  zS 10 -H 0

L L L L L

0 zS1 - H2 zS% - H2

It is easy to see from the above equation that

2gL

12gL
02

gL

I)
21
g9L

1
g9L

g01
gL

20
g9L

10
g9L

g0
gL

= I. (2.46)

gLo (zS o - H2o)-[(Ho - zS10) g-1,o - (NH - zSl)L gn+i,o,

from which we can define

to = LzS - H) (H - zS °)

L (ZSL - -HzS)

i zS - H) ( H O - zS l).

Then we get the following simple expression

gn,O = t gn-l,0 + o gn+1,0
gL L t L L EL

(2.47)

(2.48)

(2.49)

(2.50)



which can be repeated iteratively. After i iterations

gL,0 t gn-2i' 0 + n gL+2 , (2.51)

where t' and ti are

tiT= - i1i1)'t- (2.52)
t = I - ti-t- 1 - it-1t-1)- 1(t-1)2 (2.52)i = I -ot - 4-• -t I- t•'• -1(_)2. (2.53)

It should be mentioned that t, and ti are not the transmission matrix defined in the

previous section. Assuming that n = 2', we then obtain the following expression for

n,0
gL

- oo= +(t t ++ . ± + + .-- 1t) g0 +- g2i•,o (2.54)L•0 (t~ L tL + . . + t L .
. L tn ) g o9 L  gL

We should run enough iterations until the norm of t' and t' is less than certain

threshold, thus

g,0= (t+t + -+tt... + O .-t ) g. = TgO, (2.55)

where

= t +itn + -'-- +i. tL -I L ti. (2.56)

Replacing gl,o in Eq. (2.47) with the above expression for n = 0, we finally have

g= [zS - Ho - (H - zSo l)T (2.57)

Compared to Eq. (2.45), the above Eq. (2.57) is much more efficient since for each i-th

iteration the latter one includes 2' layers. In the former method the full convergence

will be achieved after several hundred steps, however with Sancho's algorithm only

10 to 20 iterations are required to reach the same convergence criteria. This efficient

algorithm is implemented in our code for electrical conductance calculations.



2.4.3 Nonequilibrium Green's function method

Although currently we have not implemented self-consistent nonequilibrium Green's

function(NEGF) method to include the effect of bias voltage, I would like to briefly

summarize the crucial steps toward NEGF implementation with our localized quasi-

atomic orbitals in future. The most important step of the NEGF method is to it-

eratively evaluate non-equilibrium charge density under finite bias, thus obtain new

Kohn-Sham potentials and its new eigenvalues and eigenstates, then construct lo-

calized quasi-atomic orbitals and its tight-binding Hamiltonian and overlap matrices

until final convergence of total charge density or Kohn-Sham potential is achieved.

The density matrix in a localized orbital basis is

Dc = dw G(w) (2.58)

From Eq. (2.15) and Eq. (2.22), density matrix is rewritten as

D = d [Gr (ifL rL + ifR FR) G] (2.59)
-oo 2ri--

+0o &J
- J Gr [fL (FL + Fr) + (fR - fL) r] Ga (2.60)00o 27r

+ L if2L (Gr - G a) + J00Gr [(fR - fL) rR] G , (2.61)00 27r f-0 27r L

where we have also used the identity i(Gr - Ga) = Gr(FL + FR)Gh. Then finally

we have /+0o &4 +0 dw
Dc = Im(G) fL + G FR G (fR - fL). (2.62)

-cc 7r 0o 27r

At the equilibrium, 1L = MR, thus fL = fR and the second term will be zero. The first

integration contains the charge density contribution from the equilibrium condition,

while the second one contains density correction due to the nonequilibrium condi-

tion at finite bias. Since the first term is analytic and smooth, it can be computed

from contour integration on the complex plane. The second term only needs to be

calculated in a small energy window from /min to Mmax using a fine grid close to real



axis, where /min = min{PL, iP} and Pmax = max{pL, pR}. The charge density in real

space Pc(r) corresponding to density matrix Dc of conductor is given by

pc(r) = -(Dc)mn m*(r)¢n(r). (2.63)
mn

The new charge density is treated as new input for DFT calculations where we

obtain updated eigenvalues and Bloch eigenstates from either traditional DFT elec-

tronic minimization or non-self-consistent Harris-Foulkes functional [85, 86]. During

the above step, the charge density is always fixed. Then new ab initio localized quasi-

atomic orbitals and their tight-binding Hamiltonian are constructed from the DFT

results and then the new iteration is performed to calculate new electrical conduc-

tance and charge density. The above steps are iteratively repeated until the input

and output charge density converge within a certain small threshold at finite bias.

2.4.4 Conducting eigenchannel

Conducting eigenchannel analysis [54, 87] is very useful to understand the microscopic

electron transport mechanism. There are at least two ways to obtain conducting

eigenchannels with different normalization criteria based on Green's function method.

One simplest way is to diagonalize the total transmission matrix ttt = rLGCIFR G

in Landauer formula so that

UttttU = T, (2.64)

where U is the unitary transformation matrix to diagonalize t tt and T is the diagonal

matrix which contains transmission coefficients for the corresponding eigenchannels.

Thus, we can find out those eigenchannels with non-zero transmission coefficients.

However, the above approach does not directly embed the transmission coefficient

information into eigenchannel wavefunction. Paulsson and Brandbyge proposed a

better approach with non-orthogonal basis-set. See Ref. [87] for the details of that

approach.



2.4.5 Local current and induced orbital magnetic moment

By taking the trace of ttt we can obtain electrical conductance G and net terminal

current J. However, beside the net terminal current there exists quantum internal

current [88, 89, 90] in various nanoscale materials such as graphene, fullerene, nan-

otubes and molecular bridges. The internal loop current is naturally associated with

induced magnetic momentum at local region. A direct way to study those loop cur-

rent is to calculate and visualize local current distribution [54, 88, 89, 90, 79] inside

electronic devices. The simple form of bond current between atom i and atom j is

expressed as 4e

Jij = -Im [GHj , (2.65)

where G' is correlation Green's function determined by

G'(E) = GrLG'. (2.66)

Then the induced orbital magnetic moment M is

1/ 1
M = 1 dr rx j(r) = 1Jijrj x rj. (2.67)

2.4.6 Landauer formalism extended to multi-terminal devices

The original Landauer formalism for two-terminal devices has been extended to four-

terminal electronic devices by Biittiker [73]. Within the same frame work, we can

derive the Green's function formula of electrical conductance Gpq(E) for any two leads

in an n-terminal device,

Gpq(E) = pGr Tq G , (2.68)

where retarded Green's function G& includes all the self-energies from n leads,

GC = (zSc - HC - E Ep). (2.69)
P



2.5 Summary

The above eigenchannel decomposition and local current mapping are useful tools to

investigate electron transport mechanism and chemical bonding nature in molecular

and nanoscale electronics. Three important steps to be carried out in future are to

include transverse k-point sampling, to include full electron-electron correlation and

electron-phonon coupling, and to take electromagnetic field into account.

The efficiency of Green's function method based on Landauer formalism relies on

the localization of basis-set of Hamiltonian while the accuracy depends on the ground-

state DFT calculation under zero-bias voltage or the self-consistent DFT calculation

in the non-equilibrium situation. Both efficiency and accuracy can be achieved at

the same time if we can start from plane-wave DFT results and construct a set of

ab initio localized orbitals, such as Wannier functions, quasiatomic minimal basis-set

or our quasiatomic orbitals (which will be introduced in the next chapter), and their

corresponding tight-binding Hamiltonian and overlap matrix (if nonorthogonal) to

exactly represent all the Bloch states in the range that we are interested in.



Chapter 3

Quasiatomic orbitals and their

applications

The ground-state electronic structure of solids within single-particle approximation is

often represented by extended Bloch eigenstates and their eigen energies. These delo-

calized Bloch states usually can not be directly used for further analysis and develop-

ment. Meanwhile, chemical analysis, linear scaling (order-N) methods [91, 92, 93, 94],

transport [95, 96, 97], modern theory of polarization [98] and magnetization [99],

LDA+U [100, 101, 102] and self-interaction correction [103], etc. rely on high-quality

localized basis-set. To achieve both efficiency and accuracy of various DFT applica-

tions, especially electrical conductance of nanoscale electronics described in the previ-

ous chapter, we have developed a new scheme based on Wannier functions [104, 105,

106], quasiatomic minimal basis orbitals (QUAMBO) [107, 108, 109, 110, 111], and

projected-atomic-orbitals (PAO) [112, 113, 114] to construct a set of non-orthogonal

localized quasiatomic orbitals (QO) and their ab initio tight-binding Hamiltonian and

overlap matrix with density functional theory calculations.

This chapter is organized as follows. In Sec. 3.1 we will discuss ab initio tight-

binding method including Wannier function, QUAMBO and our QO. In Sec. 3.2 we

review USPP and PAW formalisms required for properly defining projection. In Sec.

3.3 quasiatomic orbitals within USPP and PAW formalisms are derived for extended

systems. Improved subspace optimization method is also discussed in this section.



The corresponding tight-binding Hamiltonian and overlap matrices, Miilliken charge

matrix and bond order based on QO are derived in Sec. 3.4. Our QO validates the

general applicability of Slater's linear combinations of atomic orbitals (LCAO) idea,

and points to future ab initio tight-binding parametrizations. To demonstrate the effi-

ciency and robustness of this method, in Sec. 3.5 band structure, QO-projected band

structure, total density of states, QO-projected density of states, Miilliken charge,

bond order, Fermi surface and velocity/QO-projected Fermi surface [115, 116, 117]

are calculated and compared with planewave DFT results for various extended sys-

tems. Miilliken charges for atoms in silane (SiH 4), methane (CH 4), beta phase silicon

carbide (3-SiC) crystal, and other systems are analyzed. QOs are, therefore, demon-

strated to be a good candidate for quantitatively measuring charge transfer. In Sec.

3.6, 3.7, and 3.8 we will discuss the similarity and difference among QO, maximal lo-

calized Wannier function (MLWF), QUAMBO, and PAO. In Sec. 3.9 we summarize

our work and discuss some future applications of QO.

3.1 Introduction to ab initio tight-binging method

Density functional theory (DFT) has been extensively developed in the past decades.

For condensed-matter systems, efficient supercell calculations using planewave basis

and ultrasoft pseudopotential (USPP) or projector augmented-wave (PAW) are now

mainstream. Planewave basis is easy to implement. Its quality is continuously tunable

and spatially homogeneous. The drawback is that this "rich basis" can sometimes

mask the physical ingredients of a problem, making their detection and distillation

difficult. This becomes particularly clear when one wants to develop a parametrized

tight-binding (TB) potential [118, 119, 120] or classical empirical potential [121] based

on planewave DFT results, often a crucial step in multiscale modeling [122]. For

developing TB potentials, one usually fits to the DFT total energy, forces and quasi-

particle energies {en} (band diagram). However the planewave electronic-structure

information is still vastly under-utilized in the potential development process.

Modern TB approach assumes the existence of a minimal basis of dimension sN,



where N is the number of atoms and s is a small prefactor (4 for Si), without explicitly

stating what these basis orbitals are. Under this minimal basis, the electronic Hamil-

tonian is represented by a small matrix Hxs, which is parametrized[123], and then

explicitly diagonalized at runtime to get {eWB}. In contrast, under planewave basis

the basis-space dimension is pN, where p is a large number, usually 102 - 103. The

Kohn-Sham Hamiltonian represented under the planewave basis, HKSxpN, is often so

large that it cannot be stored in computer memory. So instead of direct diagonal-

ization which yields the entire eigenspectrum, matrix-free algorithms that only call

upon matrix-vector products are employed to find just a small portion of the eigen-

spectrum {en} on the low-energy end [124]. This is wise because the ground-state

total energy and a great majority of the system's physical properties depend only on

a small portion of the electronic eigenstates with en below or near the Fermi energy

EF.

Unlike many ab initio approaches that adopt explicit, spatially localized basis sets

such as Slater-type orbitals (STO) and Gaussian-type orbitals (GTO) [125], the defin-

ing characteristic of the empirical TB approach is the unavailability of the minimal-

basis orbitals, which are declared to exist but never shown explicitly. This leads to the

following conundrum. In constructing material-specific TB potentials [118, 119, 120],
TB

the HgxsN matrix is parametrized, but the sN(sN + 1)/2 matrix elements are not

targets of fitting themselves because one does not have access to their values, since

one never knows the minimal-basis orbitals to start with. Instead, the fitting targetsare the eigenvalues of H IS TJ

are the eigenvalues of H sNN, {eB}, which are demanded to match the occupied

eigenvalues {enI}occ of HpNxpN from planewave DFT calculation, and perhaps a few

unoccupied {e•} as well. A transferable TB potential should have the correct phys-

ical ingredients; but a great difficulty arises here because {en} in fact contain much
TB TB marxwcage

less information than the HsxsN matrix elements. From HSsgX matrix we can get

{ETB}, but not vice versa. As fitting targets, not only are the {6 TB} much fewer in

number than the matrix elements (sN versus sN(sN + 1)/2), but they are also much

less physically transparent. The TB matrix elements must convey clear spatial (both

position and orientation) information, as is evident from the analytic angular func-



tions of the original Slater-Koster LCAO [126] scheme based on ppw, pdor, dd6, etc.

Physi-chemical effects such as charge transfer, saturation and screening [118, 119, 120]

should manifest more directly in the matrix elements, but such information gets gar-

bled after diagonalization. For example, if the 5th eigenvalue enB at k = [111]ir/3a

in 3-SiC crystal is lower than that of planewave DFT by 0.2 eV, should one increase

the screening term [118, 119, 120] in the TB model to get a better fit, or not? The

answer will not be at all obvious, since (a) the k-space result masks the real-space

physics, and (b) the eigenvalue reflects nothing about the spatial features of the eigen-

function P/nk). The information necessary for answering the question is hidden in the

wavefunctions {f14)} (now expanded in planewaves), and the electronic Hamiltonian

HnxpN (now a huge matrix). But the clues are simply not sufficiently embedded in

{e•}, which do not contain any spatial information [98]. Thus, the present empirical

TB approach is like "shooting in the dark".

It is thus desirable to come up with a systematic and numerically robust method to

distill information from planewave DFT calculation into a TB representation. Philo-

sophically this is the same as the "downfolding" procedure of Andersen et al.[127]

Namely, can we construct the minimal basis functions from {(4') } explicitly? can we
TB KS ? KS TB

get HsNsN from HpNxpN? This HnxpN --' H nxs mapping would work like com-
TKS TB

puter file compression, because HpxpN is a huge matrix and HsNxsN is small. Can

then the compression be lossless? i.e. can we retain exactly the occupied eigenspec-

trum {E~}occ of HxpKS, and perhaps a few unoccupied {e,} as well? For modeling

the total energy of the system, only the occupied bands are important. But if one

is interested in transport properties [128], the low-energy portion of the unoccupied

bands will be important as well.

In this chapter we present an explicit ab initio TB matrix construction scheme

based on planewave DFT calculations. The present scheme is significantly improved

over previous developments of QUAMBO [107, 108, 109, 110, 111] in efficiency and

stability, and now extended to work with USPP/PAW formalisms and popular DFT

programs such as VASP [31, 32, 129] and DACAPO [33, 35]. The improved scheme

no longer requires the computation and storage of the wavefunctions of hundreds



of unoccupied DFT bands, reducing disk/memory/CPU time requirements by or-

der of magnitude. But one also obtains converged quasiatomic orbitals of the pre-

vious scheme [107, 108, 109, 110, 111] as if infinite number of unoccupied bands

were taken - the so-called "infiniband" limit that completely eliminates unoccupied

bands truncation error (UBTE). We will demonstrate through a large number of

examples that an "atomic orbital (AO) like" minimal basis can generally be con-

structed, and are sufficiently localized for both insulators and metals. These examples

[130] demonstrate the physical soundness underlying the environment-dependent TB

approach[118]. While we stop short of giving material-specific parametrizations for

the HTxBg matrix elements, their physical properties will be discussed with view

towards explicit parametrizations [118, 119, 120] later.

Our method follows the general approach of Wannier function (WF) [104, 131,132,

133, 105,134,106, 135,136,137, 138, 139, 140,141], which combines Bloch eigenstates

obtained from periodic cell calculation in k-space to achieve good localization in real

space. Other than chemical analysis, linear scaling (order-N) methods [91, 92, 93, 94],

transport [95, 96, 97], modern theory of polarization [98] and magnetization [99],

LDA+U [100, 101, 102] and self-interaction correction [103] etc. also rely on high-

quality localized basis set. The WF approach guarantees exact reproducibility of the

occupied subspace, and exponential localization in the case of a single band [142] and

insulators [141].

There is some indeterminacy ("gauge" freedom [143, 144]) in the WF approach.

One could multiply a smooth phase function on the Bloch band states and they

would still be smooth Bloch bands. One could also mix different band branches

and still maintain unitarity of the WF transform. Marzari and Vanderbilt proposed

the concept of maximally localized Wannier functions (MLWF) [105] for an isolated

group of bands, using the quadratic spread localization measure originally proposed

by Foster and Boys [145] for molecular systems. Later Souza, Marzari and Vanderbilt

[106] extended this scheme for entangled bands by selecting a subspace from a larger

Hilbert space within a certain energy window. Choosing the MLWF gauge for a

given energy window removes all indeterminacy in the WF transform. Unfortunately,



there is no closed-form solution for MLWF, so iterative numerical procedures must be

adopted, associated with which is the problem of finding global minima. Despite the

tremendous success of the MLWF approach [105, 106], there are still something to be

desired of in the way of a robust and physically transparent algorithm, resulting in a

great deal of recent activities [135, 136, 107, 108, 109, 110, 137, 138, 139, 140, 111].

Here we take a different strategy [112, 113, 114, 107, 108, 109, 110, 111] which even-

tually combines both Lu's QUAMBO and Pulay's PAO. While maximal localization

is a worthy goal, if there is no analytical solution its attainment is perhaps uncertain.

The question is, does one really need maximal localization? May one be satisfied if

a set of WF orbitals can be constructed robustly, and they are "localized enough"?

Both the projected atomic orbitals [112, 113, 114] and the quasiatomic minimal basis

orbitals [107, 108, 109, 110, 111] are constructed based on the projection operation,

where one demands maximal similarity between the minimal basis orbitals with pre-

selected atomic orbitals with angular momentum quantum numbers. Since "maximal

similarity" is a quadratic problem, it has exact solution and the numerical procedure

is non-iterative and relatively straightforward. However briefly speaking QUAMBO

and PAO use two different strategies to obtain the unoccupied Bloch space. On the

other hand, whether these maximally similar WF orbitals are localized enough for

the practical purpose of ab initio TB analysis and constructing ab initio TB poten-

tials needs to be demonstrated, through a large number of examples. Preliminary

results are encouraging. We note that philosophically, these minimal basis orbitals

"maximally similar" to atomic orbitals are probably the closest to the original idea of

Slater and Koster of linear combinations of atomic orbitals, since using true atomic

orbital basis leads to very poor accuracy in present empirical TB standard.

3.2 Projection operation in USPP / PAW

Previous work [107, 108, 109, 110, 111] was based on norm-conserving pseudopoten-

tials. We extend the method to USPP and PAW calculations, which are implemented

in popular DFT codes such as VASP [32, 129], DACAPO [35], PWscf [146], CPMD



[147], CP-PAW [148] and ABINIT [149]. We have implemented interfaces to VASP

and DACAPO [130]. The formalisms of USPP / PAW have been carefully reviewed

in the first chapter and Ref. [128]. Here we just highlight the part important to

quasiatomic orbitals, which is the metric operator S.

The key idea behind USPP and PAW is a mapping of the true valence electron

wavefunction $(x) to a pseudowavefunction O(x): ' +-+ 0, just as in any pseudopo-

tential scheme. However, by discarding the requirement that O(x) must be norm-

conserved ((&10) = 1) while matching 4(x) outside the pseudopotential cutoff, a

greater smoothness of O(x) in the core region can be achieved; and therefore less

planewaves are required to represent3 O(x). In order for the physics to still work, in

USPP and PAW schemes one must define augmentation charges in the core region,

and solve a generalized eigenvalue problem

HI|') = EnS IOn), (3.1)

where S is a Hermitian and positive definite operator. S defines the fundamental

metric of the linear Hilbert space of pseudowavefunctions. Physically meaningful

inner product (0, 0') between two pseudowavefunctions is always ( IS 14') instead of

(010'). For instance, (0m IOn) # 6mn between the eigenfunctions of (3.1) because it

is not actually physically meaningful, but (OmI I10n) (- ( Im n) = Jmn is. The S

operator is given by

S= 1 + q; 3J)( 1 , (3.2)
i,j,I

where i {e=lIm} is the angular momentum channel number [25], and I labels the

ions. In above, the projector function O[(x) - (xlfl[) of atom I's channel i is

I(x) = /3Oi(x - XI), (3.3)

where X, is the ion position, and fi(x) vanishes outside the pseudopotential cutoff.

Just like H, S contains contributions from all ions. Consider a parallelepiped

computational supercell of volume Q, with N ions inside. One usually will perform



11 x 12 x 13 k-sampling in the supercell's first Brillouin zone in a ground-state total

energy calculation. For the sake of clarity, let us define a Born-von Krm'n (By)

universe, which is a 11 x 12 X 13 replica of the computational supercell, periodically

wrapped around. So the By universe has finite volume 1213l2 3Q, with total of 11 213N

ions. Using Bloch's theorem, it is easy to show that the eigenstates of the By universe

can be labeled by the 111213 k's of the k-mesh. Computationally, the 11 x 12 X 13 k-

sampling is a cost-saving measure. But the basic metric of function length and inner

product should be defined in the By universe:

(,S') I ( v ') = vd3x0*(x)(SI '))(x). (3.4)

S above contains contributions from all l1 l213N ions.

Suppose 4 and VV both satisfy Bloch's theorem, but with different k labels in the

11 x 12 X 13 k-mesh:

(x- a) = O(x)e - ik-a, '(x - a) = '(x)e-ik'.a, k # k', (3.5)

where a is an arbitrary combination of supercell edge vectors, then 0 and 0' will

obviously be orthogonal in (3.4). This is because the S metric in (3.2), being a

simple sum, commutes with the supercell translation operator T(a): [IS, T(a)] = 0.

So it is easy to show that (SI '))(x) is also a Bloch state labeled by k':

(SI0'))(x- a) = e-ik'ka(S I'))(x). (3.6)

So the integral (3.4) can be decomposed into a sum, which is always zero no matter

how 4 and 4' overlap in Q, due to the ei(k- k')-a phase factor when going around the

By universe. On the other hand, if k = k', then the two phase factors cancel out,

and it is easy to show that:

( , ') = Bv d3x*(x)(SI))(x) = 111213 d3x*(x)( '))(x). (3.7)



From above we see it is always advantageous to "think" in the By universe, but by

employing Bloch's theorem we often only need to "compute" in the Q-supercell.

With the inner product defined in (3.4), the projection of any state 1$) on I0) is
straightforward:

(P, 1p) ( |k|) (3.8)

Note that all functions discussed here must be periodic in the By universe. 4,) could

be atomic orbital (AO) like. Even though real AOs are often obtained and represented

in infinite space, this is not a problem numerically so long as the AO extent is much

smaller than the size of the By universe. The AO extent does not have to be smaller

than the computational supercell Q, however.

3.3 Quasiatomic orbital

3.3.1 Introduction to QO algorithm

From a planewave calculation using USPP or PAW potential, we obtain Bloch eigen-

states labeled by supercell k and band index n (occupied) or ii (unoccupied; we always

use index with bar on top to label unoccupied states). These supercell Bloch states

{ nk}, {fPk} are often delocalized, making them hard to visualize and interpret. An

alternative representation of electronic wavefunction and bonding is often needed in

the flavor of the LCAO[126] or tight-binding [118, 119, 120] approach. Ideally, this

representation should have features such as exponential localization of the basis or-

bitals [142], should be "AO-like", and should retain all the information of the original

Bloch eigenstates expressed in planewaves, at least of all the occupied Bloch states

{'nk}, so they can be losslessly reconstructed.

Quasiatomic minimal basis-set orbital (QUAMBO) is a projection-based non-

iterative approach. It was first implemented by Lu et al. [107, 108, 109, 110, 111],

after the previous work of Ruedenberg et al. [150] on molecular systems. The basic

idea is illustrated in Fig. 3-1. The objective is to seek an optimized subspace S, con-

taining the occupied {lnk} in its entirety plus a limited set of combined unoccupied
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occupied Bloch optimized combinations
wavefunctions X of unoccupied Bloch

wavefunctions C
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Figure 3-1: Illustration of QO construction. We seek a reduced optimized subspace,
spanned by the occupied Bloch wavefunctions {f nk}, plus a limited number of {C.k}
wavefunctions to be determined, such that the atomic orbitals (AO) have maximal
projection onto the subspace. Once this optimized subspace is determined, the QOs
which are the "shadows" of the AOs onto the subspace, form a non-orthogonal but
complete basis for this subspace. The QOs can then be used to reconstruct all the
occupied Bloch wavefunctions {4 nk} without loss. This means in a variational cal-
culation, using the QO basis for this particular configuration would achieve the same
total energy minimum as the full planewave basis. Furthermore since the QOs are
maximally similar to the AOs, they inherit most of the AO characters.

{Cfk} wavefunctions to be determined, such that the atomic orbitals have maximal
projection onto this subspace. The dimension of this "optimized Bloch subspace" is
constrained to be that of the minimal (tight-binding) basis, and {Onk}, {C,?k} form an
orthonormal basis for it. But the "shadows" of the AOs projected onto this subspace,
which are the QOs, can represent the subspace equally well, forming a non-orthogonal

but also complete basis for it. Furthermore, since the QOs are maximally similar to
the AOs (under the constraint that they contain {bnk} exactly), their localization
properties should be "good".

It is important to realize that here we are doing dimension reduction, the optimized



subspace is a small part of the entire function space, which is infinite dimensional.

Since each AO makes one shadow, and we use all shadows collected on the plane as

non-orthogonal complete basis for the subspace, the dimension of the subspace has

to be sl1 l213N, where s is the average number of AOs per atom. With the minimal

basis scheme, s should be 4 for Si and C, and the AOs are {s,PX,PyPz}. If we take

the smallest supercell admissible for diamond cubic Si, for instance, then N = 2 and

the dimension of the optimized subspace has to be 8111213, which is equal to the total

number of AOs in the By universe. Since we have 111213 k-points, this comes down to

8 'nk,Crk's per k. Because there are 4 (in general rN where 2r is the average valence

number of atoms) occupied 'nk'S at each k-point, we need to choose 4 complementary

Cok's per k. These 4 Cak'S will be chosen from the unoccupied {abk} subspace, which

is infinite dimensional. The whole process can be visualized as rotating the plane

around the ?nk axis in Fig. 3-1, seeking the orientation where the longest shadows

fall onto the plane (subspace S).

Two remarks are in order. First, the label "occupied" can be replaced by "desired"

Bloch wavefunctions in Fig. 3-1. While many problems such as fitting TB potentials

are mainly concerned with reproducing the occupied bands and the total energy with

a minimal basis, problems like excited-state calculations require more bands to be

reproduced. Then, one just need to generalize the meaning of '0nk in Fig. 3-1 from

"occupied" bands to "desired" bands. To be able to do this and still retain AO-like

characters, the size of the subspace may necessarily be expanded, for example from

{3s, 3p} (s = 4) to {3s, 3p, 4s, 3d} (s = 10) for Si, and then the "minimal basis" is

taken to mean the minimal set of AO-like orbitals to reproduce the desired bands,

whatever they may be, instead of just the occupied bands. Indeed, a novel utility

of the present QO scheme is to quantitatively guide the user in deciding (a) when

to expand, (b) how to expand, and (c) the effectiveness of representing the desired

part of the electronic structure in AO-like orbitals with pseudo angular-momentum

quantum numbers. Formally, denote the subspace we want to reproduce at each k by

R(k) -- {f'nk}. Then, the wavefunctions we do not desire to reproduce at each k form

a complementary subspace 1(k) f {Ofk}, which is infinite dimensional. We note that



(dim R(k)) = rN, but dim R(k) or R(k) generally may not be a continuous function

of k. For instance in metals, the Fermi energy SF cuts across continuous bands,

and the set of occupied bands is not a continuous function of k. We shall call any

mathematical or numerical feature caused by a discontinuity in R(k) as being caused

by "type-I" discontinuity.

Second, note that the subspace S we seek in Fig. 3-1 in the By universe can

be decomposed into smaller subspaces labeled by the Bloch k's, that are mutually

orthogonal:

S = S(ki) U S(k2) U ... U S(k,11213) (3.9)

Therefore, the length squared of an AO's shadow in S is exactly the sum of the

projected length squared onto every S(k). If without any other considerations, the

choice of the best rotation can be made independently for each k:

S (k) = 1ZR(k)UC(k), C(k) C 1(k), (3.10)

with

dim S(k) = sN, dim C(k) = sN - dim R(k), (dim R(k)) = rN, (3.11)

where C(k) I {Crk} is the choice of tk combinations:

C =k - Cn (k)/)k. (3.12)

Here, C(k) - {Cr(k)} is theoretically a dimC(k) x c0 matrix. We note that in

(3.10), only the total function content belonging to subspace C(k) is important, so

any unitary transformation UC(k) is equivalent to to the original choice C(k), where

U is dim C(k) x dim C(k) matrix and UTU = I. Also, even if 7R(k) and 7Z(k) are

continuous, C(k) does not have to be continuous in k, in the same way that the min-

imum eigenvalue of a continuous matrix function A(k) may not be continuous in k

due to eigenvalue crossings. We call such discontinuity in C(k), which is not caused



by discontinuity in R(k), "type-II" discontinuity. Both type-I and type-II disconti-

nuities could negatively influence the localization properties of QOs, in the same way

that the Fourier transform of a step function or functions containing higher-order dis-

continuities causes algebraic tails in the transformed function [142]. Algebraic decay,

however, is not necessarily a show-stopper.

In the previous development [107, 108, 109, 110, 111], the "rotation" in Fig. 3-1

was formulated as a matrix problem with explicit {f Pk} wavefunctions as the cor-

responding basis. While formally exact, in practice it requires the computation and

storage of a large number of 'Ofk'S, which are then loaded into the post-processing

program to be taken inner product with the AOs. The disk space required to store

the Ofk's can run up to tens of gigabytes. Still, one has finite unoccupied bands

truncation error (UBTE), which can severely impact the stability of the program.

For instance, it was found that when {s, p, d} AOs (s = 9) are used for each Mo atom

in bcc Mo, the condition number of the constructed QO overlap matrix is so bad that

the numerically calculated TB bands turn singular at some k-points, unless exorbi-

tant numbers of unoccupied bands are kept. The bad condition number problem can

be temporarily avoided if {s, d} AOs (s = 6) are used instead of {s,p, d} [111]. But

such solutions are fundamentally unsatisfactory because it is the user's prerogative

to decide what is the proper "minimal" basis for the physics one wants to represent,

and be able to use a richer QO basis if one desires.

It was discovered recently that a great majority of the bad condition number prob-

lems of the previous scheme [107, 108, 109, 110, 111] were associated with UBTE. In

our method, by resorting to the resolution of identity property of the unoccupied sub-

space TZ(k), we avoid the Eq. (3.12) representation all together. This not only elim-

inates the requirement to save a large number of Ofk's, reducing disk/memory/CPU

time requirements by order of magnitude, but also eliminates UBTE as a source of

bad condition number. This allows one to construct arbitrarily rich QO basis for bcc

Mo ({s, d}, {s,p, d} or {s,p, d, f }) without numerical problem, all within reasonable

computational cost.

Before we move onto the algorithmic details, it is instructive to define qualitatively



what we expect at the end. Let us use

(xlAf) = A (x) = Ai(x - XI) (3.13)

to denote the AOs, where I labels the ions and X1 the ion center, i = {lm} is the

angular momentum channel number. The AO themselves (e.g. s, px, py, Pz) are highly

distinct from each other. Indeed, if there were just one isolated atom in a big super-

cell, AOs of different angular momentum are orthogonal to each other. When there

are multiple atoms in the supercell and the metric S contains projectors from all

ion centers, this orthogonality between AO pseudowavefunctions on the same site is

no longer true rigorously, since two orbitals both centered at XI could still overlap

in regions covered by other projectors i') (fll. (The AO pseudowavefunctions are

spherical harmonics representing full rotation group, whereas S has crystal group

symmetry.) Nonetheless, AOs of different angular momentum should be nearly or-

thogonal, and should be highly distinguishable from each other. The same can be said

for two AOs Ai (x - XI), Aj (x - Xj) centered on two different ions. While this is ob-

viously not true if IXj - XII --+ 0, in most systems X1 and Xj are well separated, by

1 A or more between non-hydrogen elements [151]. The full-rankness of the AO basis

in By universe guarantees the well-behaving (not to be confused with the accuracy)

of the numerical LCAO energy bands in the entire Brillouin zone. For if this is not

the case, in particular if the AO overlap matrix is rank-deficient when projected onto

some k-point, then the band eigenvalues cannot be obtained in a well-posed manner,

and it would manifest as numerical singularities at that k-point in the LCAO energy

band diagram due to bad condition number.

Corresponding to each AO, there is a shadow in the optimized subspace, the QO

(xlQ!) = Qi(x) = Qi(x - XI). (3.14)

Even though Q (x) is no longer rigorously spherical harmonic, in the spirit of LCAO

{Q!} should inherit the main characters of { Af }, and therefore should also be highly

distinct. In other words, when presented with 3D rendering of the QO orbitals, one



should be able to recognize that this a "pr-like" QO on atom I, that is a "d,2_y2-

like" QO on atom J, etc. If this is not possible, the results would not be considered

satisfactory, even if these orbitals are localized.

Mathematically the above translates to the following. If the Qf's are individually

normalized, and so are the {fnk}, {C#k}, then the linear transformation matrix Q

connecting {Qi} to {ýnk, Cmk} must have a reasonable condition number i, defined

here as the ratio of the maximum to minimum eigenvalues of Otf. The following

pathology can be identified by a large is, which is that one QO orbital can be ex-

pressed as, or well-approximated by a linear combination of other QO orbitals. The

QOs are supposedly highly distinct from each other and linearly independent. A

large condition number would mean this is close to becoming false. This pathology

happened in reality, for example, when we attempted to use {s, p, d} AOs for each

Mo atom (s = 9) in extracting QOs for bcc Mo with the previous scheme [111]. The

bad condition number (due to UBTE) corresponds to nearly linearly dependent QO

orbitals when projected onto some k-point, which means that some of the QOs have

lost their distinct character. Once we switch to a smaller basis set using only the

{s, d} AOs (s = 6), this problem went away.

This good condition number (GCN) criterion provides a quantitative measure

of what constitutes a good minimal basis for solid-state systems. While it has not

been proved that AO-like minimal basis can be found for all molecular [150] and

solid-state systems, experiences with QO show that for the vast majority of systems,

a very satisfactory minimal basis can be found (good condition number and good

localization) with a little care. Indeed, by changing the AOs "as little as possible"

while maintaining the {fnk} band structure, we believe QO fulfills the true spirit of

LCAO [126].

3.3.2 Subspace optimization

From planewave calculation we obtain the occupied Bloch states,

H =nk) EnkSj4nk), = 1..Ok, (3.15)



where Ok is the number of occupied eigenvalues at k and enk is Kohn-Sham eigen

energy of band nk (for simplicity we assume a spin-unpolarized system), as well as

the unoccupied Bloch states:

H k) = EnkS k), n -- 1..Uk. (3.16)

Kohn-Sham Hamiltonian Ht for USPP and PAW potential consists of kinetic en-

ergy operator T, ionic local pseudopotential VL, ionic nonlocal pseudopotential VNL,

Hartree potential VH and exchange-correlation potential Vxc,

Ht = t +VL+VNL +VH+V XC. (3.17)

When averaged over the supercell's Brillouin zone, we have Ok = Nq/2, but Ok and

Uk can vary with k for metals. N is total number of atoms and q is averaged number

of valence electrons on each atom. Different Bloch states, either of different k or of

the same k but different n or i, are orthogonal to each other in the sense of (3.4)

(over the By universe). Let us choose normalization (over the By universe as well)

SnkII2 (2 nk nk) (nk SI nk) 1,

II Nk 2 I= (ýnk, )h'k) - KtklIsnk) - 1. (3.18)

The original QUAMBO scheme is to optimize true unoccupied Bloch space { Ok}

to obtain maximal atomic orbital projection. In our QO scheme, we use the same

criteria but optimize the virtual Bloch space formed by atomic orbitals.

Assuming that we have another set of virtual unoccupied Bloch states {Cmk}, we

choose to maximize the "sum-over-square" measure

maxE (A nk +Z PCmk) Af) 112 (3.19)
Ii nk mk

by optimizing {Cmk}. As shown in Fig. 3-1, QOs in real space are defined as a set of

valence quasiatomic orbitals {Q (x - XI)}, labeled by atomic position XI and orbital

100



type i (e.g., s or Px, Py, Pz, etc.), which can be expressed as unitary transformation

of occupied true Bloch states {fnk(x)} and unoccupied virtual Bloch states {Cmk(X)}

with n = 1, 2, ..., Ok and m = 1, 2, ..., Pk. Due to the unitary transformation, for

any k point, Pk = N(d - q/2) and Nd is the total number of QOs in the unit cell,

Nd = EIi. Therefore, the i-th QO of atom I, JQI), can be defined as two parts:

parallel part Q i) and perpendicular part QA). The parallel part is the projection

of atomic orbital IAI) on occupied Bloch space |4nk) while the perpendicular part

contains the projection of atomic orbital AI) on unoccupied virtual Bloch space Cmk),

Q{) = Qi) + IQ) = AIi( EPnk AI) + PCmk A!)), (3.20)

nk mk

where AIi is a normalization constant so that

(Q WQf) = 1. (3.21)

Eq. (3.19) indicates that once the occupied Bloch space is selected, the measure

will be affected by the virtual unoccupied Bloch space {Cmk} only. Therefore, the

key of QO construction is to find an optimized set of virtual unoccupied Bloch states.

Instead of extracting and optimizing a subspace from the unoccupied true Bloch space

{f fk} in both MLWF and the original Lu's QUAMBO scheme, we directly construct

{cmk}, similar to Pulay and Saeb0's PAO [112, 113, 114], which will be described

below.

To achieve {Cmk}, first we define the perpendicular part of atomic orbital A2,k

at particular k point as

A2,k) =( - P k) AI), (3.22)

and the corresponding overlap matrix of all atomic orbitals { IAA) } is defined as

(Wk)Ii,Jj  (A , Ak) Aik SIAj,k). (3.23)

10ik ,Ak) = (1
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By diagonalizing Hermitian matrix Wk, we can obtain the largest Pk number of

real eigenvalues Dm and their corresponding eigenvectors (Vk)m,Ii. Finally Cmk) is

defined as

Cmk) = E(Vk)m,Ii Ak). (3.24)
Ii

It is easy to prove that Icmk) is perpendicular to AI,

( Sk I|Ai,k) = (OnkSk(i-E Plk)IA)

= (Vk I IA )- Jn1 ('lk I^kJA')

= 0. (3.25)

Therefore Cmk) is also perpendicular to 'nk),

(nkiSCmk) = Z(Vk)mIi(nkAi-k) = 0. (3.26)
Ii

Furthermore, it can be shown that ICmk) is orthogonal to each other. For each k,

Vk is rescaled by a constant so that unoccupied virtual Bloch state ICmk) satisfies

the normalization condition as a true Bloch state does. Then we have the following

expression of normalization,

(cmk SaCm'k) = 6mm'. (3.27)

Beside this rescaling procedure, to obtain full electronic structure information we

need to evaluate the energies of these virtual Bloch states. This can be done by using

the Kohn-Sham Hamiltonian from DFT,

HICmk) = EmkS Cmk), m = 1..Pk. (3.28)

It should be mentioned that Emk is still real value since ICmk) is eigenstate of the

translation operator and thus eigenstate of H. Since the number of virtual unoc-

cupied Bloch states, Pk, is no more than the total number of atomic orbitals, the

102



computational cost of energy calculation is small. To keep the normalization condi-

tion for IQ!), we have

1 = (QSIQ )
= A2 (E(A~, PIk + E(AfIPC"mk) S ( P IA) + E Z k A,))

nk mk nk mk

= A((AjI kJAI/ A') + E(AIP mkJA)), (3.29)
nk mk

where we use the following identities that

Pmk SPCmk = 6 mmI PCmk

Pbnk SP7Pnk =nk 5

Pnk SPCmk = 0. (3.30)

Therefore, Ai can be expressed as
1

ARi = (Z(AIP kJA) + ^ (A IPk•A))2. (3.31)

nk mk

Finally, for optimized IQ!), the total mean-square deviation from atomic orbitals JA)

is

A2 = g(Q-A |Q{ -A)•
Ii

= [I + (A{ISiA/) - 2 A/j(Z(A / IP k |Af) + E(A IPCmk A!))] (3.32)
Ii nk mk

= S (I + (Af IIAf) - 2A-1) (3.33)
Ii

It should be emphasized that (Af /SAf) may not be equal to 1 since within USPP and

PAW formalism the overlap operator S includes contributions from all atoms while

for NCPP S = 1 and hence (AI SIAf) = 1. It is clear that the smaller A2 means less

deviation from atomic orbitals and better localization.

Mathematically there is no difference between ?nk and Cmk except that one is true

Bloch state and the other is virtual Bloch state constructed by ourselves. Therefore,
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to keep simplicity we only use one symbol ?nk to represent both the original occupied

true Bloch states bnk and newly-constructed unoccupied virtual Bloch states cmk.

Then QO formula, Eq. (3.20), is rewritten as

SQ!) -- = Ii f P •kAnk
nk

= ZAI (OnkISIAý) Ibnk)
nk

S (•-k)n,Ii IL)nk) (3.34)
nk

where now n = Ok + Pk = C and (fk)n,Ii = Ai(VnkISJAý). Matrix nk with the

size of C x C is transformation matrix between new Bloch space {?nk} and QO

representation{Qf}.

3.3.3 Pseudoatomic orbitals

In the original Lu's QUAMBO construction scheme, pseudoatomic orbitals Aý(x)

from pseudopotential generators are used as projection objects. However in NCPP,

USPP and PAW method some elements' pseudoatomic orbitals have very long tails,

extending to 10 A. Then to use this long-tailed orbitals as projection objects is not

very reasonable since these relatively delocalized orbitals are often changed a lot in

chemical bonding environment. One simple strategy is to rescale the radial part of

pseudoatomic orbitals by multiplying an exponentially decaying function,

A (x) = (Af (x) e- Ixl, (3.35)

where 7 is a positive real number and ( is a positive normalization factor. We find

that it improves localization of QO and localization of the corresponding tight-binding

Hamiltonian and overlap matrices.
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3.3.4 "Occupied" states

As shown in Eq. (3.20) all the Bloch states below Fermi level are defined as occupied

Bloch states, which are kept lossless by unitary transformation. However in practice

the states we want to preserve under the QO reconstruction can be up to several elec-

tron volts above Fermi level in order to capture more electronic structure information

accurately near the Fermi level. For example, electron transport in molecular elec-

tronics usually needs exact ab initio information near Fermi level since left and right

semi-infinite electrodes have different chemical potentials to build potential difference.

This requirement can be satisfied by defining an artificial "Fermi level" several eV

above the true Fermi level (defined as Eshift in Table 3.1) in our QO scheme where

one can setup an energy window to capture the region of interest exactly.

3.4 Ab initio tight-binding method based on quasi-

atomic orbitals

3.4.1 Ab initio tight-binding method

Hopping Hamiltonian H and overlap matrix S under QO basis set can be easily

obtained by using eigen energies of Bloch states. Computationally it is much more

efficient than direct planewave DFT calculations. Therefore with smaller H and

S matrices several useful applications can be easily implemented, including band

structure, density of states, and Fermi surface.

Under the QO basis set, tight-binding hopping Hamiltonian Hli,jj(X,) between

Qf' and QJ0 in two unit cells is written as

HIi,Jj(Xn) = d3 x Q* (x- X, - Xn)HQQj(x - Xj) (3.36)

= (Q AH|QoJ0), (3.37)

where Xn, represents the difference of lattice vectors between two different unit cells.
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With Eq. (3.34) and properties of Bloch states, we have

Q,(x - X1 - X,) = (f2k)t,,.i tk(x - Xn)
tk

S (fk)t,i e-ik-Xn 'tk (x),

(3.38)

(3.39)

then tight-binding Hamiltonian H i,jj(X ) is further derived as,

Hi, Jj (Xn) = eik-Xn (k)*,Ii (k')m,jj (tk !H-!mk')
tk mk'

= ei k X n (2k),,/ (Ik)m,j Emk,
mk

(3.40)

(3.41)

where Emk is the corresponding eigen energy for Bloch state 'mk. Following the same

procedure we can easily find tight-binding overlap matrix Sii,jj(Xn)

Si,Jj(Xn) = d3x Q* (x - X I - Xn)SQj(x - Xj)

= (Q~//IHIQo)

= ik-Xn (k)mI (k)m,j .
mk

(3.42)

(3.43)

(3.44)

Then based on matrix Hi,jj (Xn) and Sli,Jj(Xn), we can exactly and efficiently repro-

duce eigenivalues below Fermi level. This is achieved by forming Hamiltonian H1ii,j (k)

and overlap matrix Si,Jjj(k) at each k point,

H-i,J(k) = eikiXn Hi,Jj (Xn),
n

Sijj, (k) = E eik'Xn Sij (Xn).
n

(3.45)

(3.46)

Then by solving the following linear equation,

Hi(k) I(k) - E(k)S(k)=(k), (3.47)

we can get C eigen energies E(k) at this k point with C = Ok + Pk = Nd. It is

expected that all the Ok energies lower than EFermi are exactly the same as the result
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from DFT calculation with the same k-point sampling. The rest Pk eigen energies

belong to virtual unoccupied Bloch states {Cmk }.

3.4.2 Miilliken charge and bond order

Since QOs are environment-dependent quasiatomic orbitals, they can directly reflect

bonding environment in vision which differ from those free-atomic orbitals with pure

spherical harmonic characters such as s, p and etc. At the same time, they fully

reproduce all the information under Fermi level. Therefore QO can be a good candi-

date for charge transfer and bond analysis, such as Miilliken population analysis and

bond order analysis. Miilliken's overlap matrix analysis is one popular definition of

electron charge associated with each atom. Since QO can be directly expressed as

Bloch states (3.34), we can construct the Bloch sum of QOs

IkX = ij(k, x - XI)
1

• eikXn, Qi(x - XI - Xn)

=V/ m (ak)m,jI'mk(X).
m

(3.48)

(3.49)

(3.50)

On the other hand we express the Bloch states in terms of Bloch sum of QOs,

bnk(X) = ECli,nkQi(k, x -X)

S CIi,n k  eik-XmQi(x - XI - Xm).

Ii m

(3.51)

(3.52)

By multiplying ((Qjk'S) on the left hand side of Eq. (3.50), we obtain

(Qjk' SIQ,k) N Ej (fk'jJ (fk)m,Ii K4nk' ISkmk)
nm

= N6k'k E (k)njj (ak)nhii.
n
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Again by multiplying ((Qjk S) on the left hand side of Eq. (3.51), we obtain

=l 1ChnkKQjlk S Qik) (3.55)

Ii

- N CIi,nk (Qk)m, Jj (Ak)mii , (3.56)
li m

while from Eq. (3.50) we also have

(QkJSk I•nk) - E (Qk) ,Jj (Kmk|S I7nk) (3.57)
m

V (Nk) ,j (3.58)

By the equity of Eq. (3.56) and Eq. (3.58), we have the following expression

1

CIi,nk E (k)m,Jj (k)m,Ii V/ (k),J (3.59)
Ii m VL

We can define square matrix G(k) with element Gjjzi(k) = Em (Qk)m,,jj (k)m,ii,

vector c(nk) with element CIi,nk and vector a(nk) with element (k)* ,jj /V-N for each

n and k, then the problem is just to solve a linear matrix equation for particular n

and k,

G(k)c(nk) = a(nk), (3.60)

therefore by inversion of matrix G(k), finally we get the expression for c(nk),

c(nk) = G(k)-la(nk). (3.61)

To split charge density onto different orbitals at each atom, we first need to define

density operator in terms of true Bloch states Jnk)

ff= If nk nk nk, (3.62)
nk

where fnk is the occupation number of electrons in the corresponding true Bloch

state nk). And we know from PAW formalism that PAW transformation operator
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T defined by

|bnk) = Tkfnk)

and operator S in USPP are related by S = týT. Then it is easy to see that

= fnkTnk) (knk I
nk

From inverse Fourier transformation of Eq. (3.49) we get

= 1 e-ikXn •(k,x - XI).
vrN-k

Then under QO basis set, the density matrix is expressed as

p3 (Ti'Q°))
1= £E fk E E

k Jj Ll

Ee ik-XnJ Qn)
Xn

( e-ik.Xm (Lm )Xm( e A IsI iO

= (Ps) in(IO Qn)),
Jj Xn

where matrices P'(k) a Jn, IO(k) are defined by
where matrices p1,J'(k) and j'i ()aedfndb

Pj'L(k)

Sj (k)

= fykCJj,jkCL1,k,

- e-ik-Xm (QLmjoIQIO)SXmXM

and (PS)ý' ,"o is defined by

-(PS) S N pJL (k) SJL(k)S (k)eik-Xn,
k Ll

It is noticed that density matrix f has the following property,

Tr(,) = Ne,
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(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

Qi(x - XI - X,)

CJj,,kCLl,,,k)



where Ne represents total valence electrons within one unit cell, therefore under QO

basis set {QI} we have

Ne = K (PS)10 ' 0 = 1 N0, (3.73)
Ii I

where NO is number of electrons associated with atom I. No can be decomposed into

Mililiken overlap population matrix MIo,jn between the I-th atom of the origin cell

Xo and the J-th atom of cell Xn,, by the following derivation

No = (PS)'° ' 0

7VPý,J(k) e-ik-X,(Qn n 0IO
X, J k iii
-- :' [

l  ' : p I .' J ( k ) 
S

I O J n ( k )x
J ki

X, J k ij

= E MIo,Jn, (3.74)
Xn J

where

S(k) = eikXn 0) (3.75)

and 1

Mlo,Jn = - (k)S!0,g(k). (3.76)
k ij

For spin-polarized calculations, since P 'j(a, k) depends on spin degree of freedom

a, Miilliken overlap population matrix Moy0,Jn also depends on a. Then Eq. (3.76)

becomes

Mo,Jn P• J(a, k)S°'Jn(a, k). (3.77)
k iij

Similarly, bond order between two atoms can be derived in the same procedure

with spin degree of freedom included. The square of density matrix is defined as,

P12 2 1: 2k) I O kt a. (3.78)
' lik,oa
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Then, the trace of P2 is

T . (g:) , Z (fk) 2 = j Z Z (pS(U))IO'°J (pS(O)) °nIO1
U Isk,u a Ii Xn JJ

= EE BOo,jon
Xn I,J

(3.79)

where BOIO,Jn is defined as bond order between the Ith atom of the origin cell Xo

and the Jth atom of cell XN,

BOIo,gn= = (PS(a))[,Jn" (PS(a))Jno° (3.80)

It is obvious that the bond order matrix should satisfy the general sum rule

(3.81)Z BOi,Jn = = (f1k) 2.

Xn I,J ,ka

From the above formula, we can easily see for spin-unpolarized nonmetallic systems

without Fermi broadening, it exactly satisfies

(3.82)Z BOio,jn = 2Ne.
Xn I,J

and for spin-polarized nonmetallic systems without Fermi broadening, it satisfies

(3.83)E BOIo,Jn = Ne.
Xn I,J

Therefore, for metallic systems with Fermi broadening it is better to include the

unoccupied Bloch space several eV above Fermi level so that total Miilliken charge

and bond order can satisfy the above sum rules exactly.

3.5 Applications of quasiatomic orbitals

Some typical materials are selected to demonstrate construction of QOs and their

applications with USPP, including semiconductor, simple metal, ferromagnetic mate-
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rial, transition metal oxide, high temperature superconductor and quasi-one dimen-

sional material. The ground-state electronic configurations are calculated by the free

USPP-DFT DACAPO package [33, 34, 35] with Vanderbilt USPP [25, 26, 27], where

Monkhorst-Pack [23] k-point sampling is used and generalized gradient approxima-

tion(GGA) of exchange-correlation functionals, such as PW91 [12], is applied. Pa-

rameters for the corresponding DFT calculations are included in Table 3.1.
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Table 3.1: Parameters for DFT calculations and QO constructions in various systems. Eshift is defined as the difference between
the artificial Fermi level used in the QO construction and the true Fermi level of the system.

Material # atoms structure ao, co [A] Ecut[eV] # k-points # bands XC Rcut [A] Ehift [eV]
Si 2 FCC 5.430 300 7x7x7 60 PW91 12.0 0

/-SiC 2 FCC 4.32 350 7x7x7 40 PW91 12.0 0
CH 4  5 1.1 350 F-point 60 PW91 8.0 0
SiH 4  5 1.48 350 F-point 40 PW91 8.0 0
Al 1 FCC 4.030 300 9x9x9 60 PW91 8.0 1.0
Fe1  1 BCC 2.843 400 9x9x9 40 PW91 10.0 3.0

MgB 2  3 HCP 3.067, 3.515 300 7x7x7 40 PW91 10.0 3.0
TiO2 (rutile) 6 Tetragonal 4.584, 2.961 400 7x7x7 100 PW91 10.0 0

CNT(5,5) 20 1.415 300 2 x 1x 9 80 PW91 10.0 1.0

aFerromagnetic



3.5.1 Semiconductor: diamond Si crystal

Semiconductors with a small band gap less than 2 eV have been widely used in various

electronic systems. It is well known that as temperature goes up the density of carriers
in semiconductors increases dramatically, and therefore the electrical conductivity

also increases rapidly, although the relaxation time of electrons decreases due to
the stronger electron-phonon coupling. Therefore, they can be easily changed to
conductors by thermal excitations. Band theory and three dimensional energy surface
are often used to analyze characteristics of semiconductors, such as energy band gap,
light and heavy holes.

t 41t t

4 4

I I

I
I

t 
t (n

Figure 3-2: QO in diamond Si crystal: (a) s-like and (b) pz-like with absolute isosur-
face value of 0.03 A-. (Yellow or light gray for positive values; blue or dark gray for
negative values.)

Silicon is one of important semiconductor materials. The cubic diamond Si crystal
is one typical semiconductor with an indirect band gap of 1.17 eV at 0 K. Fig. 3-2
shows two of total eight QOs: s-like QO and pz-like QO. Pure free atomic s and pz
orbitals are strongly "squeezed" due to the interaction with their nearest neighbor
atoms while the overall shapes of s and Pz are kept. This fact reflects that chemi-
cal bonding in diamond Si crystal does not change the electrons' angular momentum
characteristics and therefore it leads to the success of linear combination of atomic or-
bitals(LCAO) method in describing the electronic structure of diamond Si crystal and
other similar systems. Fig. 3-3(a) compares the band structure between planewave
DFT calculation and tight-binding calculation based on eight QOs of two Si atoms
described in Sec. 3.4.1. It is observed that four valence energy bands below Fermi
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Figure 3-3: Diamond Si crystal: (a) band structure (circle dot: planewave DFT
calculation; solid line: tight-binding calculation based on eight QOs of two Si atoms;
dashed line: Fermi level.) (b) density of states. (circle-dot line: planewave DFT
calculation; solid line: tight-binding calculation; dashed line: Fermi level.)
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Figure 3-4: QO-projected band structure of diamond Si crystal with red for the s-like
QO and green for all three p-like QOs.

level are exactly reproduced with each band doubly occupied. The indirect band gap

from DFT calculation is around 0.7 eV and smaller than 1.17 eV from experiments,

which is a common problem of DFT due to inaccurate exchange-correlation functional

and the discontinuity of the functional. However QO-based tight-binding calculation

gives a band gap of around 2.0 eV and the position of this indirect band gap shifts

along XF direction. It is also noted that overall conduction bands from tight-binding

calculation are higher than planewave DFT result. These higher Bloch states in

the conduction bands are anti-bonding states while the corresponding bonding states

are in the valence bands. The above mismatch between plane-wave DFT result and

QO-based tight-binding result are simply because virtual unoccupied Bloch states are

manually constructed and they are not true unoccupied low-lying Bloch states. These

virtual unoccupied Bloch states in C(k) can be represented by a linear combination

of the infinite true unoccupied Bloch states in 7(k). Therefore the energies above

Fermi level obtained from QO-based tight-binding calculation are always higher than

Kohn-Sham eigen energies. Density of states (DOS) in Fig. 3-3(b) also shows the

similar change in the conduction bands while DOS below Fermi level is exactly the

same in both calculations. Fig. 3-4 is the QO-projected band structure color-coded
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by the weight of s-like and p-like QO components. It clearly shows that one s-like QO

has more weight at the bottom of occupied bands while three p-like QOs dominate

the top of occupied bands.

It is worth to mention that in this case band structure is only kept exactly under

Fermi level with Eshift =0 eV in Table 3.1, however, Fermi level can be shifted since

the energy window is defined by users for their interests.

3.5.2 Covalent compound: 3-SiC crystal

Silicon carbide is a typical example of covalent compounds and it has been exten-

sively studied and used because of its chemical inertness, high thermal conductivity,

high electron mobility, high hardness and high melting point. SiC has two solid

phases: a-SiC and 3-SiC. The former is an intrinsic semiconductor in hexagonal

crystal structure and the latter has an indirect band gap of 2.2 eV in zincblende-type

structure.

Figure 3-5: QO in 3-SiC crystal. (a) Si: s-like (b) Si: pz-like (c) C:

pz-like (absolute isosurface value: 0.03 A 3)

s-like (d) C:

Conduction bands in tight-binding band structure plot (Fig. 3-6) and DOS plot
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(Fig. 3-8(a)) shift up due to the same reason as the situation in diamond Si crystal

case. From DFT calculation a band gap of around 1.0 eV is obtained while from

tight-binding calculation it is around 3.0 eV. It is seen from Fig. 3-5 that both s-like

and p-like QO of Si atom are more delocalized than those of C atom, which means Si

has less capability to attract electrons than C in f-SiC crystal. It is indeed shown by

the QO-projected density of states plot in Fig. 3-8(b) where total density of states on

C atom below Fermi level has much more weight than that on Si atom. That further

indicates more charges are localized at C atom. It can be checked that the sum of QO-

projected density of states is equal the tight-binding total density of states. However,

it is not true for simple atomic-orbital-projected density of states in standard DFT

calculations.

V

Figure 3-6: Band structure of 3-SiC. (circle dot: planewave DFT calculation; solid
line: tight-binding calculation based on 8 QOs; dashed line: Fermi level)

Compared to Fig. 3-3(a) in the diamond Si crystal, there is a large splitting

between two bottom bands along the X-W line in Fig. 3-6 in the SiC crystal. Four

higher peaks of DOS, shown in Fig. 3-8(b), are useful to explain this splitting. Two

118



I-

Si: s-C: p

C : s - Si : v,
F X W L F K X .

Figure 3-7: QO-projected band structure of SiC crystal with red for Si-s and C-p and
green for C-s and Si-p

peaks around -12.0 eV (C's s peak on the bottom panel and Si's p peak on the top

panel) and another two peaks around -8.0 eV(C's p peak on the bottom panel and Si's

s peak on the top panel) lead to two non-symmetric types of s-p bonding. One is the

bond between Si's s-like QO and C's p-like QO and the other is the bond between Si's

s-like QO and C's p-like QO. In diamond Si crystal the above two types are degenerate

bonds, which give two degenerate bands at the bottom of band structure between X

and W. This splitting is much clearly reflected in QO-projected band structure shown

in Fig. 3-7, where the bonding between silicon's s-like QO and carbon's three p-like

QOs is dominant at the higher energy band while the bonding between carbon's s-like

QO and silicon's three p-like QOs is dominant at the lower energy band.

To further study electron transfer we investigate Miilliken charges in three different

compounds in Table 3.2, including CH 4 molecule, SiH4 molecule and 3-SiC crystal.

It is seen that the capability of three different elements to attract electrons is in the

following order: C > H > Si. Table 3.3 lists the bond order between atoms and their

first and 2nd nearest neighbors in various systems. It is expected that bond order

between the atom and their 2nd nearest neighbor is almost zero and much less than

bond order between the atom and their 1st nearest neighbor, which is a characteristics
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Figure 3-8: (a) Density of states of 3-SiC. (circle-dot line: planewave DFT calculation;
solid line: tight-binding calculation; dashed line: Fermi level.) (b) Projected density
of states of 3-SiC. (Top panel: Si; bottom panel: C; dashed line: Fermi level.)
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Table 3.2: Miilliken charge comparison in CH 4 , SiH 4 and 3-SiC
Material Miilliken Charge total charge

CH 4  C: 5.160 H: 0.710 8.0
SiH 4  Si: 3.300 H: 1.175 8.0
3-SiC Si: 2.729 C: 5.271 8.0

of covalent-bonding systems. Unlike the covalent system, FCC aluminum and BCC

iron have small bond orders for both the 1st and 2nd nearest neighbors. In the case of

MgB 2 crystal, it has very strong covalent bonding on the boron plane and large bond

order between boron and magnesium, but very small bond order between magnesium

atoms. Here again, total Miilliken charge and total bond order satisfy their sum rules,

which is not the case for the traditional charge analysis used in DFT calculations by

setting a radius cutoff and integrating valence electron density within that radius for

one atom. This good property will be very useful for tight-binding parameter fitting

in future.

Table 3.3: Bond order for 1st and 2nd nearest neighbors in various materials
Material BO (total BO)/sum rule

CH4  C-H: 0.882 H-H: 0.012 8.0 / 8.0
SiH 4  Si-H: 0.866 H-H: 0.033 8.0 / 8.0

O-SiC Si-C: 0.823 Si-Si: 0.009 8.0 / 8.0
C-C: 0.015

Si-diamond Si-Si: 0.874 Si-Si: 0.009 8.0 / 8.0
Al-FCC Al-Al(1): 0.213 Al-Al(2): 0.015 2.898 / 2.896

Fe-BCC(majority) Fe-Fe(1): 0.092 Fe-Fe(2): 0.035 4.967 / 4.967
Fe-BCC(minority) Fe-Fe(1): 0.164 Fe-Fe(2): 0.057 2.842 / 2.843

MgB 2  B-B: 0.698 Mg-B: 0.206 13.868 / 13.868
Mg-Mg: 0.085

3.5.3 Simple metal: FCC Al

Aluminum is one of trivalent simple metals with a lot of applications. It is, there-

fore, natural for us to study FCC aluminum as well. In this case one s and three p

pseudoatomic orbitals are used as free atomic basis set. These orbitals are rescaled

by e- IxL with r~ = 0.5 and renormalized to get better localization. Total four corre-
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sponding QOs are obtained, some of which are shown in Fig. 3-9. Based on this QO

basis set, band structure, projected band structure, density of states and Fermi sur-

face are efficiently calculated as presented in Fig. 3-10(a), Fig. 3-10(b), Fig. 3-11(a)

and Fig. 3-11(b). Density of states n(E) in Fig. 3-11(a) is nearly proportional to

v/-, which is very similar to free electron model. This nearly free electron behavior

is also observed on Fermi surface within first Brillouin zone shown in Fig. 3-11(b).

The concave surface in the center encloses holes folded from Fermi surface in the

second Brillouin zone. The other small surfaces around the edges of the zone en-

close the electrons translated from Fermi surface in the third zone. However, FCC

Al does not have the third type of tiny surface around corners of the zone as free

electron's Fermi surface does. It is well known that this disappearance is due to FCC

Al's periodic potential, which does not exist in free electron model and it was con-

firmed by de Haas-van Alphen experiment data. In addition, Fig. 3-12 shows the

Fermi surfaces for band 3 and 4 which are colored by velocity magnitude while Fig.

3-13 presents both surfaces colored by QO components. The magnitude of our Fermi

velocity agrees with the experimental data [21] and it is also the key quantity to

determine the electrical conductivity of bulk materials. QO-encoded Fermi surface in

Fig. 3-13 demonstrates that p orbitals are the major angular momentum component

on the large Fermi surface sheet while the small Fermi surface around the zone edges

are dominated by both s and p angular momenta. QO-projected band structure in

Fig. 3-10(b) also supports the above conclusion.
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Figure 3-9: QO in FCC Al: (a) s-like (b) pz-like (absolute isosurface value: 0.03 A- 3)
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(b) QO-projected band structure

Figure 3-10: (a) DFT and tight-binding band structures of FCC Al. (b) Color-coded
band structure of FCC Al with red for s-like QO and green for p-like QOs. (circle

dot: planewave DFT calculation; solid line: tight-binding calculation based on four

QOs; dashed line: Fermi level; dash-dot line: shifted Fermi level with Eshift = 1 eV.)
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Figure 3-11: (a) Density of states of FCC Al. (circle-dot line: planewave DFT cal-
culation; solid line: tight-binding calculation; dashed line: Fermi level; dash-dot line:
shifted Fermi level with Eshift 1 eV.) (b) Fermi surface of FCC Al.
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Figure 3-12: Fermi surface
A/fs).
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Figure 3-13: QO-projected Fermi surface of FCC Al color-coded by angular momen-
tum components of QOs. (The color map is the same as that of Fig. 3-10(b).)
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3.5.4 Ferromagnetic material: BCC Fe

One of ferromagnetic materials - BCC iron - is investigated, in which we expect

some differences between the QOs with majority spin and those with minority spin.

Here the Fermi level is shifted up by 3 eV to keep electronic structure near the

original Fermi level to be exact. Pseudoatomic orbitals 4s and 4p are rescaled by

e- Ix7 with q = 0.5 and then renormalized. Fig. 3-14 displays five of total 9 QOs.

The QOs for both majority spin and minority spin, on the left and middle columns

respectively, look very similar. However the difference between these QOs shown in

the right column is very clear and the isosurfaces of the orbital difference have the

same symmetry as the corresponding QOs. Fig. 3-15(a) and Fig. 3-15(b) present

two different band structures with majority spin and minority spin respectively and

both of them have excellent agreement with those from DFT calculations. Density

of states plotted in Fig. 3-17 shows the dramatic difference of electronic structure

between majority spin and minority spin in BCC Fe.

Fig. 3-18(a) and Fig. 3-18(b) are two corresponding Fermi surface plots. In Fig.

3-18(a) for the majority spin case, the closed surface around F point holds electrons

while the open surfaces on the zone faces and another two types of small surfaces

an the corners enclose holes. These open surfaces are connected to other surfaces of

the same type in the second Brillouin zone and thus form open orbits along certain

directions. In Fig. 3-18(b) for the minority spin case, the surfaces around H point

at the corners and those around N point on the zone faces form hole pockets while

one octahedral closed surface around F point and six spherical balls form electron

pockets. Moreover, Fig. 3-19 and Fig. 3-20 show Fermi surfaces color-coded by the

amplitude of Fermi velocity: Fig. 3-19(a, b) for band 5 and 6 of majority spin and

Fig. 3-20(a, b) for band 3 and 4 of minority spin respectively. Fig. 3-21 and Fig. 3-22

are Fermi surfaces color-coded by QO components: Fig. 3-21(a, b) for band 5 and 6

of majority spin and Fig. 3-22(a, b) for band 3 and 4 of minority spin respectively.

Those plots reflect that Fermi electrons of both spins mostly contain d characters.

However compared to the FCC Al case, averaged Fermi velocity of BCC Fe is smaller.
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Figure 3-14: QO in BCC Fe. From top to bottom they are: s-like, pz-like, dz2-like, dyz-
like and d2 Y2-like QOs. Left column: QOs with majority spin (absolute isosurface
value: 0.03 A- 3). Middle column: QOs with minority spin (absolute isosurface value:
0.03 A- 3). Right column: difference between QOs with majority spin and QOs with
minority spin (absolute isosurface value: 0.003 A- 3 )
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U)

U)
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Figure 3-15: Band structure of BCC Fe with (a) majority spin and (b) minority spin.
(circle dot: planewave DFT calculation; solid line: tight-binding calculation based on
9 QOs; dashed line: Fermi level; dash-dot line: shifted Fermi level with Eshift- = 3
eV.)
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Figure 3-16: QO-projected band structure of BCC Fe with (a) majority spin and (b)
minority spin. They are color-coded by (c) color triangle with red for five d-like QOs,
green for one s-like QO, and blue for three p-like QOs. (dashed line: Fermi level;
dash-dot line: shifted Fermi level with Eshift = 3 eV.)
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Figure 3-17: Density of states of BCC Fe. Top panel: majority spin; bottom
panel:minority spin. (circle-dot line: planewave DFT calculation; solid line: tight-
binding calculation; dashed line: Fermi level; dash-dot line: shifted Fermi level with
Eshift = 3 eV.)

(a) majority spin (b) minority spin

Figure 3-18: Fermi surface of BCC Fe with (a) majority spin and (b) minority spin.
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Figure 3-19: Fermi surface of BCC Fe with majority spin color-coded by Fermi ve-
locity: (a) band 5 (b) band 6 (velocity units: A/fs).
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Figure 3-20: Fermi surface of BCC Fe with minority spin color-coded by Fermi ve-

locity: (a) band 3 (b) band 4 (velocity units: A/fs).
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Figure 3-21: QO-projected Fermi surface of BCC Fe with majority spin color-coded
by angular momentum components of QOs: (a) band 5 (b) band 6. (The color map
is the same as Fig. 3-16(c).)
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Figure 3-22: QO-projected Fermi surface of BCC Fe with minority spin color-coded
by angular momentum components of QOs: (a) band 3 (b) band 4 (The color map is
the same as Fig. 3-16(c).)
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3.5.5 Transition metal oxide: rutile TiO2 crystal

QO can also be constructed in transition metal oxides such as rutile-phase titanium

dioxide(TiO 2) crystal. It is seen from Fig. 3-23(a) that TiO 2 has a wide band gap

- about 2 eV. Fig. 3-23(b) presents the corresponding density of states from both

DFT calculation and QO-based tight-binding calculation. Again both band structure

and density of states show the perfect match between plane-wave DFT result and ab

initio tight-binding result below Fermi level. If we examine the DOS plot carefully,

we can see even DOS above Fermi level but below 7.5 eV is very similar to each other

in both calculations. That is further confirmed by the comparison between the band

structures from DFT and tight-binding calculations. The manifold of the DFT band

structure is almost fully represented by the manually-constructed unoccupied Bloch

subspace.

3.5.6 High temperature superconductor: HCP MgB 2

It is well known that magnesium diboride (MgB 2) crystal in hexagonal close packed

structure, shown in Fig. 3-24(a), is a superconductor material. Here pseudoatomic

atomic orbitals include magnesium's 2p, 3s, 3p and 3d orbitals and boron's 2s and 2p

orbitals, and the corresponding 20 QOs are constructed with the Fermi level shifted up

by 3 eV. During the construction we rescale 2p, 3s, 3p, and 3d pseudoatomic orbitals

by e-g1X with q = 0.5, 0.5, 0.5, and 1.0 respectively and then renormalize them.

As shown in Fig. 3-24(b), below the shifted Fermi level (Eshift = 3 eV) two band

structures obtained from planewave DFT calculation and QO-based tight-binding

calculation are exactly the same as each other. The density of states also shows the

similar exact match, demonstrated in Fig. 3-25(a).

Fermi surface plotted in Fig. 3-25(b) provides a visual tool to understand the

contribution of Fermi electrons. One type of the Fermi surfaces is a-type band from

oa-bonding on the boron x-y plane and it is seen from Fig. 3-25(b) that around IF point

there are two cylindrical sheets of Fermi surface which enclose holes. Two sheets are

open surfaces along F-A direction in momentum space and form open hole orbits in the
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same direction. Since velocity direction of charge carriers in real space is perpendicular

to Fermi surface in momentum space, these two bands corresponds to two o bands of

Px and py orbitals on boron plane. The other type of the Fermi surfaces comes from

r bonding orbital of boron plane. Two ring-shaped sheets (purple/green) of Fermi

surface around the zone's top and bottom edges enclose electrons from Pz antibonding

orbitals (r*) of boron plane while another ring-shaped sheet (yellow/blue) around the

center of zone faces encloses holes from Pz bonding orbitals (r). The above conclusion

can also be found in QO-projected band structure (Fig. 3-26), where two distinct

types of bands are around Fermi level. Especially green bands with boron's s-like,

ps-like and py-like QO characters are not only the major components around A and

r points, but also dominate most of occupied bands except two dark bands formed

by boron's pz-like QOs and magnesium's s-like and p-like QOs. Our results are very

similar to the conclusions of Choi and et al. [153]. However, the difference is that the

7r Fermi sheets also contain some contributions from magnesium's s-like and p-like

QOs beside boron's pz-like QOs. Similar to the BCC iron case, Fig. 3-27 shows Fermi

surfaces color-coded by Fermi velocity (a,c,e) and QO components (b,d,f). From these

surface plots, we see that most of Fermi surfaces are dominated by boron's s-like, px-

like and py-like QOs while Fermi velocity distribution changes a lot in all the surface

sheets.
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Figure 3-23: (a) Band structure of rutile TiO2. (circle dot: planewave DFT calcula-
tion; solid line: tight-binding calculation; dashed line: Fermi level.) (b) Density of
states of rutile TiO2. (circle-dot line: planewave DFT calculation; solid line: tight-
binding calculation; dashed line: Fermi level.)
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(a)

Figure 3-24: (a) Atomistic structure of HCP MgB 2 visualized by AtomEye

[152].(Gray: Mg; Orange: B) and (b) band structure of HCP MgB 2. (circle dot:

planewave DFT calculation; solid line: tight-binding calculation based on 20 QOs;

dashed line: Fermi level; dash-dot line: shifted Fermi level with Eshift - 3 eV.)
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(a) (b)

Figure 3-25: (a) Density of states of HCP MgB 2. (circle-dot line: planewave DFT
calculation; solid line: tight-binding calculation; dashed line: Fermi level; dash-dot
line: shifted Fermi level with Eshift = 3 eV.) (b) Fermi surface of HCP MgB 2.

Mg:s, PZ, Py, Pz

B:pz 8:s, Px, Py

Figure 3-26: QO-projected band structure of HCP MgB 2 colored by three components
with red for Mg's s-like and p-like QOs, green for B's s,px-like and py-like QOs, and
blue for B's pz-like QO. (dashed line: Fermi level; dash-dot line: shifted Fermi level
with Eshift - 3 eV.)
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Figure 3-27: Fermi surface of HCP MgB 2: (a), (c), and (e) are color-coded by Fermi
velocity; (b), (d), and (f) are color-coded by QO components. (The color bar here
is for velocity magnitude with the unit of A/fs; the color map of QO components is
similar to that of Fig. 3-10(b) but with red for Mg's s-like and p-like QOs and green
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0

2.5

YU

YW

m J'•

4 I



3.5.7 Quasi-one dimensional material: (5,5)-CNT

Quasi-one dimensional materials are rapidly emerging in recent years due to their

various interesting properties which behave totally different from thin films or bulk

materials. Carbon nanotube (CNT) is one example obtained by wrapping one or mul-

tiple layers of graphite into a cylindrical tube. Single wall carbon nanotube (SWNT)

is characterized by chiral vector (n, m) which denotes the number of unit vectors

along two directions in the honeycomb crystal lattice of graphene. The chiral vector

(n, m) eventually determines both diameter and chiral angle of SWNT.

Here we use SWNT with n = m = 5 (armchair) as an example. QOs are con-

structed with Fermi level shifted up by 2 eV and pseudoatomic 2p orbitals rescaled by

e-0 51xl and renormalized. Some QOs of CNT-(5,5) are constructed and shown in Fig.

3-28 and it is observed that both s and p orbitals are largely "deformed" to the QOs

due to strong covalent bonding. The corresponding band structure and density of

states are shown in Fig. 3-29(a) and Fig. 3-29(b). As expected, the armchair CNT is

metallic with finite density of states around Fermi level. It is noted that some energy

points between true Fermi level and shifted Fermi level are not exactly the same as

those from DFT calculation. It is possibly due to the strong deformation of atomic

orbitals in CNT, therefore the constructed virtual unoccupied subspace is not fully

complementary to the subspace below the shifted Fermi level.

3.6 Comparison with Maximal Localized Wannier

Function

QO is different from Wannier functions such as MLWF developed by Marzari and

Vanderbilt [105]. Both position and shape of MLWF are unknown before the con-

struction is fully finished. It could be like atomic orbital or like bonding orbital,

which is determined by the information included in the selected Bloch subspace. Ob-

viously MLWF is the most localized orthogonal Wannier function and it could achieve

even more localization if orthogonal condition is relaxed. The localization [141] and
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Figure 3-28: QO in carbon nanotube with chiral vector (n, m) = (5, 5). Left column:
isosurface viewed from z-direction. Right column: isosurface viewed from x-direction.
(absolute isosurface value: 0.06 A-3)
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Figure 3-29: (a) Band structure and (b) Density of states of CNT(5,5). (circle dot:
planewave DFT calculation; solid line: tight-binding calculation; dashed line: Fermi
level; dash-dot line: shifted Fermi level with Eshift = 2 eV.)
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uniqueness of MLWF are great advantages compared to Lu's QUAMBO and our QO.

However, the position and angular momentum of QUAMBO and QO are known before

the construction, which makes our QO much more transferable.

3.7 Comparison with Quasiatomic Minimal Basis-

set Orbital

The original Lu's QUAMBO method [107, 108, 109, 110, 111] selects an optimized

combinations of unoccupied Bloch states from DFT calculations to obtain virtual un-

occupied Bloch states. This method is also implemented in our code. However, one

major disadvantage of Lu's method is that one needs to include enough Kohn-Sham

bands to capture all bonding and antibonding Bloch states for the corresponding

atomic orbitals. It is difficult to predict where the corresponding highest antibond-

ing Bloch state is. Even if it was predictable, usually this state could be at very

high energy. Therefore, with conventional DFT calculations it is very inefficient and

memory-consuming to calculate and store such a large number of bands. More im-

portantly, many of these unoccupied bands with other orbital characteristics are not

useful at all and in the Lu's scheme most of time could be wasted on calculating

atomic projections on these irrelevant bands. However, our new method is totally

independent of true unoccupied Bloch states since we directly construct the virtual

unoccupied Bloch states and the only additional cost is non-self-consistent evaluation

of energies of virtual unoccupied Bloch states with Kohn-Sham Hamiltonian.

3.8 Comparison with Projected Atomic Orbital

The construction of unoccupied virtual Bloch subspace from atomic orbital Bloch

subspace in our QO scheme is very similar to that in Pulay and Swbo's PAO scheme

[112, 113, 114]. However in general our QO scheme is applicable to molecules, sur-

faces and solids, which can be embedded in or interfaced to all quantum chemistry

packages and all density functional theory packages with norm-conserving pseudopo-
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tentials, ultrasoft pseudopotentials or PAW method. As we have shown in the above

various applications, QO can be constructed not only in insulators and semiconduc-

tors, but also in metallic systems. Another important difference is that here we use

the rescaled pseudoatomic orbitals from DFT pseudopotential generators as the pro-

jection objects. Therefore, as another advantage we have much less number of basis

orbitals to construct and diagonalize in tight-binding calculations. As a result, we

can more efficiently perform tight-binding parametrizations, electrical conductance

calculations, quasi-particle GW corrections, and many other important applications

in electric structure.

3.9 Summary

In this chapter QO with Vanderbilt ultrasoft pseudopotentials and PAW method

is derived and constructed for different types of materials. We have implemented

and benchmarked QOs in DACAPO and VASP packages with USPP and PAW. The

accuracy, efficiency, localization and robustness are demonstrated through various

electronic structure properties including band structure, QO-projected band struc-

ture, density of states, QO-projected density of states, Fermi surface, QO-projected

Fermi surface, Fermi-velocity encoded Fermi surface, bond order and Miilliken charge

transfer. The most important property of QO itself is that it keeps electronic struc-

ture under certain energy level to be lossless while it has very good localization by

including the directly-constructed complementary Bloch subspace. Therefore, QO can

be used as an accurate localized basis set in linear-scaling electronic structure calcula-

tions. For example, it can be applied to calculate electrical conductance of molecular

junctions or nanoscale electronics by non-equilibrium Green's function method. With

further derivations we can also establish the relation between QO and Berry phase

(a geometrical phase) in solids, therefore easily calculate polarization. In general

the present work validates the applicability of Slater's linear combinations of atomic

orbitals (LCAO) idea, and points to future ab initio tight-binding parametrizations.
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Chapter 4

Electrical conductance from

Green's function method

In the previous chapter we have proposed an efficient method to construct localized

quasiatomic orbitals and their corresponding ab initio tight-binding Hamiltonian and

overlap matrix. With this localized basis-set, Green's function method based on

Landauer formalism can be applied to calculate electrical conductance for phase co-

herent transport in nanoscale materials. We have implemented QO construction and

Green's function evaluation in our code and currently it is interfaced to the plane-

wave DFT results from VASP [31] and DACAPO [33] in the network common data

form(NetCDF).

In this chapter, we will study several applications and explore electron transport

mechanism in molecular and nanoscale electronics. The applications include:

* pure one dimensional conductor (Sec. 4.1)

* aluminum and carbon atomic wires between two Al(001) electrodes with finite

cross-section (Sec. 4.2)

* benzene dithiolate molecule (BDT) sandwiched by two gold atomic wires (Sec.

4.3.1) and by two Au(001) electrodes with finite cross-section (Sec. 4.3.2)

* phenalenyl molecular bridge between two aluminum atomic wires (Sec. 4.3.3)
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* (4,4)-carbon nanotube with and without Si-defect and single vacancy (Sec. 4.4)

Various interesting transport behaviors in these systems will be carefully analyzed,

such as zero-dimensional resonant conductance peaks, one-dimensional conductance

steps, spin-dependent transport, conductance oscillation, quantum loop current, and

the effect of impurity and vacancy in carbon nanotubes.

4.1 One dimensional conductor vs. zero dimen-

sional conductor

Pure one dimensional(1D) conductor can be described by traditional band theory if

electron-phonon coupling and quasi-particle effect are not considered. Electron prop-

agates through the 1D conductor via conducting eigenchannels without any dephasing

and dissipation. Due to the scattering between pure 1D conductor and electron reser-

voir, each eigenchannel will contribute one conductance quantum Go = 2e2/h. Here

the factor of 2 accounts for spin degeneracy. Therefore, the total conductance of pure

1D conductor under zero bias will be G(EF) = GoN(EF), where N(EF) is the number

of conducting channels at Fermi level EF.

Metallic wire is a typical example of pure 1D conductor. Here we take aluminum

atomic wire as an example. The DFT calculation is performed by VASP package in

a rectangular unit cell of 2.39 x 10 x 10 A3 with one Al atom per unit cell. The

Al-Al atomic spacing is a0 = 2.39 A along the x-direction. Aluminum has 3 valence

electrons and the lowest possible orbitals for electron occupation are s and three

p orbitals. Thus four corresponding QOs are constructed and shown in Fig. 4-1.

Obviously s-QO and px-QO have been strongly deformed due to strong o bonding

along x direction while py-QO and pz-QO are less affected. This also can be seen

from QO-projected band structure in Fig. 4-2.

In Fig. 4-2 we distinguish four electronic bands from bottom to top: one a bonding

band, two degenerate ppw bands, and one o* anti-bonding band. The a bonding band

at the bottom changes from pure s bonding at F point to pure p, bonding at X point,
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Figure 4-1: QOs in Al atomic wire

while the top a* anti-bonding band changes from pure Px anti-bonding at F point to

pure s anti-bonding at X point. It is consistent with our physical intuition. Since at

F point the phase of QOs are each atom is zero, they directly add onto each other

and the overall s Bloch wave function has the least number of nodes while P_ has

the most number of nodes. Thus at F point ssa bonding band has the lowest energy

and pPxPa* anti-bonding band has the highest energy. Although this is very simple

physical picture, it is much easier to find it out in the QO-projected band structure.

Meanwhile the s and px bands have larger band width compared to the band with of

p, and pz bands. That also indicates py and pz-QOs are less affected due to their less

important role in chemical bonding in Al atomic wire.

We notice that only py and pz-QO bands are cross the Fermi level. Thus, from

the above band counting method we know at Fermi level the total conductance of

this Al atomic wire is G = 2G 0 . This is clearly confirmed by the conductance curve

calculated from Green's function method, shown in Fig. 4-3. The main feature of the

conductance curve is step-like behavior and correspondingly density of states(DOS)

has a sharp peak at each change of steps. DOS does not quickly go to zero and that is

the direct consequence of electronic bands along transport directions. Fig. 4-3 shows

the important electron transport mechanism in one-dimensional conductor, which is
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F

Figure 4-2: QO-projected band structure (a) of Al atomic wire with the colormap
(b): red for s-QO, green for p,-QO, and blue for py-QO and pz-QO. Black dash line
is Fermi level and red dash-dot line is shifted Fermi level with Eshift = 3 eV.

e= 0.001 eV
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Figure 4-3: Electrical conductance and density of state of Al atomic wire as a function
of energy

150

0

-o

0

m



very different from the transport in zero-dimensional conductor.

In zero-dimensional conductors, the transport mechanism is resonant transport

and it can be explained by the well-known Newns-Anderson model [154, 155]. In

this model, single-level impurity is directly coupled to host metal and the latter is

described by a continuous band. It can be shown that the energy-dependent con-

ductance through the zero-dimensional single-level impurity is a simple Lorentzian

function, which is very different from the conductance steps in the 1D case. Its center

is the impurity's on-site energy and its width is determined by the coupling between

the impurity and the host meal. Different from DOS in the pure ID conductors, the

corresponding density of states in OD conductors quickly decays to zero.

In addition to the above theoretical comparison between ID and OD transport

mechanism, we want to know how electrical current and wave functions change

through the device. According to quantum mechanics, the current vector J(x) carried

by a wave function V(x) at position x is given by

J(x) = m [P*[(p - eA)V] + O[(p - eA)b]*], (4.1)2m

where A is vector potential and p is momentum operator with p = -ihV. Here we

do not consider external magnetic fields. Thus we have

e5eh 2eh
J(x) = eIm *(x)V(x)= (x) 2 Vq(x) = -p(x) Vq(x), (4.2)

m Im m

where O(x) = P(x) exp[i¢(x)] and O(x) is the phase of wave function O(x). The

total current Is through surface S is defined as surface integration of current vector

J(x) and surface S is perpendicular to the current direction to be measured. That is,

Is = J J (x) dS. (4.3)S (4.3

Eq. (4.2) and Eq. (4.3) reveal that electrical current in the absence of magnetic fields

only depends on two factors. One is the electron density carried by the wave function

and the other is the gradient of the phase of wave function. We, therefore, understand
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that the phase oscillation is the important signature of current flows. The simplest

model is single right-traveling plane-wave electron exp(+ikx) scattering and tunneling

through single square potential barrier. Two extreme cases are immediately obtained.

In the limit of infinite high barrier, the incident electron exp(+ikx) will be completely

reflected due to the scattering and the reflected wave function is exp(-ikx), forming a

standing wave 2cos(kx). In the limit of zero barrier, the incident electron exp(+ikx)

will completely transmit through barrier without any scattering and it remains in the

original eigen state exp(+ikx). In the first limit, we have finite electron density on

the left, however there is no phase oscillation at all and thus no current exists. In the

second limit, we have the complete phase oscillation from left to right and thus the

current reaches the maximum. In the middle region with finite barrier, it is obvious

that we will have both transmitted and reflected wave functions and thus obtain finite

but less than 100% electrical current due to the scattering. We will demonstrate the

phase oscillation as the signature of electrical current by various applications below.

4.2 Atomic wires between two electrodes

Atomic size electronics is one of the promising directions for future development to-

ward ultrasmall scale devices. Atomic scale point contact is a simple and natural

application to be explored. In the last decade it has been studied by experimental-

ists using scanning tunneling microscopy(STM) and mechanically controllable break

junctions(MCBJ) technique. Conductance measurements of these metal point con-

tacts [156, 157, 158] and metal wires [159, 160, 161, 162, 163, 164, 158] have shown a

common behavior with flat conductance plateaus in the unit of quantum conductance

(Go) or half of Go for the spin-dependent cases. More interestingly, conductance os-

cillation behavior in Au, Pt and Ir atomic wires has been observed by Smit et al. [165]

when two electrodes were pulled apart. On the other hand, conductance oscillations

in different atomic wires have been theoretically predicted and analyzed by Pernas

[166], Lang [167, 168], and Larade [169]. Several explanations of oscillation behavior

were given including standing-wave resonance model [170], potential barrier model
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[171], and resonant transport model [172, 173]. Actually these models are consistent

with each other and they just treat the same physical problem from different angles.

Here we study two typical types of finite atomic wires between two Al(001) elec-

trodes with finite cross-section. The first one is seven-carbon atomic wire: Al(001)-

C7-Al(001). From this work we show our conductance calculation is consistent with

several simulation results from other groups [169, 60, 63, 174] and conducting eigen-

channel analysis is performed to understand the physical mechanism. The second one

is aluminum atomic wire with various number of Al atoms: Al(001)-Al-Al(001). For

the spin-degenerate case it does show certain oscillation as other people have shown

before although the detailed oscillation shape is different. However we show that

in the above system the transport calculation should include spin degree of freedom

and the oscillation behavior is significantly changed after the additional spin degree

of freedom is included. The fundamental reason of the spin-dependent transport is

due to the formation of local magnetic moment inside the atomic wire and this spin

dependence plays an important role on the development of spintronics such as spin

valve or spin filter.

4.2.1 AI(001)-C 7-AI(001)

The atomic structure of Al(001)-C 7-Al(001) with finite cross section is illustrated in

Fig. 4-4, which is exactly the same as the structure used by several other groups

[60, 63, 174]. The whole system is put in a rectangular box of 14 x 14 x 34.238 A3 and

the transport are along the z-direction. The lead part Al(001) is cut from FCC Al

with the lattice constant of 4.05 A and it consists of four atomic layers with 4-5-4-5 Al

atoms from left to right. The distance between the edge carbon atom and the nearest

4-Al atomic plane is 1 A and the C-C distance is 1.323 A. Both ends of carbon atomic

wire are connected to 4-A1 atomic planes. Under the periodic boundary condition, the

above specific structure of interfaces gives rise to the different number of aluminum

atomic layers in the left lead and the right lead in our DFT calculations. That is

clearly shown in the figure. Fermi level is shifted to 3 eV above the true Fermi level

for the QO construction.
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Figure 4-4: Atomic structure of Al(001)-C 7-Al(001). L: the left lead; C: the conductor;
R: the right lead.

The band structure, density of states and electrical conductance of the Al(001)

lead are shown in Fig. 4-5 (a) and (b). As usual it displays step-like conductance

curve and sharp DOS peaks at each change of steps and the total conductance is

consistent with band counting method from the band structure. The ground state

valence charge density and effective Kohn-Sham potential are shown in Fig. 4-6

and Fig. 4-7. Fig. 4-7 shows high charge density (red) in the narrow carbon wire

in contrast to low density (light blue) in the conductor region. This is due to the

effective Kohn-Sham potential in Fig. 4-6 forms a very deep and narrow well, which

confines the valence electrons of carbon atoms inside the long and small channel.

That indeed reflects the strong quantum confinement in such system.

4.)

00
4.)

V)

0

S= 0.001 eV

(a) (b)

Figure 4-5: (a) Band structure (black dash line: Fermi level; red dash-dot line: shifted
Fermi level.) (b) density of states and electrical conductance (b) of the Al(001) lead.
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Figure 4-6: Contour plot of effective Kohn-Sham potential of Al(001)-C 7-AI(001) in
the unit of eV
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Figure 4-7: Contour plot of valence electron density of Al(001)-C 7-Al(OO1)
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We then show electrical conductance and density of states as the function of energy

in Fig. 4-8 (a) and (b) respectively. The energy-dependent conductance of Al(001)-

C7-Al(001) has also been calculated by Larade et al. with MCDCAL package [169],

Brandbyge et al. with TranSiesta package [60], Ke et al. with SIESTA [63], and

Smogunov et al. with USPP-scattering state approach [174]. Our conductance curve

is very similar to their results below 1 eV. The difference above 1 eV could arise from

the different DFT packages with different basis-sets (plane-wave basis-set in our case)

or exchange-correlation functionals. It may also come from the shifted Fermi level,

above which we simply ignore those unoccupied Bloch states.

0

E (eV)

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5
E (eV)

(b)

Figure 4-8: Electrical conductance (a) and density of states (b) of Al(001)-C 7-Al(001)

we can not obtain more detailed transport mechanism from the conductance curve
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only. Thus we perform the conducting eigenchannel analysis at various energy levels

listed in Table 4.1. We found that there are only two major eigenchannels containing

most conductance at all listed energy levels while the remaining channels only con-

tribute about 0.0001 Go. The corresponding eigenchannels are shown in Fig. 4-9 for

five energy levels below Fermi level and Fig. 4-10 for another five energy levels above

Fermi level. It should be mentioned that both figures are displaying the plus and

minus isosurfaces of real part of all the eigenchannels and they are corresponding to

the current flowing from left to right. Here we only plot out the orbital components

on the two surface layer and carbon atomic wire.

Table 4.1: Conductance eigenchannel decomposition of AI(001)-C 7-Al(001)

Energy Total
eV (EF = 0)

-4.25
-2.85
-2.05
-1.40

-0.866
0

0.7
1.6

4.15
4.854

conductance
Go

1.9730
1.1410
1.9618
1.8877
0.8399
0.8875
0.3151
0.1994
0.7311
1.2199

The first observation of both Fig. 4-9 and Fig. 4-10 is that all the electrons

propagate through p, and py-like QOs of carbon atomic wires. That indicates the

reason of only two major eigenchannels found in the calculation is really due to the

carbon chain can only hold valence electrons inside two degenerate r orbitals while s

and pz-like QOs have formed very low-lying strong o bonding orbitals which are fully

occupied. Immediately we confirm the above point that the maximum of conductance

is no more than 2 Go in Fig. 4-8 (a) and Table 4.1.

The second generic feature of Fig. 4-9 and Fig. 4-10 is that the conducting

channel containing less number of nodes in the wave function has lower energy. This

is consistent with our common knowledge about Bloch states in 1D system and atomic
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0.9865
0.5704
0.9809
0.9439
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0.1572
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Channel
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0.9865
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Figure 4-9: Conductance eigenchannel decomposition of Al(001)-C7 -Al(001) for E <
EF. The figures on the left-hand side are eigenchannel 1 and those on the right-
hand side are eigenchannel 2 at the different energy levels. From top to bottom the
corresponding energy levels are -4.25, -2.85, -2.05, -1.40, and -0.866 eV.
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Figure 4-10: Conductance eigenchannel decomposition of Al(001)-C 7-Al(001) for E >
EF. The figures on the left-hand side are eigenchannel 1 and those on the right-
hand side are eigenchannel 2 at different energy levels. From top to bottom the
corresponding energy levels are 0, 0.7, 1.6, 4.15 and 4.854 eV.
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orbitals in individual atoms.

The third interesting feature is that in general the shape of conducting channels

on the left and right are not symmetric, except the channels near maximum conduc-

tance (2G 0). This is simply due to the scattering between electrons and Kohn-Sham

potential when the energy of electrons is away from the perfect resonant level. Gen-

erally speaking, there are two situations, in which we will find non-decaying channels.

One is the perfect periodic conductor, such as pure 1D conductor we have studied

above and its conducting eigenchannels are exactly the Bloch eigenstates. The other

is resonant level in the current example and that is further illustrated in Fig. 4-9

(a, b), (e, f) and (g,h) corresponding to the energies at -4.25, -2.05 and -1.40 eV

respectively. Especially the size of the above channels on the left and right leads do

not change, which is the signature of non-decaying electron transport. Away from

the resonant level, the strong scattering makes the conductance deviate from integer

quantum conductance. We can easily imagine in this case that part of the current

traveling from left to right is reflected by the wire-contact interfaces. Therefore, the

size and shape of the same eigenchannel on the left and right conductor-lead inter-

faces are be different. This is demonstrated in the various channels away from the

non-integer quantum conductance in Fig. 4-9 and Fig. 4-10.

The fourth fascinating feature is from the shape of conductance eigenchannels.

In Fig. 4-9 (i, j) at E = -0.866 eV and Fig. 4-10 (a, b) at E = 0 eV and (c,

d), droplet tail of the orbitals inside the carbon atomic chain clearly indicates the

electrical current flowing from left to right. We believe this is the direct consequence

of Fermi liquid characteristics of electron flows inside the atomic wire between two

metallic surfaces. In contrast, the orbital shape at the resonant levels is symmetric

and electron transport through the resonant level behaves like Fermi gas without any

local impedance from the scattering with the Kohn-Sham potential.

The fifth important message is the detailed orbital hybridization between molec-

ular orbitals of carbon atomic wire and surface states of two Al(001) leads. Since we

know under small bias the total current is determined by the conductance around the

Fermi level, we take the eigenchannels in Fig. 4-10 (a) at Fermi level as an example
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to study the orbital interactions. The more detailed plot of that conducting eigen-

channel is shown in Fig. 4-11. First, on the left surface layer consisting of four Al

atoms, two ppa bonding orbitals are formed on the two pairs of Al-Al bonds and then

these two orbitals form an overall anti-bonding state on the whole left surface. Then

the surface state is anti-bonded with the three-node anti-bonding r* state of carbon

atomic wire. The mixed p orbital on the right edge of carbon wire forms an overall

ppu bonding group orbital with the p orbitals on the four surface atoms of the right

lead. Thus it is very clear that the ppa bonding group orbital on the right-hand side

is different from the surface state on the left-hand side.

H I.
Figure 4-11: Conductance eigenchannel of AI(001)-C 7-AI(001) at Fermi level. [de-
tailed version of Fig. 4-10 (a) ]

0 7 77 23

Figure 4-12: Phase colormap for electron wave function

Another striking feature comes from the comparison between the DOS curve and

the conductance curve in Fig. 4-8 (a) and (b). We observe that some regions with high

DOS have almost zero conductance, such as at E E [-1.8, -1.5] and E E [1.0, 1.2].

To resolve this puzzle, we then map the phase information on the isosurface of the

amplitude of those eigenchannels in the above energy regions. Particularly we pick
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Figure 4-13: Phase-encoded conductance eigenchannels of Al(001)-C 7-Al(001) at (a,

b) E = -1.711 eV and (c, d) E = 1.149 eV. The figures on the left-hand side are

eigenchannel 1 and those on the right-hand side are eigenchannel 2.

up two major eigenchannels of one energy level in each region ( E = -1.711 eV

and E - 1.149 eV ) and they are shown in 4-13(a,b) and (c,d) respectively with

their phase colormap illustrated in Fig. 4-12. We again plot out the same type of

phase-encoded isosurfaces in Fig. 4-14 and Fig. 4-15 for all the same eigenchannels

listed in Fig. 4-9 and Fig. 4-10. Comparing these phase-encoded isosurfaces, we find

that these two eigenchannels inside the high DOS but low conductance regions have

almost only two colors - red and blue - in the vicinity of the lead-wire-lead structure,

corresponding to real wave functions with plus and minus signs. In another word, the

imaginary part of those eigenchannels is merely zero. From Eq. (4.2), we know that

the probability current J has the following form

ie ih e hm
J(x, t) [=*(VO) - (VO*)] = Im [*Ve . (4.4)2m m

As a consequence, the current through the above pure real eigenchannels is zero

and thus the transmission T is zero. In contrast, we can see that wave functions

of the channels in Fig. 4-14 and Fig. 4-15 have much more imaginary components,

and it is particularly clear at the resonant levels shown in Fig. 4-14 (a, b), (e, f) and

(g,h). Therefore, although the eigenchannels inside the high DOS but low conductance

regions have large wave function components across the lead-wire-lead, fundamentally
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they are non-conducting anti-resonant states [175] which almost perfectly reflect the

incoming electrons in contrast to the resonant states discussed before. In another

word, the electrons in these energy regions will form a static Coulomb potential and

block other electron to transport from one side to the other. Moreover, it manifests

that phase oscillation of wave functions is the key signature of electrical current in

phase-coherent quantum transport.

0
0

:E)ES~d~g c.4

O
0

(c)

(e) (f)

S-0

(g)

4b

(i) (j)

Figure 4-14: Phase-encoded isosurface plot of the magnitude part of conductance

eigenchannels of Al(001)-C 7 -Al(001) for E < EF. The figures on the left-hand side

are eigenchannel 1 and those on the right-hand side are eigenchannel 2 at different

energy levels from top to bottom: -4.25, -2.85, -2.05, -1.40, and -0.866 eV. (The

corresponding isosurface plot of these channels without phase-encoding is shown in

Fig. 4-9.)
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Figure 4-15: Phase-encoded conductance eigenchannel decomposition of Al(001)-C 7-
Al(001) for E > EF. The figures on the left-hand side are eigenchannel 1 and those on
the right-hand side are eigenchannel 2 at different energy levels from top to bottom:
0, 0.7, 1.6, 4.15 and 4.85 eV. (The corresponding isosurface plot of these channels
without phase-encoding is shown in Fig. 4-10.)
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In summary, we show that our electrical conductance results are consistent with

the results from other groups by various different methods. This benchmark proves

that our efficient scheme for localized QO construction works very well for electron

transport problem. We demonstrate that particular states inside the electron sea

of both Al(001) leads hybridize with molecular orbitals of carbon atomic wire and

form resonant levels. Conductance at each resonant level will have one quantum of

conductance Go. At the energy away from resonant levels, the scattering potential

reduces the total transmission of the electrons traveling from one side to the other.

More interestingly, droplet tail of conducting eigenchannel away from resonant levels

gives direct evidence to the Fermi liquid characteristics of electron transport. From

conducting eigenchannel decomposition and orbital hybridization analysis, we have

more detailed understandings of electron transport mechanism in Al(001)-C 7 -Al(001).

Especially we find the anti-resonant states are responsible for the vanishing conduc-

tance at high DOS regions and those states are pure real functions which almost do

not carry any current although a large fraction of those real functions are localized

on the carbon atomic wire.

4.2.2 AI(001)-Aln-AI(001)

From the previous case we have already obtained some detailed understandings of

electron transport through atomic wire confined between two electrodes. In this sec-

tion we first study the length-dependent conductance of aluminum atomic wire with

different number of Al atoms between two Al(001) electrodes with finite cross-section.

We then introduce the spin degree of freedom into conductance calculations and we

find that the Al(001)-Al,-Al(001) system has strong spin-dependent conductance,

which, to our knowledge, has not been investigated by other people before.

The structure of our Al(001)-AlI-Al(001) system is illustrated in Fig. 4-16. In the

case of n = 5, the whole system is put in a rectangular box of 12 x 12 x 37.91 A3 and

the transport are along the z-direction. Same as the case of Al(001)-C 7-Al(001) in

previous section, the lead part Al(001) is cut from FCC Al with the lattice constant of

4.05 A and it consists of four atomic layers with 4-5-4-5 Al atoms from left to right.
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Figure 4-16: Atomic structure of Al(001)-Als-Al(001). L: the left lead; C: the con-
ductor; R: the right lead. Here n = 5.

The distance between the aluminum atom at the end of the atomic wire and the

nearest 4-Al atomic plane is 2.86378 A and the Al-Al distance inside the aluminum

atomic wire is 2.39 A. Both ends of the atomic wire are connected to 4-Al atomic

planes. Virtual Fermi level is shifted 2 eV above the true Fermi level for all QO

constructions in both spin-degenerate and spin-nondegenerate cases.

Spin-degenerate transport in AI(001)-Al-AI(001)

We first calculate the spin-degenerate ground state and compare our results with

other result from several other works. Fig. 4-17 and Fig. 4-18 show the corresponding

effective Kohn-Sham potential and valence electron charge density.

Scale: A n(r)

-138,5058
-107.3697I -78,2335
-49.0973E -19.9611
+9.1751

(b)

Figure 4-17: Contour plot of effective Kohn-Sham potential of Al(001)-A15-Al(001)
in the unit of eV

We then plot out the spin-degenerate electrical conductance of Al(001)-Al-Al(001)

as a function of energy with n = 4, 5,..., 15 and EF = 0 eV. Similar conductance

calculations have been performed by other groups [60, 173, 63, 176]. Although the de-

tailed configurations of their calculations are different in some cases, one can still find

several common features on all the conductance curves: (a) resonant peak emerges
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Figure 4-18: Contour plot of valence electron density of Al(001)-A15-Al(001)

one by one with the increase of Al atoms in the atomic wire; (b) conductance value

at Fermi level will oscillate with number of Al atoms due to those new resonant peaks

which push the existing peaks toward the low energy direction. In Fig. 4-19 we do see

the emergence of new resonant peaks when the number of Al atoms in the atomic wire

increases. Meanwhile, the conductance oscillation is shown in Table 4.2 and plotted

in Fig. 4-20. Our curve does show large oscillation when N varies from 4 to 15,

however the periodicity is less significant than that in other people's work [173, 176].

One possible source of the difference is the different interface structure used in Ref.

[173]. Another source could be the difference between our plane-wave DFT result

and the local orbital result used in Ref. [176] even when the configurations used in

calculations are the same.

Spin-nondegenerate transport in A1(001)-Al1-A1(001)

Although an infinite linear Al atomic wire has a nonmagnetic ground state, the

unsupported finite Al chain is predicted to have spontaneous magnetization along

elongation[177]. Even after the chain is relaxed into the zigzag wire, it still exhibit

the spontaneous magnetization. Therefore the spontaneous magnetization could also

exist in the confined geometry of Al(001)-Als-Al(001), and electron transport could

also depend on spin degree of freedom although none of those previous works has

taken spin into account.

In Fig. 4-21 we show the total magnetization of Al(001)-Al,-Al(001) for n =

4, 5,..- , 9 in the unit of number of electrons. The largest magnetization happens at
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Figure 4-19: Spin-degenerate electrical conductance of AI(001)-Aln-AI(001) as a func-
tion of energy with n = 4, 5, -. , 15 and EF =0 eV.
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Table 4.2: Spin-degenerate electrical conductance of AI(001)-Al,-AI(001) at Fermi
level with different number of atoms

NA, Total conductance (unit: Go)
4 2.2653
5 1.8845
6 1.3315
7 1.1173
8 1.0194
9 1.8677

10 1.1131
11 1.9331
12 1.5673
13 1.2901
14 1.2130
15 1.8050

4 5 6 7 8 9 10 11 12 13 14 15

Figure 4-20: Spin-degenerate electrical conductance of AI(001)-Al,-AI(001) as a func-
tion of number of Al atoms in atomic wire at Fermi level E = 0 eV.
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Figure 4-21: Magnetization of Al(001)-A1ln-Al(001) with n = 4,5, ... , 9 (unit: number
of electrons).

n = 7, while at n = 4 and n = 9 it has the smallest magnetization among all the

six cases. To understand the magnetization, we visualize the contour plane of spin

density with n = 4, 7 and 9 in Fig. 4-22. The contour plane passes through the whole

atomic wire. It is obvious that most of the spontaneous magnetization is localized

between two interfaces due to the above quantum confinement, which gives rise to

the local moment formation. In the case of n = 4, the majority spin density (red)

wraps around the atomic wire and occupies the ppr orbitals formed by Px and py,
of two center Al atoms (atom 2 and 3), while the minority spin seems to have more

weight along the longitudinal direction of atomic wire and occupy the a bonds. In

the case of n = 7, it is quite similar to the case of n = 4, but a slight difference

comes from two fragments majority spin density occupying the ppr orbitals formed
by atom (2,3) and atom (5,6) inside the seven-atom chain respectively. However, the

spin density distribution changes dramatically when n increases to 9. In this case,
beside two parts of majority spin density surrounding atom (2,3) and atom(7,8), the
minority spin occupies Px and py orbitals of the center atom (atom 5).

Since the significant amount of local moment is formed inside the conductor re-
gion, we believe it could directly affect the electrical conductance. We carry out the
conductance calculation again while varying the number of Al atoms in the wire. The
result is shown in Fig. 4-23 where total conductance, majority spin component, and
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Figure 4-22: Spin density of Al(001)-Al,-A1(001) with n = 4, 7, and 9 (red: majority
spin; blue: minority spin).
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Figure 4-23: Spin-dependent electrical conductance of Al(001)-Al,-Al(001) with n

4, 5,..., 9 and EF = 0 eV. (black solid line: total conductance; red dash line: majority

spin; blue dash-dot line: minority spin.)
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minority spin component are indicated by black solid line, red dash line and blue

dash-dot line, respectively. The result in Fig. 4-23 leads to the following remarkable

conclusions:

* The total conductance below the Fermi level is dominated by majority spin

component while above the Fermi level both components play important roles.

* With the increased number of Al atoms, both majority and minority spin con-

ductance curves contain more and more resonant peaks. That is consistent with

the spin-degenerate case that we have explored before.

* The first resonant peak of majority spin below the Fermi level begins to squeeze

from the initial broad shape and move rightward but never reach the Fermi

level. In contrast, the first resonant peak of minority spin moves leftward and

does pass the Fermi level. The latter one moves to Fermi level at n = 7 and

eventually locates below Fermi level when n = 9. That is the main reason for

the maximum total conductance at n = 7 but much smaller values at n = 4 and

n = 9. For a more clear view, Table 4.3 and Fig. 4-24 show the conductance at

the Fermi level with varying atoms and a clear peak shows at n = 7.

* Compared to the spin-degenerate case shown in Fig. 4-25, we find there is

significant difference between the total conductance curves obtained from spin-

degenerate and spin-nondegenerate calculations. Especially, our spin-degenerate

calculation together with the results from the other groups shows conductance

minimum around n = 7. That obviously contradicts to our spin-nondegenerate

result. Therefore, the previous conductance oscillation under spin-degenerate

assumption should be carefully re-examined.

The above conclusions come from the most important fact in our calculations that

even the original nonmagnetic materials can have local magnetic moment formation

due to specific confined geometry such as atomic wire sandwiched between two metal

surfaces. It has been ignored in several other works which deal with the same sys-

tem. The above system is very similar to magnetic Co and Ni nanowires studied by
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Smogunov et al. [174], who consider more than ground state magnetization. By con-

straining the magnetization direction and then using scattering state method, they

have considered parallel and anti-parallel magnetization and conductance inside two

Co or Ni leads. Our method with QOs can be easily extended to these situations if

magnetization constrains are treated correctly in plane-wave DFT calculations.

Table 4.3: Spin-dependent electrical conductance of Al(001)-Al,-Al(001) at Fermi

level

NAl Total conductance Spin majority Spin minority

(unit: Go) (unit: Go) (unit: Go)

4 1.4834 1.1210 0.3624

5 0.8487 0.5586 0.2901

6 1.0228 0.9510 0.0718

7 1.7585 0.9557 0.8028

8 0.5705 0.5363 0.0342

9 0.2249 0.1708 0.0541

2.5

0

4 5 6 7 8

Figure 4-24: Spin-dependent electrical conductance of Al(001)-Aln-Al(001) at E = 0

eV as a function of number of Al atoms, n = 4, 5,..- , 9. (black solid line: total

conductance; red dash line: spin majority; blue dash-dot line: spin minority.)

To achieve better understandings of spin-dependent electron transport mechanism,

we again perform conducting eigenchannel analysis at various resonant energy levels.
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Figure 4-25: Comparison between spin-degenerate conductance (solid line) and spin-

nondegenerate conductance (dash line) of Al(001)-Aln-Al(001) as a function of num-

ber of Al atoms in atomic wire at Fermi level E = 0 eV.

The eigenchannels are shown in Fig. 4-26 for n = 7 and Fig. 4-27 for n = 9. In

both cases, we found only two majority channels are responsible for most of total

conductance. In Fig. 4-26 we see that majority-spin channels (a,b) is the same as

minority-spin channels in (g,h) and so is the similarity between (c,d) and (i,j) while

the only difference is the shifted energy levels of majority spin channel and minority

spin channel. It is clearly reflected at resonant peaks in Fig. 4-23. However, there

is no corresponding peak in the spin-minority case with respect to Fig. 4-26 (e,f)

at E=0.53 eV in the spin-majority case. In another word, majority-spin channel has

three resonant peaks while minority-spin channel has only two. In the case of n = 9,

the situation is reversed. There is no corresponding majority-spin eigenchannel with

respect to the lowest minority-spin resonant peak in Fig. 4-27 (e,f). Nonetheless,

the correspondence still exists between (a,b) and (g,h) and between (c,d) and (i,j) for

n -= 9.

Another interesting phenomena is that in Fig. 4-23 conductance maximum in the

case of n = 4 exceeds 2G 0 limit of pure Al wire. To explain the high conductance

we show the spin-dependent conducting eigenchannels in Fig. 4-28 at two resonant
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Figure 4-26: Spin-dependent conductance eigenchannel decomposition of Al(001)-A17-
Al(001) at various resonant levels. The figures on the left-hand side are eigenchannel
1 and those on the right-hand side are eigenchannel 2. The eigenchannels from top to

bottom are: six majority-spin channels at E = -0.53 eV (a,b), 0 eV (c,d) and 0.53
eV (e,f), and then four minority-spin channels at E = 0 eV (g, h) and 0.53 eV (i,j).
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Figure 4-27: Spin-dependent conductance eigenchannel decomposition of Al(001)-Al 9-

Al(001) at various resonant levels. The figures on the left-hand side are eigenchannel

1 and those on the right-hand side are eigenchannel 2. The eigenchannels from top

to bottom are: four majority-spin channels at E = -0.29 eV (a,b) and 0.37 eV (c,d),

and then six minority-spin channels at E = -0.29 eV (e,f), 0.19 eV (g, h) and 0.57

eV (i,j).
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energy levels: E - -0.35 and 0.5 eV. We find there are three dominant eigenchannels

for majority-spin conductance at E = -0.35 and three major channels for majority

and minority spin conductance at E - 0.5 respectively. Spin-dependent conductance

of each eigenchannel is listed Table 4.4 for all the 9 channels. From Fig. 4-28, channel

1 and 2 are easily identified as two degenerate ppr bonding states in (a,b) and two

degenerate pp7r* antibonding states in both (d, e) and (g, h), however channel 3

is single ssa* antibonding state in (c,f,i) in the conductor region. Therefore, the

sso* antibonding eigenchannel is the extra channel with an additional conductance,

resulting in large total conductance above 2G0 limit of pure Al wire.

(c)

-ESI..-i
~gi(i)

Figure 4-28: Spin-dependent conductance eigenchannel decomposition of Al(001)-Al 4-
Al(001) at various resonant levels. The figures on the left, middle and right columns
are eigenchannel 1, 2 and 3 respectively. The eigenchannels from top to bottom are:
three majority-spin channels at E = -0.35 eV (a,b,c), three majority-spin channels
at E = 0.5 eV (d,e,f), and three minority-spin channels at E = 0.5 eV (g, h, i).

Table 4.4: Spin-dependent eigenchannel conductance of Al(001)-A14-AI(001) at two
resonant energy levels

Spin majority (unit: Go/2)
1 2 3

0.9458 0.9603 0.6914
0.4854 0.4773 0.9652

Spin minority (unit: Go/2)
1 2 3
0 0 0

0.9653 0.9590 0.6427
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Furthermore, we believe that our observations and conclusions share some similar

aspects with quantum point contacts which have been extensively studied [80, 178,

179, 180, 178, 181, 182, 183, 184, 185, 186, 187, 188, 189]. The similarity lies at the

spontaneous magnetization or local magnetic moment formation which is believed to

be responsible for the conductance plateaus at 0.5 and 0.7 Go of the quantum point

contact. The latter one is the famous "0.7-structure", being a puzzle for more than

one decade. Crook et al. [186] showed that even with the absence of magnetic field

an induced gallium arsenide (GaAs) quantum wire exhibits an additional conduc-

tance plateau at 0.5 quantum conductance in addition to the "0.7-structure". These

two plateaus are believed to result from the above spontaneous spin polarization

- a ferromagnetic phase. Especially "0.7-structure" is suggested to be a transition

stage between two different phases [190, 186, 185] associated with electron spin. It

is the similar situation we have encountered in Al(001)-Aln-Al(001) here. The fea-

ture discussed above can be applied to the development of spintronic devices such

as spin-current filter which generates electric current with specific spin polarization

and spin-current detector without the help of external magnetic fields or magnetic

materials [186].

4.3 Molecular electronics

The development of molecular scale electronic devices has attracted a great deal of

interest in the past two decades due to its potential applications in future ultrasmall

electronics such as diode, logic gate and memory [191, 49, 192, 193, 194, 195, 196, 197,

50, 198, 51, 52, 53, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208], although major

experimental and theoretical challenges still exist. Various experimental techniques

are employed including mechanically-controlled break junction method(MCBJ)[49],

crossed-wire method[209] and STM break-junction method [200]. However, precise

experimental control of molecular conformation is still lacking, resulting in large un-

certainties in the measured conductance. Recently local heating or vibrational ef-

fect on the conductance has been investigated[210, 211, 212, 213, 209, 214, 215, 66,
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216, 217, 218]. On the other hand, theoretical approaches using Green's function

method [79], scattering-state approach (theoretically equivalent to Green's function

method) [192, 219] and complex band structure method (simplified Landauer for-

malism) [220, 221] have been developed to calculate electrical conductance in the

similar molecular systems [192, 193, 222, 59, 201, 205]. With great efforts from both

experimental and theoretical approaches, the previous large discrepancy between con-

ductance magnitude from two approaches has reduced from three orders to two or

even one order[208].

Here we investigate three examples of molecular electronics: (a) benzene dithiolate

sandwiched by gold chains, (b) benzene dithiolate sandwiched by Au(001) electrodes

with finite cross-section and (c) phenalenyl dithiolate-based molecular bridge sand-

wiched by aluminum chains. From these cases we will demonstrate the effect of the

shape of electrodes on conductance curve and source-drain-induced quantum current

loop inside molecular system.

4.3.1 Benzene dithiolate molecule sandwiched by gold chains

MW I V IM Iq IW W • I Mr MW W IV

Figure 4-29: Atomic structure of Au 6-BDT-Au 6.

The structure of benzene dithiolate(BDT) molecule sandwiched by gold chains

is illustrated in Fig. 4-29. The bond lengths for Au-Au, Au-S, S-C, C-C, and C-H

is 2.88, 2.41, 1.83, 1.39 and 1.1 A respectively. The contour plots of ground-state

effective Kohn-Sham potential and valence charge density are shown in Fig. 4-30 and

Fig. 4-31. These plots display a deeper potential well and indicates that the sulfur

atoms play a critical role in gluing benzene molecule and metallic gold lead.

The nine quasiatomic orbitals, including five d-QOs, one s-QO and three p-QOs,

are constructed for each gold atom in the lead part shown in Fig. 4-32. From the
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Figure 4-30: Contour plot of effective Kohn-Sham potential of Au 6-BDT-Au 6 in the
unit of eV

Scale: A n(r)I 1270.8400
+4104.6679

E +9480.1757
E .14855.6835

+20231.1914

+25606.6992

(a) (b)

Figure 4-31: Contour plot of valence electron density of Au 6-BDT-Au6

orbital shape, we can see d-QOs are less deformed compared to s-QO and p-QOs,

especially along the chain or bonding direction. That is also reflected in the QO-

projected electronic band structure Fig. 4-33(a). The band width of those bottom

red bands and middle blue bands, dominated by d and py,pz-QOs respectively, is

very narrow, however the band width of the remaining upper green dominated by

s and p,-QOs is much wider. More significantly the top of antibonding s-QO band

at F point is around 18 eV above Fermi level. Thus, to capture this high energy

antibonding band for band closure in modern Wannier or QUAMBO approaches, we

usually need to include so many Kohn-Sham bands at each k-point in ground-state

DFT calculations, a lot more than the number of valence orbitals. The conclusion

can be also applied to other one-dimensional and two-dimensional structures such as

nanowires, nanotubes, and graphene sheets where quantum confinement is extremely

important.

The conductance curve of the lead formed by gold chain is plotted in Fig. 4-
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Figure 4-32: 9 QOs in the Au chain including five d-QOs (a-e), one s-QO (f) and
three p-QOs (g-i).

33(b). We clearly see that the total conductance again shows the step shape and
exactly matches band-counting method from band structure plot in Fig. 4-33(a)
along the energy axis. It is clear that the only channel available around Fermi level is
not from d or py, pz-QO, but from the Bloch state formed by s and pz-QOs. However,
once the BDT molecule is sandwiched between two gold chains, the conductance

curve changes dramatically as shown in Fig. 4-34. Within the energy range from
-4 eV to 4 eV (EF = 0 eV), there exist two broad peaks in the energy range [-3.5,
-1.5] eV and [0.5, 4.0] eV and one sharp peak in [-1, -0.2] eV. Although the lead
part contains more than one channel in the two same lower energy range, none of
three peaks exceeds one Go, which is the resonant feature of quantum transport

through molecules. Or in another word, electron transport in molecular system is
through the coupling between molecular orbitals of BDT and the orbitals of leads at
discrete molecular orbital energy, therefore it is essentially zero-dimensional resonant
transport and can be easily described by the Newns-Anderson model [154, 155].

To understand the above three conductance peaks, we then carry out the conduc-
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Figure 4-33: (a) QO-projected band structure of Au chain with its colormap similar

to Fig. 4-2(b) but with red for d-QOs, green for s,pm-QO and blue for py,pz-QOs

with x as the chain direction. (black dash line: Fermi level; red dash-dot line: the

shifted Fermi level with Eshift = 3 eV.) (b) Conductance curve.
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Figure 4-34: Electrical conductance of Au6-BDT-Au 6.

tance eigenchannel decomposition and find that at each energy level only one major

conducting channel is available. Conductance eigenchannels at five energy levels, -
2.913, -1.988, -0.713, 0.9 and 2.0 eV, are shown in Fig. 4-35. We clearly see that

the lowest channel at E = -2.913 eV, shown in Fig. 4-35(a,b), is from the coupling

through the d.2-QO bonding state of Au atoms in the lead, antibonded with the

bonding Px of S atom and benzene ring. Channel 2 at E = -1.988 eV, shown in Fig.

4-35(c,d), is similar to channel 1 but the left lead part contains partial antibonding

d,2 state and that is the reason for its energy level about 1 eV higher than channel

1. Channel 3 at E = -0.713 eV, shown in Fig. 4-35(e,f), has completely different

character and the coupling is through the partial dz-antibonding state in the left
lead which is then antibonded with the partial pz-antibonding molecular orbital of

BDT molecule. The channels of the broad peak above Fermi level are mostly from

the mixed antibonding s - px state in the left lead antibonded with the px state of

BDT molecule. This peak reaches its maximum at E = 2.0 eV. More strikingly, the
phase-encoded eigenchannels on the right column of Fig. 4-35 directly demonstrate

that the channels (b,d,f) with larger conductance have stronger phase change from
0 to 27r and larger volume in the right lead while the channels (h,j) with lower con-
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ductance have smaller volume and less phase change. The more pure red and light

blue indicate the eigenchannel wave function contains less imaginary part, forming

more static state in the left channel. The perfect limit is no current propagating

from left to right. As we have discussed before, the simplest model in this limit is:

2cos(x) = eikx + e- ikx, where eikx and e - ikx represent the right moving incoming wave

and the left moving reflected wave and they form a static cos(x) wave inside the left

lead.

In Fig. 4-35(g,h), we also show the channel at E = 0.9 eV with conductance G =

0.025G0 , which will be directly compared to our real-time wave propagation result

using time-dependent density functional theory(TDDFT) [128] in the next Chapter.

Briefly speaking, from the comparison we will show the agreement between Green's

function method and TDDFT, not only from the conductance results in the same

order, but also from the detailed eigenchannel state and propagating wave function.

To our knowledge, this is the first direct comparison between TDDFT and Green's

function method in the linear response regime under the rigid band approximation.

More details will be shown and explained in the next Chapter.

4.3.2 Benzene dithiolate molecule sandwiched by Au(001)

electrodes with finite cross section

From the above results and discussions we have gained some important insights of

electron transport through Au chain-BDT-Au chain. Although in experiments gold

chain has been formed when pulling the macroscopic gold wire apart, most conduc-

tance measurements of BDT junction were done between two surfaces with certain

local structures and they are much easier to control than the wire when chemically

absorbing BDT molecules. Here we change the chain-like gold electrode to Au(001)

lead with finite cross section, similar to what we have done in the aluminum electrode

before.

The structure of Au(001)-BDT-Au(001) is shown in Fig. 4-36. The bond lengths

of Au-Au, S-C, C-C and C-H are 2.885, 1.83, 1.39 and 1.4 A respectively while S is
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(a) E = -2.913 eV

(c) E = -1.988 eV

,.ft-.Mkmk -MN Ant'M-M k - -m. lA

(e) E = -0.713 eV

(g) E = 0.9 eV

(i) E = 2.0 eV

w-(b) E = -2.913 eV

(b) E = -2.913 eV

(d) E = -1.988 eV

(f) E = -0.713 eV

(h) E = 0.9 eV

(j) E = 2.0 eV

Figure 4-35: Conductance eigenchannel decomposition of Au 6-BDT-Au6 with one
major eigenchannel at each energy level. The left column is isosurface plot of real part
of two channels, and the right column is phase-encoded isosurface plot of magnitude
part. Energy levels of the eigenchannels from (a) to (i) on the left column are:
E = -2.913, -1.988, -0.713, 0.9, and 2.0 eV with their conductance G = 0.144, 0.208,
0.95, 0.025 and 0.086 Go.
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Figure 4-36: Atomic structure of Au(001)-BDT-Au(001) with finite cross section.
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1.0 A away from the near gold surface and the latter contains four Au atoms on the

plane perpendicular to the x-direction. Contour plot of charge density on the plane

through the benzene plane is shown in Fig. 4-37.

Scale: A n(r)

-1035.2700
+4286.2840

+9607.8380

+14929.3920

+20250.9480

+25572.5000

(b)

Figure 4-37: Contour plot of valence electron density of Au(001)-BDT-Au(001) with
finite cross section.

Principal layer of the lead part is composed of four layers of Au atoms with the

5-4-5-4 structure. Band structure and conductance curve are shown in Fig. 4-38,

which again match exactly with each other. Compared to Au chain, the Au(001) lead

with finite cross-section has more channels accessible around Fermi level while below

1.5 eV there are many bulk-like states which gives rise to quick oscillations in the

conductance curve.

The conductance curve for Au(001)-BDT-Au(001) with finite cross section is

shown in Fig. 4-39. Almost all the peaks contain only one major channel with its

conductance less than 1 Go and this again demonstrates the resonant transport fea-

ture in the device of Au(001)-BDT-Au(001), similar to the Au chain-BDT-Au chain

case. Again we plot two eigenchannels at E = -1.32 and 0.0 eV in Fig. 4-40 and the

corresponding conductance values are 0.981 Go and 0.558 Go, respectively. It is clear

that at both channels the resonant transport state is the overall antibonding state

of the benzene molecule which is further antibonded to the sulfur atom's Pz orbital.

In turn, the incoming state from the left lead changes its phase by the amount of 7r

and leads to the opposite sign of the real part of wave functions on the left and right

leads.

The important role of molecular orbitals on the BDT molecule has also been
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Figure 4-38: (a) band structure of Au(001) with finite cross-section. Black dash line
indicates Fermi level and red dash-dot line indicates shifted Fermi level with Eshift
3 eV. (b) Conductance curve
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4-39: Electrical conductance of Au(001)-BDT-Au(001) with finite cross sec-

(a) Real part eigenchannel at E = -1.32 eV (b) Phase-encoded eigenchannel at E = -1.32
eV

(c) Real part eigenchannel at E = 0.0 eV (d) Phase-encoded eigenchannel E = 0.0 eV

Figure 4-40: Conductance eigenchannel decomposition of Au(001)-BDT-Au(001) with
finite cross section at different energy levels. The left column is isosurface plot of
real part of two channels, and the right column is phase-encoded isosurface plot of
magnitude part. These two eigenchannels are at E = -1.32 eV with conductance
G = 0.981G 0 and at E = 0.0 eV with conductance G = 0.558G 0.
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Spointed out by Stokbro et al. [223] and Thygesen et al. [96]. In their case, two

Au(111) surface has been used as electrodes, different from our case here. However,

the same benzene molecular orbital discussed above seems to dominate the conduc-

tance at certain energy level. Moreover, our phase-encoded isosurface plot of two

eigenchannels show the large phase oscillations and large volume of wave functions

on the right lead, indicating the large conductance. It has been shown by Thygesen

et al. [96] that transverse k-point sampling will smear the large oscillations in con-

ductance curve. Thus, one thing we need to make effort in future is to include the

transverse k-point sampling in our conductance calculation.

4.3.3 Phenalenyl-based molecular bridge sandwiched by alu-

minum chains

Instead of focusing on electrical conductance, now we shift our gear a little bit and ask

another question: what will be the current map look like if the molecular conductor

is asymmetric with respect to electron transport direction? This problem has been

already demonstrated by Nakanishi et al. [88, 89, 90, 224] using simple tight-binding

model. It is shown that fullerene C60 and phenalenyl molecule as molecular conductor,

asymmetric to the source-drain current, exhibit magic quantum loop current inside

the conductor itself. Sometimes that loop current can be even much higher than the

source-drain current added on the leads. Consequently from the law of electromag-

netic induction the loop current will induce a local magnetic field. However, to our

knowledge there is no validation at the first-principles level.

Here we report our Green's function method calculation of phenalenyl-dithiolate

based molecular bridge between two aluminum chains using the QO basis-set and

its ab initio tight-binding Hamiltonian and overlap matrix. Atomic structure of

phenalenyl-dithiolate molecular bridge sandwiched between two aluminum chains is

shown in Fig. 4-41. Its ground-state effective Kohn-Sham potential and valence

charge density are shown in Fig. 4-42 and Fig. 4-43. Again sulfur atoms seem to

have a deeper potential than carbon and aluminum atoms.
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Figure 4-41: Atomic structure of phenalenyl-based molecular bridge with Al chain as

the lead.

Scale: A n(r)
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Figure 4-42: Contour plot of effective Kohn-Sham potential of phenalenyl-based
molecular bridge.
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Figure 4-43: Contour plot of valence electron density of phenalenyl-based molecular
bridge.
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The conductance curve is plotted in Fig. 4-44. It is not totally unexpected that,

similar to the previous BDT case, the conductance curve shows the resonant transport

characteristics and most peaks are below 1 Go. Its discrete single-channel resonant

conductance peaks indicate the role of molecular orbitals of phenalenyl-dithiolate

coupled to Al chain. There are nine peaks between -5 eV and 4 eV. Two of them are

not very clearly separated and they squeeze between -0.078 eV and -0.03 eV.
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Figure 4-44: Electrical conductance of phenalenyl-based molecular bridge.

We then perform conductance eigenchannel decomposition of the nine peaks. The

eigenchannel conductance at each resonant peak is listed in Table 4.5. It is clear that

the conductance of all the major eigenchannels has the conductance near 1 Go. From

the table, we see that each of two channels at E = -0.078 eV and E = -0.03 eV

contains one major channel and one minor channel. We can guess that the minor

channel comes from dispersion of the major channel at the other resonant energy

level.

To further explore the detailed transport mechanism, we then show the phase-

encoded conductance eigenchannels in Fig. 4-45. The conductor region in channel

(a, b, f) shows the large components of pure red and light blue isosurface, indicating

the static wave nature inside these regions mostly composed of real wave function. In

contrast, the eigenchannels in Fig. 4-45(h) and (i) show the smooth phase-change of

wave functions in the lead and phenalenyl molecule. Following the colormap of phase

in Fig. 4-12 from red to yellow, green, light blue, blue and then back to red, we can

192



(a) E = -4.53 eV, = 0.913 Go

(a) E = -4.53 eV, G = 0.913 Go

* 64ga. e 0@

(c) E = -2.03 eV, G = 0.898 Go

(e) E = -0.078 eV, G = 0.985 Go

(e) E = -0.078 eV, GC 0.985 Go

(g) E = 0.39 eV, G = 0.877 Go

(g) E 0 .39 eV, C = 0.877 Go

mle *
(b) E = -4.15 eV, G = 0.923 Go

A
SO""'t

(d) E = -1.93 eV, G = 0.858 Go

(f) E = -0.03 eV, G = 0.984 Go

(h) E = 2.29 eV, G = 0.982 Go

(i) E = 2.55eV, G = 0.985 Go

Figure 4-45: Phase-encoded conductance eigenchannels of phenalenyl-based molecular

bridge at different resonant levels. The energy level and conductance of each channel

are indicated in the figure and also listed in Table 4.5.
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Table 4.5: Eigenchannel conductance of phenalenyl-based molecular bridge at dif-
ferent resonant levels. Labels (a-i) is the corresponding major conducting channel
plotted in Fig. 4-45

E Channel 1 Channel 2
eV Go Go
-4.53 0.913 (a)
-4.15 0.923 (b)
-2.03 0.898 (c)
-1.93 0.858 (d)
-0.078 0.985 (e) 0.155
-0.03 0.131 0.984 (f)
0.39 0.877 (g)
2.29 0.982 (h)
2.55 0.985 (i)

obtain a simple view of the current direction inside the molecule. Current channel

(h) in the bottom big ring forms a counterclockwise current loop at E = 2.29 eV and

current channel (i) in the top small ring forms a clockwise current loop at E = 2.55

eV.

To have a clear understanding of the local loop current we calculate the bond

current distribution[54] from each conductance eigenchannel. The current magni-

tude is shown in Table 4.6 and the detailed current map is shown Fig. 4-46 (a)

and (b). Immediately we find two almost perfect quantum current loops inside the

molecule. However beside the difference in the shape and size, another important

difference between two loops are the opposite direction of current-induced magnetic

fields, resulting from the law of electromagnetic induction. Since electron current car-

ries negative charges, the magnetic field induced from the red loop points inside the

paper while that from the green loop points outside the paper. The calculated ratio

between the magnitude of quantum loop current and that of the incoming current is

above 3 in each case.

Our quantum loop current is similar to the result of Nakanishi et al. [89], however

not all the loops that they have predicted from simple tight-binding model show up

in our calculation. That difference has to be traced back the fundamental physics
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(a) (b)

Figure 4-46: Quantum current loops in the phenalenyl-based molecular bridge at two

resonant levels (a) E = 2.29 eV and (b) E = 2.55 eV. (The red and green loops

indicate different directions of magnetic field from the current loops.)

Table 4.6: Quantum current loops in the phenalenyl-based molecular bridge at two

resonant levels.

E(eV) Source-drain current (ISD) Loop current (Iloop) Ratio (Iloop/ISD)

2.29 0.61 2.03 3.35
2.55 0.56 2.21 3.96

of the emergence of quantum loop current. The intrinsic reason is the breaking of

time-reversal symmetry under the source-drain bias or current. Just like the previous

explanation through the right-moving and left-moving plane-wave model, the static

ground-state wave function can be viewed as the exact cancellation of left and right

moving waves. With the bias or current added onto the system, the time reversal

symmetry of the original ground state is broken, leading to imperfect cancellation

between two opposite currents. Finally it results in a net current between two elec-

trodes. Actually the emergence of quantum current loops side the conductor region

has an extra requirement. That is the asymmetric geometry of molecular conductor

respect to the source-drain current. If the phenalenyl molecule is replaced by benzene

molecule in the previous case, we will not see any internal current loop if no external

magnetic field and asymmetric interface geometry exist. We immediately realize that

the lifting of time-reversal symmetry can also be introduced by external magnetic

field while the close relationship between two cases has been shown by Tagami et al.

[224]. Therefore the absence of the other loops predicted by Nakanishi et al is most
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probably due to the insufficient time-reversal symmetry breaking.

4.4 Carbon nanotube

Carbon nanotubes(CNTs), first discovered by Iijima[225], have a lot of potential

applications in nanoscale electronics. They have attracted a lot of attentions in

experiments and theories in the past decade. Particularly single-walled carbon nan-

otubes(SWNTs) can be excellent conductors replacing traditional electrical wire. Var-

ious conductance calculations have been carried out in the last few years to study

pristine CNT, defected CNT, or chemically-functionalized CNT [56, 59, 95, 226, 227,

228, 229].

Here we would like to ask two questions: (a) What is the role of spin and spe-

cific defect in the CNT conductance? (b) does quantum current loop exist in CNT

with and without defects? To answer the above two questions, we have investigated

three CNT systems: (a) clean armchair CNT(4,4), (b) CNT(4,4) with single sub-

stitutional impurity Si atom with and without atomic structure relaxation, and (c)

relaxed CNT(4,4) with single vacancy.

4.4.1 CNT(4,4)

Atomic structure of clean CNT(4,4) is displayed in Fig. 4-47 with long bond length

of 1.414 A and short bond length of 1.399 A in a rectangular box of 13.512 x 13.512 x

14.705 A3. The tube is along the z-direction (the third axis). The corresponding

band structure, density of states, and quantum conductance curve are shown in Fig.

4-48. The quantized conductance is the similar feature found in other people's work

[56, 59, 95, 226, 227]. It also agrees with the band counting method from the band

structure plot. Both curves smoothly pass the Fermi level and that is consistent with

one basic rule of CNT. For a given (n, m) carbon nanotube, if n - m is a multiple of

3, the carbon nanotube is metallic. Again DOS of CNT(4,4) shows sharp peaks at

each conductance step, indicating extra band inclusion or exclusion. Around Fermi

level the conductance is 2Go and that means there are two perfect eigenchannels
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responsible for the conductance.

Figure 4-47: Atomic structure of CNT(4,4)

The current map for one of the major conducting eigenchannel is illustrated in

Fig. 4-49. It clearly shows the bond current is through the armchair direction or the

longitudinal direction while no net current is found along the zigzag direction or the

transverse direction. This is also a direct illustration of one-dimensional characteris-

tics of CNT(4,4) from the view of electrical current.

4.4.2 CNT(4,4) with single substitutional impurity Si atom

In this session, we replace one carbon atom with a Si atom in CNT(4,4). The relaxed

atomic structure is shown in Fig. 4-50. The ground-state DFT calculation includes

the spin degree of freedom.

Electrical conductance curves of both unrelaxed and relaxed CNT(4,4)-Si are plot-

ted in Fig. 4-51. Fig. 4-51(a) shows that there is no significant spin dependence on

the conductance curve. However as indicated in Fig. 4-51(b), the total conductance

of relaxed structure has large difference from the conductance of the CNT(4,4)-Si

without relaxation. It shows a deep and wide dip above Fermi level from 0 to 1 eV.

The depth of the conductance dip is about 1G0 and that could come from the disap-

pearance of one conducting channel. In the case of unrelaxed CNT(4,4)-Si, we do not

find the similar dip at the same energy range. The overall conductance magnitude of

relaxed structure from -4 eV to 4 eV is no higher than the unrelaxed one. It is also

clear that the conductance in both cases is lower than that of the perfect tube.
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Figure 4-48: Band structure, density of states and electrical conductance of CNT(4,4).
Black dash line and red dash-dot line in the band structure plot are true Fermi level
and the shifted Fermi level at 3 eV, respectively.
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Figure 4-49: Double-degenerate eigenchannel current of CNT(4,4) at Fermi level

Figure 4-50: Atomic structure of relaxed CNT(4,4) with single substitutional impurity
Si atom (purple).
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(b) comparison of conductance curves with and without relaxation

Figure 4-51: Electrical conductance of CNT(4,4) with single substitutional impurity
Si atom with and without relaxation
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(a) Channel 1 at E = 0 eV, G = 0.917Go

(b) Channel 2 at E = 0 eV, G = 0.987G0

Figure 4-52: Phase-encoded conductance eigenchannels of unrelaxed CNT(4,4) with

single substitutional impurity Si atom. Three figures on each row are the left, top,

and right view of the same eigenchannel at Fermi energy (E = 0 eV).
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(a) Channel 1 at E = 0.5 eV, G = 0.977Go

(b) Channell at E = 0 eV, G = 0.955Go

(c) Channel 2 at E = 0 eV, G = 0.740Go

Figure 4-53: Phase-encoded conductance eigenchannel of relaxed CNT(4,4) with sin­
gle substitutional impurity Si atom. (Three figures on each row are the left, top, and
right view of the same eigenchannel at their corresponding energy level.)
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To understand the finite conductance at Fermi level E = 0 eV and E = 0.5 eV,

we have done the eigenchannel decomposition for both structures. The corresponding

eigenchannel of unrelaxed structure at E = 0 eV is shown in Fig. 4-52 and the

eigenchannels of relaxed structure at E = 0 eV and E = 0.5 eV are shown in Fig.

4-53. It is very clear that at Fermi level both structures have two different major

eigenchannels. The channel in Fig. 4-52(a) is almost the same as the channel in

Fig. 4-53(b), however the channel in Fig. 4-52(b) is different from Fig. 4-53(c)

to some extent. Especially an additional large light blue bump appears at the Si

atom and the phase change is less significant than the unrelaxed case, resulting in a

smaller conductance less than 1G0 . Two almost perfect transport eigenchannels in

the unrelaxed structure demonstrate that around Fermi level the Si atom plays the

similar role as carbon atom and it is well coupled to the Bloch states of CNT(4,4).

The situation changes after relaxation and the Si atom is electronically distinguished

from carbon atoms. Gradually the second channel of relaxed structure shown in Fig.

4-53(c) disappears at E = 0.5 eV. The only one major eigenchannel at that energy

level is shown in Fig. 4-53(a), similar to Fig. 4-53(b).

The bond current distribution of each channel at two energy levels in the unrelaxed

structure is shown in Fig. 4-54. The basic current topology is similar to the perfect

conducting case and we did not find any significant quantum current loop except

some changes of current amplitude and the current distribution around the Si atom.

Similar situations happen in the relaxed structure at E = 0.5 eV, however it does

contain clear quantum current loop in the left end of CNT at E = 0.5 eV with

the magnetization direction pointing to the right, shown in Fig. 4-55 (b). To our

knowledge, this is the first prediction of quantum current loop induced by impurity

in CNT from first-principles calculations. The emergence of quantum current loop is

again due to the time-reversal symmetry breaking while impurities bring the required

asymmetry into the system with respect to the source-drain current. We would like

to conclude that such quantum loop current should widely exist in many atomic or

mesoscopic systems with either structural defects or chemical defects.
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(a) Channel 1 at E = 0 eV

(b) Channel 2 at E = 0 eV

(c) Total current at E = 0 eV

Figure 4-54: Eigenchannel current maps of unrelaxed CNT(4,4) with single substitu-
tional impurity Si atom.
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(a) Total current at E = 0 eV (two major channels)

(b) Total current at E = 0.5 eV (1 major channel)

(c) Channel 1 at E = 0 eV

(d) Channel 2 at E = 0 eV

Figure 4-55: Eigenchannel current maps
tional impurity Si atom.

of relaxed CNT(4,4) with single substitu-
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4.4.3 CNT(4,4) with single vacancy

Here we begin to study the role of single vacancy on the conductance of CNT(4,4).

The relaxed atomic structure of CNT(4,4)-single vacancy is illustrated in Fig. 4-

56. The calculated spin-dependent conductance is shown in Fig. 4-57(a). We do

not find strong spin dependence of electrical conductance. However, compared to

relaxed CNT(4,4)-Si, the conductance curve has a big difference in the energy range

between -2 eV and 1.5 eV. That is shown in Fig. 4-57(b). From the phased-encoded

eigenchannel decomposition in Fig. 4-58, we can see that the channels in Fig. 4-58(a)

and Fig. 4-58(b) are the same eigenchannel at different energies while the channel in

Fig. 4-58(c) disappears at E = -0.6 eV. This is the same channel which disappears

in the relaxed CNT(4,4) with single substitutional impurity Si atom at E = 0.5 eV

shown Fig. 4-53(c). More interestingly, here this channel shows up above Fermi

level while it also shows up below Fermi level in the relaxed CNT(4,4) with single

substitutional impurity Si atom.

Figure 4-56: Atomic structure of relaxed CNT(4,4) with single substitutional impurity
Si atom

We also plot out the bond current distribution map in Fig. 4-59. Similar to

previous case, we did not find significant quantum loop current at E = 0 eV. However,

again we find the quantum loop current at E = -0.6 eV surrounding the vacancy

region of CNT(4,4).

Another observation of the current map in both relaxed CNT(4,4)-Si and relaxed

CNT(4,4)-vacancy at E = 0 eV is that, although the total current from two major

channels does not show significant current loop, the current map of each channel

does show asymmetric current along transverse direction. It is the cancellation effect
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0

0

E (eV)

(b)

Figure 4-57: (a) Electrical conductance of relaxed CNT(4,4) with single vacancy. (b)

Comparison of electrical conductance among pure CNT(4,4), relaxed CNT(4,4) with

single vacancy, and relaxed CNT(4,4) with single substitutional impurity Si atom
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(a) Channel 1 at E = -0.6 eV, G = 0.981G 0

(b) Channel 1 at E = 0 eV, G = 0.986Go

(c) Channel 2 at E -= 0 eV, G = 0.429Go

Figure 4-58: Phase-encoded conductance eigenchannel of relaxed CNT(4,4) with sin-

gle vacancy. (Three figures on each row are the left, top, and right view of the same

eigenchannel at their corresponding energy level.)
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(a) Total current at E = 0 eV (two major channels)

(b) Total current at E = -0.6 eV (one major channel)

(c) Channel 1 at E = 0 eV

(d) Channel 2 at E = 0 eV

Figure 4-59: Eigenchannel current maps of relaxed CNT(4,4) with single vacancy.
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which leads to the effective total current without clear quantum current loop.

More importantly, if we look at the phase-encoded eigenchannels for all three

situations, unrelaxed CNT(4,4)-Si, relaxed CNT(4,4)-Si, and relaxed CNT(4,4) with

single vacancy, we immediately find the reason why the second channel will disappear

while the first channel always exists. The shape of the first conductance eigenchannel

in all the three cases are intrinsically like large armchairs, which provides a smart

way to bypass the effect of Si atom or single vacancy. However the second channel is

a direct and small armchair-like channel, which is easily broken when it encounters

relaxed single Si atom or relaxed single vacancy. This is a remarkable microscopic

view of the robustness of conducting channels in nanoscale electronics, which, to our

knowledge, has not been mentioned before.

4.5 Summary

In this chapter, we have shown several examples of electron transport in zero dimen-

sional and one dimensional molecular and nanoscale electronics. Resonant transport

is widely observed in several molecular electronic systems and those resonant peaks

are due to the coupling between various discrete molecular level and continuous states

in metal leads. We found that the typical confined aluminum wires have remarkable

spin-dependent conductance because of local magnetic moment formation. We predict

that such spin-dependent transport should widely exist in confined systems. More

strikingly, the phase-encoded conductance eigenchannel gives a direct and visual un-

derstanding of electron transport. In one limit, it shows the static standing wave with

complete refection while in the other limit it gives perfect phase-oscillation with com-

plete transmission. We further explore electron transport in phenalenyl molecule and

carbon nanotube with and without defects. In these systems, quantum loop currents

are found due to time-reversal symmetry breaking and the asymmetry between the

conductor geometry and source-drain current. We predict that source-drain current

could introduce much larger local loop current in defected or disordered systems with

asymmetric current paths, leading to the induced local magnetic fields.
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Chapter 5

Electrical conductance from

TDDFT

Green's function (GF) method has achieved many successes in describing electron

transport at the meso [54, 55] and molecular [57, 58, 59, 62, 63] scales, issues such

as dynamical electron correlation and large electron-phonon coupling effects [65, 66]

are far from fully resolved. It is therefore desirable to exploit alternative approaches

[230, 193, 231, 232, 233, 234, 235, 128, 236] for comparison with the mainstream GF

calculations. In this chapter, we describe a step[128] towards this goal by computing

how an electron propagates through a molecular junction in real time, based on the

time-dependent density functional theory [36] (TDDFT).

5.1 Introduction

Density functional theory (DFT) [5] with the Kohn-Sham reference kinetic energy

functional of a fictitious non-interacting electron system [6] is a leading method for

treating many electrons in solids and molecules. [7]. While initially formulated to de-

scribe only the electronic ground state [5, 6], it has been rigorously extended by Runge

and Gross [36] to treat time-dependent driven systems (excited states). TDDFT

is therefore a natural theoretical platform for studying electron conduction at the

nanoscale. There are two flavors in which TDDFT is implemented. One is direct
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numerical integration [37, 38, 39, 40, 41, 42, 237] of the time-dependent Kohn-Sham

(TDKS) equations. The other is a Gedanken experiment of the former with an added

assumption of infinitesimal time-dependent perturbation, so a linear response func-

tion may be first derived in closed form [43, 44, 45, 237], which is then evaluated

numerically. These two implementations should give exactly the same result when

the external perturbation field is infinitesimal. The latter implementation can be

computationally more efficient once the linear-response function has been analyti-

cally derived, while the former can treat non-infinitesimal perturbations and arbitrary

initial states.

Presently, most electronic conductance calculations based on the Landauer trans-

mission formalism [68, 69] have assumed a static molecular geometry. In the Landauer

picture, dissipation of the conducting electron energy is assumed to take place in the

metallic leads (electron reservoirs), not in the narrow molecular junction (channel)

itself. [71] Inelastic scattering, however, does occur in the molecular junctions them-

selves, the effects appearing as peaks or dips in the measured inelastic electron tun-

neling spectra (IETS) [214] at molecular vibrational eigen-frequencies. Since heating

is always an important concern for high-density electronics, and because molecular

junctions tend to be mechanically more fragile compared to larger, semiconductor-

based devices, the issue of electron-phonon coupling warrants detailed calculations

[214, 215] (here we use the word phonon to denote general vibrations when there is

no translational symmetry). In the case of long 1r-conjugated polymer chain junc-

tions, strong electron-phonon coupling may even lead to elementary excitations and

spin or charge carriers, called soliton/polaron [65, 66, 238, 239, 240], where the elec-

tronic excitation is so entangled with phonon excitation that separation is no longer

possible.

In view of the above background, there is a need for efficient TDDFT implemen-

tations that can treat complex electron-electron and electron-phonon interactions in

the time domain. Linear-response type analytic derivations can become very cumber-

some, and for some problems [241] may be entirely infeasible. A direct time-stepping

method [37, 38, 39, 40, 42, 41] analogous to molecular dynamics for electrons as well
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as ions may be more flexible and intuitive in treating some of these highly complex

and coupled problems, if the computational costs can be managed. Such a direct

time-stepping code also can be used to double-check the correctness of analytic ap-

proaches such as the non-equilibrium Green's function (NEGF) method and electron-

phonon scattering calculations [214, 215], most of which explicitly or implicitly use

the same set of TDDFT approximations (most often an adiabatic approximation such

as TDLDA).

We note that similar to surface catalysis problems, metal-molecule interaction

at contact is the key for electron conduction across molecular junctions. Therefore

it seems reasonable to explore how TDDFT, specifically TDKS under the adiabatic

approximation, performs in the USPP/PAW framework, which may achieve similar

cost-performance benefits. This is the main distinction between our approach and the

software package Octopus [40, 42], a ground-breaking TDDFT program with direct

time stepping, but which uses norm-conserving Troullier-Martins (TM) pseudopo-

tentials [242], and real-space grids. We will address the theoretical formulation of

TD-USPP (TD-PAW) in sec. 5.2, and the numerical implementation of TD-USPP in

the direct time-stepping flavor in sec. 5.3.

To validate that the direct time-integration USPP-TDDFT algorithm indeed works,

we calculate the optical absorption spectra of sodium dimer and benzene molecule

in sec. 5.4 and compare them with experimental results and other TDLDA calcu-

lations. As an application, we perform a computer experiment in sec. 5.5 which is

a verbatim implementation of the original Landauer picture [69, 71]. An electron

wave pack comes from the left metallic lead (1D Au chain) with an energy that is

exactly the Fermi energy of the metal (the Fermi electron), and undergoes scatter-

ing by the molecular junction (benzene-(1,4)-dithiolate, or BDT). The probability

of electron transmission is carefully analyzed in density vs. (x, t) plots. The point

of this exercise is to check the stability and accuracy of the time integrator, rather

than to obtain new results about the Au-BDT-Au junction conductance. We check

the transmission probability thus obtained with simple estimate from complex band

structure calculations [220, 221], and Green's function calculations at small bias volt-
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ages. Both seem to be consistent with our calculations. In sec. 5.6, we give a detailed

comparison between the result from TDDFT and the result from Green's function

method. Especially we will show the similar electron propagation channels in both

cases. Lastly, we give a brief summary in sec. 5.7.

5.2 TDDFT formalism with ultrasoft pseudopo-

tentials

We have reviewed the basic formalism of ultrasoft pseudopotentials in Chap. 1. To

extend the ground-state USPP formalism to the time-dependent case, we note that

the S operator in (1.139) depends on the ionic positions {XI} only and not on the

electronic charge density. In the case that the ions are not moving, the following

dynamical equations are equivalent:

H(t)#O(t) = ihat(SOn(t)) = S(ihOat4(t)), (5.1)

whereby we have replaced the en in (1.139) by the ihOt operator, and H(t) is updated

using the time-dependent p(x, t). However when the ions are moving,

ihtS :7 S(ihO) (5.2)

with difference proportional to the ionic velocities. To resolve this ambiguity, we note

that S can be split as

= (S 1/2 ) (U tý1/ 2 ), (5.3)

where U is a unitary operator, UUt = 1, and we can rewrite (1.139) as

(Ut S-1/ 2 ) H(S-1/ 2v)(rt s1/ 2) n = (t 1/2) n . (5.4)
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Referring to the PAW formulation [28], we can select U such that Ut ý'1/2 is the PAW

transformation operator

1§it1/2 --T 1 + Z(I/) - )!))(•[I n =T P•n, (5.5)
i,I

that maps the pseudowavefunction to the true wavefunction. So we can rewrite (5.4)

as,

(US-/ 2 H)• (-/ 2 ) n - H = En, (5.6)

where H is then the true all-electron Hamiltonian (with core-level electrons frozen).

In the all-electron TDDFT procedure, the above e~n is replaced by the ih&t operator.

It is thus clear that a physically meaningful TD-USPP equation in the case of moving

ions should be

(UtS-1/2)I(S-l/ 2U)(U tS1/ 2)On = ihat((&tsl/ 2)On), (5.7)

or

(U tV-1/2)ft!!n = ihat((yts 1/2)'On). (5.8)

In the equivalent PAW notation, it is simply,

(Tt)- =n ih8t(Tn). (5.9)

Or, in pseudized form amenable to numerical calculations,

/^/¢ = iht(at(T01 n)) = ih(ttT(Qt¢n) + T (8tT) n). (5.10)

Differentiating (5.5), there is,

tP = XI')//- )) (3I (j)I -/))&(f XI)- (5.11)
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and so we can define and calculate

P5 -ihTt(tT) = / XP (5.12)
I

operator, similar to analytic force calculation [27], where

:( ax 011 + a/)- I (5.13)

The TD-USPP / TD-PAW equation therefore can be rearranged as,

(H + P)On = ihS(Unt), (5.14)

with P proportional to the ionic velocities. It is basically the same as traditional

TDDFT equation, but taking into account the moving spatial "gauge" due to ion

motion. As such it can be used to model electron-phonon coupling [215], cluster

dynamics under strong laser field [241], etc., as long as the pseudopotential cores are

not overlapping, and the core-level electrons are not excited.

At each timestep, one should update p(x, t) as

p(x, t) = E {C (x, t) 2 + E Qi(x) (n(t)1 ) (0 On (t)) fn. (5.15)
n i,j,I

Note that while On(x, t = 0) may be an eigenstate if we start from the ground-state

wavefunctions, O (xt > 0) generally is no longer so with the external field turned

on. n is therefore merely used as a label based on the initial state rather than an

eigenstate label at t > 0. fn on the other hand always maintains its initial value,

fn(t) = fn(0), for a particular simulation run.

One may define projection operator tI belonging to atom I:

i - Iof[)'6I (5.16)
i
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tI spatially has finite support, and so is

___ aj 0(1+ _j)
aXi - - ax V - V(1 + ). (5.17)

Therefore P' in (5.12) is,

P, -ihy t at
0XI

= ih(1t )
8X,

= -ih(1 + ~)((1 + ti)V - V(1 + ti))

S (1 + )(1 + i)p - (1 + )p(1+ tI), (5.18)

where p is the electron momentum operator. Unfortunately P, and therefore P are

not Hermitian operators. This means that the numerical algorithm for integrating

(5.14) may be different from the special case of immobile ions:

H(t)V, = ihS(OtA). (5.19)

Even if the same time-stepping algorithm is used, the error estimates would be differ-

ent. In section III we discuss algorithms for integrating (5.19) only, and postpone de-

tailed discussion of integration algorithm and error estimates for coupled ion-electron

dynamics (5.14) under USPP to a later development.

5.3 Time-stepping algorithms in the case of immo-

bile ions

In this section we focus on the important limiting case of (5.19), where the ions are

immobile or can be approximated as immobile. We may rewrite (5.19) formally as

S-1/2H(t)S-1/2(S 1/ 2 'n) = ihat(S1/2'n). (5.20)
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And so the time evolution of (5.19) can be formally expressed as

)= -1 /2T exp tdtSl-1/2H(t')S•-1/2)] 1/2 (O), (5.21)

with T the time-ordering operator. Algebraic expansions of different order are then

performed on the above propagator, leading to various numerical time-stepping algo-

rithms.

5.3.1 First-order implicit Euler integration scheme

To first-order accuracy in time there are two well-known propagation algorithms,

namely, the explicit (forward) Euler

iht + At)= H (x, t) (5.22)At

and implicit (backward) Euler

i On (t + At) - 4'n(x,t) =/?!¢(t + At) (5.23)

ihSAt

schemes. Although the explicit scheme (5.22) is less expensive computationally, our

test runs indicate that it always diverges numerically. The reason is that (5.19) has

poles on the imaginary axis, which are marginally outside of the stability domain

(Re(zAt) < 0) of the explicit algorithm. Therefore only the implicit algorithm can

be used, which upon rearrangement is,

S+ ftAt] ?n(t + At) = Sýn(t). (5.24)

In the above, we still have the choice of whether to use Hf(t) or Hf(t+ At). Since this is

a first-order algorithm, neither choice would influence the order of the local truncation

error. Through numerical tests we found that the implicit time differentiation in

(5.23) already imparts sufficient stability that the H(t + At) operator is not needed.
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Therefore we will solve

S+ i• (t)At] n (t + At) = Sýn (t) (5.25)

at each timestep. Direct inversion turns out to be computationally infeasible in large-

scale planewave calculations. We solve (5.25) iteratively using matrix-free linear equa-

tion solvers such as the conjugate gradient method. Starting from the wavefunction

of a previous timestep, we find that typically it takes about three to five conjugate

gradient steps to achieve sufficiently convergent update.

One serious drawback of this algorithm is that norm conservation of the wave-

function

(On(t + At)ISI2|(t + At)) = (4n(t)IS^'I4(t)) (5.26)

is not satisfied exactly, even if there is perfect floating-point operation accuracy. So

one has to renormalize the wavefunction after several timesteps.

5.3.2 First-order Crank-Nicolson integration scheme

We find the following Crank-Nicolson expansion [243, 244, 42] of propagator (5.21)
-^ 1_1

1 - AS-I SH(t)S-2AtSH _(t + At) = 2 AI S 
I On(t) (5.27)

stable enough for practical use. The norm of the wavefunction is conserved explicitly

in the absence of roundoff errors, because of the spectral identity

1- -S-HS-2At
2 A = 1. (5.28)iýhS_ HS-ft _ 2At

Therefore (5.26) is satisfied in an ideal numerical computation, and in practice one

does not have to renormalize the wavefunctions in thousands of timesteps.

Writing out the (5.27) expansion explicitly, we have:

S + ~H(t)At] n(t + At) = S - H(t)At On(t). (5.29)

2hHt)t 1 1^t).
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Similar to (5.25), we solve Eq. (5.29) using the conjugate gradient linear equations

solver. This algorithm is still first-order because we use H(t), not (H(t)+H/(t+At))/2,

in (5.29). In the limiting case of time-invariant charge density, p(x, t) = p(x, 0) and

H(t + At) = H(t), the algorithm has second-order accuracy. This may happen if

there is no external perturbation and we are simply testing whether the algorithm is

stable in maintaining the eigenstate phase oscillation: 0,(t) = Ln(0)e - iWt, or in the

case of propagating a test electron, which carries an infinitesimal charge and would

not perturb H(t).

5.3.3 Second-order Crank-Nicolson integration scheme

We note that replacing fi(t) by (H(t) + H(t + At))/2 in (5.27) would enhance the

local truncation error to second order, while still maintaining norm conservation. In

practice we of course do not know H(t + At) exactly, which depends on p(t + At)

and therefore 0 (t + At). However a sufficiently accurate estimate of p(t + At) can

be obtained by running (5.29) first for one step, from which we can get:

p'(t + At) = p(t + At) + O(At 2), H'(t + At) = H(t + At) + O(At 2 ). (5.30)

After this "predictor" step, we can solve:

i(H+(t) + H(t + At))At + At) = i((t) + '(t + At))At+4h + )4h +O H(t)

(5.31)

to get the more accurate, second-order estimate for 0n(t + At), that also satisfies

(5.26).

5.4 Optical absorption spectra

Calculating the optical absorption spectra of molecules, clusters and solids is one of

the most important applications of TDDFT [245, 43, 44, 37, 38, 39, 246, 40, 41, 247].

Since many experimental and standard TDLDA results are available for comparison,
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we compute the spectra for sodium dimer (Na 2) and benzene molecule (C6 H6) to

validate our direct time-stepping USPP-TDDFT scheme.

We adopt the method by Bertsch et al. [37, 246] whereby an impulse electric field

E(t) = chk6(t)/e is applied to the system at t = 0, where k is unit vector and 6 is

a small quantity. The system, which is at its ground state at t = 0-, would undergo

transformation

,(x, t = 0+ ) = eiek4xn(x,t = 0-), (5.32)

for all its occupied electronic states, n = 1..N, at t = 0+. Note that the true,

unpseudized wavefunctions should be used in (5.32) if theoretical rigor is to be main-

tained.

One may then evolve {fVn(x,t),n = 1..N} using a time stepper, with the total

charge density p(x,t) updated at every step. The electric dipole moment d(t) is

calculated as

d(t) = e f d3xp(x, t)x. (5.33)

In a supercell calculation one needs to be careful to have a large enough vacuum

region surrounding the molecule at the center, so no significant charge density can

"spill over" the PBC boundary, thus causing a spurious discontinuity in d(t).

The dipole strength tensor S(w) can be computed by

2mew 1 00
S(w)k = m(w) 2me- lim 1- dtsin(wt)e-t 2 [d(t) - d(0)], (5.34)

eh7r E,-ýo o

where 7y is a small damping factor and me is the electron mass. In reality, the time

integration is truncated at tf, and 7 should be chosen such that e-t < 1. The merit

of this and similar time-stepping approaches [46] is that the entire spectrum can be

obtained from just one calculation.

For a molecule with no symmetry, one needs to carry out Eq. (5.32) with subse-

quent time integration for three independent k's: k1 , k 2 , k3 , and obtain three different

mi (w), m 2 (W), m 3 (w) on the right-hand side of Eq. (5.34). One then solves the matrix
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equation:

S(w)[ki k 2 k3  - [mml(w) m2(w) m3(w)] (5.35)

-+ S(w) = [mi(w) m2(w) m 3 (w)][il k2 k3 - 1  (5.36)

S(w) satisfies the Thomas-Reiche-Kuhn f-sum rule,

0O
S= dwSij (w). (5.37)

For gas-phase systems where the orientation of the molecule or cluster is random, the

isotropic average of S(w)
1

S(w)- -TrS(w) (5.38)
3

may be calculated and plotted.

In actual calculations employing norm-conserving pseudopotentials [40], the pseudo-

wavefunctions in(x, t) are used in (5.32) instead of the true wavefunctions. And so

the oscillator strength S(w) obtained is not formally exact. However, the f-sum rule

Eq. (5.37) is still satisfied exactly. With the USPP/PAW formalism [25, 26, 27, 28],

formally we should solve

t4b,(x,t = 0+) = eickxTtg(x,t = 0-), (5.39)

using linear equation solver to get 0,(x, t = 0+), and then propagate 4n(x, t). How-

ever, for the present work we skip this step, and replace ý, by 0., in (5.32) directly.

This "quick-and-dirty fix" makes the oscillator strength not exact and also breaks the

sum rule slightly. However, the peak positions are still correct.

For the Na 2 molecule, we use the norm-conserving TM pseudopotential, treated

as a special case (S = 1) in our USPP-TDDFT code. The supercell is a tetragonal

box of 12 x 10 x 10 A3 and the Na 2 cluster is along the x-direction with a bond

length of 3.0 A. The planewave basis has a kinetic energy cutoff of 300 eV. The time

integration is carried out for 10, 000 steps with a timestep of At = 1.97 attoseconds,
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Figure 5-1: Optical absorption spectra of Na 2 cluster obtained from direct time-
stepping TDLDA calculation using norm-conserving TM pseudopotentials. The re-
sults should be compared with Fig. 1 of Marques et al. [246].

and e = 0.01/A, 'y = 0.02eV 2 /h 2 . In the dipole strength plot (Fig. 5-1), the three

peaks agree very well with TDLDA result from Octopus [246], and differ by - 0.4 eV

from the experimental peaks [248, 249, 246]. In this case, the f-sum rule is verified

to be satisfied to within 0.1% numerically.

For the benzene molecule, ultrasoft pseudopotentials are used for both carbon and

hydrogen atoms. The calculation is performed in a tetragonal box of 12.94 x 10 x 7 A3

with the benzene molecule placed on the x - y plane. The C-C bond length is 1.39 A
and the C-H bond length is 1.1 A. The kinetic energy cutoff is 250 eV, E = 0.01/A,

- = 0.1eV 2/h 2, and the time integration is carried out for 5000 steps with a timestep

of At = 2.37 attoseconds. In the dipole strength function plot (Fig. 5-2), the peak at

6.95 eV represents the v -- r* transition and the broad peak above 9 eV corresponds

to the ca r-* transition. The dipole strength function agrees very well with other

TDLDA calculations [38, 40] and experiment [250]. The slight difference is mostly due
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to our ad hoc approximation that 0n's instead of n)'s are used in (5.32). The more

formally rigorous implementation of the electric impulse perturbation, Eq. (5.39),

will be performed in future work.

0 5 10 15 20 25 30 35
Energy (eV)

Figure 5-2: Optical
should be compared

absorption spectrum of benzene
with Fig. 2 of Marques et al. [40

(C6H6) molecule. The results

In this section we have verified the soundness of our time stepper with planewave

basis through two examples of explicit electronic dynamics, where the charge den-

sity and effective potential are updated at every timestep, employing both norm-

conserving and ultrasoft pseudopotentials. This validation is important for the fol-

lowing non-perturbative propagation of electrons in more complex systems. Recently

Walker and Gebauer [251] combined the USPP-TDDFT scheme [128] and the closed

form of linear response function [43, 44, 45] based on Lanczos algorithms[252], and

they demonstrated that USPP-based TDDFT calculations benefit not only from the

smaller size of plane-wave basis-set but also from the faster convergence. Their
method has been used to efficiently calculate optical absorption spectra of the fullerene

C60. However, it should be emphasized that the real-time propagation method can
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treat non-infinitesimal perturbations and arbitrary initial states, which is not true for

linear-response method.

5.5 Fermi electron transmission

We first briefly review the setup of the Landauer transmission equation, [68, 69, 71]

before performing an explicit TDDFT simulation. In its simplest form, two identical

metallic leads (see Fig. (5-3)) are connected to a device. The metallic lead is so narrow

in y and z that only one channel (lowest quantum number in the y, z quantum well)

needs to be considered. In the language of band structure, this means that one and

only one branch of the ID band structure crosses the Fermi level EF for kx > 0.

Analogous to the universal density of states expression dN = 2Qdkdkydkz/(27r) 3 for

3D bulk metals, where Q is the volume and the factor of 2 accounts for up- and

down-spins, the density of state of such ID system is simply

2Ldkx
dN = 2Ldk (5.40)

27r

In other words, the number of electrons per unit length with wave vector e (kx, kx +

dkx) is just dkx/lr. These electrons move with group velocity [253]:

dE(ks)VG h= (5.41)
hdk

so there are (dkx/7)(dE(kx)/(hdkx)) = 2dE/h such electrons hitting the device from

either side per unit time.

L

left metal: EF+edV/2 device right metal: EF-edV/2

- X

Figure 5-3: Illustration of the Landauer transmission formalism.

Under a small bias voltage dV, the Fermi level of the left lead is raised to EF +
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edV/2, while that of the right lead drops to EF - edV/2. The number of electrons

hitting the device from the left with wave vector (kX, kx + dkx) is exactly equal to the

number of electrons hitting the device from the right with wave vector (-ks, -kX -

dkx), except in the small energy window (EF - edV/2, EF + edV/2), where the right

has no electrons to balance against the left. Thus, a net number of 2(edV)/h electrons

will attempt to cross from left and right, whose energies are very close to the original

EF. Some of them are scattered back by the device, and only a fraction of T E (0, 1]

gets through. So the current they carry is:

dl 2e2

d - 2 T(EF) (5.42)
dV hV=0

where 2e 2/h = 77.481,tS = (12.906kQ) - 1.

Clearly, if the device is also of the same material and structure as the metallic

leads, then T(EF) should be 1, when we ignore electron-electron and electron-phonon

scattering. This can be used as a sanity check of the code. For a nontrivial device

however such as a molecular junction, T(EF) would be smaller than 1, and would

sensitively depend on the alignment of the molecular levels and EF, as well as the

overlap between these localized molecular states and the metallic states.

Here we report two USPP-TDDFT case studies along the line of the above discus-

sion. One is an infinite defect-free gold chain (Fig. 5-4(a)). The other case uses gold

chains as metallic leads and connects them to a -S-C 6H4 -S- (benzene-(1,4)-dithiolate,

or BDT) molecular junction (Fig. 5-4(b)).

In the semi-classical Landauer picture explained above, the metallic electrons are

represented by very wide Gaussian wavepacks [253] moving along with the group

velocity vG, and with negligible rate of broadening compare to vG. Due to limitation

of computational cost, we can only simulate rather small systems. In our experience

with 1D lithium and gold chains, a Gaussian envelop of 3-4 lattice constants in full

width half maximum is sufficient to propagate at the Fermi velocity vG(kF) with

100% transmissions and maintain its Gaussian-profile envelop with little broadening

for several femto-seconds.
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Figure 5-4: Atomistic configurations of our USPP-TDDFT simulations visualized by
AtomEye [152]. Au: yellow (light gray), S: magenta (large dark gray), C: black (small
dark gray), and H: white. (a) 12-atom Au chain. Bond length: Au-Au 2.88 A. (b)
BDT (-S-C 6H4-S-) junction connected to Au chain contacts. Bond lengths: Au-Au
2.88 A, Au-S 2.41 A), S-C 1.83 A, C-C 1.39 A, and C-H 1.1 A.

5.5.1 Fermi electron propagation in gold chain

The ground-state electronic configurations of pure gold chains are calculated using the

free USPP-DFT package DACAPO, [33, 34, 35] with local density functional (LDA)

[8, 9] and planewave kinetic energy cutoff of 250 eV. The ultrasoft pseudopotentials

are generated using the free package USPP (ver. 7.3.3) [25, 26, 27], with 5d, 6s,

6p, and auxiliary channels. Fig. 5-4(a) shows a chain of 12 Au atoms in a tetrago-

nal supercell (34.56 x 12 x 12 A3), with equal Au-Au bond length of a0 = 2.88 A.
Theoretically, ID metal is always unstable against period-doubling Peierls distortion

[253, 22]. However, the magnitude of the Peierls distortion is so small in the Au

chain that room-temperature thermal fluctuations will readily erase its effect. For

simplicity, we constrain the metallic chain to maintain single periodicity. Only the

F-point wavefunctions are considered for the 12-atom configuration.

227



The Fermi level EF is found to be -6.65 eV, which is confirmed by a more accurate

calculation of a one-Au-atom system with k-sampling (Fig. 5-5). The Fermi state is

doubly degenerate due to the time-inversion symmetry, corresponding to two Bloch

wavefunctions of opposite wave vectors kF and -kF.

k (27C/a0 )

Figure 5-5: Band structure of a
sampling in the chain direction.
the dashed line.

one-atom Au chain with 64
The Fermi level, located at

Monkhorst-Pack[23] k-
-6.65 eV, is marked as

From the F-point calculation, two energetically degenerate and real eigen wave-

functions, 0+(x) and 0_(x), are obtained. The complex traveling wavefunction is

reconstructed as

k+(x) + i(_ (x)kv(2= (5.43)

The phase velocity of bkF (x, t) computed from our TDLDA runs matches the Fermi

frequency EF/h. We use the integration scheme (5.29) and a timestep of 2.37 attosec-

onds.

We then calculate the Fermi electron group velocity vG(kF) by adding a pertur-

bation modulation of

)kF (X,t = 0) = 'OkF(X)(1 + Asin(27rx/L))
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to the Fermi wavefunction bkF(X (), where A is 0.02 and L is the x-length of the

supercell. Fig. 5-6 shows the electron density plot along two axes, x and t. From

the dashed line connecting the black-lobe edges, one can estimate the Fermi electron

group velocity to be -10.0 A/fs. The Fermi group velocity can also be obtained

analytically from Eq. (5.41) at kx = kF. A value of 10 A/fs is found according to

Fig. 5-5, consistent with the TDLDA result.

1 2 3 4 5 6 7 8 9 10 11 12
Atom label

"Lx'
0.024 0.026 0.028 0.03 0.032 0.034

Figure 5-6: Evolution of modulated Fermi electron density in time along the chain di-
rection. The electron density, in the unit of A- 1, is an integral over the perpendicular
y-z plane and normalized along the x direction, which is then color coded.

Lastly, the angular momentum projected densities of states are shown in Fig. 5-7,

which indicate that the Fermi wavefunction mainly has s and px characteristics.

5.5.2 Fermi electron transmission through Au-BDT-Au junc-

tion

At small bias voltages, the electric conductance of a molecular junction (Fig. 5-4(b))

is controlled by the transmission of Fermi electrons, as shown in Eq. (5.42). In this
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Figure 5-7: Projected density of states(PDOS) of the 12-atom Au chain.

section, we start from the Fermi electron wavefunction of a perfect 1D gold chain

(Fig. 5-4(a)), and apply a Gaussian window centered at x0 with a half width of a, to
obtain a localized wave pack

VkF(x,t = 0) = kF((x)G (x •x) (5.45)

at the left lead. This localized Fermi electron wave pack is then propagated in real
time by the TDLDA-USPP algorithm (5.29) with a timestep of 2.37 attoseconds,
leaving from the left Au lead and traversing across the -S-C 6 H4 -S- molecular junction
(Fig. 5-4(b)). While crossing the junction the electron will be scattered, after which
we collect the electron density entering the right Au lead to compute the transmission

probability T(EF) literally. The calculation is performed in a tetragonal box (42.94 x
12 x 12 A3) with a kinetic energy cutoff of 250 eV.

Fig. 5-8 shows the Fermi electron density evolution in x-t. A group velocity of
10 A/fs is obtained from the initial wave pack center trajectory, consistent with the
perfect Au chain result. This free propagation lasts for about 0.8 fs, followed by
a sharp density turnover that indicates the occurrence of strong electron scattering
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Figure 5-8: Evolution of filtered wave package density in time along the chain direc-
tion. The electron density, in the unit of AV, is a sum over the perpendicular y-z
plane and normalized along the x direction. The normalized electron density is color
coded by the absolute value.

at the junction. A very small portion of the wave pack goes through the molecule.

After about 1.7 fs, the reflected portion of the wave pack enters the right side of the

supercell through PBC.

To separate the transmitted density from the reflected density as clearly as possi-

ble, we define and calculate the following cumulative charge on the right side

R(x', t) dx dy J dzp(x, y, z, t), (5.46)

where xs is the position of the right sulfur atom. R(x', t) is plotted in Fig. 5-9

for ten x'-positions starting from the right sulfur atom up to the right boundary

Lx. A shoulder can be seen in all 10 curves, at t = 1.5-2 fs, beyond which R(x', t)

starts to rise sharply again, indicating that the reflected density has entered from the

right boundary. Two solid curves are highlighted in Fig. 5-9. The lower curve is at
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X' = xs + 7.2 A, which shows a clear transmission plateau of about 5%. The upper
curve, which is for x' exactly at the right PBC boundary, shows R(x', t) a 7% at the
shoulder. From these two curves, we estimate a transmission probability T(EF) of
5-7%, which corresponds to a conductance of 4.0-5.6 pS according to Eq. (5.42). This
result from planewave TDLDA-USPP calculation is comparable to the transmission
probability estimate of 10% from complex band structure calculation [220, 221] for one
benzene linker (-C 6H 4-) without the sulfur atoms, and the non-equilibrium Green's
function estimate of 5 [S [62] for the similar system. However it should be mentioned
here the electrical lead is pure gold chain while in other people's work they use the
bulk lead with Au(111) surfaces. So more physical comparison should be done in the
same system. That will be shown in the next section.

E.0
0

0 0.5 1 1.5 2 2.5 3 3.5
Time (fs)

Figure 5-9: R(x', t) versus time plot.
different x' positions, which equally
boundary on the right hand side.

Curves are measured in 10 different regions with
divide the region from the right S atom to the
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5.6 Direct comparison between TDDFT result and

Green's function method result

The transmission value from our Green's function calculation is 0.025 shown in Fig.

4-35(g, h), while the corresponding transmission coefficient from real-time TDDFT

wave propagation is 0.05 to 0.07. The two-time difference may come from the tiny

Gaussian wavepacket of Fermi electron, which is known to add more kinetic energy

due to the localization of Gaussian wave function. Therefore it will give rise to a

higher transmission value.

Here we plot the real-time propagation of wave function at four different time

points shown in Fig. 5-10. Compared to those eigenchannels in Fig. 4-35(g, h)

at the corresponding energy level, we find very good agreement between the shape

of two different sets of wave functions. Particularly we see the composition of the

incoming electron is from the coupled s - Px state, and it transfers to the other

side through the orbitals of benzene ring along the bond direction. There is some

fraction of electron density "jammed" around the hydrogen atoms and in the end

only a very small fraction of electron reaches the other side. This is very similar to

the conductance eigenchannel shown in Fig. 4-35(g, h). To our knowledge, this is the

first direct comparison between the result from real-time TDDFT method and that

from Green's function method. However, we would like to emphasize that, although

the conductance at Fermi level from Green's function method and TDDFT is in good

agreement, a better voltage or current boundary condition needs to be developed to

have the correct conductance value in the end. Otherwise, the Gaussian wavepacket

will lead to higher transmission coefficients as we have seen in the above example.

5.7 Summary

In this chapter we develop the TDDFT method based on Vanderbilt ultrasoft pseu-

dopotentials [128] and benchmark this USPP-TDDFT scheme by calculating optical

absorption spectra, which agree with both experiments and other TDDFT calcula-
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Figure 5-10: Real-time propagation of wave function: (a, b, c, d) are the contour plot
of magnitude of wave functions in the right-bottom zone at four different time points:
0 fs, 1.4 fs, 2.16 fs, and 2.49 fs. The propagating direction is from right to left.

tions. We also demonstrate a practical approach to compute the electrical conduc-

tance through single-molecule junction via wave pack propagation using TDDFT. The

small conductance of 4.0-5.6 MS is a result of our fixed band approximation, assuming

the electron added was a small testing electron and therefore generated little disturb-

ing effects of the incoming electrons on the electronic structure of the junction. This

result is of the same order of magnitude as the results given by the Green's function

and the complex band approaches, both requiring similar assumptions. We would like

to mention that (a) the USPP-TDDFT scheme can easily extend to PAW-TDDFT

with proper treatment of the projectors; (b) to fully implement TDDFT for periodic

system with finite bias potential we need to either include vector potential to drive

the system or implement certain current pump, which are effectively same.
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Chapter 6

Summary and outlook

In this thesis we have developed two approaches based on the first-principles method

toward more accurate simulations of phase-coherent electron transport in molecular

and nanoscale electronics. The comparison between two methods verifies the equiva-

lence in the limit of rigid band without dynamical correlations.

Our first approach is based on Green's function method within Landauer formal-

ism. The efficiency of Green's function method relies on localization of basis-sets

while the accuracy depends on the electronic ground-state. To achieve both of them

at the same time, we have developed a minimal basis-set of quasiatomic orbitals from

plane-wave density functional theory (DFT) results with norm-conserving pseudopo-

tentials (NCPP), ultrasoft pseudopotentials (USPP), and projector augmented wave

method (PAW). Our scheme is different from conventional methods by optimizing

finite occupied Bloch space and large unoccupied Bloch space under the criteria of

maximal localization or maximal atomic-orbital projection. Instead, the large unoc-

cupied Bloch space is directly constructed from the space spanned by atomic orbitals

but perpendicular to occupied Bloch space under maximal atomic-like criteria. We

have mathematically proved that this method can reproduce the result of maximal

atomic-orbital projection method with infinite Bloch space while accurately repro-

ducing all electronic structures of occupied Bloch space. More importantly, it resem-

bles quasi-angular momentum characteristics in solid state systems as that in atoms.

This further validates Slater's original idea of linear combinations of atomic orbitals
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(LCAO). We numerically show that there exists finite quantum numbers of orbital an-

gular momentum for most materials. Our localized orbitals are always guaranteed to

be atomic-orbital-like and have more flexibility and chemical transferability for ab ini-

tio tight-binding modeling. Based on these short-ranged tight-binding Hamiltonian

and overlap matrices, band structure, Fermi surface, Miilliken charge, bond order,

and quasiatomic orbitals-projected band structure and Fermi surfaces demonstrate

the accuracy, efficiency and stability of our scheme.

With our minimal basis-set, quantum conductance and density of states of coher-

ent electron transport are calculated by Green's function method within the Landauer

formalism. We show several examples of electron transport in zero-dimensional and

one-dimensional molecular and nanoscale electronics. Resonant transport is widely

observed in several molecular electronic systems and those resonant peaks are due to

the coupling between various discrete molecular level and continuous states in metal

leads. We found that the typical confined aluminum wires have remarkable spin-

dependent conductance because of local magnetic moment formation. We predict

that such spin-dependent transport should widely exist in confined systems. More

strikingly, the phase-encoded conductance eigenchannel gives a direct and visual un-

derstanding of electron transport. In one limit, it shows the static standing wave

with complete refection while in the other limit it gives complete phase-oscillation

with complete transmission. We further explore electron transport in phenalenyl

molecule and carbon nanotube with and without defects. Quantum loop current

due to time-reversal symmetry breaking is found in these systems. We predict that

source-drain current could introduce current loop in defected or disordered systems

with asymmetric current paths.

Our second approach naturally arises due to the fact that electron transport is

not ground state, but an excited state property. Time-dependent density functional

theory (TDDFT) is a fundamental approach to account for dynamical correlations

of wave functions and correct band gap in DFT. In our second approach, we mainly

focus on the mathematical formulation and algorithm development of TDDFT with

ultrasoft pseudopotentials and projector augmented wave method. Calculated optical
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absorption spectrum gives the correct positions and shapes of excitation peaks com-

pared to experimental results and other TDDFT results with norm-conserving pseu-

dopotentials. It is further applied to the study of Fermi electron transmission through

benzene dithiolate molecular junction sandwiched by two gold nanowires. It is first

verified that Fermi electron's group velocity in gold nanowire obtained by TDDFT

agrees with band structure theory. Then under rigid band and zero bias approxi-

mations, a tiny Fermi electron wave packet is injected into the molecular junction.

Transmission coefficient evaluated after scattering process is around 5%. From the

comparison between real-time TDDFT method and Green's function method, both

methods agree with each other not only because of the transmission coefficient on

the same order, but also because of the similar characteristic propagation channels.

The nice agreement verifies that Green's function approach based on DFT reaches

the TDDFT result without dynamical correlations.

Compared to experiments, calculated electrical conductance of various molecular

electronics is still not accurate although sometimes the shapes of current-voltage

curves are very similar. Unknown detailed geometry in experiments is one critical

factor since different binding sites on metallic surfaces can change the conductance

dramatically. In theoretical development several issues need to be improved including

exchange-correlation functional, electron-phonon coupling, and dynamical electron

correlation.

* Exchange-correlation functional can often affect band gap and energy level of

molecular orbitals, thus significantly affect the electrical conductance. However,

it should be mentioned that even with exact exchange-correlation functional the

band gap is still not correct due to the missing derivative discontinuity of the

functional. One traditional way is to use LDA+U method which modifies the

on-site Coulomb interactions to normal ground-state LDA calculations.

* Dynamical electron correlation is another important ingredient. As we have

mentioned above, electron transport is indeed an excited state property and it

can not be described in the static single-particle picture any more. Therefore,
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quasi-particle correction from many-body perturbation theory such as GW ap-

proximation [254, 255] is a very promising candidate to systematically improve

the accuracy of electrical conductance, even including electron-hole excitation

by solving Bethe-Salpeter equation [256]. Meanwhile, time-dependent density

functional theory is an alternative approach to include dynamical electron cor-

relation. However appropriate current or voltage boundary condition needs to

be developed for efficient electron transport simulations.

Electron-phonon coupling is also very critical for a more accurate current-

voltage curve since self-energy correction due to electron-phonon coupling can

also modify the conductor Hamiltonian. More importantly new transport mech-

anism could emerge because of the additional degrees of freedom from electron-

phonon couplings. One interesting example is soliton transport in one dimen-

sional organic polymer such as polyacetylene, where an additional gap state, an

self-trapped electron-phonon mode, is formed. Electron transport via soliton

can be slower but much more efficient when the electron-phonon coupling is

strong.

We believe that our quasiatomic orbitals can serve as a minimal basis-set for

both GW quasi-particle corrections of electronic structure in the non-equilibrium

Green's function (NEGF) method and efficient electron propagation in TDDFT. More

importantly, a combined method with GW-NEGF and TDDFT will provide a more

accurate and efficient way to study various molecular and nanoscale electronic devices

including transistors, chemical sensors, electromechanical devices, magnetic memory,

strong-correlated materials, and optical electronics.
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