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Abstract

A procedure for suboptimizing the choice of convolution codes is described. It is

known that random convolution codes that have been passed through a binary symmetric

channel, or a binary erasure channel, have a low probability of error and are easily

decoded, but no practical procedure for finding the optimum convolution code for long

code lengths is known. A convolution code is defined by its generator. It is proved

that by sequentially choosing the generator digits, one can obtain a code whose proba-

bility of error decreases as fast as, or faster than, the usual upper bound for a random

code. Little effort is required for suboptimizing the choice of the first few generator

digits. This effort increases exponentially with the choice of successive generator

digits. For a rate of transmission equal to 1/2, and the given procedure, a code of

length 50 is the approximate limit, with the use of the digital computers that are avail-

able at present.
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I. INTRODUCTION

It has been proved (1-3) that information can be transmitted through a noisy

memoryless channel at any rate below capacity with an arbitrarily small error.

These proofs also show that the probability of error, with optimum coding, decreases

exponentially with code length. There are, however, no known practical procedures

for finding such codes for arbitrary rates and arbitrary channels if the code length

is large.

Golay (4), Slepian (5), and Fontaine and Peterson (6) have found specific opti-

mum codes for the binary symmetric channel, but these codes are restricted to

short code lengths. Hamming (7) and Reed (8) have found certain sets of codes of

arbitrary length for the binary symmetric channel, but these codes do not provide

for the transmission of information at a fixed nonzero rate when the probability of

error must decrease indefinitely. Elias (9) has described an iterative code that

will transmit at a positive rate with arbitrarily low probability of error. For such

codes, however, the probability of error decreases much too slowly with increasing

length. Thus our knowledge of specific good codes is very limited.

Elias (10) has shown that in a binary symmetric channel, or in a binary

erasure channel, the probability of error averaged over all possible codes with

a given length decreases exponentially with increasing code length. Hence, one

can choose a long code at random and it is most likely to have a low proba-

bility of error.

Another possible approach to the problem of choosing a code, is to examine

all the possible codes of a given length and find the code with the lowest proba-

bility of error. This approach will give specific codes, but for long codes more

computation will be required than can be carried out by present or foreseeable

computers. Slepian (5), and Fontaine and Peterson (6), have used this approach,

but their exhaustive searches stopped at lengths 12 and 15, respectively.

In this report we treat an approach somewhere between these two extremes.

We restrict the discussion to convolution codes and to either the binary symmetric

channel or the binary erasure channel. A convolution code of length n can be

described by a generator containing less than n binary digits. In the procedure

that will be described here, the first few digits of the convolution-code generator

are chosen sequentially to minimize the probability of error, and the remaining

generator digits are chosen at random. This procedure results in good codes

obtained with comparatively little effort.

We show that at rates of transmission of information that cannot approach capac-

ity, the codes chosen by this method have a probability of error that decreases

with the same exponent as Elias' bounds on a random code. In the example that

will be given, the choice of the first 5 generator digits by the suboptimization

procedure results in a probability of error that is 0. 003 of the usual bound on the
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probability of error. The choice of the first few generator digits requires little

effort, and the effort required by the choice of succeeding digits increases expo-

nentially with increasing length. For a code with a rate of transmission equal to

1/2, the limit for manual computation is approximately length 20, and the limit

for present digital computers is approximately length 50.
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II. CONVOLUTION CODES

We shall treat two channels: the binary symmetric channel, and the binary erasure

channel. The binary symmetric channel has two input symbols, 0, 1, and the same two

output symbols. If a zero or a one is trans-

mitted, the probability that the same sym-
q=l-p

o bol is received is q, and the probability

that the other symbol is received is p = -q

q-p I (see Fig. la). The binary erasure channel

has two input symbols, 0, 1, and three
(a)

output symbols, 0, X, 1. If a zero or a one

q=l-p is transmitted, the probability that the
o 0

same symbol is received is q, and the

O X probability that an X is received is p = l-q.

s q:,_p There is zero probability that a zero is sent

(b) and a one received, or that a one is sent

and a zero received (see Fig. lb). For
Fig. 1. Transition probabilities for: both channels, the output at a given time(a) the binary symmetric chan-

nel; and (b) the binary erasure depends only upon the corresponding input,
channel. and not on other inputs or outputs. The

capacity (10) of the binary symmetric

channel is l+p log p+q log q, and the capacity of the binary erasure channel is q.

We are interested in choosing the first few generator digits of a convolution code.

In a convolution code the information digits are an infinite sequence of digits, and check

digits are interleaved with the information digits in some alternating pattern, such as

information digit, check digit, information digit, check digit, and so on. Each check

digit in a convolution code of length n is determined by a parity check on a subset of the

preceding n-l digits. For rates of R 1/2, each check digit checks a fixed pattern

of the preceding information digits. For rates of R < 1/2, each information digit is

checked by a fixed pattern of the succeeding check digits (see Fig. 2). This fixed pattern

is called the generator. The value of each check digit is determined by the modulo 2

sums and matrix B of Eq. 1. Here each element of the matrix is either a one or a
.th thzero. The jth transmitted digit is indicated by dj, and the position of the i check

digit by p(i). A modulo 2 sum is zero if the usual sum is even, and one if the usual

sum is odd. Thus

p(i)
Z b..d. 0 (mod 2) (1)

j=p(i)-n+ 1 j

No more than n digits are needed for describing the parity-check matrix because

one fixed pattern is used for describing the relation of the information digits to the check

digits.

3
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I 1 C 1 12 C 2 13 C 3 14 Il 12 C1 13 14 C 2 15 16 C 3

d1 d2 d3 d4 d5 d 6 d7 d1 d Z d 3 d4 d 5 d 6 d7 d 8 d9

01 1 1 1

1 01 10 1 1

1 0 1 1 0 1 11

= d2 0 =dl+d2+d 3

O =dl +d4 0 =d 1 +d 4 5+ d6

0 = d4 +d6 +d +d 

(a) (b)

Fig. 2. Coding matrices and coding equations. All equations are modulo 2.
(a) Convolution code, length = 4, rate = 1/2, generator = 10. (b) Con-
volution code, length = 6, rate = 2/3, generator = 1011.

If the information digits take on the values zero and one with probability 1/2 inde-

pendently of the previous digits, each information digit contains 1 bit of information,

and the rate of transmission of information, R, equals the fraction of the digits that

are information digits. Elias (10) has found bounds on the probability of error per digit

for a convolution code chosen at random from the set of all convolution codes of

length n. These bounds are of the form Kn-y Xn, where K, y, and X are constants

determined by the rate R and the channel capacity C. These bounds are given in

Appendix A.
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III. SUBOPTIMIZATION PROCEDURE

A convolution code is determined by the generator that describes the information

digits checked by each check. The suboptimization procedure considered here is a pro-

cedure for sequentially choosing the first few digits of the generator, in order to obtain

a code with a low probability of error. The procedure involves a number of steps. In

each step we determine the value of one generator digit.

In the first step, we choose the value of the first generator digit in the following

manner: We evaluate the set of codes whose first generator digit is a zero, and the set

of codes whose first generator digit is a one. We then choose the first generator digit

to have the value that led to the better set of codes as evaluated by our evaluation pro-

cedure.

In the second step, we choose the value of the second generator digit. (The value

of the first digit remains unchanged.) We evaluate the set of codes whose second gen-

erator digit is equal to zero, and the set of codes whose second generator digit is equal

to 1. We choose the second generator digit to have the value that led to the better set

of codes as thus evaluated.

We continue in this fashion, determining one generator digit in each step. Eventu-

ally, after a given number of generator digits are chosen, the procedure stops, and the

remaining generator digits, if there are any, are filled in at random.

5
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IV. EVALUATION METHOD

The heart of the suboptimization procedure is the method of simply and accu-

rately evaluating the effect of fixing the first few generator digits. The evaluation

method that is described below is basically a method of accurately bounding the

average probability of error of the set of convolution codes with a given first few

generator digits. This method is based on a simpler, but less rigorous, evaluation

method developed by Wozencraft (11), which uses only the messages with the smallest

or the next smallest number of ones.

To simplify the explanation, we first describe the evaluation method for a con-

volution code of rate 1/2, in which the first m generator digits are given, and in

which information and check digits alternate. Later, the evaluation method will be gen-

eralized to convolution codes with periodic patterns of information and check digits.

Since convolution codes are group codes, the probability of error is the same for

all messages. Thus we can find the probability of error (hereafter denoted by P e) for

the code by evaluating P when a standard message - for example, the zero message -

is sent. In a convolution code with rate 1/2, Pe for each digit, when previous digits

are known, is identical. Hence, we can evaluate a convolution code by considering Pe

of digit 1 when the zero message is sent. If the zero message is sent, and the first 2m

received digits are decoded optimally, digit 1 will be decoded incorrectly only in
inm -

the following case. One of the 2 messages whose first digit is a one differs from

the received message in as few digits or fewer digits than the zero message. Hence,

P of digit 1 is bounded by the sum over all the 2 - 1 messages of the probabilitye
of each message being as close, or closer, to the received message as the zero

message is. That is,

2m1 probability that message i

o gi entthe received message than I
i=l the zero message is

If a given message has d ones and the channel is a binary symmetric channel, the

probability that the given message will be as probable as the zero message when the

zero message is sent, is the probability that d/2, or more, of the positions in which the

given message has ones are received incorrectly. This probability is

d
E (d) piq i, with d odd
d+l 

J 2

or

d

,d pqd-j with d even

j 2
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d

d d
Fig. 3. Error bounds: (j) pjq -j represented byo; Z () pq d-j rep-

j=(d+])/2 j=d/ J

resented byx; (2w/d)1/Z (4pq)d/2 [l_-(p/q)]- represented by the curve.

As Fig. 3 shows, P as calculated by these formulas does not lie on a smooth curve.e
Hence, in the following discussion we shall bound Pe for a message with d ones by the

smooth formula

(2/wd) 1/2 (4pq)d/2

(1-p/q)

which bounds both of the formulas that have just been stated and is asymptotic to the

formula for d even. The derivation requires Stirling's formula and some algebraic

manipulation.

If a given message has d ones and the channel is a binary erasure channel, the

probability that the given message appear as probable as the zero message, when the
d

zero message is sent, is p . This is true, since the given message will have a nonzero

a posteriori probability, if and only if all the d positions in which the given message

has ones are erased.

Using Eq. 2 and the formulas just described, we can bound Pe for digit 1 when the

zero message is sent by

am w(2/d) 1/ 4pd/

P for digit 1 in a binary symmetric channel = w d (lp/q) (3a)

d=O

2m
P for digit 1 in a binary erasure channel -= wd p (3b)

where wd is the number of messages of length m that have d ones and whose first

digit is a one. The wd can be found by listing all 2 m - 1 messages that have a given

number of ones.

Since a convolution code with a rate 1/2 can be characterized by Pe for digit 1 when

the zero message is transmitted, Eqs. 3 permit the evaluation of convolution codes.

7
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This is the evaluation used in our procedure.

The evaluation is similar for convolution codes that have a different periodic pattern

of information and check digits (see Fig. 4c). In such codes, Pe for the zero message

is, as before, identical with that for any other message. Also, when the previous

digits are known, Pe is the same for all digits in corresponding positions in the peri-

odic pattern. Thus these codes can be evaluated by means of bounds on Pe of a repre-

sentative digit in each of the positions of the periodic pattern. The bound on each digit

position can be found by means of Eq. 3, when wd is defined as follows: wd equals the

number of messages that have zeros preceding the given digit, a one in the given digit,

and d ones in the digits up to, and including, the last check digit determined by the given

generator in conjunction with the given digit.
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V. EXAMPLE OF THE SUBOPTIMIZATION PROCEDURE

We illustrate the suboptimization procedure with the following example. It is

assumed that the channel is a binary erasure channel, that the rate of transmission is

equal to 1/2, and that p = 0. 1; q = 0.9.

In the first step, there is just one message whose first digit is a one.

Assuming that first

is a zero, we have

generator digit Assuming that first generator digit

is a one, we have

w =w = ; w1 =1

P .1
e

w = w 1 = ; w 2 =1

P .01e

We choose the first generator digit to be a one.

Assuming the second generator digit

is a zero, we have

w2 = w4 = 1; w3 = 0

P < .0101
e

Assuming the second

is a one, we have

generator digit

w 2 = w4 = 0; w 3 =2

P . 002
e

We choose the second generator digit to be a one.

Assuming the third generator digit

is a zero, we have

w3 = w5 = 1; w4 = 2

P .00121
e

Assuming the third generator digit

is a one, we have

w 3 = w 5 = 1; w4 = 2

P °.00121e

Since the bounds are the same for both codes, it does not matter which one is chosen.

We shall assume that the third generator digit is a zero.

Assuming the fourth generator digit

is a zero, we have

w3 = w4 = 1; w 5 = 6 =3

P .001133e

We choose the fourth generator digit to

code is 0. 13, as compared with 0.00033

example.

Assuming the fourth generator digit

is a one, we have

w3 = 0; w4 = w5 = 3; w 6 = w 7 = 1

P .0003311e

be a one. The probability bound for a random

for the chosen code. This completes the

9
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VI. EXPONENTIAL DECREASE OF ERROR FOR SUBOPTIMIZATION CODES

We shall now prove that for rates less than the critical rate (see Appendix A), codes

generated by the suboptimization procedure have a Pe that decreases with the same

exponent as Elias' bounds for a random code. In Elias' bounds, for rates less than the

critical rate and with R = 1/2, the bound for the binary symmetric channel is multiplied

by the factor 1/2 [1+(4pq) /2 , and that for the binary erasure channel by the factor

1/2 (l+p) 2 for every increase of two digits in length.

First, we show that if a generator digit is added at random to any code with R = 1/2,

then the bounds of Eqs. 3a and 3b are multiplied by a factor as small as, or smaller

than, these factors. Next, we show that in any step of the suboptimization procedure,

the bounds of Eqs. 3 decrease by a factor that is as small as, or smaller than, the

factor for a random code. These proofs can be extended in a natural fashion to rates

that are not 1/2. Thus codes generated by the suboptimization procedure (or codes

with some digits generated by our procedure, and some chosen at random) have a Pe

that decreases with the same exponent as Elias' bounds, or more rapidly. Moreover,

the initial values of Eqs. 3 are smaller than the initial values of Elias' bounds for all

cases in the binary erasure channel, and for many cases in the binary symmetric chan-

nel. For such cases, the bounds of Eqs. 3 for a random code are smaller than Elias'

bounds.

By investigating what happens to a particular message of length 2m, whose first

digit is a one, when the m+lth generator digit is chosen at random, we can prove that

the bounds for a code with R = 1/2 decrease by an appropriate factor with each addi-

tional generator digit chosen at random. In step m+l, a particular message gives rise

to four messages of length 2m+2 because there are two choices for the m+lt h generator

digit, each with probability 1/2, and two choices for the m+l th information digit. (In

any given code the generator digit has a given value and only two of these messages

appear.) Since the first information digit of the message is a one, the value of the

m+l t h check digit can be expressed in terms of the coding matrix b.. as follows:
1j

p(m+ )

dp(m+l) bm+i, 1 + Z bm+lj d (4)
j=2 j

where bm+ 1 is the m+lth generator digit, and p(m+l) is the position of the m+lth

check digit. Thus, if the m+l check digit has the value zero for a given choice of

the m+l t h generator digit and for the m+l th information digit equal to zero (one), the

m+l th check digit will have the value one for the other choice of the m+l t h generator

digit and for the m+1t h information digit equal to zero (one). Therefore, a given

message of length 2m and weight d gives rise to four messages of length 2m+2: (a) a

message of weight d that is composed of the old message and two new digits that are

both zero; (b) a message of weight d+l that is composed of the old message, a new

information digit equal to zero, and a new check digit equal to one; (c) a message of

10



I 1 C 1 I C2 13 C 3 14 C4

d 1 dd d d4 d5 d6 d7 d8

1 1 d d d d d d d d
1 1 d 1 d2 d3 d4 d5 d6 d7 d8

0 1 1 1 1 1 0 1 0 0 0 0

? 0 1 1 1 1 1 0 1 0 0 1 1

(a) (c)

d1 d2 d 3 d4 d5 d6 d7 d8

1 1 0 1 0 0 0 1

1 1 0100 1 1 0 1 0 0 1 0

(b) (d)

Fig. 4. (a) Convolution matrix, rate = 1/2, generator of length 3 = 011. (b) An
original message corresponding to the matrix of (a), length = 6. (c) New
messages if b4 1 = 0. (d) New messages if b4 1 = 1.

weight d+l that is composed of the old message, a new information digit equal to one,

and a new check digit equal to zero; and (d) a new message of weight d+2 that is com-

posed of the old message and two new digits that are both equal to 1 (see Fig. 4).

Each of the new messages occurs with 1/2 the probability of the new message

because generator digits are selected at random. Thus we find that the contribution

to the bound of Eq. 3a for the four new messages, if the channel is a binary symmetric

channel, is

probability 1/2 (4pq)d/2 2 (4pq)(d+l)/2 (4pq)(d+2)/2
1/2 of original -) (1-p/q) 1

message /+ 1/2 (d+ 2 )
(d+l) (d+2)

< (bound on the) 1/2 [1+(4pq) 1/2]Z (5)
<old messagej

If the channel is a binary erasure channel, the contribution to the bound of Eq. 3b

for the four new messages is

1/2 (probability of the) (pd+l2 pd+pd2) = (bound on the) 1/2 (1+p)2 (6)
old message ,old message

If a new generator digit is selected at random for a code (set of codes) of given length,

each message of the code (set of codes) will generate four messages for which the bound

is less than, or equal to, the appropriate factor multiplied by the bound on the original

message. Thus the bound for the new code, which is the sum of the bounds for each

11
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message, is less than, or equal to, the appropriate factor multiplied by the bound on

the original code.

This proof can be extended in a natural fashion to codes whose rate is not 1/2. The

correct factor per digit is 2-1+R[l+(4pq)l/2] for the binary symmetric channel, and

2 +R(l+p) for the binary erasure channel. The factors [l+(4pq) / 2 ] and l+p result

from the fact that, with each added digit, each message of weight d gives rise to two
-1+R

messages, one of the same weight, and one of weight d+l. The factor 2 results

from the fact that every time a check digit occurs, it is equal to zero, or 1, with prob-

ability 1/2, and from the fact that check digits occur a fraction of the time, which is

equal to (l-R).

At every step the suboptimization procedure decreases the bounds of Eqs. 3 as fast

as, or faster than, choosing a generator digit at random. If a generator digit is chosen

at random, the bound is the average of the bounds for the two possible generator choices.

On the other hand, the suboptimization procedure chooses the lower bound for the gener-

ator choices. Therefore the suboptimization procedure does as well as, or better than,

the average procedure. This completes the proof that Pe for codes generated by the

suboptimization procedure decreases at the appropriate rate.

12
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VII. APPLICATION OF THE SUBOPTIMIZATION PROCEDURE

The most useful application of the suboptimization procedure is in the generation of

convolution codes that can be decoded with little effort. Wozencraft (12) and the author

(13, 14) have examined decoding methods that require little effort. The average amount

of computation for these decoding methods is a very strong function of the choice of the

first few generator digits. Hence, this suboptimization procedure is useful in choosing

codes for these decoding methods because it carefully chooses the first few generator

digits of a convolution code. The usefulness of the suboptimization procedure is illus-

trated by the following example. Using the usual bounds on Pe' the author (14) found

that 200 was a bound on the average number of binary additions for decoding a convolu-

tion code of R = 1/2 that was transmitted through a binary erasure channel with p = 0. 1.

In contrast, it was found (15), by using the better bound on Pe for a random code devel-

oped in our proof, that the bound for the same situation is 7. 78; and that the bound for

a code whose generator digits are chosen at random, except for the first four generator

digits which are those of our example, is 0. 36.

The suboptimization procedure can also be used to generate convolution codes whose

Pe per digit is known to be small. Moreover, in evaluating Pe for this procedure we

have also proved new bounds on P per digit for convolution codes. The bounds for a

code of length n are (2/i)1/2 (1-p/q) [(l+(4pq) /2)2-1+R] and [(l+p)-R]n for the

binary symmetric channel and the binary erasure channel, respectively.

There is a rather sharp practical limit to the number of generator digits that can be

chosen by this procedure. The number of messages listed, and hence the effort per

generator digit, increases exponentially with code length. A list of 1000 messages is

the approximate limit for manual computation, and a list of 106 messages is the approx-

imate limit for present computer computation. Thus, for a rate of 1/2, with the pro-

cedure described above, the limit for manual computation is approximately length 20,

and for present digital computers, approximately length 40. However, the limit

for digital computers can be extended to 50 digits, or more, by eliminating the messages

with the largest number of ones when the computational capacity is overtaxed, and

considering only the descendants of the messages with the least number of ones (and

hence, the largest Pe). This modified suboptimization procedure will have to stop as

soon as Pe for the eliminated messages is larger than Pe of the messages that are

still being considered.

13
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VIII. SUMMARY

A procedure for choosing a convolution code has been described. This procedure

chooses generator digits sequentially and requires little effort, while the probability of

error decreases as fast as, or faster than, the bound on a random code. There is a

practical limit to the length of a code that can be described by this method, since the

effort per digit increases exponentially.

A number of new problems is raised by this procedure. In the example that has

been described the probability of error decreases much faster than the usual bounds.

This raises the question as to whether this method, in the limit, has an exponential

decrease of error that is better than the random bound. This question is especially

relevant to probabilities of error close to zero, since it is known (10) that optimum

codes behave in this manner. Other problem areas are the description of better sub-

optimization procedures and the generalization of these procedures to other codes and

channels. A different evaluation procedure which applies to any rate below capacity,

including rates above Rcrit' is described in Appendix B.

14



APPENDIX A

BOUNDS ON THE PROBABILITY OF ERROR

Elias (6, 10, 12-14) has found bounds on the probability of error per digit for a con-

volution code chosen at random from the set of all convolution codes of length n. Sim-

plified forms of these bounds, with minor modifications, are given in Eqs. A-2 and A-3.

In each formula, K is a constant for fixed rate R and channel capacity C. These

bounds, in certain cases, may be improved at the cost of increased complexity by

returning to Elias' original bounds.

Rcrit for the binary symmetric channel is defined as the capacity of a binary sym-

metric channel whose probability of incorrect reception p crit is //(+/q). We also

define an auxiliary quantity P in terms of the rate R:

1 + P1 log 2 (Pl) + q logZ (ql) = R, p _< 1/2 (A-l)

ml i - _v1 · ,-_ _r _ 1 · · _ _ ~,.:r:. _ l _

Ine probaDmllty oI error per digit < K n Y e- l n A) _ K n- y X- n

for a binary symmetric channel

X = l y = for R <p A 1 q fo crit 

2 1-R
X = ; y =0 for R R

1 + /4pq crit
111tjJL~dU11L~UI tfFU pcritLl Kn "~ 1 ~ X

lrl pr'uuulllLy uI rror pr u L n-y e-lglL _ / = K n-y X-
for a binary erasure channel

X ()R (R-C ; y = for q/(l+p) = Rcrit < R

21-R 1I+ _ _ 1 + pf
- -, y = 0; K + 2 + + for R >-R

l~+ p, (l+p)/ 2(rrpq)l/2 crit

(A-2)

(A-3)

15
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APPENDIX B

ANOTHER EVALUATION METHOD

The evaluation method that will now be described has the correct exponential

decrease in probability of decoding error for rates above and below the critical rate.

(This has been proved when the convolution code has rate 1/2 and the channel is a binary

erasure channel. It is not known whether the result holds for codes with different rates,

or for the binary symmetric channel.) This is contrary to the method described in

Section IV, which has the correct decrease only for rates below the critical rate. The

new procedure is more complicated, and more restricted, and greater effort is required

for choosing each generator digit.

Before we can understand this new evaluation method, we need to describe the

sequential decoding procedure for the binary erasure channel (13, 14). The sequential

decoding procedure for convolution codes decodes digit 1 in a number of steps. In the
th

m step, an attempt is made to decode digit 1 by means of the first m parity-check

equations. The procedure ends when digit 1 is decoded, or when there are no more

equations that check digit 1. At the end of step m, there is a certain number, r, of

erased digits in the first m equations, and a certain number, r-k, of independent equa-

tions in the erased digits.

We describe the situation at the end of step m by means of states, the state

assigned to a given situation being a function of whether or not digit 1 is decoded,

and of k (that is, the number of erased digits minus the number of independent

equations). State S characterizes all the situations in which digit 1 is decoded.
o

States S 1, S, S3,... characterize the situations in which digit 1 is not decoded.

The subscript for these last states is equal to the number of erased digits minus

the number of independent equations. Note that each possible situation corresponds

to one, and only one, state. To summarize,

S the state if digit 1 is decodedo

the state if digit 1 is not decoded and the number (B-1)
Sk of erased digits minus the number of independent

equations equals k, for k = 1, 2, 3, ...

At the end of step m for a given code and a given erasure pattern, the decoding

procedure is in a given state. (See Fig. 5.)

The evaluation method for the first m digits of a generator sequence is as

follows: Given an erasure pattern for the first 2m digits, we can find the equa-

tions for the decoding procedure, and we can find the state at the end of step m.

Hence, by determining the state at the end of step m for each of the 2 possible

erasure patterns, and by using the probability of occurrence of the erasure patterns,

we can find the probabilities pm(k), defined below.
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probability of being
Pm(k) = in state k at the end =

of step m
erasure patterns
that give state k

probability of the
erasure pattern

Furthermore, we define A n(k) to be the number that bounds the probability that
m, n

we are not in state S at the end of step n, given that we are in state k at the

end of step m and that generator digits m+l, m+2, ... , n are chosen at random. Using

Erasure patterns that give state Si: XXOO; XXOX; XXXO.

Erasure patterns that give state S2: XXXX.

All other patterns of length 4 give state S.

(b)

P2(0) = 0.99

P2 (1) = 0.0099

P2(2) = 0.0001

(c)

Fig. 5. Evaluation of Pm(k). (a) Convolution coding matrix. (b) Erasure patterns:

erasures are indicated by X, transmission by 0. (c) Values of p2 (k) for
p = 0. 1, q= 0.9.

the distribution of states at the end of step m and the A (k), we can bound the prob-
m, n

ability of ambiguity for a code whose first m generator digits are the given set, and

whose remaining generator digits are chosen at random. This leads to

The probability of ambiguity for a con-
volution code of length n whose first
m generator digits are the given set,
and whose remaining generator digits
are chosen at random

(B-3)
< Pm(k)Am, n(k)

k

The A (k) for codes of rate 1/2 are determined by the following equations.
m, n

Am, n(O) = 0m, n

A (k) = 1n, n

m = 1,2,3 ... ,n

k = 1,2, 3, ...

Am n(1) = (Zpq+(1/2)q2) Am+l,n(l) + p2 Am +n(2)

Am (k) = q Am+l n(k-1 ) + pq A+l,n(k)

+ p Am+ n(k+ 1) for k = 2, 3, ....

Equations B-4 determine the A's for m equal to n. Equations B-5 are then used to

calculate the A's for m equal to n-I, n-2, and so on. A table of Am n(k) for n = 5

is shown in Fig. 6.

The bound of Eq. B-3, if the values of Am n(k) determined above are used, is them, n
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1 1

0 1 1

(a)

(B-4a)

(B-4b)

(B-5a)

(B-5b)

_ _II� _�



Fig. 6. Table of Am 5 (k); p = 0. 1, q = 0.9.

new evaluation. It has been proved (15) that the use of this evaluation in the suboptimiza-

tion procedure will result in the correct exponential decrease for a code of rate 1/2. The

exponent is correct, whether or not the channel capacity is such that rate 1/2 is below

the critical rate. This evaluation method can be extended to codes whose rate is not 1/2.

However, it has not been proved that this method, when it is extended to rates other than

1/2, has the correct exponent.
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,m I 0 1 2 3 4 5

1 0 .131

2 0 .216 .421

3 0 .358 .672 1

4 0 .595 1 1 1

5 0 1 1 1 1 1
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