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Abstract

The thermal properties of thin films and material interfaces play an important role in
many technologies such as microelectronics and solid-state energy conversion. This
thesis examines the characterization of thermal transport over length scales from
nanometers upward in solids and liquids using pump-probe optical techniques. The
design and implementation of a system that is uniquely suited to thermal measure-
ments is described in detail, and the theory for interpreting the measurement results is
developed using a linear systems approach, accounting for pulse accumulation effects
and anisotropic thermal properties.

Cross-plane thin film and bulk thermal conductivity measurements spanning more
than two orders of magnitude are presented, along with a discussion on the impor-
tance of sample preparation on thermal boundary conductance and thermal conduc-
tivity measurements. An approach for measurement of in-plane thermal properties
of anisotropic thin films is presented, and as a demonstration the method is used
to extract both the cross-plane and in-plane thermal conductivity of highly ordered
pyrolytic graphite. In addition, the measurement techniques are extended to liq-
uids, providing a way to measure liquid volumes less than 500 nm thick as well as
solid-liquid thermal interface conductances.

Finally, optical techniques for the study of nanofluids are discussed. Transmission
pump-probe measurements on gold nanorods in suspension are presented. The heat
transfer dynamics of the rods are measured, and the critical role played by surfactants
in the thermal transport between the rod and the surrounding fluid is studied system-
atically. An optical transient grating technique is used to explore the bulk thermal
and viscous properties of nanofluids. Thermal conductivity measurements show that
the observed thermal conductivity enhancement of nanofluids is repeatable and is not
a function of the measurement technique, while acoustic attenuation measurements
indicate that the nanoparticles do not form clusters in solution.

Thesis Supervisor: Gang Chen
Title: Warren and Towneley Rohsenow Professor
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Chapter 1

Introduction and Background

As science has advanced, the boundaries of our experiments and our applied tech-

nologies have expanded to encompass increasingly extreme situations. Measurement

of physical properties in these situations is challenging and often requires new or im-

proved experimental techniques. Nowhere has this been more true than in the loosely

defined field of nanotechnology, where the properties of systems with a characteristic

size on the order of nanometers are studied and exploited. As the dimensions of a

system shrink, the surface-to-volume ratio increases in inverse proportion with the

characteristic length scale, and the role of material interfaces becomes increasingly

important. The mechanical, electrical and thermal characteristics of the system may

all deviate from their bulk counterparts [1], requiring new models to describe their

behavior. Evaluating and using these models requires measurement of physical prop-

erties at the nanoscale, and in many cases properties as we understand them in bulk

may not even be properly defined.

Nanoscale thermal properties in particular play an important role in a number

of important technologies [1, 2]. An obvious example is the field of microelectronics.

Commercial integrated circuits are currently available with transistors that have a

lateral feature dimension of around 45 nm and contain material films less than 2 nm,

or only a few atomic layers, thick. At the same time, operating frequencies have been

pushed to tens of gigahertz, leading to energy carrier transit times of much less than

1 ns. Chip performance is often limited by localized heat generation, which results in



temperatures that prevent the reliable operation of the integrated circuits [3]. Heat

generation similarly limits the performance of semiconductor lasers [4]. Understand-

ing and improving integrated circuits requires a detailed understanding of the energy

transport process at the device level [5]. Under these extreme conditions, macroscopic

heat transfer laws may not apply, and the measurement of temperature, thermal con-

ductivity, and the thermal conductance between material layers is a challenging issue.

Another example is thermoelectric energy conversion - the direct conversion of

thermal energy into electrical energy and vice versa. The basis for thermoelectric

phenomena is the fact that electrons carry heat as well as charge. Therefore, electron

movement can be driven not only by an electrical potential, but also by a thermal

potential. The performance of a thermoelectric device is governed by the figure of

merit ZT = S2a T/k, where S, a, T, and k are, respectively, the Seebeck coefficient,

electrical conductivity, temperature, and thermal conductivity [6]. Performance is

improved when thermal conductivity is reduced while the other terms in the figure

of merit are maintained. Nano-structured materials can have a much lower thermal

conductivity than predicted by diffusion heat conduction theory, primarily due to a

reduction in lattice thermal conductivity caused by material interfaces [7]. As a result,

nano-structured materials have exhibited improved thermoelectric performance [8, 9].

Detailed understanding of heat conduction at this scale, especially across material

interfaces, is essential to continued progress in the field.

These are just two examples where detailed knowledge of thermal transport is

vital. Others include the interaction between hot electrons and a crystal lattice [10],

the behavior of nanoparticles suspended in a fluid [11], and the properties of nanos-

tructures such as membranes, tubes and wires [12]. This thesis is concerned with the

measurement of thermal properties, including the thermal properties of thin films,

material interfaces, liquids, and nanoparticles, using pulsed lasers.



1.1 Optical Techniques for Thermal Measurement

As laser technology has advanced, laser pulses that can be achieved in the laboratory

have shortened from nanoseconds to ultrashort pulses lasting tens of femtoseconds

(10-15 s). New measurement techniques have been quickly designed around each

advance in laser technology, allowing scientist to probe physical processes over ever

shorter time and length scales. Short pulses allow for the interrogation of physical

systems with fine temporal resolution, and this translates into correspondingly fine

spatial resolution. For example, if we use a laser pulse 200 fs long to excite a system

and a similar pulse to probe its state 10 ps later, the energy carriers only have time to

travel a few nanometers; consequently we are only measuring the properties of those

few nanometers.

The most common way such measurements are done is known as the pump-probe

technique, a two step measurement. In the first step, a pulse of light (the "pump"

pulse) impinges on a sample, depositing energy over a short period of time. The de-

posited energy causes a change in the sample which can be correlated with a change in

its optical properties (reflectivity, absorptivity or transmissivity). In the second step,

the "probe" pulse (or a continuous beam) arrives and probes the state of the sample.

A difference in optical path lengths between the two pulses results in a variable time

delay that can be used to study the evolution of a physical process. When reflectance

is measured, the method is often called transient thermoreflectance (TTR), while

if absorption is measured, the term transient absorption (TA) is used. Translation

stages with micron-scale resolution are commonly available, which translates to time

delays of tens of femtoseconds or less. Thus, laser pulse duration is the factor that

limits the temporal resolution of the pump-probe method. The basic technique is

illustrated in Fig. 1-1.

The high temporal resolution of the pump-probe technique makes it uniquely

suited to the study of a wide range of transport processes occurring on time scales

from femtoseconds to nanoseconds and longer. Paddock and Eesley were the first

to apply the technique to thermal transport [13, 14]. Their work was subsequently
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Figure 1-1: Basic principle of the pump-probe technique.

extended by Maris and coworkers [15-17] and later Norris and coworkers [18] and

Cahill and coworkers [19-23]. In addition to thermal transport, variations of the

pump-probe technique have been applied to the study of electron-phonon coupling in

metals [10, 18, 24], electron diffusion [25], and coherent acoustic waves in solids and

liquids [26-28].

In this thesis, we are primarily concerned with the measurement of thermal prop-

erties in the diffusion regime. In the next section, we provide a brief overview of the

mechanisms of heat transport in a solid following excitation by an intense, ultrashort

pulse of light, eventually leading to a description of the conditions which must be

met for the diffusion picture of transport, which is the main approach used in all

subsequent chapters, to be valid.

1.2 Transport Following Pulsed Laser Heating

1.2.1 Optical Absorption and Carrier Non-equilibrium

The majority of this thesis deals with samples which have been coated with a thin layer

of metal, typically 70-100 nm thick. As we will see later, the metal layer serves two

purposes: it converts the photons in the laser pulse into thermal energy over a small



distance, and it acts as temperature transducer due to the temperature dependence

of its reflectivity. For these reasons, we focus here on the energy absorption and

redistribution in thin metal films.

The response of a metal to an intense, ultrashort pulse of light is a complex event

involving physics that span transport regimes from femtoseconds to microseconds and

longer. At longer times, the classical diffusion model developed by Joseph Fourier [29]

captures the transport behavior, but at shorter times a more detailed picture of the

individual heat carriers is needed.

An illustration of the absorption process is shown in Fig. 1-2. Photons are

absorbed over the duration of the laser pulse by a subset of free electrons in the

metal. Although the details vary depending on the electronic structure of the partic-

ular metal, generally two processes occur simultaneously: ballistic electron transport

through the film, and electron-electron collisions between the excited electrons and

those near the Fermi level [30-32]. Assuming electron velocities close to the Fermi

velocity (' 106 m/s [32]), ballistic electrons will traverse a 100 nm thick film in 100 fs.

Electron mean free paths in common metals are on the order of 50-100 nm [33], so

the hot electrons will be uniformly distributed through a thin metal film within 100-

200 fs, and within 500 fs the electron population can be described by a well-defined

electron temperature [30-32].

Due to the relatively small electronic heat capacity, the electron temperature can

be 2-3 orders of magnitude higher than that of the lattice, possibly reaching sev-

eral thousand degrees Kelvin above the equilibrium melting point. The hot electrons

interact with the cold lattice through scattering events. From a quantum mechan-

ics perspective, the lattice vibrations can be viewed as particles, discrete packets of

vibrational energy known as phonons which obey boson statistics [33]. Transport

can be modeled by two coupled diffusion equations, one describing the heat conduc-

tion of electrons and the other that of the lattice, a model first proposed by Anisi-

mov [34]. The electrons and phonons are described by two separate temperatures, Te

and Tp, and energy transfer between the two systems is assumed proportional to an

electron-phonon coupling constant, G. Although the Boltzmann transport equation
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Figure 1-2: Absorption of photons in a metal. A subset of the electron population

is excited by the incoming photons. The electrons thermalize over a few hundred

femtoseconds, and then transfer their energy to the lattice over times on the order of

ten picoseconds.

would provide a more sophisticated model for electron cooling and electron-phonon

coupling, at room temperatures comparison with experimental data show that the

two-temperature model is a good approximation for transport in the metal as soon

as an electron temperature exists [24, 30, 31].

The electron-phonon coupling factor depends of the properties of the metal as well

as the method of deposition [35]. To take two examples, for gold, typical values are

on the order of 5 x 1016 W/m3 K, while for aluminum G , 20 x 1016 W/m 3 K [35].

Although the electron-phonon collision time can be as short as the electron-electron

collision time, the energy transfer from the electrons to the lattice will last much

longer than the thermalization time of electrons due to the large momentum difference

between electrons and phonons. In a 100 nm thick metal film, the hot electrons are

thermalized and evenly distributed with 500 fs, and after this time we can estimate

the electron-phonon thermalization time using two coupled first order equations:

dTe
Ce = -G(Te - Tp) (1.1)

dT
C dP = G(Te - T,)

Sand C are the electron andt

Here Ce and Cp are the electron and phonon volumetric heat capacities, respectively,



Te and T, are the electron and phonon temperatures, respectively, and G is the

electron-phonon coupling factor. The time constant 7 for equilibrium is given by

T-' = G(Ce1 + C,-') (1.2)

This model is in fact a very poor approximation, since although the phonon heat

capacity and electron-phonon coupling factor are approximately independent of tem-

perature above 300 K, the electronic heat capacity varies linearly with the electron

temperature [33]. Nonetheless, it allows us to roughly bound the equilibration time.

The electron heat capacity will vary from the order of 1 x 104 /m 3K at room temper-

ature to 2-3 orders of magnitude higher immediately following pulsed heating [30],

while for most metals CP - 2 x 106 J/m 3K. This gives a time constant anywhere

between 1-100 ps. In reality, equilibrium between the two populations is typically

established over a few to a few tens of picoseconds, a picture well verified by experi-

ments [10, 36, 37].

An alternative, more simplistic way of estimating the time for the optical energy

to become evenly distributed throughout the metal layer is to calculate the time

constant for diffusion heat transfer in an insulated film [17]:

d
2

7 r2  (1.3)

where d is the film thickness and a is the thermal diffusivity. Taking a 100 nm film

of aluminum as an example, T7 10-30 ps. The range of times comes from the fact

that the thermal diffusivity of the thin film may be significantly lower than that of

bulk Al [17].

The temperature of the metal film is related to the intensity of the reflected probe

beam through the thermoreflectance coefficient, (AR/R)K- 1. This quantity, which is

dependent on the electronic band structure of the metal and the photon wavelength,

is typically on the order of 10-4-10 . ' K- 1 for common metals such as Al, Au, Cu

and Ni [38, 39]. The majority of our measurements are made using an Al film, which

has one of the strongest thermoreflectance coefficients with a peak around 800 nm,



matching the wavelength of our probe beam. Figure 1-3, taken from [39], shows

the thermoreflectance spectrum for Al. It is assumed that the thermoreflectance

coefficient is constant for small changes in temperature, an assumption we verify in

Section 3.8.
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Figure 1-3: The thermoreflectance spectrum for Al, taken from [39].

1.2.2 Thermal Interface Conductance and Transport in the

Substrate

The absorbed energy is transferred from the metal to the underlying substrate through

phonon-phonon interactions, and, for an electrically conductive substrates, also electron-

electron interactions. Both cases have been studied extensively and the topic is well

covered in reviews [40, 41]. When the spectral nature of the heat carriers is ignored,

thermal transport across the interface is modeled with a thermal interface conduc-

tance, G, and the heat flux across the interface is given by q = GAT, where AT is

_4



the temperature difference across the interface1 .

The interface conductance is usually calculated assuming either an acoustic mis-

match model (AMM) [42], the acoustic analog of the Fresnel equations for electro-

magnetic waves, or a diffuse mismatch model (DMM) [40], which assumes purely

diffuse phonon scattering at the interface. At low temperatures, when phonon wave-

lengths are long, a specular boundary condition is appropriate and the acoustic mis-

match model agrees well with experimental results. At room temperature, the average

phonon wavelength is -10-20 A in most materials, and an interface roughness of just

a few atomic layers is sufficient to invalidate the specular boundary condition [43].

Although much research has been done, there is no generally accepted way to

calculate thermal boundary resistance in this regime. Blind application of the DMM

can lead to obviously incorrect results, such as the transmissivity between two similar

materials approaching 0.5 instead of unity [43]. Part of the difficulty stems from

the fact that a single temperature is not always an adequate concept to characterize

different groups of phonons. The local phonon energy spectrum at the interface may

be very different from that of the incoming phonons, and the equivalent equilibrium

temperature which is measured in experiments and used in most calculations is really

a measure of the local energy density and does not reflect the energy of only the

phonons approaching the interface. Consequently care must be taken when defining

temperatures in modeling thermal interface conducance [43].

Bulk disorder and imperfect physical contact between the two materials can po-

tentially have a much larger impact than fundamental material differences and make

the interface conductance sensitive to surface preparation and contamination [40, 41].

Systematic studies on thermal interface conductance between various solids have been

carried out by Stoner et. al. [16] and Cahill et. al. [20-22], who also measured solid-

liquid interface conductances [44, 45]. Typical values for G are on the order of 100-

200 MW/m 2K, although they can be as low as 30 MW/m 2K for highly dissimilar

materials [21] or as high as 400 MW/m 2K for metal-metal interfaces where electrons

1Unfortunately, G is the standard variable choice for both the electron-phonon coupling factor
and the thermal interface conductance. For the remainder of this thesis, the two concepts will not
be used in close proximity so confusion will be avoided.



play an important role [22].

Thermal transport in the substrate itself is mediated by phonon-phonon collisions

and, in conductive materials, also by electron-electron collisions. In order to use the

Fourier equation to model thermal transport, the carrier relaxation time should be

much smaller than the time scale of interest. Phonon relaxation times are longest

in ordered, crystalline solids where the regular atomic structure allows small wave-

vector phonons to travel long distances before scattering off defects and impurities.

Molecular dynamics studies on silicon, for example, indicate that at room temper-

ature a significant portion of the heat is carried by long-wavelength phonons with

relaxation times up to 100 ps or even longer [46], an effect that has also been hinted

at experimentally [47]. In amorphous solids, disorder limits phonon mean free paths

and the diffusion picture is valid after shorter times.

The majority of this thesis is focused on room temperature thermal transport in

the diffusion regime. We have seen that the metal film will thermalize with a few tens

of picoseconds, while it may take on the order of 100 ps for phonons in a crystalline

substrate to behave diffusively. Therefore, the modeling in the following chapters is

not expected to be valid for times less than -100 ps.

1.3 Organization of the Thesis

This thesis is essentially comprised of three parts. In the first, the theory, design

and implementation of a pump-probe system is discussed. The work is built off the

contributions of many others but includes some new experimental and theoretical

contributions. In the second part, the techniques developed in the first part are

applied to measure thermal transport in several systems, including bulk liquids, highly

ordered pyrolytic graphite and semiconductor superlattices. In the final part, optical

techniques are used to study the properties of suspensions of nanoparticles in liquid

from both a microscopic and macroscopic perspective.

Chapters 2 and 3 contain the heart of the thesis. In Chapter 2, the design and

implementation of a pump-probe system that is uniquely suited to thermal property



measurements is described in detail, including optics, instrumentation, and sources

of noise. In Chapter 3, the theory for interpreting the measurement results in the

diffusion regime is developed, tying together and extending the work of other authors.

A linear systems approach is used to model the measured signal in a clear consistent

way, and special attention is given to the role of pulse accumulation and its relation-

ship to radial conduction effects. Cross-plane thermal conductivity measurements of

thin-film and bulk samples spanning thermal conductivities over two orders of mag-

nitude are presented, verifying the system performance, and different approaches to

fitting the data are discussed, along with the importance of sample preparation on

the thermal interface and thermal conductivity measurements.

In Chapter 4, the pump-probe technique is extended into new territory. In the first

section, the technique is adapted to measure the thermal properties of bulk liquids and

malleable solids. This method provides a convenient way to measure liquid volumes

as thin a 500 nm and also has the potential to measure solid-liquid thermal interfaces.

Results spanning the range of commonly encountered liquid thermal conductivities

are presented to verify the method's accuracy. In the second section, the theory

developed in the previous chapter is used to analyze the sensitivity of the method to

in-plane properties. Measurements on highly ordered pyrolytic graphite are shown to

be in good agreement with literature, and some preliminary results for a Si/SixGelx

superlattice structures are presented as well. Finally, we briefly touch on the use of

pump-probe for the characterization of microstructures, using a ZnO nanobelt as an

example.

In Chapter 5, we turn to nanoparticle-seeded fluids, or "nanofluids," a topic which

has received considerable attention in recent years[11, 48], and approach the topic

from two different perspectives: (1) heat transfer between an individual nanoparticle

and the surrounding fluid, and (2) the bulk thermal and viscous properties of the

suspension. For the first case, we use the same pump-probe system described in the

previous chapters, reconfigured for transmission geometry rather than reflection. The

heat transfer dynamics of the individual nanoparticles are measured, and the critical

role played by surfactants in the thermal transport between the particle and the sur-



rounding fluid is studied systematically. In the second case, we use a different optical

technique, impulsive stimulated thermal scattering (ISTS) [49], which belongs to a

class of techniques known as transient grating (TG) methods. The experimental ap-

paratus for this measurement was constructed by students in the Keith Nelson group

in the Department of Chemistry at MIT. Thermal conductivity measurements show

that the observed thermal conductivity enhancement of nanofluids is repeatable and

is not a function of the measurement technique, while acoustic attenuation measure-

ments indicate that the nanoparticles do not form clusters in solution. Combined,

the contents of Chapter 5 provide an experimental picture of nanofluids from the

nanoscale to the macroscale.

Finally, Chapter 6 ties together the thesis and provides an outlook for future de-

velopments of the pump-probe technique that will continue to expand the boundaries

of thermal measurement.



Chapter 2

The Experimental System

In Chapter 1, we briefly reviewed some of the previous work on pump-probe mea-

surements of thermal transport in thin films and across interface. The first system,

constructed by Paddock and Eesley [13], used two synchronously pumped dye lasers

to pump and probe the sample at 633 nm and 595 nm, respectively, with pulse widths

on the order of 6 ps and a repetition rate of 246 MHz. Capinski and Maris [15] added

several improvements. They used a single dye laser operating at 632 nm and a repeti-

tion rate of 76 MHz that had a significantly shorter pulse width, 0.2 ps, allowing them

to study acoustic phenomena as well as thermal diffusion. In addition, they incorpo-

rated an optical fiber after their delay stage that eliminated errors associated with

probe beam misalignment and divergence over the length of the delay stage. More

recently, Cahill and coworkers developed a system using a Ti:Sapphire oscillator to

produce pump and probe pulses 150 fs long with a central wavelength of 790 nm and

a repetition rate of 80 MHz. Their system added several novel features, such as an

integrated CCD camera for visualizing the sample and beam spots, a geometry which

allows for a single objective lens to focus both pump and probe beams, and inductive

resonators in series with the photodetector which increase the signal-to-noise ratio by

a factor of 10 or more [19, 50].

We have constructed a pump-probe system in the Warren M. Rohsenow Heat and

Mass Transfer Laboratory at MIT. Our system incorporates several of the features

from the systems listed above and adds additional improvements that will be dis-



cussed below. Like Cahill et. al., we use the output of our Ti:sapphire oscillator at

80 MHz without amplification. Compared with lower repetition-rate systems, this

has the advantage of a much higher signal-to-noise ratio because shot-to-shot noise

is averaged, and because it allows us to modulate the pump beam at high frequency,

reducing 1/f noise as discussed in Section 2.4 This allows us to work with small tem-

perature excursions for our samples; the peak energy density of the pump pulses is

on the order of 1 J/m 2 , which usually leads to a temperature rise of less than 1 K for

a single pulse. Other features borrowed from Cahill's system include the integrated

CCD camera and the use of inductive resonators.

At a pulse repetition rate of 80 MHz, the time between laser pulses is only 12.5 ns.

For many situations, including the majority of thermal conductivity measurements,

this is not sufficient time for the system to return to equilibrium. In this case, the

effects of multiple pules accumulate, and the measured signal will be different from

the response to a single pulse. We will see in Chapter 3 that, while this complicates

the analysis, it also make the experimental technique more powerful by essentially

probing two length scales simultaneously. Some novel features of our system include a

frequency-doubled pump beam, which drastically reduces optical noise and allows for

a simplified coaxial geometry, and an expanded probe beam which reduces divergence

over the length of our delay stage.

In the early stages of building and testing our pump-probe system, we struggled

to obtain reliable, consistent results. In retrospect, this was not due to a single error

in experiment or analysis, but the result of many small factors that each contributed

uncertainty and error to the final result. These include effects due to laser spot size

and shape, various sources of electronic and optical noise, variation in sample quality

and preparation, and false assumptions in the data interpretation.

In this chapter, we describe the design and implementation of our pump-probe

system. All the details necessary to obtain an accurate measurement are included.

We begin with an overview of the optical system and its major components, and then

move on to some small but essential details of the instrumentation, and finally discuss

the various sources of noise that can affect the measurement.



2.1 Optics

A schematic containing the essential features of our pump-probe system is shown in

Fig. 2-1. The system is built around a tunable Ti:Sapphire laser which emits a train

of 200 fs pulses at a repetition rate of 80.7 MHz. The center wavelength is 800 nm and

the power per pulse is roughly 15 nJ. The frequency spectrum of the laser in pulsed

operation is shown in Fig. 2-2(a.). The spectrum was obtained using a monchromater.

The transform-limited pulse-width is calculated from the Fourier transform of the

frequency spectrum; this is shown in Fig. 2-2(b.). The transform limit is the shortest

possible pulse width, as it assumes a frequency-independent spectral phase. Although

many mode-locked lasers can achieve close to transform-limited pulse widths, a true

pulse width measurement requires a more advanced technique such as interferometric

autocorrelation or frequency-resolved optical gating [51]. For our applications, the

precise details on the pulse shape and width are not critical so this was not done.

Electro-Optic
Modulator (EOM)

Figure 2-1: A schematic of the key elements of our pump-probe system. After the
first beam splitter, the probe beam passes through a 4x beam expander to minimize
divergence over the two meters (,7 ns) of delay, after which it is compressed before
being directed onto the sample through an objective lens at normal incidence. The
pump beam passes through an electro-optic modulator (EOM) and then a bismuth
triborate (BIBO) crystal where it is frequency-doubled to 400 nm. The doubled light
is directed through the same objective lens onto the sample, coaxial with the probe
beam.
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Figure 2-2: (a.) Frequency spectrum emitted by the Ti:Sapphire laser in pulsed op-
eration at a center wavelength of 800 nm, and (b.) the transform-limited pulse width
determined by a Fourier transform of the spectrum.

The main beam passes through an optical isolator (Electro-Optics Technology,

Inc., model BB8-51) to prevent back reflections from de-stabilizing the laser, and

is then divided into pump and probe arms with a polarizing beam-splitter; a 1/2

waveplate is used to control what fraction of light goes into each arm. Typically

about 40 mW, or 3-4% of the total laser power, is split off for the probe arm and the

remainder is used for the pump.

The probe beam is expanded with a pair of lenses from a 1/e 2 diameter of - 2 mm

to 8 mm, and its optical path is adjusted up to 2.1 meters (7 ns) with a double-pass

delay stage. The purpose of the beam expander is to minimize divergence of the

probe beam at long delay times. A perfectly columnated beam with 1/e 2 radius wo

will diverge according to [52]:

w=w0 [ Az 1 +2 (2.1)

Here w is the 1/e 2 beam radius, A is the wavelength and the z is the propagation

distance. Without expansion, our beam radius would increase by ~12% at maximum

delay, translating roughly into a corresponding increase in focused spot size. After



expansion, Eq. (2.1) yields an increase in radius of only 0.02%. The characterization

of beam spot size and motion is discussed in section 2.2; the results are that the

probe radius changes by around 2% (most likely higher than predicted because of a

non-ideal beam shape and lens aberrations) and undergoes a lateral shift of roughly

250 nm over the entire 7 ns of stage delay. Compared to the option of using an optical

fiber after the stage to maintain beam shape [15], the expander has the advantage

that the probe power remains constant over the delay, eliminating the need for a

normalizing detector. After the stage, the probe beam is compressed and directed

through the center of a 10x objective at normal incidence. Changing the ratio of the

compressor to the expander allows us to adjust the focused probe size by changing

the diameter of the collimated probe beam into the objective lens.

The pump beam is modulated with an electro-optic modulator (EOM) (Conop-

tics, Model 350-160) which imposes a square-wave modulation on the beam, with a

frequency up to 20 MHz. The purpose of the modulation is to provide a reference for a

radio-frequency lock-in amplifier (SRS Model 844) which is used for signal detection.

A good summary of the principle of lock-in detection is provided in the instrument's

user's manual. [53]

In order for the lock-in approach to be effective, none of the pump light, which

is modulated at the reference frequency, can reach the detector. This is essential

since even a small amount of stray light modulated at the reference frequency could

overwhelm the measurement. Other pump-probe systems described in the literature

send the pump and probe beams onto the sample at significantly different angles

to isolate the pump beam spatially [15, 18], or use a combination of a beam block

and polarization to achieve the same purpose [5]. Both approaches are vulnerable to

scattering into different angles and polarizations by rough samples, and using separate

lenses at different angles to focus the pump and probe beams onto the sample makes

achieving precise overlap of the two beams more difficult.

In our system, we use second harmonic generation (SHG) and a co-axial geometry

to simplify alignment and give superior resistance to optical noise from the pump

beam. After the modulator, the beam is focused with a 6 cm focal length lens onto



a piece of bismuth triborate (BIBO) crystal [54], a nonlinear optical medium used

for second harmonic generation from the visible to infrared. The BIBO crystal is

2 mm thick and was cut for SHG at 800 nm. The conversion efficiency from 800 nm

to 400 nm in our system is greater than 20%, resulting in more than 120 mW of

modulated 400 nm light.

Both 800 nm light and 400 nm light emerge from the BIBO crystal. We use cold

mirrors and a red filter to remove the 800 nm light after the crystal. In addition, we

place a blue filter in front of the detector to eliminate any blue light that scatters

off the sample. The filters are very effective at removing the unwanted light, and

are insensitive to polarization. The two-color arrangement thus makes it possible to

measure samples that are rougher than would otherwise be possible.

The 400 nm light emerging from the BIBO crystal is re-columated using a second

lens. By changing the distance of this lens from the crystal, the divergence of the beam

and therefore the final focused size on the sample can be varied from a 1/e 2 diameter of

8 gm up to more than 100 /Lm. Both pump and probe beam are directed coaxially into

a long-working-distance 10x objective. This arrangement make alignment relatively

simple and ensures that the spots are not distorted.

When the sample is at the focal plane of the objective, the probe beam is retro-

reflected and emerges collimated from the objective. A 300 mm focal length lens is

used to focus the beam onto a high speed PIN photodiode (Thorlabs DET10OA) with

a rise time of 1 ns. A removable mirror can be placed in the probe path to direct

the light into a CCD camera, essentially creating a microscope that can be used

to view the sample. A ring light mounted on the objective lens generates enough

scattered light to create a dark-field image of the sample [22]; the magnification of

the microscope is roughly 15x.

The CCD system is essential for three reasons. First, it enables the user to view

the sample in detail and accurately determine which regions are measured. Second, it

makes for a simple visual way of overlapping the pump and probe spots. And third,

bringing the sample into focus ensures that it is a known distance from the objective,

so that the sizes of the focused beam spots are known. Measurement of the beam



spots is the subject of the next section.

2.2 Beam Spot Characterization

The Ti:Sapphire produces a TEMoo beam with an approximately Gaussian intensity

profile
2Ao 22(2.2)

I(r) = 2 exp 2 (2.2)

where Ao is the total power in the beam and wo is the 1/e 2 beam radius. When the

beam is focused onto the sample, it retains this distribution although the beam radius

changes. As we will see later, the radii of the pump and probe beams are important

parameters in the heat transfer into the sample, so accurate characterization of them

is necessary.

We use a knife-edge profiling technique to measure the spot sizes. The approach is

illustrated in Fig. 2-3. A razor blade mounted on a precision stage with a resolution

of 100 nm is advanced into the beam at the focal plane, determined by observing

when the razor edge is in focus on the CCD camera system. If the blade motion is in

the x direction, the total intensity at the detector is given by:

I(x) -= 2Awo dy exp (- 2 ) J dx exp 2x2) (2.3)
wg 2-oo o o 2

A photodiode records the total transmitted intensity at each location; taking the

derivative of the resulting curve yields the intensity profile in the x direction. The

data is the fit with a Gaussian profile to extract the 1/e 2 spot radius.

Figure 2-4 shows the measured pump and probe spots. Typically, a pump spot

1/e 2 radius of 25-30 1/m is used while the probe spot radius is ' 4 Pm. As discussed

later, this arrangement minimizes sensitivity to the spot size and eliminates possible

beam walk-off errors caused by misalignment of the probe translation stage.

The method described above yields the 1/e 2 radius of a beam profile, but it is

only a I-D measurement. If the beam is elliptical, the results will not be accurate.

The beam shape can be determined by viewing the scattered light from a diffuse
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Figure 2-3: Knife-edge beam profiling system used to characterize the pump and
probe spots.
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Figure 2-4: Measure profiles of the focused pump spot
along with the bet fit curves. The pump 1/e 2 radius
shown at maximum and minimum delay. The radius is
at maximum delay.

(left) and probe spot (right)
is 30 um; the probe spot is
3.7 pm at zero delay, 3.8 pm



surface; an image of the pump spot is shown in Fig. 2-5. More detail can be obtained

by focusing the beams onto a surface that is modified by the light, leaving behind
intensity contours. We used a BiTe composite to do this. The resulting contours of
both pump and probe spots are shown in Fig. 2-6.

Figure 2-5: CCD image of the pump spot on a diffuse surface. The spot is approxi-
mately circular.

Figure 2-6: Intensity contours left in a BiTe composite by the pump and probe spots.
The contours from the pump spot are easily visible and quite circular; the probe spot
contours are harder to discern.

There are situations when it is desirable to have both spots small, for example
when trying to characterize radial conduction or when very high pump fluence is



required. In these cases, good alignment of the probe path with the stage is important

and the lateral translation should be characterized. Backlash in the stage for the

knife-edge measurement prohibited repeatable absolute position measurements of the

probe spot at different delay times. Instead, the blade was moved into the focused

spot until the intensity was reduced by half. Then the stage was moved across the

range of travel and the change in power was measured to be less than 5%. The change

of measured power with beam shift, dA/dx, is given by the derivative of Eq. (2.3).

Rearranging, we write
wo~ dA

dx = (2.4)
2 Ao

where dA/Ao is the fractional change in power. Putting in the probe radius, 3.8 pum,

yields a lateral shift dx of just 250 nm over the full 7 ns (2.1 m) of delay. In most

practical situations, this is negligible. While it is only a measure of the shift in one

direction, it gives a good idea of the overall alignment.

2.3 Instrumentation

A good optical setup is necessary but not sufficient to obtain a good measurement; the

right electronics and an understanding of their limits are also required. The core elec-

tronic components have already been mentioned: the PIN photodiode, electro-optic

modulator (EOM), and lock-in amplifier. However, there some additional components

that play important parts as well.

A key challenge of a thermoreflectance measurement is that the change of re-

flectance with temperature is small - on the order of 10- 4 or less. Thus the change

in signal due to temperature is obscured by the large DC background component of

reflection. The standard technique to overcome this issue is to use a lock-in amplifier,

which employs phase-sensitive detection to extract the signal at a specified reference

frequency from the background. A good summary of the principle of lock-in detection

is provided in Chapter 2 of the user manual of our lock-in (Stanford Research Systems

model SR844) [53].

In theory, the lock-in will only measure signals within a narrow bandwidth around



the reference frequency. However, in reality the SR844 mixes the measured signal with

a square wave, not a sinusoid. The EOM, which provides the reference signal, also

modulates the pump beam with a square wave (with a rise time of <8 ns). As a result,

the signal contains contributions at all the odd harmonics of the reference frequency,

with relative amplitudes of 1/n 2 where n=l, 3, 5 ....

To remove the higher harmonics, we place an inductor in the signal line between

the photodiode and the lock-in amplifier. The inductor forms a resonant filter with

the photodiode at the reference frequency and increases the signal by a factor of 10

or more compared to other frequencies [50]. The filter behavior can be explained by

considering a simplified circuit of the PIN photodiode, shown in Fig. 2-7. The diode

is modeled as a current source in parallel with a capacitance Cj. The source of the

capacitance is the depletion region in the PIN diode; for our diode size and reverse

bias voltage, Cj - 20 pF. The input impedance to the lock-in, RLI, is on the order

of 50 R, and the inductive element is chosen so the circuit resonates at the reference

frequency of interest.

Photodiode Inductor----- -- ------

cJ
RLI

Figure 2-7: Simplified circuit diagram for the PIN photodiode. The dashed line
contains the diode. The inductor is placed in the signal line to the lock-in amplifier.

In the frequency domain, the voltage response V of the circuit in Fig. 2-7 to a

periodic input current of amplitude I and frequency w is given by:

Y(L -+ + (njw +÷ RLI (2.5)V=I [(Li + RLI



In the case where Lw > RLI and Eq. (2.5) simplifies to

V -I( RLI ) (2.6)

This provides a quick way to estimate the resonant frequency: wo _ 1/ .LCJ.

Two measured responses from the lock-in amplifier with different inductive res-

onators in place are shown in Fig. 2-8, along with the curves calculated using Eq. (2.5).

The junction capacitance, Cj, is taken as 18.5 pF in both cases, and the inductors

L are 100 pH and 10 pH. The combined resistance RLI of the inductor and lock-in

input impedance is adjusted slightly to match the width of the curves; 120 Q is used

for the 100 ApH resonator while 80 Q is used for the 10 pH resonator. Figure 2-9

shows the output from the photodiode at the reference frequency with and without

an inductive filter; with the filter in place, the higher harmonics have been removed,

leaving a pure sinusoid.
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Figure 2-8: Response from the lock-in amplifier for two inductive resonators, one
with 100 LpH of inductance (left) and another with 10 /pH of inductance (right). The
junction capacitance Cj is taken as 18.5 pF in both cases. The combined resistance
RLI of the inductor and lock-in input impedance is adjusted slightly to match the
width of the curves; 120 Q is used for the 100 pH resonator while 80 Q is used for the
10 pH resonator.
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Figure 2-9: The measured output of the photodiode at a reference frequency, with
and without the inductive resonator. The resonator effectively removes the higher
harmonics, leaving a pure sinusoid. The offset is arbitrary.

2.4 Sources of Noise

Several sources of noise are present in the system and impact the overall signal-to-

noise ratio. Care should be taken to minimize them and properly cancel out any

systematic offsets to produce a good measurement. Fundamental sources of noise

include Johnson noise and shot noise, which come from thermal fluctuations and the

finite nature of the charge carriers, respectively. Of these, shot noise dominates in the

photodiode [55]. The relative shot noise in the probe beam is 2e/I ,, 2 x 10- 8 /VH-

for our typical signal levels, where e is the electron charge and I is the photocurrent

generated by the diode.

The main source of noise comes from 1/f noise, or "pink noise," fluctuations in

the probe intensity around the reference frequency. Pink noise is a spectral noise

distribution that arises in many physical systems [56]. In the probe beam, 1/f noise

results in signal fluctuations around 2 x 10-`7/v'H at the reference frequency around

10 MHz. Our normal lock-in settings give a measurement bandwidth of 10 Hz, giving

signal fluctuations of 6x 10- 7. Since the signals we are measuring are on the order of

10-4-10 - 5, there is ample signal-to-noise ratio. At frequencies below 1 MHz, the 1/f

noise fluctuation increases to - 10- 6/v/r-. The signal is still measurable, although

a slower lock-in time constant, which reduces the measurement bandwidth, is needed

to obtain clean results.

Without Re-ionator



In addition to electronic noise, coherent radio frequency (RF) pickup adds a steady

offset to the signal. The signal and reference cables and even the power cord into the

lock-in act as antennae, picking up signals at the reference frequency, an effect that is

most prominent at frequencies from 5 MHz upward. To make matters worse, simply

walking close to the instrument changes the surrounding field and causes the pickup

to fluctuate. This makes it difficult to cancel out the RF pickup. To overcome this,
we use RF chokes to attenuate RF current flowing along the the outside of the coaxial

signal lines and in the power cord. The chokes are ferrite toroidal cores around which

the cables are wrapped; a few turns around the toroid are sufficient to significantly

reduce coherent pickup. Figure 2-10 shows the arrangement of the RF choke.

Figure 2-10: A ferrite toroidal core used as an RF choke.

The last source of noise to be considered is optical noise. Scattered pump light at

the modulation frequency can easily overwhelm the measurement. In systems that use

the same frequency light for both pump an probe, this is a major concern. However,
in our system the color filters are extremely effective and blocking or unblocking the

pump beam produces no obervable effect on the signal.

Before every measurement, any RF pickup and other DC offsets must be sub-

tracted from the lock-in signal. With the sample in place, we block the pump beam

but leave the probe beam unblocked, allowing it to reflect from the sample into the
detector. This produces a small signal due to the frequency component of the probe

beam at the reference frequency. In addition, there is an offset due the RF pickup (the



RF chokes cut down on the RF fluctuation but a small DC level remains). We zero

the lock-in at this level, and then unblock the pump beam and make the measure-

ment. In systems where scattered pump noise is a concern, a separate measurement

of the signal with the probe beam blocked and the pump beam unblocked should be

made, and this signal should be subtracted from the measurement as well.

2.5 Summary

The design and implementation of a pump-probe system has been described in detail.

Our system incorporates many of the best aspects of systems built by others, notably

Paddock and Eesley [13], Capinski and Maris [15], and Cahill [19, 50], while adding

some new features such as a frequency-doubled pump beam, an expanded probe beam

and a coaxial geometry, which reduce errors associated with optical noise, beam

divergence, and spot shape and alignment, respectively. Many of the nitty-gritty

details, which are so important to a successful measurement but are often left out of

published material, have been included in the hope that they may be useful to anyone

attempting to duplicate and extend our work.





Chapter 3

Theory and Data Analysis

In all variations of the pump-probe technique, the data is compared to a model of the

system, and the unknown properties of interest are adjusted to minimize the error

between the model and the data. We can divide the modeling into two distinct parts.

The first part relates the output of the lock-in amplifier to the probe beam input to

the photodiode. The resulting expression is given in terms of the impulse response

or frequency response of the system being probed; the only limitation is that the

excitation process must be modeled as a linear time-invariant (LTI) system. This

is done in Section 3.1. The second half of the modeling is to solve for the thermal

response of the sample. An analytical solution is given for heat flow in layered media,

including the effects of radial heat flow from coaxial gaussian laser spots and thermal

interface resistances. This is done in Section 3.3.

3.1 The Thermal System as an LTI System

3.1.1 Introduction

As we mentioned at the beginning of Chapter 2, we use the fundamental output of our

Ti:sapphire oscillator at 80 MHz without amplification, which gives a high signal-to-

noise ratio and allows us to work with small temperature excursions for our samples.

However, the time between laser pulses is only 12.5 ns, and for many situations,



including the majority of thermal conductivity measurements, this is not sufficient

time for the system to return to equilibrium. In this case, the effects of multiple pulses

accumulate, and the measured signal will be different from the response to a single

pulse. This accumulation phenomenon was first described by Capinski et. al. [15]

in terms of the impulse response of the sample. This work assumed one-dimensional

thermal transport. Modeling was later extended to the frequency domain by Cahil [19]

to account for radial heat conduction in an isotropic medium, although the details

on the interplay between pulse accumulation and radial transport effects were not

explicitly discussed.

In this section, we use the theory of linear time-invariant (LTI) systems to derive

the measured signal in terms of the impulse response and the frequency response

of the sample in a straightforward, consistent way. Then, in Section 3.2, we look

more carefully at the accumulation effects. We will see that, while they complicate

the analysis, they also make the experimental technique more powerful by essentially

probing two length scales simultaneously.

The theory of linear time-invariant (LTI) systems is well-developed and is com-

monly used in many fields, especially signal processing and control systems [57]. Such

systems posses the property of superposition: the response of the system to multi-

ple inputs is the sum of the responses to each individual input. In conduction heat

transfer, if the temperature changes are small enough that physical properties can

be assumed constant, the temperature of the system obeys superposition [58]. This

provides a convenient way to handle many heat conduction problems, especially those

involving a periodic or other time-varying heat input. In the end, we seek a thermal

"transfer function," complex number, Z(w), where w is the period thermal input fre-

quency, such that the output of the lock-in amplifier for a reference wave eiwot is given

by

Aei(wot+O) = Z(wo)eiwot (3.1)

Here the amplitude, A, and phase, ¢, of the lock-in output will be functions of

the delay between the pump and probe pulses and the physical properties of the



sample. The reference frequency, w0o, will be set by the EOM modulation of the pump

beam. The transfer function is represented pictorially in Fig. 3-1. We represent the

modulation using the complex exponential eiwot for mathematical convenience; it is

understood that the actual signal is represented by the real part of Eq. (3-1).

ei ot  Z(w) Z(wo)ewot = Aei(wot+O)

Figure 3-1: Transfer function representation of the measurement. The transfer func-
tion, Z(w), contains the thermal response of the system as well as the properties of
the pump and probe beams.

In this section, we model the output of the lock-in amplifier in two ways: in

terms of the system impulse response, h(t), and in terms of the frequency-response,

H(w). The impulse-response solution is convenient for numerical simulations, while

the frequency-response solution is more useful when an analytical solution for the

temperature in the frequency domain is known. The assumption that the thermal

system is an LTI system is verified later by showing that normalized results for dif-

ferent input power levels are virtually identical.

To begin, we consider the response of the thermal system to a train of pulses

modulated by a sinusoid. In our system, laser pulses from the pump beam arrive at

the substrate with a frequency of 80 MHz, and each individual pulse has a width on

the order of 200 fs. Because the pulse width is much shorter than the processes we

are modeling, each individual pulse is treated as an impulse with energy Q.

The actual output of the EOM is a square wave with an 8 ns rise time that

oscillates between zero and the full power of the pump beam. This signal can be

broken up into its Fourier components, and because the system is linear, we can

consider the response to each component independently. An ideal lock-in rejects all

frequencies except those in a very narrow band around the fundamental frequency

(typically less than 10 MHz). Therefore, we only need to consider the response to the

fundamental harmonic. A more rigorous proof of this is provided in Appendix A.1.

In our case, the lock-in mixes with a square wave and the odd harmonics would have



a small effect, but the inductive filter placed after the photodiode effectively removes

these higher frequencies, as we discussed in Section 2.3. After a short period of time,

the system reaches a quasi-steady state and we can ignore the DC offset as well, since

it will also be rejected by the lock-in amplifier.

Figure 3-2 depicts the heat input to the sample, considering only the fundamental

modulation frequency and ignoring the DC offset, as discussed above. Each impulse

of heat generates a temperature response in the sample, which in general does not die

away before the next pulse arrives. Figure 3-3 shows a representation of the surface

temperature in response to the pump pulses.

Time (a.u.)

Figure 3-2: Representation of the pump beam after passing through the EOM. Al-
though the true modulation of the EOM is a square wave with a DC offset, in steady
state the lock-in amplifier only measures the fundamental harmonic, so an idealized
sinusoid may be used.

The probe pulses arrive at the sample delayed from the pump pulses by a time 7,

determined by the position of the delay stage. These pulses are reflected by the sample

back into the photodiode. Figure 3-4 depicts the probe pulses sampling the surface

temperature. Although the probe pulses also excite the sample, and indeed may even

be stronger than the pump pulses, this has no effect on the measurement. This is

because the probe beam has no frequency component at the modulation frequency

and thus its contribution to the signal will be rejected by the lock-in. To see this, in



Time (a.u.)

Figure 3-3: The surface temperature of the sample in response to the pump beam
input described in Fig. 3-2

the time domain the probe signal can be represented by:

00

p(t) = E 5(t - nT - 7•) (3.2)
n=-oo

where 6 is the delta function, T is the period between pulses and T is the delay time

between pump and probe pulses. In the frequency domain, this becomes [57]

P(w) = , =-oo 5(w -kw,) e- i '  (3.3)
k=--oo

where we have defined w, as the "sampling frequency," 2r/T. Equation (3.3) evaluates

to zero for all frequencies except multiples of w,. In our experiments, w, (80 MHz)

is one to two orders of magnitude larger than the modulation frequency (1-10 MHz).

Typically, in our experiments the lock-in amplifier time-constant is around 30 ms,

which gives a pass band of roughly 10 Hz [53]. Therefore, all of the probe frequencies

will be well outside the lock-in pass band, and we can safely ignore the probe pulses'

effect on the measurement. Instead, we can view them as simply measuring the state

of the thermal system at a time 7 after the pump pulses.



Time (a.u.)

Figure 3-4: The probe pulses arriving at the sample, offset by a delay time set by the
stage. Since the probe beam is not modulated by the EOM, the effect of the probe
pulses on the surface temperature can be neglected. This assumption is valid as long
as the probe beam is not strong enough to cause the sample to behave in a nonlinear
way.

Collectively, these probe pulses excite the photodiode. The component of this

probe signal at the reference frequency will be recorded by the lock-in amplifier,

while all other frequencies will be rejected. Figure 3-5 "connects the dots" of the

probe pulses to highlight the fundamental harmonic component. Both its amplitude

and phase lag with the reference modulation are recorded by the lock-in at each delay

position. It is the task of the next two sections to represent this harmonic component

in terms of the thermal impulse response and frequency response, respectively.

3.1.2 Signal Analysis Using the Impulse Response

To begin, consider Fig. 3-6, which shows a close-up view of Fig. 3-4. The time period

between pulses is T, and the delay time between the pump and probe pulses is T. We

first write an expression for the reflected probe intensity in the time domain. Then

we take the Fourier transform of the signal to determine the frequency component at

the modulation frequency. As we have mentioned, since the lock-in amplifier acts as

a very narrow bandpass filter, only the amplitude and phase of the thermal response



Time (a.u.)

Figure 3-5: The solid line depicts the modulation envelope which serves as the ref-
erence for the lock-in amplifier. The dashed line connecting the probe pulses is the
fundamental harmonic of the probe signal caused by the pump beam. Both the mag-
nitude of this sinusoid and its phase lag from the reference frequency are measured
by the lock-in at every position of the delay stage.

at this frequency will be measured.

The temperature response to an impulse of heat with strength Q, Q6(t), is Qh(r, t),

where r is the spatial coordinate and t is time, and Q is the energy of the impulse.

The unit impulse response, h(r, t), has units of [temperature]/[energy]. The response

to a time varying heat input q(t) at the same location is given by the convolution

O(r, t) = q(t) * h(r, t) (3.4)

= q (t')h(r, t - t')dt'

In our case,

q(t) = (1 + eiwot ) Q(t - mT - To) (3.5)
m=-oo

Here T is the time between pulses, To is an arbitrary time offset between t = 0 and

the time when first pulse arrives, and Q is the energy per pulse. Since the problem

obeys superposition, we can consider the periodic part and the DC part separately.

The response to the DC component will not have a component at w0o and so will be



Time (a.u.)

Figure 3-6: A close-up view of Fig. 3-4. The time period between pulses is T, and
the delay time between the pump and probe pulses is 7.

removed by the lock-in. Therefore we need only consider the periodic heat input:

(3.6)q(t) = eiw°t  Q6(t - mT - To)
m= -oo

This is the signal is shown in Fig. 3-2.

Inserting this heat input into Eq. (3.4) and applying the definition of convolution,

we have

E(r,t) = Q /et0 ' E 6(t' - mT - To)h(r, t - t') dt'
m=-oo

(3.7)

where h(r, t) = 0 for t < 0. By virtue of the property that

I 0-0W

f(x)6(x - xo) dx = f(xo) (3.8)

the temperature of the sample is given by

(3.9)O(r, t) = Q E eiwo(mT+TO)h(r, t - mT - To)

The probe beam is unmodulated, and the reflectivity of the sample is assumed

proportional to its surface temperature, so that the reflected probe light is described



by p• where 3 is a constant that includes the thermoreflectance coefficient and gain

of the electronics. The probe pulses arrive at the sample at time r after the pump

pulse, where 0 < 7 < T

Now, we take the Fourier transform of the probe signal and find the component

at wo, the EOM angular modulation frequency. Mathematically, the probe signal can

be represented as

00

z(t) = 8(t) E Qprobe(t -nT- To - T) (3.10)
n=--oo

PQQprobe eiw (mT+T)h(t - mT - To) E 5(t - nT - To -
m=-oo )n=---

Here Qprobe is the power per probe pulse, and we have dropped the spatial variable r

in the impulse response for simplicity.

Taking the Fourier transform of Eq. (3.10),

S{z(t)} = Z(w) = z(t)e-it dt (3.11)

= PQQprobe E i eiwo(mT+To)h(nT + To + T - mT - To)e - iw(nT+To+)

n=-oo m=-oo

where Z(w) is a complex number with both magnitude and phase. Defining the

variable q = n - m, we have

00 00

Z(w) = 3QQprobe E eiwo((n-q)T+To)h(qT + T)e-iw(nT+To+) (3.12)
n--0o0 q--o00

Rearranging,

00 00

Z(w) = I3 QQprobe eiwo(-qT+To)h(qT + T) eiwonTe-iw(nT+To+-) (3.13)

= fQQprobe e-iwo(qT+r)h(qT + T) E eiwo(nT+To+r)e-iw(nT+To+r)

q=-oo n=-oo

A(w)



In Appendix A.2, we show that

2 7r\ -ow+ 2irn
A(w) = ei(WO-W)(TO+') r (w (3.14)

n=--oo

Therefore the Fourier transform of r(t) contains of a series of delta functions at

frequencies w = wo + 2rn/T where n = 0, ±1, ±2,... Since 27r/T is much typically

8-100 times greater than the EOM modulation frequency w0o, all frequencies for n $ 0

will be well outside the lock-in pass band, so to an excellent approximation the result

will be:

Z(w) = OQQprobe e-io(qT+r)h(qT + T)27r6(wo - w) (3.15)
q=O

We have restricted q in the sum to non-negative values since h(t) - 0 for t < 0. We

take the inverse Fourier transform to recover the signal in the time domain. Since the

the inverse Fourier transform of the function 2Jr6(wo - w) = eiwot, Eq. (3.15) becomes

z(t) = Z(wo)eiwot (3.16)

where

Z(wo) = probe h(qT + )e (qT+ )  (3.17)
q=O

Comparing Eq. (3.16) with Eq. (3-1), we see that Z(wo) in Eq. (3.17) is the transfer

function that we seek. It is proportional to the energy per pump pulse, Q, and the

power in the probe beam, Qprobe/T, and gives both the magnitude and phase of the

lock-in signal relative to the reference signal eiwot. If the impulse response decays to

zero before the next pulse arrives, then the only non-zero term in Eq. (3.17) is for

q = 0, and the solution reduces to the impulse response. However, if the response

does not die away before the next pulse arrives, the results will be not be the same,

as we discuss in Section 3.2.



3.1.3 Signal Analysis Using the Frequency Response

Equation (3.17) is convenient when the solution to an impulse of heat is known in the

time domain, either analytically or via a numerical simulation. However, for many

conduction heat transfer problems, analytical solutions are more readily obtainable

in the frequency domain. Thus it is desirable to re-express Eq. 3.17 in terms of the

thermal frequency response rather than the thermal impulse response. To do that,

we borrow a result from signal analysis known as the sampling theorem [57]. The

sampling theorem is a useful tool for understanding the frequency spectrum of a signal

that is "sampled" at discrete times with a very short pulse. Given an original signal,

x(t), and a sampling signal p(t), we can write the the sampled signal as:

xz(t) = x(t)p(t) (3.18)

where
OO

p(t) = (t - nT- To) (3.19)
n=-oo

Here p(t) is a series of unit impulses, T is the sampling period and To is an arbitrary

delay time. In the frequency domain, the sampling theorem tells us that

X(w) f= i X(O)e - i(w-o)TO C (w - 9 - kI ) dO

-= k=-oo
1 2rX(0 2r -k2ro/T
S 1 X(w - k )e-ik2To/T (3.20)

k=-oo

A more detailed derivation of the sampling theorem is given in Appendix A.3.

In our problem, we will apply the sampling theorem twice. The first time we will

use it to represent the thermal response to the pump beam in the frequency domain.

Then, we will apply the sampling theorem to this thermal response to find the final

signal after it has been "sampled" by the probe pulses.

To begin, we take as x(t) the EOM modulation. As in the impulse-response

analysis, we will assume the EOM modulation is a pure sinusoid, x(t) = eiwot. This



has the Fourier transform X(w) = 2rrS(w - wo). The sampling function, p(t), comes

from the pulsed nature of the pump beam and is mathematically treated as a series

of delta functions, sampling the sinusoid x(t) at a frequency w, = 21r/T where T is

the time between laser pulses. For generality, we keep the arbitrary delay time To

between the pump pulse and the EOM reference wave. As in the impulse response

solution, To will eventually drop out of the final solution. Applying the sampling

theorem to X(w) gives the heat input from the pump beam in the frequency domain:

Q(w) = 6(w - wo - kws)e - ikwT (3.21)
k=-oo

where again Q is the energy per pulse, T is the pulse period, wo is the EOM modulation

frequency, and w, is the "sampling frequency," 2r/T.

For any linear system, the frequency response H(w) is given by the Fourier trans-

form of the impulse response, h(t) [57]:

=F{h(t)} = h(t)e- iwt dt = H(w) (3.22)

The thermal response at the surface, O(t), is the convolution of the impulse response

h(t) and q(t). In the frequency domain, convolution becomes multiplication:

e(w) = H(w)Q(w) = Z H(w)5(w - wo - kws)e-ikwsTo (3.23)
k=-oo

The probe beam samples the surface temperature with pulses at w8 = 2ir/T

and strength Qprobe, delayed from the pump pulses by time r. Now we apply the

sampling theorem to the surface temperature, Eq. (3.23), to find the frequency domain

representation of the reflected probe signal:

Z 27rQQprobeT e(w- lws)e-ilw,(TO+7) - ikwTo (3.24)

S2 PQQprobe 0 H(w - w1)6(w - wo - (k + 1)ws)e - iw - e- i(k+l)W' To

l=-oo k=-oo



The delta function evaluates to zero at all frequencies except w = wo + (k + l)w8

where k and 1 are integers. As in the previous section, since w, is typically 8-100

times greater than the EOM modulation frequency wo, the only frequency inside the

lock-in pass band will be w = wo. Inserting w = wo into Eq. (3.24), we see that

the delta function eliminates all the terms except those where 1 = -k. Thus we can

replace 1 with -k and eliminate one of the sums:

2irf&probe 00
Z(w) = 2rQQprobe H(wo + kw,)eikw•J'(w - Wo) (3.25)

k=-oo

As we did in the impulse-response analysis, we take the inverse Fourier transform

so that Eq. (3.25) becomes

z(t) = Z(wo)ew'ot (3.26)

where now

Z(wo) = QQprobe H(wo + kws)eikwa (3.27)
k=-oo

Equation (3.27) is the frequency-response equivalent of Eq.( 3.17). In the limit

that T -+ oo (the pulses become far apart), Eq. (3.27) reduces to the inverse Fourier

transform of H(w), i.e. the impulse response h(t), as it should. Equations (3.17) and

(3.27) are mathematically equivalent; this is shown in Appendix A.4.

Components of the Lock-In Amplifier Signal

The lock-in amplifier actually mixes the signal with two reference waves that are 900

out of phase; this allows it to extract both the magnitude and phase of the measured

signal, relative to the reference wave. The instrument returns two readings, an in-

phase component, X, which is composed of the cosine components of the signal,

and an out-of-phase (or "quadrature") component, Y, which is composed of the sine

components. From this, the magnitude, R, is obtained from VX 2 ± Y2 and the phase

q from tan-'(Y/X).

As we discuss later, the out-of-phase component is useful for correcting for any

phase offset introduced into the signal via the electronics. The in-phase and out-of-



phase components X and Y are given by the real and imaginary parts of Eq. 3.27:

X = Re{Z(wo)} (3.28)

Y = Im Z(wo)} (3.29)

A proof of this is given in Appendix A.5.

3.2 Accumulation Effects

In the beginning of Section 3.1, we alluded to the fact that the accumulation of

multiple laser pulses is an important effect that must be accounted for in our pump-

probe experiment. In addition, while it complicated the analysis of the preceding

section, the resulting two expressions, Eq. (3.17) and Eq. (3.27), are more powerful

than the either the impulse response or the frequency response of the sample alone.

This is because the response to an impulse of heat is characterized by one time scale

and the response to a modulated thermal wave is characterized by another, and we can

potentially probe both simultaneously. In this section we examine the accumulation

effects in detail, showing when and how they must be considered.

As we show in Appendix A.4, Eq. (3.17) and Eq. (3.27) are mathematically equiv-

alent, and we can use either form to illustrate accumulation effects. In the limit that

the time between pulses, T, becomes infinite, both expressions reduce to the impulse

response as a function of delay time, 7:

lim /3QQprobe -irhT + T p =ob T o (ro3.30)
T--*oo T T

q=O

This is easily seen from the fact that at very long times, h(qT + T) dies to zero for all

terms where q $ 0. In this limiting case, the phase shift is simply the delay between

the pump and probe pulses divided by the modulation frequency, as expected. The

signal is proportional to the energy per pump pulse, Q, and the power in the probe

beam, Qprobe/T. In the other limit, as T approaches zero, the expression approaches



the definition of the Fourier transform of h(T) since T is defined to be less than T :

lim QQprobe -iwh(qT + T)T = QQprobe H(W) (3.31)
q=O

We could arrive at the same result by noting that in Eq. (3.27), H(wo + kw,) is the

Fourier transform of a real function and must converge, so as w. approaches infinity

(T approaches zero), all terms except k = 0 vanish.

In the intermediate range, where the decay time of the system is not much longer

or shorter than the pulse time, T, the signal has elements of both the impulse response

and the steady frequency response, and the two effects cannot be simply separated.

The majority of thermal conductivity measurements fall into this category. To ex-

amine this further, we take a simple exponential system as a model and see how

the measured signal changes as the decay rate or laser pulse period are varied. Al-

though the thermal response of the sample is more complex, the basic features of the

accumulation effects will be the same.

3.2.1 Example of Accumulation with a Model System

The impulse response and frequency response of our model system are given by:

h(t) = e-at (3.32)
1

H(w) = (3.33)
a + iw

Figure 3-7 shows the signal returned by the lock-in, Eq. (3.27) assuming an expo-

nential decay time, a- 1 = 10 ns, for three different pulse periods: 100 ns (essentially

the single pulse response), 15 ns and 12 ns. The most obvious effect as the decay time

approaches the pulse period is that the baseline signal at zero delay is no longer zero.

If one were unaware of the the accumulation effects and subtracted off the zero-delay

signal before normalizing, the results would be that signals with more accumulation

effects would appear to decay faster than the single-pulse response. This is shown in

Fig. 3-8.
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Figure 3-7: The signal returned by the lock-in, Eq. (3.27) assuming an exponential
decay time, a- 1 = 10 ns, for three different pulse periods: 100 ns (essentially the
single pulse response), 15 ns and 12 ns.
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Figure 3-8: The signal returned by the lock-in, Eq. (3.27) assuming an exponential
decay time, a- 1 = 10 ns, after subtraction of the baseline signal and normalization.



Now we explore the result of Eq. (3.31). Figure 3-9 shows visually how the lock-

in signal approaches the frequency response, H(wo), as the exponential decay time

approaches the pulse period. In this case, we have fixed the laser pulse time, T, at

12.5 ns and varied the exponential decay time a-1 from 5 ns to 100 ns. As the decay

time becomes long compared to the pulse period, the lock-in signal approaches H(wo),

where in this case we have chosen wo = 27r x 10 MHz.

Z
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Figure 3-9: The lock-in signal approaches the frequency response, H(wo), as the
exponential decay time approaches the pulse period. In this case, we have fixed T at
12.5 ns and varied the exponential decay time a-1 from 5 ns to 100 ns. As the decay
time becomes long compared to the pulse period, the lock-in signal approaches H(wo)

3.2.2 Tests for Accumulation

It is clear that if accumulation effects are present they should be accounted for. There

are two simple ways to test for their presence experimentally. The first is simply

observing if there is a measured signal just before the delay time crosses T = 0.

After blocking the pump and canceling any probe noise and coherent RF pickup,

unblocking the pump beam when r is just before zero will produce a non-zero signal

if accumulation is present.

Another way to test for accumulation is to vary the modulation frequency, w0, and



see if the signal changes. When there are no accumulation effects, the amplitude of

the signal is unaffected by the modulation frequency: wo only appears in Eq. (3.30) in

the phase factor. Figure 3-10 shows the lock-in signal for three different exponential

decay times at two modulation frequencies, 10 MHz and 1 MHz. The pulse period in

this example is 12.5 ns. When the exponential decay time, a- 1 is short compared to

T there is no change at different frequencies. As the decay time approaches T and

accumulation becomes more important, the change at different frequencies becomes

more pronounced.

0 2 4 6 8 10 12

Time (ns)

Figure 3-10: The lock-in signal for three different exponential decay times at two
modulation frequencies, 10 MHz and 1 MHz. The pulse period in this example is
12.5 ns. As the decay time, a - 1, approaches T and accumulation becomes more
important, the change at different frequencies becomes more pronounced.

3.2.3 Convergence of the Impulse-Response Solution

Analytical solutions to heat diffusion problems are often simpler to obtain in the

frequency domain, and in this case Eq. (3.27) is more convenient. However, if the

problem is more complex, for example the behavior of a non-equilibrium model or

the Boltzmann Transport Equation, then it is more convenient to obtain the impulse

response, h(t), numerically. In this case, Eq. (3.17) is more useful. Since simulation

04



time can be costly, it is useful to know how many terms of the sum in Eq. (3.17)

should be included.

In Fig. 3-11, we show the behavior of a system with a decay time a- 1 = 10 ns,

and a pulse period T = 12 ns. The solution converges rapidly and after ten terms

there is no further change in the signal. In this case, the h(t) should be calculated

to t = T + 10T, or 137.5 ns at maximum delay time. For systems that decay more

slowly, more terms in the sum would be needed.
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Figure 3-11: The behavior of a system with a decay time a- 1 = 10 ns, and a pulse
period T = 12 ns. The solution converges rapidly and after ten terms there is no
further change in the signal.

3.3 Heat Transfer Analysis

Equations (3.17) and (3.27) are general expressions for the signal returned by the lock-

in amplifier, expressed in terms of the sample impulse response, h(t), and frequency

response, H(w), respectively. The two are a Fourier transform pair, as shown in

Eq. (3.22). In Section 3.2, we examined the accumulation of multiple pulses using

a simple exponential decay model to illustrate some basic features of the solution.

Now, it is time to solve for the true thermal response of the sample. This is most



conveniently done in the frequency domain.

3.3.1 One Dimensional Heat Transfer in Layered Structures

There have been several publications on thermal conduction through layered struc-

tures in one dimensional and in isotropic media [58-60]. Here we adopt the ap-

proach described in Conduction of Heat in Solids by Carslaw and Jaegar [58] for

one-dimensional conduction and then extend it to account for radial, anisotropic ef-

fects using a Hankel transformation. Figure 3-12 illustrates the problem for a single

layer with heat flow in the z direction. In the frequency domain, thermal response of

the sample, H(w), can be found by relating the temperature Ot, and heat flux, ft, on

the top side of the slab to the temperature, Ob, and heat flux, fb on the bottom side

through:

=az (3.34)
fb -za,q sinh(qd) cosh(qd) ft

Here d is the layer thickness, az the cross-plane thermal conductivity, and q2 = iw/a

where a is the thermal diffusivity.

ot ft
z d

Ob fb

Figure 3-12: Conduction through a one-dimensional slab. The temperature and heat
flux on the top surface, Ot and ft, can be related to the temperature and heat flux at
the bottom surface, Ob and fb, through a matrix equation.

The case of unidirectional heat flow through multiple layers is illustrated in Fig. 3-

13. Mathematically, multiple layers are handled by multiplying the matrices for

individual layers together:

b = nMn,-1 ... M M1 A B] [ (3.35)
fb C D ft



t ft

2

n-i

n

Ob fb

Figure 3-13: Conduction through multiple layers.

where Mn is the matrix for the bottom layer. Each matrix contains the thickness and

thermal properties of one layer of material. If the bottom surface of the nth layer is

assumed to be adiabatic, or if the nth layer is treated as semi-infinite, then in both

cases Eq. (3.35) reduces to COt + Dft = 0 and the surface temperature will be given

by:
-DOe = C ft (3.36)

where ft is the heat flux boundary condition applied to the top surface. In the major-

ity of our experiments the semi-infinite boundary condition is an accurate description

of the physical situation.

Thermal Interface Conductance

As we discussed in Section 1.2.2, thermal interface conductance between material

layers can arise from fundamental sources such as acoustic and electronic impedance

and from other factors such as the interface quality or contamination. The interface

conductance G is defined by

f = G(91- 02) (3.37)



where f is the heat flux across the interface and 91 and 02 are temperatures on either

side. In matrix form, this becomes

02 1 G-1 (3
[ ] i= ][ (3.38)f 0 1 f

Thus interface conductances are easily incorporated into Eq. (3.35). Equation (3.38)

can also be obtained from Eq. (3.34) by taking the limit as the heat capacity goes to

zero and choosing az and d such that G = az/d.

3.3.2 Extension to Radial Conduction

As we discussed in Section 3.2, if the response from a single laser pulse dies away

completely before the next pulse arrives, the measured signal is the impulse response

of the sample, and transport is essentially one-dimensional. The thermal penetration

depth L = i-t will be between 30 nm and 300 nm for almost all materials, assuming

a decay time of 10 ns. Compared to the spot diameter of 10-100 um, the penetration

depth is small and radial effects can be ignored. However, when the pulses do not

fully die away, accumulation effects enter into the measured response, Eq. (3.27),

and the system begins to acquire some properties of the frequency response at the

modulation frequency, H(wo). In this case, a better choice is the thermal penetration

depth of the thermal waves induced by the modulation: L = /2ira/wo, where wo

is the modulation frequency. This depth can range from roughly 200 nm to 2 Am

at 10 MHz modulation, and from 700 nm to 7 Am at 1 MHz modulation. If these

lengths are not negligible compared to the spot dimension, radial heat conduction

effects should be accounted for. In our system, with a pulse frequency of 80 MHz,

the thermal response does not fully die away for the majority of samples, and so an

analysis of radial conduction is necessary.

Equation (3.36) can be extended include the effects of radial conduction caused

by finite laser spot sizes. The Gaussian laser spots have cylindrical symmetry, so

a zero-order Hankel transform can be used to simplify the equations. The Hankel



transform of 8(r) is given by [61]:

n- f-lo {((r)} =J rJo(kr)O(r) dr (3.39)

where k is the transform variable, r is the radial coordinate and Jo is the zero zero-

order Bessel function of the first kind.

In cylindrical coordinates, the heat equation is:

rtr ,Or
020 ao

where a, and a, are the radial and cross-plane thermal conductivities, respectively, p

is the density, and c, is the specific heat.

Taking the Hankel transform of Eq. (3.40) yields

a29
=z

pc-at (3.41)

Applying a Fourier transform Eq. (3.41) gives

-ark ) +z 2 = pciw9(w)
-•k2(w) • z---

(3.42)

This can be rearranged as
629(w) '- q2 (w)

az 2

2 - k2 + pciw
oz

where

(3.43)

(3.44)

Equation (3.43) is identical to the one-dimensional heat equation in the frequency

domain, except that q2 is now given by Eq. (3.44) instead of q2 = iw/a. Thus all

of the results obtained in Section 3.3.1 are valid, except the definition of q must be

replaced with that given by Eq. (3.44).

The top surface boundary condition is now given by the radial heat flux distribu-

(3.40)



tion at the top surface due to the pump beam:

I(r) = 2Ao 2r2  (3.45)

where A 0 is the power absorbed and wo is the 1/e2 beam waist. Taking the Hankel

transform of this gives
Ao (3.46)I(k) - A exp 8 (3.46)

Inserting this result into Eq. (3.36) yields the surface temperature, still in the spatial

transform domain:

9t(k) = exp (3.47)SC 21 8
where C and D are the matrix elements from Eq. (3.35). Taking the inverse Hankel

transform gives 0(r), we get the surface temperature in real space:

(r) = kJo(kr) (-D) (O) exp ( - 2w) dk (3.48)

The final thermal response of the system, H(w) in Eq. (3.27), is given by the

weighted average of Eq. (3.48) by the co-axial probe beam with radius wl:

H(w) ( ) exp 2( 2ir dr f kJo(kr) (_) ( ) exp dk
(3.49)

Rearranging and using Eqs. (3.45) and (3.46) collapses this into a single integral,

which is solved numerically:

H(w) = Ao k (-b) exp (k2(w + W0 ) dk (3.50)

Offset Beam Spots

The situation where the spots are not co-axial is illustrated in Fig. 3-14. In this case,

some of the symmetry is lost and instead of one integral to obtain H(w), we need



three:

H(w) =
j jb"(/(xx - o)2+y)x yx2 2 + Y2) )dydz (3.51)f_'O fo

where 0 (V(x - Xo) 2 + y2) is given by the integral shown in Eq. (3.48). While

Eq. (3.51) is not as convenient to evaluate as Eq. (3.50), it is still tractable nu-

merically.

Figure 3-14: The pump and probe spots, with centers separated by a distance x0 .

3.4 Post Processing

3.4.1 Fitting Variables

The basic procedure for obtaining one or more physical properties of interest from

the experiment is simple: adjust the properties until the model and the data match.

We use a multi-dimensional least squares minimization routine to match the output

of the lock-in amplifier to Eq. (3.27) Because the lock-in provides both amplitude

and phase information, we have a choice of which observable to use to minimize the

error. For example, we could use the in-phase component, X, the amplitude, R, the

ratio of the in-phase to out-of-phase components, X/Y [20], or the signal phase,

¢ = tan- 1(Y/X).



Although the amplitude seems the obvious choice, it presents two problems. The

first is the issue of normalization. Since the gain of the electronics, properties of the

detector photodiode, and thermoreflectance coefficient all influence the magnitude of

the voltage returned by the lock-in, fitting to the absolute amplitude of either X, Y,

or R is not practical. Instead, we normalize the data to the value at a specific time

when the diffusion regime is valid, for example t > 200 ps. When the data is noisy,

normalization is difficult because of random variations around the normalizing time

and care must be taken to appropriately smooth the data. The other difficulty with

fitting to the amplitude is the fact that, for low thermal conductivity materials, the

Y component of the signal can be large compared to X, and also relatively constant

over the delay times of the experiment. The result is that the amplitude, R, is often

noisier than the in-phase component, X.

To overcome both of these problems, we fit the phase data instead. Because the

phase involves the ratio of the two components, the absolute magnitudes cancel out

and normalization is unnecessary. In addition, noise due to fluctuations in laser power

are present in both X and Y and so will also cancel out, usually leaving a cleaner

signal [20]. Figure 3-15 shows the amplitude and phase data from a sample of Al

on SiO 2 , with a modulation frequency of 9.1 MHz. The amplitude data, while fairly

clean, is visibly noisier than the phase data, and at lower modulation frequencies

where laser noise is larger, the difference becomes more pronounced.

3.4.2 Determining the Phase Offset

Fitting to the phase has an additional benefit. When there are accumulation effects,

the phase baseline just before zero delay time is sensitive to the thermal properties

of the substrate, and so fitting the phase is more sensitive than fitting the shape of

the curve alone.

However, this introduces one difficulty: determining the true phase of the reference

modulation to which the signal is being compared. Ideally, the reference modulation

would be exactly in phase with the modulation signal supplied to the EOM. However,

the signal cables, photodiode, inductive resonator, and lock-in amplifier all have their



i
(dv
ed
E

V3

bO4)

-30o Phase
-40

-50

-60

-70

-80

-90

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Time (ps) Time (ps)

Figure 3-15: Amplitude and phase data from a sample of Al on SiO2, with a modu-
lation frequency of 9.1 MHz

own response, which collectively we can write as the transfer function Zinst, such that

for a given input exp(iwt) the output will be given by

Ainst exp(iwt + ¢instr) = Zinst exp(iwt) (3.52)

where qinst is the phase delay introduced by the instrumentation. Thus to fit the

phase data, we need a way to determine qinst and subtract it from the signal phase.

One way would be to "normalize" the phase data by subtracting off the phase

at delay time T = 0 - c, where E is a small quantity, from both the measured and

calculated response. While simple, this approach throws away the absolute phase in-

formation which, as we mentioned above, can provide additional sensitivity to thermal

properties. Another way would be to split off some of the pump beam and measure

its phase directly. This sounds attractive, but there is a subtle problem. The phase

delay of the inductive resonator is a function of the junction capacitance, Cj, of the

photodiode, as determined by Eq. (2.5). The junction capacitance depends on the

width of the depletion region in the PIN diode, which in turn depends on the intensity

of light incident on the diode and also the applied reverse bias. Since each sample

may have a different reflectivity, and since the probe is a different color and intensity

than a split off pump beam, Cj will vary and the measured value of qinst will not



be accurate. In practice, we find this difference to be on the order of 1-2 degrees,

enough to change the measured value of thermal conductivity by 5-10% .

Instead, we cancel the instrumentation phase by using the fact that the out-

of-phase component of the signal, Y, should be constant as the delay time crosses

r = 0 [19]. As shown in Eq. (3.29), Y is given by the imaginary part of Eq. (3.27). Fig-

ure 3-16 illustrates the point graphically by showing the imaginary part of Eq. (3.27)

calculated for a typical sample, and the same signal calculated after an artificial phase

shift of +1° has been introduced.
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Figure 3-16: The imaginary part of Eq. (3.27) as the delay time crosses zero should
be constant. A phase shift introduced by the instrumentation will cause Y signal to
"jump."

After the data is collected, the change in the Y signal, AYo, and the change in

the X signal, AXo, are measured as the delay time crosses t = 0, and the phase

introduced by the instrumentation is computed from AO = tan-'(AYo/AXo) Then,

the measured X and Y signals are corrected by rotating the signal in the complex

plain [20]:

Xfixed = X cos(A€) - Y sin(AO) (3.53)

Yfixed = Y cos(A4) + X sin(A€)



The phase correction routine is performed automatically with a MATLAB script.

Figure 3-17 shows a typical out-of-phase signal before and after the instrumentation

phase has been cancelled via Eq. (3.53).
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Figure 3-17: The out-of-phase signal before and after the instrumentation phase has
been cancelled. The signal appears somewhat noisy because in this case the phase
shift was small, so the bounds on the signal axis are tight.

3.5 Sensitivity Analysis

With any experimental technique, it is important to quantify the sensitivity of the

method to the parameters of interest. As we discussed in Section 3.4.1, we can fit our

data to the signal amplitude, R, or phase, ¢, and so here we look at the sensitivity

of both of these quantities to different properties of the system. We will define the

sensitivities to a parameter x in a manner similar to that of Gundrum et. al. [22]:

SR,2

SOX

d In R
d In x
do

d In x

(3.54)

(3.55)



We use the logarithmic derivative for a sensitivity analysis because it normalizes the

absolute magnitudes of the quantities being studied, since d In x = d ln x/x.

A typical thermal conductivity measurement involves two fitting parameters: the

thermal conductivity of the substrate, and the thermal interface conductance between

the Al layer and the substrate. In Fig. 3-18, we plot the amplitude sensitivity, SR, for

both of the parameters for two different substrates: SiO 2, with a thermal conductivity

of 1.38 W/mK, and Si, with a thermal conductivity of 140 W/mK, as a function of

the stage delay time. All sensitivity calculations in this thesis are done using typical

best-fit values of the thermal interface conductances. For Si and SiO 2, the thermal

interface conductances were taken as 100 MW/m 2K and 150 MW/m 2K, respectively.

The modulation frequency is 10 MHz.
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Figure 3-18: The amplitude sensitivity, SR to thermal conductivity and thermal in-
terface conductance for two different substrates: SiO 2, with a thermal conductivity
of 1.38 W/mK, and Si, with a thermal conductivity of 140 W/mK, as a function of
delay time for a modulation frequency of 10 MHz.

There are two notable features in Fig. 3-18. First, in SiO 2 , a low thermal conduc-

tivity material, the sensitivity to the thermal interface conductance is much smaller

than the sensitivity in Si, a high thermal conductivity material. The other main

feature, present in both materials, is that the sensitivity to thermal conductivity

increases at longer delay times. This makes physical sense, since at the long-time

response is dominated by thermal diffusion into the substrate.



As we discussed in Section 3.4.1, we often find it more convenient to fit to the

phase of the lock-in signal. Figure 3-19 plots the phase sensitivity SO for the same

parameters described in Fig. 3-18. As with the amplitude sensitivity, phase sensitivity

to the interface is small in SiO 2 and large in Si. The dependence of the sensitivity on

delay time is not as simply interpreted, since the phase data is more strongly affected

by accumulation effects which shift the initial value of the signal phase.

U.2

0.15

0.1

• 0.05

0

Substrate Conductivity
- SiO 2

Interface Conductance

' ' '"

0.1- Substrate Conductivity

o.o5 Silicon
0-

-0.05
Interface Conductance

-0.1

-0.15

-0.2

_02 O,,,

102 10 10 103

Time (ps) Time (ps)

Figure 3-19: The phase sensitivity, SO to thermal conductivity and thermal interface
conductance for two different substrates: SiO2 and Si, as a function of delay time.

Another way of illustrating sensitivity is to plot the best fit curve along with the

experimental data, and then vary the parameter of interest by a certain percentage

and see how the solution changes. Figure 3-20 shows the best fit curves for phase and

amplitude data from 2 pm of thermal SiO2. Solutions obtained by varying the SiO 2

thermal conductivity in the model by ±20% are also shown, giving a visual picture

of the sensitivity to that parameter.

3.6 Sample Results

In this section we present some sample measurements from some common materials

as a verification of the analysis laid out in the preceding sections. All results in

this section were taken with a pump 1/e2 radius of 25 Mm, a probe 1/e2 radius of



bIDorn

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Time (ps) Time (ps)

Figure 3-20: Best fit curves for phase and amplitude data from 2 Am of thermal SiO 2,
and solutions obtained by the thermal conductivity in the model by ±20%.

4 pm, and a modulation frequency of 9.1 MHz. In Fig. 3-21, we show some typical

experimental data, taken from a piece sapphire coated with 75 nm of Al. The phase

data was used to fit both the thermal conductivity and thermal interface conductance,

and the resulting values were used to generate the curves for the other components

of the signal: amplitude, in-phase and out-of-phase data. In this case, the measured

thermal conductivity 39.6 W/mK, and the interface conductance was 78 MW/m 2K,

in good agreement with literature values [16, 62].

In Fig. 3-22, we show phase data and best fit values for four materials with ther-

mal conductivities spanning two orders of magnitude. All thermal conductivity values

are within 3% of accepted values [63]. Values for the thermal interface conductance

were on the order of 100-200 MW/m 2K. Since these values are extremely sensitive

to interface quality and sample coating, it is difficult to compare with existing mea-

surements. They are, however, of the same order of magnitude as previously reported

values [16, 20]. Figure 3-23 shows the amplitude data and fit for the same samples.

3.6.1 The Impact of the Interface

As we discussed in the previous section, extracting thermal conductivity from the

pump-probe measurement typically requires two fitting parameters: the thermal con-

p,
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Figure 3-21: Experimental data from sapphire coated with 75 nm of Al. The measured
thermal conductivity 39.6 W/mK, and the interface conductance was 78 MW/m 2K,
in good agreement with literature values [16, 62]
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Figure 3-22: Phase data and best fit values for four materials, taken with a modulation
frequency of 9.1 MHz.
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Figure 3-23: Amplitude data and best fit values for four materials, taken with a
modulation frequency of 9.1 MHz.



ductivity of the substrate, and the thermal interface. When fitting multiple parame-

ters to match one set of data, it is important that the parameters affect the model in

independent ways. In the case of our model, certain sets of parameters (for example,

thermal conductivity and heat capacity, or thermal conductivity and the metal layer

thickness) affect the model in a similar way and so cannot be fit simultaneously. Ther-

mal conductivity and the interface conductance, however, affect the model differently

and can be fit simultaneously.

This fact is corroborated by additional information: acoustic echos generated by

stress pulses induced in the metal film by the laser pulse. This pulse travels through

the Al layer and is partially reflected at the Al-substrate interface. When the reflected

pulses reach the surface of the Al, they produce a bump in the signal, and if the pulse

makes multiple trips through the film then multiple echo bumps will be visible in

the signal. This phenomenon has been studied in detail by others [64, 65], and a

quantitative description is outside the scope of this thesis. The key point here is

that if the interface is poor (for example due to a very thin layer of a contaminating

material or surface roughness), then the echos will be stronger, and in addition the

thermal transport across the interface will be smaller than for a good interface.

Figure 3-24 shows data from two identical substrates (thermal SiO 2) with different

Al coatings. In the data on the left, the interface was contaminated during the

deposition process, probably from glue used to hold a nearby sample, while in the data

on the right, there was no contamination. The acoustic echos in the contaminated

sample are clearly much stronger than in the clean sample, and we would therefore

expect the thermal interface conductance to be much lower.

The full scans from these same two samples are shown in Fig. 3-25. In both cases

the thermal conductivity is the same and matches the literature value [66], but the

thermal interface conductance, G, is very different. In the case of the sample with

many echos, the best fit value is G = 48 MW/m 2K, while for the sample without echos,

G > 200 MW/m 2K. Above this value for a low thermal conductivity substrate, the

interface conductance has little impact on the signal and can be considered infinite.
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Figure 3-24: Data from Al on thermal SiO 2 . In the figure on the left, the interface
was contaminated during the deposition process, while in the data on the right, there
was no contamination. The acoustic echos in the contaminated sample are clearly
much stronger than in the clean sample.
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Figure 3-25: Full scan from the samples shown in Fig. 3-24. In the case with many
echos, the thermal interface conductance is low, while in the case without echos it
is high enough to have no impact on the measurement. The same value of thermal
conductivity value is used in both fits.
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3.7 Sample Preparation

3.7.1 Choice of the Metal Transducer

The thickness and optical quality of the metal absorber are critical to the accuracy of

the pump-probe measurement. The metal layer must be sufficiently thick to prevent

light from reaching the substrate, which may have its own transient reflection signal

that would interfere with the measurement. On the other hand, if the layer is too

thick, the diffusivity of excited electrons in the film begin to interfere with the result

and can lead to incorrect results [17].

We use aluminum as the metal transducer layer, although other metals could also

be used depending on the application. For most cases, aluminum is the superior

choice for two reasons. The first is its high absorptivity at both 400 nm and 800 nm.

Figure 3-26 shows the 99% absorption depth of aluminum, silver and gold from wave-

lengths from 350 nm to 850 nm [67]. Although the figure indicates that 40 nm of

Al should be sufficient to absorb all incoming light, the actual optical properties of

thin metallic films is highly dependent on the deposition process [68]. In practice,

it has been found that an Al layer between 80 nm and 120 nm thick is optimal for

pump-probe measurements [17]. The other reason for using Al is that at the probe

wavelength, 800 nm, Al has the highest thermoreflectance coefficient of common met-

als [39]. Therefore, for a given temperature change an Al-coated sample will have the

best signal-to-noise ratio.

As we saw in the preceding section, the quality of the Al-substrate interface can

have a huge effect on the measured signal, although the model allows the thermal

interface and substrate conductivity to be obtained simultaneously. Unfortunately,

film thickness and thermal conductivity affect the measurement in similar ways and

cannot be determined simultaneously. Therefore, it is important to understand the

impact of the thickness of the Al layer on the measurement result.

Figure 3-27 shows the phase sensitivity, So of the measurement to the Al layer

thickness, Al layer thermal conductivity, and for comparison, the sensitivity to the

thermal conductivity of the substrate for SiO 2 and Si. The thickness of the Al layer
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Figure 3-26: The 99% absorption depth for Aluminum, Silver and Gold.

has an equal or greater impact on the signal than substrate thermal conductivity,

depending on the delay time, due to the heat capacity of the layer. A 5% error in film

thickness will typically lead to a 5-10% error in the thermal conductivity value. The

thermal conductivity of the metal layer, however, has virtually no impact on the mea-

surement a long as it is above 150 W/mK. Since bulk Al has a thermal conductivity

of 240 W/mK, even a relatively poor quality film will meet this requirement.
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Figure 3-27: Phase sensitivity of the measurement to the Al layer thickness, Al layer
thermal conductivity and the thermal conductivity of the substrate for SiO 2 and Si.



3.7.2 Film Thickness Characterization

As Figure 3-27 indicates, the measurement is quite sensitive to the thickness of the

metal layer. Therefore, it is important that we characterize this thickness as accu-

rately as possible. Fortunately, the measurement itself often provides this information

in the form of acoustic echos [64], as we discussed in Section 3.6.1, and the thickness

of the film can be accurately determined to within 1-2 nm. Figure 3-28 shows the

acoustic echos in an 75 nm Al film on an SiO 2 substrate.
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Figure 3-28: Acoustic echos in an 75 nm Al film on an SiO 2 substrate.

Each echo results from the sound pulse making one round trip through the Al

film, and so the film thickness can be determined from:

(3.56)d = techoVs
2

where d is the film thickness, techo is the time between echos and v, is the longitudinal

sound speed in the medium. In the case of Al, the longitudinal sound speed is taken

as 6260 m/s [69]. Figure 3-29 illustrates the process for determining the film thickness

graphically.

The thickness of the deposited Al film may vary significantly across the exposed
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Figure 3-29: Measurement of the round-trip time of a sound pulse in an Al film.

area of the deposition chamber, and the nominal thickness value returned by the

deposition machine is often only a rough estimate of the true thickness at any given

location on the sample. For example, we used the acoustic echo technique to map

out the Al thickness over an entire wafer coated in the ebeam chamber in MIT's

Exploratory Materials Laboratory. The results are shown in Fig. 3-30. The desired

thickness entered into the machine was 75 nm, but the actual thickness varied from

62 nm to 87 nm.

These results indicate that it is important to measure the Al thickness using

acoustic echos for each sample tested, or at least for samples separated in the chamber

by more than a few centimeters, depending on the deposition process and chamber.

For some materials, if the acoustic impedance of the Al layer and the substrate match

well and the interface is clean, the echos will not be strong enough to clearly measure

the echo time. In this case, an alternative method is to place a small piece of a known

substrate next to the sample in the deposition chamber. The thermal properties

of the known substrate can then be used to calibrate the thickness of the Al layer

in the nearby vicinity. We tried this approach for samples of SiO 2 and Si that did

show strong acoustic echos, and found that the thickness determined via echos and
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Figure 3-30: Aluminum thickness over an entire wafer coated in the ebeam chamber

in MIT's Exploratory Materials Laboratory, as measured with acoustic echos.

determined via calibration to the known thermal properties typically agreed within

2 nm.

3.8 Steady Heating and Linearity

All of the analysis in this chapter is built upon the assumption of linearity. This

requires that the thermoreflectance coefficient is linear with temperature over the

range of temperatures we induce in the experiment, and that the physical properties

remain constant. In addition, there is a steady temperature rise in the sample due

the accumulation of heat in the sample which is balanced by loss to the surroundings.

We can estimate each of these effects.

Roughly, we can estimate the temperature rise in the metal absorber due to a

pump pulse by

AT Q (3.57)
pcpd

where Q is the absorbed energy per unit area and d is the absorption depth of the

metal at the pump wavelength. If we put in typical values (a pump spot with 1/e 2

E
o



radius of 25 um and power 100 mW, an absorption depth of 10 nm and a reflectivity

of 98%), we get a temperature rise on the order of 0.5 K. This is small enough that

the thermoreflectance coefficient and physical properties can be treated as constant.

The steady temperature rise can be estimated by solving the problem of a semi-

infinite medium subjected to a steady heat input q(r) = (2Ao/lrwg) exp(-2r2/w )

where Ao is the total absorbed power and w0o is the 1/e 2 beam radius. Figure 3.58

shows the calculated surface temperature due to both pump and probe beams in SiO 2,

with k = 1.4 W/mK, and Si, with k = 140 W/mK. The input parameters were a

pump radius of 25 fLm and power of 60 mW, and probe radius of 4 pm and 5 mW,

and a reflectivity of 0.98.

0
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Figure 3-31: Calculated steady temperature rise in SiO 2
mental conditions.

We can also quickly estimate the mean

quency limit of Eq. (3.48) [19]:

and Si under typical experi-

temperature rise by taking the low fre-

(1 - R)4
oa(27rW2 + 2rw2) 1/2 (3.58)

Here AT is the probe-averaged steady temperature rise, q is the combined incoming

laser power of the pump and probe beams, R is the sample reflectivity, a the thermal

conductivity, and wo and wl are the pump and probe radii, respectively. For a thermal

conductivity of around 1 W/mK, this gives a temperature rise of 10-15 K, while for



a thermal conductivity of 100 W/mK, the temperature rise is around 0.1 K under

typical experimental conditions.

The above calculations indicate that the thermal system should behave in a linear

way and that the steady temperature rise should be modest. We can verify this by

making several measurements at different fluence levels and comparing the results.

The mean fluence, or energy delivered in one pulse per unit area, over the 1/e2 radius

wo is given by
1 wo 2Ao -2r2 Ao1 = - 2Ao exp (,-2r2- 2rr dr = 2 (3.59)

where hereAo is the total energy per pulse. The peak fluence is given by

1 R 2Ao -2r2 ' 2Ao
fpeak = lim 2 2 exp 2 2rr dr = 2f (3.60)a--.o wr exp Wo2r dr - rwo

Figure 3-32 shows data from a silicon sample taken at four mean fluence levels

from 0.75 J/m 2 to 5 J/m 2. The plot on the left show the amplitude signal plotted

on a linear scale, while the plot on the right shows the same data plotted on a log

scale. Because the system is behaving linearly and steady heating is not having a

noticeable effect, on a log scale the signals are simply shifted copies of each other. At

lower fluence levels the signal becomes increasingly noisy.

In Fig. 3-33 we subtract the signal at t = 0 and normalize all four curves at

t = 100 ps. Aside from an increase in noise at lower fluence levels, the curves are

indistinguishable.

Finally, we perform a similar test on an SiO2 sample. Since the thermal con-

ductivity is 100 times smaller than in Si, steady heating could be more of a factor.

Figure 3-34 shows data taken at three fluence levels, plotted on a log scale. As in

the case of the Si data, the curves appear as shifted copies of each other. The ther-

mal conductivity of Si0 2 increases with increasing temperature at a rate of roughly

0.2%K - 1 near 300 K [70], so the fact that the shape of the curves does not change

implies that temperature rise is at most a few degrees K and steady heating is not an

important factor under typical experimental conditions. However, if the optical qual-

ity of the metal film is poor and the reflectivity is significantly lower, the absorbed
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Figure 3-32: Data from silicon at four fluence levels. The plot on the left has a linear
scale, while the plot on the right shows the same data plotted on a log scale. Because
the system is behaving linearly and steady heating is not having a noticeable effect,
on a log scale the signals are shifted copies of each other.
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Figure 3-33: The data at four fluence levels from
been subtracted and each curve is normalized at
noise, the curves are indistinguishable.
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power will increase and the measurement will be affected; at some point the absorbed

power may high enough to burn the sample.
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Figure 3-34: Data from SiO2 at three fluence levels. The fact that shape of the curves
does not change implies the steady temperature rise is small.

3.9 Summary

A mathematical description of the measurement process has been given using the

language of linear systems theory, encompassing the work on pulse accumulation by

Capinski et. al. [15] and its extension to radial isotropic heat conduction through

multilayer structures by Cahill [19], in a clear, consistent way. This approach enables

us to explore the relationship between pulse accumulation and radial conduction

effects and clearly show how pulse accumulation essentially allows two length scales to

be probed simultaneously. In addition, our analytical solution for radial heat transfer

through multilayer structures includes anisotropic thermal properties without any

additional computational expense over the isotropic solution given by Cahill [19].

A method has been presented for fitting the phase data and the various factors

that can affect the final measured thermal conductivity were discussed. The measured

value is sensitive to the thickness of the Al layer, although this can be determined



using acoustic echos or via a reference material placed near the sample during Al de-

position. Finally, it was shown that nonlinearity and steady heating are not important

factors under typical experimental conditions.



Chapter 4

Application of the Pump-Probe

Technique to Liquids, Anisotropic

Properties, and Microstructures

In the previous two chapters, we described the apparatus and theory for measuring the

thermal properties of solids. Now, we build on those results to extend the pump-probe

technique into new territory. Three topics will be addressed: (1) the measurement of

liquids; (2) measurement of in-plane thermal properties in anisotropic samples; and

(3) the characterization of microstructures.

4.1 Thermal Conductivity of Liquids

In this section, we present a convenient method for measuring the thermal conduc-

tivity of liquids. The principle is simple: liquid is placed on a glass substrate coated

with a thin film of metal. The laser impinges on the metal through the glass, and the

cooling of the metal film is used to deduce the thermal conductivity of the adjacent

liquid.

This approach has unique advantages over other methods for measuring the ther-

mal conductivity of liquids. Only a few pL of liquid (often a single droplet) are

needed to obtain a reliable measurement. This is far less than the volume needed for



the standard hot-wire method developed by Nagasaka [71], and at such small volumes

the effects of convection are eliminated. And, because there is no direct interaction

between the laser light and the liquid, there are no restrictions on its optical prop-

erties. This is an advantage over transient grating methods which rely on thermally

induced changes in the optical properties of the liquid to obtain thermal diffusiv-

ity [72, 73]. In addition to liquids, the technique can be applied to malleable solids

such as viscous grease and, epoxy.

The method requires that the thermal properties of the Al-coated glass slide are

well-known. We find the thermal conductivity of the glass, the Al-glass thermal

conductance, and the thickness of the Al layer by applying the methods described in

the previous section to the coated slide. Once these properties are known, they are

kept constant while multiple liquids are tested.

4.1.1 Experimental Setup and Procedure

Liquid samples are held in the arrangement shown in the left-hand illustration of

Fig. 4-1. A piece of glass is coated with 70-100 nm of Al which acts a temperature

transducer. Liquid is placed in contact with the Al and is held in place with a second

piece of glass. The second piece of glass typically has a channel 100-200 [im deep

etched in it to contain the liquid, although in practice we achieve identical results if

a flat piece of glass is used to trap a thin liquid layer with surface tension. The pump

and probe beams impinge through the glass onto the Al, and the properties of the

liquid are deduced from the cooling curve. The same approach works for amorphous

solids like pastes, greases and epoxies, which are simply applied to the Al surface as

shown in the right-hand illustration of Fig. 4-1.

4.1.2 Theory

As with solids, an analytical solution for heat transfer in the sample is most easily

obtained in the frequency domain. In Section 3.3, the solution for the surface tem-

perature was obtained for unidirectional heat flow through a multilayer structure;
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Figure 4-1: Sample arrangement for measurement of liquid thermal conductivity (left)
and greases, pastes and other malleable solids (right).

the final result, including radial conduction, is given by Eq. (3.50). Now, we extend

the solution to the case of bidirectional heat flow by solving two layered systems and

matching the boundary conditions at the interface. The model problem is illustrated

in Fig. 4-2.

The problem is comprised of two multilayer systems, each of which can be rep-

resented by a system matrix found by multiplying matrices for the individual layers

together as was done in Eq. (3.35) for unidirectional heat flow. The first system, M 1,

is a two-layer stack consisting of the interface conductance G 1 between the glass slide

and the Al, and a semi-infinite glass layer. The second system, M 2 , has three layers:

the Al layer, the conductance G2 between the Al and the liquid, and a liquid layer.

Optionally, if the liquid layer is very thin (less than " 1 pm, a fourth, semi-infinite

glass layer can be included.

For each matrix system, we can write

S[ A , B I [ : (4.1)
L A,[ D] f[,1]
Ob,2 A2 B2 Ot,2

A, 2 2 D2 ft, 2

I

_ _
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Figure 4-2: Thermal model for bidirectional heat conduction into the liquid and glass
substrate. The problem is divided into two multi-layer stacks: Stack 1 consists of
the thermal conductance between the glass and the Al transducer layer, and a semi-
infinite layer of glass; stack 2 consists of the Al transducer, the thermal conductance
between the Al and the liquid, and a semi-infinite liquid layer.

The boundary conditions at the interface are:

0 = Ot,i = Ot,2

f = ft,i + ft,2

(4.2)

(4.3)

where 0 is the common interface temperature and f is the total heat flux supplied to

the system.

Again assuming either adiabatic or semi-infinite bottom surfaces for each stack,

we can we write:

C1 + Dift,i = 0 (4.4)

C20 + D2 (f - ft,1) = 0



After some algebra, we find the temperature of the Al layer at the Al-glass interface:

0 ( -DI D2 f  (4.5)

In a method analogous to the one used in Section 3.3.2, we find that this result

holds true for one-dimensional conduction, or two dimensional conduction with radial

transport after taking a Hankel transform of the diffusion equation to get the matrix

elements in Eq. (4.1). The final frequency response of the measured aluminum tem-

perature in real-space is identical to Eq. (3.50), except that the term -D/C has been

replaced by combination of matrix elements in Eq. (4.5):

A 0 0 -DD2 (-k(2 (W2
H(w) = Ao k D D2C exp dk (4.6)

2r DIC2 + D2C1 8

This solution for the frequency response is inserted in Eq. (3.27), which we integrate

numerically.

4.1.3 Sensitivity

We can use the phase sensitivity, SO, as defined in Eq. (3.54) to examine the sensi-

tivity of the measurement in various situations. We focus on the phase sensitivity

here since generally we use the signal phase to fit the physical properties. In general,

sensitivity is limited by heat flow into the glass, which has a thermal conductivity

on the order of 1 W/mk; sensitivity increases as the fraction of heat flowing into

the liquid increases. Figure 4-3 shows sensitivity to both the liquid thermal conduc-

tivity and the Al-liquid interface conductance for water and decane. Water has the

highest thermal conductivity of commonly encountered liquids, around 0.6 W/mK at

room temperature, while decane has a low value typical of many hydrocarbon liquids,

0.13 W/mK. In both liquids, sensitivity to the thermal conductivity is significantly

greater than sensitivity to the interface conductance, and in decane the interface sen-

sitivity is so small that it is difficult to obtain a reliable value. For the sensitivity

calculation, the Al-liquid interface conductance is taken as 60 MW/m 2K, a value



that typically produced good fits in our measurements and is in line with previously

published observations [44].
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Figure 4-3: Sensitivity liquid thermal conductivity and the Al-liquid interface conduc-
tance for water and decane. Water has a thermal conductivity of 0.6 W/mK at room
temperature, while that of decane is 0.13 W/mK. The Al-liquid interface conductance
is taken as 60 MW/m 2K.

Figure 4-4 plots the phase sensitivity to the liquid thermal conductivity and the

Al-liquid conductance as a function of liquid thermal conductivity. The values are

plotted for a delay time 7 of 1000 ps, although the curves look similar over the range

of delay times. As the figure shows, the model is an order of magnitude more sensitive

to the liquid thermal conductivity than to the interface conductance, and in general

sensitivity to both quantities increases with liquid thermal conductivity since a larger

fraction of heat flows into the liquid rather than the glass slide.

Finally, we look at the effect of the thickness of the liquid layer on the measure-

ment. Since the thermal conductivity of both liquid and glass are low, accumulation

effects will be important and the relevant length scale of the problem will be de-

termined by the penetration depth of the thermal waves at the EOM modulation

frequency, which is typically 1-10 MHz. In Fig. 4-5, the sensitivity to the liquid

thickness is plotted for water and decane at 1 MHz and 10 MHz. As expected, a

thicker layer of liquid is probed for water since it has 5 x higher thermal conductivity.

Also, for both liquids decreasing the frequency from 10 MHz to 1 MHz increases the

Decane
decane conductivity

Al-decane interface

,
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Figure 4-4: Phase sensitivity to the liquid thermal conductivity and the aluminum-
liquid thermal interface conductance taken at a delay time of 1000 ps, plotted as a
function of liquid thermal conductivity.

thickness of the liquid being probed by a factor of ~.3, or vi0. This is expected since

the thermal penetration depth is given by L = V27ira/wo where a is the thermal

diffusivity of the liquid. At 10 MHz, sensitivity to the liquid layer thickness vanishes

after 200 nm of liquid for both liquids. This implies that an extremely thin film of

liquid is sufficient to obtain thermal properties without accounting for the effects of

the containing glass slide or channel.

4.1.4 Results

The amplitude and phase of a typical liquid measurement, in this case from deionized

water, are shown in Fig. 4-6. Qualitatively, the data appear similar to data obtained

from solids, except for the a superimposed weak, decaying oscillation. Figure 4-7

shows the first 500 ps of a similar set of data, exposing the oscillations more clearly.

Theses oscillations are due to the fact that we are now probing the Al through a trans-

parent medium and are detecting a phenomena known as Brillouin back-scattering

(BBS) [33]. BBS is well known and has been used to study a wide range of acoustic

phenomena in solids and liquids. A detailed treatment is outside the scope of the
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Figure 4-5: Sensitivity to the liquid thickness is for water and decane at 1 MHz and
10 MHz.

this thesis, but in essence the oscillation arise from the interference between the re-

flected acoustic pulse and the probe wavelength. Through conservation of momentum,

at normal incidence the acoustic frequency, fac, is related to the probe wavelength

through fac = 2nc/A where n is the index of refraction, c is the speed of sound in

the transparent medium, and A is the probe wavelength. The measured acoustic fre-

quency in this case is 21 GHz, and the result can be used to calculate the speed of

sound in the glass slide: c = 5500 m/s, consistent with the accepted value for Pyrex

glasses. The oscillations are small enough compared to the thermal signal that they

do not interfere with the model fit, especially in the case where the phase data is used

since no normalization of the data is necessary.

As with solid measurements, we use a least-square minimization routine to vary

the liquid thermal conductivity and the Al-liquid thermal conductance, G2, to match

Eq. (3.27) to the data. The fit value for the interface conductance varied widely at

different locations on the sample, and from liquid to liquid. We attribute this to the

fact that our slides became microscopically scratched after numerous tests, and also

to the fact that the model is generally not very sensitive to the interface parameter, as

shown in Fig. 4-5. Nonetheless, values for G2 typically ranged from 50-100 MW/m 2K

for our samples, in fair agreement with other findings. [44] Sample phase data and
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Figure 4-6: Amplitude and phase of a typical liquid measurement, in this case from
deionized water.
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Figure 4-7: Signal oscillations caused by Brillouin back-scattering in the glass slide
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best fit curves for three liquids and air are shown in Fig. 4-8. The same fits for the

amplitude data are shown in Fig. 4-9. Water is among the most thermally conductive

liquids (excluding liquid metals and salts), while air it fit well assuming an adiabatic

boundary condition at the Al-air interface. Thus, most liquid measurements will fall

within the range of these four curves. For this data, a Pyrex slide with a thermal

conductivity of 1.1 W/mK was used. The slide was coated with 75 nm of Al.

bo

1000 2000 3000 4000 5000

Time (ps)

Figure 4-8: Phase data and best fit curves for three liquids and air.

Six liquids and a thick silicone grease were measured with this method at room

temperature. Typically, we would measure five locations on a sample and take the

mean value; variation between locations was on the order of 10%, slightly higher for

the low conductivity liquids. The results are compared to the accepted values at

300 K in Fig. 4-10. The largest error is less than 5%.

We verified that convection was not present by trying three liquid channel depths

(200 /Lm, 100 tim, and a droplet squeezed between two slides) for two liquids, water

and decane. One would expect that viscous forces would overwhelm inertial forces

at these length scales, and indeed we saw no change in our results among these

configurations. The steady temperature rise in the liquid is similar to that for glass
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Figure 4-9: Amplitude data and best fit curves for the same three liquids and air.
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Figure 4-10: Measured
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and accepted thermal conductivity values for six liquids and
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as we discussed in Section 3.8. We did not see a significant change in our results as

we changed the pump power from 20-80 mW, although above 80 mW signal stability

decreased, possibly due to bubble formation.

One additional observation is that water proved the most difficult liquid to mea-

sure, due to a reaction between the aluminum and water while the laser was focused

onto the sample. For an Al film on the order of 70 nm, the signal would usually

become unstable within a few seconds and obtaining a reliable measurement was im-

possible. Other liquids, such as decane, remained stable indefinitely. We overcame

this problem by using a slide coated with 100 nm of Al. The thicker film degraded

more slowly and the signal would usually remain stable for a minute or more, long

enough to obtain several measurements from one location. A better solution may

be to change the transducer metal to a nonreactive metal such as gold, which has a

smaller thermoreflectance coefficient but would not react with the water.

Malleable Solids

As we mentioned in the introduction to this section and showed in Fig. 4-1, this tech-

nique provides a convenient way to measure the thermal conductivity of a whole class

of malleable solids such as greases, pastes and epoxies. In Fig. 4-11 we show sample

phase and amplitude data from two such materials: silicone grease (k = 0.2 W/mK)

and an alumina-impregnated epoxy (k = 2.1 W/mK). In addition, measurements

were made on a silver paint and on a boron nitride film that was applied via spray

can, but the measured signals in these cases were identical to that of a slide with no

material applied, indicating that there was a gap between the Al layer and the applied

substance. This hints at the potential of the method for evaluating the behavior of

thermal interface materials in practical applications, such as between a heat-sink and

a microprocessor, a possibility we discuss further in Section 6.2.
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Figure 4-11: Sample phase data (left) and amplitude data (right) and best fit
curves for silicone grease (k = 0.2 W/mK) and an alumina-impregnated epoxy
(k = 2.1 W/mK).
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4.2 In-Plane Thermal Properties

In the previous chapter, special attention was given to the role of pulse accumulation

effects and they way they mix the impulse response of the thermal system, h(7), with

the response to a periodic input, H(w), in the measured signal. As we discussed

in Section 3.3.2, the impulse response decays over a length scale sufficiently short

compared to the beam spot radius that all transport is essentially one-dimensional.

The frequency response, however, has a characteristic length of L = V27ra/wo which

can be comparable to the focused spot size. In this case, radial conduction effects

enter into the signal and should be accounted for to obtain an accurate measurement.

As we showed, the one-dimensional solution, Eq. (3.34), can be extended to include

radial effects by re-defining the variable q as

2 rk2 + pCiW
2 -k (4.7)O~z

which contains both the radial, or in-plane thermal conductivity, ar, and the cross-

plane thermal conductivity, a,.

In this section, we take advantage of the fact that both thermal conductivities

are present in the solution and show how, under the right conditions, we can ex-

perimentally obtain both the in-plane and cross-plane thermal conductivities. The

primary example will be single-crystal graphite. It is highly anisotropic, and its ther-

mal properties are well-known, so it is a convenient way to verify the technique. We

also examine the more difficult case of a SiGe superlattice and discuss the limitations

of the method.

4.2.1 Highly Ordered Pyrolytic Graphite

Graphite has a lamellar structure, composed of stacked planes. The bonding forces

within the lateral planes are much stronger than those between the planes, thus ex-

plaining its highly anisotropic elasticity and lattice thermal conductivity [74]. Highly

ordered pyrolytic graphite (HOPG) is characterized by large, single-crystal regions
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which can be expected to exhibit maximum mechanical and thermal anisotropy. Lit-

erature values for the cross-plane thermal conductivity are on the order of 5-8 W/mK,

while the in-plane thermal conductivity is around 2000 W/mK, or 300x higher than

the cross-plane value [63]. Figure 4-12 shows an image of a HOPG sample from our

CCD camera. The large, single-crystal grains are clearly visible. The pump and probe

spots are focused within the white circle in the image.

Figure 4-12: An image of our HOPG sample. Large, single-crystal grains are clearly
visible. The pump and probe spots are focused within the white circle in the image.

The sample was coated with 72 nm of Al, as determined by acoustic echos. Fig-

ure 4-13 shows the clear echo signal.

Unlike the thermal measurement of a thermally isotropic sample, the model for an

anisotropic solid requires three unknown parameters: the cross-plane conductivity, az,

the in-plane conductivity, ao, and the Al-sample interface conductance, G. However,

when the beam spot is large and the modulation frequency is high, the model is

insensitive to the in-plane properties. Thus, we can perform a measurement with a

large pump spot at high frequency to measure az and G in exactly the same was

as described in the previous chapter, ignoring anisotropy. Then, we can perform

additional measurements at lower frequencies, or smaller spot sizes, or both, to extract

ar, using the values we obtained for az and G from the high-frequency measurement.

In Fig. 4-14, we show how the sensitivity of graphite to in-plane thermal conductiv-

ity varies as a function of modulation frequency and pump spot size. All calculations
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Figure 4-13: Acoustic echos from the HOPG sample. The measured Al thickness is
72 nm.

use the best-fit values for thermal properties, as listed in Table 4.1. In the left figure,

the probe 1/e 2 radius is 5 pm and pump 1/e 2 radius is 25 pm. By reducing the mod-

ulation frequency from 12 MHz to 1 MHz, sensitivity is increased by more than an

order of magnitude. In the figure on the right, the delay time is fixed at T = 1000 ps

and the probe 1/e 2 radius is held at 5 pm while the pump radius is varied. At 12 MHz

modulation, when the pump radius is 50 pm there is virtually no sensitivity to a,. At

lower frequencies smaller pump sizes, however, the measurement is sensitive to radial

conductivity.

Figure 4-15 shows both the phase and amplitude data, along with best fit curves,

at a modulation frequency of 11.6 MHz, a probe radius of 5 um and a pump radius

of 50 p m . Under these conditions, the measurement is insensitive to the in-plane

conductivity and we find the cross plane thermal conductivity, a,, to be 5.7 W/mK

and the interface conductance, G, to be 48 MW/m 2 K. The density and specific heat

were taken as 2700 kg/m 3 and 709 J/kgK, respectively [63].

Following this measurement, the pump spot radius was reduced to 26 pm and the

measurement was repeated at three frequencies: 11.65 MHz, 3.65 MHz, and 1.11 MHz.

The phase data and best fit curves are shown in Fig. 4-16. As we would expect

from our discussion in Section 3.2, when the EOM modulation period becomes long
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Figure 4-14: Sensitivity of graphite to in-plane thermal conductivity. In the left
figure, the probe 1/e 2 radius is 5 um and pump 1/e 2 radius is 25 Mm. In the figure
on the right, the delay time is fixed at T = 1000 ps and the probe 1/e 2 radius is held
at 5 lpm while the pump radius is varied.
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Figure 4-15: Phase and amplitude data for HOPG,
modulation frequency of 11.6 MHz, a probe radius
50 sm.

0 1000 2000 3000 4000 5000

Time (ps)

along with best fit curves, at a
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compared to the pulse period, the signal begins to approach the frequency response

at the modulation frequency. This is apparent in Fig. 4-16, where the phase angle of

H(wo) is indicated at each frequency.

b0

P)
F4

0 1000 2000 3000 4000 5000

Time (ps)

Figure 4-16: HOPG data and best fit curves at three frequencies. The pump spot
radius is 26 pm and the probe radius is 5 pm. Values of the phase angle of H(wo) are
indicated at each frequency.

From the sensitivity analysis shown in Fig. 4-14, with a 26 pm pump radius

we expect the measurement to be somewhat sensitive to in-plane conductivity at

3.65 MHz and more sensitive at 1.11 MHz. In Fig. 4-17, we plot the data and best fit

curves at both frequencies, and also the solutions obtained by varying the in-plance

conductivity by ±20%. The cross-plane conductivity and interface resistance values

are taken from the high frequency measurement shown in Fig. 4-15.

The best-fit value obtained for the in-plane thermal conductivity at 3.6 MHz is

1875 W/mK, 4% lower than the literature value of 1950 W/mK [63]. At 1.11 MHz

the value is 2034 W/mK, 4% higher than the literature value. This discrepancy could

arise from small non-idealities in spot geometry which would manifest themselves

differently at different frequencies, or simply from measurement error due to the
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Figure 4-17: HOPG data and best t curves at 3.6 MHz (left) and 1 MHz (right).
Solutions obtained by varying the in-plane thermal conductivity +20% are also shown.

different amount of noise and level of sensitivity at each frequency. The results for

HOPG are summarized in Table 4.1.

Table 4.1: Results for HOPG at 300 K

Property Frequency Pump Radius Measured Literature [63]
Uz 11.65 MHz 50 pm 5.72 W/mK 5.7 W/mK
a, 3.65 MHz 25 pm 1875 W/mK 1950 W/mK
0r 1.11 MHz 25 pm 2034 W/mK 1950 W/mK

4.2.2 SiGe Superlattices

In the previous section, we demonstrated the ability to measure in-plane thermal

conductivity and produced results that matched well with literature values. Now we

turn to a more difficult sample which illustrates the potential and also the limita-

tions of this technique. The sample is a superlattice (SL) comprised of hundreds of

alternating layers of Si and Sio.7Geo.3. The basic unit cell is illustrated in Fig. 4-18.

Such structures have been extensively studied both theoretically and experimen-

tally due to their potential value as thermoelectric materials [75] and as unique sys-

tems for characterizing phonon transport [76]. Because the superlattice films are typ-
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5 nm

10 nm

Figure 4-18: Unit cell of our Si/Sio.7Geo.3 superlattice

ically thin, the majority of thermal measurements have been made in the cross-plane

direction [77, 78]. In-plane thermal measurements are considerably more difficult be-

cause the contribution of the substrate must be subtracted from the measurement,

and data for in-plane thermal conductivity are scarce [75]. Typical values for cross-

plane thermal conductivity at room temperature range from roughly 1-4 W/mK,

depending on the alloy composition and period of the layers [77]. For one particular

SL, Si(80 A)/Ge(20 A), the measured cross-plane thermal conductivity was 2 W/mK

while the in-plane conductivity was 5 x higher [75]. Theoretically, the ratio of thermal

conductivities has been estimated as between 2-12x, depending on the period and

phonon reflection properties at the layer interfaces [76].

Although we would like to simply apply the same experimental approach to this

sample that we did for HOPG, we are hindered by the fact that the cross-plane ther-

mal conductivity is low, and the anisotropy ratio is 10x smaller, so the measurement

will not be sensitive using the same experimental parameters. In order to measure

the in-plane properties, we need to reduce both the laser spot sizes and the modula-

tion frequency. Unfortunately, when the spots sizes become small enough to achieve

the necessary sensitivity to the in-plane conductivity, the measurement becomes ex-

tremely sensitive to the spot size. Figure 4-19 show the sensitivity to the anisotropy

ratio, ar/az, and also the sensitivity to the pump spot radius, where the sensitivity

here is the phase sensitivity as defined in Eq. (3.54). The cross-plane thermal conduc-

tivity is assumed to be 2 W/mK and the in plane thermal conductivity is assumed

to be 10 W/mK. The probe 1/e 2 radius is taken as 2 /pm while the pump radius is

varied.

As the figure shows, the measurement is 4-5x more sensitive to spot size than
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Figure 4-19: Sensitivity to the anisotropy ratio, a,r/az (left), and the sensitivity to
the pump radius (right). The probe 1/e2 radius is taken as 2 pm while the pump
radius is varied.

the anisotropy ratio for this sample. Sensitivity to thermal anisotropy is greatest

when the pump radius is small, around 2-3 tpm. We also see that the sensitivity to

anisotropy increases with decreasing frequency for small pump sizes, while sensitivity

to spot size does not change significantly with frequency when both spots are small.

Therefore, our best hope is to make the measurements with low frequency and small

spots. This is counterbalanced by the fact that the signal-to-noise ratio of our system

degrades at lower frequencies, and also by the fact that measuring beam radii below

4 pm is unreliable with our current beam profiler.

Therefore, we adopt the following procedure for this measurement. First, we

perform a "normal" cross-plane thermal measurement on the sample, using a high

frequency and a large pump spot, to obtain the a, and G. Next, we change the

focusing lens to a 50 x objective and focus the spots to - 2 pm radii, as determined

roughly by the beam profiler. We use this arrangement to measure a known isotropic

sample (usually thermal SiO 2), and then adjust the beam radius in our model to

match the data, essentially fitting the beam radii using the thermal signal. From

Eq. (3.50), we see that the pump and probe radii do not act independently; as a

result, we can use a single effective beam radius, weff = Vw 2 + w2, to characterize

the system. Using the beam radius obtained in this way and the cross-plane properties
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from the high-frequency measurement, we perform a third measurement, using the

50x objective and a low frequency, 200 kHz. The measurement process is depicted

graphically in Fig. 4-20.

Figure 4-20: Measurement procedure for obtaining in-plane thermal properties from
an Si/Sio.7Geo.3 superlattice

The result from the high-frequency measurement with a 25 pm pump radius is

show in Fig. 4-21. The best-fit cross-plane thermal conductivity obtained is 1.7 W/mK

and the thermal interface resistance is .. 200 MW/m 2K. Figure 4-22 shows the sec-

ond step in the process, fitting the effective spot radius using a piece of thermal SiO 2.

The best fit 1/e2 diameter, 4 pjm, is indicated, along with the curves produced by

varying the diameter by ±20%. Finally, in Fig. 4-23, we show the data and best fit

curve for the in-plane thermal conductivity using the results from the previous two

measurements. The best fit value is 18.7 W/mK, or 11x the cross-plane thermal

conductivity. This is also more than 2x the anisotropy reported by Yang et. al. [75],

although it is a different superlattice system.

Limitations

While this result is interesting, its accuracy is questionable. As we showed in Fig. 4-19,

the result is 5 x more sensitive to spot size than to the in-plane thermal conductivity.

Roughly speaking, a spot-size error of 10% (just 200 nm) translates into a 50% error
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Figure 4-21: Cross-plane thermal
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Figure 4-22: Fit of the effective spot radius using a piece of thermal SiO 2. The best
fit 1/e 2 diameter, 4 tm, is indicated, along with the curves produced by varying the
diameter by ±20%
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Figure 4-23: Data and best fit curve for in-plane thermal conductivity of the
Si/Sio.7Geo.3 superlattice, obtained using a 50x objective and a modulation frequency
of 200 kHz. The best fit value for a, is 18.7 W/mK.

in a,. In addition, although strictly speaking we only calculated the sensitivity to

spot diameter in Fig. 4-19, at low frequency and small spot size we would expect

the measurement to be similarly sensitive to to spot misalignment, and eccentricity

of the spot shape. These effects compound and make it difficult to obtain anything

other than an order-of-magnitude estimate on the in-plane thermal conductivity. The

results could be made more compelling if a series of measurements were made while

varying one parameter systematically, such as the superlattice period or alloy com-

position.

4.3 Characterization of Microstructures

Now we touch on the possibilities of using the pump-probe technique for characterizing

microstructures. We take as an example a zinc oxide (ZnO) belt approximately

30 Mm wide and several mm long. The thickness is on the order of a few microns,

as we will see later. The belts were grown via molten-salt-assisted template-free

thermal evaporation at Boston College [79]. While this section deals with structures

116

1 -

W4



that are a few microns or more in all dimensions, the technique could potentially be

extended to nanostructures which are of scientific and commercial interest. Zinc oxide

nanostructures, for example, have potential applications in optoelectronics, sensors,

transducers and biomedical sciences [80].

An image of a ZnO belt coated with 80 nm of Al is shown in Fig. 4-24. For scale,

a human hair is shown under the same magnification. One of the primary difficulties

in obtaining a clean, stable signal from the sample was the poor surface quality of

the samples; the low reflectivity of the samples made the reflected probe signal weak

and also increased the absorption in the sample, limiting the input power to prevent

burning of the sample. The surface of the belt shown in Fig. 4-24 was sufficiently

reflective to obtain a clean signal.

Figure 4-24: An image of a ZnO belt (left), and for scale a human hair is under the
same magnification (right).

The pump and probe beams were focused onto the sample using the CCD camera

as a guide. An image of the beams focused onto the sample is shown in Fig. 4-25.

The probe spot was 10 pm in diameter and was fully contained on the belt, but the

pump spot had a diameter of 50 pm and was not. The pump spot was kept large to

reduce errors in misalignment and to prevent burning of the sample that would result

from focusing the beam too tightly.
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Figure 4-25: The pump and probe spots focused onto the ZnO belt. The pump spot
diameter is 50 pm and is not fully contained on the belt.
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4.3.1 Thermal Properties

A signal obtained from a ZnO belt is shown in Fig. 4-26. The general decay of the

signal can be used to obtain the thermal conductivity of the sample, while the periodic

ripples can be used to obtain structural properties, as we see in the following section.

V7ý~
0

0 1000 2000 3000 4000 5000
Time (ps)

Figure 4-26: Signal obtained from a ZnO belt.

We apply the method described in the previous chapter to fit the cross-plane

thermal conductivity of the belt. The best fit of the amplitude data is shown in Fig. 4-

27, and the thermal conductivity is found to be 7.3 W/mK. The reported thermal

conductivity value of bulk ZnO is 14-35 W/mK, depending on the porosity [81],

although the thermal properties are a strong function of the synthesis process [82],

and it is not surprising that these structures have a lower conductivity.

The phase data is shown in Fig. 4-28, along with the calculated curve. In this

case, the agreement is poor. This is not surprising since the pump spot is larger than

the width of the belt. As we saw, the phase is sensitive to radial effects and the lack

of cylindrical symmetry in our experiment makes it impossible to obtain consistent

fits of both the amplitude and phase data using a mathematically symmetric solution.

The problem would potentially be solved by focusing the pump beam more tightly

onto the belt, although a better surface quality would probably be needed to limit
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localized heat generation that could burn the sample.
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Figure 4-27: Amplitude data and best fit curve for the ZnO belt.
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Figure 4-28: Phase data for the ZnO belt and the calculated result using a thermal
conductivity of 7.3 W/mK.
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4.3.2 Mechanical Characterization

A series of periodic disturbances are visible in the signal shown in Fig. 4-26. These are

the result of an acoustic impulse making round-trips through the thickness of the belt.

Conceptually, the situation is similar to that in the Al film described in Section3.7.2.

Here, however, the acoustic signal is more complex because the echo signal caused

by the Al-ZnO interface travels through the thickness of the belt and is transmitted

back through the interface, causing additional ripples. The initial impulse signal from

the Al film and the reflected pulse after one round-trip through the belt are shown

in Fig. 4-29

-50 0 50 100 150 200 250 1000 1100 1200 1300 1400 1500
Time (ps) Time (ps)

Figure 4-29: The initial impulse signal from the Al film (left) and the reflected pulse
after one round-trip through the belt (right).

While a detailed analysis of the pulse shape and dispersion of its Fourier compo-

nents after multiple round-trips is outside the scope of this thesis, it is simple to use

the period between echos to estimate either the elastic properties of the belt or its

thickness. The longitudinal sound speed in an elastic isotropic solid is given by [83]

v, = (K + / (4.8)

where K is the bulk modulus, I is the shear modulus and p is the density. If the

Young's modulus, E, and Poisson ratio, a, are known, then the bulk and shear
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modulus can be found from

K = (1/3)E/(1 - 2a)

p = (1/2)E/(1 +a)

(4.9)

Since each disturbance in the signal is the result of one round-trip of the pulse

through the film, the period between pulses, techo, is related to the thickness of the

sample, d, through Eq. (3.56), which we repeat here for convenience:

(4.10)d = techoVs
2

If the thickness of the sample is known from an independent method, such as a

scanning electron microscope (SEM) image, then Eq. (4.10) can be used to extract the

sound speed. In our case, the thickness of the sample in unknown, so we assume the

room temperature sound speed of bulk ZnO, 6015 m/s [81], and estimate the thickness

as 3.55 pm. The process is depicted graphically in Fig. 4-30. While this result is not

in itself particularly interesting, it highlights the potential of the technique for the

characterization of the thickness of microstructures.

0 1000 2000 3000
Time (ps)

4000 5000

Figure 4-30: Determination of the thickness of a ZnO belt using acoustic echos.
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4.4 Summary

Three applications of the pump-probe technique have been described, building on

the foundation of the previous chapter. The first is a new approach for measuring

the thermal conductivity of liquids, greases and pastes which has unique advantages

over existing methods, notably the ability to measure liquid films as thin as a few

hundred nanometers, with no dependence on the optical properties of the liquid itself.

Results spanning the range of commonly encountered liquid thermal conductivities

were presented as validation of the method.

The second major application is the measurement of both cross-plane and in-plane

thermal properties through a variation of the spot size and modulation frequency. The

technique was successfully demonstrated on highly ordered pyrolytic graphite, verify-

ing that the idea is sound. Following this, the approach was applied to a SiGe super-

lattice structure. The low thermal conductivity and modest anisotropy compared to

HOPG required the use of 2 pm pump and probe radii and a 200 kHz modulation fre-

quency to obtain sufficient sensitivity. Under these conditions, spot size uncertainty

and signal noise limited the accuracy of the in-plane thermal conductivity to a rough

estimate and highlighted the technique's limitations.

Finally, in the last section we touched upon the possibilities for the characteriza-

tion of microstructures using a ZnO belt structure 30 /m wide and several mm long

as an example. The thermal conductivity of the belt was measured as 7 W/mK and

the thickness, characterized using acoustic echos, was found to be 3.55 pm.
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Chapter 5

Experimental Investigations of

Nanofluids

5.1 Introduction

In this chapter, we turn to the topic of nanoparticle-seeded fluids, or "nanofluids," a

topic which has received considerable attention in recent years [11, 48], and approach

the topic from two different perspectives: (1) heat transfer between an individual

nanoparticle and the surrounding fluid, and (2) the bulk thermal and viscous prop-

erties of the suspension. For the first case, we use the same pump-probe system

described in the previous chapters, reconfigured for transmission geometry rather

than reflection. In the second case, we use a different optical technique, impulsive

stimulated thermal scattering (ISTS) [49], which belongs to a class of techniques

known as transient grating (TG) methods. The experimental apparatus for this mea-

surement was constructed by students in the Keith Nelson group in the Department

of Chemistry at MIT.

5.2 Transient Absorption of Gold Nanorods

Gold nanorods (Au NRs) are ideal candidates for studying the thermal interaction

between a nanoparticle and its surroundings for several reasons. Absorption and scat-
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tering of electromagnetic radiation by noble metal nanoparticles are strongly enhanced

due to surface plasmon (SP) resonance, the collective oscillation of conduction-band

electrons in the nanoparticles [84]. The frequency of the SP resonance depends on

the size and shape of the nanoparticles as well as their dielectric constant and that

of the surrounding medium. The size and aspect ratio of the rods can be precisely

controlled through chemical synthesis techniques, making it possible to create rods

with a strong absorption peak that matches a particular wavelength. As we discuss

in the next section, our rods were created to have an SP resonance at 800 nm, our

probe wavelength, allowing for a good signal to noise ratio. In addition, Au NRs

are interesting in their own right because they are bio-compatible and have potential

applications as biological imaging agents and for photo-thermal cancer therapy [85].

5.2.1 Sample Preparation and Experimental Setup

The basic experimental setup discussed in Chapter 2 and shown schematically in

Fig. 2-1 is unchanged, with the exception that the reflective sample is replaced with

a suspension of Au NRs in deionized H20, and a blue filter and detector have been

placed behind the sample. The suspension was contained in a cuvette 1 mm thick and

typically contained Au NRs in concentrations of 1 nM. The typical laser fluence at the

sample was -2 J/m2 . As with the reflection measurements discussed in Section 3.8,

increasing or decreasing the laser fluence did not alter the shape of the curve, only

its amplitude, indicating that we are not perturbing the sample beyond the linear

regime. The sample arrangement is shown in Fig. 5-1.

Gold nanorods were prepared in the Hamad-Schifferli Group at MIT according to a

modified protocol of the non-seeding method described in [86]. Briefly, HAuC14:3H 20

and AgNO 3 are added to a CTAB containing saline solution which turns yellow upon

inversion. L-ascorbic acid is added, and the solution turns clear. Next, NaBH4 is

added, and the solution is again mixed by inversion. On the time scale of hours,

the solution turns from clear to a deep purple brown. After at least three hours

of room temperature incubation, the excess reactants are washed from the solution.

Finally, the Au NRs are concentrated by centrifugation. All chemicals used were
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Figure 5-1: Experimental setup for transmission geometry.

purchased from Sigma Aldrich Co. and used without further purification. CTAB is

used in the synthesis of gold nanorods to direct the preferential growth along the

length of the nanorod. It is hypothesized that the amine headgroups coordinate more

strongly to certain facets of gold nanoparticles, directing the growth along the [110]

crystal direction during nanorod synthesis [87]. This leaves the hydrophobic tails

of the CTAB protruding from the surface of the nanorods. If there is presence in

enough quantity, free CTAB coordinates with these tails to form bilayers around the

nanorods. This likely occurs near the critical micelle concentration of 1 mM [88, 89].

The CTAB bilayer then serves to stabilize the Au NRs in solution, preventing their

aggregation by a combination of steric and electrostatic effects.

Transmission electron microscope (TEM) imaging shows (Fig. 5-2(a)) that the Au

NRs are 10.3 ±2.6 nm in diameter and 34.9±7.4 nm long with an average aspect ratio

of 3.5:1. These Au NRs were synthesized to have a strong SPR for wavelengths near

800 nm [84]. This is confirmed by measured absorption spectra, shown in Fig. 5-2(c).

A ligand molecule is required to prevent the Au NRs from agglomerating and

falling out of solution. In our case, we used the ligand cetyl trimethylammonium

bromide (CTAB), which is commonly used in the synthesis process [90]. CTAB is a
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Figure 5-2: Gold NR characterization. (a) TEM image of Au NRs. (b) Absorption
spectra of Au NRs in 10 mM CTAB with longitudinal SPR peak at 768 nm. (c)
Distribution of Au NR aspect ratios. Mean = 3.7 Standard Deviation = 0.5 Yield
= 93%. Note that an Au NR is defined to have an aspect ratio greater than 1.75.
Otherwise, it is considered a sphere.

cationic surfactant with a hydrophilic "head" region and a hydrophobic "tail" region.

In aqueous solutions, CTAB forms micelles, aggregates in which the head regions are

in contact with the solvent while the tail regions are sequestered in the center. In

addition, above a critical concentration, CTAB forms a bilayer sheet on the surface

of gold nanocrystals [91, 92], which is estimated to be -4 nm thick [92]. Illustrations

of both the bilayer state and a micelle are shown in Fig. 5-3.

Bilayer Micelle

4 nm

Figure 5-3: Bilayer state and a micelle structures formed by CTAB
above a critical concentration. (Image courtesy of Wikipedia Commons,
http://en. wikipedia. org/wiki/Image: Phospholipids-aqueoussolutionstructures. svg)
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5.2.2 Results

A typical absorption signal obtained during measurement is shown in Fig. 5-4. There

are several distinct energy transfer regimes for an Au NR following excitation by an

ultra-short pulse of light [93]. Initially, the there is a fast electron bleaching process

which relaxes within one picosecond, followed by a period of electron-phonon non-

equilibrium similar to the one described in bulk metals in Section 1.2.1, which can

last a few picoseconds. This followed by a coherent vibrational response of the rod,

which is dominated by the longitudinal extensional mode of the rod. The period T

is given by [93, 94]
2L

T 2L (5.1)

where E is Young's modulus, p is the density and L is the length of the rod. Inserting

the values for bulk gold and 37.5 nm for the length of the rod, we find T = 37 ps, in

good agreement with the observed period shown in Fig. 5-4. This is followed by a long

tail of thermal diffusion which is sensitive to the size of the rod, the surrounding fluid

and the thermal interface between the two. Here we focus on the thermal diffusion

regime, and in particular the role that CTAB plays in the heat transfer process.

0
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Figure 5-4: Absorption signal of a gold nanorod to an ultrashort pulse of light. The
rapid electron bleaching is followed by electron-phonon non-equilibrium and coherent
vibration. Eventually the deposited energy is transferred to the surrounding fluid via
thermal diffusion.
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Measurements were made on 1 nM suspensions of Au NRs in deionized water with

varying concentrations of CTAB to systematically study the role of ligand in the heat

transfer process. Suspensions with CTAB concentrations from less than 1 mM to

300 mM were studied. Because of the synthesis process, it was not possible to remove

100% of the CTAB from the rods, so even at 0 mM concentration a small amount

remained. Above 300 mM, the CTAB crystallized rapidly, making it impossible to

obtain stable measurements.
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Figure 5-5: Cooling curves for CTAB concentrations up to 100 mM. There is clear
transition in the cooling behavior that occurs between 1 mM and 10 mM of CTAB. For
concentrations of 1 mM and below the initial excitation is smaller and the thermal
decay is slower, while for concentrations of 10 mM the initial excitation is larger
decays at a faster rate. At 5 mM, the rod cools in an intermediate way.

A subset of the results are shown in Fig. 5-5. All curves have been normalized to

the absorbance at 600 ps. A clear transition in the cooling behavior of the nanorods

occurs between 1 mM and 10 mM concentrations of free CTAB. For concentrations

of 1 mM and below, the initial excitation is smaller and the thermal decay is slower,

while for concentrations of 10 mM and above, the initial excitation is larger and

it decays at a faster rate. At 5 mM, the rod cools in an intermediate way. The

transition in behavior corresponds to the critical micelle concentration and thus can

be attributed to the formation of a stable CTAB bilayer on the nanorod.
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5.2.3 Analysis

To calculate the heat transfer properties of the CTAB layer, we fit the data in Fig. 5-5

to a transient continuum model for heat conduction from the nanorod to the surround-

ing liquid. We use a two-dimensional axisymmetric numerical model to carry out this

analysis, consisting of the rod, a layer of CTAB, and a region of surrounding water

sufficiently large to be essentially infinite. We take the CTAB layer thickness as 4

nm, corresponding to the approximate thickness of a CTAB bilayer [92], and the vol-

umetric heat capacity as 2x106 J/m3 K, a value characteristic of lipid bilayers in the

gel phase [95], although the results are relatively insensitive to this property. We note

that this approach accounts for the thermal mass of the ligand layer in the transient

cooling process, and also essentially lumps together the thermal conductance of the

layer with the ligand-fluid thermal interface conductance.

In order to avoid numerical difficulties associated with working with very small

numbers, the cylindrical diffusion equation was non-dimensionalized using the follow-

ing definitions:

oat

L2
r

z

Here a, is the thermal diffusivity of some scaling material (which in this problem

will be taken to be water), and L, is some characteristic scaling length for the from

(for example, 10 nm is a good choice here.) Using these definitions the heat equation

becomes
a ( T) ,+OkT\ 2T aT

an (kn) + + LCqq = La,(pc)n (5.2)

The boundaries and mesh of our dimensionless numerical model are shown in Fig. 5-6

The laser pulse delivers an impulse of strength Q. Numerically, this is treated as

time dependent heat generation term with some appropriate shape, such as a gaussian

pulse with a standard deviation a = 0.5 ps. If the total energy contained in the pulse
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Figure 5-6: Numerical model used to calculate the transient cooling of a rod.

is Q, then

q = A exp a 2  (5.3)

The area under Eq. 5.3 integrated from t = 0 to oo is the total power deposited, Q.

In terms of the dimensionless, cylindrical system developed above, we define

L2C

Then Eq. 5.3 can be written as

2Q -(2
q -exp 2= e (_ a .7) (5.4)

The model was applied to data from each of the three cooling regimes shown in

Fig. 5-5. Results for a 50 mM solution, a 5 mM solution and a 1 mM solution are

shown in Fig. 5-7(a), Fig. 5-7(b), and Fig. 5-7(c), respectively. For the 50 mM CTAB

solution, we find that an effective thermal interface conductance, G, of 130 MW/m 2K,

produces the best agreement with the data after - 300 ps, corresponding to an effec-

tive thermal conductivity of the CTAB bilayer of 0.52 W/mK. This result is indicated
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in the figure, along with the result obtained by assuming a layer with infinite thermal

conductance. For the 5 mM solution the best fit value of G is 200 MW/m 2K, and for

the 1 mM solution, G = 450 MW/m 2K. The initial absorption and cooling are charac-

terized by electron-phonon non-equilibrium followed by a strong elastic response [93].

These effects are not included in our model and so we do not expect good agreement

for times less than , 300 ps. We performed transient hotwire measurements on the

water and surfactant without Au NRs and found the effective thermal conductivity

of 50 mM CTAB solution was as much as 10% lower than that of pure deionized

water. However, accounting for this produces no significant impact on the calculated

interface conductance results.

100

17".
0Cd
04.-

o 0
10

Time (ps)

100

102 103

Time (ps)

Figure 5-7: Calculated and measured results for the transient cooling in each of
the three regimes on log-log plots. In each case the value of the thermal interface
conductance, G, that produces the best fit curve after 300 ps is shown, along with
the curve obtained assuming infinite thermal conductance for the layer.
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We also attempted to fit all of the data using a pure thermal interface conductance

(with no thickness or heat capacity) but we were unable to produce good agreement

without varying the rod dimensions as a function of CTAB concentration. These

results suggested that the rods were aggregating into clusters of 2-4 rods at CTAB

concentrations below 10 mM. Dynamic light scattering (DLS) was performed on the

suspensions and no such clustering was observed. This indicates that the thermal

capacitance of the CTAB layer is necessary to capture the cooling behavior of the Au

NRs.

The change in the thermal transport between free concentrations of 1 mM and

10 mM is likely to correspond to a fluid to gel phase transition in the CTAB layer, a

well known characteristic of lipid bilayers [95, 96]. Above concentrations of 10 mM, we

believe a stable bilayer is formed on the surface of the rod (the gel phase), explaining

why increasing CTAB concentration produces no further change in thermal transport.

However, below this concentration the lipid layer is in a transition from the fluid phase,

and this fluid phase has a higher thermal conductance than the gel phase. For lipid

bilayers, the changes in density [95], specific heat [95], and thickness [96, 97] from the

fluid phase to the gel phase are sufficiently small that we do not need to vary these

parameters in the thermal model. The conclusion that the ligand layer undergoes a

phase transition is supported by a shift seen in the longitudinal SPR absorption peak

as a function of free CTAB concentration. The peak shift occurs over exactly the

same range of CTAB concentration as the change in thermal interface conductance;

this result is shown in Fig. 5-8. The frequency of the SPR peak depends strongly

on the dielectric constant of the rod and the immediately surrounding medium in

addition to the rod size and shape [84], and therefore it is not surprising that a phase

change in the CTAB layer would cause the peak to shift.

The implications of this work extend beyond the immediate results relating to

our particular Au NR-ligand combination. We have demonstrated that the optical

pump-probe technique is a sensitive tool for understanding ligand behavior on gold

nanoparticles, and that changes in the ligand layer correlate with the SPR absorption

peak. Additionally, we expect the thermal interface conductance of the stable CTAB
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Figure 5-8: (a) Effective thermal interface conductance of the CTAB layer plotted
as a function of free CTAB concentration. (b) Surface plasmon resonance peak for
solutions of Au NRs over the same range of free CTAB concentrations. The wave-
length shift coincides with the change in the thermal interface conductance, indicating
a change in the local environment near the gold surface between concentrations of
1 mM and 10 mM.

bilayer of the same order for gold nanoparticles with different geometries, and the fact

that the thermal conductance of the ligand layer is a strong function of the concen-

tration of the free ligand near its critical micelle concentration should be applicable

to other ligands used to stabilize metallic nanoparticles.

5.3 Bulk Nanofluid Thermal Conductivity Mea-

surements

Now we turn from the behavior of an individual nanoparticle to the effective bulk

properties of a solution of nanoparticles. Over the last several years, there has been

considerable interest in the bulk thermal behavior of nanofluids. Since the first re-

port on the thermal conductivity and viscosity of such suspensions by Masuda et

al. [98], there have been numerous experimental studies on a wide variety of nanoflu-

ids comprised of different combinations of solid particles and base fluids. Systems that

have been studied include nanoparticles of copper [99], gold [100, 101], and various

oxides [102-104] dispersed in base fluids such as water and various organic liquids.
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Interest has been fueled primarily by reports of thermal conductivity enhancements

significantly greater than predicted by classical models [99, 105]. Compared to mod-

els based on the effective medium theory of Maxwell [106], such as the one developed

by Hamilton and Crosser [107], nanofluids have been reported to exhibit significantly

higher thermal conductivity, anywhere from a few percent higher for solutions of oxide

nanoparticles such as A120 3 [102-104], to as much as 40% for Cu-based nanofluids [99].

In addition, it has been observed that in some nanofluid systems, the shear vis-

cosity increases more rapidly than predicted by the Einstein model [108, 109] even at

concentrations sufficiently small that the systems are truly dilute [110-112]. Numer-

ous theories have been proposed to account for the enhanced thermal conductivity

and shear viscosity, though a consensus has not been reached.

The situation is complicated by the fact that measurements carried out by dif-

ferent research groups often yield conflicting results, and variations in experimental

technique, nanofluid synthesis and composition often make direct comparison diffi-

cult. For example, in the previous section we showed the strong impact of surfactant

on the heat transfer between a particle and its surroundings and on the tendency for

the particles to form clusters. Nevertheless, the reports of enhanced thermal conduc-

tivity have spawned numerous theories that attempt to account for enhancement over

continuum models. Recent reviews [11, 113] have summarized the myriad theoretical

efforts and arrive at the conclusion that a clear consensus has yet to be reached.

One thing that is clear is that modeling efforts have been far stronger than efforts

to resolve the discrepancies between different data sets presented in the literature

by various groups. There is clearly a need to resolve these differences and confirm

the repeatability of the data obtained by different groups. This can be achieved by

reporting the exact details of the nanofluid tested: particle material, base fluid, sur-

factants used, method of synthesis of nanoparticles, and any possible contamination

with other agents. Equally important, the measurement technique must be carefully

considered to eliminate sources of systematic error. Reaching a consensus with regard

to the experimental data is critically important for an accurate physical model to be

developed.

136



Our focus here is in this direction. In Section 5.3, we describe the synthesis of

nanofluids composed of A120 3 particles suspended in C10H22 (decane) and isoparaf-

finic polyalphaolefin (PAO). Then, we present two independent sets of thermal con-

ductivity measurements. One set was obtained using the standard transient hotwire

method [71], and the other was obtained with the transient grating (TG) method.

The hotwire and TG techniques are sufficiently different that it is unlikely they share

common sources of systematic error. As a result, good agreement between the two

measurements indicates that the observed enhancement in thermal conductivity can

be trusted, and that either method can be a reliable way to measure the thermal con-

ductivity of nanofluids. In Section 5.4, we use the same TG technique to investigate

the viscous properties of nanofluids and shed some light on the mechanism behind

their enhanced thermal conductivity and shear viscosity.

5.3.1 Sample Preparation

In this chapter we study two nanofluid systems which exhibit enhanced thermal con-

ductivity and shear viscosity: A1203 (alumina) nanoparticles in CloH 22 (decane) and

isoparaffinic polyalphaolefin (PAO). We chose these nanofluids because hydrocarbon

based systems are of potential commercial interest as lubricants with enhanced ther-

mal performance in automotive and other mechanical applications.

The nanofluids were formulated by mixing alumina nanoparticles (Sigma Aldrich)

with a mean particle radius of 20 nm with different base fluids: 99.9% C1oH22 (decane,

Alpha Aesar, CAS 124-18-5), and a highly branched isoparaffinic polyalphaolefin

(PAO), (Synfluid 4cSt, Chevron Phillips Chemical Company). Figure 5-9 shows an

SEM image of the alumina nanoparticles before they are dispersed in the base fluid.

The nanofluids were stabilized with 0.25 volume % of sorbitan monolaurate, and

the particles were dispersed using an ultrasonic disruptor; a total energy of 5000 J

was delivered by a series of 2 s long pulses spaced 5 s apart, with a power density of

2 W/mL. Sonication was performed in an ice bath to maintain a constant temperature

in the the suspension.

The thermal conductivity variation of the base fluid due to addition of the surfac-
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Figure 5-9: SEM image of alumina nanoparticles with a mean particle radius 20 nm.

tants is included during the measurement of the pure base fluid. The nanoparticles

are believed to be well dispersed in both PAO and decane due to the fact that the

obtained suspensions did not shown any sign of sedimentation over several weeks.

5.3.2 Transient Hotwire System

The transient hot wire method developed by Nagasaka and Nagashima [71] is a

well-established technique for measuring the thermal conductivity of liquids, so our

description here will be brief. The experimental set up consists of a cylindrical pipe

of internal diameter 19 mm and length 190 mm. A thin platinum wire (25 Aim)

is suspended between two copper electrodes in the center of the pipe. The wire is

150 mm long and is coated with insulation (1.5 Am thick isonel layer) to minimize

the leakage of electrical current from the electrodes to the surrounding fluid.

The wire is immersed in the fluid and a constant current is passed through it.

The temperature rise of the wire is measured as a function of time, and the thermal

conductivity of the nanofluid can be obtained from,

knf 4L= (5.5)

Here knf is the thermal conductivity of the nanofluid, Q is the total power dissipated

in the wire, L is the length of the wire, T is the wire temperature and t is time.

The data between 0.1 and 2 s is used to calculate dT/d(ln t) used in the thermal

conductivity calculation. A simulation of a typical temperature rise is plotted in
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Fig. 5-10, together with experimental data. As shown in the figure, by using the data

between 0.1 and 2 s, the effects associated with the thermal capacitance of the wire

at short times and natural convection at long times are avoided.

05"
<1

10-4  10-2  100 102
Time (sec)

Figure 5-10: Simulation of typical temperature rise measured with the hotwire tech-
nique. Inset shows actual data, taken between 0.1 and 2 seconds.

The constant current serves two purposes: it acts as a heat source through electri-

cal dissipation, and it enables the temperature measurement of the wire. In order to

measure the temperature rise, the hot wire is incorporated into a Wheatstone bridge

which is balanced at the start of the experiment. During the experiment, the change

in wire temperature causes a change in wire resistance, leading to a measurable volt-

age imbalance in the bridge. The temperature coefficient of resistance of the wire

is determined by measuring resistance as a function of the temperature of the wire.

Subsequently, the temperature rise of the wire is calculated from the change in wire

resistance data and using the determined temperature coefficient of resistance. By

measuring the slope of the temperature rise versus log of time curve and using Eq. 5.5,

the thermal conductivity of the nanofluid is measured.

The system was calibrated by comparing the measured values of thermal con-

ductivity for deionized water, decane and ethylene glycol against literature values.
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Our experimental setup allows us to obtain measurements both in a horizontal and

vertical configuration to asses whether the stability of the suspension affects our mea-

surement [114]. The literature values of the base fluids were reproduced with an

uncertainty of 0.5%. The thermal conductivity for each volume fraction was mea-

sured 15 times over a period of 30 minutes after sonication and the average of the 15

data points is reported in this work. The thermal conductivity measurement did not

vary appreciably over the 30 min interval and the typical standard deviation involved

was 0.2%.

5.3.3 Picosecond Transient Grating System

The principle of the transient grating technique for bulk measurements is as follows.

A picosecond light pulse is split into two parts which are crossed in the sample at an

angle 0. If the diameter of the pump pulses is sufficiently large and if the distance

between interference fringes is small compared to the dimensions of the sample, a

one-dimensional, spatially periodic interference pattern will be created in the bulk of

the sample [115]. The fringe spacing is given by

A = (5.6)
2 sin(0/2)

where A is the optical wavelength. Optical absorption causes thermal expansion,

which launches longitudinal acoustic waves of wavelength A into the sample, and

also produces a periodic variation in the index of refraction through its temperature

dependence, which subsequently decays via thermal diffusion. Both the acoustic

response and the decaying thermal grating cause diffraction of a continuous-wave

probe beam, which is monitored by an oscilloscope synced to the pump pulses.

As the acoustic waves propagate through the sample, the produce oscillations

in the probe signal which can be used to study the behavior of particular phonon

modes [116]. This acoustic signal decays rapidly through damping effects, while

the thermal grating decays more slowly through thermal diffusion. The addition of

nanoparticles modifies the acoustic response of the base fluid by increasing the rate
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at which the longitudinal waves decay [117], as we will see in Section 5.4. In our

samples, the acoustic response decayed within a few hundred nanoseconds, while the

thermal response typically decayed over tens or hundreds of microseconds. Because

of this difference in time scales, we are able to focus on the thermal decay without

considering acoustic effects, regardless of the presence of nanoparticles.

The thermal response is governed by the 1-D heat equation. Because the pump

pulse and acoustic response are much shorter than the thermal response, we can

approximate the source term as a spatially periodic impulse function:

OT a 2T Q 2-rS= a- + - (t) cos -AX (5.7)
Ct p$2 Ap1

Here T is the temperature, a is the thermal diffusivity, p is the density, c, the specific

heat capacity, and Q is the energy per pulse. The solution, conveniently found with

a Laplace transform, is

T = exp(-t/r) cos (7r (5.8)

where the thermal decay time constant T is

7 = (5.9)47r2a

Our particular setup is shown in Fig. 5-11. The pump laser produces a train of

80 ps FWHM pulses of 1030 nm light. The probe laser is a continuous-wave (CW)

diode at 830 nm. A custom made phase grating, designed to maximize diffraction

into the ±1 orders at 800 nm, is used to split both pump and probe beams. Because

of the longer wavelength, 30% - 40% of the pump power is lost in the Oth order. A

pair of achromatic lenses reduce the diffraction pattern by a factor of two in the bulk

of the sample, where the pump beams induce the thermal grating in the liquid.

The grating spacings were calibrated to within 1% accuracy by measuring the

acoustic frequency observed in ethylene glycol at room temperature and using the

fact that the acoustic velocity near room temperature is given by v = 1658[m/sec] -
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Figure 5-11: Transient grating setup. The pulsed pump beam and a continuous-wave
(CW) probe beam are diffracted into two beams each by a custom phase mask. A pair
of achromatic lenses reduce the diffraction pattern by a factor of two in the bulk of
the sample. The probe beam interacts with the pump-induced grating in the material
and diffracts into the detector.

2.1[sec K] x (T[K] - 298K) [118]. A heterodyne technique is used to maximize the

diffracted probe signal and eliminate instrument response and noise from the signal.

One arm of the probe beam, the "reference", is attenuated by a factor of 10- 3 and

goes directly into the detector. The other "signal" arm is diffracted by the induced

grating into the same path as the reference beam with a diffraction efficiency on the

order of 10- 6 . The amplitude of the resultant field is given by:

E 2 = E2 + E2 + 2E,E, cos(k) (5.10)

where E, is the field of the reference arm, E, the signal arm, and 0 the phase difference

between the two beams. The first term in Eq. 5.10 is continuous and therefore affects

only the baseline reading on the oscilloscope. The magnitude of E, is r 10- 3 smaller

than E, and so the homodyne term, E,2, is less than - 10- 6 of the total signal. The

third term is the heterodyne signal which is directly proportional to the contrast

in the index of refraction [73] and decays with a time constant given by Eq. 5.9.

Any remaining influence due to the homodyne term as well as instrument response
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is removed by making use of the phase angle in the heterodyne term: the signal arm

of the probe passes through a glass slide which is rotated to maximize the signal by

changing the phase between the two beams. Two measurements are taken: one at

0 = 0 and another at q = r. When the second measurement is subtracted from the

first, the homodyne term as well as electronic response and other sources of systematic

noise are removed while the true signal is doubled.

The liquid samples were held in a cuvette that was 200 im thick. The grating

spacing was typically 2-6 pm, satisfying the criteria for 1-D heat flow. The thin sam-

ple holder was chosen to minimize scattering in samples with higher concentrations

of suspended particles; the scattering attenuated the signal and reference arms of the

probe beam reaching the detector, reducing the overall signal-to-noise ratio. Using

known samples, it was determined that if the photodetector were saturated, the mea-

sured decay constants were 3-4% faster than the correct value, resulting in spuriously

high diffusivity measurements. Therefore, the probe intensity into the photodetector

was adjusted to ensure that the detector was not saturated. Samples with lower par-

ticle concentrations required lower probe intensity since there was less scattering and

more light reached the detector.

A typical result is shown in Fig 5-12, taken from pure PAO plus surfactant. The

left figure shows the thermal decay while the right figure shows the rapid acoustic

response, which dies away within 300 ns. The slower thermal decay is finished after

roughly 60 ps. Figure 5-13 shows data from decane with 0.5% volume fraction of

nanoparticles. The data are noisier due to increased scattering from the particles,
but they are well fit by the exponential decay from Eq. (5.7).

While in theory a single curve is sufficient to extract the thermal diffusivity, un-

certainty can be reduced by repeating the measurement at different grating spacings.

This is accomplished by changing the phase mask, which changes the crossing angle

of the pump beams in Eq. 5.6. If the measured decay time is plotted against the

quantity A2/47r 2, the result should be a straight line with slope a-. Measurements

were made at 8-10 angles ranging from 8.90-36.2'. A typical set of results, in the

case from pure PAO, is shown in Fig. 5-14.
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Figure 5-12: Typical result obtained during a TG measurement. The thermal decay
is finished after roughly 60 ps (left) while the acoustic response dies away within
300 ns.
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Figure 5-13: Data from decane with 0.5% volume fraction of nanoparticles and the

best fit exponential decay.
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Figure 5-14: Thermal decay time measured at several grating spacings, plotted against
the quantity A2/47r2, where A is the grating spacing. The slope of line is the inverse
thermal diffusivity.

5.3.4 Results

The hotwire measurement yields the thermal conductivity directly, while the TG

measurement gives the thermal diffusivity. To compute the thermal conductivity, the

heat capacities and densities of the base fluids and solid particles are needed. The

values used are listed in Table 5.1. The conductivity of the nanofluid, knf, is given

by a(pCp)nf where a is the measured diffusivity and (pcp)nf is the effective volumetric

heat capacity, given by (pcp)nf = (pCp),particle + (1- -0)(PCp)fluid, where 0 is the volume

fraction of particles. As a validation of our systems, the measured values for the pure

base fluids from both setups, without surfactant, are also provided in Table 5.1, along

with the literature values.

The thermal conductivity of the A120 3 in decane and PAO suspensions was mea-

sured in less than a day after dispersing the nanoparticles. All tests were carried

out in an ambient temperature of approximately 200 C. Figure 5-15 shows the ther-

mal conductivity enhancement of the A1203 in decane nanofluid for volume fractions

ranging from 0.1% to 1.0%, normalized by the conductivity of the base fluid. The cir-

cles in Fig. 5-15 are obtained by means of the transient hot-wire technique, while the
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triangles in are obtained by means of the TG technique. Figure 5-16 shows the same

information for the PAO nanofluid. The results indicate a good agreement between

the two sets of measurements across the range of concentrations tested.
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Figure 5-15: Thermal Conductivity measurements for decane, obtained with the
hotwire and transient grating. Thermal conductivity over that of the base fluid +
surfactant is plotted against the volume fraction of A120 3 particles.

The thermal conductivity ratio predicted by the Hamilton-Crosser theory [107] is

given by
kf _ kp + 2kf - 20(kf - kp)

kf kp + 2kf + 0(kf - kp)

Here kf, kp and k,f are the thermal conductivity of the base fluid, particle and

nanofluid respectively and ¢ is the volume fraction of the nanoparticles. The above

expression for effective thermal conductivity does not take into account the thermal

interface resistance between the particle and the fluid and is applicable only for dilute

solutions of spherical particles, a reasonable assumption based on SEM images such

as Fig. 5-9. The solid line plotted in Fig. 5-15 and Fig. 5-16 is the thermal conduc-

tivity ratio prediction based on Eq.5.11. One can observe that the measured thermal

conductivity ratio was higher than that predicted by the Hamilton-Crosser theory

for all the volume fractions considered. In all cases the enhancement was linear with

concentration. For the PAO nanofluid, the rate of enhancement vs. volume fraction
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Table 5.1: Properties of the Base Fluids and Particles

Material cP p k (lit.) k (hotwire) k (TG)
(J/kg.K) (kg/m 3 ) (W/m.K) (W/m.K) (W/m.K)

Decane 2210 [63] 727 [63] 0.132 [119] 0.132 0.135
PAO 2132 [120] 817 [121] 0.136 [120] 0.140 0.139
A120 3 775 [63] 3990 [63] 35 [63]
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Figure 5-16: Thermal Conductivity measurements for PAO, obtained with the hotwire
and transient grating. Thermal conductivity over that of the base fluid + surfactant
is plotted against the volume fraction of A120 3 particles.

147

- Hamilton-Crosser
o Hotwire
A Transient Grating

0

A

0
A
0

08-

'· m ,, i [ I r I

E

.

-

-



was 1.6 times greater than the continuum model, while for decane the rate was 3.3

times greater.

The agreement between the two sets of data is good, though there is some discrep-

ancy, especially at 1% volume concentration. We attribute this to statistical error in

the TG measurement: at 1% the sample, even though only 200 Mm thick, is fairly

opaque and the transmitted probe beam is weak. Generally, absorption in the sam-

ple limits the TG technique to low concentrations. The generally good agreement

indicates that the observed enhancement is both real and reproducible. This pro-

vides a firmer foundation for modeling and understanding the physics of transport in

nanoparticle suspensions. In the next section, we use the acoustic portion of the TG

signal to investigate the viscous properties of the nanofluids and the behavior of the

nanoparticles in solution.

5.4 Viscosity and Clustering

We have described in detail the synthesis of suspensions of A120 3 in decane and

PAO, and we measured their thermal conductivities two independent techniques.

The measured thermal conductivity enhancement in both cases agreed very well; the

largest error was around 1% at a 1% volume loading, where low transmissivity through

the sample limits the accuracy of the TG measurement. Both nanofluids showed a

conductivity enhancement greater than predicted by the classical continuum models,

with the PAO nanofluid exhibiting 1.6 times the rate of enhancement vs. volume

fraction, and the decane nanofluid 3.3 times the enhancement.

Now we turn to the viscous properties of nanofluids. As we mentioned in the

introduction to this chapter, in some nanofluid systems, the shear viscosity increases

more rapidly than predicted by the Einstein model [108, 109] even at concentrations

sufficiently small that the systems are truly dilute. One proposal for the enhancement

in thermal conductivity is that the nanoparticles form clusters, resulting in larger

effective particles [122], and it has been suggested that this may also be related to

the enhanced shear viscosity as well [110].
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Effective medium models for thermal conductivity [107], and the Einstein model

for shear viscosity, depend only on the volume fraction of suspended particles; the

particle diameter does not appear as an independent variable. However, theories

for acoustic attenuation, and the related quantity of longitudinal viscosity, have a

dependence on both volume fraction and particle size [123, 124]. Here we present

shear and longitudinal viscosity data on the same two nanofluid systems: alumina

nanoparticles in decane and PAO. The shear viscosity data exhibit an enhancement

over the Einstein model, matching the findings of other authors [110-112], and the

longitudinal viscosity data indicate that nanoparticles do not form clusters in these

nanofluid systems.

5.4.1 Shear Viscosity

Shear viscosity measurements on our nanofluids were also conducted using a controlled-

stress AR-G2 rheometer in the Hatsopoulos Microfluids Laboratory at MIT. The

measurements were performed at approximately 220 C and the system accuracy was

verified using a low-viscosity calibration oil (Silanol Teminated Polydimethylsiloxane

from Gelest, Inc, PA). The viscosity changed less than 4% when tested over a shear

rate ranging from 0.33 s- 1 to 3270 s- 1. Results for the normalized viscosity are shown

in Fig. 5-17.

In the dilute limit, the Einstein equation [108, 109] predicts that the relative

enhancement in the shear viscosity of suspensions of spherical particles is given by

q(¢)/rl0 = 1 + 2.5q where qo and 77(o) are the viscosity of the base fluid and the

nanofluid respectively. Prasher et al. [110] compiled data for A120 3 nanoparticles

in water, ethylene glycol, and polyethylene glycol from their own measurements and

those of Wang et al. [112] and Das et al. [111]. The data were well captured for

volume fractions up to 8% by q(¢)/,0o = 1+ 10¢; this result is shown in Fig. 5-17 for

comparison with our own data.
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Figure 5-17: Shear viscosity for PAO and decane for volume fractions of A120 3 from
0.25-1%. The results are similar to y(0)/yo = 1 + 10q as observed by Prasher et
al. [110].

5.4.2 Longitudinal Viscosity and Clustering

To study clustering of the nanoparticles in solution, we use the short-time acoustic

response from the transient grating data discussed in Section 5-11. Optical absorption

in the sample causes rapid thermal expansion, which launches a longitudinal acous-

tic wave into the sample, and also produces the slowly decaying periodic variation

due to the temperature dependence of the index of refraction that we discussed in

Section 5.3. Both the variation in strain due to the acoustic wave and the decaying

thermal grating cause diffraction of a continuous-wave probe beam, which is mon-

itored by an oscilloscope synced to the pump pulses. As the acoustic wave moves

through the sample, it comes in and out of phase with the essentially static thermal

grating, producing oscillations in the probe signal which can be used to deduce the

elastic and viscous properties of the medium [49, 125].

A typical signal generated during the measurement is show in figure 5-18. This

curve is fit with the functional form:

A exp(-t/T) cos(wt + q) + B exp(-t/rth) (5.12)
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The first term in Eq. (5.12) captures the decaying acoustic wave of frequency w and

time constant T, while the second exponential term accounts for thermal decay with a

time constant Tth >> T. In practice, we find that omitting the the second exponential

term produces no change in the fit values for w and 7.
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Figure 5-18: Typical signal data (in this case from PAO + surfactant) obtained from
the excitation of one wave-vector and the best fit curve.

Multiple wave-vectors were be excited by varying the crossing angle in Eq. (5.6

from 8.9°-36.2', creating acoustic waves with frequencies from 200-600 MHz. When

the acoustic time scale is sufficiently fast that thermal effects can be neglected, and

provided the fluid is Newtonian over the frequency range studied, the acoustic decay

time T is related to the viscous properties of the medium by [83, 125] :

1
7-1 2k 2L (5.13)

2

where k is the wave-vector, VL = (177 + n) is referred to as the longitudinal viscosity,

7 is the shear viscosity and K is the bulk viscosity. Figure 5-19 shows a typical plot

of 7-1 vs. 1/2k2 , in this case for decane with a 0.5% volume fraction of alumina.

When particles are present, the acoustic decay rate includes contributions from

the base fluid and the particles: -1 = k2v L,+T pa.t. The first term on the right hand
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Figure 5-19: Damping rate r for decane with 0.5% alumina at 10 wave-vectors plotted
against 1/2k2 . The slope of the line is the effective longitudinal viscosity.

side accounts for the longitudinal viscosity of the base fluid and is found by measuring

the base fluid alone. The second term accounts for the additional attenuation due

to the particles. In our case, the acoustic decay time is sufficiently fast that thermal

decay can be neglected for time-scales on the order of 100 ns [125]. The particle size

(~40 nm) is also much smaller than the acoustic wavelength so we use a continuum

approach developed by Harker and Temple (H-T) [123]. In this model, the hydrody-

namic wave equations are solved using momentum balance and continuity of the two

interacting phases. The decay rate due to particles is given by 7,•• = co x Im{q}

where co is the sound speed and q is the complex wave-vector given by

q2 Pif [p.(1 - ¢ + OS) + pfS(1 - )]5.14)
p,(1 - 0)2 + pf [S + 0(1 - 0)]

Here 0 is the volume fraction, w is the angular frequency of the wave, 3 is the com-

pressibility of the fluid, p, and pf are the densities of the solid and fluid, respectively,

and S is:

(I+ 96) + i( j + 6 (5.15)2 1- 4a 4 a a2
where a is the particle radius, 6 = V20o/wpf is the viscous penetration depth and 77o
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Table 5.2: Measured Properties of the Base Fluids

Fluid 13 0o VL,O
(Pa- 1) x 10- 9 (Pa-s) x 10- 3 (Pa-s) x 10-

Decane + Surf. 0.41 0.85 4.10
PAO + Surf. 0.74 30.0 32.3

is the shear viscosity of the base fluid. The compressibility of the base fluid is found

through P- 1 = c2p [83], where the isentropic sound speed, co, is found by plotting

the wave-vector against frequency and taking the slope of the resulting line. The

measured compressibility, longitudinal and shear viscosities of the base-fluids plus

surfactant are listed in Table 5.2.

The total decay rate was computed over the range of wave-vectors for our data at

each concentration point. The particle diameter, 2a, was taken as 40 nm determined

from SEM images. For these frequencies, the solution damping rate exhibited a

Newtonian 1/2k2 dependence and the slope was taken as the effective bulk viscosity

of the suspension. The model results are for both nanofluids are shown in Fig. 5-20,

along with the measured bulk viscosities.

Using the measured shear viscosity, the H-T model matches the decane longitu-

dinal viscosity data but under-predicts attenuation for the PAO suspensions. As we

discuss shortly, this discrepancy could be due to clustering or to a reduction in the

shear viscosity of PAO at high frequencies. We suspect the latter case because of mea-

surements on PAO without particles. For the base fluid, the bulk viscosity K can be

directly deduced from the measured longitudinal and shear viscosities: K = vL,o - rlo

In our experiments, VL,o was measured at high frequency while o0 was measured for

shear rates from 4 s- 1 to 700 s- 1. For pure decane, this yields , = 2.54 x 10-3 Pa-s,

in good agreement with a literature value [126]. However, for pure PAO, the same

operation yields a negative value for bulk viscosity, indicating that the steady shear

viscosity must be significantly higher than the shear viscosity at 200-600 MHz. Com-

pared with decane, which is composed of a single hydrocarbon, PAO is a complex

mixture of many long-chain hydrocarbons and thus can be expected to have more
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O Decane Da
- H-T Model

A PAO Data
---- H-T Model

---- H-T Model

ta

Decane, ?0=8.54x10 -4 Pa-s

PAO, 970 =0.03 Pa-s

PAO, 170=0.001 Pa-s

0.6

Volume Fraction (%)

Figure 5-20: Effective bulk viscosity for volume fractions from 0.25%-1.0%. Using
a particle diameter of 40 nm and the measured shear viscosity, the Harker-Temple
model matches well for the decane system, but under-predicts for the PAO system
when the value of shear viscosity measured at low shear rates, r7o = 0.03 Pa-s is used.
The theory matches better if a much lower value for the shear viscosity is assumed
to be relevant over the frequency range of the experiment.
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complex visco-elastic behavior. This idea is further supported by noting that if a

lower value of shear viscosity is inserted into the H-T model, the result more closely

matches the data. The predicted result for PAO using a shear viscosity qo of 0.001 Pa-s

is shown in Fig. 5-20 for reference.

By varying the particle radius in Eq. (5.14), we can look at the longitudinal

viscosity results in another way and deduce the size of the dispersed particles in

suspension. Figure 5-21 shows the rate of increase of normalized longitudinal viscosity

with volume % particles, now plotted as a function of particle diameter. For decane,

the predicted increase is close to the measured increase using the SEM-observed

diameter of -40 nm. Even more interesting is the fact the function has a strong

maximum close to this value, implying that the measured increase in longitudinal

viscosity constrains the particle diameter to be in the neighborhood of 40 nm. As in

Fig. 5-20, the fit of the model for the PAO nanofluid model is poor using the measured

zero-shear rate viscosity. Again, if a much lower value of ro is used then the agreement

improves; the result for qo of 0.001 Pa-s is shown in Fig. 5-21 for reference.

0.8

" 0.6

0.4

0.2

nV0 20 40 60 80 100 120 140
Particle Diameter (nm)

Figure 5-21: Rate of increase of normalized longitudinal viscosity with volume % par-
ticles, plotted as a function of particle diameter. The measured longitudinal viscosity
enhancement for each fluid is indicated at 40 nm, the value observed via SEM.
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For the decane-based nanofluid, Fig. 5-21 implies that the nanoparticles are not

clustering. In the case of PAO, the conclusion is not as clear. Figure 5-21 shows that

either a particle size on the order of 140 nm, or a greatly decreased shear viscosity

of the base fluid at high frequency could reproduce the observed result. However, as

we discussed above, the measured values of 770 and vL,O would imply a bulk viscosity

n < 0 if the fluid were simply a Newtonian fluid with constant viscosity. This implies

that there must be some reduction in shear viscosity over the measured DC value; we

do not know exactly what the reduction is, so it is not possible to infer with certainty

the effective particle size from the model.

5.4.3 Conclusion

To summarize, we have used an optical transient grating technique to investigate the

thermal and viscous properties of nanofluids. We found that suspensions of alumina

nanoparticles in decane and in PAO exhibit both enhanced thermal conductivity

and shear viscosity over that predicted by classical continuum models. We have

shown this enhancement to be real and reproducible. In Section 5.3, we compared

thermal conductivity measurements from two dissimilar techniques and found good

agreement. In this section, we presented shear viscosity data on two nanofluid systems

that matched similar findings in the literature.

The measurements of longitudinal viscosity presented in this section for decane-

based nanofluids yield self-consistent data for non-clustered particles dispersed in a

Newtonian solvent of constant viscosity. For the PAO-based nanofluid the response

is more complex and further study of the frequency-dependent viscous response in

the oligomeric suspending oil is still required. Nonetheless, the results imply that

clustering may not be responsible for the failure of the continuum models to describe

nanofluid behavior, and alternative possibilities need to be investigated.
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5.5 Summary

In this chapter, we presented experimental studies on nanofluids from two perspec-

tives: the heat transfer between an individual nanoparticle and its surroundings, and

the effective bulk thermal and viscous properties of the suspensions. Transmission

pump-probe measurements on gold nanorods in suspension demonstrated the critical

role played by surfactants in the thermal transport between a nanoparticle and the

surrounding fluid, a factor often neglected in the study of nanofluids. Then, the use of

an optical transient grating technique to explore the bulk thermal and viscous prop-

erties of nanofluids was discussed. Thermal conductivity measurements show that the

observed thermal conductivity enhancement of nanofluids is repeatable and is not a

function of the measurement technique, while acoustic attenuation measurements in-

dicate that the nanoparticles do not form clusters in solution in two nanofluid systems

which exhibit enhanced thermal conductivity and shear viscosity.

Finally, we would like to touch briefly on the possibility of applying the measure-

ment technique discussed in Section 4.1 to the study of nanofluids. In some ways this

would seem a natural direction to follow, since that method works on small liquid

volumes where natural convection is not an issue, and because unlike the transient

grating approach, it is a reflection measurement and therefore could be used to study

high volume-fraction suspensions.

Some preliminary measurements on suspensions of 2% alumina in decane were

done, and we observed a huge variation in the results between different locations on

the glass slide, often as much as 30-40%. After taking more than 20 measurements,

the average value did begin to converge to the value found via hotwire, although many

more measurements would be needed to approach the precision necessary for confident

characterization of a nanofluid. The scatter in the data is not surprising when one

considers that the technique is only sensitive to the first 100-300 nm of fluid, and that

the nanoparticles are almost certainly behaving differently at the Al-liquid interface

than in the bulk. For example, microscopic scratches and other imperfections in

the Al layer could trap the particles and change the measured thermal conductivity.
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Further analysis, especially a careful consideration of the behavior at the interface, is

needed before the technique can used for the study of nanofluids.
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Chapter 6

Summary and Outlook

6.1 Summary

Nanoscale thermal transport is critical to current and emerging technologies ranging

from microelectronics and solid-state energy conversion to novel cancer therapies.

The pump-probe optical technique is a powerful tool for studying a wide variety of

transport phenomena, and this thesis makes several contributions toward improving

and extending its use for the characterization of thermal properties from the nanoscale

upward.

Experimentally, the design and implementation of a pump-probe system is de-

scribed in detail in Chapter 2. Our system incorporates many of the best aspects of

systems built by others, notably Paddock and Eesley [13], Capinski and Maris [15],

and Cahill [19, 50], while adding some new features such as a frequency-doubled pump

beam, an expanded probe beam and a coaxial geometry, which reduce errors associ-

ated with optical noise, beam divergence, and spot shape and alignment, respectively.

From a theoretical point view, a mathematical description of the measurement

process is given using the language of linear systems theory, encompassing the work

on pulse accumulation by Capinski et. al. [15] and its extension to radial isotropic heat

conduction through multilayer structures by Cahill [19], in a clear, consistent way.

This approach enables us to explore the relationship between pulse accumulation and

radial conduction effects and clearly show how pulse accumulation essentially allows
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two length scales to be probed simultaneously. In addition, our analytical solution

for radial heat transfer through multilayer structures includes anisotropic thermal

properties without any additional computational expense over the isotropic solution

given by Cahill [19].

Combined, Chapter 2 and Chapter 3 provide a cohesive story of how to use the

pump-probe technique for thermal measurement, synthesizing the work of many pre-

vious authors. Many of the nitty-gritty details, which are so important to a successful

measurement but are often left out of published material, have been included. Al-

though these two chapters comprise less than half of this thesis, they represent more

than 90% of the time invested, and packaging all of the experimental and theoretical

details in one place is a valuable contribution in itself.

In Chapter 4, new applications of the technique are described. The first is a

new approach for measuring the thermal conductivity of liquids which has unique

advantages over existing methods, notably the ability to measure liquid films as thin

as a few hundred nanometers, with no dependence on the optical properties of the

liquid itself. The second major application is the measurement of both cross-plane

and in-plane thermal properties through variation of the spot size and frequency

of the pump-probe measurement. The technique is successfully demonstrated on

highly ordered pyrolytic graphite, and its limitations and application to superlattice

structures is discussed. The measurement of the in-plane thermal conductivity of

thin films has traditionally been an experimental challenge, and this approach has

the potential to simplify the problem in appropriate situations.

Finally, optical techniques for the study of nanofluids are discussed in Chap-

ter 5. Transmission pump-probe measurements on gold nanorods in suspension are

presented which demonstrate the critical role played by surfactants in the thermal

transport between a nanoparticle and the surrounding fluid, a factor often neglected

in the study of nanofluids. Then, the use of an optical transient grating technique to

explore the bulk thermal and viscous properties of nanofluids is discussed. Thermal

conductivity measurements show that the observed thermal conductivity enhance-

ment of nanofluids is repeatable and is not a function of the measurement technique,
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while acoustic attenuation measurements indicate that the nanoparticles do not form

clusters in solution in two nanofluid systems which exhibit enhanced thermal conduc-

tivity and shear viscosity. Taken as a whole, Chapter 5 demonstrates the potential of

optical techniques for the study of nanofluids and provides new experimental results

from the nanoscale to the macroscale.

6.2 Outlook and Conclusion

While this thesis discusses several new applications of the pump-probe technique for

thermal measurement and also some interesting new results, particularly on nanoflu-

ids, the work presented here barely scratches the surface of the possibilities in the

field of nanoscale energy transport and conversion. For example, the first 100 ps

after optical excitation are rich with interesting physics. We briefly mentioned some

of these processes in Chapter 1, including electron-phonon non-equilibrium, acoustic

attenuation of specific phonon modes, and ballistic electron and phonon transport,

but for the most part we ignored these processes and focused on the diffusion regime.

Some steps are already being taken in our laboratory to look more closely at

times before a diffusion picture is valid. By replacing the heat diffusion equation

with the Boltzmann transport equation (BTE), it may be possible to observe ballis-

tic phonon transport during the first 100 ps in crystalline materials such as silicon

at room temperature [127], and the behavior would become more obvious at lower

temperatures. Such measurements could lead to direct experimental observation of

heat carrier relaxation times. Another possibility along similar lines is the optical

excitation of thermoelectric materials such SiGe nanocomposites, which could lead to

measurements of electron transport and grain-boundary scattering.

Similarly, the work on liquid measurement presented Section 4.1 could be extended

in several directions. The fact that the liquid layer is only required to be a few hun-

dred nanometers thick makes it possible to apply an enormous electric field across

the liquid volume with only a modest applied voltage. By using the Al transducer as

one electrode, thermal transport parallel to the electric field could be observed. The
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behavior of nanoparticles and emulsions under these conditions would lead to bet-

ter understanding of their dynamics in suspension. Another potential area of sudy

comes from the fact that thermal transport across the Al-liquid interface depends

on the interface conditions. This fact could be exploited to study the performance

of thermal interface materials which are widely used to make thermal contact be-

tween microelectronic structures and heat sinks. The Al layer could be coated with

a few nanometers of a second material such as Si or SiO 2 to mimic the surface of a

microelectronic device, and then a thermal interface material could be applied and

the sample pressed against a third material such as a polished copper plate. This

arrangement would be a powerful method for evaluating thermal interface materials.

These are just a few out of many possibilities. Ultrafast phenomena and nanoscale

transport will continue to become increasingly relevant as technology pushes the

boundaries of real-world applications ever smaller and faster, and the pump-probe

technique will be an essential tool for their characterization.
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Appendix A

Details on Signal Analysis

A.1 The Effect of Higher Harmonics

A square wave y(t), in this case with an arbitrary phase of zero, can be represented

as the sum of its harmonic components:

y(t)= (-1)2 -••cos(nwot)
n=1,3,5,...

(A.1)

As an example, the sum of the first three components is shown in Fig. A-1.

Time (a.u.)

Figure A-1: A square wave and the first three harmonic components
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Figure A-2 (a.) shows the square wave in frequency space. The square wave is

sampled by the laser pulse train with. strength Q and frequency ws. Applying the

sampling theorem (see Section A.3) to the square wave signal gives the result shown in

Fig. A-2 (b.), producing a series of shifted copies of the original spectrum, separated

by the sampling frequency w,.

,. ,r iT SIT,,,,
-5 -10 -5 0 5 10 15 -100 -50 0 50 100

Angular Frequency / w0  Angular Frequency / W0

Figure A-2: (a.) Frequency components of a square wave with frequency w0 . (b.)

Frequency components of a pulsed square wave with pulsing frequency ws. The result

is a series of copies of the original spectrum, separated by w,.

We can repeat the frequency-domain analysis of Section 3.1.3 using the square

wave signal instead of a pure sinusoid. The pump beam input is given by

2 00Q 0n
Q(w)=:(w - nwo - kw,) (A.2)

----OO k---OO

n=-oo k=-oo

for odd values of n. If we carry this through the analysis, we get an expression similar

to Eq. (3.27):

QQprobe 00 00 1

Z(wo) = T2robe H(nwo kw8) ((1 - n)wo - (k + l)w) e-l
l1=-oo n=-oo k=-oo

(A.3)

The only non-zero terms meet the condition:

(k + 1) = (1 - n)W  (A.4)w3s
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Since 1, k and n are all integers, this condition can only be satisfied if w8 is very close

to a multiple of w0 (within the lock-in pass band), and even then, if w, > wo, these

higher harmonics are are reduced by a factor of 1/n and so can be be neglected. Thus

the response to a square wave input at w0o is approximately equal to the response to

a pure sinusoid at that frequency, and Eq. (3.27) is valid.

A.2 Proof of Equation 3.14

We wish to show that

0'oiwo(nt+To+,)-i(nT+To+r) = e(o-w)(To+ Tr) •j (o - + 7rn
n=-oo n=-oo

(A.5)

which requires that

ei(wo-w)nT 2 (w 27rnn=-oo n=- oo
n=-00 n-o-o

(A.6)

To prove this, we make use of two Fourier transform pairs [128]:

{kF= 0 eikat

F{6(t - kI)

= 27 ( -(wka)
k=-oo

k=-00
k = -oo

where a and 0 are constants. Now we make the substitution a = 27r/) to see that

eikt - 2 6(t 2 ) (A.9)
k=-oo k=-oo
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We substitute the following variables:

k - n

t W 0 --

- T

This gives

n=-oo n=-oo

which is exactly Eq. (A.6).

A.3 The Sampling Theorem

The sampling theorem is a useful tool for understanding the frequency spectrum of

a signal that is "sampled" at discrete times with a very short pulse. The theory is

well-covered in reference [57]; we repeat it here for convenience. Given an original

signal, x(t), and a sampling signal p(t), we can write the sampled signal as

xp(t) = x(t)p(t) (A.10)

where

p(t) = 6(t - nT - To)
00--0

n= -oo

Here p(t) is a series of unit impulses, T, is the sampling period and To is an arbitrary

delay time.

Now we take the Fourier transform of Eq. (A.10). Since multiplication in the time

domain is equivalent to convolution in the frequency domain,

X,(w) = ,} = X(O)P(w - 0) dO (A.11)= 166
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where

X(w)

P(w)

= F{x}

Tk=-oo T

Therefore,

X(w))
1

T

1
T

o
X(O)e - i(w- )TO ( -( - k T ) dO

k=-oo

X(w - k )e-ik2 rTo/TT (A.12)
k=-oo

A.4 Equivalence of the Impulse and Frequency Re-

sponse Solutions

Although we derived the impulse-response representation, Eq. (3.17), and the frequency-

response representation, Eq. (3.27), independently, we show here that one can be

transformed directly into the other.

Begin with the impulse-response expression of the response, Eq. (3.17):

NQQprobe 0 TZ(wo) = prob e-i'o(T+T)h(qT + T)
q=O

(A.13)

Since f' J(x - xo)f(x) dx = f(xo), we can write this as

Z(wo) = QPobe h(t) (t - qT -)eo t dt
q=-oo

The definition of the Fourier transform is

X(wo) =
-O

x(t)e-iotdt
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so Eq. (A.14) becomes

= QQprobe {h(t)

q=-oo

= QQprobe H(wo) *F J(t - qT --)
q=-oo

271rTQQprobe H(wo)
SH(wo) *

= QQprobe
T2

,-wo =-r 6(wo - kw,'
k=-oo

00 H(wo - O)e-• 6 (0

_ QQprobe
T2 E- H(wo

k=-oo

=QQprobe H(wo
k=-oo

- kw,)e-ikwa,

+ kw,8)eikw.,

This result is the same as Eq. (3.27).

A.5 Interpretation of the Real and Imaginary Parts

At the end of Section 3.1.3, we mentioned that the in-phase and out-of-phase com-

ponents of the lock-in signal, X and Y, are given by

x = Re{Z(wo)}
Y = Im{Z(wo)}

(A.15)

(A.16)

Here we present the proof.

For any complex number Z,

Re{Z}

Im{Z}

1= [Z + Z*]
2

1 [Z - Z*]
2i

(A.17)
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Also, for any real signal x(t), the Fourier transform has conjugate symmetry [57]:

X(-iw) = X*(iw) [x(t) real] (A.18)

Finally, it is generally true for two complex numbers Z1 and Z2

(Z Z2)* = Z*Z* (A.19)

In our case, h(t) is the thermal response of a physical system and is therefore real, so

(A.18) holds for H(w). So, using (A.18) and (A.19) along with the fact that k runs

from -oo to +oo, we can write

Z(wo)

Z*(wo)

T2 robe H(wo + kw,)eikws
k=-oo

3 QQprobe

T2 SH(-wo + kw)eikwa.

k=-oo

Then, using equations (A.17),

Re{Z(wo)}

Im{Z(wo)}

=1 QQprobe
2 T 2  [
-i )QQprobe
2 T 2

H(wo + kw,)eikws "

[1_ k H(wo + kw,)eikw••
-k= -oo

E H(-wo + kw,)eikwar
k=-oo

- H(-wo + kw,)eik '8'
k=-oo

The real part will correspond to the "in phase" signal and the imaginary part the

"out of phase" signal. To show this, recall that the system response to a complex

input is given by

z(t) = Z(wo)eiwot
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Expanding,

z(t) [Re{Z(wo)} + ilm{Z(iwo)}1 eiwot

= [Re{Z(wo)} cos(wot) - Im{Z(wo)} sin(wot)]

+ i [Re{Z(wo)} sin(wot) + Im{Z(wo)} cos(wot)]

The real part of this expression is the physical signal that is measured, and is

given by

Re{z(t)} = Re{Z(wo)} cos(wot) - Im{Z(wo)} sin(wot) (A.21)

It is comprised of a cosine ("in phase") wave with an amplitude given by Re{Z(wo)},

and a sine ("out of phase") wave with an amplitude given by Im{Z(wo)}, which

correspond to the X and Y outputs of the lock-in amplifier, respectively. Thus, when

referring to the lock-in signal, the terms "in phase" and "real part", and "out-of-

phase" and "imaginary part", may be used interchangeably.
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