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Abstract

A variety of topics that bear directly upon the use of molecular-beam spectroscopic

methods for precise frequency determination with the use of alkali-halide molecules are

discussed. The rotational-energy spectrum, including resolvable hyperfine structure

arising from quadripole and magnetic interactions, is calculated. An analysis of inte-

grated line strength, or intensities, is presented. State selection is discussed in terms

of the appropriate high-field Stark effect, for which new calculations are given. State

selection with both axial and transverse-rod configurations is discussed, and trajectories

for sodium chloride with the use of a transverse-rod state selector are indicated. The

limitations of any state selector which arise from nonadiabatic losses are analyzed.

The design parameters of a microwave spectroscope, including signal-to-noise ratio

and ultimate precision, are related to its geometric configuration, and a description of

an apparatus that is adequate for high-resolution work is given. Related topics, such as

the concept of efficiency of frequency measurements and frequency pulling, are discussed

in generalized fashion. Conclusions that can be derived from this work, as to both pres-

ent limitations and necessary future development, are drawn.
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INTRODUCTION

Since the first successful experiment in molecular-beam microwave spectroscopy

by Strandberg and Dreicer (1), this branch of spectroscopy has undergone rapid develop-

ment. Soon afterward, Gordon, Zeiger, and Townes (2) developed the maser, in which

the conditions of the beam experiment were adjusted for optimum signal-to-noise ratio

by selecting the upper of the two ammonia inversion states and by matching the radiation

out of the beam. This idea, which made the spectroscope operate as an oscillator or as

an amplifier, has since been successfully applied in solid-state spectroscopy (3).

An increase in spectroscopic precision is desirable because a greater insight into

the structure of matter will be gained thereby and because frequency standards of the

highest precision and reproducibility can be derived from high-precision microwave

spectroscopy. Although the research described in this report has not produced a usable

instrument, it still seems worth while to describe the problems encountered in our

attempt to reach that goal. We also present some results that were obtained in the

course of this research - computation of the Stark effect of linear rotors, new schemes

of phase stabilization, the development of hot-beam sources, the mode control of large

cavities, and a discussion of the efficiency of frequency standards based on information

theory - all of which should prove helpful in further research.
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I. SPECTRUM OF SODIUM CHLORIDE

INTRODUCTION

One of the promising applications of the molecular-beam spectroscope is in the

investigation of alkali halides. From this group of molecules, sodium chloride was

selected because its spectrum is not very well known. Table I gives a survey of the

present data on alkali halides. An understanding of this spectrum is necessary for the

investigation. There are thirty 3/2-3/2 molecules listed in Table I. Hence we thought

it worth while to reproduce some calculations of the quadripole and magnetic interactions

that had been made for NaCl (Secs. II and III). In general, their spectra are well under-

stood, but there has been little quantitative understanding of the electronic states, which

would allow quantitative prediction of the microwave spectra. The intensive work on

alkali hydrides by J. C. Slater and the Solid State and Molecular Theory group, M.I.T.,

gives promise of achieving such an understanding. It will be shown later that measure-

ments of the alkali-halide spectra will provide several possibilities for comparison with

calculated electronic wave functions.

1.1 HAMILTONIAN OF SODIUM CHLORIDE

The following interactions are of interest in the study of the spectra of alkali halides:

H=H +H +H +H +H +HH = Hnu c + Hel + Hvib rot rot-vib + Hrot-el

+ Hquadripole

magnetic

+ HStark

+ HZeeman

+HHext

The terms listed on the first line (the nuclear, electronic, vibrational, rotational,

rotational-vibrational, and rotational-electronic terms) will not be dealt with here.

They are taken care of in the standard theory of diatomic molecules. It is well known

that for precise measurements of equilibrium distances and nuclear mass, knowledge

of the rotational-electronic interaction is required, and that this interaction can be

obtained by measuring the molecular Zeeman effect (4). Zeeman-effect measurements

are greatly facilitated by a system of high resolution. We can write I = IA + AI, where

IA is the moment of inertia calculated by using atomic masses at the nuclear positions.

Hence

2
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AlI = - NS mJ r 2 h(0LIn) - W(1)
n o

n

where NS = Z S - NfS, ZS is the atomic number, and NfS is the number of electrons in

the nearest filled shell. The sum

h2 j (0OLxln)I Z

W -Wn o

is a measure of the electronic orbital angular momentum induced in the ground state;

it was evaluated only for the electrons in the unfilled shell. Since Wn is not known for

NaCl, as a crude approximation we neglect this sum and take

Na +1, NC1 =-1, JNa = 1. 4 2 A, JCl = 0. 9 3 A

aIAAl -6 mp LI
=-8.2 X 10 , g J = - = + 0.015

I e IA

Johnson and Strandberg's comparison of calculations with measurements (5) indicates

that such an estimate is uncertain, even with respect to sign, but at least it will give

the order of magnitude. As long as ILI is a constant of the motion [cf. Tinkham (6)],

the evaluation of (0 Lx n)1 2 is simple, and the measurement of the Zeeman effect

might be used to locate the unobserved lowest electronic energy levels. We expected

to observe the Zeeman splitting with a field of 100 gauss, since the splitting is 20 cps

per gauss, and the half-halfwidth of the line was to be 500 cps.

Another perturbation that is of second order in the electronic angular momentum

is the "cosine interaction." The off-diagonal elements of L are weighted differently,

so that the measurement of g, C1 , and CI2 would provide us with three independent

equations containing matrix elements of L. A crude estimate of the order of magnitude

of CI is obtained from CI 2gjgi n, or CI 2.8kc (with r = 0.4A). Hquadripole will

be treated in section 1.2, Hmagne in section 1.3, in section 1. 4, and Htar k in

Section II.

1.2 DOUBLE QUADRIPOLE INTERACTION

The diatomic molecule, in which both atoms show a quadripole moment, has been

treated by Bardeen and Townes (7). For this case, we have v = v0 + Ivl + Av 2Z Here

3
I(I + 1) J(J + 1) - 4 C(C + 1)

Av 1 (F 1 ) = + eqQL (2)
2I1 (2 1 - 1) (2J- 1) (2J + 3)

4



in which C is the Casimir function: C = F 1 (F 1 + 1) - I(I+1) - J(J+l).

AVZ = c2 (F 1 F2 ) A'v 2 (F 2 )

with A'v 2 calculated as Av 1 , but with I 2 , F 2 , eqQ 2 replacing I 1, F 1 , eqQ1 . The trans-

formation coefficients c (F 1 F 2 ) are given by

2 2
c (F 1 ,F 2 ) = (F 1 + 1) (2F 2 + 1) W (F 1 , 3/2, 3/2, F 2 ; F,J)

in which the W functions are the Racah coefficients tabulated by Simon, Vander Sluis, and

Biedenharn (8). Results of the calculations for the 3/2-3/2 molecules are given in Fig. 1.

1.3 MAGNETIC INTERACTION

Magnetic interactions arise from the interaction of the two nuclei with each other,

and from the interaction of each nucleus with the rotational-magnetic moment of the

molecule (7).

We write, classically,

(l '2 ) (1 r' ) ( l r)
W 3 (3)

r r

which can be transformed into

2
In 9 g2

H - 3 [(I1 . I) - 3(11 2 k)(I Z k)] (4)
r

where k is the unit vector in the molecular axis. The matrices for ( · I) and (I ·k)

are given by adapting the results of Frosch and Foley (9). They do not give the matrix

(I ·k) for I1 = 3/2,12 = 3/2. It can be found either by transforming ( ·k) in the

J I1 F 1 12 F MF representation into the J I F 3 I1 F MF representation, by means of

Racah coefficients, or directly (10). The elements have the following values:

F1 = F '1 J J (J I F 1 I F MFII 1. kjJ' I F I2 F MF)

J3 J J-1 2 J -1

J J J-1 jz 'j z, - IJ 1 /1 2l(J-1)(J+1)
2 (2J- 1)(2J+ 1)

J J+1 J z 1
1 2 ZJ+ 1

JJ J-1 21+
22J+ 

J+ 1 j+ J 2 J(J
2 (2ZJ+ 1)(2J+ 3)

3 2./3/ + 5
2 +1 2 2J +3

5
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-0.0046 (-eqQ 2 )

1 02500x (eqQ,)
2 \ -0.0002 (-eqQ2)

0.0500x (-eq QI )

-0.110 (-eqQ 2 )

-0.020(-eqQ2)

0.0500 (- eqQ2)

0. 140 (-eqQ2 )

-0.200 (-eqQ 2 )

-0.108(-eqQ2)
3 -0.2000x (-eqQ )

~2 - ~ ~,-0.40(-eqQ2 )

.I8(-eqQ 2 )

J=2

0.000 (- eqQ )
0.250x(-eqQ) 

-2 ' 0.003(-eqQ

0.0714 x (-eqQ, )

0.000x(-eqQ )

-0.132(-eqQ 2)

-0.051 (-eqQ )

0.000(- eqQ )

0.153 (- eqQ,)

0.000 (-eqQ 2)

0.000 (-eqQ 2)

0.000 (-eqQ2)

0.030 (-eqQ2)

5
2

-0.1785x(-eqQ , )

Fig. 1. Double quadripole coupling for
molecule, with eqQ1 >> eqQ2 .

-0.060 (- eqQ 2 )

-0.012(-eqQ 2)

.025 (-eqQ 2)

0.070(-eqQ2)

J=l, J=2 transition in 3/2-3/2
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The diagonal elements of (I1 · J 1 ), (12. J 1 ), (I I) can be found with the aid of a

vector model, to which we add the rotational interactions of the nuclei. Hence the mag-

netic interaction takes the following form:

(J I FI 1 {F (F +1)-J(J+1)- ( I + 1 )}
(j 1 F1 iz F MF) 2 ICI 1 1

{F(F+)- F 1(F 1 + 1) -Iz(Iz + 1)} {F 1 (F1 +

+CI2 4F 1(Fl 
+ 1)

l) +J(J+l)-I(I + 1)}

1ngI gF(F+l)-F(F1 + 1)- I2(I2+ 1)}12 

2r 3

J+l
6 (2J- )

4J + 26J - 32

(2J + 1)(ZJ- 1)2

-4J +18J+54

(ZJ + 1)(ZJ + 3)2

-6J

(zJ + 3)2

1.4 SIGNAL INTENSITIES

In order to calculate the observable signal, we shall have to know the partition sum,

Z, and the transition matrix elements. Of the total number of molecules, nt, only a

fraction participates in the actual transition. For NaCl, the low-lying energy states are

populated by a fraction

1 1 1f
rot vib nuc

kT
Zrot h h = 2540

13 Weobtain
with T = 8480 K, B = 6536.86, and vib = 1.15 X 10 . We obtain

1

Zvib =
1 - exp(-hvvib/kT)

= 2.9

Znuc = (2I1+1)(2I2+1) = 16

which yields

1
119, 000

It can be seen from Fig. 1 that, in general, several quantum states belong to the

same energy level. In the first place, there is degeneracy for all MF-states that belong

7

+

Fi=J ~
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F = J--3
1 Z

1

F =J+-
1 2

(5)



to the same F-level. There may also be accidental degeneracy between different

F-levels. Or, F-levels may not be degenerate but the transition frequencies between

them may accidentally coincide. By coincidence we mean that the levels are closer than

1 kc, since 1 kc is the linewidth that we expect to observe. Let us write ,pyij for the

dipole moment that is effective for the transition from state i to state j; here j stands

for a set of quantum numbers J, F 1, F, MF. Since the ij are different for different

states, it is apparent that for a number of degenerate states the transition condition

(see sec. 3.1) can only be fulfilled for one state. The other states will have made

incomplete transitions in the spectroscope cavity. In the following discussion we do find

the conditions for an optimum signal, but carry the calculation through for a certain

power level in the signal cavity, P 0 . Thereafter, the true optimum signal can be found

experimentally.

We take yo = max (ij) and adjust the power so that the state with the strongest dipole

moment is totally flipped. Then the total number of transitions, including the partially

flipped states, becomes

z Yij(6)d = Z sin( 2) (6)
\o

The sum is taken over all transitions of the same frequency. Our signal then becomes

proportional to I d 2proportional to I = d yo, as will be shown in Section III. For numerical evaluation, an

approximation has been introduced:

/ Yij Yij
sin 2)

o Yo

Although it is not difficult to calculate the matrix elements .ij, the aforementioned sim-

plification permits the use of values given in published works. Thus we find that

I = Y2 (7)
Yo

The summation is over the degenerate states MF, M'F,, that belong to our transition.

Because of the marked differences in the level shift for the subsequent quantum numbers

J, F 1 , F, we obtain

E Yij =(I F , F'F1F F1) (IF1 F., J') (8)

F; M'F'

8



wi JJ+ 3 (21I + 1)(ZIz+ 1). For our case, IF F1;J,J' and IF, F are
ij +l - 3 1enF, F' I Ft

given in reference 11. Furthermore,

2 

MF;M' F ,

yi2 K(F, F)

3(F+1)
K =

(2F + 1)(ZF + 3)

K- = 3F
(F + 1)(F+l)

3F
(2F + 1)(ZF - 1)

for F' - F = +1

for F' - F = 0 (9)

for F' - F = -1

Whence we obtain

I = K F')(I ;J (I F ;J,' )(F F;F, Ft 1~~~~F'
(10)Fi F1

as a measure of the intensity with which the lines appear. I is given with the transitions

in Fig. 2.

We find that

I = 9.2 for the transition
max

J=1 =2

F = 5/ F = 7/2

F=4 F' =5.

(For future reference, we define I =

effective dipole moment.)

d - ij; where d is defined by Eq. 6 and ~ij is the

1.5 SPECTRUM IN THE BEAM APPARATUS

The spectrum shown in Fig. 2 has been evaluated by using the value eqQNa = -5.4 mc,

given by Logan, Cote, and Kusch (12); eqQc 1 was not measured. It can be estimated by

extrapolating from known quadripole values. We find a regular progression in eqQ if we

write the molecules in the order of increasing electronegativity, as shown by Dailey and

Townes (13):

KI: KBr: KC1 = -60 : 10.Z: -0.03

LI : LiBr = -198.5 : 37.2

NaI: NaBr: NaC1 = -259 : 58: x

9
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J I

F 3/2 5/2 1/2

F 0

_ 

1..

Au2

(KC)

AV
I

(KG)

0 0.5
0

-0.1
-o.6 1.o II I I I 

1350
0
0
4.5

J 2

5/2 3/2 7/2 1/2

0.13
0.47
0.47 

0.01
0.22
0.56

-0.6 0.02

2430

3.6 0.24
-0.6 1.76

30.5 0.00
16.7 0.04
16.2 o .o l

-17.2 0.t1

1080

-17.7 0.04
-6.0 0.33

30 0.00
30 0.05_
16.2 0.05
16.2 0.17
20.7 0.20

-17.7 0.20
-13.2 0.49
-17.7 0. 24
-1.5 0.24
-6.0 1.20

116 40.5 0.23
27.7 0.18
14.4 0.09

-7.2 0.00
-19.5 0.27
-27.7 2.15
-78 0.02
-15 0.28
-2.7 4.18

-270 -21 0.00
-21 0.00
-16.5 0.00

3 0.00
75 0.01
3 0.00
21 0.10
16.5 0.01

-75 0 20

-1234
-11.5 0.21
-22.8 0.06

13.5 0.06
1.2 0. 35

-6 0.15
4.7 0.15
75 0.66
20.2 0.15

- 16.5 0.15
-3.8 400

116 2 0 i 4

26.0 0.25
-4.7 3.01
39.5 0.01
8.8 0.40

- 3.3 5.70

.e a] n no~~~~~~~~U. UI
-27.3 0.37
-75 9.22

eqQ,,, = - 5.4MC , eqQr, = - 150KC, NO MAGNETIC COUPLING

Fig. 2. Energy-level diagram for J=1, J=2 transition in NaC1.
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The value and sign of KC1 are given by Lee, Fabricand, Carlson, and Rabi (14); values

for the others are taken from Honig, Townes, Stitch, and Mandel (15). It is merely

stated that eqQc1 is negative, with an absolute value smaller than 0. 04. Thus our value,

eqQc1 = -150 kc, is only an estimate that is compatible with present knowledge. The

spectrum for these values was plotted in order to visualize the spectrum that would be

expected in the beam spectrometer. Estimates of the magnetic interactions were found

to be small enough so that they could be neglected in this prediction. These interesting

interactions can, probably, only be detected by using a molecular beam in a large

interaction-cavity spectroscope, as described here, or by a conventional molecular-

beam apparatus with stimulating radiation of the highest stability.
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II. HIGH-FIELD STARK EFFECT AND ELECTROSTATIC STATE SELECTION

INTRODUCTION

The problem of state selection in molecular-beam microwave spectroscopy has been

successfully solved by Gordon and Townes, who used a design of Bennewitz, Paul, and

Schlier (16). However, a direct application of this work is not compatible with our goal

of obtaining high inherent precision, since the maser focuser transforms the initially

collimated parallel beam into a divergent beam. Therefore we set out to make a focuser

which, like the cylindrical lens, will deflect the particles only in one plane, so that in

the direction of the 17 nodes of our cavity, the molecules would not have any velocity

components. A knowledge of high-field Stark effect is of importance in this connection,

and therefore the solution of this problem will be given below, and the efficiency of our

Stark selector can then be evaluated.

2.1 HIGH-FIELD STARK EFFECT

The influence of a static electric field on a rotor was calculated with the use of

ordinary stationary perturbation theory. The zero-order functions are the functions of

the free rotor. The perturbation calculation gives the energy levels in terms of a series

in X, which converges for small values of X(X<J). The following symbols are used:

} = molecular dipole moment
,F

X =- F = static field
hB

B = h/8r 2 I = reduced moment of inertia

W = reduced energy

J, K, M symmetric-top quantum numbers

m= IM

= (a) 1 / r

a = (/2) 1 / 2

w(t)+x W+xPt a ' = a

For higher values of X, the procedure becomes inadequate, and the equations of motion

might have to be solved exactly. In the cases of the symmetric and linear rotors, a

continued-fraction method for the evaluation of W(J M, K, X) is available (17, 18). Barriol

(19) mentions an asymptotic formula for the two-dimensional rigid rotor, for the case

in which X > W.

12



We want to find a power series in k 1 / Z for W that converges when the electric

energy is larger than the rotational energy. This series can also be obtained from sta-

tionary perturbation theory, but the zero-order function will then correspond to very

large fields, in which the rotor is eventually bound to an axis (direction of the electric

field vector). The problem is then of the kind encountered in the treatment of vibrating

rotors. Here, the rigid linear rotor is treated. It differs slightly from the general case

because of the absence of a moment of inertia along the axis of symmetry. Energy levels

for the linear rotor have been calculated by using Lamb's expression, which permits an

evaluation of the convergence of our approximation.

a. Harmonic Oscillator Approximation for the Rigid Linear Rotor

The wave equation for the rigid linear rotor in the presence of an electric field is

0 = sin O a8 sin 8 + O -+ cos1 at a 1 
Tc ined fasin 2 0 

The continued fraction for W is

(11)

W = m(m+l) - X2
(m+l)2 - m /

/ m+l)(m+2)
(Zm + 1)(2m + 3)

2 (m+Z) - m /
-W (m+) .3)(m+ 5)..

(Zm + 3)(2m + 5)
(12)

The following coordinate transformation gives a more convenient form to Eq. 11:

r = 2 tan (0/2)

Equation 11 then reads

2\2/2 2(1 + r a +1 a 1 a
4 ar 2 +r ar +--4~

Let F(r, ) = (l)U(n m)(), where

( 2 d 2'

4a d 2

U10

4+ a - 25 .. U(n,n
64a 3 256a 4

F(r, c)+ +W+X -4I+r 2 IF(r, %) = 0
4+

(2ar

1 im4
- e ;im and thus we find that
)1/2

,4 ,6

- p - a + -
4a 16 ag

X)(i) = 0

For a-oo, this equation is encountered in the treatment of the two-dimensional harmonic

13

(13)

(14)

9



oscillator (20), with the solutions

(n, m) (n, m) xp( ) 

X 1+ I (-1)V/

v=2, 4,...

n(n-2) ... (n- v+2)

2 X 4 X ... X v(m+l)(m+2) ... . (m + v/Z)

Po = 2(m+n+l)

The energy levels can now be expanded in a:

W =-W(°) + W(1) a + W(Z) -1
(n,m) (n,m) (n, m) (n,m)a

and so can the equation of motion:

(H o a H 1 + a 2 HZ + ... ) Unm =(o + a1 + =) Unm

Herein

( d2 1 d M2 +
H = - - _+ +

° d 2 d 2

H1 2 4

a 4

H2 -- o
16 0

t=oo _ 8

Zt= t
t=3 t 64 1 + ( 2 /4a)

In writing the higher-order terms Hi, H 2 , and so forth, use has been made of the zero-

order equation in order to substitute Po - 2 for the differential operator

d 2 1 d +

d2 5 d2 4 2

The matrices for 2 and 4 are easily calculated by writing 2 Unm as a linear combi-
nation of Un,m . [They have been tabulated by Shaffer (21). ] Then we find

14



(m,njH1 m,n - 2) = - 16 [(n-2) n(Zm + n - 2) (2m + n)] 1 /

(m,n IH Im,n - 1) =-(m + n + 2) [n(2m +n)] 1 / 2

1 22m- 2n - 4
(m,nH 1 m, n) =8 [2m2 mn - n2 2m-2n-41

(m,nIHl1 m,n + 1) = (m+n) [(n+2)(Zm + n + Z)]1/ z

(m,nIH Hlm,n + 2) = - 3 [(n+2)(n+4)(Zm + n + 2) (Zm + n + 4)]1/2

(m,njH2 m,n)= 1 (Z m Z + 6mn+ 3n2 + 6m + 6n + 4)(m + n + 1)

The matrices HI and H2 are non-Hermitian. This is so because Unm is normalized -

not in the 0, space, but in the tangential r, plane. Nevertheless, it is easily verified

that the W(t) are found as in the usual perturbation calculations; for example,
n, m

(2) Z~ (mn IH Imn')(mn' IH1 I mn)

- -
(n, m) (n', m)

Note that m is a good quantum number for all values of X, because of the axial sym-

metry of the configuration. It is therefore possible to connect the levels at X = 0 with

the levels at X = oo, and we find that n = 2(J-m). Now, n and m are eliminated and W

is given in the more familiar quantum numbers J and M:

W(JM) =- 1 + /[2J- IMI + 1] X1 / 2

+TI [M + ZIM I - J + I MI - ZJ - 21 X °

+4 [-41 M3 1 + 6M2 J + 61MI J _- 4J 3 + 3M64

+ 61MI J - 6J + 31M - 6J -21 1/+ ..

In Table II, W(J M) has been tabulated to J = 4 and X = 100. The calculations were

15



Table II.

w w w w w w w w w w w w w w w
X 0,0 1,0 1,1 2,0 2,1 2,2 3,0 3,1 3,2 3,3 4,0 4,1 4,2 4,3 4,4

0 0.00 2.00 2.00 6.00 6.00 6.00 12.00 12.00 12.00 12.00 20.00 20.00 20.00 20.00 20.00
1 -0.16 2.09 1.95 6.02 6.01 5.97 12.01 12.01 12.00 11.99 20.01 20.01 20.00 20.00 19.99
2 -0.56 2.29 1.81 6.10 6.04 5.91 12.04 12.03 12.00 11.94 20.03 20.02 20.01 19.99 19.96
3 -1.09 2.48 1.57 6.28 6.08 5.79 12.10 12.07 12.00 11.88 20.06 20.05 20.02 19.98 19.92
4 -1.70 2.60 1.27 6.41 6.12 5.63 12.18 12.13 11.99 11.78 20.10 20.09 20.04 19.96 19.86
5 -2.37 2.64 0.90 6.65 6.15 5.43 12.29 12.20 11.98 11.66 20.16 20.14 20.06 19.94 19.77
6 -3.06 2.59 0.49 6.91 6.15 5.19 12.42 12.29 11.96 11.51 20.24 20.20 20.09 19.91 19.68
7 -3.78 2.46 0.03 7.18 6.13 4.92 13.58 12.38 11.93 11.34 20.32 20.27 20.12 19.88 19.56
8 -4.52 2.26 -0.46 7.44 6.08 4.61 12.77 12.48 11.89 11.14 20.42 20.35 20.15 19.83 19.43
9 -5.28 2.02 -0.98 7.68 5.99 4.27 12.99 12.58 11.84 10.92 20.54 20.44 20.18 19.78 19.28

10 -6.05 1.72 -1.52 7.88 5.87 3.91 13.23 12.68 11.77 10.69 20.67 20.55 20.21 19.72 19.11
11 -6.83 1.39 -2.09 8.03 5.72 3.53 13.51 12.78 11.68 10.42 20.82 20.66 20.25 19.65 18.93
12 -7.62 1.03 -2.68 8.14 5.54 3.12 13.81 12.87 11.57 10.15 20.98 20.78 20.28 19.57 18.74
13 -8.42 0.64 -3.28 8.20 5.33 2.69 14.12 12.94 11.45 9.85 21.16 20.91 20.30 19.49 18.53
14 -9.22 0.23 -3.89 8.22 5.09 2.24 14.43 13.01 11.31 9.53 21.37 21.04 20.33 19.39 18.30
15 -10.04 -0.21 -4.52 8.20 4.83 1.78 14.74 13.05 11.16 9.20 21.59 21.18 20.35 19.28 18.06
16 -10.86 -0.66 -5.17 8.14 4.54 1.30 15.03 13.08 10.98 8.85 21.83 21.33 20.36 19.16 17.81
17 -11.68 -1.13 -5.82 8.05 4.24 0.81 15.32 13.09 10.79 8.49 22.09 21.47 20.37 19.03 17.55
18 -12.51 -1.62 -6.48 7.92 3.91 0.30 15.57 13.08 10.59 8.12 22.37 21.62 20.36 18.88 17.27
19 -13.35 -2.13 -7.15 7.77 3.57 -0.22 15.81 13.05 10.36 7.73 22.66 21.76 20.35 18.73 16.98
20 -14.19 -2.64 -7.83 7.60 3.21 -0.75 16.01 13.00 10.13 7.32 22.98 21.90 20.34 18.56 16.86
25 -18.44 -5.39 -11.34 6.42 1.20 -3.55 16.60 12.48 8.72 5.15 24.64 22.50 20.08 17.57 15.01
30 -22.76 -8.35 -15.00 4.85 -1.09 -6.56 16.55 11.56 7.02 2.74 26.15 22.83 19.56 16.32 13.11
35 -27.14 -11.48 -18.76 2.99 -3.61 -9.72 16.05 10.31 5.07 0.14 27.20 22.83 18.76 14.84 11.01
40 -31.56 -14.74 -22.60 0.91 -6.29 -13.00 15.19 8.80 2.93 -2.61 27.75 22.51 17.72 13.16 8.74
45 -36.02 -18.11 -26.52 -1.36 -9.12 -16.38 14.07 7.08 0.62 -5.49 27.88 21.92 16.47 11.30 6.33
50 -40.51 -21.56 -30.49 -3.77 -12.06 -19.85 12.73 5.18 -1.84 -8.47 27.20 21.01 15.03 9.30 3.80
75 -63.26 -39.81 -51.00 -17.47 -28.06 -38.15 3.64 -6.27 -15.65 -24.61 23.40 14.26 5.69 2.46 -10.28

100 -86.36 -59.12 -72.21 -32.97 -45.48 -57.48 -7.99 -19.87 -31.20 -42.09 15.70 4.53 -6.06 -16.20 -25.97

made, with the use of expression 12, by the Joint Computing Group, M.I. T. In Fig. 3,

W(J M) has been plotted. The small circles indicate the points at which the second-order

(J, M)~~~~

Fig. 3. High-field Stark effect in rigid linear rotors.

approximation, starting at X = oo, deviates from the true values by more than 0. 1 unit,

and thus its convergence properties are shown.

A vibrating-rotor approximation was also found for high-field Stark effect on the

nonrigid linear rotor and the rigid asymmetric rotor.
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2.2 AXIAL SELECTOR FOR ALKALI-HALIDE BEAM

We shall discuss a simple application of the calculations of section 2. 1 - the axially

symmetrical multipole focuser. In this type of focuser the field, and therefore the

energy of a molecule in a given state, is a function of r only (see Fig. 4). In particular,

U - 2.4 x 10`
'

DISG D

energy U is below a limit UL or not.\
U,. 9.7 x 1017

Fig. 4. Axial selector for alkali-halide beam.

let us look at the quadripole focuser, in which the field is proportional to m. Whether

a molecule is trapped in, or escapes from, the focuser depends upon whether its initial

energy UI is below a limit UL or not.

Mv2

UI= U(rI) + 2 < UL (15)

In particular, for r I = 0, we find the maximum trapping angle:

2
MvLI =2U LI L

(VlI)max zuL (16)
v K3kT

For sodium chloride, J = 2, M = 0, we find

UL = 9.7 X 107

E 2 = 71 e.s.u.

a = 2.4 per cent
max

If we make a long focuser with a small source, all of the molecules will move within a
-17cylinder defined by UL = 9.7 X 1017. For the J = 1 state (see Fig. 3), the 1, 1 state is

completely divergent, whereas for M = 0 we find that

17
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UL =2.4 X 10 - 1 7

Therefore, if we place a disc, D,

the J = 2 state, with an efficiency

E = 13 e.s.u.
1

at the end of the focuser, we shall have selected only

of approximately

E2 - E2

= 2 97 per cent
2

On account of the small amax'

mated.

such a focuser would have to be very well colli-

2.3 TRANSVERSE-ROD FOCUSERS

A study was performed on transverse-rod focusers in order to find an effective

arrangement for state selection. The field in this type of focuser deflects particles in

one plane only and not in a direction perpendicular to it. This feature raises the possi-

bility of beam state selection with high directivity, which is important in high-precision

spectroscopy. The fields of infinite rods can be calculated by using conformal mapping.

The study can be simplified by assuming that the Stark energy is proportional to the

square of the field strength, W = a .

This assumption was admissible for ammonia with not too high fields. For alkali

halides, the actual field dependence had to be used, and the trajectories had to be found

by numerical integration.

/ZZ//Z // ///// /y

L

4

1 ..-.

(a)

A 'y

L

,,7777,,7,,,,,,// X,
(b)

Fig. 5. Focusing-field configurations: (a) rod between
two grounded plates; (b) two rods oppositely
charged and touching.
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The field of a rod between two grounded plates is (see Fig. 5a)

cosh x + sin y

0 = ln
cosh x - sin y

(17)

x Tr y' Tr
x= y -

L L

For several rods, the potential

cosh (x - xi) + sin y

+ ~~~= z~~~~~ . ln ~(18)
1 cosh (x - xi) - sin y

gives a fair representation, but, in general, the rods will no longer be exactly circular.

In the extreme case, with two rods oppositely charged and touching each other (see

Fig. 5b), the potential is given approximately by

sinh x sin y

=, - 2go2 (19)
cosh 2 x - sin2 y

We now define a potential U, with the property that the deflection angle P(y) for a particle
dU(y' )

passing through the field in the x'-direction and at altitude y' is given by (y')
dy'

for small angles.

For a single rod, we find that

1
2 2 2 y cos (y) - -sin (y)

W ao (L) sin (2y)

and for the dipole, we find that

22l -a22 2 f-3[l +cos2 (y)] 2y[cos2 ) + 5](2y)+5]cos(2y)
p(y) = W ab 2 'T3 . 1)

so L in (y) sin (y)

where WO is the kinetic energy of the molecule.

Calculation for intermediary cases (two oppositely charged rods at varying distances)

shows that the focuser becomes more effective when the two rods approach each other.

Expressions 20 and 21 show that the deflection increases three times if the rods are

moved from an infinite distance to the configuration of Fig. 5b. The closest approach

is given by the maximum allowed field strength. Thus we decided to construct a focuser

with several rods set at a distance L apart.

19
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2.4 TRANSVERSE-ROD FOCUSER FOR SODIUM CHLORIDE

Let us now examine the focuser that was actually used. It consists of a lattice of

rods alternately charged positive and negative. Figure 6 shows a cross section through

the lattice. The white circles represent the alternately charged rods. The field

7 cosh (x - xi) + cos y

+ ~~~~~~= ZE~~~~~~ n ~(22)
0 cosh (x - xi)- cos y

was chosen, with x i = irr. The field represents an infinite array of line charges of oppo-

site polarity in the y-direction. The ~i are so adjusted that the same absolute value of

potential is given to all the rods. The potential does not fit exactly circular rods, but

the deviations are small. For a rod potential of 20 kv, the trajectories for the relevant

quantum states were calculated with the assistance of the Joint Computing Group, M.I.T.

Figure 6 shows the trajectories for several quantum states; the aperture slits are shown

on the right-hand side. The beam is followed back to the source and we see, for example,

that only a small fraction of the molecules in quantum state J = 0, M = 0 passes through

the aperture, the rest being held back because of the strong divergence of the beam.

Almost the whole state J = 2, M = 2, however, passes through the aperture. The results

are given in Table III. On the x-axis the points x i , numbered 0 to 7, are taken. The

y-axis is divided into 90 arbitrary units: -45 touches the surface of the rod below, and

+45 the surface of the rod above. Several trajectories are calculated for each energy

level J, M until a trajectory is found that just touches the aperture. Since the trajectories

Fig. 6. Transverse-rod focuser trajectories.
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are symmetrical about the x-axis, only positive y-values are plotted.

The calculation is correct for a given velocity and a beam that emerges strictly par-

allel. Actually, there will be a velocity spread. This was taken into account by inserting

the factor 1/2 into the calculated selector efficiency. Furthermore, the beam is not

strictly parallel. The influence of this fact on selector efficiency can be estimated from

geometrical optics. We chose the principal plane (see Fig. 7) as the vertical symmetry

plane of our focuser. For small deflections, the trajectory of the beam can then be

idealized by a straight line that is refracted on the principal plane. A focal plane will

only exist if the tangent of the angle of refraction is proportional to the distance from the

horizontal symmetry plane. Reference to Table III shows that this condition is approxi-

mately fulfilled. A construction from geometrical optics shows (see Fig. 7) that we can

compare the part of the beam selected by our aperture in the presence of a divergent

lens with the part selected without it. The ratio of the selected refracted beam to the

selected unrefracted beam is given by the area covered by the refracted beam in the

oven aperture divided by the corresponding area in the unrefracted beam. We find that

in case II a slightly less efficient selection takes place than in case I, whereas in case III

the selection is very efficient because the refracted beam is entirely cut off. We there-

fore conclude that a small angular spread like that given by our actual source will not

greatly impair the efficiency of state selection.

The focuser gives different population numbers not only for different J quantum

numbers, but also within each J-state. This means that we shall find different popula-

tions for all of the different quantum states. It would be difficult to evaluate the popula-

tions exactly because the transitions among the M-levels occur easily in regions of small

electric field. In the limit the transitions tend to equalize the populations within a given

J-state, and therefore we have calculated the populations for the level with the assump-

tion that this equalization takes place.

Fig. 7. Optical representation of state selector.
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The efficiency can be calculated as follows. The relative opening Yo/45 gives the

relative number, a, admitted in each state. Next, we calculate the average relative

number, , admitted in each J-level. The efficiency is obtained from the difference

between the numbers, , for J = 1 and J = 2, as follows.

State

J M a (7) P (o)

0 0 22 22

1 1 29.4
33

1 0 41.5

2 2 38.0

2 1 51.3 49.5

2 0 69.09

If we take the factor 1/2 for the velocity distribution, we obtain the efficiency

1/2 [(J=2) - p(J=1) = 8.2 per cent.

2.5 NONADIABATIC LOSSES IN THE TRANSVERSE-ROD FOCUSER

As a molecule passes through our focuser, the electric field changes direction

several times. Therefore the operating conditions must be such that the molecule will

leave the focuser in the same state that it was in when it entered.

We have treated the molecule in the focuser as if time is only a parameter in the

Hamiltonian. This treatment is known as the adiabatic approximation. If we consider

a two-state system in which one state is initially unpopulated, we can show that the ampli-

tude of the unpopulated state will be

Eja

h -
la l0

Here, h12 is the separation between the two states, and is the frequency of the per-

turbation. In our case, a2 = 10-5 ; that is, the adiabatic condition is fulfilled.

In Fig. 3 we showed that two energy levels cross for certain values of the electric

field. This means that wl2 goes through zero, and hence the adiabatic condition is no

longer fulfilled. A special treatment is needed for this case, although there is reason

to believe that not too many transitions occur - as long as the average energy separation

along the trajectory is not small. For the sodium-chloride J=2 -Jl=l transition, proper

adjustment of the electric field will obviate such a crossing.

The condition for adiabatic transition can also be obtained from the perturbation

treatment that is customarily used in calculating transition probabilities in the presence
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of periodic perturbations. However, certain conditions must be observed:

1. Since is less than 12Z the "high-frequency terms" can no longer be neglected.

2. For a large perturbing field, the unperturbed states are mixed considerably as

the field goes through its cycle. In order to determine whether or not a transition has

occurred, the probability amplitudes before and after a complete cycle of the perturbing

field must be compared.

Finally, we note that the perturbing field of the higher harmonics decreases as

(1/cosh x)n, and hence that the influence of the harmonics becomes negligible for

x> 0, n> 1.
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III. MOLECULAR-BEAM MICROWAVE SPECTROSCOPE

3.1 DESIGN PARAMETERS

a. Qualitative Discussion

Dicke and Romer (22, 23) show that a gas of n particles radiates with an intensity of

=0 n+ 1(2 (23)

if the n' particles are in a coherent state and Io is the intensity for a single radiating

particle. With a partition sum of 1/2, we find an emission of I nZ Io, where n is the

effective number of states.

The transition probability, Pv is given by Heitler (24) as

1 P vH (24)

For our cavity, it is given (25) by

(25)Pv = T V V5)

H' 2, for dipole transitions, is equal to

2
12 2w hv (n + 1)/V (26)

and hence, for n = 0, we obtain

2 2
I = 8wr o 1 2 n QV (27)

in which n is redefined as the particle density.

The necessary phase coherence can be established by pulses of suitable strength, or

by preparing the beam in a separate cavity (23, 26).

The matrix elements for coherent induced emission are not proportional to n2, but

to n, because now transitions are induced in both directions. A typical experiment in

stimulated emission will be analyzed in section 3. lb, and the emission will be

32 2 (28)
Signal 5 V Q n pij (28)signal 5'Ni

Tr

which is similar to the result obtained for spontaneous coherent emission. The factors

are different: the second experiment is actually realizable; but in the first experiment

only the theoretical limit is given. In an actual experiment, but with high pulse repeti-

tion rate, Dicke and Romer (23) obtained the factor r/4.

A special case arises when the signal emitted is sufficient to stimulate further
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emission. This occurs in maser oscillation, and thus the electric field E has to be

strong enough to flip the molecule during the relaxation time. That this condition is

closely related to the condition that the energy released by the molecules must exceed

the energy absorbed in the cavity has been shown by Shimoda, Wang, and Townes (27).

It has been shown by Johnson and Strandberg (28) that the condition for a complete

flip is

E.Lij T

=-- (29)
zh 2

This means that power loss to the cavity can be written in these two equivalent forms:

o E 2
' h2 V

o 8 2 2
Q 3Zr iij

(30)

P nVhv
O T

With T = L/V, we obtain

n = (31)
161j. L Q

ij

Approximately the same result could have been obtained by using the concept of induced

emission with a transition probability of v/L. The radiation density is calculated by

assuming that all of the radiation is concentrated within the spectral width of the stim-

ulating radiation. The photon density is found to be n = nV. Hence

n h (32)
32 Z FijZ L Q

Equation 32 is the equivalent of Eq. 31 except for an error in the numerical factor that

arises in using small-signal theory.

Finally, note that the condition that coherent spontaneous emission just flips the

molecules during the relaxation time leads, again, to

16o pijw n2 Q
= n

hv V

or to

n 2 
32r ij Q L

This indicates that in addition to incoherent spontaneous emission, which has been

treated by Strandberg (25), coherent spontaneous emission (molecular ringing) plays
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an important role in maser processes.

b. Signal-to-Noise Ratio for Stimulated Emission

We shall now discuss the signal power produced by an apparatus similar to the Stark

microwave spectroscope, of which Strandberg (4) has given an analysis.

The periodically applied Stark effect modulates the microwave power with a modula-

tion index m = y/r, where y is the relative change in power with absorption. This gives

Psignal = P (m 2 /2). However, since Pabs/Po = , we obtain Psignal = Pabs/2awZPo
In a bridge system with no Stark modulation, it can be shown that Psignal is larger by

a factor (/2) . This factor is the result of the fact that in the Stark system the higher

harmonics of the square wave are neglected.

When an observation is made without a bridge, the signal power is larger, but so is

the noise power; and the signal-to-noise ratio is the same, within a factor of 2, as

Townes and Geschwind (29) have shown.

With our beam, for the signal-to-noise ratio, r, we obtain

p2 1/2

r = (~ 2abs (33)
ZT2 Po kT - B

in which Pabs = A n hv, where n is the beam density multiplied by the properly aver-

aged beam velocity. From several representative velocities, we chose the most prob-

able velocity:

v= (3 ) =5.9 X 104 (34)

for sodium chloride. Po is the power required for producing the transitions for obser-

vation. The transition condition is given by Eq. 29, and we have

2 h2 V

o Q 256 2j L2

for the TE17, 0, 1mode, and hence

32 2 2
Psignal = 5 V Q n ij

which is the result obtained in Eq. Z8

c. Application to the Molecular-Beam Microwave Spectroscope

The density of particles in the beam, n, has to be evaluated. This will be done in

two steps. First, n will be obtained for a beam without a state selector. Second, the

effect of the state selector will be considered. The beam is formed from a cloud of

density, N, inside the evaporating oven. If the beam is given a linear aperture angle y,
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then the fraction selected is y2/4; with 50 per cent transparency we have a density of

nt = Ny2 /8. This argument holds only if N is small enough and the mean-free path X is

large enough to permit free passage of the beam through the effuser channels of length .

1X -= >E 
b Tr N

Typical values are:

=1 cm

b =4A

N= 10 1 6 14/cm3
16w

(35)

nt = 1.25 X 10 - 5 N = 2.5 X 109/cm3

At this point, we introduce an additional factor of 1/r2 to account for the fact that the

n' molecules are emerging with a velocity spread, instead of being monoenergetic.

Thus, we have nt = 1.8 X 109/cm3 . Now, a factor b must be introduced to account for

the fact that no state selector is used. This means that the upper and lower states of

our transition are almost equally populated. Their energy difference causes only a

small population difference, the ratio of the population of the upper state to the popula-

tion of the lower state being exp(-hv/kT). Hence, we have exp(-hv/kT) - 1 hv/kT.

With the definition

hv
for our sodium-chloride trkT

for our sodium-chloride transition,

6.62 X 1027 X 2.6 X 1010b =
1.38 X 10 16X 828

Summarizing, we have

(36)

= 1.5 X 10

32 2 2 32 2
signal 5 VQ In = - n
signal 7r 5 7r 

where, for our sodium-chloride transitic
-18

,= 8.5 X 10 e.s.u.

I =9.2

f =8.4X10 6

nt = 1.8X 10 9

b = 1.5 X10 

= 2rv = 1.63 X 1011

Q = 7.103 cm 3

Psignal =1.8 X 10 1 3 erg/secsignal 

f2 I 2 w VQ b2

)n, we have

molecular dipole moment

intensity

partition sum

beam density

Boltzmann factor

frequency

quality factor of cavity

signal power.
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The signal power has to be greater than the noise power in the system. Ideally, the

noise power equals the available thermal noise power; that is, Pnoise = kTB, where B

is the bandwidth of the system. In our case, B is the output bandwidth or, since we use

an RC filter with a time constant T, we have B = 1/2T. In reality, a noise figure ri

must be introduced. With i = 13 db, and T = 3 sec, we obtain a signal-to-noise ratio,

r, of 1.4. (In Section II, we saw that the state selector has an efficiency of 8. 2 per cent;
8.2

hence we multiply r by 0815 and obtain r = 80. )

Now we shall calculate the analogous results for ammonia. From the data of our

system, we find

1f 1
3400

I = 410

b = 3.8 X 10 3

= 1.5 X 1011

= 1.5 X 10 18

= 7.1 X104

and hence r = 115. The beam and cavity with 10 per cent efficiency in the state selector

would produce r" = 3000. Our calculation suggests that the efficiency of NH 3 is approx-

imately (3000/80)2, or 1300 times as effective as NaCl. This large difference is attrib-

utable in part to the fact that a great number of accidental degeneracies that were

incorporated in the calculations for NH 3 were not taken into account in the data for NaCl

because we did not know its spectrum well enough.

d. Conditions for Maser Operation

It is of interest to calculate the Qmin required for making the large beam self-

oscillating. In this calculation the flip condition stated in section 3. la must be fulfilled

by the field created by the flipping molecules. This means that

WV h2 A
= nhv A Vd22

32Try LQ

where d represents the accidental and MF-degeneracy. We then obtain

hv
n 

K(F, F')/16 2 I L Q

1 4 3
which, for n =-10 nt f = 5 X 10 per cm , gives Qmin = 42, 000 for ammonia. For a

cavity of the size of ours, the realization of such a Q does not appear to be impossible.
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However, a Q of 5000 would be sufficient for a state selector that is 100 per cent effi-

cient.

Note also that in the conditions stated above the cavity cross section did not appear.

This suggests that a precision device could be made with a much narrower, but equally

long, cavity. The output power would be lowered in proportion to the cross-section area.

The flip condition can also be applied to sodium chloride, and we have Qin = 3X 105.

For maser operation, we find that NaCl is 80 times less effective than NH3, the

reason being that, whereas the difference in dipole moment is still favorable to NaCl,

the difference in partition and degeneracy appears in the first order. A Qmin of 30, 000

is needed if we decrease the length by a factor of 10 and increase the flux by 1000, which

can be achieved by reducing the aspect ratio by a factor of 10. This means that an ordi-

nary sodium-chloride maser should be feasible, even if a focusing structure like ours

is used.

However, with the help of Stark energies (11, 12) different focusers can be designed.

The designer should not limit his choice to the designs that are already known but should

look for the most effective design for his particular task. In a spectroscope the signal

power will increase proportionally with frequency. The field in the focuser will also

rise proportionally with frequency. However, at sufficiently high frequencies the focuser

is no longer needed, since the thermal-equilibrium distribution provides for a better

population difference.

Since the frequency does not appear in the oscillation condition, masers of lower

frequency appear to be feasible. We find that if one alkali halide is successfully observed,

the others can also be observed. The beam flux can be varied by diminishing the effuser

channel length, . The flux will be limited by consideration of the running time of the

device. However, in no case will nt be allowed to become large enough to produce a

transition of the selected state in the focuser or in the cavity. For sodium chloride,

this limits us to n t < 2 X 1011/cm3

e. Precision

The precision of measurement is determined by the width of an emission line. The

long cavity of our system gives a total linewidth of AVL = 1 kc, which, according to

information theory (13), amounts to a statistical precision of

v 9
P= r = 1.7 X 10 9 (37)

A L

or six parts in 1010. This accuracy might be impaired by pulling effects. The part of

the pulling that is caused by the cavity setting is given, approximately, by

AVL
dwhere = v2Q and (38)

where Ahvc v/ZQ, and by is the error in cavity setting (6). In order for this error not
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to exceed the readout error, we must have v = 150 kc/sec. A time constant one hun-

dred times longer (300 sec), such as is used in atomic clocks, would produce an abso-

lute accuracy of six parts in 1011 and require a cavity setting that is better than 15 kc.

3.2 EXPERIMENTAL APPARATUS

a. Electronic System

Figures 8 and 9 illustrate the present status of the molecular-beam microwave spec-

troscope. Figure 8 is a block diagram of the electronic system. Figure 9 shows the

auxiliary apparatus. A system of relays provides protection against damage in case of

vacuum breakdown.

The spectroscope is of the resonant-cavity type and uses two bridges - one for the

carrier and one for the local oscillator. The system operation is described below. The

beam source, the interaction cavity, and the frequency control system which had to be

developed especially for this spectroscope, are described in the following sections.

The power level of the signal is controlled (see Fig. 8) by setting attenuator 1 so

that the crystal produces a specified current (50 Bpa). Calibrated attenuators 2 and 3 are

set to reduce the power level to the required value of 4.5 X 1010 watt. Care had to be

taken to reduce the pickup of the signal radiated by the signal klystron. Steel wool

wrapped on waveguide joints is quite effective in isolating this radiation. The power

setting is cross-checked by comparing the power with the background noise after this

noise has been measured quantitatively by means of a gas-discharge noise source

(Roger White Model GNW-K 2 - 18). The noise could have been measured more precisely

with a K-band isolator between source and receiver, since some modulation of the local

oscillator could have occurred. Our measurements without the isolator gave a noise

figure of 13 db.

We tried to balance out, by using a balanced mixer, the additional noise that might

be introduced by the local oscillator. Crystals also show excess noise at low frequencies.

Our detection at 30 mc should be outside the excess-noise region. However, the rf car-

rier of the 300-cps signal may beat with the excess-noise components to give excess

noise by double conversion. Hence, we suppress the carrier. A small 30-minc signal,

modulated at 300 cps and weakly coupled to the i-f input, can be observed with the micro-

wave bridge operating at different rf levels. The required amount of carrier suppression

can be determined by noting the point where the rf carrier increases the signal-to-noise

ratio of the injected 300-cps signal.

The weak signal power is detected, in the most efficient way; that is, by a linear

system. The ammonia maser detects the emitted power in a partially nonlinear process,

which means that the output bandwidth is the geometrical mean of the bandwidth of the

final filter and the i-f bandwidth. In our case, the final filter alone determines the band-

width. This is achieved by applying Stark modulation to the molecular beam. The fre-

quency of the modulation is determined by two conditions:
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STARK MODULATION

30MC

RXB 103009
(MODIFIED 2K 50)
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(THERMAL SWEEP)
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ATTENUATOR 2

R-LEVEL MONITOR

2

Fig. 8. Molecular-beam microwave spectroscope.
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1. The modulation must be slow compared with the transit time of the beam.

2. The modulation frequency must be as high as is compatible with the first condi-

tion, in order to minimize excess noise in the receiver crystal.

If the first condition is violated, we no longer obtain modulated emission but, rather,

unmodulated emission at several frequencies (4). It is essential in the construction of

a high-precision spectroscope that an electromagnetic radiation field, whose properties

are well controlled in space and time, be available. The stability requirements can be

summarized by the three following conditions:

47/LAp < A v 

V/L < Av (39)

Sv < Av 

where AP is the angular spread of the particles in the y-direction; L is the length of

uniform phase in the cavity; v is the spectral width of the source used for observation;

and Av is the spectral width of the line that will be observed. The first condition requires

a well-collimated source; the second, a large cavity; and the third, a stable frequency

source. The work which was done to satisfy these three conditions will now be described.

b. Beam Source and Beam Detector

A schematic diagram of the beam-source assembly is shown in Fig. 10. The oven

housing was of stainless steel, the actual collimator was of corrugated nickel ribbon, as

described by Strandberg and Dreicer (1). [Details of the oven construction are given in

RLE drawings Nos. A-1642B, A-1642C, B-1642D, B-1642E, and B-1642F.1 The oven

was run at a temperature of 845° K. The function of the oven is to produce vapor of

molecular sodium chloride of sufficient pressure to supply a beam of required strength.

Two disturbing influences have to be mentioned: polymerization will create a fraction

of (NaCl)Z molecules. A dimerization of potassium chloride up to 15 per cent for an oven

pressure of 50 microns is quoted by Datz and Taylor (30). Miller and Kusch (31) mention

that polymerization should increase with oven temperature. The oven pressure used in

our experiment was 1. 5 microns. We therefore do not expect dimerization to be signif-

icant.

Furthermore, the effect of surface ionization has to be considered. This effect is

governed by the Saha-Langmuir equation

n + e( - I) (40)
na r e(40

a a a kr

where r+ and ra are the reflection coefficients for ions and atoms; +/Wa = 1/2; I is

the ionization potential; and is the work function. Equation 40 was carefully studied

by Datz and Taylor (30) for alkali halides on tungsten. From their investigation we find

that at temperatures of 1100° K, the Saha-Langmuir equation is fulfilled for tungsten if
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the ionization coefficient of the alkali metal is used. The ionization efficiency is slightly

increased for the halides, possibly because of formation of a partial halide film. For

platinum, the efficiency is strongly decreased, possibly because of strong reflection of

the molecules. In all cases, ionization practically ceases below 1100 ° K. This can be

explained by a lowering of the work function that is caused by surface contamination. If

this result, which was found for tungsten and platinum, can be applied to steel and nickel,

then we should not expect the oven to ionize sodium chloride. If some ionization should

occur, the ions will probably not penetrate the focuser because strong image forces will
2

be acting. The lateral displacement is As e where y is the aperture angle; or
kTy e

As 0.01 inch in our geometry. The measurements by Datz and Taylor indicate that

83 per cent of the incident potassium-chloride molecules should be ionized on a tungsten

filament at a temperature of 15000 K. This is essentially the same ionization efficiency

as that measured for atomic potassium. Atomic sodium is ionized at 2000 ° K with only

5 per cent efficiency. This is to be expected from the higher ionization potential of

sodium. The efficiency for potassium decreases with temperature; the efficiency for

sodium increases. Tungsten oxide has a higher work function than tungsten, and there-

fore it produces a 100 per cent efficient ionization for both potassium chloride and sodi-

um chloride. This explains the confusing observation that the sodium-chloride beam

strength, as measured with an ionization detector, decreases with operating time. Actu-

ally, the beam is constant, but the hot filament becomes progressively deoxydized. While

the ionization detector was valuable as a monitor of the time dependence of the beam, the

condensation target provided information about the spatial distribution of the beam.

c. Interaction Cavity

The construction of a large cavity that can be excited in a well-determined resonant

mode is of double interest for beam spectroscopy. On the one hand, the extension of the

cavity dimensions will allow higher precision in measurements because of longer inter-

action times. On the other hand, once the technique of building cavities that are large

compared with the wavelength is advanced, the restriction on cavity Q for high frequen-

cies might be overcome and the generation of submillimeter waves might be possible.

Our cavity (see Fig. 11) with axes a, b, d was excited in the TE17 1 mode. The

mode was drawn from the ordinary TE1, 0mode waveguide by means of the collimating

system shown in Fig. 12. The TE 1 0 mode is fed into a "pillbox antenna" (32) and goes

from there into a horn and a cylindrical plexiglas lens. The large coupling surface

ensures that only the desired mode has an appropriate external Q, to allow proper

loading. Additional mode control is exercised by means of damping slits, D, in the top

and bottom surfaces, and by the fact that the two end surfaces are open in order to per-

mit the entrance of the two beams.

The inner dimensions of the cavity are: a = 3.85 inches, b = 5 inches, d = 28 inches.

It has a loaded Q of 5000 and is critically coupled to the input. The distributed iris
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Fig. 11. Large mode-controlled cavity.

A
PARABOLA -

--- PILLBOX 
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- IRIS - -.....
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Fig. 12. Mode-control system.
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consists of a copper-plated perforated steel plate, 1/16 inch thick, with 3/16-inch round

holes, whose centers are 5/16 inch apart and staggered. The neoprene spacers in the

damping slits can be compressed by the mounting screws, S, and thus a tuning range of

0. 05 per cent is obtained. Across the side surfaces, A and B, a homogeneous electric

field, E, can be applied for Stark modulation, since the bars, C, are isolated.

This cavity showed only one strong mode every 100 mc. This is remarkably selec-

tive action as compared with the natural-mode density of such a cavity, which is obtained

as follows.

The number of modes in the cavity is determined by the condition

k1 =2a m 2 = 2b nX3 = 2d

The frequency is

22 c 2 2 1 4 + + n2
2 3

The number of modes with v < v is
0

N = () (abd) ( )
c

(41)
dN 8,V
dv

dN
which yields djN = 4. 5/mc. The reduction is seen to be approximately five hundredfold.

d. Ultrastable Frequency Sources

Figure 8 shows the use of the stable sources in our experiment. A planar triode

oscillator for operation at 2604. 20 mc, similar to the one described by Rearwin (33),

was built. A tuning screw on the grid cavity produced tunability over one part per

thousand. The signal oscillator and local oscillator were locked to this cavity by means

of high-gain automatic-frequency-control loops. The stable K-band signal was then

compared with the output of a frequency multiplier chain consisting of a -mc oscillator

and frequency multipliers to 26, 100 mc. The beat with the desired signal of 26, 051.5 mc

was monitored against a Hallicrafter beat frequency oscillator. The stability of ± 200 cps

that was achieved was considered marginal but sufficient for experimentation. An audi-

ble beat note was obtained at K-band.

A readily tunable discriminator was used in the frequency stabilizing loop (see

Fig. 13). In a simple analysis the detector crystals X1 , X2 can be replaced by Ceq.

The input is connected to a dc grounded source whose impedance is high compared with

1/Ceq. For example, the input might be connected to the output of a double-tuned filter.

The capacitors C3, C4, and C 5 are large rf admittances. The input is then divided

between two impedances:
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1
1 ioC

eq

1 + i(a)1 io 2+ZZ = ioC Z 
eq o

If = l' then Z2 = 00, and the current, i, flows entirely in X 1, creating the positive

peak shown in Fig. 14. The negative peak appears when i is flowing entirely through

X 2 ; that is, when ZZ(wZ) = 0; from which we find

W1=
LC /(LC)/2

C
(A1 "2 eq

'1 2C

The circuit is similar to the Weiss discriminator, described by R. V. Pound (34).

INPUT

Ceq

II

, I ,

UTPUT

L 1
II

Ceq

Fig. 13. Frequency discriminator,

QUENCHING AT fo

OUTPUT AT f2

ICHRONIZATION AT f,

Fig. 14. Block diagram of phase-locking system.

The application of phase-locking techniques to K-band precision measurements was

studied. The power needed for stimulation of our cavity was found to be p = 4. 1010 watt.

It has been shown (35) that a phase-locked signal will produce an off-carrier noise per

cycle which is theoretically approximately 1010 times below carrier noise. By matching

the cavity and bridging the stimulating signal, the off-carrier noise can be reduced an
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additional 30 db, or to 20 db below thermal noise.

Figure 14 is a block diagram of the phase-locking scheme that uses superregenera-

tive amplification (36). The klystron is periodically quenched out of oscillation (by fre-

quency fo), and the incipient oscillation of each new pulse is synchronized by an applied

frequency, fl. The output of the klystron consists of a multiple of fl plus or minus a

number of sidebands, separated by f; that is, f2 = n fl ± m f. It can be seen that this

scheme also incorporates an easy and efficient means of obtaining a microwave-frequency

signal (f2 ) which is offset by a variable amount (through the variation of f) from a high

harmonic of a stable low-frequency reference signal (fl). The outstanding feature of the

new phase-locking apparatus appears to be its extreme reliability over long periods, even

under severe environmental conditions. Since the quench frequency f and the refer-

ence frequency fl are not harmonically related - a condition not previously contemplated

(for example, see ref. 36) - we have introduced a means of offsetting the klystron fre-

quency from the reference frequency in a readily controllable manner.

Application of our earlier phase-locking technique (35) could be made by using a

sodium-chloride maser as a standard and transferring its frequency to our signal oscil-

lator.

e. Experimental Results

The final result of this work will be the measurement of hyperfine spectra of some

of the alkali halides; this work has not yet been carried out.

The experimental results reported here will give an insight into the progress of our

project and should be helpful in future work.

1. Beam System

Oven pressure, 1.5 X 10-3 mm Hg

Oven temperature, 848° K

Heating power per oven, 600 watts

Beam strength:

Measured by surface ionization, 7.7 X 1015 particles/sec

Measured by condensation target, 2.4 X 1015 particles/sec

Calculated from measured oven temperature, 6 X 1015 particles/sec

Maximum beam current (for absorption experiment), 1017 particles/sec

Vacuum (mm Hg):

Fore vacuum, 5 X 10-2

High vacuum, 3 X 10 - 6

High-vacuum liquid N 2 , 1.4 X 107

High vacuum with oven running, 2 X 10-6

A condensation target was utilized for studies of beam collimation. Figure 15 shows

two cross sections through the beam. The dark (dotted) rings correspond to a given

amount of deposited beam material. On the right-hand side, two rings (R) appear,
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Fig. 15. Study of alkali-halide beam collimation..

Fig. 16. Trace of sodium-chloride beam on cavity wall.,

indicating an uneven beam distribution. On the left-hand side, only one ring (R) is found,

indicating better collimation.

A longitudinal section through the beam in the interaction space is seen on the con-

densation target shown in Fig. 16. It is simply the back wall of the interaction cavity.

The six black lines are created by the 12 molecular beams injected from the two sources.

2. Electrical System

The noise figure (measured with Roger White Model GNW-K2-18 noise source) was

13 db. The spectral width of the exciting signal can be estimated, from the width of the

markers in Fig. 17, to be approximately 200 cps. Figure 18 shows a 500-cps beat

between two X-band signals that are phase-stabilized to two different quartz-crystal

tuned oscillators. The frequency stability of this signal is limited only by the stability

of the primary oscillator, and the carrier is at least 60 db above noise power/cps.

This phase-stabilization scheme will allow large averaging times, and hence step up

intensity and precision of beam spectroscopic measurements.

3. Measurements with Ammonia

Figure 17 shows the 3-3 transition of ammonia, as measured with our system. The

linewidth is measured by two frequency markers that are spaced 8 kc apart. A half-half-

linewidth of 3 kc was obtained. The signal-to-noise ratio was 3. The line was observed in

emission and in absorption. The absorption line showed an intensity that was 10 per cent

of the predicted intensity; the emission lines showed only 1 per cent of the predicted

intensity. (These experiments were performed with a traveling-wave structure instead
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Fig. 17. Emission spectrum of the
ammonia 3-3 line.

Fig. 18. 500-cps beat between two phase-
stabilized K-band klystrons.

of the resonant cavity. ) The low state-selection efficiency can be explained by the fact

that our selector rods were not liquid-nitrogen-cooled and that scattering reduced the

efficiency. For sodium chloride, the selector should not show this defect.
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IV. FREQUENCY DEFINITION

4.1 EFFICIENCY OF FREQUENCY MEASUREMENTS

Brillouin (37) has shown that if S indicates the entropy increase connected with a

measurement, and I indicates the information gained by it, the following inequality

holds

Al = < (42)
AS

Therefore is a measure of the efficiency of an experiment in which an amount of

entropy is traded for information. It turns out that for measurements such as frequency

determinations, we have

AI = k In A (43)

Here, A, the accuracy of the experiment, is given by the interval in which we suspect

the value to be, divided by the error left after the measurement has been performed.

The reliability R is inversely proportional to the probability Pf that our measurement

was in error, since a spurious thermal-noise signal was taken for the signal. In a more

accurate treatment R would appear in Eq. 43. This is the case, for example, in the

treatment of radar measurements by Woodward (38). His exact treatment bears out the

fact that down to rather low R (R-2), Eq. 43 is essentially correct.

We shall now indicate how to carry out a high-efficiency frequency measurement.

We build a lossless interaction space and place molecules in it which are ready to absorb

the radiation of a frequency, wo 1/2QA. All we know a priori is that wa < wo < b. We

divide the interval (a,'b) into n cells of width Aw and carry out the measurement by

sending a certain amount of radiation into the interaction space at -each different fre-

quency. The radiation will then be reflected back; therefore no energy has been used

except at the resonant frequency, at which frequency the energy will be absorbed.

Brillouin shows that the amount of energy that will be spent for a measurement of accu-

racy A = n and reliability R is AE = (kT) In (nR). Thus we find that our spectroscope

operates with efficiency

ln A ln R\
-= = 1 + (44)

ln(nR) In n

In its present form, this measurement would be hard to realize. Recovery of the

energy, for example, would be difficult. We might imagine, let us say, that the power

bounces back from the interaction space and is re-reflected from a moving wall, and thus

has a Doppler-shift frequency. But it is more practical to analyze an existing apparatus,

such as the maser oscillator (11). During the minimum response time of the maser,
T 0- 4 we obtain a relative error (<AA>// = -10T 10 sec, we obtain a relative error (<A10 A>)/ 1 . If we divide the cavity
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Q by this number (the cavity passband represents our a priori interval (b' Wa) ' we

obtain A = 106. The amount of entropy produced is given by AS = (Po X T)/T = 300 k,

with P = n hv = 1.4 X 10- 1 3 watt. Thus we obtain an efficiency ~ = 0. 05. This experi-

ment is, therefore, very efficient. Why is it, then, not of optimum efficiency ? Note that

the wave train of 10- 4-sec duration has a "natural spectral width" A wn 2/T = 2 X 104 cps.

The accuracy achieved corresponds to a measurement with an error that is 1600

times smaller than the natural spectral width. This is possible (39) because in this

experiment the voltage signal-to-noise ratio, r, is greater than 1600. However, the

increase in accuracy has to paid for by a loss in efficiency. It is often possible to

decrease the statistical error of any measurement by repeating the measurement many

times and taking the average result. (Systematic errors, however, will not be

decreased.) But a lot of redundant information is obtained, and therefore it is more

efficient to design the experiment from the outset so that it will give the result with the

desired accuracy.

In order to obtain nearly optimum performance, we must design a spectroscope

with a sufficiently narrow natural spectral width, and a long time is required for making

the experiment. This time requirement restricts the ultimate achievable precision in

the same way that the energy requirement limits the accuracy of a time measurement

(37). Both requirements are connected with the uncertainty principle. The efficiency

considerations given here are among the reasons for building high-resolution spectrom-

eters such as the molecular-beam microwave spectroscope. (Other reasons are the

achievement of low systematic error, cavity pulling, and the physical interest in high

resolution. )

Equation 44 illustrates the fact that an optimum design calls for a sacrifice in reli-

ability. In an experiment with optimum design, the phenomenon to be observed is not

too well distinguished from the noise background. Thus it often happens that great diffi-

culties are encountered in realizing an experiment designed for optimum precision.

4.2 FREQUENCY PULLING

We have mentioned that if a spectral line of width Av L is measured in a cavity of

width Avc, and the cavity is detuned from the line resonant frequency vL by an amount

6v, then Eq. 38 gives us the difference dv, between vL and the frequency of the maxi-

mum of the observed signal, vm .

Recently, Hermann and Bonanomi (40) have shown that injection of a proper signal

will balance out the mode of a cavity. That this is so can also be seen from the form of

the reflection coefficient of a cavity filled with radiating gas. We have

r = 2 6 A + 6+ t2 + i ( vs t uL] - 1 (45)

where 1/6A is the external Q. /6 is the unloaded Q, and ( = 2 + i 1 is the
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dielectric constant. For = 0, r is related to iv by bilinear conformal mapping, hence

the v-axis is mapped into a circle. Injection of a proper constant signal will translate

the origin of the circle to r = 0, and hence the cavity mode will not appear in an

amplitude-sensitive detector. Hermann and Bonanomi also give the signal from the

balanced cavity for O = 0.

2 g
r2= 1 2 (46)

(61 + 60)+ [/z6, + / ] j 1 (v - VL)/6 1 VL]

It has been stated elsewhere (11) that, in this case, the frequency pulling is given by

Eq. 46.

How far does cavity pulling limit the accuracy of frequency measurements ? It has

been shown by Gordon, Zeiger, and Townes (11) that resonant absorption in a cavity

gives essentially the cavity mode, with the distorted line resonance superposed. By

tuning the cavity so that the line resonance lies first on the left and then on the right

half-power point of the cavity resonance, we can determine the resonant frequency of

the cavity. If the cavity has a normalized gain characteristic

Av
G(v) = 2

Vc + (v - vC

it has a slope 1/(Zvc) at half-power points, and hence, since

d 2
G(v) +- G(v) v = G(v)(l +)

dv r

where r is the signal-to-noise ratio, we obtain

AV
6v = cr

This gives us

AVL
dv =-

r

Thus we find that it is possible to adjust the cavity so that the pulling is no greater than

the statistical readout error.

A severe limitation of this theory is that Eq. 38 is only approximately valid. Asym-

metry in the cavity mode will introduce systematic errors.
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CONCLUSION

We are interested in the quantum-mechanical behavior of molecular beams that inter-

act with electromagnetic radiation. This interest includes an understanding of the energy

spectrum in its finest details. This spectrum may be known either from previous meas-

urements, from extrapolation from other measurements, or from order-of-magnitude

calculations that will be confirmed in the operation of the beam device. We feel that the

fine details of the spectra of most molecules of interest can be handled theoretically in a

preliminary way, given sufficient time and interest to carry out the calculations that past

experience has shown we can handle with a large amount of truth.

One extension of these calculations that is necessary for treating the general mole-

cule is the calculation of high-field Stark effect. The amount of effort that must be spent

upon further calculations depends, of course, upon the actual molecule used. The

rotational-inversion energy spectrum of the ammonia molecule, for example, is such

that we can neglect the high-field effects and still maintain a credible picture for the

behavior of the molecule in the state selector. The use of symmetric tops and, in par-

ticular, the asymmetric rotor, will require further computations of the Stark effect. We

have confidence that the methods applied to the linear rotor will allow some simplifica-

tion of these Stark-effect calculations, but we have not proceeded far enough to demon-

strate a practical solution. Of course, the difficulties inherent in symmetric - and

asymmetric - rotor calculations can be circumvented by choosing a molecule - ammonia,

for example - that happens to have a simplified Stark effect for the energy levels that are

of interest. Such a procedure does not aid in generalizing beam devices, since we gain

our understanding of a particular physical phenomenon only from an analytical accident.

The general problem of the acceptance angle of a selector is not a property of the

selector itself, given in terms of the available potentials and breakdown characteristic,

but is truly defined by the slopes of the energy levels in the presence of an electric field.

This means that generalized rational design of beam devices requires more than simple

scaling factors for evaluating the beam flux from the effective acceptance angle. The

field of state-selector design seems to be trapped in the fascination of an initial maxi-

mum, in that the multipole state selectors of Bennewitz, Paul, and Schlier (16) have

operated so successfully for ammonia that there is little incentive to try other state-

selecting configurations. We feel that there is a good deal of rewarding work that could

be done in the field of generalizing state-selector designs. It is apparent that great

effort must be expended in order to analyze any single selector design properly. Thus

from the point of view of scientific return this field is probably an inefficient one in which

to work. In spite of this fact, laboratory experiments, which are now in the design

stage, will be carried out.

The method of observing the absorption or emission of electromagnetic energy from

a molecular beam formed in the apparatus can be analyzed by means of a fairly well-

understood theory. The problem is mainly one of matching from the beam into the
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electromagnetic field. A resonant matching device is conventionally used. Although it

was not apparent when we started to work in this field, it is now certainly indicated that

mode control can be realized by our techniques. Any analysis of the efficacy of beam

frequency standards will indicate that as strong a beam as possible should be established.

Our effort to understand the natural limitations on beam flux has indicated that the most

readily attainable limitation is that imposed by beam self-thermalization. By this we

mean that thermalizing interactions within some degrees of freedom of a molecular beam

are more rapid than they are within others. In fact, it can be shown that the transla-

tional degree of freedom, which defines the spatial structure of the molecular beam, is

much less sensitive to molecular density than are the rotational-vibrational degrees of

freedom. This means that the interactions that can occur in a dense beam tend to estab-

lish thermal equilibrium within the actual beam operational levels at beam densities that

are now available in the laboratory. Thus we are in a position to predict maximum

power-operating levels for molecular-beam devices. This subject can be considered as

understood from theory and by extrapolation from other data, but it is not understood

experimentally from observations on operating maser devices.

The difference in the available signal power from either an active or a passive beam

device - that is, one operated either as a regenerative oscillator or as a straight absorp-

tion or emission spectrograph - is quite trivial. Practical factors will dictate whether

active or passive operation is optimum for the realization of a time or frequency stand-

ard. It is not at all obvious that we have sufficient understanding of the problem to

define an optimum time or frequency standard. There is a fascinating simplicity in an

oscillating device, in that it supplies its own electromagnetic signal for defining a fre-

quency. What frequency is actually defined by this electromagnetic radiation is not at

all obvious. In other words, we are looking only at the effect. It has previously been

contended that knowledge of, and control over, the stimulating or activating electromag-

netic radiation and observation of the effect of the frequency-determining system on the

electromagnetic radiation will yield more useful information for defining a standard fre-

quency. The additional information that has been made available from measuring the

complex interaction function of the total observation system allows corrections for

extraneous observational effects, such as the shift in cavity resonance frequency, and

other dispersions in the observational system (41).

It is not entirely clear how the application of the concept of efficiency in time- and

frequency-measuring processes is to be applied to the problem of realizing an optimum

time or frequency standard. In any case, the concept of the efficiency of frequency

measurements is a physical parameter of an observational system. The efficiency con-

cept can be used as a strong argument for high-resolution, low-sensitivity frequency

standards. Stated otherwise, it can be shown that the precision of a frequency definition

depends not only upon the intrinsic resolution of the apparatus, but also upon the signal-

to-noise ratio. We are therefore confronted with the question, Should we use a low-

resolution, high signal-to-noise apparatus or should we use a high-resolution, low
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signal-to-noise apparatus, or is a compromise system possible ? If we apply the concept

of efficiency to the problem, we are led to the conclusion that it is best to build a high-

resolution apparatus with the concomitant low signal-to-noise ratio in order to achieve

both high precision and high efficiency. Low-resolution, high signal-to-noise-ratio

devices suffer from the fact that, as is known from information theory, information

increases at a very low rate once ambiguities have been resolved. In other words, once

the presence of an absorption signal is indicated, a great deal of signal energy must be

expended in order to define the center of the resonance as precisely as a small fraction

of the total width. The problem is elusive and we have not solved it to the point of

obtaining a logical design for optimum frequency-defining apparatus.

The signal-to-noise ratio is given by

hv
kT

There are ways of making the second factor equal to unity. In the molecular-beam

method, in which the n molecules are counted, there is no need to match the radiation

by means of a high-Q cavity, and thereby pulling is diminished. Another means of effi-

cient counting is the use of the double-resonance method (42). The use of quantum-

mechanical amplifiers also permits working at sufficiently low noise temperatures, in

order to make the second factor equal to unity (25).

Finally, a beam device might be operated at sufficiently high frequency and reach

the same goal. The method of beam spectroscopy seems, therefore, to give promise

for making spectroscopic precision measurements. For each element of the procedure

- selection, excitation, and detection of resonances - several methods are available, and

the best one must be chosen.
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