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Abstract

Since the year 2000, the United States Navy has spent an average of half a billion dollars
over the congressionally approved budget for shipbuilding. Additionally, most experts
project that in order to meet the Chief of Naval Operation's goal of a 313 ship Navy, the
annual ship building budget will have to increase by about two thirds. Exacerbating this
problem is the rising cost of maintaining the current inventory of ships. The U.S. Navy
has long used a requirements driven maintenance program to reduce the number of total
system failures by conducting routine maintenance and inspections whether they are
needed or not. In order to combat this problem the Navy will inevitably have to turn to a
condition based maintenance system. The Non-Intrusive Load Monitor (NILM) is a
system that can greatly enhance the ability to monitor the health of engineering systems
while incurring a low acquisition cost and low technology risk.

This research focuses on the development of a real time user interface for the current
NILM architecture in order to provide useful system information to an operator.
Additionally, this research has shown that the NILM can be used effectively and reliably,
to monitor equipment health, recognize and indicate abnormal operating conditions and
casualties and provide invaluable information for training operators, diagnosing problems
and troubleshooting. The NILM is an inexpensive and promising platform for
monitoring equipment and reducing maintenance costs.
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1 Introduction

One of the biggest challenges that large engineering facilities face is monitoring

equipment status and health. For example, a United States Navy ship consists of

thousands of separate engineering systems. If measured using sensors or other external

monitoring systems, then each system would require multiple monitoring points leading

to a vast sensor array. Large numbers of sensors greatly increases the overall system

complexity and is often a source of failure. Increased equipment monitoring, combined

with condition based maintenance, can lower the overall cost of maintaining equipment.

The real question is how to improve the monitoring system in order to maintain current

system complexity at lower initial cost. The perfect monitoring system would be one that

is cheap, easy to install and use, has a minimum number of monitoring points, high

reliability and has little or no impact on overall system complexity. The Nonintrusive

Load Monitor (NILM) was initially developed at Massachusetts Institute of Technology

in 1993 (Leeb, 1993). Since then the concept has been applied to numerous systems and

operating platforms. Until now the information gained by NILM systems has been

collected and analyzed post event, with no real time input to the operator. This research

focuses on applying NILM technology to a particular engineering system, specifically the

RC7000 Reverse Osmosis Desalination Plant, used on United States Coast Guard

(USCG) medium endurance cutters, in order to enhance the overall performance and

lower the costs of maintaining the system. It also focuses on improving the user interface

in order to allow real time, useful output, to an untrained operator.

1.1 Motivation for Research - Condition Based Maintenance

Today's military faces a unique challenge, specifically the United States Navy. Currently

naval leadership is proposing a 313 ship sustained force that must be designed, built and

maintained. This plan is specifically outlined in the Chief of Naval Operation's 30 year

plan. However, the Navy faces several road blocks in realistically achieving this goal.

Figure 1-4 is the projected number of ships through 2090.
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Figure 1-1: 30 Year ship building plan (McCoy, 2008)

The projected end of life down slope illustrates the rate at which existing platforms must

be decommissioned in order to meet the projected goals. The red dashed line shows the

actual out of service rate for existing platforms based on the projected cost and material

condition of these ships. The distance between the two curves illustrates the gap in

required force strength and the actual force strength available. These short falls are a

result of two fundamental issues:

1. Rising maintenance costs.

2. Rising acquisition costs.

"Between 2000 and 2005, the Navy has spent on average $11.7 billion annually

on shipbuilding, according to Congressional Budget Office (CBO) analyst Eric Labs.

However, it is notable that the President's FY07 budget allowed for only $11.2 billion for

new ship construction and conversions. More disturbing, the plan projects that in order to

meet the 313 ship plan, funding levels will have to continue to rise in the coming years:

$15.1 billion in FY-08, $14.9 billion in FY-09, $15.9 billion in FY-10, $19.9 billion in

FY-11 and $20.5 billion in FY-12. CBO's analysis shows a grim outlook, Labs noted. If

the Navy wants to implement its 313-ship plan, the service would need an average of

$18.3 billion per year for shipbuilding, or $19.5 billion if nuclear refueling is included, he

~~_ __ _ __ 1 1 11_11----------- --__



said. That would be a two-thirds increase over the recent historical average and about

one-quarter more than the Navy's plan (Castelli, 2007)".

Even with innovative cost cutting methods, acquisition costs will inevitably rise in

the coming years and thus the Navy must find a way to cut costs in other areas in order to

meet this demanding goal. Rear Admiral Kevin M. McCoy, the Chief Engineer of the

Navy, has suggested that the Navy must focus on lowering maintenance costs. He

specifically points out that yard periods must be used more effectively and efforts must

be made to reduce maintenance requirements. This requirement driven approach is a

direct result of the risk averse nature of today's naval engineers; and a culture change has

to come about from within the organization. The Navy uses a preventative maintenance

program that is driven by the concept of avoiding major equipment failure through

periodic maintenance procedures and inspections. The success of this program is largely

based on how accurate the requirement periodicities are set. Too few and the equipment

fails catastrophically. Too many and thousands or perhaps millions of dollars are spent

needlessly. These issues bring the concept of condition based maintenance to the

forefront.

Condition based maintenance (CBM) can be described as using real time data

from operating equipment in order to optimize resource allocation. Figure 1-5 is the

modern representation of CBM.

L L ... ........... ......... .....
| ... .. . .. .. .. ...........

Figure 1-2: Simple Condition Based Maintenance Diagram (Condition Based Maintenance)



There are several methods that can be used in order to provide the impetus for

CBM. Currently the Navy is using Integrated Condition Assessment System (ICAS) and

vibration analysis to provide real time equipment monitoring information. However,

ICAS uses a complex system of sensors and provides little or no diagnostic information

that is not dependent on the operator. Likewise, vibration analysis requires extensive

technical training and is not permanently installed on the equipment. NILM provides an

easy and cheap solution to this problem. NILM has a low initial cost and does not impact

the system complexity. This research demonstrates how NILM can be used to effectively

monitor equipment and provide real time diagnostics and feedback to an untrained

operator.

1.2 NILM Overview

The NILM monitors an aggregate electrical signal at a single point in a system or

collection of systems, and disaggregates the signal in order to monitor the state and health

of components within the network. The NILM collects a single point voltage from any

node that is shared by all the components within a system. Current information is

collected from either individual component nodes (during testing) or a common node that

is shared by several components. The voltage and current information is then used to

develop power traces for the system. Figure 1-1 is a block diagram of a standard NILM.

Similar pieces of electrical equipment have unique characteristics or fingerprints that can

identify individual components within a network. Currently, system characteristics are

collected and analyzed by engineers who then develop and tailor diagnostic packages that

best fit each system. The ultimate goal of NILM is to provide the user real time, useful

information that can extend the life and lower the cost of maintaining equipment, without

the use of a complex physical sensor network.
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Figure 1-3: Diagram showing the fundamental signal flow path in a NILM (Cox, 2007).

Using measurements of the line voltage and aggregate current, a software-based

preprocessor onboard the NILM computes time-varying estimates of the frequency

content of the measured line current (Shaw, 2000). Formally, these time-varying

estimates, or spectral envelopes, are defined as the quantities (Shaw, 1998)

2 (t)- ft T i(r)sin(rnalr (1)

and

bn (t)= i(T rcos . (2)

These equations are Fourier-series analysis equations evaluated over a moving window of

length T (Oppenheim, 1988). The coefficients a,,(t) and b,,(t) contain time-local

information about the frequency content of i(t). Provided that the basis terms sin(mo t)

and cos(mw t) are synchronized to the line voltage, the spectral envelope coefficients

have a useful physical interpretation as real, reactive, and harmonic power (Leeb, 1995).

The spectral envelopes computed by the preprocessor are passed to an event

detector that identifies the operation of each of the major loads on the monitored

electrical service. In a modern NILM, identification is performed using both transient

and steady-state information (Lee, 2003). Field studies have demonstrated that transient

details are particularly powerful because the transient electrical behavior of a particular

'-----"3t--- ----4~---- ;44 ---------------------



load is strongly influenced by the physical task that is performed (Leeb, 1995). As

shown in Fig. 1-2, for example, the physical differences between an incandescent lamp

and an induction machine result in different transient patterns. Figure 1-3 demonstrates

the positive identification of an induction motor driving a small vacuum pump.

0
00.
0 0.05 0.1 0.15 0.2 0.25

Time: Sec

U
I-

0 0.05 0.1 0.15 0.2 0.25
Time: Sec

Figure 1-4: Top trace: Current drawn during the start of an incandescent lamp. Bottom trace:

Stator current drawn during the start of an unloaded, fractional horsepower induction machine.

The final block in Figure 1-1 is the NILM's diagnostics and systems management

module. This software unit assesses load status using any required combination of current

data, voltage data, spectral envelopes, and load operating schedules (Cox R., 2006).

V
U

10000

S5000

0

S-0.1 0.2 0.3 0.4 0.5 0.6
Time (Sec)

..........

~V

1 \;;Kx

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (Sec)

Figure 1-5: Measured current and computed power during the start of 1.7hp vacuum pump motor.

Also shown in the power plot is a section of the template that has been successfully matched to the

observed transient behavior by the NILM's event detector.
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As shown in Fig. 1-1, the NILM is designed to interact with human or automated devices

in a number of different ways. For instance, the NILM can use its diagnostic information

to command certain loads to either commence or cease operations. Additionally, the

NILM can provide regular status reports to human operators. To assist in future

maintenance operations, the NILM stores all of the relevant data streams (i.e. currents,

voltages, operating schedules, etc.) in either a local or remote database (Paris, 2006). The

NILM's vast storage capabilities make it possible for the operator to perform historical

data trending. The following chapters describe how a real-time user interface was

developed for this NILM application.



2 Reverse Osmosis System Description - NILM Configuration

Previous researchers have deployed prototype NILM systems to monitor the RO units

aboard both the USCGC SENECA and the USCGC ESCANABA (Denucci, 2005)

(Mitchell, 2007). To date, RO system data has been collected using a Pentium Computer

with hard drive (as indicated in Chapter 1) with no user interface and without real time

feedback for the operators. To provide useful information in real time, extensive data

processing must be performed. Further analysis is also required in order to learn specific

indicators for. specific casualty situations. These indicators must be tested to guarantee

their reliability.

Chapter 2 and Chapter 3 of this thesis document the development of a reliable real-

time user interface for a representative shipboard RO plant. This chapter begins the

discussion by describing the system itself and by presenting previous work performed by

LT Denucci and Mitchell. This chapter also provides key configuration information for

the NILM system currently installed aboard the ESCANABA.

2.1 Reverse Osmosis Process

Osmosis is a naturally occurring process in which water diffuses through a semi-

permeable barrier, such as a cell wall, from a low concentration solution to a high

concentration solution. The osmotic pressure is the pressure required to stop the flow of

water through a semi-permeable membrane into the solution of higher concentration. A

semi-permeable membrane can be defined as a membrane that will allow pure solution

and some types of solids to pass through but that will selectively prevent the passage of

other types of solids. Osmotic pressure is a colligative property, meaning that it depends

on the number of particles in solution but not on the mass of the particles (Maton & Jean

Hopkins, 1997). Therefore, increasing the pressure increases the chemical potential in

proportion to the molar volume. When a solute is dissolved in a solution, the mixing

increases the overall entropy of the system, thereby decreasing the chemical potential.

Since osmotic pressure is independent of the type of particles in solution, it can be

represented by:



p = RTln(1 - x)

6PV = -RTln(1 - x)

6P = RTx/V

Where p is the chemical potential, x is the mole fraction, 6P is the osmotic pressure, Vis

the molar volume, R is the gas constant (R = 8.314472(15) J - K- • mol-I and T is the

absolute temperature (Maton & Jean Hopkins, 1997). If pressure is increased above the

osmotic pressure on the concentrated side of the membrane then the process can be

reversed. This is called reverse osmosis. Typical seawater has an osmotic pressure of

350 psi and requires a reverse osmosis pressure of 600 - 1000 psi. This is illustrated in

Figure 2-1.
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Figure 2-1: Simple Reverse Osmotic System (Operation and Maintenance Manual for USCG Model

RC7000 Plus Reverse Osmosis Desalination Plant, 2007)

2.2 RC7000 Plus System Description

The RC7000 Plus produced by Village Marine is the RO system used aboard the Coast

Guard's Medium Endurance Cutters and many other warships. This system consists of
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two separate skids, a seawater strainer and feed pump skid and a separate RO system skid

(Operation and Maintenance Manual for USCG Model RC7000 Plus Reverse Osmosis

Desalination Plant, 2007). The seawater strainer and feed pump skid consists of a duplex

seawater strainer and a 5HP low pressure centrifugal feed pump. The RO system skid

consists of two identical reverse osmotic units (A and B) capable of producing 3,500 gpd

each. Figure 2-2 is a simple diagram of the RO system. A more detailed system drawing

can be found in Appendix A.

Side".A.

Potable
Water

overDoara

Pot able
Water

overboara

Sea Sudion

Figure 2-2: Simplified System Diagram (Mitchell, 2007)

The single low pressure feed pump draws suction from the ship's auxiliary

seawater header, and supplies pressurized seawater to both plants. At the inlet of the feed

pump is a duplex strainer that removes large particulate matter that could potentially

damage the pump impellor. The system can be aligned to operate either or both sides at

any time. The pressurized seawater flows through the cyclone separators, which remove

most suspended solids. The water is then passed through the micron filter array. This

array consists of two filters, one 20 micron and one 5 micron filter. The filtered

seawater, now called feed water, passes through the high pressure pump. This pump

raises the pressure of the feed water to 800 - 1000 psig before it passes into the

membrane pressure vessel. The actual system pressure is controlled by a back pressure
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regulating valve, which can be adjusted to meet the system needs in accordance with the

RC7000 Plus Technical Manual. This pressurized water then flows into the membrane

pressure vessel. The membrane pressure vessel consists of two 40 inch membranes, each

6 inches in diameter. When the system is operating, the feed water continuously flows

over the membrane. However, once sufficient back pressure has been produced by the

high pressure pump and back pressure regulating valve and pressure exceeds the osmotic

pressure of the membrane, then pure water is forced through the membrane. The pure

effluent then flows into the pure water manifold which contains the salinity monitoring as

well as the brominating systems. The brine flows overboard through the back pressure

regulating valve and the reject flow meter.

Membrane Pressure

Housings

Micron Filters

*.-Iigh Pressure Pump

and Motor

Figure 2-3: RO System Skid

One of the most important aspects of the reverse osmosis units onboard the

USCGC ship is that operator actions are required for each step of operation. Further, the

order in which the components are operated and how the components are operated is

extremely important to the safe and effective use of this equipment. Appendix B

describes the start up and shut down procedure for the RC7000 Plus Reverse Osmosis

Desalination Plant. The importance of proper operation and being able to determine if

the system was operated correctly will be discussed in detail in the diagnosis section of

Chapter 5.



2.3 Typical Power Behavior

Figure 2-4 is an example of a real power trace collected using the NILM on USCGC

ESCANABA in 2006. The first transient event corresponds to the start of the low

pressure pump, which must always be started first. The second transient is caused by the

start of one of the high pressure pumps. This event is followed approximately 20 seconds

later by a gradual increase in power resulting from the manual closing of the bypass

valve. The bypass valve directs the low pressure feed water either overboard (bypass

valve open) or through the back pressure regulator (bypass valve shut). The difference in

power level is directly proportional to the amount of work being done by the high

pressure pump in order to maintain the required pressure. When the bypass valve is open

and its associated high pressure pump is operating the system pressure is approximately

60 psig. Once the valve is completely shut, flow is diverted through the back pressure

regulator and the system pressure rises to its operating pressure of 800 - 1000 psig. This

pressure can be set by adjusting the back pressure regulator in accordance with technical

guidance from the manufacturer. Figure 2-4 also shows the start of the other high-

pressure pump and the corresponding closing of the bypass valve.

ESC R0snapshot20061•011 0010001 3 mat

ii20
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0
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Figure 2-4: System Power Trace (Mitchell, 2007)
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2.4 NILM Configuration and Data Collection

The NILM configuration has undergone multiple changes from 2005 to present. The

initial install on the USCGC SENECA was set up with three separate current transducers

(CT), one for each pump, and a common voltage source. The USCGC ESCANABA was

also initially set up with 3 separate current transducers; however one of the CTs was set

up to monitor the aggregate system current. Eventually, both ships were configured with

only one common current and one common voltage source. Tables 2-1 and 2-2 describe

the NILM configuration for both the USCGC SENECA and ESCANABA. The NILM on

the USCGC SENECA was removed in September of 2007 for maintenance availability.

For information about the role of measuring resistors, gain codes, and other specifics

mentioned in Tables 2-1 and 2-2 see (Bennet, 2007).

Table 2-1: USCGC SENECA NILM Setup

Channel Component Resistance Gain Data
1 B-C Voltage 100 0 0

Raw
2 i-A LP Pump, CT: LA-100P 49.9 0 1

20060618- 3 B-C Voltage 100 0 0
Raw

20061216 4 i-A HP-A Pump, CT: LA-350S 49.9 C 0

5 B-C Voltage 100 0 0
Raw

6 i-A HP-B Pump, CT: LA-350S 49.9 0 0

20061216- 1 A-B Voltage 100 0 0
Raw

20070906 2 i-C 3-Pump Aggregate, CT: LA-150S 30.1 0 0

20070906-Present N/A Uninstalled



Table 2-2: USCGC ESCANABA NILM Setup

Channel Component Resistance Gain Data
1 A-B Voltage 100 0 0

Raw
2 i-C LP Pump, CT: LA-100P 100 Q 0

20060618- 3 A-B Voltage 100 0 0
Raw

20061216 4 i-C HP-A Pump, CT: LA-150S 100 0 0

5 A-B Voltage 100 0 0
Raw

6 i-C 3-Pump Aggregate, CT: LA-150S 100 0 0

20061216- 1 A-B Voltage 100 0 0
Raw

20070906 2 i-C 3-Pump Aggregate, CT: LA-150S 30.10 0

1 A-C Voltage 100 0 0
20070906-Present Prep

4 i-B 3-Pump Aggregate, CT: LA-150S 100 Q 0

2.4.1 Data Formats

When using the NILM, there are two basic data types that can be recorded - raw data (i.e.

current and voltage) and preprocessed spectral envelopes (i.e. real and reactive power).

Data is collected in one-hour snapshots. Raw voltage and current are sampled at a rate of

8,000 samples per second; preprocessed power information is sampled at 120 samples per

second. Each preprocessed data file contains 8 columns. The first two are the reactive

power and real power, respectively. The following 6 columns contain in-phase and

quadrature spectral envelopes for the third, fifth, and seventh harmonics of the current.

Typically, raw data is collected in the early stages of NILM application. Once the system

is well understood and the characteristics and failure modes of individual components

within the system are well defined, then it is much more efficient in terms of data

collection to collect prep data. Prep data snapshots are 88% smaller than the associated

raw data, and much easier and quicker to handle (Mitchell, 2007).

2.5 First Generation Diagnostics and Failure Modes

The first generation Reverse Osmosis NILM was essentially a data collection machine.

Failure modes were generally discovered by correlating events in the power data with



ship's logs or information gathered from the crew. Once the typical behavior patterns

were establishing it was quite easy to recognize anomalies or unusual operating profiles.

In most cases the anomalies were able to be associated with a recorded event and

therefore, a diagnostic was developed. LT Gregory Mitchell noted several such

conditions in his 2006/2007 research. The most common abnormal conditions were

unusual vibrations in the high pressure pump, clogged micron filter, membrane failure,

high pressure pump starting without operator input (commonly referred to as a phantom

start) and operator error. The last condition, operator error, is generally improper

operation of the back pressure regulating valve or not allowing the low pressure pump to

reach steady state before starting a high pressure pump. The most common of the first

generation NILM diagnostic for the RO are shown in Table 2-3.

Mitchell and DeNucci were able to determine most of this information by either

examining the data directly or by using simple programs to identify common events such

as pump starts. This is extremely time-consuming and hence most of the data that is

obtained cannot be relayed to the operators immediately. However, this front end rigor is

essential to understanding the system and identifying equipment tendencies. The

research contained in chapters 3, 4 and 5 would not have been possible without their

efforts.



Table 2-3: First Generation NILM Common Diagnostics

Failure Mode Characteristics Diagnostic

Vibration in hp pump * Noise in space * Abnormally high oscillation

* Vibration at pump in power

Large increase in magnitude

8.17 Hz

Clogged micron filter * D/P across filter >l5psig * Excessive time for low

pressure pump to reach

steady state

Membrane Failure * High Salinity * Sudden decrease in real

* Low effluent production power

* Abnormal P and Q

mismatch

Hp pump start without * Hp pump damage or failure * Hp pump started without lp

operator action (Phantom pump running

Start)

Operator Error:

1. Improper bypass * Damage to brine seal in * None

valve operation pressure vessel housing

2. Not allowing lp * Damage to hp pump * None

pump to reach

steady state



3 Real-Time Graphical User Interface Development

The previous NILM RO installation did not make use of real-time systems that can

provide feedback to the operator. The primary focus of the 2007/2008 team was to

develop a modern version of the NILM that does provide this capability and can begin to

serve as a marketable device. This chapter details the development of the software

needed for a real-time system monitoring the RO units.

A general real-time NILM requires several system components - a rugged, reliable

data-acquisition unit, raw data preprocessing, load-classification software, and a user

interface. The hardware front-end was designed and built by John Rodriguez of NEMO

Metrics, LLC. His system includes sensors, signal conditioning, and data acquisition.

This is usually referred to as the NILM Box. Output samples from the NILM box are

passed to the software preprocessor, which is commonly known as prep. Preprocessed

data is fed to the classifying software, which was developed by LCDR Ethan Proper

(Proper, 2008). His software, which is known as Ginzu, identifies load ON/OFF events

and attempts to classify them. Ginzu creates small data files containing power

information and classification tags. These files are passed to a graphical user interface

(GUI) that provides feedback to the user and performs simple diagnostics. This chapter

focuses on the development of the GUI for the RO systems described in Chapter 2.

3.1 UI Development

The typical product development waterfall flows sequentially through the steps of

requirements definition, concept exploration, design, testing and delivery. However, this

does not always align with software development. There are several reasons for this but

probably the single most important reason is that software designs often use embedded

functions that are not necessarily a part of a single component or subsystem. This is

commonly referred to as "object oriented". Much modern software is written using

object-oriented abstractions and makes extensive use of very large software infrastructure

objects (Maier & Rechtin, 2002). Because of this abstraction, most software systems

cannot be neatly divided into subcategories and subunits. Therefore, it becomes

increasingly difficult to map requirements and operations to specific blocks within the
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construction of the system. For example, the RO UI requirements specify that the design

must be easily modifiable. The requirement itself seems simple; however it is difficult to

map modifiability to a specific subsystem or component within the code. Further,

modification implies that there are requirements that will come about in the future, thus

nullifying the design rigor that is typically done in the early stages of design. This

provides a specific challenge when designing a software system.

In the case of a large software project like the RO GUI, one of the most widely

used approaches is a spiral type design, where major releases can be represented as

vertical jumps or rings and the evolutionary changes or minor revisions circling into them

(Maier & Rechtin, 2002). Figure 3-1 is an example of a spiral development approach.

This is essentially the method that was used to develop the RO UI. The advantage to this

method is that it takes advantage of the software designer's ability to rapidly change and

evolve the code through iterative steps rather than forcing a huge design effort in the first

two phases of design.

Figure 3-1: Spiral Design Approach (Maier & Rechtin, 2002)
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3.2 Requirements Definition

Like any product, the RO GUI had to be developed by adequately and accurately defining

the requirements or customer needs. However, the UI is not a standalone system. The UI

is just one part of the overall NILM architecture. Hence, the requirements definition

includes the entire NILM system. Conversations with the primary stakeholders led to the

following eight customer requirements:

1. Easily modifiable
a. The design must allow for easy modification by designer as well as future

NILM teams
b. Evolutionary in nature to allow for updates and future requirements
c. Common interface so it could be used with any data output

2. Able to operate in the engine room environment for sustained underway
operations

a. Water proof
b. Heat (100 F)
c. Humid
d. Power interruptions for drills and casualties

3. Low cost
4. Reliable

a. Durable, able to handle the environment of the equipment
b. Backup power source

5. Data handling and display
a. Provide adequate display in location that operator will receive information

in timely and useful manner
b. Accurately display events in real time

i. Low pressure pump start/stop
ii. Inform operator when to steady state has been reached

1. Time to steady state
iii. High pressure pump start/stop

1. Alarm indication if low pressure pump steady state not
reached

iv. Bypass valve operation
v. Overall System operation

vi. Indicate and alarm for known casualty conditions
1. Membrane failure
2. High pressure pump start without low pressure pump

running (phantom start)
3. Clogged or misaligned sea water strainer
4. Clogged or dirty micron filters
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c. Provide the operator with real time information to assist in operating
equipment correctly and safely

d. Provide a supervisor only indication for monitoring operator performance
e. Provide archive for old data storage

6. Small footprint
a. easily removed
b. Small impact on engine room operations
c. Low power consumption

7. Maintain current system complexity level
8. Intuitive operation

3.2.1 Major Decisions

The first decision made during the development of the RO UI was to choose a

programming language. One of the major requirements was to ensure modifiability by

ensuring that the code could be changed by future design teams. In order to ensure that

this requirement was met it was decided that MATLAB could be utilized in developing

the UI. MATLAB is an engineering tool that is widely used in research and has been

used extensively in the early stages of NILM development. Additionally, MATLAB has a

built-in UI development tool called Guide, which allows the designer to generate the

starting functions and callback identifiers without having to hard code them. Guide

provides the basic framework for building the UI by auto programming the creation

functions for simple applications such as a pushbutton or radio button.

The hardware that interfaces with the RO UI is not part of this product

development. The screen that will display the UI was selected by LT Ashley Fuller,

USN. Hence the customer requirements 2 - 4 were handled by LT Fuller as part of a

different product stream. Additionally, the front end software development was done by

LCDR Ethan Proper, USN. He developed the initial event detector, called Ginzu, which

provides data to the RO user interface.

3.2.2 Develop and UI Architecture

Once the RO GUI requirements were established the next phase of development was the

design. In order to design a software package it is important to know exactly where the



major decision points exist. These decisions can usually be determined by examining the

system interfaces and common information channels where clogs and errors are most

likely to occur. To assist in determining this information for the RO GUI, an initial

architecture was developed. Figure 3-2 is an illustration of the initial system architecture.

Notice that no major components have been identified and that even subsystem

boundaries have yet to be defined. The importance of this architecture is that it

physically illustrates what is known, or already exists, to the designer and what must be

developed.

The designer can use the initial architecture to identify dependencies and

interfaces that will ultimately drive the design. In this case there are two external

interfaces and two internal dependencies that must be resolved in order to define a final

product. The external interfaces are the data received from Ginzu and the display, which

interfaces with the external monitor. The internal dependencies are the data handling

structure, which must be defined in order to accurately program functional logic to

perform the internal operations of verify, diagnose, classify and display; and finally the

actual information that will be displayed to the operator. The information that will be

displayed to the operator must be known in order to determine what output must come

from the diagnose function.
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Figure 3-2: Initial UI Architecture

3.2.3 Data

The first blocks in Figure 3-2 include some that are internal to the UI and some that are

external. This is important information because it is immediately apparent that the Ginzu

output must be in a form that is usable to the UI. This presented the first design decision.

Since Ginzu was developed concurrently with the UI the designers were able to work

together to determine exactly what output would come from Ginzu. In this case the

information needed by the UI is as follows:

* Event classification
* Time of event
* Real Power (P) and Reactive Power (Q) data
* Local index of event within the data file

Next the number of data points (real and reactive power) contained in each output

file had to be established. Ginzu needed the files to be at least longer than the longest

transient in the RO system, but small enough to not affect the processing speed. The RO

UI needed the files to be long enough to provide enough data for all diagnostics but short
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enough so that the lag between the event and displaying the event was not excessive. In

the end it was the processing speed of Ginzu that drove the length of the data files. This

was due to the exponential relationship between the size of the window and the

processing time for several applications within Ginzu. Specifically, the processing time

required for the primary filtering and the matrix inversion algorithms is equal to the

number of data points squared. The output from Ginzu contains 1200 points of P and Q

data, actual time of the event, local index of the event, global index of the event and the

classification of the event in a single column of text data. These files are definable as

"*.evt" files or event files.

An additional architectural problem is that data must be used in real-time

processing and simultaneously archived for future use. The second problem can be

solved easily by simply moving the event file in its entirety to an archive directory once

the useful data has been obtained. The archive itself will be discussed later in this

chapter. The first problem is more difficult because it requires one to consider what to do

with data once it has cycled through the software's main process. Following the

information as it streams through Fig. 3-2 shows that data can be discarded from stored

variables only after key state information has been provided to the operator's display

screen. This incredibly useful information guides the selection of the data structures used

to handle event information within the GUI. From a programming standpoint the local

data obtained from within the event file can be handled as intermediate or temporary

variables as long as the verify, diagnose, classify and display functions are called by one

single function when they are needed. However the state of the system must be

maintained globally so that the system's operating profile is always known.

Figure 3-3 is an updated architecture of the data flow. This type of data flow is

optimal to the overall design because it is very modular in nature, which allows the

designer to change and evolve the functions without affecting the fundamental structure

of the code.
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Figure 3-3: Data Flow Architecture

3.2.4 Global Variables

The state of the system has to be known at all times in order to perform certain

diagnostics. One of the customer requirements was to be able to detect abnormal

operating conditions, such as starting the high pressure pump without allowing the low

pressure pump to reach equilibrium, and casualty situations such as phantom starts. The

only way to provide this information accurately to the operator is to provide the system

with accurate state information. This determination in and of itself becomes the system's

first real diagnostic. Figure 3-4 is a representation the state based programming logic that

was used to develop the UI. The red sequences represent states that will eventually result

in total component failure, while the yellow indicate abnormal system performance or

improper operator action, but will not result in system damage. This information will be

stored as global variables and passed or updated from any place in the program.

The state array is composed of four component states: [low pressure pump, steady

state, high pressure pump/s, bypass valve/s]. For the low pressure pump state a zero

indicates that the pump is off and a one indicates that the pump is running. For the

steady-state a zero indicates that the low pressure pump has not reached a steady

condition (not safe to start a high pressure pump), and a one indicates that the low



pressure pump has reached a steady condition (safe to start a high pressure pump). For

the high pressure pump a zero indicates that both pumps are off, a one indicates that one

pump is running and a two indicates that both pumps are operating. Finally, for the

bypass valve a zero indicates that both bypass valves are open, a one indicates that one

bypass valve is shut and a two indicates that both bypass valves are shut.

[Low Pressure Pump, Steady State, High Pressure Pump, Bypass Valve]

[0 0 0 0]

[10 o0 0]

[1100] [10101

[1110]

1 1 I
[11 2 1]

[1 1 2 2]

Figure 3-4: System - State Sequence

In addition to the state based information there is other information that must be

maintained as global variables in order to provide certain pieces of information to the

diagnostic sections of the program. An example is the time-to-steady-state which is a

metric defined in (Mitchell, 2007) for determining the state of the micron filters in the

RO system. Figure 3-5 illustrates how information is shared within the programming

construct.



Figure 3-5: State Information Flow

3.2.5 Display

The next step was to determine what information to display to the operator. After careful

consideration and discussion with the stakeholders two basic display concepts evolved.

The first was an information rich environment, which would provide the operator with

specific system information. This display would include an interactive system diagram

as well as an alert panel that clearly and distinctly displayed any system abnormalities.

The second concept was a visual environment that provided the operator with immediate

system health verification but was uncluttered with expansive system information. This

concept would include a panel of blocks that would be all white when the system was

operating correctly and red when something was abnormal. Figure 3-6 shows an example

of the two competing concepts. To determine which of the two concepts would be used

the requirements that specifically pertain to the display option were mapped to the

designs. Each attribute was assigned a value from 0 to 1 based on how well each

requirement was met. Table 3-1 is the concept exploration table where
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System Alert Panel:

Possible clogged micron filter

I ~ II
II

I System Status

Membrane Condition

Strainer Condition

LP Pump Running

HP Pump A Running

HP Pump B Running

Exit

System Alert Panel:

Possible clogged micron filter

Figure 3-6: Two Competing Display Concepts

concept A was the system diagram approach and concept B was the first glance visual

approach. Each concept was given a score of 0 - 1 based on how well it met the

customer requirement. Ultimately concept A scored higher and was selected as the

display option. This is primarily because proper operation of the RO is solely dependent

on the operator taking the correct steps in the right sequence and timing. Thus, providing

the operator with real time visual verification of each step proved to be invaluable.

Table 3-1: Concept Exploration Table

Design Requirements Concept A Concept B

Information received by operator 0.8 1
Ip pump start / stop 1 1
hp pump start / stop 1 1

Ip ss reached 1 1

bp valve indication 1 1
overall system operation indication 0.8 0.2
alarm conditions 1 1
provide operator performance indication 1 0.2
Real time assistance to operator 1 0.5

8.6 6.9

g'ggg - %W



3.2.6 Internal Function Programming

Now that the key aspects of the overall design were defined the internal UI functions

could be defined. The first step was extracting the data from the event file and passing it

to the main program. To do this it was essential to understand exactly how MATLAB

works within the UI. When the UI is started the program automatically performs tasks

that are described inside the opening function. This includes opening the UI, any

physical pictures or diagrams that are present in the base UI layout and establishing the

initial handles structure. The opening function must also include any global variables

that will be used throughout the program. The handles structure contains all the

information for each object that is contained with the UI .fig file (Uliana, 2007). The

opening function code is described below:

% Begin initialization code - DO NOT EDIT
guiSingleton = 1;
guiState = struct('gui Name', mfilename,...
'gui Singleton', gui Singleton, ...
'gui OpeningFcn', @ROqDiagram_OpeningFcn, ...
'gui OutputFcn', @RODiagramOutputFcn, ...
'gui_LayoutFcn', [],...
'gui_Cailback', [);
if nargin && ischar(varargin{1})
guiState.gui_Callback = str2func(varargin(1});
end

if nargout
[varargout{1 :nargout)] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code -DO NOT EDIT

% --- Executes just before RODiagram is made visible.
function RODiagram OpeningFcn(hObject, eventdata, handles, varargin)
% Initialize global variables:
global HP;
global LP_StartT;
global ss_7;
global LP;
HP=O;
LP_StartT=O;
ss_7=O;
LP=O;

% Open initial figure (this is the system diagram)
ax4=axes('Position',[0.1 .4 .8 .5]);
[x,map] = imread('Final Gui RO','png');
image(x)
set(gca,'visible','off')



Once the UI is opened it will remain unchanged until a function is called to

perform a task. This was the first real problem that was encountered by the designer

because Ginzu passes an event file into the UI directory but something has to tell the UI

to retrieve the data. Ultimately this problem was solved by inserting a timer inside the

opening function, which once fired would call a load function to index and read any event

files contained inside the working directory. The timer function is a modification of the

'My Timer Function' created by LCDR Ethan Proper, who created the timer for a similar

system. Within the timer function the designer can specify how often to look in the

directory for a new event file. In order to ensure a small time delay exists between

receiving the information and displaying, the timer should be set as low as possible.

However, it cannot be set so low that it interferes with the internal functions. For the RO

UI the timer was set to .25 seconds. The timer itself must be contained inside the

opening function. The timer function code is described below:

t=timerfind;delete(t);
% Choose default command line output for RO Diagram
handles.output = hObject;
handles.evt index=1;
% Update handles structure
guidata(hObject, handles);

% Start the steady state timer
handles.steady_state = timer('period',.25);
set(handles.steady-state,'ExecutionMode't'fixedrate','StartDelay',2,'BusyMode','drop');
set(handles.steady_state,'timerfcn',{@MyTimerFcn_l, hObject});
start(handles.steady_state);

% Update
guidata(hObject, handles);

There are two important pieces to note here. First, at the end of the timer code is

the line 'guidata(hObject, handles);' this is to ensure that that the handles data described

here is saved each time it fires. Otherwise none of the handles structure data can be

passed throughout the body of the program. Second, the timer only calls a function. By

itself it does nothing. In this case it calls the function 'MyTimerFcn_l', which is

described below:

% --- Timer Callback Function

function MyTimerFcn_l (steady state object,event,hObject)
% increment the number of counts...
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handles = guidata(hObject);
handles.file_names=[];
dir_path=pwd;
dir_struct = dir(strcat(dir_path,'/*.evt'));
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
handles.file_names = sorted_names;
handles.is_dir = [dirstruct.isdir];
handles.sortedindex = sortedindex;
%copyfile('*.evt','event/','f'); %This works.
num_files=length(handles.file_names);

for i=l:num files
auto_load(hObject,[],handles,pwd,handles.filenames(i));

end
guidata(hObject, handles);

This function is called every 0.25 seconds by the timer. Again it is important to note

what exactly is being done here. The 'MyTimerFcn' looks in the current working

directory for any '*.evt' files, indexes them sequentially as they appear in the directory

and then passes them in order to the main program, which is called 'auto_load.' The

'auto_load' function is described later in this section. Finally the handles structure is

preserved by the 'guidata' command at the end of the function.

The first data handling process has been established. Next the design must extract

the useful information from the '*.evt' file and pass it to the functions structure described

in figure 3-3. Initially the basic structure was to be totally modular. Meaning that each

function was self contained and would be called by the 'auto_load' function when it was

needed. However, this proved to be unnecessary and actually complicated the overall

design. This is primarily because each function contained within the body of the program

had to be applied to each classification of event differently. For example, if Ginzu passed

the classification of low pressure pump start, then the verification function had to look for

parameters that specifically identified the event as a low pressure pump. Essentially

every event had a different set of identifying parameters and would require a different

verification function. Likewise the 'auto_load' function would first have to identify the

classification for each event and call the appropriate verification function. Then if the

verification logic did not agree with Ginzu's classification it would have to call the

classification command from within the verification function. This would require passing

local variables to several different places within the overall program and require an

excessive amount of processing time. While the idea of modular functions would be

preserved, the benefit of a simple program flow would be lost.



Instead a switching algorithm, which runs within the body of the main program,

was developed. In order for the switching algorithm to work efficiently a numeric value

was assigned to each classification within Ginzu and passed to the UI. Table 3-2 is a list

of the numbers assigned to each event.

Table 3-2: Number assigned to event classification

Event Classification Number Assigned
Ip start 1
hp start 2
Ip stop 3
hp stop 4
all off 5
bypass valve open 6
Ip steady state reached 7
cycling load transient 8
noise 9

The 'auto_load' function extracts the number and assigns it to a local variable.

The function also contains the switching algorithm, which will only perform the specific

tasks associated with the event. Some modularity is still maintained because the case

statements themselves act as individual sub functions within the main program logic.

Additionally, the handles structure for each object that is associated with each event is

contained outside the 'auto_load' function and is only called when it is needed by the

case sub routine. The 'auto_load' was developed by LCDR Ethan Proper and was

modified to fit the application here.

function auto_load(hObject, eventdata, handles,pathname,filename)

global HP;
global LP_StartT;
global ss7;
global LP;
pathname=strcat(pathname,'i');
longfilename=char(strcat(pathname,filename));
fid=fopen(longfilename,'r');
[path,name,ext,ver] = fileparts(longfilename);

if (ext=='.evt')
event_t = fgetl(fid);
try



ev_time_num=datenum(eventt,'yyyymmdd-HH:MM:SS');
catch

ev_time_num=datenum(event_t(5:24),'mmm dd HH:MM:SS yyyy');
end

% Ex i: ::I••r It dl··t ia51 : neeided f~n :iihe .i
0_file = fgetl(fid);
glob index = str2num(fgetl(fid));
local_index = str2num(fgetl(fid));
event class = fgetl(fid);
class=str2num(fgetl(fid));
windowsize = str2num(fgetl(fid));
P = zeros(window_size,1);

C rea·ng P and Q aray for d.spv a'
for i=1:window size

P(i)=str2num(fgetl(fid));
end

for i=1:window size
Q(i)=str2num(fgetl(fid));

end

ev_min=fix(globindex*60/432000);
ev_sec=fix((glob_index-ev_min*1 20*60)/120);
event_time=(num2str(fix(glob_index*60/432000*1 00)/100));
event_time_min=num2str(ev min);
event_time_sec=num2str(ev_sec);

done=fclose('all');
movefile(longfilename,'archive/');

Note that the last line in the 'auto_load' function is 'movefile.' This

accomplishes the move function by physically moving the '*.evt' file to the archive once

the useful information has been extracted. Again modularity is partially preserved

because the action is accomplished outside of the local data stream, which is passed to the

case statement logic.

The final step in developing the UI was to develop the case statement logic

routine. For the purposes of discussion each case statement will be treated as a separate

sub routine contained within the larger body of the program. The first case is the low

pressure pump start. This is by far the most complex routine because it encompasses

several customer requirements. The first part of the case one logic is to verify the

classification passed by Ginzu. This presents two problems. Number one is that Ginzu

looks for a change of mean and then classifies the event based on the state information

contained within Ginzu. If Ginzu shows a state of [0 0] (lp pump off, high pressure pump

off] and a change of mean occurs then it automatically classifies the event as a '1' (low

pressure pump start). Because the RC7000 Plus system has a known problem with

phantom high pressure pump starts the UI must correctly identify the event in order to
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provide the operator with critical system information. Additionally, Ginzu uses a sliding

window approach to identify an event. If an event occurs too quickly after the previous

event Ginzu will miss it. Therefore, the UI must sequentially step through the window to

ensure that only one event has occurred.

In order to verify that the event being called a low pressure pump start is correct

the program compares the peak power to a known value. If the peak power is too large

then the program identifies the event as a high pressure pump. If the peak power is too

small then the event is ignored due to noise. This part of the program should be

improved in the next iteration because it uses information that is specific to this RO unit

and may not work for every unit. For example, the peak power always occurs at (local

index + 3) and the peak power threshold value is specific to this RO system. Next, the

case one routine has to find the time to steady state (indicator of micron filter condition)

and pass this information to a .txt file contained in the working directory.

To accomplish this, the case one logic steps through the power data in increments

of one, looking for a threshold increase in power. Once the threshold value occurs the

program then begins stepping through the data in increments of 20, comparing the mean

of each step to the previous step. Once the two steps have corresponding mean values

within 1 % of each other then the system is determined to be at steady state and the time

is recorded. Finally, the case one statement has to pass pertinent indication information

to the UI display. This is done using the handles structure for each object that must be

updated on the display. The case one code is described below:

switch(class)
case 1

% set tfhreshold value for p to start looking for steady state
if P(local_index+3)-P(local index-3) < 20 & P(local_index+3)-P(Iocal_index-3) > 10 %This is set prevent noise fromr being
classified as pump start or hp start frorm being classified as Ip stait
for n = 1:length(P)

if P(n) < 5 % This is abitrarily set for now
else

event=1;
break

end
end

if event ==1
for m = 1 :length(P)-20-n

avg(m) = [mean(P((m+n-1):(m+n+20-1)))];
end
for j = 1:length(avg)

min_P = min(avg(j:j+20));
max P = max(avg(j:j+20));



% set threshold for what you are defining as steady state

if (avg(j)*1.01>max_P) & (avg(j)*.99<min_P) I j+20 == length(avg)
break

end
ss_index = j+n-1;
time = (ssindex-n)/120;

end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fid = fopen('times.txt','a+');
fprintf(fid,'%s %30.8fn',O_file,time);
status = fclose(fid);

set (handles.LPpump,'String','ON');
set (handles.LPpump,'BackgroundColor','green');
LP=1;
LPstartT = time;

if time >2
set (handles.system,'String','Check micron filter condition')
set (handles.system,'BackgroundColor','red')

end

set (handles.steady,'String',LPstartT);

if P(local index+3)-P(local index-3) > 50
set (handles.HPpumpA,'String','ON');
set (handles.HPpumpA,'BackgroundColor','green');
HP=HP+1;
set (handles.system,'String','A high pressure pump start has been detected without the low pressure pump

running');
set (handles.system,'BackgroundColor','red');

end
end

The threshold value that is set for the steady state routine is system specific and

should be revisited to increase the overall system robustness. Figure 3-7 below is a

screen capture of the UI with a low pressure pump running.



Time

state

Figure 3-7: RO UI with LP pump running

Next is the case seven (low pressure pump steady state) logic routine. This is

done here because sequentially it is the next event that should occur. Note that in the

case one statement the low pressure pump index was changed to 1. This is passed as a

global variable and is part of the state information. Likewise the case seven logic indexes

the global variable 'ss_7' to 1. The case seven statement indicates that the system has

reached steady state and that it is safe for the operator to start a high pressure pump. The

case seven code is:

case 7
if LP==1
ss 7=1;
set (handles.pressureA,'String','Ready to Start');
set (handles.pressureA,'BackgroundColor','green');
end

Next the system expects to see a high pressure pump start, or case two. If a high

pressure pump is started without the state being equal to [11 0 0], then an alarm signal is

passed to the display to notify the operator of what condition exists.

case 2
if (HP==O)

set (handles.HPpumpA,'String','ON');
set (handles.HPpumpA,'BackgroundColor','green');

else
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set (handles.HPpumpB,'String','ON');
set (handles.HPpumpB,'BackgroundColor','green');

end

HP=HP+1

if (ss 7==0)
set (handles.system,'String','High pressure pump was started before steady state was completely reached');
set (handles.system,'BackgroundColor','red');

end

The rest of the case statement routine is very similar in structure to the previous

cases. The statements that are state sensitive are verified to be in the condition expected

and appropriate information is passed to the display.

case 3
set (handles.LPpump,'String','OFF');
set (handles.LPpump,'BackgroundColor','white');
LP=O;
ss_7=0;
set (handles.pressureA,'String','Not Ready');
set (handles.pressureA,'BackgroundColor','red');

case 4
if (HP==1)

set (handles.HPpumpA,'String','OFF');
set (handles.HPpumpA,'BackgroundColor','white');
set (handles.HPpumpB,'String','OFF');
set (handles.HPpumpB,'BackgroundColor','white');
set (handles.bypassA,'String','Open');
set (handles.bypassA,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'BackgroundColor','white');

else
set (handles.HPpumpB,'String','OFF');
set (handles.HPpumpB,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'BackgroundColor','white');

end
HP=HP-1
if (P(1199)<.2)

HP=O;
set (handles.LPpump,'String','OFF');
set (handles.LPpump,'BackgroundColor','white');
set (handles.HPpumpA,'String','OFF');
set (handles.HPpumpA,'BackgroundColor','white');
set (handles.HPpumpB,'String','OFF');
set (handles.HPpumpB,'BackgroundColor','white');
set (handles.bypassA,'String','Open');
set (handles.bypassA,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'BackgroundColor','white);
set (handles.pressureA,'String','Not Ready');
set (handles.pressureA,'BackgroundColor','red');

end

case 5
HP=O;
ss_7=0;
LP=O;
set (handles.LPpump,'String','OFF');
set (handles.LPpump,'BackgroundColor','white');
set (handles.HPpumpA,'String','OFF');



set (handles.HPpumpA,'BackgroundColor','white');
set (handles.HPpumpB,'String','OFF');
set (handles.HPpumpB,'BackgroundColor','white');
set (handles.bypassA,'String','Open');
set (handles.bypassA,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'BackgroundColor','white');
set (handles.pressureA,'String','Not Ready');
set (handles.pressureA,'BackgroundColor','red');

case 6
if HP<=1

set (handles.bypassA,'String','Shut');
set (handles.bypassA,'BackgroundColor','green');

else
set (handles.bypassB,'String','Shut');
set (handles.bypassB,'BackgroundColor','green');

end

case 8
set (handles.system,'String','Possible clogged or misaligned strainer');
set (handles.system,'BackgroundColor','red');

case 9
if (Q(1199)<.2)

HP=O;
set (handles.LPpump,'String','OFF');
set (handles.LPpump,'BackgroundColor','white');
set (handles.HPpumpA,'String','OFF');
set (handles.HPpumpA,'BackgroundColor','white');
set (handles.HPpumpB,'String','OFF');
set (handles.HPpumpB,'BackgroundColor','white');

end



3.2.7 RO Graphical User Interface - Beta Version

The final beta version of the UI is a culmination of the requirements that were initially

established as well as some observations made during the initial testing phase. The UI

includes a complete interactive system diagram that indicates all the information that was

specified in the requirements definition phase. It also incorporates two information

buttons that call separate user interfaces. These were added to help aid the end user in

understanding the information that is being presented on the main display.

Duplex Strainer OFF

From ASW

LP Pump

Time to steady state: econds tnmat

System Alerts

F777-77

Figure 3-8: Ready To Start UI

The physical display selected by LT Ashley Fuller was an IBM Tablet PC. Since

the tablet PC is totally self-contained, it provided the opportunity for latent benefits to

evolve out of the overall design. The tablet PC can be removed from its holder and

physically carried around the engineering spaces. Because of this ability, a link to the

RC7000 Plus Technical Manual was added to the UI. Additionally, a quick reference

system diagram was added. Both of these provide excellent opportunities for on-site

training of new watch standers, as well as provide technical guidance without having to

leave the space or carry and store large books or manuals.



Figure 3-9: RC7000 Plus Technical Manual Link



4 Field Test on USCGC ESCANABA - Winter 2008

In January 2008 the first RO UI was installed on board the USCGC ESCANABA. This

installation served as the first operational test for the user interface and the initial

diagnostic package. This chapter outlines the specifics of the installation, including the

NILM setup, and findings.

4.1 Installation Details

The UI was placed in a position that put it in the direct line of vision of an operator

starting the RO unit, from the B side. This location was chosen because the ship's crew

normally starts the B side first. The NILM sensor box was placed outboard on the

starboard side, just aft of the low pressure air system. The NILM box is located well out

of the way, but easily accessible in the event of a casualty requiring the ship's crew to

access the panel. The NILM voltage was attached to the A and C channels, while the CT

was attached to the B channel. Figure 4-1 is a block diagram of the NILM setup used on

USCGC ESCANABA. Figure 4-2 contains several pictures of the install onboard the

USCGC ESCANABA and Figure 2-2 provides specifics on how the NILM channels were

utilized.

Data Transfer
Power

Figure 4-1: NILM Block Diagram



RO UI

RO Protective

Case and

bracket

Ethernet
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RO Motor

Controller

RO Controller

Panel

Event Log

Figure 4-2: USCGC ESCANABA RO Install

4.2 Findings: Winter Cruise Data

Initial testing was performed during ESCANABA's winter cruise. The ship was

underway on January 23, 2008 and returned to port on March 23, 2008. The UI itself

operated and indicated correctly throughout the patrol. Examination of the data revealed

that the NILM was able to detect a number of important issues, including problems

caused by operator errors and those caused by system malfunctions. Additionally, these

early tests revealed some flaws in both the classification and UI software. This section

details both sets of issues.

4.2.1 Detection of Operator Errors

Several key deviations from standard procedure were detected using data from the winter

2008 patrol. The first of these concerned the improper operation of the system. The
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proper startup and shut down procedures are outlined in Appendix B. These procedures

were established in order to prevent unnecessary damage or wear to the pumps and

membranes. Steps 6 and 7 of the start-up procedure are designed to ensure that the

system has reached a steady-state condition in which it is safe to start the high-pressure

pump. Experience has shown that it takes 1 to 2 seconds for the system to actually reach

these conditions and that it takes an operator at least 3 seconds to visually verify this

using the procedures outline in Steps 6 and 7 of the start-up process. Figure 4-3 shows

the power drawn during a proper start-up. Note that approximately 6 seconds lapse after

the low pressure pump is started before starting the high pressure pump.

March 27, 2008 - 1200
20

15

10

0
a-

5

0

.5

I II

610 612 614 616 618 620 622 624
time (seconds)

Figure 4-3: Proper operation of Ip and hp pumps

Figure 4-4 shows an improper start sequence detected by the NILM on the 2 nd of

February. In this figure it is clear that the operator neither waited for steady state to be

reached nor verified conditions prior to starting the high pressure pump. The low-

pressure pump and the high-pressure pump were started within 0.2 seconds of one

another. This could introduce air into the high pressure pump cavity causing damaging

cavitation. Additionally, by starting the high pressure pump too early it does not allow

the system to reach sufficient pump head thereby exacerbating the cavitation problem.

The high pressure pump pistons are ceramic and can be damaged easily so care should

always be taken to operate the system correctly.
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snapshot-20080202-180436-0003-0001

"'hp Pump Start
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Figure 4-4: Start Sequence from Feb 2, 2008. Note the short time between the start of the LP pump

and the start of the HP pump.

Another operator-related issue detected by the NILM relates to the adjustment of

the backpressure regulator bypass valve during the start-up process. Once the high

pressure pump is running, the operator is instructed to slowly shut this valve. This brings

the system to its normal operating pressure of 800-1000 psig. Figure 4-5 shows a good

bypass valve adjustment as determined by the Machinery Space Supervisor MKC Scott

T. Galvin. As the valve is closed the real power slowly increases. When adjusted

properly, the valve closing should last for approximately 7 seconds. This has been

verified using both NILM data and crew member input.
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Figure 4-5: Good bypass valve adjustment. The lower trace is the real power; the upper trace is the

reactive power

Figure 4-6 shows an instance in which the bypass valve was closed too quickly.

In this case the valve was adjusted from fully open to fully shut in about one second.

This means that system pressure increased from approximately 60 psig to 1000 psig in

one second. Such an extreme change over such a short time could result in damage to the

membrane and membrane housing. To understand the possible problems, consider Fig.

4-7, which shows that the membrane housing contains a brine seal on the feed end. This

seal prevents the effluent from mixing with the seawater. If the pressure is increased at

too high a rate, the seal could be damaged and allow contaminated water to leak into the

effluent flow path. Additionally, this sudden increase in pressure could damage the

membrane itself. If either problem occurs, the membrane housing must be disassembled

in order to make repairs. The disassembly and assembly processes are difficult and time-

consuming. The installation of the membrane into the vessel requires a combination of

C-clamps to be alternatively tightened until the membrane is fully inserted. The RO UI

allows the supervisor to examine every system start-up and shut down to ensure that the

system is operated correctly.
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Figure 4-6: Improper bypass valve adjustment. Note that the low-pressure pump is already

operating when the high-pressure pump is started at approximately 7.5 seconds. The slow change in

power following the transient is due to the closing of the bypass valve.

Figure 4-7: Membrane Pressure Vessel End Bell (Operation and Maintenance Manual for USCG

Model RC7000 Plus Reverse Osmosis Desalination Plant, 2007)
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A third operatorational issue was discovered during shut downs. That procedure

requires the operator to first slowly open the bypass valve, then secure the high pressure

pump, and then finally secure the low pressure pump. Figure 4-8 shows how the power

changes when this procedure is not properly followed. In this example, both A and B

sides were operating and then shutdown. All three pumps were secured in approximately

.25 seconds. Additionally, neither bypass valve was opened, in contrast to the procedure.

Rapidly securing the three pumps, on the other hand, is not specifically disallowed, but it

is clearly a bad practice.

snapshot-20080202-180436-0001-0004
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Figure 4-8: Shut down sequence from Feb. 2, 2008. Note that all three pumps were initially running.

All three of these cases provide the Machinery Division Supervisors excellent

opportunities to train more junior personnel in the proper operation of equipment. The

cases described above can be used to demonstrate exactly how improper operation can

affect the system. Additionally, this information provides oversight for operations that

are performed when the supervisors are not present. It provides definitive information to

the supervisor when the operating procedures are either not being followed or are not

clearly understood by the operators. The procedures are specifically designed by the

manufacturers to ensure proper operation as well as prolong the life of the equipment.
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4.2.2 Detection of RO System Problems

During the Winter 2008 cruise, the NILM also detected a number of problems in the RO

system. These problems were either inherently related to the RO based on its design, or

they were related to the way in which the RO operates as an individual subsystem aboard

the ship.

Figure 4-9 demonstrates one issue detected during the winter patrol. To provide

further clarity Figure 4-10a shows a typical RO power trace recorded over a one-hour

period, and Figure 4-10b shows an abnormal trace recorded on March 9, 2008. This

atypical pattern was noticed on multiple occasions throughout the patrol. Figure 4-9 is an

example of an extreme case. That figure also presents frequency spectra demonstrating

that there are significant changes to the frequency content when the variations are

observed. Appendix E contains the MATLAB script used to produce the spectral graphs.

Escanaba Jan 28 2008 - 1300

12

0 500 1000 1500 2000 2500 3000
time (seconds)

Figure 4-9: Unusual power signal from the RO system aboard USCGC ESCANABA. The two inset

plots show the frequency spectrum of the power signal during two different time periods.
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Figure 4-10a: Real power demand during normal system operation.
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Figure 4-10b: Real power demand during an hour with unusual power disturbances.
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After noticing the oscillations shown in Fig. 4-10a and Fig. 4-9, several

investigations were performed while the ESCANABA was in port. Several tests were

performed to determine if this problem could be related to an external piece of equipment

fed from the same voltage source. Upon examining the engineering logs and comparing

the events with start and stop times for other engineering components throughout the

auxiliary machinery spaces, it was determined that only one piece of equipment had an

operating schedule that correlated with the unusual power trace. This was the submersion

heaters that are responsible for heating the entire ship. The heaters do not always run,

and when they are operating they cycle up or down in 15 kW increments to maintain the

set temperature. When all six heaters are energized the system draws 90 kW.

To determine if the heaters were in fact the problem some additional tests were

performed, including energizing and securing the submersion heaters while the system

was operating, and starting the RO system with heaters secured and with heaters

energized. Figure 4-11 illustrates the affect of energizing the heaters while the RO

system is operating. Note that when the heaters are energized the maximum power

oscillation is approximately seven times the normal power trace. Figures 4-12 and 4-13

illustrate how the heaters affect the system before and after the bypass valve is shut. The

actual reason why the submersion heaters cause such a tremendous oscillation in the

RO's power signal has not been determined, but the crew has been informed of the

problem and is pursuing corrective measure.
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Figure 4-101: RO power trace during submersion heater testing. The heaters were started at

approximately 330 sec.
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Figure 4-112: RO power trace with the heaters energized. Note that the bypass valve was adjusted

starting at approximately 210 seconds.
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Figure 4-123: RO power trace with the heaters de-energized. Note that the bypass valve was

adjusted starting at approximately 278 seconds.

Another issue discovered during the cruise was the observance of a power-quality

issue. Numerous times, data analysis has revealed the presence of small "spikes" in the

reactive power trace. These spikes seem to occur randomly, but they have been found in

all reactive power traces investigated to date. Occasionally, these "spikes" are also

noticed in real power. In most cases analyzed to date, the anomaly occurs singularly at

random times. On occasion, the effect is noticed to occur in groups of multiple "spikes."

Figure 4-14 illustrates the varying degrees of the anomaly.
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Figure 4-134: Spike in Reactive Power
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This problem may be related to the phantom start issue noted previously. The

stray spikes could be an indication of a power-quality issue that is causing the system

controller to start the HP pump improperly. Because phantom starts occur on all Famous

Class Cutters, it was decided to examine SENECA data to look for similar "spikes."

Figure 4-15 shows reactive power traces from both the ESCANABA and the SENECA.

Note that random spikes are present on both ships. The actual cause of this unusual

behavior is not known, however the crew is aware of the problem and is actively trying to

determine the source.

USCGC SENECA vs. ESCANABA
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Figure 4-145: Representative reactive power data from both ESCANABA and SENECA. The top

trace is from the ESCANABA with both hp pumps running and the bottom trace is from the

SENECA with only one hp pump running.

A third issue noticed during the Winter 2008 patrol was an abnormally large

oscillation in the power trace while the B-side was running. This phenomenon, which

can be seen in Figure 4-16, was seen previously by LT Gregory Mitchell (Mitchell,
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2007). When the problem was discovered by LT Mitchell, he noted that there was a large

frequency component at 8.26Hz and its harmonics. In 2007 LT Gregory Mitchell

discovered that the high pressure pump has a distinct rotational frequency at 8.26 Hz,

which is due to the rotational speed of the pump, 495.7 rpm (Mitchell, 2007). On March

23, 2008 the USCGC ESCANABA experienced a very similar occurrence. The

oscillation lasted for almost 2 hours before dissipating. Since the incident, the crew has

reported that the B-side pump has experienced several problems including a loud

knocking noise on start up, which disappears after a few seconds. The pump's leak rate

has become excessive, and the crew has scheduled a complete rebuild for this pump, to

be completed this in-port maintenance period. Note that the oscillation noted here can be

distinguished from the submersion heater problem by the presence of the uniform 8.26

Hz. In the case of the submersion heater issue, there is no effect on the frequency content

at that frequency.
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Figure 4-156: B-side High Pressure Pump Oscillation

In all of the instances mentioned above the NILM can be used to detect the

problem and provide immediate indications to the operator. Additionally, diagnostics can

be designed and implemented to not only display the problems, but also to alert the
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operator that an abnormal condition exists. This type of implementation is critical to an

effective conditioned based maintenance program.



5 Diagnostics

One of the main customer requirements for the development of the NILM software was

to make the system easy to use and understand. This requirement combined with a fairly

aggressive time constraint led to an initial prototype system with minimal diagnostic

capabilities. The NILM is capable, however, of performing sophisticated analysis.

Additionally, the NILM could interact with the system to provide additional safety

features and more efficient operating profiles. This chapter describes several diagnostic

metrics that could be deployed as a part of the RO system UI. The primary goal of the

2007-2008 NILM team was to develop a real-time user interface for the current NILM

system. Based on the tremendous success of this beta version test the USCGC

ESCANABA Engineering Officer has agreed to continue the program and assist in

further developing the NILM program. The 2008-2009 team will be to working to design

and implement the diagnostics described in this chapter, and a working diagnostics

update will be installed by the end of 2008.

5.1 Start Sequence Figure of Merit (FOM)

One useful piece of information that the NILM can provide to the RO operator is

feedback about the start-up process. Recall from Section 4.2.1 that although it is critical

to perform these operations in a certain order, the crew does not always do so. To

prolong component life and prevent excessive failures, it would be helpful for the NILM

to analyze each start sequence and provide a measure of how effective the operator was at

starting the system. In this case a score or figure of merit (FOM) would be assigned to

each and every start so that the supervisor could determine how effectively the system is

being operated. This FOM would aide in preventing damage to the unit, as well as

provide a basis for structured training on the operation of the RO unit.

The FOM would be determined by assigning a score to each portion of the start

that is sequential or time dependent. The start can be broken into 6 separate steps: low

pressure pump start; micron filter condition; low pressure pump reaching steady state

before the high pressure pump is started; first bypass valve operation; second high

pressure pump start; second bypass valve operation. Each step can be assigned a numeric

value, which when summed together equal 1. Hence, the best total FOM is 1 and the
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lowest is 0. The number assigned to each step is described in Figure 5-1. If the start

sequence does not include the starting of a second high pressure pump then the FOM

score will be out a total of .7, normalized to 1.

Table 5-1: FOM Values for Start Sequence

LP Start Filter Operator Bypass HP Start Bypass
Condition wait for S.S. Valve Valve

/ HP Start Operation Operation
.2 .2 .2 .1 .2 .1

The most important part of this algorithm was determining what constitutes a

failure. The filter condition was considered adequate if the time to steady state was less

than three seconds, see section 5.2.3. The operator was given full credit for the 'wait for

steady state' step as long as the high pressure pump was started after the timer

determined the system had reached steady state. The bypass valve was determined

satisfactory as long as the valve operation (from fully open to fully shut) occurred over a

time of greater than 4 seconds. This value was determined by the Machinery Room

Supervisor MKC Scott T. Galvin. If the step was done correctly then the operator would

get full credit for that particular step, however if any portion of the step was done

improperly then no credit will be given.

Applying this algorithm to all the starts in this patrol yields the following results.

Out of 70 recorded starts during the 60 day patrol, the average FOM was .847. There

were 42 perfect starts. The lowest FOM of .2 occurred twice, .4 was scored six times and

the remaining 20 starts were given a FOM of between .6 and .8. The most common

problem was improper operation of the bypass valve.

5.2 Oscillations Due to the HP Pump

In order for NILM to be used effectively as a part of a condition-based maintenance

program, the system has to be able to report on the relative health of individual

components. One way that this can be done is by establishing baseline information from



individual components and comparing real time output to the baseline data. Provided that

the baseline data is correct, this could provide valuable information to the operator. This

information could be utilized to schedule maintenance upkeeps as needed in order to

prevent a total system failure, without having to conduct expensive and time consuming

periodic inspections. The characteristic 8.26 Hz signal originating from the high

pressure pumps is one tool that can be used to track the relative health of those pumps.

As mentioned in the previous Chapter, the 8.26 Hz signal was initially

investigated by LT Gregory Mitchell, USN, who discovered that the frequency exactly

matches the rotating frequency of the high pressure pumps (Mitchell, 2007). Mitchell

also noted that the signal's relative magnitude provides a general indication of how

healthy the pump is. Figure 5-1 illustrates the abnormal condition that occurred on the

ESCANABA in 2006.

Figure 5-1: HP pump power extreme amplitude (Mitchell, 2007).

Figure 5-2 shows the frequency spectrum of the real power waveform presented

in Figure 5-1. Note that there is significant spectral content at approximately 8.26 Hz and

its harmonics (Mitchell, 2007).
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Figure 5-2: Frequency spectrum analysis of Figure 5-1 (Mitchell, 2007).

Additionally he noted that the amplitude of the 8.26 Hz could be used as an

indication of relative pump health. Through analysis of high pump starts before and after

a pump replacement he was able to show how the magnitude changes. Most he noted

that the pump was replaced shortly after the extreme amplitude condition occurred.
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8.26 Hz Measured Magnitudes

013

72

I

Figure 5-3: 8.26 Hz magnitude trending for RO unit hp pumps (Mitchell, 2007).

As noted by LT Mitchell, there is a clear change in the magnitude of the 8.26Hz

signal over time. One could establish a diagnostic that trended the magnitude of this

signal for each pump. Such a diagnostic would likely require a change-of-mean filter that

would search for a relative change in the magnitude of the 8.26Hz signal.

5.2.1 High Pressure Pump Real Power Waveform Analysis

The fact that the pump's rotational frequency shows up so strongly in the power signal

suggests that more powerful diagnostics may be possible. For instance, one may be able

to track the action of the pistons inside the actual pump. Such information might better

indicate pump health and even provide an insight into the status of other components in

the system, i.e. filters, membranes, etc. To consider this possibility, it was decided to

analyze the power trace more carefully.

A more consistent diagnostic tool would be to examine the power signal in the

time domain and determine which parts of the signal can be attributed to the high
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pressure pump. For example, using MATLAB Simulink, it should be possible to recreate

the typical power trace, thereby identifying each contributor as they are added in. A

simple example of this technique is to start with the trace in Figure 5-1, when the

oscillations were present. The assumption has been that the oscillation in the high

pressure pump is causing the unusual waveform. If this is true then one should be able to

recreate the waveform using Simulink. To conduct this only the components of the

waveform known to be associated with the high pressure pump were used. The 8.26

spike is the rotational frequency of the pump. The 16.5 spike can be assumed to be a

harmonic of the rotational frequency. All three pumps in the RO system are driven by

1800 rpm motors, therefore there should be some affect around 30 Hz. Lastly, the high

pressure pumps are 5 piston pumps, hence there should be some spectral contribution

around 41 Hz. To ensure that these frequencies are present in the frequency domain an

fft of the abnormal power oscillation that occurred in March 2008 was examined. Figure

5-4 is the frequency spectrum analysis of the abnormal waveform.

FFT of Oscillation on March 23, 2008

2500

2000-

S1500
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frequency (Hz)

Figure 5-4: FFT of Power during abnormal oscillation

If these frequencies are approximated correctly in Simulink then the output should

be similar to Figure 5-1. Figure 5-5 is the Simulink model used, and it is apparent the

modeled signal is a good approximation of the actual signal.
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Figure 5-5: Simulink Model of abnormal power waveform

The next step is to determine what makes up the non casualty power trace. A

typical RO aggregate power signal can be seen in Figure 5-7. Note that there is not a

readily discernable pattern in the trace.

March 19, 2008 -2000

9.45

9.4 -

9.2 i

9.15

9.1 I I

9.05

4825 483 483.5 484 484.5
time (seconds)

Figure 5-6: Close up of normal (good) power trace

To determine if the same high pressure pump components are present in the non

casualty power waveform a spectral analysis of Figure 5-6 was performed. This can be

seen in Figure 5-7.
seen in Figure 5-7.
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Figure 5-7: Spectral analysis of good power waveform.

From Figure 5-7 (FFT of normal power trace) it is apparent that the same signals

are present; however they are modulated by a lot of other signals. Some of these signals

are from the high pressure pumps, while many of them may be unrelated to the high

pressure pumps and further distort what is happening. One solution is to simply filter out

what is desired and ignore the rest. Assuming that under normal conditions both high

pressure pumps contribute equally to their associated frequencies and that the each pump

accounts for one-third of the motor frequency, then a filter can be designed to remove the

desired information. Figure 5-8 is the filtered signal.
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Figure 5-8: Filtered Power Signal

Unlike in the unfiltered power signal, Figure 5-8 shows that a clear pattern is

emerging. The pattern appears in peak pairs of five. Examining the filtered trace in

Figure 5-8 the pattern appears to repeat itself every 0.121 seconds. This is consistent

with the piston theory. The pump rotates at a speed of 495.7 rpm; therefore all five

pistons should go through 8.261 rotations per second or one full rotation every 0.12105

seconds. The most important part of this discovery is that if the piston order is known

then the operator will be able to determine which, if any, of the pistons or cylinders are

damaged or not operating.

5.3 Membrane Failure

One of the most crippling casualties that can occur when using a reverse osmosis system

is a membrane failure. These problems are difficult to diagnose, as well as expensive and

time consuming to repair. There are two basic symptoms that will accompany a

membrane failure; low potable water production and high total dissolved solids (TDS).

These symptoms are not specific to a membrane failure, however, as they can be caused

by other component failures. Table 5-2 lists all the membrane related faults having

symptoms similar to those of a complete failure.



Table 5-2: RO System Membrane-Related Failures

Casualty Symptoms Correction
Membrane Failure 1. High TDS Determine which membrane

2. Low effluent is damaged and replace
production

3. Low membrane array
pressure

HP Pump Suction and 1. High TDS If any wear is present must
Discharge Valve Failure 2. Low reject flow rate replace all suction and

(FM 1) discharge spring and valve
assemblies

Pressure Housing Failure 1. High TDS Inspect and replace o-ring
2. Low membrane array seals in end cap and

pressure housing interconnectors
Product Water Relief 1. Low effluent Adjust relief valve setting
Valve (V-9) Failure 2. Low membrane array IAW Tech Man

pressure
3. Low differential

pressure between
normal an dump
modes at PG5

Another issue that further complicates the diagnosis of complete membrane

failure is that once a failure has been identified, more testing is needed to determine

which membrane failed. This requires taking product water samples from each

membrane housing while the system is operating. There are four membrane housings.

The NILM could greatly simplify membrane-failure diagnosis. A membrane

failure is immediately recognizable in the power trace because a change in membrane

conditions will greatly affect flow conditions. As soon as the failure occurs, the real

power in the system is drastically reduced. The reactive power also decreases, but by a

much smaller fraction. . Both of these effects are visible in Figure 5-10, which presents

data recorded before and after a membrane failure aboard the SENECA on 11 October

2006.



Membrane Failure: SENECA October 11, 2006

4 _
0 10 20 30 40

time (minutes)
50 60 70

Figure 5-9: Real and Reactive power recorded before and after a membrane failure aboard the

USCGC SENECA, October 2006

The data shown in Fig. 5-10 suggests that a membrane-failure diagnostic should

make use of a simple change-of-mean detector. The NILM could display this

information to the operator. If the operator needed to determine which side the failure

affected, they would need to perform off-line testing. To do so, the operator would

simply start one side at a time and shut the bypass valve. If the bypass event is detected

this means that the failure is not on that side. However, if the valve manipulation is not

detected then the membrane failure is on that side. This is because the real power is

indicative of the flow conditions in the system. If a membrane failure has occurred then

shutting the bypass valve will have little or no affect on the real power and will not be

detected by Ginzu. If the membrane is intact shutting the bypass valve will cause the

system pressure to increase from 60 psig to 1000 psig and will be readily detected by

Ginzu. The only diagnostic left is to determine which pressure vessel contains the

damaged membrane. This can be done by testing the product water from each vessel.
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5.4 Filter Condition

As mentioned before LT Gregory Mitchell was the first to notice that there may be some

correlation between the time it takes for the low pressure pump to reach steady state and

the condition of the micron filter. He theorized that as the micron filters became fouled

and dirty, that the low pressure pump would take longer to reach steady state. Figure 5-11

is a graph of start times from the USCGC ESCANABA in January 2007.

LP Pmug~s~5StattJ~kgdy~aI*1me

.. .. .. .. .. .... .. .. .. ... .... .. .. .. .. .. .. .. ..

I. . . .. . . .
.. .. . ....

..... .. ..... ... .

Figure 5-10: LP Pump steady state times for January 2007 (Mitchell, 2007)

LT Mitchell noted that the steady-state times increased just before the filter

elements were replaced and suddenly decreased after the replacement. In order to

determine a useful diagnostic for this failure, it is necessary to determine all the factors

that affect the time to steady state. It is clear from the graph that the correlation is not

consistent until just before the filters are replaced. He noted specifically that the

correlation was strongest as the differential pressure across the micron filters increased to

above 12 psig. Before reaching this high differential pressure the times vary slightly

around a relatively constant value. Although this variation would make it difficult to

present a running real-time filter condition value, the data suggests that it might be

possible to indicate an impending failure. To be able to make such a statement on a



definitive basis, it is important to determine how other factors affect the time to steady

state.

To create a useful diagnostic for detecting impending membrane failures, all

additional factors affecting time to steady state must first be defined and second each

factor's effect must be determined. Based on a study of the system, three control

variables were identified. These are the filter differential pressure, the filter inlet pressure

(or low-pressure pump outlet pressure), and the temperature of the seawater. Changes in

all of these variables would be expected to cause changes in the time to steady state.

To test the effect of each of the control variables identified previously, data was

compiled from the Engineering Logs of the USCGC ESCANABA during their Fall 2007

cruise. In order to determine the effect of these control variables, a simple regression

analysis was performed in MATLAB. MATLAB solves a set of simultaneous linear

equations that represent the system using a least-squares fit. In this case, the time to

steady state can be represented using the equation

y = aO + alxl + a2x2 + a3x3 (6)

where xl is the differential pressure across the micron filter, X2 is the pump outlet

pressure, x3 is the seawater temperature, and y is the time to steady state. Multiple

regression solves for the unknown coefficients al, a2 and a3. Additionally, MATLAB

solves for an error term represented by aO. The error term is treated simply as a random

variable that represents unexplained variation in the response (Berk, 2004). The values

of each of the parameters are presented in Table 5-3. The data used to determine these

parameters can be found in Appendix D.

Table 5-3: Regression analysis result.

Variable Value

aO 1.8426

al .0584

a2 .0114

a3 -.0235

y Response Variable



Figure 5-12 shows a plot of both the predicted and actual time to steady-state

values for the ESCANABA's Fall 2007 cruise. Note that there is a strong deviation

around start 1 and start 55. These deviations appear to occur after extended in port

periods. A suspected cause for this deviation is that it likely takes several starts before all

of the entrapped air can be removed from the filter. Figure 5-13 illustrates the fit data

with the initial starts after prolonged in port periods removed.
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Figure 5-11: Predicted vs. Actual time to steady state
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Figure 5-12: Predicted vs. Actual time to steady state times without extended layup period starts

Using this information, the next step is to determine what to pass on to the

operator. The value of this analysis is that the regression model provides a much clearer

picture of the interactions within the system. For example, the temperature of the

seawater has a negative proportional effect on the time. Hence, it can be seen that the

lower the temperature the longer the time to steady state. Adversely, the pump pressure

has a proportional effect. Based on the operating profile of the ship it can be assumed

that the ship will never operate in water less than 48 F or greater than 90 F, and that the

pump pressure will never exceed 65 psig and never be less than 35 psig. Additionally,

according to the RC7000 Plus Reverse Osmosis Technical Manual the micron filter

element should not be allowed to exceed a differential pressure of 15 psig. Using this

information and worst case temperature and pump pressure data it can be determined that

if the time to steady state is less than 1 second, then the filter does not need to be

replaced. However, under best case conditions the time to steady state may reach as high

as 2.3 seconds.



There are two approaches to determining a useful diagnostic with this

information. The first is to simply place the alarm set point to 1 second. This will ensure

that no matter what the conditions are the system will be safe. However, this approach is

not optimal from a condition based maintenance approach because it could lead to

premature replacement of the filters. The second approach is to establish temperature

groups that can be adjusted by the operator. Figure 5-12 is an example of how the

temperatures could be set up in zones, each with a different alarm set point.

48-60 F . -j
61-70 F

71-80 F

81-90 F

Alarm set to 2.3 seconds

Alarm set to 1.47 seconds

Alarm set to 1.24 seconds

Alarm set to 1.0 second

Figure 5-13: Temperature alarm zones for diagnostic

Next the information has to be passed in the case statement logic. When the user

interface is initially started the set point would have to set to 1 second to ensure that the

system is safe. However, once the system is operating the operator can input which

temperature zone the system is operating in. This input could then be updated in case

statement logic sequence. Figure 5-13 depicts how the information would be passed and

updated within the user interface. The zone would most likely have to passed as a global

variable that can be updated throughout the UI as conditions change.

Operator
selected

fll"~~ "

I..............~._........~.



- Ul start - Alarm set to 1 second

Operator action required

r Alarm set point updated -

Alarm set Case
point ...........---..... Statement
information Logic

48-60 F

61-70 F

71-80 F
81-90 F
L1I1s-o

Figure 5-14: Map of temperature zone information update within the case statement logic routine
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6 Conclusion

It is clear that the United States Navy will not have enough funding to support the vision

of a 313 ship Navy without some significant changes in how maintenance is performed

on board ships. The Non Intrusive Load Monitor combined with an effective condition

based maintenance system can effectively address this problem. More importantly,

NILM does not require an elaborate, unreliable and costly sensor network in order to

operate.

This research has shown that the NILM can be used effectively and reliably, to

provide real time system information to the operator. This has been done through the

development, testing and implementation of a user interface for the RC7000 Plus Reverse

Osmosis Desalination Plant on USCGC ESCANABA. The only current road block to

full NILM implementation is the time it takes to learn the system characteristics in order

to provide useful system information. However, as the technology pushes forward and

this learning curve is shortened or automated, the NILM is a cheap and proven method of

monitoring equipment and reducing maintenance costs.
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Appendix A RC7000 Plus System Diagram (Operation and Maintenance Manual for USCG Model RC7000 Plus Reverse Osmosis
Desalination Plant, 2007)
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Appendix B RC7000 Plus Start Up and Shut Down Procedure (Operation and

Maintenance Manual for USCG Model RC7000 Plus Reverse Osmosis Desalination

Plant, 2007)

4.2 NORMAL STARTUP PROC:EDURE

These instructions apply when either side of the RO unit is being started after a normal (short-
term) shutdown. If both units are to be started, complete the startup procedure for one unit and
then repeat for the second.

1. Place the RO valves and switches in positions indicated in Table 4.3.

2. Check the HP pump oil level by observing the sight gauge located on the pump.

3. Open the appropriate raw water isolation valve (V2).

4. Turn on the electrical supply to the RO unit, if required. If the system is already
energized, verify that the message center display indicates "STANDBY MODE." If any
other message is displayed, cycle the electrical power OFF and then ON to reset.

ID Description Position

V2 Raw Water Isolation Valve Open
V7 High-Pressure Bypass Valve Open

V14 Proportioning Brominator Bypass Valve Closed
V16 Engine Water Make-Up Isolation Valve Closed
V17 Cleaning Valve Normal

Table 4.3 - ValvelSwitch Line Up - Normal Operation/Startup

Failure to open the high-pressure bypass valve (V7) (which is required to bleed
any entrapped air) can result in hydraulic shock to the system.

WARNING

I LA:ilt~t~

Failure to set the cleaninq valve (V1 7) in the NORMAL position will result in
excessive pressure in the RO reject line and possible failure of the RO reject flow

meter (FM 1).

5. Start the LP boost pump by pressing the LP PUMP pushbutton located on the MCC.

6. Start the HP pump by pressing the HP PUMP pushbutton located on the MCC. At least
10 psig must be indicated on the discharge side of the micron filter array duplex
pressure gauge (PG3).

7. When flow through the reject discharge flow meter appears to be free of air bubbles,
slowly close the HP bypass valve (V7). It is important to monitor the pressure indicated
on the membrane array pressure gauge (PG5).

F7 WARNING I
Pressure, as indicated on the membrane array duplex pressure gauge (PG4)

should never exceed 1,000 psig on the inlet.

I

!



Appendix B RC7000 Plus Start Up and Shut Down Procedure (Operation and

Maintenance Manual for USCG Model RC7000 Plus Reverse Osmosis Desalination

Plant, 2007)

4.3 BROMINE SYSTEM STARTUP AND OPERATION

The following chart is provided as an aid for the operator in determining the proper f ow rate
through the bromine caridge:

90OF ............. ............ 1.0 gph

702F....... ................... 1.5 gph

60 F
50oF ....... ....... ............... 2.0 gp

a 40F t

Figure 4.1 - Product Temperature vs. Bromine Cartridge Flow at 3,500 GPD.

The chart illustrates iow the flow rate through the cartride should be chanqed in order to
maintain the recommended 1 0 ppm of bromine as the product temperatures varies. The
required flow and observed temperature have an inverse relationship. As the tempcratu.-re
decreases the required flow rate increases and as the temperature increases: the required flow
rate decreases. I his s an important concept to unierstanC when attempting to 'dial in' :he
necessary flow rate required for safe browinatian. The specific procedure for setting the prope&
bromine cartridge flow rate is as follows.

1. Determine the product temperature (this value can De obtained on the water quality
monitor display). The desired fow rate at 73 OF is 1.5 gph:. For every 10 2F increase in
product temperature, the flow through the browine cartridge should be decreased by
0.25 gph. Corversely, for every 10 F decrease in product temperature, the flow throuc
the bromine cartridge should be increased by 0.25 gph. Flow through the bromine
cartridge, as road on tie bromrne fow meter, can be adjusted as fol ows:

a. Use the proportioning brominator flow control valve (V2C) to adjust the flow rate.
This is accomplished by slowly rotating the valve counterclockwise to reduce the
flow rate and rotating the valve clockwise to increase the flow rate.

b. Use the proportioning brominator backpressure control valve (V13) to adjust :he
flow at lower flow rates beyond the ange:of V20. This is accomplished by slowly
ro:ating the valve dockwvise to increase product water backp-essure and rota:ing
the valve counterclockwise to decrease product water backpressure.

2.. After setting the flow rate in accordance with step 1, take a sample of the brominated
product water and measure the bromine ccncentration using the pocket bronine
colonmeter. it the bromine concentration is greater than 1..U ppm, slowly reduce :he liov
rate.. If the bromine concentration is lower than 0.7 ppm, slowly increase the the flow rate.
Repeat this step until a constant bromine concentration of 1.0 ppm is achieved.



Appendix B RC7000 Plus Start Up and Shut Down Procedure (Operation and

Maintenance Manual for USCG Model RC7000 Plus Reverse Osmosis Desalination

Plant, 2007)

i WARNING

Failure to manually sample the bromine level of the product water and verify the
bromine level at 1.0 ppm may result inan incorrect bromine concentration in the

potable water. Do not rely entirely on the flow rates described in Figure 4.1

4.4 SHUTDOWN PROCEDURES

4.4.1 Shutdown Procedure (Short Term)

This shutdown procedure applies if the RO unit will be shut down for a period of time greater
than 24 hours. If the anticipated shutdown period will be 5 ýdays or more, refer to Section 4.4.2,
Shutdown Procedure (Extended)..

1. Release the pressure from the system by turning the high-pressure bypass valve
counterclockwise to the OPEN position_

2. Secure the HP pump by pressing the HP PUMP pushbutton located on the MCC.

3. Secure the LP pump by pressing the LP PUMP pushbutton located on the MCC.

NOTE

A single low-pressure boost pump feeds both Alpha and Bravo units. If either
unit is running the boost pump should be left on.

Shut the appropriate raw water isolation valve (V2).

Flush the system in accordance with Section 4.5, Freshwater Flush.

The development and growth of bacteria is accelerated in warm temperatures..
To safeguard against the potential fouling of the membrane surface, VMT

recommends that the freshwater flush cycle be performed at feast east every 48 hours
when operated in warm water or climates even if the system has not been

operated since the last flush.

4.4.2 Shutdown Procedure (Extended)

If the RO unit is to be secured for periods exceeding five days, stagnant water in the system will
breed bacteria and other biological material even if the system is flushed with fresh water in
accordance with the procedures.. These organisms will not directly attack the membranes or
other components but can, in sufficient numbers, foul the membrane surface by blocking the
product water channels resulting in a membrane flux loss (decrease in product water output). In
most cases the fouling can be cleaned from the membrane surface by circulating chemical
solutions through the system, but results of the cleaning process are not guaranteed. VMT
recommends the membrane preservation process be performed lAW Section 5.6, RO Element
Preservation.



Appendix C RO UI Program Code

function varargout = RO_Diagram(varargin)
% RO_ DIAGRAM M-file for RO__Diagram.fig
% RO__DIAGRAM, by itself, creates a new RO_DIAGRAM or raises the existing
% singleton*.

% H = RO DIAGRAM returns the handle to a new RO DIAGRAM or the handle
% the existing singleton*.

% RO_DIAGRAM('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in RODIAGRAM.M with the given input argume

% RO_DIAGRAM('Property','Value',...) creates a new RO_DIAGRAM or raises t
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before RO_.Diagram_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to RO Diagram. OpeningFcn via varargin.

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help RO_Diagram

% Last Modified by GUIDE v2.5 21-Jan-2008 14:18:35

to

nts.

he

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui Name', mfilename,...

'gui _Singleton', gui_Singleton, ...
'gui OpeningFcn', @RO_Diagram_OpeningFcn, ...
'guiOutputFcn', @RO_Diagram_OutputFcn, ...
'gui_LayoutFcn', [, ...
'gui_Callback', []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{ 1});

end

if nargout
[varargout {1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

end
% End initialization code - DO NOT EDIT

% --- Executes just before RO__Diagram is made visible.
function RO_Diagram OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to RO_Diagram (see VARARGIN)

% Initialize global variables:
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global HP;
global LP_StartT;
global ss_7;
global LP;
HP=O;
LP StartT=0;
ss_7=0;
LP=0;
%handles.hp=0;

t=timerfind;delete(t);
% Choose default command line output for RO Diagram
handles.output = hObject;
handles.evtindex=1;
% Update handles structure
guidata(hObject, handles);

% Start the steady state timer
handles.steady_state = timer('period',.25);
set(handles.steady_state,lExecutionMode,?'fixedrate',Ste I 2,te','StartDela,2,'BusyMode,'drop');
set(handles.steady_state,'timerfcn',{@MyTimerFcn_l, hObject});
start(handles.steady_state);

% Update
guidata(hObject, handles);

% Open initial figure (this is the system diagram)
ax4=axes('Position',[0.1 .4 .8 .5]);
[x,map] = imread('Final Gui RO','png');
image(x)
set(gca,'visible','off')

O o UJIWAT makes RO Diagram wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = RO_Diagram_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARA-RGOUT);
%, hObject handle to figure
%, eventdata reserved - to be defined in a future version of MATLAB
%, handles structure with handles and user data (see GUIDATA)

/0 Get default command line output from handles structure
varargout{1} = handles.output;

00%%%/%%%0/0%%%%%%%%
% This is the create functions for the unicontrol objects

% --- Executes on button press in infoA.
function infoA Callback(hObject, eventdata, handles)
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% hObject handle to infoA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
Filter info

function LPpump_Callback(hObject, eventdata, handles)
% hObject handle to LPpump (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of LPpump as text
% str2double(get(hObject,'String')) returns contents of LPpump as a double

% --- Executes during object creation, after setting all properties.
function LPpump_CreateFcn(hObject, eventdata, handles)
% hObject handle to LPpump (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function HPpumpA_Callback(hObject, eventdata, handles)
% hObject handle to HPpumpA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of HPpumpA as text
% str2double(get(hObject,'String')) returns contents of HPpumpA as a double

% --- Executes during object creation, after setting all properties.
function HPpumpA_CreateFcn(hObject, eventdata, handles)
% hObject handle to HPpumpA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function bypassA_Callback(hObject, eventdata, handles)
% hObject handle to bypassA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
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% Hints: get(hObject,'String') returns contents of bypassA as text
% str2doub le(get(hObject 'String')) returns contents of bypassA as a double

% --- Executes during object creation, after setting all properties.
function bypassA_CreateFcn(hObject, eventdata, handles)
% hObject handle to bypassA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty -- handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function HPpumpB_Callback(hObject, eventdata, handles)
% hObject handle to HPpumpB (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

3, Hints: get(hObject,'String') returns contents of HPpurmpB as text
% str2double(get(hObject,'String')) returns contents of HPpumpB as a double

% --- Executes during object creation, after setting all properties.
function HPpumpB_CreateFcn(hObject, eventdata, handles)
% hObject handle to HPpumpB (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
34 See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function bypassB_Callback(hObject, eventdata, handles)
% hObject handle to bypassB (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of bypassB as text
/0 str2double(get(hObject,'String')) returns contents of bypassB as a double

% --- Executes during object creation, after setting all properties.
function bypassB_CreateFcn(hObject, eventdata, handles)
% hObject handle to bypassB (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
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% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function system_Callback(hObject, eventdata, handles)
% hObject handle to system (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints:-get(hObject,'String') returns contents of system as text
% str2double(get(hObject,'String')) returns contents of system as a double

% --- Executes during object creation, after setting all properties.
function system_CreateFcn(hObject, eventdata, handles)
% hObject handle to system (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function pressureA_Callback(hObject, eventdata, handles)
% hObject handle to pressureA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of pressureA as text
% str2double(get(hObject,'String')) returns contents of pressureA as a double

% --- Executes during object creation, after setting all properties.
function pressureA_CreateFcn(hObject, eventdata, handles)
% hObject handle to pressureA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in reset.
function reset Callback(hObject, eventdata, handles)
% hObject handle to reset (see GCBO)
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% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set (handles.system,'String',' ');
set (handles.system,'BackgroundColor','yellow');

function steady_Callback(hObject, eventdata, handles)
% hObject handle to steady (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of steady as text
% str2double(get(hObject,'String')) returns contents of steady as a double

% --- Executes during object creation, after setting all properties.
function steady_CreateFcn(hObject, eventdata, handles)
% hObject handle to steady (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty -handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

% -.. Executes on button press in drawing.
function drawing_Callback(hObject, eventdata, handles)
% hObject handle to drawing (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

open RO drawing.pdf;

o --- Executes on button press in info2.
function info2_Callback(hObject, eventdata, handles)
0%7 hObject handle to info2 (see GCBO)
0% eventdata reserved -to be defined in a future version of MATLAB
03% handles structure with handles and user data (see GUIDATA)

ready_to_start

% --- Executes on button press in sys diagram.
function sys_diagram_Callback(hObject, eventdata, handles)
% hObject handle to sysdiagram (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

open RC7000'Plus Tech Manual Rev A-MARO7.pdf';

% --- Executes on button press in archive.
function archive_Callback(hObject, eventdata, handles)
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% hObject handle to archive (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Ginzu_RO;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function auto_load(hObject, eventdata, handles,pathname,filename)

global HP;
global LP_StartT;
global ss_7;
global LP;
path name=strcat(pathname,'/');
longfilename=char(strcat(pathname,filename));
fid=fopen(longfilename,'r');
[path,name,ext,ver] = fileparts(longfilename);

if (ext=='.evt')
event_t = fgetl(fid);
try

ev_time_num=datenum(eventt,'yyyymmdd-HH:MM:SS');
catch

ev_time_num=datenum(event_t(5:24),'mmm dd HH:MM:SS yyyy');
end

O_file = fgetl(fid);
glob_index = str2num(fgetl(fid));
local_index = str2num(fgetl(fid));
event_class = fgetl(fid);
class=str2num(fgetl(fid));
window_size = str2num(fgetl(fid));
P = zeros(window_size,1);
Q = zeros(window_size,1);

for i=l:window size
P(i)=str2num(fgetl(fid));

end

for i=1:windowsize
Q(i)=str2num(fgetl(fid));

end

ev_min=fix(glob_index*60/432000);
ev_sec=fix((globindex-ev_min*1 20*60)/120);
event_time=(num2str(fix(glob_index*60/432000*1 00)/100));
event_time_min=num2str(evmin);
event_time_sec=num2str(ev_sec);

done=fclose('all');
% delete (longfilename);
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movefile(longfilename,'archive/');
%disp(['Processing ' event class]);

switch(class)
case 1

% set threshold value for p to start looking for steady state
if P(local_index+3)-P(Iocal_index-3) < 20 & P(local_index+3)-P(local_index-3) > 10 %This is set prevent
noise from being classified as pump start or hp start from being classified as Ip start
for n = 1:length(P)

if P(n) < 5 % This is arbitrarily set for now
else

event=1;
break

end
end

if event ==1
for m = 1 :length(P)-20-n

avg(m) = [mean(P((m+n-1):(m+n+20-1)))];
end
for j = 1:length(avg)

min _P = min(avg(j:j+20));
max_P = max(avg(j:j+20));

% set threshold for what you are defining as steady state

if (avg(j)*1.01>max P) & (avg(j)*.99<min_P) I j+20 == length(avg)
break

end
ss index = j+n-1;
time = (ss_index-n)/120;

end
end
0/0/' 0/ 0/ 0/ i0/ O/ Oi 0 / 0 / 0/0/0/0/0 ' 0O / 0O ' 0" 0' 0 /

00 /000,%%%%%%%%%%%%%/000/00%%%%%%%%%000'/0/0%0

fid = fopen('tirnes.txt','a+');
fprintf(fid,'%s %30.8f\ n,Ofi le,time);
status = fclose(fid);

set (handles.LPpump,'String','ON');
set (handles.LPpump,'BackgroundColor','green');
LP=1;
LPstartT = time;

if time >2
set (handles.system,'String','Check micron filter condition')
set (handles.system,'BackgroundColor','red')

end

set (handles.steady,'String',LPstartT);



Appendix C RO UI Program Code

if P(local_index+3)-P(Iocal_index-3) > 50
set (handles.HPpumpA,'String','ON');
set (handles.HPpumpA,'BackgroundColor','green');
HP=HP+1;
set (handles.system,'String','A high pressure pump start has been detected without the low

pressure pump running');
set (handles.system,'BackgroundColor','red');

end
end

case 7
if LP==1
ss_7=1;
set (handles.pressureA,'String','Ready to Start');
set (handles.pressureA,'BackgroundColor','green');
end

case 2
if (HP==0)

set (handles.HPpumpA,'String','ON');
set (handles.H PpumpA,'BackgroundColor','green');

else
set (handles.HPpumpB,'String','ON');
set (handles.H PpumpB,'BackgroundColor','green');

end

HP=HP+1

if (ss_7==0)
set (handles.system,'String','High pressure pump was started before steady state was

completely reached');
set (handles.system,'BackgroundColor','red');

end

case 3
set (handles.LPpump,'String','OFF');
set (handles.LPpump,'BackgroundColor','white');
LP=0;
ss_7=0;
set (handles.pressureA,'String','Not Ready');
set (handles.pressureA,'BackgroundColor','red');

case 4
if (HP==1)

set (handles.HPpumpA,'String','OFF');
set (handles.HPpumpA,'BackgroundColor','white');
set (handles.H PpumpB,'String','OFF');
set (handles.H PpumpB,'BackgroundColor','white');
set (handles.bypassA,'Stri ng','Open');
set (handles.bypassA,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'Backgrou ndColor','white');

else
set (handles.HPpumpB,'String','OFF');
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set (handles.HPpumpB,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'Backg roundColor','white');

end
HP=HP-1
if (P(1199)<.2)

HP=O;
set (handles.LPpump,'String','OFF');
set (handles.LPpump,'BackgroundColor','white');
set (handles.HPpumpA,'String','OFF');
set (handles.HPpumpA,'BackgroundColor','white');
set (handles.HPpumpB,'String','OFF');
set (handles.HPpumpB,'BackgroundColor','white');
set (handles.bypassA,'String','Open');
set (handles.bypassA,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'BackgroundColor','white');
set (handles.pressureA,'String','Not Ready');
set (handles.pressureA,'BackgroundColor','red');

end

case 5
HP=O;
ss_7=0;
LP=O;
set (handles. LPpump,'String','OFF');
set (handles. LPpump,'BackgroundColor','white');
set (handles.HPpumpA,'String','OFF');
set (handles.HPpumpA,'BackgroundColor','white');
set (handles.HPpumpB,'String','OFF');
set (handles.H PpumpB,'BackgroundColor','white');
set (handles.bypassA,'String','Open');
set (handles.bypassA,'BackgroundColor','white');
set (handles.bypassB,'String','Open');
set (handles.bypassB,'BackgroundCo or','white');
set (handles.pressureA,'String','Not Ready');
set (handles.pressureA,'BackgroundColor','red');

case 6
if HP<=l

set (handles.bypassA,'String','Shut');
set (handles.bypassA,'Backg roundColor','green');

else
set (handles.bypassB,'String','Shut');
set (handles.bypassB,'BackgroundColor','green');

end

case 8
set (handles.system,'String','Possible clogged or misaligned strainer');
set (handles.system,'BackgroundColor','red');

case 9
if (Q(1199)<.2)

HP=O;
set (handles.LPpump,'String','OFF');
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set (handles.LPpump,'BackgroundColor','white');
set (handles.HPpumpA,'String','OFF');
set (handles.H PpumpA,'BackgroundColor','white');
set (handles.H PpumpB,'String','OFF');
set (handles.H PpumpB,'BackgroundColor','white');

end

end
end

% --- Timer Callback Function

function MyTimerFcn_l (steady_state_object,event,hObject)
% increment the number of counts...
handles = guidata(hObject);
handles.file_names=[];
dirpath=pwd;
dir_struct = dir(strcat(dir_path,'/*.evt'));
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
handles.file_names = sorted_names;
handles.is_dir = [dir_struct.isdir];
handles.sorted_index = sorted_index;
%copyfile('*.evt','event!','f'); %This works.
numfiles=length(handles.filenames);

for i=l:num files
auto_load(hObject,[],handles,pwd,handles.file names(i));
% movefile(handles.file_names(i),'archive/');
% delete (handles.file names(i));

end

% else if (handles.evt_index>nurni_files)
% handles.evt index=1
% end
guidata(hObject, handles);

% --- Executes on button press in exit.
function exit_Callback(hObject, eventdata, handles)
% hObject handle to exit (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close;
closer
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Table 7-1: B-side LP Pump Start Data

Date Time D/P B LP Temp
snapshot-20070730-150001.1.gz 1.53333333 1.53 4 50 82

snapshot-20070731-110001.1.gz 1.30833333 1.31 3 49 87

snapshot-20070731-230002.1.gz 0.85000000 0.85 4 50 87

snapshot-20070804-050001.1.gz 1.02500000 1.025 4 50 87.9

snapshot-20070804-110001.1.gz 0.88333333 0.88 4 50 87

snapshot-20070807-000001.1.gz 1.00833333 1.008 6 50 87

snapshot-20070807-120001.1.gz 0.99166667 0.992 4 50 86

snapshot-20070807-210001. 1.gz 0.79166667 0.71 4 50 87

snapshot-20070808-030001.1.gz 0.72500000 0.73 4 50 86

snapshot-20070808-180001.1.gz 0.70833333 0.71 5 50 87.7

snapshot-20070811-120001.1.gz 0.96666667 0.7 5 49 86

snapshot-20070817-140001.1.gz 0.65000000 0.65 5 50 87

snapshot-20070818-040001.1.gz 0.74166667 0.74 6 50 86

snapshot-20070820-130001.1.gz 0.70000000 0.7 6 50 87

snapshot-20070827-010001.1.gz 0.75000000 0.75 6 46 87

snapshot-20070901-170001.1.gz 0.78333333 0.78 6 46 88

snapshot-20070906-070001.1.gz 0.67500000 0.68 7 50 86

snapshot-20070907-230001.1.gz 1.09166667 1.09 8 50 87

snapshot-20070909-070001.1.gz 1.00000000 1 8 50 87

snapshot-20070913-180001.1.gz 1.43333333 1.43 9 51 67
snapshot-20071106-210001.1.gz 1.95833333 1.95 4 43 75
snapshot-20071108-130001.1.gz 1.05000000 1.05 4 43 76
snapshot-20071108-220001.1.gz 0.87500000 0.875 3 43 78.7
snapshot-20071110-200001.1.gz 0.77500000 0.78 3 42 79.7

snapshot-20071114-070001.1.gz 0.70000000 0.7 6 42 82.5
snapshot-20071114-150001.1.gz 0.88333333 0.88 7 42 82

snapshot-20071116-150001.1.gz 0.75833333 0.76 7 41 81

snapshot-20071119-170001.1.gz 0.81666667 0.82 8 42 80

snapshot-20071120-000001.1.gz 0.90000000 0.9 9 42 80

snapshot-20071120-130001.1.gz 1.03333333 1.03 9 42 82

snapshot-20071130-100002.1.gz 0.83333333 0.8 7 49 81

* Yellow highlighted starts are after long in port layup period
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Table 7-2: A-side LP Pump Start Data

Date Time D/P A LP Temp

snapshot-20070730-040001.1.gz 1.46666667 1.47 2 50 82.9

snapshot-20070730-220001.1.gz 0.25000000 0.45 4 50 82

snapshot-20070801-170001.1.gz 0.69166667 0.692 3 62 86

snapshot-20070806-020001.1.gz 0.35000000 0.35 2 50 87

snapshot-20070809-200001.1.gz 0.53333333 0.53 2 50 88

snapshot-20070810-070001.1.gz 0.61666667 0.617 2 50 86

snapshot-20070810-160001.1.gz 0.54166667 0.541 2 50 86

snapshot-20070810-230001.1.gz 0.59166667 0.592 4 50 86

snapshot-20070811-100001.1.gz 0.54166667 0.54 2 50 86

snapshot-20070811-180001.1.gz 0.55833333 0.56 2 50 87

snapshot-20070812-000001.1.gz 0.56666667 0.57 5 50 86

snapshot-20070812-060001.1.gz 0.53333333 0.53 2 50 85

snapshot-20070812-170001.1.gz 0.54166667 0.54 3 50 86

snapshot-20070813-130001.1.gz 0.53333333 0.53 2 50 86

snapshot-20070813-220001.1.gz 0.54166667 0.54 2 50 87

snapshot-20070814-140001.1.gz 0.55833333 0.56 2 50 85

snapshot-20070815-010002.1.gz 0.52500000 0.53 1 50 87

snapshot-20070818-150001.1.gz 0.55000000 0.55 2 50 87

snapshot-20070819-030001.l.gz 0.48333333 0.48 2 50 87

snapshot-20070819-180001.1.gz 0.52500000 0.53 3 49 87

snapshot-20070820-060001.1.gz 0.54166667 0.54 4 50 86

snapshot-20070821-010001.1.gz 0.55000000 0.55 3 45 87

snapshot-20070821-100001.1.gz 0.48333333 0.48 4 45 86

snapshot-20070821-190001.1.gz 0.45000000 0.45 4 46 87

snapshot-20070822-130002.1.gz 0.53333333 0.53 3 45 85

snapshot-20070823-020002.1.gz 0.46666667 0.467 4 46 87

snapshot-20070823-170001.1.gz 0.56666667 0.57 3 45 88

snapshot-20070825-000001.1.gz 0.45000000 0.45 3 46 87

snapshot-20070825-110001.1.gz 0.54166667 0.54 3 46 87

snapshot-20070825-190001.1.gz 0.55833333 0.56 3 45 86
snapshot-20070826-090001.1.gz 0.45833333 0.46 4 45 87
snapshot-20070826-140001.1.gz 0.53333333 0.53 3 45 87
snapshot-20070831-100001.1.gz 0.46666667 0.47 4 46 86

snapshot-20070831-210001.1.gz 0.58333333 0.58 4 46 87

snapshot-20070901-100001.1.gz 0.50000000 0.5 4 46 87
snapshot-20070902-070001.1.gz 0.52500000 0.525 3 45 86
snapshot-20070902-160001.1.gz 0.47500000 0.475 3 45 87
snapshot-20070903-020001.1.gz 0.48333333 0.48 5 45 87
snapshot-20070903-130001.1.gz 0.56666667 0.57 3 45 87
snapshot-20070904-020001.1.gz 0.46666667 0.47 2 45 87

snapshot-20070905-150001.1.gz 0.45833333 0.46 3 50 86

snapshot-20070906-130001.1.gz 0.50000000 0.5 3 49 87

snapshot-20070906-210001.1.gz 0.51666667 0.52 2 50 88

snapshot-20070907-130002.1.gz 0.44166667 0.44 3 50 87

snapshot-20070909-180001.1.gz 0.50833333 0.51 3 50 87
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Appendix D RO Start Time Data

Table 7-3: A-side LP Pump Start Data Continued

Date Time D/P A LP Temp

snapshot-20070910-050001.1.gz 0.45000000 0.45 2 50 87
snapshot-20070910-230001.1.gz 0.46666667 0.47 3 50 87
snapshot-20070912-140001.1.gz 0.49166667 0.49 3 50 83

snapshot-20071106-010002.1.gz 1.23333333 1.23 3 43 59

snapshot-20071107-030001.1.gz 0.35833333 0.36 1 42 76

snapshot-20071115-220001.1.gz 0.57500000 0.58 4 42 81.7

snapshot-20071121-180001.1.gz 0.56666667 0.57 3 42 80

snapshot-20071123-030001.1.gz 0.51666667 0.52 4 42 80

snapshot-20071126-080001.1.gz 0.62500000 0.63 4 42 81.9

snapshot-20071126-150001.1.gz 0.60000000 0.6 2 42 82

snapshot-20071127-000001.1.gz 0.51666667 0.52 3 42 80

snapshot-20071127-180001.1.gz 0.49166667 0.49 4 38 80
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Appendix E MATLAB FFT Script

% This is simple code to take the fft of a file.
% You must define the data set

p = data % specify data set;
pl = -p(330000:430000); % specify what points are being manipulated

al = detrend(pl); % Removes the mean (dc)

n = 4096*2; % Number of point in the fft
f_sample = 120; % Sample frequency of the data set (prep data)

% Hanning is actually obsolete now but it is the same as the
% hann function. I basically reduces aliasing in the fft
fft_al = fft(al .*hanning(length(al )),n);

f = [0:1:(n/2)-l1]*(f_sample/n);

plot(f,abs(fft_al (1 :length(fftal )/2)))
xlabel('Frequency: Hz');
ylabel('Magnitude');
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Appendix F MATLAB Filter Script

% Bandpass Filter

clear all

% dlmread is a function that allow you to specify exactly what part of a
% data set that you want, it is especially useful for really big files that
% would take an excessive time to load the whole file
ss = dlmread('snapshot-20070509- 160001-005-00.evt',' ', [8 0 1207 0]);

% the filter allows you to specify the outer bounds of the range that you
% want to filter out (inner numbers). The outer two numbers specify how
% sharp you want the bounds cut off. Example: [5 8 9 12] -- here you are
% isolating the frequency range between 8 and 9, the filter begins to
% isolate at 5 and 12 (not sharp).
[n,Wn,bta,filtype] = kaiserord( [5 8 9 12], [0 1 0], [0.1 0.01 0.1], 120);
b = firl (n, Wn, filtype, kaiser(n+1,bta), 'noscale');
[n,Wn,bta,filtype] = kaiserord( [15 16 17 19], [0 1 0], [0.1 0.01 0.1], 120);
c = firl (n, Wn, filtype, kaiser(n+1,bta), 'noscale');
t = [0:1:length(ss)-1]*(1/120);

y=filter(b,1 ,ss);
z=filter(c,1 ,ss);

plot (t,y+z)
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