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Abstract
Research on spine biomechanics is critical to understand pathology such as

degenerative changes and low back pain. However, current study on in-vivo spine
biomechanics is limited by the complex anatomy and invasive methodology.
Modem clinical imaging techniques such as magnetic resonance and fluoroscope
images, which are widely accessible nowadays, have the potential to study in-vivo
spine biomechanics accurately and non-invasively. This research presents a new
combined magnetic resonance and fluoroscope imaging matching method to study
human lumbar vertebral kinematics and disc deformation during various
physiologic functional activities. Validation and application of this method as well
as discussion of its performance and applicability are detailed herein.

Thesis Supervisor: Guoan Li

Title: Associate Professor of Orthopaedic Surgery

Harvard Medical School





Acknowledgment
I have to admit the acknowledgment is my favorite part and this is my first

time to write one. Maybe not many people will get a chance to read this.
However, I'd like to say, I don't know how to put this but I'm kind of a big deal.
First and foremost I thank my mom Du Chen and dad Wang Hui Lian. At this age
and after three years living by myself, I now fully understand how much they care
for me and love me. I have tons of words to say to them and I'll tell them
personally instead of write here since they don't understand English and I would
rather make them proud and take good care of them to show the love. My sister
Wang Ya Nan and my cousin Ding Guo Hao has also supported me throughout my
life and made my world more interesting.

I must also thank the many teachers and mentors of me, who enriched me
with knowledge as well as the philosophy of life. Dr. Guoan Li introduced me to
this research and he's both a nice supervisor and a good friend.

Finally I'd like to acknowledge my lots of friends in China and in the
United States. If I should list all the names and fun times, it will definitely
overwhelm the main part of the thesis. So don't feel that I forgot you, and as far
as we share the best memories, we are always best friends. Jeffery Bingham is one
coolest guy among all. George Hanson is one peppiest guy among all. I'd like to
use two words I learned from them to show my respect, shenanigan and punk. I
won't ever forget the great time we had. I wish both of you success in your school
work and love.

I'd like to end with an old Chinese saying, "sdn ge ch6u pijiming, sai gu&

zhfi ge liacng". This saying translates as "three stinky leatherworkers
(leatherheads?) surpass the greatest legendary military counselor (zhFi ge liaing ) in
the Three Kingdoms era". I'm not saying that I'm stinky or silly. I mean with the
help from all the people, I finished the research, I will achieve success and I will
live happily ever.





Contents

CHAPTER 1: INTRODUCTION .......................................................................... 15

1.1 PREVIOUS STUDIES IN SPINE BIOMECHANICS ...................................... 16

1.1.1 In-vitro spine biomechanics study.................................. 16

1.1.2 In-vitro disc deformation study ........................................ 17

1.1.3 In-vivo spine biomechanics study................................... 19

1.1.4 In-vivo disc deformation study ........................................ 21

1.2 M OTIVATION .. .. ............................... ................................................ 22

CHAPTER 2: IMAGE MATCHING METHOD ON SPINE STUDY...............25

2.1 IM AGING .... ..... ................. .................. ............................................... 25

2.1.1 M RI................................................................... 26

2.1.2 C T .................................................... .................................... 29

2.1.3 MRI and CT model registration ...................................... 31

2.1.4 Dual orthogonal fluoroscopic ................................................ 31

2.2 M ATCHING .... .... ............................... .............................................. 35

2.3 SUMMARY ..................................................................................................... 38

CHAPTER 3: VALIDATION ...................................... 39

3.1 IN-VITRO VALIDATION ...................................................................... 40

3.1.1 CT and MR models.......................................................... 40

3.1.2 Dual fluoroscopes section ...................................... ...... 41

3.1.3 Accuracy and repeatability analysis ..................................... 43

3.1.4 Conclusion and discussion ........................................................ 46

3.2 IN-VIVO VALIDATION .......................................... ................. 47



3.2.1 M R models...................................... ........ ......... ........... 47

3.2.2 Dual fluoroscopes section ..................................................... 47

3.2.3 Results and discussion............................................................ 49

3.3 SUM M ARY ............................................. .............................................. 50

CHAPTER 4: APPLICATION ON SPINE BIOMECHANICS STUDY............53

4.1 EXPERIMENT SETUP.................................................................... 54

4.1.1 Vertebrae range of motion............................... ...... 57

4.1.2 In-vivo disc deformation......................................................... 58

4.2 R ESULTS.............................................................................................. 60

4.2.1 Vertebrae range of motion............................... .......... 60

4.2.2 In-vivo disc deformation......................................... ...... 65

4.3 DISCUSSION ............................................................. 67

4.4 SUM M ARY ........................................................................................... 69

CHAPTER 5: DISCUSSION ....................................... 71

5.1 ADVANTAGES AND LIMITATIONS ........................................................ 71

5.2 COMPARISON WITH PREVIOUS STUDIES ........................................... 73

5.2.1 Accuracy validation of the in-vivo methods............... ....... 73

5.2.2 Spine segments range of motion............................. ...... 74

5.2.3 In-vivo disc deformation.................... ............ 77

5.3 CT VERSUS MR MODELS FOR COMBINED DFIS STUDY .................... 78

5.4 FUTURE WORK.......................................................... 79

5.5 SUM M ARY ............... ........................................................................... 82

REFERENCES ..................................................................................................... 83



List of Figures

Figure 2-1: An example MRI slice of the human lumbar spine.............................. .27

Figure 2-2: Digitize of MRI vertebrae contours to reconstruct 3D mesh model........... 28

Figure 2-3: Automatic segmentation of CT to reconstruct 3D mesh model ................. 30

Figure 2-4: Register the MRI model with CT model................................. ....... 30

Figure 2-5: Dual fluoroscopic system setup. ...................................... .......... 32

Figure 2-6: Restore the distortion caused by fluoroscope. .................................... 34

Figure 2-7 Matching of MRI model and DFIS setup..................................................... 36

Figure 2-8: Coordinate system to describe 6DOF spine kinematics.............................. 37

Figure 3-1: A demonstration of local coordinate system of the ovine lumbar spine. ....... 40

Figure 3-2: MTS machine setup to perform a validation test on the accuracy. ................ 41

Figure 3-3: Manual flexion test to validate the repeatability. .................................... 42

Figure 3-4: Matching the 3D model with 2D fluoroscopic images. ............................. 43

Figure 3-5: DFIS setup for human lumbar spine study during various physiologic

functional activities ....................................... . ................. 48

Figure 3-6: Human 3D vertebral models and local coordinate systems. ...................... 49

Figure 4-1: 3D reconstructed human lumbar human spine model............................... 55

Figure 4-2: The virtual DFIS used to reproduce the in-vivo vertebral positions .............. 57

Figure 4-3: Intervertebral disc deformation of the in-vivo position ............................. 59

Figure 4-4: In-vivo lumbar spine in various physiologic functional activities ............. 61

Figure 4-5: The range of motion of vertebral. ............................................... 64

Figure 4-6: The disc deformation during flexion and extension............................ 66

Figure 4-7: The disc deformation during left and right twist................................. 66

Figure 4-8: The disc deformation during left and right bend....................................... 66





List of Tables

Table 3-1: Accuracy test of the DFIS from the MTS machine ........................................ 44

Table 3-2: Repeatability of reproducing the ovine spine relative positions.................. 46

Table 3-3: Repeatability of living human subject. .......................................................... 50

Table 4-1: The range of motion of the lumbar spine at different levels during the various

functional activities ......................................................... ......................... 63





List of Abbreviations

Low Back Pain (LBP)

Degenerative Disc Disease (DDD)

Three Dimensional (3D)

Two Dimensional (2D)

Magnetic Resonance Imaging (MRI)

Computer Tomography (CT)

Dual Orthogonal Fluoroscopic ImageS (DFIS)

Six Degree-Of-Freedom (6DOF)

Range Of Motion (ROM)

Finite Rlement Models (FEM)

Motion Segment Unit (MSU)

Intervertebral disc (IVD)

Annulus Fibrosus (AF)

Nucleus Pulposus (NP)

Total Disc Replacement (TDR)

Standard Deviation (SD)

3 Tesla (3T)

Iterative Closest Point (ICP)

Institutional Review Board (IRB)

Digital Imaging and Communications in Medicine (DICOM)





Chapter 1

Introduction

Low back pain (LBP) secondary to degenerative changes in the lumbar

spine is thought to be multi-factorial in etiology 1,2. It has been reported that 75%

of all adults will experience LBP secondary to degenerative disc disease (DDD) in

the lumbar spine at some point in their lifetime 3,4. Even though various biological

and biomechanical reasons have been proposed, no quantitative data has been

reported to describe the mechanisms of this degeneration. Altered vertebral

kinematics has been assumed to be a critical factor leading to this development.

Understanding of the biomechanical mechanisms of spinal diseases requires a

clear definition of kinematics of vertebra as well as intervertebral disc (IVD)

deformation. However, due to the complex anatomy and limited technology, there

is currently no published study that has investigated the biomechanics of the

vertebral kinematics and disc deformation under physiologic functional activities

in the lumbar spine.

A newly developed, non-invasive magnetic resonance imaging (MRI)

combined and dual orthogonal fluoroscopic imaging system (DFIS) technique will

be used to quantify the in-vivo lumbar spine biomechanics. Three dimensional

(3D) MRI models of the lumbar spine segments will be matched to the two

dimensional (2D) features of the acquired fluoroscopic images in the two

perpendicular views during different physiologic functional activities to study

vertebral kinematics and disc deformation.

The technique differs from traditional 2D-3D registration techniques that
15



were designed to determine target joint motion. With the DFIS technique,

dynamic positions of the target joint are captured in two orthogonal directions and

the joint position is determined simultaneously using the dual image sets and the

3D models. This technique has been extensively validated in terms of its accuracy

and repeatability for determining in-vivo human joint position and cartilage

deformation 5-11. Recently, a thorough validation of this method for the lumbar

spine has been accepted for publication in the Journal of Spine 12. Our previous

studies using this technique have contributed greatly to the understanding of

kinematics of human joints, both native as well as joints that have sustained

degenerative changes, traumatic injuries, and joints that have undergone

reconstructive surgical procedures 6,7,10,13,14

The development and application of combined MRI and DFIS is presented

in this thesis for the purpose of study in-vivo spine biomechanics. Accuracy and

repeatability of the technique to determine six degree-of-freedom (6DOF)

translation and rotation of the spine are discussed. In-vivo vertebral kinematics

and disc deformation from normal subjects under various physiologic functional

activities are studied.

1.1 Previous studies in spine biomechanics

1.1.1 In-vitro spine biomechanics study

Numerous studies have been carried out using in-vitro experimental setups

to investigate the biomechanics of the spine 15-26. The main advantage of in-vitro

methods is the comprehensive visualization of joint function with respect to the

individual anatomy. For example, Goel et al. 27 reported on spine mechanics

during normal, injured and stabilized conditions. Ketter et al. 20 indicated that the



finite helical axes of motion are useful tools to describe the three dimensional in-

vitro kinematics of the intact and stabilized spine. Miura and Panjabi et al. 21

studied the in-vitro flexibility of C2-T1 specimens under compressive preloading.

Fujiwara et al. 28 conducted an in vitro anatomic and biomechanical study using

human cadaveric lumbar spines. They evaluated the changes in the intervertebral

foramen during flexion and extension, lateral bending, and axial rotation of the

lumbar spine and correlated these changes with the flexibility of the spinal motion

segments by imaging the spine before and after the application of rotational and

loading movements. After all these studies used invasive techniques to obtain

their measurements which add morbidity when applied to an in-vivo setting. In

addition, these studies have the obvious disadvantage of being performed in-vitro

which makes them difficult to interpret in the clinical setting. Finally, the

objective measurements obtained are not directly clinically relevant.

1.1.2 In-vitro disc deformation study

IVD deformation is a complex physiologic behavior that has contributory

biological, biochemical and biomechanical components which have been studied.

In-vitro studies intend to investigate the problem from different aspects, yet

limitations exist from the in-vitro nature of these research. Biological models

employ a variety of cell, tissue, or organ culture techniques 29-31 with culture

conditions that partially mimic the cellular environment of the human IVD.

Mechanical loading has been incorporated into the model to study the interaction

between biomechanics and biology 32-36. It has not yet been determined, however,
whether cultured cells can be clinically used to regenerate a damaged IVD.

Biomechanical models include IVD or motion segment unit (MSU)

loading experiments such as axial loading, moments and combinations. Disc

properties and behaviors, such as modulus 37,38, disc creep 39,40, disc shear 41,42
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intradisc pressure 43-45 and disc bulging 46,47 were studied using pressure and

displacement transducers. Experimental studies have also attempted to measure

internal disc deformation using radiographic or optical imaging methods by

introducing metal beads, thin wires or physically tracking markers 48-52. Other

researchers studied the biomechanical characteristics of discs after removal of the

nucleus pulposus (NP) or after chemonucleolysis to simulate degenerative changes
53-57. However, these loading experiments are facing challenging of intra-

specimen variability, difficulty in including muscle activity, and inability to mimic

fluid exchange of the disc.

Finite element models (FEM) have been applied to understand the

relationships between the biomechanical performance of the disc and disc

degeneration. Nonlinearity of the material and geometry has been considered in

the model 58-60. Viscoelasticity and fiber-reinforced annulus fibrosus (AF) was

introduced 61-63. Recently, a popular poroelastic material behavior has been

introduced to FEM to consider fluid flow of the disc 64-68. Regional poroelastic

material properties and strain-dependent permeability and porosity has also been

investigated 69,70. The FEM introduces lots of parameters to describe the disc

prosperity. The validities of these values require carefully examination. On the

other hand, although rudimental validation studies incorporating animal models,

in-vitro tests and artificial hydrogel disc model have been carried out 66,71, the

relevance of the FEM IVD model to in-vivo IVD deformation remains a challenge.

Animal models such as rats, rabbits, dogs and primates have been

described in literature in an attempt to provide these models with clinical

relevance. Despite the ethic concerns, the cost-efficient and clinical relevance to

human beings still need to be further investigated.



1.1.3 In-vivo spine biomechanics study

To better understand the in-vivo spine biomechanics, methods that aim to

minimize the invasion while maintain acceptable accuracy appear by taking

advantages of advanced medical image techniques. CT imaging technique has

been widely used for spine kinematics research 16,24,72-78 Among these studies,

Ochia et al. 79 attempted to examine in-vivo lumbar spinal segmental motion using

parallel CT scans 80. Fifteen asymptomatic volunteers underwent three separate

CT scans at different positions (supine and left and right rotations). They used

these images to construct separate three-dimensional models, and then calculated

segmental motions using Euler angles and volume merge methods in three major

planes. The data revealed that spinal torsion resulted in complex coupled motions

in the lumbar spinal segments. However, CT scans expose subjects to large

amounts of ionizing radiation that is particularly concerning when imaging is

performed for isolated research purposes. In addition, although this technique

does provide kinematics data in various positions of the spine it does not do so

under conditions of physiological loading.

MR imaging has also been applied extensively for the study of spinal

kinematics and has several attractive attributes 81-96. McGregor, et al. 97 used

interventional open MRI to assess the kinematics of the lumbar spine in patients

with spondylolisthesis. The findings were compared with those in a published

database of subjects with no history of LBP. Kulig et al. 91 assessed lumbar spine

kinematics using dynamic MRI in 2004. In their study, a proposed mechanism of

sagittal plane motion was induced by manual posterior-to-anterior mobilization.

Siddiqui et al. 16 studied twenty-six patients with lumbar spinal stenosis to

understand the in-vivo sagittal kinematics of the lumbar spine at the instrumented

and adjacent levels. Pre- and postoperative positional MRI were conducted in the



standing, supine, and sitting positions in both flexion and extension.

Measurements of disc heights, endplate angles, segmental and lumbar range of

motion were performed and a significant difference was found. Vitzthum et al. 98

also conducted a study that determined the relationship of different structures of

the lower lumbar spine during interventional movement examination by MRI

methods. While MRI imaging has minimum radiation, MRI limitations include

prolonged scanning times during which patient must keep still and inadequacy in

describing kinematics in 3D space.

Fluoroscopic and conventional X-ray techniques have been used in

various studies on spinal kinematics 15,17,99. Auerbach et al. 15 evaluated the spinal

kinematics following lumbar total disc replacement (TDR) and circumferential

fusion using in-vivo fluoroscopy. Wong et al. 17 designed the video-fluoroscopy

system with a new auto-tracking technique for the continuous assessment of

lumbar spine kinematics. Intervertebral flexion and extension (L1-L5) were

assessed in 30 healthy volunteers. Allen et al. 99 examined spinal kinematics using

video-fluoroscopy imaging combined with digital image processing. The

parameters studied were instantaneous centers of rotation, intervertebral angles,

angles of rotation and displacement for each vertebral joint. Harvey et al. 100

measured lumbar spinal flexion-extension kinematics from lateral radiographs,

simulating the effects of out-of-plane movements and errors in the placement of

reference points. These studies are able to capture spine kinematics in 2D,

however the information is missing for out of plane motion and the errors are

comparably big.

Electromagnetic motion measurement devices have also been used in

spine research 101-108. McGregor et al. 102 aimed to quantify rowing technique in

terms of lumbopelvic motion, force production, and work done at different work

20



intensities. The electromagnetic motion measuring device in conjunction with a

load cell was used to determine the ergometer rowing kinematics of 12 elite

international oarswomen during a routine step test. Steffen 105 measured lumbar

spinal kinematics using 6 DOF electromagnetic tracking system (FASTRAK,

Polhemus, USA). Burnett et al. 103 presented a pilot study to examine whether

differences existed in spinal kinematics and trunk muscle activity in cyclists with

and without non-specific chronic LBP. Spinal kinematics was measured by an

electromagnetic tracking system and EMG was recorded bilaterally from selected

trunk muscles. Holt et al. 104 developed a system using an electromagnetic motion

system and strain gauge instrumented load cell to measure spinal and pelvic

motion and force generated at the handle during rowing on an exercise rowing

ergometer. He revealed marked increases in the amount of spinal segmental

motion during the hour piece. The relevance of this with regard to LBP requires

further investigation.

1.1.4 In-vivo disc deformation study

In-vivo human research attempts have primarily concentrated on the

measurement of strain and the evaluation of nuclear migration using imaging

technique. Most of these studies are limited in 2D. Using MRI, Brault et al.

positioned 10 healthy male in MRI machines with supporting pad under the back

at flexion and extension 109. Brault et al. analyzed the pixel intensity along the

horizontal mid-discal transect MRI slices and obtained an equation to

mathematically curve-fit the intensity profile to study nucleus pulposus (NP)

migration during flexion and extension. Fazey et al. took T2 MRI scan of three

asymptomatic female subjects in flexed, extended, and left rotated positions

combined with flexion and extension 84. They employed a pixel profile technique

to determine direction and magnitude of nuclear deformation. Recently,



O'Connell studied in-vitro disc strains non-invasively in axial compression using

MRI 110. MR images were acquired before and during application of a 1000 N

axial compression. Two-dimensional internal displacements, average strains, and

the location and direction of peak strains were calculated using texture correlation,

a pattern matching algorithm. They studied height loss, disc bulging and strains.

Ultrasound has also been used to study in-vivo disc deformation 111. In-

vivo creep of human lumbar motion segments and discs subject to pure tension

was studied. Elongation of segments was measured by a computerized subaqual

ultrasound measuring method as a change of the distance between two adjacent

spinous processes. From time-related measured elongation values, in-vivo

damping constants with creep functions were calculated for each segment, in terms

of sex, aging and disc level.

1.2 Motivation

The above literature review demonstrates that spine kinematics and

disc deformation have been investigated extensively using various techniques.

Collectively, these studies have dramatically improved our understanding of spinal

biomechanics and disc deformation and have helped to improve the surgical

treatment of spinal degeneration. However, despite these advances, a quantitative

understanding of kinematics and IVD deformation in the human spine under in-

vivo physiologic functional activities remains elusive. There is little data that has

been reported on either in-vivo 6DOF kinematics or 3D disc deformation under in-

vivo physiologic functional activities. Knowledge of spine biomechanics in

normal subjects is critical for the understanding of the mechanisms of spinal

degeneration as well as for the further improvement of surgical techniques

designed to restore normal spine kinematics. Due to the complex anatomy and

22



loading conditions, a quantitative investigation of in-vivo human spine disc

deformation presents challenge to the current biomedical engineering technologies.

The MRI combined DFIS image matching method can be applied to most

of the articulating joint in the human body. This allows for highly accurate in-vivo

study of joint kinematics, dynamics, cartilage contact and ligament interaction.

This non-invasive imaging technique should provide important information on the

intrinsic biomechanics of the human spine. Using this technique, the research will

be a first attempt to study kinematics and disc deformation in normal subjects

under in-vivo physiologic functional activities. It will provide baseline

information of the relationship between abnormal in-vivo biomechanics and the

mechanisms of spinal degeneration. The knowledge obtained from this study will

help to establish guidelines for the improvement of current surgical techniques and

implant design for the treatment of patients with varying degrees of DDD, as well

as provide objective functions for the development of tissue engineered

biomaterials for disc degeneration repair.
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Chapter 2

Image Matching Method on Spine Study

The concept of image matching is relatively simple. A 3D model is

obtained through advanced medical image techniques such as MRI and CT. The

fluoroscopic images of the subject in various physical functional activities are

taken. Based on the perpendicular geometry of dual fluoroscopes setup, the 6DOF

position and orientation of the 3D model can be quantitatively determined from

excessive 2D features in radiographs. When model and features are matched, the

kinematics is recreated. Due to its non-invasive manner and effectiveness on

studying complex geometry, this image matching method can be applied on spine

study.

2.1 Imaging

With the technological advancements in medical imaging such as magnetic

resonance imaging (MRI), computer tomography (CT) and x-ray machines, it is

possible to recreate fully 3D anatomical models and also record human

physiologic activities in real time. MRI and CT provide tools to recreate the

anatomy with sub-millimeter precision. Even though both the CT and MR models

had similar accuracy, there is one inherent benefit of using CT imaging for the

application of our technique. CT images may facilitate automatic segmentation

with commercially available software. In contrast, automatic segmentation for

MR models is currently time consuming. However, when measuring vertebral

kinematics in human subjects, the dosage of radiation to which the subjects are

exposed when utilizing CT imaging may present an ethical concern for the safety
25



of the individuals being tested. Alternatively, MR model provide us with greater

visualization of the ligamentous components surrounding the lumbar vertebra as

well as their relation to relevant neurologic structures in this area. Compare to the

above two imaging technique, x-ray has the advantage of recreating real time 2D

perspective image of the region of interest and patients are not restricted in prone

or supine position as in MRI or CT. Thus this part explored MRI, CT for vertebral

segment model generation and pulsed fluoroscopy for acquiring images of patient

motion.

2.1.1 MRI

In order to create anatomic 3D model of lumbar spine, MRI has been

utilized. Patients are asked to lie supine in a 3 Tesla (3T) MRI machine

(MAGNETOM Trio, Siemens, Germany). Using a spine surface coil and a T2

weighted fat suppressed 3D SPGR sequence, parallel sagittal images with a

thickness of 1mm without gap, and with a resolution of 512 x 512 pixels were

obtained. A field of view of 180 X 180 mm is able to capture the whole lumbar

vertebral segment from level L1 to L5. (Fig. 2-1)



Figure 2-1: An example MRI slice of the human lumbar spine from L1 to L5 in the sagittal plane for

the purpose to build 3D anatomic model.
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3D Spine Model

Figure 2-2: a) Contours of the vertebrae bodies was digitized with spline curves give the anatomy

information of the lumbar spine. b) 3D mesh model can be generated from digitized contours of MRI

layer by layer.

The MR images of the lumbar spine were then imported into a solid

modeling software Rhinoceros® (Robert McNeel & Associates, Seattle, WA)to

construct a 3D anatomical model of the segments using a protocol established in

our laboratory 112. The contours of the vertebrae bodies were digitized manually

based on image intensity using B-Spline curves (Fig. 2-2a). The contour lines

were then output into Rhinoceros to construct a 3D anatomical mesh model of the

segments. An example of the digitization and mesh is shown in (Fig. 2-2b).



2.1.2 CT

The spine model can also be obtained from CT scanner (LightSpeed Pro 16,

GE, Waukesha, WI) using high-resolution axial plane images in the supine

position. Images were obtained with a thickness of 0.625 mm and a gap of 0.625

mm, and with a resolution of 512 x 512 pixels. The CT images of the spinal

segment were then imported into Matlab® (the MathWorks, Natick, MA). Based

on the gradient of image intensity caused by bony structures, Canny edge

detection algorithm has been utilized to automatically segment the vertebral bodies

13. The algorithm first smooths the image using a Gaussian filter, and then it

computes the gradients from a Laplacian filter. Next, the gradients are reduced by

removing non-maximal values. The edges created by the maximal values are

further reduced by applying a threshold and examining connectivity. Non-

maximal edges connected to maximal edges are kept, while isolated non-maximal

edges are removed. Canny edge detection is implemented in Matlab. An example

of segmentation is in Fig. 2-3a.

Due to the complex geometry of most anatomical structures and the

inherent lack of an edge in biological images, the outlines from the edge detection

are manually reviewed. Manual editing is specially implemented at facet joint and

at between proximal and distal segments attaches as there are decrease in intensity

gradient. 3D anatomical mesh models of the vertebrae were then created from the

digitized data. (Fig. 2-3b)



Figure 2-3: a) Automatic segmentation based on canny edge detection for spine CT scan. b) 3D mesh

model constructed from the digitized data.
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2.1.3 MRI and CT model registration

Since CT models have been widely used by researchers to study spine

kinematics 16,24,72-79 and CT model is generated from automatic segmentation

based on Canny edge detection, we employed it as a comparison with MR models.

The constructed CT and MR image-based models were then mapped together

using a customized code implemented in the Matlab based on the iterative closest

point (ICP) method 114. About 4000 points were picked from both vertebral body

models. The determination of the optimal shape matching of the two models was

characterized by a convergence criterion that using changes in directional

derivative of the matching process 114. The average difference between the two

mesh models was calculated to be 0.07±1.1 mm when mapping MR model to CT

model. (Fig. 2-4)

2.1.4 Dual orthogonal fluoroscopic

The dual orthogonal fluoroscopic imaging system (DFIS) consists of two

fluoroscopes (BV Pulsera, Philips, Netherlands) positioned perpendicular to each

other. A subject is free to move within the common imaging zone of the two

fluoroscopes. The system is capable to capture real time images of the spine

segments simultaneously. A demonstration of the DFIS is shown in Fig. 2-5.



Figure 2-5: Two fluoroscopes positioned perpendicular to each other to capture the spine motion of

subjects in the common view port.



The fluoroscopes use pulse snapshots to capture images. The fluoroscopes

have a frame rate of 125Hz. 30, 15, or 8 snapshot images per second can be

selected that are evenly distributed among the 125 Hz frame rate, which can

efficiently reduce the radiation exposure under a high frame rate. The fluoroscope

has a clearance of approximately 1 m between the X-ray source and the receiver,

allowing the subject to be imaged by the fluoroscopes in real time as he or she

actively performs different maneuvers. With a 1K x 1K resolution of both

fluoroscopes, the total imaging volume can reach up to 30 X 30 X 30 cm3.

The fluoroscopic images suffer from small amounts of distortion caused by

the slightly curved surface of the image intensifier and environmental

perturbations of the x-ray. In order to remove "swirl" caused by electro-magnetic

disturbance and "fish-eye" from the curved image surface a known grid is imaged

and the subsequent image is mapped to the known geometry. A global surface

mapping using a polynomial fitting technique adapted from Gronenschild is used

to accomplish this 115. A plexi-glass plate with a pattern of holes in concentric

circles is used (Fig 2-6).



Figure 2-6: A patterned plexi-plate used to restore the distortion caused by fluoroscope to calibrate

the captured spine image.

34



2.2 Matching

The geometry of the dual fluoroscopes from these tests was reproduced

virtually in Rhinoceros. Pairs of fluoroscopic images were placed at the two

virtual intensifiers. The CT/MR models of the vertebrae were introduced into the

virtual system and viewed from the perspective views of the virtual sources. The

3D models were then independently translated and rotated in 6DOF until their

outlines matched the osseous outlines of the fluoroscopic images from the two

orthogonal views (Fig. 2-7).

The in-vivo positions of the vertebrae at various physiologic functional

weightbearing positions can be reproduced in the Rhinoceros using the 3D models

of the vertebrae and the orthogonal fluoroscopic images 12. The pair of

fluoroscopic images of the spine captured at a specific posture were imported into

the modeling software and placed in calibrated orthogonal planes, reproducing the

actual positions of the image intensifiers of the fluoroscopes. Two virtual cameras

were created inside the virtual space to reproduce the positions of the x-ray

sources with respect to the image intensifiers. Therefore, the geometry of the

DFIS can be recreated in the solid modeling program. The MR or CT image-

based 3D vertebral models will be introduced into the virtual fluoroscopic system

and viewed from the perspective views of the two virtual cameras (Fig. 2-7a).

The 3D models of the vertebrae could be independently translated and rotated in

6DOF until their outlines match the osseous outlines captured on the two

orthogonal fluoroscopic images. This process can be executed using an existing

protocol established in our laboratory 6. The software allowed the model to be

manually translated and rotated in increments of 0.01 mm and 0.01. Using this

technique, the vertebral positions during in-vivo weightbearing activities are

reproduced, representing the 6DOF kinematics at each in-vivo posture (Fig. 7b).
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Figure 2-7 a) The 3D model of the lumbar spine segments (from human MRI) were introduced into

virtual system reproduced from geometry of DFIS. b) After manipulate the model in 6DOF,

kinematics of the spine can be studied from various physiologic functional activities.
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After reproducing the in-vivo vertebral positions using the 3D anatomic

vertebral models, the relative motions of the vertebrae can be analyzed using right

hand Cartesian coordinate systems constructed at the center of each vertebra (Fig.
2-8). The geometric center of the vertebra body is chosen as the origin of the
coordinate system. The x-axis is in frontal plane and pointed to the left direction;
the y-axis is in sagittal plane and pointed to the posterior direction; and the z-axis
was vertical to the x-y plane and pointed proximally.

The relative motions of the proximal vertebra with respect to the distal
vertebra can be calculated at different vertebral levels. Three translations using x,
y and z are defined as the motions of the proximal vertebral coordinate system
origin in the distal coordinate system: anterior-posterior, left-right and distal-
proximal translations. Three rotations using a, P3 and y are defined as the
orientations of the proximal vertebral coordinate system in the distal vertebral
coordinate system using Euler angles (in x-y-z sequence): flexion-extension, left-
right bending and left-right twisting rotations (Fig. 2-8).

Figure 2-8: Coordinate system to describe 6DOF spine kinematics, both translational and rotational.
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2.3 Summary

While many approaches to study spine kinematics and IVD deformation

have been utilized, the quantitative understanding in the human spine under in-

vivo physiologic functional activities is elusive. This study will utilize a newly

developed, non-invasive imaging technique to quantitatively investigate the

intrinsic biomechanics of human spine under physiologic functional activities.

The subject underwent an MRI or CT scan to construct the 3D model of lumbar

spine. The subject was then imaged by two fluoroscopes in two perpendicular

views simultaneously at physiologic loading motions. MRI models were

introduced into the virtual computer system and were independently translated and

rotated in 6DOF until their projection matched the bony outlines of the two

fluoroscopic images. The accuracy of this technique will be validated in the

following Chapter. The technique will be applied on studying normal human

subjects to obtain quantitative data to evaluate in-vivo vertebral motion in the later

Chapter. The data will enhance our understanding of spinal pathology and to

improve the current surgical treatment methods for spinal diseases that aim at

restoring normal spine biomechanics.



Chapter 3

Validation

Limitations of current technology and the complex anatomy of the spine

have made in-vivo data limited regarding the motion of the vertebrae under

physiologic functional activities. To understand the biomechanical factors that

affect spinal pathology, it is critical to accurately determine the spinal structural

functions under in-vivo physiologic functional activities. In the previous chapter

the idea for employee non-invasive image matching method has been illustrated.

The accuracy and repeatability, however requires carefully validation before this

method be efficiently applied in spine biomechanics study.

The validation of this technique was conducted in two phases. The in-vitro

portion used an ovine spine specimen to validate the accuracy and repeatability of

the combined imaging method when used to determine the spine positions in space.

Both CT and MR based image models were constructed for the ovine vertebrae in

this validation. The second phase was the application of this method to a living

human subject in order to determine if the repeatability of the method was

maintained under in-vivo conditions. Only MR model has been utilized to

minimize the radiation dosage to the subject. The goal is to investigate the

feasibility for clinical application of the novel technique.



3.1 In-vitro validation

3.1.1 CT and MR models

An ovine lumbar spine specimen, 116 with all the surrounding soft tissues

intact was selected and L2 and L3 vertebrae were focused for this study. The

spine was CT and then MR scanned according to the protocol in Chapter 2. The

contours of L2 and L3 were digitized from both CT and MR images to reconstruct

3D mesh models. The constructed CT and MR image-based models were then

mapped together using a customized code implemented in the Matlab based on the

ICP method. A local coordinate system was created for each spine vertebral

segment model. For the purpose of comparison, the same coordinate system was

used by both models. In this study, 6DOF was expressed using the x, y and z axes

for left/right, anterior/posterior and up/down translations and using a, P3 and y for

the Euler angel flexion/extension, left/right bending and internal/external rotation

of the vertebrae (Fig 3-1).

Figure 3-1: A demonstration of local coordinate system established to determine 6DOF kinematics of

the ovine lumbar spine.
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3.1.2 Dual fluoroscopes section

The DFIS consists of two fluoroscopes positioned perpendicular to each
other to capture images of the spine segments simultaneously (detailed in Chapter
2). The specimen was imaged during two tests using DFIS to validate the
accuracy and repeatability. First, a gold standard for precisely obtain spine
positions was chosen by using an MTS material test machine (MTS Qtest 5,
Minneapolis, MN). The MTS machine has an accuracy of 0.001 mm in translation.
The specimen was bounded to the MTS machine which moves vertically upward
at 1000 mm/min while dynamic images were taken by the DFIS. (Fig. 3-2)

Figure 3-2: The MTS material test machine was setup to move spine specimen in the common field of
view of DFIS to perform a validation test on the accuracy.
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This test was aimed to validate the accuracy of the image system in

determination of spine translation and speed. In the other test, the specimen was

manually flexed to simulate dynamic physiologic flexion-extension motion (Fig.

3-3). Dynamic orthogonal images were taken simultaneously from the

posteromedial and posterolateral directions aimed at the target spinal segment.

Figure 3-3: The specimen was manually flexed to simulate a physiologic motion when two

fluoroscopes captured images simultaneously. The test was designed to validate the repeatability of

matching spine motion.

The spatial positions of the vertebral bodies during the motion on the MTS

machine and the manual flexion-extension activities were reproduced in

Rhinoceros software, using the 3D models of the spinal segments combined with

the orthogonal fluoroscopic images. First, the geometry of the two fluoroscopes

from the two tests was reproduced virtually in Rhinoceros software. Pairs of

fluoroscopic images captured at a specific time were placed at the two virtual

intensifiers. The CT/MR models of the vertebrae were introduced into the virtual



system and viewed from the perspective views of the virtual sources. The 3D

models were then independently translated and rotated in 6DOF until their outlines

matched the osseous outlines of the fluoroscopic images from the two orthogonal

views (Fig. 3-4). Using this technique, the vertebral positions during various

spine activities could be reproduced and represented using the 6DOF positions of

the 3D vertebral models in space.

Figure 3-4: After matching the 3D model with 2D orthogonal fluoroscopic images sets from DFIS, the

kinematics of the spine was reproduced in space.

3.1.3 Accuracy and repeatability analysis

To evaluate the accuracy of the image matching technique in reproducing

vertebral motion, three positions were chosen from the dynamic motion path of the

spine that was created using the MTS machine. The exact (to four decimal places)

time for each position was obtained from the fluoroscopic radiation impulse data

file recorded during the experiment. The distances moved by the MTS machine

between the 3 positions were calculated from these time intervals and the known

MTS speed. Each of the 3 positions was reproduced 5 times independently using

both the CT and MR models and the dual fluoroscopic images as illustrated in the
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inset figure in Table 3-1. The displacements of the L2 and L3 vertebrae were

calculated between the 3 positions. The translational speed of the vertebra was

calculated between the different positions. The displacement and speed data

obtained from the 5 model image matching processes were averaged and

expressed as mean + standard deviation (SD). These data were compared with

those of the MTS machine (gold standard) to examine the accuracy of the image

model matching method in reproducing the spine translation and speed.

To evaluate the repeatability of using the image matching method to

reproduce the dynamic spine motion, five positions along the manual dynamic

flexion-extension path were determined 5 times using both the CT and MRI based

models and the corresponding dual fluoroscopic images. The positions and

orientations of the L3 with respect to L2 vertebrae were calculated at each selected

flexion-extension position. SD of the 6DOF kinematics reproduced by the 5
image modeling matching processes were calculated. The repeatability in

reproducing the relative positions of the L3 and L2 using the image model

matching method was calculated using the average SD of the 5 positions of the

spine along the flexion-extension path.

P 2-1 P 3-2 P 3-1

MTS 33.32 mm 33.33 mm 66.64 mm

S cT L2 33.52 ± 0.18 33.27 0.09 66.81 0.199 E L3 33.39 0.17 33.15 0.13 66.55 0.14
. MRI L2 33.72 + 0.35 33.14 + 0.32 66.88 ± 0.23

L3 33.23 + 0.25 33.35 ± 0.17 66.72 ± 0.19
MTS 16.67 (mm/s)

CT L2 16.77 ± 0.09 16.64 ± 0.04 16.71 ± 0.05
SL3 16.71 ± 0.09 16.56 ± 0.07 16.64 ± 0.03

MRI L2 16.87 ± 0.17 16.56 ± 0.16 16.72 ± 0.06
L3 16.63 ± 0.13 16.66 ± 0.08 16.65 ± 0.05

Table 3-1: Accuracy test of the DFIS obtained from comparing vertebrae motion distance and speed

prescribed by the MTS machine with the reproduced kinematics.
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The displacements of the spine segment between the three positions along

the MTS moving path were 33.32 mm (Pl-P2), 33.33 mm (P2-P3) and 66.64 mm

(P1-P3), respectively, for both L2 and L3 vertebra. The model matching process

showed a high accuracy in determining the positions of the spinal segments (Table

3-1). Both CT and MR image-based models could determine the spine traveling

distances with an absolute mean accuracy below 0.2 mm. The maximal

differences compared to those of the MTS machine measurements were 0.20 mm

for the CT model and 0.40 mm for the MR model. Compared with the standard

MTS speed of 16.67 mm/s, the CT model reproduced a speed between 16.58 and

16.77 mm/s. The MR model reproduced a speed between 16.57 and 16.87 mm/s.

The absolute speed errors were within 0.2 mm/s for both CT and MR models. The

accuracy validation using the MTS as a gold standard did not show a significant

difference between CT and MR model matching (p=0.2) in determination of

traveling distance and speed of the spine.

To evaluate the repeatability, we determined the SD of the 5 matching trials

for five positions along the flexion-extension path of the spine segment. The

matching process of the dual orthogonal fluoroscopic system was found to be

highly repeatable in determining the 6DOF positions and orientations of the

vertebrae using both the CT and MR models (Table 3-2). The relative position

and orientation of L2 with respect to L3 were determined with a SD less than 0.2

mm using the CT model and 0.25 mm using the MR model. The relative

orientation could be determined to be 0.40 to 0.60 for CT model and 0.60 to 0.90

for MR model.



z c

Table 3-2: Repeatability of reproducing the relative positions of the L3 with respect to L2. The data

were averages of standard deviations at 5 positions along the flexion-extension motion path.

3.1.4 Conclusion and discussion

We have developed an imaging matching technique using 3D anatomic

vertebral models and DFIS to measure in-vivo spine kinematics. The models were

obtained from both CT and MR. Two tests were designed using DFIS to evaluate

accuracy and repeatability of this technique. In literature, a few pioneer studies

have investigated spinal vertebral motion using CT imaging 16,23,72-74,79 with

accuracy larger than 1 mm in translation and 10 in orientation. The MR combined

DFIS technique is able to determine an absolute mean accuracy within 0.2 mm in

translations and a repeatability within 0.3 mm and 0.90 in translations and

rotations.

The MR models resulted in similar and sufficient accuracy and repeatability

for the purpose of this study compare to CT models either from our study or from

the literature. CT images may facilitate automatic segmentation with

commercially available software. In contrast, automatic segmentation for MR

models is currently time consuming. However, the dosage of radiation to which

the subjects are exposed when utilizing CT imaging may present an ethical

concern for the safety of the individuals being tested. Alternatively, MR model

provide us with greater visualization of the ligamentous components surrounding

the lumbar vertebra as well as their relation to relevant neurologic structures in

this area. Therefore, in order to minimize the risk to the application on living
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human subjects involved in Chapter 4 and to enhance our ability to look at the

soft-tissue structures of the lumbar spine for further study on pathology, we will

use MR imaging exclusively.

3.2 In-vivo validation

Consider the potential anatomic and functional difference between the

ovine and human, a validation test was designed to evaluate the repeatability of the

model matching method in the determination of in-vivo vertebral kinematics. The

image matching method was applied to a living subject (Female, 60 years old).

Prior to the initiation of the study, approval by the institutional review board (IRB)

was obtained. The subject signed the consent form and was evaluated for the

absence of LBP and other spinal disorders.

3.2.1 MR models

The subject underwent an MR scan of the lumbar spine using a surface coil

and a T2 weighted fat suppressed 3D SPGR sequence, the same protocol as in

Chapter 2 and used for the ovine spine. The 3D MR images were used to

construct the 3D model of lumbar spine. A CT scan was not performed to avoid

the cumulative radiation dosage on the subject.

3.2.2 Dual fluoroscopes section

The subject was first asked to stand in the dual fluoroscopic image system

(Fig. 3-5a) to image the lumbar spine position in the standing weight-bearing

posture. The subject was protected by specifically designed lead vests and skirts.

The subject was then imaged in the following sequence of positions: maximal left

twist, maximal right twist, and forward flexion at approximately 450. Using the

matching method, the relative position of the L2 with respect to L3 vertebra was



reproduced 5 times (Fig. 3-5b). In this study, 6DOF was expressed using the

vertebral displacements along the x, y and z axes for medial/lateral,

anterior/posterior and up/down translations and using at, 13 and y for the

flexion/extension, medial/lateral bending and internal/external rotations of the

vertebrae (Fig. 3-6). The repeatability of this technique to evaluate in-vivo

kinematics of the human lumbar spine was represented by the SD of 6DOF

translations and rotations from the 5 matchings at each in-vivo position of the

spine.

Figure 3-5: a) Dual Fluoroscopic setup for imaging of the lumbar spine position in living subjects

during various physiologic functional activities. b) The virtual dual fluoroscopic system is established

in Rhinoceros to reproduce in-vivo spine positing using the fluoroscopic images and the 3D vertebral

models.
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Figure 3-6: 3D vertebral models and local coordinate systems that were used to determine 6DOF

kinematics.

3.2.3 Results and discussion

The repeatability in reproducing in-vivo human spine kinematics (the
relative positions of the L2 segment with respect to the L3 segment) was shown in
Table 3-3 for various in-vivo spine positions. For all the in-vivo physiologic
loading positions, the relative translation could be determined within a SD of 0.3
mm, while the orientation could be determined within 0.7', which is comparable

with the ovine validation studies from 3.1. The relative position of L2 with
respect to L3 was also reproduced using the MR combined DFIS matching method.
For example, in forward flexion, the position of L3 with respect to L2 was
determined to be -0.79 ± 0.30, 2.23 ± 0.22 and -36.75 ± 0.22 mm in medial,
posterior and distal directions and 3.52 + 0.56 °, 3.81 + 0.620 and 4.30 ± 0.630 in
forward flexion, left bending and left axial twist. However, these data will be
saved and further studied and discussed for the application on human lumbar spine
kinematics in Chapter 4.



MRI
Position

Standing

Flexion

Twist left

Twist right

X Y Z a 7Y
L(+)/R(-) A(-)/P(+) U(+)/D(-) FI(+)/Ex(-) L(+)/R(-) L(+)/R(-)

trans trans trans flex bend twist

-0.21 1.2 -36.78 10.29 2.42 1.54

-1.16 ± 0.29 2.86 ± 0.28 -35.71 ± 0.21 7.80 ± 0.46 4.03 ± 0.65 7.02 ± 0.47

-0.79 ± 0.30 2.23 ± 0.22 -36.75 ± 0.22 3.52 ± 0.56 3.81 ± 0.62 4.30 ± 0.63

-1.52 ± 0.29 3.00 ± 0.27 -35.53 ± 0.23 10.89 ± 0.68 7.13 ± 0.56 7.20 ± 0.43

1.13 ± 0.33 3.19 ± 0.24 -35.35 ± 0.18 12.87 ± 0.75 -0.41 ± 0.66 9.98 ± 0.56

Table 3-3: Repeatability of reproducing the relative positions of L3 with respect to L2 using the DFIS

when the living subject moved to different positions. The repeatability was represented by mean +

standard deviation of the 5 model matchings.

3.3 Summary

Quantitative knowledge of in-vivo vertebral kinematics is instrumental in

understanding spinal pathology and for the improvement of the surgical treatment

of spinal degenerative disease. The MR combined DFIS image matching method

showed a potential way for non-invasive study in-vivo spine biomechanics under

physiologic functional weightbearing activities. This Chapter presented a rigorous

validation of the MR (and CT) combined DFIS image matching technique for the

non-invasive measurement of spinal motion. The accuracy of this technique was

first validated for the determination of vertebral position using an in-vitro

experimental setup since a gold standard for vertebral positions was able to be

established from MTS machine. The data indicated that the method has accuracy

within 0.2 mm in determination of vertebra translations and 0.2 mm/s in

translational speed. The repeatability of the method was then examined using both

in-vitro and in-vivo experimental design setups. Both the CT and MR image-

based model showed similar accuracy and repeatability in the in-vitro tests. The

in-vivo human spine experiment using MR model demonstrated a high
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repeatability of the method in determination of vertebra within 0.3 mm and 0.60

for translation and orientation.

It should be pointed out that, despite the highly accurate and reliable results

obtained during the validation trial, there has certainly been a considerable

learning curve during the process of developing this technique. This applies not

only to our ability to perform this technique but also to obtain images that are most

suitable for the study. It is also significantly more difficult to image in-vivo

subjects as motion artifact becomes a concern. We anticipate that there will be a

progressive improvement in our ability to obtain fluoroscopic and MR images that

were not available at the time of this study. The MR sequences are continuously

undergoing adjustment during our ongoing studies in order to improve the

resolution of the anatomic features. We therefore anticipate that with further

refinement of our technique, coupled with technological advancements in

fluoroscopic and MR imaging modalities, the accuracy and reliability of our

technique will be improved.

In conclusion, this Chapter examined the accuracy and repeatability of a

novel imaging technique in the determination of 6DOF kinematics of lumbar spine

segments in a non-invasive manner. The in-vitro validation indicated that this

method is accurate in determination of vertebral position in space. Therefore, the

MR combined DFIS imaging technique can be a useful tool to investigate in-vivo

spine biomechanics, such as to determine vertebral positions and orientations

before and after surgical procedures for the treatment of diseased spinal segments

in order to evaluate the efficacy of these various surgical modalities in restoring

normal spine function. An example of potential applications of this technique

includes the evaluation of the effects of spinal fusion or total disc replacement and

their effects on adjacent unaffected segments. In the following Chapter, the
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method will be applied for the investigation of vertebral motion of living human

subjects under various in-vivo physiologic conditions.



Chapter 4

Application on Spine Biomechanics Study

Accurate knowledge of the physiological kinematics of the lumbar spine

vertebrae is important to the understanding of the etiology of spinal diseases such

as discogenic lower back pain. This knowledge is also necessary for the

improvement of surgical treatments of spinal diseases that involve either

segmental arthrodesis (fusion) or artificial disc arthroplasty (replacement) which

may alter the vertebral motion patterns. In-vitro experiments using cadaveric

spinal segments have been pursued for decades in order to understand spinal

biomechanics 27,117,118. Numerous studies have reported on spine kinematics 15-26

and corresponding deformation 37-43,45-52,119 when a spine segment specimen was

subjected to simulated functional activities.

In order to better understand the biomechanical factors that affect spinal

pathology among treated patients, it is necessary to determine the spinal

kinematics in living human subjects. However, the limitations of current

technology and the complex anatomy of the lumbar spine have made it difficult to

measure the vertebral motion under physiologic functional activities. In-vivo

spinal research to date has mainly concentrated on the measurement of range of

motion (ROM) and the evaluation for instability using methods such as bilateral

radiographs, MRI 81,83,84,87,88 CT 73, electrogoniometer 102-105, and

videofluoroscopy 28,120. For example, early research used plain radiographs to

examine the spinal motion of living subjects during flexion-extension positions

121,122. Subsequently, MR imaging technique 123-125 and CT-based methodology
79,126 have been used to measure 3D spinal segmental positions in human subjects
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while lying in supine positions.

In the previous Chapter, the MR combined DFIS imaging method has been

validated on spine kinematics study. The system was shown to be appropriate for

the investigation of lumbar spine motion during weightbearing functional

activities. In this Chapter, this technique was first used to determine the 6DOF

vertebral motion of the lumbar spine of living human subjects in various

weightbearing positions of the body. Then based on the 6DOF kinematics data

from these positions, disc deformation was quantitatively studied.

4.1 Experiment setup

Eleven asymptomatic subjects with age ranging from 50-60 years (5

males and 6 females) were recruited for this study. Approval of the institutional

review board (IRB) was obtained prior to the initiation of the study. The subjects

were evaluated for the absence of lower back pain and other spinal disorders. A

signed consent form was obtained from each subject before any testing was

performed.

First, the lumbar segments of each subject were MR scanned with a spine

surface coil and a T2 weighted fat suppressed 3D SPGR sequence (same as in

Chapter 2 and 3). The subject warmed up for about 30 minutes and then scanned

in a supine, relaxed position. The MR images of each subject were carefully

examined. Two subjects were found to have presence of early disc degeneration in

the absence of clinical symptoms. Additionally, one subject was found to have

early scoliosis without symptoms. These three subjects were excluded from

further investigation. The MR images of the lumbar spinal segments were then

imported into a solid modeling software Rhinoceros to construct 3D anatomical



vertebral models of L2, L3, L4 and L5 of the lumbar spine using the same protocol

in Chapter 2 and 3. (Fig. 4-1)

bI

3D Spine Model

Figure 4-1: a) 3D lumbar spine model was constructed from MRI scans. b) The local coordinate

systems were established at the center of endplate to study the relative motion of two adjacent

vertebral bodies.

Following MR scanning, the lumbar spines of the subjects were imaged
using the DFIS. During fluoroscopic imaging, the subject was protected from
radiation exposure with appropriate lead shielding. The subject was protected
from above and below their lumbar spine by specifically designed skirts, vests,
and thyroid shields. A surgeon constantly checked the lead protections to ensure
that they did not slip away during the experiment.

a)



The target spinal segments were then exposed to fluoroscopic scanning.

The subject was asked to stand and positioned their lumbar spines within the view

of both fluoroscopes and actively moved to different postures in a predetermined

sequence: standing position; 450 flexion; maximal extension; maximal left-right

bending; maximal left-right twisting. The two laser pointers attached to the

fluoroscopes helped to position the target lumbar spine segments inside the field of

view of the two fluoroscopes. At each selected posture, two orthogonal images

were taken simultaneously from two directions of the targeted spinal segment.

The subject then moved to the next posture under the direction of an orthopaedic

surgeon. Care was taken to ensure that no constraint was applied to the hips of the

subjects while performing the active motions. During testing, the subject was

exposed to approximately 10 pairs of fluoroscopic projections. The entire

experiment took about 10 minutes. The images were processed in the Digital

Imaging and Communications in Medicine (DICOM) and Bitmap file formats.

The in-vivo positions of the vertebrae at various weightbearing body

positions were reproduced in the Rhinoceros the 3D models of the vertebrae and

the orthogonal fluoroscopic images. First, the geometry of the dual-orthogonal

fluoroscopic system was recreated in Rhinoceros. The MR image-based 3D

vertebral models were then introduced into the virtual fluoroscopic system to be

independently translated and rotated in 6DOF until their outlines match the

osseous outlines captured on both fluoroscopic images. This process was

discussed in details in Chapter 2. Using this technique, the vertebral positions

during in-vivo weightbearing activities were reproduced, representing the 6DOF

kinematics of the vertebrae at each in-vivo posture (Fig. 4-2).



Figure 4-2: a) The experimental setup of the dual fluoroscopic system for capturing the lumbar spine

positions of living subjects. b) The virtual DFIS that mimics the actual fluoroscopic system was used

to reproduce the in-vivo vertebral positions.

4.1.1 Vertebrae range of motion

After reproducing the in-vivo vertebral positions using the 3D anatomic

vertebral models, the relative motions of the vertebrae were analyzed using right

hand Cartesian coordinate systems constructed at the endplates of each vertebra

(Fig. 4-1). The geometric center of the endplate was chosen as the origin of the

coordinate system. The x-axis was in frontal plane and pointed to the left direction;

the y-axis was in sagittal plane and pointed to the posterior direction; and the z-

axis was perpendicular to the x-y plane and pointed upward.

The relative motions of the proximal vertebrae with respect to the distal

vertebrae were calculated at 3 vertebral levels: L2-3, L3-4 and L4-5. Three

translations were defined as the motions of the proximal vertebral coordinate

system origin in the distal coordinate system: anterior-posterior, left-right and

distal-proximal translations. Three rotations were defined as the orientations of

the proximal vertebral coordinate system in the distal vertebral coordinate system
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using Euler angles (in x-y-z sequence): flexion-extension, left-right bending and

left-right twisting rotations (Fig. 4-1b).

After the determination of vertebral positions at each posture, we

determined the ROM of each vertebral level between flexion-extension, left-right

bending and left-right twisting. The ROM data included both the primary

rotations and coupled translations and rotations in the other 5 degrees of freedom.

A repeated measure ANOVA was used to compare the ROM at L2-3, L3-4 and L4-

5 vertebral levels at each of the 3 functional activities. Statistic significance was

set when p < 0.05.

4.1.2 In-vivo disc deformation

Quantify in-vivo disc deformation is a critical but missing area in spine

research to under various clinic problems, such as to delineate the mechanisms of

post-operative adjacent DDD, and to improve our current surgical modalities. Due

to the non-invasive manner to the new DFIS combined MRI technique,

deformation of the disc during physiologic functional activities were studied. The

disc shapes in 3D were quantitatively determined using the two adjacent vertebral

kinematics (L23, L34 and L45), more specifically, using the relative positions and

orientations of the endplates. Five pairs of mark points, which locate at

anterior/posterior, left/right edges and center of the disc, were picked from the disc.

The distance between mark points during standing, twisting, bending and flexion

were compared to MRI position to determine the disc deformation.

The disc shape obtained in the standing position will be used as a reference

since the spine is under a non weight-bearing condition. The distance between

each pair of mark points on the two disc attachments (Fig. 4-3) will be compared

before (lo) and after (la) motion in the software. The geometric deformation is



defined as the distance change between pairs of points normalized by the distance

measured from standing position of the disc, i.e, in the formula (la- lo)/lo. This will

give out the geometric deformation distribution in different locations of the disc.

Positive values represent tensile deformation and negative values indicate

compressive deformation.

4:

Center
ht /

Geometric Deformation
= deformed length - original length original

length (MRI)

Figure 4-3: A 3D view of the intervertebral disc of the in-vivo position of the lumbar spine. The

change in length of the different potions of the disc can quantify disc deformation.



4.2 Results

4.2.1 Vertebrae range of motion

Primary rotations

The vertebrae at different vertebral levels had different range of flexion

during the designed flexion-extension motion (Fig. 4-4a). The flexion ranges

were 5.4±3.80, 4.3±3.40 and 1.9±1.10 for L2-3, L3-4 and L4-5 levels, respectively.

The L2-3 and L3-4 measurements are not statistically different in flexion range.

However, both levels had significantly higher flexion ranges than the L4-5

vertebral level (p<0.05).

During the left-right twist activity, the 3 vertebral levels showed no

significant difference in the range of twist rotations (Fig. 4-4b). The twist rotation

ranges were 2.5±2.30 for L2-3, 2.4±2.60 for L3-4 and 2.9±2.10 for L4-5.

During left-right bending motion, the upper level generally had less range

of bending rotation than the lower level (Fig. 4-4c). The L2-3 and L3-4 had left-

right bending rotation ranges of 2.9±2.40 and 3.4±2.10, respectively, but not

statistically different. The L4-5 had a range of rotation during bending of 4.7±2.40,

which was statistically larger than those at both L2-3 and L3-4 levels.
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Figure 4-4: a) In-vivo lumbar spine in flexion and extension. b) In-vivo lumbar spine in left and right

twist. c) In-vivo lumbar spine in left and right bending.



Coupled translations and rotations

During the active flexion-extension motion, there were coupled

translations in all three directions (Table 4-1). On average, the translation range in

left-right and anterior-posterior directions was between 0.7 and 1.5 mm. The

coupled translation in proximal-distal direction is significantly lower at L2-3

(0.2+0.2 mm) than at L3-4 (0.6±0.4 mm) and L4-5 (0.7±0.6 mm). The coupled

rotations in left-right bending and twisting were also similar and were, on average,

between 1.70 and 2.90 (Fig 4-5).

During the active left-right bending motion, the coupled translations

in left-right and anterior-posterior directions were similar in all the vertebral levels

and on average, ranged between 0.8 and 1.1 mm (Table 4-1). The coupled

translation in proximal-distal direction (between 0.4 and 0.6 mm) was lower

compared to those at the other directions (p<0.05). The coupled flexion rotation

range was between 1.3' and 2.10 at the L2-3, L3-4 and L4-5 levels, which was

lower than their corresponding primary bending rotations (p<0.05). However, the

coupled twist rotations were at similar magnitudes as the primary bending rotation;

ranged between 2.20 and 3.80.

During the active left-right twisting motion, on average, the

translation in anterior-posterior direction was between 1.1 and 1.2 mm, while in

left-right direction was between 0.5 and 1.0 mm. The coupled translation in

proximal-distal direction was between 0.3 and 0.6 mm, which in general was

lower than the coupled motion in the other two directions (Table 4-1). The

coupled flexion range was between 0.90 and 2.30 which was lower in magnitude

than the primary twist rotations. The coupled bending rotation was similar to the

primary rotation, 2.00 and 3.00 (Table 4-1).



Translation (n m )

Bending leftand right

Table 4-1: The range of motion of the lumbar spine at different levels during the various functional

activities. During each activity, the highlighted primary rotations as well as coupled translation and

rotations are presented to quantify 6DOF kinematics, including 3 translations LR (left-right

translation), AP (anterior-posterior translation) and PD (proximal-distal translation); and 3 rotations

FE (flexion extension), Bend (left-right bending) and Twist (left-right twisting).
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Figure 4-5: The range of motion of three vertebral levels during various physiologic activities.
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4.2.2 In-vivo disc deformation

Different segment discs showed different deformation distributaries. L2-3

disc had an overall largest deformation. During standing, the anterior portion of

the disc experienced average about 15% tension and the posterior part experienced

-12% compressive deformation. In flexion activity, the anterior tension decreased

to 10% tension while the compression at posterior portion changed to -10%. In

extension, the anterior tension increases to 18% and the posterior stays the same.

(Fig. 4-6) The left and right edge and center portion exhibited small deformation

(about 0%) during these in-vivo activities. However during left/right twisting (Fig.

4-7) and bending (Fig. 4-8), the values ranged between 5% tension and

compression. L3-4 disc showed a similar trend as L2-3 while the absolute

deformation value is about 5% smaller. L4-5 disc showed an average 10-15%

smaller absolute deformation than L2-3 in anterior and posterior portion, which

resulted an opposite tension and compression deformation in certain activities for

some subjects. However, the deformation increased to 10% at twisting and

bending activities. Overall, these data presented a first attempt to study in-vivo

disc deformation under physiologic loadings.
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Figure 4-6: The disc deformation at different portions during flexion and extension.
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Figure 4-7: The disc deformation at different portions during left and right twist.
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Figure 4-8: The disc deformation at different portions during left and right bend.

4.3 Discussion

Quantitative data on in-vivo vertebral motion is critical to enhance

understanding of spinal pathology and to improve the current surgical treatment

methods for spinal diseases. In this study, the MR combined DFIS technique was

applied to measure lumbar segment motion L2-L5. The range of lumbar vertebral

motion in living subjects is investigated when they performed unrestricted

weightbearing activities. The data demonstrated that the upper vertebrae had

larger ranges of flexion than the lower vertebrae during functional flexion-

extension of the body. During the functional bending activity, the L4-5 had a

larger range of left-right bending motion than both L2-3 and L3-4, while no

statistical difference was observed in left-right twist among the 3 vertebral levels.

Besides the primary rotations, coupled motions were found in all other DOFs. The

coupled translation in left-right and anterior-posterior directions, on averaged,

reached above 1 mm, while in the proximal-distal direction this remained less than

1 mm.



The data demonstrated similar ROMs compared to the literature. Pearcy

and Tilbrewal 121 studied a similar twisting movement while standing and showed

a range of axial rotation of approximately 20 at each vertebral level, which is

similar to our findings. Haughton et al. 124 investigated lumbar twisting using MR

image scan with the subject laying supine and showed an average range of axial

rotation between 1 to 20 in the 3 vertebral levels. More recently, Ochia et al. 79

determined that the upper lumbar motion segments had greater amounts of axial

rotation range compared to the lower segments using CT scanning. Their range of

rotation was about 3-40. Pearcy et al. found that coupled translation in left-right

and anterior-posterior directions were around the range of 1 mm during primary

flexion-extension motion, which are similar to our findings. More detailed

comparison will be discussed in the following Chapter.

From these normal subject data, we found that disc deformation is

segmental dependent and inhomogeneous. L2-3 has an overall largest deformation

at the anterior with tension and posterior with compression, while L4-5 has a

largest deformation at left and right portion of the disc. The center portion has

small deformation around 0% during all physiologic functional activities. As far

as we know, the only literature related reported an average of 4.4% height loss

(compressive deformation) over the whole disc under 1000N compression axial

load using MRI 110.

It is assumed that the above calculation of geometric deformation is an

accurate measurement of 3D disc deformation. In the future, a 3D finite element

model will be established using the disc attachment positions before and after

motion as geometric boundaries to calculate the actual 3D strain distribution.



4.4 Summary

In conclusion, this Chapter used the MR combined DFIS method to

investigate functional lumbar spine motion in human subjects under weightbearing

conditions. The advantage of this system for spinal research is its flexibility to

accommodate various functional activities. This Chapter reports data on lumbar

vertebral motion ranges during 3 unrestricted body motions commonly used

during clinical examinations of the spine. Vertebral motion at different levels may

respond to external loads differently. The in-vivo kinematics also suggested

segmental dependent and inhomogeneous disc deformation. These data may

provide new insight into the in-vivo function of human spines. The method

proved to be a useful tool that can be readily applied to spine study. Future study

will focus on the in-vivo vertebral kinematics and disc deformation of patients

with diseased discs and to analyze how surgical treatment will affect the spinal

biomechanics. Future investigations will also be directed at examining the

deformation of the lumbar spine segments using 3D finite element analysis while

using the 6DOF kinematics determined in this study as boundary conditions.





Chapter 5

Discussion

5.1 Advantages and limitations

The study on spine biomechanics has been pursued for decades. However,

due to the complex anatomy and limited technology, a quantitative understanding

of kinematics and IVD deformation in the human spine under in-vivo physiologic

functional activities remains elusive. In-vitro studies commonly use invasive

techniques to obtain their measurements which add morbidity when applied to an

in-vivo setting. Finite element studies have the obvious disadvantage of the

overwhelming parameters, and the relevance remains a challenge. Finally, the in-

vivo measurements obtained are limited by the apparatus and methodology. They

are either not accurate enough or not able to test physiologic functional activities

of everyday life.

The study investigated a MRI combined dual fluoroscopic imaging

technique to study in-vivo human lumbar spine biomechanics. As newly

developed, this technique exhibits several advantages compare to conventional in-

vitro, finite element or even current in-vivo methods. First of all, this basic

conceptual of this method is image matching, which impose minimum

intervention to human body. The non-invasive characteristic is especially critical

when study sensitive areas such as spine. Secondly, the method has shown

sufficient accuracy and repeatability through several pilot studies on determining

in-vivo human joint position and cartilage deformation 5-s. The validation of this

method for the lumbar spine has been done on Chapter 3 and a sufficient accuracy
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and repeatability was obtained for effectively study spine biomechanics. Last but

not the least, the experiment setting is easy to access and reproduced in clinical

environment. Study subjects are free to move and perform physiologic functional

activities, which provide most relevant date on the intrinsic biomechanics of the

human spine. The data will provide baseline information of the relationship

between abnormal in-vivo biomechanics and the mechanisms of spinal

degeneration. The knowledge obtained from this study will help to establish

guidelines for the improvement of current surgical techniques and implant design

for the treatment of patients with varying degrees of degenerative changes, as well

as provide objective functions for the development of tissue engineered

biomaterials for disc degeneration repair.

There are several limitations to the current method. Even though MR

model introduced minimum radiation exposure on the human subjects, the manual

segmentation of spine bony outline is time consuming and tedious. The matching

process is also time consuming and the accuracy and repeatability is dependent on

each individual. Potential solutions are to develop automatic segmentation and

automatic matching protocol in the future. However, these remain big challenging

due to the intrinsic complex anatomy of vertebrae segments.

In the in-vivo human lumbar spine study presented in Chapter 4, subjects

were asked to perform some maximum torso motions. Inter-subjects variation of

range of motion may be a problem that will cause relatively large standard

deviation of the obtained data. Regulating a standard motion is necessary for

future studies, the experienced spine MDs will assist to pose the subjects. A few

warm-up flexions will also be incorporated aim to minimize the inter-subject

variation and enhance the statistical power of the data. In order to keep the

targeted lumbar spine within the field view of the two fluoroscopes, the subject
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was instructed to limit flexion to approximately 450 from a standing position.

Also, only the ROM of the L2-3, L3-4 and L4-5 segments were examined during

the 3 functional body motions. The in-vivo instantaneous positions of the

vertebrae during dynamic motion of the body were not examined. Finally, the

subjects were within the age distribution of 50 to 60 years. In future, living

subjects in various age ranges should be investigated to examine the age effect on

vertebral kinematics. Nevertheless, the data obtained from this study will

hopefully contribute to our knowledge on physiological motion of the human

lumbar vertebrae.

5.2 Comparison with Previous Studies

5.2.1 Accuracy validation of the in-vivo methods

In Chapter 3, an in-vitro experimental setup was utilized to determine the

accuracy and repeatability of the MR combined DFIS technique when used to

determine spinal kinematics. Repeatability was also validated using 3D positions

and orientations of the in-vivo human vertebrae under four weightbearing,

physiologic positions of the torso. The data indicated that the method has

accuracy within 0.2 mm in determination of vertebra translations and 0.2 mm/s in

translational speed. The in-vivo human spine experiment demonstrated a high

repeatability of the method in determination of vertebra within 0.3 mm and 0.60

for translation and orientation.

A few pioneer studies have investigated spinal vertebral motion using CT

imaging 16,23,72-74,79. Lim et al. 80 used CT images of two cervical vertebrae to

verify an Eigen vector method and revealed that the method had an accuracy of 1

mm in translation and 1V in rotation. The accuracy and repeatability of similar



imaging methods have been validated by others using phantoms composed of

ceramic balls 23,79. These investigations reported accuracy between 0.1 mm to

0.52 mm and 0.20 to 0.430 for translation and orientation, respectively. A similar

phantom study using various beads has also been conducted to validate the

accuracy of the dual fluoroscopic imaging method used in this study in our lab 5,

where an accuracy of less than 0.08 mm was demonstrated.

However, the phantom evaluation may not represent the actual accuracy of

the technique when applied to measure actual spinal segment motion when soft

tissues surrounding the vertebra remain intact. Bingham et al. and Hanson et al. 5,6

revealed that the dual fluoroscopic image method, when used to study total knee

arthroplasty kinematics, has an accuracy 0.3 mm in translation and 0.20 in

orientation. It is unclear if the same accuracy could be retained when this

technique is used to measure spine kinematics. Therefore the MR combined DFIS

technique is sufficient for spine biomechanics study.

5.2.2 Spine segments range of motion

To my knowledge, no previous study has reported in-vivo vertebral motion

during unrestricted functional activities in humans. Pearcy et al. 122 investigated

lumbar vertebral motion during maximal flexion-extension using a biplanar

radiography technique, where the pelvis and hips were limited in motion by using

a rig. Their data showed similar ranges of motion for all vertebrae. The study

presented in Chapter 4 found the upper levels had a larger range of flexion than the

lower levels. This differing trend in flexion range may be due to two factors. First,

in our testing the subject was allowed free weightbearing motion of the body. No

restriction was applied to the pelvis or hips. Therefore, pelvic rotation could

conceibably affect the rotation of the lumbar vertebrae. A second factor may be

that we only allowed maximal flexion to approximately 450 for the upper body
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which may not necessarily be maximal flexion angle of the body. While overall

their coupled range of translation was found to be similar in magnitude to our data,

the coupled rotation data was lower in magnitude than our data. The differences

between the two studies emphasize the importance of functional activities and

motion pattern when investigating the vertebral kinematics.

Pearcy et al. 121 also investigated left-right bending rotation motion (also

referred to as lateral bending rotation) of living subjects using their biplanar

radiography technique. Overall, they found larger ranges of lateral bending

rotation than we did in our studies. They also reported larger bending ranges in

the upper segments compared to the lower levels of the vertebrae. In my data,

however, I found that the lower level L4-5 had a larger range of bending rotation

than the upper two levels. Similarly to the flexion-extension motion, the lateral

bending motion was also affected by the motion of the pelvis and hips. In my

study, an unrestricted lateral bending was performed by all subjects. It might be

difficult to directly compare the results between different studies given that the

functional activities were inconsistent.

There are several studies that have investigated left and right twisting (also

referred to as axial rotation in literature) of lumbar spine in living subjects under

various conditions 79,121,122,124. For example, Pearcy and Tilbrewal 121 studied a

similar twisting movement while standing and showed a range of axial rotation of

approximately 2' at each vertebral level, which is similar to my findings.

Haughton et al. 124 investigated lumbar twisting using MR image scan while the

subject laying supine and showed an average range of axial rotation between 1 to

20 in the 3 vertebral levels. Their measurement was carried by rotation of the

lower body ±80 to examine the rotation range of the vertebrae. More recently,

Ochia et al. 79 determined that the upper lumbar motion segments had greater
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amounts of axial rotation range compared to the lower segments when the upper

body was passively rotated to ±500 in supine position and CT scanned and their

range of rotation was almost twice that found in the above mentioned studies.

These large discrepancies in vertebral rotation data could be explained by

the various functional activities used in these studies that were caused by different

experimental setups. Pearcy and Tibrewal studied similar active weightbearing

axial rotations compared with my study. However, both Haughton et al. 124 and

Ochia et al. 79 studied passive axial rotation of the body in supine position.

Haughton et al. rotated the subject's hip ±80 to investigate the lumber spine

rotation while Ochia et al. rotated the upper body ±500 to measure the lumbar

spine rotation. In both of these two studies, however, the spine was not under

weightbearing conditions. A quantitative comparison between these studies might

be difficult and a comparison of lumbar vertebral motions has to consider of the

different functional activities that were present among these studies.

Few studies have gone further to investigate coupled vertebral motions with

the primary rotations 79,122. Pearcy et al. found that coupled translation in left-right

and anterior-posterior directions were around the range of 1 mm during primary

flexion-extension motion which is similar to my findings. However, the accuracy

of their system was around 1 mm 121. Their coupled motion in left-right bending

and axial rotation were also similar to mys. During primary axial rotation, Ochia

et al. found that the coupled range of translation in left-right direction was over 8

mm at L2-3, over 4 mm at L3-4 and over 1 mm at L4-5 levels. These are larger

than those measured from my study during standing weightbearing axial rotation.

Their coupled translation in anterior-posterior and proximal-distal directions were

lower than those reported in my study. These comparisons indicated again that the

coupled vertebral motions are also loading dependent.
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In conclusion, the study in Chapter 4 used MR combined DFIS as a first

attempt to investigate functional lumbar spine motion in human subjects under

weightbearing conditions. Compare to literature, the advantage of this system for

spinal research is its flexibility to accommodate various functional activities. Data

was reported on lumbar vertebral motion ranges during 3 unrestricted body

motions commonly used during clinical examinations of the spine. Vertebral

motion at different levels may respond to external loads differently. These data

may provide new insight into the in-vivo function of human spines.

5.2.3 In-vivo disc deformation

Due to the limitation of technique, in-vivo human disc deformation

research attempts have primarily concentrated on the measurement of strain and

the evaluation of nuclear migration using imaging technique such as MRI. The

details was discussed in Chapter one. Utilizing MR combined DFIS image

matching technology, the in-vivo disc deformation was determined under various

physiologic activities. Quantified data was obtained as a potential to study disc

degeneration related LBP and to improve surgical treatment such as spinal fusion

and total disc replacement. To my knowledge, the only related research is

conducted by O'Connell et al 110. They proposed an in-vitro study to a potential

in-vivo MRI method to determine disc strains non-invasively in axial compression.

MR images were acquired before and during application of a 1000 N axial

compression. Two-dimensional internal displacements, average strains, and the

location and direction of peak strains were calculated using texture correlation, a

pattern matching algorithm. Their study reported an average of 4.4% height loss

(compressive deformation) over the whole disc. The study in Chapter 4 using our

image matching method reported deformation of various portions (anterior,

posterior, left, right and center) of disc levels L2-3, L3-4 and L4-5 from various
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physiologic functional activities. Inhomogeneous deformation as well as

segmental dependent characters was found. Thus, the MR combined DFIS method

showed has a promising application on future disc deformation studies.

5.3 CT versus MR models for combined DFIS study

In Chapter 2 the spine specimen was imaged using both CT and MR. Since

CT images have been used by various researchers 16,24,72-78, the CT imaging model

was used as a comparison with the MR image-based model. The comparison was

carried out by two parts. First the geometry of the two models was compared

using the iterative closest point (ICP) method 114. About 4000 points were picked

from both vertebral body models. The average difference between the two mesh

models was calculated to be 0.07±1.1 mm when mapping MR model to CT model.

Then in the validation test using the MTS machine as a gold standard, both the CT

and MR models resulted in similar accuracy with the CT model having on average

a slightly better accuracy. This difference was not found to be statistically

significant. Both models also showed similar accuracy in the determination of the

speed of spinal motion. In the repeatability test using manual dynamic

flexion/extension of the spinal segment, both the CT and MR models also showed

a similar reproducibility in determination of 6DOF spinal positions.

Even though both the CT and MR models had similar accuracy and

repeatability results, there is one inherent benefit of using CT imaging for the

application of our technique. CT images may facilitate automatic segmentation

with commercially available software. In contrast, automatic segmentation for

MR models is currently time consuming. However, when measuring vertebral

kinematics in human subjects, the dosage of radiation to which the subjects are

exposed when utilizing CT imaging may present an ethical concern for the safety
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of the individuals being tested. Alternatively, MR model provide us with greater

visualization of the ligamentous components surrounding the lumbar vertebra as

well as their relation to relevant neurologic structures in this area. Therefore, in

order to minimize the risk to the subjects involved in this study and to enhance our

ability to look at the soft-tissue structures of the lumbar spine for further study on

pathology, MR imaging based model was selected to be used exclusively in order

to capture the 3D geometry of the lumbar spine for the human subjects.

5.4 Future Work

In the study, the MR combined DFIS technique showed adequate accuracy

and effective application for study in-vivo human spine biomechanics such as

range of motion and disc deformation non-invasively. This technique can be

carried out on study various spine studies. The future work may consist of three

aspects: the perfection of the imaging technology, the improvement of data

analysis and the vastitude of application.

With the advance in medical image techniques, we anticipate that there will

be a progressive improvement in our ability to obtain fluoroscopic and MR images

that were not available at the time of this study. Research will be conducted on the

MR sequences aiming at different part of spine osseous, surrounding soft tissues or

joints to continuously adjust the protocol during the ongoing studies in order to

improve the resolution of the focused anatomic features. We therefore anticipate

that with further refinement of our technique, coupled with technological

advancements in fluoroscopic and MR imaging modalities, the accuracy and

reliability of our technique will be improved. As mentioned before, the current

image matching technique employees manual segmentation of the MRI model and

manual matching of the model to fluoroscopic images. The process is very time
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consuming and the error was introduced from variability of each individual

researcher. In literature, automatic segmentation is feasible on human joint MRI

through various edge detection methods. Automatic or semi automatic method

should be developed on human spine MRI model. On the other hand, the optimal

solution would be to develop an automatic program. However, the naturally

complex anatomies of spine segments are hard to be matched automatically.

Knowledge of the anatomy and experience of matching are very important. So a

standardized teaching and learning protocol should be developed on the matching

process to minimize any variation and enhance the statistical power of the data.

In the disc deformation study presented in Chapter 4, the geometric

deformations of five pairs of points are studied to represent the deformation of the

whole disc. However this analysis can be improved by introducing stress strain

tensor to look at the 3D deformation throughout the whole disc. Finite element

models (FEM) have been applied to understand the relationships between the

biomechanical performance of the disc and disc degeneration. Nonlinearity of the

material and geometry has been considered in the model 58-60. Viscoelasticity and

fiber-reinforced annulus fibrosus (AF) was introduced 61-63. Recently, a popular

poroelastic material behavior has been introduced to FEM to consider fluid flow of

the disc 64-68. Regional poroelastic material properties and strain-dependent

permeability and porosity has also been investigated 69,70. Elasticity, poroelasticity

and other material properties from these spine studies should be incorporated and

finally a finite element model should be utilized to fully analysis and understand

the in-vivo disc deformation based on the 6DOF kinematics from image matching

technique.

It has been reported that 75% of all adults will experience LBP secondary

to degenerative changes in the lumbar spine at some point in their lifetime 3,4. The
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total cost of LBP in the United States exceeds $100 billion per year 127. Altered

vertebral kinematics has been assumed to be a critical factor leading to disc

degeneration related LBP. To fully understand this problem, studies on normal

subjects as well as LBP patients are required. The current investigation quantifies

the in-vivo 6DOF kinematics of the normal lumbar spine. A thorough pilot study

has been performed to validate and to investigate the measurement of in-vivo

vertebral kinematics and disc deformation. Early stage of disc degeneration

without symptom was observed in the normal subjects. In this study, we exclude

the subjects with any disc degeneration to make the study focused. However,

these data will provide a foundation for future studies on the relationship among

DDD, mechanism causes LBP and altered kinematics and disc deformation.

Subjects with early disc degeneration will be investigated in future studies. LBP

patients before and after surgical treatment will be included in the study in the

future. The patients will be sequentially recruited from the spine service of the

Massachusetts General Hospital. These are patients who visit our clinic because of

lower back pain attributed to disc degeneration and are scheduled to undergo

fusion surgery between the L4 and S 1 levels. We aim to focus our research on the

superior adjacent levels from L1 to L5. A review of our previous patient data

indicates that there are approximately 100 patients seen annually in our clinic who

will meet our criteria. The image matching method will also be applied on

patients after surgery and long-term follow up will be conducted. In chapter 4 the

study only investigates the subjects during designed physiologic functional

activities such as flexion, bending and twisting. However, DDD and LBP are

often related to weight lifting activities. And the study on dynamic gaiting will

help greatly to restore normal function of spine segments. Further research may

be carried on weight lifting and dynamic gating activities.



5.5 Summary

This study validated the MR combined DFIS image matching method using

both in-vitro and in-vivo experiment setup. The method was used to measure the

in-vivo 6DOF lumbar vertebral kinematics and disc deformation of normal

subjects during various torso motions of daily activities. These will sever as base

line research for the future quantitatively investigation of in-vivo lumbar spine

kinematics and IVD deformation of normal human subjects as well as in patients

with LBP both before and after fusion surgery. The long-term goal is to delineate

the biomechanical mechanisms of LBP and to improve our current surgical

modalities. The newly developed non-invasive imaging technique should provide

important information on the intrinsic biomechanics of the human spine. The data

will provide valuable information on spinal kinematics. This research is a first

attempt to study kinematics and disc deformation in normal subjects under in-vivo

physiologic functional activities. It will provide baseline information of the

relationship between abnormal in-vivo biomechanics and the mechanisms of

spinal degeneration. The knowledge obtained from this study will help to

establish guidelines for the improvement of current surgical techniques and

implant design for the treatment of patients with varying degrees of DDD, as well

as provide objective functions for the development of tissue engineered

biomaterials for disc degeneration repair.
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