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Abstract

This thesis presents a methodology, architecture, hardware implementation, and re-
sults of a system capable of controlling and guiding a hovering vehicle in unknown
environments, emphasizing cluttered indoor spaces. Six-axis inertial data and a low-
resolution onboard camera yield sufficient information for image processing, Kalman
filtering, and novel mapping algorithms to generate a, high-performance estimate of
vehicle motion, as well as an accurate three-dimensional map of the environment.
This combination of mapping and localization enables a quadrotor vehicle to au-
tonomously navigate cluttered, unknown environments safely. Communication limi-
tations are considered, and a hybrid control architecture is presented to demonstrate
the feasibility of combining separated proactive offboard and reactive onboard plan-
ners simultaneously, including a detailed presentation of a novel reactive obstacle
avoidance algorithm and preliminary results integrating the MIT Darpa Urban Chal-
lenge planner for high-level control. The RAVEN testbed is successfully employed
as a prototyping facility for rapid development of these algorithms using emulated
inertial data and offboard processing as a precursor to embedded development. An
analysis of computational demand and a comparison of the emulated inertial system
to an embedded sensor package demonstrates the feasibility of porting the onboard
algorithms to an embedded autopilot. Finally, flight results using only the single
camera and emulated inertial data for closed-loop trajectory following, environment
mapping, and obstacle avoidance are presented and discussed.
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Chapter 1

Introduction

Advancements in sensor technology and embedded electronics continually increase
the capabilities of autonomous vehicles, decreasing vehicle size, increasing maneuver-
ability, and broadening the range of operable environments. Figures 1-1 and 1-2 show

Figure 1-1: Commercial micro heli-
copter toy [19].

Figure 1-2: 16.7 gram fully-featured au-
topilot [53].

how this miniaturization is readily accessible in Commercial, Off-The-Shelf (COTS)
hardware. Most of these advancements can be applied to many different vehicle types,
all with unique advantages, limitations, and challenges. Unmanned Ground Vehicles
(UGVs), for example, have demonstrated incredibly complex and robust mapping
and navigation capabilities in a wide variety of indoor and outdoor environments,



but are limited in speed and maneuverability. Unmanned Air Vehicles (UAVs) have

demonstrated complex autonomy and aggressive flight outdoors, as well as obstacle

avoidance and simple target tracking on Micro Air Vehicles (MAVs) indoors, but are

limited in payload.

Recently, a significant body of research has formed aiming to combine all of these

capabilities to develop vehicle systems capable of complex autonomy and high maneu-

verability in indoor environments, spawning several conferences, symposiums, compe-

titions, and summits to provide a forum for the large volume of work from academic,

government, and private sectors [12, 17, 41, 42, 50]. One of the primary difficulties

quickly discovered in this area of research is the complexity of developing new hard-

ware, and the implementation of the necessary algorithms on embedded platforms.

The computational limitations of these embedded systems force the development to

focus on code optimization for speed, rather than on the performance of the core

algorithms [18]. These limitations also restrict real-time feedback to the developer,

making it difficult to troubleshoot problems during development.

The goal of this thesis is to describe the methodology and design of a system for a

highly-capable autonomous vehicle, and present implementation details and physical

results of many of the associated technologies and algorithms. We show the utility of

the RAVEN testbed for leapfrogging many of the challenges that have traditionally

slowed development in this field, allowing us to approach the core challenges more

directly, advancing the solutions for later integration with embedded avionics. This

will form a framework and path toward a complete system of incredibly high capa-

bility, and demonstrates a few breakthrough capabilities in the interim. Although

the implementation is not yet complete, the architecture is planned such that full

capabilities can be integrated efficiently in the future.

1.1 System Capabilities and Requirements

The term high-capability is best defined with an example scenario. A typical mission

begins with an outdoor launch in an urban canyon. After a quick flight over the city,



the vehicle drops down to an upper story window of a collapsing office building, flies
in through a broken window, and navigates the chaotic interior, beaming video and
a real-time 3D map down to a ground station. After investigating the building, the
vehicle flies back out the window and returns to base.

Th:,,,,: i,.:,,,,, i l hsi sce•narIU o IeqUl n sevetlra tec -

nologies to be working in harmony, on

both the algorithmic and physical levels.

The first is the vehicle--it must be able

to fly in order to cruise quickly over the

city and reach a top-story window. It

also needs to be small and highly ma-

neuverable in order to navigate precisely

inside the constrained, cluttered office
Figure 1-3: Cluttered, constrained, andspace, such as the fire damaged NOAA dangerous space after a fire at NOAA's Na-
tional Severe Storms Laboratory [51].building in Figure 1-3. We have identi-

fied the required vehicle to be a Hover-capable Micro Air Vehicle (HMAV). Although
it is not explicit in the example above that the vehicle be capable of hovering, the
ability to hover is desirable because of the increased utility of video from a semi-
stationary platform, and omnidirectional acceleration helps in avoiding obstacles and
navigating challenging spaces.

Secondly, the environment inside the building is completely unknown and must
be mapped in three-dimensions for the vehicle to effectively plan its movement. To
accomplish this, the vehicle must carry a sensor package capable of accurately per-
ceiving the environment, but that is sufficiently small, light, and low-power so as to
be carried a long distance. This sensor package must also provide enough informa-
tion such that the motion of the vehicle can be estimated with sufficient accuracy to
control the vehicle, stabilizing the fast, nonlinear dynamics, and accurately tracking
trajectories.

Finally, the vehicle must be able to transmit data and accept commands from a
remote operator, but also be robust to inevitable communication loss. This means



there must be a wireless link between the vehicle and the ground station, but the
vehicle must be capable of self-contained autonomy when the communication link
fails. Although advanced, computationally intensive path planning can be done on the
ground station and transmitted to the vehicle, the vehicle must be able to reacquire
this connection with autonomy that can function on the limited embedded hardware
onboard the vehicle.

1.2 Motivation

Thlr d1 f blitieI riIeUw tW o U c i U cia eLU %;0 adU Itl~ t-

tensive, and would enable many missions

so far impossible with current technol-

ogy. Disaster areas such as those created

in the wake of hurricane Katrina could

be quickly searched from high altitude,

after which the same vehicles could fly

down and into flooded or partially col-

lapsed buildings, looking for survivors,lapsed buildings, looking tor survivors, Figure 1-4: A partially collapsed building
severed gas lines, and other time sensi- in Manila, Philippines that would be un-
tive situations. Damaged structures such safe for human rescue-workers [9].

as the office building in Figure 1-4 are often unsafe for rescue-workers to enter, thus
the unmanned vehicles could provide vital, time-sensitive information without risking
additional lives. These autonomous vehicles could also investigate difficult to reach or
hazardous places, such as the undersides of bridges or contaminated service tunnels,
inspecting them for damage and tampering. These vehicle could also cover vast, com-
plex areas quickly and effectively, dropping down between buildings in urban canyons,
and among trees under forest canopies in pursuit of criminals or lost persons.

Because of the general formulation of the problem and the strict performance
requirements necessary to navigate in three-dimensions on a dynamically unstable
vehicle, most all of the algorithms and associated technologies developed here can



by applied to many other mobile robotic systems. One example is UGVs, which are

typically large and bulky to accommodate dense sensor suites of LIDAR, RADAR,

cameras, and more, but the system described here would enable comparable mapping

and autonomy capabilities in a much smaller package, facilitating development of

physically smaller vehicles with similar functionality.

1.3 Challenges of Vision-Based HMAVs

Although there are many groups working on similar problems, there are some univer-

sal challenges that limit the rate of development. First are the inherently unstable,

fast, and nonlinear dynamics of HMAVs. This means that, in addition to being hard

to control in a classical sense, when things do go wrong, they go wrong very quickly.

Small or infrequent errors can have disastrous consequences, causing the vehicle to

physically crash, potentially damaging itself, the onboard electronics, and endanger-

ing the people nearby. Even if replacement parts for these inevitable crashes are

budgeted, the time necessary for frequent repairs takes away from the core research

and reduces the freedom to take risks, which is important for progress.

Small vehicles also have small payload capacities for sensors and computation,

severely limiting the data available to the system, the amount of processing that

can be done onboard, and communication performance. Laser scanners are near the

limit of payloads for HMAVs, and even though cameras are becoming increasingly

miniaturized, the related computational requirements are significant and difficult to

service within the payload limitations. Sensor data can be transmitted wirelessly

to powerful offboard computers, but this introduces several more challenges with

bandwidth, latency, and reliability of these wireless connections.

Image processing is a notoriously hard problem, limited physically, algorithmically,

and computationally. Significant progress has been made in the last 30 years, but

the state of the art is still far from the capabilities of human vision, which we often

take for granted. Changing light levels, low indoor light levels, and tight payload

requirements in size and weight are very challenging to deal with at the hardware



level, often causing poor exposure and image blurring. If good images are acquired,

the challenge shifts to the algorithms that need to make sense of these arrays of colors,

which could represent any combination of trillions of possible objects, actions, and

environments, and may be moving, distorting, reflective, transparent, and so on. The

state of the art in the field of computer generated imagery is nearing photo-realism,

and can handle all of the physical features mentioned before quite well, but we are

addressing the inverse problem, which is significantly more difficult. Not only is the

data incomplete (3D data describing a 4D world), but the processing must happen

in real time. Even with advances in embedded electronics, this real-time limitation

forces most systems to work with low resolution, low frame rate, gray-scale images.

As a result, significantly less data can be processed than would be available from, for

example, a consumer High-Definition camcorder.

Finally, the added third-dimension of maneuverability and constraints makes en-

vironment mapping and path planning fundamentally more complex than typical 2D

systems. Most obstacle avoidance schemes address the 2D case of a vehicle maneuver-

ing through a pseudo-planer world, but in order to fully utilize the capabilities of an

HMAV, it is important to allow any feasible trajectory. It is also important that the

full 3D location of objects in the world be known so that they can be planned around

according. In addition to complicating the algorithms for mapping and planning,

adding a. third dimension also increases the computational complexity significantly.

Although daunting, these challenges are surmountable in developing the capabili-

ties sought. In the next section we will discuss progress made by other groups in this

field, and in sections 1.5 and 1.7 we will outline our approach and contributions.

1.4 Background

The core technologies of this system fall into five categories: estimation filtering,

image processing, environment mapping, reactive obstacle avoidance, and proactive

obstacle avoidance, although we will only cover those most uniquely contributed to

in this thesis in depth. There has been much research in all of these areas, and the



following sections focus on the most recent developments that have been used in this

system.

1.4.1 Mobile Robot Systems

Mobile Robot Systems have demonstrated the utility of a wide range of sensor types,

including LIght Distance And Ranging (LIDAR), SOund NAvigation and Ranging

(SONAR), Inertial Measurement Units (IMUs), wheel encoders, RAdio Distance And

Randing (RADAR), infrared ranging, and Global Positioning Systems (GPS) [43, 48,

67]. The most notable display of these sensor rich, highly capable vehicles is from the

DARPA Urban Challenge event in which several teams competed with autonomous

automobiles capable of sensing and processing the surrounding dynamic environment

and planning through the resulting information in complex and robust ways [14]. MIT

demonstrated a particularly complex entry with Talos, a Land Rover with fifteen radar

units, six cameras, twelve LIDAR, units, and a high-powered, forty-core processing

system. The entire system was self-contained, including an additional gas powered

electrical generator and air-conditioning system to maintain the proper environment

for the electronics [40]. Brunskill, Kollar and Roy have also demonstrated advanced

mapping and localization using only LIDAR data on a mobile robot [6]. On the

other end of the spectrum, Davison, Reid, Molton and Stasse have addressed the

Simultaneous Localization and Mapping (SLAM) problem from a wearable computing

perspective, and have demonstrated real-time SLAM using only a single camera,

but require known landmarks to begin within view of the camera to initialize the

system [11].

There are several MAV and HMAV systems currently under development address-

ing the autonomous flight problem. There are many different combinations of vehicles,

capabilities, sensor sets, and operating environments being explored. The three we

will address here are collision avoiding fixed wing MAVs, advanced vision processing

on helicopters outdoors, and vision-aided flight on indoor helicopters.

Forward flight MAVs have demonstrated robust flight stability and collision avoid-

ance in small flight spaces. Often used as platforms for development of optical flow
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based obstacle avoidance algorithms, they are typically designed to be dynamically

benign, thus do not depend on accurate state estimates in order to fly stably. In order

o stay safely airborne indefinitely the primary challenge of the navigation system is

to steer the vehicle left or right to avoid obstacles and approach targets, and change

throttle or pitch to maintain altitude, neither of which require 3D environment map-

ping or an accurate position estimate [52, 56, 75]. Autonomous take-offs and landings

mimicking the landing behavior of bees have also been demonstrated [21]. UC Berke-

ley has pushed the limits of these simple and lightweight sensors and electronics to

develop a fully autonomous glider less than 3 grams, shown in Figure 1-5 [72].

Advanced vision-based ego-motion estimation on HMAVs, however, requires sig-

nificantly larger and heavier sensors and computers, thus is typically done on large

helicopters, such as the one shown in Figure 1-6, in wide-open, outdoor environ-

ments [27, 39, 62]. These platforms are often hand-piloted to collect data which

is post-processed afterwards [13]. Several groups have developed helicopter plat-

forms capable of estimating the vehicle position using only vision and inertial data
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Figure 1-7: The quadrotor platform Figure 1-8: A commercially avail-
at the Robotic Vision Lab of Brigham able quadrotor platform from AirRobot,
Young University [18]. GmbH [1].

using known visual targets that must be within view of the camera for the entire

flight [8, 73]. Kanade, Amidi, and Ke have developed a more general vision-based

ego-motion estimation scheme which operates on an autonomous helicopter flying

outdoors under GPS-based control [32]. They have also demonstrated high-fidelity

3D terrain mapping with a LIDAR system onboard the vehicle. Several groups have

also addressed the problem of vision-based target tracking and mapping for vehicle

guidance, but still rely on standard GPS systems for ego-motion estimates [35, 59].

Saripalli and, however, have embraced the benefits of high performance inertial units,

high resolution binocular cameras, and Extended Kalman Filter formulations similar

to those employed here, achieving navigation estimates to within 1% accuracy, even

after covering nearly 400 m of terrain, but again, the estimates are only done in post-

processing after human piloted flights [33]. These results are promising, but there

are still no results indicating these vehicles cannot close the control loop without

GPS data or human pilots, and cannot be flown at all inside confined environments.

Although much of the mathematics and hardware are similar between these systems

and the one presented in this thesis, the environment is significantly different. Visual

feature tracking in particular has significantly different behavior because of the nature

of the confined environment, which limits the scope of the camera, and has a higher

degree of clutter and complexity, increasing occlusion, which significantly reduces the

persistence of features, increasing estimate drift.

T~rC~-·:



Most HMAV research in indoor environments uses downward looking cameras to

provide adjustments to slow lateral drift, caused by imbalances in the vehicle and

disturbances from the environment, so the vehicle can autonomously hold position.

The quadrotor MAV developed in the Robotic Vision Lab at Brigham Young Uni-

versity, shown in Figure 1-7, is an excellent example of this capability [18]. Features

are detected on the ground and tracked between frames with a feature tracking algo-

rithm implemented on a Field Programmable Gate Array (FPGA). As the features

are tracked, their movements can be used to estimate the motion of the vehicle and

a reaction is computed to compensate for the movement, keeping the vehicle hov-

ering over the same location. The authors claim image processing can be done on

the FPGA at greater than 15 frames per second, demonstrating the computational

feasibility of image processing onboard an HMAV. AirRobot has also developed a

commercial product, shown in Figure 1-8, capable of drift-free autonomous hover in

unknown indoor environments [1]. This feature makes a very stable and easy to fly

vehicle for human-in-the-loop control, allowing the operator to take her or his hands

off the controls while the vehicle hovers in place, even in confined indoor spaces.

Although very capable in the hands of a human pilot, neither is capable of estimating

;t+i 1-, 1 4- 1 + ; 1 4- 1bi
I ~ asoILi U:I JJll p illlo; w JI. e V•D % UnI-

known environments, cannot map obsta-

cles, and thus cannot navigate unknown

environments autonomously.

He, Prentice and Roy have demon-

strated the utility of LIDAR onboard

HMAVs for position estimation in in-

door environments, shown in Figure 1-9. Figure 1-9: A LIDAR enabled quadro-

These systems show promise for HMAV tor capable of estimating its position and
heading by matching real-time measure-

development with the continuing minia- ments with a map of the room. [57].

turization of LIDAR modules, but so far

require maps of the environment to enable registration of measurements, and poition

estimates are too noisy to accurately estimate velocity for effective control feed-



back [57]

1.4.2 Obstacle Avoidance

Collision avoidance is an essential capability of almost all autonomous vehicles, and

has been studied extensively on ground, air, and underwater platforms. There are

three basic types of obstacles avoidance schemes: optimal, thorough search, and

reactive.

Optimal schemes, such as Mixed Integer Linear Programming, typically optimize

paths over several parameters, including fuel usage, obstacle proximity, minimum

time, and other constraints specific to particular scenarios. Although provably opti-

mal, these schemes often have difficulty dealing with dynamic and uncertain environ-

ments, and are often very computational intensive. They can, however, be effectively

combined with other planning methods to balance optimality with computational

tractability [16, 37, 54, 61].

The most commonly used thorough search type planning method is the Rapidly-

exploring Random Tree (RRT) [58]. The basis behind an RRT is that the configura-

tion space of a vehicle is significantly limited by its dynamics, thus random sampling

of control inputs and simulated dynamic propagation will necessarily generate dy-

namically feasible paths which can be evaluated for merit. RRTs are very powerful

because they scale very easily to fit whatever computational resources are available,

and are very adept at working with complex and dynamic environments. Although

technically they can scale to match the resources available, performance drops as

computation is reduced and typically require large computational resources to do an

adequate job [36, 38].

The primary method discussed in this thesis is reactive obstacle avoidance. These

schemes can guarantee safety with minimal computational effort, but are prone to

inefficient path generation and have a tendency to get stuck in local minima with no

guarantee of ever finding a path to the goal [5]. There have been many approaches

to this class of planning, such as the use of artificial potential fields [34], vector field

histograms [4], and global dynamic windows [5]. With potential field planning, the



environment is modeled as a series of attractors and repulsors that interact as the

vehicle moves through the environment [23]. These schemes have particular difficulty

with head-on collisions where the vehicle tends to "bounce" off the obstacle before

going around it. Attempts to fix this problem have been made by introducing curl

into the potential field, causing the vehicle to sweep to the side of obstacles rather

than repelling directly away from them, but these solutions often add significant

computation to solve the necessary differential equations, and often generate non-

intuitive paths that go the long way around obstacles [47].

1.5 Approach

In order to achieve the capabilities outlined in section 1.1, the vehicle must have

sensors to estimate the vehicle state for control, as well as perceive the environment

for obstacle avoidance. Because of the nature of environments we are considering,

robust communication cannot be assumed, and the vehicle must also be capable of

recovering from communication outages gracefully using an entirely self-contained

system.

We have chosen to use inertial measurements and a single camera for our sen-

sor suite. Inertial Navigation Systems (INS) have proven utility in a wide range of

applications, and Inertial Measurement Units are becoming increasingly small and

low-power with the advent of Micro-electromechanical Systems (MEMS). Video is

the output data of choice for many missions, thus it is logical to use the same camera

for robotic perception of the environment, as well as an improved ego-motion estimate

sufficient for autonomous flight, eliminating the need for any additional sensors. It is

also of note that we have oriented our camera forward-looking, allowing the detection

of obstacles in the forward flight direction, but which also gives a more natural view

of the environment for human interpretation.

Many impressive results have been achieved with GPS, but it is unreliable in many

of the scenarios we are considering. GPS data can be combined with the system when

the vehicle is flying outdoors, removing drift in absolute position, but the vehicle must



be fully-functional when GPS is not available. In this thesis, we demonstrate that our

sensor set is adequate for autonomous flight of HMAVs in unknown environments.

Nevertheless, there are fundamental limitations of our approach which are discussed

in section 1.6.

The vehicle must also be able to plan in the face of an environment whose represen-

tation is in constant flux, typically due to the noise and other uncertainties inherent

in physical systems. MIT's entry in the Urban Challenge was an excellent demon-

stration of these advanced planning capabilities, and used grid map based RRTs to

constantly re-plan near-optimal trajectories at a high rate [38]. Although effective,

these algorithms require orders of magnitude more computational power than is avail-

able onboard MAVs at this time. Fortunately they have been proven tractable on

offboard computers which can communicate wirelessly with the HMAV, but the poor

communication performance in the environments we are targeting makes it impossible

to rely solely on these offboard planners.

We have designed our architecture to combine an onboard reactive planner with

the MIT RRT planner running offboard, outlined in Figure 1-10. The resulting system

allows the vehicle to navigate safely when communication fails, but also plan very

intelligently while in communication range.

From a hardware perspective, our approach is to use as little custom hardware as

possible, keeping the vehicle and sensing system simple so that we can risk crashes

and easily replace broken equipment. An extension of this is our choice to run our

algorithms offboard on a regular desktop with dedicated high-performance wireless

links to the vehicle. This choice keeps the vehicle small, simple, and low-cost, but

also gives more flexibility with developer tools and real-time output. Transmission of

hardware IMU data proved to be too unreliable for robust flight, so we have chosen

to simulate our IMU data with the Vicon tracking system which does not suffer from

wireless dropouts. The Vicon tracking system also provides truth data for both post-

analysis of system performance and a safety net which can be engaged in the event of

poor algorithm performance during development, reducing the likelihood of crashes.

The simulated inertial data is shown to have characteristics similar to its hardware



Vehicle

Figure 1-10: System architecture.

counterpart in section 2.2.4, and camera performance is thought to only increase with

an embedded system, as latency and compression artifacts from JPEG compression

and wireless transmission will be removed.

The solution we present in the following chapters addresses all these issues: au-

tonomous planning and control in unknown environments aboard a hover-capable

unmanned aerial vehicle using a six degree of freedom IMU and a single camera via

a hybrid onboard/offboard planning system. Our estimation and control is demon-

strated to be stable and capable of tracking paths with sufficient performance to avoid

obstacles perceived in the environment, and the planning system can intelligently nav-

igate unknown environments and keep the vehicle safe in the face of communication

outages.

1.6 Limitations

There are many practical and theoretical limitations to the sensor suite we have

chosen. The most obvious is that it does not work in the dark. There are not many
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good solutions to this problem in arbitrary situations, but active illumination and

infrared sensitivity show promise. SONAR and LIDAR are also strong candidates

for perception in dark environments. Smoke, dust, and other particulates pose a

serious challenge to any indoor flight, but infrared imaging, RADAR, and SONAR

may present solutions.

It is also difficult for the system to track moving objects because of the sin-

gle camera. The parallax necessary to measure depth is only provided by vehicle

movement, which takes time, and thus the environment must not change between

measurements. Figure 1-11 shows a scenario in which a static object (blue circle)

and a moving object (green circles) are perceived by a moving vehicle with a sin-

gle camera (orange squares). The lighter shades indicate previous locations, the

~clrl 5arrowsxr indri;rteo mrn-romont and th f dash a rrowxxr

represent bearing measurements from the vision system.

The two bearing measurements for the static object inter-

sect at a point that coincides with the actual location of

the object, thus creating an accurate measurement shown

by the smaller blue circle. The bearings for the moving
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moved from when the first measurement was taken, and ,I --

thus its location cannot be accurately determined. This

limitation can be overcome with binocular vision, which

provides two bearings with parallax at the same instant in
Figure 1-11: A diagram

time for every obstacle perceived in the environment. It is of dynamic single camera

also possible to use optical flow to compute time-to-impact object estimation.

which can be used to form an actionable understanding of the danger [52, 56, 75],

but this cannot generate a physical mapping which is far more useful for intelligent

planning.

The specific camera hardware utilized in this work also limits the flight envelope

of the vehicle. If the vehicle moves too quickly, the imagery becomes blurred beyond

usability, and estimates of the environment and vehicle state both degrade. The



narrow field of view also limits the system performance by reducing the span of the

surrounding environment that can be seen at one time, decreasing the persistence of

features in the environment and hindering the mapping and ego-motion estimation

performance. These issues are easily solved with a faster shutter speed and higher

frame rate camera equipped with a wide-angle lens. These are currently available and

becoming more prevalent, but were not in a convenient, digital, wireless, off-the-shelf

form at the time of this project.

Finally, although the similarities of the simulated and hardware inertial data are

shown, the vehicle cannot fly outside of the RAVEN flight space. Efforts in embedded

hardware development will need to be made to implement the algorithms developed

in this thesis on a fully self-contained onboard system in order to fly in real-world

environments. Computational resource analysis is performed in section 5.2, indicating

that the algorithms should be able to run on COTS embedded electronics.

1.7 Contributions

The primary contributions of this thesis are the system and key supporting algorithms

for the guidance and control of an HMAV in unknown indoor environments. This in-

cludes the implementation and use of a hardware system that provides the sensing,

computation, and vehicle for rapid prototyping, dramatically increasing the rate and

productivity of development. The concepts and methodologies of the algorithms used

for image processing and ego-motion estimation are discussed, and the implemen-

tations of the environment mapping and reactive obstacle avoidance algorithms are

presented. Flight results of the autonomous system are analyzed, demonstrating the

viability of this solution to achieve its objectives in real environments on physical

hardware.



Chapter 2

System Design and Methodology

2.1 Architecture

There are many components that must interact in harmony for a complex planning

and control system to operate effectively in a real-time environment. In particular, the

onboard system must run very quickly and reliably in order to maintain control over

the unstable vehicle, while the offboard system must be able to provide information

that is useful to the onboard system, even when the data is asynchronous and unreli-

able. Communication between the modules is especially important on each individual

computer (since each is running multiple threads) as well as between computers.

2.2 Hardware and Supporting Technology

The MIT Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) [26,

69] provides the hardware foundation for the developments presented in this thesis.

RAVEN combines the tracking capabilities of a Vicon-MX camera system [70] with

R/C control hardware, digital video cameras, and an array of networked servers into

an ideal development environment. Although ultimately the external tracking system

will not be necessary, the vehicle is designed to fly only inside the RAVEN area so

that the Vicon truth data can be used for post-analysis, as well as a control safety

net should the algorithms under development become unstable during flight.
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Figure 2-1: Hardware architecture and connectivity.

For ease of prototyping and development, as much computation is done offboard

as possible. This keeps the dollar value of the airborne system low, allowing more

freedom to take risks when conducting experiments. It also allows the use of COTS

hardware, alleviated the time that would be required to develop custom vehicles and

electronics. The computers use standard Linux development environments, which

makes it very easy to develop, implement, and debug software quickly. The addi-

tional computational power and storage space compared to an embedded platform

also allows many debugging freedoms, such as the ability to save very large data files,

generate complex visualizations for real-time debugging, and playback rates signifi-

cantly faster than real time for testing algorithmic improvements on the real flight

hardware. Extensive process timing analysis is also done in order to analyze the fea-

sibility of the core algorithms to ultimately run in real-time on an embedded system.

The basic hardware structure is outlined in Figure 2-1, showing how the system is

broken down into four parts: a truly onboard system (outlined in cyan on the right),

the conceptually onboard system (outlined in dark blue), the offboard base station

(outlined in orange), and the communication links between them (dashed arrows).

The truly onboard system includes everything that actually flies in the air, including

the vehicle itself, the wireless camera, and the reflective Vicon dots. The conceptually

onboard system is composed of a regular desktop computer', an 802.1 1g Wi-Fi router

'A powerful Dell OptiPlex with Core2 Quad Q6700 processor at 2.66 GHz and 4 GB of RAM is
used so that it can effectively run the onboard system, offboard system, and visualization simulta-
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for communication with the onboard camera, and the Vicon system for truth and

emulating IMU data. The offboard system is composed simply of a separate desktop

computer workstation.

2.2.1 Communication

Between physical computers, the Lightweight Communications and Marshalling (LCM)

system is used to transfer messages and data over gigabit ethernet (or localhost, in the

case of offline playback) [15]. LCM is a high speed and lightweight UDP based net-

working package that enables low latency, high bandwidth communication between

multiple processes on a network without a central hub. An LCM communication

manager runs in an independent thread on each machine and asynchronously calls

handlers as relevant packets are received. The onboard system listens to commands

such as a standby, takeoff, waypoints, and land, and the base station listens to in-

formation coming back from the onboard vehicle in the form of state and mapping

estimates.

Because the communication framework is so modular, it is easy to swap in new

message sources. To supply the base station with commands for the onboard vehicle,

a 3D user interface has been developed so an operator can visualize the estimated

map of the environment, as well as direct the vehicle with a point and click interface.

The planning software from the MIT Urban Challenge can also be plugged into the

system -- the base system processes the map estimate and sends it to the planner so

that it can plan through the perceived environment, and with a slight modification,

the plans are transmitted as waypoints to the base system, which then sends the

appropriate commands to the vehicle, just as if an operator had clicked the screen.

Having a unified communication system also makes it easy to simulate degrading

communications due to the physical environment. For example, if the vehicle flies

behind an obstacle known to the simulation system, the communication performance

can be decreased accordingly, enabling testing of the system response to communica-

tion failures.

neously when conducting offline playback tests.



Figure 2-2: Closeup of quadrotor with Figure 2-3: The quadrotor with camera
camera attached. and radios in flight. Flight computers and

operator station in background.

2.2.2 Vehicle

The HMAV chosen for this research is the high performance Hummingbird quadrotor

with the scientific accelerometer add-on, shown in Figures 2-2 and 2-3, part of the

professional line of helicopters from Ascending Technologies [2, 22]. The vehicle is

outfitted with an embedded electronics suite, including an 8-bit microcontroller (AVR

ATMega8), digital to analog converter, three temperature compensated piezoelectric

gyros, three accelerometers, and four brushless motors and custom drivers. The

onboard controller is optimized for high-speed fixed-point computation, and runs at

a rate of 1 kHz. This high speed means that the sensors are over-sampled much faster

than their rated update rate of 50 Hz, giving the controller a better statistical measure

of the true physical parameter, and the response time of the motors is minimized to

a maximum 1250 ps from sensor measurement to torque change. This rapid response

and high sensor fidelity gives the vehicle very high control bandwidth, making the

platform very stable in flight. The accelerometer and gyroscope data is also fused

to generate a tilt estimate which is used for the onboard control, thus the external

controller need only specify the desired tilt angle, and the vehicle will match this angle

with very high performance. In low-disturbance environments, a well trimmed vehicle

can maintain nominally level flight and simply drift slowly around with ambient air

currents.

The motors and controllers are high efficiency brushless types, which give the



vehicle a high power-to-weight ratio and are very efficient, extending the vehicle flight

time beyond 30 minutes on a single Lithium-Polymer battery charge. The high power-

to-weight ratio gives the vehicle enough agility that it can perform flips and other

acrobatic maneuvers inside confined areas (guided by the commands of an expert

human pilot), but also general control of the vehicle can be very aggressive without

saturating the actuators, allowing the vehicle to rapidly avoid incoming obstacles or

respond to sudden wind gusts without becoming unstable.

The frame is sturdy and light-weight, providing stiffness for control performance,

strength to survive crashes, and light to maximize power-to-weight and flight time.

The four arms are composed of carbon fiber and balsa wood composite laminates,

joined by two central carbon fiber plates to which the electronics are mounted. A

magnesium cage encloses the electronics on top and the battery below the central

plates. The magnesium is stiff and strong, but also ductile, efficiently absorbing the

impacts of crashes by deforming. The performance of the vehicle is not affected by

deformations to the cage, which can be bent back into place by hand.

The vehicle is also outfitted with a digital communication channel, which allows

external access to the gains, control commands, sensor readings, and tilt estimate.

This functionality makes the system very easy to work with, and gives ultimate

flexibility in the vehicle control, presenting a very high level of utility.

The vehicle receives control signals from the system via a standard 72 MHz R/C

radio transmitter, which is plugged into the computer via a Tom's RC SC8000 buddy

box [66] to provide a USB interface for the PPM signals necessary to control the

vehicle through the trainer port on the transmitter. This interface provides a low

latency and robust control link to maximize vehicle flight performance and reliability.

2.2.3 Camera

The camera system is a COTS Wi-Fi enabled network camera from Panasonic (BL-

C131A), connected to the network via a 802.11g 54 Mbps Wi-Fi router. The camera

hosts images which are retrieved through the network as JPEG files and loaded into

the image processing system. The camera was physically modified for clean inte-



gration into the vehicle structure. The camera comes with an integrated pan and

tilt system which has a small camera submodule, visible in Figure 2-4, that is con-

nected to the rest of the camera with a flexible ribbon cable. After removing the pan
1 *, .1 , .1 11 1 1 1

and tilt motors, tne small camera suDmodule was

remounted cleanly to the vehicle frame with an

adjustable mounting bracket for optimal align-

ment, and the rest of the camera body and elec-

tronics could be placed on top, directly above the

center of gravity of the vehicle, keeping the dy-

namics symmetric and simple to control.

The camera specification claims it can serve
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Figure 2-4: Closeup of cameraempirical testing shows the best operation is at Figure 2-4: Closeup of camera
with mount and ribbon visible.

320x240, which runs between 15 and 20 Hz be-

cause of the low indoor light level. The lower resolution is fine for our needs as the

image processing must be as fast as possible in order to run on an embedded platform,

and the fewer the pixels the faster the processing. The 1 mm diameter lens has a field

of view of 41 degrees vertically by 53 degrees horizontally and a fixed focal length

of 20 feet to infinity. The small lens, long focus, and narrow field of view make the

optics very close to an ideal pinhole camera, indicating rectification is unnecessary,

simplifying the image processing. At the same time, the narrow field of view limits

the vehicle's ability to perceive the environment, making it more likely to blunder into

unseen obstacles, and also reduces the persistence of features, decreasing ego-motion

estimation performance as discussed in section 3.2.

The usage of a digital wireless camera has been essential to the success of the

project. Analog radios in indoor environments suffer from multi-path interference,

causing almost unusable image quality, especially because of the sensitivity to noise

of machine vision. Wi-Fi is very well suited for indoor environments and provides low

latency and excellent transfer rates, and the digital nature of the images means there

is no randomized transmission noise to interfere with the image processing. Although



JPEG compression artifacts do have a noticeable effect on image quality, they are

much more consistent than analog noise, and the frame-to-frame style processing we

are using is largely unaffected.

2.2.4 Inertial Data

There are two options presented for measuring inertial data of the vehicle. The first

method developed is based on the robust and adaptable Vicon camera system which

can provide high fidelity inertial data for any vehicle tracked in the RAVEN room.
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that any vehicle, or even object, can have the

equivalent data of a high performance onboard

IMU without any hardware integration time,

costs, or headaches. These differentiations are

calculated by means of 2nd and 1st order ex-

tended Kalman filters on the position and atti-

tude data, respectively, coming from the Vicon

system, implemented with tools from the KFilter

library [74]. A gravitational component is added

to the resulting acceleration estimate, which is ro-

Figure 2-5: Closeup of XBeePro tated into the body frame of the vehicle. Finally,
digital radio for connection to Quaternions are computed, and the full data set
hardware IMU.

is broadcast on the data bus as LCM packets, em-

ulating a hardware IMU operating at 100 Hz onboard the vehicle, as well as providing

a truth reference.

The second option is to access the hardware IMU data onboard the vehicle via

a digital radio. As shown in Figure 2-5, an XBeePro digital radio is interfaced with

the high performance X-3D-ACC quadrotor sensor board to transmit hardware IMU

data directly to the "onboard" ground computer. The transmission has little latency

and is very close to a true embedded flight system because of the dedicated data link.

Although using hardware IMU data would be a closer approximation to a true



embedded flight system, occasional dropouts and corruption in the transmission has

presented a challenge in using the data offboard. The ego-motion estimate and unsta-

ble vehicle dynamics are not forgiving to dropouts in data when it is expected to be

updated at a consistent 50 Hz, and the vehicle could not be flown in this configura-

tion. Additional filtering or other techniques could potentially address this problem,

but Figures 2-6 and 2-7 show a comparison of the hardware IMU data to the filtered

Vicon data, indicating that the simulated data is both more reliable, because there

is no wireless data link (note the spikes and dropouts in Figure 2-6), and similar

in characteristics to the hardware data, possibly even inferior, indicating that if the

system can work with this emulated data, there is a good chance it would work with

real hardware data on an embedded system.

The Root Mean Square (RMS) noise levels of the hardware IMU data2 are 0.028 m/s 2

and 0.89 deg/s, slightly lower than those of the Vicon data, which are 0.037 m/s 2 and

0.96 deg/s. The simulated gyro data also has 40 ms more lag than the hardware data

as a result of the filtering, which is an additional inferiority. The muted values of

the simulated data are also apparent in the gyro plot of Figure 2-6, specifically from

24.5 to 25 seconds - this is a result of the filter reducing the noise in the system to

match that of the hardware data, and thus attenuating the true data, indicated by

the reduced magnitude of oscillations. The exact level of attenuation is driven by

designing the filter to match the noise floor of the hardware data when the vehicle is

at rest.

The primary disparity remaining between the two data sets is the heavy dis-

cretization of the IMU data, which is clearly shown by the wide gaps between bars

in Figure 2-7. This discretization is due to the fixed precision of the embedded elec-

tronics, which evaluates to 0.020 m/s 2 and 0.61 deg/s in physical terms. However,

because the magnitudes of the RMS noise levels and the operational values are larger

than the respective fixed precisions, the discretization should not effect the perfor-

mance of the filter significantly. Because of the close match of noise characteristics
2 Hardware RMS values and histograms were generated with outliers in the hardware data re-

moved, which are presumed to be caused by transmission errors and thus would not effect an
embedded system
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Figure 2-6: Comparison between inertial data measurement systems. Note dropout
between 29 and 29.5 seconds.

and increased reliability, the simulated inertial data from Vicon was used for filter

inputs on all flights, and it is suspected that performance would be similar, if not

better due to the reduced latency and attenuation, when using real hardware data,

which would not suffer from transmission errors or dropouts in an embedded system.

Thus, it is hoped that the existing ego-motion estimation system would operate with

similar, if not higher performance, when implemented on an embedded system.
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Figure 2-7: At-rest inertial data comparison.

2.3 Onboard System

The onboard system needs to handle several tasks simultaneously, and thus interpro-

cess communication is very important. The simplest solution to this problem is the

use of buffers and a central hub configuration such that there is only one process that

reads from any given buffer, and only one that writes to it. This decreases the over-

head and delays associated with mutex locks and other techniques for guaranteeing

thread safety. It does not, however, guarantee there will not be any thread racing

conditions, but the system is arranged such that these conditions are minimized and

that they are handled gracefully. There are a few low bandwidth situations where

locks are more appropriate and they are noted below.

The onboard system consists of four independent threads: central hub, image

processor, IMU reader, and communications handler, outlined in Figure 2-8. The

communications handler is the simplest - it is spawned by the LCM communications

system, and listens to the network, waiting for pertinent messages to forward on to

the subscribed handler functions, which include commands for takeoff, land, add way-

point, and switch to Vicon safety net. Because the handlers are called asynchronously

and at a low frequency, locks are held when updating the waypoint list. This is espe-

cially important because the multi-threading behavior of the C++ vector template

MhML_ -
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Figure 2-8: Process flow diagram of onboard system operation.

class used for waypoint storage is unknown, and if a read is called in the middle of a

write, a segmentation error could result.

The image processor runs whenever there is a new image available from the cam-

era, which are served by an independent image acquisition thread, at approximately 15

Hz, described in detail in section 3.1.1. After the image is processed (see section 3.1.2

for details), the new feature data is saved to a buffer and the data is marked as new.

Because the central hub is operating at more than three-times this frequency, this

flag is checked much faster than it is updated, and thus the data is read and used

before it can be written again, minimizing the chance of thread collisions.

The IMU reader is clocked by the remote IMU source, either from Vicon or hard-

ware) at about twice the frequency of the central hub, and thus uses a double buffer to

separate reading from writing. As it receives raw data, it processes it into physically

meaningful values and deposits them in alternating buffers. Once a buffer is written,

the read flag is switched, indicating that the hub should read from this current data.

If the hub happens to be reading the data at the exact time the next IMU data is



received, there is no collision because the data is written to the opposite buffer. If the

read index is changed during a buffer read, the data will be split between two time

steps, but because of the high rate of data this simply means that the most recent

possible data is being used and does not cause any problems.

The central hub is clocked to run at precisely 50 Hz average rate using a timed

semaphore. Its primary duty is to march through the system process and call each

function in sequence. The first function called is the IMU updater, which loads in

the most recent IMU data, as well as the most recent Vicon position data for truth

comparison and potential safety net. The IMU data is fed into the ego-motion esti-

mation filter, and if there is new vision data (which is true about every three frames)

then a vision update is called as well, along with a call to the environment mapper.

This generates an updated ego-motion estimate and an updated map which are sub-

sequently fed into the onboard guidance system. Details of the motion estimator and

environment mapping can be found in sections 3.2 and 3.3 respectively.

Once the system is armed with up to date knowledge of the situation, the guidance

system examines the light state (standby, flying, landing, etc.) of the vehicle, the

current waypoint list, the map, and the ego-motion estimate and generates a reference

state for the control system to produce the desired motion, whether it is to move to

a new location, avoid an obstacle, land, etc (details in section 4). The state estimate

is then fed into the controller, which sums the products of the state errors and full

state feedback gains to generate physical control commands for the vehicle. These

physical commands are finally fed into the radio uplink function which converts the

physical values to hardware commands for the vehicle, and transmits them over the

serial port to the R/C transmitter that is flying the vehicle. The final acts are to

save a new line to each of the data files, send data to the offboard base system, and

yield the thread for the appropriate amount of time to maintain the 50 Hz average

operating frequency.



2.4 Offboard System

The offboard, or base system runs the higher level algorithms, visualization, and

operator interface software. The three primary elements are the 3D visualization

and user interface, the communication manager, and the path planner. This system

works in concert with the onboard system, providing guidance and structure to the

reactive planning. Operating on a separate desktop, the system is designed to operate

in the event of simulated communication failures. When communication is in place,

the offboard system needs to present information in a way that fits in easily with

the onboard system, without disrupting its operation. This is done by transmitting

simple waypoints which specify a goal location and heading. These waypoints can

be strung together into coarse, spatial paths that are interpolated by the onboard

system, or only the last (or single) waypoint is considered and the onboard system is

left to find its own way to the goal.

2.4.1 Operator Interface

The simplest embodiment of this high-level control is the point and click user interface.

Figure 2-9 shows the visualization, powered by Visual Python [71], along with a

control panel, raw data in a terminal window, and video streams from the onboard

camera. The 3D representation of the world is rendered based on a sparse information

set of estimated obstacle locations from the onboard system (the map), indicated by

red ellipses, and hard-coded objects, such as the yellow block indicating the pole,

for operator awareness while testing. The ellipsoids vary in dimension and darkness

based on the confidence of the estimate. The larger and darker they are, the less

confident the system is that the estimate is accurate. Both the true and estimated

states of the vehicle are shown by the large and small quadrotor cartoons, and their

path histories are indicated by the black and red traces, respectively. The reference

point is shown by the blue orb, and the trajectory history is indicated by the thin

blue trace. This data, presentation allows the operate to judge how well the control,

estimation, and environment mapping are all working in real-time, increasing the



Figure 2-9: The 3D interface for point-and-click control shows true and estimated
position, mapping, and control reference. Real-time vision and terminal output are
also displayed.

speed of development compared with pure post-analysis.

The operator can also see relevant data in the terminal window, such as opera-

tion mode, position with millimeter resolution, and more. This information stream

is updated at 1 Hz and serves as a useful tool for collecting information less easily

depicted in the visualization, such as velocity and control commands. System mes-

sages are also displayed asynchronously, indicated the receipt of waypoints and other

commands, as well as warnings of obstacle proximity.

Both the raw and processed video streams are displayed, showing the operator

what the vehicle is seeing in real-time. The unprocessed, raw stream is useful for inter-

preting the environment, while the processed stream shows what the image processing

is doing. The blue circles indicate features that are being tracked for environment

mapping, and the yellow circles show the features being used for ego-motion estima-

tion (note that all yellow circles also have coincident blue circles). Larger cyan, green,

and red circles (not shown) pop up as features are discarded because of either large



filter residual, tendency to clump together, or large jumps, respectively. The details

of these feature culling behaviors are explained with more detail in section 3.1.2.

In order to specify a goal, the operator simply clicks a point on the ground plane

to specify an x-y coordinate, which is combined with a desired altitude and heading to

define the goal. The figure shows how the goal (indicated by the purple orb) appears

directly above the cursor. The onboard system loads this goal as a waypoint and

begins to generate and pursue a. path toward that point. As obstacles are detected,

the onboard system adjusts its trajectory to avoid them, doing its best to arrive

safely at the goal. The operator can also use the keyboard or control panel to adjust

the desired altitude and heading. As new waypoints are added, the old ones are

erased and the vehicle pursues the latest waypoint immediately, allowing for simple

corrections to the vehicle path as the operator sees fit. If communication is lost or

the operator abandons the station, the vehicle will continue on to the last goal it was

given, then hover in place until another command arrives, the battery dies, or another

simple reaction is pertinent.

2.4.2 Data Playback

The system also has two playback systems. The first is a simple packet recorder that

is built into the LCM package. Because all of the visualization information is commu-

nicated through LCM packets, the LCM packet logger can capture this information

and play it back for later visual analysis. Although Matlab plots can also be gen-

erated, the 3D playback is uniquely beneficial because of the inherent complexity in

visualizing the amorphous four-dimensional world that the vehicle operates in. With

play, rewind, pause, zoom, and rotate commands, any time slice of a particular ex-

periment can be inspected from any angle, showing estimation error, tracking error,

and mapping performance in an intuitive way.

The second play-back system is specifically designed for rapid and controlled algo-

rithm development. As the system runs, data files are recorded and saved, primarily

for plotting and other post-processing. These data files can also be loaded by the

onboard system itself to emulate the past experiment. The inertial data and way-



(a) Video screenshot of a quadrotor following the waypoints (b) Screenshot of the planner operating
from the DUC planner. on the static environment.

Figure 2-10: Preliminary results flying a quadrotor with the MIT Darpa Urban Chal-
lenge RRT planner.

point inputs are time-stamped against the saved images from the onboard camera,

and loaded into the system as if they were being generated in real-time. The sys-

tem processes the data as if the vehicle were really flying, so incremental changes to

the image processing, ego-motion estimation, and environment mapping algorithms

can be made and the effects can be seen immediately in the visualization 3. During

playback the system also runs as a single thread so that accurate measurements of

process timing can be made for computational analysis, results of which are presented

in section 5.2.

2.4.3 Advanced Autonomy

For autonomous missions, a similar waypoint interface is used, but the waypoints are

strung together into a sequence of goal points (an option available to an operator
3Running data sets with no code changes produces results almost identical to those obtained

during the original flight, but the slightly random nature of the multi-threaded real-time operation
causes small discrepancies. If two data sets are both generated offline with identical code, however,
then they will have identical results.



as well). Powered by the MIT DUC RRT planner, these waypoints are generated

to form efficient trajectories through complex environments with many obstacles and

constraints. The DUC planner was not a focus of this thesis, so the details will

not be presented, but images from a preliminary integration of the planner with the

quadrotor system are shown in Figure 2-10. The basic principle of the RRT planner is

to sample the control space of the vehicle and propagate the vehicle motion through a

controller and dynamics simulator to generate a trajectory, then evaluate the cost of

the trajectory based on time, fuel, obstacles, and other constraints. Different samples

cause the trajectories to separate into unique paths, forming a tree of control sequence

options which can get quite dense, as seen in the pink curves of Figure 2-10(b). The

cost evaluation is used to prune the tree, and the best trajectory is selected, indicated

in the figure by the green line.

In the DARPA challenge, the control samples of the selected trajectory were then

fed into the vehicle controller [36, 38], but in the case of the quadrotor, the propa-

gated trajectory itself is sampled to generate waypoints which are transmitted to the

onboard controller. The waypoints are spread approximately one body length apart,

or about 30cm, in order to minimize transmission bandwidth, and are only updated

a few times every second. This coarseness in both time and space is balanced by

the reactive planner onboard the vehicle, which is always what generates the final

movement plan. Having the reactive planner in the loop gives the vehicle the ability

to avoid obstacles that appear without warning, even if the offboard planner has not

had time to consider them, or if communication with the base station has been lost

and the offboard planner is incapable of updating the plan. This implementation is

in progress, and has not been completely implemented due to time constraints. For

these preliminary results, the planning was done in 2D, the obstacles were hard coded,

and the onboard obstacle avoidance was not active. The original car dynamics were

also still being used as the propagation model, which actually proved to work quite

well. The maneuvers considered, however, were artificially limited by not allowing

lateral movements or in-place rotations.



2.5 System Design Summary

Although complex, this system architecture has been broken down into several inde-

pendent parts that are capable of working robustly together to execute very complex

demands. Emulated inertial data from the Vicon-MX camera system proves to be

a very effective way to develop inertial navigation algorithms in an offboard testbed

environment such as RAVEN. The performance comparison of a hardware IMU is

also promising for the eventual migration to a self-contained embedded system that

can fly free of the RAVEN flight room. A method for integrating high-level, com-

putationally intensive planners with severely payload restricted HMAVs is presented,

elaborating on the concept of a hybrid onboard/offboard scheme for keeping the ve-

hicle operational when communication with the high-level planner is severed.



Chapter 3

Estimation and Mapping

As the vehicle moves through the environment, motion is evident in the changing

camera images, and the IMU gives indication of accelerations and rotational rates.

Using only inertial data, it is theoretically possible to perfectly estimate 3D vehicle

motion, but noise in the sensing causes estimation errors. These errors are particularly

troublesome because they are formed by the constant integration of noise and biases

and thus can grow continuously. Using only inertial data, the vehicle would have no

way to tell it was drifting into a wall at constant velocity. Visual feedback provides

an indication of absolute position and attitude, but suffers from physical ambiguity-

only dimensionless bearing angles can be measured reliably, thus the scale of the

environment cannot be determined with only monocular vision information'. Binoc-

ular vision disambiguates this data with a known physical separation between two

independent points of view, but we have chosen not to pursue this method in the

interest of simplicity and miniaturization.

Tilt angle, essential to the stabilization of a hovering platform, can in fact be

estimated using only inertial data, as demonstrated by the Nintendo Wiimote [20].

Because our vehicle is flying with fairly well known dynamics, its behavior relative to

the orientation of gravity can be estimated with even greater certainty. Specifically,

the tilt angle can be determined with bounded error, and thus the vehicle can be

'It is also feasible that scale can be estimated by object classification (for example, if the system
recognized a doorway, it could assume a scale on which to base the rest of the world), but these
techniques are very limited and require extensive computational resources.



maintained in a nominally level state, minimizing lateral acceleration and thus stabi-

lizing the vehicle. Combined with GPS, a position stable system can be achieved, as

demonstrated by several groups [2, 31, 64].

Inertial data on its own, or even combined with GPS, can still not effectively

perceive the environment short of crashing into it, and thus an additional sensor

package is necessary for collision avoidance. In our case, the vision sensor is utilized

for environment mapping, while simultaneously augmenting the ego-motion estimate

in the absence of GPS. Images on their own are not useful, however, and must be

processed extensively, as discussed in the following.

3.1 Image Processing

Visual perception is essential to our system performance because it is the only way the

vehicle is capable of sensing the environment, and it is a direct function of absolute

position and orientation, unlike inertial data which only provides an indication of rates

and tilt. The processing of these images relies on several algorithms and technologies,

including image acquisition, feature tracking, feature selection, ego-motion estimation

via fusion with inertial data, and ultimately environment mapping [32].

Some of the low-level technologies used in this system for the image process-

ing are adopted from the Open Computer Vision Library (OpenCV) [28], an open

source toolbox of common image processing algorithms used widely for development

of a variety of projects, from mobile robotics to gene sequencing. The primary

algorithms we have used are the pyramidal Lucas-Kanade optical flow calculator

(cvCalcOpticalFlowPyrLK [30, 45]), and the good features to track feature finder

(cvGoodFeaturesToTrack [63]). The details of these low-level algorithms are not of

particular interest to this thesis, so we will limit the discussions of them in the fol-

lowing sections to the basic concepts, and instead focus on the higher-level, unique

contributions.



3.1.1 Image Acquisition

The onboard camera is set up to connect to the WPA encrypted 54Mbps 802.11g

wireless network hosted by our dedicated router. The router is connected directly

to a dedicated ethernet card in the "onboard" desktop, minimizing packet collisions

and the associated latency. Originally we tried to share the main data bus used by

all of the computers in RAVEN, but occasional network issues caused unacceptable

performance. A separate python script is spawned which makes a TCP/IP connection

with the camera to request and download JPEG images from the camera as quickly

as possible.

The JPEG images require decompression before they can be used by an image

processing filter, which is implemented in the OpenCV function load. Unfortunately,

the interface for this function is designed only to read images from the file system,

and thus the images pulled off the camera cannot be fed in directly through a function

callback or similar protocol. Because of the flexibility with which Linux presents it's

file system, a portion of RAM can be mounted as if it were a physical drive on the

computer, known as a ramdisk. The camera images are thus saved and loaded to

the ramdisk as if they were files, but the performance is that of working entirely in

memory. All other file processes, such as saving data files and writing videos, are also

done on the ramdisk to minimize I/O stalls.

It is worthwhile to note that even though the mounted RAM file system is very fast,

the JPEG decompression algorithm still requires about six milliseconds to decompress

an image (plus the time the camera takes to compress and transmit it), which is a

significant portion of our 60 milliseconds allocated per frame based on an average 15

Hz frame rate. In an embedded system, the microcontroller would have direct access

to the raw pixel data, and no compression, decompression, or transmission would be

necessary for onboard processing.

In order to synchronize this flow of images, a simple lockfile scheme is also em-

ployed on the ramdisk. When the image puller has finished saving the latest image,

it also creates a temporary lockfile. Meanwhile, the image processing thread spins



in a while loop, sleeping 1 ms in between checks of the existence of the lockfile by

attempting to delete it. Once the file is successfully deleted, the system knows that

the image file is new and loads it into memory and starts an image processing cycle.

After finishing processing the image, the thread returns to its wait loop, trying to

delete the lockfile until it is again created by the image puller process, and the loop is

repeated. By sleeping between deletion attempts, the thread yields it's own process

so that other threads may operate in the background and does not consume exces-

sive resources. A sleep time of 1 ms is used to balance the processing latency with

the diminishing returns compared with the already large 6 ms penalty simply from

decompressing the JPEG.

3.1.2 Feature Tracking

Feature tracking between sequential images is an essential technology for most vision-

based motion analysis systems. In a given image, every pixel corresponds to a physical

point in three-dimensional space. Using an inverse model of the camera, the corre-

sponding bearing to that point in the camera frame can be explicitly determined. The

distance to the point, however, is unknown, unless the same point can be compared

between multiple images, either from a second camera, or from a different point in

time. If the two images are taken from different locations, then the two bearings

will nearly intersect and the approximate location of the point in 3D space can be

computed.

The difficulty, however, comes in effectively matching the same point seen between

multiple images. This correlation is difficult because there is very little information

contained in a single pixel, and the same pixel may not be exactly the same in the

next image due to changes in orientation, lighting, or both. The solution adopted in

this system is to match surrounding image patches. Image patches are rectangular

regions around pixels, typically between 5 and 20 pixels on a side. The patches

capture additional contextual information about the pixel and thus can be compared

with more certainty than single pixels. For example, Figure 3-1 shows a situation

in which there are 6 identical pixels between two images, and we want to track one



(a) Identical pixels form a shape based on relative (b) Context shows the same shape is repeated, in-
context. Red circle indicates pixel to track. dicating the tracked pixel has moved up and right.

Figure 3-1: Image patch feature tracking allows differentiation between otherwise
identical pixels.

of them. The only way to differentiate the pixel of interest is by examining its

relationship to the surrounding pixels. In this fashion, it can clearly be seen that the

pixel has moved up and to the right, and thus we can now be confident that this new

location corresponds to the same point in space that we were trying to track.

In a real system, the correlation between pixels is not as obvious as it is for people

to interpret Figure 3-1. The correlations change a little bit over time, stretching

and rotating, thus the best match must be found instead of an exact match. The

cvCalcOpticalFlowPyrLK [30, 45] function does this by breaking down the image

into multiple "pyramids" of differing coarseness, used to refine the match successively

by differencing the pyramid blocks, increasing computational efficiency. This method

is sufficiently accurate to track features to sub-pixel accuracy, and is robust to image

deformations from perspective change, image blur, compression artifacts, and other

discrepancies. Figures 3-2 and 3-3 show an example of two points on a transmitter

being tracked over several frames. Note that, even though the image has rotated and

is more blurred in the second image, the features are still tracked. This robustness

is due to the incremental nature of the transformations as they are tracked between

single frames, which will have minimal differences during normal operation. The

effect of the transformations also tend to encompass entire image patches, preserving

i I

j I

j I j



Figure 3-2: A snapsho~ from the onboard Figure 3-3: The same scene several frames

camera capturing features in view. later as the vehicle moves to the left.

the general form of the features so they can still be matched.

3.1.3 Finding arid Maintaining Features

Although feature tracking is essential to the image processing, it is also critical that

we choose good features for the tracker to track. For our motion estimate, we have

very demanding requirements for the tracking, and we have implemented several

methods to make and keep the features being tracked as useful as possible. The

primary requirement iS that they be easily tracked. This is primarily determined by

finding points with large eigenvalues of the image gradient in multiple directions, also

known as corner detection. The cvGoodFeaturesToTrack algorithm also employs

some addition measure) of feature quality, described in detail by Shi and Tomasi [63].

We also need the features to provide as complete a representation of the environ-

ment as possible, thus we want to spread the features out, giving us as much unique

information from each feature as possible. The second major reason to spread the

features is for environnent mapping and obstacle avoidance. Although vision pro-

cessing systems cannot guarantee they will see all potential hazards (especially not

blank walls), there is • significantly higher chance of seeing obstacles if the features

are spread over the ent'ire image area. This way, if one object has a lot of texture, all

the features will not bý dedicated to observing only that one object.



The primary method to maintain feature spread is to choose them far apart from

the beginning, which is a supported feature of cvGoodFeaturesToTrack. OpenCV

also supports the usage of masks which can be placed in the vicinity of existing fea-

tures, preventing new features from being chosen close to them. We have chosen to

use a square masking pattern because, although more intuitive, circular masks require

significantly more computation because of the transcendental evaluations required to

compute Cartesian pixel coordinates. Finally, OpenCV also includes support for a

Rectangle Of Interest (ROI) which will only allow the algorithm to look in a defined

sub-region of the image, presumably selected to give the best new feature locations.

The masking process has proved to be very computationally intensive, but unfor-

tunately the computational promise of ROI's could not be realized for this thesis

because of time limitations.

We have found that our system works very well with a fixed number of features,

rather than searching for features in an accumulated batch process. This is because

of the real-time nature of the system. Although it uses less computation in total to

find several features at once because the good features to track algorithm scans the

entire image exactly once for any number of features, saving this time between frames

is useless because the time is lost as the system is waiting for camera updates. Thus

whenever one or more features are lost, they are replaced immediately.

Although picking features is the obvious point at which to force feature spread,

features can become clumped together with time (e.g., during backward movement).

In order to maintain feature spread, it is important to remove clumped features and

replace them with new ones. Every tracking cycle the features are compared, if

two features are within one-half of the minimum distance specified above, the newer

feature is marked for removal. Occasionally features also jump because of contextual

ambiguities, and these are removed as well.

Feature persistence is also an important element in choosing features. The more

measurements there are for a single feature, the better the estimate of its location, so

we want to maximize the time that it is in view of the camera. Because the vehicle is

moving around, features will often move out of view, but we can predict these future



losses based on present movement of the camera using average translational optical

flow, which is simply the average of the differences of all the tracked pixel locations

relative to the previous frame, separated into vertical and horizontal components. For

example, if the optical flow indicates the camera is moving left, the system will mask

out the right edge accordingly so that new features are not selected where they are

going to quickly disappear. A good value for this was found to be eight times the

average optical flow value, which means features will last at least half a second.

3.1.4 Tracking Implementation

When the vision tracker thread is initialized, the first thing it does is allocate several

temporary image buffers and video file writers. The second task is to scan the image

for the first set of features using cvGoodFeaturesToTrack. A minimum distance if

forced that achieves sufficient image coverage, and initializes the system with a set of

good features.

After initialization, the vision tracker waits for the next image, during which

several filter updates are generated based on the higher frequency IMU data, resulting

in estimates of the new feature locations. The algorithm now has a previous feature

set to work with and estimates of the new feature locations with which it can attempt

to track the persistent features into the new frame efficiently. This is done with a

call to cvCalcOpticalFlowPyrLK, which generates pyramidal representations of the

image for faster matching, a new array of feature locations corresponding to the new

image, and a status array indicating features that have been lost, or could not be

tracked in the new image.

Once the tracking is done, the tracker scans the remaining features and discards

additional features that are clumped together, have jumped, or have poorly con-

verging 3D position estimates. The tracker then examines the complete list of lost

features, saves their indices to a lost.features array for later reference, and finds

replacements, again using cvGoodFeaturesToTrack. The difference now, however, is

that the image is masked so as to maximize the utility of these new features.

Once the new features are found, they are cross referenced with the lost_features



array so they can be slipped into the lost feature positions. The view counts are

reset to zero, indicating to the estimation filter they are new features and should be

reinitialized, and they have new identification numbers generated so the environment

mapper will generate new obstacles in the map. On all subsequent tracking steps,

the pyramid generated for the old image can be reused from the previous call to

cvCalcOpticalFlowPyrLK, saving processor cycles.

3.2 Ego-Motion Estimation

The process for motion estimation has been developed in collaboration with Draper

Labs. Draper was previously developing this capability internally using complex

simulations based in part on work by Davison, Montiel, and Civera on monocular

SLAM [10, 49]. A quick overview of the filter operation is presented below, but is not

meant to be a complete presentation of this subsystem.

3.2.1 State Representation and Dynamic Equations

The state is represented in a typical local-level inertial world frame sense, such that

gravity is aligned vertically, the world is considered flat, the vehicle moves around in

three-dimensional Cartesian space, and the vehicle has an attitude has a Quaternion

internal representation (which is transformed to Euler angles and rotation matrices

for use outside the state estimator). Equations (3.1) and (3.2) define the vehicle state

as

X = [x v R B W  bA bG y]T (3.1)

Yi = [xi yi zi Oi 0i pi]T (3.2)

where x is the vehicle position, v is the velocity, RBW is the rotation from body

to world frame (which represents current vehicle attitude), and (bA, bG) are the ac-

celerometer and gyro biases. The total length of the state depends on the num-

ber of features used, with sub-states yi for each feature i, which are combined to



Feature

Current
Location

Origin

Location

Figure 3-4: Position and velocity are represented in the world frame from the origin.
Feature azimuth and elevation bearing angles are measured in the world frame from
xi, the point of first sighting. RWB defines the body frame.

form y. Each feature state yi is composed of the vehicle position at first sighting
xi = (xi, yi, zi), the world frame azimuth and elevation angles (0i, 0i) (defined in

Figure 3-4), and the inverse of the distance to the feature pi. Ten features were

used in our tests as it proved to be a good balance of robustness and computational

tractability, with a total state vector length of 5 x 3 + 10 x 6 = 75. When new iner-

tial measurements of specific forces and angular rates (f, w) are received, the state is



updated according to the following dynamic equations2

x = v (3.3)

v = G+RBW (f - bA) (3.4)

I"BW = [(w - bG) x] (3.5)

bA = -I bA (3.6)
TA

bG = - bG (3.7)
TG

S= 0 (3.8)

where G is Newtonian gravity and (TA, TG) are correlation time constants of about

300 seconds for the accelerometers and gyros [46]. These simple updates, referred

to as time updates, occur in sync with the inertial measurements, which were at a

frequency of 50Hz in our testing. The vision processing is also running independently,

but at a much slower rate of about 15 Hz.

3.2.2 Vision Updates

Approximately every three time updates, new vision data becomes available, and a

vision update can be performed with an Extended Kalman Filter (EKF). The EKF

is designed to efficiently fuse the inertial and vision data using an internal state

representation based on estimation error relative to the nominal state, as shown in

Equation (3.9)3.

6X = [6x 5v 1@ 6bA 6 bG 6y]T (3.9)
2Note that Equation (3.5) grossly oversimplifies the consideration of the attitude. For insight on

this process, see [60].
3The use of error dynamics is generally considered more robust than estimating the absolute

state directly [46].



where I, is the error in body-frame vehicle attitude. The error-state and covariance

are propagated by the EKF according to the following dynamics

6ic = by (3.10)

6 5 = RBW ( x f - 6bA) +w (3.11)

-= - [w x] - 6bG + (3.12)

6bA = -_ 6bA + w (3.13)
TA

6bG = - bG + w (3.14)
TG

=ý = 0 (3.15)

where w is assumed to be Gaussian white noise. The line of site vector m(oi, 0i) is

defined in Equation (3.16), and body-frame feature bearings h are predicted with

Equation (3.17)

m(Oi, Oi) = [cos(Oi) cos(0i) cos(qi) sin(Oi) sin(oi)]T (3.16)

hi = RWB t(xi - x) + -m(0i,, 0)] (3.17)

where RWB = (RBW)T is the rotation from world to body frame, and again, x is the

current vehicle location and xi was the vehicle location at the first sighting of feature

i. These estimated feature bearings are then used to estimate the corresponding pixel

locations as projected onto the camera image plane with the inverse pinhole camera

model of Figure 3-5 using Equation (3.18)

Zi uo + f~+ hi1 (3.18)
vi J vo + fVhi

where (fs, f,) are the focal lengths in pixels, which are different for the two image axes

because the physical pixels of the camera are not square. The filter thus operates in

typical predict/update fashion, where z is used as the prediction to compare against

tracked image feature pixel measurements. Ultimately, the measurement matrix and



Figure 3-5: Pinhole camera model showing (u, v) pixel coordinates of a tracked fea-
ture. The purple box is the image plane, f is the camera focal length, and hi is the
body-frame vector from the current vehicle position to the tracked feature.

covariance are formed to update the nominal state with the standard discrete EKF

update equation (3.19)

Xk = Xk-l + Kk [Zk - Zk] (3.19)

with

Kk = PklH T (HPkLHT + R) -

Pk = (I - KkH) Pk-1

dzi _zi Ohi
Hi =

86X ahi NSX

9zi -fuhiy/hi2 f

hi - fvhiz/hi2
u

(3.20)

(3.21)

(3.22)

(3.23)
/hix 0 1
0 fv/hiz

= -piRWB 0 [hix] pRfWB Ohi dhi
[0i q•/ •

= RWB - cos (0j) sin (0j) cos (ij) Cos (Oi)

= RWB [ - sin (0j) cos (f)

Ohi
0d6X RWB (xi - x) (3.24)

(3.25)

(3.26)

8

co T•) T
Cos (0j) I

- sin (0j) sin (0j)



where P is the state covariance, R is the measurement noise covariance, Zk is the

aggregate of our latest feature tracking measurements, zk is the nonlinear estimate of

the same based on Equation (3.18), and H is the aggregate of the individual measure-

ment matrix rows Hi. The error-state is zeroed out after every update is applied in

order to keep the states near the nominal value about which they were linearized [46].

The updated nominal state estimate is subsequently used by the extended environ-

ment mapper and controller, which are discussed further in sections 3.3 and 4.4,

respectively.

3.2.3 Ego-Motion Estimation Results

During experimentation, estimating the state was done with two different methods-

the first was in an offline context where the vehicle was flown using the high-fidelity

truth data from the Vicon camera system for control feedback, resulting in very

smooth and stable flights and corresponding imagery. The second method used the

vision-based estimate itself to close the loop on the flight control. These methods

produced significantly different results because of the coupling between the dynamic

motions of the vehicle and the onboard image quality, resulting in degraded estimation

performance when using the estimate itself to close the loop.

The RAVEN flight space does not match the description of a target environment

as described in section 1.1 because it is purposely cleared for ample flight space and

easy viewing of the vehicles. Unfortunately, this arrangement proved too barren for

sufficient feature tracking, and additional clutter was added for these experiments.

Figures 3-6 and 3-7 show how debris was haphazardly arranged without any particular

patterns or geometry, so that no specific structure, such as co-planarity of features,

could be assumed. Debris was also specifically arranged to cause complex occlusion,

such as from chairs, table legs, and other non-convex obstacles, which is a common

weakness of feature tracking in cluttered indoor environments.

In the offline case, the smooth flight from the high-fidelity Vicon tracking provides

an ideal data set for estimating ego-motion with vision, even when confronted with

a challenging environment. Figure 3-8 shows that over a distance of 3.5 meters and



Figure 3-6: Typical RAVEN configura- Figure 3-7: RAVEN with added clutter.
tion.

a time period of 43 seconds flying around a stool, a maximum of only 28.3 cm of

error accumulated, which is about 8.1% at 38.8 cm/min. The primary difficulty with

vision in the loop estimation is that estimate errors decrease control performance,

generally manifested as oscillations. These oscillations cause the camera view to

change constantly, which causes features to go out of view more often, reducing their

persistence. The high rate of movement also causes the images to blur because of

the low-light indoor conditions and the low camera quality. Because of the decreased

vision fidelity, the estimate is degraded further, which causes a positive feedback loop

as the control performance and oscillations subsequently decline further.

A well designed controller can still fly the vehicle accurately, however. The per-

formance of the system was sufficient for controlled flight inside the small RAVEN

environment with no initial knowledge of the environment. Figure 3-9 shows the per-

formance of an example flight, but the maximum error of 64 cm is more than twice

as large as the maximum error in the offline case. Approximately the same distance

is covered up to the point the maximum is reached, thus the maximum error is about

18.25% at 76.8 cm/min. It is also interesting to note that the error accumulates as the

vehicle moves to the right with the estimate lagging behind the truth, then recovers

as the vehicle moves back to the left. This is attributed to consistent under-estimate

of the vehicle velocity do to a bias in measuring the ranges to features further than
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(a) Processed image with heavy image blur due to
an aggressive maneuver, presumably from a bad
velocity estimate.
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they actually are. The exact cause of this bias is not known, but is most likely a

product of the fixed feature initialization range.

3.3 Fast Environment Mapping

Estimating and mapping the environment is essential for an autonomous vehicle to

navigate in an unknown space. By combining the data from the feature tracking

and ego-motion estimation, it is possible to estimate the locations of all the features

tracked by the camera, forming a complete three-dimensional map of the environment.

This map can be used as information for the operator to reconstruct the remote

environment where the vehicle is flying, and as a reference for the vehicle to avoid

obstacles autonomously.

There are two methods for estimating feature locations in this system. The first

is embedded within the estimation filter, because the feature positions must be esti-

mated in order to estimate the vehicle state. This system is quite computationally

expensive, however, and thus only a few features can be tracked at once. The second

method employs a simple least-squares pseudo-intersection algorithm which is very

fast, and thus can track many more features and give a much more complete view of

the world.

The concept behind this fast mapping is that every measurement of a feature can

be interpreted as a ray in three-dimensional space-the pinhole camera model from

Equation (3.18) converts the pixel locations into relative bearing vectors in the body

frame. The estimated attitude of the vehicle is used to rotate the bearings into the

world frame, and the estimated position of the vehicle is combined with the world-

bearings to define three-dimensional world-frame rays for each feature. As the vehicle

moves through space, each new image can be processed to determine a new set of rays.

Because the features are tracked between frames, the new rays can be correlated to

the previous rays, forming separate sets of rays for each feature. Because the tracked

features correspond to physical points in 3D-space, every feature is assumed to be an



Figure 3-10: Vision bearings as the vehicle traverses dashed path.

obstacle4 , and each set of rays will have a location where all the rays are most near

intersection.

3.3.1 Pseudo-Intersection Optimization

Figure 3-10 shows the formulation for optimally estimating the psuedo-intersection

point qi,k of obstacle i at time k. Xk is the estimated vehicle position, 'i,k is the

corresponding unit vector bearing estimate from the vehicle to feature i, hi,k is the

minimum distance from qi,k to the estimated vision ray, and two previous bearing

estimates at times k - 1 and k - 2 show the approximate nature of the intersec-

tion. In general, ^ denotes unit or normalized vectors, such that = g/||gl|. A

simple least-squares algorithm efficiently computes the best-fit intersection point qi,k

by minimizing 1 h2. This pseudo-intersection optimization, derived by Bethke in [3],

has a very unique structure that makes it very computationally efficient for aggregat-

ing measurements over time, as we are doing here. Given a set of n estimated ray

bearings 8, and n corresponding origins x, we compute the optimal three-dimensional

position estimate of a feature q, with the following equation
4 This is a valid assumption in most scenarios, although smoke and other complexities could be

perceived without posing a real threat

Ak



q = A-lb (3.27)

where

n

A = wi (I -a 0 0i) (3.28)
i=1

b = Zw (xi-(xi•~i ). i) (3.29)
i=1

where a b = abT is an outer product. This is done for each feature being tracked,

forming a point-cloud representation of the environment suitable for obstacle avoid-

ance. The original formulation was developed for simultaneous measurements from

multiple vehicles tracking the same target, but in the single camera case, each mea-

surement i is actually taken at a different point in time, thus the summations of A

and b from Equations 3.28 and (3.29)can be accumulated over time for each obstacle

as each new bearing is measured. Because our position estimate tends to drift, we

also add an exponential decay to slowly attenuate the contributions of the older mea-

surements according to the a parameter in Equations (3.31) and (3.32). This causes

the system to weight the more recent feature measurements more heavily, accounting

for drift over time5 . A0 and bo are initialized to zero, and for every new measurement,

a simple update produces a new estimate at current time k, which is recomputed for

each feature that has a new measurement this timestep

qk = Al'bk (3.30)

where

Ak = aAk-1 + (I - k 9 k) (3.31)

bk = abk-1 + (Xk - (Xk Ok)- 'k) (3.32)
5This feature turns out to only be useful in cases of persistent observation because the rapid

feature turn over while traversing an environment means features are not viewed long enough for
their estimates to be effected by drift.



Thus resource and computation requirements are minimal, as we only need to store

the 3x3 A matrix and 3-element b vector for each feature, and update them with

a constant-time expression, independent of the number of measurements we have

accumulated over time. The time to update the entire environment based on any

number of measurements is thus proportional to the size of the map, which can be

limited to define an upper-bound on processing time for mapping. The result is a cloud

of physical points in 3-space, much like what would be generated by a LIDAR system,

although with significantly lower range estimation accuracy, and lag associated with

need to aggregate measurements over time. Figure 3-11 shows an example of how the

world can look like a LIDAR point cloud with quite accurate mapping capabilities.

The blue dots are from the binocular mapping research developed by He in [24], and

the larger black dots are based on the monocular fast mapping algorithm presented

in this section. No attempt was made to remove worse features, and external Vicon

tracking was used for localization in both cases. The similarity in the data shows that

motion parallax can operate as as effectively and accurately as binocular parallax from

two cameras. In addition to being configured to track more features, the binocular

can estimate depth immediately, thus features that appear for only a short time before

going out of view can be accurately mapped, which is why there are more blue points.

The obvious advantage of the binocular vision not shown here is that it can also map

and track dynamic obstacles, but this did not factor into our testing as the RAVEN

room is static.

3.3.2 Map Estimation Confidence

This method on its own, however, does not provide a usable map of the environment

because there are many extraneous measurements caused by incorrect feature track-

ing, primarily from specularity and occlusion. For this reason, it is essential to be able

to generate a good confidence estimate for each of the features so we can remove bad

estimates (which are probably not physically meaningful), and only consider the best

ones. Equation (3.33) shows how this is done by dividing the sum of the history of

camera parallax magnitudes IJAx|| by the most recent position estimate jitter. Sum-
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ming the parallax is a simple and effective way of judging how many different angles

the feature has been seen from which helps triangulate the feature more accurately,

and the jitter is a direct way of relating to the uncertainty of a changing estimate,

like a simplified covariance heuristic, although the ultimate value has no physical

meaning-The darkness and length of the feature ellipses in the 3D visualization are

based on the confidence such that they look good. The estimate jitter JJAqJJ is simply

the magnitude of the difference between the current and previous estimates q.

c = i=1 IAXi (3.33)

As with the estimate of obstacle position from Equation (3.28), the confidence

can be built incrementally as well. Every time a feature is updated, the distance the

vehicle moved since the last update, computed as I|vdtll, is added to a confidence

sum c6k. This sum is stored as a single number for each feature, in addition to A and

b. The final confidence at time k is determined by dividing this sum by the distance

between the current and previous feature position estimates

ck = k-1 + |IvdtII (3.34)

ck = -q- (3.35)
J1qk - qk-1 1

Once these confidences are determined, they are used to both define when a feature

is used for obstacle avoidance, and when a feature should be culled from the map

completely. For culling, features are given a grace period of 1 second in which the

confidence is expected to develop, after which any feature with a confidence below

the specified threshold is removed from the feature list. Without this grace period,

features are never successfully formed and the map will not develop. When processing

obstacle avoidance, features are only considered if they are above a different, higher

threshold, thus newly formed features too young to be culled are not considered. This

prevents the vehicle from overreacting to glitches and inaccurately mapped features.

Thresholds were tested empirically to obtain suitable behavior.



Figure 3-12: Mapping simple, known features gives an indication of the mapping
accuracy.

Figure 3-12 shows an example of the interpretation of these confidences in mapping

a known array of objects. Features are represented as red ellipsoids which shorten

in length and brighten in color as their confidence increases, and always have their

long axis aligned in the direction of last sight because the depth the the least well

known parameter in the obstacle position estimate. The vehicle was commanded

under Vicon control to simply fly back and forth, maximizing the visual parallax to

best estimate the feature locations. It is clear the block on the top left is the most

easily seen, as it has the most features of the smallest size. The bottom block is near

the edge of the field of view of the camera, and the two right blocks are partially

occluded by the front blocks. The thin yellow lines on the green ground form 1 meter

squares which can be used to approximately judge the 1.5 m parallax movement of

the vehicle, and about 0.3 m error in any given obstacle.

When the map grows beyond a specified maximum size, older obstacles are re-

moved until the map is reduced down to its upper limit, in essence erasing the vehicle's

memory. A map size of 100 obstacles was found to be a good balance between the ve-

hicle's need to be aware of nearly obstacles that have moved out of view, and storage



limitations. Because the vehicle tends to look forward as it flies, potential obstacles

have a high likelihood of being in view. Old features also lose accuracy over time as

the vehicle position estimate drifts, thus this memory loss has proved not to be much

of an issue. Additionally, the offboard planner has far fewer storage restrictions and

can maintain a much larger map of the environment for more advanced planning over

greater distances, potentially building abstract node-graphs of regional connectivity.

Figure 3-13(a) shows an image from the onboard camera system while perform-

ing a simple mapping task of a stool and a wall in a relatively sparse environment.

Figure 3-13(b) shows a comparison in the mapping performance when using the vision-

based ego-motion estimate vs. the Vicon truth to transform the body-frame bearings

into the world frame. Note the "truth" features are not actually known because of

inaccuracies in the feature tracking, but offline comparisons with physically measured

feature locations indicate they are quite accurate. Although the absolute accuracy of

the mapping estimate is good, it is not very important. The primary figure of merit

for obstacle avoidance is the accuracy of mapping relative to the vehicle position

estimate itself.

3.3.3 Complimentary Offsets in Mapping and Localization

In Figure 3-14, the vehicle (orange squares) needs to avoid the obstacle in front of it

(red blobs), but the vehicle has accumulated a position estimate error 1 meter to the

right (dashed outline) during several minutes of flight. Although this is a large error,

the map is also generated based on this incorrect estimate, using the two estimated

bearings (dashed arrows from two different points in time), and thus the estimated

feature position is also shifted to the right, indicated by the dash-outlined red ellipse.

The vehicle plans a path around the estimated object location (blue line) which it

thinks it follows accurately (black dashed line). Even though the planned path goes

right through the real object (small red circle), the vehicle is actually safe because

everything in the physical world is shifted to the left-essentially the position estimate

error and mapping error have canceled out, and the vehicle is capable of flying safely

indefinitely, with an arbitrary amount of accumulated drift. These canceling errors
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are referred to as complimentary offset errors, and are an important attribute to our

mapping as they are essential to reliable obstacle avoidance during extended flights.

There is still error in the relative estimate from recent position estimate errors, but

in the flight test data presented in Figure 3-13, the range to the features shows errors

of about 30 cm over 4 meters, or 7.5%, which is very close to the ego-motion estimate

error described in section 3.2. This error also tends to be one of scale, thus if the

vehicle overestimates the range to a feature, it's probably linked to an overestimate

of its own velocity, and thus the two scale errors will cancel out as well, supporting

that the error is due primarily to the vehicle state estimate error, and the mapping

is quite accurate in a relative sense.





Chapter 4

Guidance and Control

Although an estimate of the state of the vehicle using only visual and inertial data

is challenging, guidance and control are also essential for the successful flight of a

HMAV. The basic control approach is relatively simple because the pitch and roll tilt

axes are already stabilized at 1 kHz onboard the vehicle. The control signals sent to

the vehicle through the R/C link are absolute pitch and roll angles, yaw rate, and

collective throttle [2]. Neglecting higher order effects, Quadrotors behave like simple

integrators with horizontal accelerations directly related to the tilt angles [25, 69]. The

loops for each axis are closed with feedback on position, velocity, and heading errors,

plus position error integration, with gains heavily weighted toward velocity damping

and position error integration to smooth vehicle motion. Tracking accuracy and

overshoot are of less concern because the position and mapping estimates themselves

are not perfectly accurate, thus disturbance rejection and smooth motion are favored

over tracking performance.

The vehicle must be able to take off and land vertically, as well as hover and

follow waypoints. Good performance in these various regimes is achieved with a

state-machine switching controller. Takeoff is the most challenging because the ve-

hicle needs to fly up out of the ground effect with an unknown battery charge. The

first mode of the state machine is standby, during which the vehicle is completely

deactivated and the rotors do not spin. Upon receiving a takeoff command, the vehi-

cle starts the rotors spinning and enters wind-up mode. The collective command is



increased at a fixed rate from zero until the vehicle altitude increases 5 cm, at which

point the vehicle switches to takeoff mode and the momentum of the vehicle will

carry it through the ground effect smoothly. In takeoff mode, the position integrator

is doubled relative to the nominal value in order to quickly correct for imbalances

in the vehicle. As soon as the vehicle is within 10 cm of the reference position, it

is considered trimmed and switches into flying mode where all control gains are set

to nominal values. Hovering, waypoint following, and landing have shown sufficient

dynamic similarities that a good trajectory will let a single controller fly the vehicle

in all conditions. Landing accuracy is not excellent because of ground effect concerns,

but it is unclear how to compensate for this without destabilizing the state estimate

with over-aggressive gains.

4.1 Vehicle Dynamics

Although the vehicle accepts tilt angles for control input, there is a physical limitation

on the speed with which it can achieve the desired attitude. Besides the lag associated

with the electronics and software, the vehicle needs to change the torque to the motors,

causing a rotational accelerate of the pro-
Quadrotor Pitch Performance

-360 ms la

pellers which changes their speed. As

the propeller speeds change, an increased

lift differential forms which generates a

torque about the desired axis of the ve-

hicle. This torque causes an angular ac-

celeration, causing the vehicle to rotate

about that same axis. Half way to the

target angle the process needs to be run
Time [sec

in reverse such that the vehicle deceler-

ated in time to a stop at the desired an- Figure 4-1: Pitch command tracking.

gle. Figure 4-1 shows this process happening in flight. There is noticeable lag between

the commanded tilt angle and the physical angle of the vehicle, primarily due to the



dynamics mentioned above, measured to be about 360 milliseconds.

4.2 Trajectory Following

Accurate trajectory following is important for well controlled flight in constrained

environments, and this system demonstrates performance sufficient to avoid mapped

obstacles safely, presented in Chapter 5. The primary task for achieving accurate

trajectory following is the generation of dynamically appropriate, natively three-

dimensional trajectories. A finite acceleration model is used which strikes a balance

between good performance and computational simplicity. This method is also very

flexible and allows smooth integration with the natively 3D obstacle avoidance im-

plementation described in section 4.3.

The system is fundamentally based on calculating the desired acceleration, which

is composed of goal attraction, collision avoidance, and orbital cancellation compo-

nents. Once the desired 3D acceleration at time k is determined (ak), it is used to

integrate the reference states according to Equations (4.2) and (4.3) to produce a

reference velocity and position (x, v) which are used for controller feedback. If the

vehicle is in motion when a new waypoint is received, the previous reference veloc-

ity and position values are carried over to propagate the trajectory smoothly and

continuously.

ak = a ac + a (4.1)

Vk = Vk-1 + akdt (4.2)

Xk = Xk-1 + Vkdt (4.3)

The fundamental acceleration component that gets the vehicle to the goal is the goal

attraction acceleration a9 , defined in Equation (4.4). When the vehicle accepts a new

waypoint, it is commanded to accelerate toward it according to ag, the magnitude of

which is a simple function of the desired cruise speed of the waypoint sc such that the

time to accelerate to the cruise speed is always rg, which for our tests was 1 second.
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Figure 4-2: An ideal movement trajectory simulated in one dimension.

Once the position reference reaches the cruise speed, ag is set to zero, and the velocity

reference stays fixed while the position reference integrates forward at constant rate.

In this cruise mode (and the acceleration mode), the controller is constantly checking

the distance to the goal |lgl| to determine when to slow down. Equation (4.6) is used

to compute Sd, the speed at which the vehicle should be traveling in order to arrive

at the goal with zero velocity if the vehicle were to decelerate continuously according

to ag. As soon as the current speed in the direction of the goal sg is greater than or

equal to Sd, ag is set to -ag- and the velocity ramps down to zero as the position

reference comes to rest precisely at the goal point. In summary,

ag = f (Sg, sd, sc) ag' (4.4)

ag = sI/Tg (4.5)

Sd= 2a 9 g l (4.6)

s = v g (4.7)

-1 if S > Sd

f (g, Sdi, c) = 1 if Sg < s c and s9 < Sd (4.8)

0 otherwise

where g is the vector from the vehicle to the goal. Figure 4-2 shows an ideal trajectory

of this type.

0 1 1.5



Equations (4.9)-(4.12) shows a derivation of Sd based on simple kinematics. The

time td necessary to decelerate from sd to 0 with constant deceleration -a,, and the

distance Xd traveled during this time, are based on standard Newtonian kinematics.

We solve for the speed Sd by setting Xd = |11gl such that the vehicle speed would

reduce to zero over the distance to the goal if it started at speed sd.

O - Sd Sd
td 0 - (4.9)

-ag ag

g11911=Xd = -a td+Sdtd

1 (Sd_)2  Sd

2 ag ag

I|gL = s (4.11)2 a S

= = 1/2ag 1gj (4.12)

4.2.1 Orbital Cancellation

The system works very well in this simple form when waypoints are taken one at a

time such that the vehicle pauses between each, but if a new waypoint is given while

the vehicle is in motion toward another one, an acceleration directly toward the new

waypoint, as previously described in Equation (4.4), will result in an orbit resembling

planetary motion in which the vehicle never reaches the goal. This is countered

by an orbital cancellation term, which adds an acceleration negative to cross-goal

velocity component v1 divided by T• (which in our tests was 0.5 s), according to

Equation (4.14) and Figure 4-3.

vI = v-•-(v.-) (4.13)

ac = -vi/Tc (4.14)

The construction of v± is based on simple 3D geometry. The v-' term gives the length



Figure 4-3: Acceleration components toward the goal and perpendicular to the goal
vector combine to fly the vehicle directly into the goal.
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Figure 4-4: Simulation of trajectory generation with initial cross-goal velocity. Orbits
are non-celestial because ag is not a function or r2.

of the projection of v onto ', which is vectorized by multiplication with ' as shown

in Figure 4-3. Subtracting this vector projection from the original velocity vector

gives the perpendicular component that is in the plane of the two original vectors.

This method of deriving perpendicular components is used in several instances of this

thesis, particularly for obstacle avoidance in section 4.3. Figure 4-4 shows a simulated

comparison of the trajectory generation with orbital cancellation and without.
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(b) Aggressive trajectory.

(d) Starting to slow down.

Figure 4-5: Trajectory following.

4.2.2 Trajectory Following Flight Tests

In Figure 4-5(a), the performance while tracking a slow movement plan is presented.

Because of the low speed, disturbances have a proportionately larger effect on the

system, and aerodynamic damping is negligible. As a result, oscillations are more pro-

nounced in the velocity. The more aggressive maneuver in Figure 4-5(b) shows how

the linear velocity profile is similar to the natural dynamic path for the quadrotor,

minimizing the appearance of oscillations. The high speed trajectory also demon-

strates the initial velocity overshoot, which is a product of the lag in the vehicle

dynamics as it tilts over to begin accelerating. The deceleration period is also well

matched to the trajectory, almost completely eliminating position overshoot, although

there is still a small overshoot from the lag in the vehicle dynamics. Figures 4-5(c)
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Figure 4-6: Trajectory following with angle reference.

and 4-5(d) show the vehicle coming to a stop. Notice in Figure 4-5(d) the vehicle

is both tilted and blurred due to the simultaneous high acceleration and velocity.

Figure 4-5(c) is tilted for peak acceleration, but is not blurred because the vehicle

has almost finished coming to a stop. Note step in velocity at the end of decelera-

tion. These are due to numerical integration errors and complications from orbital

cancellation terms that prevent the real solution to work as well as the simulation,

but have shown to have minimal effect in flight performance.

It is also of interest that attempting to remove this acceleration lag is of detriment

to the performance of the vision tracking. Adding an attitude reference for feedback

increases the dynamic performance significantly by reducing the acceleration lag, vis-

ible in Figure 4-6, but does so with much higher angular rates, causing the imagery to

blur, reducing the estimation performance as discussed in section 3.2. The solution

would be to further smooth the trajectory in order to eliminate steps in the accelera-

tion, such as with a constant-jerk model, but this was deemed unnecessarily complex

relative to the performance improvement.



4.3 Obstacle Avoidance

We have developed a lightweight reactive obstacle avoidance heuristic which shows

promising results for high-speed, effectively, natively three-dimensional navigation in

complex environments, which is easily tractable onboard existing micro flight con-

trollers. It is based on simple closed-form expressions to compute cross-goal accelera-

tions using point cloud map representations, which fits in directly with the full-state

trajectory generation we have implemented based on the integration of finite acceler-

ations (section 4.2) and our extended fast-mapping technique (section 3.3). Because

the formulas are closed form, no sampling needs be done, which typically requires

compromise between completeness and speed, especially when working in three di-

mensions [55].

All measurements and comparisons are done relative to the reference state, rather

than the estimated vehicle state, thus references in the following text to "the vehicle"'

are more precisely interpreted as references to the current vehicle control reference

state. This makes the algorithm deterministic given a set of goal inputs and obstacle

locations, and is important to the performance of the algorithm because it decouples

the trajectory generation from the control and estimation performance, which would

otherwise cause undesirable feedback. One possible criticism of this technique is that

the collision avoidance will not react to outside disturbances that drive the vehicle

into hazards. The answer is that the controller is specifically designed to react to these

disturbances and track the reference very robustly, so any additional coupling between

the vehicle position and reference will cause unwanted control feedback, reducing the

performance of the controller. This is the same methodology successfully employed

by MIT in the DARPA Urban Challenge [38]

The first task in generating an avoidance trajectory is to determine how to handle

the individual obstacles. As the algorithm loops through all obstacles in the map,

the first check is whether the confidence in the obstacle estimate is above the defined

threshold, otherwise that obstacle is ignored completely. If the obstacle is above

the confidence threshold, the algorithm then checks if it is dangerously close to the



vehicle. Dangerously close is defined as the critical range, which was 68 cm + xstop

for our tests, where 68 cm is the 28 cm physical vehicle radius plus a 40 cm buffer to

account for estimation and control errors, and xstop is derived from Equation (4.11)

x 1 ( =Ik - (4.15)
top 2 amax

where oi is the unit vector in the direction of the obstacle, the dot product with Vk

computes the velocity in the direction of the obstacle. If the distance between the

vehicle and the obstacle is less than the critical range, the trajectory generation is

completely overridden with an acceleration command directly away from the obstacle

of magnitude amax, referred to as an emergency reverse. Equipping this maneuver

very nearly guarantees safety, but has poor performance, causing oscillations as the

vehicle "bounces" off of obstacles. This emergency response is rarely used, however,

because of the collision-corridor augmentation which acts as the primary collision

avoidance protection.

The collision corridor is defined as the cylinder along the line from the vehicle

to the goal with a radius equal to two times the critical range, and length from the

vehicle location to the range of the goal, shown from a 2D plan view in Figure 4-7.

The vector di is the shortest segment from obstacle i to the goal vector g, which is

computed using Equation (4.16)1. This vector serves a dual purpose, as its magnitude

is the distance from the object to the center line of the corridor g, and its direction

is the ideal direction in which to accelerate in order to avoid the obstacle in three

dimensions.

di = (g oi) -g- oi (4.16)

oi = qi-x (4.17)

First, each obstacle is checked to see if it is in the collision corridor, which is true

'A diagram of this geometric construction is presented in Figure 4-3.
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Figure 4-7: Collision corridor with two obstacles outside the corridor ignored (dashed
ellipses). The green dashed circle around the orange vehicle square is the critical range
used to initiate emergency reverse maneuvers. The corridor is a three-dimensional
cylinder, flattened in these diagrams to facilitate discussion.

for obstacle i when all of the following are true

Ildill < 2 (68 cm + Xstp) (within the corridor radius)

I oill < | gH| (closer than the goal) (4.18)

oi-g > 0 (in front of the vehicle)

For each obstacle in the corridor, a cross-goal reaction acceleration direction ai = di

is computed according to Equation (4.16), which are summed together, each weighted

by the distance to the goal vector Ildill and the inverse of its time to impact ti. This

weighting prioritizes features that are in more immediate danger of collision (based

on ti), and have a more clear optimal reaction direction (the nearer an obstacles is to

the goal vector, the more directly in front of the vehicle it is and the less important

which direction you choose to go). This sum is normalized to determine the aggregate

reaction acceleration direction 'a. Because all of these components are perpendicular

to g, the aggregate a, will be as well. This perpendicular acceleration causes the

vehicle to move sideways, around obstacles, while maintaining its momentum toward

the goal, resulting in smooth and efficient trajectories.



The magnitude of this acceleration component is defined to be 1.5 times the

distance to the obstacle with the minimal time to impact, denoted by subscript min,

divided by tminTr, with T-r = 1 s in our tests (which empirically shows to generate

good trajectories), thus the resulting reaction acceleration component ar is

Omina, = 1.5 aa (4.19)
tmin Tr

aE = 1-d i l a i  -1di di di ]

aa = ti ti [ i ] (4.20)

ti = - (4.21)
Oi • V

This reaction acceleration component is added to the goal attraction and orbital

cancellation components to generate the final acceleration vector ak, as defined in

Equation (4.1).

4.3.1 Collision Avoidance Observations

This collision avoidance scheme has proven to work well in general, but unusual

environments can cause odd behavior. The most challenging situations for a standard

potential function based reactive obstacle avoidance algorithm are local minima [5],

formed by obstacle "nets." Imagine a group of four symmetrical obstacles arranged in

a square located in a vertical plane directly between the vehicle and the goal, shown

from a 2D plan view in Figure 4-8. Obstacles 1 and 2 are lined up on top of each

other (denoted ql1/ 2), as are 3 and 4 (q3/ 4), such that any reactions out of the plane

cancel out from symmetry.

In a typical potential field solution, the four potential functions will form a min-

imum between each other that will trap the vehicle, unable to plan its way out.

Using the new corridor method, the reaction vectors will approximately cancel out

in Equation (4.20), but any slight asymmetry (which is guaranteed in a real system)
is re-scaled by Equation (4.19) to cause a full reaction favoring initial motion (we'll

assume to the left). As the vehicle accelerates toward obstacles three and four, they

will get closer to the goal vector, decreasing 1Id3/41l, and will thus be weighted less



Figure 4-8: Top view of potential obstacle "net" situation. At time k - 1 the effects
of the obstacles almost perfectly cancel, but the vehicle still reacts intelligently.

heavily. This compounds the original imbalance, pushing the vehicle more in the

same direction, out and around the "net" that might have otherwise trapped it. If

the obstacles are spaced just wide enough that one of them goes out of the corridor

before the vehicle makes it all the way around the other (as shown in the figure),

the vehicle will have a tendency to "pop" back into the center, oscillating back and

forth as it moves forward, seemingly trapped. This is an unusual and potentially

catastrophic case, but because the corridor is two times the radius of the critical

range, the vehicle will actually center itself between the obstacles and just barely fit

through them. The second level heuristic protects the vehicle from collisions as it

squeezes through. The ultimate result of this combined repulsive/corridor cross-goal

acceleration is a closed-form goal pursuit and obstacle avoidance heuristic which runs

in linear time with the number of features in the environment.

Figures 4-9, 4-10 and 4-11 show simulated 2D flights around around different ar-

rangements of obstacles. The green dashed circles are buffer zones used for emergency

maneuvers, and the red dashed circles are collision zones defined by the physical size

of the vehicle. The purple orb is the goal, and the blue trace is the simulated reference



trajectory.

Compared with typical reactive planners, the corridor augmentation we have pre-

sented has several advantages. The first is that it generates smoother and more

natural trajectories, tending to move the vehicle directly toward the outside edges of

in the way obstacles, just as a person would. The second is the reduced risk of get-

ting trapped in a minimum. Figure 4-12 shows an example comparing the results of

using the emergency reverse only, which is similar to a closed-form artificial potential

function repulser solution, to the same emergency reverse algorithm augmented with

the corridor system. 20 features placed in a plane are used for visualization purposes

as it is hard to judge performance of 3D flights in 2D plots. 20 features in the flight

plane is roughly the same density as 100 features in the flight volume.

Computing the effect of the corridor increases the solve time to about 1.5-2 times

the potential only solutions, which is considered a worthwhile penalty for the gain in

the performance, especially since the repulsion solution is incredibly simple and fast

to begin with, but consequently gets stuck before reaching the goal. The corridor

algorithm operating on 100 features in three-dimensions runs unoptimized at about

800 Hz, which is on a fast desktop, but in a slow Matlab environment. This is nearly

two orders of magnitude faster than the 15 Hz at which the vision is updated, and

is primarily a result of the simple closed-form equations. In the C++ environment,

the time to compute the obstacle avoidance is almost immeasurable, clocking at an

average 1 ps with a typical 50 features of high enough confidence to be used in the

avoidance calculations.

4.4 Closed-Loop Vision Flight

The primary challenge presented by closed-loop vision flight lies in the interaction

between the flight performance and the state estimate, addressed previously .in sec-

tion 3.2. Without vision feedback, the vehicle is capable of maintaining a quasi-stable

hover by damping rotations with gyro feedback and fusing the gyros and accelerom-

eter to track the gravity vector. Unfortunately this flight mode is not sufficient for
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Figure 4-9: A typical scenario in which a clump of obstacles are detected and smoothly

avoided. A typical potential function solution would get stuck in the notch between

the obstacles.
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Figure 4-10: A very unusual scenario with a symmetric obstacle "net". The vehicle

gets a little confused, but ultimately finds the gap between the obstacles using the

emergency avoidance routine.
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Figure 4-11: A little more unusual arrangement with staggered obstacles. Because
the vehicle places higher weight on obstacles with sooner time to impact, it avoids
the nearer obstacle first, slaloming between them.
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Obstacle Avoidance Simulation
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Figure 4-12: A comparison of repulsion only trajectory in magenta vs. the corridor
augmented technique in blue with 20 obstacles in the plane z = 0.

our goals because disturbances in the environment will eventually cause the vehicle

to drift off into an obstacle and crash. We also do not want to simply hover, but

rather explore the environment.

Adding vision enables the vehicle to estimate the absolute position, which then can

be used to close the control loops. From a single point of view, the vision features stay

approximately unchanged and the estimate is stable. However, as we add accelerations

to move around the environment, our point of view changes; features move and are

tracked, but also go out of view and must be replaced, and occlusion and reflective

surfaces cause complex vision scenarios with false corners that do not correspond to

physical points in 3D space, making the feature tracking and estimation significantly

more challenging.

With persistent features it is possible to generate a drift-free estimate, but as

features go out of view, they must be replaced and estimation errors will accumulate.

These inaccuracies can cause the vehicle to act aggressively, as if step functions had

been fed into the controller. Aggressive motions cause the images from the onboard

0. %

on>-

-2

-3



camera to blur and go out of the camera field of view more frequently, compounding

the rate of estimate error propagation in a positive feedback loop. Using a low gain

on position error solves this problem by having the vehicle react smoothly to step

changes in the position estimate, and a large integrator component keeps the tracking

performance high, but with a slower time constant. High integrator gains typically

cause problems with overshoot, but, because of the error in our estimate, overly-

precise tracking is not important. It is also interesting to note that the accuracy of

mapping estimates increases with larger visual parallax, so slow oscillations driven by

a large integrator have a tendency to improve the vehicle's ability to resolve feature

locations.

4.4.1 Drift-Free Hover Results

When hovering, the vehicle maintains an almost fixed point of view, maximizing

feature persistence and minimizing drift. Figure 4-13 shows a typical hover using the

vision-based state estimate for control feedback. Because the vehicle remains in the

same approximate location, no features are lost and thus the average drift for the 96

seconds the vehicle is commanded to hover is negligible.

Figure 4-14 shows the result of the obstacle avoidance flying the physical vehicle

around simulated obstacles. The vehicle is simply commanded to go the opposite

side, then return, and avoids the virtual hazards autonomously.
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(a) 3D plot of flight.

X-Postion Error During 1.55 Minute Hover

- RMS error = 7.61 cm

. .I
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Figure 4-13: Simple hover with flight control loop closed using vision-based state
estimate for full-state feedback.
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Obstacle Avoidance
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Figure 4-14: Real flight around simulated obstacles.
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Chapter 5

Results

The section includes the results of the combined algorithms discussed in the central

chapters, which include sub-results of their own. Computational requirement results

are also presented in order to build the case that these algorithms could likely run on

an embedded computer.

5.1 Vision-Based Control and Obstacle Avoidance

These tests are the culmination of all the developments of this thesis. Vision-based

state estimation with emulated inertial data from the Vicon camera system is used to

generate the state estimate, which is used for full-state control feedback to stabilize

the vehicle, track the reference trajectory, and map the environment. The mapped

features are processed with the reactive obstacle avoidance algorithm, and a single

waypoint entered on the opposite side of the room is loaded into the system manually

by the operator. The finite-acceleration trajectory generator integrates a smooth tra-

jectory toward the waypoint, taking into account the orbital cancelation and obstacle

avoidance reactions, safely guiding the vehicle around the clutter directly blocking its

path to the goal. No information is known about the pole, stool, and other clutter - it

is perceived entirely with the single camera onboard the vehicle. The position, veloc-

ity, and attitude data from the Vicon tracking system are only used for visualization

and post-processing all the way from take off to landing.



(a) The environment (b) Going over the stool.

Figure 5-1: Onboard camera view of the final environment setup for autonomous
obstacle avoidance.

Figure 5-1 gives a sense of what the environment looks like to the vehicle. It

is low resolution, gray, and blurry, just as an onboard micro-camera is expected to

be when pushing the limits of small-scale flight. The feature tracking is sufficiently

robust to help the vehicle do what it needs to do in order to traverse the environment

autonomously. The environment was set up with the pole and additional clutter in

the center of the room in order to give the vehicle some room to maneuver, but with

a clear and complex obstacle set blocking the direct path to the goal.

Figure 5-2 shows two Matlab plots from the top (x, y) and side (z, y) of a successful

obstacle avoidance flight. These plots serve as a tool for quantitative performance

analysis with physical units. Over the course of the flight, the vehicle travels 5 meters

to the opposite side of the room with an ultimate error of about 1 meter, most of

which was accumulated near landing because of the sparseness of the wall behind the

pole, making for difficult feature tracking. The green circle is the take-off point, the

red line is the estimated trajectory, and the purple spots are 3D points the vehicle

has mapped in the world based on its vision and ego-motion estimates. The blue

block and green cylinder are hard-coded graphics of the physical pole and stool, and

the black line is the truth trajectory from the Vicon external camera system, which

are collectively intended for judging the ego-motion estimate and mapping accuracy.
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Figure 5-2: Orthographic views of flight over stool.

The purple spots represent a snapshot in time of the points used to compute the

three-dimensional reactive obstacle avoidance acceleration components, which were

integrated over the course of the flight to create the blue reference trajectory the

controller was tasked with tracking. As the vehicle attempted to move toward the

goal, the obstacle avoidance decided to fly the vehicle up, around the pole to the

left, over the stool, and down to a smooth touchdown near the goal. Presumably the

odd path was chosen because of the non-deterministic nature of the map formation,

because the obstacle position estimates shift with variations in vision measurements

and state estimation.

Figures 5-3 and 5-4 are more visually intuitive 3D perspective screenshots taken

of the real-time operator visualization and input application from two different view

angles and points in time during an offline playback of the flight data from Figure 5-

2. The color coding is similar to Figures 5-2 and 5-6, with the red trace being the



Vision/INS position estimate, the red ellipsoids representing the mapped obstacles,

and the black trace indicating the time history of the true vehicle position from Vicon.

Again, the yellow block and brown cylinder were added manually in order to give a

baseline for judging accuracy of the mapping and proximity of the vehicle to physical

obstacles.

Figure 5-5 is a linked video of the flight, composited from several replays of the

flight from different perspectives, including a video camera that captured the physical

flight, and the processed onboard video showing feature tracking (small blue and yel-

low circles) and feature culling (large blue, green, and red flashes). Note how difficult

it is for the system to track the image features when the vehicle lands because of the

aggressive motion that blurs the image. These aggressive motions are unavoidable

when impacting the ground, but have were essential to avoid in the control design

because they would decrease the estimate performance. The result is that the flight

is very smooth because of the decreased proportional gain, and tracking performance

regained with a high integral component, which also causes the low-frequency oscil-

lations that help the vehicle build parallax on the observed obstacles.

Several tests were done in this particular setup as the various parameters in the

estimation filter and obstacle avoidance were tweaked to get good performance. In

general we found that the system was quite robust and capable of maintaining stable

flight with safe obstacle avoidance behavior with a fairly wide range of parameters.

This is because the general formulation of the obstacle avoidance and estimation

filter are designed to be robust to complications inherant in our flight scenarios. The

primary advantage is use of relative obstacle avoidance which allowed the vehicle to

avoid obstacles effectively after any amount of accumulated drift. Figure 5-6 shows

a plot of a representative flight with the same starting condition and goal state as

the last flight, presented in Figure 5-2. This time the vehicle chooses a much more

sensible path around the pole to the right, avoiding the stool entirely. The data

visible in the figure is a clear example of the complimentary offset errors that develop

in both the feature estimates and the estimated vehicle position, as discussed in

section 3.3.3. Looking at the upper (x,y) plot of Figure 5-6, notice how the estimated
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Figure 5-3: 3D visualization of flight over stool from back of room.

Figure 5-4: 3D visualization of flight over stool from operator perspective.
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vehicle path is offset about 0.2 meters to the left of the truth trajectory as the vehicle

approaches the the point (2,0) near the pole. It is also clear in the figure that the

feature estimates are approximately 0.2 meters to the left of where the pole actually

was (represented by the light blue rectangle) as well. Even though the true position

of the vehicle was much closer to the axis (3,0,z) where the pole physically exists

than the collision avoidance thinks it was, it does not matter because the avoidance

system is generating the trajectory based on its own estimate of the pole, as described

in section 4.3. Thus the resulting trajectory, minus the error in the vehicle estimate

(and thus tracking) causes the vehicle to fly around the pole with a real-world buffer

range close to the 68 cm designed in the original obstacle avoidance. In fact, were

the location of the pole hard-coded into the obstacle avoidance algorithm, the vehicle

would probably crash because the error in the estimate would not be countered by the

complimentary error in the obstacle estimates. Figures 5-7 and 5-8 are more visually

intuitive screenshots of this flight.
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Figure 5-5: Autonomous
available at acl.mit.edu.

vision-based control and collision avoidance flight video,

Vision-Based Control and Obstacle Avoidance
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Figure 5-6: Orthographic views of flight around the stool and pole.

. I



Figure 5-7: 3D visualization of flight over around pole and stool from high in front.

Figure 5-8: 3D visualization of flight over around pole and stool from high and behind.

104



5.2 Computational Demand Analysis

Timing is done relative to the fixed time allotted per step based on the 50 and 15

Hz inertial and vision cycles (20 ms and 67 ms time periods), respectively. In order

to analyze the computational requirements of the algorithms, the offline data replay

system was employed such that the subroutines could be run in series in a single thread

to maximize timing precision. The processor used was a Core2 Quad Q6700 at 2.66

GHz with 4 GB of RAM, for the reasons described in section 2.2. The proportionate

and absolute time spent on the various tasks are listed in Table 5.1 and depicted in

Figure 5-9.

The total average computational demand of one second of operation (not including

masking time, presuming that it can be replaced with a more optimal solution) with

vision at 15 Hz and inertial data at 50 Hz is 141 ms, or 14.1%. The Q6700 processor is

measured to execute 49,161 Million Instructions Per Second (MIPS) [65], but because

this would be using all four cores, we divide by 4 to get the power available to our

single-threaded playback system-12,290 MIPS. 14.1% of this is 1,732 MIPS, which is

what we are using for our core algorithms. This implies that the system could run on

a significantly slower embedded microcontroller, such as the new Intel Atom processor

Table 5.1: Breakdown of computational demands for key
flight system.

elements of the onboard

Process
Vision

Masking
Feature Finder
Feature Tracker
Vision Update
Mapping
Avoidance Update

Inertial
Time Update
Onboard Guidance
Control

Average Time Needed
67 ms

12.7 ms (19.1%)
1.51 ms (2.27%)
0.93 ms (1.4%)

6.80 ms (10.2%)
4.2 ps (- )
0.55 /s (- )

20 ms
37.9 ps (0.19%)

0.28 s (- )
1.9 Ps (-)

Range

[12.2, 18.6] ms
[0, 11.5] ms

[0.75, 2.10] ms
[4.31, 65.2] ms

[3, 5] us
[0, 1] /s

[36, 60] /s
[0, 1] us
[1, 6] Is
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Key Algorithm Requirements
Feature Tracker Image Processing Break Down

Estimator Feature Tracker
Downsample

Copy

Remainder of 15Hz Frame

(a) Primary system algorithms compared (b) Timing breakdown of image processing al-
to time available with 15Hz video. gorithm. Image masking clearly needs to be re-

placed with a more efficient option.

Figure 5-9: Breakdown of time spent performing various tasks. The primarily inertial
functions were insignificant(- 40 ps), and the key vision processing algorithms used
only about 14.1% of the 67 ms available per video frame.

for mobile devices [29], or the ARM Cortex-A8 which has a claimed execution rate

of 2000 MIPS at 1 GHz with the floating point NEON media coprocessor, while

consuming less than 300 mW of power [44].

Note that the maximum 65.2 ms on the vision update is very near the 67 ms

per frame, thus would exceed the time available if running on an embedded system.

This peak is from repeatedly initializing the covariance of newly seen features as the

vehicle lands abruptly and the image is shaken beyond usability, notable at the end

of the video in Figure 5-6 and the spikes at 38 seconds of Figure 5-11. The covariance

initialization is also in the process of further optimization by Draper Labs to reduce

the associated time. Occasionally taking longer than the allotted time is ok-as long

as the average is less, time can be borrowed from adjacent time steps without much

consequence, shown by the fact the system can operate with variable and inconsistent

camera rates due to transmission delays in the wireless system, and changing light

levels, ranging from 12-30 Hz [24].
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Figure 5-10: Probability histogram of how long the the feature finder will likely take.
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Figure 5-11: Processing time of finding and tracking features, conducting vision up-
dates, and current Z acceleration as the flight progressed.

Also note the high max on feature tracking relative to its average-this is because

the feature tracking is only called when features are lost, and thus is not called at

all for 80% of vision updates in most flight tests (almost never for hover tests). Of

the instances the system does need to find new features, the goodFeaturesToTrack

algorithm is very consistent, and takes between 7.0 and 8.2 ms 95% of the time, as

shown in Figure 5-10. This is because the algorithm methodically scans every pixel

of the image, except those masked out, and thus takes a very consistent amount of

time. There are some unexplained outliers near 11 ms that are infrequent enough to

disregard, thus the feature finding step can be relied upon to almost always operate

in under 8 ms on this hardware platform, independent of the imagery.

Figure 5-11 shows the correlation between finding features and the time needed

to process vision updates. At the end of the flight, the vehicle has a bit of a rough

landing, indicated by the high Z acceleration. This causes the imagery to blur, with
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noticeable strain on the feature tracker, and tremendous strain on the Vision filter,

which spikes all the way up to 60 ms from its 6.8 ms average. During experiments,

it is possible for the filter to get into an slow state like this while still flying, which

can slow down the entire system to below the operable limits, causing the vehicle

to crash. This is another positive feedback loop as described before in section 4.4,

as the slow updates will decrease the control performance, which causes the vehicle

to oscillate, blurring the imagery further, compounding the problem. The long solve

time is presumed due to poor filter convergence in the face of bad measurements. For

a robust solution, a fix would have to be put in place to limit the amount of time the

filter can spend on one update.

The measurements of onboard guidance and control were insignificant compared

to the primary computation required by the image processing and state estimation.

State estimate time updates based solely on inertial data are also very fast, clocking

in at about 36 ps (or about 0.2%) of the 20 ms update period available), and thus the

vehicle had no trouble at all keeping up with the IMU. The image processing was a

measurable portion of the 67 ms vision cycle period, with the goodFeaturesToTrack

feature finding taking an average of 1.5 ms per frame (2.2%) and the Lucas-Kanade

feature tracking demanding about 0.93 ms per frame (1.4%) on average.

The vision based state update was slightly more of a burden, taking an average of

6.8 ms (10.2%). The masking algorithm is a clear sign of weakness and could easily be

replaced with a Rectangle Of Interest (ROI) method, greatly increasing performance.

An ROI could also improve the feature spread by selectively search for features in

less well covered areas of the image. The reason the masking algorithm is so slow

is because of the OpenCV implementation of matrices which use a clunky memory

interface to access individual pixels, and a very slow erode function which masks out

the pixels surrounding already masked out pixels, slowly growing the masked areas

to the desired size. Although these particular functions could be improved, it would

make more sense to entirely switch to an ROI method of spreading features.

108



Chapter 6

Conclusion

Arbitrary 3D navigation in complicated environments is a challenging task with many

valuable rewards. The general problem has been approached from many different di-

rections with much success, and this field of research is growing exponentially in

academia, private, and government sectors. There is significant cross-over of knowl-

edge and technology between different robot paradigms, from wearable computers to

submarines to micro-helicopters.

We have presented several pieces of a proposed solution, and demonstrated phys-

ical flight results supporting their validity. The ego-motion and environmental esti-

mation based on monocular vision data and inertial measurements proves to be very

promising in mostly static environments with high degrees of clutter. The trajectory

generation and associated control techniques have demonstrated ability to avoid ob-

stacles in unknown environments autonomously with minimal computational effort.

The concept of hybrid control is very promising, using a combination of autonomously

generated, high-level waypoints, interpolated with the high speed onboard trajectory

planner and reactive obstacle avoidance, making the vehicle capable of executing ad-

vanced autonomous missions while remaining safe in the event of communication loss

(or operator neglect). Although the complete benefits of this ability have not been

demonstrated extensively, the very sparse input sets given in the ultimate obstacle

avoidance tests demonstrates the ability of the onboard planning system to get from

point A to point B effectively all on its own, even when the direct path is far from
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clear.

The resources of the RAVEN rapid-prototyping testbed have also been demon-

strated as an incredibly useful tool for development of sensing-based algorithms. The

high-fidelity state information provides excellent performance feedback, as well as a

safety net for protecting the vehicle while developing new and unstable algorithms in

hardware with minimal risk of vehicle damage.

Finally, the road has been set for true embedded implementation of the onboard

algorithms. The onboard system has been shown to be very computationally efficient,

even in the very open environment of hovering flight in three dimensional spaces with

upwards of 100 mapped obstacles. Many of the hardware challenges will actually

diminish with the move to embedded processing, specifically because of the current

performance losses due to wireless transmission of visual data. Embedded cameras

can provide raw imagery without the compression artifacts and delays, transmission

irregularities, and other hindrances we have had to endure in our testing. The move

to true embedded sensors will also potentially benefit the algorithm performance as

there will be reduced delay and higher fidelity with a similar noise level. Ultimately,

a fully autonomous, self-contained HMAV vehicle will almost certainly be developed

in the near future with capabilities exceeding those we have demonstrated here.

6.1 Future Improvements and Extensions

Unfortunately, vision-based sensing suffers heavily when confronted with amorphous

objects, highly specular surface, moving hazards, and visually plain un-textured en-

vironments. Binocular vision is a logical next step, and can also be beneficial to the

remote operator, providing stereo vision for more immersive real-time environment

feedback. Stereo vision solves the problem of moving and deforming obstacles as it

can estimate range in a single time step, but stereo vision traditionally has issues with

additional computation, double the camera hardware and related power and weight,

synchronization, and calibration issues. A potential solution to this problem would

be to explore optical lens separation techniques in order to split a single camera im-
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age into two different points of view. This would guarantee image synchronization

and identical lens distortion properties, solving many of these challenges, but stereo

vision still suffers the challenges attributed to vision in general, such as specularity

and visually plain environments.

Adding LIDAR capabilities to a vision equipped system can provide a similar

capability as stereo vision in estimating range and thus full position of obstacles

in one time step, giving the vehicle the ability to avoid moving hazards, but again

adds significant weight, size, and power penalties. However, as it is miniaturized,

LIDAR could prove an even more valuable augmentation than stereo vision as it can

potentially operate in a wider range of environments, robust to changing ambient

light levels and environments with low or zero texture [32].

Flying strictly indoors is also a large limitation of our system that can be easily

extended with existing technology. The emergence of micro-GPS systems and high

performance 3D compasses can give HMAVs very high capabilities in outdoor envi-

ronments, and the combination of our indoor state estimation and general obstacle

mapping and avoidance algorithms could make a vehicle system able to transition

between indoor and outdoor environments by flying in and out through doorways

and windows. Introducing GPS updates to the state estimate are straight forward

and would allow the system to operate smoothly while transitioning between full,

intermittent, and completely blocked GPS scenarios.

The offboard system also has significant room for advancement. Beyond contin-

uing the extensions of the MIT Urban Challenge RRT planner into full 3D with an

appropriate dynamic model for the quadrotor, the planner could incorporate addi-

tional computationally demanding tasks to further optimize trajectories, such as the

concept of planning in information space as presented by He, Prentice, and Roy [57].

One example of augmenting the output of the DUC planner would be to adjust the ve-

hicle heading such the the camera would look in the direction that maximizes feature

persistence and the expected performance of the ego-motion estimate. This would

help the the vehicle stay on track as best as possible while following the same trajec-

tories as generated by DUC and the reactive onboard planner, which don't need to
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take heading into consideration.

It would also be fruitful to provide rewards for exploration in addition to the

standard penalties for obstacle proximity and excessive fuel consumption-because of

the small field of view of the camera, the slice of the environment that can be mapped

at any given time is relatively small, so adjusting the vehicle heading in order to form

a more complete map of the environment would be very rewarding in navigating

effectively. For example, the vehicle might not be able to see an opening only 45

degrees to the side and instead wanders off on a circuitous path that happens to be in

front of it, rather than rotating a bit to take a peak. This would potentially decrease

feature persistence which reduces estimation performance, but a "look" maneuver

could be designed such that a snapshot of the tracked features before the maneuver

is stored and reloaded after the vehicle performs its in-place exploration rotation,

minimizing drift during the maneuver. This problem can also be addressed with a

camera that has a wider field of view, but this introduces lens distortions that would

need to be compensated for with additional onboard computation, and the relative

advantage compared with a simple heading adjustment is unknown.

Although this advanced planning would help the vehicle work with its existing

map, significant improvements can be made to the way in which it stores and thinks

about the world. Techniques such as binning and connected node-graphs could greatly

enhance the abilities of the offboard planner, which is currently assumed to work sim-

ply based on the point-cloud map that the onboard obstacle avoidance uses, but with

less memory restrictions. In the Urban challenge, the planner was supplied a route-

network of the streets and intersection to be used for high level planning. This route-

network is typically not available when exploring a new building, thus the ability to

develop such a network for the highest level of planning would be very advantageous.

Techniques such as SIFT feature extraction and RANSAC feature mapping can help

the vehicle relocate itself upon returning to a previously visited room, similar to

the Monocular SLAM problem [7, 11], allowing it to localize itself within the abstract

route-network, even after accumulating significant position estimate drift. All of these

enhancements could be done through low-bandwidth connections to powerful ground

112



station computers, and could also be aided by human operators that are partially in

the loop.

Finally, the capabilities of the onboard system to deal intelligently with commu-

nications failures needs to be expanded. Currently, the onboard system does nothing

but wait for waypoints and land commands. If it sees something, it will made sure

not to hit it, but without communication to the base station it will hover indefinitely

until the battery dies and the vehicle lands, useless. A simple backtracking algorithm

could be added that simply retraces the last several waypoints that were sent until

communication is regained. If waypoints 1 meter apart are retained, then 1 km of

backtracking could be easily stored with an insignificant 10 Kb of memory. Of course

drift would grow during the retracing process, but since the vehicle can avoid obsta-

cles in a relative sense, it would be able to make progress in the right general direction

without colliding with obstacles.

6.2 Summary of Contributions

This thesis has focused on the higher level system and key supporting algorithms for

the guidance and control of an HMAV in unknown indoor environments in an artifi-

cial testing situation using real sensor data on a physical vehicle. This includes the

implementation and use of a hardware system that provides the sensing, computation,

and vehicle for rapid prototyping, dramatically increasing the rate and productivity

of development. The concepts and methodologies of the algorithms used for image

processing and ego-motion estimation are discussed, and the implementations of the

environmental mapping and reactive obstacle avoidance algorithms are presented.

Flight results of the autonomous system are analyzed, demonstrating the viability

of this solution to achieve its objectives in real environments on physical hardware.

Although developed in the test bed, these technologies are directly applicable to

real-world flight vehicles and many of the issues with transitioning to self-contained

embedded flight systems are directly addressed with promising conclusions for the

ultimate implementation of these contributions to real-world flight scenarios.
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